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Preface

This volume contains 29 articles selected among 116 submissions. Each submis-
sion was initially allocated to at least three Program Committee members—most
submissions were allocated more. In all, 436 review reports were produced—some
of which contained multiple reports from distinct reviewers—including reviews
contributed by 124 external reviewers. The selection process was organized in six
phases as described in Section 3 of the handbook that you can find at the end
of this volume. In particular, these phases included a rebuttal phase in which
authors had the opportunity to respond to reviews, and a Program Commit-
tee meeting that took place in Paris and settled the final program. Of the 116
submissions, 12 were coauthored by members of the Program Committee and
underwent a different and stricter selection process described in Section 4 of
the handbook: They were assigned at least five Program Committee members;
they were discussed on line between the rebuttal phase and Program Committee
meeting; they had to satisfy higher acceptance criteria and the decision about
them was taken before the Program Committee meeting so as to ensure that
acceptance for these article was established in absolute terms and not relative to
other submissions. At the end of the process, four of the 12 initial submissions
were accepted.

The detailed organization of the whole selection process is described in the
handbook that can be found at the end of the volume.

Of the 29 contributions in this volume, two received an award. The Pro-
gram Committe granted the Best Paper Award to “RedCard: Redundant Check
Elimination for Dynamic Race Detectors” by Cormac Flanagan and Stephen N.
Freund. The Artifact Evaluation Committee granted the Distinguished Artifact
Award to “QUIC Graphs: Relational Invariant Generation for Containers” by
Arlen Cox, Bor-Yuh Evan Chang, and Sriram Sankaranarayanan.

The final program included three keynote talks: one by Matthew Parkinson,
winner of the 2013 Dahl-Nygaard Junior Award; a second by Oscar Nierstrasz,
winner of the 2013 Dahl-Nygaard Senior Award; the third keynote talk was given
by Pat Hanrahan, who was invited by the Program Committee. The abstracts
of these talks are included at the beginning of this volume.

As a personal note, it was a real honor and privilege for me to chair this
committee. The Program Committee members worked hard to produce quality
reviews and to provide as much feedback as possible to the authors. Thanks to
them the selection process was smooth, pleasant, and carried out in good cheer,
and I am sincerely grateful to all of them.

April 2013 Giuseppe Castagna
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Co-specialization of Hardware and Software

Pat Hanrahan

Stanford University, USA

Abstract. Hardware is becoming increasingly specialized because of the
need for power efficiency. One way to gain efficiency is to use throughput-
oriented processors (e.g. GPUs) optimized for data-parallel applications;
these processors deliver more gigaflops per watt than CPUs optimized
for single-threaded programs. On mobile and embedded platforms, where
batteries limit the available energy, systems-on-a-chip contain multiple
processors along with many specialized hardware units. Since most ap-
plications perform many different types of computations, the optimal
platform will contain a heterogenous mixture of different types of pro-
cessing elements.

As the hardware has become more diverse, so have the programming
models. This is because the low-level programming models reflect the
underlying hardware abstractions. Unfortunately, the diversity in pro-
gramming models makes it challenging for software developers to use
emerging hardware platforms.

The classic method for writing portable programs is to use a general-
purpose programming language and an optimizing compiler. Unfortu-
nately, current compilers are not powerful enough for todays platforms.
Programs written for one class of machines will not run efficiently on
another class of machines.

My thesis is that the only practical method for writing programs for
heterogeneous machines is to raise the level of the programming model.
In particular, I advocate the use of domain-specific languages (DSLs).
I will present the case for using DSLs, show how DSLs can cope with
diverse hardware, and outline several areas of programming language
research that may lead to better methods for building DSLs. Given the
trend towards specialized hardware, it seems natural to co-specialize the
software.



I Object, or
How I Learned to Stop Worrying and Love OOP

Oscar Nierstrasz

Software Composition Group, University of Bern, Switzerland
http://scg.unibe.ch/

Abstract. Object-oriented programming was conceived over 50 years
ago, and has consistently proved its value in the construction of com-
plex software systems since the 1980s. Nevertheless, the sentiment that
“objects are not enough” is often repeated, and object-oriented program-
ming is commonly bashed by respected computer scientists. We claim
that OOP is commonly misunderstood. I describe a personal quest for
maintainable software with the help of objects during a period of over
30 years, and argue that we still need to embrace objects if we are to
realize the benefits of OOP.



Views on Concurrency Verification

Matthew Parkinson

Microsoft Research

Compositional abstractions underly many reasoning principles for concurrent
programs: the concurrent environment is abstracted in order to reason about
a thread in isolation; and these abstractions are composed to reason about a
program consisting of many threads. For instance, separation logic uses formulae
that describe part of the state, abstracting the rest; when two threads use disjoint
state, their specifications can be composed with the separating conjunction. Type
systems abstract the state to the types of variables; threads may be composed
when they agree on the types of shared variables.

In this talk, I will present the “Concurrent Views Framework” [1], a metathe-
ory of concurrent reasoning principles. The theory is parameterised by an ab-
straction of state with a notion of composition, which we call views. The metathe-
ory is remarkably simple, but highly applicable: the rely-guarantee method, con-
current separation logic, concurrent abstract predicates, type systems for recur-
sive references and for unique pointers, and even an adaptation of the Owicki-
Gries method can all be seen as instances of the Concurrent Views Framework.
Moreover, our metatheory proves each of these systems is sound without requir-
ing induction on the operational semantics.

Reference

1. Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M., Yang, H.: Views:
Compositional Reasoning for Concurrent Programs. In: Proceedings of POPL (2013)
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CoCo: Sound and Adaptive Replacement
of Java Collections

Guoqing Xu

University of California, Irvine, CA, USA

Abstract. Inefficient use of Java containers is an important source of run-time
inefficiencies in large applications. This paper presents an application-level dy-
namic optimization technique called CoCo, that exploits algorithmic advantages
of Java collections to improve performance. CoCo dynamically identifies opti-
mal Java collection objects and safely performs run-time collection replacement,
both using pure Java code. At the heart of this technique is a framework that ab-
stracts container elements to achieve efficiency and that concretizes abstractions
to achieve soundness. We have implemented part of the Java collection frame-
work as instances of this framework, and developed a static CoCo compiler to
generate Java code that performs optimizations. This work is the first step to-
wards achieving the ultimate goal of automatically optimizing away semantic
inefficiencies.

1 Introduction

Large-scale Java applications commonly suffer from severe performance problems. A
great deal of evidence [1,2,3,4,5] suggests that these problems are primarily caused by
run-time bloat [6]—excessive memory usage and computation to accomplish simple
tasks—often from inappropriate design/implementation choices (e.g., creating general
APIs to facilitate reuse, using general implementations without any specialization, etc.)
that exist throughout the program.

Container Inefficiencies. Previous studies [4,7,8,3,9,10] have found that an im-
portant source of run-time bloat is the inefficient use of container implementations.
Standard libraries of object-oriented languages such as Java and C# contain collection
frameworks that provide with users, for each abstract data type (such as List), many
different implementations (such as ArrayList and LinkedList), each of which
features a different design choice suitable for a specific execution scenario. However,
in real-world development, choosing the most appropriate container implementation is
challenging. As a result, developers tend to keep using the implementations that are
most general or well-known (e.g., HashSet for Set), regardless of whether or not
they fit the usage context. This is especially true in object-oriented programming, as
developers can easily write code without deeply understanding implementation details
of libraries, and the culture of object-orientation itself encourages generality and quick
reuse of library functions. Inappropriate choices of container implementations can lead
to significant performance degradation and scalability problems. More seriously, such
bottlenecks can never be detected and removed by an existing optimizing compiler that
is unaware of these different design principles and trade-offs.

G. Castagna (Ed.): ECOOP 2013, LNCS 7920, pp. 1–26, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Run-Time Container Replacement to Achieve Efficiency. We propose a novel
container optimization technique, called CoCo, that is able to (1) determine at run time,
for each container instance (e.g., a LinkedList object) used in the program, whether
or not there exists another container implementation (e.g., ArrayList) that is more
suitable for the execution; and (2) automatically and safely switch to this new container
implementation (e.g., replace the old LinkedList object with a new ArrayList
object online) for increased efficiency. While there exists work (such as Chameleon [7]
and Brainy [9]) that could identify Java collection inefficiencies and report them to users
for offline inspection, none of these techniques can change implementations online. An
online approach outperforms an offline approach in the following two important as-
pects. First, a real-world execution is often made up of multiple phases, each with a
different environment processing different types of data. Much evidence shows [11,12]
that it is difficult to find a solution that is optimal for the entire execution. Our exper-
imental results also demonstrate that many containers in large applications experience
multiple switches during execution. This calls for novel techniques that can change im-
plementations immediately after they become suboptimal. Second, an offline approach
relies completely on the developer’s effort to fix the detected problems while an online
approach shifts this burden to the compiler and the run-time system.

Challenge 1: How to Guarantee Safety. Developing an online technique is sig-
nificantly more difficult and constitutes the main contribution of this paper. Switching
container implementations can easily cause inconsistency issues, leading to problematic
executions or even program crashes. To illustrate, consider again the previous example
where we replace a LinkedList object with an ArrayList object. Any subsequent
invocation of a LinkedList-specific method (e.g., getLast) or type comparison
(e.g., o instanceof LinkedList) can either cause the program to fail or change
the semantics arbitrarily.

CoCo uses a combination of manually-modified library code and automatically-
generated glue code (both are pure Java code) to perform optimizations. Unlike a tra-
ditional systems-level (blackbox) dynamic optimization technique that is completely
separated from the applications being optimized, CoCo (1) advocates a methodology
that can be used by library designers to create optimizable container classes, and (2)
provides a static compiler to generate glue code that performs run-time optimizations
on these optimizable container classes. All optimizations are performed at the appli-
cation level within the (manually modified and automatically generated) Java classes,
which encode human insight to direct optimizations.

CoCo stands for container combination—for each container object (whose type is
supported by CoCo) created in a Java program, we additionally create a group of other
container objects to which this particular object may be switched at run time. This
group, together with the original container, is referred to as a container combo hence-
forth. CoCo initially uses the original container object as the active container, leaving
this group of associated containers in the inactive state. All operations are performed
only on the active container object. Upon adding a new element, the concrete element
object is added only into the active container while CoCo creates an abstraction for
this element and adds the abstraction to all inactive containers. This abstraction is ac-
tually a placeholder from which we can find the concrete object(s) it corresponds to.
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Once a container switch occurs, an inactive container (e.g., a) that contains element ab-
stractions is activated (and the originally active container b becomes inactive). If later a
retrieval operation on a locates an abstraction, this abstraction is concretized by finding
its corresponding concrete element (from b) to guarantee the safety of the subsequent
execution. Section 4 discusses how to instantiate this framework to implement List,
Map, and Set combos.

Challenge 2: How to Reduce Run-Time Overhead. It is obvious to see that naively
creating container groups and performing abstraction-concretization operations can in-
troduce a great amount of overhead. As our ultimate goal is to improve performance, it
is equally important for CoCo to reduce overhead as well as ensuring safety. We employ
three important optimization techniques to tune CoCo’s performance: (1) drop inactive
containers once we observe no optimization is possible; (2) use sampling to reduce
profiling overhead; and (3) perform lazy creation of inactive containers.

Note that the performance benefit that CoCo may bring to a program results primarily
from the algorithmic advantage of the selected implementation over the source imple-
mentation in an execution environment that favors the former, instead of from other
factors such as a more compact design of the data structure or improved cache locality.
In fact, performing online container replacement can, in many cases, increase memory
space needed (as more objects are created) and/or hurt locality (as concrete elements
can be separated in different containers). In order to improve the overall performance,
we have to carefully select the container types to be optimized and evaluate various
container replacement decisions to find the appropriate configurations under which the
performance benefit outweighs the negative impact of the online replacement.

Section 2 gives an overview of how CoCo performs optimizations on containers and
Section 3 presents a formalism that shows the general methodology to perform sound
container replacement. Section 4 describes our implementations of the CoCo List,
Map, and Set. Section 5 discusses our optimization techniques. We have evaluated
CoCo on both a set of micro-benchmarks and a set of 5 real-world large-scale Java
applications from which container bloat has been found previously. Our experimental
results are reported in Section 7. Although we modify only a small portion of the Java
Collections Framework, our experimental results show that CoCo is useful in optimiz-
ing micro-benchmarks (e.g., the speedup can be as large as 74×). For the 5 large-scale,
real-world programs, CoCo is still effective—an average 14.6% running time reduction
has been observed. Large opportunities are possible if more (both Java and user-defined)
container classes can be modified to support CoCo optimizations.

The contributions of this work are:

– A general methodology to perform sound online container replacement for in-
creased execution efficiency;

– an instantiation of this methodology in the Java Collections Framework that offers
automated optimizations for 7 Set, Map, and List containers;

– three optimization techniques developed to reduce replacement overhead;

– an experimental evaluation of CoCo on both a set of micro-benchmarks and a set of
real-world benchmarks; the results suggest that CoCo is effective and may be used
in practice to optimize container usage.
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Fig. 1. An overview of the CoCo system

2 Overview

This section uses a List example to illustrate how CoCo performs container optimiza-
tions. The current version of CoCo focuses on Java built-in container classes, while the
CoCo methodology can be applied to optimize arbitrary user-defined containers.

2.1 General Methodology

CoCo performs same-interface optimizations—given a container class that implements
interface I, CoCo looks for potentially switchable candidates only within the types that
implement I. Performance gains may be seen sometimes from switching implemen-
tations across different interfaces. For example, work from [7] shows that it can be
beneficial to switch from ArrayList to LinkedHashSet in certain cases. It would be
easy to extend CoCo to support multi-interface switches— the developer may need to
create a wrapper class that serves as an adapter between interfaces. This class imple-
ments APIs of the original interface using methods of the new interface. We leave the
detailed investigation of this approach to the future work.

From a set of all container classes that implement the same interface, we select those
among which the online replacement may result in large performance benefit (at least
large enough to offset the replacement overhead). In this paper, we focus on containers
that have clear algorithmic advantages (e.g., lower worst-case complexity) over oth-
ers in certain execution scenarios. For example, switching from a LinkedList to an
ArrayList upon experiencing many calls to method get(i) may reduce the com-
plexity of get from O(n) (where n is the size of this List) to O(1). This may have
much larger benefit than switching from ArrayList to SingletonList (upon ob-
serving there is always one single element)—in this case, no significant algorithmic
advantage can be exploited and the benefit resulting from space reduction may not be
sufficient to offset the overhead of creating and maintaining multiple containers.

Figure 1 gives an overview of the CoCo system. For the selected container classes,
we first modify them manually to add abstraction-concretization operations. The CoCo
static compiler then generates glue code that connects these modified classes, performs
run-time profiling, and makes replacement decisions. Next, both the generated glue
classes and the modified container classes are compiled into Java bytecode, which is
executed to enable optimizations. The entire container replacement task is achieved in
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1 package coco.util;

2 class LinkedList extends java.util.LinkedList 

3                                implements OptimizableList{
4     ListCombo combo;  // the combo object

5     LinkedList() { ... }   // the original constructor

// constructor for CoCo

6     LinkedList(ListCombo c) {  

7 this();

8            if(c == null) combo = new ListCombo(this);

9          else combo = c; 

10   }

11

12   void add(Object o) {

13     if(combo == null)  this.add$CoCo(o);      

14          else combo.add(o);  

15   }

16   // this used to be add(Object o)

17   void add$CoCo(Object o) {/* add obj o*/}

18

19   Object get(int i) {                      

20 if(combo == null)  return this.get$CoCo(i);

21 else                      return combo.get(i);

22   }

23   //this used to be get(int i) 

24  Object get$CoCo(int i) {  ... }

25}

26  Interface OptimizableList{
27     void add$CoCo(Object o);  Object get$CoCo(); …

28     void addAbstractElement(Object o, int containerID);

29     void replaceConcreteWithAbstract(Predicate p,

int containerID);

30 }

(a) CoCo-optimizable LinkedList (manually modified 

from java.util.LinkedList) and interface OptimizableList

1 package coco.util;

2 class ListCombo implements List {

3         OptimizableList active;  OptimizableList[] inactive;

4         ListCombo(OptimizableList l){

5 active = l;

6                createInactiveLists();

7          }

8          OptimizableList[]  createInactiveLists(){

9 inactive = new OptimizableList[...];

10 ...

11 inactive[i] = new ArrayList(this);

12        }            

13        void add(Object o) {

14 doProfiling(OPER_ADD);

15 active.add$CoCo(o);    

16         }

17        Object get(int i) { 

18 doProfling(OPER_GET);

19 return active.get$CoCo(i);

20        }

21        void doProfiling(int operation){

22 incCounter(operation);  

23 if(active instanceof LinkedList && 

24 NUM_GET > THRESHOLD) {

25 //Let’s switch to ArrayList

26 // i is the index of the ArrayList object in inactive

27 swap (active, inactive[i]);

28 } 

29 ...

30       }

31}

(b) Glue class ListCombo that does profiling and makes 

replacement decisions (automatically generated by the CoCo 

static compiler)

Fig. 2. Examples of a CoCo-optimizable LinkedList obtained by manually modifying
java.util.LinkedList and a combo class generated automatically by the CoCo static
compiler

these (manually modified and compiler generated) Java classes at the application level,
not in the run-time system.

2.2 Creating CoCo-optimizable Container Classes

Lines 1–25 in Figure 2 (a) show a skeleton of the CoCo-optimizable LinkedList, ob-
tained from modifying the original LinkedList class in the Java Collections Frame-
work. For ease of presentation, all examples shown in this section are simplified from
the real container classes that CoCo uses. In addition, these examples are created only to
illustrate how CoCo performs online container replacement, without considering how
much overhead the code could incur. We will discuss various overhead reduction tech-
niques in Section 5.

In order to be optimized by CoCo, the modified LinkedList must imple-
ment the CoCo-provided interface OptimizableList, whose skeleton is shown
in lines 26–30. This interface declares a set of X$CoCo methods, each of which
corresponds to a method X declared in interface List (where X can be get,
add, remove, etc.). It additionally declares two methods (addAbstractElement
and replaceConcrete-WithAbstract) that will be implemented to perform
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abstraction-concretization operations. An X$CoCo method has exactly the same sig-
nature as method X. For each X in the original version of LinkedList, we move
its entire body into X$CoCo, which, thus, becomes the method that implements the
functionality of X. Method X will be used to choose container implementations at run
time.

Container Combo. Each CoCo-optimizable container class has an associated
combo object of type ListCombo (line 4 in Figure 2 (a)), responsible for profiling
container operations and making replacement decisions. Figure 2 (b) shows a skele-
ton of the glue class ListCombo, which is generated automatically by the static CoCo
compiler, given a container interface (e.g., List) and a selected set of its implementing
classes to be optimized (e.g., ArrayList and LinkedList).
ListCombo also implements List, and thus, it contains all methods (X) declared

in List. Each X in ListCombo is implemented as a method dispatcher. To illustrate,
consider method add (line 13 in Figure 2 (b)). It first records that this is an ADD opera-
tion (line 14), and then invokes method add$CoCo on the currently active list active
(line 15). Note that method add$CoCo in different container implementations can be
invoked by simply updating the field active during execution.

Example. Consider again class LinkedList in Figure 2 (a). For each construc-
tor in the original version of LinkedList, we add a new constructor that has one
additional parameter of type ListCombo (line 6 in Figure 2 (a)). In a client program
that calls the original constructor (at line 5), our JVM will replace this call site with a
call to the new constructor and pass null as the argument. Upon receiving null, this
constructor creates a new ListCombo (line 8) that, in turn, creates a group of other
container objects (line 8-12 in Figure 2 (b)) to which this LinkedList object may be
switched at run time. The LinkedList object becomes the first active List in this
combo (line 5 in Figure 2 (b)). When an inactive container is created, the combo object
is also passed into its constructor (line 11 in Figure 2 (b)), and thus, this combo object
will be shared among all the candidate containers.

The combo is essentially a central method dispatcher—whenever method add (e.g.,
in LinkedList) is invoked from a client, it calls method add on the combo object
(line 14 in Figure 2 (a)), which, in turn, invokes method add$CoCo on the currently
active List object (line 15 in Figure 2 (b)). If, at a certain point during execution,
the profiling method (line 21-30 in Figure 2 (b)) observes that the active List is a
LinkedList and the total number of get(i) operations invoked is greater than a
threshold value (line 23), it changes the active container to ArrayList—the only
thing that needs to be done is to find the ArrayList object in the inactive container
array and make it active (line 27 in Figure 2 (b)). An illustration of the combo structure
can be found in Figure 3.

Preserving Semantics. From a client’s perspective, using this combination of con-
tainers has no influence on the behaviors of the original LinkedList. The client code
always interfaces with the LinkedList methods, although the actual “service” could
be provided by a different container object. This design guarantees type safety of the
forward execution—we make the modified LinkedList a subclass of the original
Java LinkedList (line 2 in Figure 2 (a)), and thus, no failure would result from
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LinkedList(...) ListCombo(...)

create combo

ArrayList(...)

create

HashArrayList(...)

OtherList(...)

add(...)

add$CoCo(...)

add(...)
forward

add$CoCo(...)

add$CoCo(...)

add$CoCo(...)

runtime 

decision

initiator combo Associated containers

call edge runtime dispatch edge: select one to call

Fig. 3. Graphical illustration of a container combo

future operations that rely on the original type LinkedList, such as instanceof
and the invocation of LinkedList-specific methods (e.g., getLast).

While manual work is needed to turn a Java (or user-defined) container into a CoCo-
optimizable container, much of the original code can be reused and the user needs
to add only a few methods, such as X$CoCo. The entire class ListCombo (except
doProfiling) is generated automatically by the CoCo compiler. Furthermore, the
intended users of CoCo are library designers and implementers, and thus, no extra effort
is needed from the end developers. For method doProfiling that makes run-time re-
placement decisions, the condition code (e.g., lines 23-28) can be either generated from
a set of user-specified rules (such as those used by Chameleon [7]), or filled in by hu-
man experts manually. The current version of CoCo uses the latter approach, while it is
easy to develop a rule engine to translate user-defined rules into code predicates. If the
designer wishes to combine implementations with conflicting specifications (e.g., some
accept null values while others do not), she may need to explicitly insert checks in
the combo code to direct the dispatch. For example, a null value cannot be inserted
into a container that does not handle it.

2.3 Using Abstraction and Concretization to Ensure Safety

When an inactive container is activated, all container operations will be performed on
it. Key to providing soundness guarantee is, thus, to make sure that any container, if
becoming active, can provide service correctly. A natural idea is to move all elements
from one container to another upon a switch. However, significant run-time overhead
may result from regularly moving elements around containers. If the switch decision is
inappropriate and we need to switch back to the original container, moving all elements
back and forth can create a great amount of redundant work. To achieve efficiency,
we propose an on-demand approach—an element is moved from an inactive container
to an active container only when it is requested by the client. If the switch decision
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1 class LinkedList implements OptimizableList {
2         Entry first, last; 

3           ...    

4        void add$CoCo(Object o){
5 insert(o);

6 for(OptimizableList l : combo.inactiveLists()){ 

7 l.addAbstract(o, ID_LINKED_LIST);

8               }

9          }

10     Object get$CoCo(int i) {
11 Object o = findEntry(i);

12 if(o instanceof AbstractElement) {

13 AbstractElement ae = (AbstractElement)o;

14 Object[] concreteObjs = 

ae.concretize(ID_LINKED_LIST);

15 replaceAndExpand(i, concreteObjs);

16                   o = findEntry(i);

17 }

18 return o;

19         } 

20       void addAbstractElement
(Object o, int containerID){

21 AbstractElement ae = createAbstraction

(o, containerID);

22 insert(ae);

23         }

24       …

25 }

26 class AbstractElement{

27       ListCombo combo;  int targetContainerID;

28       Predicate p; 

29       Object[] concretize(int newContainerID) {

30 OptimizableList l = combo.getRuntimeList

(targetContainerID);

31 Object[] objs = new Object[p.size()];

32 for(Integer index : p.iterateAll())

33           {  objs[...] = l.get$CoCo(index);  }

34 l.replaceConcreteWithAbstract
(p, newContainerID);

35          return objs;

36       }  ...

37 }

Fig. 4. An abstraction-concretization example in LinkedList

is appropriate, the active container will remain active for a relatively long time and
concrete elements will be gradually moved to this container as more operations are
performed.

To do this, when an ADD operation is performed, it is insufficient to add the incom-
ing object only into the active container—we have to additionally record some infor-
mation of this element in all inactive containers, so that if any one of them becomes
active later and this element is requested by a client, the container would have a way
to find it and return it to the client. This information is referred to as the abstraction of
this concrete element (or sometimes abstract element). If an abstraction is found dur-
ing the retrieval of an element, this abstraction is concretized to provide the concrete
element(s) it represents. For different types of containers (e.g., Map, Set, List, etc.),
we may need to create different types of abstractions. Section 3 discusses a general
methodology to create abstractions.

Example. Figure 4 shows part of the modified LinkedList responsible for el-
ement abstraction and concretization. Highlighted methods are declared in interface
OptimizableList. After inserting a concrete element o into the list (line 5), method
add$CoCo adds an abstraction of o into all inactive lists (lines 6–8). Once an abstrac-
tion is found in a retrieval (lines 12–17), it is concretized to get an array of concrete
elements it represents (line 14), which are then inserted into the list to replace this ab-
straction.

Lines 26–36 of Figure 4 show class AbstractElement, which is the abstraction
that CoCo uses for List. Here an abstraction has three pieces of information (lines
27–28): the ID of the container object where the concrete element(s) represented by this
abstraction are located (i.e., targetContainerID), the combo object from which
this container object can be obtained (i.e., combo), and a predicate (i.e., p) that
specifies the exact locations of the concrete elements in their host container.

Predicate. A predicate is defined based on how elements are added into and re-
trieved from a container. For example, for List, elements are added and retrieved
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based on their indices, and thus, the predicate in each element abstraction is defined
over the domain of indices (integers), that is, each predicate represents a range of in-
dices (e.g., [0, 15]). When an abstraction is concretized (line 14 in Figure 4), all the
elements whose indices satisfy the predicate of the abstraction (lines 32–33) are re-
trieved from their host container in order to fulfill the client’s request. These concrete
elements are then moved into this active List to avoid future concretization operations
(line 15). In addition, we need to remove these concrete elements from their old host
container by creating an abstraction there to represent them (line 34). If CoCo switches
back to this (old) container later, the same (concretization) process will be performed
to retrieve the elements.

Fig. 5. A List combo in which both
containers have abstractions

Figure 5 shows an example List combo re-
sulting from the code shown in Figure 4. In
this combo, both the LinkedList (List 0) and
the ArrayList (List 1) have abstractions (i.e.,
placeholders) and concrete elements. For exam-
ple, the abstraction 〈1, [2, 3]〉 is the placeholder of
the No.2 and No.3 elements and it specifies that
these two elements are currently in List 1. Differ-

ent abstractions can be defined by creating different AbstractElement classes (in
Figure 4). Section 4 discusses the abstractions that CoCo currently uses for List, Map,
and Set, while the general methodology proposed in this paper can be applied to create
abstractions for all (Java built-in or user-defined) data structures in order to enable this
optimization.

Calls to methods that are specific to each container implementation (i.e., that are
not declared in the container Interface) cannot be forwarded to the combo object. For
example, if method getLast is invoked on a LinkedList object after the active
container in the combo becomes an ArrayList, this call cannot be performed on the
ArrayList becausegetLast does not exist in ArrayList. In this case, getLast
is still invoked on the LinkedList object, but we need to modify this method and
concretize an abstraction to bring the last concrete element back to the LinkedList
to fulfill the request (e.g., if the last element is not the LinkedList). It is subject to
the developer how the concretization should be performed.

3 Formal Descriptions

This section formalizes the notion of a container, and in that context, formally describes
CoCo’s core idea on run-time container replacement. Although CoCo currently supports
only a few Java built-in containers, this formal framework defines a methodology that
can be used to switch arbitrary container implementations. Any instantiation of this
framework is guaranteed to be sound.

Definition 1. (Container) A container Σ is a triple Σ = 〈X,≺, f〉, where X is a set
of concrete elements and ≺ is a partial order on X. ≺ is determined by a property
encoding function f (x) that maps each x ∈ X to an integer ix that encodes a certain
property of x. For any two elements x1, x2 ∈ X, x1 ≺ x2 iff. f (x1) < f (x2).
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Partial order ≺ determines how elements are stored in a container. x1 precedes x2 in
the underlying data structure of the container if x1 ≺ x2. The position of each element
depends on a certain property of this element used by the container, which is encoded
by function f . For example, for List, f maps each x to a unique index; for HashMap,
f is a hash function that maps each x to the index of the hash bucket where x should
be stored based on x’s hashcode; for TreeMap, f maps each x to the index of x in a
list of all elements in the map sorted by the results of their compareTo method. This
index determines when x will be reached in an in-order traversal of the binary search
tree used by TreeMap. If neither x1 ≺ x2 nor x2 ≺ x1, there is no constraint regarding
the positions of x1 and x2. For example, if the hash function (in a HashMap) maps
both x1 and x2 to the same bucket slot, the way they are stored is subject to the specific
implementation of HashMap.

Definition 2. (CoCo-optimizable container) A CoCo-optimizable container Γ is a six-
tuple Γ = 〈X,A,≺, f , α, γ〉, where X is a set of concrete elements, A is a set of abstract
elements, ≺ is a partial order on X ∪ A, f is a property encoding function, α: X → A
is an abstraction function that maps each concrete element to an abstraction, and γ:
A → 2X is a concretization function that maps each abstract element to a subset of
concrete elements it represents. Partial order ≺ is redefined as follows:

(a) ∀x1, x2 ∈ X: x1 ≺ x2 ⇔ f (x1) < f (x2)
(b) ∀a1, a2 ∈ A: a1 ≺ a2 ⇔ maxx∈γ(a1)(f (x))

< miny∈γ(a2)(f (y))
(c) ∀a ∈ A, x ∈ X: a ≺ x⇔ maxy∈γ(a)(f (y)) < f (x)
(d) ∀a ∈ A, x ∈ X: x ≺ a⇔ f (x) < miny∈γ(a)(f (y))

Each CoCo-optimizable container (such as the LinkedList shown in Figure 2 (a))
is a mixture of concrete and abstract elements. The (new) partial order ≺ is defined
on the union of these two groups of elements. The definition of ≺ does not change
when two concrete elements are compared (i.e., shown in condition (a)). An abstraction
a1 ≺ another abstraction a2 only when the “greatest” concrete element abstracted by
a1 ≺ the “smallest” concrete element abstracted by a2 (i.e., shown in (b)). (c) and (d)
show comparisons between an abstraction a and a concrete element x: a ≺ x only if
the “greatest” concrete element a abstracts ≺ x. The abstraction function α and the
concretization function γ are user-defined and are specific to each type of container
optimized by CoCo.

Here the concrete element set X and the abstract element set A are separated for ease
of presentation and formal development. In our implementation, they are stored together
in the underlying data structure (e.g., the data array for ArrayList, the bucket array
for HashMap, etc.) of a container that used to store only concrete elements. An ab-
stract element in a container is stored in the location where its corresponding concrete
element(s) would have been stored if they were in this container.

Definition 3. (Contiguous abstraction) An abstraction a ∈ A in a container object is
a contiguous abstraction iff. ∀x1, x2 ∈ γ(a): (�x ∈ X: x1 ≺ x ≺ x2) ∧ (∀a′ ∈ A :
a′ �= a⇒ �y ∈ γ(a′) : x1 ≺ y ≺ x2).
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A contiguous abstraction represents a range of concrete elements that should be stored
contiguously in the container. No other concrete element either directly in the container
or abstracted by another abstraction can be put in the middle of them. Allowing only
contiguous abstractions in a container simplifies significantly the implementations of
the abstraction function α and the concretization function γ. This definition also implies
that different contiguous abstractions do not overlap.

Definition 4. (Well-formed container) A CoCo-optimizable container Γ = 〈X,A,≺
, f , α, γ〉 is a well-formed container, if (1) ∀a ∈ A: a is a contiguous abstraction and
(2) ∀x ∈ X: �a ∈ A: x ∈ γ(a).

Well-formedness has two important aspects: all abstractions are contiguous abstractions
and no abstraction abstracts a concrete element that exists in the container (i.e., an
abstraction abstracts only concrete elements located in other containers). It is easy to
see that a container with no abstraction is a well-formed container; so is a container
with one single abstraction that abstracts all elements.

Definition 5. (Well-formed container combo) A container combo C is an n-tuple C
= 〈Γ1, Γ2, . . . , Γn−1, i〉, where Γ1, . . . , Γn−1 are CoCo-optimizable containers and i ∈
[1, n -1] is the index of the active container.

A container combo is well-formed iff.

– ∀j ∈ [1, n - 1], Γj is well-formed; and
– ∀j, k ∈ [1, n - 1], j �= k: (|Xj |+

∑
a∈Aj

|γj(a)| = |Xk|+
∑

a∈Ak
|γk(a)|); and

– ∀j ∈ [1, n - 1]: ∀x ∈ Xj : ∀k ∈ [1, n - 1]: k �= j ⇒ ∃a ∈ Ak: x ∈ γ(a)

A well-formed container combo must first have all its containers well-formed. The last
two conditions concern the relationships between the containers in the combo: each
container must have the same number of elements if all abstractions are concretized;
and for any concrete element x in a container Γj , there must exist an abstraction in each
container Γk (k �= j) that abstracts x.

Definition 6. (ADD, GET, and SWITCH) An ADD(x) operation performed on a
container combo 〈Γ1, . . . , Γn−1, i〉 adds a concrete element x to set Xi of the active
container Γi, and appropriately updates abstract element set Aj in each inactive con-
tainer Γj to add x’s abstraction.

A GET operation first looks for the target element in Xi of the active container Γi.
If the element does not exist in Xi, it finds the abstraction a ∈ Ai, uses concretization
function γi to retrieve all elements γi(a), appropriately updates set Aj in each container
Γj , and returns the target element x ∈ γi(a).

A SWITCH operation causes a container combo 〈Γ1, . . . , Γn−1, i〉 to become
〈Γ1, . . . , Γn−1, j〉 (i �= j), without changing the internal state of each container.

These definitions specify the behaviors of the three most important container operations.
Section 4 discusses how these operations are performed for different types of containers
such as List, Map, and Set.
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Table 1. Containers currently supported by CoCo

Combo type Participating containers Condition Switch To
ArrayList #contains > X ∧ size > Y HashArrayList

java.util.List LinkedList #get > X ∧ size > Y ArrayList
HashArrayList #contains < X ∨ size < Y ArrayList
HashMap size < Y ArrayMap

java.util.Map ArrayMap size > Y HashMap
HashSet size < Y ArraySet

java.util.Set ArraySet size > Y HashSet

Definition 7. (Soundness of container switch) A SWITCH operation that causes a
container combo C to become C′ is a sound switch if any element added by an ADD
operation on C can be successfully retrieved by a corresponding GET operation on C′.

Lemma 1. (Well-formedness implies soundness) If the well-formedness of a con-
tainer combo C is preserved by each (ADD or GET) operation, any SWITCH operation
that occurs on C is sound.

Proof Sketch. If C is always well-formed during the execution, an element added
to C is either in the concrete element set Xi of the active container Γi, or in set Xj of
an inactive container Γj and appropriately abstracted by an abstraction a ∈ Ai. In the
former case, it can be found directly in Xi, while in the latter case, it can be found by
using γi to concretize abstraction a (as long as γi is sound). �

This section presents a methodology for creating sound container combos. Optimiza-
tions of any container implementations are guaranteed to be sound if they are instances
of this formal framework. The library designers are responsible for creating appropriate
optimizations for their containers and make them strictly follow the CoCo methodology.
The next section describes the 7 containers CoCo currently supports and our implemen-
tations of their combos. We will also demonstrate, for each type of combo, how our spe-
cific implementations of abstraction and concretization preserve its well-formedness.

4 Implementation

We have modified four Java built-in container classes and implemented another three
from scratch to instantiate the framework discussed in Section 3. Table 1 shows the con-
tainer combos, when switches are performed, and switch destinations. Note that a subset
of the switch conditions is adapted from the rules discovered and used in Chameleon [7].
Additional rules can be easily added by modifying the method doProfiling in each
combo class (shown in Figure 2 (b)). Among the seven containers, HashArrayList,
ArrayMap, and ArraySet are implemented by ourselves; the rest of them are mod-
ified from their original versions in the GNU classpath library 1.

These containers are selected because (1) they are all designed for general use, and
(2) each container has clear time efficiency in a certain usage scenario. Future work may

1 www.gnu.org/s/classpath/

www.gnu.org/s/classpath/
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Algorithm 1. List ADD that inserts object x at the index index into a combo
whose active container is i.

Input: List combo 〈Γ1, . . . , Γn−1, i〉, Index index , Element x
1 Suppose Lj is the underlying data structure in List Γj that stores Xj and Aj

2 foreach Γj , j ∈ [1, n− 1] do
3 newIndex ← recalculateIndex(Lj , index )
4 if j = i then
5 /* update the active List */
6 if Lj [newIndex ] is an abstract element a = 〈k, [indexm, indexn]〉 then
7 /* k is the ID of the List that contains the concrete element,
8 [indexm, indexn] is the predicate specifying a region*/
9 split this abstraction into a1 = 〈k, [indexm, index − 1]〉 and a2 =

〈k, [index + 1, indexn + 1]〉
10 replace a with [a1, x, a2] in Lj

11 foreach abstract element 〈t, [indexq, indexr ]〉 following a2 in Lj do
12 update predicate [indexq, indexr] to [index q + 1, indexr + 1]

13 else
14 /*This is a concrete element*/
15 insert x into Lj at the index newIndex

16 else
17 /*update an inactive List*/
18 /*Initially each inactive List has one abstraction 〈i, [0, 0]〉 */
19 if Lj [newIndex ] is an abstraction a = 〈k, [indexm, indexn]〉 then
20 if k = i then
21 update a to be 〈k, [indexm, indexn + 1]〉
22 else
23 create new abstraction a′ = 〈i, [index , index ]〉
24 split a into a1 = 〈k, [indexm, index − 1]〉 and a2 = 〈k, [index + 1, indexn + 1]〉
25 replace a with [a1, a

′, a2] in Lj

26 a← a2

27 else
28 /*Lj [newIndex ] is a concrete element*/
29 create new abstraction a′ = 〈i, [index , index ]〉
30 insert a′ into Lj at the index newIndex

31 a← a′

32 foreach abstract element 〈t, [indexq, indexr ]〉 following a in Lj do
33 update predicate [index q, indexr] to [index q + 1, indexr + 1]

34 return

35 Function recalculateIndex(L, index )
Input: data structure L, the original index given by the client index
Output: The new index in the presence of abstractions

36 count ← 0
37 foreach k ∈ [0, |L| − 1] do
38 if L[k] is an abstract element 〈t, [indexm, indexn]〉 then
39 if indexm ≤ index ≤ indexn then
40 return k

41 count ← count + (indexn − indexm + 1)

42 else
43 if count = index then
44 return k

45 count ← count + 1

46 return k
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Algorithm 2. List GET that retrieves an element at the index index from a combo
whose active container is i.

Input: List combo 〈Γ1, . . . , Γn−1, i〉, Index index
Output: Element x

1 newIndex ← recalculateIndex(Li, index )
2 if L[newIndex ] is an abstract element a = 〈k, [indexm, indexn]〉 then
3 newIndexm ← recalculateIndex(Lk , indexm)
4 newIndexn ← recalculateIndex(Lk , indexn)
5 /*Concretize this abstraction to get the range of elements it represents*/ Array r ← getElements(Lk ,

newIndexm, newIndexn)
6 replace a with r in Li

7 create abstraction a′ = 〈i, [indexm, indexn]〉
8 replace r with a′ in Lk

9 size ← indexn − indexm + 1
10 foreach Γj , j ∈ [1, n − 1] ∧ j 	= i ∧ j 	= k do
11 indexj ← recalculateIndex(Lj , index )
12 Lj [indexj ] must be an abstraction a′′ = 〈k, [indexp, indexq ]〉
13 if indexq − indexp + 1 = size then
14 Lj [indexj ]← 〈i, [indexp, indexq ]〉
15 else
16 split a′′ into a1 = 〈k, [indexp, indexm − 1]〉 and a2 = 〈k, [indexn + 1, indexq ]〉
17 create new abstraction aa = 〈i, [indexm, indexn]〉
18 replace a′′ with [a1, aa, a2] in Lj

19 newIndex ← recalculateIndex(Li, index )

20 return L[newIndex ]

investigate container replacement based on other performance metrics (such as space
efficiency and concurrency). In this section, we show only the ADD and GET operations
for each combo, while our implementation supports all operations of the containers
shown in Table 1. The implementations of the CoCo Map, List, and Set combos are
publicly available at www.ics.uci.edu/˜guoqingx/tools/coco.jar.

4.1 List Combo

The structure of the List combo has been shown in Figure 2. Here we discuss only
how abstractions and concretizations are performed. Algorithm 1 illustrates the ADD
operation of the List combo. As mentioned in Section 3, for each List in the combo,
concrete elements and abstract elements are stored together in its underlying data struc-
ture that used to contain only concrete elements. Suppose L is such a data structure (e.g.,
the data array for ArrayList, the linked structure for LinkedList, etc.). We use
L[k] to denote the k-th element in L, regardless of the type of L. Note that the sequence
of elements in L is determined by the partial order≺ of the container, which is, in turn,
determined by the property encoding function f . For all List containers, f maps each
element to a unique index, which is used to determine the position of this element in L.

For List, each abstraction has the form 〈k, [m,n]〉, where k is the ID of the con-
tainer that has the concrete element and [m,n] is the predicate that specifies a range of
indices of the concrete elements represented by this abstraction. Note that CoCo cur-
rently allows only contiguous abstractions, and thus, a range is sufficient to represent
a predicate. Richer predicates can be used if the contiguousness requirement is relaxed

www.ics.uci.edu/~guoqingx/tools/coco.jar
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in the future. Figure 5 has illustrated a simple (well-formed) List combo where both
participating containers have abstractions.

Implementation of List ADD. Given an index index , we first compute a new index
newIndex that corresponds to index in the presence of abstractions (line 3 in Algo-
rithm 1). Function recalculateIndex is shown in lines 35–46. Next, we add this
incoming object x into the active container Γi (lines 4–15). If the element at newIndex
is an abstract element (line 6), this abstraction is split into two separate abstractions
(line 9) and then x is inserted between them (line 10). In addition, as the addition of x
increases the index of each existing element following x by 1, we need to update the
predicates in all the abstractions following a2 in L to make them reflect the new indices
(lines 11–12) (note that a2 itself has been updated by line 9). In our implementation,
abstractions in each L are indexed by a separate array, which allows quick update of the
predicates.

Abstractions in all the inactive Lists need to be updated in a similar manner (lines
16–33) to account for this new element. In each inactive List Γj (where j �= i), we first
find the element at the index newIndex . If it is an abstraction and the host container in
this abstraction happens to be the active List (line 20), we simply grow the range by 1
(line 21). Otherwise, we have to split this abstraction into two separate abstractions and
insert a new abstraction a′ (whose host container is the active container) between them
(lines 23–25). If Lj [newIndex ] is a concrete element, a new abstraction a′ is created and
inserted into Lj (lines 28-30). Eventually, the predicate in each abstraction following a
is updated with a new index range (lines 32–33).

It is clear that if no switch is performed on the combo, the active List has all
concrete elements and there is only one abstraction in each inactive List that abstracts
all of them.

Implementation of List GET. Shown in Algorithm 2 is the GET operation imple-
mented in CoCo. If the element at the index newIndex is a concrete element, it is
returned immediately (line 20). Otherwise, we retrieve all the concrete elements repre-
sented by the abstraction (lines 3–5) and bring them into the active container (line 6).
An abstraction is then created to replace them in their original host container Γk (lines
7–8). As the host container of these elements is changed from Γk to Γi, code at lines
9–18 updates their corresponding abstractions in other inactive containers (not Γk or
Γi) with the new host information. If the abstraction abstracts exactly the same range of
concrete elements (line 13), we simply change its host container from k to i (line 14);
otherwise, this abstraction needs to be split into two a1 and a2, and a new abstraction
aa is created to represent this range (line 17). aa is inserted between a1 and a2 in Lj .

Note that once an abstraction a is encountered during a retrieval, we concretize
the abstraction and move the entire range of concrete elements into the active con-
tainer (lines 5–8). This is conceptually similar to a cache line fill. An alternative is
to split a into three abstract elements 〈k, [indexm, index ]〉, 〈k, [index , index ]〉, and
〈k, [index + 1, indexn]〉, and then concretize only 〈k, [index , index ]〉 to get the exact
element requested. We have also implemented this approach for the general GET oper-
ation but found that it is much less effective than the one shown in Algorithm 2. It is
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primarily because elements in a contiguous region are often visited together (e.g., us-
ing an Iterator) and getting them one at a time can increase cache misses significantly,
especially for array-based containers.

However, we do use this alternative approach to implement methods that are specific
to each container implementation (i.e., that are not declared in the common Interface).
For example, method getLast (that is specific to LinkedList) needs to retrieve
only the last element. If this last element in the LinkedList is a concrete element, it
is directly returned; if it is an abstraction (〈k, [start , |L| − 1]〉), we first split it into two
abstractions (〈k, [start , |L| − 2]〉, 〈k, [|L| − 1, |L| − 1]〉), and concretize only (〈k, [|L| −
1, |L|−1]〉) that represents the last element. The insight here is that in most cases where
these implementation-specific methods are invoked, their containers are in the inactive
state. We should avoid bringing many concrete elements from an active container back
to an inactive one, which may lead to significant performance degradation.

Implementation of HashArrayList. Container HashArrayList is an ArrayList-
based data structure. It maintains an ArrayList and a HashMap internally, and
duplicates concrete elements between them. The HashMap contains only concrete el-
ements and is used to perform contains-related operations. Abstractions are only
allowed to be added into the ArrayList. When a HashArrayList is activated, all
concrete elements in the combo are added into its HashMap. Abstraction/concretiza-
tion operations are performed only between the “list” part of the HashArrayList
and other lists in the combo; its “map” part always contains concrete elements as long
as the HashArrayList is active.

Theorem 1. (List combo soundness) Any SWITCH operation performed on the List
combo (whose ADD and GET are shown in Algorithm 1 and Algorithm 2, respectively)
is a sound switch.

Proof Sketch. To prove this, it is important to show that each ADD and GET preserves
the well-formedness of the combo. This can be easily seen from Algorithm 1 and Al-
gorithm 2: (1) each element added to the active list (lines 4–15 in Algorithm 1) is well
abstracted in each inactive list (lines 17–33 in Algorithm 1); and (2) each concretization
replaces an abstract element in the active list with the concrete elements it represents
(lines 5–6 in Algorithm 2). These concrete elements (in their old host) are replaced
with a new abstract element (lines 7–8 in Algorithm 2). Abstractions corresponding to
these elements in all the other inactive lists are updated to point to their new locations
(lines 10–18 in Algorithm 2). Hence, well-formedness is preserved by both the element
addition and the concretization. �

4.2 Map and Set Combos

The general algorithms (in Algorithm 1 and Algorithm 2) used for List can be natu-
rally adapted to create Map and Set combos. For example, for a Map combo, when a
pair of objects is added into the HashMap object (which is active), we can create an
abstraction in the ArrayMap whose predicate records the bucket index of this pair in
the HashMap. However, unlike the List combo where all participating Lists have
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the same property encoding function f (thus we can easily merge adjacent abstractions
as they represent adjacent concrete elements), HashMap and ArrayMap have differ-
ent f . Elements in a HashMap are ordered based on their hashcodes while elements
in an ArrayMap are ordered simply based on indices. As such, adjacent abstractions
in the ArrayMap may represent concrete elements far away from each other in the
HashMap. These abstractions may not be easily merged and we may end up with a
great number of abstractions in each container, leading to increased space consumption
and concretization overhead.

We develop a simpler approach for both Map and Set combos—for each combo,
we maintain only one single abstraction in each inactive container that represents all
concrete elements; upon a container switch, this abstraction is immediately concretized
by moving the entire collection to the newly active container. We do not split abstrac-
tions because it may not be as beneficial for Map and Set as for List. Furthermore,
as ArraySet and ArrayMap are designed to hold a very small number of elements,
it is relatively inexpensive to perform MOVE ALL upon each switch (e.g., much less
costly than performing MOVE ALL for a List).

Theorem 2. (Map and Set combo soundness) Any SWITCH operation performed on
the Map/Set combo is a sound switch.

Proof Sketch. It is clear to see that the active container always has all the concrete
elements. Each ADD or GET operation only updates the active container, and hence,
the well-formedness of the combo is guaranteed. �

4.3 Discussion

Thread Safety. Our combo implementations (described in this section) are thread-
safe. Because the client code always interfaces with methods in the original container,
the concurrent behavior of the program is not influenced by any container switch. To
illustrate, consider a switch from a Hashtable (which is thread-safe) to a HashMap
(which is thread-unsafe). Because the client still invokes methods in Hashtable after
the switch and these methods are appropriately synchronized, the fact that the actual
service is provided by HashMap would not create any side effect. In addition, because
the list of all associated containers is created inside the original container, whether or
not these associated containers can be shared among threads depends on whether the
original container is shared. No replacement will change the sharing property of the
container (e.g., from being shared to thread-local or vice-versa). However, concurrent
containers (e.g., those in java.util.concurrent) often use non-blocking algo-
rithms (e.g., compare-and-swap). Forming a combo with both concurrent containers and
non-concurrent, thread-unsafe containers may cause concurrency issues, which should
not be allowed. Mixing only concurrent containers can be thread-safe as long as the
abstraction and concretization operations are appropriately synchronized.

Handling of Operations with Incompatible Specifications. In some cases, imple-
mentations of the same operation (e.g., a method declared in a Java interface) in differ-
ent containers may be incompatible, making it difficult for combo containers to provide
the same service to the client. For example, different Set implementations may iterate
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elements in different orders; unexpected program behaviors may result from switching
implementations and traversing elements in a different order. The easiest way to solve
the problem is to select only containers whose common methods have the same pre-
and post-conditions to form a combo. However, this approach can limit significantly
the optimization capabilities.

An alternative is to switch back to the original (user-chosen) container immediately
upon the invocation of a method that is incompatible with its corresponding method
in the original container. Concretizations are subsequently performed to bring neces-
sary elements back. While this approach preserves semantics, it may potentially cause
frequent container switches and element copies, leading to increased overhead. One
possible way to alleviate the problem is to disable CoCo optimizations if such incom-
patible methods are frequently invoked. For example, the entire combo can be dropped;
a detailed description of this optimization is described in Section 5. Note that such a
case may rarely happen in practice. If a method is declared in an interface, its behaviors
are often specified by the interface and all its implementations should strictly comply
to this specification. Even if an implementation may have a unique way to fulfill the
specification, this uniqueness should not be exploited by the client.

5 Optimizations

Naively profiling all container objects is expensive. This section describes three opti-
mizations to reduce the replacement overhead. We modify Jikes Research Virtual Ma-
chine (RVM) to replace each allocation site of the form java.util.X x = new
java.util.X (. . .) with a new allocation site of the form coco.util.X x = new
coco.util.X (. . ., null), where X is a container class in Table 1. The additional
argument null is used to notify the constructor that a new XCombo object needs to
be created (e.g., line 8 in Figure 2 (a)). Note that such program modification can also
be done by bytecode rewriting (e.g., through the load-time instrumentation framework
java.lang.instrument). Implementing it inside a JVM eliminates the need to
perform a separate program transformation phase.

5.1 Dropping Combos

A large part of the overhead comes from the method call forwarding and dispatch. For
example, for each element addition/retrieval, there are two additional calls made (e.g.,
LinkedList.get calls ListCombo.get, which then calls ArrayList.
get$CoCo). To reduce this overhead, we maintain a counter in each XCombo ob-
ject, which is incremented every time method doProfiling (e.g., line 21 in Figure 2
(b)) is executed but no switch occurs. It is reset to zero if the combo decides to perform
a switch. When this counter exceeds a pre-set threshold value, we no longer profile the
operations—the currently active container appears to be suitable for the execution.

At this point, there are two situations that might occur. First, no replacement has ever
been performed on the combo. The active container is the original container created by
the client. In this case, the combo object notifies the active container to drop the combo
(and all inactive containers) by setting the field combo to null. The container goes
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back to normal and all operations afterwards will be performed directly on it. In the
second case, switches have occurred and the currently active container is not the original
(user-chosen) container. In this case, we cannot remove the combo because this current
container does not directly communicate with the client. However, we can stop profiling
the container operations to reduce overhead. Specifically, method doProfiling is no
longer invoked for the future container operations.

While dropping combos is an important technique to reduce overhead, it may po-
tentially lead to inappropriate switch decisions. For example, the usage of a container
may change dramatically after its combo is dropped and the profiling is disabled, leav-
ing the program with a suboptimal implementation. However, we have not found this
problem affects the current implementations of the CoCo combos. In fact, many (long-
lived) containers in a real-world program have strictly monotonic behaviors—they are
more heavily used in a later stage of the execution (e.g., workload run) than in an ear-
lier stage (e.g., warmup), making CoCo switch containers from an implementation that
favors fewer elements/operations to another that favors more elements/operations.

5.2 Sampling

Invoking method doProfiling for each container operation can be quite expensive.
A sampling-based profiling approach is employed to reduce this run-time cost. In addi-
tion, we do not profile a container until the first non-ADD operation is performed. This
allows the container to have a start-up phase where it gets populated and stabilized; oth-
erwise, the many ADD operations in the beginning may prevent CoCo from observing
its real usage pattern and making appropriate switch decisions.

5.3 Lazy Creation of Inactive Containers

In the example shown in Figure 2, inactive containers are created immediately after the
active container is created. However, if the combo never switches the container, it is
completely redundant to create, initialize, and garbage collect these inactive containers.
To make the implementation more efficient, we employ a lazy approach that does not
allocate and initialize inactive containers until the first switch is about to be performed.
This approach is sound, because, in any combo, each inactive container must have one
single abstraction (that abstracts all existing concrete elements) before the first switch.
We do not need to create and maintain this abstraction every time an element is added
before a switch occurs.

6 Limitations

While the CoCo methodology is general enough to be applied to a variety of container
implementations, it has the following three limitations. First, it improves application
running time at the cost of introducing space overhead. While this overhead is relatively
small (e.g., the detailed statistics are reported in Section 7) and acceptable for most
applications (on machines with large memory space), the technique may not be suitable
for optimizing memory-constrained programs.
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The second limitation is that this technique does not preserve asymptotic complexity
of the user-chosen containers. The containers used by CoCo at run time may have a
different worst-case complexity than those intended to be used by the user and may thus
perform worse in a later execution state when the CoCo profiling is disabled. However,
as discussed earlier in this section, we found that the usage scenarios of most long-lived
containers are quite consistent during the execution, which reduces the chance for CoCo
to make inappropriate decisions. An approach similar to dynamic feedback [13] may
be employed in the future work to run a program in a mixed profiling and production
mode—the execution alternates between the profiling run and the production run so that
profiling is periodically enabled to collect the most updated information.

Finally, although the framework presented in Section 3 provides soundness guaran-
tee for combo implementations that comply with the CoCo methodology, there is no
automated enforcement of this compliance. Library designers have to manually ensure
that their combos are well-formed, implementations in each combo do not have conflict-
ing specifications, and the replacement rules are appropriately placed. It is interesting
to develop tool support, in the future, that can check the combo well-formedness to help
developers write reliable optimizations.

7 Empirical Evaluation

We have evaluated CoCo on both a set of micro-benchmarks and a set of large-scale,
real-world applications. All experiments are executed on a quad-core machine with an
Intel Xeon E5620 2.40GHz processor, running Linux 2.6.18.

7.1 Micro-benchmarks

We have designed several micro-benchmarks (whose execution is dominated by con-
tainer operations) in order to gain a deep understanding of what achieves efficiency and
what incurs overhead. In fact, many of optimization techniques presented in Section 5
are motivated by our observations on the executions of these micro-benchmarks.

LinkedList → ArrayList. This simple program creates 10 LinkedList objects.
For each of them, 1000 elements are added and then 40,000 ADD/GET/REMOVE op-
erations are performed. The original program finishes in 127.1 seconds. Using CoCo,
its running time ranges from 35.2 to 38.8 seconds, depending on the threshold value X
used to switch the List. Here X is the percentage of GET among all operations ex-
ecuted on each LinkedList. For this program, we have tried six different X (i.e.,
0, 10%, . . ., 50%) and found that the larger X is, the longer the running time is.
ArrayList outperforms LinkedList in all kinds of operations (not just get(i)).
Hence, we set X = 0 when we run experiments with large, real-world programs—
LinkedList is immediately switched to ArrayList after the first 1/Y operations
are performed on it (Y is the sampling rate).

ArrayList → HashArrayList. We find that this switch is highly beneficial for pro-
grams with a large number of contains operations. We write a program that creates
100 ArrayList objects and populates each of them with 10,000 Integers. For each
ArrayList, we generate 4,000 random Integers and test if this List contains these
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Table 2. CoCo run-time statistics. Reported in section (a) and (b) is the run-time information of
each program executed without and with CoCo, respectively; each section includes running time
(T) in seconds, GC time (GC) in seconds, and peak memory consumption (S) in Megabytes; α in
section (b) shows the standard deviation of the collected running times.

Bench (a) Regular execution (b) CoCo execution
T1(s) GC1(s) S1(Mb) T2(s) α (s) GC2(s) S2(Mb)

bloat 53.8 4.5 91.5 51.4(96%) 1.4 (2.7%) 5.9(131%) 165.2(181%)
chart 17.6 4.9 188.2 16.2(91%) 0.8 (4.9%) 7.4(151%) 228.2(121%)
fop 2.5 0.3 49.2 2.1(84%) 0.06 (2.9%) 0.4(133%) 50.1(102%)
lusearch 4.7 1.4 28.6 3.1(66%) 0.07 (2.2%) 1.4(100%) 28.6(100%)
avrora 23.6 1.5 62.6 20.8(89%) 1.1 (5.3%) 2.1(140%) 66.4(106%)
GeoMean 85.4% 3.4% 129.8% 118.8%

numbers. If an Integer is in the list, it is removed. This usage scenario of ArrayList
is common in static analysis tools that make heavy use of worklist-based algorithms.
The original running time is 149 seconds, while CoCo reduces it to 2.2 seconds (i.e.,
74× speedup).

Set and Map Optimizations. The goal here is to investigate the borderline be-
tween HashSet (HashMap) and ArraySet (ArrayMap) (i.e., what is the appropri-
ate size threshold under which ArraySet/ArrayMap would outperform HashSet/
HashMap). We write a few programs that make heavy use of Sets and Maps, and use
different size threshold values to tune the performance. It appears that, for Set, this
line is somewhere between 5 and 8—in general, we observed, in this test, that switch-
ing from HashSet to ArraySet when the number of elements it contains is smaller
than 5 is always beneficial. For Map, this line is lower—clear running time reduction
can only be seen when we set this threshold to 2. This may be because HashMap op-
erations are less expensive than those of HashSet, as HashSet maintains an internal
HashMap and delegates all work to it. Based on these observations, we use 5 and 2 as
size threshold values for switching Map and Set when running large benchmarks.

Note that even if small programs are used to tune the parameters, the usage of con-
tainers in these programs is real and each container has a large number of elements. In
addition, it is much easier to see the impact of the parameter adjustment on performance
in such container-centric programs than real-world programs whose performance can
often be influenced by many complicated factors.

7.2 Performance on Large Benchmarks

Our large-scale benchmark set contains five real-world applications: bloat, chart, fop,
lusearch, and avrora. These applications are chosen because container bloat has been
previously found in them (e.g., reported in [7] and [3]). The sampling rate is 1/50, mean-
ing that the method doProfiling is invoked once per 50 container operations. We
have tried several different sampling rates and 1/50 appears to lead to the best perfor-
mance. The generational Immix [14] garbage collector is used for our experiments.

For each program, we run it 10 times with a maximum 1GB heap (each with two iter-
ations) using the large workload. The median steady-state performance and the standard
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Table 3. Statistics of containers and their run-time switches

Bench (a) CoCo containers (b) #Switches
#AL #LL #HM #HS LL → AL AL ↔ HL HM ↔ AM HS ↔ AS

bloat 3322.4K 1158.0K 67.0K 370.7K 108 76/0 645/81 13860/241
chart 25.7K 0 14.5K 0 0 96/0 204/0 2/0
fop 87.4K 0 93 0 0 10/0 17/0 0/0
lusearch 374 0 259 128 0 0/0 101/0 0/0
avrora 50 414.3K 787 14 0 0/0 22/0 4/0

deviation of the running times (α) are reported in Table 2. In addition to the execution
information, section (b) in Table 2 also includes ratios between the numbers in each
column of section (b) and those in its corresponding column of section (a). Percentages
shown in parentheses are either overheads (if > 100%) or improvements (if < 100%).
Overall, CoCo reduces program running time by 14.6%, at the cost of introducing a
18.8% overhead in memory space. For all applications, the running time benefit gained
from using suitable algorithms can successfully offset the overhead caused by creating
(and garbage collecting) extra objects and making extra calls. It is worth investigat-
ing, in the future work, how to further reduce the overhead. For example, using object
inlining (that inlines the combo and other inactive container objects) may reduce the
number of extra objects created, leading to lower GC overhead and smaller space con-
sumption. Note that our optimization techniques (discussed in Section 5) are effective:
without them, the average performance improvement for these 5 applications is 6.34%.
Due to space limitations, the detailed performance comparison (with and without these
optimizations) is omitted.

Table 3 shows, for each program, the number of instances of each container type (i.e.,
ArrayList, LinkedList, HashMap, and HashSet) that CoCo attempts to opti-
mize (section (a)) and the number of container switches that CoCo actually performs
(section (b)). All kinds of switches except LL → AL are bi-directional. Each column
for a bi-directional switch X ↔ Y reports pairs of numbers a/b: a in each pair is the
number of switches from X to Y and b is the number of switches from Y to X. Note
that switches in both directions have occurred during the execution of bloat. In addi-
tion, we find that more than half of LinkedLists in bloat continue to be switched
to HashArrayLists after becoming ArrayLists. This observation shows that for
many data structure objects, there do not exist single optimal solutions throughout the
execution. Optimal implementations change as the execution progresses and, therefore,
an online adaptive system is highly necessary for removing container inefficiencies.

Despite the many container objects that CoCo attempts to optimize (e.g., shown in
section (a) of Table 2), there is only a small number of them for which optimizations
are actually possible. Our combo dropping technique appears to be effective—when no
optimization opportunity can be found, the overhead incurred by CoCo is negligible.
The current version of CoCo focuses only on Java built-in containers, leading to a fairly
limited pool of candidates that can form combos. Larger performance gains may be
achieved if the technique can be employed to optimize user-defined, application-specific
data structures. Another interesting future direction is to optimize only a selected subset
of containers that are highly likely to be inefficiently used. This can be done by focusing
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Fig. 6. Breakdown of the benefits from each type of container switch

on allocation sites. We may profile only a few instances (samples) of each allocation site
and then use this information as feedback to guide the optimization of other instances
created by the same allocation site.

7.3 Breakdown of the Benefits

To further understand the performance improvement that each type of switches con-
tributes, an additional experiment is conducted: each application is run four times and
for each time, only one type of switches (from Table 2) is enabled. The breakdown of the
benefits is reported in Figure 6. In general, the effectiveness of each kind of replacement
is application-specific and depends on the container usage in the application. However,
it is clear that the switch from ArrayList to HashArrayList plays an important
role in improving performance. In fact, we find an even larger benefit in fop (17.3%)
when all the other types of switches are disabled. This is because HashArrayList
has a clear algorithmic advantage for performing membership tests (e.g., contains)
over other lists.

8 Related Work

Container Optimizations. Despite the body of work on container optimizations, CoCo
is the first technique that can safely and automatically remove container inefficiencies.

Early work on the SETL framework [15,16,17] and recent work on data representa-
tion synthesis [18] attempt to generate appropriate data structure implementations from
high-level abstractions at compile time. Our work addresses a different problem, which
is to develop a system for Java that can safely switch implementations at run time. Re-
cent attention has been paid to the container bloat problem [7,3,9]. Our previous work
[3] proposes a static analysis to identify container inefficiencies. Work that is closest
to our proposal is Chameleon [7] and Brainy [9]. Both of them can profile programs to
make recommendations on appropriate container implementations that should be used.
Recent work from [10] develops memory compaction techniques to reduce the foot-
print of Java collection objects. Our proposal differs from this category of research in
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two major aspects. First, the problem that these tools address is orthogonal to the prob-
lem that we propose to solve. Both Chameleon and Brainy try to understand precisely
what container implementation is suitable for what execution scenario (i.e., when to
switch implementations), and then identify inconsistency between users’ choices and
the actual execution scenarios to help developers perform manual tuning. Our work
goes far beyond and attempts to develop techniques that can automatically and safely
switch implementations (i.e., how to switch implementations).

The C# standard library contains a collection class called HybridDictionary
(www.dotnetperls.com/hybriddictionary) that implements a linked list
and a hash table, switching over to the second from the first when the number of
elements increases past a certain threshold. While this optimization is similar to our
ArrayList→ HashArrayList optimization, CoCo is a much more general tech-
nique that can be used to optimize a variety of containers.

Software Bloat Analysis. Software bloat analysis [19,4,20,1,21,22,3,2,23,24] at-
tempts to identify and remove performance problems due to run-time inefficiencies in
the code execution and the use of memory. Mitchell et al. [5] propose a manual ap-
proach that detects bloat by structuring behavior according to the flow of information,
and their later work [4] introduces a way to find data structures that consume excessive
amounts of memory. Our work takes further step in performing online optimization
of inappropriately-used data structures. Shankar et al. [22] attempt to improve perfor-
mance by making aggressive method inlining decisions based on the identification of
regions that make extensive use of temporary objects. Our previous work [1,2] detects
memory bloat by profiling copy chains and copy graphs, and by measuring costs and
benefits of object-oriented data structures, respectively. Recent work [25] encodes run-
time data structures to identify those that can be reused for improved efficiency.

All these existing techniques detect bloat and provide diagnostic report by profil-
ing semantic information of the program execution. In this paper, we use one type of
such information (i.e., container semantics) to find and remove problems automatically.
Future work may identify additional semantic bloat patterns that can be exploited to
perform similar semantics-aware optimizations.

9 Conclusions and Future Work

This paper proposes an application-level optimization technique, called CoCo, that
can safely and adaptively switch container implementations. At the core of this tech-
nique is an abstraction-concretization methodology that can be used to create optimiz-
able containers among which container replacement is guaranteed to be safe. While
this work focuses on Java containers, the methodology can also be employed to op-
timize general user-defined data structures. Although the current implementation of
CoCo suffers from a number of limitations, this work is the first step towards achieving
the goal of automating a range of semantic optimizations for object-oriented applica-
tions, and our experimental results already show its promise. Future work may address
these limitations and consider to extend the CoCo methodology to optimize languages
like Scala, where some data structures seemingly expose their internal implementation
through pattern matching. It is also interesting to investigate the possibility of offloading

www.dotnetperls.com/hybriddictionary
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expensive operations to idle cores (in a multicores architecture) to improve the replace-
ment efficiency.
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Abstract. Object algebras are a new programming technique that en-
ables a simple solution to basic extensibility and modularity issues in
programming languages. While object algebras excel at defining modu-
lar features, the composition mechanisms for object algebras (and fea-
tures) are still cumbersome and limited in expressiveness. In this paper
we leverage two well-studied type system features, intersection types and
type-constructor polymorphism, to provide object algebras with expres-
sive and practical composition mechanisms. Intersection types are used
for defining expressive run-time composition operators (combinators)
that produce objects with multiple (feature) interfaces. Type-constructor
polymorphism enables generic interfaces for the various object algebra
combinators. Such generic interfaces can be used as a type-safe front end
for a generic implementation of the combinators based on reflection. Ad-
ditionally, we also provide a modular mechanism to allow different forms
of self -references in the presence of delegation-based combinators. The
result is an expressive, type-safe, dynamic, delegation-based composition
technique for object algebras, implemented in Scala, which effectively
enables a form of Feature-Oriented Programming using object algebras.

1 Introduction

Feature-oriented programming (FOP) is a vision of programming in which in-
dividual features can be defined separately and then composed to build a wide
variety of particular products [5,21,43]. In an object-oriented setting, FOP breaks
classes and interfaces down into smaller units that relate to specific features. For
example, the IExp interface below is a complete object interface, while IEval and
IPrint represent interfaces for the specific features of evaluation and printing.

trait IExp {
def eval() : Int
def print() : String

}

trait IEval { def eval() : Int }

trait IPrint { def print() : String }

Existing object-oriented programming (OOP) languages make it difficult to sup-
port FOP. Traditionally OOP encourages the definition of complete interfaces
such as IExp. Such interfaces are implemented by several classes. However adding
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a new feature usually involves coordinated changes in multiple classes. In other
words, features often cut across traditional object-oriented modularity bound-
aries, which is centered on the behavior of individual objects. Such cross-cutting
is a symptom of the tyranny of the dominant decomposition [48]: programming
languages typically support development across one dominant dimension well,
but all other dimensions are badly supported [23, 27, 48].

The main difficulty in supporting FOP in existing OOP languages stems from
the intrinsic flexibility of FOP, which is challenging for programmers and lan-
guage designers, especially when combined with a requirement for modular type-
checking and separate compilation. Although research has produced many so-
lutions to extensibility and modularity issues, most of these require advanced
language features and/or careful advanced planning [11,17,19,30,32,50,52–54].

Object algebras [37] are a new approach to extensibility and modularity in
OOP languages, which is based on a generalization of factories that creates
families of related objects. The basic model of object algebras requires only
simple generics, as in Java, without advanced typing features. For example, the
following interface is an object algebra interface of simple expressions:
trait ExpAlg[E] {
def Lit(x : Int) : E
def Add(e1 : E, e2 : E) : E

}

Object algebras allow new features to be defined by implementing ExpAlg. For
instance, classes implementing ExpAlg[IPrint] and ExpAlg[IEval] are algebras
implementing printing and evaluation features respectively. Object algebras also
allow extending the interface ExpAlg with new constructors [37]. As such object
algebras provide a solution to the expression problem [14, 44, 51].

While object algebras excel at defining modular features, the composition
mechanisms for object algebras (and features) are still cumbersome and lim-
ited in expressiveness. Combining algebras implementing ExpAlg[IPrint] and
ExpAlg[IEval] to form ExpAlg[IExp] is possible, but tedious and cumbersome in
Java. Moreover composition mechanisms must be defined separately for each ob-
ject algebra interface, even though the composition follows a standard pattern.
Finally, the basic model of object algebras does not support self-references, so
overriding is not supported. The lack of good compositions mechanisms hinders
the ability to express feature interactions, which is essential for FOP.

This paper provides object algebras with expressive and practical composition
mechanisms using two well-studied type system features: intersection types [15]
and type-constructor polymorphism [31, 45]. Both features (as well as their in-
teraction) have been well-studied in programming language theory. For example
Compagnoni and Pierce’s Fω∧ calculus [12], used to study language support for
multiple inheritance, supports both features. Moreover, both features are avail-
able in the Scala programming language [33], which we use for presentation.

An intersection type, A with B, combines the interfaces A and B to form a new
interface. Because the new interface is not required to have an explicit name,
programmers can define generic interface composition operators, with types of
the form A => B => A with B. These interface combinators allow object algebras to
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be composed flexibly. While the interfaces are composed and checked statically,
the composition of the algebras is done at runtime.

Type-constructor polymorphism refers to the ability for a generic definition to
take a type constructor, or type function, as an argument. Since definitions like
ExpAlg are type constructors, type constructor polymorphism is useful to abstract
over such definitions. With type constructor polymorphism it is possible to define
generic interfaces for object algebra combinators which are parametrized over
the particular type of object algebras. In combination with meta-programming
techniques this allows automating implementations of the combinators. As a
result a single line is sufficient to implement the combinators for an extension
or new object algebra interface. For example, the object ExpComb

object ExpComb extends Algebra[ExpAlg]

creates an object with combinators for the object algebra interface ExpAlg.
We also provide a modular mechanism to allow different forms of self -

references in the presence of delegation-based combinators. As Ostermann [42]
observes there are two important concerns related to self-references in delegation-
based families of objects: 1) virtual constructors; 2) individual object self-
references. The two issues are addressed using two types of self-references, which
provide, respectively a notion of family and object self-references.

Ultimately, the object algebra composition mechanisms presented in this pa-
per are expressive, type-safe1,dynamic (composition happens at run-time), del-
egation-based and convenient to use. With these composition mechanisms a
powerful and expressive form of FOP with object algebras is possible.

In summary, our contributions are:
– FOP using object algebras: We show that, provided with suitable composition

mechanisms, object algebras enable a convenient and expressive form of FOP,
which supports separate compilation and modular type-checking.

– Generic object algebra combinators: Using intersection types and type-con-
structor polymorphism, we show how to model general, expressive and type-
safe composition mechanisms for object algebras.

– Modular self-references: We show a modular mechanism for dealing with self-
references in the presence of delegation-based object algebra combinators.

– Case studies: We present two case studies that show the use of our tech-
niques. The first is a typical test problem in FOP, the second involves com-
position and instrumentation of various operations on grammars. The code
for the case studies and smaller examples, which has been successfully eval-
uated by the ECOOP artifact evaluation committee, is published online at:

https://github.com/tvdstorm/oalgcomp

2 Object Algebras and Current Limitations

Object Algebras are classes that implement algebraic signatures encoded as pa-
rameterized interfaces, where the type parameter represents the carrier set of
1 Uses of reflection are not statically type-safe, but they are optional and can be

replaced by boilerplate type-safe code which avoids reflection.

https://github.com/tvdstorm/oalgcomp
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trait ExpEval extends ExpAlg[IEval] {
def Lit(x : Int) : IEval = new IEval {
def eval() : Int = x

}

def Add(e1 : IEval, e2 : IEval) : IEval = new IEval {
def eval() : Int = e1.eval() + e2.eval()

}
}

object ExpEval extends ExpEval

Fig. 1. An object algebra for evaluation of integer expressions

trait ExpPrint extends ExpAlg[IPrint] {
def Lit(x : Int) : IPrint = new IPrint {
def print() : String = x.toString()

}

def Add(e1 : IPrint, e2 : IPrint) : IPrint = new IPrint {
def print() : String = e1.print() + " + " + e2.print()

}
}

object ExpPrint extends ExpPrint

Fig. 2. An object algebra for printing of integer expressions

the algebra [37]. In ExpAlg the methods Lit and Add represent the constructors
of the abstract algebra, which create values of the algebra in the carrier type E.
A class that implements such an interface is an algebra [22], in that it defines a
concrete representation for the carrier set and concrete implementations of the
methods. While it is possible to define an object algebra where the carrier set
is instantiated to a primitive type, e.g. int for evaluation or String for print-
ing, in this paper the carrier is always instantiated to an object interface that
implements the desired behavior. For example, Fig. 1 and 2 define algebras for
evaluating and printing expressions.

Provided with these definitions, clients can create values using the appropriate
algebra to perform desired operations. For example:

def exp[E](f : ExpAlg[E]) : E =
f.Add(f.Lit(5), f.Add(f.Lit(6),f.Lit(6)))

val o1 : IPrint = exp(ExpPrint)
val o2 : IEval = exp(ExpEval)
println("Expression: " + o1.print() + "\nEvaluates to: " + o2.eval())

defines a method exp, which uses the object algebra (factory) f to create values
of an abstract type E. The example then creates objects o1 and o2 for printing
and evaluation. The ExpAlg interface can be extended to define new constructors
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for additional kinds of expressions. A new class that implements ExpAlg provides
a new operation on expressions.

One serious problem with the example given above is that two versions of the
object must be created: o1 is used for printing, while o2 is used for evaluation.
A true feature-oriented approach would allow a single object to be created that
supported both the printing and evaluation features. A more serious problem
arises when one feature (or algebra) depends upon another algebra. Such opera-
tions cannot be implemented with the basic strategy described above. In general,
feature interactions are not expressible.

The original object algebra proposal [37] addressed this problem by proposing
object algebra combinators. Object algebra combinators allow the composition of
algebras to form a new object algebra with the combined behavior and also new
behavior related to the interaction of features. Unfortunately, the object algebras
combinators written in Java lack expressiveness and are not very practical or
convenient to use, for three different reasons:

– Composed interfaces are awkward: The Java combinators are based on cre-
ating pairs to represent the values created by combining two algebras. From
the client’s viewpoint, the result had the following form (using Scala, which
has support for pairs):
val o : (IEval,IPrint) = exp(combineExp(ExpEval,ExpPrint))
println("Eval: " + o._1.eval() + "\nPrint: " + o._2.print())

The value o does combine printing and evaluation, but such pairs are cum-
bersome to work with, requiring extraction functions to access the methods
and revealing that the objects result from compositions. Combinations of
more than two features require nested pairs with nested projections, adding
to the usability problems.

– Combinators must be defined for each object algebra interface: There is a lot
of boilerplate code involved because combinators must be implemented or
adapted for each new object algebra interface or extension. Clearly, this is
quite inconvenient. It would be much more practical if the combinators were
automatically defined for each new object algebra interface or extension.

– The model of dynamic composition lacks support for self-references: Finally,
combinators are defined using dynamic invocation, rather than inheritance.
The Java form of object algebras does not support self-reference or delega-
tion. Since self-reference is important to achieve extensibility, the existing
object algebra approach lacks expressiveness.

As a result, while object algebras provide a simple solution to basic modularity
and extensibility issues, existing composition mechanisms impose high overhead
and have limited expressiveness for FOP. The remainder of the paper shows
solutions to the three problems.

3 Combining Object Algebras with Intersection Types

Intersection types help with providing a solution to the problem of combin-
ing object algebras conveniently. Combining object algebras allows two different
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behaviors or operations, implemented by two specific algebras, to be available at
once. Intersection types avoid the heavy encoding using pairs and allow methods
to be called in the normal way.

3.1 Scala’s Intersection Types

In Scala, an intersection type2 A with B expresses a type that has both the
methods of type A and the methods of type B. This is similar to
interface AwithB extends A, B {}

in a language like Java or C#. The main difference is that an intersection type
does not require a new nominal type AwithB. Furthermore, Scala’s intersection
types can be used even when A and B are type parameters instead of concrete
types. For example,
trait Lifter[A,B] {

def lift(x : A, y : B ) : A with B
}

is a trait that contains a method lift which takes two objects as parameters
and returns an object whose type is the intersection of the two argument types.
Note that such an interface cannot be expressed in a language like Java because
it is not possible to create a new type that expresses the combination of type
parameters A and B3.

3.2 Merging Algebras Using Intersection Types

Intersection types allow easy merging of the behaviors created by object algebras.
The lift operation defined in the previous section for combining objects is used
in the definition of a merge operator for algebras. Conceptually, a merge function
for an algebra interface F combines two F -algebras to create a combined algebra:
mergeF: (A => B => A with B) => F[A] => F[B] => F[A with B]

Unlike the solution with pairs described in Section 2, intersection types do
not require additional projections. The additional function argument represents
the lift function, of type A => B => A with B, that specifies how to compose two
objects of type A and B into an object of type A with B. This lift function resolves
conflicts between the behaviors in A and B by appropriately invoking (delegating)
behaviors in A with B to either A or B. The lift function can also resolve inter-
actions between features. In other words, the function argument plays a role
similar to lifters in Prehofer’s FOP approach [43].

From a conceptual point of view, the key difference between combine on pairs
and merge is that the former uses a zip-like operation with pairs, and the latter
uses a zipWith-like operation with intersection types.
2 In Scala these are often called compound types.
3 Note that Java supports a limited form of intersection types in generic bounds, but

this form of intersection types is too weak for our purposes. In Java it is possible to
have generic bounds such as <T extends A & B>, where A & B denotes an intersection
type. However A and B cannot be type parameters: they must be concrete types.
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trait ExpMerge[A,B] extends ExpAlg[A with B] {
val lifter : Lifter[A,B]
val alg1 : ExpAlg[A]
val alg2 : ExpAlg[B]

def Lit(x : Int) : A with B =
lifter.lift(alg1.Lit(x),alg2.Lit(x))

def Add(e1 : A with B, e2 : A with B) : A with B =
lifter.lift(alg1.Add(e1, e2),alg2.Add(e1, e2))

}

Fig. 3. Expression merging combinator with intersection types

object LiftEP extends Lifter[IEval,IPrint] {
def lift(x : IEval, y : IPrint) = new IEval with IPrint {
def print() = y.print()
def eval() = x.eval()

}
}

object ExpPrintEval extends ExpMerge[IEval,IPrint] {
val alg1 = ExpEval
val alg2 = ExpPrint
val lifter = LiftEP

}

def test2() = {
val o = exp(ExpPrintEval)
println("Eval: " + o.eval() + "\nPrint: " + o.print())

}

Fig. 4. Merging the printing and evaluation algebras

Figure 3 defines the merge combinator for expressions in Scala as the trait
ExpMerge. The value of type Lifter[A,B] plays the role of the combination func-
tion in merge, while the two values alg1 and alg2 are the two object algebra
arguments. The definition of Lit and Add uses the method lifter to combine the
two corresponding objects, which are delegated by invoking the corresponding
method on the arguments. Intersection types automatically allow the following
subtyping relationships:
A with B <: A and A with B <: B

These relationships ensure that no conversion/extraction is needed when dele-
gating arguments, for example, e1 and e2 in Add. This is an advantage over using
pairs, because extraction of the arguments from the pairs is not needed.

Figure 4 illustrates how to merge the printing and evaluation algebras to
create an ExpPrintEval algebra. Clients can use this factory to create objects of
type IEval with IPrint, which include print and eval in a single interface. The
result is a seamless combination of the printing and evaluation features.
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class LiftDecorate[A](wrap : A => A) extends Lifter[A,Any] {
def lift(x : A, y : Any) = wrap(x)

}

trait ExpDecorate[A] extends ExpMerge[A,Any] {
val alg2 = ExpEmpty
val lifter = new LiftDecorate(wrap)
def wrap(x : A) : A

}

Fig. 5. Decoration combinator derived from merge and empty

Unfortunately, it is still necessary to define some boilerplate. Each merge
requires a lifter object (LiftEP), which in this case combines IEval with IPrint.
Often, as in this case, such lifting operations simply create the new object and
delegate the methods to the corresponding methods in either x or y. As we shall
see in Section 5.2, in such cases, it is possible to define a generic lifting behavior.

4 Applying Uniform Transformations to Object Algebras

This section shows how to define uniform transformations on object algebras
using the merge combinator. This serves as a representative example of the
expressive power of merge. The primary example of a uniform transformation
is adding a generic tracing behavior at each step of evaluation. In this case the
behavior being added is not specific to each constructor in the algebra, but is
instead a uniform behavior at each evaluation step.

Uniform transformations are formalized as a combinator, which encapsulates a
Decorator [20] wrapping each value constructed by the algebra with additional
functionality. The decorate combinator takes a function A =>A and an object
algebra ExpAlg[A] and produces a wrapped object algebra of type ExpAlg[A]:

decorate : (A => A) => ExpAlg[A] => ExpAlg[A]

Although decorate can be implemented directly, we choose to implement it
in terms of the more generic merge combinator. In this use of merge it is the
lifting function that matters, while the possibility to combine two algebras
is not needed. As a result, we supply an empty algebra as the second algebra.
Conceptually, the decorate combinator defines a lifting that applies the trans-
formation wrap to its first argument, and ignores the second (empty) argument.

decorate wrap alg = merge(x => y => wrap(x), alg, empty)

Figure 5 gives the Scala definition of the decorate combinator for the expres-
sions algebra. The ExpDecorate trait extends ExpMerge and sets the second algebra
to an empty object algebra. An abstract method wrap specifies a decoration func-
tion, which is applied to objects of type A.

An empty algebra, defined in Fig. 6, is an algebra, of type ExpAlg[Any], that
does not define any operations. It instantiates the carrier type to Any, a Scala
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trait ExpEmpty extends ExpAlg[Any] {
def Lit(x : Int) : Any = new Object()
def Add(e1 : Any, e2 : Any) : Any = new Object ()

}
object ExpEmpty extends ExpEmpty

Fig. 6. The Empty expression algebra

object TraceEval extends ExpDecorate[IEval] {
val alg1 = ExpEval
def wrap(o : IEval) = new IEval() {
def eval() = {
println("Entering eval()!")
o.eval()

}
}

}

Fig. 7. A decorator for tracing

type that plays the role of the top of the subtyping hierarchy. Every method in
the object algebra has the same definition: new Object().

4.1 Tracing by Decoration

Figure 7 defines a tracing mechanism using the decorator combinator. The ob-
ject TraceEval wraps an existing evaluator with tracing. The eval method first
prints a message and then delegates to the base evaluator o. By extending
ExpDecorate[IEval], this wrapper is applied to every evaluator created by the
underlying evaluator ExpEval. When exp is invoked with TraceEval:
val o : IEval = exp(TraceEval)
println("Eval: " + o.eval())

the string Entering eval()! is printed 5 times in the console.

5 Generic Object Algebra Combinators

To avoid manually writing boilerplate code for combinators such as merge, empty
or decorate, we develop object algebra combinators interfaces and corresponding
implementations generically.

A generic merge combinator defined on an object algebra interface F contain-
ing methods m1(args1), ...,mn(argsn) might look as follows:
trait MergeF[A,B] extends F[A with B] {
val lifter : Lifter[A, B]
val a1 : F[A]
val a2 : F[B]
def mi(argsi) : A with B = lifter.lift(a1.mi(argsi), a2.mi(argsi))

}
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trait Algebra[F[_]] {
// Basic combinators
def merge[A,B](mix : Lifter[A,B], a1 : F[A], a2 : F[B]) : F[A with B]
def empty() : F[Any]

// Derived combinator(s)
def decorate[A](parent : F[A], wrap : A => A) : F[A] =
merge[A,Any](new LiftDecorate(wrap),parent,empty)

}

Fig. 8. The generic interface for object algebra combinators

The generic merge combinator extends an interface which is polymorphic in the
types of the algebras it combines. Its methods are thin facades to invoke the
underlying lifter on the two object algebras. There are two challenges in defin-
ing a generic merge: the first is defining its generic interface and the second
is implementing the constructors. The former is solved using type-constructor
polymorphism [31, 45], and the latter with reflection. The same idea is applied
to other combinators, including empty.

5.1 A Generic Interface for Object Algebra Combinators

Scala supports type-constructor polymorphism by allowing a trait to be pa-
rameterized by a generic type, also known as a type constructor. With type-
constructor polymorphism it is possible to provide a generic interface for object
algebra combinators, as shown in Fig. 8. The Algebra trait is parameterized by a
type constructor F[_], which abstracts over object algebra interfaces like ExpAlg.
Note that the annotation [_] expresses that F takes one type argument. The
trait contains three methods. These methods provide a generalized interface for
the object algebra combinators introduced in Sections 3 and 4, using the type
constructor F instead of a concrete object algebra interface.

The Algebra interface is inspired by applicative functors [29]: an abstract in-
terface, widely used in the Haskell language, to model a general form of effects.
In Haskell4, the interface for applicative functors is defined as:
class Applicative f where

merge :: (a → b → c) → f a → f b → f c
empty :: f ()

Like object algebra combinators, applicative functors are also closely related
to zip-like operations. Our combinators can be viewed as an adaptation of the
applicative functors interface. However, an important difference is that applica-
tive functors require co-variant type-constructors (the parameter type occurs
in positive positions only), whereas object algebra interfaces do not have such
restriction. In fact most object algebras use invariant type-constructors (the pa-
rameter type can occur both in positive and negative positions). To compensate
4 The actual interface in the Haskell libraries is different, but equivalent in expressive-

ness to the one described here as discussed by McBride and Paterson [29].
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def merge[A,B](lifter : Lifter[A,B], a1 : F[A], a2 : F[B])(implicit m :
ClassTag[F[A with B]]) : F[A with B] =

createInstance(new InvocationHandler() {
def invoke(proxy : Object, method : Method, args : Array[Object]) = {
val a = method.invoke(a1,args : _*)
val b = method.invoke(a2,args : _*)
lifter.lift(a.asInstanceOf[A],b.asInstanceOf[B]).asInstanceOf[Object]

}})

def empty(implicit m : ClassTag[F[Any]]) : F[Any] =
createInstance(new InvocationHandler() {
def invoke(proxy : Object, method : Method, args : Array[Object]) =

new Object()
})

Fig. 9. Reflective, generic implementations of merge and empty

for the extra generality of the object algebra interface type-constructors, the
merge operation restricts the type c to the intersection type A with B.

Finally note that Algebra can itself be viewed as an object algebra interface
whose argument type (constructor) abstracts over another object algebra inter-
face. Algebra can be thought of as a factory of factories, or a higher-order factory:
the factory methods merge and empty construct factory objects.

Combinators for Specific Object Algebras. Using Algebra we can create an object
that contains object algebra combinators specialized for ExpAlg as follows:
object ExpComb extends Algebra[ExpAlg] {

def merge[A,B](f : Lifter[A,B], a1 : ExpAlg[A], a2 : ExpAlg[B]) =
new ExpMerge[A,B]() {
val lifter : Lifter[A,B] = f
val alg1 : ExpAlg[A] = a1
val alg2 : ExpAlg[B] = a2}

def empty() = ExpEmpty
}

and use these combinators in client code. For example:
import ExpComb._

val o = exp(merge(LiftEP,decorate(ExpEval,TraceEval.wrap),ExpPrint))
println("Eval: " + o.eval() + "\n PP: " + o.print())

creates an object o, combining a traced version of evaluation and printing.

5.2 Default Combinator Implementations Using Reflection

Reflection can be used to implement merge, empty, and a default Lifter for any
given object algebra interface. Reflection does not guarantee static type safety,
but if the default reflective implementation is trusted, then the strongly-typed
generic interface guarantees the static type-safety of the client code.

Figure 9 gives generic implementations for merge and empty using reflection.
These implementations can be used in the generic interface Algebra to provide



38 B.C.d.S. Oliveira et al.

a default implementation of the combinators. The idea is to use dynamic prox-
ies [26] to dynamically define behavior. A dynamic proxy is an object that
implements a list of interfaces specified at runtime. As such, that object can re-
spond to all methods of the implemented interfaces by implementing the method
invoke and the InvocationHandler interface. The dynamic proxy objects are cre-
ated using the createInstance method:
def createInstance[A](ih : InvocationHandler)(implicit m : ClassTag[A]) = {

newProxyInstance(m.runtimeClass.getClassLoader,
Array(m.runtimeClass),ih).asInstanceOf[A]

}

This method relies on the JDK reflection API, which supports the creation of
dynamic proxies, and Scala’s mirror-based [8] reflection API to provide reflec-
tive information of type parameters. The use of Scala’s mirror-based reflection
requires an adjustment on the types of the combinators in Algebra. The combi-
nators now need to take an additional implicit parameter [40] m, which contains
a reflective description of type parameters. This additional parameter does not
affect client code since it is implicitly inferred and passed by the Scala compiler.

Unfortunately there is a wrinkle in our use of reflection: while supported by
Scala, intersection types are not natively supported by the JVM. As a result
the use of createInstance to dynamically generate an object with an intersection
type is problematic. Fortunately there is a workaround which consists of creating
a nominal subtype S of an intersection type A with B. This allows working around
the JVM limitations, but requires an extra type argument S <: A with B in our
combinators. In the paper, for clarity of presentation, we will ignore this issue
and assume that createInstance works well with intersection types.

Generic Lifters. The delegate function creates a generic lifter function.
def delegate[A,B](x : A, y : B)(implicit m : ClassTag[A with B]) =

createInstance[A with B](new InvocationHandler() {
def invoke(proxy : Object, method : Method, args : Array[Object]) = {
try {
method.invoke(x, args : _*)

} catch {
case e : IllegalArgumentException => method.invoke(y, args : _*)

}}})

This function is quite useful to handle intersection types composed of interfaces
whose methods are disjoint. An example is the intersection of IEval and IPrint.
In the case that the sets of methods are not disjoint, methods in algebra x will
have priority over those in algebra y.

With delegate and merge it is possible to define a combinator combine, which
resembles the zip-like combinator with the same name proposed by Oliveira and
Cook [37]. The difference is the result is an intersection type instead of a pair.

def combine[A,B](alg1 : F[A], alg2 : F[B])(implicit m1 : ClassTag[F[A
with B]], m2 : ClassTag[A with B]) : F[A with B] =

merge[A,B](new Lifter[A,B]() {
def lift(x : A, y : B) = delegate[A,B](x,y)},

alg1, alg2)
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With combine we can combine features without having to explicitly define a lifter
function. For example:

val o = exp(combine(decorate(ExpEval,TraceEval.wrap),ExpPrint))
println("Eval: " + o.eval() + "\n PP: " + o.print())

combines evaluation with printing and also enables tracing on eval.
In summary, generic object algebra combinators avoid manual definitions such

as ExpMerge and LiftEP. Instead:

object ExpComb extends Algebra[ExpAlg]

creates a set of combinators, including merge, empty, delegate, combine, and
decorate for ExpAlg, providing the necessary composition infrastructure. Nev-
ertheless programmers can still provide their own definitions if desired, which
can be useful to avoid performance penalties due to the use of reflection.

6 Object Algebras, Self-references and Delegation

This section defines a generalization of object algebra interfaces which accounts
for self-references in our delegation-based setting. Self-references are orthogo-
nal and complementary to the generic and reflective combinators presented in
Section 5. As such, for simplicity of presentation, we will first present the treat-
ment of self-references on a specific object algebra interface and then discuss the
adaptations needed to the generic object algebra interfaces.

6.1 Generalizing Object Algebras to Account for Self-references

Since the programming style in this paper is based on delegation an impor-
tant question is how to account for self-references. The standard self-references
provided by Scala’s built-in class-based inheritance model do not provide an
adequate semantics in the presence of delegation (or run-time inheritance). As
Ostermann [42] points out, when dealing with delegation-based object families
there two important issues that need special care:

– Object self-references: When composing object algebras using combinators
like merge or, more generally, delegating on another algebra, the self-reference
to the constructed objects should refer to the whole composition rather than
the individual object.

– Virtual constructors: Similarly to the semantics of virtual classes [19], the
constructors of objects (that is the methods of the object algebras) should
be late bound, and refer to the composite object algebras rather than the
object algebra being defined.

Both of these problems can be solved using two types of self-references: object
self-references and family self references. In order to account for these two types
of self-references we first need a generalization of object algebra interfaces, as
shown in Fig. 10. This generalization form has been studied before in the context
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trait GExpAlg[In,Out] {
def Lit(x : Int) : Out
def Add(e1 : In, e2 : In) : Out

}

type ExpAlg[E] = GExpAlg[E,E]

Fig. 10. A generalized object algebra interface for expressions

trait ExpPrint2[S <: IEval with IPrint] extends OExpAlg[S, IPrint] {
def Lit(x : Int) = self => new IPrint() {
def print() = x.toString()

}

def Add(e1 : S, e2 : S) = self => new IPrint() {
def print() = e1.print() + " + " + e2.print() + " = " + self.eval()

}
}

Fig. 11. An object algebra with a dependency

of research on the relationship between the Visitor pattern and Church encod-
ings [41]. The idea is to distinguish between the uses of carrier types with respect
to whether they are inputs (In) or outputs (Out). In type-theoretic terms, this
means distinguishing between the positive and negative occurrences of the car-
rier type. It is easy to recover the conventional object algebra interface ExpAlg[A]

simply by making the two type parameters in GExpAlg be the same.

6.2 Object Self-references

The generalized interface allows us to account for the type of object algebra
interfaces, OExpAlg, with unbound (or open) object self-references:

type OExpAlg[S <: E, E] = GExpAlg[S, Open[S,E]]
type Open[S <: E, E] = (=> S) => E

The type OExpAlg is parameterized by two types E and S. The type E is the usual
carrier type for object algebras. The type S is the type of the entire composition
of objects, which must be a subtype of E. In OExpAlg the outputs are a function
(=>S)=> E. The argument of this function (=>S) is the unbound self-reference,
which is used by the function to produce an object of type E. To prevent early
evaluation of the self argument, it is marked as a call-by-name parameter by
placing => before the argument type. Scala wraps call-by-name arguments in
thunks to delay their evaluation until the function body needs their value.

Dependent Features. An example where using self references is important is when
defining a feature which depends on the availability of another feature. Figure 11
illustrates one such case: a variant of the printing feature, which uses evaluation
in its definition. The dependency on evaluation is expressed by bounding the
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trait CloseAlg[E] extends ExpAlg[E] {
val alg : OExpAlg[E,E]

def Lit(x : Int) : E = fix(alg.Lit(x))
def Add(e1 : E, e2 : E) : E = fix(alg.Add(e1,e2))

}

def closeAlg[E](a : OExpAlg[E,E]) : ExpAlg[E] = new CloseAlg[E] {
val alg = a

}

Fig. 12. Closing object self-references

type of the self-reference S to IEval with IPrint. This imposes a requirement
that the self-reference and the input arguments of the different cases (such as
e1 and e2) implement both evaluation and printing. However, ExpPrint2 does
not have any hard dependency on a particular implementation of IEval and it
only defines the behaviour of the printing feature, though it may call evaluation
in its implementation. The definition of the print method for Add uses the self
reference (self). Note that Scala’s built-in self-reference this is useless in this
situation: this would have the type IPrint, but what is needed is a self-reference
with type S <: IEval with IPrint (the type of the composition).

Closing Object Self-References. Before we can use object algebras with object
self-references we must close (or bind) those references. This can be done using a
closing object algebra, which is shown in Fig. 12. The closing algebra CloseAlg[E]

extends the standard object algebra interface ExpAlg and delegates on an open
object algebra alg, which is the algebra to be closed. In each case self-references
are closed using lazy fixpoints. Lazy fixpoints are a standard way to express the
semantics of dynamic mixin inheritance and bind self-references in denotational
semantics [13] and lazy languages [35].

def fix[A](f : Open[A,A]) : A = {lazy val s : A = f(s); s}

To implement the lazy fixpoint we exploit Scala’s support for lazy values. It
is possible to achieve the same effect using mutable references, but Scala’s lazy
values provide a more elegant solution.

6.3 Family Self-references

Another interesting type of self-references are family self references. The type
OpenExpAlg is the type of (open) object algebra interfaces with both object and
family self-references5:

type OpenExpAlg[S <: E, E] = (=> ExpAlg[S]) => GExpAlg[S, Open[S,E]]

5 Note that it is also possible to define a simpler type (=>ExpAlg[S])=>ExpAlg[S]
which accounts only for object algebra interfaces with family self references.
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trait ExpPrint3[S <: IEval with IPrint] extends SelfExpAlg[S,IPrint]{
def Lit(x : Int) = self => new IPrint() {def print() = x.toString()}

def Add(e1 : S, e2 : S) = self => new IPrint() {
def print() = {
val plus54 = fself.Add(fself.Lit(5), fself.Lit(4));
e1.print() + " + " + e2.print() + " = " + self.eval() +
" and " + "5 + 4 = " + plus54.eval();

}
}

}

def ExpPrint3[S <: IEval with IPrint] : OpenExpAlg[S,IPrint] =
s => new ExpPrint3[S] {lazy val fself = s}

Fig. 13. A printing operation using family and object self-references

Similarly to OExpAlg, OpenExpAlg is parameterized by two type parameters E and
S <: E. OpenExpAlg is a function type in which the argument of that function
(=>ExpAlg[S]) is the unbound family self reference. The output of the function
is GExpAlg[S, Open[S,E]]. This type denotes that the input arguments in the
algebra are values of the composition type S, whereas the output types have
unbound object self references (just as in Section 6.2).

It is possible to define a generic interface for object algebras interfaces with
family self references:
trait SelfAlg[Self <: Exp, Exp] {

val fself : ExpAlg[Self]
}

This interface can be combined with particular object algebra interfaces to add
family self references. For example:
trait SelfExpAlg[Self <: Exp, Exp] extends
GExpAlg[Self,Open[Self,Exp]] with SelfAlg[Self,Exp]

denotes integer expression object algebra interfaces with family and object self
references. As shown in Fig. 13, this interface can be used to define object alge-
bras with both types of self references. The ExpPrint3 object algebra implements
a modified version of ExpPrint2 which adds some additional behavior to the print-
ing operation in the Add case. The idea is to extend ExpPrint3 so that the algebra
constructs a value denoting 5 + 4 in one of the operations. The family self ref-
erence fself (which is available as a value from the extended interface SelfAlg)
ensures that the constructors refer to the overall composed object algebra instead
of the local ExpPrint3 object algebra. It is the use of the family self-reference that
enables a virtual constructor semantics. If this.Add(this.Lit(5),this.Lit(4))

was used instead then the constructors would not have the expected semantics
in the presence of compositions around ExpPrint3.

Closing References. Both object self references and family self references can be
closed with the following definition:
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trait Algebra[F[_,_]] {
type FOpen[F[_,_],S <: T, T] = (=> F[S,S]) => F[S,Open[S,T]]

// Basic combinators
def merge[A,B,S <: A with B](mix : Lifter[A,B,S], a1 : FOpen[F,S,A], a2

: FOpen[F,S,B]) : FOpen[F,S,A with B]
def empty[S] : FOpen[F,S,Any]

// Derived combinator(s)
def decorate[A, S <: A](parent : FOpen[F,S,A], wrap : A => A) :

FOpen[F,S,A] =
merge[A,Any,S](new LiftDecorate(wrap),parent,empty[S])

// closing combinators
def fcloseAlg[S](a : F[S,Open[S,S]]) : F[S,S]
def fclose[S](f : FOpen[F,S,S]) : F[S,S]

}

Fig. 14. Interface for generic combinators with self-references

def close[S](f : OpenExpAlg[S,S]) : ExpAlg[S] = fix(compose(closeAlg,f))

Essentially, close first binds the object self references using closeAlg and then
it binds the family self-references using a lazy fixpoint. Note that compose is the
standard function composition operation.

6.4 Generic Combinators with Self-references

The generic combinators presented in Fig. 8 can be adapted to account for self-
references, as shown in Fig. 14. The trait Algebra now has to abstract over a
type constructor with 2 arguments, to account for the generalized form of object
algebra interfaces. The type FOpen is a generalization of OpenExpAlg, for some
algebra F instead of the specific ExpAlg. The combinators merge and empty must
work on open object algebras instead of closed ones. Moreover, in the merge

combinator the Lifter trait needs to be updated slightly to allow the use of
object self-references by the lifting functions:

trait Lifter[A,B, S <: A with B] {
def lift(x : A, y : B) : Open[S, A with B]

}

Finally, generic forms of closing operators are included in the Algebra interface.
As with the combinators in Fig. 8, reflection can also be used to provide generic

implementations of the combinators. These implementations are straightforward
adaptations of the ones presented in Section 5.2. Generic implementations for
fcloseAlg can be defined using similar techniques.

Client Code. With all self-reference infrastructure and the suitably adapted
generic combinators, client code can be developed almost as before. For example:
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val o =
exp(fclose(merge(LiftEP,decorate(ExpEval,TraceEval.wrap),ExpPrint3)))

println("Eval: " + o.eval() + "\nPrint: " + o.print())

composes the variant of printing using object and family self-references and
decorates evaluation with tracing. Note that this code assumes adapted versions
of LiftEP and ExpEval, which are straightforward to define. The main difference
to previous code is that the fclose operation must be applied to the composition
to bind the self references and be used by the builder method exp. Because of
the use of family and object self references tracing is applied at each call of
evaluation, which ensures the expected behavior for the example.

7 Case Studies

To exercise the expressivity of feature-oriented programming using object-algebra
combinators we have performed two case studies. The first adapts an example
by Prehofer [43], consisting of a stack feature, which optionally can be com-
posed with counting, locking and bounds-checking features. The second involves
various interpretations and analyses of context-free grammars.

Stacks. In the first case study, we consider four features: Stack, Counter, Lock
and Bound. The Stack feature captures basic stack functionality, such as push,
pop, etc. If the size of stack should be maintained, the Counter feature can be
used. The Lock feature prevents modifications to an entity. Finally, the Bound
feature checks that some numeric input value is within bounds.

Each feature is implemented as an object algebra for stacks containing a single
constructor stack(). If we consider the Stack feature to be the base feature, there
are 23 = 8 possible configurations. Each configuration requires a lifter to resolve
feature interaction. For instance, lifting the counter feature to stack context
involves modifying push and pop to increment and decrement the counter.

Many of these lifters require boilerplate for the methods without feature inter-
action. To avoid duplicating this code we have introduced default “delegating”
traits. These traits declare a field for the delegatee object and forward each
feature method to that object.

An example of such a delegator trait for the Counter feature is the following:

trait DCounter extends Counter {
val ct: Counter
def reset() { ct.reset }
def inc() { ct.inc }
def dec() { ct.dec }
def size() = ct.size()

}

This trait is included, for instance, in the class that lifts the Counter feature to
the Stack context, as shown in Fig. 15. The default behavior is to delegate the
feature methods (e.g., inc, push2, etc.) to Stack s and Counter c respectively. To
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class StackWithCounter(self: => Stack with Counter, s: Stack, c: Counter)
extends DStack with DCounter {
val st = s; val ct = c
override def empty() {self.reset; st.empty}
override def push(s : Char) {self.inc; st.push(s)}
override def pop() {self.dec; st.pop}

}

object LiftSCF extends Lifter[Stack,Counter, Stack with Counter] {
def lift(st : Stack, ct : Counter) =
self => new StackWithCounter(self, st, ct)

}

Fig. 15. Lifting the Counter feature to the Stack context

trait GrammarAlg[In, Out] {
def Alt(lhs: In, rhs: In): Out
def Seq(lhs: In, rhs: In): Out
def Opt(arg: In): Out
def Terminal(word: String): Out
def NonTerminal(name: String): Out
def Empty(): Out

}

Fig. 16. The interface for grammar algebras

resolve feature interactions, however, the class StackWithCounter overrides the
relevant methods, to customize the default behavior.

For feature methods that would normally call another method using this, the
explicit self reference should be used instead. An example where this is the case
is the method push2 in the Stack feature, which calls push twice:
def push2(a : Char) {self.push(a); self.push(a)}

If push2 called push on this, extensions of push would be missed, resulting, for
example, in erroneous counting behavior when Stack is composed with Counter.

Grammars. The second case study implements various interpretations of gram-
mars. The interface of grammar algebras (shown in Fig. 16) contains constructors
for alternative, sequential and optional composition, terminals, non-terminals
and empty. We have implemented parsing, printing, and computing nullability
and first-set of a grammar symbol as individual object algebras. Parsing requires
special memoization which is applied using the decorate combinator. In a sim-
ilar way, both nullability and first-set computation require decoration with an
iterative fixpoint aspect. Furthermore, the first-set feature is always composed
with the nullability feature, since the former is dependent on the latter.

Tracing and profiling parsers are obtained by dynamically composing with
those aspects if so desired. The tracing feature is homogeneous in that it applies
uniformly to all constructors of an algebra. Profiling depends on the parsing
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feature and therefore requires an explicit lifter to modify the parsing feature to
update a counter. There is no feature interaction among the other features, so
the default lifters produced by combine are sufficient.

The grammar case study illustrates the use of both object and family self-
references. First, the optional constructor (Opt) in the interface of grammars can
be desugared to an alternative composition with empty: Opt(x) = fself.Alt(x,

fself.Empty). Any grammar algebra that includes this desugaring does not have
to explicitly deal with optional grammar symbols. The desugaring uses the fam-
ily self-reference fself because the resulting term should be in the outermost,
composed algebra, not the local one.

Object self-references play an important role in the profiling feature. The
profiling feature accumulates a map recording the number of parse invocations
on a certain grammar symbol. Using this to key into this map would create map
entries on objects created by the inner, local object algebra. As a result, the
objects stored in the map are without the features that may have been wrapped
around these objects. For instance, in the composition combine(combine(parse,

profile), print), the keys in the profile map would not be printable.

Client Code. The following code creates a composite object algebra for grammars
that includes parsing, nullability and first-set computation:

val f = fclose(
combine[Parse, Nullable with First, Parse with Nullable with First](
decorate(grammarParse, new Memo),
combine[Nullable, First, Parse with Nullable with First](
decorate(grammarNullable, new CircNullable),
decorate(grammarFirst, new CircFirst))

))

The example shows how the three base algebras (grammarNullable, grammarFirst,
and grammarParse) are first decorated with fixpointing and memoization behav-
iors. The resulting algebras are then composed using two invocations of combine.

The algebra f creates grammars with all three features built in:
// A ::= | "a" A
val g = Map("A" ->

f.Alt(f.Empty, f.Seq(f.Terminal("a"), f.NonTerminal("A"))))
val s = g("A") // start symbol
s.parse(g, Seq("a", "a"), x => println("Yes"))
s.first(g) // -> Set("a")
s.nullable(g) // -> true

To look up non-terminals, all methods on grammars (parse, first, and
nullable) receive the complete grammar as their first argument. The parsemethod
furthermore gets an input sequence and a continuation that is called upon success.

8 Related Work

Generally speaking what distinguishes our work from previous work is the sup-
port for an expressive form of dynamic FOP that: 1) fully supports modular
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type-checking and separate compilation; 2) uses only well-studied, lightweight
language features which are readily available in existing languages (Scala); 3)
has very small composition overhead. In contrast most existing work either uses
static forms of composition, which requires heavier language features and often
has significant composition overhead; requires completely new languages/calculi;
or does not support modular type-checking and separate compilation.

Feature-Oriented Programming. To overcome the limitations of existing pro-
gramming languages many of the existing FOP techniques [2–4,6,28,43,47] use
their own language mechanisms and tools. Mixin layers [47] and extensions like
aspectual mixin layers [4] are examples of language mechanisms typically used by
such tools. Conceptually, mixin layers and aspectual mixin layers are quite close
to our composition mechanisms, since our delegation-based model of composition
has much of the same layering flavor. A difference is that mixin layers use static
composition whereas we use run-time composition. As discussed throughout the
paper, the Lifter interface used by the merge combinator plays a similar role to
lifters in Prehofer’s FOP approach [43]. Most of these language mechanisms and
tools are implemented through code-generation techniques, which generally leads
to an efficient and easy implementation strategy. However, this easy implemen-
tation strategy often comes at the cost of desirable properties such as separate
compilation and modular type-checking. In contrast our object algebra based
approach is fully integrated in an existing general purpose language (Scala);
uses only already available and well-studied language features; and has full sup-
port for separate compilation and modular type-checking. The main drawback of
our run-time composition mechanisms is probably performance, since delegation
adds overhead which is difficult to eliminate.

More recently, researchers have also developed calculi for languages that sup-
port FOP and variants of it [1,16,46,49]. These languages and calculi deal with
import concerns such as type-checking or program analysis of all possible fea-
ture configurations. New languages developed for FOP typically provide novel
language constructs that make features and their composition a part of the
language. In contrast, our approach is to reuse existing programming language
technology and to model features and feature composition with existing OO
concepts. An advantage of our approach is that by using standard programming
language technology all the infrastructure (type-checking, program analysis, test-
ing, tool support) that has been developed and studied throughout the years for
that language is immediately available.

Family Polymorphism. Our work can be seen as an approach to family polymor-
phism [17], but it has significantly different characteristics from most existing
approaches. Traditional notions of family polymorphism are based on the idea of
families grouping complete class hierarchies and using static, inheritance-based
composition mechanisms. Most mechanisms used for family polymorphism, such
as virtual classes [19], or virtual types [9] follow that traditional approach. In
contrast our work interprets family polymorphism at the level of objects instead
of classes and uses run-time, delegation-based composition mechanisms. The
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language gbeta supports a type-safe dynamic multiple inheritance mechanism
that can be used to compose families of classes [18]. Ostermann’s delegation
layers [42] model families of objects which are composed with run-time delega-
tion. Both mechanisms are conceptually closer to our approach, but they require
substantial programming language and run-time support.

Not many mechanisms that support family polymorphism are available in
existing production languages. The Cake pattern [34, 54], in the Scala pro-
gramming language, is an exception. This pattern uses virtual types, self types,
path-dependent types and (static) mixin composition to model family polymor-
phism. Even with so many sophisticated features, composition of families is quite
heavyweight and manual. A particularly pressing problem, which has been ac-
knowledged by the authors of Scala [54], is the lack of a desirable feature for
family polymorphism: deep mixin composition. The lack of this feature means
that all classes within a family have to be manually composed and then, the
family itself has to be composed. In contrast, combinators like merge or combine

take care of the composition of objects and the family.

Object Algebras, Visitors, Embedded DSLs and Church Encodings. Section 2 al-
ready discusses how this work addresses the problem of limited expressiveness
and large composition overhead required on previous work on object algebras.
Object algebras are an evolution of a line of work which exploits Church encod-
ings of datatypes [7] to overcome modularity and extensibility issues [24,38,39].
These techniques were later shown to be related to the Visitor pattern and used
to provide modular and generic visitors [36, 41]. They have also been success-
fully used to represent embedded DSLs in more modular ways [10,25]. However,
most existing work considers only the creation of objects with single features:
not much attention is paid to creating objects composed of multiple features.
Hofer et al. [25] use delegation in an optimization example. Their use of dele-
gation is analogous to our use of dependent features in the printing operation
presented in Section 6.2. However we express dependencies using a bound on
the self-reference type, and use merge in client code to compose features. Their
approach is more manual as they have to delegate behavior for each case. The
generalization of object algebra interfaces in Fig. 10 was first used by Oliveira
et al. [41] to provide a unified interface for visitor interfaces. Oliveira [36] also
explored a kind of FOP using modular visitors. However there is a lot of over-
head involved to create feature modules and compose features; and the approach
requires advanced language features and does not deal with self-references.

9 Conclusion

Feature-oriented programming is an attractive programming paradigm. However
it has been traditionally difficult to provide language mechanisms with the ben-
efits of FOP, while at the same time having desirable properties like separate
compilation and modular type-checking.

This work shows that it is possible to support FOP with such desirable proper-
ties using existing language mechanisms and OO abstractions. To accomplish this
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we build on previous work on object algebras and two well-studied studied pro-
gramming language features: intersection types and type-constructor polymor-
phism. Object algebras provide the basic support for modularity and extensibil-
ity to coexist with separate compilation and modular type-checking. Intersection
types and type-constructor polymorphism provide support for the development
of safe and expressive composition mechanisms for object algebras. With those
composition mechanisms, expressing feature interactions becomes possible, thus
enabling support for FOP.

Although we have promoted the use of standard programming language tech-
nology for FOP, there is still a lot to be gained from investigating new program-
ming language technology to improve our results. Clearly the investigation of
better compilation techniques for object algebras and composition mechanisms
is desirable for improving performance. Better language support for delegation
would allow for more convenient mechanisms for object-level reuse, which are
often needed with our techniques. Expressiveness could also be improved with
new programming languages or extensions. For example when multi-sorted ob-
ject algebras [37] are required the Algebra interfaces still have to be adapted.
Although more powerful generic programming techniques can address this prob-
lem, this requires more sophisticated general purpose language features. With
built-in support for object algebras as well as their composition mechanisms,
there is no need for such advanced generic programming features and users may
benefit from improved support for error messages.
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Abstract. Programmers who need high performance currently rely on
low-level, architecture-specific programming models (e.g. OpenMP for
CMPs, CUDA for GPUs, MPI for clusters). Performance optimization
with these frameworks usually requires expertise in the specific pro-
gramming model and a deep understanding of the target architecture.
Domain-specific languages (DSLs) are a promising alternative, allow-
ing compilers to map problem-specific abstractions directly to low-level
architecture-specific programming models. However, developing DSLs is
difficult, and using multiple DSLs together in a single application is even
harder because existing compiled solutions do not compose together. In
this paper, we present four new performance-oriented DSLs developed
with Delite, an extensible DSL compilation framework. We demonstrate
new techniques to compose compiled DSLs embedded in a common back-
end together in a single program and show that generic optimizations can
be applied across the different DSL sections. Our new DSLs are imple-
mented with a small number of reusable components (less than 9 parallel
operators total) and still achieve performance up to 125x better than li-
brary implementations and at worst within 30% of optimized stand-alone
DSLs. The DSLs retain good performance when composed together, and
applying cross-DSL optimizations results in up to an additional 1.82x
improvement.

1 Introduction

High-level general purpose languages focus on primitives for abstraction and
composition that allow programmers to build large systems from relatively sim-
ple but versatile parts. However, these primitives do not usually expose the
structure required for high performance on today’s hardware, which is parallel
and heterogeneous. Instead, programmers are forced to optimize performance-
critical sections of their code using low-level, architecture-specific programming
models (e.g. OpenMP, CUDA, MPI) in a time-consuming process. The optimized
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Fig. 1. Major phases in a typical compiler pipeline and possible organizations of com-
piled DSLs. Front-end embedding in a host language (and compiler) is common, but
for composability, back-end embedding in a host compiler (i.e. building on top of an
extensible compiler framework) is more important.

low-level code is harder to read and maintain, more likely to contain hard-to-
diagnose bugs, and difficult to port to other platforms or hardware.

Domain-specific languages (DSLs) have been proposed as a solution that can
provide productivity, performance, and portability for high-level programs in
a specific domain [1]. DSL compilers reason about a program at the level of
domain operations and so have much more semantic knowledge than a general
purpose compiler. This semantic knowledge enables coarse-grain optimizations
and the translation of domain operations to efficient back-end implementations.
However, the limited scope of DSLs is simultaneously a stumbling block for
widespread adoption. Many applications contain a mix of problems in different
domains and developers need to be able to compose solutions together without
sacrificing performance. In addition, DSLs need to interoperate with the outside
world in order to enable developers to fall-back to general purpose languages for
non performance-critical tasks.

Existing implementation choices for DSLs range from the internal (i.e. purely
embedded) to external (i.e. stand-alone). Purely embedded DSLs are implemented
as libraries in a flexible host language and emulate domain-specific syntax. The
main benefit of internal DSLs is that they are easy to build and compose, since they
can interoperate freely within the host language. However, they do not achieve
high performance since the library implementation is essentially an interpreted
DSL with high overhead and since general purpose host languages do not target
heterogeneous hardware. On the other end of the spectrum, stand-alone DSLs are
implemented with an entirely new compiler that performs both front-end tasks
such as parsing and type checking as well as back-end tasks like optimization and
code generation. Recent work has demonstrated that stand-alone DSLs can target
multiple accelerators from a single source code and still achieve performance com-
parable to hand-optimized versions [2,3]. The trade-off is that each DSL requires
a huge amount of effort that is not easy to reuse in other domains, DSL authors
must continuously invest new effort to target new hardware, and DSL programs
do not easily interoperate with non-DSL code.

Another class of DSLs, compiled embedded, occupies a middle-ground between
the internal and external approaches [4,5,6,7]. These DSLs embed their front-end
in a host language like internal DSLs, but use compile- or run-time code generation
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to optimize the embedded code. Recently, these techniques have also been used
to generate not only optimized host language code, but heterogeneous code, e.g.
targeted at GPGPUs. The advantage of this approach is that the languages are
easier to build than external versions and can provide better performance than
internal versions. However, these DSLs still give up the composability of purely
embedded DSLs and the syntactic freedom of stand-alone DSLs.

Like previous compiled embedded DSLs, our goal is to construct DSLs that
resemble self-optimizing libraries with domain-specific front-ends. However, we
propose that to build high-performance composable DSLs, back-end embedding is
more important than the front-end embedding of traditional compiled embedded
DSLs. Figure 1 illustrates this distinction. We define back-end embedding as a
compiled DSL that inherits, or extends, the latter portion of the compiler pipeline
from an existing compiler. Such a DSL can either programmatically extend the
back-end compiler or pass programs in its intermediate representation (IR) to
the back-end compiler. By embedding multiple DSLs in a common back-end,
they can be compiled together and co-optimized. The fact that many compiled
DSLs target C or LLVM instead of machine code and thus reuse instruction
scheduling and register allocation can be seen as a crude example of back-end
embedding. However, the abstraction level of C is already too low to compose
DSLs in a way that allows high-level cross-DSL optimizations, parallelization,
or heterogeneous code generation. Just as some general purpose languages are
better suited for front-end embedding than others, not all compiler frameworks
or target languages are equally suited for back-end embedding.

In this paper, we show that we can compose compiled DSLs embedded in a
common, high-level backend and use them together in a single application. Our
approach allows DSLs to build on top of one another and reuse important generic
optimizations, rather than reinventing the wheel each time. Optimizations can
even be applied across different DSL blocks within an application. The addition
of composablity and re-use across compiled DSLs pushes them closer to libraries
in terms of development effort and usage while still retaining the performance
characteristics of stand-alone DSLs. In other words, we regain many of the bene-
fits of purely embedded DSLs that were lost when adding compilation. We build
on our previous work, Lightweight Modular Staging (LMS) and Delite [8,9,10],
frameworks designed to make constructing individual compiled embedded DSLs
easier. Previous work demonstrated good performance for OptiML, a DSL for
machine learning [11]. However, it did not address how to compose different DSLs
together, or show that similar performance and productivity gains could be ob-
tained for different domains. We present new compiled embedded DSLs for data
querying (OptiQL), collections (OptiCollections), graph analysis (OptiGraph),
and mesh computation (OptiMesh). We show that the DSLs were easier to build
than stand-alone counterparts, can achieve competitive performance, and can
also be composed together in multiple ways.

Specifically, we make the following contributions:

– We implement four new DSLs for different domains and show that they can
be implemented with a small number of reusable components and still achieve
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performance exceeding optimized libraries (up to 125x) and comparable to
stand-alone DSLs (within 30%).

– We are the first to show both fine-grained and coarse-grained composition
of high performance compiled DSLs.

– We demonstrate that different DSLs used in the same application can be
co-optimized to additionally improve performance by up to 1.82x.

The source code for the new DSLs we have developed is open-source and freely
available at: http://github.com/stanford-ppl/Delite/.

2 Background

In this paper, we investigate the problem of composing different DSLs embedded
in a common back-end. The back-end we will use for our examples is Delite, but
any back-end with similar structure could use the same techniques. Similarly,
while Delite is typically targeted from embedded Scala front-ends, it could also
be targeted from an external parser. Delite is essentially a Scala library that DSL
authors can use to build an intermediate representation (IR), perform optimiza-
tions, and generate parallel code for multiple hardware targets. To illustrate at
a high-level how Delite works, consider a simple example of a program using a
Delite Vector DSL to add two vectors:
val (v1,v2) = (Vector.rand(1000), Vector.rand(1000))

val a = v1+v2
println(a)

The DSL implementation maps each language statement (Vector.rand, +,
println) in this program to parallel operators (ops), each of which represents a
specific parallel pattern (e.g. map, reduce, fork/join, sequential). These patterns
are provided by Delite and extended by the DSL. The mapping is accomplished
using a technique called Lightweight Modular Staging (LMS), a form of staged
metaprogramming [12]. The essence is that the DSL implements operations on
types wrapped in an abstract type constructor, Rep[T]. Type inference is used
to hide this wrapped type from application code, as in the above snippet. In-
stead of immediate evaluation, DSL operations on Rep[T] construct an IR node
representing the operation. For example, when the statement v1+v2 is executed,
it actually calls a DSL method that constructs a Delite IR node and returns
a well-typed placeholder (Rep[Vector[Double]]) for the result. To ensure that all
host language operations can be intercepted and lifted, we use a modified version
of the Scala compiler for front-end compilation, Scala-Virtualized [13], that en-
ables overloading even built-in Scala constructs such as if (c) a else b. DSLs can
perform domain-specific optimizations by traversing and transforming the IR;
Delite uses the same mechanisms to perform generic optimizations (such as dead
code elimination) for all DSLs. Finally, after the full IR has been constructed
and optimized, Delite generates code for each operation, based on its parallel
pattern, to multiple targets (Scala, C++, CUDA). The resulting generated code
is executed in a separate step to compute the final answer.

http://github.com/stanford-ppl/Delite/
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Fig. 2. Components of the Delite Framework. An application is written in a DSL, which
is composed of data structures and structured computations represented as a multi-
view IR. The IR is transformed by iterating over a set of traversals for both generic
(Gen) and domain-specific (DS) optimizations. Once the IR is optimized, heterogeneous
code generators emit specialized data structures and ops for each target along with the
Delite Execution Graph (DEG) that encodes dependencies between computations.

Figure 2 illustrates the key reusable components of the Delite compiler ar-
chitecture: common IR nodes, data structures, parallel operators, built-in opti-
mizations, traversals, transformers, and code generators. DSLs are developed by
extending these reusable components with domain-specific semantics. Further-
more, Delite is modular; any service it provides can be overridden by a particular
DSL with a more customized implementation.

3 High-Level Common Intermediate Representation

To achieve high performance for an application composed out of multiple DSLs,
each DSL must provide competitive performance, not incur high overhead when
crossing between DSL sections, and be co-optimizable. Moreover, for this sort of
composition to be a practical approach, DSLs targeting narrow problem domains
and modern hardware should be as easy to construct as optimized libraries (or
as close as possible). One way of achieving these goals is through a common in-
termediate representation containing reusable, high level computation and data
primitives with a minimal set of restrictions that enable efficiency and optimiza-
tion. In this section we describe how the Delite IR meets this criteria and propose
a simple data exchange format for embedded DSLs.

3.1 Structured Computation

In order to optimize composed DSL blocks, they must share, or be transformable
to, a common intermediate representation (IR) at some level. This level should
retain enough high-level semantics to allow coarse-grained optimization and code
generation; once an operation has been lowered to low-level primitives such as
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instructions over scalars, it is as difficult to target heterogeneous hardware as in
a general purpose language. If DSLs do not share a common IR at some level, the
best we can do is attempt to compose their generated code, which is a low-level
and error-prone strategy that does not allow co-optimization.

We have proposed parallel patterns as a base IR that is well-suited to opti-
mization and code generation for different DSLs and heterogeneous devices [8].
The new DSLs presented in this paper offer more evidence that parallel patterns
are a strong choice of base IR. Previously, Delite supported Sequential, Loop, Map,
Reduce, ZipWith, Foreach, and Filter patterns. To support the new DSLs, we added
support for GroupBy, Join (generic inner join), Sort, ForeachReduce (foreach with
global reductions), and FlatMap patterns. Using the patterns as a base IR allows
us to perform op fusion automatically for each DSL, which is a key optimization
when targeting data parallel hardware such as GPUs.

3.2 Structured Data

In the same way that a common, structured IR allows DSL operations to be
optimized and code generated in a uniform way, a common data representation
is also required at some level. In addition to enabling the internal representation
of DSL data structures to be reusable, a common representation facilitates com-
munication between DSL blocks and enables pipeline optimizations; a DSL can
directly consume the output of another DSL’s block, so we can (for example)
fuse the first DSL’s operation that constructs the output with the second DSL’s
operation that consumes it.

We use structs of a fixed set of primitives as the common data representation.
Delite DSLs still present domain-specific types to end users (e.g. Vector) and
methods on instances of those types (e.g. +) get lifted into the IR. However, the
back-end data structures must be implemented as structs (for example, Vector
can be implemented with an Int length field and an Array data field). The fields
currently allowed in a Delite Struct are: numerics (e.g. Int), Boolean, String, Array,
HashMap, or other Structs. By restricting the content of data structures, Delite is
able to perform optimizations such as array-of-struct (AoS) to struct-of-array
(SoA) conversion and dead field elimination (DFE) automatically [14]. Further-
more, since the set of primitives is fixed, Delite can implement these primitives
on each target platform (e.g. C++, CUDA) and automatically generate code for
DSL structs. Delite also supports user-defined data structures by lifting the new
keyword defining an anonymous class [13]. An application developer can write
code like the following:
val foo = new Record { val x = "bar"; val y = 42 }

Record is a built-in type provided by Delite that serves as a tag for the Scala-
Virtualized compiler. The Scala-Virtualized compiler forwards any invocation
of new with a Record type to Delite, which will then construct a corresponding
Struct. Field accesses to the record are type-checked by the Scala-Virtualized
compiler. In this way, all DSL and user types can uniformly be lowered to one
of the primitives, or a Struct of primitives.
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3.3 Data Exchange Format

The final piece required for composability is the ability for application developers
to convert from domain-specific data types to common data types in order to
communicate between DSL blocks. This is necessary because we do not want to
expose the internal representation of the domain-specific types to users.

A simple solution that we use is for DSL authors to optionally implement
methods to/from{Primitive} between each DSL data type and a corresponding
primitive type. For example, a DSL author would provide toArray and fromArray

methods on DSL types where this makes sense (e.g. Vector), or toInt and fromInt

for a type NodeId. These methods become part of the DSL specification and
enable application developers to export and import DSL objects depending on
their needs. For example, a graph could be exported using a snippet like:
// G: Graph

// returns an array of node ids and an array of edge ids
new Record { val nodes = G.nodes.map(node => node.Id.toInt).toArray

val edges = G.edges.map(edge => edge.Id.toInt).toArray }

or just one of the properties of the graph could be exported using:
// G: Graph, numFriends: NodeProperty[Int]
// returns an array of ints corresponding to the number of friends of each node

G.nodes.map(node => numFriends(node)).toArray

We consider in the next section how to actually compose snippets together.
Assuming this facility, though, importing is similar. For example, a vector could
be constructed from the output of the previous snippet using:
// numFriends: Array[Int]

val v = Vector.fromArray(numFriends)

The key aspect of the data exchange format is that it should not prevent
optimization across DSL blocks or impose substantial overhead to box and unbox
the results. We handle this by implementing the to/from functions as either scalar
conversions or loops in the common IR. Then, for example, a loop constructing
an array will be automatically fused together with the loop consuming the array,
resulting in no overhead while still ensuring safe encapsulation. The loop fusion
algorithm is described in previous work [14].

4 Methods for Composing Compiled DSLs

In this section, we describe two ways of composing compiled DSLs that are
embedded in a common back-end. The first way is to combine DSLs that are
designed to work with other DSLs, i.e. DSLs that make an “open-world” assump-
tion. The second way is to compose “closed-world” DSLs by compiling them in
isolation, lowering them to a common, high-level representation, recombining
them and then optimizing across them. Both methods rely on DSLs that share
a common high-level intermediate representation as described in the previous
section.
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4.1 Open-World: Fine-Grained Cooperative Composition

“Open-world” composition means essentially designing embedded DSLs that are
meant to be layered or included by other embedded DSLs as modules. For this
kind of composition to be feasible, all of the DSLs must be embedded in the
same language and framework in both the front-end and the back-end.

Once embedded in a common host environment, DSL composition reduces to
object composition in the host language. This is the classic “modularity” aspect
of DSLs built using LMS [9]. For example, consider the following DSL definition
for a toy DSL Vectors embedded in Scala:
trait Vectors extends Base with MathOps with ScalarOps with VectorOps

The DSL is composed of several traits that contain different DSL data types
and operations. Each trait extends Base which contains common IR node defini-
tions. A different DSL author can extend Vectors to create a new DSL, Matrices,
simply by extending the relevant packages:
trait Matrices extends Vectors with MatrixOps with ExtVectorOps

Each of the mixed-in traits represents a collection of IR node definitions. Traits
that contain optimizations and code generators can be extended in the same
way. These traits define Matrices as a superset of Vectors, but Matrices users only
interact with Matrices and do not need to be aware of the existence of Vectors.
Furthermore, since the composition is via inheritance, the Matrices DSL can
extend or overload operations on the Vector data type, e.g. inside ExtVectorOps.
Since Vectors is encapsulated as a separate object, it can be reused by multiple
DSLs.

Open-world DSLs can also be composed by application developers. For exam-
ple, suppose we also have a visualization DSL:
trait Viz extends Base with GraphicsOps with ChartOps with ImageOps

A Scala program can effectively construct a new DSL on the fly by mixing
multiple embedded DSLs together:
trait MyApp extends Matrices with Viz {

def main() {

// assuming relevant DSL functions
val m = Matrix.rand(100); display(m.toArray)

}
}

In this example we make use of the data exchange format described in
Section 3.3 in order to communicate data between the DSLs. When DSL users
invoke a Viz operation, that operation will construct a Viz IR node. Note that af-
ter mix-in, the result is effectively a single DSL that extends common IR nodes;
optimizations that operate on the generic IR can occur even between opera-
tions from different DSLs. This is analogous to libraries building upon other
libraries, except that now optimizing compilation can also be inherited. DSLs
can add analyses and transformations that are designed to be included by other
DSLs. The trade-off is that DSL authors and application developers must be
aware of the semantics they are composing and are responsible for ensuring that
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transformations and optimizations between DSLs retain their original semantics.
Namespacing can also be a pitfall; DSL traits cannot have conflicting object or
method names since they are mixed in to the same object. We avoid this problem
by using conventions like DSL-specific prefixes (e.g. viz_display).

4.2 Closed-World: Coarse-Grained Isolated Composition

As the previous section pointed out, there are issues with simply mixing em-
bedded DSLs together. In particular, some DSLs require restricted semantics in
order to perform domain-specific analyses and transformations that are required
for correctness or performance. These “closed-world” DSLs are not designed to
arbitrarily compose with other DSLs. Furthermore, any DSL with an external
front-end is necessarily closed-world, since the parser only handles that DSL’s
grammar. However, it is still possible to compose closed-world DSLs that share
a common back-end. Either they are implemented in the same language as the
back-end and programmatically interface with it (as with Scala and Delite), or
they target a serialized representation (such as source code) that is the input to
a common back-end. This kind of coarse grained composition has three steps:

1. Independently parse each DSL block and apply domain-specific
optimizations

2. Lower each block to the common high-level IR, composing all blocks into a
single intermediate program

3. Optimize the combined IR and generate code

We discuss how we implemented these steps in Delite next.

Scopes: independent compilation DSLs that have an external front-end can be in-
dependently compiled by invoking the DSL parser on a string. However, in order
to independently compile DSL blocks that are embedded in a host language, we
need a coarse-grained execution block. We have modified the Scala-Virtualized
compiler to add Scopes for this purpose. A Scope is a compiler-provided type that
acts as a tag to encapsulate DSL blocks. For example, using the Vectors DSL
from the previous section, we can instantiate a Scope as follows:
def Vectors[R](b: => R) = new Scope[VectorsApp, VectorsCompiler, R](b)

VectorsApp and VectorsCompiler are Scala traits that define the DSL interface
and its implementation, respectively. The Scala-Virtualized compiler transforms
function calls with return type Scope into an object that composes the two traits
with the given block, making all members of the DSL interface available to
the block’s content. The implementation of the DSL interface remains hidden,
however, to ensure safe encapsulation. The object’s constructor then executes
the block. The result is that each Scope is staged and optimized independently
to construct the domain-specific IR.

Given the previous definition, a programmer can write a block of VectorsDSL
code inside a Scala application, which then gets desugared, making all member
definitions of VectorsApp, but not of VectorsCompiler, available to the Scope’s body:
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Vectors {

val v = Vector.rand(100)
// ...

}

(a) Scala code with DSL scope

abstract class DSLprog extends VectorsApp {

def apply = {
val v = Vector.rand(100)

// ...
}

}
(new DSLprog with VectorsCompiler).result

(b) Scala code after desugaring

Lowering and Composing. The ability to compile blocks of DSL code into inde-
pendent IRs is the first step, but in order to compose multiple blocks in a single
application we still need a way to communicate across the blocks and a way to
combine the IRs. Consider the following application snippet:
val r = Vectors {

val (v1,v2) = (Vector.rand(100),Vector.rand(100))

DRef(linreg(v1,v2).toArray) // return linear regression of v1, v2
}

Viz { display(r.get) }

We again use the toArray functionality to export the data from Vectors into a
common format that Viz can handle. However, before we lower to a common rep-
resentation, the type of the output of Vectors is a symbol with no relation to Viz.
Therefore, we introduce the path independent type DRef[T] to abstract over the
path dependent scope result. During staging, r.get returns a placeholder of type
Rep[DeliteArray[Double]]. When the IRs are lowered and stitched together, the
placeholder is translated to the concrete symbolic result of linreg(v1,v2).toArray.
This mechanism is type-safe, preserves scope isolation, and does not occlude op-
timizations on the lowered IR.

After performing domain-specific optimizations and transformations, the IR
for each scope is lowered to the base IR in a language-specific fashion. We use
staging to perform this translation by extending our previous work on staged
interpreters for program transformation [14] to support transforming IR nodes to
an arbitrary target type. A Transformer is a generic Traversal that maps symbolic
IR values (type Exp[A]) to values of type Target[A], where Target is an abstract
type constructor. During the traversal, a callback transformStm is invoked for each
statement encountered.

The extended Transformer interface for cross-DSL transformation is:
trait Transformer extends Traversal {

import IR._
type Target[A]

var subst = immutable.Map.empty[Exp[Any], Target[Any]]
def apply[A](x: Exp[A]): Target[A] = ... // lookup from subst

override def traverseStm(stm: Stm): Unit = // called during traversal
subst += (stm.sym -> transformStm(stm)) // update substitution with result

def transformStm(stm: Stm): Target[Any] // to be implemented in subclass

}
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To transform from one IR to another, lower-level IR language, we instantiate
a transformer with type Target set to the Rep type of the destination IR:
trait IRTransformer extends Transformer {
val dst: IR.DST

type Target[A] = IR.Rep[A]
def transformStm(stm: Stm): Target[Any] = // override to implement custom transform

IR.mirror(stm.rhs, this) // call default case
}

The type of the destination IR dst: IR.DST is constrained by the source IR to
handle all defined IR nodes. This enables implementing a default case for the
transformation (def mirror), which maps each source IR node to the correspond-
ing smart constructor in the destination IR.

Taking the Vectors DSL as an example, we define:
trait Vectors extends Base {
def vector_zeros(n: Rep[Int]): Rep[Vector[Double]]

}
trait VectorExp extends Vectors with BaseExp {

type DST <: Vectors
case class VectorZeros(n: Rep[Int]) extends Def[Vector[Double]]

def vector_zeros(n: Rep[Int]): Rep[Vector[Double]] = VectorZeros(n)

def mirror[A:Manifest](e: Def[A], f: IRTransformer): f.dst.Rep[A] = {
case VectorZeros(n) => f.dst.vector_zeros(f(n))

...
}

}

The use of Scala’s dependent method types f.dst.Rep[A] and the upper-
bounded abstract type DST <: Vectors ensure type safety when specifying trans-
formations. Note that the internal representation of the destination IR is not
exposed, only its abstract Rep interface. This enables, for example, interfacing
with a textual code generator that defines Rep[T] = String. Perhaps more impor-
tantly, this enables programmatic lowering transforms by implementing a smart
constructor (e.g. vector_zeros) to expand into a lower-level representation using
arrays instead of constructing an IR node that directly represents the high-level
operation.

An alternative to using staged interpreters is to simply generate code to a
high-level intermediate language that maps to the common IR. We implemented
this by generating code to the “Delite IL”, a low-level API around Delite ops, that
is itself staged to build the Delite IR. For example, a Reduce op in the original
application would be code generated to call the method
reduce[A](size: Rep[Int], func: Rep[Int] => Rep[A], cond: List[Rep[Int]] => Rep[Boolean],

zero: => Rep[A], rFunc: (Rep[A],Rep[A]) => Rep[A])

in the Delite IL.
The staged interpreter transformation and the code generation to the Delite

IL perform the same operation and both use staging to build the common IR.
The staged interpreter translation is type-safe and goes through the heap, while
the Delite IL goes through the file system and is only type-checked when the
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resulting program is (re-)staged. On the other hand, for expert programmers, a
simplified version of the Delite IL may be desirable to target directly.

Cross DSL Optimization. After the IRs have been composed, we apply all of our
generic optimizations on the base IR (i.e. parallel patterns). Like in the open-
world case, we can now apply optimizations such as fusion, common subexpres-
sion elimination (CSE), dead code elimination (DCE), dead field elimination
(DFE), and AoS to SoA conversion across DSL snippets. Since the base IR
still represents high level computation, these generic optimizations still have
much higher potential impact than their analogs in a general purpose compiler.
Fusion across DSL snippets is especially useful, since it can eliminate the over-
head of boxing and unboxing the inputs and outputs to DSL blocks using the
to/from{Primitive} data exchange format. The usefulness of applying these opti-
mizations on composed blocks instead of only on individual blocks is evaluated in
Section 6. Note that the cross-DSL optimizations fall out for free after composing
the DSLs; we do not have to specifically design new cross-DSL optimizations.

4.3 Interoperating with Non-DSL Code

The previous section showed how we can compose coarse-grain compiled DSL
blocks within a single application. However, it is also interesting to consider how
we can compose DSL blocks with arbitrary host language code. We can again
use Scope, but with a different implementation trait, to accomplish this. Consider
the following, slightly modified definition of the Vectors scope:
def Vectors[R](b: => R) = new Scope[VectorsApp, VectorsExecutor, R](b)

Whereas previously the Vectors scope simply compiled the input block, the
trait VectorsExecutor both compiles and executes it, returning a Scala object as a
result of the execution. VectorsExecutor can be implemented by programmatically
invoking the common back-end on the lowered IR immediately. This enables us
to use compiled embedded DSLs within ordinary Scala programs:
def main(args: Array[String]) {
foo() // Scala code

Vectors { val v = Vector.ones(5); v.pprint }

// more Scala code ..
}

This facility is the same that is required to enable interactive usage of DSLs
using the REPL of the host language, which is especially useful for debugging.
For example, we can use the new Vectors scope to execute DSL statements inside
the Scala-Virtualized REPL:
scala> Vectors { val v = Vector.ones(5); v.pprint }

[ 1 1 1 1 1 ]

5 New Compiled Embedded DSL Implementations

We implemented four new high performance DSLs embedded inside Scala
and Delite. In this section, we briefly describe each DSL and show how their
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1 // lineItems: Table[LineItem]

2 val q = lineItems Where(_.l_shipdate <= Date(‘‘1998-12-01’’)).
3 GroupBy(l => (l.l_linestatus)) Select(g => new Record {

4 val lineStatus = g.key
5 val sumQty = g.Sum(_.l_quantity)

6 val sumDiscountedPrice = g.Sum(l => l.l_extendedprice*(1.0-l.l_discount))
7 val avgPrice = g.Average(_.l_extendedprice)

8 val countOrder = g.Count
9 }) OrderBy(_.returnFlag) ThenBy(_.lineStatus)

Listing 1.1. OptiQL: TPC-H Query 1 benchmark

implementation was simplified by reusing common components. The four new
DSLs are OptiQL, a DSL for data querying, OptiCollections, an optimized sub-
set of the Scala collections library, OptiGraph, a DSL for graph analysis based
on Green-Marl [3] and OptiMesh, a DSL for mesh computations based on Liszt
[2]. Despite being embedded in both a host language and common back-end, the
DSLs cover a diverse set of domains with different requirements and support
non-trivial optimizations.

5.1 OptiQL

OptiQL is a DSL for data querying of in-memory collections, and is heavily
inspired by LINQ [15], specifically LINQ to Objects. OptiQL is a pure language
that consists of a set of implicitly parallel query operators, such as Select, Average,
and GroupBy, that operate on OptiQL’s core data structure, the Table, which
contains a user-defined schema. Listing 1.1 shows an example snippet of OptiQL
code that expresses a query similar to Q1 in the TPC-H benchmark. The query
first excludes any line item with a ship date that occurs after the specified date.
It then groups each line item by its status. Finally, it summarizes each group by
aggregating the group’s line items and constructs a final result per group.

Since OptiQL is SQL-like, it is concise and has a small learning curve for
many developers. However, unoptimized performance is poor. Operations always
semantically produce a new result, and since the in-memory collections are typi-
cally very large, cache locality is poor and allocations are expensive. OptiQL uses
compilation to aggressively optimize queries. Operations are fused into a single
loop over the dataset wherever possible, eliminating temporary allocations, and
datasets are internally allocated in a column-oriented manner, allowing OptiQL
to avoid allocating columns that are not used in a given query. Although not
implemented yet, OptiQL’s eventual goal is to use Delite’s pattern rewriting
and transformation facilities to implement other traditional (domain-specific),
cost-based query optimizations.

5.2 OptiCollections

Where OptiQL provides a SQL-like interface, OptiCollections is an example of
applying the underlying optimization and compilation techniques to the Scala
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1 val sourcedests = pagelinks flatMap { l =>

2 val sd = l.split(":")
3 val source = Long.parseLong(sd(0))

4 val dests = sd(1).trim.split(" ")
5 dests.map(d => (Integer.parseInt(d), source))

6 }
7 val inverted = sourcedests groupBy (x => x._1)

Listing 1.2. OptiCollections: reverse web-links benchmark

collections library. The Scala collections library provides several key generic data
types (e.g. List) with rich APIs that include expressive functional operators such
as flatMap and partition. The library enables writing succinct and powerful pro-
grams, but can also suffer from overheads associated with high-level, functional
programs (especially the creation of many intermediate objects). OptiCollec-
tions uses the exact same collections API, but uses Delite to generate optimized,
low-level code. Most of the infrastructure is shared with OptiQL. The prototype
version of OptiCollections supports staged versions of Scala’s Array and HashMap.
Listing 1.2 shows an OptiCollections application that consumes a list of web
pages and their outgoing links and outputs a list of web pages and the set of
incoming links for each of the pages (i.e. finds the reverse web-links). In the first
step, the flatMap operation maps each page to pairs of an outgoing link and the
page. The groupBy operation then groups the pairs by their outgoing link, yield-
ing a HashMap of pages, each paired with the collection of web pages that link to
it.

The example has the same syntax as the corresponding Scala collections ver-
sion. A key benefit of developing OptiCollections is that it can be mixed in
to enrich other DSLs with a range of collection types and operations on those
types. It can also be used as a transparent, drop-in replacement for existing Scala
programs using collections and provide improved performance.

5.3 OptiGraph

OptiGraph is a DSL for static graph analysis based on the Green-Marl DSL
[3]. OptiGraph enables users to express graph analysis algorithms using graph-
specific abstractions and automatically obtain efficient parallel execution. Opti-
Graph defines types for directed and undirected graphs, nodes, and edges. It
allows data to be associated with graph nodes and edges via node and edge
property types and provides three types of collections for node and edge storage
(namely, Set, Sequence, and Order). Furthermore, OptiGraph defines constructs
for BFS and DFS order graph traversal, sequential and explicitly parallel iteration,
and implicitly parallel in-place reductions and group assignments. An important
feature of OptiGraph is also its built-in support for bulk synchronous consistency
via deferred assignments.

Figure 3 shows the parallel loop of the PageRank algorithm [16] written in
both OptiGraph and Green-Marl. PageRank is a well-known algorithm that
estimates the relative importance of each node in a graph (originally of web pages
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1 val PR = NodeProperty[Double](G)
2 for (t <- G.Nodes) {
3 val rank = (1-d) / N + d*
4 Sum(t.InNbrs){w => PR(w)/w.OutDegree}
5 diff += abs(rank - PR(t))
6 PR <= (t,rank)
7 }

(a) OptiGraph: PageRank

1 N_P<Double> PR;
2 Foreach (t: G.Nodes) {
3 Double rank = (1-d) / N + d*
4 Sum(w:t.InNbrs){w.PR/w.OutDegree()};
5 diff += | rank - t.PR |;
6 t.PR <= rank @ t;
7 }

(b) Green-Marl: PageRank

Fig. 3. The major portion of the PageRank algorithm implemented in both OptiGraph
and Green-Marl. OptiGraph is derived from Green-Marl, but required small syntactic
changes in order to be embedded in Scala.

and hyperlinks) based on the number and page-rank of the nodes associated with
its incoming edges (InNbrs). OptiGraph’s syntax is slightly different since it is
embedded in Scala and must be legal Scala syntax. However, the differences
are small and the OptiGraph code is not more verbose than the Green-Marl
version. In the snippet, PR is a node property associating a page-rank value
with every node in the graph. The <= statement is a deferred assignment of the
new page-rank value, rank, for node t; deferred writes to PR are made visible
after the for loop completes via an explicit assignment statement (not shown).
Similarly, += is a scalar reduction that implicitly writes to diff only after the
loop completes. In contrast, Sum is an in-place reduction over the parents of
node t. This example shows that OptiGraph can concisely express useful graph
algorithms in a naturally parallelizable way; the ForeachReduce Delite op implicitly
injects the necessary synchronization into the for loop.

5.4 OptiMesh

OptiMesh is an implementation of Liszt on Delite. Liszt is a DSL for mesh-
based partial differential equation (PDE) solvers [2]. Liszt code allows users
to perform iterative computation over mesh elements (e.g. cells, faces). Data
associated with mesh elements are stored in external fields that are indexed by
the elements. Listing 1.3 shows a simple OptiMesh program that computes the
flux through edges in the mesh. The for statement in OptiMesh is implicitly
parallel and can only be used to iterate over mesh elements. head and tail are
built-in accessors used to navigate the mesh in a structured way. In this snippet,
the Flux field stores the flux value associated with a particular vertex. As the
snippet demonstrates, a key challenge with OptiMesh is to detect write conflicts
within for comprehensions given a particular mesh input.

OptiMesh solves this challenge by implementing the same domain-specific trans-
formation as Liszt. First, the OptiMesh program is symbolically evaluated with
a real mesh input to obtain a stencil of mesh accesses in the program. After the
stencil is collected, an interference graph is built and disjoint loops are constructed
using coloring. OptiMesh uses a Delite Transformer to simplify this implementation
– the transformation is less than 100 lines of code. OptiMesh was the only new DSL
we implemented that required a domain-specific transformation; the others were
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1 for (edge <- edges(mesh)) {

2 val flux = flux_calc(edge)
3 val v0 = head(edge)

4 val v1 = tail(edge)
5 Flux(v0) += flux // possible write conflicts!

6 Flux(v1) -= flux
7 }

Listing 1.3. OptiMesh: simple flux computation

DSL Delite Ops Generic Opts. Domain-Specific Opts.

OptiQL Map, Reduce, Filter, Sort,
Hash, Join

CSE, DCE, code motion,
fusion, SoA, DFE

OptiGraph ForeachReduce, Map, Reduce,
Filter

CSE, DCE, code motion,
fusion

OptiMesh ForeachReduce CSE, DCE, code motion stencil collection & color-
ing transformation

OptiCollections Map, Reduce, Filter, Sort,
Hash, ZipWith, FlatMap

CSE, DCE, code motion,
fusion, SoA, DFE

Fig. 4. Sharing of DSL operations and optimizations

able to produce high performance results just by reusing generic optimizations
and parallel code generation.

5.5 Reuse

By embedding the front-ends of our DSLs in Scala, we did not have to imple-
ment any lexing, parsing, or type checking. As we showed in the OptiGraph vs.
Green-Marl example, the syntactic difference compared to a stand-alone DSL
can still be relatively small. By embedding our DSL back-ends in Delite, each
DSL was able to reuse parallel patterns, generic optimizations, common library
functionality (e.g. math operators), and code generators for free. One important
characteristic of the embedded approach is that when a feature (e.g. a parallel
pattern) is added to support a new DSL, it can be reused by all subsequent
DSLs. For example, we added the ForeachReduce pattern for OptiGraph, but it is
also used in OptiMesh.

Figure 4 summarizes the characteristics and reuse of the new DSLs introduced
in this section. The DSLs inherit most of their functionality from Delite, in the
form of a small set of reused parallel patterns and generic optimizations. The
DSLs use just 9 Delite ops total; seven ops (77.7%) were used in at least two
DSLs; three (33.3%) were used in at least three DSLs. At the same time the DSLs
are not constrained to built-in functionality, as demonstrated by OptiMesh’s
domain-specific optimizations.

6 Case Studies

We present four case studies to evaluate our new DSLs. The first two case studies
compare individual DSL performance against existing alternative programming
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environments and the second two evaluate applications composing the DSLs
in the two ways described in this paper (open and closed world). OptiQL is
compared to LINQ [15] and OptiCollections to Scala Collections [17]. LINQ
and Scala Collections are optimized libraries running on managed platforms
(C#/CLR and Scala/JVM). We compare OptiMesh and OptiGraph to Liszt [2]
and Green-Marl [3] respectively, stand-alone DSLs designed for high performance
on heterogeneous hardware. Liszt and Green-Marl both generate and execute
C++ code and have been shown to outperform hand-optimized C++ for the
applications shown in this section. Each Delite DSL generated Scala code for
the CPU and CUDA code for the GPU. For composability, we compare against
an analogous Scala library implementation of each application when using a
combination of DSLs to solve larger application problems.

All of our experiments were performed on a Dell Precision T7500n with two
quad-core Xeon 2.67GHz processors, 96GB of RAM, and an NVidia Tesla C2050.
The CPU generated Scala code was executed on the Oracle Java SE Runtime
Environment 1.7.0 and the Hotspot 64-bit server VM with default options. For
the GPU, Delite executed CUDA v4.0. We ran each application ten times (to
warm up the JIT) and report the average of the last 5 runs. For each run we
timed the computational portion of the application. For each application we
show normalized execution time relative to our DSL version with the speedup
listed at the top of each bar.

6.1 Compiled Embedded vs. Optimized Library
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(a) OptiQL: TPC-H Q1 (left) and Q2 (right) (b) OptiCollections: web-link benchmark

Fig. 5. Normalized execution time of applications written in OptiQL and OptiCollec-
tions. Speedup numbers are reported on top of each bar.

OptiQL: TPC-H Queries 1 & 2 Figure 5(a) compares the performance of queries
1 & 2 of the popular TPC-H benchmark suite on OptiQL vs. LINQ. Without any
optimizations, OptiQL performance for the queries (not shown) is comparable
to LINQ performance. However, such library implementations of the operations
suffer from substantial performance penalties compared to an optimized and
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compiled implementation. Naïvely, the query allocates a new table (collection)
for each operation and every element of those tables is a heap-allocated object
to represent the row. The two most powerful optimizations we perform are con-
verting to an SoA representation and fusing across GroupBy operations to create
a single (nested) loop to perform the query. Transforming to an SoA representa-
tion allows OptiQL to eliminate all object allocations for Q1 since all of the fields
accessed by Q1 are JVM primitive types, resulting in a data layout consisting
entirely of JVM primitive arrays. All together these optimizations provide 125x
speedup over parallel LINQ for Q1 and 4.5x for Q2.

OptiCollections: Reverse web-link graph Figure 5(b) shows the result for the re-
verse web-link application discussed in Section 5.2 running on OptiCollections
compared to Scala Parallel Collections. Scala Parallel Collections is implemented
using Doug Lea’s highly optimized fork/join pool with work stealing [18]. The
OptiCollections version is significantly faster at all thread counts and scales bet-
ter with larger datasets. The improvement is due to staged compilation, which
helps in two ways. First, OptiCollections generates statically parallelized code.
Unlike Scala collections, functions are inlined directly to avoid indirection. On
the larger dataset, this does not matter as much, but on the smaller dataset the
Scala collections implementation has higher overhead which results in worse scal-
ing. Second, the OptiCollections implementation benefits from fusion and from
transparently mapping (Int,Int) tuples to Longs in the back-end. These optimiza-
tions greatly reduce the number of heap allocations in the parallel operations,
which improves both scalar performance and scalability.

6.2 Compiled Embedded vs. External DSL
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Fig. 6. Normalized execution time of applications written in OptiMesh and OptiGraph.
Speedup numbers are reported on top of each bar.

Productivity. First, we consider the programming effort required to build Op-
tiMesh and OptiGraph compared to the stand-alone versions they were based
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on. Each Delite DSL compiler took approximately 3 months by a single gradu-
ate student to build using Delite. OptiMesh (≈5k loc) and OptiGraph (≈2.5k
loc) were developed by 1st year Ph.D. students with no prior experience with
Scala or Delite. In comparison, Liszt (≈25k loc Scala/C++) took a group of
2-3 compiler experts approximately one year to develop and Green-Marl (≈30k
loc mostly C++) took a single expert approximately 6 months. As discussed in
Section 5.5, most of the code reduction is due to reuse from being both front
and back-end embedded (in Scala and Delite respectively). The Delite DSLs did
not need to implement custom parsers, type checkers, base IRs, schedulers, or
code generators. Similarly, while OptiMesh and OptiGraph do not implement
all of the optimizations performed by Liszt and Green-Marl, they inherit other
Delite optimizations (e.g. fusion) for free. For comparison, the Delite framework
is ≈11k and LMS is ≈7k lines of Scala code. It is interesting to note that ≈4k
lines of the Liszt code is for Pthreads and CUDA parallelization; a major ben-
efit of using Delite is that parallelization for multiple targets is handled by the
framework.

OptiMesh: Shallow water simulation & Scalar convection Figure 6(a) shows the
performance of OptiMesh and Liszt on two scientific applications. Each appli-
cation consists of a series of ForeachReduce operations surrounded by iterative
control-flow to step the time variable of the PDE. It is well-suited to GPU exe-
cution as mesh sizes are typically large and the cost of copying the input data to
the GPU is small compared to the amount of computation required. However,
the original applications around which the Liszt language was designed were
only implemented using MPI. Liszt added GPU code generation and demon-
strated significant speedups compared to the CPU version. For both OptiMesh
applications, Delite is able to generate and execute a CUDA kernel for each
colored foreach loop and achieve performance comparable to the Liszt GPU im-
plementation. Liszt’s (and OptiMesh’s) ability to generate both CPU and GPU
implementations from a single application source illustrates the benefit of using
DSLs as opposed to libraries that only target single platforms.

OptiGraph: PageRank Figure 6(b) compares the performance of the PageRank
algorithm [16] implemented in OptiGraph to the Green-Marl implementation
on two different uniform random graphs of sizes 100k nodes by 800k edges and
8M nodes by 64M edges, respectively. This benchmark is dominated by the ran-
dom memory accesses during node neighborhood exploration. Since OptiGraph’s
memory access patterns and the memory layout of its back-end data structures
are similar to those of Green-Marl, OptiGraph’s sequential performance and scal-
ability across multiple processors is close to that of Green-Marl. Although the
smaller graph fits entirely in cache, the parallel performance is limited by cache
conflicts when accessing neighbors and the associated coherency traffic. The se-
quential difference between OptiGraph and Green-Marl in the larger graph can
be attributed to the difference between executing Scala generated code vs. C++.
However, as we increase the number of the cores, the benchmark becomes in-
creasingly memory-bound and the JVM overhead becomes negligible.
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1 def valueIteration(actionResults: Rep[Map[Action, (Matrix[Double],Vector[Double])]],

2 initValue: Rep[Vector[Double]], discountFactor: Rep[Double],
3 tolerance: Rep[Double]) = {

4 val bestActions = Seq[Action](initValue.length)
5 var (value, delta) = (initValue, Double.MaxValue)

6 while (abs(delta) > tolerance) {
7 val newValue = Vector.fill(0,value.length) { i =>

8 val allValues = actionResults map { case (action,(prob,cost)) =>
9 (action, (prob(i) * value(i) * discountFactor + cost(i)).sum) }

10 val minActionValue = allValues reduce { case ((act1,v1),(act2,v2)) =>
11 if (v1 <= v2) (act1,v1) else (act2,v2) }

12 bestActions(i) = minActionValue.key; minActionValue.value }

13 delta = diff(newValue, value); value = newValue }
14 (value, bestActions) }

Listing 1.4. Value Iteration of a Markov Decision Process

6.3 Open-World Composability
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Fig. 7. Normalized execution time of value iteration of a Markov decision process. Per-
formance is shown both with and without cross-DSL optimization. Speedup numbers
are reported on top of each bar.

We illustrate open-world composability by implementing the value iteration
algorithm for a Markov decision process (MDP), shown in Listing 1.4, using two
different DSLs, OptiLA and OptiCollections. OptiLA is a DSL for linear algebra
providing Matrix and Vector operations, and is specifically designed to be included
by other DSLs by making no closed-world assumptions. OptiLA is a refactored
portion of OptiML [11], a machine learning DSL designed for statistical inference
problems expressed with vectors, matrices, and graphs. Although OptiML orig-
inally contained its own linear algebra components, we have found that several
DSLs need some linear algebra capability, so we extracted OptiLA and modified
OptiML to extend it using the techniques in Section 4.1. OptiCollections was
also designed to be included by other DSLs and applications, as described in
Section 5.2.
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The algorithm uses an OptiCollections Map to associate each user-defined
Action with a probability density Matrix and cost Vector. OptiLA operations (line
8) compute the value for the next time step based on an action, and OptiCol-
lections operations apply the value propagation to every action and then find
the minimal value over all actions. This process is repeated until the minimizing
value converges.

Figure 7 shows the performance for this application implemented using Scala
Parallel Collections compared to using OptiLA and OptiCollections. For both
datasets, the OptiDSL version shows significant speedup over the library im-
plementation as well as improved parallel performance, due mainly to two key
optimizations: loop fusion and AoS to SoA transformation. The latter trans-
formation eliminates all of the tuples and class wrappers in lines 7-10, leaving
only nested arrays. The OptiDSLs “No Cross Opt” bar simulates the behavior
of compiling the code snippets for each DSL independently and then combining
the resulting optimized code snippets together using some form of foreign func-
tion interface. Therefore this version does not include SoA transformations or
fusion across DSLs, but does still fuse operations fully contained within a single
DSL, most notably the OptiLA code snippet on line 8 of Listing 1.4. Figure 7(a)
shows only very modest speedups after adding DSL cross-optimization. This is
because the majority of the execution time is spent within the OptiLA code
snippet, and so only fusion within OptiLA was necessary to maximize perfor-
mance. Figure 7(b), however, shows the behavior for different data dimensions.
In this case the total execution time spent within the OptiLA section is small,
making fusion across the nested OptiCollections/OptiLA operations critical to
maximizing performance.

Overall this case study shows that while sometimes applications can achieve
good performance by simply offloading key pieces of computation to a highly
optimized implementation (applications that call BLAS libraries are a classic
example of this), other applications and even the same application with a differ-
ent dataset require the compiler to reason about all of the pieces of computation
together at a high level and be capable of performing optimizations across them
in order to maximize performance.

6.4 Closed-World Composability

In this example, we combine OptiQL, OptiGraph, and OptiML using the closed-
world composition strategy discussed in Section 4.2. We use the three DSLs
together to implement a data analysis application on a Twitter dataset used
in [19]. A truncated version of the application code is shown in Listing 1.5. The
idea is to compute statistics related to the distribution of all tweets, of retweets
(tweets that have been repeated by another user), and of the relationship between
user connectivity and the number of times they have been retweeted.

The application follows a typical data analytic pipeline. It first loads data from
a log file containing tweets with several attributes (sender, date, text, etc.). It
then queries the dataset to extract relevant information using an OptiQL Where

statement. The filtered data is passed on to OptiGraph and OptiML which both
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1 type Tweet = Record { val time: String; val fromId: Int; val toId: Int;

2 val lang: String; val text: String; val RT: Boolean }
3 val q = OptiQL {

4 //tweets: Table[Tweet]
5 val reTweets = tweets.Where(t => t.lang == "en"

6 && Date(t.time) > Date("2008-01-01") && t.RT)
7 val allTweets = tweets.Where(t => t.lang == "en")

8 DRef((reTweets.toArray, allTweets.toArray))
9 }

10 val g = OptiGraph {
11 val in = q.get

12 val G = Graph.fromArray(in._1.map(t => (t.fromId, t.toId)))

13 val (LCC, RT) = (NodeProperty[Double](G), NodeProperty[Double](G))
14 Foreach(G.Nodes) { s =>

15 // count number of nodes connected in a triangle (omitted)
16 if (total < 1) LCC(s) = 0 else LCC(s) = triangles.toDouble / total

17 RT(s) = G.InNbrs(s).length
18 }

19 DRef((LCC.toArray, RT.toArray, in._1, in._2))
20 }

21 val r = OptiML {
22 val in = g.get

23 val scaledRT = norm(log((Vector.fromArray(in._2) + 1)))
24 val X = Matrix(Vector.ones(in._1.length), Vector.fromArray(in._1))

25 val theta = (X*X.t).inv * (X*scaledRT) // unweighted linear regression

26 // compute statistics on tweets (omitted)
27 }

Listing 1.5. Twitter Graph Analysis using multiple DSLs
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Fig. 8. Normalized execution time of Twitter data analysis. Performance is shown for
each DSL section with and without cross-DSL optimization. Speedup numbers are
reported on top of each bar.
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analyze it and compute statistics. OptiGraph builds a graph where nodes are
users and edges are retweets and computes the LCC (local clustering coefficient)
and retweet counts for each user. The LCC is a loose approximation of the
importance of a particular user. The OptiML section fits the filtered tweet data
from OptiQL to a normal distribution and also runs a simple unweighted linear
regression on the LCC and retweet counts that the OptiGraph code computed.
The final results of the application are the distribution and regression coefficients.

Figure 8 shows the performance of this application implemented with Scala Par-
allel Collections compared to the Delite DSLs with and without cross-DSL opti-
mization. The graph is broken down by the time spent in each DSL section (or
for the library version, in the corresponding Scala code). Since we are using the
closed world model, each DSL is independently staged, lowered to the common
Delite representation, and re-compiled. The application code is still a single pro-
gram and the DSLs pass data in memory without any boxing overhead. Therefore,
in contrast to using stand-alone compiled DSLs for each computation, we incur no
serialization overhead to pipe data from one DSL snippet to the other. The Scala
library version, which is also a single application, is approximately 5x slower than
the non-cross-optimized DSL version on 1 thread and 10x slower on 8 threads. The
speedup is due to optimizations performed by Delite across all DSLs. The OptiQL
code benefits from filter fusion as well as lifting the construction of a Date object
outside of the filter loop, which demonstrates the high-level code motion that is
possible with more semantic information (the Date comparison is a virtual method
call for Scala, so it does not understand that the object is constant in the loop).
The OptiGraph version is faster than the corresponding library snippet mainly
due to compiling away abstractions (we use only primitive operations on arrays
in the generated code compared to Scala’s ArrayBuffer, which has run-time over-
head). The OptiGraph code is also the least scalable, since this particular graph
is highly skewed to a few dominant nodes and the graph traversal becomes very
irregular. Due to the additional overhead of the library version, this effect is more
pronounced there. Finally, the OptiML version is faster mainly because of loop
fusion and CSE across multiple linear algebra operations.

Co-optimizing the DSLs, which is enabled by composing them, produces fur-
ther opportunities. The Delite compiler recognizes that OptiGraph and OptiML
together require only 4 fields per tweet of the original 6 (OptiGraph uses “toId”
and “fromId” and OptiML uses “text” and “hour”). The remaining fields are
DFE’d by performing SoA transformation on the filter output and eliminating
arrays that are not consumed later. The other major cross DSL optimization we
perform is to fuse the filter from OptiQL with their consumers in OptiGraph
and OptiML. Note that the fusion algorithm is strictly data dependent; the Op-
tiML snippet and OptiQL snippets are syntactically far apart, but can still be
fused. This example also shows that since the DSL blocks are composed into a
single IR, we can fuse across multiple scope boundaries when co-optimizing. All
together, cross optimizations result in an extra 1.72x sequential speedup over
the composed Delite DSL version without cross optimizations.
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7 Related Work

Our embedded DSL compilers build upon numerous previously published work in
the areas of DSLs, extensible compilers, heterogeneous compilation, and parallel
programming.

There is a rich history of DSL compilation in both the embedded and stand-
alone contexts. Elliot et al. [4] pioneered embedded compilation and used a
simple image synthesis DSL as an example. Feldspar [20] is an embedded DSL
that combines shallow and deep embedding of domain operations to generate
high performance code. For stand-alone DSL compilers, there has been consid-
erable progress in the development of parallel and heterogeneous DSLs. Liszt [2]
and Green-Marl [3] are discussed in detail in this paper. Diderot [21] is a par-
allel DSL for image analysis that demonstrates good performance compared to
hand-written C code using an optimized library. The Spiral system [22] progres-
sively lowers linear transform algorithms through a series of different DSLs to
apply optimizations on different levels [23]. Subsets of Spiral have also been im-
plemented using Scala and LMS. Giarrusso et al. [24] investigate database-like
query optimizations for collection classes and present SQuOpt, a query optimizer
for a DSL that, like OptiCollections, mimics the Scala collections API and also
uses techniques similar to LMS to obtain an IR for relevant program expressions.
Our work aggregates many of the lessons and techniques from previous DSL ef-
forts and makes them easier to apply to new domains, and to the problem of
composing DSLs.

Recent work has begun to explore how to compose domain-specific languages
and runtimes. Mélusine [25] uses formal modeling to define DSLs and their com-
position. Their approach attempts to reuse existing models and their mappings
to implementations. Dinkelar et al. [26] present an architecture for composing
purely embedded DSLs using aspect-oriented concepts; a meta-object is shared
between all the eDSLs and implements composition semantics such as join points.
MadLINQ [27] is an embedded matrix DSL that integrates with DryadLINQ [28],
using LINQ as the common back-end. Compared to these previous approaches,
our work is the first to demonstrate composition and co-optimization with high
performance, statically compiled DSLs.

There has also been work on extensible compilation frameworks aimed towards
making DSLs and high performance languages easier to build. Racket [29] is a
dialect of Scheme designed to make constructing new programming languages
easier. Spoofax [30] and JetBrains MPS [31] are language workbenches for defin-
ing new DSLs and can generate automatic IDE support from a DSL grammar.
While these efforts also support DSL reuse and program transformation, they are
generally more focused on expressive DSL front-ends, whereas Delite’s emphasis
is on high performance and heterogeneous compilation. Both areas are important
to making DSL development easier and could be used together to complement
each other. On the performance side, telescoping languages [32] automatically
generate optimized domain-specific libraries. They share Delite’s goal of incorpo-
rating domain-specific knowledge in compiler transformations. Delite compilers
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extend optimization to DSL data structures and also optimize both the DSL and
the program using it in a single step.

Outside the context of DSLs, there have been efforts to compile high-level
general purpose languages to lower-level (usually device-specific) programming
models. Mainland et al. [6] use type-directed techniques to compile an embedded
array language, Nikola, from Haskell to CUDA. This approach suffers from the
inability to overload some of Haskell’s syntax (if-then-else expressions) which is
not an issue with our version of the Scala compiler. Copperhead [7] automatically
generates and executes CUDA code on a GPU from a data-parallel subset of
Python. Nystrom et al. [33] show a library-based approach to translating Scala
programs to OpenCL code through Java bytecode translation. Since the starting
point of these compilers is byte code or generic Python/Java statements, the
opportunities for high-level optimizations are more limited relative to DSL code.

8 Conclusion

In this paper we showed that a common back-end can be used to compose high
performance, compiled domain-specific languages. The common back-end also
provides a means to achieve meaningful reuse in the compiler implementations
when targeting heterogeneous devices. We demonstrated this principle by imple-
menting four new diverse DSLs (OptiQL, OptiCollections, OptiGraph, and Op-
tiMesh) in Delite, an extensible compilation framework for compiled embedded
DSLs. The DSLs required only 9 parallel operators and 7 were reused in at least
two DSLs. We showed that OptiQL and OptiCollections exceed the performance
of optimized library implementations by up to 125x. OptiGraph and OptiMesh
are both based on existing stand-alone DSLs (Green-Marl and Liszt respectively)
but require less code to build and achieve no worse than 30% slow-down. In addi-
tion to each DSL providing high performance and targeting multicore and GPU
architectures, applications composing multiple DSLs perform well and benefit
from cross-DSL optimization. To the best of our knowledge, this work is the first
to demonstrate high performance compiled DSL composability.
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Abstract. The jQuery library defines a powerful query language for web
applications’ scripts to interact with Web page content. This language
is exposed as jQuery’s api, which is implemented to fail silently so that
incorrect queries will not cause the program to halt. Since the correctness
of a query depends on the structure of a page, discrepancies between the
page’s actual structure and what the query expects will also result in
failure, but with no error traces to indicate where the mismatch occurred.

This work proposes a novel type system to statically detect jQuery
errors. The type system extends Typed JavaScript with local structure
about the page and with multiplicities about the structure of containers.
Together, these two extensions allow us to track precisely which nodes
are active in a jQuery object, with minimal programmer annotation ef-
fort. We evaluate this work by applying it to sample real-world jQuery
programs.

1 Introduction

Client-side web applications are written in JavaScript (JS), using a rich, but low-
level, api known as the Document Object Model (dom) to manipulate web con-
tent. Essentially an “assembly language for trees”, these manipulations consist of
selecting portions of the document and adding to, removing, or modifying them.
Like assembly language, though, programming against this model is imperative,
tedious and error-prone, so web developers have created JS libraries that abstract
these low-level actions into higher-level apis, which essentially form their own
domain-specific language.

We take as a canonical example of this effort the query portion of the popular
jQuery library, whose heavily stylized form hides the imperative dom plumbing
under a language of “sequences of tree queries and updates”. This query-language
abstraction is widely used: other JS libraries, such as Dojo, Yahoo!’s YUI, Em-
ber.js and D3, either embed jQuery outright or include similar query apis. (All
these libraries also include various features and functionality not related to doc-
ument querying; these features differ widely between libraries, and are not our
focus here.) JQuery in particular enjoys widespread adoption, being used in over
half of the top hundred thousand websites [4].
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From a program-analysis standpoint, jQuery can also drastically simplify the
analysis of these programs, by directly exposing their high-level structure. In-
deed, “jQuery programs” are written so dramatically differently than “raw dom

programs” that in this work, we advocate understanding jQuery as a language
in its own right. Such an approach lets us address two essential questions. First,
what bugs are idiomatic to this high-level query-and-manipulation language, and
how might we detect them? And second, if a jQuery-like language were designed
with formal analyses in mind, what design choices might be made differently?

Contributions. This work examines query errors, where the result of a query
returns too many, too few, or simply undesired nodes of the document. We
build a type system to capture the behavior of jQuery’s document-query and
manipulation apis; our goal is to expose all query errors as type errors. (Our
type system is not jQuery-specific, however, and could be applied to any of the
query languages defined by JS libraries.) In designing this type system, we find
a fundamental tension between the flexibility of jQuery’s apis and the precision
of analysis, and propose a small number of new apis to improve that loss of
precision.

At a technical level, this paper extends prior work [10, 16, 17] that has built
a sophisticated type system for JS, to build a domain-specific type language for
analyzing jQuery. Our type system enhances the original with two novel features:

– Multiplicities, a lightweight form of indexed types [26] for approximating the
sizes of container objects; and

– Local structure, a lightweight way to inform the type system of the “shape”
of relevant portions of the page, obviating the need for a global page schema.

Combined, these two features provide a lightweight dependent type system that
allows us to typecheck sophisticated uses of jQuery apis accurately and pre-
cisely, with minimal programmer annotation. Our prototype implementation is
available at http://www.jswebtools.org/jQuery/.1

We introduce a running example (Section 2) to explain the key ideas of our
approach (Sections 3 and 4), and highlight the key challenges in modeling a
language as rich as jQuery (Sections 5 and 6). We evaluate its flexibility using
several real-world examples (Section 7), and describe related work and directions
for future improvements (Sections 8 and 9).

2 Features and Pitfalls of the JQuery Language

JQuery’s query apis break down into three broad groups: selecting an initial set
of nodes in the page, navigating to new nodes in the document relative to those
nodes, and manipulating the nodes. These functions allow the programmer to
process many similar or related nodes easily and uniformly. To illustrate most of
1 We were unable to submit this artifact for evaluation per that committee’s rules,

because our fourth author co-chaired that committee.
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these apis and their potential pitfalls, and as a running example, we examine a
highly simplified Twitter stream. A stream is simply a 〈div/〉 element containing
tweets. Each tweet in turn is a 〈div/〉 element containing a timestamp, an author,
and the tweet content:

〈div class=“stream”〉
〈div class=“tweet”〉

〈p class=“time”/〉 〈p class=“author”/〉 〈p class=“content short”/〉
〈/div〉
. . .

〈/div〉

Selecting Nodes. The jQuery $ function is the entry point for the entire api.
This function typically takes a CSS selector string and returns a jQuery object
containing all the elements in the document that match the provided selector:
1 $("*.time").css(’color’, ’red’); // Colors all timestamp elements

But the power and flexibility of this method may lead to silent errors. How do we
assure ourselves, for example, that $("*.time") matches any elements at all?

Navigating Between Nodes. JQuery supplies several methods for relative move-
ment among the currently selected nodes. These methods operate uniformly on
all the nodes contained in the current collection:
1 // Returns a collection of the children of aTweet:
2 // a timestamp, an author, and a content node
3 $(aTweet).children();
4 // Returns all the children of all tweets
5 $(".tweet").children();
6 // Returns the authors and contents of all tweets
7 $(".tweet").children().next();
8 // Returns the empty collection
9 $(".tweet").children().next().next().next().next();

10 // Meant to colorize contents, but has no effect
11 $(".tweet").children().next().next().next().css("color", "red");

The first two examples are straightforward: requesting the children() of a node
returns a collection of all its children, while calling children() on several nodes
returns all their children. The next example (line 7) shows jQuery’s silent error
handling: calling next() on a collection of timestamps, authors and contents
will return a collection of the next siblings of each node, even if some nodes
(here, content nodes) have no next siblings. In fact, jQuery does not raise an
error even when calling a method on an empty collection: on line 9, after the
third call to next(), there are no remaining elements for the final call. The final
example highlights why this might be a problem: The programmer intended to
select the contents nodes, but called next() once too often. The call to css()
then dutifully changed the styles of all the nodes it was given—i.e., none—and
returned successfully. This is another important error condition: how can we
assure ourselves that we haven’t “fallen off the end” of our expected content?
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Manipulating Content. The purpose of obtaining a collection of nodes is to ma-
nipulate them, via methods such as css(). These manipulator functions all follow
a common getter/setter pattern: for example, when called with one argument,
css() returns the requested style property of the given node. When supplied
with two arguments, it sets the style property of the given nodes.

Note carefully the different pluralities of getters and setters. Getters implicitly
apply only to the first node of the collection, while setters implicitly apply to all
the nodes of the collection. This can easily lead to errors: while in many cases,
the order of elements in a collection matches the document order, and while
in many other cases, the collection only contains a single element, neither of
these conditions is guaranteed. How can we assure ourselves that the collection
contains exactly the node we expect as its “first” child?

JQuery provides a general-purpose each() method, that allows the program-
mer to map a function over every node in the collection. (This is useful when
the necessary computation requires additional state that cannot be expressed as
a simple sequence of jQuery api calls.) This api is one of the few places where
it is possible to trigger a run-time error while a jQuery function is on the call
stack, precisely because the programmer-supplied function is not jQuery code.
How can we assure ourselves that the function calls only those methods on the
element that are known to be defined?

Chaining. JQuery’s api revolves around the chaining pattern, where practically
every method (that is not a getter) is designed to return a jQuery object: manip-
ulation apis return their invocant, and navigation apis return a new collection
of the relevant nodes. This allows for fluid idioms such as the following, simpli-
fied code that animates the appearance of a new tweet on Twitter (the precise
arguments to these functions are not relevant; the “style” of api calls is):
1 $(aTweet).fadeIn(...).css(...).animate(...);

Each call returns its invocant object, so that subsequent calls can further manip-
ulate it. Modeling this idiom precisely is crucial to a useful, usable type system.

Choosing a Type System. Though jQuery dynamically stifles errors, in this
paper we argue that query errors are latent and important flaws that should
be detected and corrected—statically, whenever possible. Accordingly, we aim
to develop a type system that can capture the behaviors described above, and
that can catch query errors without much programmer overhead. In particular,
we would like type inference to work well, as any non-inferred types must be
grudgingly provided by the programmer instead.

Because the behavior of a query depends crucially on the query parameters,
the navigational steps, and any manipulations made, it would seem reasonable
that the type of the query must depend on these values too, leading to a depen-
dent type system whose types include strings and numbers to encode the query
and its size. Unfortunately, in general, type inference for dependent type systems
is undecidable, leading to large annotation or proof burdens on the programmer.
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However, as we will see below, a type system tailored for jQuery can forego
much of the complexity of general-purpose dependent types. By carefully re-
stricting our use of strings, and by approximating our use of numbers, we can
regain a “lightweight” dependently typed system with sufficient precision for our
purposes, and that still enjoys decidable type inference in practice.

Comparisons with Other Query Languages. Describing jQuery as “a query
language” invites comparison with other tree-query languages, most notably
XPath and XQuery [23, 24], and the programming languages XDuce [11] and
CDuce [2]. We compare our approach with XDuce and CDuce more thoroughly in
Section 8; for now, we note that unlike XML databases that conform to schemas
and from which strongly-typed data can be extracted, HTML pages are essen-
tially schema-free and fundamentally presentational. JQuery therefore adopts
CSS selectors, the language used to style web pages, as the basis of its query
language.

3 Multiplicities

In this and the following section, we describe the novel features of our type sys-
tem, and build up the central type definition in stages. Our system is an extension
of Typed JavaScript [10], which provides a rich type system including objects
types respecting prototype inheritance, (ordered) intersection and (unordered)
union types, equi-recursive types, type operators and bounded polymorphism.
The type language, including our new constructs, is shown in Fig. 1; we will
introduce features from this type system as needed in our examples below.

Each of the three phases of the jQuery api described above induces a charac-
teristic problem: in reverse order, ensuring that

1. Callback code only calls appropriate methods on the provided elements,
2. Precisely the intended target element is the first element of the jQuery object,
3. Navigation does not overshoot the end of known content, and
4. Selectors return the intended elements from the page.

Warmup. The first challenge is a traditional type-checking problem, and one
that is well handled by existing Typed JavaScript. We simply must ensure that
the supplied callback function has type SomeElementType -> Undef, provided
we know which SomeElementType is expected by the current jQuery object. This
leads to a (very simplistic) first attempt at “the jQuery type”:

1 type jQuery = μ jq :: * => * .
2 Λ e :: * . {
3 each : [’jq〈’e〉] (’e -> Undef) -> ’jq〈’e〉
4 }
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α ∈ Type and multiplicity variables
κ ∈ Kind ::= *

∣∣ M〈*〉
r ∈ RegEx ::= regular expressions
τ ∈ Type ::= α

∣∣ Num
∣∣ r

∣∣ True
∣∣ False

∣∣ Undef
∣∣ Null

∣∣ � ∣∣ ⊥∣∣ ref τ
∣∣ [τ ]τ × · · · → τ

∣∣ τ+τ
∣∣ τ&τ

∣∣ μα.τ
∣∣ {� : τ, s : τ, . . .}∣∣ ∀α ≤ τ.τ

∣∣ ∀α :: κ.τ
∣∣ Λ α :: κ.τ

∣∣ τ〈τ〉 ∣∣ τ〈m〉∣∣ τ @ CSS selector
m ∈ Mult ::= M〈τ〉 ∣∣ 0〈m〉 ∣∣ 1〈m〉 ∣∣ 01〈m〉 ∣∣ 1+〈m〉 ∣∣ 0+〈m〉 ∣∣ m1 ++m2

l ∈ LS ::= (〈Name〉 : 〈ElementType〉
classes=[...] optional classes=[...] ids=[...]

l...)∣∣ <Name>
∣∣ <Name>+

∣∣ ...

Fig. 1. Syntax of types, multiplicities and local structure

In words, this defines jQuery to be a type constructor (of kind * => *, i.e., a
function from types to types) that takes an element type (line 2) and returns an
object with a field each (line 3), which is a function that must be invoked on a
jQuery object containing elements of the appropriate type (the type in brackets)
and passed a single callback argument (in parentheses) and returns the original
jQuery object. So that the type of each can refer to the overall jQuery type,
we say that jQuery is in fact a recursive type (line 1). The ’e type parameter
records the type of the elements currently wrapped by the jQuery object.

The Need for More Precision. The next two challenges cannot be expressed
by traditional types. We need to keep track of how many elements are present
in the current collection, so that we know whether calling a getter function like
css() is ambiguous, or whether calling a navigation function like next() has run
out of elements. (We defer the challenge of knowing exactly what type comes
next() after a given one until Section 4; here we just track quantities.)

3.1 Defining Multiplicities

JQuery’s apis distinguish between zero, one and multiple items. To encode this
information, we introduce a new kind that we call multiplicities, written M〈*〉,
with the following constructors:

m ∈ Mult ::= M〈τ〉 ∣∣ 0〈m〉 ∣∣ 1〈m〉 ∣∣ 01〈m〉 ∣∣ 1+〈m〉 ∣∣ 0+〈m〉 ∣∣ m1 ++m2

The first of these constructors (M) embeds a single type into a multiplicity; for
brevity, we often elide this constructor below. The next five assert the presence
of zero, one, zero or one, one or more, or zero or more multiplicities. These
multiplicities can be nested, but can be normalized by simple multiplication: for
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·〈·〉 0〈τ〉 1〈τ〉 01〈τ〉 1+〈τ〉 0+〈τ〉
0 0〈τ〉 0〈τ〉 0〈τ〉 0〈τ〉 0〈τ〉
1 0〈τ〉 1〈τ〉 01〈τ〉 1+〈τ〉 0+〈τ〉
01 0〈τ〉 01〈τ〉 01〈τ〉 0+〈τ〉 0+〈τ〉
1+ 0〈τ〉 1+〈τ〉 0+〈τ〉 1+〈τ〉 0+〈τ〉
0+ 0〈τ〉 0+〈τ〉 0+〈τ〉 0+〈τ〉 0+〈τ〉
(a) Normalization for simple mul-

tiplicities


m ++n� 0〈τ1〉 1〈τ1〉 01〈τ1〉 1+〈τ1〉 0+〈τ1〉
0〈τ2〉 0〈�〉 1〈τ1〉 01〈τ1〉 1+〈τ1〉 0+〈τ1〉
1〈τ2〉 1〈τ2〉 1+〈τ3〉 1+〈τ3〉 1+〈τ3〉 1+〈τ3〉
01〈τ2〉 01〈τ2〉 1+〈τ3〉 0+〈τ3〉 1+〈τ3〉 0+〈τ3〉
1+〈τ2〉 1+〈τ2〉 1+〈τ3〉 1+〈τ3〉 1+〈τ3〉 1+〈τ3〉
0+〈τ2〉 0+〈τ2〉 1+〈τ3〉 0+〈τ3〉 1+〈τ3〉 0+〈τ3〉

(b) Simplification of sum multiplicities, where
τ3 = τ1+τ2, and m and n are normalized

Fig. 2. Normalization and simplification for multiplicities: simplifying sums assumes
that the arguments have first been normalized

instance, 01〈1+〈τ〉〉 = 0+〈τ〉. (In words, zero or one groups of one or more τ is
equal to zero or more τ .) The normalization table is listed in Fig. 2a.

The remaining multiplicity, the sum m1 ++m2, asserts the presence of both m1
and m2, and is useful for concatenating two jQuery collections. Sum multiplicities
do not normalize multiplicatively the way the previous ones do, but they can be
approximated additively: for example, 1〈τ1〉 ++ 01〈τ2〉 <: 1+〈τ1+τ2〉. In words, if
we have one τ1 and zero or one τ2, then we have one or more τ1s or τ2s (this
union type is denoted by the plus symbol); the full rules are in Fig. 2b. This
loses precision: the latter multiplicity also describes a collection of several τ2s and
zero τ1s, while the original sum does not. Our type-checking algorithm therefore
avoids simplifying sums whenever possible.

Note that while types describe expressions or values, multiplicities do not
directly describe anything. Instead, they are permitted solely as arguments to
type functions:2 they are a lightweight way to annotate container types with
a few key pieces of size information. In particular, they are easier to use than
typical dependent types with arbitrary inequality constraints, as they can be
manipulated syntactically, without needing an arithmetic solver.

We can now use these multiplicities to refine our definition for jQuery:

1 type jQuery = μ jq :: M〈*〉 => * .
2 Λ m :: M〈*〉 . {
3 each : ∀ e <: Element .
4 [’jq〈0+〈’e〉〉] (’e -> Undef) -> ’jq〈’m〉
5 css : ∀ e <: Element .
6 ([’jq〈1〈’e〉〉] Str -> Str &
7 [’jq〈1+〈’e〉〉] Str*Str -> ’jq〈1+〈’e〉〉)
8 }

The kind for jq has changed to accept a multiplicity, rather than a bare type.
The type for each has also changed to recover the type e describing elements,
which we bound above by Element. Multiplicities also give us sufficient precision
2 This is exactly analogous to the distinction between types and ordinals in indexed

types [1, 26], or between types and sequence types in XDuce [11]; see Section 8.
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m1<:m2 0〈τ〉 1〈τ〉 01〈τ〉 1+〈τ〉 0+〈τ〉
0〈τ〉 ✓* ✓ ✓

1〈τ〉 ✓ ✓ ✓ ✓

01〈τ〉 ✓ ✓

1+〈τ〉 ✓ ✓

0+〈τ〉 ✓

M-Typ

τ <: τ ′

M〈τ〉 <: M〈τ ′〉

M-Sums

(m1 <: m3 ∧ m2 <: m4) ∨
(m1 <: m4 ∧ m2 <: m3)

m1 ++m2 <: m3 ++m4

M-Sum-L

�m1 ++m2� <: m3

m1 ++m2 <: m3

M-Sum-R

m1 <: m2 ∨ m1 <: m3

m1 <: m2 ++m3

Fig. 3. Subtyping rules for simple multiplicities (left) and sums (right). ∗This case
actually allows τ to be entirely unrelated in m1 and m2.

to describe the type of css(): it is an overloaded function (i.e., it can be invoked
at more than one type, which we model using intersection types τ1&τ2 [18]) where
the getter must be invoked on a jQuery object containing exactly one element,
and where the setter must be invoked on a jQuery object containing at least
one element. This completely solves the ambiguity problem: a getter cannot be
ambiguous if it is invoked on exactly one target.

Additionally, it partially resolves the “falling-off” problem: with the additional
machinery of Section 4, we can ensure that $(aTweet).children().next()
.next().next() will have type jQuery〈0〈Element〉〉, which means that attempt-
ing to call css() will result in a static type error: intuitively, 0〈Element〉 is not
a subtype of 1〈’e〉 for any possible type ’e.

3.2 Subtyping Multiplicities

To make our notion of multiplicities sufficiently flexible, we need to define a “sub-
multiplicity” relation, analogous to subtyping, that defines when one multiplicity
is more general than another. The definition is largely straightforward: most of
the primitive constructors should clearly subtype covariantly, e.g., 1〈τ〉 <: 1〈τ ′〉
if τ <: τ ′, and 1〈τ〉 <: 01〈τ〉. The one exception is that 0〈τ1〉 <: 0〈τ2〉 for any
types, since in both cases we have nothing.

Sum multiplicities are trickier to subtype. In particular, unlike the simpler
multiplicities, the size of a sum is not immediately obvious; instead both argu-
ments must be normalized, and then the whole sum simplified. The rules for
sum multiplicities are shown in Fig. 3. Our typechecker uses M-Sums instead of
M-Sum-L if possible, to avoid the loss of precision in normalizing sums.

4 Local Structure

Given multiplicities from the previous section, we now must assign types to
the navigation functions (e.g., next()) and the jQuery $ function itself such
that they produce the desired multiplicities. One heavyweight approach might
be to define a full document schema, as in XDuce [11], and then the types
for navigation functions are easily determined from that schema (the selection
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function is still non-trivial). But this is impossible for most web content, for two
reasons. First and foremost, a page may include arbitrary third-party content,
and thus its overall schema would not statically be known. Second, even if all
HTML were well-formed, HTML markup is not schematically rich: many tags define
generic presentational attributes (e.g., “list item”, “paragraph”, or “table cell”),
rather than semantic information (e.g., “tweet author”, or “timestamp”).

Clearly, global page structure is too onerous a requirement. But abandoning
all structure is equally extreme: certainly, developers expect the page to possess
some predictable structure. In this section, we propose a lighter-weight, local
alternative to global page schemas, and explain what changes are needed in our
type language to incorporate it. We then explain how to use this local structure
to give precise types to the jQuery navigation apis. Finally, we show how to
obtain local structure types from the type of the $() method itself.

4.1 Defining Structure Locally

Local structure allows developers to define the shape of only those sections of
content that they intend to access via jQuery. For instance, our running example
would be defined as follows:

1 (Tweet : DivElement classes = [tweet] optional classes = [starred]
2 (Time : PElement classes = [time])
3 (Author : PElement classes = [author] optional classes = [starred])
4 (Content : PElement classes = [content short]))
5 (Stream : DivElement classes = [stream]
6 <Tweet>+) // One or more Tweets as defined above

This local structure declaration defines five types: Tweet, Time, Author, Content,
and Stream. Moreover, these declarations imply several local invariants between
code and element structure:

– Each type implies structural information about an element: for example, a
Tweet is a DivElement that is required to have class .tweet.

– Type membership can be decided by the declared classes: for example, at
runtime, every element in the document with class .tweet is in fact a Tweet,
and no other elements are permitted to have class .tweet. Any class by itself
suffices to assign a type to an element: for example, Content elements can
be identified by either .content or .short.

– Classes need not be unique: starred identifies either Authors or Tweets.
(This weakens the previous invariant slightly; a single class now may identify
a set of types, all of which include that class in their declarations.)

– “Classes” are mandatory: Content elements will have both .content and
.short classes. (Combined with the previous invariants, for example, all
elements with class .content are Contents and therefore will also have class
.short.) “Optional classes” and “ids” may or may not be present on elements
at runtime.

The full syntax of local structure declarations is given in Fig. 1. Besides the ex-
plicit structure seen above, we support two other declarations. First, for legibility
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and reuse, types may be referenced by name from other structures: a Stream con-
sists of one or more Tweets, as indicated by reference <Tweet> and the repetition
operator.3 Second, the ... construction (not used in this example) indicates the
presence of one or more subtrees of no interest to the program’s queries (for
instance, a document might contain elements for purely visual purposes, that
need never be selected by a query).

Incorporating Local Structure as Types. From the perspective of our type
language, Author is essentially a refinement of the PElement type: in addition
to the tag name, we know more precisely what selectors might match it. To
record these refinements, we add to our type language a new CSS refinement type
constructor: Author = PElement @ div.stream>div.tweet>p.time+p.author,
that includes both the base element type (PElement) as well as precise informa-
tion (the CSS selector) indicating where Authors can be found relative to other
known local structures.

To be useful, we must extend the subtyping relation to handle these CSS
refinement types. First, note that the refinements may be dropped, so that
τ @ s <: τ . For example, Author <: PElement. Second, we must decide when
one CSS refinement is a subtype of another. Lerner [12] showed that set opera-
tions on CSS selectors are decidable; in particular, it is decidable whether for all
documents, the nodes matched by one selector are a subset of the nodes matched
by another. Accordingly, τ1 @ s <: τ2 @ t holds whenever τ1 <: τ2 and s ⊆ t.

4.2 Using Local Structure

The CSS refinement types above exploit only part of the information available
from local structure definitions. In particular, they do not capture the structural
relations between elements. For instance, the Twitter stream definition above
also implies that:

– A Tweet’s children are each of Time, Author and Content. A Tweet’s parent
is a Stream.

– A Stream’s children are all Tweets; a Stream’s parent is unknown.
– Times, Authors and Contents have no children, and have a Tweet parent.
– A Time has an Author as its next sibling, and has no previous sibling.
– An Author has a Time and a Content as its previous and next siblings.
– A Content has an Author as its previous sibling, and no next sibling.

These are precisely the relationships needed to understand the navigation func-
tions in jQuery. Accordingly, we define four primitive type functions, @children,
@parent, @next and @prev, whose definitions are pieced together from the local
structure: in our example,

– @children(Tweet) = 1〈Time〉 ++ 1〈Author〉 ++ 1〈Content〉, and @parent(Tweet) =
1〈Stream〉.

3 We do not yet support the other regular expression operators * and ?, though they
pose no fundamental difficulty.
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– @children(Stream) = 1+〈Tweet〉 and @parent(Stream) = 01〈Element〉.
– @parent(Time) = 1〈Tweet〉, @next(Time) = 1〈Author〉, @prev(Time) =

@children(Time) = 0〈Element〉, and likewise for Author and Content.

These functions clearly must be primitives in our system, since they are decidedly
not parametric, and inspect the structure of their argument.

We may now enhance our jQuery type with navigation functions:

1 parent : ∀ e <: Element, [’jq〈1+〈’e〉〉] -> ’jq〈1+〈@parent〈’e〉〉〉,
2 children : ∀ e <: Element, [’jq〈1+〈’e〉〉] -> ’jq〈1+〈@children〈’e〉〉〉,
3 next : ∀ e <: Element, [’jq〈1+〈’e〉〉] -> ’jq〈1+〈@next〈’e〉〉〉,
4 prev : ∀ e <: Element, [’jq〈1+〈’e〉〉] -> ’jq〈1+〈@prev〈’e〉〉〉,
These types, however, are not quite precise enough: if we have a jQuery object
containing a single item, asking for its parent should return at most one item,
but the types here ensure that we return many items instead. Worse, we may
introduce imprecisions that easily could be avoided. In particular, suppose a
developer defines two local structures:

1 (A : DivElement classes = [a]
2 (B : DivElement classes = [b]))
3 (C : DivElement classes = [c]
4 (D : DivElement classes = [d]))

JQuery supports an add function, which concatenates two collections into one
for further processing across their combined elements. An appropriate type for
this function is

1 add : ∀ n <: 0+〈Element〉 . [’jq〈’m〉] ’jq〈’n〉 -> ’jq〈’m ++ ’n〉
which neatly expresses the “combination” effect of the method. Using this func-
tion and the the rules above, the following code only typechecks under a loose
bound (comments beginning with a colon are type assertions):

1 var bAndD = /*:jQuery〈1+〈B〉 ++ 1+〈D〉〉*/$(".b").add($(".d"));
2 var bdParents = bAndD.parent();

The type for parent() above requires its receiver to have type jQuery〈1+〈’e〉〉.
The typechecker must therefore normalize 1+〈B〉 ++ 1+〈D〉 to 1+〈B+D〉. Then,
@parent receives B+D as its argument, and returns 1+〈A+C〉. The resulting mul-
tiplicity describes one or more As or Cs, but we might have done better: because
bAndD is known to include both Bs and Ds, the code above returns one or more
As and one or more Cs. Therefore, we define @parent (and the other primitive
navigation type functions) over multiplicities directly, rather than over types:

1 parent : ∀ n <: 1+〈Element〉, [’jq〈’n〉] -> ’jq〈@parent〈’n〉〉
2 children : ∀ n <: 1+〈Element〉, [’jq〈’n〉] -> ’jq〈@children〈’n〉〉
3 next : ∀ n <: 1+〈Element〉, [’jq〈’n〉] -> ’jq〈@next〈’n〉〉
4 prev : ∀ n <: 1+〈Element〉, [’jq〈’n〉] -> ’jq〈@prev〈’n〉〉



90 B.S. Lerner et al.

Now @parent can be passed the original sum multiplicity without approximation,
and its returned multiplicities can be correspondingly more precise; the same
holds for the other three functions.

This extra precision is particularly crucial when one of the multiplicities de-
generates to zero. Consider the following short program:

1 var ts = /*:jQuery〈1+〈Time〉〉*/ ...;
2 var cs = /*:jQuery〈1+〈Content〉〉*/ ...;
3 var tsAndCs = /*:jQuery〈1+〈Time〉++1+〈Content〉〉*/ ts.add(cs);
4 var tsOrCs = /*:jQuery〈1+〈Time+Content〉〉 */ tsAndCs; // looser type
5 var prevTsAndCs = tsAndCs.prev(); // Can be jQuery〈1+〈Author〉〉
6 var prevTsOrCs = tsOrCs.prev(); // Must be jQuery〈0+〈Author〉〉
The combined collection ts.add(cs) can be given two types: one using sum-
multiplicities and one using a normalized multiplicity with a union type. When
calling @prev(1+〈Time〉++1+〈Content〉), @prev can distribute over the sum and
since we know that there exists at least one Content element, the result must
contain at least one Author. But when calling @prev(1+〈Time+Content〉), we
might have a collection containing only Time elements and so the result collection
may be empty.

4.3 Creating Local Structure with the @selector Function

The last remaining challenge is to ascribe a type to the $ function itself. We
start with two concrete examples, and then explain the general case. Finally, we
explore some subtleties of our design.

CSS and the @selector Function. Consider determining which local struc-
tures matches the query string "* > .author". We examine the local structure
for types that mention the class .author, finding just one in this case, namely
Author = PElement @ div.stream > div.tweet > p.time + p.author. We
must then check whether the offered selector * > .author and the structure’s
selector div.stream > div.tweet > p.time + p.author can ever describe the
same element: this is an intersection test over selectors, and can be done eas-
ily [12]. In fact, * > .author does intersect with Author’s selector (because all
Authors do have a parent element). Finally, recall that the local structure invari-
ants in Section 4.2 implicitly assert that, by omission, all other local structures
are asserted not to have class .author, and are therefore excluded. We can
therefore conclude @selector〈"div > .author"〉 = 1+〈Author〉.

On the other hand, consider the selector "div.author". We know that
"div.author" does not intersect with Author (because an element cannot match
both "div" and "p"), nor with anything else (because nothing else has class
".author"), so @selector〈"div.author"〉 = 0〈Element〉.

As with the primitive navigation type functions, we can encapsulate this rea-
soning in another primitive function, @selector. Here we must pass the precise
string value of the selector to the type function, so that it can be examined



Combining Form and Function: Static Types for JQuery Programs 91

as needed. We exploit Typed JS’s refined string types: rather than grouping all
strings together under type String, Typed JS uses regular expressions to define
subtypes of strings [9]. (In fact, String is just an alias for the regular expres-
sion /.*/, which matches all strings.) In particular, string literals can be given
singleton regular expression types matching only that string, and so pass the
string value into our type function.4 Therefore, we might give the $ function the
general type

1 $ : ∀ s <: /.*/ . ’s -> jQuery〈@selector〈’s〉〉
The full algorithm for @selector, then, parses the string argument as a CSS
selector. When it fails, it simply returns 0〈Element〉. It next searches through
the local structure definitions for candidates with matching class names, and
intersects the query selector with the selectors compiled from the candidates’
local structure declarations (using the approach in [12]). The returned type of
@selector is the union of those local structure types whose selectors intersect the
query string. (But see Section 5 below for which multiplicity it should return.)

Note that we never expose the parsing and interpretation of strings as CSS
queries directly, but only the result of comparing strings to the selectors induced
by local structure. We also do not add type constructors to our type language
that mimic CSS selector combinators; we instead use only the refinement types
shown above. We chose this design to keep our type system loosely coupled from
the precise query language being used; our only requirement is that query inter-
sections and containment be decidable. If jQuery used another language, perhaps
more expressive than CSS, we would only need to replace the CSS selector inter-
section and containment algorithms, and not need to change any other aspects
of our type system.

Applying @selector to Overly-Broad Queries. Defining the @selector
function entails two crucial choices: how many items should it return when the
query matches local structures, and how flexible should it be in matching selec-
tors to local structure? The former question is quite subtle, and we address it in
Section 5. The latter is more a matter of programmer expectations, and we can
resolve it relatively easily.

In our Twitter stream example, what should the query $("div > p") return?
It does not mention any local structure classes or ids, so we have three options:

1. We might return 0+〈PElement @ div > p〉, because nothing in the selector
matches any of the required classes or ids of the local structure.

2. We might return 1+〈Time + Author + Content〉, because each of these three
structure definitions match the query selector, even though none of the re-
quired classes are present in the query.

4 Note: we do not require the argument to the $() function to be a string literal; the
types here admit any string expression. We attempt to parse that type as a CSS
selector, and such precise types often only work to literals. Since in practice, the
arguments we have seen usually are literals, this encoding most often succeeds.
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3. We might return the “compromise” union 0+〈Time + Author + Content +
(PElement @ div>p)〉, because the query might return either any of the
declared structures, or any other 〈p/〉 elements with 〈div/〉s as parents.

Of the three options, the third is clearly the least appealing, as it is tantaliz-
ingly useful (including Time, Author and Content), while still not guaranteeing
anything about the returned values’ multiplicity or type. The second is the most
precise and useful, but it is incorrect: there might well be other elements match-
ing div > p that are not part of a Tweet structure. As a result, the only sound
multiplicity we can return in this case is the first one, which has the side benefit
of highlighting, by its obtuseness, the imprecision of the query selector.

Unfortunately, several of the examples we evaluated used queries of this vague
and overly-broad form! An amateur jQuery programmer, upon reading these
examples, might infer that query brevity is preferred over precision. To accom-
modate these examples, we define our selector function to return the first—
sound—option above by default, but currently we provide a command-line flag
to implement the second (unsound but useful) option instead. (But see Section 5
below for a non-flag-based solution.) We view the need for this option as an un-
fortunate symptom of web developers’ current practice of writing jQuery code
without co-developing a specification for that code.

5 Type-System Guarantees and Usability Trade-Offs

JQuery provides four apis for querying: $ itself, that selects nodes in the doc-
ument; find(), that takes a current query set and selects descendant nodes;
filter(), that selects a subset of the current query set; and eq(), that selects
the nth element of the current query set. Each of these might return zero items
at runtime, so the most natural types for them are:

1 $ : ∀ s <: String . ’s -> jQuery〈0+〈@selector〈’s〉〉〉
2 filter : (∀ e <: Element, [’jq〈0+〈’e〉〉] (’e -> Bool) -> ’jq〈0+〈’e〉〉) &
3 (∀ s <: Str, [’jq〈’m〉] ’s -> ’jq〈0+〈@filter〈’m, ’s〉〉〉)
4 find : ∀ s <: Str, [’jq〈’m〉] ’s -> ’jq〈0+〈@filter〈@desc〈’m〉, ’s〉〉〉
5 eq : ∀ e <: Element, [’jq〈1+〈’e〉〉] Num -> ’jq〈01〈’e〉〉

(In these types, @filter is a variant of @selector, and @desc is the transitive
closure of @children.) But these types are inconvenient: because they all include
0, their return values cannot be chained with methods that require a non-zero
multiplicity. Note that these zeroes occur even if the query string matches local
structure. This is particularly galling for the $ function, as after all, if a query
string can match local structure definitions, then surely the developer can expect
that it will actually select nodes at runtime! Worse, using this type effectively
marks all jQuery chains as type errors, because the first api call after $() will
expect a non-zero multiplicity as input. Likewise, developers may often expect
that their filter() or find() calls will in fact find non-zero numbers of nodes.

Despite their precision, our types seem to have lost touch with developers’
expectations. It appears the only way to make our types useful again is to change
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them so they no longer reflect the behavior of jQuery! What guarantee, then,
does our type system provide, and how can we resolve this disparity between
“expected” and actual jQuery behavior?

5.1 Type-System Guarantees

We have described our type system above as capturing jQuery’s behavior “pre-
cisely”, but have not formalized that claim. Recall that the traditional formal
property of soundness asserts that a type system cannot “lie” and affirm that an
expression has some type when in fact it does not, or equivalently, affirm that
an expression will execute without error at runtime when in fact it will. Such
soundness claims are necessarily made relative to the semantics of the underlying
language. But jQuery is a language without a formal semantics, so what claims
besides soundness can we make about our approach?

Our type system is based upon Typed JS [10], which has a formal soundness
guarantee relative to JS semantics. We are therefore confident that our system
correctly handles typical JS features. However, while our type system may be
sound for JS, we might ascribe types to jQuery apis that do not match their actual
behavior. This would be a failing of our type environment, not of our type system.
To produce plausibly correct types for jQuery’s apis, we have experimented with
many examples to determine potential types, and constructed counterexamples
to convince ourselves the types cause typing errors only in programs we expected
to be wrong.

Of course, jQuery is in fact implemented in JS, and therefore it is conceiv-
able that we might typecheck the implementation to confirm it has the types
we have ascribed. As our experience with typechecking ADsafe [16] has shown,
typechecking a library can be a complex undertaking in its own right; we leave
typechecking the source of jQuery itself as future work we intend to pursue.

But as we have begun to see already in Footnote 4, even choosing appropriate
types for jQuery involves aesthetic choices, trading off between strictness and
static determination of errors on one hand, and flexibility and ease of develop-
ment on the other. We now examine these trade-offs in more detail.

5.2 Accommodating Varied Developer Expectations

The useful output of a type system—its acceptance or rejection of a program,
and the error messages that result—provides crucial feedback to developers to
distinguish buggy code from incomplete code. But type checkers can only op-
erate on the code that is actually written, and that may not always suffice to
distinguish these two cases, particularly when they are syntactically identical.

Merely by writing queries, developers have codified implicit expectations
about how the state of their program matches their code. In particular, they
understand that because of the dynamic, stateful changes to page structure
that make their application interactive, the size of a query’s result may vary
during execution: queries that might return several elements at one point of a
program’s execution might later return none, or vice versa. But buggy queries
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also may have unexpected sizes. Nothing syntactically distinguishes queries with
anticipated size variability from ones that are buggy. Without this knowledge,
we cannot reliably report type errors to developers. We explore two untenable
approaches for resolving this ambiguity, and then explore two more palatable
ones.

A Non-solution: Specialized Code. One unsuccessful strawman approach
might require programmers to write repetitive variants of code to deal with each
potential query result size. This is untenable, as these variants clutter the code,
make future code modifications difficult, and break from the compositional style
of jQuery programs.

An Unsound “Solution”: Assuming Presence. Another approach might
simply assert by fiat that any local structures defined by the author are always
guaranteed to be present: effectively, this means removing the explicit 0+ in the
output type of the query apis. Under this assumption, the following query should
always return 1〈Tweet〉 (recall the definition of Tweets from Section 4):

1 $(".tweet").find(".starred").first() // Has type jQuery〈1〈Tweet〉〉
But the developer explicitly said starred only might be present! Further, it is
laughably wrong in the face of page mutations:

1 $(".tweet").find(".starred").removeClass("starred");
2 $(".tweet").find(".starred").first() // Still has type jQuery〈1〈Tweet〉〉

Note that this assumption leads to incorrect types, in that it does not accurately
reflect the behavior of find(). But this type does not break the soundness of the
type system itself: it is entirely possible to write a method that always returns a
non-zero number of elements—though to do so, one would have to use raw dom

apis, and effectively make such a function a “primitive” operation with respect
to the jQuery language.

On the other hand, these “incorrect” types are much more useful for the
$() function: by allowing non-zero multiplicities, jQuery chains can be checked
without immediately requiring annotation.

A Spectrum of Type Environments. One seemingly simple possibility is
simply to add “flags” to the type system indicating whether find() (above),
@selector (as in Footnote 4), and many other functions should be strict or per-
missive about their multiplicities. We reject this approach. If the flags affect the
core type language or the type checker itself, then any soundness or correctness
claims of the type system can only be made relative to every possible combina-
tion of flags. As type checkers are already quite complicated, these flags are a
poor engineering decision, especially when a much cleaner, modular alternative
exists.

Rather than add these flags to the type system, we can compile a variety
of type environments from local structure, that contain stricter or looser types
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for these functions. Unlike “flags”, whose interpretation is hidden within the
type system’s implementation, these various environments are easily examined
by the developer, who can see exactly how they differ. A developer choosing to
use the looser environments is therefore making a conscious choice that certain
error conditions are not important, or equivalently that he is willing for them
to appear as runtime errors instead. Moreover, the developer may migrate from
permissive to strict environments as his program matures and nears completion.

The Need for New APIs. Our last approach requires actually enhancing the
jQuery api. JQuery objects expose their size via the length field; we might use
this to regain lost precision. We might force programmers to explicitly write if-
tests on the length field, but this has the unwanted effect of breaking chaining.
Instead, we propose new jQuery apis:

1 assertNotEmpty : (∀ t, [’jq〈01〈’t〉〉] -> ’jq〈1〈’t〉〉) &
2 (∀ t, [’jq〈0+〈’t〉〉] -> ’jq〈1+〈’t〉〉)
3 ifZero : ∀ t, [’jq〈0+〈’t〉〉] ([’jq〈0〈’t〉〉]->Undef) -> ’jq〈0+〈’t〉〉
4 ifOne : ∀ t, [’jq〈0+〈’t〉〉] ([’jq〈1〈’t〉〉]->Undef) -> ’jq〈0+〈’t〉〉
5 ifMany : ∀ t, [’jq〈0+〈’t〉〉] ([’jq〈1+〈’t〉〉]->Undef) -> ’jq〈0+〈’t〉〉
The first api converts possibly-empty collections into definitely-non-empty ones,
and throws a runtime error if the collection is in fact empty. Developers would
use this api to indicate queries they expect should never fail. The example above
would be rewritten

1 $(".tweet").find(".starred").removeClass("starred");
2 $(".tweet").find(".starred").assertNotEmpty().first();

This would typecheck successfully, and always throw an exception at runtime.
By contrast, the latter three apis take a receiver object of unknown multiplicity,
and a callback that expects a argument of precise multiplicity, and calls it only
if the receiver has the expected multiplicity. Developers would use these apis
to indicate computation they expect might not be needed. The example above
would be rewritten

1 $(".tweet").find(".starred").removeClass("starred");
2 $(".tweet").find(".starred").ifMany(function() { this.first(); });

This again would typecheck successfully, and would not call the inner function at
runtime. Unlike the previous api, these apis never throw exceptions, but indicate
to the type checker that the programmer knows that these calls—and these
alone—might fail. These apis implicitly perform a specialized form of occurrence
typing [22], without needing any extra type machinery.

6 Modeling JQuery Reality

Real jQuery programs avail themselves of several additional query apis. One of
them requires revising the kind of our type, and leads to the final form of our
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type for jQuery. This change unfortunately makes the type more unwieldy to
use, but we can resolve this with a simple type definition.

Merging and Branching. We have already seen the add() operation, which
allows combining two jQuery objects into one. Occasionally, a program might
need the dual of this operation, “splitting” one jQuery into multiple subqueries.
Consider the following two queries:

1 $(".tweet").find(".star").each(processStarredTweet);
2 $(".tweet").find(".self").each(processOwnTweet);

They both have the same prefix, namely $(".tweet"), and more generally this
prefix might be an expensive computation. To avoid this, jQuery objects con-
ceptually form a stack of their navigated states, where each navigation pushes
a new state on the stack: programs may use a new api, end(), to pop states off
this stack. The example above would be rewritten:

1 $(".tweet").find(".star").each(processStarredTweet)
2 .end() // pops the find operation
3 .find(".self").each(processOwnTweet);

Internally, jQuery objects form a linked list that implements this stack: the
chainable jQuery methods that appear to modify the contents of the collection
return a new jQuery object that wraps the new contents and whose tail is the old
jQuery object. (The old object is sill available, and has not been mutated.) The
end() method simply returns the tail of the list. In order to type end() correctly,
we must encode the linked list in our types. To do so requires a systematic change
in our type: we redefine the jQuery type constructor to take two type parameters,
where the new second type parameter describes the tail of the stack. Our final
type definition for jQuery is (only representative examples of jQuery’s more than
fifty query apis are shown; the full type is available in our implementation):

1 type jQuery = μ jq :: (M〈*〉, *) => * .
2 Λ m :: M〈*〉, prev :: * . {
3 // Navigation APIs: next, prev, parent, etc. are analogous
4 children : ∀ e <: 1+〈Element〉 .
5 [’jq〈’e, ’prev〉] -> ’jq〈@childrenOf〈’e〉, ’jq〈’e, ’prev〉〉
6 // Accessor APIs: offsetX, height, attr, etc. are analogous
7 css : ∀ e <: Element .
8 ([’jq〈1〈’e〉, ’prev〉] Str -> Str &
9 [’jq〈1+〈’e〉, ’prev〉] Str*Str -> ’jq〈1+〈’e〉, ’prev〉)

10 // Stack-manipulating APIs
11 add : ∀ n <: 0+〈Element〉, ’q .
12 [’jq〈’m, ’prev〉] ’jq〈’n, ’q〉 -> ’jq〈’m++’n, ’jq〈’m, ’prev〉〉
13 end : [’jq〈’m, ’prev〉] -> ’prev
14 // Collection-manipulating APIs
15 each : ∀ e <: Element . [’jq〈0+〈’e〉, ’prev〉] (’e->Undef) -> ’jq〈’m, ’prev〉
16 filter : (∀ e <: Element, [’jq〈0+〈’e〉〉] (’e->Bool) -> ’jq〈0+〈’e〉〉) &
17 (∀ s <: Str, [’jq〈’m〉] ’s -> ’jq〈0+〈@filter〈’m, ’s〉〉〉)
18 find : ∀ s <: Str, [’jq〈’m〉] ’s -> ’jq〈0+〈@filter〈@desc〈’m〉, ’s〉〉〉
19 eq : ∀ e <: Element, [’jq〈1+〈’e〉〉] Num -> ’jq〈01〈’e〉〉
20 // No other fields are present
21 � : _

22 }
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Methods such as add() and children() nest the current type one level deeper,
and end() simply unwraps the outermost type.

Convenience. Often the suffix of the stack is not needed, so we can define a
simple synonym for the supertype of all possible jQuery values:

1 type AnyJQ = ∀ p . jQuery〈0+〈Any〉, ’p〉
Any functions that operate over jQuery objects, and that will not use end() to
pop off the jQuery stack any more than they push on themselves, can use AnyJQ
to summarize the type stack easily.

7 Evaluation

To determine the flexibility of our type system, we analyzed a dozen samples
from Learning JQuery [6] and from the Learning JQuery blog [20, 21]. Our
prototype system5 supports standard CSS selectors, but not pseudoselectors or
the bespoke jQuery extensions to CSS syntax. In the examples below, we have
edited the original code by replacing pseudoselectors and extensions with calls to
their api equivalents and with calls to ifMany() (defined above). These added
calls represent our understanding of how the examples should work; without
them, the program’s intended behavior is unclear. With these added calls, the
examples below were checked assuming presence for the $() function, but not
for find() or filter(). We distinguish three sets of results: those that should
typecheck and do, those that should not typecheck and do not, and cases that
expose weaknesses for our system.

7.1 Successfully Typechecking Type-Correct Examples

Our samples consist of between 2 and 9 calls to jQuery functions in linear,
branching, and nested call-patterns. These examples each typecheck with no an-
notations needed on the code besides local structure definitions that need only
be written once. These local structures were not defined by the accompanying
text; we derived them by manual inspection of the examples and their intended
effects. We highlight three illustrative examples here.

Selecting All of a Row. Our first example shows a straightforward selection
of all 〈td/〉 tags in a table row and adding a class to them. Note that addClass()
is called with a class name that is not declared in the local structure; our type
system is not intended to restrict such code. Rather, it ensures that the call
to addClass() is given a non-empty collection to work with. Note also that the
initial query is over-broad (a better query would be ’td.title’) and requires the
command-line option for flexible query matching (of Footnote 4) to typecheck
as written:
5 Available at http://www.jswebtools.org/jQuery/
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1 /*::
2 (PlaysTable : TableElement ids = [playstable] classes = [plays]
3 (PlaysRow : TRElement classes = [playsrow]
4 (Title : TDElement classes = [title])
5 (Genre : TDElement classes = [genre])
6 (Year : TDElement classes = [year])
7 )+ );
8 */
9 $(’td’) // Has type t1 = jQuery〈1+〈Title〉++1+〈Genre〉++1+〈Year〉, AnyJQ〉

10 .filter(’:contains("henry")’) // t2 = jQuery〈0+〈Title+Genre+Year〉, t1〉
11 .ifMany(function() { // [jQuery〈1+〈Title+Genre+Year〉, t1〉] -> Undef
12 this // t3 = jQuery〈1+〈Title+Genre+Year〉, t1〉
13 .nextAll() // t4 = jQuery〈1+〈Genre〉 ++ 1+〈Year〉, t3〉
14 .andSelf() // jQuery〈1+〈Genre〉 ++ 1+〈Year〉 ++ 1+〈Title〉, t4〉
15 .addClass(’highlight’); // allowed, non-empty collection
16 });

Filtering by Ids. This next example is a deliberately circuitous query, and
illustrates several features both of jQuery and our type system. The call to
parents() normally would return all the known parents of the current elements,
up to and including the generic type Element, but because the query also fil-
ters on an id, and because that id appears in local structure, our type is much
more tightly constrained. Similarly, the calls to children() and find() are con-
strained by the local structure. Note that if the call to parent() were not so
constrained, then these subsequent calls would mostly be useless, since nothing
is known about arbitrary Elements.
1 /*::
2 (SampleDiv : DivElement ids = [jqdt2] classes = [samplediv]
3 (Paragraph : PElement classes = [goofy]
4 ...) // The children of a Paragraph are irrelevant here
5 (OrderedList : OLElement classes = [list]
6 (LinkItem : LIElement classes = [linkitem]
7 (Link : AElement classes = [link]))
8 (GoofyItem : LIElement classes = [goofy]
9 (StrongText : StrongElement classes = [strongtext]))

10 (FunnyItem : LIElement classes = [funny])
11 <LinkItem>
12 <GoofyItem>));
13 */
14 $(’li.goofy’) // Has type t1 = jQuery〈1+〈GoofyItem〉, AnyJQ〉
15 .parents(’#jqdt2’) // t2 = jQuery〈1+〈SampleDiv〉, t1〉
16 .children(’p’) // t3 = jQuery〈1+〈Paragraph〉, t2〉
17 .next() // t4 = jQuery〈1+〈OrderedList〉, t3〉
18 .find(’a’) // t5 = jQuery〈1+〈Link〉, t4〉
19 .parent(); // t6 = jQuery〈1+〈LinkItem〉, t5〉

Manipulating Each Element. The following example demonstrates that our
approach scales to higher-order functions: the callback passed to the each()
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operation (line 16) needs no annotation to be typechecked. The ifMany() calls
could be eliminated using the unsound options described in Section 5. Note also
the use of end() on line 14 to restore a prior query state.

1 /*::
2 (NewsTable : TableElement classes = [news] ids = [news]
3 ... // Placeholder element; never queried
4 (NewsBody : TBodyElement classes = [newsbody]
5 (YearRow : TDElement classes = [yearrow])
6 (NewsRow : TRElement classes = [newsrow] optional classes = [alt]
7 (NewsInfo : TDElement classes = [info])+)+
8 <YearRow>
9 <NewsRow>+))

10 */
11 $(’#news’) // Has type t1 = jQuery〈1〈NewsTable〉, AnyJQ〉
12 .find(’tr.alt’) // t2 = jQuery〈1+〈NewsRow〉, t1〉
13 .ifMany(function() { this.removeClass(’alt’); }) // t2
14 .end() // t1
15 .find(’tbody’) // t3 = jQuery〈1〈NewsBody〉, t1〉
16 .each(function() { // [NewsBody] -> Undef
17 $(this) // t4 = jQuery〈1〈NewsBody〉, AnyJQ〉
18 .children() // t5 = jQuery〈1+〈YearRow〉 ++ 1+〈NewsRow〉, t4〉
19 .filter(’:visible’) // t6 = jQuery〈0+〈YearRow〉++0+〈NewsRow〉, t5〉
20 .has(’td’) // t7 = jQuery〈0+〈NewsRow〉, t6〉
21 .ifMany(function() { // [jQuery〈1+〈NewsRow〉, t6〉] -> Undef
22 this.addClass(’alt’); // allowed, non-empty collection
23 }); // t7
24 }); // t3

7.2 Successfully Flagging Type-Incorrect Examples

The examples we examined from the Learning JQuery textbook and blog are
typeable. To verify that our type-checker was not trivially passing all programs,
we injected errors into these examples to ensure our system would correctly catch
them, and it does. Our modifications changed queries to use the wrong element
id, or have too many or too few navigational calls.

1 $(’li.goofy’) // Has type t1 = jQuery〈1+〈GoofyItem〉, AnyJQ〉
2 .parents(’#WRONG_ID’) // t2 = jQuery〈01〈Element @ "#WRONG_ID"〉, t1〉
3 .children(’p’);
4 ⇒ ERROR: children expects 1+〈Element〉, got 01〈Element〉
5 $(’#news’) // Has type t3 = jQuery〈1〈NewsTable〉, AnyJQ〉
6 .find(’tr.alt’) // t4 = jQuery〈1+〈NewsRow〉, t3〉
7 .ifMany(function() { this.removeClass(’alt’); }) // t4
8 // Note: missing call to .end()
9 .find(’tbody’) // t5 = jQuery〈0〈Element〉, t3〉

10 .each(...)
11 ⇒ ERROR: each expects 1+〈Element〉, got 0〈Element〉
12 $(".tweet").children().next().next().next().css("color", "red");
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13 ⇒ ERROR: css expects 1+〈Element〉, got 0〈Element〉
14 $(".tweet").children().next().css("color");
15 ⇒ ERROR: css expects 1〈Element〉, got 1+〈Author + Time〉

7.3 Weaknesses of Our System

Beyond the restrictions shown in the paper, and the trade-offs between sound-
ness and utility of types, there still exist queries our system cannot handle. We
construct one such instance here.

Under our running example, the expression $(".tweet").parent() will have
the expected type jQuery〈1+〈Stream〉, AnyJQ〉. However, the similar expres-
sion $(".stream").parent() correctly has type jQuery〈0+〈Element〉, AnyJQ〉,
because nothing is known about the parent of a Stream.

The expression $("div.outer > *.stream").parent() will at runtime re-
turn the 〈div div=“outer”/〉 elements that contain streams (if any exist).
Our current type system, however, will nevertheless give this expression the
type jQuery〈0+〈Element〉, AnyJQ〉, even though these Streams definitely have
〈div/〉s as parents. This is inherent in our semantics for local structure: develop-
ers are obligated to provide definitions for any content they intend to access via
jQuery’s apis—beyond those definitions, the remainder of the page is unknown.
One might re-engineer our system to dynamically refine the local structure-
derived types to include the extra information above their root elements, but
such complication both muddies the implementation and also confuses expecta-
tions of what the system can provide developers. Instead, developers must simply
provide extra local structure information, and avoid the confusion entirely.

8 Related Work

XDuce and CDuce. Languages such as XDuce [11, 19] and CDuce [2] embed
an XML-processing language into a statically-typed general-purpose language,
and extend the type language with document schemas. These languages differ
from our jQuery setting in three crucial ways, all stemming from the fact that
jQuery is a language for manipulating HTML that is embedded within JS.

First and foremost, XDuce and CDuce operate over well-schematized data-
bases represented in XML, from which richly-typed structured data can be ex-
tracted. But HTML is not schematized: it is almost entirely free-form, and largely
presentational in nature. As we argued in Section 4, mandating a global schema
for HTML documents is an untenable requirement on developers. As such, XDuce
and CDuce’s approach cannot apply directly.

Second, XDuce and CDuce go to great lengths to support pattern matching
over XML: in particular, their language of values includes sequences of tagged val-
ues, i.e. XML forests. XDuce and CDuce define regular expression types to precisely
type these sequences. But jQuery does not have the luxury of enriching JS to sup-
port free-form sequences: instead, it encapsulates a sequence of values into a JS
object. As the CDuce paper notes [2], regular expression types are not themselves
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types, but are only meaningful within the context of an element: this is exactly
comparable to our kinding distinction between multiplicities and types.

Third, the operations native the HTML and dom programming are simpler than
those in XML processing: web programmers use CSS selectors [25] to query nodes
in their documents, rather than XPath. Further, because JS has no pattern-
matching construct, there is no need for an analysis of jQuery to define tree
patterns or regular tree types (as in [11]), or check exhaustiveness of pattern
matching (as in [5]). Instead, as we have shown, a simpler notion suffices.

Semanticizing the Web. This work fits into a growing effort to design—or
retrofit—semantics onto portions of the client-side environment, including JS [9,
14, 15], the event model [13], and the browser itself [3]. Some work has begun ad-
dressing the semantics of dom manipulations [8], but it has focused on the low-
level apis and not on the higher-level abstractions that developers have adopted.

Structure and Size Types. Other work [26] extends Haskell’s type system
with indexed types that describe sizes statically. Multiplicities specialize this
model by admitting ranges in the indices. Our implementation also demonstrates
how to use multiplicities without annotation burden, in the context of an im-
portant web library.

9 Future Work: Interoperating with Non-jQuery Code

While our type system cleanly and accurately supports the query and navigation
portions of jQuery, other challenges remain in analyzing the interactions between
jQuery and raw JS code. We focus on two interactions: code written with types
but without multiplicities, and code that might breach local structure invariants.

Relating Types and Multiplicities. Multiplicities, as presented so far, are
strictly segregated from types by the kinding system. However, suppose we had
two nearly-identical list types, defined by client code and by a library:

1 type AMultList = Λ m :: M〈*〉 . ...
2 type ATypeList = Λ t :: * . ...

A value of type AMultList〈1+〈τ〉〉 cannot be used where one of type ATypeList〈τ〉
is expected, and yet any program expecting the latter would behave correctly
when given the former: by its type, it clearly cannot distinguish between them.
However, upon returning from non-multiplicity-based code, we have to construct
some multiplicity from a given type. Accordingly, we might add the two “sub-
type/multiplicity” rules

Lax-TypMult

τ <: 0+〈τ〉

Lax-MultTyp

0+〈τ〉 <: τ
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These two rules let us be “lax” about keeping multiplicities and types separate,
without sacrificing soundness. Note that the utility of Lax-TypMult depends
heavily on using occurrence typing to refine the resulting 0+〈τ〉 multiplicity into
something more precise. We have implemented these rules in our type checker,
but they have not been needed in the examples we have seen.

Preserving Local Structure. Our type for jQuery ensures only that developer-
supplied callbacks typecheck with the appropriate receiver and argument types
(see Section 3). This is an incomplete specification, as such excursions into low-
level JS can easily be sources of bugs. We envision both dynamic and static solu-
tions to this problem.

Dynamically, maintaining the local structure of a subset of a page amounts to
a contract. The local structure definitions can easily be compiled into executable
JS code that checks whether a given node conforms to particular local structure
definitions, and these checks can be automatically wrapped around all jQuery apis.

Statically, maintaining tree shapes may be analyzable by a tree logic [7]. The
primary challenge is a reachability analysis identifying all the possible nodes that
might be modified by arbitrary JS; we leave this entirely to future work.

References

1. Abel, A.: Polarized subtyping for sized types. Mathematical Structures in Com-
puter Science 18(5), 797–822 (2008)

2. Benzaken, V., Castagna, G., Frisch, A.: CDuce: an XML-centric general-purpose
language. In: ACM SIGPLAN International Conference on Functional Program-
ming (ICFP), pp. 51–63. ACM, New York (2003)

3. Bohannon, A., Pierce, B.C.: Featherweight Firefox: formalizing the core of a web
browser. In: USENIX Conference on Web Application Development (WebApps),
pp. 123–134 USENIX Association, Berkeley (2010)

4. BuiltWith. JQuery usage statistics, http://trends.builtwith.com/javascript/
JQuery (retrieved November 2012)

5. Castagna, G., Colazzo, D., Frisch, A.: Error mining for regular expression patterns.
In: Coppo, M., Lodi, E., Pinna, G.M. (eds.) ICTCS 2005. LNCS, vol. 3701, pp.
160–172. Springer, Heidelberg (2005)

6. Chaffer, J., Swedberg, K.: Learning JQuery, 3rd edn. Packt Publishing Ltd.,
Birmingham (2011)

7. Gardner, P., Wheelhouse, M.: Small specifications for tree update. In: Laneve, C.,
Su, J. (eds.) WS-FM 2009. LNCS, vol. 6194, pp. 178–195. Springer, Heidelberg
(2010)

8. Gardner, P.A., Smith, G.D., Wheelhouse, M.J., Zarfaty, U.D.: Local Hoare rea-
soning about DOM. In: ACM SIGMOD Symposium on Principles of Database
Systems (PODS), pp. 261–270. ACM Press, New York (2008)

9. Guha, A., Saftoiu, C., Krishnamurthi, S.: The essence of JavaScript. In: D’Hondt,
T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 126–150. Springer, Heidelberg (2010)

10. Guha, A., Saftoiu, C., Krishnamurthi, S.: Typing local control and state using flow
analysis. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 256–275. Springer,
Heidelberg (2011)



Combining Form and Function: Static Types for JQuery Programs 103

11. Hosoya, H., Pierce, B.C.: XDuce: A statically typed XML processing language.
ACM Transactions on Internet Technology (TOIT) 3(2), 117–148 (2003)

12. Lerner, B.S.: Designing for Extensibility and Planning for Conflict: Experiments
in Web-Browser Design. Ph.D. thesis, University of Washington Computer Science
& Engineering (August 2011)

13. Lerner, B.S., Carroll, M.J., Kimmel, D.P., de la Vallee, H.Q., Krishnamurthi, S.:
Modeling and reasoning about DOM events. In: USENIX Conference on Web Ap-
plication Development (WebApps). USENIX Association, Berkeley (2012)

14. Maffeis, S., Mitchell, J.C., Taly, A.: An operational semantics for JavaScript. In:
Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 307–325. Springer,
Heidelberg (2008)

15. Politz, J.G., Carroll, M., Lerner, B.S., Pombrio, J., Krishnamurthi, S.: A tested
semantics for getters, setters, and eval in JavaScript. In: Dynamic Languages Sym-
posium, (DLS) (2012)

16. Politz, J.G., Eliopoulos, S.A., Guha, A., Krishnamurthi, S.: ADsafety: type-based
verification of JavaScript sandboxing. In: USENIX Security Symposium, p. 12.
USENIX Association, Berkeley (2011)

17. Politz, J.G., Guha, A., Krishnamurthi, S.: Semantics and types for objects with
first-class member names. In: Workshop on Foundations of Object-Oriented Lan-
guages, (FOOL) (2012)

18. St-Amour, V., Tobin-Hochstadt, S., Flatt, M., Felleisen, M.: Typing the numeric
tower. In: Russo, C., Zhou, N.-F. (eds.) PADL 2012. LNCS, vol. 7149, pp. 289–303.
Springer, Heidelberg (2012)

19. Sulzmann, M., Lu, K.Z.M.: A type-safe embedding of XDuce into ML. In: Work-
shop on ML, pp. 229–253. ACM Press, New York (2005)

20. Swedberg, K.: How to get anything you want - part 1, http://www.
learningjquery.com/2006/11/how-to-get-anything-you-want-part-1 (written
November 2006)

21. Swedberg, K.: How to get anything you want - part 2, http://www.
learningjquery.com/2006/12/how-to-get-anything-you-want-part-2 (written
December 2006)

22. Tobin-Hochstadt, S., Felleisen, M.: The design and implementation of Typed
Scheme. In: ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), pp. 395–406. ACM Press, New York (2008)

23. W3C. XML path language (XPath) 2.0, http://www.w3.org/TR/xpath20/ (written
December 2010)

24. W3C. XQuery 1.0: An XML query language, http://www.w3.org/TR/xquery/
(written December 2010)

25. W3C. Selectors level 3, http://www.w3.org/TR/selectors/ (written September
2010)

26. Zenger, C.: Indexed types. Theoretical Computer Science 187(1-2), 147–165 (1997)



Heap Decomposition Inference
with Linear Programming

Haitao Steve Zhu and Yu David Liu

SUNY Binghamton
Binghamton NY 13902, USA

{hzhu1,davidL}@cs.binghamton.edu

Abstract. Hierarchical decomposition is a fundamental principle that encour-
ages the organization of program elements into nested scopes of access, instead of
treating all as “global.” This paper offers a foundational study of heap decompo-
sition inference, the problem of statically extracting the decomposition hierarchy
latent in the runtimes of object-oriented programs, henceforth revealing the com-
positional nature of the heap. The centerpiece of the paper is Cypress, a sound,
precise, and scalable constraint-based ownership type inference coupled with a
novel application of linear programming over integers. All constraints in Cy-
press are linear, and the precision of decomposition – placing objects to scopes
as non-global as possible – can be reduced to a linear programming problem.
Cypress has been implemented as an open-source tool that can decompose real-
world Java applications of more than 100K LOC and up to 6000 statically distinct
instantiations.

1 Introduction

The principle of hierarchical decomposition (HD) is a divide-and-conquer strategy to
compartmentalize program element accesses into potentially nested scopes. Language
support for HD over static program elements – such as lexical scoping – has a history
as long as programming language design itself. HD over program runtimes are a direc-
tion particularly successful through language design such as ownership type systems
[29,6,5,2,3,11].

This paper explores a program analysis approach to HD, addressing how the heap of
the standard Java-like object model can be decomposed into a hierarchy that reflects the
principle of HD. In other words, even though the heap of Java-like languages is a global
structure where every object may potentially be referred to by all others, few practical
programs take advantage of that potential. Instead, it is more natural to consider every
heap object to be implicitly associated with a scope – the same concept as in HD –
and view the heap as a compositional tree structure where each object serves as the
scope of access for its children on the tree. The goal of the inference is to compute a
static approximation of the transformation from a global heap to a compositional heap,
informing programmers of what their heap “could have been.”

Our concrete proposal is Cypress, a sound, precise, and scalable constraint-based
type inference. As a form of ownership inference [14,28,34,26,10,17], Cypress is dis-
tinct with the following features:

G. Castagna (Ed.): ECOOP 2013, LNCS 7920, pp. 104–128, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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– Linear constraints for scalability. Cypress constraints for computing the compo-
sitional heap are linear, a scalable solution outsourceable to mature linear solvers.

– Linear programming for precision. The precision of decomposition – placing ob-
jects to scopes as non-global as possible – is guided by a novel Cypress Principle 1,
which says a “tall and skinny” view of the compositional heap is favored, and this
preference can be reduced to a linear programming problem with a judicious setting
of the objective function.

– Heap-wide scope characterization. Cypress computes scopes for all heap objects
in an algorithm that does not require iteration over each object. The result of the
analysis is a tree including all (static) heap objects, organized in a way vividly
reflecting how the heap is decomposed according to the principle of HD.

– Fully automated static inference: Cypress is a sound type inference that does not
require programmer annotation or interactive user assistance.

Beyond the technical contribution of proposing a new ownership inference algorithm,
the paper is further aimed at gaining a fundamental understanding of HD as a principle.
It provides a unified framework where commonly discussed HD mechanisms – lexical
decomposition (lexical scoping), dynamic heap decomposition (dynamic ownership),
and static heap decomposition (static ownership) – are formally related, and the HD
principle is captured as an invariant independent of the mechanisms that realize it.

Overall, heap decomposition inference addresses a fundamental goal in program-
ming languages – promoting local reasoning – with a broad range of benefits in opti-
mizing, debugging, verifying, securing, and understanding programs. Thread locality –
a property crucial for optimizing multithreaded programs (e.g. [1,13]) – can be viewed
as decomposing heap objects into scopes defined by threads. Objects in the same scope
may signify the likelihood of co-use, and co-allocating them may lead to reduced cache
misses, a boon for performance [15] and energy efficiency [33]. Localizing the use of
objects can also aid bug localization [31] and analyze the impact of change [4]. Progress
in separation logic (e.g.[12]) demonstrates the usefulness of locality information in ver-
ification. In security, the scope of capabilities [9] – object references in object-oriented
programs – is crucial in constructing access control and authority isolation [27,23]. The
compositional view of the heap is also beneficial in reverse engineering [16].

This paper makes the following contributions:

– a unified framework to reason about HD and its properties (Sec. 2).
– a novel constraint-based type inference to abstract object access in the presence of

the compositional heap as linear constraints (Sec. 4).
– a novel application of linear programming to improve inference precision, guided

by the Cypress Principle (Sec. 5).
– a prototyped implementation that analyzes real-world programs (Sec. 6).

2 Hierarchical Decomposition

In this section, we define a unified framework for HD, with three common forms of HD
– lexical decomposition, dynamic heap decomposition, static heap decomposition –

1 A cypress – especially its subspecies known as Mediterranean Cypress – is a tree usually “tall
and skinny” in shape. It is a common image, such as in Vincent van Gogh’s Starry Night.



106 H.S. Zhu and Y.D. Liu

��������definition
form

lexical
decomposition

(� = x)

dynamic heap
decomposition

(� = d)

static heap
decomposition

(� = s)

reasoning about program run-time state
program (and its
relationship with
run-time states)

accessors (a� ∈ A�) code blocks objects abstract objects
accessees (b� ∈ B�) variable names objects abstract objects
elements (c� ∈ C�) A� ∪B�

access relation
a� ↪→� b�

a� immediately
encloses b� use

heap stores/stack frames
of a� refers to b�

fields/methods of
a� refers to b�

scope relation
a� �� c�

a� immediately
encloses c�

definition

inferred in standard object model
(or induced via language design)

ehd�(↪→�,��)
for soundness

necessary and sufficient necessary

Fig. 1. From Lexical Decomposition to Heap Decomposition

summarized in Fig. 1. Metavariables introduced in this section routinely use superscript
labels x, d, s to differentiate the three forms.

Throughout the paper, we say relation Rel : SetA × SetB is a rooted tree relation if
Rel is injective, surjective, irreflexive, acyclic, and contains one unique element elmtA
such that elmtA ∈ SetA and elmtA /∈ SetB and (elmtA, elmtB) ∈ Rel for some elmtB.
We further say elmtA is the root of Rel. The rooted tree relation intuitively corresponds
to the edge set of graph-theoretic rooted directed trees.

2.1 The Essence of Hierarchical Decomposition (though Lexical Decomposition)

Let us start with the most well-understood HD mechanism, block-based lexical scop-
ing. Given a program P , we abstract it as a 5-tuple 〈Ax;Bx; axG; ↪→x;�x〉 configuration
where

– Accessor/Scope set Ax: the set of code blocks (IDs) in P
– Accessee set Bx: the set of variables (names) in P
– Global scope axG: the code block that implicitly encloses the entire program
– Access relation ↪→x: Ax ∪{axG}×Bx: ax ↪→x bx says ax accesses bx. Concretely, it

is defined as code block ax immediately encloses the use of variable bx.



Heap Decomposition Inference with Linear Programming 107

– Scope relation �x: Ax ∪ {axG} × Ax ∪ Bx: a rooted tree relation with root axG and
ax �x cx says ax is the lexical scope of cx. Concretely, it is defined as block ax

immediately encloses cx definition, as a variable declaration or a nested block.

It is important to realize that for any program subject to lexical scoping, a latent invari-
ant must hold between ↪→x and �x. Indeed, this invariant is a concrete instance of a
more general invariant that epitomizes hierarchical decomposition:

Definition 1 (The Essence of Hierarchical Decomposition). HD mechanisms main-
tain the following invariant between the access relation ↪→� and scope relation ��:

ehd�(↪→�,��)
def
= a�1 �� b� ∧ a�2 ↪→� b� =⇒ a�1 ��

∗ a
�
2

where � is the identifier of the HD mechanism itself (such as x), and ��
∗ is the reflexive

and transitive closure of ��. The invariant can be interpreted in two equivalent ways:

Accessors from Inner Scopes. If a�1 is the scope of b�, then any access to b� must come
from an inner scope of a�1, i.e. a scope that can be reached from a� according to ��.

Accessees in Outer Scopes. If a�2 accesses b�, then the scope of b� must be an outer
scope of a�2, i.e. a scope that can reach a�2 according to ��.

The Accessors from Inner Scopes interpretation demonstrates the key benefit of HD:
promoting local reasoning. In Sec. 4, the Accessees in Outer Scopes interpretation will
help us encode the essence of HD in a type inference algorithm. With this formulation,
the common notion of lexical scoping is:

Definition 2 (Lexical Decomposition). Configuration 〈Ax;Bx; axG; ↪→x;�x〉 conforms
to lexical decomposition iff ehdx(↪→x,�x).

Our goal is to use the familiar lexical decomposition to shed light on heap decom-
position. As it turns out, lexical decomposition and heap decomposition bear remark-
able similarity: they share the same ehd� invariant. For instance, the two interpretations
above resonate with deep ownership and owners-as-dominators [5] in ownership types.

2.2 Dynamic Heap Decomposition

The main difference between lexical decomposition and heap decomposition is that the
latter is concerned with the access relation and the scope relation among objects. Let us
first consider the case of dynamic heap decomposition, i.e., HD for the run-time state
at a program execution step. For our discussion here, we abstract the run-time state as a
configuration CFd in the form of a 4-tuple 〈Od; oG; ↪→d;�d〉 including:

– Object set (unified accessor/accessee/scope set) Od: the set of objects (IDs)
– Global scope oG: the implicit “global” object that encloses the bootstrapping code
– Access relation ↪→d: Od ∪ {oG}×Od, where o1 ↪→d o2 says o1 accesses o2. Under

concrete dynamic semantics with heaps and stacks, one possible ↪→d relation is the
object reference relation2, where o1 ↪→d o2 holds iff the heap store for object o1 or
any stack frame for any method invocation of o1 contains a reference to o2.

2 Defining the access relation as the reference relation is similar to the conventional capability
model [9]. There are alternative ways to define the access relation, such as the accessor reads
from and writes to a field of the accessee.



108 H.S. Zhu and Y.D. Liu

– Scope relation �d: Od ∪ {oG} × Od, a rooted tree relation where o1 �d o2 says o1
is the dynamic object scope of o2, and oG is the root

To strictly mirror the definition we used for lexical decomposition, the 4-tuple above
is indeed a degenerate 5-tuple 〈Ad;Bd; oG; ↪→d;�d〉 where Ad = Bd = Od. In other
words, objects are both accessors and accessees in dynamic heap decomposition. With
this alignment, the essence of dynamic heap decomposition can be analogously defined:

Definition 3 (Dynamic Heap Decomposition). Configuration 〈Od; oG; ↪→d;�d〉 is a
dynamic heap decomposition iff ehdd(↪→d,�d).

Even though the invariant behind lexical decomposition and dynamic heap decomposi-
tion is in essence identical, there is often a difference on how the invariant is applied. In
the former, both ↪→x and �x are readily available during parsing, so ehdx is mostly used
to provide a boolean answer: does the program conform (to lexical decomposition)? In
dynamic heap decomposition however, only ↪→d is available in Java-like run-times, so
ehdd is more often applied to dynamic heap decomposition inference: given a run-time
state whose access relation is ↪→d, find a �d such that ehdd(↪→d,�d).

In plain words, dynamic heap decomposition inference is aimed at (figuratively) or-
ganizing the objects of a run-time state into a hierarchy that conforms to the principle
of HD, based on information of inter-object access at the run-time state. Just as lexical
decomposition, dynamic heap decomposition also promotes local reasoning: it attempts
to provide a scope to every object instead of assuming all as “global.” Existing work
on dynamic UML composition inference (e.g. [16]) and dynamic ownership inference
(e.g. [28]) are concrete instances in this category. In those contexts, the object that forms
the “dynamic object scope” of another is called a compositional object or an owner.

2.3 Static Heap Decomposition

The problem with dynamic heap decomposition is it only applies HD to one particular
runtime state of a program’s execution (or a finite combination of them). What is more
useful is to characterize how heap decomposition can be applied to all run-time states
of a program P . This goal is achieved by static heap decomposition, a conservative
approximation of dynamic heap decomposition for all run-time states.

Static heap decomposition (checking or inference) systems are constructed over a
program abstraction which we represent as configuration CFs, a tuple 〈Os;αG; ↪→s;�s〉
including:

– Abstract object set (unified accessor/accessee/scope set) Os: the set of static ap-
proximations of distinct run-time objects of the program

– Global scope αG: the approximation of the implicit “global” object that encloses
the bootstrapping code

– Access relation ↪→s: Os∪{αG}×Os, where α1 ↪→s α2 says α1 is the static approx-
imation of an object that accesses an object of which α2 is the static approximation.
We also informally say α1 statically accesses α2.

– Scope relation �s: Os ∪{αG}×Os, a rooted tree relation where α1 �s α2 says α1

is the static object scope of α2, and αG is the root
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1 c l a s s Main {
2 void main ( ) {
3 X@αX1 x ;
4 Z@αZ1 z ;
5 x = new X@αX2 ( ) ;
6 z = x . mdx ( ) ;
7 }
8 }
9 c l a s s X {

10 Z@αZ2 mdx ( ) {
11 Y@αY1 y1 ;
12 Y@αY2 y2 ;
13 Z@αZ3 z1 ;
14 Z@αZ4 z2 ;
15 y1 = new Y@αY3 ( ) ;

16 y2 = y1 ;
17 z1 = new Z@αZ5 ( ) ;
18 z2 = y2 . mdy ( z1 ) ;
19 re turn y2 . f d z ;
20 }
21 }
22 c l a s s Y {
23 Z@αZ6 f d z ;
24 Z@αZ7 mdy (Z@αZ8 z ) {
25 t h i s . f d z = z ;
26 re turn new Z@αZ9 ( ) ;
27 }
28 }
29 c l a s s Z { . . . }

(a) an example

αZ5

αG

αX2

αY3 αZ9

(b) access relation ↪→s

αZ5

αG

αX2

αY3 αZ9

(c) scope relation �s (HDT)

Legends:
abstract object static access relation static scope relation

Fig. 2. Static Heap Decomposition Inference

In the rest of the presentation, we call each object static approximation an abstract
object, or simply object when no confusion can arise. Due to the standard feature of
aliasing in object-oriented languages, static approximations may or may not represent
distinct run-time objects. We liberally use the term “abstract object” – and its repre-
senting metavariable α – to refer to both. For convenience, we also have α subsumes
αG.

Following the analogy of dynamic heap decomposition, it would be natural to pro-
vide the following definition:

Definition 4 (Static Heap Decomposition). Configuration 〈Os;αG; ↪→s;�s〉 is a static
heap decomposition iff ehds(↪→s,�s).
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Let us consider a Java program in Fig. 2(a) to gain some intuition. For convenience, we
directly associate each object type declaration with an abstract object ID. For instance,
expression new Y@αY3() at Line 15 is the Java expression new Y() with abstract
object αY3. In other words, we treat each program element associated with a type dec-
laration – a local variable, a method parameter, a return value, or an instantiated object
– as an abstract object. These abstract objects may or may not lead to “distinct approx-
imations” due to aliasing, but the ones associated with the new expressions indeed do,
i.e., Os = {αX2, αY3, αZ5, αZ9}. ↪→s can be concretely defined as the points-to infor-
mation, which in the example is illustrated in Fig. 2(b). One possible �s is illustrated in
Fig. 2(c). It can be easily seen that the two conform to static heap decomposition: every
accessor of an object is from inner scopes and every accessee of an object is within
outer scopes.

Both checking and inference systems can be constructed for static heap decomposi-
tion. A static heap decomposition checker answers whether ehds holds given a program
and its information on ↪→s and �s (explicitly or implicitly defined). A static heap de-
composition inference finds a �s that satisfies ehds given a program and its information
on ↪→s (explicitly or implicitly defined). Broadly construed, the typechecking process
of ownership type systems [29,6,5] is an instance of static heap decomposition checker.
In that context, �s is the relationship among ownership type parameters, whereas ↪→s

and ehds are implict in the typechecking rules. As another example, ownership infer-
ences based on points-to analyses [24,22] are instances of static heap decomposition
inference. They explicitly compute ↪→s and finds the �s that conforms to ehds.

Cypress is a static heap decomposition inference. To highlight the central role of
the �s relation in this context – it is the output of the inference – we reinstate it with
the following definition (note that �s by definition is a tree relation):

Definition 5 (Heap Decomposition Tree (HDT)). We call �s a heap decomposition
tree for P if configuration 〈Os;αG; ↪→s;�s〉 is a static heap decomposition for P for
some Os, αG, and ↪→s.

In the rest of the discussion, we will liberally interpret HDT in a graph-theoretic manner.
For instance, the nodes of an HDT �s are the union of the domain and the range of �s,
and the edges are the set interpretation of �s itself.

2.4 Challenges

Challenge I: Soundness. Is every static heap decomposition according to Def. 4 a
“good” one? At the beginning of Sec. 2.3, we explained a key motivation of constructing
static heap decomposition is to “characterize how heap decomposition can be applied
to all run-time states of a program.” Def. 4 unfortunately does not correspond with
the run-time states. For this latter goal, let us first introduce correspondence relation

CFd X−→ CFs, which says CFs is a static approximation for run-time configuration CFd

over abstraction mapping X . An abstraction mapping is a simple mapping from o’s
to α’s, where X (o) is the abstract object approximating o. A correspondence relation

〈Od; oG; ↪→d;�d〉 X−→ 〈Os;αG; ↪→s;�s〉 is well-formed iff
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– Od ⊆ dom(X )
– Os = ran(X )
– X (oG) = αG

– X (o) ↪→s X (o) for any o ↪→d o′

– X (o) �s X (o) for any o �d o′

where dom(X ) and ran(X ) operators compute the domain and range of X respectively.

Definition 6 (Soundness). Given a program P , its static heap decomposition CFs is
sound with respect to X iff there exists a CFd for any run-time state of P , such that

CFd X−→ CFs and CFd is a dynamic heap decomposition.

In practice, the ↪→s relation in CFs represents the points-to information, and the ↪→d

relation in CFd represents the reference relation at a particular run-time state. The two
are determined once the concrete abstractions of the program and the runtime are given.
Consequently, the soundness definition here mainly reveals the relationship between the
static scope relation in CFs and the dynamic scope relation in CFd. In other words, a
static scope relation �s in a sound static heap decomposition must serve as a “template”
for at least one dynamic scope relation �d at every run time state such that (1) �d is
indeed “instantiated” from �s (according to the last well-formedness condition of the
correspondence relation); and (2) �d offers hierarchical decomposition for the run-time
state (a condition of the soundness definition).

We are able to show Cypress is a sound static decomposition inference in that any
HDT (i.e. �s) it infers forms a sound static decomposition against a static semantics
with standard points-to abstraction for ↪→s and a dynamic semantics with standard def-
initions of X and ↪→d.

Challenge II: Efficient Heap-Wide Characterization. Cypress computes a surjective
relation �s over the abstract object set (Os in CFs) of a program. In other words, the
scope of every abstract object is determined. The output of Cypress is thus more ex-
pressive than decision procedures that answer “given objects α and α′, is α in the scope
of α′?” or “what is the scope of object α?” or “what objects does scope α′ include?”

It is possible to achieve heap-wide characterization by mechanical pairwise applica-
tions of the decision procedure “is α in the scope ofα′?” In contrast, Cypress computes
the entire �s relation through a single instance of linear programming.

Challenge III: Precision. First, a well-formed program – i.e. a well-typed program
according to Java typechecking – at least has one HDT:

Lemma 1 (HDT Existence). Given a well-formed program whose abstract object set
is Os, {(αG, α) | α ∈ Os} is an HDT.

In other words, this HDT is a trivial “egalitarian” tree where αG is the scope of all
abstract objects. The bad news is that this HDT is the least useful for characterizing
heap decomposition: it defaults to the “global heap” view.

HDTs may not be unique for a program. For example, Fig. 2(c) is an HDT for pro-
gram Fig. 2(a), but so is the egalitarian tree we just described. Now that multiple HDTs
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may exist, the more interesting question is the preference over them. If we take the
graph-theoretic view of the HDTs, observe the “egalitarian” tree above is the “short and
broad” whereas the tree in Fig. 2(c) is relatively “tall and skinny.” Indeed, the shorter
and broader a tree is, the closer it is to the default view of the global heap, and the less
it promotes local reasoning.

Cypress is designed with the Cypress Principle as guidance. Intuitively, it says
whenever a static heap decomposition inference algorithm is faced with a choice be-
tween constructing the HDT broader or taller, it should favor the latter. Formally, let us
define the depth of α – denoted as depth(α,�s) – as the length of the path from αG to
α when �s is interpreted graph-theoretically. Thus:

Definition 7 (Cypress Principle). Given P with two sound static heap decompositions
〈Os;αG; ↪→s;�s

1〉and 〈Os;αG; ↪→s;�s
2〉, and

∑
α∈Os

depth(α,�s
1) <

∑
α∈Os

depth(α,�s
2),

the Cypress Principle favors the latter.

The ideal is to find an optimal HDT whose aggregated depth (i.e. the sum of depth of
α’s in the abstract object set) is maximal. Indeed, this is strictly the opposite of the
egalitarian tree whose aggregated depth is the minimal. In Sec. 5, we shall see such an
optimal HDT can be effectively computed by Cypress through linear programming.

Challenge IV: Scalability. Def. 4 appears to indicate that to compute �s, one needs
full knowledge of ↪→s. This route is followed by some related work [24,22,26]. Cy-
press demonstrates a type inference approach can avoid the explicit computation of
↪→s, hence decoupling the scalability of our algorithm from that of points-to analyses.
In addition, Cypress yields linear constraints, further promoting scalability.

3 Abstract Syntax

We develop our inference over a small language whose abstract syntax is defined in
Fig. 3. The language is similar to Featherweight Java (FJ) [18], where notation • rep-
resents a sequence of •’s. The most noticeable difference here is expressions are A-
Normal, a form commonly used for specifying alias analyses over Java programs (e.g.,
[25]). In this form, (single) expressions include assignment x = y, field read x = y.fd,
field update x.fd = y, method invocation x = y.md(z) and object instantiation x =
new τ . The use of the A-normal form requires us to explicitly declare local variables
in the method definition (see M ). Such local variable declarations are represented by
a type environment Γ that maps variable names to types. Pre-defined variable this is
Java’s self reference. Pre-defined class name Object is the root class. A program P is
formed by a sequence of classes CL, followed by local variable declarations Γ , and the
bootstrapping expression e.

FJ function fields(X) computes the sequence of fields for class X, in the form of
F . FJ function mtype(md, X) computes the signature of method md for class X, in the
form of τ → τ ′ where τ and τ ′ are the argument/return types respectively. FJ-like
function mbody(md, X) computes the method body of md for class X, in the form of
x.y.Γ.e where x is the formal argument name, Γ is the local variable declarations,
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P ::= 〈CL;Γ ; e〉 program
CL ::= class X extends Y {F M } class
F ::= τ fd fields
M ::= τ md(τ x){Γ e} methods
e ::= s | s; e expression
s ::= x = y | x = y.fd | x.fd = y single expression

| x = y.md(z) | x = new τ
Γ ::= x �→ τ type environment
X, Y, Z, U, V ∈ �� ∪ {Object} class name
x, y, z, u, v ∈ ��� ∪ {this} variable name
fd ∈ �� field name
md ∈ �� method name
τ type (see Sec. 4)

Fig. 3. Abstract Syntax

and e is the expression that constitutes the method body. For convenience, we have an
explicitly bound variable y to store the return value. For a method Y md(X x){Z z; z =
x; return z; } in Java syntax, the method body computed by mbody is x.u.(z �→ τ).(z =
x; u = z) where τ is the type form in our system for Z. The definitions of fields(X),
mtype(md, X), mbody(md, X) are identical to their FJ counterparts, except that mbody
computes a 4-component method body as we just described. In addition, we reuse X <:
Y to denote X is a (nominal) subclass of Y. Relation <: is a partial order, whose definition
is identical to that of FJ. We defer the concrete definition of type τ to the next section.

4 Type Inference with Linear Constraints over Walk Indices

This section defines a constraint-based type inference to encode the essence of heap
decomposition: given a program P , every solution to the constraints generated for P
represents an HDT for P .

Walk Index on HDT. Recall the essence of HD is the invariant between the access
relation and the scope relation. Accessees in Outer Scopes says that every referred
object must belong to an outer scope (including the current one) of the referring object.
Fig. 4 illustrates 8 possible examples, where the access relation and the scope relation
overlay on each figure, and the root of the scope relation is at the top. It is not difficult
to observe that the first 6 examples conform to Accessees in Outer Scopes, but the last
2 do not.

Graph theoretically, a rooted tree such as the HDT enjoys very strong properties in
expressing the relative position of tree nodes. The relative position of α2 to α1 can
be expressed by the shortest path between them: first “going up” (i.e. root-bound) for
n1 edges (n1 ≥ 0) from α1, and then “going down” (i.e. leaf-bound) for n2 (n2 ≥ 0)
edges until reachingα2. In short, the relative position can be encoded by a pair of integer
values, n1 and n2. We say the walk index of α2 from the perspective of α1 is �n1�n2 , or
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Legends:
abstract object static access relation static scope relation

Fig. 4. Access, Scope, and Walk Index

informally say α1 can walk to α2 via �n1�n2 . Encoding “outer/inner scopes” as a pair
of integers was first investigated in a previous work by Liu and Smith [21], where the
integer pair in a type system design setting was called pedigrees. Broadly, the algorithm
introduced in this section can be viewed as a type inference of the type system in that
work, an extreme case where every type is inferred.

With the walk index encoding, the essence of HD can be succinctly captured as a
restriction on the walk index: the referring object must be able to walk to every of its
referred object via walk index �n1�n2 , where n2 ≤ 1. Fig. 4 also shows each walk
index of the accessee from the perspective of the accessor. The last two examples do
not satisfy the requirement of n2 ≤ 1, and they violate the principle of HD as well.

Types. In Java-like languages, every referred object is represented by an object ref-
erence held by the referring object, and such object reference should have a type in
a well-typed Java program. Recall our goal here is to guarantee every referred object
to have a walk index (from the perspective of the referring object) that satisfies some
restriction (n2 ≤ 1 above). Combining the two, we extend the Java type system by
building the walk index into the object type, as τ in Fig. 5. Metavariable ω represents a
form similar to the walk index we introduced earlier, except that it is associated with a
pair of type variables, p and q, which we call an up-step type variable and a down-step
type variable respectively. The type inference algorithm attempts to solve them with
integers (i.e. the n1 and n2 earlier). We put p and q into different syntatical categories,
so that the constraint solver (Sec. 5) will find non-negative solutions for p, whereas 0-1
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τ ::= X@α[ω] type
ω ::= �p�q walk index with type variables
p ∈ ���� up-step type variable (solution over {0, 1, . . .})
q ∈ 	��� down-step type variable (solution over {0, 1} )
α ∈ 
�� ∪ {αG} abstract object ID
K ::= κ constraint set
κ ::= θ = n | θ ≥ n linear constraint
θ ::= θ + t | θ − t linear expression
t ::= p | q type variable
n ∈ {0, 1, . . .} non-negative integer

Fig. 5. Types and Constraints

binary solutions for q. As we discussed earlier, the latter reflects the principle of HD.
When no confusion can arise, we also call ω a walk index.

Overall, a type takes the form of X@α[ω], where X is the Java nominal type. For the
purpose of presentation, we retain the abstract object ID α in the type. It was used in the
example of Fig. 2, where every distinct type declaration is associated with a distinct α.
We keep the same convention, except in the case of overriding, we follow the standard
FJ requirement of equating the signatures – and hence every component of the types –
of the overriding methods and overridden methods. For each program, we define PV
as the smallest mapping that includes (α, p) where X@α[�p�q] occurs in the program,
and QV as the smallest mapping that includes (α, q) where X@α[�p�q] occurs in the
program. We further require PV andQV be bijective. In other words, object references
with distinct IDs are associated with distinct up-step/down-step type variables.

Let us reiterate the relative nature of the walk index. By definition, it characterizes
the referred object from the perspective of the referring object. For instance, if a class
X has a field which is associated with type Y@α[ω], it says the walk index of any object
stored in that field is ω from the perspective of the X object with the field.

Inference Rules. The most critical constraint for achieving HD is that q variables must
be binary, which can be succinctly expressed by linear solvers. For a program, these q
variables are clearly dependent. We define a type inference to relate type variables (both
p and q variables) through linear constraints. Type inference rules are defined in Fig. 6,
where Γ � e\K says that expression e yields constraints K under typing environment
Γ . The definition of Γ is given in Fig. 3. Γ, Γ ′ is defined as the smallest Γ ′′ such that
Γ ′′(x) = Γ ′(x) if x ∈ dom(Γ ′) or Γ ′′(x) = Γ (x) if x /∈ dom(Γ ′) and x ∈ dom(Γ ).
Constraints are defined in Fig. 5. Note that all constraints are linear. We informally say
“ω fresh” to mean p and q are fresh type variables where ω =�p�q.

The key to understanding this set of rules is the four definitions toward the bottom of
Fig. 6. The constraint computed by iC is used by (T-New). Combined, it says that the
down-step associated with an instantiation must be non-0. From Fig. 4, observe that a
walk index whose down-step is 0 means a reference to its object scope (or scope of the
scope, and so on). To have an object o instantiate an object o′ that represents its scope
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for all rules: Γ (x) = X@αx[ωx], Γ (y) = Y@αy[ωy], Γ (z) = Z@αz[ωz]

(T-New) Γ � x = new U@α[ω]\(ω ⇒ ωx) ∪ iC(ω)

(T-Assign) Γ � x = y\ωy ⇒ ωx

(T-Write)
U@αu[ωu] fd ∈ fields(X) ω fresh

Γ � x.fd = y\(ωy ⇒ ω) ∪ (ωx � ωu � ω)

(T-Read)
U@αu[ωu] fd ∈ fields(Y) ω fresh

Γ � x = y.fd\(ω ⇒ ωx) ∪ (ωy � ωu � ω)

(T-Msg)

mtype(md, Y) = τ → τ ′ τ = U@αu[ωu] τ ′ = V@αv[ωv]
ω, ω′, ω′′ fresh mbody(md, Yi) = ui.vi.Γi.ei for each Yi <: Y

[this �→ Yi@αy[ω], ui �→ τ, vi �→ τ ′], Γi � ei\Ki

Kpm = (ωz ⇒ ω′) ∪ (ωy � ωu � ω′)
Krt = (ω′′ ⇒ ωx) ∪ (ωy � ωv � ω′′)

Γ � x = y.md(z))\Kpm ∪ Krt ∪ thisC(ω) ∪ K

(T-Cont)
Γ � s\K Γ � e\K′

Γ � s; e\K ∪ K′

iC(�p�q)
def
= {q = 1}

thisC(�p�q)
def
= {p = 0, q = 0}

�p1�q1⇒�p2�q2
def
= {p1 − q1 = p2 − q2, q2 ≥ q1}

(�p1�q1��p2�q2��p�q)
def
= {p = p1 + p2 − q1, q = q2, p2 ≥ q1}

Fig. 6. Inference Rules and Definitions

directly violates the basic requirement of HD, because references to o (hence access)
would exist outside its scope. The constraint computed by thisC is used in (T-Msg) for
typing this. Combined, it says that the walk index of this should be solved to �0�0. In
figurative terms, an object can walk to itself on the HDT with no steps.

Operator ω ⇒ ω′ constrains the data flow from the object with ω to the object with
ω′. Take (T-Assign) for example. The variables in ωy and ωx are related. Given the q
variables binary, the constraints of ωy ⇒ ωx allow for two cases: ωx and ωy are either
solved to identical walk indices, or when ωy is solved to �n�0, ωx can be solved to
�n+1�1. The latter is useful in cases of, say, assigning this to a variable defined in the
same method. As data flows appear in every expression form,⇒ appears in every rule.
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Ternary operator ω � ω′ � ω′′ computes the constraints for walk index composi-
tion. Let us imagine we have three objects α, α′, α′′ where α can walk to α′ via walk
index ω, α′ can walk to α′′ via ω′, and α can walk to α′′ via ω′′. Operatorω � ω′ � ω′′

computes the necessary constraints to keep ω, ω′, and ω′′ consistent: after all, they are
all defined over one HDT. For example in (T-Read), α above is the object enclosing the
field read expression. α′ is the object represented by y, and α′′ is the object stored in
field fd of y. The same definition is needed for (T-Write) and (T-Msg). For the latter,
imagine one can view parameter passing as a write (to a stack variable) on the message
receiver, and value returning as a read (from a stack variable) on the message receiver.
Defining ω � ω′ � ω′′ is purely a graph-theoretic matter on encoding tree path com-
position, whiich we explain more in the Appendix.

Definition 8 (Whole-Program Constraints). We use �P � to denote the constraints
for program P . It is defined as K where Γ � e\K and P = 〈CL;Γ ; e〉.
Optimizations. We do not formalize several standard optimization techniques imple-
mented by our compiler. First, the formal system only requires α (and hence its as-
sociated p and q) be distinct for distinct type declarations in the source code. This is
known as a 0CFA formulation in polymorphic type inference, or context-insensitive
formulation in program analysis. Our compiler refines α as a pair including both the
context label and the program point (for the type declaration), and two α’s are distinct
when either their context labels or program points are different. Second, in (T-Msg), we
conservatively consider the method body of every subclass of the message receiver’s
declared class. In our implementation, a concrete class analysis is in place, so that only
the classes whose instances may flow into the message receiver are inspected.

5 Computing and Grooming Heap Decomposition Tree

We now study the solutions to linear constraints in �P �. We describe how these solu-
tions can be used to compute the scope relation (i.e. construct an HDT), its soundness,
and how the Cypress Principle can “groom” HDTs to a shape that reflects the principle
of HD with optimality. The notion of “grooming” is achieved by preferring an HDT
through linear programming. As we shall see, linear programming not only brings effi-
ciency, but also allows us to express HD-related goals as objective functions.

We first introduce some basic notations on constraint solving. We use placement
ζ : ���� ⇀ {0, 1, . . .} ∪ 	��� ⇀ {0, 1} to refer to the solution (sub-)vector of
a linear constraint set. Recall in Sec. 4, we discussed that the solution to the up-step
variable must be a non-negative integer, whereas the solution to the down-step variable
must be 0-1 binary. We use predicate ζ ↓ K to denote ζ is a solution to K, defined
as every κ ∈ K[ζ] is an arithmetic tautology, where K[ζ] is standard constraint set
substitution. Selection operator ζ ↑n computes the set of up-step variables mapped to n

in ζ. Formally, ζ ↑n def
= {p | p �→ n ∈ ζ}.

5.1 From Linear Constraints to HDT

Intuitively, solving the constraints of a program P subsumes resolving all p and q vari-
ables associated with the new expressions in the program – such as αX2, αY3, αZ5, αZ9
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in Fig. 2(a) – to integers. With that, the relative position between the object instantiated
by a new expression and the object whose class lexically encloses the new expression
is known. Assuming all instantiation points are reachable from the bootstrapping code,
an HDT can be constructed with these relative positions. We formalize this intuition in
this section. From now on, since we are mainly concerned with instantiated points, we
consider the abstract object IDs associated with instantiated points belong to set �
��, a
subset of 
��. We define convenience function iA(P) to enumerate all α’s in program
P where α ∈ �
��. We further define iP(P) as {PV(α) | α ∈ iA(P)}.

For a program P , we define a simple instantiation relation – denoted as ↘P , or ↘
for short – where α ↘ α′ says the instantiation point of α′ is lexically enclosed by
methods of α. It is defined as the smallest relation over �
�� ∪ {αG}, s.t. (1) αG ↘
α for every α appearing in the bootstrapping code of P ; (2) α ↘ α′ for every α′

whose instantiation expression appears in methods of abstract object α. We next define
a relation that serves as a “candidate” HDT, as follows:

Definition 9 (Scope Candidate Relation). Given a program P and ζ ↓ �P �, a scope
candidate relation of program P with respect to ζ is a smallest relation �sc: iA(P) ∪
{αG} × iA(P) satisfying:

α↘P α′ and ζ(PV(α′)) = n and α0 �sc α1 and α1 �sc α2 and
. . . , αn−1 �sc α =⇒ α0 �sc α′

Intuitively, the definition describes an algorithm to “construct” an HDT monotonically.
Using informal terms, if ζ resolves a particular walk index to �3�1, the definition here
attempts to “put” 3 + 1 elements into �sc, each of which (hopefully) represents an edge
in HDT.

Is a scope candidate relation a (static) scope relation? We first demonstrate:

Lemma 2 (�sc as Rooted Tree Relation). If �sc is a surjective scope candidate rela-
tion of program P with respect to ζ, then �sc is a rooted tree relation with root αG.

Here we are only interested in surjective scope candidate relations. Imagine a degen-
erate program where x = new X@α[�p�q] is the only expression in the bootstrapping
code. The solution to p is unbound (i.e. any non-negative integer). In this case, a sur-
jective scope candidate relation can only be constructed if ζ(p) is 0. One can view any
non-surjective scope candidate relation as the result of attempting to place objects out-
side the global scope αG. (As we shall see, this morbid case does not have relevance in
practice, because they can be avoided by judicious settings of objective functions.)

Lemma 3 (�sc Uniqueness). If �sc
1 and �sc

2 are both surjective scope candidate re-
lations of program P with respect to ζ, �sc

1 =�sc
2 .

We provide a conventional definition for ↪→s [8] where α ↪→s α′ is the standard points-
to abstraction. With Lem. 2, we are able to demonstrate:

Lemma 4 (�sc as Scope Relation/HDT). Given a program P and a surjective scope
candidate relation �sc of P with respect to ζ, configuration 〈iB(P);αG; ↪→s;�sc〉 is a
static heap decomposition where ↪→s is static access relation of P .
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Thus, a surjective scope candidate relation �sc is a bona fide scope relation, an HDT,
and is the only HDT according to Lem. 3. From now on, we denote this unique scope
candidate relation of program P w.r.t. ζ as HDT(P , ζ). It is undefined if the scope can-
didate relation is not surjective.

5.2 Soundness of Cypress

We define a conventional small-step operational semantics [8] where ↪→d is the standard
reference relation at run time – as summarized in Fig. 1 – and X is the predictable
mapping from objects and their abstract object IDs. With that, we can state the main
soundness theorem of Cypress:

Theorem 1 (Soundness). Given a programP and any ζ such that HDT(P , ζ) if defined,
HDT(P , ζ) is sound.

This important theorem tells us the HDT computed here – a data structure purely com-
puted statically – can characterize dynamic heap decomposition. Also note that we
never need to explicitly compute ↪→s – the points-to information is implicit in the lin-
ear constraints except for the sake of stating Lem. 4 and constructing the proof for the
theorem here – providing a solution to address Challenge IV.

5.3 Compositional Objects

In Java-like languages, evaluating the new expression yields a reference to the instan-
tiated object, say o. This implies the reference to o can at least be obtained by the
object o′ whose method lexically encloses the new expression. We call o′ the “scope
ground zero” of o, i.e. the scope of o must either be o′ or an outer scope of o′. Thus,
the problem of determining whether an object o has o′ as its scope can be converted as
determining whether �P � ∪ {p = 0} has solutions, where the instantiation expression
is new X@α[�p�q]. This is a standard problem for linear solvers, or if we phrase it in a
slightly different way, a linear programming problem to minimize p over constraint set
�P � and check whether the solution is 0.

Formally, we define objective function θ as a linear expression in the form of p1 +

p2 · · · + pk for some k ≥ 1, which can be abbreviated as
⊕

j=1..k

pj . We represent an

instance of linear programming to minimize an objective function θ over constraints K
as min

K
θ . If ζ is the solution of the linear programming instance, i.e. ζ ↓ K, then

min
K

θ is defined as the restriction of ζ to the domain formed by the variables that

appear in θ. Thus, the following set computes the compositional objects in program P ,
i.e. the object that has its “scope ground zero” as the scope:

{α | PV(α) ∈
⊎

p∈iP(P)

(min
� P �

p ↑0)}

This strategy however implies we need to apply linear programming |iP(P)| times,
clearly inefficient when the set of �P � is large. Cypress instead only performs linear
programming once, through:
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{α | PV(α) ∈ min
�P �

⊕
p∈ip(P)

p

�⏐⏐⏐⏐⏐
0

}

This form is clearly more efficient, but does it produce the same result as the former?
We answer it affirmatively, and the root reason is the compositionality of placements:

Lemma 5 (Local Placement Compositionality). min
�P �

pi = [pi �→ 0] for i = 1, 2 iff

min
�P �

p1 + p2 = [p1 �→ 0, p2 �→ 0] for any P and p1, p2 ∈ iP(P).

In other words, the second strategy is an optimization of the first.

5.4 Cypress Grooming

The previous section is a primitive use of the Cypress Principle – it favors 0 solutions for
the up-step variables of objects, de facto placing the object further away from the root.
If an object indeed escapes from its scope ground zero, what should be its “minimal
escape”? The Cypress Principle guides linear programming for this task, and we term
the resulting preferred HDT a cypress.

One possible solution is to design a “minimizing all” approach through linear pro-
gramming, i.e. min

�P �

⊕
p∈ip(P)

p . This however may not yield the expected “tall and

skinny” cypress. As a counterexample, consider a simple scenario below, where the
graph in the center denotes a↘ relation for a program P , and the label on each edge is
the walk index of the head from the perspective of the tail. Observe there might be two
different solutions of �P � but both satisfy p + p′ + p′′ = 2:

 2

instantiation 
    relation

     scope
    relation

αG

αX

αY

αZ

αG

αX αY αZ

αG

αX

αY

αZ

The Cypress Principle – grooming the tree tall and skinny – favors the left tree instead
of the right one, but this preference cannot be expressed here. The root of this problem
is that the walk index from αx to αy and that from αy to αz are dependent: a lesser
up-step value for an object closer to the root not only helps place itself further away
from the root on the HDT, but also helps place the objects it can reach through ↘.
Building on this insight, we minimize the sum of the up-steps for each object relative
to the root. For the example above, note that the (combined) up-steps for αx relative to
αG is p, and the combined up-steps for αy relative to αG is p + p′, and the combined
up-steps for αz relative to αG is p + p′ + p′′. Thus, the objective function to minimize
is (p) + (p + p′) + (p + p′ + p′′). Formally, let ΔP ,α denote a set {p1, . . . , pn} where
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αG ↘ α1, . . . , αn−1 ↘ αn and PV(αi) = pi for i = 1, . . . , n. We can now compute
the cypress as follows:

Definition 10 (Cypress). The cypress of program P , denoted as cypress(P ), is de-
fined as HDT(P , ζ), where

ζ = min
�P �

⊕
α∈iA(P)

⊕
p∈ΔP,α

p

It would not be difficult to show the scope candidate relation w.r.t. ζ is surjective, and
hence HDT(P , ζ) is defined. We next state an important theorem that says that the cy-
press we produce is a “tall and skinny” HDT whose aggregated depth is the greatest:

Theorem 2 (“Tall and Skinny”). Given program P and some ζ such that HDT(P , ζ)

is defined,
∑

α∈iA(P)

depth(α, HDT(P , ζ)) ≤
∑

α∈iA(P)

depth(α, cypress(P)).

6 Implementation and Evaluation

A prototype implementation of Cypress has been built on top of the Polyglot frame-
work 2.4 [30]. The compiler supports inheritance, dynamic dispatch, super calls,
method/constructor overloading, static fields, static methods, multi-dimensional arrays,
inner classes, generics, reflection, autoboxing/unboxing, and enum types. The imple-
mentation of Java 1.5 features is modified from a Polyglot extension at UCLA3. We
choose an open-source linear solver lpsolve4 for constraint solving. Our compiler
produces the tree data of the cypress in XML, subsequently rendered by Prefuse5.

Cypress implements a (field-sensitive) k-object context-sensitive algorithm [25]. To
create a stress test for scalability, we choose an expensive form: k in our algorithm is
not fixed to a (usually small) constant. The entire chain of instantiation site labels is
preserved to represent distinct contexts, except that when recursion happens, we only
use the chain of labels between two occurrences of the reappearing label. This technique
was used in some compilers previously developed by us [19,7].

Our benchmarks are selected from diverse sources: puzzle (PU) [19] solves a
famous 4x4 sliding puzzle; montecarlo (MO) is from the JavaGrande suite [32];
jspider (JS)6 is an open-source web robot; messadmin (ME)7 is a Java HTTP ses-
sion monitor; lusearch (LU) is from DaCapo8 suites; cypress+polyglot (CY)
is our compiler itself. The last benchmark is a meta-circular effort to help us validate the
correctness of our implementation. We find this approach very useful for discovering
implementation bugs, as we are familiar with the minute details of our own software,
and whether the details of its cypress “makes sense” can be quickly examined.

3 http://www.cs.ucla.edu/˜todd/research/polyglot5.html
4 http://lpsolve.sourceforge.net/
5 http://prefuse.org/
6 http://j-spider.sourceforge.net/
7 http://messadmin.sourceforge.net/
8 http://dacapobench.org/

http://www.cs.ucla.edu/~todd/research/polyglot5.html
http://lpsolve.sourceforge.net/
http://prefuse.org/
http://j-spider.sourceforge.net/
http://messadmin.sourceforge.net/
http://dacapobench.org/


122 H.S. Zhu and Y.D. Liu

name #LOC #RM #I #F #V #EQ GT(s) IT (s) FT (s)

PU 882 38+1000 314 42+37 572 765 0.49 0.69 0.45
MO 3,128 131+984 294 33+19 206 278 0.48 0.59 0.40
JS 13,986 1434+4329 1761 1557+173 35,134 54,598 45 28.79 24.65

ME 65,356 2144+1973 903 556+191 16,168 22,789 4 6.07 4.01
LU 112,649 6077+2958 1718 657+1086 38,842 72,731 65 39.37 34.84
CY 118,309 4935+14009 6406 4646+1398 107,172 120,185 470 205.98 188.98

Fig. 7. Benchmarking Results (#LOC: program LOC; #RM: the number of reachable meth-
ods (two parts: application methods + library methods); #I: the number of distinct instantiation
points; #F : the number of accessed fields (two parts: non-private fields + private fields); #V :
the number of type variables generated by Cypress; #EQ: the number of linear equations gen-
erated by Cypress; GT /IT /FT : time, see text for details)

All experiments are conducted on Intel Core Duo 2.53GHz with 4GB RAM, with
data reported in Fig. 7. All #RM, #I, and #F data are reported context-sensitively.
To see the effect of the stress test we created, note that cypress+polyglot reports
6406 instantiation points, significant among the state of the art of program analysis. In
comparison, the largest #I counts are 1261 in [24] and 4152 in [22]. We construct two
experiments for validation, one for generating cypresses and the other for finding com-
positional fields. (The first task subsumes the goal of finding compositional objects.)
The last three columns report the time (in seconds) for the two experiments. GT reports
the time used for all compilation steps other than constraint solving, shared by both ex-
periments. IT and FT are constraint solving time for the two experiments respectively.

Fig. 8. Distance to “ground zero” ( Red : com-

positional; Green : escape by 1 scope; colors
upwards: escape by 2/3/4 scopes)

Encapsulated Objects vs. Escaped Ob-
jects. Fig. 8 provides a normalized
distribution of the number of distinct in-
stantiation points escaping from “ground
zero,” computed via Def. 10. Across all
benchmarks, the vast majority of the ob-
jects (70%-80%) stay “encapsulated” or
“owned” within “ground zero.” More rig-
orously, this means any object in this
category is never accessed in any outer
scope (Def. 1) of the object whose meth-
ods or field initializers include the instan-
tiation expression of the former. When
objects do not fall into this category,
which we intuitively say they are “es-
caped,” it is rare that they escape by more
than one scope. This clearly does not re-
sult from the lack of scopes in the cy-

presses – the cypress heights for the benchmarks are 6, 6, 11, 10, 6, 10, respectively.
We believe it demonstrates the compositional nature of the heap.
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Fig. 9. (Partial) Cypress for PU Benchmark (Best View: Scale to 200%)

Cypress Graphs for Program Understanding. The cypresses of all benchmarks have
been rendered in a graphic tree form. Here we include a partial cypress of the smallest
benchmark in Fig. 9, showing only the subtree that focuses on application objects (i.e.
non-library objects). The cypress is rendered with the root on the left, with each edge
intuitively says the left-hand node is the scope of the object of right-hand node. More
rigorously, there is an edge with α on the left and α′ on the right iff α �s α′.

Each node on the cypress is labeled in the form of C#v, where C is the class name
of the represented object, and v is the abstract object ID to uniquely identify the object.
Observe that in a context-sensitive algorithm, it is insufficient to identify an object by
class names (or the instantiation program points for that matter). Not presented here,
the Cypress tool further accompanies the rendered cypress with a table to associate
each v with context labels – a chain of instantiation program points that ultimately lead
to the instantiation of the object represented by v.

The cypress offers a vivid representation of the heap decomposition structure la-
tent in object-oriented programs: how the heap is decomposed from the root, level by
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level, as we move from left to right. Observe that the PuzzleTaskQueue#var2796
object successfully encapsulates its internal linked list representation, an ob-
ject labeled ConcurrentLinkedQueue#var2810. As another example, a
Puzzle#var2709 object encapsulates the PuzzlePosition#var2729 object,
which in turn encapsulates the Block[]#var2778 array.

The cypresses of all benchmarks are online for review [8]. As the #I numbers sug-
gest, some of the trees are large.

Compositional Fields. The problem of compositional fields is to determine whether a
field fd of an object α in program P always refers to objects that are never accessed
outside the scope formed by α. This is particularly relevant for private fields, as a
non-compositional private field may be counter-intuitive to programmers [22,24,35].

Cypress determines field compositionality as follows. First, observe that each field
is declared with a type, which is also associated with a walk index. Let us denote the set
of all the up-step variables of such walk indices as fp(P) for program P . If the object
stored in the field is local to the scope formed by α, the walk index from α to the stored
object must resolve to �0�1 or �0�0. Following a similar formulation as compositional
objects (Sec. 5.3), the set of all compositional fields for program P can be computed by
only one instance of linear programming:

{α | PV(α) ∈ min
�P �

⊕
p∈fp(P)

p

�⏐⏐⏐⏐⏐
0

}

(a) private fields (b) non-private fields

Fig. 10. Field Compositionality (Compositional? Red / Green : Yes/No)

We next show some experimental results on compositional fields. In Fig. 7, #F is
the number of accessed fields, divided by non-private ones and private ones. FT is
the time (in seconds) for finding all composition fields through linear programming.
Fig. 10 shows the normalized distribution of field compositionality. Benchmarks are
placed from left to right in the same order as in the table earlier. Fig. 10 (a) shows a
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phenomenon consistent with previous findings [24,22] – a private declaration does not
always guarantee compositionality. Our system reports a slightly higher percentage of
compositional fields (a difference of 5%-10% on average). Other than the possibility of
Cypress being a more precise algorithm, we speculate this may result from our precise
settings of context sensitivity thanks to the scalability of linear programming. We also
constructed experiments for non-private fields, with results in Fig. 10 (b). As expected,
the overall percentage of compositional fields has decreased, but interestingly, we found
a significant percentage of them are compositional. This might result from the fact that
the default modifier choice of Java is not private. Programmers uninterested in visibility
protection are in fact declaring non-private fields.

JATO Support. We have extended Cypress to support language features important
for multi-threaded programs – such as representing each thread as a node on the cy-
press, and differentiating read/write access to fields – and apply the extended tool to
assist JATO [20], a system for atomicity enforcement across the JNI boundary. In that
extension, any descendent object of the thread node on the cypress is guaranteed to be
thread-local according to Java-side analysis. If such an object crosses the boundaries
of JNI and its access on the C side falls into some simple patterns (such as only being
read/written), the object is statically guaranteed to be thread-local; no locks are needed
for their atomicity enforcement. This application of Cypress is a concrete example of
a well-established direction: reasoning about thread locality with ownership (e.g.[35]).

7 Related Work

The most advanced direction related to our work is ownership type inference, which
can be achieved either through dynamic analysis [28,34] or static analysis [10,26,17].
Dynamic approaches are sound only w.r.t. the (finite number of) executions the analysis
is performed over, but on the positive side, they can often offer insight into complex
structures of programs beyond ownership (an example would be a “butterfly” in [28]).
Dietl et. al. designed a tunable static analysis [10] for inferring the modifiers of Universe
Types (UT) [11]. One feature of their system is that the inference is reduced to an SAT
satisfiability problem, where practical solvers exist. The high-level vision – reducing a
non-standard problem into a standard problem – is shared by Cypress, as we reduce
our problem to linear programming. As an ownership type system, UT is known to have
some distinctive features: it does not conform to deep ownership, but considers a form
of interaction between immutability and ownership (known as owners-as-modifiers).
As a result, the inference built for UT differs with ours in the underlying invariant.
Milanova and Vitek designed dominator inference [26], a type inference for modifiers
of Ownership Types (OT) [29,6,5]. OT supports deep ownership, so OT inference is
closer in goal to Cypress. Their approach assumes a pre-computation of the points-to
set. Huang et. al. [17] designed a unified approach to infer modifiers for both UT and
OT. Their system allows the preference over different modifiers to be expressed through
a ranking, and an iterative inference is constructed to place priority on higher ranked
modifiers. None of the cited systems uses linear programming.
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Points-to analyses have been designed to address two related problems: UML com-
position inference [24] and field composition identification [22]. Explained in our termi-
nology, this line of work first assumes the pre-knowledge of ↪→s – points-to information
from standard points-to analyses – and then (re-)analyzes programs with two tasks: sat-
isfying ehds and guaranteeing soundness. Cypress demonstrates that a type inference
can be constructed for sound static heap decomposition with no need for full knowledge
of points-to information. In general, systems in this category may take a very different
approach from ours, but they share our goal of constructing a fully automated static
analysis.

Language designs for ownership support generally have some inference ability to
reduce annotation overhead (e.g.[2]), but the goal is not to analyze annotation-free pro-
grams. An inference based on Confined Types [14] analyzes unannotated Java code,
with a premise that Java packages serve as the scope for objects defined inside the pack-
age. Scope Types [3] is an ownership type system lightweight on annotation overhead
by design. Our previous work Pedigree Types [21] allows programmers to optionally
declare “pedigrees” as type modifiers, a language design incarnation of walk index.
Pedigree Types has the ability to infer some type modifiers elided by the programmer.
In that light, Cypress considers the extreme case where all pedigree modifiers are ig-
nored – a case Pedigree Types trivially (but unhelpfully) answers “it typechecks” – and
demonstrates how linear programming can help precisely recover them. Overall, the
route of language design and the route of program analysis for static heap decomposi-
tion are complementary.

8 Conclusion

This paper studies heap decomposition, and describes a static ownership type infer-
ence that can offer vivid insight into the dynamic nature of software: the compositional
view of the runtime heap. In the future, we plan to apply Cypress to two application
domains: thread locality for optimization and cache locality for energy efficiency.

Cypress has been implemented as an open-source tool and can be downloaded [8].
The technical report at the same website contains the operational semantics, the proofs,
and the cypress graphs of all benchmarks.
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Appendix: Walk Index Composition Constraints

In this section, we offer an explanation to the constraints used to capture walk index
composition, as defined by ω1 � ω2 � ω in Fig. 6. The relationship among ω1, ω2, ω
is the standard problem of tree path composition. Not to lose generality, there are only
two subcases, depending on the comparison between the ω1’s down-step (q1) and ω2’s
up-step (p2):

– (a) If q1 ≤ p2, then p = p1 + p2 − q1 and q = q2.
– (b) If q1 > p2, then p = p1 and q = q1 − p2 + q2.

For (b), observe that to satisfy q1 > p2, any solution ζ must have ζ(q1) = 1 and
ζ(p2) = 0. In this case, the only way to satisfy q = q1 − p2 + q2 is ζ(q2) = 0. In other
words, ω2 must be solved to �0�0, with the only satisfiable object reference being this.
Note that in Fig. 6, in all uses of ω1 � ω2 � ω, ω2 is a walk index associated with a
method formal parameter, a method formal return type, or a field declaration. Allowing
them to be inferred with a walk index �0�0 is hardly useful for HD inference. The
constraints defined for ω1 � ω2 � ω in Fig. 6 only considers (a). (Observe however,
this can still be passed as a method parameter, method return value, or stored in fields,
except that the walk index of the associated formal paramter, return type, or field type
would be solved to �1�1.)
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Abstract. Methodologies for static program verification and analysis
often support recursive predicates in specifications, in order to reason
about recursive data structures. Intuitively, a predicate instance repre-
sents the complete unrolling of its definition; this is the equirecursive
interpretation. However, this semantics is unsuitable for static verifi-
cation, when the recursion becomes unbounded. For this reason, most
static verifiers differentiate between, e.g., a predicate instance and its
corresponding body, while providing a facility to map between the two;
this is the isorecursive semantics. While this latter interpretation is usu-
ally implemented in practice, only the equirecursive semantics is typically
treated in theoretical work.

In this paper, we provide both an isorecursive and an equirecursive
formal semantics for recursive definitions in the context of Chalice, a
verification methodology based on implicit dynamic frames. We show
that development of such formalisations requires addressing several sub-
tle issues, such as the possibility of infinitely-recursive definitions and
the need for the isorecursive semantics to correctly reflect the restrictions
that make it readily implementable. These questions are made more chal-
lenging still in the context of implicit dynamic frames, where the use of
heap-dependent expressions provides further pitfalls for a correct formal
treatment.

1 Introduction

Recursive definitions of a program’s state, are widely employed in techniques for
program specification, verification and static analysis. Common techniques in-
clude recursive predicates, pure methods, abstraction functions and model fields.
The ability to express recursion in specifications is needed to describe programs
which themselves manipulate recursively-defined data structures, since it is im-
possible for a specification to explicitly describe each of the locations involved
when accessing the structure. For example, a method which computes the sum
of the values in a linked-list will need to access a statically-unbounded number
of heap locations to do so. To solve this specification problem in the context of
permission-based methodologies such as separation logic [8,13], recursive abstract
predicates [15] were introduced. Predicate definitions can be provided as part of a
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program’s specification, and the meaning of a predicate name is defined in terms
of an assertion (the predicate body), which may itself include instances of the
same predicate. In this way, it is possible for a predicate instance to implicitly
require permission to access, e.g., every next field in a linked-list. The intuitive
meaning of such a predicate symbol is that it represents everything implied by
the (recursive) unrolling of its definition; this is the equirecursive interpretation
of the recursive definition [1].

However, static verifiers (and other tools) cannot predictably reason directly
in terms of an equirecursive semantics, since at verification time it is impossible
to know when to stop unrolling such a definition. For this reason, many verifiers
make use of ghost fold and unfold operations for handling recursively-defined
predicates, which explicitly exchange a predicate name for its body (or vice
versa). These operations may be explicitly provided in the source code (e.g.,
[9,11]), implicitly specified via heuristic rules (e.g., [5]), or tools may try to
infer them by other means (e.g., [2]); their eventual role is the same. In the
absence of fold and unfold operations, the information implied by the unrolling
of a currently-held predicate instance is not made available to the verifier. Such
a treatment of recursive definitions differentiates between holding a predicate
instance and holding its body, while providing a means by which the one can be
explicitly exchanged for the other; this is the isorecursive interpretation.

The critical aspect of an isorecursive semantics is that it can be used as the
basis for building static tools, while the equirecursive semantics cannot (without
the undesirable possibility of potentially infinitely applying recursive definitions,
in a so-called matching loop [12]). Nonetheless, an equirecursive semantics is
much closer to an intuitive runtime model for a methodology, and theoretical
papers which formalise verification logics typically treat recursive definitions in
this natural way [16]. This creates a mismatch between the formalised assertion
logic semantics, and that typically implemented in tools; one of the aims of this
paper is to address this mismatch.

Abstraction functions provide a different mechanism for expressing properties
of recursive structures. Function definitions can traverse data structures and re-
turn abstract values which summarise the contents in wayswhich abstract over the
underlying representation. Pure methods, as used in specification methodologies
such as Eiffel, JML and Spec� play a similar role, as do model fields. Formalising
such functions in a specification language requires care, since a function which is
not well-defined (e.g., bad() = bad() + 1) can easily lead to inconsistency in the
logic; this issue is complicated by the fact that many useful heap-dependent func-
tions do not always have an obvious termination measure expressible in terms of
their arguments. Indeed, a normal length() function will typically not terminate
for cyclic list structures. Furthermore, the unrolling of function definitions also
needs careful control for a static tool to handle them practically.

In this paper, we investigate the isorecursive and equirecursive semantics of
recursive specification constructs. Concretely, we base our work on the implicit
dynamic frames (IDF) specification logic of Smans [21]. This logic has been re-
cently shown [17,18] to have close connections with separation logic, however,
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it has the advantage for us of including both recursive predicates and heap-
dependent abstraction functions, as well as the ability to express unfolding ex-
pressions which explicitly “peek” inside recursive definitions; the combination of
these features makes the work presented both more challenging and more general.
The recursive aspects of IDF have not been given a direct assertion semantics
before; we give both isorecursive semantics (suitable as the basis for a verifier)
and equirecursive semantics (suitable for comparison with a runtime model, and
for proving soundness). We extend both assertion semantics to corresponding
Hoare Logics, based on a subset of the Chalice programming language [10], and
discuss how our isorecursive model lends itself to implementation, and the related
possibility of isorecursive states not having a “real” equirecursive counterpart.
We define mappings from the isorecursive model to the equirecursive, and show
how the various corresponding concepts are formally related. Finally, we define a
novel interleaving operational semantics for our language, and prove soundness
of our Hoare Logics.

While we work in the context of IDF, the issues arising regarding recursive
definitions are much more generic, and the discussions and solutions presented
here can easily be adapted for the formalisation of approaches based on e.g.,
separation logic, and are relevant for the construction of soundness arguments
for other techniques such as decision procedures and static analyses for recur-
sive definitions. One of the goals of this work is to identify and elaborate on
the challenges which arise, in order to help other researchers facing them. The
development of such formalisations requires addressing several subtle issues, re-
garding both the possibility of infinitely-recursive definitions and the need for the
isorecursive semantics to correctly reflect the restrictions that make it readily im-
plementable. The mismatch between the intuitive (equirecursive) semantics and
that implemented in tools can lead to pitfalls in practice; for example, a proto-
type implementation of recursive definitions in the Chalice verifier was unsound
for this reason; a correct solution has only recently been proposed [7].

Contributions. The contributions of this paper are:

– An equirecursive semantics for IDF expressions and assertions, including
recursive functions and predicates. This is the first direct assertion semantics
for IDF which handles recursive definitions.

– An isorecursive semantics for IDF expressions and assertions; to our knowl-
edge, this is the first such assertion semantics which reflects the distinction
between holding a predicate and knowing its body.

– Hoare logics for both approaches; in particular, the isorecursive Hoare Logic
includes novel rules for folding and unfolding predicates, and tracking asso-
ciated information with unfolding expressions.

– Encodings and results which formally relate the two semantics, connecting
that used at verification time with that used in soundness proofs.

– A novel operational semantics for Chalice, and a soundness result showing
that (isorecursive) verification guarantees runtime soundness. This is the first
soundness proof for the Chalice approach including recursive definitions.

A technical report, with auxiliary definitions and proofs is available online [23].
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2 Equirecursive Semantics for Predicates and Functions

In this section we define the syntax and semantics of expressions and assertions
in the equirecursive setting. Our treatment is based on the work of Parkinson
and Summers [17]. Their work did not include any kind of predicates or functions
in the assertion language; we address these issues here.

Running Example for the Equirecursive Setting.We will use the following
predicate List, along with two functions length and bad as running examples;
their meanings are explained in this section (the lookup function Body returns
the body of the definition of predicates and functions):

Body(List) ≡ acc(this.next) ∗ acc(this.val)
∗(this.next �= null→ this.next.List)

Body(length) ≡ (this.next = null ? 1 : 1 + next.length())
Body(bad) ≡ 1 + bad()

2.1 Implicit Dynamic Frames

Implicit dynamic frames allows expressions which depend on the heap, e.g., in an
assertion x.f.g = this. In order to make the meaning of such assertions robust to
interference from other threads, a notion of permissions is employed. Special as-
sertions acc(e.f) called accessibility predicates denote a permission to access the
heap location e.f , at most one of which is present (per location) in the system at
once. Assertions used in specifications must be self-framing, which means they
include permissions to all heap locations that they dereference. For example, the
assertion x.f.g = this is not self-framing, but acc(x.f)∗acc(x.f.g)∗x.f.g=this is.
The separating conjunction ∗ is related to that of separation logic; it acts just
as logical conjunction, but behaves multiplicatively with respect to accessibil-
ity predicates; that is, acc(x.f)∗acc(this.f) requires permission to both locations
separately, and so it implicitly guarantees that this and x cannot be aliases.

Defining a formal assertion semantics for implicit dynamic frames is challeng-
ing. Parkinson and Summers [17] defined a semantics for a core of the logic, and,
amongst other questions, addressed the issue of the semantics of assertions which
are not self-framing. For example, what should be the meaning of x.f.g = this?
In a state which does not hold permissions to the two heap locations, evaluation
of this expression depends on the other threads, and so giving it a determin-
istic semantics seems incorrect. However, the difficulty is that a compositional
definition of the semantics of assertions cannot “see” whether the appropriate
permissions to x.f and x.f.g are held by the current thread. The solution used in
[17] is, to give the expression the semantics it should have assuming the appropri-
ate permissions are held; i.e., read from the heap regardless. Since all assertions
are additionally checked to be self-framing, in the end this means that the above
semantics is only applied in the situation in which it makes sense. As we will
show in subsection 2.3, similar issues arise when adding recursive definitions to
the logic, but their treatment needs to be different.



A Formal Semantics for Isorecursive and Equirecursive State Abstractions 133

2.2 Recursive Predicates and Functions

Implicit dynamic frames supports two kinds of recursive definitions in assertions.
In this paper, we use the terminology of the Chalice tool [10], and call them pred-
icates and functions. Predicates can be defined recursively, and their bodies are
assertions. Allowing specifications to mention predicates as well as field per-
missions and boolean expressions, makes it possible for, e.g., a pre-condition to
require all permissions to a recursive data structure. For example, the predicate
List requires permission to all next and val field locations in a linked list.

Implicit dynamic frames also supports recursively-defined functions as part
of the syntax of expressions. For example, the assertions this.length()=4 and
this.itemAt(2)=0 use functions to expose additional information about the in-
ternals of a list. Functions typically correspond to the “pure methods” of an
implementation1. The body of a function is an expression (while the body of
a method is a statement, and may have side-effects); function invocations can
occur in expressions, including inside specifications, while methods cannot. To
avoid the potential for unsoundness, we take care that function definitions ter-
minate. For example, the definition of the function bad would cause the verifier
to deduce inconsistency wherever bad were made available.

2.3 Handling Infinite Recursion

The introduction of recursively-defined functions and predicates opens up the
potential of non-termination when evaluating assertions. What should be the
semantics of a predicate instance whose definition can be unrolled infinitely?
And what should be done with function definitions that do not terminate? It
is tempting to say that definitions which may not terminate should be forbid-
den. But this would be too restrictive: for example, even though the linked list
predicate List does not terminate in a heap in which this=this.next, such predi-
cate definitions are essential for traversing recursive data structures, and cannot
be dispensed with. Similarly, length() does not terminate in the case that this=
this.next. Indeed, there is not even any obvious termination measure in terms of
the function’s signature that could be used to prove termination of this function
definition. Nonetheless, such functions cannot be dispensed with either.

For the equirecursive setting, in which an idealised mathematical semantics
is appropriate, an elegant (and reasonably standard) way of handling custom
predicate definitions is to make the semantics of infinitely-unrollable predicate
instances false. We take this approach; that is, we interpret predicate definitions
by their least fixed points. In this way, we build into the logic the implicit
assumption that all predicate instances have finite definitions. Forbidding infinite
predicate instances does not harm our expressiveness in practice, since, as will be
explained in the next section, such predicate instances could never be obtained in
a verifier based on an isorecursive semantics. Thus, any program point at which
an infinite predicate instance is required (for example, in a method precondition

1 Indeed, this is the terminology used in [21].
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of the form List∗this=this.next) is actually unreachable code, and thus it is
operationally consistent to assign false to such assertions.

Now consider the semantics of potentially-non-terminating functions. The
length function shows that we must admit function definitions which do not nec-
essarily terminate in all states. This means that our assertion semantics needs
to cope with the possibility of evaluating a function call whose näıve semantics
would cause undefinedness. For example, consider the assertion List*length()=3.
In the case where this=this.next holds, List will be false (due to the least fix-point
treatment of predicates), and we would like the overall assertion to also mean
false. But a näıve definition for expression semantics might give the conjunct
in which the function call occurs an ill-defined meaning. To avoid the need for
relying on a short-cutting semantics for conjunctions, we define an expression
semantics that is total, even for naturally non-terminating function calls. We
achieve this by the introduction of error values, which are dummy values used in
place of a non-terminating expression evaluation. Since the overall assertion will
be false whenever these error values occur, this means that we implement the
natural semantics for function calls in all situations where the meaning matters.

2.4 Syntax

Definition 1 (Expressions and Assertions). We define the syntax of equi-
expressions (ranged over by e) and equi-assertions (ranged over by a) as follows:

e ::= null | true | false | x | e.f | e.g(e) | e = e | (e ? e : e)
a ::= e | acc(e.f , q) | e→ a | a ∗ a | e.P | Thread(x,m, y, z)

In the above, x, y, z range over program variables, f over field identifiers, g
over function names, P over predicate names, m over method names, and q
over rational numbers in (0, 1]. The three reserved variable names, this, X, and
method, represent the current receiver, method parameter, and method; the latter
may not be used explicitly in expressions, and its role will be explained shortly.

We implicitly require expressions and assertions to be type-correct, e.g. in e.f
the type of e should have a field f . Functions have one formal parameter, called X;
fewer or more parameters can be encoded. Other logical connectives over equi-
expressions, such as ∧, ∨ and ¬ can be encoded. Note that the implication
connective → is restricted to only allow expressions (rather than assertions)
on the left-hand side. This restriction is common to most practical verification
tools based on separation logic or implicit dynamic frames; it makes it possi-
ble to avoid an assertion semantics which needs to quantify over states (see
e.g. [14,17]); a problematic feature for automatic verification. Similarly, nega-
tion is only encodable for boolean expressions. Thus, acc(this.f , 1) ∗ this.f=5,
and this.f=5 → acc(this.f , 1) are assertions according to our definitions, while
acc(this.f , 1)→ this.f = 5 is not.

The Thread(x,m, y, z) assertion is used to record information about other
threads currently running; intuitively, it has the meaning that x stores a token
(a runtime value representing another thread), and that this thread was forked to
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execute method m with receiver y and parameter z. The role of these assertions
will be made clear in Section 5; they do not play a significant role with respect
to the handling of recursion in our assertion semantics.

2.5 Semantics

As in [17], the semantics of assertions is defined in terms of permission masks π,
heapsH , and environments σ. We employ a ∗ connective to combine permissions.
Definition 2 (Notation and Preliminaries).
We assume a set of values consisting of at least true, false, null, object identifiers
(ranged over by ι), thread identifiers (ranged over by t), method names (ranged
over by m), and one distinct error value per type tp(denoted by errortp).
Heaps, ranged over by H, are maps (total functions) from pairs of either object
identifier and field name or thread identifier and field name, to values.
Environments, ranged over by σ, are maps from variables to values.
Equi-permission-masks, ranged over by π, are maps from pairs of either object
identifier and field name or thread identifier and field name, to nonnegative
values in Q.
We define the operator + to combine permission masks as follows:
(π + π′)(ι, f) = π(ι, f) + π′(ι, f).
An equi-permission-mask π is well-formed, written |= π, if its range is within
[0, 1], i.e., we define |= π iff ∀ι, f. π(ι, f) ∈ [0, 1]
The (overloaded) lookup function Body returns the body of a function (an expres-
sion) or of a predicate (an assertion). Predicates have the implicit parameter this,
and functions have the implicit parameters this, and X.

An unusual feature above is the inclusion of field locations (in heaps and per-
mission masks) with thread identifiers as receiver. This is in order to permit as-
sertions which track information about other threads; we use three ghost fields,
called recv, param, meth, which are used to record the receiver, parameter and
current method name for a given thread identifier. These fields (which are the
only fields defined for a thread identifier) are ghost in the sense that they are
not present in runtime heaps (see Section 7 for details). A further novelty in
Definition 2 is the error value, errortp, motivated earlier, and used to define the
value of expressions when their evaluation is infinite:

Definition 3 (Value of Equi-Expressions). The evaluation of equi-
expressions e to values v in a state consisting of heap H, and environment σ, is
defined through a predicate e ⇓H,σ v as follows :

x ⇓H,σ σ(x) null ⇓H,σ null true ⇓H,σ true false ⇓H,σ false
e.f ⇓H,σ v if e ⇓H,σ ι and H(ι, f) = v.
e.g(e′) ⇓H,σ v if e ⇓H,σ ι and e′ ⇓H,σ v′ and Body(g) ⇓H,σ′ v,

where σ′ = [(this �→ ι), (X �→ v′)].
e = e′ ⇓H,σ true if e ⇓H,σ v and e′ ⇓H,σ v for some v.
e = e′ ⇓H,σ false if e ⇓H,σ v and e′ ⇓H,σ v′ and v �= v′.
(e1 ? e2 : e3) ⇓H,σ v if e1 ⇓H,σ true and e2 ⇓H,σ v.
(e1 ? e2 : e3) ⇓H,σ v if e1 ⇓H,σ false and e3 ⇓H,σ v.
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We now define the value of an expression e in the context of H and σ, as follows:

|�e�|H,σ =

{
v if e ⇓H,σ v
errortp if � ∃v. e ⇓H,σ v and e has type tp.

Note that errortp is a value, and cannot be used in source language expres-
sions. Thus, in a configuration H ′, σ′ in which z points to a cycle, we obtain
that |�z.length()�|H′,σ′=errorint, and |�z.length() = 3�|H′,σ′= errorbool. We can rep-
resent z.length() �= 3 through (z.length() = 3 ? false : true); we would then obtain
|�z.length() �= 3�|H′,σ′ = errorbool. The presence of error values in the above defi-
nition may seem surprising, but we will shortly show that such values can only
occur when the meaning of the expression is irrelevant to the assertion in which
it occurs. First, we define the semantics of equirecursive assertions:

Definition 4 (Semantics of Equi-Assertions). We define the semantics of
equi-assertions in a state comprised of permissions π, heaps H, and environment
σ, as the least fixpoint of the following equations:

π,H, σ |=E e ⇐⇒ |�e�|H,σ = true
π,H, σ |=E acc(e.f , q) ⇐⇒ π(|�e�|H,σ, f) ≥ q
π,H, σ |=E e→ a ⇐⇒ (|�e�|H,σ = true)⇒ π,H, σ |=E a
π,H, σ |=E a1 ∗ a2 ⇐⇒ ∃π1, π2 : π = π1 + π2

and π1, H, σ |=E a1 and π2, H, σ |=E a2
π,H, σ |=E e.P ⇐⇒ π,H, σ |=E Body(P )[e/this]
π,H, σ |=E Thread(x,m, y, z) ⇐⇒ π[σ(x), recv] = ∧H [σ(x), recv] = σ(y)

∧ π[σ(x), param] = 1 ∧H [σ(x), param] = σ(z)
∧ π[σ(x), meth] = 1 ∧H [σ(x), meth] = m

Equi-entailment a |=E a′ holds if: ∀π,H, σ. (π,H, σ |=E a =⇒ π,H, σ |=E a′).

Thus, in H ′, σ′ from above we have π,H ′, σ′ �|=E z.length() = 3. Furthermore,
if (as before) we represent z.length() �= 3 through (z.length() = 3 ? false : true) we
obtain π,H ′, σ′ �|=E z.length() �= 3. Note that (since we employ the least fixpoints
of the above rules), π,H, σ |=E e.P holds, if π,H, σ |=E Body(P)[e/this] holds in
a finite unfolding. Therefore, we also obtain π,H ′, σ′ �|=E z.Acyclic.

Moreover, if we represent ¬(z.length() = 3) through (z.length() = 3) → false,
we obtain that π,H ′, σ′ |=E ¬(z.length() = 3). This may seem to be a concern,
given that π,H ′, σ′ �|=E z.length() �= 3, when encoded as above. These concerns
are eliminated once we add the definition of framed expressions and assertions.
Essentially, we define a judgement which ensures for a given expression or asser-
tion that a particular state holds enough permissions to access all fields, and that
all involved function calls and predicate applications have a finite unrolling. We
then define an assertion to be self-framing if it can only hold in states in which it
is framed. In this way, we guarantee that all assertions are either trivially false,
or else their semantics will not include calculation of error values, and thus the
intuitive semantics of expressions is restored.2

2 The concept of self-framing assertion was introduced in [21], and described algorith-
mically in [22]; a more abstract formalisation for assertions not including predicates
was developed in [17].
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Definition 5 (Framed and Self-Framing Equi-Assertions).
An equi-expression e, or assertion a is equi-framed in a state consisting of H,
π and σ, as the least fixpoint satisfying the following equations:

|=π,H,σ
frmE null |=π,H,σ

frmE true |=π,H,σ
frmE false |=π,H,σ

frmE x

|=π,H,σ
frmE e.f ⇐⇒ |=π,H,σ

frmE e ∧ π(|�e�|H,σ, f) > 0

|=π,H,σ
frmE e.g(e′) ⇐⇒ |=π,H,σ

frmE e ∧ |=π,H,σ
frmE e′ ∧ |=π,H,σ′

frmE Body(g))
where σ′ = [this,X �→ |�e�|H,σ, |�e′�|H,σ]

|=π,H,σ
frmE e = e′ ⇐⇒ |=π,H,σ

frmE e ∧ |=π,H,σ
frmE e′

|=π,H,σ
frmE e1?e2 : e3 ⇐⇒ |=π,H,σ

frmE e1 ∧ (π,H, σ |=E e1 ⇒|=π,H,σ
frmE e2)

∧ (π,H, σ �|=E e1 ⇒ |=π,H,σ
frmE e3)

|=π,H,σ
frmE acc(e.f , q) ⇐⇒ |=π,H,σ

frmE e

|=π,H,σ
frmE e→ a ⇐⇒ |=π,H,σ

frmE e ∧ (π,H, σ |=E e⇒|=π,H,σ
frmE a)

|=π,H,σ
frmE a1 ∗ a2 ⇐⇒ |=π,H,σ

frmE a1 ∧ |=π,H,σ
frmE a2

|=π,H,σ
frmE e.P ⇐⇒ |=π,H,σ

frmE e ∧ |=π,H,σ
frmE Body(P )[e/this]

|=π,H,σ
frmE Thread(x,m, y, z) ⇐⇒ true

An equi-expression e is framed by an assertion a, written a |=frmE e, if, (for all

π,H, σ) we have π,H, σ |=E a implies that |=Π,H,σ
frmE e.

An equi-assertion a is self-framing, written |=frmEa if, for all H, π and σ:

π,H, σ |=E a ⇒ |=π,H,σ
frmE a

Thus, x = 3 is always framed, and thus self-framing, as is acc(x.f , q), while
x.next �= null is framed only when the state holds permission to the heap location
x.next. Moreover, note that the expressions x.next = x.next and x.next �= x.next
(encoded as earlier), and the assertion ¬(x.next = x.next) are not self-framing.
Similarly, x.List and x.length() are framed only in states in which we hold the
permissions to all the fields in the list, and where x is an acyclic list. In particu-
lar, x.List ∗ x.length() = 4 is self-framing (note that self-framedness only implies
a restriction on the states in which the assertion is true; for a cyclic list struc-
ture, the assertion x.List will be false). The assertion bad() = 4 is self-framing;
intuitively because its semantics does not depend on the heap.

The definitions of this section give a direct semantics to well-defined recursive
functions and predicates, in which (terminating) function calls are always equal
to their bodies, and predicates are also evaluated in terms of their bodies directly.
This semantics is unsuitable for usage in an implementation for three reasons:

1. Treating a predicate instance as meaning its full unrolling yields an unim-
plementable semantics for checking assertions’ truth or entailment; the un-
bounded unrolling of such a definition cannot be performed in a static tool.

2. Treating a function call as always equal to its body also naturally leads to
unbounded instantiation of the recursive definition, in order to evaluate the
meaning of assertions in which the function is called.

3. Checking well-definedness and framing of predicate and function definitions
is also not practical, since (according to Definition 5), this also depends on
being able to evaluate the entire unrolling of the definitions.
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In the next section, we turn to the corresponding isorecursive notions, to address
these issues.

Discussion. In the remainder of this section, we reflect on some considered de-
sign alternatives. In earlier attempts to define a suitable semantics, we considered
making the evaluation of expressions (particularly functions) dependent on hold-
ing sufficient permissions to frame the expressions. This seems intuitive, since
reading heap locations without permissions can, at runtime, yield an undefined
result (due to race conditions), while evaluating non-terminating functions is
clearly undefined at runtime. However, once expression semantics is allowed to
be undefined, one either needs to allow the assertion semantics to also provide
undefined results, or to provide rules for when to promote undefined results
to true or false. The use of additional error values errortp allowed us to avoid
this; instead taking an “optimistic” semantics of expressions, and then enforcing
framedness separately.

Verification tools often require abstraction functions to have a precondition,
which is a predicate which guarantees that the function body terminates, and
that the context of a call will hold sufficient permissions. This is natural for the
modelling of partial functions, however, we found that our equirecursive seman-
tics could exploit the use of error values (which implicitly make all functions
total) to avoid explicit preconditions. This is consistent with an optimistic ex-
pression semantics, and it is not the semantics of this section which needs to be
readily checkable in static tools. Preconditions for functions will appear in the
isorecursive semantics of the next section.

3 Isorecursive Semantics for Predicates and Functions

In this section, we introduce an assertion semantics in the iso-recursive style. In
the iso-recursive approach, predicates are differentiated from their bodies; this
is handled in the logic by treating predicate names merely as another kind of
permission, which can be rewritten into the corresponding body of the predicate
by explicit extra fold and unfold statements. There are then two different notions
of permission a thread can have; the explicit permissions, which can be repre-
sented in a permission mask as usual, and the implicit permissions, which are
those which are folded (perhaps recursively) inside predicate instances to which
explicit permission is held. Moreover, in the iso-world, functions are equipped
with preconditions, which control when the function may be called; the precon-
dition ensures (when it holds) that the body of the function is well-defined.

Running Example for the Isorecursive Setting. In the isorecursive set-
ting the predicate List, and the functions length and bad are defined as follows:
Body(List) ≡ acc(this.next, 1)∗

(this.next = null ? true : acc(this.next.List))
Pre(length) ≡ acc(this.List)
Body(length) ≡ unfolding this.List in

(this.next = null ? 0 : 1 + this.next.length())
Pre(bad) ≡ true Body(bad) ≡ 1 + bad()
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To differentiate iso-recursive definitions from their equirecursive counterparts, we
typically use corresponding upper-case metavariables (e.g., E for expressions).

Definition 6 (Iso-Expressions and Iso-Assertions). We define the syntax
of iso-expressions (ranged over by E) and iso-assertions (ranged over by A), by
the following grammars:
E ::= null | true | false | x | E.f | E.g(E) | E = E | (E ?E :E)

| unfoldingE.P inE
A ::= E | acc(E.f, q) | E → A | A ∗A | acc(E.P ) | Thread(x,m, y, z)
The additional lookup function Pre(g) retrieves the precondition of function g.

The syntax of iso-expressions matches that of equi-expressions, with the excep-
tion of unfoldingE1.P inE2, which is new here. The value of this expression is
the same as that of E2, however, the way such an expression is checked to be
framed in a state is different; the unfolding of the predicate P means that E2

may depend on heap locations whose permissions come from the body of E1.P .
The difference between equi-assertions and iso-assertions is the replacement

of the assertion of predicate e.P , by permissions to such predicate instances,
denoted acc(E.P ) above. The semantics of e.P differs from that of acc(E.P ),
in that the former unfolds all recursive definitions, while the latter only requires
permission to the predicate instance, as will be shown in Definition 9. To keep
the presentation simple, we only support full permissions to predicates; i.e. we
do not allow predicate instances themselves to be “split”. Some tools support
this, and the corresponding extension of our model would be straightforward.

Definition 7 (Semantics of Iso-Expressions). We define the evaluation of
iso-expressions E in a state comprising of heaps H, and environment σ, in the
analogous manner to Definition 3, for example,

E = E′ ⇓H,σ false if E ⇓H,σ v and E ⇓H,σ v′ and v �= v′.
along with the following additional case:

unfoldingE1.P inE2 ⇓H,σ v if E2 ⇓H,σ v.
Moreover, as in Definition 3, if E has type tp, then

|�E�|H,σ = v, if E ⇓H,σ v, and errortp, if no such v exists.
The full definition appears in the technical report [23].

Thus, in a state H1, σ1 in which z points to an acyclic list of two elements,
we would have |�z.length()�|H1,σ1=2, and in H ′, σ′ from the discussion following
Definition 4, we would have |�z.length()�|H′,σ′= errorint.

In order to model iso-assertions, we extend the concept of permission mask,
so that it also holds permissions to predicate instances.

Definition 8 (Iso-Permissions and Permissions Collection). Isorecursive
permission masks, Π∈Perms, are mappings from pairs of object or thread iden-
tifiers and field names to non-negative values in Q, and from pairs of object
identifiers and predicate identifiers to non-negative values in Z.
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The function PI collects the permissions explicitly required by an iso-assertion,
PI : IsoAssertion ×Heap× Env→ Perms

PI(E,H, σ) = ∅
PI(acc(E.f, q), H, σ) = { (|�E�|H,σ , f) �→ q }
PI(E → A,H, σ) = PI(A,H, σ) if |�E�|H,σ = true, ∅ otherwise
PI(A ∗A′, H, σ) = PI(A,H, σ) + PI(A

′, H, σ)
PI(acc(E.P ), H, σ) = { (|�E�|H,σ , P ) �→ 1 }
PI(Thread(x,m, y, z), H, σ) = { (σ(x), recv) �→ 1, (σ(x), param) �→ 1,

(σ(x), meth) �→ 1}
The operation  , applied to permission mask Π, address ι and predicate identifier
P in a heap H, is defined only when Π(ι, P )≥ 1; it removes the permission to
ι.P , and adds all the permissions obtained by unfolding the predicate body once:
Π  H ι.P = Π [(ι, P ) �→ Π(ι, P )− 1]+PI(Body(P ), H, σ), where σ(this) = ι.

As for the equirecursive case, we treat permission masks Π liberally, allowing
permissions to fields to be any rational numbers, even if they exceed 1. Because
we do not work with full knowledge of the permissions contained within predicate
instances, in general we cannot rule out the possibility that assertions implicitly
require more than the full permission to a field; there is always the possibility
for isorecursive permission masks to have no corresponding well-formed equire-
cursive permission mask. For uniformity, therefore, we ignore this issue in our
isorecursive model, and address it in the following section.

Definition 9 (Semantics of Iso-Assertions). We define the semantics of
iso-assertions in a state comprising of an iso-permission mask Π, heap H, and
an environment σ, as the smallest fixed point satisfying the following properties:

Π,H, σ |=I E ⇐⇒ |�E�|H,σ = true
Π,H, σ |=I acc(E.f, q) ⇐⇒ Π(|�E�|H,σ, f) ≥ q
Π,H, σ |=I E → A ⇐⇒ Π,H, σ |=I E ⇒ Π,H, σ |=I A
Π,H, σ |=I A1 ∗A2 ⇐⇒ ∃Π1, Π2 : Π=Π1 +Π2 ∧ Π1, H, σ |=I A1

∧ Π2, H, σ |=I A2

Π,H, σ |=I acc(E.P ) ⇐⇒ Π(|�E�|H,σ, P ) ≥ 1
Π,H, σ |=I Thread(x,m, y, z) ⇐⇒ Π [σ(x), recv] = 1 = Π [σ(x), param]

∧ H [σ(x), recv] = σ(y)
∧ H [σ(x), param] = σ(z)
∧ Π [σ(x), meth] = 1 ∧H [σ(x).meth] = m

Iso-entailment A |=I A
′ holds if: ∀Π,H, σ. (Π,H, σ |=I A =⇒ Π,H, σ |=I A

′).

Crucially, the semantics of predicate permissions acc(E.P ) does not involve
recursion; it is sufficient to simply check that permission to the predicate instance
is in the direct permissions. This does not directly enforce that the body of the
predicate holds in the current state, but, as we shall show in the next section,
we push this concern to the definition of a “good” isorecursive state; since a
verifier cannot in general enforce that a recursive definition holds, this has to be
pushed to the soundness of the underlying methodology (i.e., the equirecursive
semantics).
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We can now define the notion of framing for iso-expressions and iso-assertions
(cf. Definition 5 for the equi-world).

Definition 10 (Framed and Self-Framing Iso-Assertions).
An iso-expression E, or assertion A is iso-framed in a state consisting of

H, Π and σ, as defined by judgements |=Π,H,σ
frmI E and |=Π,H,σ

frmI A. Full definitions
are provided in the technical report [23], but all cases of these judgements are
analogous to those of Definition 5, with the following exceptions:

|=Π,H,σ
frmI E.g(E′) ⇐⇒ |=Π,H,σ

frmI E ∧ |=Π,H,σ
frmI E′ ∧

Π,H, σ′ |=I Pre(g)
where σ′ = [(this �→ |�E�|H,σ), (X �→ |�E′�|H,σ)]

|=Π,H,σ
frmI unfoldingE.P inE′ ⇐⇒ |=Π,H,σ

frmI E ∧Π(|�E�|H,σ, P ) ≥ 1 ∧
|=Π′,H,σ

frmI E′

where Π ′ = Π  H |�E�|H,σ.P

|=Π,H,σ
frmI acc(E.P ) ⇐⇒ |=Π,H,σ

frmI E
An iso-expression E is framed by an assertion A, written A |=frmIE, if, (for all

Π,H, σ) we have Π,H, σ |=I A implies that |=Π,H,σ
frmI E.

An iso-assertion A is self-framing, written |=frmIA if, for all H, Π and σ:

Π,H, σ |=I A ⇒ |=Π,H,σ
frmI A

For example, Thread(x,m,y,z) and this.List are self-framing assertions, while
this.next=null is not.

The rule at the heart of the iso-expressions is the one describing framing
for unfoldingE.P inE′: it requires that the context holds permission to the
predicate E.P, and adds the permissions from the body of E.P into the currently
held permissions, in order to check framedness of E′. Therefore, in a context
where Π(σ(this), next) = 0, and Π(σ(this),List) = 1, the expression this.next is
not framed, whereas the expression unfolding this.List in this.next is framed.

Most importantly, the notion of framing no longer requires a recursive traver-
sal of predicate definitions, as opposed to that from definition 5, which required
potentially infinite unrolling. This can only be justified with two further ingre-
dients; firstly, that predicate definitions are always self-framing and functions
are only applied in contexts where their bodies are guaranteed to terminate,
and secondly that holding a predicate always implicitly guarantees that its body
holds in the same state. The former of these two ingredients is provided by the
following definition, while the second is provided by the notion of “good state”
in the next section.

Definition 11 (Well-formed Definitions).
The definition of an iso-predicate P is well-formed, if |=frmIBody(P ).
The definition of an iso-function g is well-formed, if: (1) |=frmI Pre(g), and

(2) ∀Π,H, σ.(Π,H, σ |=I Pre(g) =⇒ (|=Π,H,σ
frmI Body(g)∧|�Body(g)�|H,σ �= errortp)),

where tp is the return type of g.
A program is well-formed if all function and predicate definitions are well-

formed.
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Thus, function bad is not well-formed; a function with this body could only be
well-formed if its precondition were false. Moreover, length is well-formed, but it
would not be well-formed if its precondition were true.

Discussion. Note that our notion of well-formedness can be checked without
unrolling definitions recursively: although criterion (2) of Definition 11 requires
that |�Body(g)�|H,σ �= errortp, this criterion need not (and cannot) be checked
by fully evaluating the function definition. The special value errortp is obtained
only if the (least fixpoint of the) rules of Definition 7 do not yield a value for
the body. Thus, it is sufficient to impose any conservative termination criterion
on the definition of functions, in order to guarantee that errortp never arises. In
the next section, we will show how the isorecursive definitions above correctly
approximate the corresponding equirecursive notions.

We considered making the error value, errortp, an (unknown) element of the
type tp. This approach of underspecification is taken in some classical logic based
handlings of partial functions. This would work correctly for the semantics of
assertions, but would not work correctly for well-formedness (Definition 11),
since we check that functions do not evaluate to this value. For example, equating
errorbool with true or with false, would turn a boolean function g, with Body(g)
= x>3, into a badly-formed function.

Returning to the three points outlined at the end of the previous section, we
can see that our isorecursive definitions directly handle the first and third points
of the list (the semantics of predicates, and the checking of framing of expres-
sions and assertions), without requiring a recursive unrolling of any definition.
These can therefore be implemented effectively in a static tool. With respect to
the second point of our list, our isorecursive expression semantics still defines
function calls directly in terms of their bodies, which is not yet suitable for a
(matching-loop-free) implementation. Tools handle this problem by applying a
variety of additional heuristics, ghost code markers, or triggers [12], in order to
implement a constrained version of the definition we employ here; the seman-
tics above is approximated in some way. Since a variety of techniques tackle this
problem, we decided not to prescribe a particular strategy. Nonetheless, building
a practical restriction of this definition is feasible; in particular, it is possible for
a reasonably complete handling of this definition to be achieved based only on
the folding and unfolding of predicates [7].

4 Comparing the Assertion Semantics

We now turn to relating our two semantics. Our eventual goal is to define an era-
sure, mapping our isorecursive constructions to their equirecursive counterparts,
in order to show that verification based on isorecursive semantics gives a sound
approximation of verification based on equirecursive semantics. In particular,
we will show that fold, unfold and unfolding (which are essential for defining
semantics in the isorecursive sense) can all be eliminated from the language, and
the resulting program still satisfies the erased version of its specifications. Since
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permissions (let alone permissions to predicates) are not reflected at runtime,
this leads us closer to a runtime model suitable for proving soundness with re-
spect to an operational semantics. In this section, we focus on the relationship
between the two semantics for assertions.

Definition 12 (Encoding). The encoding 〈〈 〉〉 maps isorecursive expressions
and assertions to their equirecursive counterparts, typically by injection, e.g.
〈〈x 〉〉 = x, 〈〈E.f 〉〉=〈〈E 〉〉.f , and 〈〈acc(E.f, q) 〉〉=acc(〈〈E 〉〉.f , q).

For the cases specific to iso-expressions and assertions, we have
〈〈unfoldingE.P inE′ 〉〉 =〈〈E′ 〉〉, and 〈〈acc(E.P) 〉〉=〈〈E 〉〉.P .

The full definition appears in the technical report [23].

Unfolding expressions are unnecessary in the equirecursive world, where pred-
icates and their bodies are not differentiated between. However, the unrolling
of predicate definitions may still lead to the discovery that too many field per-
missions were implicitly held in an isorecursive state; not all isorecursive masks
have an equirecursive analogue. This is described in the next definition.

Definition 13 (Encoding permissions). The (partial) translation 〈〈 〉〉 en-
codes isorecursive permission maps Π into equirecursive permission maps π,

〈〈Π 〉〉H = {(ι, f) �→ q | Π [ι, f ] = q}+ {(t, f) �→ q | Π [t, f ] = q}+ 〈〈Π ′ 〉〉H
where Π ′ =

∑
Π(ι.P )>0(PI(Body(P ), H, [this �→ ι]))

Note that 〈〈Π 〉〉H may not be well-defined (if a predicate instance held in Π
has an infinite unfolding; then the definition above will not terminate), and
even when defined, it may not yield a well-formed equi-permissions-mask (cf.
Definition 2), if too many field permissions are accumulated. Furthermore, it
could be that the constraints required in the bodies of predicates are not always
correctly reflected in an iso-recursive state. Thus, we define the notion of a
“good” isorecursive state.

Definition 14 (Good Iso-States). An isorecursive state defined by heap H,
iso-permissions-mask Π and environment σ is “good”, if:

1. 〈〈Π 〉〉H is defined, and satisfies |= (〈〈Π 〉〉H).
2. For all ι, P such that Π [ι, P ] > 0, (〈〈Π 〉〉H), H, σ′ |=E w.P is satisfied, where

w is a fresh variable, and σ′ is the environment σ extended with the mapping
[w �→ ι].

Note, in particular, that the second of these two requirements enforces that
the original state does not hold permission to any predicate instance whose
definition can be unrolled infinitely. As motivated in Section 2, such predicates
are interpreted as false in the equirecursive semantics in any case, so ruling out
such states in advance is consistent with this view. In general, good iso-states
are those which have a meaningful corresponding equirecursive counterpart.

In Lemma 1 we show that we can map a judgement back from the equirecursive
world to the isorecursive, starting from a “good” state in the isorecursive world.
Then, in Theorem 1, we show our erasure results.
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Lemma 1. In a well-formed program the following properties hold:

1. If Π(ι.P ) > 0, then 〈〈Π 〉〉H = 〈〈Π  H ι.P 〉〉H .
2. If π,H, σ |=E 〈〈A 〉〉, then ∃Π s.t. (Π,H, σ) is a good iso-state, 〈〈Π 〉〉H = π,

and Π,H, σ |=I A.

Theorem 1 (Erasure Results).

1. |�〈〈E 〉〉�|H,σ = |�E�|H,σ.
2. If Π,H, σ |=I A and (Π,H, σ) is a good iso-state,

then 〈〈Π 〉〉H , H, σ |=E 〈〈A 〉〉.
3. If (Π,H, σ) is a good iso-state and |=Π,H,σ

frmI A, then |=〈〈Π 〉〉,H,σ
frmE 〈〈A 〉〉.

4. If all functions and predicates are well-formed, then if an iso-assertion A is
self-framing, then 〈〈A 〉〉 is self-framing.

5. If A |=I A
′, then 〈〈A 〉〉 |=E 〈〈A′ 〉〉.

The proof sketches are given in the technical report [23]. These results demon-
strate that the more-readily-checkable isorecursive notions from the previous
section accurately approximate the intended underlying equirecursive notions.
In the following sections, we extend this argument to Hoare Logics for a small
language. We will then be in a position to prove that verifying a program with
respect to isorecursive definitions, is sufficient to guarantee soundness, via our
erasure results and a soundness proof with respect to equirecursive semantics.

5 Hoare Logic for Iso-Assertions

In this section, we define an axiomatic semantics for a small (but representative)
subset of Chalice, with respect to our iso-recursive assertion semantics (as defined
in Section 3). This is the semantics closest to most implementations, but it is not
so intuitive or useful as a runtime model. In the following section, we will define
a corresponding Hoare Logic for our equirecursive semantics, and demonstrate
the relationship between the two.

5.1 Chalice Syntax

We begin by defining our Chalice subset:

Definition 15 (Isorecursive Chalice Syntax). We assume a set of pre-
defined methods, ranged over by m. For simplicity, methods are assumed to have
exactly one parameter, and to always return a value. Furthermore, method names
are assumed to be unique in the whole program.
Simple statements, ranged over by R, and statements, ranged over by S, are
mutually defined by the following grammars:

R ::= skip | x:=E | x.f :=y | return x | x:= new c | (if B then S1 else S2)
| x:= fork y.m(z) | y:= join x | foldx.p | unfoldx.p

S ::= R | (R;S)
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A statement S is return-ended if the right-most simple statement occurring in
its structure is of the form return x; i.e., it can be constructed by the following
sub-grammar: S ::= return x | (R;S)
Composition of statements S1 and S2, for which we use the (overloaded) notation
(S1;S2), results in a statement which represents appending the two sequences of
simple statements; i.e., when S1 is not a simple statement (say, S1 = (R;S′)),
is defined by recursively rewriting ((R;S′);S2) = (R; (S′;S2)).

Our syntax only allows for sequential compositions to be nested to the right,
which simplifies the definition of the operational semantics (see Section 7), since
we do not need a separate concept of evaluation contexts for such a simple
language. Our language only allows general expressions e within variable as-
signments, and otherwise employs only program variables for expressions, but
the generalisation is easily encoded (or made). Multi-threading is achieved by
the ability to fork and join threads. The statement w:= fork m.y(z) has the
meaning of starting an invocation of a call to method m (with receiver y and
parameter z) in a new thread. The returned value (stored in w) is a token, which
gives a means of referring to this newly-spawned thread. Such a token can be
used to join the thread later (which has the operational meaning of waiting for
the thread to terminate, and then receiving its return value); this is provided by
the x:= join w statement.

We do not include loops, since they present no relevant challenges compared
with recursion. While we do not support a method call statement, we do allow
the fork and join of method invocations. A normal method call of the form
x:= m.y(z) can be encoded by a sequence (w:= fork m.y(z) ;x:= join w )
(for some fresh variable w).

5.2 Hoare Logic

We now define the Hoare Logic corresponding to isorecursive assertion semantics.

Definition 16 (Isorecursive Hoare Logic). Isorecursive Hoare Triples are
written �I {A} S {A′}, where A and A′ are self-framing isorecursive assertions,
and S is an Isorecursive Chalice statement. The rules are shown in Figure 1.
We leave implicit the requirement that A and A′ are always self-framing; in
particular, whenever we write a triple (even as a new conclusion of a derivation
rule), this requirement must be satisfied in addition to the explicit premises.

Our Hoare triples employ isorecursive assertions as pre- and post-conditions,
with the restriction that the assertions used must always be self-framing. The
restriction to self-framing assertions is important for soundness. For example,
without this requirement, it would naturally be possible to derive triples such as
�I {x.f = 1} (skip; skip) {x.f = 1}, which, when evaluated at runtime, might
not be sound (another thread could modify the location x.f during execution).
Indeed, in our soundness proof, the requirement that every thread has a self-
framing pre-condition is essential to the argument.
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(skipI)�I {A} skip {A}
A[E/x] |=frmIE

(varassI)�I {A[E/x]} x:=E {A}

(fldassI)
�I {x �= null ∗ acc(x.f, 1)} x.f :=y {acc(x.f, 1) ∗ x.f = y}

(retI)�I {A} return x {A ∗ result = x}

fi = fields(c)
(newI)

�I {true} x:= new c {x �=null ∗ (∗acc(x.fi, 1))}

�I {A ∗ B} S1 {A′} �I {A ∗ ¬B} S2 {A′}
(ifI)�I {A} (if B then S1 else S2) {A′}

A = Pre(m)[y/this][z/X]
(forkI)

�I {y �= null ∗A} x:= fork y.m(z) {Thread(x,m, y, z)}

A′ = Post(m)[y/this][z/X][w/result]
(joinI)�I {Thread(x,m, y, z)} w:= join x {A′}

�I {A} R {A′} �I {A′} S {A′′}
(seqI)�I {A} (R;S) {A′′}

A1 |=I A3 �I {A3} S {A4} A4 |=I A2
(consI)�I {A1} S {A2}

�I {A} S {A′} |=frmIA
′′ mods(S) ∩ FV(A′′) = ∅

(frameI)�I {A′′ ∗A} S {A′ ∗A′′}

|=frmIA A′ = Body(P )[x/this]
(foldI)

�I {A ∗ A′ ∗B} fold acc(x.P , q) {A ∗ acc(x.P , q) ∗ unfolding x.P inB}

|=frmIA A′ = Body(P )[x/this]
(unfoldI)

�I {A ∗ acc(x.P , q) ∗ unfolding x.P inB} unfold acc(x.P , q) {A ∗ A′ ∗B}

Fig. 1. Hoare Logic for Isorecursive semantics

Some of the rules (such as the treatment of conditionals, and the rule of con-
sequence, (consI))) are standard, but others warrant discussion. The frame rule
(frameI) (whose role is to preserve parts of the state which are not relevant for
the execution of the particular statement) is similar to that typically employed
in separation logics [8]. The extra assertion A′′ can be “framed on” under two
conditions; firstly, that no variables mentioned in A′′ are modified by the state-
ment S, and secondly, that A′′ is self-framing. The two conditions are necessary
for similar reasons; if the execution of S could change the meaning of A′′, then
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to simply conjoin it unchanged to both pre- and post-condition would be incor-
rect. The two ways in which the state can change in our language are through
variable assignments (whose effects are tamed by the first requirement) and field
assignments (which cannot affect the meaning of A′′, since A′′ is self-framing,
and therefore comes along with sufficient permission to rule out assignment to
the fields on which its meaning depends).

The (varassI) rule is similar to a standard Hoare Logic rule for assignment,
but with the extra requirement that the expression to be assigned is readable in
the pre-condition state. The premise guarantees that fields are only read when
appropriate permissions are known to be available, and functions are only applied
when their pre-conditions are known in the state. The rule (fldassI) is slightly
subtle: it must avoid the possibility of outdated heap-dependent expressions
surviving the assignment; the requirement for full permission to the written
field location from the pre-condition forces any information previously-known
about that location to be discarded (i.e., using rule (consI)) prior to applying
this rule).

The rules for forking and joining threads employ the special Thread(x,m, y, z)
assertion, discussed above. Our formulation does not allow this knowledge to
be split amongst threads (though it can be passed from thread to thread in
contracts); extensions are possible but orthogonal to the topic of this paper.

The two most important rules for the isorecursive semantics are those for
folding and unfolding predicate instances. For example, consider folding a pred-
icate instance, as defined by rule (foldI)). It is easy to see that this rule should
exchange the body of the predicate instance (the assertion A′ for a permis-
sion to the predicate itself). The challenge is to enable the preservation of
information which was previously framed by the predicate’s contents, even
though those permissions have (after folding) been stored into the predicate
body. For example, consider a predicate P whose definition is acc(this.g, 1).
In a state in which we know acc(this.g) ∗ this.g = 4, we could not treat a
fold of P as a simple exchange of acc(this.g) for acc(this.P), since, in the re-
sulting state, this.g = 4 would not be framed. Instead, our rule allows us to
derive the post-condition acc(this.P) ∗ unfolding this.P in this.g = 4, which is
self-framing. Furthermore, in order to handle the possibility that we wish to
preserve an expression which is framed partially by the permissions required
by a predicate body, we allow the presence of a further assertion A in the
rule. This allows, e.g. a pre-condition such as acc(this.f) ∗ acc(this.g) ∗ this.f =
this.g for a statement foldacc(this.P) to be used to derive a post-condition
acc(this.f) ∗ acc(this.P) ∗ unfolding this.P in this.f = this.g, in which the addi-
tional assertion (acc(this.f) in this case) provides additional permissions required
for self-framing. The condition that A must be self-framing is necessary to avoid
that A itself might represent information which was only framed by permissions
from the body of P .

The rule for unfolding predicates is exactly symmetrical with that for fold-
ing predicates. In particular, it enables information from unfolding expressions
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depending on the predicate to be unfolded, to be preserved (without an unfolding
expression) in the post-state.

We can characterise the derivable triples in our Hoare Logic, using a generation
lemma; an example case is shown here.

Lemma 2 (Generation Lemma).

– �I {A} x:=E {A′} ⇔
∃A′′.( |=frmIA

′′ ∧ A |=I A
′′[E/x] ∧ A′′[E/x] |=frmIE ∧ A′′ |=I A

′)
– Remaining cases in the technical report [23].

6 Hoare Logic for Equi-Assertions

In this section, we employ a second Hoare Logic based on our equirecursive as-
sertion semantics. Firstly, we define an “erased” form of our statement syntax, in
which only equirecursive expressions are used, and no fold and unfold statements
may occur.

Definition 17 (Equirecursive Chalice Syntax). Simple runtime state-
ments, ranged over by r, and runtime statements, ranged over by s, are mutually
defined by the following grammars:

r ::= skip | x:=e | x.f :=y | return x | x:= new c | (if b then s1 else s2)
| x:= fork y.m(z) | y:= join x

s ::= r | (r; s)
The notions of return-ended statements and composition of statements are anal-
ogous to those of Definition 15.

We can now define the equirecursive analogue of Definition 16.

Definition 18 (Equirecursive Hoare Logic). Equirecursive Hoare Triples
are written �E {a} s {a′}, where a and a′ are self-framing equirecursive asser-
tions, and s is an equirecursive Chalice statement. The rules are analogous to
those of our Isorecursive Hoare Logic (Definition 16), except that the correspond-
ing equirecursive notions of entailment, self-framing, statements, assertions etc.
are used throughout. In addition, there are no rules for fold and unfold state-
ments (since these do not occur in equirecursive Chalice). The full rules are given
in the technical report [23].

We now extend our previous erasure results (mapping isorecursive to equirecur-
sive assertions) to also define an erasure on statements. This operation applies
erasure to all assertions and expressions, and replaces all fold/unfold state-
ments with skip.

Definition 19 (Encoding iso-statements to equi-statements). We over-
load the encoding 〈〈 〉〉 to map isorecursive to equirecursive statements, as:

〈〈x:=E 〉〉 = x:=〈〈E 〉〉 〈〈 (S1;S2) 〉〉 = (〈〈S1 〉〉; 〈〈S2 〉〉)
〈〈 (if E then S1 else S2) 〉〉 = (if 〈〈E 〉〉 then 〈〈S1 〉〉 else 〈〈S2 〉〉)

〈〈 foldx.P 〉〉 = skip = 〈〈unfoldx.P 〉〉
〈〈S 〉〉 = S otherwise
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Theorem 2. If A,A′ are self-framing iso-assertions, and S is an isorecursive
Chalice statement, then

�I {A} S {A′} ⇒ �E {〈〈A 〉〉} 〈〈S 〉〉 {〈〈A′ 〉〉}

7 Operational Semantics and Soundness

In this section, we show soundness of our formalisations, with respect to an
interleaving small-step operational semantics. We formalise our runtime model
with respect to a collection of threads and objects, together referred to as runtime
entities. We do not model explicit object allocation; instead, we assume that
all objects are pre-existing (and already have classes), but have a flag which
indicates whether they are truly allocated or not. When unallocated, an object
holds the permission to all of its own fields. Thus, we never need to create or
destroy permission in the system; it is merely transferred from entity to entity.
Similarly, we do not model creation of new threads, but just assume that idle
thread entities exist in the system, which can be assigned a task (i.e., a method
invocation) to begin executing.

Definition 20 (Runtime Ingredients). Remember that object identifiers are
ranged over by ι, and the (disjoint) set of thread identifiers is ranged over by t.
We assume a fixed mapping cls(ι) from object identifiers to class names.
A runtime heap h is a mapping from pairs of object identifier and field name,
to values.
A thread configuration T is defined by T ::={σ, s} | idle where s is a return-
ended runtime statement (cf. Definition 17).
A thread entity is a thread configuration labelled with a thread identifier, Tt. A
thread entity is called active if it is of the form {σ, s}t.
An object state O is defined by O ::= alloc | free, and an object entity is an
object state labelled with an object identifier, written Oι.
A labelled entity Nn is defined by Nn::=Tt | Oι, where the label n denotes the
thread or object identifier of the entity, respectively.

Note that, in contrast to the heaps of Definition 2, runtime heaps do not store
ghost information about thread identifiers. At runtime, this information is di-
rectly available via the thread configurations present.

We define two main types of small-step transitions, which we call local and
paired transitions. A local transition is one which affects only a single (thread)
entity and the heap.

Definition 21 (Local transitions). Local transitions map a heap and thread
entity to a new heap and thread entity (with the same thread identifier), and are
written h, Tt l−→ h′, T ′t . These rules have the expected shape, e.g.

|�e�|h,σ = v
(varassS)

h, {σ, (x:=e; s)}t l−→ h, {σ[x�→v], s}t
Full rules for local transitions are given in the technical report [23].
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The more complex transitions are concerned with forking and joining threads,
and with object allocation. In the case of forking and joining, we define transi-
tions which simultaneously involve two thread entities; one which is executing the
fork/join statement, and one which represents the thread being forked/joined.
In the case of a fork, the second thread entity must be initially idle, while in the
case of a join, it must have finished executing and be ready to return. Object
allocation, on the other hand, is a transition involving a thread entity and an
object entity together; it takes an object entity in the free state (and of the
appropriate class), and switches it to alloc.

Definition 22 (Paired transitions). Paired transitions map a heap and a
pair of entities to a new heap and pair of entities (with the same identifiers),
and are written h, (Tt‖Nn) p−→ h′, (T ′t‖N ′n).

σ(y) = ι σ′ = [this �→ ι,X �→ σ(z),method �→ m] s′ = 〈〈Body(m) 〉〉
(forkS)

h, ({σ, (x:= fork y.m(z) ; s)}t1‖idlet2)
p−→ h, ({σ[x�→t2], s}t1‖{σ′, s′}t2)

σ1(y) = t2
(joinS)

h, ({σ1, (x:= join y ; s)}t1‖{σ2, return z}t2)
p−→ h, ({σ1[x�→σ2(z)], s}t1‖idlet2)

cls(ι) = c fi = fields(c) h′ = h[(ι, fi)�→null]
(newS)

h, ({σ, (x:= new c; s)}t‖free(c)ι) p−→ h′, ({σ[x�→ι], s}t‖alloc(c)ι)
We can now define the operational semantics for a whole system.

Definition 23 (Runtime Configurations and Operational Semantics).
A runtime entity collection C is a pair (Tt, Oι) consisting of a set of thread
entities (one for each thread identifier t) and a set of object entities (one for
each object identifier ι). A runtime configuration is a pair h,C of a runtime
heap and a runtime entity collection.

The interleaving operational semantics of such a configuration is given by
transitive closure of the transition relation h,C c−→ h′, C′, defined as follows:

C[t] = Tt h, Tt l−→ h′, T ′t
(selectLocalS)

h,C c−→ h′, C[t �→T ′t ]

C[t] = Tt C[n] = Nn h, (Tt‖Nn) p−→ h′, (T ′t‖N ′n)
(selectPairS)

h,C c−→ h′, C[t �→T ′t ][n �→N ′n]

In order to reuse our equirecursive assertion logic semantics for runtime config-
urations, we define a mapping Heap back from runtime configurations to heaps
as in Definition 2. Heap(h,C) reconstructs the ghost information about threads,
from the information in the runtime entity collection, adding it to the heap
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information in h. We also require an equirecursive permission collection func-
tion PE, which collects all of the permissions explicitly or implicitly required in
equi-assertions a. Both operators are defined in the technical report [23].

We can now turn to the central notion of our soundness proof; what it means
for a runtime configuration to be valid. Essentially, this prescribes that the per-
missions to the fields of all allocated objects can be notionally divided amongst
the active threads (point 3 below), and suitable preconditions for the statements
of each thread can be chosen that are satisfied in the current runtime configura-
tion, and for which each statement can be verified (via our equirecursive Hoare
Logic) with respect to the thread’s current postcondition.

Definition 24 (Valid configuration). A runtime configuration (h,C), is
valid if there exists a set of equirecursive assertions at, (one for each thread
identifier t), such that:

1. For each thread entity of the form idlet, at = true.
2. For each thread entity of the form {σ, s}t in C, letting H = Heap(h,C), we

have both PE(at, H, σ), H, σ |=E at and �E {at} s {Post(σ(method))}.
3. |= (

∑
{σ,s}t∈C PE(at, h, σ)) + (

∑
free(c)ι∈C

∑
f∈fields(c){(ι, f) �→ 1})+

(
∑

idlet∈C{(t, recv) �→ 1, (t, param) �→ 1, (t, meth) �→ 1})
Finally, we can turn to our main soundness result, which shows that modular
verification of each definition in the program, using our isorecursive semantics,
is sound with respect to the interleaving operational semantics of the language.

Theorem 3 (Soundness of Isorecursive Hoare Logic). For
a well-formed program, if all method definitions satisfy that both
�I {Pre(m)} Body(m) {Post(m)} and Body(m) is a return-ended state-
ment, and if h,C is a valid configuration, and if h,C c−→ h′, C′, then h′, C′ is
a valid configuration.

Note that the use of our isorecursive Hoare Logic here, reflects the fact that a
program must be verifiable statically. However, our earlier results easily allow us
to connect (in the proof) with the equirecursive notions, which are closer to the
actual runtime. A proof sketch is provided in the technical report [23].

8 Related Work and Conclusions

This paper has explored the many challenges involved in handling flexible re-
cursive specification constructs in ways which are both amenable for formal
mathematical proofs (the equirecursive setting), and implementation in prac-
tical static tools (the isorecursive setting). Our work is set in the context of
implicit dynamic frames, which supports an interesting combination of recursive
predicates, functions and unfolding expressions, each of which provides addi-
tional challenges. However, the issues we have described show up in many other
settings, including those which do not support all three features simultaneously.
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The first formally-rigorous treatment of recursive predicates in the context
of permission-based logics was proposed in [15] for separation logic [8,13]; this
treatment was further developed in [16]. In both works, and in many subsequent
formal papers, the (only) meaning of recursive predicates is given by the least
fix-point of the unrolling of their bodies, i.e., the equirecursive treatment.

Many existing verification tools based on separation logic, such as jStar [5] and
VeriFast [9], support custom recursive definitions in the form of abstract predi-
cates. jStar applies a sequence of inbuilt heuristics (which can be user-defined)
to decide on the points in the code at which to fold or unfold recursive defini-
tion, while VeriFast requires the user to provide fold and unfold statements
explicitly (which can nonetheless be inferred in some cases). The full unrolling
of a recursive definition is not made available to the verifier; the isorecursive
interpretation is used for the implementations.

The problem of handling partial functions in a setting with only total func-
tions has received much prior attention (see [20] for an excellent summary). We
aimed to avoid allowing “undefined” as a possible outcome in our semantics, as
explained in Section 2. As an alternative, we could have considered taking the
approach of semi-classical logics (e.g., [24]), and allowing undefined expressions
but not assertions. In a sense, our solution is somewhat similar, since we use the
extra errortp values to circumvent potential undefinedness for expressions.

The combination of fractional permissions [4] with separation logic for concur-
rent programming was proposed in [3]. These ideas were adapted to concurrent
object oriented programming and formalised in [6], and further adapted to the
implicit dynamic frames [21] setting and implemented in the form of Chalice
[10]. The Chalice approach has been formalised [19] through a Hoare Logic for
implicit dynamic frames. However, neither [6], nor [19] give a treatment of re-
cursive predicates and functions. A verification condition generation semantics
for implicit dynamic frames was developed and proven sound in [22].

As future work, we plan to prove soundness of verification tools/methodologies
based on the formalisms provided here. We would also like to explore how to
connect the notions of isorecursive definitions provided here with other related
areas, such as tools for shape and static analysis, in which different but related
issues regarding the bounding of recursive definitions arise.

Acknowledgements. We are very grateful to Peter Müller for extensive feed-
back on an early version of this work, and to the anonymous reviewers for detailed
suggestions for improvements to the details and presentation of our formalisms.
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Virtualizing Objects with Invariants
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Abstract. Proxies are a common technique to virtualize objects in object-
oriented languages. A proxy is a placeholder object that emulates or wraps
another target object. Both the proxy’s representation and behavior may differ
substantially from that of its target object.

In many OO languages, objects may have language-enforced invariants asso-
ciated with them. For instance, an object may declare immutable fields, which are
guaranteed to point to the same value throughout the execution of the program.
Clients of an object can blindly rely on these invariants, as they are enforced by
the language.

In a language with both proxies and objects with invariants, these features
interact. Can a proxy emulate or replace a target object purporting to uphold such
invariants? If yes, does the client of the proxy need to trust the proxy to uphold
these invariants, or are they still enforced by the language? This paper sheds light
on these questions in the context of a Javascript-like language, and describes the
design of a Proxy API that allows proxies to emulate objects with invariants, yet
have these invariants continue to be language-enforced. This design forms the
basis of proxies in ECMAScript 6.

Keywords: Proxies, Javascript, reflection, language invariants, membranes.

1 Introduction

Proxies are a versatile and common abstraction in object-oriented languages and have
a wide array of use cases [1]. Proxies effectively “virtualize” the interface of an object
(usually by intercepting all messages sent to the object). One common use case is for
a proxy to wrap another target object. The proxy mostly behaves identical to its target,
but augments the target’s behavior. Access control wrappers, profilers, taint tracking [2]
and higher-order contracts [3] are examples. Another common use case is for a proxy
to represent an object that is not (yet) available in the same address space. Examples
include lazy initialization of objects, remote object references, futures [4] and mock-up
objects in unit tests.

Objects in object-oriented languages often have invariants associated with them, i.e.
properties that are guaranteed to hold for the entire lifetime of the object. Some of
these invariants may be enforced by the programming language itself. We will call
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these language invariants. Examples of such language invariants include immutable
object fields, which are guaranteed to point to the same value throughout the object’s
lifetime; or, in a prototype-based language, an immutable “prototype” link pointing to
an object from which to inherit other properties. Clients of an object can blindly rely on
these invariants, as they are enforced by the language (that is: the language provides no
mechanism by which the invariants can ever be broken). Such invariants are important
for developers to reason about code, critical for security, and useful for compilers and
virtual machines.

In a language with both proxies and objects with language invariants, these features
interact. Can a proxy virtualize an object with language invariants? Can it wrap a target
object with language invariants and claim to uphold these invariants itself? If so, does
the client of the proxy need to trust the proxy to uphold these invariants, or are they still
enforced by the language? This paper sheds light on these questions in the context of
Javascript, a language that features both proxies and objects with language invariants.

Contribution. We study the apparent tradeoff between the needs of a powerful inter-
position mechanism that may break language invariants versus the desire to maintain
these invariants. The key contribution of this paper is the design of a Proxy API that
allows proxies to virtualize objects with invariants, without giving up on the integrity
of these invariants (i.e. they continue to be enforced by the language). To emphasize
this, we call these proxies trustworthy. We call out the general mechanism of our API,
named invariant enforcement, that is responsible for this trustworthiness.

Paper Outline. In Section 2, we illustrate how the issues highlighted above came up
in the design of a Proxy API for Javascript. We go on to describe the general principle
by which our Proxy API enforces invariants. To study this mechanism in detail, we
introduce λTP, an extension of the lambda calculus featuring proxies, in Section 3. We
then employ proxies to build various access control abstractions in Section 4. This will
allow us to discuss the advantages and drawbacks of our API (Section 5). We end with
an overview of the implementation status (Section 6) and related work (Section 7).

2 Trustworthy Proxies: The Case of Javascript

The questions addressed in this paper initially arose while the authors were designing
a Proxy API for Javascript1. We first highlight the problems we encountered in com-
bining proxies with Javascript’s language invariants, and subsequently describe how the
Javascript Proxy API deals with these issues.

2.1 Language Invariants in Javascript

Javascript is known as a dynamic language, primarily because its core abstraction –
objects with prototype-based inheritance – is extremely flexible. Consider the following
object definition:

var point = { x: 0, y: 0 };

1 To be precise: for ECMAScript 6, the next standard version of Javascript.
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This defines a point object with x and y properties. Javascript objects have very
weak language invariants: new properties can be added to existing objects at any time
(point.z = 0;), existing properties can be updated by external clients (point.x = 1;), or
even deleted (delete point.x;). This makes it challenging for developers to reason
about the structure of objects: it is always possible that third-party client objects will
modify the object at run-time.

ECMAScript 5 (ES5) [5] added new primitives that allow one to strengthen the in-
variants of objects, making it possible to more easily reason about the structure of ob-
jects, by protecting them from unintended modifications. Figure 1 depicts a simplified
state diagram of an ES5 object.

start

Non-
extensible

Object.preventExtensions or
Object.freeze

Extensible

Partially 
configurableConfigurable Non- 

configurable

all properties frozenstart

freeze 
property

Object.freeze or

[if extensible] 
property added

less invariants  more invariants

Fig. 1. Simplified state diagram of an ES5 object

ECMAScript 5 defines two independent language invariants on objects:

Non-extensibility. Every ES5 object is born in an extensible state. In this state, new
properties can be freely added to the object. One can make an object obj non-extensible
by calling Object.preventExtensions(obj). Once an object is made non-extensible,
it is no longer possible to further add new properties to the object. Once an object is
non-extensible, it remains forever non-extensible.

Non-configurability. Every ES5 object is born in a configurable state. In this state, all
of its properties can be updated and deleted. It is possible to freeze individual properties
of an object, for instance:

Object.defineProperty(point,”x”,{writable:false,configurable:false});

This freezes the point.x property so that any attempt to update or delete that property
will fail. Once a property is frozen, it remains forever frozen.

An object can evolve to become both non-extensible as well as non-configurable.
Such objects are called frozen objects. ES5 even introduces an Object.freeze prim-
itive that immediately puts an object into the frozen state, by marking the object as
non-extensible, and marking all of its properties as frozen. For example, after calling
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Object.freeze(point), the point object can no longer be extended with new prop-
erties, and its existing properties can no longer be deleted or updated.

To detect whether an object is frozen, one can call Object.isFrozen(point). Once
the programmer has established that the point object is frozen, she can be sure that
point.x will consistently refer to the same value throughout the object’s lifetime.

Abstracting from the details of Javascript, these language invariants have two im-
portant characteristics: a) they are universal, i.e. they hold for all objects, regardless of
their “type” and b) they are monotonic: once established on an object, they continue to
hold for the entire lifetime of the object.

It are these characteristics that lend the language invariants their power to locally
reason about objects in a dynamic language such as Javascript. Because the invariants
are universal, they hold independent of the type of objects. Because the invariants are
monotonic, they hold independent of pointer aliasing [6]. This monotonicity can be
observed in the state diagram: there are no operations that take an object from a higher-
integrity state to a lower-integrity state2. Hence, previously established invariants will
continue to hold even if unknown parts of the program retain a reference to the object.

To focus on the essence, throughout the rest of this paper, we will simplify the ex-
position by combining the two ES5 language invariants (non-extensibility and non-
configurability) and only considering non-frozen versus frozen objects. While we will
focus on the specific invariants of frozen Javascript objects, the underlying principles
should apply to any language-enforced invariant that is universal and monotonic.

2.2 The Problem: Proxies Can’t Safely Uphold Language Invariants

Let us now consider how frozen objects interact with proxies. To this end, we will make
use of a proposed Proxy API for Javascript on which we reported earlier [7]. Below
is the definition of a proxy that simply forwards all intercepted “operations” (such as
property access, property assignment, and so on) to a wrapped object:

function wrap(target) {
var handler = {
get: function(proxy, name) { return target[name]; },
set: function(proxy, name, value) { target[name] = value; },
... // more operations can be intercepted (omitted for brevity )

};
var proxy = Proxy.create(handler);
return proxy;

}

The function Proxy.create takes as its argument a handler object that implements
a series of traps. Traps are functions that will be invoked by the proxy mechanism
when a particular operation is intercepted on the proxy. For instance, the expression
proxy.foo will be interpreted as handler.get(proxy, ”foo”). Similarly, the expres-
sion proxy.foo = 42 leads to a call to handler.set(proxy, ”foo”, 42).

2 A non-configurable object can be made partially configurable again by adding a new property,
but only if the object is extensible. All of its existing frozen properties remain frozen.
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From inspecting this code, it is clear that a proxy returned by the wrap function will
behave the same as its target object. The key question is whether
Object.isFrozen(target) then implies Object.isFrozen(proxy)? That is, does
the proxy automatically acquire the language invariants of its target object?

The answer unfortunately is no. Whether or not the proxy still upholds the target’s in-
variants depends on the implementation of the trap functions, and answering this ques-
tion is in general undecidable. What is more: the fact that proxy is a proxy for the
target object is only implicit in the above program: the proxy object does not even
possess a direct reference to the target object. It just happens to be a proxy for it be-
cause the trap functions have closed over the target variable, and decided to forward
the intercepted operations to the object stored in this variable. In fact, it is perfectly
reasonable to create proxy objects that don’t forward anything to any target object at all
(the objects represented by such proxies would be entirely virtual).

Let us illustrate this point by creating an alternative version of wrap that probably
does not uphold its target object’s invariants:

function wrapRandom(target) {
var handler = {
get: function(proxy, name) { return Math.random(); },
...

};
var proxy = Proxy.create(handler);
return proxy;

}

If we now call var proxy = wrapRandom(Object.freeze(point)), passing the frozen
point object as the target, then proxy.x may yield a different number each time it
is dereferenced. That is hardly the behavior one would expect of a frozen object, so
Object.isFrozen(proxy) must clearly return false.

It turns out that having Object.isFrozen return false for any proxy is the only safe
option. The alternative (returning true) would break the invariant that if an object is
frozen, then one can expect property access to consistently return the same value, as the
above example demonstrates.

By requiring Object.isFrozen to return false for all proxies, we have taken away
some of the virtualization power of proxies, by disallowing them to ever virtualize
frozen objects. This is necessary to ensure the integrity of the invariant associated with
frozen objects (“properties of a frozen object are immutable”).

This is an unfortunate outcome, as there certainly exist legitimate use cases where
the proxy would want to appear as frozen, and where the proxy handler does behave as
a frozen object. One can easily imagine a variant of the wrap function that does some
form of profiling or contract checking, but otherwise faithfully forwards all operations
to its target. Because the proxy cannot faithfully virtualize the frozen invariant of its
target, transparency is lost. Such transparency may be crucial in some applications,
where objects may need to be substituted by proxies without affecting client behavior.
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2.3 The Solution: Invariant Enforcement

To overcome the limitation of proxies to virtualize frozen objects, we modified the
initial Proxy API as follows:

– Proxies now refer directly to the target object that they wish to wrap.
– Whenever an operation is intercepted, a trap is called on the handler, as before.
– Before the trap gets to return its result to the client, the proxy verifies whether an

invariant is associated with the intercepted operation on the target object.
– If so, the proxy asserts that the result is consistent with the expected (invariant)

result. A failed assertion leads to a run-time exception, thus warning the client of
an untrustworthy proxy.

Because the proxy now “knows” the target object that the handler wants to virtualize,
the proxy has a way of verifying whether a) the target has an invariant and b) the trap
doesn’t violate that invariant. This is the key mechanism by which proxies are enforced
to uphold the target object’s invariants. We call this mechanism invariant enforcement.
It is illustrated graphically in Figure 2.

Operation 
intercepted on proxy

Call trap on handler

Target has 
invariant for this 

operation?

Trap result is 
consistent with 

invariant?

YesNo

YesNo

Return trap result

Raise exception

Fig. 2. Invariant enforcement in trustworthy proxies

The wrap function from the previous Section can be rewritten using the new API:

function wrap(target) {
var handler = {
get: function(target, name) { return target[name]; },
set: function(target, name, value) { target[name] = value; },
... // more operations can be intercepted (omitted for brevity )

};
var proxy = Proxy(target, handler);



160 T. Van Cutsem and M.S. Miller

return proxy;
}

In this version of the API, Proxy has become a function of two arguments and takes
as its first argument a direct reference to the target object for which the proxy will
act as a stand-in. The handler traps remain mostly the same, except that instead of the
proxy, the traps now receive the target as their first argument. Figure 3 depicts the
relationship between the objects, and shows how operations like property access and
update are interpreted by proxies.

targetproxy

handler

proxy.x

meta-level

base-level

proxy.x = 42

handler.get(target,"x")
handler.set(target,"x",42)

Fig. 3. Relationship between proxy, target and handler

For the proxies generated by this API, it holds that Object.isFrozen(proxy)
if and only if Object.isFrozen(target). That is, such proxies can faithfully
virtualize the frozen invariant of their target. And because of invariant enforcement, the
outcome of the operation is actually trustworthy.

How does invariant enforcement work in the specific case of frozen objects and
property access? When evaluating the expression proxy.x, where proxy refers at
run-time to a proxy object, one can reason about this property access as if the proxy
executed the following code:

// inside the proxy, intercepting proxy.x
var value = handler.get(target, "x");
if (Object.isFrozen(target)) {
var expectedValue = target.x;
if (expectedValue !== value) {
throw new Error("frozen invariant violated");

}
}
return value;

Note that invariant enforcement is a two-step process: first the proxy verifies whether
there is an invariant to be enforced on the target (in this case: is the target frozen?). If so,
then the trap result is verified. It may seem odd that the proxy must first check whether
the target has invariants at interception-time. Can it not determine the target’s invariants
ahead of time? Unfortunately the answer is no, since, in Javascript, objects can come to
acquire new invariants at run-time. For instance, an object becomes frozen only after a
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call to Object.freeze. Before that time, the object is not frozen and no invariants
need be enforced3.

To summarize, by redesigning the Proxy API, the apparent tradeoff between proxies
and invariants is resolved. Proxies get to virtualize objects with invariants, but only
if they can provide a target object that “vouches for” these invariants, such that the
result of trap invocations on the handler can be verified. Programmers, secure sandboxes
and virtual machines can all continue to rely on the language invariants, regardless of
whether they are dealing with built-in objects or proxies.

3 The λTP Calculus

To study invariant enforcement in more detail, we now turn our attention from Javascript
to a minimal calculus named λTP. While the full Javascript language is fairly large and
complex, at its core lies a simple dynamic language with first-class lexical closures and
concise object literal notation. This simple core is what Crockford refers to as “the good
parts” [8], and it is this core that is modelled by λTP. At this stage, we should warn the
reader that it has not been our goal to accurately formalize Javascript. For an accurate
formalization of Javascript, we refer to [9].

Our goal is to faithfully model in λTP the interaction between proxy, target and han-
dler objects as informally discussed in Section 2.3. We first introduce the core calculus
with proxies that are not trustworthy. We then add support for trustworthy proxies by
revising the semantics.

3.1 Core λTP

Syntax. λTP is based on the untyped λ-calculus with strict evaluation rules, extended
with constants, records and proxies. It is inspired by the λproxy calculus of Austin et
al. [2], which models proxies representing virtual values (see Section 7.2).

Values of the core calculus include constants (strings s and booleans b), functions
λx.e and records. Records are either primitive records or proxies. Primitive records
are finite mutable maps from strings to values. A primitive record created using the
expression {s : e} declares zero or more initial properties whose value can be retrieved
(e[e]) or updated (e[e] := e). Proxies are created using the expression proxy e e where
the arguments denote the proxy’s target record and handler record respectively.

Records, like Javascript objects, can be frozen. A frozen record cannot be extended
with new properties and its existing properties can no longer be updated. Records
can be made frozen using the freeze r operator, which corresponds to Javascript’s
Object.freeze primitive. The isFrozenr operator can be used to test whether the
record r is frozen, and models Javascript’s Object.isFrozen(r) primitive.

In Javascript one can enumerate the properties of an object by means of a for-in
loop. λTP similarly features a for (x : e) e′ expression that iteratively evaluates the
loop body e′ with x bound to each property key (a string) of a record e.

3 However, once an invariant on the target object has been established, a smart implementation
could from that point on elide the check for that invariant on future intercepted operations,
since the invariant will hold forever after.
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The expression keys r eagerly retrieves all of the property keys of r. As λTP does
not feature lists or arrays as primitive values, we encode the set of property keys of a
record as another record mapping those keys to true.

The calculus further includes a typeof operator inspired by the corresponding op-
erator in Javascript, revealing the type of a value as a string. The typeof operator
classifies any value as either a function, a record or a constant.

The λTP calculus

Syntax

e ::= Expressions
x variable
c constant
λx.e abstraction
e e application
if e e e conditional
e= e equality test
{s : e} record creation
e[e] record lookup
e[e] := e record update
for (x : e) e enumeration
proxy e e proxy creation
freeze e freezing
isFrozen e frozen test
typeof e type test

c ::= s | null | b Constants
b ::= true | false Booleans

Syntactic Sugar

e.x
def
= e["x"]

e.x := e′ def
= e["x"] := e′

x : e
def
= "x" : e

let x = e ; e′ def
= (λx.e′) e

var x = e ; e′ def
= let y = {} ; y.x := θe ; θe′ where θ = [x := y.x]

e ; e′ def
= (λx.e′) e x /∈ FV (e′)

e e′ e′′ def
= (e e′) e′′

λ.e
def
= λx.e x /∈ FV (e)

λx, y.e
def
= λx.λy.e

! e
def
= if e false true

assert e
def
= if e null (null null)

keys e
def
= let r = {} ; for (x : e) r[x] := true ; r
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Semantics. The runtime syntax of λTP extends expressions with addresses a and enu-
merations enum (x : S) e. The latter denote the continuation of an active record enu-
meration.

λTP SEMANTICS (UNTRUSTWORTHY PROXIES)

Runtime syntax

a, t, h ∈ Address
s ∈ S ⊂ String
v, w ::= c | a Values
e ::= . . . | a | enum (x : S) e Runtime expressions
H ::= a →p (rec f b | fun x e | pxy t h) Heaps
f ::= s →p v Record mapping
E ::= • e | v • | if • e e | {s : v, s : •, s : e} Evaluation contexts

| •= e | v = • | • [e] | v[•] | typeof •
| •[e] := e | v[•] := e | v[w] := • | for (x : •) e
| proxy • e | proxy v • | freeze • | isFrozen •

Reduction rules

H, {s : v} → H[a �→ rec f true], a a /∈ dom(H), f(s) = v [ALLOCREC]
H,λx.e → H[a �→ fun x e], a a /∈ dom(H) [ALLOCFUN]
H, a v → H, e[v/x] H(a) = fun x e [APPLY]

H, if true e1 e2 → H, e1 [IFTRUE]
H, if false e1 e2 → H, e2 [IFFALSE]

H, v = w → H, eq(v, w) [EQUAL]
H,a[s] → H, v H(a) = rec f b, f(s) = v [GET]
H,a[s] → H, null H(a) = rec f b, s /∈ dom(f) [GETMISSING]

H, a[s] := v → H[a �→ rec f [s �→ v] b], v H(a) = rec f b, b = false [SET]
H, for (x : a) e → H, enum (x : dom(f)) e H(a) = rec f b [STARTENUM]

H, enum (x : ∅) e → H, null [STOPENUM]

H, enum (x : S) e → H, let x = s ; e ; s ∈ S, S′ = S \ {s} [STEPENUM]
enum (x : S′) e

H, freeze a → H[a �→ rec f true], a H(a) = rec f b [FREEZE]
H, isFrozen a → H, b H(a) = rec f b [ISFROZEN]

H, typeof a → H,"function" H(a) = fun x e [TYPEOFFUN]
H, typeof a → H,"record" H(a) = rec f b [TYPEOFREC]
H, typeof c → H,"constant" [TYPEOFCST]
H, proxy t h → H[a �→ pxy t h], a a /∈ dom(H) [ALLOCPXY]
H, typeof a → H,"record" H(a) = pxy t h [TYPEOFPXY]

H,a[s] → H, h["get"] t s H(a) = pxy t h [GETPXY]
H, a[s] := v → H, h["set"] t s v ; v H(a) = pxy t h [SETPXY]
H, freeze a → H, h["freeze"] t ; a H(a) = pxy t h [FREEZEPXY]

H, isFrozen a → H, h["isFrozen"] t H(a) = pxy t h [ISFROZENPXY]
H, for (x : a) e → H, for (x : h["enum"] t) e H(a) = pxy t h [ENUMPXY]

H,E[e] → H′, E[e′] H, e → H′, e′ [CONTEXT]
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A heap H is a partial mapping from addresses a to three types of values: functions,
primitive records or proxies. Functions are represented as funxe where x is the formal
parameter and e is the function body. Records are either primitive records or proxies.
Primitive records are represented as rec f b where f is a partial function from strings
to values representing the record’s properties and b is a boolean indicating whether or
not the record is frozen. Proxies are represented as pxy t h where t is the address of the
proxy’s target and h is the address of the proxy’s handler (both of which should denote
records, not functions).

An evaluation state H, e denotes a heap H and the expression e being evaluated. The
rules for the evaluation relation H, e → H ′, e′ describe how expressions are evaluated
in λTP.

The [EQUAL] rule describes equality of values v and w in terms of an eq primitive,
which may be defined as:

eq(v, w)
def
=

⎧⎨
⎩

true if v and w denote the same constant c
true if v and w denote the same address a
false otherwise

This primitive represents identity-equality: constants are equal if and only if they denote
the same constant value c; functions, records and proxies are equal if and only if their
addresses a are equal.

The rules [GET] and [GETMISSING] together implement record lookup. If the prop-
erty is not found, null is returned (similar to undefined being returned for missing
properties in Javascript). The [SET] rule implements record update. If a record is up-
dated with a non-existent property, the property is added to the record. Note that the
[SET] rule only allows updates on non-frozen records. It is an error to try and add or
update a property on a frozen record.

The rules [STARTENUM], [STOPENUM] and [STEPENUM] together implement prop-
erty enumeration over records. There are two aspects worth noting about our enumera-
tion semantics: first, enumeration is driven by a fixed snapshot of the record’s properties.
The snapshot includes those properties present when the enumeration starts. Properties
added to the record while reducing a for-expression will not be enumerated during the
same enumeration. Second, the order in which a record’s properties are enumerated is
left unspecified. This is also true of property enumeration in Javascript.

The rule [FREEZE] shows that the freeze operator, applied to a record address a
always yields the same address a, but as a side-effect modifies the heap so that the
record is now marked frozen, regardless of whether it was already frozen.

3.2 Untrustworthy Proxies in λTP

A proxy is created using the expression proxy e e′ where the first expression denotes
the proxy’s target and the second expression denotes the proxy’s handler (both expres-
sions must reduce to an address denoting another record, i.e. either a built-in record or
another proxy).λTP proxies can intercept five operations: record lookup, record update,
enumeration, freezing and frozen tests. The signatures of the trap functions are shown
below:



Trustworthy Proxies 165

get :: target→ string → result value
set :: target→ string → update value→ unit

freeze :: target→ unit
isFrozen :: target→ boolean

enum :: target→ keys record

The rules [GETPXY] and [SETPXY] prescribe that record lookup and record update on
a proxy are equivalent to calling that proxy’s get and set traps. Note that the return
value of the set trap itself is ignored: record update always reduces to the update value
v. A similar observation can be made for freezing: the freeze operator always returns
the frozen object and ignores the result of the freeze trap. The isFrozen trap, on
the other hand, is expected to return a boolean indicating the result of the test.

The rule [ENUMPXY] shows that upon enumerating the properties of a proxy, that
proxy’s enum trap is called. This trap is expected to return a set of property names,
encoded as a record. The returned record’s properties are subsequently enumerated.

3.3 Language Invariants

While the above reduction rules capture the essence of what it means for a proxy to
intercept an operation, they do not aim to uphold any language invariants. In other
words: proxies, as currently specified, are not trustworthy. This is easy enough to see:
there is nothing stopping a proxy from returning true from its isFrozen trap, while
still reporting different values over time for its properties via its get trap.

In this Section, we explicitly spell out the invariants of the λTP calculus with respect
to frozen primitive records. In the following Section, we then revise the proxy reduc-
tion rules such that proxies obey the same invariants as primitive records, thus making
proxies trustworthy. The invariants of frozen primitive records are as follows:

I1 The properties of a frozen record are immutable. If isFrozen r = true then r[s]
always reduces to the same result value v. This also implies that if r does not have
a property named s, r[s] will always reduce to null.

I2 If the freeze r operator returns successfully, r is guaranteed to be frozen.
I3 Freezing is monotonic: once isFrozen r = false, it remains false thereafter. In

other words: once frozen, a record remains forever frozen.
I4 Enumerating properties using a for-loop over a frozen record r always enumerates

the same set of properties. That is, it enumerates at least all properties defined on r,
and it does not enumerate any properties that do not exist on r.

start

FrozenfreezeNot 
Frozen

get

isFrozen
enumerate
freeze

get
set

isFrozen
enumerate

Fig. 4. State chart depicting the valid states of a λTP record
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Figure 4 depicts a state chart illustrating the state of a record, and the effect of inter-
ceptable operations on records on that state.

3.4 Trustworthy Proxies in λTP

In the semantics described thus far, proxies are untrustworthy, meaning that they may
violate the above invariants of primitive records. Below, we introduce a set of updated
reduction rules, which turn λTP proxies into trustworthy proxies.

λTP SEMANTICS (TRUSTWORTHY PROXIES)

H, a[s] → H,let x = h["get"] t s ; H(a) = pxy t h [GETPXY’]
if (isFrozen t)

(assert x = t[s] ; x)
x

H, a[s] := v → H,h["set"] t s v ; H(a) = pxy t h [SETPXY’]
assert (! isFrozen t) ; v

H,for (x : a) e → H,let y = h["enum"] t ; H(a) = pxy t h [ENUMPXY’]
if (isFrozen t)

sameKeys y (keys t)
null ;

for (x : y) e
H, freeze a → H,h["freeze"] t ; H(a) = pxy t h [FREEZEPXY’]

assert (isFrozen t) ; a
H,isFrozen a → H,let x = h["isFrozen"] t ; H(a) = pxy t h [ISFROZENPXY’]

assert (x = isFrozen t) ; x

The rule [GETPXY’] includes a post-condition that asserts whether the return value
of the get trap corresponds to the target’s value for the same property s, but only if
the target is frozen. This assertions contributes to upholding invariant I1. Note that the
proxy target t may itself be a proxy, in which case the expression t[s] in the assertion
will recursively trigger the [GETPXY’] rule, eventually bottoming out when the target
is a primitive record.

The rule [SETPXY’] includes a post-condition that asserts that the target is not frozen.
Again, this assertion ensures invariant I1.

The rule [FREEZEPXY’] includes a similar post-condition, this time testing whether
the target is indeed frozen, if the freeze trap returned successfully. Clients that call
isFrozen r expect r to be frozen afterwards. This guarantees invariant I2.

The rule [ISFROZENPXY’] inserts a post-condition that verifies whether the return
value of the isFrozen trap corresponds to the current state of the target. Any dis-
crepancy in the result could confuse client code: if the isFrozen trap is allowed to
return true while wrapping a non-frozen target, clients would perceive the proxy as
frozen while its get trap could still return arbitrary values, thus breaking invariant
I1. The other way around, if the trap is allowed to return false while wrapping a
frozen target, it may break invariant I3 if it previously already returned true from its
isFrozen trap.
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The rule [ENUMPXY’] inserts a post-condition, ensuring that if the proxy wraps a
frozen target, the returned set of to-be-enumerated properties corresponds to the set
of properties of the target itself. This guarantees invariant I4. sameKeys is defined as
follows:

sameKeys r1, r2
def
= for (x1 : r1) assert r2[x1] = true ;

for (x2 : r2) assert r1[x2] = true

sameKeys checks whether two records representing sets of properties denote the same
set of property keys. One can think of the first for-loop as checking whether all prop-
erties that the proxy enumerated are indeed properties of the frozen target, and of the
second for-loop as checking whether the proxy did indeed enumerate all properties of
the frozen target.

Note that the validity of all pre and post-condition checks depends also on the fact
that the assertions compare the trap result against the expected value using the = op-
erator, and that proxies cannot intercept this operator. Thus, proxies cannot directly
influence the outcome of the assertions.

4 Access Control Wrappers

We now put trustworthy proxies to work by using them to build access control wrappers.
Such wrappers typically perform a set of dynamic checks upon intercepting certain op-
erations, but otherwise try to be as transparent as possible to client objects. If the check
succeeds, the wrapper often simply forwards the intercepted operation to the wrapped
object. Using trustworthy proxies, we can build access control wrappers that uphold the
invariants of wrapped target objects, further increasing transparency for clients.

4.1 Revocable References

A revocable reference is a simple type of access control wrapper. Say an object alice
wants to hand out to bob a reference to carol. carol could represent a precious
resource, and for that reason alice may want to limit the lifetime of the reference she
hands out to bob, which she may not fully trust. In other words, alice wants to have
the ability to revoke bob’s access to carol. Once revoked, bob’s reference to carol
should become useless.

One can implement this pattern of access control by wrapping carol in a forward-
ing proxy that can be made to stop forwarding. This is also known as the caretaker
pattern [10]. In the absence of language-level support for proxies, the programmer is
forced to write a distinct caretaker for each type of object to be wrapped. Proxies enable
the programmer to abstract from the specifics of the wrapped object’s interface and in-
stead write a generic caretaker. Using such a generic caretaker abstraction, alice can
hand out a revocable reference to bob as follows:

var carol = {...};
// caretaker is a tuple consisting of a proxy reference, and a revoke function
var caretaker = makeCaretaker(carol);
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var carolproxy = caretaker.ref; // a proxy for carol, which alice can give to bob
bob.use(carolproxy);
// later , alice can revoke bob’s access...
caretaker.revoke(); // carolproxy is now useless

A key point is that as long as the caretaker is not revoked, the proxy is sufficiently
transparent so that bob can use carolproxy as if it were the real carol. There is
no need for bob to change the way he interacts with carol. Indeed, if bob has no
other, direct, reference to carol, bob is not even able to tell that carolproxy is
only a proxy for carol.

Below is an implementation of the makeCaretaker abstraction in λTP:

makeCaretaker
def
= λx.

var revoked = false;
{ref : proxy x {
get : λt, s.assert (!revoked) ; t[s]
set : λt, s, v.assert (!revoked) ; t[s] := v
enum : λt.assert (!revoked) ; keys t }
freeze : λt.assert (!revoked) ; freeze t
isFrozen : λt.assert (!revoked) ; isFrozen t }

revoke : λ.revoked := true}
The argument x to makeCaretaker is assumed to be a record. The function returns
a record r that pairs a proxy r.ref with an associated function r.revoke. Both
share a privately scoped revoked boolean that signifies whether or not the proxy was
previously revoked. The proxy’s handler implements all traps by first verifying whether
the reference is still unrevoked. If this is the case, it forwards each operation directly to
the wrapped target record t.4

A limitation of the above caretaker abstraction is that values exchanged via the care-
taker are themselves not recursively wrapped in a revocable reference. For example, if
carol defines a method that returns an object, she exposes a direct reference to that
object to bob, circumventing alice’s caretaker. The returned object may even be a
reference to carol herself (e.g. by returning this from a method in Javascript). The
abstraction discussed in the following section addresses this issue.

4.2 Membranes: Transitively Revokable References

A membrane is an extension of a caretaker that transitively imposes revocability on all
references exchanged via the membrane [11].

One use case of membranes is the safe composition of code from untrusted third
parties on a single web page (so-called “mash-ups”). Assuming the code is written in
a safe subset of Javascript, such as Caja [12], loading the untrusted code inside such
a membrane can fully isolate scripts from one another and from their container page.
Revoking the membrane around such a script then renders it instantly powerless.

4 We take the notational liberty of using names like t,s and v for trap parameters, which hint at
the parameters’ type, rather than using strict variable names like x, y and z.
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The objective of the membrane is to fully keep the object graph g created by the
untrusted code isolated from the object graph g′ of the containing page. When creating
a membrane, one usually starts with a single object that forms the “entry point” into
g. At the point when the membrane is created, it is usually assumed that apart from a
single reference to the entry point of g, g and g′ are otherwise fully isolated (i.e. there
are no other direct references from any objects in g to any objects in g′ and vice versa).
If this is not the case, then the membrane will not be able to fully enclose and isolate g.

The following example demonstrates the transitive effect of a membrane. The prefix
wet identifies objects initially inside of the membrane, while dry identifies revokable
references outside of the membrane designating wet objects.

var wetA = { x: 1 }
var wetB = { y: wetA }
var membrane = makeMembrane(wetB) // wetB acts as the entry point
var dryB = membrane.ref // a proxy for wetB
var dryA = dryB.y // references are transitively wrapped
dryA.x // returns 1, constants are not wrapped
membrane.revoke() // revokes all dry references at once
dryB.y // error : revoked
dryA.x // error : revoked

The interface of a membrane is the same as that of a caretaker. Its implementation
in λTP is shown in Figure 5. A membrane consists of one or more wrappers. Every
such wrapper is created by a call to the wrap function. All wrappers belonging to the
same membrane share a single revoked variable. Assigning the variable to false
instantaneously revokes all of the membrane’s wrappers.

makeMembrane
def
= λx.

var revoked = false;
let wrap = λy.
if typeof y = "constant"

y
if typeof y = "function"

λz.assert (!revoked) ; wrap (y (wrap z))
proxy y {
get : λt, s.assert (!revoked) ; wrap t[s]
set : λt, s, v.assert (!revoked) ; t[s] := (wrap v)
freeze : λt.assert (!revoked) ; freeze t
isFrozen : λt.assert (!revoked) ; isFrozen t
enum : λt.assert (!revoked) ; keys t } ;

{ref : wrap x
revoke : λ.revoked := true}

Fig. 5. Membranes in λTP

The wrap function does a case-analysis on y based on the three types of values
in λTP: constants are passed through a membrane unwrapped; functions are wrapped
as functions that transitively wrap their argument and return value; and records are
wrapped using proxies.
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Although this implementation does not distinguish them, there are two “directions”
in which a value can flow across the membrane: the argument z to a wrapped function
and the argument v to the set trap are inbound, while the return value of a wrapped
function and the return value of the get trap are outbound. In this version, both inbound
and outbound values get wrapped without distinction.

Note that because the membrane faithfully forwards the freeze and isFrozen
operations (as long as it is not revoked), clients on either side of the membrane can in-
spect whether or not the wrapped object is frozen and act accordingly. Because proxies
are trustworthy, clients can have complete confidence in the outcome of the freeze
and isFrozen operators, even when a membrane is interposed.

4.3 Membranes and Frozen Objects

The above membrane implementation works fine except for one important detail, which
surfaces when a frozen record crosses the membrane. Things go wrong when code
on either the dry (outside) or the wet (inside) side of the membrane tries to lookup a
property r[s] on a wrapper r for a frozen record t. Instead of getting back a transitively
wrapped value, the program will trip on an assertion.

Recall that the invariant enforcement mechanism inserts a post-condition check upon
evaluating r[s] (rule [GETPXY’]), testing whether its return value is equal to t[s]. How-
ever, the get trap of the above membrane abstraction always returns a fresh wrapper
for the value t[s] of the wrapped, frozen target t. Unless t[s] is a constant, the check
fails since the trap is returning a proxy for t[s], not t[s] itself.

To circumnavigate this issue, rather than letting the proxy wrapper directly wrap the
target on the other side of the membrane, we let it wrap a shadow target, a dummy –
initially empty – record that is initially not frozen. Figure 6 shows the initial state of
such a membrane proxy.

shadow 
target s

membrane
proxy for t

handler real target t

Fig. 6. A membrane proxy with a shadow target

The purpose of the shadow target is to store wrapped properties of a frozen target.
This way, when the handler returns a wrapper for the original target property from
the get trap, the proxy checks the result against the shadow target, not the original
target. Since the shadow target only contains wrapped properties, the invariant check
will succeed. Thus, the membrane now operates correctly on frozen records.

We will henceforth refer to the shadow target simply as “the shadow”, and to the
real target as “the target”. Having introduced a shadow, we now have two records (the
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shadow and the target) that can be either frozen or non-frozen. We must ensure that this
“frozen state” of both records remains synchronized. Otherwise, consider a membrane
wrapper with a non-frozen shadow but a frozen target: when a client asks whether such
a wrapper is frozen, the wrapper cannot answer true, as the proxy will check the
answer against the state of the shadow, which is non-frozen.

We employ the following strategy to keep the shadow and the target in sync: as long
as the real target is not frozen, the shadow is also not frozen. In this case, no invariants
on the proxy are enforced, and the proxy is free to return non-identical, wrapped values
from its get trap. There is no need to store these wrapped values on the shadow.

The first time that a proxy must reveal to a client that it is frozen5, the proxy first
synchronizes the state of the shadow with that of the target. It does this by defining
a wrapped property on the shadow for each property on the target, and then freezing
the shadow. Once the shadow is frozen, every time a property is accessed, the value
returned is the wrapper defined on the shadow, not the original value.

start

shadow not frozen
target frozen

freeze

shadow not frozen
target not frozen

isFrozen

isFrozen

shadow frozen
target frozen

shadow frozen
target not frozen

freeze
isFrozen

unreachable state

Fig. 7. State chart depicting the states of a membrane wrapper with a shadow target

Figure 7 shows a state chart with the allowable states of a membrane proxy with a
shadow target. The four possible states are determined by whether or not either shadow
target or real target are frozen. A transition to the lower right state always implies a
synchronization of the shadow target with the real target before freezing the shadow.

Figure 8 depicts the state of the proxy after synchronization with a target with a
single foo property.

shadow 
target s

membrane
proxy for t

handler real target t

t["foo"]

membrane
proxy for
t["foo"]

s["foo"]

Fig. 8. After synchronization, the shadow caches wrapped values of the target

5 A proxy must reveal that it is frozen when intercepting freeze or when the proxy must
answer true in response to an isFrozen test because the real target is frozen.
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makeMembrane
def
= λx.

var revoked = false;
let wrap = λy.
if typeof y = "constant"

y
if typeof y = "function"

λz.assert (!revoked) ; wrap (y (wrap z))
proxy {} {
get : λts, s.assert (!revoked) ; if (isFrozen ts) ts[s] (wrap y[s])
set : λts, s, v.assert (!revoked) ; y[s] := (wrap v)
freeze : λts.assert (!revoked) ; freeze y ; (sync ts y)
isFrozen : λts.assert (!revoked) ; if (isFrozen y) (sync ts y ; true) false
enum : λts.assert (!revoked) ; keys y } ;

{ref : wrap x
revoke : λ.revoked := true}

sync
def
= λts, tr.if (!isFrozen ts)

(for (s : tr) ts[s] := wrap tr[s] ; freeze ts)
null

Fig. 9. Membranes with shadow target in λTP

A membrane making use of this synchronization strategy between shadow and target
is shown in Figure 9. Note that the first argument passed to proxy is an empty object
{} (the shadow) and not the real target y. Consequently, the first argument passed to
each trap ts denotes the shadow target. In the definition of “sync”, ts similarly stands
for the shadow target while tr stands for the real target.

To conclude this Section, we have shown how membranes can be interposed between
two object graphs while preserving the frozen state of objects across both sides of the
membrane and that operate correctly on frozen objects. The key idea is for a membrane
proxy to not wrap the real target object directly, but rather to wrap a shadow target that
can store wrapped properties of the target object. If the proxy is itself asked to become
frozen, or to reveal that it is frozen via the isFrozen operator, it first synchronizes
the state of its shadow before proceeding. This ensures that no invariant enforcement
assertions will fail on the proxy.

4.4 Identity-Preserving Membranes

In the previous Sections, we presented minimal yet useful implementations of the mem-
brane pattern. Nonetheless, these implementations still have a number of issues regard-
ing object identity that practical membrane implementations can and should address.

First, for non-frozen records, the wrappers are not cached, so if a record is passed
through the same membrane twice, clients will receive two distinct wrappers, even
though both wrap the same record. Consider the following λTP expression:
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let x = makeMembrane({s : {}}).ref ; (x[s] = x[s])

This expression will always reduce to false since each occurrence of x[s] reduces to a
fresh wrapper for the value of the s property.

Second, no distinction is made between the opposite directions in which a record
can cross a membrane. If a record is passed through the membrane in one direction, and
then passed through the membrane again in the opposite direction, one would expect to
retrieve the original object. However, consider the following λTP expression, where x
denotes a membraned proxy and v denotes a record:

x[s] := v ; let y = x[s] ; (v = y)

This expression will also always reduce to false since y will be a wrapper for a wrap-
per for v. In x[s] := v, v is wrapped when it crosses the membrane inwards. Then, in
y = x[s], the wrapped value is wrapped again when it crosses the membrane outwards.
It would be better for these crossings to cancel each other out instead.

These limitations can be addressed by having the membrane maintain extra map-
pings that map proxies to their wrapped values and vice versa. The details are beyond
the scope of this paper. Suffice it to say that in practice the above two problems are
addressable in ECMAScript using WeakMaps6, which are identity hashmaps with the
weak referencing semantics of Ephemerons [13].

5 Discussion

The cost of transparent invariants. Membranes, while being a very generic abstraction,
are a useful case study because they aim to transparently interpose between two object
graphs. For the membrane to be adequately transparent, it must be able to accurately
uphold invariants across the membrane.

The invariant enforcement mechanism complicates membranes, as it prevents a mem-
brane proxy from directly exposing the properties of a frozen target object as wrapped
properties. Instead, we introduced a shadow target to hold the wrapped properties. This
has two costs: first, there is the memory overhead of duplicating all the properties on the
shadow. Second, operations that modify or expose the state of an object (i.e. freeze
and isFrozen) must explicitly synchronize the state of the shadow and the real target.

While these overheads are not to be underestimated, we believe they are manageable
in practice. First, we expect the dominant operations on objects to be get and set, not
freeze and isFrozen. Second, wrapped properties are only defined on the shadow
lazily, i.e. only when the proxy is about to reveal that it is frozen for the first time. If a
proxy is never tested for frozenness, the shadow is never even used. Only when a proxy
is revealed as frozen must transitive wrappers for the target properties be defined on the
shadow.

Garbage collection. In Section 4.1 we introduced revocable references. One of the pri-
mary use cases of such references is to facilitate memory management by reducing the

6 See http://wiki.ecmascript.org/doku.php?id=harmony:weak_maps.

http://wiki.ecmascript.org/doku.php?id=harmony:weak_maps
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risk of memory leaks. The idea is that if objects only hold a revocable reference to a cer-
tain resource object, then revoking that reference instantly removes all live references
to the resource, allowing it to be garbage collected.

In our earlier Proxy API [7], a proxy did not store an implicit reference to a target
object. Rather, it was the handler’s responsibility to explicitly manage the reference to
the target object, as shown in the first code snippet in Section 2.2. Upon revoking the
proxy, that reference would be nulled out, allowing the garbage collector to collect the
target object.

In the trustworthy Proxy API introduced here, the proxy holds an implicit reference
to the target object which is not under programmer control. The proxy needs this ref-
erence to perform its invariant checks. Unfortunately this also implies that there is no
way for the handler to null out this reference when the proxy is revoked. Hence, the re-
vocable references introduced in Section 4.1 cannot be used for memory management
purposes.

In Javascript, we solved this problem by providing revocable proxies as a primitive
abstraction. This allows the proxy implementation to null out the references to its target
and handler upon revocation.

Handlers and targets as proxies. In Javascript, as in λTP, both the target and the handler
of a proxy can themselves be proxies. The fact that a handler can itself be a proxy is a
property that we have found useful in writing highly generic proxy abstractions. For a
concrete example, we refer to our prior work [7].

The fact that the target of a proxy can itself be a proxy raises questions about the
validity of our invariant enforcement mechanism. If the target is itself a proxy, might
it not be able to return inconsistent results so as to mislead the invariant checks? After
all, invariant enforcement hinges on the fact that the target object cannot lie about what
invariants it upholds. Fortunately, this is not the case. We sketch an informal proof by
induction on the target of a proxy.

First, we note that any chain of proxy-target links must be finite and non-cyclic: the
target of a proxy must already exist before the proxy is created. It is not possible to
initialize the target of a newborn proxy to that proxy itself.

In the base case, a proxy’s target is a regular non-proxy object. Non-proxy objects
by definition uphold language invariants, so the proxy can faithfully query the target for
its invariants. Hence, the handler will not be able to violate reported invariants.

For the inductive step, consider a proxy a whose target is itself a proxy b. By the
induction hypothesis, b cannot violate the invariants of its own target, so that a can
faithfully query b for its invariants. Hence, a’s handler will not be able to violate b’s
reported invariants.

Alternatives to runtime assertions. To make proxies trustworthy, we currently rely on
run-time post-condition assertions on the return value of trap functions. Some of these
assertions, most notably those for the keys trap, are relatively expensive, which has
prompted us to look into alternative designs for achieving trustworthy proxies.

One design alternative (proposed to us by E. Dean Tribble) is to ignore the return
value of trap functions altogether, and instead always forward the intercepted operation
to the target object after having invoked the trap. The outcome of the operation on the
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proxy is then guaranteed to be the same as the outcome of the operation on the target, so
invariants are preserved. This essentially turns traps into callbacks (event handlers) that
get notified right before performing the operation on the target. Since the notification
takes place before forwarding the operation, the trap may still indirectly determine the
outcome of the intercepted operation by manipulating the target object.

While this design avoids run-time invariant checks, it has the downside of making it
even harder to express virtual object abstractions, as the virtual object is forced to define
a concrete property on the target object for every virtual property that is accessed. As we
have not yet fully explored this design alternative, we will refrain from going into more
detail here. It does teach us that our proposed design is not the only way of achieving
trustworthy proxies, and that there is a broader design space with trade-offs to explore.

6 Availability

Trustworthy proxies are known as “direct proxies” in Javascript. There currently exist
two implementations of direct proxies. The first is a native implementation in Fire-
fox 18. The second is a self-hosted implementation via the reflect.js library7.
reflect.js is a small Javascript library implemented by the first author. The li-
brary implements trustworthy proxies on top of our previously proposed Proxy API for
Javascript [7] which is available natively in Firefox and Chrome. The library essentially
uses untrustworthy proxies to implement trustworthy proxies in Javascript itself. An
implementation of membranes that preserve invariants is shipped with the library.

7 Related Work

For an overview of related Proxy and reflection APIs, we refer to our earlier work [7].
Here, we specifically discuss related work on invariant enforcement in Proxy APIs.

7.1 Chaperones and Impersonators

Chaperones and impersonators are a recent addition to Racket [14]. They are the run-
time infrastructure for Racket’s contract system on higher-order, stateful values.

Chaperones and impersonators are both kinds of proxies. One difference is that im-
personators can only wrap mutable data types, while chaperones can wrap both mutable
and immutable data types. A second difference is that chaperones can only further con-
strain the behavior of the value that it wraps. When a chaperone intercepts an operation,
it must either raise an exception, return the same result that the wrapped target would
return, or return a chaperone for the original result. Impersonators, on the other hand,
are free to change the value returned from intercepted operations.

Chaperones are similar to trustworthy proxies, in that they restrict the behavior of a
wrapper. A trustworthy proxy that wraps a frozen object is constrained like a chaperone.
It is actually more constrained, since a chaperone is allowed to return a chaperone for
the original value, while trustworthy proxies are not allowed to return a proxy for the

7 See http://github.com/tvcutsem/harmony-reflect.

http://github.com/tvcutsem/harmony-reflect
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value of a frozen property. Conversely, as long as the wrapped object is non-frozen,
trustworthy proxies are like impersonators and may modify the result of operations.

There are important differences between chaperones and trustworthy proxies, how-
ever. First, as chaperones are allowed to return wrappers for the original values, even
for “immutable” data structures, they avoid the overhead of the shadow target tech-
nique that we employed for membranes. However, this comes at the cost of weakening
the meaning of “immutable”: accessing the elements of an immutable vector, wrapped
with a chaperone, may yield new wrappers each time an element is accessed. Behav-
iorally, the element will be the same (modulo exceptions), but structurally it may have
a different identity. Thus, the invariant that immutable vectors must always return an
identical value upon access is weakened.

Second, trustworthy proxies may both be a chaperone and an impersonator at the
same time. In Racket, a value can be classified as (permanently) mutable or immutable.
This distinction cannot be made in Javascript: not only can objects be “half-mutable”
(cf. the “partially configurable” state in Figure 1), their mutability constraints can
also change at runtime (e.g. by calling Object.freeze). Hence, upon wrapping a
Javascript object, one cannot decide at that time whether to wrap it with a chaperone
or an impersonator. That is why trustworthy proxies must use dynamic checks to test
whether to behave as an impersonator (no invariant checks required) or as a chaperone-
like proxy (with restricted behavior).

7.2 Virtual Values

Starting from our initial Proxy API [7], Austin et al. have recently introduced a comple-
mentary Proxy API for virtualizing primitive values [2]. They focus on creating proxies
for objects normally thought of as primitive values, such as numbers and strings. They
highlight various use cases, such as new numeric types, delayed evaluation, taint track-
ing, contracts, revokable membranes and units of measure.

Like trustworthy proxies, virtual values are proxies with a separate handler. The han-
dler for a virtual value proxy provides a different set of traps. A virtual value can inter-
cept unary and binary operators applied to it, being used as a condition in an if-test,
record access and update, and being used as an index into another record.

An important difference between the trustworthy proxies API as presented here, and
the virtual values API, is that the latter provides a general isProxy primitive that
tests whether or not a value is a proxy. Our API does not introduce such an explicit
test because it breaks transparent virtualization. As a design decision, we do not want
clients to know or care that they are dealing with proxies for other objects.

For virtual values, the isProxy primitive was added to enable clients to defend
themselves against malicious virtual values, such as mutable strings in a language that
otherwise only has immutable strings. The idea is for clients to defend themselves
against malicious proxies by explicitly testing whether or not the the object they are
interacting with is a proxy. Virtual value proxies have no invariant enforcement.

Trustworthy proxies provide an alternative solution. As trustworthy proxies cannot
violate language invariants, the better way for clients to protect themselves against er-
ratic object behavior is to test whether an object is frozen, rather than testing whether it
is a proxy.
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7.3 Java Proxies

The java.lang.reflect.Proxy API [15], introduced in Java 1.3, enables one
to intercept method invocations on instances of interface types. Like the Proxy
API sketched here, a Java proxy has an associated handler object (known as an
InvocationHandler) to trap invocations. Unlike trustworthy proxies, Java prox-
ies do not necessarily wrap a target object.

The Java Proxy API only supports proxies for interface types, not class types. As
a result, proxies cannot be used in situations where code is typed using class types
rather than interface types, limiting their general applicability. Eugster [1] describes an
extension of Java proxies that works uniformly with instances of non-interface classes,
which, in addition to method invocation, can also trap field access and assignment.

Java proxies have little need for elaborate invariant enforcement. This is partly be-
cause Java provides no operations that change the structure of objects (the fields and
methods of an object are fixed), and partly because Java proxies do not virtualize field
access, so the notion of virtualizing a final field does not arise.

However, there is one invariant on Java proxies that is maintained via a runtime
check: the runtime type of the return value of the InvocationHandler’s invoke
method must be compatible with the statically declared return type of the intercepted
method. If the handler violates this invariant, the proxy implementation throws a
ClassCastException. This makes Java proxies trustworthy when it comes to the
return type of intercepted method invocations.

8 Conclusion

Proxies are a useful part of reflection APIs that enable a variety of use cases, from
generic wrapper abstractions such as membranes and higher-order contracts, to virtual
object abstractions such as remote object references and lazy initialization. In a lan-
guage with both proxies and language invariants, these features interact. If a proxy is
allowed to emulate an object with language invariants, the question arises whether these
invariants are still enforced by the language.

We presented trustworthy proxies, which are proxies that can wrap objects with (uni-
versal and monotonic) language invariants, where these invariants are enforced through
runtime checks by the proxy mechanism. This ensures that proxies cannot circumvent
these invariants, such that developers and the VM itself can continue to rely on these
invariants even in the presence of proxies.

We explored the need for trustworthy proxies in the context of Javascript, and pre-
sented a formal semantics for λTP, an extension of the λ-calculus including trustworthy
proxies. We have shown how abstractions such as transitively revocable references (i.e.
membranes) can be built using trustworthy proxies, achieving a transparent interposi-
tion between two object graphs which accurately represents language invariants on both
sides of the membrane.

Acknowledgements. We thank the members of the ECMA TC-39 committee and the
es-discuss community for their detailed feedback on this work.
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Abstract. Most graphical user interface (GUI) libraries forbid accessing UI ele-
ments from threads other than the UI event loop thread. Violating this requirement
leads to a program crash or an inconsistent UI. Unfortunately, such errors are all
too common in GUI programs.

We present a polymorphic type and effect system that prevents non-UI threads
from accessing UI objects or invoking UI-thread-only methods. The type system
still permits non-UI threads to hold and pass references to UI objects. We imple-
mented this type system for Java and annotated 8 Java programs (over 140KLOC)
for the type system, including several of the most popular Eclipse plugins. We
confirmed bugs found by unsound prior work, found an additional bug and code
smells, and demonstrated that the annotation burden is low.

We also describe code patterns our effect system handles less gracefully or not
at all, which we believe offers lessons for those applying other effect systems to
existing code.

1 Introduction

Graphical user interfaces (GUIs) were one of the original motivations for object-oriented
programming [1], and their success has made them prevalent in modern applications.
However, they are an underappreciated source of bugs. A Google search for “SWT in-
valid thread access” — the exception produced when a developer violates multithread-
ing assumptions of the SWT GUI framework — produces over 150,000 results, includ-
ing bug reports and forum posts from confused developers and users. These bugs are
user-visible, and programs cannot recover from them. Typically, they terminate program
execution. Furthermore, these bugs require non-local reasoning to locate and fix, and
can require enough effort that some such bugs persist for years before being fixed [2].
Because these bugs are common, severe, and difficult to diagnose, it is worthwhile to
create specialized program analyses to find errors in GUI framework clients.

A typical user interface library (such as Java’s Swing, SWT, and AWT toolkits, as
well as toolkits for other languages) uses one UI thread running a polling event loop to
handle input events. The library assumes that all updates to UI elements run on the UI
thread. Any long-running operation on this thread would prevent the UI from respond-
ing to user input, and for this reason the UI library includes methods for running tasks
on background threads. A background thread runs independently from the UI thread,
and therefore it does not block UI interactions, but it is also restricted in its interactions
with the UI. The UI library also provides mechanisms for background threads to update
UI elements, primarily by executing a closure on the UI thread, synchronously or asyn-
chronously. For SWT, these correspond to the static methods syncExec and asyncExec

G. Castagna (Ed.): ECOOP 2013, LNCS 7920, pp. 179–204, 2013.
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respectively, in the Display class. Each accepts a Runnable instance whose run()
method will be executed (synchronously or asynchronously) on the UI thread. For exam-
ple, a method to update the text of a label from a background thread might look like this:

private final JLabel mylabel;
...
public void updateText(final String str) {

Display.syncExec(new Runnable {
public void run() { mylabel.setText(str); }

});
}

The separation between the UI and background threads gives several advantages to the
UI library implementor:

– Forced atomicity specifications: background threads must interact with the UI only
indirectly through the closure-passing mechanism, which implicitly specifies UI
transactions. Because all UI updates occur on one thread, each transaction executes
atomically with respect to other UI updates.

– Minimal synchronization:Assuming clients of the UI library never access UI objects
directly, no synchronization is necessary within the UI library when the UI thread
accesses UI elements. The only required synchronization in the UI library is on the
shared queue where background threads enqueue tasks to run on the UI thread.

– Simple dynamic enforcement: Any library method that is intended to run only on
the UI thread can contain an assertion that the current thread is the UI thread.

These advantages for the library implementor become sources of confusion and mis-
takes for client developers. Each method may be intended to run on the UI thread (and
may therefore access UI elements) or may be intended to run on another, background,
thread (and therefore must not access UI elements). Client developers must know at all
times which thread(s) a given block of code might execute on. In cases where a given
type or routine may be used sometimes for background thread work and sometimes
for UI work, maintaining this distinction becomes even more difficult. There are alter-
native designs for GUI frameworks that alleviate some of this confusion, but they are
undesirable for other reasons explained in Section 3.5.

The key insight of our work is that a simple type-and-effect system can be applied
to clients of UI frameworks to detect all UI thread-access errors statically. There is a
one-time burden of indicating which UI framework methods can be called only on the
UI thread, but this burden is tractable. Annotations in client code are kept small thanks
to a judicious use of default annotations and simple effect polymorphism.

We present a sound static polymorphic effect system for verifying the absence of
(and as a byproduct, finding) UI thread access errors. Specifically, we:

– Present a concise formal model of our effect system, λUI . (Section 2)
– Describe an implementation JavaUI for the Java programming language, including

effect-polymorphic types, that requires no source modifications to UI libraries or
clients beyond Java annotations for type qualifiers and effects. (Section 3)

– Evaluate JavaUI by annotating 8 UI programs and Eclipse plugins totalling over
140KLOC. Our experiments confirm bugs found by unsound previous work [2],
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find an additional bug, and verify the absence of such bugs in several large pro-
grams. (Section 4)

– Identify coding and design patterns that cause problems for our effect system and
probably for other effect systems as well, and discuss possible solutions. (Section
4.4)

Our experience identifying UI errors in large existing code bases is likely to prove
useful for designing other program analyses that may have nothing to do with UI code.
Applying a static type-and-effect system to a large existing code base requires a design
that balances expressiveness with low annotation burden. In particular, we found that
while effect polymorphism was important, only a limited form (one type-level variable
per class) is needed to verify almost all code. However, some programming idioms that
do occur in practice are likely to remain beyond the reach of existing static analyses.
Overall, we believe our work can pave the way for practical static analyses that enforce
heretofore unchecked usage requirements of modern object-oriented frameworks.

JavaUI and our annotated subject programs are publicly available at:
http://github.com/csgordon/javaui

2 Core Language λUI

The basis for our Java type system is λUI, a formal model for a multithreaded lambda
calculus with a distinguished UI thread. Figure 1 gives the syntax and static semantics
for the core language. The language includes two constructs for running an expression
on another thread: spawn{e} spawns a new non-UI thread that executes the expression
e, while asyncUI{e} enqueues e to be run (eventually) on the UI thread. There are also
two kinds of references: refsafe e creates a standard reference, while refui e creates a
reference that may be dereferenced only on the UI thread. Other constructs are mostly
standard (dereference, application, function abstraction, assignment, natural numbers,
and a unit element) though the lambda construct includes not only an argument and
body, but an effect bound ξ on the body’s behavior.

Effects ξ include ui for the effect of an expression that must run on the UI thread,
and safe for the effect of an expression that may execute on any thread. Types include
natural numbers, unit, the standard effectful function type, and reference types with an
additional parameter describing the effect of dereferencing that reference.

Figure 1 also gives the static typing rules for λUI . The form Γ � e : τ;ξ can be read
as: given a type environment Γ, the expression e evaluates to a value of type τ, causing
effects at most ξ. Most of the rules are fairly standard modulo the distinctions between
spawn{e} and asyncUI{e} and between refsafe e and refui e. The rules also assume a
least-upper-bound operator on effects (#) for combining multiple effects, and the rules
include T-SUBEFF for permitting safe bodies in ui functions. Richer subtyping/subef-
fecting, for example full subtyping on function types, would be straightforward to add.

The operational semantics in Figure 2 are mostly standard, with the exception that
the distinguished UI thread has a FIFO queue of expressions to execute. After reducing
its current expression to a value it dequeues the next expression if available. The expres-
sion reduction relation is labeled with the effect of a given action, and the background

http://github.com/csgordon/javaui
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Expressions e ::= spawn{e} | asyncUI{e} | refξ e | !e | e e | (λξ(x : τ) e) | e← e | n | ()
Naturals n Variables x

Effects ξ ::= ui | safe Types τ ::= nat | τ ξ→ τ | refξ τ | unit

Γ � e : τ;ξ
T-NAT

Γ � n : nat;safe

T-UNIT

Γ � () : unit;safe

T-SUBEFF
Γ � e : τ;safe

Γ � e : τ;ui

T-SUBFUNEFF

Γ � e : τ1
safe→ τ2;ξ

Γ � e : τ1
ui→ τ2;ξ

T-SPAWN
Γ � e : τ;safe

Γ � spawn{e} : unit;safe

T-ASYNCUI
Γ � e : τ;ui

Γ � asyncUI{e} : unit;safe

T-REF
Γ � e : τ;ξ′

Γ � refξ e : ref ξ τ;ξ′

T-DEREF
Γ � e : ref ξ1 τ;ξ2

Γ � !e : τ;ξ1 #ξ2

T-ASSIGN
Γ � e1 : ref ξ τ;ξ1 Γ � e2 : τ;ξ2

Γ � e1 ← e2 : unit;ξ#ξ1#ξ2

T-LAMBDA
Γ,x : τ � e : τ′;ξ

Γ � (λξ(x : τ) e) : τ
ξ→ τ′;safe

T-APP

Γ � e1 : τ ξ→ τ′;ξ1 Γ � e2 : τ;ξ2

Γ � e1 e2 : τ′;(ξ#ξ1 #ξ2)

ξ1#ξ2 = {safe if ξ1 = ξ2 = safe, ui otherwise}

Fig. 1. λUI syntax for terms and types, and monomorphic type and effect system

threads get “stuck” if the next reduction would have the UI effect.1 Typing for runtime
program states is given in Figure 3.

The type system in Figure 1 is sound with respect to the semantics we define in
Figure 2 (using the runtime and state typing from Figure 3) and is expressive enough
to demonstrate soundness of the effect-related subtyping in the source language JavaUI.
λUI models the ability to statically confine actions to a distinguished thread. Effect-
polymorphism is not modeled, but mostly orthogonal: it would require a handful of
additional checks at polymorphic instantiation, and an extended subeffecting relation
(safe � polyui � ui). Full proofs via syntactic type soundness [3] are available in our
technical report [4]. We state the additional notation, judgments, and main lemmas here:

– Σ for standard-style heap type.
– Σ � H for typing the heap H.
– Σ;Γ � e : τ;ξ as the expression typing judgment extended for heap typing.
– H,e→ξ H ′,e′,O for small-step expression reduction. The effect ξ is the runtime-

observed effect of the reduction; e.g., dereferencing a ui reference has the runtime
effect ui. O is an optional effect-expression pair for reductions that spawn new
threads; the effect indicates whether a new background thread is spawned or a new
UI task is enqueued for the UI thread.

– 〈Σ,τu,τ〉 for machine typing: the heap type, a vector of expression types for the UI
thread’s pending (and single active) expressions, and a vector of expression types
for background threads. The maximal effects for each expression are implicit; they
depend on which thread the expression is for: UI expressions may type with effect
ui, while background threads must type with the effect safe).

– 〈H,eu,e〉 for machine states: heap, pending UI expressions, and background threads,
as with machine state typing.

– 〈Σ,τu,τ〉 � 〈H,eu,e〉 for typing a machine state.

1 This requires labeling heap cells with the effect of dereferencing the cell. These labels are used
only for proving soundness and need not exist in an implementation.
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Expressions e ::= ... | � Values v ::= � | n | () | (λξ(x : τ) e)
Heaps H : Location ⇁ Effect∗Value Heap Type Σ : Location ⇁ Effect∗Type
Machine σ ::= 〈H ,e,e〉 Machine Type Ω ::= 〈Σ,τ,τ〉
Optional New Thread O : option (Expression∗Effect)

σ→ σ
E-UI1

H ,e→ui H ′,e′,−−
〈H ,e e,ebg〉 → 〈H ′,e′ e,ebg〉 E-UI2

H ,e→ui H ′,e′,(enew,safe)

〈H ,e e,ebg〉 → 〈H ′,e′ e,ebg enew〉

E-UI3
H ,e→ui H ′,e′,(enew,ui)

〈H ,e e,ebg〉 → 〈H ′,e′ e enew ,ebg〉 E-NEXTUI 〈H ,v e e,ebg〉 → 〈H ′,e e,ebg〉

E-DROPBG 〈H ,eui,ebg v e′bg〉 → 〈H ′,eui,ebg e′bg〉
E-BG1

H ,e→safe H ′,e′,−−
〈H ,eui,ebg e e′bg〉 → 〈H ′,eui,ebg e e′bg〉

E-BG2
H ,e→safe H ′,e′,(en,safe)

〈H ,eui,ebg e e′bg〉 → 〈H ′,eui,ebg e e′bg en〉
E-BG3

H ,e→safe H ′,e′,(en,ui)

〈H ,eui,ebg e e′bg〉 → 〈H ′,eui en,ebg e e′bg〉

H ,e→ξ H ,e,O
E-SPAWN

H ,spawn{e}→safe H ,(),(e,safe)

E-ASYNC

H ,asyncUI{e}→safe H ,(),(e,ui)

E-REF1
H ,e→ξ H ′,e′,O

H ,refξ′ e→ξ H ′,refξ′ e′,O

E-REF2
� �∈Dom(H)

H ,refξ′ v→safe H [� �→ (ξ′,v)],�,−−

E-DEREF1
H ,e→ξ H ′,e′,O

H , !e→ξ H ′, !e′ ,O

E-DEREF2
H(�) = (ξ,v)

H , !�→ξ H ,v,−−

E-APP1
H ,e1 →ξ H ′,e′1,O

H ,e1 e2 →ξ H ′,e′1 e2,O
E-APP2

H ,e→ξ H ′,e′,O
H ,v e→ξ H ′,v e′,O

E-APP3
H ,(λξ(x : τ) e) v→ξ H ,e[x/v],−−

E-ASSIGN1
H ,e1 →ξ H ′,e′1,O

H ,e1 ← e2 →ξ H ′,e′1 ← e2,O
E-ASSIGN2

H ,e→ξ H ′,e′,O
H ,�← e→ξ H ′,�← e′,O

E-ASSIGN3
H(�) = (ξ,v′)

H ,�← v→ξ H [� �→ (ξ,v)],(),−− E-SUBEFFECT
H ,e→safe H ′,e′,O
H ,e→ui H ′,e′,O

Fig. 2. λUI runtime expression syntax and operational semantics

– 〈H,eu,e〉 → 〈H ′,e′u,e′〉 as machine reduction, nondeterministically selecting either
the first UI expression or an arbitrary background thread expression to reduce with
the heap.

We prove soundness using syntactic type soundness [3]. First, we prove single-threaded
type soundness. Contingent on that result, we prove soundness for all threads: all oper-
ations with the UI effect execute on the UI thread.

Lemma 1 (Expression Progress). If Σ � H and Σ;Γ � e : τ;ξ then either e is a value,
or there exists some H ′, e′, and O such that H,e→ξ H ′,e′,O.

Lemma 2 (Expression Preservation). If Σ;Γ � e : τ;ξ, Σ � H and H,e →ξ H ′,e′,O,
then there exists Σ′ ⊇ Σ such that Σ′ � H ′, Σ′;Γ � e′ : τ;ξ, and if O = (e′′,ξ′) then there
also exists τn such that Σ;Γ � e′′ : τn;ξ′.

Corollary 1 (Expression Type Soundness). If Σ;Γ � e : τ;ξ, and Σ � H, then e is a
value or there exists Σ′ ⊇ Σ, e′, H ′, and O such that Σ′ � H ′, and H,e→ H ′,e′,O, and
Σ′;Γ � e′ : τ;ξ and if O = (e′′,ξ′) then there exists τn such that Σ′; /0 � e′′ : τn;ξ′.

Lemma 3 (Machine Progress). If 〈Σ,τu,τ〉 � 〈H,eu,e〉 for non-empty eu, then either
eu = v :: [] and e = /0 or there exists H ′,eu

′,e′ such that 〈H,eu,e〉 → 〈H ′,eu
′,e′〉.
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Σ;Γ � e : τ;ξ cont.

T-LOC
Σ(�) = (ξ,τ)

Σ;Γ � � : ref ξ τ;safe
Ω � σ

WF-STATE

Σ � H Σ; /0 � eu : τu;ui Σ; /0 � e : τ;safe

〈Σ,τu,τ〉 � 〈H ,eu,e〉

Σ �H

WF-HEAP
∀ξ,τ,� ∈Dom(H).Σ(�) = (ξ,τ)⇔∃v.H(�) = (ξ,v)∧Σ; /0 � v : τ;safe

Σ �H

Fig. 3. λUI program and runtime typing, beyond extending the source typing with the additional Σ

Lemma 4 (Machine Preservation). If 〈Σ,τu,τ〉 � 〈H,eu,e〉and 〈H,eu,e〉→ 〈H ′,eu
′,e′〉,

then there exists Σ′,τu
′,τ′ such that Σ′ ⊇ Σ and 〈Σ′,τu

′,τ′〉 � 〈H ′,eu
′,e′〉

Corollary 2 (Machine Type Soundness). If 〈Σ,τu,τ〉 � 〈H,eu,e〉 for non-empty eu,
then either eu = v :: [] and e = /0 or there exists Σ′,H ′,τu

′,eu
′,τ′,e′ such that Σ′ ⊇ Σ

and 〈Σ′,τu
′,τ′〉 � 〈H ′,eu

′,e′〉 and 〈H,eu,e〉 → 〈H ′,eu
′,e′〉.

3 JavaUI: Extending λUI to Java

JavaUI soundly prevents inappropriate access to UI objects by background threads.
JavaUI extends Java with type qualifier annotations and method effect annotations to
indicate which code should run on the UI thread and which code should not directly ac-
cess UI objects. From the Java developer’s perspective, JavaUI prevents invalid thread
access errors, which occur when a background thread calls UI-only methods (such as
JLabel.setText()) that may only be called from the UI thread. JavaUI handles the full
Java language, including sound handling of inheritance and effect-polymorphic types.
A major design goal for JavaUI was to avoid changes to UI library code. Specifically,
we did not modify the implementation or underlying Java type signature of any library.

We implemented our qualifier and effect system on top of the Checker Frame-
work [5,6], which is a framework for implementing Java 8 type annotation processors,
providing support for, among other things, AST and type manipulation, and specifying
library annotations separately from compiled libraries themselves. The JavaUI syntax is
expressed via Java 8’s type annotations. Type annotations are propagated to bytecode,
but have no runtime effect, thus maintaining binary API compatibility between JavaUI
and Java code (developers use the real UI libraries, not one-off versions coupled to
JavaUI). The implementation consists of two main components: a core checker for the
effect system, and a sizable annotation of some standard Java UI framework libraries.

3.1 JavaUI Basics

There are two method annotations that indicate whether or not code may access UI
objects (call methods on UI objects):

– @UIEffect annotates a method that may call methods of UI objects (directly or
indirectly), and must therefore run on the UI thread.
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Table 1. JavaUI annotations

Role Annotation Target Purpose

Effects

@SafeEffect Method Marks a method as safe to run on any thread
(default)

@UIEffect Method Marks a method as callable only on the UI
thread

@PolyUIEffect Method Marks a method whose effect is polymorphic
over the receiver type’s effect parameter

Defaults

@UIType Type Decl. Changes the default method effect for a type’s
methods to @UIEffect

@UIPackage Package Changes the default method effect for all meth-
ods in a package to @UIEffect

@SafeType Type Decl. Changes the default method effect for a
type’s methods to @SafeEffect (useful inside
a @UIPackage package)

Polymorphism
@PolyUIType Type Decl. Marks an effect-polymorphic type (which

takes exactly one effect parameter)

Instantiating
Polymorphism

@Safe Type Use Instantiates an effect-polymorphic type
with the @SafeEffect effect (also used for
monomorphic types, considered subtypes of
@Safe Object)

@UI Type Use Instantiates an effect-polymorphic type with
the @UIEffect effect

@PolyUI Type Use Instantiates an effect-polymorphic type with
the @PolyUIEffect effect (the effect parameter
of the enclosing type)

– @SafeEffect annotates a method that does not call methods of UI objects, and may
therefore run on any thread.

@UIEffect corresponds to λui from the λUI core language: it annotates a method as
having a (potentially) UI-effectful body. Similarly, @SafeEffect corresponds to λsafe.

The other annotations in Table 1 are all about changing the default effect
(@UIType, @SafeType, @UIPackage) or handling polymorphism (@PolyUIEffect,
@PolyUI, @Safe, @UI, @PolyUIType).

A @SafeEffect method (the default) is not permitted to call @UIEffect methods. Only
@UIEffect methods (which have the UI effect) are permitted to call other @UIEffect
methods. With few exceptions (e.g., syncExec(), which background threads may call
to enqueue an action to run on the UI thread), methods of UI elements are annotated
@UIEffect, and that is how improper calls to UI methods are prevented:

public @SafeEffect void doSomething(JLabel l) {
l.setText(...); // ERROR: setText() has the UI effect

}

The other method effect annotation @UIEffect annotates a method as able to call all
@UIEffect methods, and only other methods with the UI effect may call it.
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public @UIEffect void doSomethingUI(JLabel l) {
l.setText(...); // OK: setText() and this method have UI effect

}
public @SafeEffect void doSomethingSafe(JLabel l) {

doSomethingUI(l); // ERROR: doSomethingUI() has the UI effect
}

The safe effect @SafeEffect is a subeffect of the UI effect @UIEffect. So a @SafeEffect
method may override a @UIEffect method, but a @UIEffect method cannot override a
@SafeEffect method:

public class Super { public @SafeEffect void doSomethingSafe(){ ... }}
public class Sub extends Super {

public @UIEffect void doSomethingSafe(){ ... }}
//ˆ ERROR: invalid effect override

Controlling Defaults. Especially for subclasses of UI elements, it could be tedious to
write @UIEffect on every method of a class. Three additional annotations locally change
the default method effect:

– @UIType: A class (or interface) declaration annotation that makes all methods of
that class, including constructors, default to the UI effect.

– @UIPackage: A package annotation that makes all types in that package behave
as if they were annotated @UIType. Subpackages must be separately annotated;
@UIPackage is not recursive.

– @SafeType: Like @UIType, but changes the default to @SafeEffect (useful inside
@UIPackage packages).

In all three cases, individual methods may be annotated @SafeEffect or @UIEffect .
This is how we have annotated SWT, Swing, and JFace: we annotated each package
@UIPackage, then annotated the few safe methods (such as repaint()) as @SafeEf-
fect.

3.2 Effect-Polymorphic Types

A single class may be used sometimes for UI-effectful work, and other times for work
safe to run on any thread. @SafeEffect and @UIEffect do not handle this common use
case. In particular, consider Java’s java.lang.Runnable interface:

public interface Runnable {
void run();

}

The Runnable interface is used to encapsulate both code that must run on the UI thread
(which is passed to the syncExec() and asyncExec() methods in UI libraries), and
also code that should not run on the UI thread, such as the code passed to various
general dispatch queues, including thread pools.

JavaUI provides three type qualifiers [5,6,7], each corresponding to instantiating an
effect-polymorphic type with a specific effect:
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– @Safe: A qualifier to instantiate a type with the @SafeEffect effect.
– @UI: A qualifier to instantiate a type with the @UIEffect effect.
– @PolyUI: A qualifier to instantiate a type with the @PolyUIEffect effect (when used

inside an effect-polymorphic class).

as well as a type declaration annotation @PolyUIType that annotates a class or interface
as effect-polymorphic.2

The final declaration for the Runnable interface is:

@PolyUIType public interface Runnable {
@PolyUIEffect void run();

}

This declares Runnable as being a class polymorphic over one effect, and the effect of
the run() method is that effect. Our type system implicitly adds a receiver qualifier of
@PolyUI so the body can be checked for any instantiation.

Given an instance of a Runnable, the effect of calling the run() method depends on
the qualifier of the Runnable. For example:

@Safe Runnable s = ...;
s.run(); // has the safe effect
@UI Runnable u = ...;
u.run(); // has the UI effect
@PolyUI Runnable p = ...;
p.run(); // has a polymorphic effect

Assuming the last line appears inside an effect-polymorphic type, its effect will be what-
ever effect the type is instantiated with. Note that the @Safe annotation on s is not
necessary: the default qualifier for any type use is @Safe if none is explicitly written.
Since most code does not interact with the UI, this means that most code requires no
explicit annotations.

Effect-Monomorphic Subtypes of Effect-Polymorphic Supertypes. Deriving a con-
crete subtype from an effect-polymorphic supertype is as simple as writing the appro-
priate qualifier on the supertype:

public class SafeRunnable implements @Safe Runnable {
@SafeEffect void run() {

// any effect other than safe causes a type error here
}

}

Again, note that @SafeEffect is the default effect for unannotated methods, so the use of
@SafeEffect here is not strictly necessary. Inside the body of run(), this will have type
@Safe SafeRunnable. In this case, the @Safe could be omitted from the implements
clause due to defaults, but a class that implements @UI Runnable would require the
explicit qualifier.

2 JavaUI uses different annotations for monomorphic effects (@SafeEffect) and for instantiating
polymorphic effects (@Safe) because of a parsing ambiguity in Java 8 where method annota-
tions and return type annotations occupy the same source locations.
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It is also possible to derive from a polymorphic type without instantiating, by sim-
ply declaring a polymorphic type that derives from a polymorphic instantiation of the
supertype:

@PolyUIType public interface StoppableRunnable implements @PolyUI Runnable {
@PolyUIEffect void run();
@PolyUIEffect void stop();

}

Concrete or abstract classes may be effect-polymorphic. The body of an effect-
polymorphic method is limited to calling safe methods and other methods with their
same effect (e.g., other effect-polymorphic methods of the same instance, which will
have the same effect as the executing method).

It is not permitted to derive a polymorphic type from a non-polymorphic type (see
Section 3.4 for why). Therefore, Object is declared as effect-polymorphic.

Qualifier Subtyping and Subeffecting. In addition to nominal subtyping (e.g., @Safe
SafeRunnable above is a subtype of @Safe Runnable), JavaUI also permits qualifier
subtyping, which reflects effect subtyping (“subeffecting”). For example, it may be use-
ful to pass a @Safe Runnable where a @UI Runnable is expected: any run() imple-
mentation with the safe effect is certainly safe to execute where a UI effect is allowed.
Similarly, a @Safe Runnable can be passed in place of a @PolyUI Runnable, which
can be passed in place of a @UI Runnable since both subtyping relations are sound for
any instantiation of @PolyUI.

Anonymous Inner Classes. Many programs use anonymous inner classes to pass “clo-
sures” to be run on the UI thread. Qualifiers can be written on the type name. Thus code
such as the following is valid (type-correct) JavaUI code:

asyncExec(new @UI Runnable() { public @UIEffect void run(){/* UI stuff */}});

If an effect-monomorphic supertype declares @UIEffect methods, no annotation is
needed on the anonymous inner class, and all overriding methods default to the effect
declared in the parent type, without additional annotation.

3.3 Annotating UI Libraries

To update UI elements, non-UI code uses special methods provided by the UI library
that run code on the UI thread: the Java equivalent of λUI’s asyncUI{e} construct. Real
UI libraries have both synchronous and asynchronous versions:

– For Swing, these special functions are methods of javax.swing.SwingUtilities:
• static void invokeAndWait(Runnable doRun);
• static void invokeLater(Runnable doRun);

– For SWT, these special functions are methods of the class
org.eclipse.swt.widgets.Display:
• static void syncExec(Runnable runnable);
• static void asyncExec(Runnable runnable);
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Other UI libraries have analogous functionality. We annotated each of these library
methods as @SafeEffect (safe to call on any thread) and accepting a @UI instance of the
Runnable interface (allowing UI-effectful code in the Runnable). This is comparable
to λUI’s T-ASYNCUI in Figure 1. Our library annotations use the Checker Framework’s
stub file support [6,5] for stating trusted annotations for code in pre-compiled JAR files.
We did not check the internals of GUI libraries, which would require dependent effects
(Section 3.4).

3.4 Limitations

There are a few theoretical limits to this effect system. In our evaluation (Section 4),
these did not cause problems.

One Effect Parameter Per Type. JavaUI cannot describe the moral equivalent of

class TwoEffectParams<E1 extends Effect, E2 extends Effect> {
@HasEffect(E1) public void m1() { ... }
@HasEffect(E2) public void m2() { ... }

}

In our evaluation on over 140,000 lines of code (Section 4), this was never an issue.
We found that effect-polymorphic types are typically limited to interfaces that are used
essentially as closures. They are used for either safe code or UI code, rarely a mix. This
restriction also gives us the benefit of allowing very simple qualifier annotations for
instantiated effect-polymorphic types. Supporting multiple parameters would require a
variable-arity qualifier for instantiating effects, and introduce naming of effect parame-
ters. (We have found one instance of a static method requiring multiple effect parame-
ters: BusyIndicator.showWhile(), discussed in Section 4.4.)

Polymorphic Types May not Extend Monomorphic Types. JavaUI does not permit, for
example, declaring a subtype PolyUIRunnable of UIRunnable that takes an effect pa-
rameter, because it further complicates subtyping. It is possible in theory to support
this, but we have not found it necessary. To do so, effect instantiations of the effect-
polymorphic subclass would instantiate only the new polymorphic methods of the sub-
class (polymorphic methods inherited from further up the hierarchy and instantiated by
a monomorphic supertype may not be incompatibly overridden). Subtyping would then
become more complex, as the qualifier of a reference could alternate almost arbitrarily
during subtyping depending on the path through the subtype hierarchy.

Splitting the class hierarchy. Because an effect-polymorphic type may not inherit from
a monomorphic type, this forces the inheritance hierarchy into three partitions: @UI
types, @Safe types, and @PolyUI types (Object is declared as @PolyUI, making the
root of the type hierarchy @UI Object). All may freely reference each other, but it does
impose some restrictions on code reuse. This was not an issue in our evaluation. Some
classes implement multiple interfaces that each dictate methods with different effects
(e.g., a listener for a UI event and a listener for background events, each handler having
a different effect; Eclipse’s UIJob interface has methods of both effects), but we found
no types implementing multiple polymorphic interfaces using different instantiations.
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No effect-polymorphic field types. We do not allow effect-polymorphic (@PolyUI) fields.
This avoids reference subtyping problems. Solutions exist (e.g., variance annotations [8])
but we have not found them necessary. Note however that we do inherit Java’s unsound-
ness from covariant array subtyping, though we encountered no arrays of any effect-
polymorphic types (or any @UI elements) during evaluation.

Cannot check UI library internals. The effect system currently is not powerful enough
to check the internals of a UI library, mainly because it lacks the dependent effects
required to reason about the different effects in separate branches of dynamic thread
checks. This means for example the effect system cannot verify the internals of safe UI
methods like repaint(), which are typically implemented with code like:

if (runningOnUIThread()) { /*direct UI access*/ } else { /*use syncExec()*/ }

3.5 Alternatives

There are four possible approaches to handling UI threading errors: unchecked excep-
tions (the approach used by most GUI libraries), a sound static type and effect system, a
Java checked exception (a special case of effect systems), and making every UI method
internally call syncExec() if called from a background thread. The unchecked excep-
tion is undesirable for reasons described in the introduction: the resulting bugs are diffi-
cult to diagnose and fix. We propose a sound static type system independent from Java
checked exceptions, and most of this paper explores that option. This section focuses on
the two remaining options, and why our approach is different from existing concurrency
analyses.

Why not make the thread access exceptions checked? Java’s checked exceptions are
another sound static effect system that could prevent these bugs. But there are reasons to
use a separate effect system rather than simply making the thread access error exception
a checked (rather than the current unchecked) exception:

– Polymorphism: Certain types, such as Runnable, are used for both UI thread code
and non-UI code — such types are polymorphic over an effect. Java does not sup-
port types that are polymorphic over whether or not exceptions are thrown. We aim
to minimize changes to existing code and to avoid code duplication.

– Reducing annotation burden: For common source code structures, such as putting
most UI code in a separate package, a programmer can switch the default effect
for whole types or packages at a time. Java provides no way to indicate that all
methods in a type or package throw a certain checked exception. JavaUI provides
such shorthands.

– Backwards Compatibility: New checked exceptions breaks compilation for existing
code. This is also the reason we do not leverage Java’s generics support for our
effect-polymorphic types.

– Catching such exceptions would almost always be a bug.
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Why not have every UI method automatically use syncExec() if run on a background
thread? This solution masks atomicity errors on UI elements. A background thread may
call multiple UI methods — for example, to update a label and title bar together. Differ-
ent background threads could interleave non-deterministically in this approach, creating
inconsistencies in the user interface. Additionally, these atomicity bugs would hurt per-
formance by increasing contention on the shared queue of messages from background
threads due to the increased thread communication.

Why not use an existing concurrency analysis? Our effect system is different from
prior type and effect systems for concurrency. Our goal is to constrain some actions to
a specific distinguished thread, which is not a traditionally-studied concurrency safety
property (as opposed to data races, deadlocks, and atomicity or ordering violations). In
particular, this effect system permits most concurrency errors! This is by design, because
preventing better-known concurrency errors is neither necessary nor sufficient to elimi-
nate UI thread access errors, and allows the effect system design to focus on the exact
error of interest. Data races on model structures are not UI errors. Because UI libraries
dictate no synchronization other than the use of syncExec() and asyncExec() (and
equivalents in other frameworks), deadlocks are not UI errors. It is also possible for a
program to have a UI error without having any traditional concurrency bugs. JavaUI only
guarantees the UI library’s assumption that all UI widget updates run uninterrupted (by
other UI updates) in the same thread. In general, other static or dynamic concurrency
analyses would complement JavaUI’s benefits, but the systems would not interact.

4 Evaluation

We evaluated the effectiveness of our design on 8 programs with substantial user inter-
face components (Table 2). 4 of these programs were evaluated in prior work [2]. The
others were the first 4 UI-heavy Eclipse plugins we could get to compile out of the 50
most-installed3 (as of May 2012).

We wrote trusted annotations for major user interface libraries (Swing, SWT, and
an SWT extension called JFace), annotated the programs, and categorized the resulting
type-checking warnings. Where false warnings were issued due to the type system being
conservative, we describe whether there are natural extensions to the type system that
could handle those use cases.

4.1 Annotation Approach

Trusted Library Annotations. We conservatively annotated the UI libraries used by sub-
ject programs before annotating the programs themselves. Swing contains 1714 classes,
SWT contains 708 classes, and JFace 537 classes. We erred on the side of giving too
many methods the UI effect, and we adjusted our annotations later if we found them
to be overly conservative. We intermingled revisions to library annotations with subject
program annotation, guided by the compiler warnings (type errors). We examined the

3 http://marketplace.eclipse.org/metrics/installs/last30days

http://marketplace.eclipse.org/metrics/installs/last30days


192 C.S. Gordon et al.

Table 2. Subject programs. Pre-annotation LOC are calculated by sloccount [9]. UI LOC is the
LOC for the main top-level package containing most of the application’s UI code; other parts
of a project may have received some annotation (for example, one method in a model might be
executed asynchronously to trigger a UI update), and some projects were not well-separated at
the package level.

Program LOC UI LOC Classes Methods

EclipseRunner 3101 3101 48 354
HudsonEclipse 11077 11077 74 649
S3dropbox 2353 1732 42 224
SudokuSolver 3555 3555 10 62
Eclipse Color Theme 1513 1193 48 215
LogViewer 5627 5627 117 644
JVMMonitor 31147 17657 517 2766
Subclipse 83481 53907 539 4480

documentation, and in some cases the source, for every library method that caused a
warning. When appropriate, we annotated library methods as @SafeEffect, annotated
polymorphic types and effects for some interfaces, and changed some UI methods to
accept @UI instantiations of effect-polymorphic types. The annotated library surface is
quite large: we annotated 160 library packages as @UIPackage, as well as specifying
non-default effects for several dozen classes (8 effect-polymorphic).

Our results are sound up to the correctness of our library annotations and the type
checker itself. We can only claim the UI framework annotations to be as accurate as
our reading of documentation and source. A few dozen times we annotated “getter”
methods that returned a field value as safe when it was not perfectly clear they were
intended as safe. There are three primary sources of potential unsoundness in library
annotations:

1. Incorrectly annotating a method that does perform some UI effect as safe.
2. Incorrectly annotating a method that requires a safe variant of a polymorphic type

as accepting a UI variant.
3. Incorrectly annotating a callback method invoked by a library as @UIEffect .

To mitigate the first source, we began the process by annotating every UI-related pack-
age and subpackage we could find as @UIPackage. JavaUI mitigates the second by the
fact that unspecified polymorphic variants default to safe variants. We addressed the
third by reading the documentation on the several ways the UI frameworks start back-
ground threads, and annotating the relevant classes correctly early on.

Annotating Subject Programs. To annotate each subject program, we worked through
the files with the most warnings first. We frequently annotated a class @UIType if most
methods in the class produced warnings; otherwise we annotated individual methods
with warnings @UIEffect . For files with fewer warnings, we determined by manual
code inspection and perusing UI library documentation whether some methods came
from an interface with UI-effectful methods, annotating them @UIEffect if needed.

In an effort to make the final warning count more closely match the number of pos-
sible conceptual mistakes, when the body of a method that must be safe (due to its
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use or inheritance) contained one basic block calling multiple @UIEffect methods (e.g.
myJLabel.setText(myJLabel.getText()+"...")), we annotated the method body
@UIEffect, taking 1 warning over possibly multiple warnings about parts of the method
body. We believe this makes the final warning counts correspond better to conceptual
errors. Multiple UI method calls in a safe context likely reflects 1 missing asyncExec()
(a developer misunderstanding the calling context for a method) or 1 misunderstanding
on our part of the contexts in which a method is called, not multiple bugs or misun-
derstandings. If multiple separated (different control flow paths) basic blocks called
@UIEffect methods, we left the method annotation as @SafeEffect.

We made no effort during annotation to optimize annotation counts (the counts we
do have may include annotations that could be removed). We simply worked through
the projects as any developer might.

We identified several patterns in library uses that cause imprecision; we discuss those
in Section 4.4.

Distinguishing warnings that correspond to program bugs, incorrect (or inadequate)
annotations, tool bugs, or false positives requires understanding two things: the seman-
tics of JavaUI’s effect system, and the intended threading design of the program (which
code runs on which thread). The user has detected a program bug or a bad annotation
when JavaUI indicates that the program annotations are not consistent with the actual
program behavior. Finding the root cause may require the user to map the warning to a
call path from a safe method to a UI method. This is similar to other context- and flow-
sensitive static analyses, and when the user does not understand the program, iteratively
running JavaUI can help. The user can recognize a false positive by understanding what
is expressible in JavaUI. A reasonable rule of thumb is that if a warning could be sup-
pressed by conditioning an effect by a value or method call whose result depends on the
thread it runs on, it is likely a false positive. The user can recognize a tool bug in the
same way, by understanding JavaUI’s simple rules.

4.2 Study Results: Bugs and Annotations

Annotating these projects taught us a lot about interesting idioms adopted at scale, and
about the limitations of our current effect system. The annotation results appear in Table
3, including the final warning counts and classifications, and Table 4 gives the number
of each annotation used for each project. The first four projects each took under an hour4

to annotate, by the process described in Section 4.1. Eclipse Color Theme took only 8
minutes to annotate, and required only 4 annotations. The effort required for these five
projects was low even though we had never seen the code before starting annotation.
The other projects (LogViewer, JVMMonitor, and Subclipse) were substantially larger
and more complex, and they required substantially more effort to annotate.

Overall we found all known bugs in the subject programs (only the first four were
known to have UI threading related errors [2]), plus one new UI threading defect, and
one defect in unreachable (dead) code.

4 We lack precise timing information because each annotation was interleaved with fixing
JavaUI implementation bugs.
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Table 3. JavaUI warnings (type errors). JavaUI finds all bugs found by Zhang’s technique [2],
plus one additional bug. The table indicates UI threading defects, non-exploitable code defects
found because of annotation, definite false positives, and a separate category for other reports,
which includes reports we could not definitively label as defects or false positives, as well as
other warnings such as poor interactions between plugins’ Java 1.4-style code and the 1.7-based
compiler and JDK we used.

Zhang et al. [2] Defects
Program Warnings Defects Time to Annotate Warnings UI Other False Pos. Other

EclipseRunner 6 1 <1hr 1 1 0 0 0
HudsonEclipse 3 3* <1hr 13** 3 0 2 0
S3dropbox 1 1 <1hr 2 2 0 0 0
SudokuSolver 2 2 <1hr 2 2 0 0 0
Eclipse Color Theme 0 0 8m 0 0 0 0 0
LogViewer 0 0 3h50m 1 0 0 1 0
JVMMonitor 7 0 6h45m 9 0 0 9 0
Subclipse 24 0 17h20m 19 0 1 13 5

*Zhang et al. report 1 bug, but its repair requires adding syncExec() in 3 locations, so we consider it 3 bugs.
**JavaUI found the same 3 bugs as Zhang et al.’s GUI Error Detector, each with 3–4 warnings due to compound statements.

Table 4. Annotation statistics for the 8 subject programs. @PolyUIEffect, @PolyUIType, and
@PolyUI were not used in the subject programs themselves — only in annotating the UI libraries.

Program @UIPackage @UIType @SafeType @UIEffect @SafeEffect @UI @Safe Anno/KLOC
EclipseRunner 0 26 0 2 5 0 0 10.6
HudsonEclipse 0 17 0 9 4 14 0 3.9
S3dropbox 0 30 0 4 2 14 0 21.2
SudokuSolver 0 2 0 18 1 9 0 8.4
Eclipse Color Theme 0 1 0 3 0 0 0 2.6
LogViewer 0 53 0 5 23 15 1 17.2
JVMMonitor 0 129 0 12 47 29 0 6.9
Subclipse 17 126 60 102 128 138 0 6.8

Table 3 includes the error counts for Zhang et al.’s unsound GUI Error Detector [2]
when run on the same program versions. We found all bugs they identified, as well as
1 new bug in S3dropbox. The S3dropbox developer has confirmed the bug, though he
does not plan to fix it because it does not crash the program (Swing does not check the
current thread in every UI method, allowing some races on UI objects). If a user drops
a file using drag-and-drop onto the UI, the interface sometimes forks a background
thread that then calls back into UI code. GUI Error Detector misses this bug because of
an unsoundness in WALA [10], which GUI Error Detector uses for call graph extraction.
For scalability, by default WALA does not analyze certain libraries, including Swing.
GUI Error Detector uses WALA’s default settings, so the drag-and-drop handler appears
(to the tool) to be unreachable. Call graph construction precision is also a bottleneck for
GUI Error Detector on large programs: Subclipse analysis required a less precise control
flow analysis to finish (0-CFA, others used 1-CFA).

The dead code defect we found was a UI-effectful implementation of a safe interface
in Subclipse. The type with the invalid override was never used at that interface type
(removing the implements clause fixes the warning) and the method was never called.
We consider this a defect, though it is not exploitable.
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In Table 3 the number of final warnings exceeding the number of bugs found does
not necessarily indicate false positives: our type system issues a warning for every type-
incorrect expression that could correspond to a thread access error. So a single line with
a composite UI expression (e.g., a UI method call with UI expressions as arguments) in a
non-UI context would (correctly) produce multiple compiler warnings. Each subexpres-
sion may have an individual work-around that does not require adding an (a)syncExec().
We consider a warning to be a false positive only if the target expression’s execution in
context would not improperly access UI elements from a non-UI thread.

Our sound type and effect system found no new UI threading errors in the larger
projects, but found several bugs in the smaller projects. There are good reasons to expect
this result. First, the first four projects were previously evaluated by Zhang et al. [2], so we
knew we should find bugs in those projects (Zhang selected several of those subjects by
finding SWT threading errors in bug databases). For the larger projects, we simply took
the most recent release version of each Eclipse plugin. Second, the larger Eclipse plugins
are all mature, heavily used projects, making it quite likely that any UI bugs would be
found and fixed quickly (each has at least 3,000 installs total; Subclipse was installed
23,855 times between 11/19 and 12/19 2012 alone). We believe JavaUI would have more
benefits when used from the beginning of a project, and the relative prevalence of UI
errors in the younger projects compared to the mature projects supports this theory.

After annotating these programs, we searched all four projects’ issue trackers for
threading-related issues. There were several bug reports for data races between models
and views, and issues with several UI methods that behave differently on the UI thread
than on other threads; the latter are not uncommon, because many JFace methods return
one result (often null) on non-UI threads, but a different result on the UI thread. The
latter could have been caught by our type system with custom library annotations for
those methods.

The one report we found of a UI threading error [11] is triggered when a background
thread calls into a native method, which then calls back into UI-effectful Java code.
The call occurs as a result of a logic error in Subversion itself, and the bug was marked
“WONTFIX” (the fix was a patch to Subversion). With a proper annotation on the native
methods, our effect system would have issued a warning.

Non-annotation Changes. We made minor changes to the code beyond simply adding
effect-related annotations (and the required import statements) for two reasons: when
naming an anonymous inner class as a new subtype would fix effect (type) errors,
and when converting Java 1.4-style code to use generics would remove warnings. The
Action interface is generally used as a closure for @UIEffect work, but HudsonEclipse
in one case made an anonymous inner class whose run() method was safe, stored it as
an Action (whose run() is @UIEffect), and called the run() of the safe subclass explic-
itly in several safe contexts. Rather than making Action (and several
supertypes) polymorphic, which seems to contradict the suggested uses in the doc-
umentation, we declared a subclass of Action that overrode run() as @SafeEffect,
and stored the anonymous inner class as an instance of that (removing 3 warnings). In
JVMMonitor, Java 1.4-style (no generics) use of Java Beans interacted poorly with the
Checker Framework’s promotion of an argument of type Class to Class<? extends
@Safe Object>, which was passed as an argument to a Java Bean method accepting
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Client code listener (callback) implementations:

class SafePropertyChangeListener extends PropertyChangeListener() {
public void propertyChange(PropertyChangeEvent event) {

if (event.getProperty().equals("stuff")) {
// do @SafeEffect stuff

}}}
class UIPropertyChangeListener extends PropertyChangeListener() {

public void propertyChange(PropertyChangeEvent event) {
if (event.getProperty().equals("uistuff")) {

// Call @UIEffect methods directly
}}}

On UI thread:

store.addPropertyChangeListener(new UIPropertyChangeListener());

On a background thread:

store.addPropertyChangeListener(new BackgroundPropertyChangeListener());
// Next line executes UIPropertyChangeListener’s UI callback on BG thread
store.setValue("stuff", true);

Fig. 4. JFace global property store issues. Assume store is any expression that accesses a shared
static JFace PreferenceStore; in Eclipse plugins, there is one such store initialized for every
plugin. Listeners for property changes are registered with both possible effects, but all handlers
will run on any thread that updates any property, making UI thread errors possible. As long as
specific properties that actually cause @UIEffect methods to be called (in this case, uistuff) are
only updated from the UI thread, no errors will occur, but this pattern is fragile.

a Class<@Safe Object>. We added a generic method parameter T and changed the
argument to Class<T>, removing one warning. In Subclipse, we converted 3 Vector
fields to Vector<String>, due to a similar problem with Vector.copyInto, removing
3 warnings.

We allowed these changes because they were minor, and because we expect they
would be natural changes for a project interested in using our effect system to verify
the absence of UI threading errors. Most of the remaining false positives could be fixed
with more engineering work (e.g. splitting interfaces, splitting callback registration into
safe and UI-effectful, etc.) but we judged such changes to be too invasive to give a clear
picture of developer effort, and restricted ourselves to only these small changes.

4.3 False Positives and Other Reports

Our evaluation produced 30 false positives in over 140,000 lines of code (0.2 per 1000
lines of code). We consider this an acceptable false positive rate. The false positives fall
into 5 general categories, including limitations of our type system and what we consider
to be poor designs in the UI libraries and client programs.

Registering Callbacks of Both Effects. Four of the projects shared a common source of
false positives: HudsonEclipse (1 false positive), LogViewer (1), JVMMonitor (5), and
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Subclipse (1) each suffered imprecision from JFace’s global property store. The plugin
code adds a UI-effectful property change listener (a @UI instantiation of a polymorphic
interface) to JFace’s global property store. Listeners will fire on any thread that sets a
property, so in general the listeners must be safe. However, in some projects all calls
to setting properties are performed from within the UI thread, making this not a bug.
A potential solution for this class of false positives is to change the library annotations
for JFace’s preference store to permit @UI handlers, and to annotate the property set-
ters @UIEffect in a project-specific library annotation file used to override the global
file. (The global file would follow documentation as much as possible.) In other cases,
particular properties are only updated from the UI thread, and the UI-effectful handlers
are guarded by condition checks that only pass for those UI properties, as in Figure 4.

JVMMonitor created its own specific instance of this same problem: the other 4 of
its false positives are from a property store it creates for CPU model changes, where
some properties are only updated from UI code, and the handlers have UI effects but
run only for specific properties. We feel this property store design is faulty, which we
elaborate on in Section 4.4.

Subtyping Limitations. 5 other false positives (1 in HudsonEclipse and 4 in Subclipse)
are from a weakness in our subtyping relation. HudsonEclipse’s subtyping false pos-
itive occurs because a @UI instantiation of a polymorphic type is not a subtype of
@Safe Object. The subtyping false positives in Subclipse are from a combination of
that with the requirement that generic parameters are subtypes of the default Object
variant: the code uses a Java 1.4 style list, but List<T> is implicitly List<T extends
@Safe Object> which makes some types unusable as type parameters. These uses
would be enabled by making the upper bound on List (and Iterator) @UI Object,
but doing so would force many additional annotations where an object was pulled out
of a list or iterator as (implicitly safe) Object, so we opted for the lower annotation
burden. This would not be an issue in properly generic code.

Interface Abuse. One false positive in Subclipse is an instance of interface abuse:
subclassing a definitively safe supertype using @UIEffect overrides, then calling the
@UIEffect overrides directly, only from UI contexts. We could have fixed this type error
by making the entire hierarchy of the abusing class’s superclasses effect-polymorphic
(from documentation one superclass is clearly intended as safe), or by introducing a new
type and copying code from parent classes (which is poor design for its own reasons).

Lack of Dependent Types/Effects. Subclipse had 7 additional definite false positives,
most of which would require dependent effects (as in dependent types; an effect deter-
mined by a runtime result) to handle:

– 3 warnings resulting from lack of dependent effects (see Section 4.5).
– 3 warnings that were subject to some type of dynamic thread check, and would

therefore have executed only on the UI thread
– 1 instance where our type system could not express the proper effect (it would

require a combination of dependent effects with multiple method effect parameters
and explicit least-upper-bound-of-parameters effects)
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Other Reports. The remaining 5 Subclipse reports are about unsafe effects, but we
cannot determine whether or not the application is using a safe interface as polymorphic
(at a @UI variant) or if the JFace interface, documented as unrelated to interfaces or
threads, should actually just allow UI effects.

4.4 Sources of Difficulty

Weak Documentation. The main source of difficulty in annotating all of our subject
programs was understanding the design of the UI libraries, with respect to which meth-
ods must only be called in the UI thread, or were polymorphic. Once we understood
the design, adding library annotations was easy. Remarkably, none of the UI libraries
clearly and consistently documents the thread safety of all UI methods. JavaUI’s anno-
tations are precise documentation, and are machine-checkable for client code.

AWT and Swing’s documentation was concise and unambiguous: all methods except
invokeAndWait and invokeLater must be called only from the UI thread. SWT claims
the same about syncExec() and asyncExec(). Confusingly, there are some exceptions
to this rule in SWT (classes Color, Font, and Image).

The prevailing wisdom about JFace is that most of JFace assumes it is running on the
UI thread. But clients call much of JFace directly from non-UI threads, and the JFace
documentation rarely specifies thread assumptions. Clients often interpret the lack of
documentation as license to call: there are many methods of UI elements that documen-
tation suggests are intended to be called only from the UI thread, but happen to be safe
(such as getter methods) and are therefore often called by clients from contexts that must
be safe.

Problematic Idioms. There are several idioms that cause problems for our type system.
Most could be handled with richer polymorphism or dependent effects, but we believe
most of these idioms are poor design. Rewriting the offending code is a better option,
and JavaUI’s type system encourages this better design.

The most common source of false positives was JFace’s global property store design.
JFace often shares global property sets among all threads, and listeners can be registered
for a callback in the event of a property changing. These listener callbacks will be
executed on whichever thread updates a property, thus all properties callbacks should be
@SafeEffect. However, some programs register @UIEffect callbacks, but avoid issues
by updating the global property store (for any property) only from the UI thread, or
updating the properties with UI-effectful handlers only from the UI thread. Two of these
safe approaches can be handled using custom library annotations for individual projects:
either callbacks can have the UI effect and properties may only be updated from the UI
thread, or callbacks must be safe and the properties may be updated by any thread.
The related case as seen with the CPU model change listeners in JVMMonitor could
be handled with some dependent effects, annotating the listener update code with the
properties whose handlers may have UI effects, and allowing updates to those properties
only from UI contexts. The shared property store design appears to us to be a very
error-prone design; we would prefer separate property stores or listener registrations
for handlers that run on or off the UI thread.

Another problematic idiom, seen only in Subclipse, is code that dynamically checks
which thread it is executing on, and optionally redirects a closure to the UI thread if
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necessary. Our design does not support these dynamic checks, which are typically found
only inside UI libraries themselves. In Subclipse, SWT’s Display.getCurrent()
is used; it returns null when executed off the UI thread, and otherwise returns a
valid Display object. The same method also sets a local boolean indicating whether
Display.getCurrent() returned null, so handling this code is not a simple matter of
specializing to a particular if-then-else construct.

An idiom responsible for both a number of false reports and for a number of
workarounds in our library annotations is to make ad-hoc polymorphic instances of a
particular type. By this we mean creating a subtype with a UI-effectful override of a safe
method, storing the reference at the (safe) supertype, but only allowing said values to
flow to and be used in UI contexts. This frequently occurred with a JDK or Eclipse inter-
face that appeared from documentation to be intended as safe, but some part of JFace or
a custom design by a plugin developer co-opted it and treated it as an effect-polymorphic
type. Similarly, developers sometimes implement a totally safe subclass of a UI-effectful
supertype (often as an anonymous inner class), store references as the supertype, and call
methods of said class in safe contexts (only allowing safe subtype instances to flow to
those call sites). Checking these uses in general would effectively require allowing every
type to take a separate effect parameter for each method. In our evaluation, we typically
annotated such classes as effect-polymorphic, annotated each method of those classes as
@PolyUIEffect, and added UI instances to the subject programs as necessary.5 This gen-
erally sufficed for UI variants of safe supertypes, unless the problematic class would then
inherit from multiple polymorphic types, which our system does not handle. The latter
case (safe variants of a UI interface) could be worked around by explicitly introducing a
named subtype that declares a safe override, and storing references as the safe subtype
(which we did once for HudsonEclipse). We speculate that these designs arise from the
designers of the relevant class hierarchies and interfaces not considering the option of
using type hierarchies to separate code that must run on the UI thread from code that
may run anywhere (including hijacking otherwise safe interfaces). The type hierarchy
splitting that fits these cases into our effect system generally seems less error-prone even
without our strict effect system checking, because such splitting already introduces some
type-based barriers to confusing the calling context of UI code.

A class of idioms that definitely indicates shortcomings of our current effect system
is methods requiring qualifier-dependent method effects: effects that depend on the qual-
ifier of one or more effect-polymorphic arguments. There are also some methods whose
proper types require a much richer type system. A good example of this is
org.eclipse.swt.custom.BusyIndicator.showWhile(), whose effect depends on:

– The variant of Runnable it receives (@UI or @Safe),
– The calling context (@UIEffect or @SafeEffect), and
– Whether the Display it receives is null

This method calls the passed Runnable on the current thread, displaying a busy cursor
on the passed Display if any, and no busy information otherwise. Because it is often used
for UI-effectful work, we annotated it @UIEffect, taking a @UI Runnable. A better, but
still conservative type would be

5 This is always sound: each instantiation is treated soundly, and @Safe instances may flow into
variables for @UI instances.
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@PolyUIEffect
public static void showWhile(Display display, @PolyUI Runnable runnable);

Our type system cannot check calls to this presently because there is no receiver qual-
ifier to tie to the effect at the call site. Checking the method internals would require
richer types, including effect refinements based on the Display.

4.5 Potential Type System Extensions

Our experiences revealed several ways our type system could be extended to verify
more client code.

First, what would be simple polymorphism in the most natural core calculus to write
for the polymorphic effect system6 becomes lightweight dependent effects in the imple-
mentation. This happens in cases where a method takes a Runnable of some instantia-
tion and runs it in the current thread. The example we encountered in our evaluation is
the showWhile() method from the previous section, a good signature for which would
be

@EffectFromQualOf("runnable")
public static void showWhile(Display display, @PolyUI Runnable runnable);

The effect of this runner call will be whatever the effect of the Runnable’s run()
method is. If we could use the same annotation for both qualifiers and method ef-
fects, simply specifying the polymorphic qualifier would be sufficient, and the Checker
Framework’s existing support for polymorphism would handle this. Unfortunately, Java
8’s type annotation syntax leaves parsing ambiguities: if @UI applied to both types and
methods, there would be no way to disambiguate a use as a method effect annotation
from a use as a method return type annotation. Thus we must use different annotations.
So to support this type of qualifier-dependent effect, we would need lightweight depen-
dent effects, simply due to limitations of Java’s grammar.

A need for dependent effects comes from a pattern seen in Subclipse, where methods
either take a boolean argument (ProgressMonitorDialog.run() and
Activator.showErrorDialog()) or call a related method (Action.canRunAsJob())
indicating whether or not to fork another thread to execute a Runnable (otherwise the
effect of the runner is polymorphic as in the previous example). If the fork flag is true,
the provided Runnable must be a @Safe Runnable. So for example, the effect of the
main work method for the Action class should be (informally):

@EffectIfTrueElse(this.canRunAsJob(),@SafeEffect,@UIEffect)
indicating that the method must be safe if the method is required to run as a Job (a
background thread task), and otherwise will run on the UI thread. Checking this then
requires executing the canRunAsJob() method during type-checking, and ensuring that
this computation is independent of subtyping (that the canRunAsJob() implementation
is final when used). Other utility methods take a flag with opposite polarity, but the
required type system extension would be the same.

6 Recall that λUI is effect-monomorphic.
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5 Related Work

The most similar work to ours is an open source tool, CheckThread.7 It is a Java com-
piler plugin that aims to catch arbitrary concurrency bugs, and includes a @Thread-
Confined("threadName") annotation similar to our @UIEffect, but supporting
arbitrary thread confinement rather than being limited to one distinguished thread. It
appears to be an effect system, but the authors never describe it as such in the documen-
tation or code. They allow applying various annotations to whole types as a shorthand for
applying an annotation to all methods on a type (similar to our @SafeTypeand @UIType).
However, their system does not support polymorphism, and it is not clear from its doc-
umentation if it treats inheritance soundly (from source inspection, it appears not).

Another piece of closely related work is Zhang et al.’s GUI Error Detector [2], which
searches for the same errors as our type and effect system via a control flow analysis. Es-
sentially they extract a static call graph of a program from bytecode, and find any call path
that begins in non-UI code and reaches a UI method without being “interrupted” by a call
to syncExec() or asyncExec(). The false positive rate from the naı̈ve approach is too
high, so they couple this with several heuristics (some unsound, potentially removing cor-
rect warnings) to reduce the number of warnings. On four examples from their evaluation,
we find all of the bugs they located, plus one more (Section 4.2). They also annotated 19
subject program methods in their evaluation as trusted safe when they performed dynamic
thread checks; at least 3 of our false positives would disappear if we suppressed warnings
in such methods. Another interesting result of our work is empirical confirmation of the
GUI Error Detector’s unsound heuristics for filtering reports. GUI Error Detector found
most of the bugs our sound approach identified, and the missed bug was due to WALA’s
defaults for scalable call-graph generation, not due to unsound heuristics. Some idioms,
like the global property store design, cause false positives for both techniques.

Our approach has several advantages over Zhang et al.’s approach. Most notably, our
technique is sound, while their heuristics may filter out true reports. Our type and effect
system is also modular and incremental (we naturally support separate compilation and
development) and can reason soundly about code (for example, subclasses) that may not
exist yet. The GUI Error Detector on the other hand must have access to all JAR files
that would be used by the running application in order to gather a complete call graph,
and must rerun its analysis from scratch on new versions. If JARs are unavailable, its
unsoundness increases. For performance reasons, their underlying call graph extraction
tool (WALA [10]) skips some well-known large libraries — including Swing, meaning
that GUI Error Detector misses all callbacks from Swing library code into application
code. This results in additional unsoundness, and is the reason GUI Error Detector did
not find the drag-and-drop bug in S3Dropbox. Our support for polymorphism is also
important: 14 of GUI Error Detector’s 24 false positives on Subclipse were because
Zhang et al.’s technique does not treat the Runnable interface effect-polymorphically.

Our system does have several disadvantages compared to Zhang et al.’s. Our type and
effect system requires manual code annotation, requiring many hours for some large
projects (though this effort is only required once, with only incremental changes to an-
notations as the program evolves). Because GUI Error Detector runs on Java bytecode,

7 http://checkthread.org/

http://checkthread.org/
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it is possible to run the GUI Error Detector on binaries for which source is unavailable,
without writing a trusted stub file. It is also possible (though untested) that their ap-
proach can handle other JVM languages (such as Scala or Clojure) or multi-language
programs. Our type system produces only localized reports; Zhang et al. examine the
whole call graph, so a warning’s report includes a full potentially-erroneous call se-
quence. When annotating the sample programs in our evaluation, much of our time was
spent manually reconstructing this information.

Sutherland and Scherlis proposed the technique of thread coloring [12], which is in
some ways a generalization of our UI effect. They permit declaration of arbitrary thread
roles and enforcing that methods for certain roles execute only on the thread(s) holding
those roles. They use a complex combination of abstract interpretation, type inference,
and call-graph reconstruction to reduce annotation burden; the one subject they specify
annotation burden for is lower than ours, but they do not provide annotation counts
for other subjects. They do not describe their false positive rates. They do annotate
AWT and Swing applications successfully; we found AWT and Swing had relatively
consistent policies, and expect they would have had more difficulty with Eclipse’s SWT
and JFace libraries, which were the source of many of our false positives. Like Zhang
et al.’s technique, Sutherland’s implementation lacks role (effect) polymorphism, which
results in an unspecified number of false positives in their evaluation.

There is a long line of work on effect systems, ranging from basic designs [13]
to abstract effect systems designed for flexible instantiation [14,15]. Rytz et al. [15]
propose an effect-polymorphic function type for reasoning about effects, where for
functions of type T1

e⇒ T2 the effect of invoking it is the join of the concrete effect
e with the effect of the argument T1, implying that the function may call T1 (if the ar-
gument is itself a function). This is similar to what we would need to support qualifier-
dependent effects (e.g., showWhile in Section 4.5). Other effect systems are designed
to reason about more general safe concurrency properties [16,17], but we are the first to
build a polymorphic effect system for the issue of safe UI updates. Another approach
would be to encapsulate UI actions within a monad, since every effect system gives
rise to a monad [18]. Functional languages such as Haskell use monads to encapsulate
many effects, and in fact some Haskell UI libraries use a UI monad to package UI up-
dates safely (e.g., Phooey [19]). Another use of monads in functional languages is to
support software transactional memory [20,21], including a strong separation between
data accessed inside or outside a transaction. Viewing the closures run on the UI thread
as UI transactions, our type system enforces a weakly atomic [22] form of transactions,
where UI elements are guaranteed to be transaction-only but non-UI elements have no
atomicity guarantees.

6 Conclusion

In almost every UI framework, it is an error for a background thread to directly ac-
cess UI elements. This error is pervasive and severe in practice. We have developed an
approach — a type and effect system — for preventing these errors that is both theo-
retically sound and practical for real-world use. We have proven soundness for a core
calculus λUI. Our implementation, JavaUI, is both precise and effective: in 8 projects
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totalling over 140,000 LOC, JavaUI found all known bugs with only 30 spurious warn-
ings, for a modest effort of 7.4 annotations per 1000 LOC on average.

We have identified error-prone coding idioms that are common in practice and ex-
plained how to avoid them. We also identified application patterns that JavaUI cannot
type check that will probably be issues for other effect systems applied to existing code:
ad-hoc effect polymorphism, value-dependent effects, and data structures mixing call-
backs with different effects. These idioms suggest improvements to existing code (such
as segregating callbacks with different known effects) and profitable extensions to effect
systems.
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Abstract. Programmers often need to initialise circular structures of objects. Ini-
tialisation should be safe (so that programs can never suffer null pointer exceptions
or otherwise observe uninitialised values) and modular (so that each part of the
circular structure can be written and compiled separately). Unfortunately, existing
languages do not support modular circular initialisation: programmers in practical
languages resort to Tony Hoare’s “Billion Dollar Mistake”: initialising variables
with nulls, and then hoping to fix them up afterward. While recent research lan-
guages have offered some solutions, none fully support safe modular circular
initialisation.

We present placeholders, a straightforward extension to object-oriented lan-
guages that describes circular structures simply, directly, and modularly. In typed
languages, placeholders can be described by placeholder types that ensure place-
holders are used safely. We define an operational semantics for placeholders, a type
system for placeholder types, and prove soundness. Incorporating placeholders
into object-oriented languages should make programs simultaneously simpler to
write, and easier to write correctly.

1 Introduction

Imagine writing the top level of a simple web application, with a database access DBA
component, a Security component, an SMS component able to send SMS text messages
and finally a GUI component for user interaction. The security component needs to access
the database (to retrieve user authorisation records), while the database needs to access
the security component (to ensure users only access data they are authorised to view);
the GUI component needs access to the SMS component (to send messages) and the
SMS component needs access to the database to log received/sent messages; finally the
database needs to update the GUI component whenever a change happens (for example to
display received SMS messages). This system has a number of circular dependencies: the
database needs the security system, which needs the database, which needs the security
system; the GUI component needs the SMS component, which needs the database access,
which needs (to update) the GUI component; and on ad infinitum.

How can programs initialise such a structure? The obvious code is obviously wrong:

G. Castagna (Ed.): ECOOP 2013, LNCS 7920, pp. 205–229, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Security s=new Security(dba);
DBA dba=new DBA(s,gui);
SMS sms=new SMS(s,dba);
GUI gui=new GUI(sms,dba,s);

attempting to initialise the security system with the database before the database itself
is constructed. In languages designed in the last twenty years or so, this “uninitialised
variable” error should be caught statically or dynamically; in older languages, this will
be caught as a null pointer exception (if we are lucky) or by initialising the security
system with the contents of the uninitialised dba variable (if we are not).

The traditional solution relies critically on Tony Hoare’s “Billion Dollar Mistake”:
null pointers [12]. We initialise the security system with a null pointer, instead of a
database, then initialise the database with the now-extant security subsystem, and then
use a setter method to link the database back to the security system:
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s Security s=new Security(null);
DBA dba=new DBA(s,null);
s.setDatabase(dba);
SMS sms=new SMS(s,dba);
GUI gui=new GUI(sms,dba,s);
sms.setGUI(gui);
dba.setGUI(gui);

More sophisticated versions of this approach may use dependency injection frameworks,
writing XML configuration files rather than code, decoupling configuration from the
code itself; or (monadic) option types rather than raw nulls, avoiding null pointer errors
at the cost of enforcing tests of every access to every potentially uninitialised variable
throughout the program.

1.1 Placeholders

We address this problem by introducing placeholders. A placeholder, as the name sug-
gests, is a proxy or a stand-in for an uninitialised, as yet nonexistent object. Placeholders
are created in placeholder declarations. A single placeholder declaration can declare
and initialise the entire GUI/Database/SMS system:
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Security s=new Security(dbadbadba),
DBA dba=new DBA(ss,guiguigui),
SMS sms=new SMS(ss,dbadbadba),
GUI gui=new GUI(smssms,dbadbadba,ss);

Placeholder declarations differ from the Java-style declarations shown earlier in two
ways. Syntactically, a series of initialisation clauses are separated with commas (,).
Programs can pass variables — placeholders, in fact — declared anywhere in the same
placeholder assignment statement as arguments to any constructors within the same
statement. In the code above, these placeholders are shown with a red background.

Semantically, placeholder declarations are evaluated in three phases (see Fig.1). First,
a placeholder is created and bound to each declared placeholder variable. Second, the
right-hand sides of each declaration (the initialisers) are run in turn, top to bottom,
creating the actual objects that will be used in the rest of the program. Third, all pointers
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to placeholders are redirected to point to the objects whose places they are holding. This
redirection includes all variable bindings, so at the end of the third phase, all the variables
are bound to the actual objects created in the second stage. At this point, execution of
the placeholder declaration is complete, and the program can continue.

Phase 1

sms

dba

s

gui

sms

dba

s

gui

Phase 2

sms

dba

s

gui

sms

dba

s

gui

sms

dba

s

gui

Phase 3

sms

dba

s

gui

sms

dba

s

gui

Fig. 1. Initialisation with placeholders

A key feature of placeholders and placeholder declarations is that they have minimal
impact on the rest of the program. Placeholders are lexically scoped, limited in extent
to the execution of the enclosing placeholder declaration. Placeholder declarations as a
whole have well defined imperative semantics — important if any of the initialisers have
side effects — as they are simply executed in the order in which they are written.

Placeholders are also flexible. For example, to avoid hard wiring classes into client
code, programmers and languages are adopting the object-algebra style, where a platform
object provides a single point of configuration [15,3]. Client code requests classes from
the platform object, and then instantiates those objects indirectly:
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Platform p = ...; // p is a factory aka object algebra

Security s=p.makeSecurity(dbadbadba),
DBA dba=p.makeDBA(ss,guiguigui),
SMS sms=p.makeSMS(ss,dbadbadba),
GUI gui=p.makeGUI(smssms,dbadbadba,ss);

This more complex creation style also works well with placeholders — the only dif-
ference is that placeholders are passed into factory methods [7], rather than directly
into constructors. Overall, placeholders support circular initialisation of independent,
encapsulated, modules, without any null pointers — the components to be created and
initialised need only to present a factory interface where placeholders may be passed
into some arguments. More than this: because placeholders can displace nulls for field
initialisation, a programming language with placeholders can do without traditional
Hoare-style null values entirely.

Unfortunately, placeholders are not by themselves a complete solution to the circular
initialisation problem. Placeholders can replace nulls, allowing programs to create
circular structures idiomatically. Placeholders are not accessible outside the lexical scope
of their placeholder declaration, but placeholders have to be accessible inside the scope of
their declarations, so that they can be used to configure other components. The problem
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is that placeholders are placeholders, not actual objects, indeed the object to which they
will refer may not have been created when the placeholder is used. Here’s a slightly
modified example, where the security system is configured last, and where it attempts to
retrieve the DBA component via the GUI component, rather than from the dba variable.
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DBA dba=new DBA(ss,guiguigui),
SMS sms=new SMS(ss,dbadbadba),
GUI gui=new GUI(smssms,dbadbadba,ss),
Security s=new Security(guiguigui.getDBA());

To a first approximation, this code could reasonably be expected to work: when the GUI
component is created, in phase 2 of the execution of the placeholder declaration, it will
have received the placeholder for the DBA component, so a getDBA accessor method
called on the DBA object should just return that placeholder. Indeed, a call on the DBA
object would do just that. Unfortunately, at phase 2, all references are to placeholders,
not to objects — note that the first three lines happily initialise the DBA, SMS, and GUI

components with s, which must be a placeholder for the security component as the
security component has not yet been created.

So what can we do when a method is requested on a placeholder — effectively a
nonexistent object — rather than the object that has yet to come into being? Well, in the
absence of time-travel, we treat this as a programmer error, and throw a PlaceholderEx-
ception. Placeholders, after all, are not objects, they are just placeholders for objects.
This rationale is also why we do not replace references to placeholders until all the
object are created and initialised: we wish to avoid partially initialised objects as much
as possible.

This means we have jumped out of the frying pan and into the fire. Rather than
having just one distinguished “null” pseudo-object that can be used to manage object
initialisation (and for many other purposes) we have created a vast number of place-
holder pseudo-objects, access to any one of which terminates program execution with
a PlaceholderException just as surely as a null terminates a program with a NullPoint-
erException.

1.2 Placeholder Types

To solve the problem of the PlaceholderExceptions (that replace NullPointerExceptions),
we provide a static type system with support for Placeholder Types. This type system
guarantees that references to (potential) placeholders may only be accessed once they
have been replaced with actual objects.

Placeholder types are a small addition to standard Java-like type systems. A reference
of placeholder type may refer either to objects or to placeholders of the underlying object
type — we will write C’ for the placeholder type corresponding to an object type C. The
types in the remainder of the system (we term them “object types” where it is necessary
to distinguish) are essentially standard Java types: they accept objects, but do not accept
placeholders; nor do they accept null pointers — indeed, there are no null values at
all in our formal system. A reference of object type always refers to an instance of the
declared type, never to a placeholder.

Because of the limited scope and lifetimes of the placeholders themselves, placeholder
types are required only in a very small part of most programs — the placeholder declara-
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tions, constructors, and factory methods used to create and initialise components. Within
the actual body of a placeholder declaration, the declared variables are all interpreted as
having placeholder types, while after the end of the placeholder declaration — but while
those variables are still in scope — the declared variables have object types. This follows
directly from the semantics of the placeholder declarations: in phase 1, placeholders are
bound to all the declared variables, while at the end of phase 3, all those placeholders
have been replaced by actual objects, so that variables that were holding placeholders
now refer to those actual objects.
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DBA dba=new DBA(ss,guiguigui),
SMS sms=new SMS(ss,dbadbadba),
GUI gui=new GUI(smssms,dbadbadba,ss),

// ‘‘guigui‘gui’’ has placeholder type ‘‘GUI’GUI’‘ ’’’ within
// placeholder declaration statement

Security s=new Security(guiguigui.getDBA());
// guiguigui.getDBA() here is a type error,
// cannot request methods on placeholders

gui.getDBA();
// after the end of the placeholder declaration
// gui has object type ‘‘GUI’’ --- it cannot be
// a placeholder, so method requests are permitted

To prevent PlaceholderExceptions from being raised when methods are requested from
placeholders (instead of objects) we forbid placeholder types in the receiver position (“be-
fore the dot”) of any method requests. This rule prevents calls like “guigui“g“ i.getDBA())”
within the body of the placeholder declaration itself (before the first semicolon “;”),
when “guigui“g“ i” has placeholder type “GUI’GUI’“ ’”. After the end of the placeholder declaration
— but within the block where the declared names are visible — “guigui“g“ i” has object type
“GUI” and may receive method requests.

To keep the overall system simple, we further restrict placeholder types. Placeholder
types may only appear as parameters or return values from methods, or parameters to
constructors: they may not appear as types of objects’ fields. The aim here is to ensure
that placeholders do not escape from the lexical context of their placeholder declarations,
so that all the objects created with those placeholders are fully initialised at the end
of their placeholder declaration. These restrictions are liberal enough to permit many
kinds of factory methods and object algebras. For example, here is code implementing
the makeSecurity method in the Platform object factory (object algebra) discussed
earlier:
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ra class Platform {//...

Security makeSecurity(DBA’DBA’’ dbadbadba) {
return new Security(dbadbadba);

}
}

Here the makeSecurity factory method takes a DBA’DBA’’ placeholder type and passes it
as an argument to the underlying constructor. This is permitted by the rules on the use
of placeholder types, while invoking a method on dbadbadba, or storing it into a field is not
permitted, as that could lead to a PlaceholderException, sooner or later.
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These rules are necessarily subtle, especially when objects are created that are ini-
tialised by placeholders. These partially initialised objects will only become fully ini-
tialised when those placeholders themselves become fully initialised. Partially initialised
objects do not have placeholder types — in particular, they may be returned as object
types — but they are treated as if they were placeholders until they are returned. Consider
the following version of the Platform class:
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class DifferentPlatform {
Security makeSecurity(DBA’DBA’’ dbadbadba) {
ExternalSecurity xxx = new ExternalSecurity(dbadbadba);
xxx.validate();
//x/x/x/ .validate here is a type error
//cannot request methods on partially initialised objects
if (/*high security needed*/)return highSecurity(x);
else return xxx;
//this is not a type error
//may return partially initialised objects

}
}

Here we create a new object, initialised with a placeholder, and store that in the local
variable x. This variable is not a placeholder type — we can return it as an object type
— even though it refers to a partially initialised object. We know this object is partially
initialised because its value comes from an expression that has a placeholder (dbadba(dba)
passed in as an actual argument. Within this method, we treat x as a placeholder, so
we can pass this partially initialised object as a placeholder typed argument to another
method (as Security highSecurity(Security’ s)), but we cannot call methods
upon it.

Partially initialised objects are safe because they are treated as if they were place-
holders until they are fully initialised. Partially initialised objects can only be passed
as placeholder typed arguments, and so they will be treated as full placeholders by any
methods into which they are passed. When partially initialised objects are returned from
methods (as object types) if that method was called with placeholder arguments, then
that returned value will also be treated as partially initialised.

Finally, in order to be able to actually initialise fields of objects, we have to treat
placeholder types in constructors slightly differently from elsewhere (of course, con-
structors already have special privileges in Java-like languages, notably to be able to
initialise final fields. The special case within constructors is that we can initialise a field
of object type T with an expression of placeholder type T’ — because of our restrictions
on placeholder types, any such placeholder must have been passed in as an argument to
that constructor.

cl
a

ss
d

ec
l class Security {

DBA dbaComponent;
Security(DBA’DBA’’ dbadbadba) {this.dbaComponent=dba;}

}

To maintain soundness, we cannot read values back from fields in constructors, other-
wise we could attempt to request a method from a placeholder stored in a field with



The Billion-Dollar Fix 211

p ::= cd id program
cd ::= classC implementsC{ fd k md} class declaration
id ::= interfaceC extendsC{ mh;} interface declaration
fd ::= C f ; field declaration
k ::= C(C1’ f1, . . .,Cn’ fn){ this.f1=f1; . . .;this.fn=fn;} constructor
mh ::= T m(T x) method header
md ::= mh e method declaration
e ::= x | e.m(e) | newC(e) | e.f | e1.f =e2 | ι expressions

| xe1, . . .,xen;e place holder declaration
xe ::= T x = e variable initialisation
v ::= ι | x value
μ ::= ι �→ C (f1 = v1, . . . , fn = vn) memory
T ::= C | C’ type

Fig. 2. Syntax

an object type which ostensibly does not permit placeholders. On the other hand, since
placeholder types can refer to objects (of the appropriate type) as well as placeholders,
this constructor and the above object factory can always be called passing in actual
objects, rather than placeholders, if the programmer has them to hand.

1.3 Contributions

This paper makes two main contributions: first, placeholders and placeholder declara-
tions, and second, placeholder types. Placeholders support idiomatic, modular, circular
initialisations of complex object structures, while placeholder types ensure placeholders
are only used safely, and so will never cause a PlaceholderException.

The rest of this paper is structured as follows. Section 2 presents the FJ’language and
its formalisation and Section 3 gives the details of the type rules and states the main
soundness theorems. Section 4 demonstrates the expressiveness of FJ’by presenting
a selection of more complex examples, and then Section 5 discusses implementation
considerations for supporting placeholders in a Java-like setting. Section 6 overviews
related work and Section 7 concludes. The accompanying technical report presents the
proofs for our formal system and a more extensive discussion of placeholders [17].

2 Syntax and Semantics of FJ’

Syntax
The syntax of FJ’is shown in Figure 2. We assume countably infinite sets of variables x ,
object identifiers ι, class or interface names C , method names m , and field names f . As
in FJ [13] variables include the special variable this.

Classes and interfaces. A program p is a set of class and interface declarations. A
class declaration consists of a class name followed by the set of implemented interfaces,
the sequence of field declarations, a conventional constructor and the set of method
declarations. To keep the presentation focused on the problem of circular initialisation,
we do not consider class composition operators like the extends operator in Java.
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An interface declaration consists of an interface name followed by the sets of extended
interfaces and method headers. As one can see, for simplicity, we use interfaces to
provide subtyping, i.e. there is no subtype relation between classes. Field declarations
are as in FJ. To simplify the formalisation, constructors (k ) are standard conventional
FJ constructors, taking exactly one parameter for each field and only initialising fields.
Method declarations are composed of a method header and a body. The method header
is as in FJ. Since only fully initialised objects can be receivers, the implicit parameter
this is always of a fully initialised object type. As in FJ, method bodies are simply
expressions. We omit the return keyword in the formal definition but we insert it in the
appropriate places in the examples to aid readability.

Expressions. Expressions are variables, method or constructor calls, field access, field
update, object identifiers (within run time expressions), and finally, placeholder declara-
tions. Variables can be declared in method headers or inside expressions. An expression
is well-formed only if the same variable is not declared twice. Hence, we have no con-
cept of variable hiding. Placeholder declarations are a sequence of variable initialisation
clauses separated by comma (,) and an expression terminated by semicolon (;). Note
that the order of variable initialisations is relevant since it induces the order of execution
for the sub-expressions. The order is also relevant in sequences of field declarations and
parameter declarations.

Syntax for placeholders. In a closed expression an occurrence of x is a placeholder
only if it is inside a placeholder declaration declaring local variable x , and before the
semicolon. That is, any placeholder declaration with a variable initialisation clause
T x=... can contain the placeholder x inside its initialisation expressions, and (as usual)
the variable x inside its terminating expression.

Values and memory. Values are object identifiers ι or placeholders x . Note that values
do not include null and we have no default initialisation. Placeholders are replaced by
object identifiers when placeholder declarations are reduced. Thus final values are only
object identifiers.
A memory is a finite map from object identifiers to records annotated with a class name.
For example, a computation over the program “class C{C f;C(C’ f){this.f=f;}}”,
can produce the memory “ ι1 �→ C(f=y), ι2 �→ C(f=ι1), ι3 �→ C(f=ι3) ”, containing
three object identifiers for objects of class C: }

– ι1 refers to an object containing a single field named f pointing to the placeholder y,
– ι2 refers to an object containing a single field named f pointing to ι1. Thus, ι1 and ι2

denote two partially initialised objects: objects containing a placeholder or another
partially initialised object where a fully initialised object is expected.

– ι3 denotes an object containing a single field named f, referencing to ι3 itself. Thus
ι3 is a fully initialised object.

A memory is well-formed with respect to a program if the fields of the records are exactly
the fields declared inside the corresponding classes. (Note that a well formed memory
may not be well typed, see rule (MEM-OK)).
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μ1μ1 | e1 →μ2μ2 | e2
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) μ1μ1 | e1 →μ2μ2 | e2

μ1μ1 | E [e1]→μ2μ2 | E [e2]
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C
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S
)

μμ | ι.f →μμ | v
with

μ(ι).f = v
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E
)

μμ | ι.f =v →μ[ι.f = v ]μ[ι.f = v ] | v
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U
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R
)

μμ | newC(v1, . . .,vn)→μ, ι �→ C (f1 = v1, . . . , fn = vn)μ, ι �→ C (f1ff = v1, . . . , fnff = vn) | ι
with

ι /∈ dom(μ)

p(C ) = classC implements _{ _ f1; . . .;_ fn;md}

(M
E

T
H

-I
N

V
K

)

μμ | ι.m(v1 . . . vn)→μμ | e[x1 = v1, . . .,xn = vn,this= ι]
with

μ(ι) = C(_)
p(C ).m = _m(_ x1, . . .,_xn) e
v1 . . . vn ∩ dom(var(e)) = ∅

(I
N

IT
)

μμ | T1 x1 = v1, . . .,Tn xn = vn;e→μ[x1 = v1 . . . xn = vn]μ[x1 = v1 . . . xnxx = vn] | e[x1 = v1 . . . xn = vn]
with

x1 . . . xn ∩ v1 . . . vn = ∅
Fig. 3. Reduction rules using memory

Types. are composed of a class name C and an optional quote (’ ) sign. We assign type
C’ (placeholder type) to placeholders and type C (object type) to objects of class C . C
is a subtype of C’.

Expressions of type C reduce to objects (either partially or fully initialised), while
expressions of type C’ can also reduce to placeholders. Fields can only be of object type
C , and field access is always guaranteed to return a fully initialised object.

Subtyping
Our subtyping is the normal Java subtyping, with the addition that a placeholder type is
a subtype of the corresponding object type. Formally:

– C1 ≤ C2 if p(C1) = classC1 implementsC , _{ _} and C ≤ C2

– C1 ≤ C2 if p(C1) = interfaceC1 extendsC , _{ _} and C ≤ C2

– T ≤ T
– C1

’ ≤ C2
’ and C1 ≤ C2

’ if C1 ≤ C2

Reduction
Reduction is defined in the conventional way as an arrow over pairs consisting of a memory
and an expression. The only novelty is rule (INIT). To improve readability we will mark
memory in greygrey. A pair μμ | e is well-formed only if all the placeholders contained in the
memory μ are bound by the local variables declared inside the expression e; that is, a
memory with placeholders without an associated expression is meaningless.
We omit the formal definition of the evaluation context, assuming a standard deterministic
left-to-right call-by-value reduction strategy.
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Figure 3 defines the reduction arrow. Rule (CTX) is standard, however note that alpha-
conversion can be needed to ensure the well-formedness of the resulting expression. Rule
(FACCESS) models conventional field access. It extracts the value of field f from object ι
using the notation μ(ι).f . Rule (CONSTRUCTOR) is the standard reduction for constructor
invocations, and rule (METH-INVK) models a conventional method call. We assume a
fixed program p and we use notation p(C ).m to extract the method declaration.

We use the notation e[x1 = v1, . . . , xn = vn] for variable substitution, that is, we simul-
taneously replace all the occurrences of xi in e with vi. The last side condition ensures that
no placeholder inside the set of values v1 . . . vn is accidentally captured when injected
inside the expression e . Alpha-conversion can be used to satisfy this side condition. From
any expression it is possible to extract a map from placeholders to their declared type,
denoted by var(e). Formally:
var(ι) = ∅, var(x ) = ∅, var(e.m(e)) = var(e), var(e), and
var(T1 x1 = e1, . . . ,Tn xn = en;e0) = x1:T1, . . . , xn:Tn, var(e0), . . . , var(en).

Rule (INIT) reduces placeholder declarations. Just as e[x = v ] denotes simultaneous
replacement of variables with values, we use the analogous notation μ[x = v ] to denote
simultaneous replacement of placeholders with values. Formally: [x = v ] = ∅ and (μ, ι �→
C (f1 = v1, . . . , fn = vn))[x = v ] = μ[x = v ], ι �→ C (f1 = v1[x = v ], . . . , fn = vn[x = v ]).

Note how a normal variable declaration is just a special case of our placeholder decla-
ration, where only one local variable is declared, the placeholder is not used and, thus,
the placeholder replacement is an empty operation. Rule (INIT)’s side condition verifies
that meaningless terms like T x=x;x are stuck.

To understand the details of the semantics of placeholders, consider the following
example:

–
F

J’
–

class A{B myB;A(B’ myB){this.myB=myB;}}
class B{A myA;B(A’ myA){this.myA=myA;}}
...
A a=new A(b), B b=new B(a); a

We show how to evaluate that expression in the empty memory.
[0] ∅∅ A a=new A(b), B b=new B(a); a Starting point

[1] ι1 �→ A(myB=b)ι1 �→ A(myB=b) A a=ι1, B b=new B(a); a (CTX) + (CONSTRUCTOR)

[2]
ι1 �→ A(myB=b)
ι2 �→ B(myA=a)
ι1 �→ A(myB=b)
ι2 �→ B(myA=a) A a=ι1,B b=ι2; a (CTX) + (CONSTRUCTOR)

[3]
ι1 �→ A(myB=ι2)
ι2 �→ B(myA=ι1)
ι1 �→ A(myB=ι2)
ι2 �→ B(myA=ι1)

ι1 (INIT)

– We start in state [0], and in the first step an instance of class A is created.
– In state [1], the memory contains a partially initialised object of type A containing

placeholder b instead of a reference to an object of type B. The reference correspond-
ing to the placeholder b is still unknown. Placeholders are not objects, and thus there
is no reference in the memory pointing directly to a placeholder. You can now see
that values are object identifiers ι or placeholders x .

– In the second step the instance of class B is created. In state [2] ι1 and ι2 are partially
initialised objects. Note how placeholders inside the memory are bound by the local
variables declared inside the placeholder declaration.
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– The third step concludes the initialisation, and in state [3] ι1 and ι2 are fully initialised
objects. The placeholders are replaced by objects when placeholder declarations
are reduced. That is, when the control reaches the semicolon, all the placeholders
declared in that placeholder declaration are consumed; every occurrence of such a
placeholder in the memory is replaced with the corresponding value.

3 Type System of FJ’

Our definition of reduction introduces two stuck situations that are novel in FJ’: (1)
method call (or field access) over a placeholder receiver, and (2) declarations of the
form T x = x.

Our placeholder type system must prevent both these situations. For the first case,
while it is clear that we need to forbid method invocation or field access on placeholders,
there could be different strategies to ensure safety while manipulating partially initialised
instances (objects containing placeholders in their reachable object graph). We believe that
in this case the simplest solution is also the right one: to forbid any method invocation

or field access over partially initialised objects, as we do for placeholders.
The solution for the second case relies on the distinction of placeholder types and

object types: it is not possible to initialise a local variable or method parameter of object
type with an expression of placeholder type, while a constructor can initialise a field
with a placeholder.

Limitations over Parameters and Conventional Expression Typing Rules
We permit method parameters to have placeholder type — any factory method allowing
circular initialisation needs to have at least one parameter with placeholder type. To
ensure that a placeholder is never dereferenced, a method invocation must provide a fully
initialised object for any parameter of object type (including the receiver), while either
fully initialised objects or placeholders may be provided to parameters of placeholder
type.

In FJ’, any closed expression of type C is guaranteed to reduce to a fully initialised
object, while any expression using a placeholder could reduce to a partially initialised
object. We say that an expression using a placeholder depends on that placeholder. Local
variable declarations makes the reasoning a little bit more involved: any expression using
a variable that depends on a placeholder, also depends any other placeholders that their
placeholder declaration depends on. Consider the following code:

-
F

J’
-

class C{ C x; C(C’ x){this.x=x;} void m(){...} }
void example(C’ x){

//new C(x).m();//wrong: receiver depends from placeholder x

C y=new C(x);
//y.m();//wrong: receiver depends from placeholder x through variable y

C z=new C(z);
z.m();//correct

C z1=new C(z2), C z2=new C(x);
//z1.m();//wrong: z1 is declared together with z2, both depend on x
}
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Γ ;Σ � e : T

(V
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R
-T

)

Γ ;Σ � x : Γ (x)

(A
D

D
R

-T
)

Γ ;Σ � ι : Σ(ι) (M
E

T
H

-I
N

V
K

-T
) objectTypes(Γ );Σ � e0 : C0

∀i ∈ 1..n such that Ti = Ci : objectTypes(Γ );Σ � ei : _ ≤ Ci

∀i ∈ 1..n such that Ti = Ci
’ : Γ ;Σ � ei : _ ≤ Ci

’

Γ ;Σ � e0.m(e1, . . .,en) : T

with
p(C0).m = T m(T1 x1, . . .,Tn xn) _

(N
E

W
-T

)

∀i = 1..n : Γ ;Σ � ei : _ ≤ Ci
’

Γ ;Σ � newC(e1 . . . en) : C

with
p(C ) = classC implements _{ C1 _; . . .;Cn _;md}

(F
A

C
C

E
S

S
-T

) objectTypes(Γ );Σ � e0 : C0

Γ ;Σ � e0.f : C1

with
p(C0)=classC0 implements _{ _C1 f ; _}

(F
U

P
D

A
T

E
-T

) Γ ;Σ � e0 : C0

objectTypes(Γ );Σ � e1 : C1

Γ ;Σ � e0.f =e1 : C1

with
p(C0)=classC0 implements _{ _C1 f ; _}

Fig. 4. Typing rules for expressions

FJ’constructors can be called using expressions of placeholder type as parameters, and
then initialise fields of object type. Consider the following code:

-
F

J’
-

class A { B myB; A(B’ myB){this.myB=myB;} }
class B { A myA; B(A’ myA){this.myA=myA;} }
...
A a = new A(b), B b = new B(a);

Observe that we invoked the constructors of A and B by passing placeholders that then
initialise fields of object type.

Typically, a constructor for A produces a fully initialised instance of A when a fully
initialised instance of B is provided. FJ’extends this behaviour so that a partially initialised
object is returned instead of a fully initialised object when either a partially initialised or
a placeholder argument is supplied to a constructor call.

Figure 4 shows the rules for expressions that capture the discussed discipline. The
typing judgement for expressions uses the following environments:
Γ ::= x :T variable environment
Σ ::= ι:C memory environment
Variable environment Γ is a map from variable names to types. Memory environment Σ
is a map that for any location stores its class name C . A type judgement is of the form
Γ ;Σ � e : T , where Γ is needed to type expressions with free variables or placeholders,
and Σ is needed to type expressions with locations.

Rules (VAR-T) and (ADDR-T) are standard and straightforward. Rule (METH-INVK-T)
uses notation objectTypes(Γ ) to restrict the environment to the object types. Formally:
objectTypes(x :C ) = x :C and objectTypes(x :C’ ) = ∅. Every expression well typed in
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Γ ;Σ � e : T
(V

-D
E

C
-N

)

∀i = 1..n with Ti = Ci : objectTypes(Γ );Σ � ei : _ ≤ Ti

∀i = 1..n with Ti = Ci’ : Γ ;Σ � ei : _ ≤ Ti

Γ, x1:T1, . . . xn:Tn;Σ � e : T

Γ ;Σ � T1 x1 = e1, . . .,Tn xn = en;e : T

(V
-D

E
C

-C
) ∀i = 1..n : objectTypes(Γ ), x1:C1’ , . . . xn:Cn’ ;Σ � ei : _ ≤ Ci

Γ, x1:C1, . . . xn:Cn;Σ � e : T

Γ ;Σ � C1 x1 = e1, . . .,Cn xn = en;e : T

(V
-D

E
C

-O
)

∀i = 1..n : Γ, x1:C1’ , . . . xn:Cn’ ;Σ � ei : _ ≤ Ci

Γ, x1:C1, . . . xn:Cn;Σ � e : T
Γ, x1:C1’ , . . . xn:Cn’ ;Σ � e : _

Γ ;Σ � C1 x1 = e1, . . .,Cn xn = en;e : T

Fig. 5. Typing rules for placeholder declarations

objectTypes(Γ ) denotes a fully initialised object. Thus, rule (METH-INVK-T) requires
(premise one) the receiver and (premise two) all actual arguments to formal parameters
of object type to be fully initialised objects, and (premise three) permits actual arguments
to formal parameters of placeholder type to be placeholders or partially initialised objects
and well as fully initialised objects. Note how we use notation Γ ;Σ � e : T1 ≤ T2 as a
shortcut for Γ ;Σ � e : T1 and T1 ≤ T2. Note that the last (_) in the side condition of
(METH-INVK-T) could be either a method body or a semicolon, depending on C0 being a
class or an interface. Rule (NEW-T) is conventional but accepts arguments of placeholder
types. Rules (FACCESS-T) and (FUPDATE-T) ensure that fields can be accessed and
updated only using fully initialised objects.

Placeholder Declaration Typing Rules
Figure 5 contains metarules for placeholder declarations. We classify variable declarations
depending on what kind of variable is used in the initialisation expression:

– neutral (V-DEC-N) initialisation expressions e1 . . . en do not use the introduced
variables x1 . . . xn. This type of variable declaration is completely equivalent to
conventional Java, but when a local variable with object type is introduced, the
corresponding initialisation variable has to denote a fully initialised object. See
objectTypes(Γ ) in the first premise.

– closed (V-DEC-C) initialisation expressions e1 . . . en use variables x1 . . . xn with
placeholder typesC1

’ . . .Cn
’ and no other placeholder declared outside this specific

placeholder declaration. This result is obtained by the notation (objectTypes(Γ )).
At the end of the variable declaration clauses, the introduced variables denote fully
initialised objects, that is, the terminating expression can see the declared variables
as their object types C1 . . .Cn.
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For example, we can type check the following code:
-

F
J’

-
class C{C myC; C(C’ myC){this.myC=myC;}}
class User{

C makeC(){
C x= new C(x);
return x;

}}

Class User has a C makeC() method performing circular initialisation. The place-
holder x has type C’. new C(x) is of type C, thanks to (NEW-T) new C(x) can be
used to initialise variable C x.

– open (V-DEC-O) initialisation expressions e1 . . . en can see both introduced variables
x1 . . . xn with placeholder types C1

’ . . .Cn
’ and other placeholders from enclosing

placeholder declarations (thus no usage of objectTypes(Γ )). This rule is applied when
partially initialised variables are not guaranteed to become fully initialised, that is, the
terminating expression typing must take into account the possibility that introduced
variables will denote partially initialised objects until any enclosing placeholder
declarations complete phase 3 initialisation.
To ensure soundness we type the terminating expression twice: once in a context
where the declared variables have their object types C1 . . .Cn, and again in a context
where the declared variables have their placeholder types C1

’ . . .Cn
’ . In this way

the result of the expression can be an object type, but we guarantee that the resulting
value is never used as a receiver.
Consider the following example:

-
F

J’
-

class C{C myC; C(C’ myC){this.myC=myC;}}
class User{

C makeCPart(C’ y){
//typed with v-dec-o
C x= new C(y);
return x;}

C makeCAll(){
//typed with v-dec-c
C z=new C(this.makeCPart(z));
return z;}

Method C makeCPart(C’ y) takes a placeholder and returns a partially initialised
object. Variable y inside new C(y) is a placeholder declared outside the initialisation
of variable x. Rule (V-DEC-C) cannot be applied. Indeed (V-DECL-C) would apply
objectTypes(Γ ); in this way y would not be in scope in expression new C(y), thus
new C(y) would be not well typed. However, (V-DEC-O) can be applied smoothly.

As you can see, the point where an object is ensured to be fully initialised is a type
property, not a purely syntactical notion. This allow us to safely express initialisation
patterns where the work of Syme [20] would have signaled a (false positive) dynamic
error.

Memory Typing
(MEM-OK) in Figure 6 defines a well typed memory. Note how this judgement requires a
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(M
E

M
-O

K
) Γ � μ : ok

with
μ = ι1 �→ C1(v1) . . . ιn �→ Cn(vn)
∀ι �→ C (v1 . . . vk) ∈ μ :

p(C ) = classC implements _{ C1 f1; . . .Ck fk;md}
∀j ∈ 1..k : Γ (vk) ≤ Ck or μ(vk) = C ′

k(_) and C ′
k ≤ Ck

Fig. 6. Typing rule for memory

variable environment for the placeholders. The memory is well typed if for all the objects
in the memory, all fields contain either an object of the right type or a placeholder of the
right type. From a well typed memory we can extract the memory environment with the
following two notations:

– A memory environment typing all the objects in their corresponding object type:
Σμ(ι) = C iff μ(ι) = C (_)

– A memory environment typing all fully initialised objects using their corresponding
object type and all the partially initialised objects using the corresponding placeholder
type:
Σ’ μ(ι) = C iff μ(ι) = C (_) and reachPh(ι, μ) = ∅
Σ’ μ(ι) = C’ iff μ(ι) = C (_) and reachPh(ι, μ) �= ∅
Where reachPh(ι, μ) denotes the set of reachable placeholders.

As for rule (V-DEC-O) a well typed expression has to be typed twice: first considering
fully initialised objects with object types, and second considering fully initialised object
with placeholder types.

Classes and Interfaces
In Figure 7 we present standard typing rules for classes, interfaces and methods.

For any well-typed program all classes and interfaces are valid. Rule (CLASS) validates
a class if all methods are valid and if the interfaces C are correctly implemented; that is,
for all methods of all the implemented interfaces, a method with an analogous header is
declared in the class. Note how methods are validated in the context of their class. Similarly,
rule (INTERFACE) validates an interface if the interfaces C are correctly implemented;
that is, for all the method headers of all the implemented interfaces, an analogous method
header is declared in the interface. Finally rule (METH-T) is straightforward.

3.1 Soundness

Now we can proceed with the statement of soundness:

Theorem 1 (Soundness). For all well typed programs p and for all expressions e under
p, if ∅; ∅;� e : T and ∅∅ | e ∗→μμ | e ′, then either e ′ is of form ι or μμ | e ′→__ | _

As usual, soundness can be derived from progress and subject reduction properties.
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� cd : ok � id : ok
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S
S
)

∀i ∈ 1..n : C0 � md i : ok

� classC0 implementsC{ fd md1 . . .mdn} : ok
with

∀C ∈ C ,m such that p(C ).m = T m(T x);,
T m(T x) _ ∈ md1 . . .mdn
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E

R
FA
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E

)

� interfaceC0 extendsC{ mh1; . . .mhn;} : ok
with

∀C ∈ C ,m such that p(C ).m = T m(T x);,
T m(T x); ∈ mh1 . . .mhn

C � mh e : ok

(M
E

T
H

-T
) this:C , x1:T1, . . . , xn:Tn; ∅ � e : _ ≤ T

C � T m(T1 x1, . . .,Tn xn) e : ok

Fig. 7. Typing rules for classes, interfaces and methods

Theorem 2 (Progress). For all well typed programs p and for all expressions e and
memory μ under p, if Γ � μ : ok, objectTypes(Γ );Σμ � e : C , Γ ;Σ’ μ � e : _ and
objectTypes(Γ ) = ∅, then either e is of form v , or μμ | e→__ | _

Theorem 3 (Subject Reduction). For all well typed programs p and for all expres-
sions e and memory μ under p, if Γ ;Σμ � e : T , Γ � μ : ok, Γ ;Σ’ μ � e : _ and
μμ | e→μ′μ′ | e ′ then Γ � μ′ : ok, Γ ;Σμ′ � e ′ : T , Γ ;Σ’ μ′ � e : _

and T ′ ≤ T .

The proofs can be found in the accompanying technical report [17].

4 Expressive Power

We show now some examples of what can be achieved with FJ’. Note that these examples
never use the field update operation. This allows all the examples work with immutable
data structures, and it would be easy to integrate placeholders with a type system offering
immutability [1,22].

Circular linked list
A clearly interesting example of expressive power is an arbitrarily sized, immutable,
circular list. Note how ListProducer can be a user class, and does not need to know
implementation details of the List. (Other approaches [19] would require the production
process to happen inside List class, encoded in the constructor.)
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class List{
final int e; final List next;
List(int e, List’ next){this.e=e; this.next=next;}
}

class ListProducer{
List’ mkAll(int e, int n, List’ head){
if(n==1) return new List(e, head);
return new List(e, this.mkAll(e+1, n-1, head));
}

List make(int e,int n){
List x = this.mkAll(e, n, x);
return x;
}

}
...
new ListProducer().make(100,10)

A circular list List has a field e containing a value and a field next containing a List.
Method mkAll takes three parameters: a value e, a length n and a list head. Method

mkAll creates a list of length n containing values starting from e as list elements, ending
with list head. Finally, method make takes a value e, a length n and creates a circular list
of length n. Method make performs the circular initialisation and returns a fully initialised
List. Note how make(100,10) can be directly used to make a circular list of numbers
100,101,...109.

Doubly linked list
We can convert the singly linked list example to implement an immutable doubly linked
list:

class List{
final int e; final List next; final List pred;
List(int e, List’ next,List’ pred){
this.e=e; this.next=next;this.pred=pred;
}

}
class ListProducer{
List’ mkAll(int e, int n, List’ pred){
if(n==1){

List x=new List(e, x, pred);
return x;
}

List x=new List(e, mkAll(e+1,n-1,x), pred);
return x;
}

List make(int e,int n){
List x = this.mkAll(e, n, x);
return x;
}

}
...
new ListProducer().make(100,10)
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Here, the produced list is a (non circular) doubly linked list, where termination is repre-
sented by having the same value for this and this.next or this.pred. If our List
was mutable, we could make it circular after creation. To the best of our knowledge, in the
type system presented in this paper, it is impossible to create an immutable doubly-linked
list: we would need either multiple return values for a method or support for fields with
placeholder types. A more complex version of FJ’, supporting placeholder fields, can be
found in an associated technical report [18].

Parser Combinators
As Gilad Bracha suggests [2], it is possible to leverage the recursive nature of parsers
in order to define classes that represent different typical operations in a BNF grammar.
With overloading support for operators (|) and (,) (as in C++ or Newspeak) it is possible
to obtain a syntax very near to conventional BNF. For example we could obtain the
following:

p
a

rs
er

co
m

b
in

a
to

r

Production operator|(Production left, Production right){
return new OrProduction(left,right);}

Production operator,(Production left, Production right){
return new SeqProduction(left,right);}

...
Production number= term(1,9)| term(1,9), number0,
Production number0= term(0,9) | term(0,9), number0,
Production e= number | e,term("*"),e | e,term("+"),e;

where term is a static method. Thanks to placeholders, we can use number0 and e

recursively.
The current implementation of parser combinators in Newspeak solves this problem

in a much more ad-hoc solution, using reflection [2]. Designed concurrently with our
placeholders, Newspeak 0.08 introduced “simultaneous slot definitions” that use futures:

“ A simultaneous slot declaration with a right hand side expression e initialises the
slot to the value of p computing: e, where p is the class Past‘Future. The result is a
future that will compute the expression e on demand. All these futures are resolved once
the last slot declaration in the simultaneous slot definition clause has been executed.
Past‘Future implements a pipelined promise so that any well founded mutual recursion
between simultaneous slots will resolve properly. ”
Futures in Newspeak are objects forwarding all messages to the result of the computation.
In this way, Newspeak can provide a similar expressive power to placeholders. Thanks
to the dynamic nature of Newspeak, there is no type guarantee of well formedness of
a circular initialisation using Newspeak futures. Newspeak requires an extra level of
indirection (even if transparent in most of the cases), and the execution order of the
different initialisation expression is “on demand” instead of sequential.

5 Implications for Implementation

In this section we discuss some options that could be used to implement placeholders.
Smalltalk offers a method called “become:” that changes object references. After

“a become: b” all local variables and all object fields originally referring to the object
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denoted by a, now refer to the object that was denoted by b, and vice versa. An imple-
mentation of placeholders over a virtual machine offering a “become:” method is very
simple; for example, our initial placeholder declaration could be written as follows:

tr
a

n
sl

a
ti

o
n

w
it

h
b
e
c
o
m
e
:

//placeholders initialisation
Security sP=new Security(null);
DBA dbaP=new DBA(null,null);
SMS sms=new SMS(null,null);
GUI guiP=new GUI(null,null,null);
//real initialisation
Security s=new Security(dbaP);
DBA dba=new DBA(sP,guiP);
SMS sms=new SMS(sP,dbaP);
GUI gui=new GUI(smsP,dbaP,sP);
//placeholders replacement
sP.become(s); dbaP.become(dba);
smsP.become(sms); guiP.become(gui);

Is it possible to emulate “become:” on a platform that does not support it natively?
Of course, a general purpose “become:” comes with the prohibitive cost of the full
heap scan; however the restricted usage of “become:” in our case can be implemented
efficiently even in Java. The main idea is to produce a placeholder subclass (interface
Ph) of each class that could be used as a placeholder, and to make each class that can be
initialized using a placeholder implement the ReplacePh interface that defines a method
to replace placeholders stored in fields with the placeholders’ actual objects.

In this scheme, whenever an object is allocated using placeholders, we notify those
placeholders that the newly allocated object refers to them. When a placeholder declaration
completes initialisation, the introduced placeholders can be correctly and efficiently
replaced. In the detail, such translation would:

– generate interfaces ReplacePh, Ph and class PhAdd

-
J
a
v
a

-

interface ReplacePh{void replacePh(Ph ph, Object o);}
interface Ph{ List<ReplacePh> getList();}
class PhAdd{
public static<T> T add(T fresh, Object ... phs){

for (Object o:phs)
if(o instanceof Ph)

((Ph)o).getList().add((ReplacePh)fresh);
return fresh;
}}

ReplacePh represents an instance whose fields can contain a placeholder ph, that
can be replaced with o when the object is available;; Ph represents a placeholder,
and can provide the list of all the objects whose fields point to that placeholder;
PhAdd.add notifies placeholders in phs that the fresh object contains them in one
of its fields.

– map both placeholder types and object types to the corresponding simple Java type;
that is all the types of form C and C’ will be mapped to C .
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– generate for all the classes and interfaces a “placeholder” class, extending the original
one and the Ph interface, providing a no arguments constructor and a list of Objects
containing all the objects whose fields refer to this “placeholder object”,

– makes every class originally present in FJ’implement ReplacePh. For example

–
F

J’
–

interface T1{...}
class C implements T1{
T1 x; T2 y; C(T1’ x,T2’ y){this.x=x; this.y=y;}
...}

would be translated into

-
J
a
v
a

-

interface T1{...}
class PhT1 implements T1,Ph{

List<ReplacePh> list=new ArrayList<ReplacePh>();
List<ReplacePh> getList(){return this.list;}
.../*any method of T1 throws Error*/}

class C implements T1,ReplacePh{
T1 x; T2 y; C(T1 x,T2 y){this.x=x; this.y=y;}
void replacePh(Ph ph, Object o){
if(this.x==ph)this.x=(T1)o;
if(this.y==ph)this.y=(T2)o;
}

...}
class PhC extends C implements Ph{
List<ReplacePh> list=new ArrayList<ReplacePh>();
List<ReplacePh> getList(){return this.list;}
.../*any method of C throws Error*/}

– translate placeholder declarations into the three phase initialisation, so that:

–
F

J’
– T1 x= new C().m(x,y),

T2 y= new D().m(x,y);
new K().m(x,y);

would be translated into

-
J
a
v
a

-

//(1)initialise dummy placeholder objects
T1 _x= new PhT1();
T2 _y= new PhT2();
//(2) run normal initialisation code, using placeholder
T1 x= new C().m(_x,_y),
T2 y= new D().m(_x,_y);
//(3) replace placeholders with the correct value
for(ReplacePh o:_x.getList()) o.replacePh(_x,x);
for(ReplacePh o:_y.getList()) o.replacePh(_y,y);
new K().m(x,y);

– finally, for any constructor parameter that is statically a placeholder, we use static
method PhAdd.add to insert the newly created object into the placeholder list; for
example
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–
F

J’
– class C implements T1{

T1 m(T1’ x,T2’ y){ return new C(x,y);}
...}

would be translated into

-
J
a
v
a

-

class C implements T1,ReplacePh{
T1 m(T1 x,T2 y){ return PhAdd.add(new C(x,y),x,y);}
...}

6 Related Work

Not embracing any sort of laziness
Many approaches in the area of circular initialisation do not support any form of laziness,
and thus cannot support the initialisation example from our introduction in the obvious
way. The construction process of one entity is interleaved with the initialisation process
of other entities and they rely on explicit mutation to create circular object graphs.

Hardhat Constructors [8,21] restrict constructors to avoid the leak of partially initialised
objects out of the constructor scope. Similar techniques can be employed by FJ’to extend
our calculus with more expressive constructors. OIGJ [23] and others [9,10] allow the
creation of immutable object graphs by using the concept of “commitment points” (where
the mutable object graph can be promoted to immutable). These approaches offer no
guarantee against null pointer exceptions.

As Manuel Fahndrich, Songtao Xia, and Don Syme have astutely observed [5,20],
recursive bindings in a functional language like OCaml [14] serve a purpose very similar
to placeholders:

O
C

a
m

l type t = A of t * t | B of t * t
let rec x = A( x, y )

and y = B( y, x )

Here, two variables (x and y) are circularly initialised using the let rec recursive binding
expression. OCaml imposes heavy restrictions [5]: “ the right-hand side of recursive
value definitions to be constructors or tuples, and all occurrences of the defined names
must appear only as constructor or tuple arguments. ”
These restrictions rule out any form of laziness, and makes it impossible to express any
variations of the Factory pattern [7] as method calls are prohibited in such initialisation
expressions. However, thanks to these restrictions, the following implementation for such
recursive bindings is possible: first allocate memory for the values being constructed —
once all the bindings are established, the constructed values can be initialised normally.

Delayed Types [5] lift those limitations, but still are unable to provide good support
for factory methods: indeed Delayed Types require factory methods to expose fields in
their type annotations. In personal communication, Fahndrich agrees that this would
break encapsulation for private fields and is in general not feasible in case of interfaces
as return types. Moreover, both Delayed Types [5] and Masked types [16] require an
explicit two step initialisation, where the values are created and the circular references
are fixed explicitly afterward; that is, these two works try to verify code similar to the
following:
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-J
a
v
a

- class C{ C myC; C(C myC){this.myC=myC;} }
... C c=new C(null);

c.myC=c;

This kind of code is hard to maintain: when a modification to the internal implementation
is needed, all the code that initialises new instances can be broken. Delayed Types and
Masked Types [5,16] ensure the absence of NullPointerExceptions in this kind of
code.

Freedom Before Commitment [19] proposes another approach, where constructors
trigger the construction process of their sub-components:

-J
a
v
a

-

class A{ B myB; A() { myB=new B(this);}}
class B{ A myA; B(A x){ myA=x;}}//here x.myB==null

The code inside the constructor of B cannot freely manipulate the parameter x, indeed if
the control flow starts from the expression new A(), the field x.myB is still null when
variable x is visible. In [19] the absence of NullPointerExceptions is proved. This
avoids an explicit two step initialisation, but leverages a sequence of recursive constructor
calls where one of them triggers the initialisation of the other components.

To conclude, these works [5,16,19] focus on statically preventing null pointer excep-
tions, supporting safe initialisation in OO languages as they are at the moment. Our goal
is to change the language semantics to support the intuitive idea that the client code
is responsible for knowing the dependencies between the different components in the
system, so that factory methods can receive correct parameters.

From the type system point of view we share many similarities to Summers and
Müller’s Freedom Before Commitment. This system has partially initialised objects
(called free), like FJ’, although we do not need to expose an explicit partially initialised
object type. Unlike FJ’, Freedom Before Commitment relies on constructors, and does
not support factory methods. Summers and Müller have conducted an extensive study of
applicability of their approach, and they do consider factories instead of constructors.
Replacing constructors with factory/creation methods is suggested by Fowler [6] and is
empirically shown to be a good methodology [4].

Uses some form of laziness
Languages with lazy semantics, like Haskell, can use laziness/thunks to encode place-
holders, thus reaching an expressive power similar to FJ’; but without the static guarantees
offered by our type system (this style of programming is often called tying the knot in the
Haskell community). In FJ’, dereferencing a placeholder is a dynamic error similar to a
NullPointerException (a stuck state in the formal model) while in Haskell, accessing
a thunk performs the associated computation on demand.
FJ’and Haskell also differentiate when placeholders are replaced or thunks evaluated:

– In Haskell a thunk is evaluated when its value is needed and, as soon as the computa-
tion ends, all the occurrences of the thunk are replaced with the corresponding value.
That is, the lifetime of a thunk is unbounded, and in some cases it is possible for a
thunk to not be evaluated at all, saving computation time.
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– In FJ’initialisation expressions are executed in the conventional top down, left to
right order; placeholders introduced in a placeholder declaration are replaced as soon
as the semicolon is reached. The lifetime of a placeholder is lexically bounded: when
the initialisation is concluded the placeholder is replaced. Placeholders retain the
simplicity and predictability of the call by value semantics.

Both in Haskell and in FJ’a term like T x = x; is meaningless; those degenerate cases
are not so uncommon as one can suppose. In Haskell, a non trivially degenerate case is
the following:

–
H

a
sk

el
l

– data L = Lnil | Lcons Int L
head :: L->Int
head Lnil=0
head (Lcons n a) = n
main=(let x=x in putStr(show(head x)))

Here type L denotes a list of integers, with the two conventional type constructors. The
function head returns the head of the list, or 0 for the empty list. It is clear that the
definition of the main makes no sense: we call it a non well-guarded definition.

In order to explain the importance of this problem, we now show an example where
a non well-guarded expression emerges from an apparently benign code. Indeed in the
general case is very difficult to spot non well-guarded definitions.
Consider the following two functions f1 and f2:

H
a

sk
el

l

f1 :: L -> L
f1 a= (LCons 42 a)

f2 :: L -> L
f2 a= a

Function main1 correctly initialises an infinite list containing only the number 42, and
shows 42. However, function main2 is a non well-guarded definition:

H
a

sk
el

l

main1=(let x=(f1 x) in putStr(show(head x)))
main2=(let x=(f2 x) in putStr(show(head x)))

Since the only difference is the occurrence of f2 instead of f1, you can see that in Haskell,
without knowing the code of f1 and f2, it is impossible to predict whether some code
is well-guarded or not. In fact, executing main1 in Haskell results in printing 42 while
executing main2 results in an infinite loop.

In the following example we show the code of the last example rephrased in FJ’;
encoding functions as methods on classes. User1 is verified by our type system, while
User2 is ill-typed. Note how classes User1 and User2 differ only in the implementation
of method f. User1.main produces an infinite list composed by a single cell with value
42, while User2.main is ill typed.

–
F

J’
–

class List{ int e; List next; }
class User1 {
List f(List’ x){ return new List(42,x);}
List main(){ List x=f(x); return x; } } //safe

class User2{
List f(List’ x){ return x; }
List main(){ List x=f(x); return x; } } //unsafe
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The significance of this problem is highlighted in a proposal by Syme [20]. He uses a
disciplined form of laziness in order to design a language which is very similar in spirit
to our approach, with roughly as much power but an additional requirement for dynamic
checks in order to avoid non well-guarded cases to be evaluated in the context of data
recursion, i.e. circular initialisation.

7 Conclusion

“I call it my billion-dollar mistake. It was the invention of the null reference”

Tony Hoare, “Null References: The Billion Dollar Mistake” [12]

Today, writing correct and maintainable code involving circular initialisation is very
difficult: most practical solutions rely on null values — Tony Hoare’s “Billion Dollar
Mistake”. This is an important problem since many software architectures and natural
phenomena involve circular dependencies. As in the “chicken and egg” paradox, circular
dependencies are hard for humans to understand and to reason about. This has hampered
the development of effective techniques for supporting safe circular initialisation in
software engineering, and their support in programming languages.

There have been many proposals to solve the problem of circular data structure initial-
isation [19,14,5,16]. In our opinion FJ’offers a simpler type system compared to these
approaches; moreover it allows simpler and cleaner programming patterns to be used. We
can obtain such simplicity because we attack the problem from two different angles: first
we define a new concept — placeholders — with intuitive semantics, and then we develop
a type system to ensure placeholders are used safely. We hope this gives placeholders a
good chance of adoption by real language implementations.

We conclude with another well known quote by Hoare:

“There are two ways of constructing a software design: One way is to make it
so simple that there are obviously no deficiencies, and the other is to make it so
complicated that there are no obvious deficiencies. The first method is far more
difficult.”

Tony Hoare, “The Emperor’s Old Clothes” [11]

We have tried our best to follow the first way, and the result looks pretty simple to us.
Whether is it simple enough to fix the billion dollar mistake, only time will tell.
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Abstract. With the increase of automatically sensed and generated
data in distributed software systems, the publish/subscribe paradigm
gains importance. Automatically generated notifications are pushed from
their publishers to interested subscribers. Interoperability is a core issue
in such federated networked distributed applications. However, the prob-
lems of heterogeneity must be reconsidered in the light of tougher condi-
tions than previously: low latency delivery in addition to expressiveness
and extensibility.

To aid in engineering federated distributed systems, this paper pro-
poses a framework for object transformations. Components can operate
in individual, semantic contexts, which include local type declarations,
fine-grained transformation rules (t-rules), and type mappings that ex-
press the programmer’s intent at a high level. Our generic approach sup-
ports transformations at any granularity using clear priorities to select
among complementary t-rules.

We present empirical evidence of the efficiency of our approach and
of the benefits to the programmer in terms of code quality.

Keywords: Heterogeneity, Publish/Subscribe, Semantic Decoupling,
Transformations, Events.

1 Introduction

In today’s distributed software systems, vast amounts of data are generated and
processed automatically, such as the tracking of goods by continuous updates
called event notifications. Due to the high frequency of such data, distribution
to clients must happen automatically based on client interests. This makes im-
plicit invocations [32,39] (publish/subscribe – pub/sub [29]) the paradigm of
choice. In these systems, subscribers express their interests in data in the form
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of subscriptions. Broker nodes route matching notifications from publishers to
the appropriate subscribers. Communication thus happens in an n-to-m fashion
without direct references between communicating components. The federated
software systems supporting these communications are loosely-coupled, highly
heterogeneous and developed by many parties.

Heterogeneity Is Approaching. The need for such systems becomes apparent
in today’s economy, where large-scale software systems manage complex supply-
chain networks. Cooperation happens across the globe between companies of
different countries, cultures and structures. Software systems generate a huge
amount of information that has to be distributed in business real-time among
software components in a flexible way. For example, today’s complex supply
chains involve many companies world-wide; production strategies like just-in-
time production have strongly increased the need for continuous low-latency
flows of information between participants in a chain (e.g., monitoring transported
goods) [13].

The continuing globalization of the economy1, along with disruptive trends
like the Internet of Things or ubiquitous computing resources promoted by the
cloud paradigm and availability of event notification systems for clouds (e.g.,
Amazon Simple Notification Service [1]), will lead to more heterogeneous push-
based distributed systems [20]. Similarly, the proliferation of social networks
interconnecting people with different cultural backgrounds and the use of noti-
fication services for communication therein (e.g., LinkedIn’s Kafka [7]) further
supports the trend.

Integration Is Challenging. The problem that arises in such heterogeneous
environments are different data representations and data semantics of compo-
nents. Local interpretations – contexts – differ based on geographical, cultural,
legal, but also technical reasons. Programming languages differ in their notions of
types, and even within a language, two sets of modules developed independently
are not always easily integrated, e.g., due to single inheritance [12]. However,
without correct interpretation of data, proper matching of event objects to sub-
scriptions will fail as the anonymous n-to-m interaction between the components
does not reveal intended bindings. Integration of information flows between pub-
lishers and subscribers is challenging as it must fulfill a number of requirements:

Expressiveness. Mediating between different unit systems (e.g., Fahrenheit and
Celsius) requires value-based transformations. Many entities are encoded with
several attributes, without 1:1 correspondances between types (e.g., Carte-
sian and Polar coordinates), and certain integrations might involve adding
attributes (e.g., adding an attribute with a default or null value such as the
state for a European surface mail address in US format).

1 Our two ongoing research projects DynamoPLV(http://www.dynamo-plv.de) and
EMERGENT(http://www.software-cluster.org) investigate such scenarios.

http://www.dynamo-plv.de
http://www.software-cluster.org
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Efficiency. Given the high rates at which event objects are published, mediation
must take place on the fly with low latency.

Adaptability. The considered systems need to be able to accomodate joining and
leaving of client components. Such changes can also engender new kinds of
integrated data. Given the size of these systems, stopping them to add new
components or also to modify existing integration rules is infeasible.

In addition, it should of course be easy for a programmer to express how
integration has to happen. Existing approaches do not address all of these re-
quirements to the full extent, as detailed in Section 7.

Transformation Supports Integration. In this paper we propose a frame-
work for programming federated distributed software centered on object trans-
formations. In our approach, we assume that each component (i.e., subscriber,
publisher or pub/sub broker) resides in its own semantic context that involves a
set of (abstract) parameters (e.g., country, programming language, development
team) which governs how the component interprets event objects. We advocate
a facility to define contexts including (1) local types, (2) fine-grained declarative
transformation rules (t-rules) to specify the desired transformations between
types, and (3) high-level type mappings expressing the programmer’s intent and
used to verify that the t-rule application yields consistent outcomes. Figure 1
shows an overview of our approach. Contexts can be extended at runtime and
reused across components.

Our intermediary model avoids defining every possible transformation from
any publisher to any subscriber, in a way similar to the Canonical Data Model
in Enterprise Application Integration [22]. Thus we avoid n ×m complexity of
the transformation set and keep the set maintainable. This does not sacrifice
adaptability however, since we do not require that the Canonical Data Model
is established a-priori. Instead, it can be extended and modified at runtime by
defining new contexts and compiling rule-sets on the fly. In fact, an interme-
diary model decouples publishers and subscribers further in that changes to a
publisher’s context (i.e. its transformation rules) do not affect its subscribers.
Our model does not make assumptions on the specification language and is thus
language-agnostic.

Contributions and Roadmap. In this paper we

1. present an expressive and extensible model for federated software systems
targeting mainstream programming languages used for such applications
(e.g., C++, C#, Java) centered on transformation rules (t-rules);

2. introduce contexts as a reusable, higher-level abstractions of transformations,
providing easy maintainability;

3. describe the implementation of our model in the ACTReSS system [19] based
on the popular open-source ActiveMQ [37] event broker;

4. evaluate our implementation. We demonstrate how extracting and consoli-
dating transformation code improves efficiency compared to an equally
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Fig. 1. Architectural overview. Producers (prodi) send messages to consumers (consj)
through a pub/sub system. Each client supplies a set of mapping rules between the
global types and its local types (local types and rules omitted for some clients for
presentation purposes).

adaptable and expressive approach without inherent support, i.e., based on
reflection, and equal efficiency to manually coded transformations at client
components; we also show that code quality, in particular upon adaptation,
is much improved compared to manual coding or monolithic object transfor-
mations based on existing frameworks.

In a companion report [17] we formalize a subset of our model supporting only
single subtyping and prove its soundness. An earlier implementation of our AC-
TrESS prototype was presented in a previous publication [19] without breaking
down contexts into t-rules and type mappings – the main artifacts that a system
software engineer must deal with – and detailing their syntax and semantics.
Evaluation elided costs for extension or code quality improvements.

The remainder of this paper is organized as follows. Section 2 presents prelimi-
nary information. Section 3 presents t-rules through intuitive examples.
Section 4 details contexts with particular focus on their relationships and type
mappings. Section 5 presents the implementation of our model in ACTrESS. Sec-
tion 6 evaluates its benefits. Section 7 discusses related work and Section 8 draws
conclusions.

2 Preliminaries

We outline the notions of objects and transformations considered in this paper,
using Figure 2 for illustration. Please note that for presentation purposes, the
given example is small; our model allows for more complex transformations.



234 T. Freudenreich et al.

InvoiceLine
Money amountToPay

string currency
float amount

Money price
string currency
float amount

ItemSpecification spec
float height
float width
float depth

[ = "euro" ]
[ = 100 ]

[ = "euro" ]
[ = 100 ]

[ = "usd" ]
[ = 125 ]

[ = "euro"]
[ = 100 ]

r1: ItemSpecification  toUSItemSpecification

r2: InvoiceLine.Money toDollars

r3: InvoiceLine.price toIdentity

[ = 1 ]
[ = 0.5 ]
[ = 0.3 ]

[ = 39.37 ]
[ = 19.69 ]
[ = 11.81 ]

InvoiceLine USInvoiceLine

USInvoiceLine
Money amountToPay

string currency
float amount

Money price
string currency
float amount

USItemSpecification spec
float height
float width
float depth
float weight [ = 172.5 ]

!

Fig. 2. Sample transformation. InvoiceLine and USInvoiceLine are context-specific interpre-
tations of same objects. Note that currency is typically encoded explicitly, but units
for other values are almost never encoded. Simplified transformation rules (t-rules) and
type mappings are illustrated on the right.

2.1 Objects

We consider event objects in the general form of typed records of attributes.
More precisely, such an object is an instance of a (complex) type (z denotes a
sequence z1 ...zn):

Definition 1 (Type). A type T is either a primitive type or a complex type
declared as T extendsT 1,...,T n [a1 :T

′
1, ..., aw :T ′w ]. T are super-types (complex) of

T . T ’s attributes include those of all its super-types as well as a.

Thus, in a nested fashion, attributes of event objects can be objects. For example,
InvoiceLine [δ ] would represent an event object of type InvoiceLine defined in
Figure 2. The record [δ ] contains a sequence of objects corresponding to the
attributes of InvoiceLine (i.e., amountToPay, price , spec) which are of respective
types defined by InvoiceLine (Money, Money, and ItemSpecification ). We consider
all transferred objects to be values, and thus our considerations also apply to
other remote communication models with value semantics (references are usually
built atop [5]). Note that an event object is an object but not every object is an
event object.

We omit member functions/methods from types as our approach does not
require those to be defined as part of types. The function attrs (T) returns the
attributes a of type T with their respective types T. T ' T ′ means that T is a
subtype of T ′, i.e., T has been explicitly declared as a subtype of T ′, or one of
the super-types of T is a subtype of T ′. Our approach does not depend on the
way in which attribute name clashes are handled.

2.2 Transformations: An Intuition

A very simple form of transformation of objects consists in modifying values of
attributes which are of specific primitive types such as floats. These attributes
can have a unit associated with them, e.g., meters or inches (cf. height, width and
depth of InvoiceLine .spec in Figure 2). A similar case are conversions of primitive
values between different architectures or platforms. On the other end of the spec-
trum of transformations, an object may be transformed in a way which affects
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its internal structure, e.g., by merging multiple attributes, dropping attributes,
and instantiating new ones (cf. weight of USInvoiceLine.spec in Figure 2). Any
combination of these may be used to deal with versioning – by adding version
numbers to type names and describing corresponding transformations.

There are different dimensions along which one can divide the space of object
transformations. Section 7 further dissects this space in order to relate existing
work to our proposed approach. The goal in our present work is to support (a)
fine granularity – transformations on any attributes, at any nesting level, in
objects; (b) strong completeness – function-based stateful transformations. (a)
and (b) together yield the required expressiveness (see Section 1), while efficieny
is supported by a decentralized application of transformations. These features
as well as adaptability and ease of use are achieved by our design outlined in the
following sections.

3 Transformation Rules

We introduce our approach to contextualization by starting from transforma-
tions which currently are dealt with in a very explicit manner by programmers.
We follow the example of a logistics provider operating world-wide who has to
communicate with customers from different countries.

3.1 Overview

Our model is centered around declarative transformation rules (t -rules) which
minimize the necessary specifications and align well with programmers’ mental
models. These t-rules apply a given transformation function to attributes in
event objects. The application of these transformations proceeds in a top-down
fashion following the nested structure of event objects. Conceptually speaking,
in example from Figure 2, imagine an object of type InvoiceLine being traversed
attribute-wise, i.e., amountToPay, price , and finally spec, and any corresponding
resolved t-rules being applied. If Money is a composite type, then the attributes
of amountToPay are traversed recursively (depth) before proceeding with price

(width). At any point in the transformation process, we thus consider one path:

Definition 2 (Fully qualified path). A fully qualified path is a 2-tuple 〈T0 ·
... · Tn, a1 · ... · an〉 such that ∀i ∈ [0..n − 1], attrs (Ti)= 〈...ai+1..., ...T

′
i+1...〉 and

Ti+1 ' T ′i+1.

A (fully qualified) path thus unambiguously and correctly denotes a given at-
tribute within event objects. A prefix of a path (e.g., 〈T0 · T1, a1〉 for 〈T0 · T1 ·
T2, a1 ·a2〉) is a path itself. Next we elaborate on how to describe t-rules and how
they apply to paths.
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3.2 Separating Patterns and Functions

The logistics provider from our example receives the specifications for the items
to be transported from its customers. However, specifications do not have a
standard format and even simple things like units vary between countries or
even individual customers.

Intuitively, we would like the ability to define “default” transformations for
certain types. Suppose a software service calculating the price for transporting
goods. As part of the calculation, it processes instances of ItemSpecification which
contain information in a specific combination of units (e.g. meters for height,
width, and depth). After the calculation, the logistics provider sends the price
along with these specifications to its customers. A US customer needs these
properties in Imperial units (e.g., inches) rather than the logistics provider’s
format. A t-rule to transform all such attributes in all event objects could be
simply expressed as (cf. r1 in Figure 2):

ItemSpecification � toUSSpecification;

t-rules are thus of the following form

Definition 3 (Transformation rule). A transformation rule (t-rule) is of the
form p � f where p is a pattern delineating a set of attributes in event type(s)
and f refers to a function.

Functions are used to transform at any path which the pattern applies to, and
are defined separately from t-rules. This separation between patterns and func-
tions is key to expressiveness and ease of use. In an object-oriented programming
language such as Java, functions are typically methods on transformed objects
(e.g., p � m with m an instance method in the type expected from p) or static

methods (e.g., p � C.m). In the example above toUSSpecification refers to a func-
tion which takes an instance of ItemSpecification as its argument and produces
an instance of an analogous type USItemSpecification, which is local to the present
context:

USItemSpecification toUSSpecification ( ItemSpecification is )
{ return new USItemSpecification (...); }

We will unveil the details of patterns as we move on and present a precise
definition after that.

3.3 Types and Nesting

For convenience we let a pattern like the above apply at any nesting level within
a type. Specifically, the pattern applies to any attribute of type ItemSpecification

at any depth in event objects of any type.
There are cases where we want to leave certain attributes in specific event

types unchanged (or apply a different transformation function). For example,
customs declaration papers require the same units as the logistics provider usu-
ally uses. In this case, the logistics provider does not want to transform the
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item specification, but just use it as it is. To achieve this, we can qualify more
precisely where to apply this sort of transformation. The following t-rule

CustomsDeclaration.ItemSpecification � toIdentity;

would apply an identity function (omitted here for brevity) to attributes of type
ItemSpecification in CustomsDeclarations.
To overcome the cumbersome task of enumerating all event types which con-

tain attributes of type ItemSpecification , we introduce priorities among rules.
If we combine both t-rules above into one t-rule set, the second t-rule over-
rides the first one for CustomsDeclaration events. All other attributes of type
ItemSpecification are transformed according to t-rule r1 as depicted in Figure 2.
This conveys the first intuition underlying our design: rules with more specific
patterns override rules with less specific ones. In the above example,
CustomsDeclaration.ItemSpecification overrides ItemSpecification . Specificity here
translates to length, or, in other terms, nesting level.

As mentioned we consider patterns ending in types to apply to all occurrences
of that type in deeper nesting levels. That is, one can picture InvoiceLine .Money

as representing InvoiceLine .∗Money where ∗ can match any (possibly empty) infix.
This seems natural when looking at the generic transformations specified in the
preceding examples. We apply this variable nesting level only at the last type in
a pattern though, prohibiting something like TopLevelType.∗LevelX.∗LevelY. More
expressive patterns could be envisioned by removing this constraint but this is
likely to come at a substantial cost in terms of simplicity for the programmer.

3.4 Attributes

Transforming by type only is sometimes too general. Consider the type InvoiceLine

of Figure 2, which represents a single line on an invoice and contains the item’s
specifications and the cost for delivery (with its own Money type). Assume that
the logistics provider needs this amount in its currency for internal bookkeeping.
However, customers want this amount in their respective local currencies. Thus
we cannot treat every attribute of type Money the same way.

We consequently support references to attributes as another element in pat-
terns for t-rule application. The t-rule

InvoiceLine .amountToPay � toDollars;

applies the following function

Money toDollars(Money m) {
if (m.getCurrency() == ”euro”) {

m.setCurrency(”usd”);
// getRate() might depend on the current time and other state
m.setAmount(m.getAmount() ∗ getRate(”euro’’,’’usd”));

} else if (m.getCurrency() == ”yen”) {...}
...
return m;

}
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to only the amountToPay attribute of events of type InvoiceLine . Other attributes
of type Money in an InvoiceLine or any other type are left unchanged (cf. Figure
2). Even if succeeded by a less specific t-rule which mandates that all Money

attributes be transformed to include taxes, such as in the t-rule set

InvoiceLine .amountToPay � toDollars;
Money � addTaxToMoney;

attribute amountToPay would be transformed via toDollars and not addTaxToMoney.
We believe that this is a much more natural semantics than declaration order

alone. The reasoning behind this second form of precedence consists in prioritiz-
ing instances over types on otherwise comparable patterns, i.e., attribute-level
declarations over type-level declarations. The outcome above would be identi-
cal if the second t-rule used the pattern InvoiceLine .Money to define a default
translation of all money attributes in type InvoiceLine .

3.5 Subtyping

Subtyping is a fundamental concept in programming languages. With nominal
subtyping, in our model, any event object can at any nesting level have an
attribute a carrying an instance of a type T ′ which is a subtype of a’s declared
type T (T ′'P T). With that in mind, it seems natural to allow the programmer
to define t-rules which are subtype-sensitive. For instance, we might define a
type WeightedItemSpec which extends ItemSpec by adding an attribute weight of
type float , and define a corresponding specific rule

InvoiceLine .spec(WeightedItemSpec) � ...;

Among a set of alternative patterns it seems natural to follow subtyping level,
i.e, pick the one which refers to the most derived type at a point of comparison.
For example we select the above rule over one with pattern InvoiceLine .spec(

ItemSpecification ),or InvoiceLine .spec for short, for an attribute weight of dynamic
type WeightedItemSpec in an InvoiceLine . Note though that, unlike in dynamic
method dispatching [10] this selection itself is not done dynamically; as we will
elaborate on in Section 5, relevant t-rules are resolved before actually being
applied.

In conclusion from the above, we can now proceed to more formally specifying
the shape of patterns:

Definition 4 (Pattern). A pattern p = T.q1.....qn consists in a type reference
T followed by a (possibly empty) sequence of qualifiers, and denotes attributes
in event objects. A qualifier refers either to all attributes with a given type ( type
qualifier T ) or to a given attribute “a” with a given type T ( attribute qualifier
a(T)).

We only consider valid patterns. That is, for any prefix T.q1.....qi.qi+1 in such
a pattern, let T i be the type of qi:

– if qi+1 is a type qualifier Ti+1 then T i contains at least one attribute of type
Ti+1;
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– if qi+1 is an attribute qualifier ai+1(Ti+1) then T i contains an attribute ai+1

of a super-type T ′i+1 of Ti+1.

As already alluded to, we allow attribute qualifiers to be declared without type,
e.g., T .q.a instead of T.q.a(T ′). In this case we adopt a’s type according to its
pattern prefix T .q.

3.6 T-Rule Resolution

The three ideas on precedence (nesting level, instances over types, subtyping
level) can conflict. For example a deeper nesting level of a type qualifier vs. an
attribute qualifier.

We use the following priorities for competing t-rules. While P1-P3 summarize
the precedences we introduced in Sections 3.3-3.5, P4-P6 specify how to resolve
conflicts between these.

P1 Nesting level: A natural choice consists in considering nesting level as pri-
oritizing measure among patterns (see Section 3.3). Deeper nesting levels
translate to more detailed knowledge about data-structures and thus to more
specific behavior. Thus a t-rule with the pattern T0.T1 will be chosen over one
with pattern T1 for attributes of type T1 at a path rooted at a type T0.

P2 Instances over types: Another intuitive choice (see Section 3.4) consists in
giving attribute qualifiers priority over type qualifiers. Thus T0.a1(T1) is cho-
sen over T0.T1 for attribute a1 in an event of type T 0.

P3 Subtyping level: A third intuitive choice (see Section 3.5) is to consider for
any otherwise equivalent patterns the ones which use qualifiers with the most
derived types: with T ′1 a strict subtype of T 1, T0.a1(T

′
1) is chosen over

T0.a1(T1).
P4 Subtyping order: In languages like C++, C#, or Java, in which many feder-

ated distributed systems are developed, a type can have multiple super-types.
This leads to tie-breaking issues similar to those encountered for multiple in-
heritance (e.g., selection from multiple methods with equivalent signatures).
For instance, there might be two patterns (a) T0.T

′
1 and (b) T0.T

′′
1 which both

apply to a path 〈T0 · T1, a1〉 where T 1 is a subtype of both T ′1 and T ′′1 . As-
suming that the subtyping level of T 1 is the same with respect to T ′1 and T ′′1
(otherwise P3) takes over, we consider the order of subtyping declarations for
breaking ties. For instance, with T1 extendsT

′
1, T

′′
1 ... (a) will be chosen.

P5 Instances over nesting level: We need to break ties between P1 and P2). As-
sume that we are transforming at a path 〈T0 · ... ·T3, a1 ·a2 ·a3〉. Now consider
two matching patterns (a) T0.a1(T1).T3 and (b) T0.T1.T2.T3. Clearly, (a) is
more specific than (b) according to P2, but (b) has a deeper nesting level than
(a) which thus far prevails according to P1. Even if there are no attributes of
type T 3 immediately in a1, T 3 is expressed for that prefix T 0.a1(T1) which is
more specific than the corresponding prefix T0.T1 in pattern (b), and thus (a)
is prioritized.

P6 Subtypes over instances: We also need to break ties between P3 and P1, and
between P3 and P2. Both ties are broken by favoring subtyping over instances
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(P3 over P5): we consider first a qualifier’s type and then only whether it refers
to an attribute or a type. Thus when comparing a type qualifier T with an
attribute qualifier a(T ′) we prioritize the first if T is a strict subtype of T ′;
inversely the latter. If T = T ′ we follow P2, i.e., favor the latter.

A formal characterization of t-rule resolution semantics and arguments for its
type safety are the subject of [17].

4 Contexts

This section defines contexts and higher-level abstractions for transformations.
Contexts allow for grouping a common set of t-rules and types together providing
better abstraction and adaptability.

4.1 Local Types and Type Mappings

Components in the targeted applications execute in given contexts. Formally,
such a context is defined as follows:

Definition 5. A context is a 3-tuple (t, u, r) where

– t is a set of type definitions (see Definition 1),
– u is a set of type mappings of form T �h T ′, where

h ∈ {?, !} indicate transformations of incoming/outgoing objects respectively
– r is a set of t-rules (see Definition 3).

The previous examples did not specify any signatures for the functions refer-
enced by t-rules. In instantiations of our model in object-oriented programming
languages, methods are used as such functions. In a language with overload-
ing/overriding, a (partial) signature can be used to distinguish between different
possibilities. In general, these functions need not return values of the same type
as their formal arguments, which allows for type conversions. Such conversions
are desired when different interacting components use different sets of types
which can not be linked via subtyping due to practical restrictions on type sys-
tems [12]. To capture this, a context c includes local type definitions. Such a
definition t introduces a new type T for c.

If the type of any attribute of a transformed event object changes, then the
type of the entire event has to change. A context thus includes a set of high-level
type mappings u, each of the form T �h T ′ indicating that instances of event
type T are mapped to event type T ′. h denotes whether the transformation
takes place upon received (?) or sent (!) event objects. Type mappings make the
programmer’s intent explicit and are used for type checking t-rules as described
in the next section. The type mapping InvoiceLine�!USInvoiceLine in Figure 2
for instance represents the mapping for the logistics provider to a US context.
Contexts thus decouple which types have to be mapped to each other (mappings)
from how this happens (t-rules), increasing flexibility.
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4.2 Context Specialization

Contexts are arranged in a hierarchy following a notion of specialization which
is similar to that of inheritance in common class-based programming languages.
We elaborate on the meaning of inheritance and its relation to transformation
of event objects in the following:

Inheritance. Inheritance of local types, mappings, and t-rules between a parent
context such as c0 in Figure 3 and its child context c1 obey the following rules:

– Local types are straighforwardly inherited by c1.
– Type mappings are inherited, but can be overridden by c1. That is, if c0

defines T �h T ′ for some h, T , and T ′, then c1 can redefine a mapping
T �h T ′′ which overrides that of c0. Overloading can also happen, even
within a same context, through the subtype-sensitivity of mappings – for
example, for two types T, T ′ such that T ′ is a subtype of T , a mapping
T ′�? ... takes precedence over T �? ... for instances of T ′.

– t-rules are similarly inherited, unless overridden. Overriding here occurs
when two t-rules have identical patterns, otherwise the patterns co-exist
(with one taking precedence over the other based on the priorities listed in
Section 3.6).

The root context c0 in Figure 3 is considered to represent all reference types; put
differently, all types of the root context are inherited by all other contexts. In
a multi-language setup, this root context would typically include types defined
in an independent declaration language, with one child context per supported
programming language.

Transformation. Despite a possible “chain” of context specializations, trans-
formations in our current model are always to and from the root context as
shown in Figure 3. That is, events produced in a context (e.g., c3) are directly
transformed to the root context c0, if needed in any different context; events
in the root context are transformed directly to any other context (except the
original one, e.g., c3).

c0

c1 c2

c3

specialization

transformation

Fig. 3. Context specialization and transformation paths. Solid lines represent special-
ization. Dashed lines represent (optional) transformations.
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While in some cases the transformation could take place indirectly by following
the inheritance relation (e.g., from c0 to c1 to c3 in Figure 3), this would in
general raise many issues. For example, different paths could be possible (e.g.,
from c0 to c3 via c1 or c2), and one could expect that they produce consistent
outcomes which is hard to assert.

Contexts may not always define mappings from all types T in the root context
c0 to the specific context (e.g., c3), or from all types T ′ in the context c3 to the
root context. We however refrain from forcing the developer of such a context
c3 to define these mappings and transformations. After all, there may be no
semantically sensible transformation. The absence of a mapping will be however
noticed when compiling context c3 and signaled as an observation message. We
elaborate further on conformance as well as warning and error messages when
discussing implementation issues shortly in Section 5.

4.3 Declaring Contexts

To remain independent of a specific programming language, we support context
declarations in the widely-adopted XML (other languages are possible). Thus,
developers do not need to learn new specification languages. To illustrate this,
we give a brief intuition how a context for Java can be declared in XML:

<types>
com. logistics .us.USInvoiceLine
com. logistics .us.USItemSpecification

</types>
<mappings>

<mapping from=”com.logistics .eu. InvoiceLine ”
to=”com.logistics .us.USInvoiceLine”
dir=”!” />

</mappings>
<rules>

<rule pattern=”ItemSpecification” function=”toUSItemSpecification” />
<rule pattern=”InvoiceLine.Money” function=”toDollars” />
<rule pattern=”InvoiceLine. price ” function=”toIdentity” />

</rules>

As the listing shows, all three elements of the context-tuple can easily be
encoded in XML.

4.4 Practical Extensions

We provide several syntactic shortcuts for conveniently dealing with t-rules in
our model. Noteworthy here are

– t-rules can be explicitly disabled upon inheritance in a child context c′. To
that end, the developer can simply repeat the corresponding pattern, and
use ‘-’ in lieu of a function name. We are currently investigating labeling
schemes so patterns do not need to be repeated.
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– As showcased in Section 3.3, the toIdentity function, it is quite convenient
to exclude certain attributes from a default transformation. In many cases,
this can be simpler to do than enumerating transformations individually for
all non-exempt attributes. For convenience we thus provide a polymorphic
toIdentity function which simply returns its argument. An instance of this
function in a given t-rule adopts its argument type as return type.

5 Implementation

This section presents our implementation of t-rules and contexts. We give details
on rule resolution, error handling in case of invalid rules and how we improve on
efficiency by generating static code.

5.1 ACTrESS

ACTrESS (“Automatic Context Transformation for Event-based Software Sys-
tems”) implements our approach for the Java programming language2. ACTrESS
is built on top of ActiveMQ [37], a fast, reliable JMS [8] broker. Our approach
is implemented as a plugin. It intercepts event notifications passing through
the broker and transforms them according to a t-rule set. Functions f used
by transformations are methods invoked on notifications or their attributes, or
static methods.

5.2 Rule Resolution and Validation

Our implementation uses a type system [17] to resolve relevant t-rules in a given
context with respect to produced and consumed event types. That is, the type
system performs the following tasks:

A. Type-checking of individual t-rules. For any t-rule p � f in a given context,
the type system first validates the pattern p (see Section 3.5), and then
ensures that the formal argument of the function f indeed is a super-type of
the expected type based on p (e.g., the expected type for a pattern T 0.a1(T1)

is T 1).
B. Resolving t-rules. Our type system identifies for any given event type T

mapped in or out by a process all transformations for all reachable paths
rooted at T , and retains these. This retained information is of the form
〈T0 ·...·Tn, a1 ·...·an, f〉, prompting the evaluation semantics to apply function
f at the path 〈T0 · ... · Tn, a1 · ... · an〉 in any event of type T 0. These t-rules
are resolved by starting from all subscribed and published types T 0, and
exploring their attribute spaces recursively by following breadth (e.g., ∀a1
s.t. a1 is declared by T 0) and depth (e.g., ∀ a2 s.t. a′1s type T 1 declares an
attribute a2). To deal with subtyping, for a given path (e.g., 〈T0·...·Ti, a1·...·ai〉)

2 More on ACTrESS can be found at
http://www.dvs.tu-darmstadt.de/research/events/actress/
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the subtype space is explored similarly in a recursive manner (e.g., ∀T ′i '
Ti). A reachable path implies that there is no transformation for any of
its prefixes; exploration does not proceed further when a transformation is
resolved, as the respective function is responsible for dealing with nested
attributes.

C. Type verification. For any t-rule involving a function f to be applied at
a given path, we verify whether the type returned by f abides to the type
stipulated by the mapping for the corresponding event type. Remember that
there is not necessarily a 1:1 relationship between mappings and t-rules; in
fact that would be undesirable in terms of expressiveness. A mapping can
involve the application of multiple t-rules, and inversely, a t-rule may be
applied by different mappings. Thus we do not mandate that every t-rule
in a context respects all mappings for event types with paths matching the
t-rule’s pattern. This allows for default t-rules which typically include type
qualifiers in their patterns to be overridden by more attribute-specific t-rules.
The latter ones produce the correct type at a given path but the former ones
– if applied there instead – would not necessarily do so.

This validation and resolution is performed at compilation, and extended at
need at runtime, i.e., upon encountering new (sub)types. (Cyclic) recursions in
types are handled in a way similar to iso-recursive types by unfolding upon reso-
lution and folding upon application. That is, we halt exploration upon encounter-
ing recursion, and at a given path apply t-rules identified for prefixes of the path
without the recursion. This implies that we do not support “recursion-sensitive”
patterns such as T0.T1.T1. We believe this would unnatural for programmers.

5.3 Errors and Safety

When t-rule resolution and compilation discovers invalid patterns (see Section
3.5), or failed type checks (see A. and C. above), it quits with corresponding
error messages. Since resolution and compilation is done on a per-context basis,
only the affected context will be unavailable (or remain unchanged if it already
existed). The system will continue operating with all other contexts. We believe
this is a better approach than permitting faulty t-rules and hoping that they
do not trigger an runtime, or simply ignoring corresponding errors. An error in
t-rule resolution is usually symptomatic of more profound inconsistencies.

Warnings are issued when a context contains several mappings with identical
source (mapped) type or several t-rules with identical patterns; the last such
mapping or t-rule is chosen respectively. Note that through the addition/dis-
covery of a new subtype T ′ of an (attribute or event) type T no errors can
be introduced, as the existing mappings and t-rules remain valid. That is, map-
pings remain trivially the same.There can not have been any “dormant” mapping
specifically referring to T ′, otherwise the resolution process would have known
that type (hence it’s not new) and would have considered all applying t-rules.
Similarly, a now active but previously disregarded t-rule must have referred to
T ′ in its pattern already, leading again to a contradiction.
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5.4 Code Generation

Besides avoiding repetitive t-rule resolution, our compilation approach has the
advantage of being able to generate static code for performing transformations
rather than using reflection mechanisms to dynamically invoke such functions/
methods. That is, our prototype generates a class containing transformation
code after analyzing t-rules and notification types. This is also the reason why
we proactively explore all subtypes and retain corresponding transformations;
it avoids performing any kind of resolution at runtime. We will illustrate the
efficiency benefits of our approach shortly in Section 6.

5.5 Annotations

To allow for intuitive and in-code declaration, our Java prototype supports
various Java annotations. To define type mappings, the developer can use the
@MapsTo annotation, supplying the class name of the mapped class. To specify
that a class should be transformed with a specific function, developers may use
@TransformWith.

These annotations are just another form of expressing t-rules. To simplify
things for developers further, we allow annotating a class’s attributes with units
(e.g., @Unit (‘‘USD’’)). By analyzing the units given by developers and those that
the notification service uses, our prototype is able to generate the appropriate
t-rules. Thus, developers can simply express their wish towards the data.

Our supplied annotations are not as expressive as the full t-rules but cover
many typical application scenarios. Developers can use annotations to quickly
generate the majority of t-rules and then fine-tune the rule set.

6 Evaluation

We evaluated our approach and implementation with regards to performance
and code quality. Our results illustrate that our approach is suited for pub/sub
systems by providing efficiency and extensibility while being expressive.

6.1 Performance

First we substantiate the claim made earlier that native support for transforma-
tions is beneficial for performance, by showing that (a) it is much faster than an
analogous library implementation based on reflection permitting equal expres-
siveness and extensibility, (b) it is much faster than Apache Camel, a popular
general-purpose Enterprise Application Integration (EAI) [22] framework, (b) it
is as effective as manually coded transformations in application components, and
(d) the application of transformations closer to producers, enabled by our model,
further improves performance. Furthermore, we show that the implementation
of our model scales with the number of types and t-rules in the system.
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We ran the ACTrESS broker, the workload generators and data collectors
in a distributed environment. We compared five setups: in content-based, bro-
kers just access event content for content-based routing but do not perform any
transformations, assuming all parties agree upfront on types; model-tx trans-
forms event objects according to our approach, while reflect uses Java reflection
for transformation resolution and application. Setup camel uses Apache Camel
for transformations to investigate the impact of using EAI frameworks. EAI
frameworks share the idea of integration with our approach, but do not provide
implementation details. (see Section 7 for details). We use compiled transforma-
tion classes for this approach, like those that our approach generates. Finally, in
the baseline case brokers simply forward event objects without accessing their
content, illustrating the smallest latency possible.

The SPECjms2007 standard benchmark specifies a workload where distribu-
tion centers, headquarters, and suppliers form a complex supply chain and inter-
act via various inter-company event notifications [35]. We designed a workload
following SPECjms2007. Event types are taken directly from the specification.
Transformations include addresses, distances, and currency.

Figure 4a shows the latency for different notification rates. It is important to
note that the ordinate has a logarithmic scale. As the figure shows, reflect adds
significant latency overhead compared to our approach. This is an indicator
for the increased computational effort of the reflection-based approach. Due to
the increased effort, ActiveMQ cannot cope with higher event production rates;
events are stalled, accounting for the steep latency increase. Camel performs
even worse, because it is not integrated into the broker and thus additional
notification marshalling and unmarshalling has to occur. This shows that even
by requiring manual implementation of transformations, EAI frameworks also
suffer from poor efficiency.

Scenarios none and compile achieve more than double the throughput than
reflect and have no measurable difference, while base achieves even slightly more
events per second. Because there is no measurable difference between none and
compile and our setup already resembles the worst case where every event has
to be transformed, we do not provide more details like the effect of the number
of contexts.

Figure 4b illustrates the performance benefit of being able to transform closer
to the producer, compared to doing it at each individual consumer. With a
growing number of consumers per producer, the advantage grows. Thus, it is
beneficial to be able to transform close to the producer, which our model enables.

6.2 T-rule Resolution and Code Generation Overhead

Our implementation generates transformation code from the set of rules and
type mappings. While we believe that compared to the actual event notification
rates, changes to the rule set, the type set or the mappings are rare, we are
still interested in the overhead of this step. It is important that this step has
acceptable overhead so that deployment and testing can be done quickly and –
even more importantly – changes at runtime take as little time as possible.
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Fig. 4. Performance benefits

Figure 5 shows the time it takes to generate 1000 transformation classes for
different sizes of the t-rule set and different selectivity of the rules. Selectivity
means how many attributes of the type are actually affected by the rule. We
used 1000 iterations to keep the variance low. Our implementation scales linearly
with the number of t-rules and affected attributes. Every t-rule has to be checked
because there might always be a more specific one at the end, and thus this is
the optimal result. Similarly, for each affected attribute, we have to generate
some code. Thus, a generator must have at least linear complexity.
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6.3 Ease of Use

Next, we demonstrate efficiency for the programmer by showing that our con-
texts lead to a considerably lower implementation effort than manual coding of
transformations, and that existing transformations can be changed more easily.
We use five typical event-based applications to compare the required lines of
code and ease of changes.

Kemerer [23] analyzed over 30 software complexity metrics and concluded,
that “a number of the more complex metrics may be essentially measuring the
size of the program or other component under investigation, and therefore may
provide little additional information”. We thus see lines of code as a valid indica-
tor for code complexity and maintenance effort and used it for our comparison.

To give a brief comparison between the two approaches, consider the exam-
ple to transform attributes of type Address. Our approach needs just one rule to
transform every occurrence of an attribute of type Address. When coding trans-
formations manually, the developer has to write a dedicated if -else branch for
every event type with an address attribute (directly or indirectly). Inside, sev-
eral lines of code for attribute extraction, object creation and transformation are
needed.

For our comparison, we use the event types specified by various applications:
The SPECjms2007 benchmark introduced in Section 6.1. Transformations in-
clude address translations between different regional formats and changing prod-
uct descriptions (in orders, invoices, etc.) to conform to each site’s expectations.

The marketcetera3 automated trading platform defines various event types
capturing stock ticker quotes and allows for elaborate automated trading. The
transformations on this platform perform currency conversions, timestamp for-
matting changes and renaming of some indicators, assuming differing terminol-
ogy on the consumers.

The HTM traffic management system handles data from sensors and cameras
along streets and highways, monitoring road, traffic and weather conditions [34].
Such systems are used by many large cities. Transformations include coordinate
translation, timestamp format changes and unit conversion.

DRADEL is an application environment for modeling and analyzing dis-
tributed architectures, including code generation [25]. Since it runs on top of
a message-oriented middleware, multi-user support is possible. In such a setting
however, path references and line numbers need to be adapted to each platform.
Thus, operational events of DRADEL need to be transformed accordingly.

The Emergency Response System (ERS) is a distributed application running
on multiple mobile devices and helps organizing human resources during nat-
ural disasters [31]. Its events often refer to geographical regions, which need
transformation between individual users to adapt to their specific format.

Table 1 compares the lines of code needed to specify transformations by man-
ual coding and by our approach, showing a clear benefit for the latter. The num-
bers indicate the effort necessary to specify the transformations of one client that
needs to transform events. We did not count lines of code that can be generated

3 http://www.marketcetera.com

http://www.marketcetera.com
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Table 1. Code complexity comparison

manual ACTrESS
specify change extend specify change extend

SPECjms2007 167 15 92 22 2 1
marketcetera 108 9 37 16 2 1
HTM 237 16 133 21 2 1
DRADEL 417 16 139 30 3 2
ERS 351 12 117 21 3 2

by standard IDEs. For additional clients needing different transformations, the
effort has to be made again, multiplying our benefits. Furthermore, the change
columns show the number of individual places in the code that needed to be
changed when a certain type (e.g., Address) should be changed into a different
format.

Contrary to intuition, EAI frameworks like Apache Camel do not reduce com-
plexity at this step. Although supporting event transformations architecturally,
transformations still need to be coded manually, resulting in above depicted
effort.

6.4 Extensibility

Changes can roughly occur in two ways: transformation functions need to be
changed or new types are introduced. In case of changed transformation func-
tions, one can simply adapt them (e.g., change toUSAddress). Adding new types
is more complicated. Suppose we want to add a sensor to the traffic management
system to detect oil on the road (raising an Oil event). Every sensor event in the
system has an attribute SensorMetadata which has an attribute of type Location.
In the manual approach, it is thus not immediately apparent that adding the Oil

event requires a new piece of transformation code. A developer will have to ana-
lyze the existing transformation code and realize that locations are transformed
and then write the new code. With our approach, only the mapping has to be
defined. The extend column in Table 1 illustrates this by giving the required
number of lines of code for the necessary analysis.

In case of changes at runtime, ACTrESS dynamically recompiles the generated
classes when changes occur. Figure 6 illustrates the impact on performance. It
shows that there is a brief increase in latency for the recompilation, after which
the system performs as before. This demonstrates that our implementation can
handle changes at runtime without significant impact on performance.

7 Related Work

In this section, we divide the space of object transformations along different di-
mensions and relate existing work to our proposed approach along these
dimensions.
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7.1 Transformation Space

As mentioned there are different dimensions along which one can divide the space
of object transformations. Among these, without attempting to be exhaustive
but to cover the main related work, we can consider granularity, completeness
and topology. The possibilities for granularity for instance include

G1 Monolithic object transformations. Objects of given event types are trans-
formed as a whole.

G2 Attribute-wise transformations. Event objects are transformed attribute-wise,
with a 1-1 mapping of attributes.

G3 Nested attribute-wise transformation. With objects containing attributes
that are objects, one can allow attribute-wise transformation of such nested
objects.

G4 Path-based transformation. Transformations can be expressed on any
attributes, at any nesting level, in objects.

In terms of the actual transformation, there are also different levels of computa-
tional completeness that one can imagine:

C1 Type or meta-data transformation. Objects retain their actual state, but they
are converted to other types. This includes also traditional subtype subsump-
tion, where simply a subset of the attributes are retained when accessing an
object via a super-type.

C2 Lookup-based transformation. An object is substituted by another one based
on a lookup in a static or dynamic data-structure. Such objects correspond to
discrete values.

C3 Function-based transformation. A function is invoked with an object and can
perform any computations to construct a substitute object.

C4 Function-based stateful transformation. Same as above, except that the func-
tion can also persist state in variables.

There are also different places in the topology of a distributed application for
transformation application, e.g.,

T1 Peer-based transformation. Every application component or process performs
its own transformations on incoming — maybe also outgoing — event objects.

T2 Distributed transformation. A distributed middleware system performs
transformations on conveyed event objects, through a dedicated server or
component.

T3 Decentralized transformation. Here a distributed middleware performs trans-
formations without relying on a centralized component.

Our solution presented supports the highest level for any of these criteria, i.e.,
G4, C4, and T3.
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7.2 Existing Work

In database integration, data from one database is transformed to adhere to the
schema of another database [9,30] (T2). Anonymity in a federated pub/sub-based
system prevents schema integration used by these approaches. A subscriber does
not know who produced an event it receives and thus not the schema it follows.

Chung [14] argues that it is infeasible to decide upon a database for a whole
organization, proposing DATAPLEX as a middleware layer implemented as cen-
tralized data mediation component (T2) to allow uniform access to databases.

Cluet et al. [16] address the issue of integrating heterogeneous data sources
by proposing a rule language for conversion between various data representa-
tions. The system is designed for request/reply communication while we focus
on data distributed via publish/subscribe, where subscribers may not know the
origin (communication endpoint) of data. Cilia et al. [15] propose a solution to
deal with heterogeneous data sources in pub/sub systems using a self-describing
model. Neither of the above however verifies typing of transformations. Dozer [3]
supports mapping of data objects between Java Beans. Dozer supports expres-
sive and complex mappings; conversion resolution and execution occur via Java
Reflection at runtime, limiting performance and safety.

Foster et al. [18] present a bi-directional tree transformation approach. Their
transformation functions allow to mediate between different views of same data
where updates are applied backwards to the original data (C3). In contrast, our
approach purposely supports uni-directional and non-deterministic transforma-
tions. Every subscriber gets its own copy of an event and thus events are not
meant to be shared like documents.

Several authors propose structural subtyping to decouple components (G3,
C1), which has been promoted by several research programming languages (e.g.,
Lingua Franca [27], Accute [36]). Whiteoak [21] extends Java with structural
conformance similarly to compound types [12].

HydroJ [24] extends Java with relaxed conformance on nested semi-structured
events exchanged between processes. Similarly, most publish/subscribe systems
follow the model described in [29] which promotes the use of hash maps to convey
events in the form of 〈key, value〉 pairs. This places all burden on programmers
as these need to manually inspect, marshal/unmarshal and transform event ob-
jects at generation and reception. With Hashtypes [36] type representations are
hashed, including “contents” of corresponding instances, function signatures in
modules, etc. Hashes are propagated with objects. Given the focus on point-
to-point and not implicit communication, transformations are applied at end
components (T1). None of these approaches support value-based transforma-
tions (C1).

Platforms like Sun RPC [38], OMG’s CORBA [28], or Web Services [11] only
mediate between encodings of values (e.g., little vs. big endian).

Java Internationalization (JI) [4] provides support for context-specific inter-
pretation of precise data types (e.g., strings in different character sets, times
in different zones). JI also supports automatic translation of character strings
between different natural languages based on dictionaries (C2). JI furthermore
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includes a framework which allows application-specific types (resource bundles)
to be interpreted differently across contexts (locales). In combination with Java
Remote Method Invocations (RMI) [5] or other remote communication
paradigms, JI can hence be used as a foundation to address similar problems
as studied herein. However, the JI framework consists merely in an API, while
the present work aims at providing intuitive and safe mechanisms for implement-
ing such an API. .NET Internationalization [6] provides analogous functionalities
to JI for the .NET platform. Similarly, design and architectural patterns such
as adapters [26] provide a locus between application components to perform
transformations but do not provide support for actually implementing them.

Enterprise Application Integration (EAI) specifies message transformations
[22] to deal with heterogeneity. However, EAI just specifies a pattern (in fact,
they can be seen as a more detailed definition of adapters), without any sug-
gestions regarding its implementation. EAI Frameworks like Apache Camel [2]
thus support message transformations, but provide merely an API with little
support for implementing it. Transformations take place on the entire message
bodies (G1) and there is no facility for a canonical data model, leaving its design
to the programmer. As demonstrated, efficiency is poor. Microsoft BizTalk [33]
provides support for transformation with XSLT and orchestrations. However,
mappings are static, take place on entire message bodies (G1) and new produc-
ers or consumers have to be added explicitly. Other EAI frameworks expose
similar limitations.

8 Conclusions

We have introduced a foundational model for interoperability in federated dis-
tributed software based on transformations. Our model is expressive in that it
supports the whole spectrum of transformations including enrichment of events
and allows other type conformance models to be implemented atop. As we have
demonstrated it is easy to use by supporting fine-grained expression of transfor-
mations as opposed to monolithic ones, and it allows for extensibility at runtime,
while at the same time showing being efficient, causing no measurable overhead
on an underlying content-based pub/sub system. Last but not least, our approach
is safe, by promoting clear semantics for transformations, whose application is
verified and determined first and enforced at runtime.

We are currently working on supporting clients in other languages, as well
as on an implementation of type versioning on top of our model. We are also
investigating extensions to our model including nested transformations. These
will allow functions used for transformations to explicitly re-invoke the transfor-
mation process in order to avoid invoking or repeating transformation functions
for nested attributes. Care must be taken here to not increase expressiveness at
the cost of simplicity. Last but not least, we are working on optimal placement
of transformation operations in decentralized publish/subscribe networks.
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Abstract. Precise dynamic race detectors report an error if and only
if an observed program trace exhibits a data race. They must typically
check for races on all memory accesses to ensure that they catch all
races and generate no spurious warnings. However, a race check for a
particular memory access is guaranteed to be redundant if the accessing
thread has already accessed that location within the same release-free
span. A release-free span is any sequence of instructions containing no
lock releases or other “release-like” synchronization operations, such as
wait or fork.

We present a static analysis to identify redundant race checks by rea-
soning about memory accesses within release-free spans. In contrast to
prior whole program analyses for identifying accesses that are always
race-free, our redundant check analysis is span-local and can also be
made method-local without any major loss in effectiveness. RedCard,
our prototype implementation for the Java language, enables dynamic
race detectors to reduce the number of run-time checks by close to 40%
with no loss in precision.

We also present a complementary shadow proxy analysis for identify-
ing when multiple memory locations can be treated as a single location
by a dynamic race detector, again with no loss in precision. Combined,
our analyses reduce the number of memory accesses requiring checks by
roughly 50%.

1 Introduction

Multithreaded programs are prone to race conditions caused by unintended in-
terference between threads, a problem exacerbated by the broad adoption of
multi-core processors. A race condition occurs when two threads concurrently
perform conflicting memory accesses that read or write the same location, where
at least one access is a write. The order in which the conflicting accesses are
performed may affect the program’s subsequent state and behavior, likely with
unintended or erroneous consequences. Such problems may arise only on rare
interleavings, making them difficult to detect, reproduce, and eliminate.

The problems caused by data races have motivated much work on detecting
races via static [1, 3, 5, 15, 23, 30, 40] or dynamic [10, 14, 31, 32, 35, 37, 43] anal-
ysis, as well as via post-mortem analyses [2, 9, 34]. In this paper, we focus on
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on-line dynamic race detectors, which detect races by monitoring a program as
it executes. Dynamic race detectors typically use a broad notion of when two
conflicting accesses are considered concurrent to maximize coverage, and con-
flicting accesses need not be performed at exactly the same time. Instead, a race
condition is said to occur when there is no “synchronization dependence” be-
tween the two accesses, such as the dependence between a lock release by one
thread and a subsequent lock acquire by a different thread. These various kinds
of synchronization dependencies form a partial order over the instructions in the
execution trace called the happens-before relation [26]. Two memory accesses are
considered to be concurrent if they are not ordered by this relation.

Dynamic detectors may be classified by whether they are precise or imprecise.
Precise analyses never produce false alarms. Instead, they compute an exact
representation of the happens-before relation for the observed trace and report
an error if and only if the observed trace has a race condition [18, 28, 32].1

Despite the development of a variety of implementation techniques (including
vector clocks [28, 32], epochs [18], accordion clocks [10], and others [14]), the
overhead of precise dynamic race detectors can still be prohibitive.

A promising approach for improving the performance of precise dynamic race
detectors is to use a static analysis to identify accesses that do not need to be
checked at run time. Several prior analyses identify accesses that are guaranteed
to be race-free, with good results [8, 17, 30, 38], but the more effective analyses
are typically whole-program and quite expensive.

We focus instead on the orthogonal and more tractable property of identifying
race checks that are guaranteed to be redundant, where a race check is redundant
if ignoring that access during dynamic race checking leads to no missed races or
false alarms. Interestingly, whereas verifying an access to be statically race-free
typically requires information about multithreaded control flow, aliasing, and
synchronization most readily computed via whole-program analysis, many race
checks can be verified as redundant using more local information, specifically
the locations the current thread has accessed since entering the current release-
free span. Informally, a release-free span is a sequence of instructions containing
no lock releases (or other synchronization operations such as fork that may
similarly introduce an outgoing edge in the happens-before graph).

We present a static analysis for identifying and eliminating redundant race
checks based on this notion. While others have explored removing limited forms
of redundant checks in various imprecise detectors [8, 13] and in programs with
structured parallelism [33], we focus exclusively on redundancy (independent
of the dynamic race detection algorithm used) and tailor our analysis to be
highly effective at reasoning about that notion. It primarily leverages local rea-
soning about memory accesses, aliasing, data invariants, and synchronization to

1 Precise dynamic race detectors do not reason about all possible traces and may not
identify races occurring on unobserved code paths. While full coverage is desirable,
it comes at the cost of potential false alarms due to the undecidability of the halting
problem. To avoid false alarms, precise race detectors thus focus on detecting race
conditions only on the observed trace.
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eliminate a substantial amount of redundant checking for any dynamic race de-
tector, with no loss in precision.

Redundant Check Elimination. A release-free span is a code fragment con-
taining no operations that create out-going edges in the happens-before graph.
Thus release-free spans may not contain lock releases (which create happens-
before edges from the release to any subsequent acquires by other threads), forks
(which create edges from the fork to the first step of the new thread), writes to
volatiles (which create edges from the write to subsequent reads), and so on.

Spans exhibit a key property for our analysis: if an access to a memory location
is in a race with a step by another thread, all previous accesses to that memory
location within the current span will also be in a race with the other thread.

y1 = x.f

...

y2 = x.f

 

 

x.f = 1

...

Thread A Thread BTo illustrate why this property holds, suppose
Thread A executes some span reading x.f twice while
Thread B writes to x.f. If the write is in a race with
the second read, then it must also be in a race with
the first. If this were not the case, then the happens-
before graph for the racy execution would have the
form shown on the right, where the dashed line is
present due to the synchronization operation ensuring
that the write happens after the first read. However,
this situation is impossible, because release-free spans
contain no out-going edges to steps by other threads, and so the dashed line
cannot exist. Thus it is sufficient for a dynamic race detector to check for races
only on the first access to a memory location in each span. It may ignore any
subsequent accesses without any loss in precision.

At a high level, our analysis records at each program point a context Π
containing available paths describing memory locations previously accessed in the
current release-free span, as well as other local state invariants we describe later.

1 synchronized(m) {

2 y = x.fCheck;
3 y = x.fNoCheck;
4 }

5 y = x .fCheck;

To illustrate this idea, consider the code to the right in
which lines 1–3 form a release-free span. Our system
verifies that x.f is an available path at line 3, and
thus labels only the first access in the span as Check
to indicate that the dynamic detector must examine
that access. No paths are available after the span ends
on line 4, and the detector must again check the first access to x.f in the new
span.

To support arrays, contexts may also include universally quantified paths,
as in the code in Figure 1, which clears a two-dimensional array. The com-
ments indicate the most salient context items inferred at various program points.
Examining the inner loop on lines 3–6, the Check annotation for assignment
“a[i]NoCheck[j]Check = 0” on line 5 indicates that only a single check, on the
access to the jth element of array a[i], is required on each iteration of the
loop. Race checks on the access a[i] on 5 are redundant, because that loca-
tion was previously checked, as indicated by its presence in the context on line
4. Removing these checks substantially reduces the number of run-time checks
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1 // Π : ∅
2 for (int i = 0; i < a .length; i++) {

3 for (int j = 0; j < a[i]Check .length; j++) {

4 // Π : a[i], ∀(k ∈ 0 to j). a[i][k]
5 a[i]NoCheck[j]Check = 0;

6 }

7 // Π : ∀(h ∈ 0 to i). ∀(j ∈ 0 to a[h].length). a[h][j]
8 }

9 // Π : ∀(i ∈ 0 to a.length). ∀(j ∈ 0 to a[i].length). a[i][j]

Fig. 1. Redundant Check Elimination for Arrays

performed. The post-loop context on 9 shows that any subsequent accesses to
this two-dimensional array within the current span would also be check-free.

Shadow Proxies. Our analysis also identifies memory locations for which no
checks are ever required, which further reduces time and space overhead since
no analysis (or shadow) state needs to be maintained for such locations. Our
approach is based on the observation that accesses to different memory locations
are often correlated. For example, a Point object may be used in such a way
that whenever its x field is accessed, its y field is accessed in the same span.
We say that y is a shadow proxy for x in this case, and any race on x naturally
implies that there is a race on y. A dynamic race detector will thus still detect
the presence of a race, even if all accesses to x are ignored. Our analysis also
identifies shadow proxy relationships between array elements.

�������.We have implemented our analysis in RedCard (Redundant Checks
for Race Detectors) for Java bytecode programs. On a collection of benchmarks,
RedCard reduced the number of run-time race condition checks required by a
precise detector by roughly 40%. When configured to also infer shadow proxies,
RedCard reduced the number of checks by close to 50%. Eliminating these
redundant checks in the FastTrack dynamic race detector [18] improved its
running-time by about 25%.

A number of other tools, such as Chord [30], leverage global may-happen-in-
parallel or other flow-insensitive analyses to reason about conflicting accesses.
This can be quite effective at finding unnecessary checks in some programs, but
typically requires more expensive and less scalable global reasoning. We compare
RedCard to Chord-like analyses in more detail in our experimental validation.

Contributions. In summary, this paper:

– defines a notion of a redundant check for precise dynamic race detectors,
describes an analysis to identify redundant checks as an effect system for an
idealized language, and proves this analysis is correct (Sections 2 and 3);

– extends the core analysis to handle arrays (Section 4) and to identify shadow
proxies, which characterize memory locations that can be ignored by race
detectors entirely, with no loss in precision (Section 5);

– describes our RedCard system for inferring redundant accesses in Java
programs (Section 6); and
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P ∈ Program ::= D s1|| . . . ||sn
D ∈ Defn ::= class C { f meth }

meth ∈ Method ::= m(x) spec { s; return r }

s ∈ Stmt ::= skip | s; s | if be s s | while be s | x = e | x = new C

| y.fk = x | x = y.fk | x = y.m(z) | acq x | rel x

e ∈ Expr ::= x | v | . . .
be ∈ BoolExpr ⊆ Expr
v ∈ Value ::= ρ | true | false | null | . . .
k ∈ CheckOption ::= Check | NoCheck

C ∈ ClassName
x, y, r ∈ Var

f ∈ FieldName
ρ ∈ Address

m ∈ MethodName

Fig. 2. RedJava Syntax

– shows that, on a collection of benchmarks, RedCard reduces the number
of access checks required by a precise detector by close to 50%, leading to a
roughly 25% speedup in the FastTrack race detector (Section 7).

2 RedJava Language and Semantics

We formalize our analysis for the idealized language RedJava, a multithreaded
subset of Java summarized in Figure 2. A RedJava program P is a sequence
of class definitions D together with a sequence of statements s1|| . . . ||sn. At run
time, the statements in s1|| . . . ||sn are evaluated concurrently by multiple threads.

Each definition associates a class name C with a collection of field and method
declarations. Field declarations are simply names and contain no type informa-
tion. (We assume that standard typing requirements are verified for RedJava

programs via a separate analysis. Enforcing a traditional typing discipline is or-
thogonal to the concerns of this paper and omitted for simplicity.) A method
declaration “m(x) spec { s; return r }” defines a method m with parameters
x and statement body s. The method returns the value stored in variable r.
The variable this is implicitly bound to the receiver in the method body. We
assume that all methods have unique names to avoid type-based method reso-
lution. Methods also contain specifications, as described below.

RedJava statements are expressed in a low-level language somewhat analo-
gous to JVM bytecode. Statement forms include sequential composition, condi-
tionals, while loops, and method calls. Local variables, which are not explicitly
declared, can be mutated via the assignment statement “x = e”. We leave the
set of expressions e intentionally unspecified but assume that they range over at
least null, boolean values, variable identifiers, and object addresses.

The object allocation statement “x = new C” assigns a freshly allocated C ob-
ject to variable x, where all fields of that object are initialized to null. Field read
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(x = y.fk) and write (y.fk = x) statements includes a check tag k, which is
Check if the dynamic race detector should verify it for race-freedom and NoCheck

if the dynamic race detector should skip verifying that access. As in Java, each
object x has a corresponding mutual exclusion lock with operations acq x and
rel x.

A program D s1|| . . . ||sn executes by evaluating the statements s1, . . . , sn in
concurrent threads. A companion technical report [19] formalizes a small-step
semantics describing evaluation as a relation D � Σ →a Σ′, where the run-time
state Σ stores a heap of dynamically allocated objects; and Σ′ is the same heap
updated with the effects of this step. The Action a records any shared-memory
or synchronization operation performed by the step. For example, the action
t : acc(ρ.f Check) denotes that the thread identifier t ∈ Tid performed a checked
access to the field f of the object at address ρ. The special action t :ε denotes a
step that has no heap effect.

u, t ∈ Tid ::= 1 | 2 | . . .
a, b ∈ Action ::= t :acc(ρ.fk) | t :acq(ρ) | t :rel(ρ) | t :ε
α ∈ Trace ::= Action

The relation D � Σ →α Σ′ is the reflexive transitive closure of the single-step
relation and formalizes the behavior of a Trace α = a1 · a2 · · · an. The initial
state Σ0 contains a freshly-allocated object for each free variable in s1|| . . . ||sn.
Those objects may be referenced by multiple threads.

2.1 Race Conditions and Dynamic Race Detection

The happens-before relation for trace α is the smallest reflexive, transitive rela-
tion <α on α such that a <α b if a occurs before b in α and either: a and b are
performed by the same thread; or a releases some lock and b acquires that lock.

Two operations are concurrent if they are not ordered by the happens-before
relation, and two accesses conflict if they read or write to the same location ρ.f .
Our definition of conflicting accesses implies that two reads may conflict, which
simplifies our formal development. We address commuting read operations in
Section 6. A trace has a race condition if it has a pair of concurrent conflicting
accesses. Moreover, a trace has a detected race condition if it has a pair of
concurrent conflicting accesses that are both marked as Check.

We now consider which accesses in a trace require checks. A release-free
span, or simply a span, is the sequence of instructions by a thread between
two release statements. A trace is well-formed if each unchecked access t :
acc(ρ.f NoCheck) is preceded by a checked access t :acc(ρ.f Check) in the same span,
under the assumption the trace prefix up to the unchecked access is race-free.

y1 = x .fCheck;
z1 = y1 .gCheck;
y2 = x .fNoCheck;
z2 = y2 .gNoCheck;

To motivate this race-free assumption, consider the
code fragment to the right. We would like to anno-
tate the last read y2.g as NoCheck, arguing that y1

and y2 are aliases, and that y1.g was previously read.
However, concurrent racy writes to x.f could cause y1
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Π ∈ Context ::= π
π ∈ ContextItem ::= p | c | be
c ∈ AliasConstraint ::= x = p

P,Q ∈ PathSet ::= p
p ∈ Path ::= x.f
K ∈ ModifiesSet ::= κ
κ ::= f | All

Fig. 3. Contexts, Path Sets, and Modifies Sets

and y2 to differ. The race-free prefix assumption precludes this possibility and
enables the unchecked read of y2.gNoCheck.

The following theorem, which is proved in the companion technical report,
shows that the checked accesses in well-formed traces are sufficient to guarantee
that, for any trace with one or more race conditions, at least one of those races
will be detected. In practice, our implementation detects all races on all of our
benchmarks, since the above corner case in which one race masks another race
is extremely rare.

Theorem 1 (Race Detection). Any well-formed trace has a race condition if
and only if it has a detected race condition.

3 Redundant Check Elimination

We now develop a static analysis for identifying which accesses are redundant
(that is, race-free race under the assumption that previous accesses are race-free).
For presentation purposes, we describe our analysis as a decision procedure for
verifying NoCheck annotations, but this decision procedure naturally maps to an
inter-procedural least-fixed point algorithm for inferring NoCheck annotations in
our implementation, as described in Section 6.

Our analysis tracks a context Π that includes paths p of the form x.f that
have already been accessed in the current span.2 In the simple case, redundant
check elimination can be accomplished by standard compiler optimizations for
redundant load elimination (see, e.g. [4, 24, 39]), which may remove the second
redundant read of x.f entirely. However, redundant check elimination applies in
more general cases, for example when iterating through an array for a second
time in a span, since the array contents likely would not fit in the register file,
or on a read that occurs after different writes on different control-flow paths.

To help identify redundant checks, the context includes must-alias informa-
tion, such as the equality y1 = y2 from the earlier example in Section 2.1. Finally
the context includes boolean constraints over local variables, which additionally
aid in reasoning about both aliasing and array accesses, as discussed below.

To facilitate modular reasoning, each method carries a specification

spec ∈ MethodSpec = requires P ensures Q modifies K

2 We discuss longer access paths, such as a.f[i], in Section 6.
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D � s : Π � Π′

[Skip] D � skip : Π � Π

[Acq] D � acq x : Π � Π

[Rel] D � rel x : Π � Π \ All

[Assign] D � x = e : Π � Π[x := w] ∪ {x = e[x := w]}
[New] D � x = new C : Π � Π[x := w]

[Read]

k = NoCheck ⇒ Π � y.f
p = (y.f)[x := w] Π′ = Π[x := w] ∪ {x = p, p}

D � x = y.fk : Π � Π′

[Write]

k = NoCheck ⇒ Π � y.f
Π′ = (Π \ f) ∪ {x = y.f, y.f}

D � y.fk = x : Π � Π′

[If]

D � s1 : Π ∪ {be} � Π1

D � s2 : Π ∪ {¬be} � Π2

D � if be s1 s2 : Π � (Π1 �Π2)

[While]

Π � Πinv Π′ � Πinv

D � s : (Πinv ∪ {be}) � Π′

D � while be s : Π � (Πinv ∪ {¬be})
[Seq]

D � s1 : Π � Π′′

D � s2 : Π′′ � Π′

D � s1; s2 : Π � Π′

[Call]

m(z′) requires P ensures Q modifies K { . . . return r } ∈ D

θ = [z′ := z, this := y, r := x] ∀p ∈ θ(P ). Π � p

D � x = y.m(z) : Π � (Π \K)[x := w] ∪ θ(Q)

[Method]

m is unique in D s does not mutate this, x
K contains all fields that may be modified while evaluating s
K contains All if a lock may be released while evaluating s

FV(P ) ⊆ {this, x} FV(Q) ⊆ {this, x, r}
D � s : P � Q′ Q′ � Q

D � m(x) requires P ensures Q modifies K { s; return r }

D � meth � D � D s1|| . . . ||sn
[Class]

∀meth ∈ meth. D � meth

D � class C { f meth }

[Declarations]

∀D ∈ D. D � D

� D

[Program]

� D ∀i ∈ 1..n. D � si : ∅ � Π

� D s1|| . . . ||sn
Π \K, Π \ κ

Π \ {κ1, . . . , κn} = Π \ κ1 \ . . . \ κn

Π \ f = { p ∈ Π } ∪ { be ∈ Π } ∪ { (y = p) ∈ Π | p 	= x.f }
Π \ All = { be ∈ Π }

Fig. 4. Analysis (We assume w is fresh in all rules.)

where the PathSet P denotes the paths that must be in the context at any
call site to the method, which enables inter-procedural check elimination. The
PathSet Q denotes paths that are available at the end of the method body, and
the ModifiesSet K denotes fields that may be modified by the method body. (See
Figure 3.) The ModifiesSet K also contains the special token All if the method
contains a lock release or other span-ending operation.

3.1 Type System

The core of our analysis is the set of rules in Figure 4 defining the judgment
D � s : Π � Π ′, where the context Π denotes available paths and constraints
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that hold in the pre-state of statement s, and context Π ′ similarly characterizes
the post-state of s. The definitions D are included to provide access to class
declarations. The complete set of statement typing rules, as well as rules for
additional judgments to check declarations and programs, appear in Figure 4.
We describe the most salient rules below.

[Assign] Assigning to a local variable x may affect constraints or paths con-
taining x. Simply removing all such elements mentioning x from Π would be
overly conservative. Instead, we introduce a class of Skolem variables that are
implicitly existentially quantified. The post-context for a statement x = e
from a pre-context Π is then computed to be Π [x := w] ∪ {x = e[x := w]},
where the fresh implicitly existentially quantified variable w captures the
pre-assignment value of x. (The substitution Π [x := w] replaces all occur-
rences of x with w in Π , and similarly for e[x := w].)

To illustrate this rule, consider the code fragment to the
right. The context prior to the assignment to z contains
a = z.f and b = z.f, which implies a and b are aliases.
After the assignment to z, the context will contain
a = w.f and b = w.f for some fresh w. Thus we may
still prove a and b are aliases and the last access is re-
dundant, even though a and b are no longer equal to z.f.

a = z .fCheck;
b = z .fNoCheck;
z = y;

t1 = a .gCheck;
t2 = b .gNoCheck;

Note that this rule adds the equality x = e[x := w] to Π , where e may be
any expression. The most useful equality constraints for reasoning about field
accesses have the form x = y, but we will see in Section 4 that constraints
over more complex scalar expressions are crucial for reasoning about array
accesses.

[Read] For the read statement x = y.fk, we verify that y.f has already been
accessed in the current span if k = NoCheck. To do this, we could simply
require that y.f ∈ Π . However, this syntactic notion of membership does
not take into account aliasing or other information. Thus we introduce the
context implication relation Π � y.f to indicate that the elements in context
Π imply that y.f has been accessed, perhaps via an aliased name:

Π � y.f iff Π � z = y ∧ z.f ∈ Π

Any sound decision procedure may be used to implement the relation Π �
z = y. In our implementation, we leverage the SMT solver Z3 [11], making
sure that the translation into Z3’s input language is appropriately conser-
vative. Below, we use a generalized context implication relation Π � π to
express that the context Π implies the context item π, which may be a path,
alias constraint, or a boolean constraint.
The substitution y.f [x := w] in this rule ensures that the proper elements
are added to post-context Π ′ in the case where y = x.

[Write] For the write statement y.fk = x, we verify that y.f has already been
accessed in the current span if k = NoCheck. To compute the post-context
Π ′, we remove all equalities referring to the f field of an object via the
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operation Π \ f defined in Figure 4. After the assignment, we include both
the equality x = y.f and the available path y.f in Π ′.

[If] The rule for conditionals merges the post-contexts of the then and else
branches via the meet operator

Π1 (Π2 = { π ∈ Π1 ∪Π2 | Π1 � π and Π2 � π }
This operator computes the largest set of facts in Π1 ∪Π2 that are provable
from bothΠ1 andΠ2. Those contexts may refer to different Skolem variables,
but this rule does not attempt to unify them in any way. Thus, any π in
Π1 (Π2 will only refer to Skolem variables appearing in both Π1 and Π2.

[While] The rule for loops identifies an appropriate loop invariant context
Πinv that is implied by the pre-state of the loop and also preserved by each
iteration of the loop body. Implication between contexts is defined as

Π1 ) Π2 iff ∀π ∈ Π2. Π1 � π

Our implementation uses a form of Cartesian predicate abstraction [20,22] to
heuristically compute appropriate loop invariants, as described in Section 6.
It synthesizes initial candidate invariants based on loop induction variable
and bounds information extracted from the code and pattern matching for
common idioms.

[Call] This rule for a method call x = y.m(z1..n) first ensures that there is a
corresponding method definition

m(z′) requires P ensures Q modifies K { s; return r }
and creates a substitution θ to map this, the formal parameters z′, and the
result variable r to the corresponding variables y, z, and x at the call site.
The PathSet precondition P describes paths that must be available at call
sites, and this rule checks that each path p ∈ θ(P ) is entailed by Π .
The ModifiesSet K contains fields assigned to while evaluating the body ofm
(either directly, or indirectly while evaluating a nested method call), as well
as a special tokenAll ifm performs a release or other span-ending operation.
(That requirement is enforced in [Method].) The operation Π \K removes
any invalidated constraints from the context Π . We also replace occurrences
of x in Π as in the previous rules and add the paths from the method’s
post-context Q, yielding the final context Π ′ = (Π \K)[x := w] ∪ θ(Q).

[Acq] Acquires do not change the current context.
[Rel] Once a lock is released, we cannot assume any location is race-free or
any aliasing constraint still holds. Thus, we remove all aliasing information
and available paths from the context, leaving just the boolean expression
constraints, which only refer to local variables.

3.2 Correctness

We state our main soundness theorem for an appropriate extensions of our type
system to run-time states, denoted D,α � Σ. (Please see [19] for the full formal
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development). This judgment ensures that the run-time state is consistent with
the statically-computed context for each thread. The judgment includes the trace
α to provide information about previous accesses performed within currently
active spans. Any verified program state Σ generates only well formed traces α:

Theorem 2 (Soundness). If D; ε � Σ and Σ −→α Σ′, then α is well-formed.

Thus, by Theorem 2, a race detector can safely ignore NoCheck accesses in any
verified program, with no loss in precision.

4 Arrays

In order to better optimize array-intensive programs, we extend our analysis to
support universally quantified paths, as illustrated by the following code frag-
ment to clear an array, as well as computed analysis contexts:

i = 0;

// Π : i = 0
while (i < a.length) {

// Π : ∀(j ∈ 0 to i). a[j], i < a.length

a[i]Check = 0;

// Π : ∀(j ∈ 0 to i). a[j], a[i], i < a.length

i = i + 1;

// Π : ∀(j ∈ 0 to i′). a[j], a[i], i = i′ + 1, i′ < a.length

}

// Π : ∀(j ∈ 0 to a.length). a[j], i ≥ a.length

We wish to infer that after the loop terminates, all array elements have been
accessed, which we capture as the universally quantified path

∀j ∈ (0 to a.length). a[j]

stating that array elements a[0], a[1], . . . , a[a.length−1] have been accessed.
Verifying this loop post-condition naturally requires a corresponding loop invari-
ant path

∀j ∈ (0 to i). a[j]

and also a richer constraint language to capture relevant invariants on indexed
variables. For example, on entry to the loop, the equality i = 0 ensures that the
loop invariant holds initially:

{ i = 0 } ⇒ { ∀j ∈ (0 to i). a[j] }

Moreover, the invariant holds on the loop’s back edge due to the following impli-
cation, where the Skolem variable i′ refers to the value of i before the increment:

{ ∀j ∈ (0 to i′). a[j], a[i′], i = i′ + 1 } ⇒ { ∀j ∈ (0 to i). a[j] }



266 C. Flanagan and S.N. Freund

s ∈ Stmt ::= . . . | x = new C[z] | x = y[z]k | y[z]k = x

p ∈ Path ::= x.f | x[e]
qp ∈ QuantifiedPath ::= p | ∀i ∈ r. qp
r ∈ StridedRange ::= e to e by e

π ∈ ContextItem ::= qp | c | be

D � s : Π � Π′

[Array Read]

k = NoCheck ⇒ Π � y[z]
p = (y[z])[x := w] Π′ = Π[x := w] ∪ {x = p, p}

D � x = y[z]k : Π � Π′

[Array Write]

k = NoCheck ⇒ Π � y[z]
Π′ = (Π \ Array) ∪ {x = y[z], y[z]}

D � y[z]k = x : Π � Π′

Fig. 5. RedJava Extensions to Support Arrays

Finally, on loop termination, we verify:

{ ∀j ∈ (0 to i). a[j], i ≥ a.length } ⇒ { ∀j ∈ (0 to a.length). a[j] }

Figure 5 formalizes the extended language of quantified paths and type rules
used by our analysis. Paths now include array accesses x[z] as well as field
accesses. Paths may also include an enclosing quantification (∀i ∈ r. •) over a
strided range r of the form “estart to eend by estep”, which represents the set
of indices { i ∈ [estart , eend) | (i − estart ) mod estep = 0 }. (We abbreviate the
strided range “estart to eend by 1” as “estart to eend”.)

The rule [Array Write] for an array assignment y[z] = x uses the operation
Π \ Array, defined below, to remove from Π any information dependent on
array values. We also include Array as a possible ModifiesSet component κ in
method specifications.

κ ::= f | All | Array

Π \Array = { p ∈ Π } ∪ { be ∈ Π } ∪ { (x = p) ∈ Π | p �= y[e] }

This treatment of array writes is quite coarse since an assignment to any array
eliminates facts about all arrays in the program. In practice, we use a type-based
rule that, when an array of type C is modified, eliminates only facts dependent
on values stored in arrays of type C. This refinement works well in practice, but
further refinements based on more precise points-to information could be used
in cases where it proves insufficient.

5 Shadow Proxies

Identifying redundant checks can improve the performance of dynamic race de-
tectors, but it does not directly reduce the memory overhead of keeping analysis
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(or shadow) state for each memory location. Various race detectors [32,43] have
explored using one shadow state per object or array, but this approach may
produce spurious warnings.

We now explore how to reduce the number of shadow states via static analysis,
while still preserving precision. Our approach is based on the observation that
accesses to different memory locations are often correlated. For example, an
object ρ of type C with fields f and g may be used in such a way that whenever
ρ.g is accessed, ρ.f will also be accessed in the same span. Thus any data race
on ρ.g naturally implies there is a race on ρ.f . In this case, we say that ρ.f is a
proxy location for ρ.g, and we say that f is a proxy field for g, written f * g, if
that proxy relationship holds for all C objects.

If f * g, then a race checker may forego allocating shadow state for g fields
and ignore all accesses to them while still providing the following guarantees for
all objects ρ:

– If no races are found on ρ.f , then both ρ.f and ρ.g are race-free.
– No races will be reported on ρ.g, since those accesses are not checked.
– A detected race on ρ.f implies that there is a race on ρ.f and that there

may be a race on ρ.g.

Note that if both f * g and g * f (i.e., f and g are always accessed together),
then the third guarantee may be strengthened to:

– A detected race on ρ.f implies that there are races on both ρ.f and ρ.g.

However, the weaker asymmetric requirement f * g enables more check elimina-
tion and memory footprint reduction while still providing the useful correctness
guarantee of always detecting a data race on any trace containing one.

Although space limitations prevent a full discussion, we summarize type sys-
tem extensions for identifying proxy fields in the rest of this section. The key
typing requirement is that f * g if and only if, for each access instruction
x = y.gk or y.gk = x, either

– Π � y.f , where Π is the instruction’s computed context; or
– Π ′ � y.f , where Π ′ is the computed context for some instruction in the same

span that post-dominates the access to g.

The first clause captures cases when f is accessed before g, and the second
captures the converse. If these requirements hold, all race checks for g are re-
dundant. In our Java implementation, we compute the post-dominator relation
assuming all unchecked exceptions, such as NullPointerExceptions, are errors
in the source code and guarantee no loss in precision only on error-free traces.

Array entries may also have proxies. Location ρ[i] is a proxy location for ρ[j]
if ρ[i] is accessed in every span accessing ρ[j]. We say that i is a proxy index
for j if that requirement holds for all array accesses in a program. Distinguishing
arrays by allocation site (via, for example, a standard points-to analysis) enables
a more precise definition: i *l j if i is a proxy index for j for all arrays allocated
at source location l. The key typing requirement for arrays is that i *l j if and
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only if, for each access instruction x = y[z]k or y[z]k = x such that y may be
an array allocated at source location l and z’s value may be j, either

– Π � y[i], where Π is the instruction’s computed context; or
– Π ′ � y[i], where Π ′ is the computed context for some instruction in the

same span that post-dominates the array access.

Given this definition, the race check on an access y[z] is redundant if, for every
possible value j for z and allocation site l for y, there exists an i such that i *l j.

Typically, shadow proxies for all indices of an array can be summarized quite
succinctly. For example, the relation ∀i. (i div 4)∗4 *l i indicates that all arrays
allocated at l are divided into chunks of four elements, where the first index in
each chunk is a proxy for the other three indexes in the chunk. Any array access
instruction guaranteed not to touch one of the proxies may be tagged with
NoCheck. Moreover, a race detector can use the shadow location maintained
for each chunk’s proxy when checking accesses to any elements in the chunk,
reducing the number of required shadow locations for an array of n elements
from n to n/4. Similar reductions in checking and memory requirements are
possible for many different proxy relations, several of which are described below.

The shadow proxy analysis requires information about each span. However,
one may be able to identify many proxies without examining all spans: for exam-
ple, proxies among private fields can be found by examining only a single class
at a time. We could also augment our system with simple “proxy specifications”
on classes, which could then be subsequently verified by a modular analysis. We
hope to explore these items in more detail in the future.

6 Implementation

We have implemented our analysis for the full Java language as part of a tool
called RedCard. This analysis reads in bytecode programs and labels each field
and array access as either NoCheck or Check. It outputs a list of the accesses
marked NoCheck, and that list may then be used to optimize any dynamic race
detector. Transforming our type system to the full Java language and an in-
ference algorithm for bytecode is mostly straightforward. We describe the most
interesting implementation details below.

We implemented RedCard in the WALA analysis infrastructure [41], which
represents method bodies as control flow graphs over instructions in SSA form.
The tool analyzes all methods appearing in a call graph built by WALA using
0-CFA. RedCard implements the relation Π � π via the Z3 SMT Solver [11].

For each instruction in each method, we compute a context Π via dataflow
analysis. All contexts begin as the special context Top, where Π (Top = Π for
all contexts Π . The analysis then uses a meet operator and transfer functions
based on the system presented in Section 3.1 to compute the maximal fixed
point solution for the contexts for each instruction. RedCard handles all basic
synchronization operations present in Java, including locks, volatile variables,
fork/join, wait/notify, and so on. RedCard then identifies each memory access
instruction for which its context implies a check is redundant.
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Intra- and Inter-Procedural Modes. RedCard processes methods in one
of two modes: an intra-procedural mode in which RedCard assumes the most
conservative specification “requires { } ensures { } modifies { All }” for
all methods and proceeds to infer redundant checks via an intra-procedural
dataflow analysis; or an inter-procedural mode in whichRedCard uses a context-
insensitive inter-procedural dataflow analysis to infer both method specifications
and redundant checks. The inter-procedural mode also uses a class hierarchy
analysis to reason about method resolution. This mode yields better results
when precise specifications are not available, but it is also a more complex and
compute-intensive analysis.

Distinguishing Reads and Writes. Up to this point, our analysis has not
distinguished reads and writes. However, it is necessary to do so in practice since
precise dynamic race detectors treat them differently. Specifically, two concurrent
accesses are considered conflicting only when at least one of them is a write.
Given this distinction, RedCard uses the following rules to determine whether
a check is redundant:

– A dynamic check on a write is redundant if there is a previous write to the
same location in the current span.

– A dynamic check on a read is redundant if there is a previous read or write
to the same location in the current span.

Thus, we record in Π whether each access p is a read or a write, and we adjust
the definition of redundancy to match the above. For simplicity, we continue to
treat all accesses uniformly in the examples below.

Libraries. Since we evaluate RedCard when used in conjunction with Fast-

Track, RedCard follows FastTrack’s treatment of libraries: Fields of library
classes are not checked for races, and synchronization operations internal to li-
braries are assumed to not be used to protect any of the target’s data and
are ignored. However, several key library methods from java.lang.Object and
java.lang.Thread, such as Object.notify and Thread.start, are treated spe-
cially as synchronizing operations. These assumptions may cause FastTrack

to report false alarms (since necessary synchronization within libraries may be
ignored), but we have never observed false alarms for the benchmarks studied.
RedCard treats synchronization in libraries in exactly the same way, thereby
leaving the completeness/soundness guarantees of FastTrack unchanged. The
programmer can also provide more precise library module specifications or fully
analyze specific library classes via RedCard command-line options.

φ-functions. WALA’s SSA representation makes some aspects of the dataflow
analysis much easier since local variables are immutable. However, SSA does have
φ-functions for merging multiple definitions into a single variable at meet-points
in the CFG, as in the following example, which also shows how we compute Π
for the entry to the block containing a φ-function:
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x2 = ...

x = φ(x1,x2)
...

Π1

x1 = ...

Π2 Π = (Π1[x := w1] ∪ {x = x1})
( (Π2[x := w2] ∪ {x = x2})

In essence, we equate x with the appropriate variable in the incoming contexts
Π1 and Π2. Contexts propagated along back edges introduce one additional
complexity. For example, if Π2 is the context propagated back to the top of a
loop containing the definition of x, then Π2 may already include references to
x. Thus, we replace all occurrences of x in Π2 with a fresh, Skolem variable w2,
and similarly modify Π1, prior to adding the equalities and computing the meet
of the resulting contexts.

Path Expansion. Our previously defined meet operator can be overly coarse
at meet-points. To illustrate why, consider the following program and contexts:

 t1 = a.fCheck

 y1 = t1.gCheck

 a = ...

 t2 = a.fCheck

 y2 = t2.gCheck

 t3 = a.fNoCheck

 y3 = t3.gNoCheck

Π2Π1

Π1 = { a.f, t1 = a.f, t1.g, y1 = t1.g }

Π2 = { a.f, t2 = a.f, t2.g, y2 = t2.g }

Π1 (Π2 = { π ∈ Π1 ∪Π2 | Π1 � π and Π2 � π }
= {a.f}

Both branches access a.f.g. Thus, the check on y3 = t3.g is redundant. How-
ever, we cannot prove that because the context for the start of the final block
would be Π1 ( Π2 = {a.f}. In essence, the meet operation loses information
about available paths because incoming contexts may encode aliasing via dif-
ferent local variables. To reason more precisely about such situations at meet-
points, we permit paths to include more than one field or array reference, and
RedCard expands each access path inΠ1 andΠ2, using their respective aliasing
constraints, until the access paths refer only to variables defined by instructions
common to both control-flow paths leading to the meet point (i.e., that domi-
nate the meet-point). In Π1 above, t1.g and t1 = a.f are combined to obtain
a.f.g. The same path is similarly derived from Π2. These expanded paths are
added back into Π1 and Π2 before ( is applied, yielding

(Π1 ∪ {a.f.g}) ( (Π2 ∪ {a.f.g}) = { a.f, a.f.g }

which does allow us to conclude that checking for races on y3 = t3.g is re-
dundant. Supporting longer paths requires changes to PathSet and ModifiesSet
operations, but it is mostly straightforward. Our implementation limits paths to
contain at most four field or array references to ensure termination.

Loop Invariants. RedCard infers loop invariants with a specialized form of
Cartesian predicate abstraction [20, 22] on both access paths and constraints.
More specifically, we compute the loop invariant context Πinv in rule [while] by
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first heuristically generating a conjectured contextΠheuristic and then repeatedly
analyzing the loop body to infer the maximal Πinv ⊆ Πheuristic that is a valid
loop invariant. Our heuristics conjecture invariants based, in part, on the context
that first flows to the loop head, inferred loop induction variables, and pattern
matching for common idioms. Unusual array access patterns, complex index
computations, and irreducible flow graphs may be problematic for our approach,
but we found it to work quite well in practice for most loops, including nested
loops iterating over multi-dimensional arrays in various ways.

Shadow Proxies. After computing the contexts for every program point, Red-

Card infers field shadow proxies by conjecturing that each field is a proxy for
every other field and then refuting the conjectures that do not hold.

To identify array shadow proxies, RedCard first conjectures a set of possible
index relations that hold for all arrays allocated at each allocation site l. These
include relations of the form “∀i. F (i) *l i” where F (i) is one of the following:

F (i) = 0 F (i) = (i div 4) ∗ 4 F (i) = i mod 4
F (i) = 1 F (i) = (i div 8) ∗ 8 F (i) = i mod 8

The first column characterizes whole arrays proxied by a single index, the middle
column characterizes arrays divided into chunks where an index is proxied by the
first index in its chunk, and the right column characterizes arrays that are always
traversed by a fixed stride (e.g., every fourth element is touched). RedCard

then refutes the proxy relations for arrays that do not hold. We believe further
improvements could be made by expanding this set of conjectures and refining
our analysis to reason about more sophisticated patterns.

Code Transformations. A variety of code transformations significantly im-
prove the number of statically identifiable redundant checks. One particularly
useful transformation is loop unrolling [8,38]. For example, the following loop (on
the left) performs N run-time race checks on a.f. Assuming m does not modify
a.f, all of these checks are redundant except the first. Thus the semantically-
equivalent version on the right performs only one check.

for (i = 0; i < N; i++) {

a .fCheck .m();
}

i = 0;

if (i < N) {

a .fCheck .m();
for (i = 1; i < N; i++) { a .fNoCheck .m(); }

}

RedCard currently implements loop unrolling via a source-to-source translation
step occurring prior to the dataflow analysis. Another transformation we hope
to explore in the future is method specialization based on available paths at
different call sites. This optimization is synergistic with loop unrolling, since a
method called inside the loop body can be specialized to two versions: one for
the first iteration outside the loop, and one version for inside the loop where
fewer checks may be necessary.
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7 Evaluation

We demonstrate the effectiveness of RedCard by evaluating its ability to elim-
inate redundant checks in a variety of benchmarks. We first describe our ex-
perimental framework and analysis time, then show the percentage of access
checks removed by RedCard for each program, and finally demonstrate how
eliminating checks improves the performance of the FastTrack race detector.

Benchmark Configuration.We performed experiments on the following bench-
marks: elevator, a discrete event simulator for elevators [38]; hedc, a tool to ac-
cess astrophysics data fromWeb sources [38]; tsp, a Traveling Salesman Problem
solver [38]; mtrt, a multithreaded ray-tracing program from the SPEC JVM98
benchmark suite [36]; jbb, the SPEC JBB2000 business object simulator [36];
crypt, lufact, sparse, series, sor, moldyn, montecarlo, and raytracer from
the Java Grande benchmark suite [25]; the colt scientific computing library [6];
the raja ray tracer [21]; and and philo, a dining philosophers simulation [14].
We configured the Java Grande benchmarks to use four worker threads and the
largest data set provided. Table 1 shows statistics for both the “Original” pro-
grams and “Unrolled” variants in which RedCard transformed all inner-most
loops as described in Section 6. All experiments were performed on an Apple
Mac Pro with dual 3GHz quad-core Pentium Xeon processors and 12GB of mem-
ory running Sun’s Java HotSpot 64-bit Server VM version 1.6.0. Access counts
and running times are the average of ten executions.

������� Static Analysis Time. The time required by RedCard to process
the “Original” benchmarks was on average 18 seconds per thousand lines of code.
Approximately 40% of this time was spent loading class files and building the
internal data structures used by the WALA analysis engine. The remaining time
was primarily consumed by the RedCard dataflow analysis, which has not been
optimized. We believe substantial speed ups could be achieved by refactoring and
refining our core data structures. Typically, less than 15% of the total running
time was spent solving Z3 queries, indicating that the SMT solver was not a
bottleneck. The more complex control flow graphs in the “Unrolled” versions
led to an average processing time of 24 seconds per thousand lines of code.

Analysis time increased by roughly 50% when RedCard was configured to
identify field and array proxies. Our prototype conjectures a large set of possible
field and array proxies, and then checks the validity of each conjecture inde-
pendently. Replacing this approach by a more efficient algorithm that processes
multiple conjectures simultaneously would eliminate much of this overhead.

Although we have not optimized RedCard for speed, the initial results show
that it is no more expensive than existing whole-program techniques. For ex-
ample, the geometric mean of the time required to process each program in the
JavaGrande suite was 101 sec. for Chord and 55 sec. for RedCard. These tools
are built on top of frameworks (Soot / WALA) with different performance char-
acteristics, and a more consistent implementation and analysis of them would
be required to draw definitive conclusions.
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Table 1. Percentage of run-time race checks eliminated under different configurations

% Accesses Checked
Original Unrolled
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(lines)

A
cc
es
se
s

(M
il
li
o
n
s)

D
y
n
a
m
i
c
a
l
l
y

N
o
n
R
e
d
u
n
d
a
n
t

R
e
d
C
a
r
d

R
C
+
P
r
o
x
y

D
y
n
a
m
i
c
a
l
l
y

N
o
n
R
e
d
u
n
d
a
n
t

R
e
d
C
a
r
d

R
C
+
P
r
o
x
y

colt 111,162 1,102.42 99.6 99.9 99.6 99.3 99.9 99.9
crypt 1,255 2,150.0 56.4 59.2 46.7 40.7 44.6 43.5
lufact 1,627 7,531.07 99.1 99.4 99.4 99.1 99.3 99.3
moldyn 1,409 30,586.08 53.1 59.5 27.5 26.3 27.7 14.8
montecarlo 3,669 2,713.35 2.3 43.0 34.8 2.3 28.8 24.6
mtrt 11,315 24.23 40.2 77.8 77.0 40.2 77.7 76.8
raja 12,027 5.39 55.6 96.8 69.9 55.6 96.8 69.9
raytracer 1,971 39,560.09 51.5 86.2 34.0 48.4 83.2 31.0
sparse 868 7,244.5 83.0 90.5 56.1 34.6 42.1 42.1
series 967 4.0 75.0 83.3 66.7 0.1 33.3 33.3
sor 1,017 2,417.42 83.3 83.5 83.5 66.3 82.8 82.8
tsp 706 820.71 62.9 92.8 86.5 61.3 75.6 69.5
elevator 2,840 0.02 69.2 80.0 66.5 58.5 69.5 61.2
philo 86 <0.01 64.5 67.3 59.4 54.5 59.0 52.2
hedc 24,932 0.05 5.9 94.6 94.5 2.3 93.5 93.4
jbb 45,943 1,068.74 75.8 84.2 78.3 68.4 75.4 69.3

Geo. Mean 46.7 79.3 63.1 24.6 62.6 53.4

Redundant Check Elimination. Table 1 shows the number of accesses per-
formed by each program. A precise race detector would need to check 100%
of those accesses. That table also shows how many of those checks could be
eliminated under three scenarios:

Dynamically NonRedundant: To gauge how well the inherently conserva-
tive RedCard analysis performs, we first estimate the “optimal” set of in-
structions that could be annotated as NoCheck by examining run-time access
histories. Specifically, we ran each program and identified access instructions
that only referenced locations already accessed in the current span. We labeled
those instructions as NoCheck and all others as Check. This may over-estimate
the number of removable checks due to coverage limitations but seems a rea-
sonable approximation for general comparisons.

RedCard: This column reports the percentage of run-time accesses corre-
sponding to checks that the RedCard static analysis labeled as Check.

RC+Proxy: This column also uses RedCard to label accesses, but reasons
about shadow proxies for fields and arrays as well.

We show the number of accesses requiring run-time race checks for these scenar-
ios as a percentage of the total number accesses. For the “Original” programs,
RedCard reduced the geometric mean of accesses checked to 79.3% of the total
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number of accesses. While still higher than the Dynamically NonRedundant

estimate of 46.7%, it does remove a substantial amount, and for a number of
programs, RedCard was close to the estimated optimal.

Inferring shadow proxies proved particularly useful for a number of programs,
as shown in the RC+Proxy column. For example, in raytracer, RedCard

recognized that the x, y, and z fields of a heavily-used 3-D point class were
proxies, leading to a reduction in the number of checks performed from 86% to
34%. Other programs, such as crypt, contained large arrays for which proxy
relations could be computed. Overall, RedCard with proxy inference roughly
cut in half the number of run-time race checks.3 Switching to the intra-procedural
mode still provided significant benefit, reducing the checking rate to about 83%
for RedCard, and to about 70% for RC+Proxy.

For the “Unrolled” programs, RedCard performed somewhat better and re-
duced the checking rate to roughly 63% for RedCard and to 53% for
RC+Proxy.

Overall, these results are quite promising. We note that there is high variance
in how well RedCard performs relative to the estimated optimal. In those cases
where RedCard performed poorly, imprecisions in aliasing information, array
index computations, or loop invariant conjectures made it unable to verify that
commonly exercised instructions could be tagged as NoCheck. Improving these
items would enable RedCard to reason about more subtle code.

Run-time Performance. We now examine how RedCard improves the run-
time performance of the FastTrack precise dynamic race detector [18]. Fast-
Track loads unmodified Java class files and instruments synchronization and
memory operations to generate an event stream. It processes those events as
the program executes.FastTrack tracks happens-before orderings between syn-
chronization and memory accesses using an adaptive epoch-based representation.

FastTrack’s representation of the happens-before relation is quite time and
space efficient compared to other precise detectors, but it must check every access
and maintain shadow state for every location. Table 2 shows the base running
time of our target programs, as well as the slowdown incurred by FastTrack.
When running FastTrack and our other analysis tools, all classes loaded by the
benchmark programs were instrumented, except those from the standard Java
libraries. The timing measurements include the time to load, instrument, and
execute the target program startup time. On average, using FastTrack led to
a slowdown of 7.5x. Memory accesses are far more common than synchronization
operations in Java programs, and the vast majority of FastTrack’s overhead
is caused by monitoring field and array accesses.

The fourth column in Table 2 shows the slowdown of FastTrack when
used in conjunction with RedCard. That redundancy analysis reduced Fast-

Track’s average slowdown from 7.5x to 7.1x. Including shadow proxy analysis
further reduced the average slowdown to 5.7x, thereby eliminating approximately
25% of FastTrack’s run-time overhead, as computed as the ratio of the run-

3
RC+Proxy may yield better results than Dynamically NonRedundant because
that estimate does not take possible proxy relationships into account.
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Table 2. Performance results. Programs marked with * are not compute-bound and
are excluded from the mean slowdowns.
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colt 11 16.0 1.1 1.1 1.1 (0.96) 1.1 1.0 5.1 90.0
crypt 7 1.2 35.4 35.1 13.1 (0.37) 35.0 20.6 1,262.8 13.8
lufact 4 5.6 8.2 7.7 7.7 (0.94) 8.1 8.2 40.1 99.9
moldyn 4 7.5 10.5 7.9 4.7 (0.45) 12.8 6.8 4.7 56.2
montecarlo 4 5.8 9.1 8.2 8.3 (0.91) 8.2 8.0 1,825.2 100.0
mtrt 5 0.4 11.8 10.9 9.5 (0.81) 10.7 9.6 23.0 97.5
raja 2 0.4 6.8 7.2 6.4 (0.94) 7.1 6.5 9.6 59.0
raytracer 4 5.8 14.2 12.5 6.0 (0.42) 12.0 5.9 2,098.6 43.7
sparse 4 5.9 19.9 19.9 19.6 (0.99) 20.6 20.8 159.7 100.0
series 4 150.1 1.0 1.0 1.0 (1.00) 1.0 1.0 20.0 100.0
sor 4 2.3 6.2 6.1 5.9 (0.94) 6.5 6.7 40.0 100.0
tsp 5 0.6 7.3 7.1 7.1 (0.97) 11.1 10.8 1.6 100.0
elevator* 5 5.0 1.2 1.2 1.2 (1.00) 1.2 1.2 <0.1 86.5
philo* 6 9.3 0.6 0.5 0.6 (1.02) 0.6 0.7 <0.1 77.3
hedc* 6 4.7 1.3 1.3 1.3 (0.99) 1.4 1.3 0.4 100.0
jbb* 5 73.9 1.2 1.2 1.2 (1.00) 1.2 1.2 925.0 82.1

Geo. Mean 7.5 7.1 5.7 (0.76) 7.7 6.4 74.8

ning time of FastTrack configured to use RedCard with proxies and Fast-

Track’s original running time in the parenthesized column. The improvements
are not linear in the number of checks removed, due to other factors that can
impact overall performance, such as lock contention on FastTrack’s internal
data structures and memory caching effects.

We had expected that the unrolled variants would exhibit greater performance
improvements since RedCard eliminated more checks in them. However, they
were actually about 15-20% slower on average. The primary cause of the slow-
down appears to be the HotSpot JIT compilation engine, which was less able
to optimize the unrolled code’s larger methods and more complex control struc-
tures. We believe a tighter integration of the transformations, analysis, and JIT
compilation strategy would mitigate these factors.

The last two columns in Table 2 evaluate RedCard’s impact on the shadow
memory maintained by FastTrack. The “Base Count” columns shows the num-
ber of distinct memory locations accessed by each program (and hence, the num-
ber of shadow locations FastTrack must allocate and maintain). A “shadow
proxy-aware” FastTrack can avoid allocating shadows for all proxied mem-
ory locations, as described in Section 5. For the target programs, this led to a
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roughly 25% average reduction in the number of allocated shadows. There is high
variance among the benchmarks. Some programs in which no interesting proxy
relationships were found show little change in the memory footprint, but others,
such as crypt, moldyn and raytracer, show dramatic improvement, especially
in how many shadow locations were allocated for tracking accesses to arrays.

Comparison to Chord. We also performed preliminary experiments to com-
pare RedCard’s ability to find redundancy to that of Chord, a sound static
analysis for identifying accesses that may be involved in a data race [30]. Chord
and other sound static analyses can often identify specific data structures or
memory references guaranteed to be free of races, they may be used to verify or
infer NoCheck annotations. Chord uses a collection of complex whole-program
analyses to reason about reachability, aliasing, locking, and thread ordering. As
such, Chord requires much more global reasoning thanRedCard’s span-modular
redundancy analysis, particularly when used in the intra-procedural mode.

To gauge how well RedCard is able to reason about redundancy when com-
pared to static analyses like Chord, we checked each benchmark program with
Chord and labeled all accesses potentially involved in races as Check. All other
accesses were labeled NoCheck. While the average reduction in checks across all
benchmarks was roughly on par with RedCard, Chord’s ability to reason about
individual programs varied greatly. Less than 1% of the run-time checks were
eliminated in some programs that use arrays heavily (crypt, moldyn, raytracer,
sparse, series, sor). For other programs, greater than 99% of the run-time
checks were eliminated (lufact and mtrt). We believe this bi-modal behavior
is caused by several factors: Chord’s handling of arrays is less precise than ours,
and it seemed able to recognize that heavily used data structures in lufact

and mtrt are thread-local and thus required no checking. Adding a thread-local
analysis to RedCard may allow it to similarly remove many of these checks.

8 Related Work

Precise dynamic data race detectors typically represent the happens-before re-
lation with vector clocks (VCs) [28], as in the Djit

+ race detector [32]. VCs are
expensive to maintain, however. The FastTrack race detector uses an adap-
tive epoch-based representation to reduce the space and time requirements of
VCs [18]. Other optimizations include dynamic escape analyses [8,38] or “accor-
dion” vector clocks that reduce space overheads for programs with short-lived
threads [10]. Different representations of the happens-before relation have also
been explored [14]. Despite these improvements, the overhead of precise detectors
can still be prohibitively high.

Similar notions of redundancy and release-free spans have been used in other
settings. For example, the IFRit race detector uses the same insight about lock
releases in its notion of interference-free regions [13], which were originally de-
signed to facilitate compiler optimizations for race-free programs [12]. The IFRit
race detector monitors execution and reports a data race when multiple con-
currently executing interference-free regions access the same variable. IFRit is
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faster than FastTrack, but is not precise and may miss some races. In contrast,
RedCard can identify redundancies for any dynamic race detector, without in-
troducing any false positives of false negatives. That is, any accesses identified as
redundant can be skipped by any race detector without changing the guarantees
provided by that detector.

Another study uses similar concepts to verify programmer-specified ownership
policies [27], but that analysis is more restricted in its ability to reason about
aliasing and function calls, and it requires programmers to specify when a thread
has exclusive access to memory locations, rather than inferring it. Raman et al.
developed a race condition algorithm for the very different context of structured
parallelism, as in Cilk or X10 [33]. Their technique applies check hoisting and
check elimination optimizations similar in spirit to RedCard to this domain.
Their experimental results find fewer opportunities for optimization than Red-
Card, most likely due to either limitations in the precision in their analysis or
the nature of programs written for such systems.

Many static analysis techniques for identifying races have also been explored,
including systems based on types [1,3,23], model checking [7,29,42] and dataflow
analysis [15], as well as scalable whole-program analyses [30,40]. While static race
detection provides the potential to detect all race conditions over all program
paths, decidability limitations imply that any sound static race detector may
produce false alarms. As mentioned previously, these static analyses can often
identify specific data structures or memory references guaranteed to be free of
races and may thus be used to verify or infer NoCheck annotations. However,
soundness of the static analysis is essential to avoid missing data races. Many of
the mentioned static analyses are either unsound by design or unsound in their
implementations to reduce the number of spurious warnings (see, e.g., [1, 15]).
Their focus on identifying race-free accesses rather than redundant race checks
also lead to different design choices in terms of precision and scalability.

Gross et al. present a global static analysis to improve the precision and
performance of a LockSet-based detector [38]. In contrast to RedCard’s focus
on redundant checks, their analysis, while it does eliminate some redundant
checks on field accesses in a fairly restrictive way, is primarily designed to identify
objects on which no races can occur. As such, their algorithm requires global
aliasing information, as well as a static approximation of the happens-before
graph for the whole program. Moreover, their reliance on an imprecise race
detector leads their system to both miss races and report spurious warnings.
They also do not support arrays.

Choi et al. present a different global analysis for removing run-time race checks
for accesses guaranteed to be race-free [8]. Despite the primary focus on identi-
fying race-free accesses, it does include elements closer in spirit to RedCard.
In particular, the analysis eliminates some redundant checks via a simple intra-
procedural analysis. However, their notion of redundancy is less general than
ours. They cannot, for example, track redundancy across method calls, rea-
son about array accesses, or model synchronization operations as precisely as
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RedCard. In addition, their analysis is tailored for use with a variant of the
imprecise LockSet algorithm. RedCard can be used to optimize any detector.

Various alias analyses have used notions similar to our available paths. For
example, Fink et al. compute must and must-not aliases via access paths as part
of an analysis to verify type-state protocols [16]. RedCard goes beyond that
approach by supporting synchronization operations, a more precise model of ar-
rays, and reasoning about race conditions. At first glance, RedCard seems to
perform similar reasoning to analyses for redundant load elimination optimiza-
tions in compilers for concurrent languages, as in [4, 24, 39] for example. Our
notion of redundancy, however, focuses on which locations have been accessed,
and not on whether a value read from memory may be subsequently reused, as
illustrated in Section 3. This leads to a more general notion of redundancy more
amenable to analysis by tools specifically designed to reason about it.
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Abstract. The deep copy of messages that traditionally ensures the
memory isolation of actors severely hinders the performance of actor
systems on multi-core machines. Several approaches have been proposed
in the state of the art to circumvent this overhead, but they require to
choose two properties out of the three desired ones: safety, programma-
bility, and efficiency. In this paper, we introduce a novel runtime own-
ership model that supports the first memory isolation model of actors
with these three properties—it is safe, developer-friendly, and efficient.

1 Introduction

In recent years, the actor paradigm has regained much attention as a concur-
rency model to exploit parallelism in Object-Oriented Programming Languages
(OOPL). The argument [7] is that memory isolated actors that cooperate through
messaging provides a concurrency model that scales well on multi-core machines.
Unfortunately, achieving memory isolation of actors traditionally relies on deep-
copying messages—a solution that severely hinders performance [15,4,14,5].

Several approaches have been proposed to circumvent this copy overhead.
Some actor frameworks abandon safety for the sake of performance [10,6], advo-
cating to pass messages by reference. These frameworks are efficient but unsafe.
Other frameworks [16,7] retain safe messaging and achieve high performance
through migrating messages, but at the expense of programmability because of
the introduction of special type systems and certain constraints on the shape of
permitted messages. A notable exception is the ActorFoundry framework [12]
that preserves the programming model of a pass-by-value semantics while avoid-
ing the copy overhead when it is safe to do so. Unfortunately, the proposed static
analysis fails to identify all opportunities to optimize out deep copies, producing
mixed results from a performance perspective.

This paper discusses a different path that does not require to choose between
safety, programmability, and efficiency. With our approach, you can have your
cake and eat it too—our solution is safe, developer-friendly, and efficient. Our
approach is safe because we guarantee that actors remain strictly memory iso-
lated. It is developer-friendly because messages have unconstrained shapes and
we neither introduce any special types nor annotations. Furthermore, developers
precisely control if an object belongs to a message or to an actor. To that end,
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we propose a runtime ownership model based on the concept of first reachability
from either a message or an actor. Put simply, an object belongs to a message
(resp. actor) if it is first reachable from that message (resp. actor). This own-
ership model is simple to use and feels completely natural to object-oriented
developers. Our solution that migrates messages is efficient compared to passing
messages by reference with a typical overhead between 5% to 10%—an over-
head that is independent of the shape and size of messages. Furthermore, our
approach is multi-core friendly since all our runtime mechanisms are lock-free.

We implemented our complete proposal in the JikesRVM [1], a research high-
performance Java virtual machine. We used the actor model of Kilim [16] as
a starting point, modifying the actor model as little as necessary in order to
integrate our novel memory isolation. We chose Kilim because it is regarded
as the best performing framework for Java [9]. All our actor benchmarks ran
almost unmodified on both frameworks, the sole meaningful difference being that
we require explicit continuations while Kilim proposes automated continuations.
Our approach requires modifying the Java virtual machine, adding a write barrier
and an extra field in the object header that contains the reference of the owner
of an object.

This paper is organized as follows. In Section 2, we quickly recall the main
points of the actor paradigm and discuss related work, focusing on memory
isolation. In Section 3, we introduce the design of our novel memory isolation
based on a runtime ownership model. In Section 4, we illustrate the use of this
ownership model through concrete examples. In Section 5 we evaluate our design
and we conclude in Section 6.

2 Related Work

The actor paradigm defines an actor system as a collection of concurrent and au-
tonomous entities, called actors, that cooperate through asynchronous messages.
Some models propose that messages be sent to actors while other models pro-
pose that messages be sent to mailboxes, an actor owning one or more mailbox.
In this case, mailboxes are shared objects whose references can be exchanged
through messages. The execution model is event-driven, with actors reacting to
received messages, one reaction at a time. While each actor is a single-threaded
entity, multiple actors execute concurrently, thereby exploiting parallelism. For
safe concurrent executions, actors are memory isolated entities, passing mes-
sages between actors by value. A straightforward design is to deep-copy mes-
sages [15,9,13], which severely degrades the performance of actor systems [9].

For the sake of performance, certain actor frameworks [10,6] abandon safety
entirely, advocating a by-reference semantics and explicit deep copies. This ap-
proach expects developers to do the right thing, passing messages by reference
when it is safe to do so and making deep copies whenever necessary. The ap-
proach is attractive for its peak performance and the fact that it preserves stan-
dard object-oriented programming practices. The main criticism is undoubtedly
the assumption that developers do not make mistakes, which ultimately raises
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the question of when can an actor system be trusted to be bug free and therefore
safe to use.

The ActorFoundry [12] proposes an original approach that retains the safety
of pass-by-value semantics while avoiding the overhead of deep copies when it is
safe to do so. To achieve this goal, this framework relies on static analysis that
achieves encouraging preliminary results. The analysis combines a novel live vari-
able analysis along with context-sensitive call graph creation and field-sensitive
points-to analysis. The approach is especially attractive because it preserves the
traditional object-oriented programming model, avoiding the complex and error-
prone task of annotating code or using special type systems. Unfortunately, the
proposed static analysis still fails to identify all opportunities to optimize out
deep copies, producing mixed results from a performance perspective.

Other actor frameworks advocate a pass-by-migration semantics that provides
a safe zero-copy messaging. The idea behind migration is that a message can be
accessed by only one actor at a time. To achieve this goal, these frameworks
control object aliasing through special type systems or annotations [11]. For
example, Kilim [16] advocates a static type checking mechanism based on linear
types that only allows for tree-shaped messages. Scala [6] has recently proposed
a new type system [7] that introduces safe migration. The proposed type systems
is interesting because it is somewhat simpler and removes important limitations
regarding permitted message shapes. The approach is certainly attractive but
the presence of a dual type system raises several questions. First, it is unclear
from published papers what are the implications of the restrictions on permitted
message shapes. It is unclear if format translations are often necessary, and
it they are, what are the performance implications. Second, it is unclear how
complex the use of such type systems actually is for the average developer and
how severely it impacts traditional object-oriented programming practices.

3 Ownership and Memory Isolation

During our search for an alternative path to provide memory isolation for actor
systems, we went through two important design steps, which we retrace in the
following two subsections. Both models are based on migration. Since the second
step builds on the first, we felt that it helped the clarity of the paper to present
the historical evolution of our design.

3.1 Allow Aliasing

The idea behind this first design is quite simple. Rather than trying to prohibit or
tightly-control aliasing, like most approaches using special type systems strive
to do, we want to allow totally unconstrained aliasing. Our motivation is to
maintain object-oriented programming as developers understand it today. If we
allow aliasing, we need to shift our focus on preventing the use of illegal references
on migrated objects. To better understand illegal references, we should discuss
the two different forms of aliasing that create illegal references when migrating
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messages: references from the actor state into messages and references from
messages to the actor state or into other messages.

The latter form of aliasing can be easily controlled through the use of coloring
and a read barrier. We use colors as follows. An actor colors any new object that
it creates with its color. As we deep migrate a message, we change the color
of each migrated object from the color of its sending actor to the color of its
receiving actor. Therefore, a simple read barrier on the color can detect illegal
references. In the case of shared objects between two messages, the first migration
operation will change the color of the shared objects and the second migration
operation will detect an invalid color. In the case of a reference from a message
to the actor state, the referenced part of the actor state will be migrated and
colored, bringing us back to the former aliasing: the actor keeping references to
migrated objects.

This form of aliasing is more difficult to handle properly, even though the
principle is straightforward: any reference retained by the sending actor on a
migrated object is illegal and must be therefore unusable. The challenge comes
from finding these illegal references. Illegal references may be retained in local
variables, in arguments of method invocations, and in objects (including arrays).
A possible solution could be to scan the actor, garbage-collection style. This
would include a complete scan of all objects reachable from both the actor itself
and the thread stack of the current reaction. Since the overhead of such a scan
would have to be paid at each send; we consider this approach impractical.

We advocate another path: we can allow illegal references to exist as long
as we forbid their use. At first glance, the implementation seems rather simple,
leveraging a read barrier to check the validity of references before they are used.
First, we need a read barrier on reading references out of objects and arrays.
Second, we need a read barrier on reading references out of local variables and
arguments. But this is not enough since illegal references could also be found
on the operand stack1. Indeed, any method invocation may send a message and
therefore migrate some objects whose references might have been pushed on the
operand stack of caller invocations, higher on the thread stack.

At first, this path seems impractical too. First, we can expect an important
overhead because of the sheer number of read barriers. Second, the implemen-
tation is really delicate because of the necessary scan of the operand stack upon
every return of a method invocation. Within an interpreter, one could possi-
bly scan the operand stack after each method invocation, introducing a serious
overhead. Within a high performance virtual machine using Just-In-Time (JIT)
compilation, the operand stacks is spread across the hardware registers and spill
areas in stack frames, complexifying even further the search for illegal references
after every method invocation.

Although it seems that we reached a dead end with this design, a simple
solution exists if we are to revisit the immediate nature of the send operation. If
messages were to be migrated when the current reaction completes rather than

1 We use Java parlance, focusing on the Java virtual machine for the sake of clarity,
although the problem is absolutely not Java specific.
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immediately when sent, there would be no need for most of the previous read
barriers. In particular, we would not need to bother with any of the read barriers
related to the thread stack: local variables, arguments, and operand stack. Since
we would be migrating messages once the current reaction completed, the thread
stack can be considered as empty as far as memory isolation is concerned. Indeed,
when a reaction completes, we are back executing code from the actor framework,
and since the framework is the trusted code base, we need not search for illegal
references.

Therefore, we propose to introduce the concept of tail migration. Developers
can continue to shape messages however they please and send them whenever
convenient. Each send operation only records the reference of the message, con-
structing a list of messages that are pending migration. Upon the completion of
a reaction, the system automatically processes the pending messages, migrating
each one of them to its intended actor. Notice that inter-message aliasing would
only be discovered at the time of the effective migration, relying on the above
deep-coloring of migrated messages.

Even with tail migration, we must rely on the use of a read barrier on reading
references out of objects and arrays. In Java, this means inserting a read barrier
on the GETFIELD and AALOAD bytecodes, where GETFIELD loads an object
reference from an object field and AALOAD loads an object reference from an
array object. With this read barrier in place, illegal references can be retained
by objects and arrays, but they cannot be used, so safety is guaranteed.

Even though safety is guaranteed, we must consider the following point. Since
an actor can retain illegal references, it can potentially force large graphs of
objects to stay alive in other actors. This suggests to extend the garbage collector
so that it discovers illegal references and nullifies them. While nullifying illegal
references solves the problem, it does not seem an appropriate solution from a
programming perspective since it silently removes any trace of memory isolation
violations, thereby concealing the illegal behaviors of certain actors. We propose
to use a special bit pattern instead of null; this special bit pattern would be
treated by the garbage collector as a null reference, but it would be treated by
the read barrier as an illegal reference, raising an appropriate exception such as
IllegalPointerException.

To summarize, this design preserves the traditional programming style of
OOPLs and provides the safe migration of unconstrained graphs of objects.
Unfortunately, we can expect a relatively high overhead since it relies on a read
barrier [2,17]. Furthermore, we feel that the lazy discovery of illegal references in-
duces a programming model that is just too cumbersome for developers. Indeed,
cross-message references are only discovered when the reaction completes, not
when they are created. Even worse, other illegal references are only discovered if
there is an attempt to use them, which means that the threat of illegal pointer
exceptions always remains. Furthermore, it is our experience that understanding
the real source of these exceptions when they finally occur is a daunting task
for most developers, therefore greatly limiting the usability of this approach in
practice.
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3.2 Control Aliasing

Our second design builds on the first, combining tail migration with a novel
ownership model. Our ownership model defines two owner classes: the Actor
class and the Message class. In other words, each actor and each message are
individual owners. Each owner defines one ownership domain including the owner
object and all the objects owned by that owner. Therefore, owner objects are
created as owning themselves. Other objects are created free (not owned) and will
remain free until garbage collected or until absorbed by an ownership domain.
A free object is absorbed as soon as it becomes reachable from an owner object,
directly or indirectly. In other words, the ownership propagates through reference
assignments:

L.f = R; (1)

When the field f of the left-hand-side object L, owned by an owner O, refers to
a right-hand-side object R, the ownership propagates from L to R as follows:

1. If the object L is free, there is no ownership to propagate. If the object
R was free, it remains free. If it was owned, its owner remains unchanged.

2. Object L is owned and R is free. When a free object is first referenced
by an owned object, we propagate the ownership: R becomes owned by the
owner of L.

3. The objects L and R are owned. The assignment is illegal unless L and
R are owned by the same owner.

4. The object L is owned and R is shared. The assignment is always legal
and there is no ownership propagation.

Even with isolated ownership domains, the concept of shared objects is nec-
essary to model shared references to trusted language objects. For instance,
mailbox objects are typically shared by actors to send and receive messages.
Other language objects must also be shared such as Java enumeration, Java
classes, or class loader strings. In general, it is also accepted that immutable
objects ought to be shared. Shared objects are never absorbed, they remain free
until garbage collected. However, it is important to assert that, aside from refer-
ences to well-identified shared objects, ownership domains are entirely isolated.
Any assignment attempting to create a reference across the boundary between
two ownership domains would raise an illegal assignment exception, immediately
identifying the source of a future illegal reference.

It is important to point out that the absorption of an object is a deep absorp-
tion, applying the same write barrier on all encountered references. Indeed, in
the last case above, despite the fact that R is free, the graph of objects reach-
able from R might be composed of either owned or free objects. Free objects are
absorbed but objects owned by other owners would represent an illegal situation
forcing an exception to be thrown. It is also important to point out that once
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Fig. 1. Ownership Propagation

owned, an object remains owned by the same owner until it becomes garbage
and it is reclaimed.

Figure 1 illustrates an example of ownership propagation. On the left-hand
side, we have an actor, the stack of its current reaction, and a message M .
There is also a small graph of free objects, only reachable from the reaction
stack. Going to the right-hand side, the actor is adding the object N to the
message M , which propagates the ownership of the message M onto the object
N and those reachable from N .

Note that propagating ownership does not entail any object copy. It is similar
to coloring but instead of propagating a color, we propagate the identity of the
owner object. In Java, this means the above write barrier must be added to the
PUTFIELD and AASTORE bytecodes, PUTFIELD stores an object reference in
an object field and AASTORE stores an object reference in an array object. The
simplest implementation is to have an extra hidden reference per object, called
the owner reference. When the object is free, that owner reference is null. When
the object is owned, that owner reference refers to the owner object.

Notice that local variables, method arguments, and free objects are allowed to
refer to any object—free or owned. This is important because this allows a total
programming freedom when manipulating the state of an actor or of a message.
In other words, despite the fact that objects may be owned, either by the actor
or by a message, the actor developers retain a complete programming freedom.
For instance, an enumeration on a hash table would be a free object, even if
the hash table is owned. The enumeration object will be using direct references
on owned objects that are internal to the collection implementation. In other
words, aliasing of owned objects through free objects is legal and not limited in
any way. This model is correct, never endangering isolation, since we adopted a
tail migration rather than an immediate migration when sending messages.

4 Examples

In this section, we illustrate the use of our ownership model through a simple
yet complete example. The examples are written in Ownership-Kilim (O-Kilim),
our actor framework based on Kilim [16]. The purpose of this section is two-
fold. First, we want to illustrate the minimal differences between O-Kilim and
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Kilim. Second, we want to highlight how natural our ownership model feels to
object-oriented developers.

Like Kilim, we have three special classes: the Task class, the Mailbox class,
and the Message class. The Task class is the concept of actor in Kilim. The three
classes are part of the trusted code base, but only the Mailbox class is final. Mail-
boxes are shared across tasks, allowing tasks to send and receive messages. There
are two key differences between Kilim and our proposal. First, O-Kilim relies on
our ownership model. Second, Kilim advocates automated continuations, rely-
ing on blocking operations on mailboxes with an automated wind-unwind of the
thread stack upon blocking and resuming tasks. O-Kilim assumes explicit con-
tinuations and run-to-completion reactions. The O-Kilim framework guarantees
that each actor executes at most one reaction at any one time, irrespective of the
number of mailboxes it is bound to. An actor binds to a mailbox by registering a
listener, whose MailboxListener interface is given in Listing 1.1. Only one actor
may bind to a given mailbox.

Developers are expected to extend the Actor class and Message class as they
see fit. Instances of both the Actor and Message class are owners, each instance
defining a separate ownership domain. Remember that owners are instantiated
as owning themselves and therefore their constructors already execute within the
confinement of their ownership domain. In Listing 1.1, we also show the simplest
actor constructor that first binds to a given mailbox and then starts.

Listing 1.1. Server Actor

1 public interface MailboxListener<T> {
2 void onMessage(Mailbox<Message<T>> mb, Message<T> msg);
3 }
4
5 public class Server extends Task implements MailboxListener<Message> {
6 Mailbox<Message> mymb;
7 public Server(Mailbox<Message> mb) {
8 mymb = mb;
9 mymb.addMessageSubscriber(this);

10 start();
11 }
12 public void onMessage(Mailbox<Message> mb, Message msg) {
13 Mailbox<Message> niu = new Mailbox<Message>();
14 new Parser(niu);
15 niu.put(msg);
16 return;
17 }
18 }

In Listing 1.1, the server’s reaction creates actors (Parser) that concurrently
process received requests. Each request will be about parsing a text document
into an in-memory W 3C document. Notice that messages can be forwarded
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without hassle, one of the main performance advantages of migration. Line 15,
we can see that forwarding a message is as simple as putting into a mailbox,
which does not migrate the message immediately but remembers that it should.
At the end of the reaction, line 16, the message will be migrated, without any
overhead.

Notice also that mailboxes and actors are created as regular objects. Notice
however that created actors are not referenced; in fact, actors are not shared
objects and cannot be referenced across ownership domains. Furthermore, the
reference to an actor is only legal within local variables and arguments belonging
to a reaction on that actor. Hence line 14, the newly created actors cannot
be referenced; indeed, any communication with an actor must happen through
mailboxes.

Listing 1.2. Main Initialization

1 public static void main(String args[]) {
2 Mailbox<Message> mbserver = new Mailbox<Message>();
3 new Server(mbserver);
4 int maxClient = Integer.parse(args[0]);
5 for (int i = 0; i < maxClients; i++) {
6 Mailbox<Message> niu = new Mailbox<Message>();
7 new Client(i, niu, mbserver);
8 niu.put(new Message(Message.START, args[i+1]));
9 }

10 }

Listing 1.2 illustrates the corresponding main initialization of an actor system.
We create one server actor and a certain number of client actors, giving to each
client the mailbox of the server and a url of a document. Listing 1.3 shows the
simple message class we use throughout this example.

Listing 1.3. Message Class

public class Message extends kilim.Message {
public static final int START = 1;
public static final int REQUEST = 2;
public static final int RESULT = 3;
int kind;
Mailbox mb;
String url;
Document doc;
Message(int kind, String url) { ... }
Message(int kind, Mailbox mb, byte[] text) { ... }
Message(int kind, Document doc) { ... }

}
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Listing 1.4 shows the client actor, reading the text document from the url
(line 17), requesting the server to parse the document (line 18) and absorbing
the in-memory XML document when receiving it (lines 22 to 24). Notice the
extraction (line 23) before the absorption (line 24). Indeed, the XML document
is owned by the message, it must therefore be extracted before it can be absorbed
by the actor. Also notice the use of a local variable to remember the document
reference since the msg.doc field will be nullified by the extraction, preserving
the invariants of our ownership model.

Listing 1.4. Client Actor

1 public class Client extends Task implements MailboxListener<Message> {
2 Mailbox<Message> mymb;
3 Mailbox<Message> mbserver;
4 int id;
5 Document doc;
6 public Client(int no, Mailbox<Message> mb, Mailbox<Message> mbs) {
7 id = no;
8 mbserver = mbs;
9 mymb = mb;

10 mymb.addMessageSubscriber(this);
11 start();
12 }
13 public void onMessage(Mailbox<Message> mb, Message msg) {
14 byte[] text;
15 switch (msg.type) {
16 case Message.START:
17 text = readDocument(msg.url); // read text document
18 mbserver.put(new Message(Message.REQUEST, mymb, text));
19 break;
20 case Message.RESULT:
21 Document tmp = msg.doc
22 if (filter(tmp)) {
23 extract(tmp);
24 doc = tmp;
25 }
26 break;
27 }
28 }
29 }

The extraction of an object from an ownership domain is a deep extraction,
recursively forcing all reachable objects to be free again. Also, the extraction of
an object from its ownership domain nullifies any remaining reference within that
ownership domain that refers to objects that were just freed. This is important
to preserve our invariants: (i) there is no references from an ownership domain
to free objects, (ii)ownership domains remain fully encapsulated: there cannot
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be any cross-domain references stored in reference fields of objects (including
arrays).

However, notice (line 21 and 22) that messages can be freely manipulated
from local variables and arguments, including references on internal objects.
We believe this is one major advantage of our approach—one that preserves
a completely natural programming model for object-oriented developers. The
method filter (called line 22) would scan the document and decide if it should
be absorbed or not. This filter method would be written exactly as it would
be written in pure Java. The only constraint in our model is that cross-domain
references, between two messages or between a message and an actor, are illegal.
However, one can always extract an object from one domain and absorb it into
another. This is exactly what happens line 23 that extracts the document from
the ownership domain of the message and line 24 that absorbs the document in
the actor state.

And there is nothing more complex than that in our model in order to control
ownership and therefore ensure the safe isolation of actors. The rule could not
be simpler: just assign the reference of your object were it belongs first, then
alias it through local variables and arguments as necessary to manipulate it. It is
our experience that this model feels natural to object-oriented developers; they
write code as they are used to.

5 Evaluation

To validate our novel design for software memory isolation based on the safe mi-
gration of unconstrained messages, we implemented O-Kilim on top of a modified
JikesRVM—a high performance research virtual machine for Java. We modified
the virtual machine to include our ownership and we implemented the O-Kilim
framework on top, providing tasks (actors) and mailboxes with a tail-migration
semantics. The execution model is event-based, one actor reacting to only one
message at a time, with each reaction running to completion. However, our
framework may use multiple worker threads to execute multiple reactions con-
currently across multiple actors.

We modified the JikesRVM version 3.1.0, implementing our write barrier in
both the baseline compiler and the optimized compiler. All given numbers are
obtained with the optimized compiler, with the O2 optimization level for both
the boot image and the benchmark code. The JikesRVM is setup so that it does
not use dynamic recompilation at runtime. In other words, Java code is compiled
only once and runtime statistics are turned off. All benchmarks are run with a
warmup run that forces all Java code to be compiled at the O2 level. Then, we
measure ten successive runs, during which there is no longer any compilation
overhead since we turned off dynamic recompilation. The given numbers are the
mean average of the ten timed runs. We used the Immix garbage collection, with
a maximum heap size of 2GB.

All experiments were run on an HP-Z400, with an Intel(R) Xeon(R) CPU
W3520@2.67GHz, 64bit, 4 cores, 8 threads, 8GB RAM with memory bus at
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2.4GHz, 4x32KB L1 for both data and instructions, and 4x256KB L2, and 8MB
L3. Ubuntu 12.04 is installed, 64bit version, with the Linux kernel version 2.6.35.

5.1 Actor Benchmarks

Although there is no official benchmark for actor frameworks [9], three typical
benchmarks have been consistently used in the literature [9,16,8].

1. The Ring benchmark evaluates message passing, a ring of actors are passing
a token message around the ring a certain number of times. Our default
setting is to pass 4 million times the token around 500 actors.

2. The Chameneos benchmark [8] has N creatures, called Chameneos, that have
a cyclic behavior where they request a broker to arrange a meeting between
two creatures and when the meeting takes place, the two creatures play
together for a while and change color. Our default setting is to have 20
creatures, meeting one million times. To simulate playing, we have creatures
change color a certain number of times at each meeting.

3. The QuickSort benchmark illustrates a concurrent sorting service based on
a client-server pattern. The service is implemented by an actor that receives
multiple requests from client actors, each one to sort one collection. Concur-
rent requests are processed in parallel. For each request, the service creates
an actor and forwards the collection to sort. The created actor sorts the
collection and sends back the sorted collection to the client. Each client has
a cyclic behavior: creates a collection, requests that the collection be sorted,
waits for the sorted collection, and then scans the sorted collections to check
that it is indeed sorted. We use 500 clients that each issue 100 requests to
sort a collection with 100 elements. The collection is a Java list of comparable
objects.

With these benchmarks, we can actually establish that our framework has a
performance behavior that is comparable to Kilim, despite the slight changes in
the actor model: run-to-completion reactions and the presence of our ownership
model. Having established the soundness of our prototype with respect to one of
top-performing actor frameworks [9], we can feel confident that our comparison
of different memory isolation schemes is meaningful.

First of all, it is important to assess how similar the benchmarks are when
running them on O-Kilim versus Kilim. The benchmarks are not only algo-
rithmically the same, but they are almost identical syntactically since we have
preserved the Kilim concepts of Tasks (actors) and Mailboxes, almost unmodi-
fied. Rather than offering a blocking operation to get messages from a mailbox,
we offer a callback mechanism to notify an actor that a message is available,
triggering the actor’s reaction2. This is actually the only syntactical difference
as our ownership is transparent, as illustrated in our example in Section 4.

2 For all benchmarks, explicit continuations were trivial, something that might not
always be true for all applications.
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Fig. 2. Unsafe O-Kilim vs Unsafe Kilim

In Figure 2, we ran our benchmarks on Kilim (version 0.6) and on O-Kilim,
both sending messages by reference. In other words, we measure the Java per-
formance of both frameworks, providing no memory isolation in this first exper-
iment. We ran all benchmarks with either one or four worker threads, a worker
thread being a Java thread solely used to run actors’ reactions. At first glance,
we can observe that both frameworks behave remarkably the same across all
benchmarks.

Regarding the Ring benchmark, both frameworks are unable to benefit from
multiple workers as the benchmark has no builtin parallelism. Unsurprisingly, it
is more efficient to schedule a sequence of reactions on a single thread than pass-
ing them around multiple threads, experiencing the delays necessary to wake up
worker threads that are sleeping. However, both frameworks are able to benefit
from using multiple worker threads on the two other benchmarks (the Chame-
neos and QuickSort). We can notice that single-threaded performance are close
across all benchmarks and so are the achieved speedups with four workers. From
these performance figures, we deduce that our O-Kilim prototype is a fair vehicle,
compared to Kilim, in order to evaluate different memory isolation schemes.

Focusing on memory isolation, we compare different message passing schemes
in Figure 3. The benchmarks are the same as before, but we run them on a single-
threaded version of the O-Kilim framework. The rationale is that the overhead of
memory isolation is a single-threaded overhead since it incurs no locking and no
concurrent behavior. The by-ref schememeans that we ran the benchmarks on the
unmodified JikesRVM, running the O-Kilim framework that passes messages by
Java reference. This is equivalent to what we showed in Figure 2 under O-Kilim
numbers. Themigration schememeans that we ran the benchmarks on a modified
JikesRVM to include our ownership model, running the O-Kilim framework. We
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Fig. 3. Messaging Overheads

discuss the details of the corresponding modifications of the JikesRVM in the next
subsection. The deep-copy scheme means that we ran the benchmarks on a modi-
fied JikesRVM in which we added an optimized deep-copy mechanism, but there
is no write barrier of course. To implement this deep copy, we use the low-level
capabilities of the JikesRVM to efficiently scan and clone objects, combined with
the use of a hash table to preserve cycles when deep copying.

These performance figures confirm the established belief [9,12,7] that the deep-
copy scheme severely hinders performance. This is even the case despite the fact
that we rely on an optimized deep copy and not the costly Java serialization [13].
The Table 1 summarizes the overheads of the Figure 3. All measurements are
done with the O-Kilim framework and the same benchmarking code, only mod-
ifying the semantics of the send operation in the O-Kilim framework.

Table 1. Deep-copy vs Migration Overheads

- Ring Chameneos QuickSort

By-ref 783ms 2279ms 2505ms

Deep-
Copy

3190ms 5072ms 8568ms

overhead 247% 122% 265%

Migration 917ms 2491ms 2761ms

overhead 17.11% 9.3% 10.21%

The Ring benchmark measures a pure messaging overhead since each actor
is creating a message that it passes to the next actor down the ring. Conse-
quently, this benchmark gives us an estimate of the overhead of creating and
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sending small messages—a single object containing a single integer field (primi-
tive type). The deep-copy overhead is high, even though the messages are small.
The reason is that there is no processing at all to balance any messaging over-
head. The same is true for migrating message, so the Ring benchmark measures
our worst overhead, which is around 20%. The Chameneos benchmark shows the
positive effect of adding processing. Both the deep-copy and migration benefits
from added processing, with overheads that are cut in half. However, the Quick-
Sort benchmark shows that the deep-copy overhead soars with larger messages
whereas the migration overhead remains identical, around 10%.

From these figures, we confirm previously published results [15,4,14,5] stating
that a deep-copy approach is much more costly than migrating messages. We
focus now on characterizing more accurately our overhead, changing the amount
of processing as well as the shape and size of the processed data. First, we
will change the amount of processing in the Chameneos benchmark, varying the
number of times meeting creatures are changing colors.

Table 2. Varying Processing in Chameneos Benchmark

Color
Changes

1 50 100

Time(1W) 985ms 2491ms 3940ms

overhead 21.45% 9.30% 4.45%

Time(4W) 1345ms 1583ms 1875ms

overhead 14.37% 10.85% 0.4%

ratio 1.36 0.63 0.47

The performance figures are in Table 2. The Time(1W) line gives the execution
times for the Chameneos benchmark, on a single worker, with 20 creatures,
changing colors at each meeting either once, fifty times, or one hundred times.
Changing color is a simple method with two nested switch with 3 cases each,
deciding the new color of a creature based on its current color and the color the
other creature had when the meeting began. The added processing does not entail
any messaging, it is just a pure Java method manipulating Java enums. The
Time(4W) line gives the execution times for the same Chameneos benchmark
but using four worker threads.

Notice our high overhead when creatures only change color once (very limited
processing per message). We are back to an overhead of around 20%, as it was
the case with the Ring benchmark earlier. Also notice that when processing per
message is limited, our ability to leverage multiple workers is challenged—we
actually execute 1.36 slower with four workers than with one. In contrast, notice
the positive effect of adding processing, with decreasing overheads for 50 and
100 color change. Despite the fact that the added processing is really small our
overhead drops significantly: adding 1.4 micro-seconds per meeting drops our
overhead to 9.30% and adding 2.8 micro-seconds per meeting drops it to 4.45%.
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Moreover, notice the positive effects on our ability to leverage multiple work-
ers. With 50 color changes, we reduce the execution time by 0.63 with an over-
head at 10.85%. With 100 color changes, we reduce the execution time by 0.47,
with an overhead at 0.4%. We believe that these figures indicate that modern
processors are able to absorb our isolation overhead through concurrent execu-
tion (both hyper-threaded cores and advanced superscalar architectures) when
there is enough processing per message. An effect that we will be confirmed on
a novel XML benchmark below.

But before moving to XML processing, we can question the validity of our
remarks since we only added synthetic processing (a loop manipulating Java
enums). Consequently, we also conducted similar experiments with the QuickSort
benchmark, varying not only the shape and size of the sorted collections, but
also the cost of the element comparison.

Table 3. Varying Processing in QuickSort Benchmark

Settings A B C

Time(1W) 2761ms 4972ms 10609ms

overhead 10.21% 9.05% 8.66%

Time(4W) 1234ms 2250ms 3998ms

overhead 7.39% 3.11% 4.14%

ratio 0.44 0.45 0.37

The performance figures are in Table 3. All the three settings are on collec-
tions of one hundred elements, using the unmodified QuickSort benchmark. In
the first setting, called A, each collection is a Java ArrayList and elements are
a simple object, with one integer field. The comparison of elements is therefore
cheap: comparing primitive integers. In the second setting, called B, the elements
are still simple objects, but they contain a string rather than an integer. In fact,
the string is the textual representation of the integer value they contained in the
setting A. The goal is to increase the cost of comparing elements, now comparing
strings rather than primitive integers. In the third setting, we change the im-
plementation of the collections, moving from Java ArrayList to Java LinkedList.
The goal is to increase the overhead of accessing the elements of the sorted col-
lection during the sort. The performance figures in Table 3 confirm our previous
analysis. Across all sizes and shapes, our single-threaded overhead is around 10%.
Furthermore, this overhead drops to 3% with parallel execution on four workers.
Additionally, we maintain our speedup, executing up to 0.37 times faster on four
workers—a speedup of 2.7 on 4 workers.

To confirm these statements, we conducted one last experiment with an XML
Parser benchmark. We modified our QuickSort benchmark to parse XML doc-
uments concurrently rather than sorting Java collections. In other words, we
retained the overall architecture of the benchmark, but we replaced our home-
grown QuickSort algorithm with the use of the Java SAX parser. We use 100
clients that each issue 50 requests to parse a XML text document into a W 3C
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document. The text document is a simple array of characters, while the W 3C
document is a complex in-memory graph of objects, whose exact size and shape
depends on the parser implementation.

Table 4. Varying Processing in XML Parser Benchmark

Settings Small Medium Large

Time(1W) 1251ms 5664ms 17102ms

overhead 5.2% 7.68% 7.66%

Time(4W) 604ms 2926ms 7975ms

overhead 0.16% 9.13% 0%

ratio 0.48 0.51 0.46

The performance figures are in Table 4. Again, the performance figures confirm
our analysis, even with a completely different processing and different data sets.
The small XML document is really small with 7 tags, 5 attributes, accounting
for 161 bytes. The medium document is more reasonable, with 69 tags and 32
attributes, accounting for 1217 bytes. The large document has 225 tags and
104 attributes, accounting for 5357 bytes. In this last experiment, with realistic
processing, our overhead is around 5-8% with single-threaded execution and
drops to zero overhead with four workers, while retaining an acceptable speedup,
executing at twice the speed with 4 workers compared to one worker.

Overall, we believe that we have established that our memory isolation scheme
induces a low overhead and does not impede concurrent execution. We further
believe that we have reached our goal since we achieve low-cost memory isolation
with minimal changes to the actor model and no change at all to the habits of
object-oriented developers. However, we feel that more work is necessary on two
fronts. First, a comparison analysis with solutions based on static analysis, that
also preserve the object-oriented programming model, seems necessary. Second,
the actor community must establish a representative benchmark suite for multi-
core machines, with realistic concurrent applications that are representative of
the concurrent and processing patterns targeted by actor systems.

5.2 WriteBarrier Benchmarking

In this section, we detail the design of our memory isolation mechanisms. In par-
ticular, we detail our ownership implementation, the associated write barrier. We
explain how we integrated these mechanisms in the JikesRVM virtual machine.
We also provide low-level performance numbers from the various benchmarks
we ran in the previous subsection, allowing us to further explain the excellent
performance figures we discussed earlier.

Our ownership model has a straightforward implementation. We added an
owner field to the header of each Java object. This owner field holds the reference
to the owner of the object, or null otherwise. This reference is known to the
garbage collector, so a live object maintains its owner alive. The added overhead
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to the garbage collection process is negligible. As explained earlier, the owner
field is assigned by a deep absorption triggered by our write barrier.

The concept of write barrier is not new; it has been used intensively for sup-
porting various garbage collection schemes [17]. In fact, the Immix garbage col-
lector [3] we use in all our experiments uses write barriers for its own tracking
of references. Traditionally, the reported performance overhead of write barri-
ers [2,17] is typically around 2% to 6%. Traditionally, a write barrier is divided
into a fast path and a slow path. The fast path handles the common case, re-
quiring very few instructions; instructions that are inlined by the Just-In-Time
compiler (JIT) on compiling the PUTFIELD and AASTORE bytecodes. The slow
path handles the exceptional cases, requiring more instructions that are not in-
lined, therefore requiring that the fast path branches to the slow path when an
exceptional condition occurs.

Listing 1.5. Write Barrier

static void writeBarrier(Object left, Object right) {
if (right!=null) {
Object lowner, rowner; // left and right owners.
lowner = Magic.getObjectAtOffset(left,JavaHeader.OWNER OFFSET);
if (lowner!=null) {
rowner = Magic.getObjectAtOffset(right,JavaHeader.OWNER OFFSET);
if (lowner!=rowner)
writeBarrierSlowPath(lowner,left,rowner,right);

}
}

}

Assembly:

; ECX = right

; EDX = left

TEST ECX,ECX ;

JEQ ; branch if right==null

MOV EAX -24[EDX] ; EAX = lowner

TEST EAX,EAX ;

JEQ ; branch if lowner==null

MOV EBX, -24[ECX] ; EBX = rowner

CMP EAX ; compare lowner and owner

JNE ; branch to slow path if lowner!=rowner

Our write barrier is no exception to this split into a fast path and a slow path.
Our fast path is given in Listing 1.5, both in Java and the corresponding IA-32
assembly code. The write barrier is written in Java because the JikesRVM is a
meta-circular Java Virtual Machine (JVM), written itself in Java. We insert our
write barriers like the garbage collector does, when the JIT compiler expands
runtime services, after the final High-Level Intermediate Representation (HIR) is
produced and before it is lowered to the Low-level Intermediate Representation
(LIR). We have not touched the LIR translation to machine code. Since our
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write barrier is inserted on assignment bytecodes (PUTFIELD and AASTORE),
we have a left-hand-side object and a right-hand-side object, called left and right
in the Java source. Notice the added owner field in the object header, holding
the reference to the owner if any.

Our fast path captures the most common cases: (i) when free objects are
assigned (left owner is null) and (ii) when legal references are assigned within
an ownership domain (left and right owners are the same). The Table 5 gives
the number of write barriers and the decomposition into fast and slow paths
for various benchmarks, reusing previous settings. For Chameneos, we reused 20
creatures, 1000000 rendez-vous, and 50 color change per meeting. For the XML
parser, we reused 100 actors, 50 requests over our medium-size document. For
QuickSort, we reused 500 clients, 100 requests on a array list of 50 objects.

Table 5. Write Barrier and Absorption

Ring Chameneos QuickSort Parser

Messages 4M 4M 50,000 10,000

WriteBarrier 4M 16M 40M 21.4M

fast 1% 35% 32% 99%

slow 99% 65% 68% 1%

Absorption 4M 4M 10.2M 4.4M

Extraction 0 0 5.1M 2.2M

Overhead 17.11% 9.3% 10.21% 7.68%

total exec time 917ms 2780ms 6658ms 1488ms

Table 5 also shows other performance numbers related to the absorption or
extraction of objects. We give the number of absorbed and extracted objects.
We also recall the total execution times and the overhead induced by memory
isolation. These numbers show that our various benchmarks do cover a wide
mix of overheads. We cover from 4 million write barriers up to 40 millions, with
different fast/slow ratios, from 1% up to 99% fast paths. The number of absorbed
objects also varies greatly, from 1 million up to 10 millions, and so is the number
of extracted objects, from 0 to 5 millions. This variety makes us believe that our
performance figures given earlier are indeed representative of the quality of our
proposed design for the safe memory isolation of actors.

6 Conclusion

This paper proposed a novel runtime ownership model that provides object-
oriented developers with a completely natural programming model. Our
ownership model does not require special types or annotations; the model is
straightforward, an object belongs to the first owner it is reachable from. This
rule is easy to understand and simple to put into practice in object-oriented
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languages. Regarding the actor model it is integrated in, our approach has es-
sentially one requirement: to use an event-driven execution that permits the
tail-migration of messages. Our approach does not constrain the shape of per-
mitted messages, any shape or size can be migrated at no cost. The overhead of
our approach comes from the ownership management (write barrier, absorption,
and extraction). This overhead is less than 20% across all our benchmarks and
can typically be expected to be around 5%. This work suggests several directions
for future work. First, it would be interesting to see how different static analysis
techniques could help reduce the overhead of our ownership model. This is a
research direction that we feel promising and that we intend to pursue. Second,
we feel that it would be important for the actor community to develop realistic
benchmarks that would help stronger evaluations of different actor systems.
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Abstract. Mixing the actor model with other concurrency models in a
single program can break the actor abstraction. This increases the chance
of creating deadlocks and data races—two mistakes that are hard to make
with actors. Furthermore, it prevents the use of many advanced testing,
modeling, and verification tools for actors, as these require pure actor
programs. This study is the first to point out the phenomenon of mixing
concurrency models by Scala developers and to systematically identify
the factors leading to it. We studied 15 large, mature, and actively main-
tained actor programs written in Scala and found that 80% of them mix
the actor model with another concurrency model. Consequently, a large
part of real-world actor programs does not use actors to their fullest ad-
vantage. Inspection of the programs and discussion with the developers
reveal two reasons for mixing that can be influenced by researchers and
library-builders: weaknesses in the actor library implementations, and
shortcomings of the actor model itself.

1 Introduction

The actor model [1] for concurrent and parallel programming is gaining popular-
ity as multi-core architectures and computing clouds become common platforms.
The model’s restriction of communication to asynchronous message-passing sim-
plifies reasoning about concurrency, guarantees scalability, allows distributing
the program over the network, and enables efficient tools for testing [17,32],
modeling [30] and verifying [33] actor programs.

These advantages, however, depend on an intact actor abstraction. Program-
mers mixing the actor model with other concurrency models can easily break
the abstraction. It increases their chance of committing mistakes that the actor
semantics carefully avoid: shared state between actors breaks transparent distri-
bution and can introduce fine-grained data races; and blocking and synchronous
communication can lead to deadlocks. Furthermore, most of the tools for testing
actor programs lose their bug detection capability and their efficiency when used
on programs that mix concurrency models.

When examining Scala [23] programs available from public github1 reposito-
ries that use either the original Scala actor library [11] or Akka [5], we discovered

1 https://github.com

G. Castagna (Ed.): ECOOP 2013, LNCS 7920, pp. 302–326, 2013.
© Springer-Verlag Berlin Heidelberg 2013

https://github.com
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that many of the programs mix actors with other kinds of concurrent entities
such as Java threads.

This raised the question why programmers gave up the advantages of actors
and mixed them with threads. Was it a temporary measure, as the programmers
converted thread-based parallelism to actors? Does this indicate problems with
the actor model, with the implementation of the actor libraries for Scala, or in
the education of Scala programmers?

In this paper, we formulate three research questions to study the phenomenon
of mixing concurrency models:

RQ1. How often do Scala programmers mix actors with other kinds of concur-
rent entities? This question obviously goes far beyond Scala, but we decided
to look first at Scala before looking at other languages.

RQ2. How many of the programs are distributed over the network, and does
distribution influence the way programmers mix concurrency models? Our
motivation for this question is that the actor model can be used to exploit
multiple local processors, as well as to distribute the program over the net-
work. Hence, one reason for mixing concurrency models could be that some
models are better for particular kinds of programming than others.

RQ3. How often do the actors in the programs use communication mechanisms
other than asynchronous messaging? Communication through asynchronous
messaging reduces the possibility of deadlock and data races, which are com-
mon problems in the shared-memory model. However, in Scala, actors can
also communicate via other mechanisms such as shared locks. The moti-
vation for this research question is to find out if mixing the actor model
with other concurrency models is related to the advantages of asynchronous
communication, that is, whether developers use actors for those parts of the
program that have high risk of data races or deadlocks.

This paper describes how we selected programs to study (Section 3), the way
we measured them, the resulting measurements (Section 4), and the conclusions
we drew. We also contacted the developers, and they provided many insights
into the meaning of our observations (Section 5). Our findings (Section 6) reveal
that the reasons for mixing the actor model with other concurrency models are
mostly due to weaknesses in the implementations of the libraries. However, they
also show weaknesses in the actor model itself, as well as in the experience of
developers.

In summary, this work makes the following contributions:

1. It is the first to point out the phenomenon of Scala developers mixing the
actor model with other concurrency models. This phenomenon is at odds
with the accepted wisdom about the actor model, which says that its ben-
efits from no shared state and asynchronous communication outweigh its
drawbacks.

2. It gives statistics about mixing actors with other kinds of concurrent entities
in real-world Scala programs.

3. It gives recommendations for researchers and actor-library designers.
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2 Background: Concurrent Programming with Actors

Actors [1,13] are a model of concurrent programming. They are concurrently ex-
ecuting objects that communicate exclusively via asynchronous messages. Each
actor buffers the messages it receives in a mailbox and processes them sequen-
tially, one at a time. Upon processing a message, an actor can change its state,
send messages, or create other actors. The event-based computation model avoids
blocking waits for specific messages, which helps to keep clear of deadlocks in
the system. Each message is processed in an atomic step [2]. This reduces non-
determinism in actor programs and makes reasoning about the program easier.

Actor semantics furthermore mandate that each actor is perfectly encapsu-
lated, that is, there is no shared state between actors. This greatly reduces
the potential for data races. In combination with asynchronous execution, the
lack of shared state allows actor programs to fully exploit the processing cores
of current—and future—multi-core processors. Hence, actors offer strong local
scalability, which makes them an attractive programming model for modern ar-
chitectures.

Another trait of actor semantics is location transparent addressing: actors
know each other only by unique, opaque addresses. Not having to specify the
(physical) location of a message recipient allows the run-time system to distribute
the actors that constitute a program across a computing cluster. Consequently,
the actor model provides scalability beyond single machines.

Actor Libraries. Obtaining the scalability benefits does not require a language
that enforces strict actor semantics; it is sufficient to have a library provid-
ing asynchronous messaging between concurrent objects, and to adhere to cod-
ing conventions for avoiding shared state. This allows programmers to reap the
scalability-benefits of the actor model, and to break the abstraction if desired—
for example by introducing shared state between actors or using non-actor con-
currency constructs.

Scala [23]—an object–functional language that runs on the Java virtual
machine—is one of the most popular languages that follow this path. Its stan-
dard library provides non-strict actors as the default concurrency mechanism.
We refer to the actors of this implementation as Scala actors [11]. Building
upon experience from Scala actors, the Akka library [5] supplies another im-
plementation of non-strict actors for Scala. Besides offering better performance,
it adds automatic load-balancing, improves the Erlang-style [3] resilience and
fault-tolerance, and introduces opaque actor references for better encapsulation.

While making programming more convenient, breaking the actor abstraction
has severe drawbacks. For example, most of the tools for testing [17,32], mod-
eling [30], and verification [33] lose their efficiency when used on programs that
mix the actor model with other concurrency models. Mixing concurrency models
furthermore re-introduces the potential for fine-grained data races and reduces
the readability and maintainability of programs.
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3 Methodology

This section describes our methodology for compiling the corpus of Scala pro-
grams that use actors. It also explains how we gather statistics about these
programs. We use these statistics to answer our research questions in Section 4
and complement them with discussions with the developers in Section 5.

3.1 The Corpus of Actor Programs

The foundation of our program corpus is the list of publicly available Scala
programs on the github repository web site that import the Scala actor library
or the Akka library. We ignore programs with less than 500 lines of code, which
reduces the initial set of around 750 programs to a list of 270 programs2. Since
the goal of the corpus is to characterize real-world actor programs, we further
filter the list of 270 programs, reducing it to the 16 programs shown in Table 1.
Our criteria for real-world actor programs are as follows:

(1) Library Usage: The program not only imports the Scala or Akka actor
library, but also uses the library to implement a portion of its functionality.
Note that this does not mean that the program uses the Actor class from the
library. We merely require that it uses functionality provided by the library,
for example futures or remote actors.

(2) Size: Scala makes it easy to import Java libraries and write programs con-
taining a mixture of Java and Scala code. Since our analysis tool is agnostic
to the difference, we require that the program consists of at least 3000 lines
of code in total. Of these, at least 500 lines must be Scala code, which is
more compact than Java code.

(3) Eco-System: At least two developers contribute to the project, and these
provide a way to contact them. Intuitively, having two developers reduces
the chance of completely random design mistakes; the agreement of two
developers is more likely to represent a systematic mistake. Furthermore,
the source code must compile, and the program must have documentation.

3.2 Data Collection

To collect the data underlying our statistics, we wrote a custom tool for analyz-
ing the selected programs. The tool employs the WALA static analysis frame-
work [10] and accepts the compiled bytecode of a program as input. It scans
each class in the class hierarchy of the application, looking for indicators of
relevant properties. For example, if the application contains a class that im-
plements the actor base trait, it flags the application as making use of actors.
Moreover, the tool detects the use of different communication mechanisms by
scanning for the signatures of the relevant methods. For asynchronous commu-
nication in Scala actor programs, for example, it looks for the signature of ! in
scala.actors.OutputChannel.

2 http://actor-applications.cs.illinois.edu/index.html

http://actor-applications.cs.illinois.edu/index.html
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Table 1. The corpus of actor applications studied in this paper. The Library column de-
notes which actor library in which version the application uses. The kLoC columns list
the number of thousand lines of source code in the application, without comments or
empty lines, and the figures in theDev. column shows the number of people contributing
to the project. Detailed information about the selected programs, including their ver-
sions, is available at: http://actor-applications.cs.illinois.edu/selected.html.

kLoC

Library Program Description Scala Java Dev.

Akka 2.0 BlueEyes Web framework 28.6 – 3
Akka 2.0 Diffa Real-time data differencing 29.6 5.2 8
Akka 2.1 Evactor Event processing framework 4.6 – 2
Akka 2.0 Gatling Stress test tool 8.2 0.6 19
Akka 2.0 GeoTrellis Geographic data engine 10.1 – 2
Akka 2.0 Scalatron Multi-player programming game 10.5 – 2
Akka 2.1 SignalCollect Graph processing framework 4.6 – 4
Akka 2.0 Socko Web server 5.7 1.6 5
Akka 2.0 Spray RESTful web services library 15.8 – 8

Scala 2.9 BigBlueButton Web conferencing system 0.8 52.5 30
Scala 2.7 CIMTool Modeling tool 3.6 26.5 3
Scala 2.10 ENSIME Scala interaction mode for emacs 8.0 – 19
Scala 2.9 Kevoree Distributed systems platform 31.5 39.8 9
Scala 2.9 SCADS Distributed storage system 26.3 1.0 15
Scala 2.9 Spark Cluster computing system 12.2 – 17
Scala 2.9 ThingML Modeling language for distributed systems 8.9 61.1 6

We chose this approach to overcome the lack of type and inheritance informa-
tion in a purely string-based source code analysis. It allows us to gather data with
higher precision in the following two situations: First, while programmers typi-
cally adhere to the convention of giving actor classes a name ending in Actor, this
is not enforced by the compiler. Hence, a class B extends A that inherits from
a class A extends Actor is an actor class that cannot be discovered through
string matching. Second, because Scala employs type inference, programmers
may—and often do—supply only a limited number of type annotations. This
makes it hard to discover, for instance, whether an object or class uses a Lock

for synchronization of concurrent operations. Aside from inheritance, other rea-
sons for preferring Java bytecode over source code were the available tool set,
and the ability to easily include mixed Scala–Java programs in our study.

The drawback of analyzing bytecode is the reduced precision of the results: the
compiler discards (from its perspective) superfluous static information, which is
thus no longer available to our tool. Consequently, some cases that could have
been detected during compilation may now go unnoticed. However, the property
detection methods we use are sound; our results are therefore lower bounds. In
Section 4, we explain the detection mechanisms in detail.

http://actor-applications.cs.illinois.edu/selected.html
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4 Results

In this section, we answer our research questions with statistical data gathered
from the programs in our corpus.

4.1 RQ1: How Often Do Scala Programmers Mix Actors with other
Kinds of Concurrent Entities?

The Scala and Akka actor libraries provide two main constructs for implement-
ing concurrent entities: Actor and Future. Futures are place-holders for asyn-
chronously computed values; they block the current thread of execution when it
tries to access a yet unresolved value. This way, futures provide a light form of
synchronization between the producer and the consumer of the value. With their
blocking result-resolution semantics, futures provide a natural way of adding par-
tial synchrony to actor programs. Furthermore, Scala supports access to the Java
standard library, which provides more conventional constructs for concurrent
computation such as Runnable and Future (from java.util.concurrent). The programs
in our corpus can therefore employ a mixture of actors, futures, and threads (via
Runnable) to implement concurrent entities.

As an example, Listing 1 shows a code snippet from ENSIME, one of the
programs in our corpus. In this code, DebugManager is an actor that has an inner
class, MonitorOutput, which inherits from Runnable (Thread). When an instance of
DebugManager is created, it initializes a list of MonitorOutputs, passing appropriate
input streams to their constructors (Line 4). When DebugManager is started, it
also starts the MonitorOutput threads in the list (Line 8), which leads to the
execution of the runmethod in the MonitorOutputs (Line 24). Once aMonitorOutput

is started, in a while loop, it reads data from the input stream and sends a
message to project, which is itself an actor (Line 30). The DebugManager actor
uses the finished variable (Line 23) to interrupt MonitorOutputs and break the
while loop if desired (Line 29).

This example shows the mix of actors and threads in a single program. Our
tool detects the elements of such a mixture of concurrent entities by checking
for usage of Actor, Future, and Runnable. Recall that our tool does not count
the usage of concurrent entities in the actor libraries, but only in the program
itself. The use of the actor concurrency paradigm is detected via subclassing: if
the application contains a class that implements the actor base trait, the tool
marks the application as making use of actors3. Similarly, it detects thread-based
concurrency through subclasses of java.lang.Runnable. Since application classes
rarely inherit from futures, the tool detects the use of this concurrent entity by
looking for fields, parameters, or local variables whose type is (a subtype of)
Future.

3 We furthermore include a detector for actors created by one of Scala’s actor factory
functions.
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1 class DebugManager(project: Project, indexer: Actor,[...]) extends Actor {
2 [...]
3

4 private val monitor = List(new MonitorOutput([...]),new MonitorOutput([...]))
5

6 def start() {
7 [...]
8 monitor.map { .start() }
9 [...]

10 }
11 def act() {
12 loop {
13 [...]
14 receive {
15 [...]
16 }
17 }
18 }
19 [...]
20

21 private class MonitorOutput(val inStream: InputStream) extends Thread {
22 val in = new InputStreamReader(inStream)
23 @volatile var finished = false
24 override def run() {
25 try {
26 var i = 0
27 val buf = new Array[Char](512)
28 i = in.read(buf, 0, buf.length)
29 while (!finished && i >= 0) {
30 project ! AsyncEvent(toWF(DebugOutputEvent(new String(buf, 0, i))))
31 i = in.read(buf, 0, buf.length)
32 }
33 } catch {
34 case t: Throwable => {
35 t.printStackTrace()
36 }
37 }
38 }
39 }
40 }
Listing 1. A code snippet from ENSIME; see https://github.com/aemoncannon/

ensime/blob/d96f4e61ee85a07665348cb3933db7423082b428/src/main/scala/org/

ensime/server/DebugManager.scala

https://github.com/aemoncannon/ensime/blob/d96f4e61ee85a07665348cb3933db7423082b428/src/main/scala/org/ensime/server/DebugManager.scala
https://github.com/aemoncannon/ensime/blob/d96f4e61ee85a07665348cb3933db7423082b428/src/main/scala/org/ensime/server/DebugManager.scala
https://github.com/aemoncannon/ensime/blob/d96f4e61ee85a07665348cb3933db7423082b428/src/main/scala/org/ensime/server/DebugManager.scala
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Table 2. The usage of concurrency constructs. A bullet (•) in the respective column
means that the program contains a class that is derived from Actor; that is derived
from Runnable; or that contains a field, parameter, or local variable whose type is (a
subtype of) Future.

Program Actor Runnable Future Program Actor Runnable Future

BlueEyes • • • BigBlueButton • • –
Diffa • • • CIMTool • • –
Evactor • – – ENSIME • • –
Gatling • – – Kevoree • • •
GeoTrellis • – • SCADS – • •
Scalatron • • • Spark • • •
SignalCollect • – • ThingML • – –
Socko • • –
Spray • • •

Observations. The results in Table 2 show that 13 of the 16 programs (81%) mix
concurrent entities and 12 of the 15 programs (80%) mix Actor with Runnable or
Future. Specifically, the results indicate that futures alone seem to be insufficient
to handle the concurrency related tasks of the programs: none of the programs
relies solely on futures.

The use of futures together with actors has been long established and can
be found in actor languages as early as ABCL [35]. Following this tradition,
the Scala and Akka actor libraries support a special asynchronous messaging
primitive for actors that returns a future. It is therefore not surprising to find
that 8 out of 15 programs (53%) that use actors also use futures.

In Table 2, 10 out of 15 programs (66%) use both Actor and Runnable. The
reasons for mixing Actor and Runnable are unclear. For example, while in Listing 1,
the MonitorOutput could be an actor, which brings consistency to the concurrency
model, it inherits from Runnable. One hypothesis would be that the program
development started with thread-based concurrency, and later on shifted towards
actors. However, by manually inspecting the programs and asking the developers
for clarification, we discovered that this hypothesis is wrong. We discuss the
details of our findings in Section 5.

4.2 RQ2: How Many of the Programs are Distributed over
the Network, and Does Distribution Influence the Way
Programmers Mix Concurrency Models?

The previous section shows that mixing the actor model with other concurrency
models is common, and that the reason is not historical evolution. Another ex-
planation could be that some models excel at a particular kind of programming.
While the actor model allows both exploiting local processing resources, and
distributing the program over the network, threads and shared-memory commu-
nication are limited to exploiting local processing resources.
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As our second question, we ask whether this difference in support for dis-
tributed programming could be the reason for mixing concurrency models. Maybe
programmers use actors for distributing the program over the network, but pre-
fer threads for using the locally available processing resources on a multi-core
machine.

Both actor libraries enforce the use of a special remote actor API in the case
of network distribution. Our analysis tool can therefore distinguish between local
and remote actor usage. Table 3 shows the results of searching the application
code for invocations of the remote actor API.

Table 3. The usage of actors for distributed programming. Distributed programs spread
their computation across a network; a bullet (•) in the Distributed column marks these.
The Remote column shows which of the programs contain a class that uses the remote
actor facilities provided by the actor library.

Program Remote Distributed Program Remote Distributed

BlueEyes – – BigBlueButton – •
Diffa – – CIMTool – –
Evactor – – ENSIME – –
Gatling – – Kevoree – •
GeoTrellis • • SCADS – •
Scalatron – – Spark • •
SignalCollect • • ThingML – –
Socko – •
Spray – –

Observations. Only 3 out of 16 programs use actors for remote deployment.
This indicates that most developers use actors to address the local scalability
problem, that is, they use actors as a solution for local concurrent programming.

However, we expected more of the applications to be distributed. To identify
which of the applications are actually distributed (not necessarily using remote
actors), we inspected the program code and contacted developers for confir-
mation. We found that 7 out of the 16 programs are distributed. This implies
that developers tend to use other ways than remote actors for implementing
distributed computations.

In Section 5 we discuss the reasons the developers gave for preferring other
methods of distribution.

4.3 RQ3: How Often Do the Actors in the Programs Use
Communication Mechanisms other Than Asynchronous
Messaging?

The results of the previous section indicate that distributed computing is not the
reason for mixing the actor model with other concurrency models. Consequently,
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programmers seem to use actors to exploit local computing resources and achieve
local scalability. If scalability is the goal, then, as motivated in Section 2, actors
should communicate solely via asynchronous messages.

The limitation to asynchronous message-passing helps maintain scalability
and avoid data races and deadlocks, but it adds complexity to coordination.

Instead of implementing asynchronous distributed protocols to achieve a coor-
dination task, programmers can follow a different route to solve the coordination
problems with Scala and Akka actors. In simple cases, programmers can use the
provided synchronous messaging operations for blocking remote procedure call
operations. Another option for synchronization are futures (see Section 4.1). Fi-
nally, Scala and Akka allow programmers to take a third route: programmers
can choose to break the actor abstraction and rely on customary coordination
methods from the shared-memory model, for example shared locks or latches.

An example of communication via a shared variable is shown in Listing 1. As
mentioned in Section 4.1, the DebugManager actor uses a shared variable finished

to communicate with each OutputMonitor thread. Listing 2 shows an example of
a different way of communication: via latches. The code snippet is taken from
Gatling. In the code, the Terminator actor coordinates several DataWriter actors—
which are stored in the registeredDataWriters variable—to flush their data to the
output stream when all of the users have finished their execution. The Terminator

contains a latch which is initialized to the latch object sent in the Initialize mes-
sage. The message’s userCount argument determines the number of users in the
program. The Terminator starts in the uninitialized state (Line 41), in which it
can only accept Initialize messages (Line 13). After receiving an Initialize message,
it changes to the initialized state, in which it can accept RegisterDataWriter and
EndUser messages (Line 22). Upon receiving an EndUser message, the Terminator

checks if the number of messages received from the users has reached the ex-
pected number. If that is the case, it creates futures that ask the DataWriter

actors to flush their data to the output stream (Line 31). After all futures have
completed their tasks, the Terminator counts down the latch (Line 35) to notify
the entity that waits on the latch about the completion of its task. Therefore, the
latch serves as communication channel between the Terminator actor and other
entities in the program.

While using communication mechanisms other than asynchronous messag-
ing can solve coordination and memory-limitation problems, breaking the actor
abstraction re-introduces problems that actor semantics carefully avoid: shared
state between actors allows fine-grained data races and breaks transparent dis-
tribution; blocking and synchronous operations can lead to deadlocks and, for
older versions of the Java standard library, exhaust the available threads in the
threadpool implementations of Scala and Akka.

Hence, using actors with communication mechanisms other than asynchronous
messaging is a trade-off decision. Our third question asks how common these
trade-offs are. We consider three main categories of communication:
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1 class Terminator extends BaseActor {
2

3 import context.
4

5 /∗∗
6 ∗ The countdown latch that will be decreased when all message are written and all

scenarios ended
7 ∗/
8 private var latch: CountDownLatch =
9 private var userCount: Int =

10

11 private var registeredDataWriters: List[ActorRef] = Nil
12

13 def uninitialized: Receive = {
14

15 case Initialize(latch, userCount) =>
16 this.latch = latch
17 this.userCount = userCount
18 registeredDataWriters = Nil
19 context.become(initialized)
20 }
21

22 def initialized: Receive = {
23

24 case RegisterDataWriter(dataWriter: ActorRef) =>
25 registeredDataWriters = dataWriter :: registeredDataWriters
26

27 case EndUser =>
28 userCount = userCount − 1
29 if (userCount == 0) {
30 implicit val timeout = Timeout(configuration.timeOut.actor seconds)
31 Future.sequence(registeredDataWriters.map( .ask(FlushDataWriter).mapTo[

Boolean]))
32 .onComplete {
33 case Left(e) => error(e)
34 case Right( ) =>
35 latch.countDown
36 context.unbecome
37 }
38 }
39 }
40

41 def receive = uninitialized
42 }
Listing 2. A code snippet from Gatling; see https://github.com/excilys/gatling/
blob/974299f78c433dcc7f4a1a46501127a41c37e11c/gatling-core/src/main/scala/

com/excilys/ebi/gatling/core/result/terminator/Terminator.scala

https://github.com/excilys/gatling/blob/974299f78c433dcc7f4a1a46501127a41c37e11c/gatling-core/src/main/scala/com/excilys/ebi/gatling/core/result/terminator/Terminator.scala
https://github.com/excilys/gatling/blob/974299f78c433dcc7f4a1a46501127a41c37e11c/gatling-core/src/main/scala/com/excilys/ebi/gatling/core/result/terminator/Terminator.scala
https://github.com/excilys/gatling/blob/974299f78c433dcc7f4a1a46501127a41c37e11c/gatling-core/src/main/scala/com/excilys/ebi/gatling/core/result/terminator/Terminator.scala
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(1) Non-blocking operations like sending asynchronous messages (sm); resolving
a future (rf); and signaling a synchronization construct (ss), for example
counting down a latch or releasing a lock.

(2) Blocking operations like waiting to receive a message from a channel (wm);
waiting for a future to be resolved (wf); and waiting for a synchronization
construct to be signaled (ws), for example waiting on a latch.

(3) Other operations that do not fit in either of the above categories, for example
communication via external resources like files or shared objects that are not
synchronization constructs.

To answer RQ3, our tool searches through all Actor classes in each program,
detecting if a class—or any of its super-classes—uses the non-blocking or block-
ing communication operations described in categories (1) or (2). The tool finds
instances of non-blocking or blocking communications by looking for the signa-
tures of the relevant methods. For example, for asynchronous communication in
Scala actor programs it looks for invocations of library-defined methods like that
of ! in scala.actors.OutputChannel.

If the tool finds an actor class that does not use any of the blocking or non-
blocking communication methods, it puts it in the other category. However,
because of the static nature of our analysis, our tool may not be able to de-
tect indirect use of blocking or non-blocking operations. For example, suppose
class ServiceActor is an actor class that has a field, printer, instantiated from class
Printer. The Printer class is not an actor class but has a method print that performs
asynchronous messaging (non-blocking operation). If ServiceActor only commu-
nicates by invoking printer.print, then our tool does not diagnose ServiceActor as
using non-blocking operations and hence marks it as belonging to the other cat-
egory. Therefore, actor classes in the other category may indirectly use blocking
or non-blocking operations. To address this problem, we manually inspected the
classes reported as using other category to confirm that they do not use any of
the communication mechanisms from the blocking or non-blocking categories.

By using the above method, as mentioned in Section 3, we obtain a lower
bound on the usage of each kind of communication operation. Note that a more
precise detection of each kind of communication operation requires a more com-
plex analysis [22] and is beyond the capability of our tool. We consequently leave
this task for future work.

The results are shown in Table 4. We removed SCADS because it does not use
Actors from the libraries. For every program in Table 4, we mark a communica-
tion mechanism with a bullet (•) if we find at least one Actor in the program that
uses that mechanism. Otherwise, we mark it with an en-dash (–). Consequently,
we mark a program with a bullet for other if we find at least one Actor that
does not use any of the six blocking or non-blocking communication operations
in category (1) or (2).

Observations. As the results show, 2 out of 15 programs (ENSIME and Kevoree)
use blocking operations to receive a message. Moreover, two programs (Gatling
and BlueEyes) contain an Actor that communicates through non-blocking oper-
ations on futures or synchronization constructs. However, 6 of the 15 programs
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Table 4. Communication of actors with other entities. A bullet (•) denotes that the
program contains an actor that uses a communication mechanism in the respective
category. The operations in the Non-blocking column are sending asynchronous mes-
sages (sm); resolving a future (rf); and signaling a synchronization construct (ss) like a
latch. Blocking operations are waiting on a message from a channel (wm); waiting for
a future to be resolved (wf); and waiting for a synchronization construct (ws). Other
operations do not fit either of these categories.

Program Non-block. Blocking Other Program Non-block. Blocking Other
sm rf ss wm wf ws sm rf ss wm wf ws

BlueEyes • • – – – – – BBButton • – – – – – –
Diffa • – – – – – • CIMTool • – – – – – –
Evactor • – – – – – • ENSIME • – – • – – –
Gatling • – • – – – – Kevoree • – – • – – •
GeoTrellis • – – – – – – Spark • – – – – – –
Scalatron • – – – – – – ThingML – – – – – – •
SignalCollect • – – – – – •
Socko – – – – – – •
Spray • – – – – – –

(40%) contain an Actor that only communicates via an operation of the other
category. Manual inspection of the actors using other communication reveals
that in two programs, the actors perform I/O, and in four programs the actors
operate on a shared object. In these cases, developers were willing to accept the
potential drawbacks of data races and deadlocks to solve the problem at hand.

Recall that these numbers might be lower than the actual values. For example,
an actor like DebugManager in Listing 1 uses asynchronous messaging as well as
operations of the other category (shared object). However, since the tool finds
that the actor uses asynchronous messaging, it does not report the actor as using
communication from other category.

To summarize, in at least 9 out of 15 programs (60%), actors use communi-
cation mechanisms other than asynchronous messaging.

5 The Reasons for Mixing Concurrency Models

The results presented in Section 4 show that around 68% (11 out of 16) of the
real-world Scala actor programs in our corpus mix Runnable with actor library
constructs like Actor and Future. To investigate the reasons, we manually in-
spected these programs and contacted the developers, asking them about the
details of their design decisions. In order to avoid a bias toward a specific rea-
son, we omitted potential answers. Instead, we posed open-ended questions of
the form: Why did you implement module X with Runnable and not with Actor?

We received answers from the developers of 10 programs (all 11 programs ex-
cept CIMTool). After receiving the answers, we dismissed the initial hypothesis
that the programs started with thread-based concurrency that was later (par-
tially) replaced with actors or futures: only for 3 of the 11 programs did the
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answers indicate such a motivation. In the cases of the other eight programs, the
developers desired to have pure actor programs. However, they faced problems
and as a consequence decided to replace Actor with Runnable. We categorize the
reasons into three groups:

– Actor library inadequacies : The reasons in this category are lack of library
support for efficient I/O, as well as problems implementing low-end systems,
managing many blocking operations, and customizing the default features of
the actor implementation.

– Actor model inadequacies : Certain protocols are easier to implement using
shared-memory than using asynchronous communication mechanisms with-
out shared state.

– Inadequate developer experience: Developers lack enough knowledge about
the library, or reuse legacy code.

5.1 Actor Library Inadequacies

Efficient I/O. The developers of four programs mention efficient input and
output (I/O) management as a reason for using Runnable. They either decided to
perform I/O in dedicated threads (and not to use threads from the actor library
thread pool) to avoid deadlock cases, or they claimed efficiency and performance
benefits through dedicated I/O threads.

BigBlueButton: The developers of BigBlueButton use Runnables for reading and
writing I/O streams to avoid blocking actors which are executed on the library
thread pool. However, they agree that it is possible to refactor the Runnables
into actors running on a specific thread4. While the Scala actor documentation
describes a pattern for this use case [11], it seems that the pattern is either too
obscure or inconvenient to implement.

Spark: Spark is a distributed computation framework that needs to exchange
large blocks of data over the network. Because the developers are unsure about
the actor library’s performance regarding large data transfer, they spawn dedi-
cated threads for handling this task.

“[...] in ParallelShuffleFetcher, we are receiving large blocks of data
from multiple machines. Most actor libraries don’t deal well with that –
they are optimized for transferring small messages (up to a few hundred
bytes) [...], and they might have a small number of IO threads that block
when you’re sending something bigger. In this case, instead of worrying
about whether the actor library will handle the transfer well [...] and
whether it will affect other messages being sent by other actors, we chose
to explicitly spawn threads. I’d love an actor library that also handles
large IOs, or exposes asynchronous IO primitives, but I haven’t found
one.”

4 https://groups.google.com/forum/?fromgroups=#!topic/bigbluebutton-dev/

2ad-HBeNQeY

https://groups.google.com/forum/?fromgroups=#!topic/bigbluebutton-dev/2ad-HBeNQeY
https://groups.google.com/forum/?fromgroups=#!topic/bigbluebutton-dev/2ad-HBeNQeY
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The above message by one of the developers shows that there is demand for an
API that gives programmers control over the I/O operations. Moreover, it shows
the lack of documentation of the Scala actor library’s capabilities: because the
capabilities of the library are unknown, the developers chose a known solution
using Runnables, accepting the design drawbacks.

Spray: The Spray framework builds upon the Akka library, which, unlike the
Scala actor library, provides an API for managing I/O. Despite this, the Spray
developers implement a custom module for asynchronous network I/O using
Runnable. As motivation, the Spray developers explain5 that tailoring the im-
plementation to the specific use case yields performance benefits over using the
(more abstract) API of Akka. This is confirmed by one of the Akka developers.

ENSIME: In ENSIME, multiple Runnables are created and executed to read and
write from I/O streams. One of the developers expressed that, since there is no
need for the actor mail box, using Runnable has less overhead.

Low-End Systems. Mobile phones and low-end systems are among the target
platforms of the Kevoree framework for dynamically reconfigurable distributed
systems. While Kevoree uses Scala actors, it uses threads to implement the
core components that are shared among all platforms. The developers state
performance considerations as their motivation:

“[...] JVM ForkAndJoin implementation and other implementation of
Thread are very slow and switching context cost a lot of computational
power. Again part of Core section of Kevoree are now write with thread
to avoid such limitations. [...] More globally this is true for the whole
Scala library which is now growing more and more.[...] Porting such a
library of more than 10 mb is now challenging for limited environment
(RaspberryPI) and especially for Android, it was a nightmare [...]”

Although there are some actor libraries specialized for writing embedded sys-
tems [8], Scala actors are not a proper solution for embedded systems.

Managing and Debugging Many Blocking Operations. The Kevoree mid-
dleware also contains parts with many blocking operations. According to expla-
nations by the developers, some operations define atomic actions which should
block the calling thread and wait for the completion of the operation. Initially,
the developers started with a pure actor-based solution in which actors used
blocking operations for receiving messages. However, they faced deadlock prob-
lems and decided to replace the blocking actors with threads:

“In earlier versions of Kevoree we used Actor everywhere [...]. That
was a mistake because we faced a lot of deadlock use cases. Some dead-
lock was issues from bug in the ForkAndJoin implementation in JVM

5 https://groups.google.com/d/msg/spray-user/b4YwS5XUsB8/8q_88qs2Gu0J

https://groups.google.com/d/msg/spray-user/b4YwS5XUsB8/8q_88qs2Gu0J
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and some others went from OS limitation (for example using VPS hosting
which limited the number of process). For those reasons critical section
of Kevoree now start with some dedicated threads, which costs a little
more but is far easier to manage in case of blocking actors.”

The developers also mention that Runnable helped them to manage blocking
operations:

“[...] we use plain old thread when dealing with third party library
which do some waiting operation internally. Using thread let us to control
such blocking operation and allow use to start a sibling watchdog thread
when something goes wrong. We could also use ThreadedActor but in
this case the benefit is not so important.”

As noted by the developers, it is possible to execute an actor in a dedicated
thread (ThreadedActor) and manage such blocking cases. However, the developers
decided to follow the old way of programming. In fact, when facing problems
with actors, the developers replaced some of them with Runnables to debug the
program. After finding the root cause of the problems, they decided to stay with
Runnables so that they can handle similar problems more easily in the future.

The explanations given by the developers indicates that the abstraction
that actor libraries provide over threads complicates conventional debugging
approaches.

Customized Actors. The developers of SCADS and BlueEyes implemented
their own actor-like entities using Runnable and Future.

SCADS: The SCADS distributed database system aims at improving perfor-
mance with their customized actors. The problem faced by the developers was
that the Scala actor library uses a hard-coded serializaion mechanism (the de-
fault Java serializer) when sending messages over the network. To make use of
a more efficient serialization mechanism, the developers implemented custom
actor-like concurrent objects. These objects are furthermore optimized towards
processing the key–value messages customary to the program. While Akka pro-
vides an API to customize the serialization of messages, this library was not
tried by the developers of SCADS.

BlueEyes: The developers of BlueEyes are interested in having typed actors.
Neither Scala, nor default Akka actors use type information to characterize the
messages that an actor accepts or sends. Hence, the compiler cannot discover
whether an actor sends the wrong type of message to another actor. To have
support for this kind of static composition checks, the BlueEyes developers im-
plemented their own actor-like class hierarchy. The classes incorporate in their
signature the types of messages that are acceptable for the actor, and the types
of messages sent by the actor.
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5.2 Actor Model Inadequacies

The developers of BlueEyes found using actors to implement the coordination
protocol in their HTTP server harder than implementing the protocol with
threads.

“Now let’s look at Actors. They address concurrency and mutual
exclusion, but they conflate the two (you either get both or none). They
don’t address coordination at all – you have to build your own protocols
for coordination. This code [...] is all about coordination, so using a lock
is much simpler way to implement it than using an Actor.”

The problem pointed out by the developers concerns purely asynchronous
systems in general and is not restricted to the Akka or Scala actor libraries. To
give an intuition of this problem, consider the example shown in Listing 3. The
DataProcessor processes an array of data supplied to its processData method and
returns an array of results. The results should be ordered such that the value in
results(i) corresponds to dataArray(i).

For the sake of performance, data processing is implemented in parallel using
the fork–join pattern [20]: for each element in dataArray, a future is created that
processes the element and puts the result in the results array. Since the results

data structure is shared between the futures, it is protected by a synchronized

block. The algorithm waits for the results to become ready by calling awaitAll on
the futures and returns the results to the caller.

An alternative implementation of the same algorithm using Scala actors and
purely asynchronous communication is shown in Listing 4. In this code, the
DataProcessor is an actor that, upon receiving ProcessData message (Line 10),
stores administrative information in its local variables and then delegates the
processing to worker actors. The administrative information consists of the results

array, the customer reference to the sender of the message, the totalCount of data
elements in dataArray, and curCount, which is the number of results received so
far. For each data element in the dataArray, the DataProcessor creates a Worker

actor and sends it a Process message.
Unlike in the previous implementation, to preserve encapsulation, the results

array is not shared between the worker actors. Instead, workers send the results
to the DataProcessor via ProcessResult messages (Line 36) and let the DataProcessor

put them in the results array (Line 22).
There are two issues that need to be resolved with this solution. The first

issue is that, because of asynchrony, the DataProcessor may receive the results in
an arbitrary order from the worker actors. To address this issue, each Process

message not only contains the data element to process, but also its index. The
worker actors send the results using the same index in ProcessResult messages.
This allows the DataProcessor actor to order the results.

The second issue is that the DataProcessor must know when the results are
ready to be sent to the customer. This is addressed through the totalCount and
curCount variables. The variable curCount is incremented after each ProcessResult

message (Line 23). When it reaches totalCount, the DataProcessor knows that
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1 class DataProcessor {
2

3 def processData(dataArray: Array[Data]): Array[Result] = {
4

5 var results = new Array[Result](data.length)
6

7 val workers = for (i <− 0 to data.length − 1) yield
8 future {
9 var r = process(data(i)) //process data

10 synchronized {
11 results(i) = r
12 }
13 }
14

15 awaitAll(20000L, workers: ∗)
16 return results
17 }
18

19 }

Listing 3. Implementation of a parallel data processor in the shared-memory model

processing is complete and sends the results to the customer (Line 24). Note
that the customer variable, which records the sender of the ProcessData message,
is needed to return the results to the right client. Unlike in synchronous method
invocation, there is no implicit return address.

The example shows that implementing some coordination protocols in the
actor model can be more complex than using a shared-memory model. The
developers may need to add extra variables and implement more complex logic
to handle the asynchrony in the actor model that is not present in the shared-
memory model. Specifically, for developers who are new to the actor model,
understanding and managing coordination in an asynchronous and no-shared
state model might be harder than in the shared-memory model.

To address this problem, prior work has extended the Scala actor library
with coordination patterns used in parallel programming, for example joins [12]
and divide-and-conquer tasks [15]. More advanced coordination mechanisms for
actor systems have also been proposed [4,31,9,27]. However,to the best of our
knowledge, none has been integrated with a widely used actor library.

5.3 Inadequate Developer Experience

In three programs, Socko, Scalatron, and Diffa, the developers did not have any
special objection to the actor library. They used Runnable because (1) they used
to their traditional style of programming; (2) they had some legacy code and
wanted to reuse it; or (3) they did not want to trust a new technology when
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1 class DataProcessor extends Actor {
2

3 var curCount = 0
4 var totalCount = 0
5 var results: Array[Result] =
6 var customer: OutputChannel[Any] =
7

8 def act() = loop {
9 react {

10 case ProcessData(dataArray: Array[Data]) => {
11 results = new Array[Result](dataArray.length)
12 customer = sender
13 totalCount = dataArray.length
14 curCount = 0
15

16 for (i <− 0 to totalCount − 1) {
17 var worker = new Worker().start()
18 worker ! Process(dataArray(i), i)
19 }
20 }
21 case ProcessResult(result: Result, index: Int) => {
22 results(index) = result
23 curCount += 1
24 if (curCount == totalCount) customer ! results
25 }
26 }
27 }
28 }
29

30 class Worker extends Actor {
31

32 def act() = loop {
33 react {
34 case Process(data: Data, index: Int) => {
35 var r = process(data(i)) //process data
36 sender ! ProcessResult(r, index)
37 }
38 }
39 }
40

41 }

Listing 4. Implementation of a parallel data processor in the actor model
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using Runnable would be enough for implementing the required functionality.
They use actors when it is necessary to handle concurrent accesses to an object.
In these cases, having automated tools that can detect such inconsistencies and
help developers to transform the Runnable to Actor would be helpful.

6 Implications and Discussion

In this section, we combine our analysis results with feedback from the developers
to give recommendations to researchers and library designers.

Implications for Researchers. The analysis results show that mixing concur-
rency models is common in real-world Scala programs that use actor libraries.
Each model has its strengths, and developers tend to use the model that best
fits the problem. However, the current implementations of actors in the Scala
standard library and Akka force developers to use models other than actors to
meet the application requirements.

On the one hand, research on modeling, testing, and analysis tools for actor
programs should take this into account. Specifically, mixtures of Actor and Future

are common, as they help implementing coordination between the purely asyn-
chronous actors. Therefore, unless the proposed tools and approaches for actor
programs can handle a mixture of actors with other concurrent entities, only few
real-world programs can benefit from them.

On the other hand, the results show that in three cases, mixing actors with
threads is unnecessary. Automated tools that can detect such cases and help de-
velopers refactor threads to actors in their programs would alleviate the problem
of mixing concurrency models.

The actor model itself also puts a burden on developers. The property of no
shared state and asynchronous communication can make implementing coordi-
nation protocols harder than using established constructs like locks. However,
providing a language for coordination protocols would alleviate this problem.

Implications for Library Designers. The library APIs can help developers
comply with the best practices of a concurrency model in two ways:

– First, the API can provide commonly required features like modules for
efficiently handling or customizing I/O. This would address one of the main
problems that Scala developers currently have in pure actor programs.

– Second, it can prevent developers from misusing the library constructs and
violating best practices. For example, if messages were restricted to im-
mutable types, actors could not easily share objects by exchanging refer-
ences through messages. While libraries cannot completely prevent shared
state in actors, such a limitation would push developers towards using a
proper design.

Apart from the API, library-specific tools for debugging and testing would be
beneficial for developers. In particular, the high-level abstraction of actors makes
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it hard for developers to trust, test, and debug low-level execution. A way to get
insight into the execution mechanism would reduce these worries.

Finally, clarifying the limitations and capabilities of the libraries also helps
developers make the right decisions during the design and development of their
programs.

7 Threats to Validity

Internal threats to the validity of this study concern the accuracy of our data
collection tool. An inherent limitation is its use of static analysis: the detected
method invocations and usage of concurrency constructs may not represent the
usage at run time. Moreover, since our tool cannot detect indirect method in-
vocations, the reported statistics about the communication operations may be
lower than the actual values. To alleviate this problem, we supplemented the
analysis with manual inspection when the tool could not detect any kind of our
targeted communication operations. For the cases that the tool reported the
usage of concurrency constructs or communication operations, we randomly se-
lected some reported instances and confirmed the results by manual inspection.

To ensure that the concluded reasons for mixing the actor model with other
concurrency models are aligned with the real reasons, we eliminated any bias
towards specific answers in our questions to the developers. Moreover, we vali-
dated the reasons supplied by the developers against the library documentation
and other related resources. We discuss our findings after each developer answer
in Section 5.

The external threats are related to how much our results are generalizable. To
ensure external validity regarding other Scala actor programs, we (1) obtained
our programs from github, which we found to be the most common repository site
for Scala programs by surveying the Akka and Scala mailing lists; and (2) target
the two most popular actor libraries for Scala.

Our selection criteria (Section 3.1) exclude the majority of programs from
the initial list, which greatly shrinks the sample size. However, the criteria en-
sure high-quality specimens by preventing the inclusion of programs with overly
idiosyncratic styles of single programmers and test projects. The criteria also
exclude large enough programs that we could not compile; however, only four
programs were excluded on this ground. Finally, we compiled our initial list of
programs one year ago. Consequently, it will exclude programs hosted only re-
cently on github. Since we demand a certain maturity of projects, we do not
expect this to be problematic.

The actor libraries we target have features similar to many other actor libraries
for imperative languages [26,7,16], which also allow mixing threads and actors.
We therefore believe that our results hold for actor programs written with these
libraries. However, the results may not hold for actor languages like Erlang [3]
that put more restrictions on the language constructs to force programmers to
comply with the foundations of the actor model.
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8 Related Work

To the best of our knowledge, this is the first systematic study of the phenomenon
of mixing concurrency models in a single program.

The work most closely related to our study are comparisons between different
libraries and paradigms for multi-core programming. They are controlled user
studies that aim to determine the productivity of programmers. Nanz et al. [21]
compare two object-oriented languages, multi-threaded Java and SCOOP, for
concurrent programming. Besides productivity, the comparison also focuses on
the correctness of the programs written by the participants. Luff [19] compares
three concurrent programming paradigms: the actor model, transactional mem-
ory, and standard shared-memory threading with locks, in Java. Pankratius et
al. [25] compare Scala as an imperative and functional language with Java as an
imperative language for concurrent programming. None of these studies consid-
ers the mixing of concurrency models.

Several empirical studies investigate the usage of the concurrency constructs
from a single library. Naturally, these studies are confined to the concurrency
model of the library and do not discuss mixed models. Weslley et al. [34] study
2000 Java projects to determine the most commonly used Java concurrent li-
brary constructs. They also analyze usage trends over time. Similarly, Okur and
Dig [24] study programs using the Microsoft parallel libraries. By analyzing pro-
grams semantically, they achieve higher precision than the syntactic analysis of
Weslley et al. The study of Hochstein et al. [14] concerns the productivity of
developers using MPI in a large-scale project.

Other studies [18,6] collect and document common mistakes in the usage of
concurrent constructs in a single library that lead to concurrency bugs. These
collections help developers and researchers to prevent them in the future. How-
ever, they are also confined to the concurrency model of the library.

Another line of work integrates the actor model with task parallelism. Haller
et al. [12] augment the Scala actor library with join patterns. PAM [29] adds
parallel execution of messages inside of actors to achieve better performance.
JCoBox [28] combines actors and futures to implement parallel execution of
tasks and synchronous messaging. Immam et al. [15] propose a unified parallel
programming model for Scala and Java that integrates the actor model with the
divide-and-conquer task parallel model. These works use small benchmarks to
show that implementing certain protocols with their proposed model is easier
and can provide better performance than the pure actor model. However, none of
these works conducts any study on real-world programs to show the weaknesses
of the actor libraries or the actor model. Our study complements these works by
supplying the empirical evidence for these weaknesses.

9 Conclusion and Future Work

This study is the first to investigate how often and why developers mix the actor
model with other concurrency models, which has severe drawbacks (Section 2).
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The study uses a corpus of real-world Scala programs collected from public
github repositories (Section 3). Statically analyzing the programs reveals
(Section 4) that most of the programs (80%) mix actors with other concurrent
entities. 66% of the programs combine actors and threads, and 53% combine
actors and futures. Moreover, at least 60% of all programs contain an actor that
does not communicate via asynchronous messaging. Thus, in some situations,
other factors than the advantages of asynchronous message-passing dominate the
decisions of developers. Through discussion with the developers (Section 5), we
find that the reasons for mixing concurrency models and avoiding asynchronous
communication lie in inadequacies of the actor libraries and the actor model it-
self. In Section 6, we discuss the implications of our findings for researchers and
library designers.

A direction for future work is to correlate the phenomenon of mixing concur-
rency models with bug rates and types. This would reveal whether the
phenomenon we observed is actually a problem, and if so, which concurrency
constructs may help to remedy it. A related question is whether mixing occurs
across different layers of abstraction. For example, mixing may occur only on the
lower, more concrete layers of the program while actors prevail on the higher,
more abstract layers. Finally, it would be interesting to see how different actor
libraries for the same language, for example Scala, affect the design decisions of
programmers. Results from such investigation would provide guidance for the
library developers.
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Abstract. We present a case study of formal specification for the C�

joins library, an advanced concurrent library implemented using both
shared mutable state and higher-order methods. The library is specified
and verified in HOCAP, a higher-order separation logic extended with a
higher-order variant of concurrent abstract predicates.

1 Introduction

It is well-known that modular specification and verification of concurrent higher-
order imperative programs is very challenging. In the last decade good progress
has been made on reasoning about subsets of these programming language fea-
tures. For example, higher-order separation logic with nested triples has proved
useful for modular specification and verification of higher-order imperative pro-
grams that use state with little sharing, e.g., [22,16,15]. Nested triples support
specification of higher-order methods and higher-order quantification allows li-
brary specifications to abstract over the internal state maintained by the library
and the state effects of function arguments.

Likewise, concurrent abstract predicates [7] has proved useful for reasoning
about shared mutable data structures in a concurrent setting. Concurrent ab-
stract predicates (CAP) extends separation logic with protocols governing access
to shared mutable state. Thus CAP supports modular specification of shared mu-
table data structures that abstract over the internal sharing, e.g., [5]. However,
CAP does not support modular reasoning about external sharing – the sharing
of other mutable data structures through a shared mutable data structure. For
instance, CAP does not support modular reasoning about locks1 – the canonical
example of a shared mutable data structure used to facilitate external sharing.

We have recently proposed HOCAP [26], a new program logic which combines
higher-order separation logic with concurrent abstract predicates and extends
concurrent abstract predicates with state-independent higher-order protocols. To
reason about external sharing through a data structure, we parameterise the
specification of the data structure with assertions that clients can instantiate to

1 See Section 6 for a discussion of this issue.
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describe the resources they wish to share through the data structure. Higher-
order protocols allow us to impose protocols on these external resources when
reasoning about the implementation of the data structure. State-independent
higher-order protocols allow us to reason about non-circular external sharing
patterns.

HOCAP is thus intended as a general purpose program logic for modular
specification and verification of concurrent higher-order imperative programs
with support for modular reasoning about both internal and external sharing.
We have previously verified simple examples in HOCAP. In this paper we report
on an extensive case study of a sophisticated and realistic library that combines
all these challenges in one, to test whether HOCAP can in fact be used to give
an abstract formal specification.

In particular, we explore how to give a modular specification to a concurrent
library that features internal sharing and is used to facilitate external shar-
ing. Clients interact with the library using reentrant callbacks. The specification
should thus abstract over the internal state while allowing abstract reasoning
about external sharing through the library and reentrant calls back into the li-
brary. Furthermore, the specification should of course be strong enough to reason
about clients, and weak enough to allow the implementation of the library to be
verified against the specification.

Our case study of choice is the C� joins library [20]. The joins library, which is
based on the join calculus [8,9], provides a declarative concurrency model based
on message passing. Declarative message patterns are used to specify synchro-
nisation conditions and function arguments are used to specify synchronisation
actions. Synchronisation actions might themselves cause new messages to be sent,
leading to reentrant callbacks. The joins concurrency model is useful for defining
new synchronisation primitives – i.e., to facilitate external sharing. Finally, the
library itself is implemented using internal state.

In this paper we present a formal specification of a subset of the C� joins
library in HOCAP. The specification is expressed in terms of the high-level join
primitives exposed by the library and hides all internal state from clients. More-
over, we test the specification of the joins library by verifying a number of syn-
chronisation primitives for which there are already accepted specifications in the
literature. For example, we verify that a reader-writer lock implemented using
joins can be proved to satisfy the standard separation logic specification for a
reader-write lock. We have chosen to focus on synchronisation primitives because
synchronisation primitives are specifically designed to facilitate external sharing.

In addition to its role as a case study of a higher-order reentrant concurrent
library, the specification of the joins library is itself interesting. The main idea
behind the specification is to allow clients of the joins library to impose ownership
transfer protocols at the level of the join primitives exposed by the library.
As illustrated with several examples, this leads to natural and short proofs of
synchronisation primitives implemented using the joins library.

We have also verified a simple lock-based implementation of the joins library.
However, in this paper we focus on the joins specification and the use thereof,



Joins: A Case Study in Modular Specification 329

since the main point is to investigate how HOCAP can be used to give ab-
stract specifications for concurrent higher-order imperative libraries. We refer
the interested reader to the accompanying technical report for details about the
verification of the joins implementation [24]. This paper does not require the
reader to understand all the details of HOCAP.

Outline. The remainder of the paper is organised as follows. In Section 2
we give an extensive introduction to the joins library using a series of examples
to explain each feature of the library. Along the way, we sketch how one can
reason informally, in separation-logic style, about the correctness of the appli-
cations. In Section 3 we summarise the necessary bits of HOCAP. This leads
us to Section 4, where we introduce the formal specification of the joins library.
In Section 5 we revisit a couple of the example applications and show how the
informal proof sketches from Section 2 can be turned into formal proofs using
the formal specification from Section 4. Finally, we evaluate and discuss the case
study in Section 6.

2 Introducing Joins

The joins concurrency model is based on the concept of messages, which are used
both for synchronisation and communication between threads. Conceptually, a
join instance consists of a single message pool and a number of channels for
adding messages to this pool. Channels come in two varieties, synchronous and
asynchronous. Sending a message via a synchronous channel adds the message
to the message pool and blocks the sender until the message has been received.
Asynchronous channels simply add messages to the message pool, without block-
ing the sender.

The power of the joins calculus stems from how messages are received. One
declares a set of chords, each consisting of a pattern (a condition on the message
pool) and a continuation. When a pattern matches a set of messages in the
message pool, the chord may fire, causing the continuation to execute. Crucially,
once a chord fires, the messages that matched the pattern are removed from
the message pool atomically, making them unavailable for future matches. Upon
termination of the continuation, the clients that added the removed messages
via synchronous channels are woken up and allowed to continue. We say that a
message has been received when it has been matched by a chord and the chord
continuation has terminated.

In the rest of this section we introduce the C# joins library, one feature at
a time. Each new feature is introduced with a joins example of a synchronisa-
tion primitive implemented using this feature. For each example, we sketch an
informal proof of the synchronisation primitive in separation logic. The exam-
ples thus serve both to introduce the joins library and motivate the main ideas
behind our formal specification of the joins library.

We take as a starting point Russo’s joins library for C� [20], with a slightly
simplified API. In particular, we have omitted value-carrying channels, as value-
carrying channels do not add any conceptual difficulties.



330 K. Svendsen, L. Birkedal, and M. Parkinson

2.1 Synchronous Channels

Sending a message via a synchronous channel causes the sender to block until the
message has been received. To illustrate, we consider the example of a 2-barrier
– an asymmetric barrier restricted to two clients.

Implementation. One can implement a 2-barrier as a joins instance with two
synchronous channels – one for each client to signal its arrival. Clients should
block at the barrier until both clients have signalled their arrival. This can be
achieved with a single chord with a pattern that allows it to fire when there is
a pending message on both channels (i.e., when both clients have arrived). The
C� code for a 2-barrier is given in Figure 1.

class TwoBarrier {
private SyncChannel ch1;
private SyncChannel ch2;

public TwoBarrier() {
Join j = new Join();
ch1 = new SyncChannel(j);
ch2 = new SyncChannel(j);
Pattern p = j.When(ch1).And(ch2);
p.Do();

}

public void Arrive1() { ch1.Call(); }
public void Arrive2() { ch2.Call(); }

}
Fig. 1. Joins 2-barrier implementation

The TwoBarrier constructor creates
a join instance, j, and two synchronous
channels, ch1 and ch2, attached to the
underlying message pool of this join
instance. Next, the constructor cre-
ates a patternp that matches any pair
of messages in the message pool con-
sisting of a ch1 message (i.e., a mes-
sage added via the ch1 channel) and
a ch2 message. Lastly, it registers this
pattern as a chord without a continua-
tion. Hence, this chord may fire when
there is a pending message on both
channels and when it fires, it atom-
ically removes and receives these two
messages from the message pool. Each
Arrive method signals the client’s ar-
rival by sending a message on the cor-
responding channel using the Call method.

All the examples we consider in this article follow the same structure as the
above example: the constructor creates a join instance with accompanying chan-
nels and registers a number of chords. After this initialisation phase, the chords
and channels stay fixed and interaction with the joins instance is limited to the
sending of messages.

We now sketch a proof of this 2-barrier implementation using separation logic.
Recall that separation logic assertions, say P and Q, describe and assert owner-
ship of resources and that P ∗Q holds if P and Q describe (conceptually) disjoint
resources. The logic will be introduced in greater detail in Section 4 when we
get to the formal specification and formal reasoning.

Desired Specification. From the point of view of resources, a barrier al-
lows clients to exchange resources. We call these resources external as they are
typically external to the barrier data structure itself. On arrival at the barrier
each client may transfer ownership of some resource to the barrier, which is then
redistributed atomically once both clients have arrived. For the purpose of this
introduction we will make the simplifying assumption that each client transfers
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the same resource to the barrier on each arrival and that these resources are
redistributed in the same way at each round of synchronisation. In Section 5.2
we consider a general specification without these simplifying assumptions.

Under these assumptions we can specify the barrier in terms of two predi-
cates, Bin

i and Bout
i , where Bin

i describes the resources client i transfers to the
barrier upon arrival, and Bout

i describes the resources client i expects to receive
back from the barrier upon leaving. These predicates thus describe the external
resources clients intend to share through the barrier. Since a barrier can only
redistribute resources (i.e., it cannot create resources out of thin air), the com-
bined resources transferred to the barrier must imply the combined resources
transferred back from the barrier: Bin

1 ∗Bin
2 ⇒ Bout

1 ∗Bout
2 .

The client of the barrier is thus free to pick any Bin
i and Bout

i predicates
satisfying the above redistribution property. We can now express the expected
specification of a 2-barrier b in terms of these abstract predicates:

{Bin
1 } b.Arrive1() {Bout

1 } {Bin
2 } b.Arrive2() {Bout

2 }
That is, for client 1 to arrive at the barrier (i.e., to callArrive1), it has to provide
the resource described by Bin

1 , and if the call to Arrive1 terminates (i.e., client 1
has left the barrier), it will have received the resource described by Bout

1 .
Proof Sketch. The main idea behind our specification of the joins library

is to allow clients to impose an ownership transfer protocol on messages. An
ownership transfer protocol consists of a channel precondition and a channel
postcondition for each channel. The channel precondition describes the resources
the sender is required to transfer to the recipient when sending a message on
the channel. The channel postcondition describes the resources the recipient is
required to transfer to the sender upon receiving the message.

In the 2-barrier example, sending a message on a channel corresponds to
signalling one’s arrival at the barrier. The channel preconditions of the barrier
thus describe the resources clients are required to transfer to the barrier upon
their arrival. Hence, we take each channel precondition to be the corresponding
Bin predicate: Pch1 = Bin

1 and Pch2 = Bin
2 . Throughout this section we use the

notation Pch to refer to the channel precondition of channel ch and Qch to refer
to the channel postcondition.

The barrier implementation features a single chord that matches and receives
both arrival messages, once both clients have arrived. The channel postconditions
of the barrier thus describes the resources the barrier is required to transfer
back to the clients, once both clients have arrived. We thus take each channel
postcondition to be the corresponding Bout predicate: Qch1 = Bout

1 and Qch2 =
Bout

2 .
One can thus think of the channel pre- and postconditions as specifications

for channels. Since the channel postcondition describes the resources transferred
back to the sender once its message has been received, one should think of
it as a partial correctness specification. In particular, without any chords to
receive messages on a given channel we can pick any channel postcondition, as
no message sent on that channel will ever be received. Conversely, whenever
we add a new chord we have to prove that it satisfies the chosen ownership
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transfer protocol. For chords without continuations, this reduces to proving that
the preconditions of the channels that match the chord’s pattern imply the
postconditions of these channels.

The 2-barrier consists of a single chord that matches any pair of messages
consisting of ach1message and ach2message. Correctness thus reduces to proving
Pch1∗Pch2 ⇒ Qch1∗Qch2, which follows from the assumed redistribution property.

2.2 Asynchronous Channels

The previous example illustrated the use of synchronous channels that block the
sender until its message has been received. The joins library also supports asyn-
chronous channels, allowing messages to be sent without blocking the sender.
A lock is a simple example that illustrates the use of both asynchronous and
synchronous channels. Acquiring a lock must wait for the previous thread using
the lock to finish: it is synchronous. However, releasing a lock need not wait for
the next thread to attempt to acquire it: it is asynchronous.

Implementation.We can implement a lock using the joins library as follows:

class Lock {
private SyncChannel acq;
private AsyncChannel rel;

public Lock() {
Join j = new Join();
acq = new SyncChannel(j);
rel = new AsyncChannel(j);
j.When(acq).And(rel).Do();
rel.Call();

}

public void Acquire() { acq.Call(); }
public void Release() { rel.Call(); }

}
Fig. 2. A Joins implementation of a lock

We use two channels acq and rel to
represent the two actions one can per-
form on a lock. The join instance has
a single chord with a pattern that
matches any pair of messages con-
sisting of an acq message and a rel

message. Thus, to acquire the lock,
a thread sends a message on the acq

channel; the call will block until the
chord fires, which can only happen if
there is a rel message in the message
pool. The lock is thus unlocked if and
only if there is a pending rel message
in the message pool. The release can
happen asynchronously; it does not
have to wait for the next thread to
attempt to acquire the lock.

The lock is initially unlocked by
calling rel.

Desired Specification. Locks are used to ensure exclusive access to some
shared resource. We can specify a lock in separation logic in terms of an abstract
resource predicate R (picked by the client of the lock) as follows:

{R} new Lock() {emp} {emp} l.Acquire() {R} {R} l.Release() {emp}
When the lock is unlocked the resource described by R is owned by the lock.
Upon acquiring the lock, the client takes ownership of R, until it releases the
lock again. Since the lock is initially unlocked, creating a new lock requires
ownership of R to be transferred to the lock. This is the standard separation logic
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specification for a lock [17,10,11]. Here R thus describes the external resources
shared through the lock.

Proof Sketch. Informally, we can understand the rel message as moving the
resource protected by the lock from the thread to the join instance, and the acq
message as doing the converse. This can be stated more formally using chan-
nel pre- and postconditions as follows: Pacq = emp, Qacq = R, Prel = R, and
Qrel = emp.

Recall that channel postconditions describe the resources the recipient is re-
quired to transfer to the sender upon receiving the message. Since the sender
of a message on an asynchronous channel has no way of knowing if its message
has been received, channel postconditions do not make sense for asynchronous
channels. We thus require channel postconditions for asynchronous channels to
be empty, emp.

As before, to prove that the acq and rel chord satisfies the channel postcon-
ditions, we have to show that the combined channel preconditions imply the
combined channel postconditions: Pacq ∗ Prel ⇒ Qacq ∗Qrel. This follows directly
from the fact that ∗ is commutative.

2.3 Continuations

So far, every chord we have considered has simply matched and removed mes-
sages from the message pool. In general, a chord can have a continuation that
is executed when the chord fires, before any blocked synchronous senders are
allowed to continue.

Continuations can, for instance, be used to automatically send a message on
a certain channel when a chord fires. Thus they can be used to encode a state
machine. Moreover, one can also ensure that a state of the state machine is
correlated with the history or state of the synchronisation primitive that one is
implementing. To illustrate, we extend the lock from the previous example into
a biased reader/writer lock.2

A reader/writer lock [4] generalises a lock by introducing read-only permis-
sions. This allows multiple readers to access a shared resource concurrently. To
determine whether a read or write access request should be granted, three states
suffice: (idle) no readers or writers, (writer) exactly one writer, or (shared) one
or more readers. In the idle state there are no readers or writers, so it is safe to
grant both read and write access. In the shared state, as one client has already
been granted read access, it is only safe to grant read access. We can express
this as a state machine as follows:

2 Biased here means that this reader/writer implementation may starve the writer
thread. It is possible to extend this implementation into an unbiased reader/writer
lock by introducing an additional asynchronous channel to distinguish between
whether or not there are any pending writers when a reader request has been granted.
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idleshared writer

acqR

relR

acqW

relW

acqR, relR

Here acqR and acqW refers to the acquire read and acquire write operation, and
relR and relW refers to the release read and release write operation.

Implementation. The idea is to encode this state machine using three asyn-
chronous channels, idle, shared, andwriter, with the invariant that there is at most
one pending asynchronous message in the message pool at any given time. This
gives a direct encoding of the three states in the above state machine, and adds
a fourth intermediate state (when there is no pending message on any of the
three asynchronous channels). The intermediate state is necessary for the imple-
mentation, as it does not transition atomically between the states of the above
state machine. The joins implementation is given below.

class RWLock {
private SyncChannel acqR, acqW, relR, relW;
private AsyncChannel idle, shared, writer;
private int readers = 0;

public RWLock() {
Join j = new Join();
// ... initialise channels ...

j.When(acqR).And(idle).Do(AcqR);
j.When(acqR).And(shared).Do(AcqR);
j.When(relR).And(shared).Do(RelR);
j.When(acqW).And(idle).Do(writer.Call);
j.When(relW).And(writer).Do(idle.Call);

idle.Call();
}

private void AcqR() {
readers++;
shared.Call();

}

private void RelR() {
if (−−readers == 0)
idle.Call();

else
shared.Call();

}

public void AcquireR() { acqR.Call(); }
public void AcquireW() { acqW.Call(); }
public void ReleaseR() { relR.Call(); }
public void ReleaseW() { relW.Call(); }

}

We use three asynchronous channels to encode the current state in the above
state machine and thus to determine whether a read or write access can be
granted. In addition, we use the readers field to count the actual number of
readers, to determine which state to transition to when releasing a reader. Note
that the continuation given to Do is a named C� delegate, and that in all five
cases, the given continuation sends a message on an asynchronous channel. These
calls are reentrant calls back into the joins library, making these continuations
reentrant callbacks.

Note further that all five chords consume exactly one asynchronous message
and sends exactly one asynchronous message. Between consuming and sending
the asynchronous message, there are no pending asynchronous messages and
the reader/writer is in the previously mentioned fourth state. Hence, between
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consuming and sending an asynchronous message, no other chord can fire and
the currently executing continuation has exclusive access to the internal state of
the reader/writer lock (i.e., the readers field).

Desired Specification. The standard separation logic specification for a
reader/writer lock is expressed using counting permissions [2]. Counting permis-
sions allow a full write permission to be split into any number of read permis-
sions, counting the total number of read permissions, to allow them to be joined
up to a full write permission later. The standard specification is given below in
terms of an abstract resource predicate for writing to the resource Rwrite and
an abstract resource predicate for reading the resource Rread.

{Rwrite}new RWLock() {emp}
{emp} l.AcquireR() {Rread}
{emp} l.AcquireW() {Rwrite}
{Rread} l.ReleaseR() {emp}
{Rwrite} l.ReleaseW() {emp}

(1)

To avoid introducing counting permissions directly, we specify the reader/write
lock in terms of an additional family of abstract resource predicates R(n), in-
dexed by n ∈ N, satisfying that R(0) is the full write permission Rwrite, and
R(n) is the permission left after splitting off n read permissions. Thus R should
satisfy, ∀n ∈ N. R(n)⇔ Rread ∗R(n+1) and R(0)⇔ Rwrite. Note that a client
of the reader/writer lock is free to pick any Rwrite, Rread and R that satisfies
these two properties.

Proof Sketch. The three asynchronous channels encode the current state
of the reader/writer lock. The channel preconditions of the three asynchronous
channels thus describe the resources owned by the reader/writer lock in the idle,
shared and writer state, respectively. In the idle state (no readers or writers),
the reader/writer lock owns the readers field and the full write permission, and
the readers field contains 0. In the shared state (one or more readers), the read-
er/writer lock owns the readers field and the remaining permission after splitting
off n read permissions and the readers field contains n. Lastly, in the writer state
(exactly one writer), the writer owns the full resource and the reader/writer lock
only owns the readers field.

P idle = readers �→ 0 ∗R(0) Pwriter = readers �→ 0

Pshared = ∃n ∈ N. n > 0 ∗readers �→ n ∗R(n)

Since idle, shared, and writer are asynchronous, their channel postconditions must
be empty (as explained earlier).

For the synchronous channels we can read off their channel pre- and postcon-
ditions directly from the desired specification (1):

PacqR = emp QacqR = Rread PacqW = emp QacqW = R(0)

PrelR = Rread QrelR = emp PrelW = R(0) QrelW = emp

To register a chord without a continuation we had to show that the combined
channel preconditions implied the combined channel postconditions. What about
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the present case with a proper continuation? Since the continuation runs before
the release of any blocked synchronous callers, we have to show that the contin-
uation transforms the combined channel preconditions to the combined channel
postconditions. For the reader/writer lock we thus have to show the proof obliga-
tions on the left in Figure 3. These proof obligations are all completely standard
and mostly trivial separation logic proofs. For instance, the proof of the first
obligation is given on the right in Figure 3. Note that in this proof we use the

{PacqR ∗ P idle} AcqR() {QacqR ∗Q idle}
{PacqR ∗ P shared} AcqR() {QacqR ∗Q shared}
{P relR ∗ P shared} RelR() {Q relR ∗Q shared}
{PacqW ∗ P idle} writer.Call() {QacqW ∗Q idle}
{P relW ∗ Pwriter} idle.Call() {Q relW ∗Qwriter}

{PacqR ∗ Pidle}
{readers → 0 ∗R(0)}
readers++;

{readers → 1 ∗R(0)}
{readers → 1 ∗Rread ∗R(1)}
shared.Call();

{Rread}
{QacqR ∗Qidle}

Fig. 3. Left: Proof obligations for the reader/writer lock chords. Right: A proof sketch
for the first proof obligation of the reader/writer lock.

channel pre- and postcondition of the shared channel. These proofs thus have a
similar character to partial correctness proofs of a recursive method, where one
is allowed to assume the specification of a method while proving that its body
satisfies the assumed specification. Here we assume the shared channel obeys the
chosen ownership transfer protocol while proving that the first chord obeys the
chosen protocol.

2.4 Nonlinear Patterns

The public interface of the 2-barrier in Section 2.1 is slightly non-standard, as it
has two distinct arrival methods. A more standard barrier interface would pro-
vide a commonArrive method, for both clients. The joins library also supports an
implementation of a barrier with such an interface, through the use of nonlinear
patterns. Nonlinear patterns match multiple messages from the same channel.

Implementation. We can thus implement a more standard 2-barrier as a
joins instance with a single synchronous arrival channel and a single chord with
a nonlinear pattern that matches two messages on the arrival channel. Clearly
this generalises to an n-barrier, which can be implemented as follows.

class Barrier {
private SyncChannel arrive;

public Barrier(int n) {
Join j = new Join(); arrive = new SyncChannel(j); Pattern p = j.When(arrive);
for(int i = 1; i < n; i++) { p = p.And(arrive); };
p.Do();

}
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public void Arrive() { arrive.Call(); }
}

This code registers a single chord with a pattern that matches n messages on
the synchronous arrive channel.

Desired Specification. As before, assume predicates Bin
i and Bout

i (picked
by the client), where Bin

i describes the resources client i transfers to barrier upon
arrival and Bout

i describes the resources client i expects to receive back from the
barrier upon leaving. These predicates should satisfy the following redistribution
property, �i∈{1,...,n}Bin

i ⇒ �i∈{1,...,n}Bout
i , to allow the barrier to redistribute

the combined resources, once every client has arrived.
From the informal description of Bin

i and Bout
i one might thus expect an n-

barrier b to satisfy the following specification:

{Bin
i } b.Arrive() {Bout

i }

That is, if a client transfers Bin
i to the barrier upon arrival, it should receive back

Bout
i from the barrier upon leaving. However, this specification is not quite right.

In particular, what prevents client i from impersonating client j when it arrives
at the barrier? To apply the redistribution property to the combined resources
transferred to the barrier we need to ensure that when client i arrives at the
barrier, it actually transfers Bin

i to the barrier, even if it also happens to own
Bin

j . Hence, while the barrier implementation no longer distinguishes between
clients, we still need a way to distinguish clients logically. We can achieve this
by introducing a client identity predicate, id(i) to assert that the owner is client
i. By making this predicate non-duplicable, we can enforce that clients cannot
impersonate each other.

We can now express a correct barrier specification in terms of this id predicate
as follows:

{emp} new Barrier(n) {�i∈{1,...,n}id(i)} {Bin
i ∗ id(i)} b.Arrive() {Bout

i ∗ id(i)}

Upon creation of a new n-barrier we get back n id assertions. These are then
distributed to each client to witness their identity when they arrive at the barrier.

Proof Sketch. Our proof sketch of the 2-barrier in Section 2.1 exploited that
the implementation used distinct channels to signal the arrival of each client,
which allowed us to pick different channel pre- and postconditions for each client.
Since the above implementation uses a single arrival channel we have to pick a
common channel pre- and postcondition that works for every client. We can
achieve this using a logical argument to relate the channel precondition and the
channel postcondition. In this case we index the channel pre- and postcondition
with the client identifier i: Parrive(i) = Bin

i ∗ id(i) and Qarrive(i) = Bout
i ∗ id(i).

For the id predicate to witness the identity of clients, it must be non-duplicable.
That is, it must satisfy, id(i) ∗ id(j)⇒ i �= j. To define the id predicate such that
it satisfies the above property, we need to introduce a bit more of our logic. We
return to this example in Section 5.2.
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3 Logic

The program logic is a higher-order separation logic [1] with support for rea-
soning about concurrency, shared mutable data structures [7,6], and recursive
delegates [22]. We use this one program logic to reason about both clients of the
joins library, and an implementation of the joins library.

Our program logic is a general purpose logic for reasoning about higher-order
concurrent C� programs. We have presented the logic in a separate paper [26].
The full logic and its soundness proof is included in the accompanying technical
report [23] of that paper. For the present paper we limit our attention to those
features necessary to verify our client examples. To this end, it suffices to consider
a minor extension of higher-order separation logic with fractional permissions,
phantom/auxiliary state and nested triples [21].

Higher-Order Separation Logic. Every specification in Section 2 was ex-
pressed in terms of abstract resource predicates, such as the lock invariant R.
This is easily and directly expressible in a higher-order logic, by quantification
over predicates [1,19].

Our assertion logic is an intuitionistic higher-order separation logic over a
simply typed term language. The set of types is closed under function space and
products, and includes the type of propositions, Prop, the type of specifications,
Spec, and the type of mathematical values, Val. The Val type includes all C�

values and strings, and is closed under formation of pairs, such that mathematical
sequences and other mathematical objects can be conveniently represented.3

Fractional Permissions. The notion of ownership in standard separation
logic is very limited, supporting only two extremes: exclusive ownership and no
ownership. To formalise the examples from the previous section we need a mid-
dle ground of read-only permissions, which can be freely duplicated. Fractional
permissions [3] provide a popular solution to this problem, by annotating the

points-to predicate with a fraction p ∈ (0, 1], written x.f
p�→ v. Full permission

corresponds to p = 1 and grants exclusive access to the field f . Permissions can

be split and combined arbitrarily (x.f
p�→ v ∗x.f q�→ v ⇔ x.f

p+q�→ v). Any fraction
less than 1 grants partial read-only access to the field f . We write x.f �→ v as

shorthand for x.f
1�→ v and x.f �→ v as shorthand for ∃p ∈ (0, 1]. x.f

p�→ v.
Phantom State.Auxiliary variables [18] are commonly used as an abstraction

of the history of execution and state in Hoare logics. Normally, one declares a sub-
set of program variables as auxiliary variables that can be updated using standard
variable assignments, but are not allowed to affect the flow of execution. To sup-
port this style of reasoning, we extend separation logic with phantom state. Like
standard auxiliary variables, phantom state allows us to record an abstraction of
the history of execution, but unlike standard auxiliary variables, phantom state
is purely a logical construct (i.e., the operational semantics of the programming
language is not altered to accommodate phantom state and phantom state is not

3 We use a single universe Val for the universe of mathematical values to avoid also
having to quantify over types in the logic. We omit explicit encodings of pairs and
write (v1, ..., vn) for tuples coded as elements of Val.
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updated through programming level assignments). When combined with logical
arguments, phantom state allows us to logically distinguish and relate multiple
messages on the same channel, as needed for the n-barrier example.

Phantom state extends objects with a logical notion of phantom fields and an

accompanying phantom points-to predicate, written xf
p�→ v, to make assertions

about the value and ownership of these phantom fields. To support read-only
phantom fields, we further enrich the notion of ownership with fractional per-

missions. Thus xf
p�→ v asserts the ownership of phantom field f of object x,

with fractional permission p, and that this phantom field currently contains
the value v. Like the normal points-to predicate, phantom points-to satisfies

xf
p1�→ v1 ∗ xf

p2�→ v2 ⇒ v1 = v2 as phantom fields contain a single fixed value at
any given point in time.

Phantom fields are updated using a view shift. The notion of a view shift comes
from the Views framework for compositional reasoning about concurrency [6],
and generalises assertion implication. A view shift from assertion p to assertion
q is written p ) q. Views shifts can be applied to pre- and postconditions using
the following generalised rule of consequence:

p ) p′ {p′}c{q′} q′ ) q

{p}c{q}
Given full ownership (fractional permission 1) of a phantom field f , one can

perform a logical update of the field (xf
1�→ v1 ) xf

1�→ v2). To create a phantom
field f we require that the field does not already exist, so that we can take full
ownership of the field. We thus require all phantom fields of an object o to be
created simultaneously when o is first constructed.

Figure 4 contains a selection of inference rules from our program logic, related
to view shifts and phantom state.

Nested Triples. To reason about delegates we use nested triples [21]. We
write x �→ {P}{Q} to assert that x refers to a delegate satisfying the given
specification.

p ⇒ q

p � q

p � q

p ∗ r � q ∗ r
p � p′ {p′}c{q′} q′ � q

{p}c{q}

xf
1→ v1 � xf

1→ v2 xf
p1→ v1 ∗ xf

p2→ v2 ⇒ v1 = v2 xf
p→ v ∗ xf

q→ v ⇔ xf
p+q→ v

Fig. 4. Selected program logic inference rules

Reasoning about the Implementation. Fractional permissions introduce
a more lenient ownership discipline that allows for read-only sharing. To verify
the implementation of the joins library, we need even more general forms of
sharing. To reason about general sharing patterns we base our logic on concurrent
abstract predicates [7].
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Conceptually, concurrent abstract predicates (CAP) partitions the heap into
a set of regions that each come with a protocol governing how the state in
that region may evolve. This allows stable assertions – assertions that are closed
under changes permitted by the protocol – to be freely duplicated and shared.
To ensure soundness, the logic requires that all pre- and postconditions in the
specification logic are stable. We thus introduce a new type, SProp, of stable
assertions.

Concurrent abstract predicates with first-order protocols (i.e., protocols that
only refer to the state of their own region) suffice for reasoning about sharing
of primitive resources such as individual heap cells. To reason about sharing
of shared resources requires higher-order protocols that can relate the state of
multiple regions. In general, to reason about sharing of shared resources re-
quires reasoning about circular sharing patterns. HOCAP extends concurrent
abstract predicates with a limited form of higher-order protocols – called state-
independent higher-order protocols – and introduce partial orders to explicitly
rule out these circular sharing patterns.

Since we are using the same program logic to reason about join clients and
the underlying join implementation, join clients could themselves use CAP to de-
scribe shared resources when picking the channel pre- and postconditions. This
could potentially introduce circular sharing patterns. To simplify the presenta-
tion and focus on the main ideas behind our specification of the joins library
we have chosen to present a specification that does not allow clients to use
CAP in their channel pre- and postconditions. This allows us to give a simple
specification without any proof obligations about the absence of circular shar-
ing patterns. In the accompanying technical report, we define a stronger joins
specification that does allow clients to use CAP, but requires clients to prove
the absence of circular sharing patterns. In the technical report we verify the
joins implementation against this stronger specification. See Section 6 for further
discussion.

To prevent joins clients from using CAP, we introduce a new type, LProp, of
local propositions. Every predicate expressible in the language of higher-order
separation logic extended with phantom state and nested triples is of type LProp,
provided all higher-order quantifications quantify over LProp rather than Prop.
However, LProp is not closed under region and action assertions for reasoning
about shared mutable data structures using CAP. All assertions of type LProp
are trivially stable and LProp is thus a subtype of SProp. We thus require all
channel pre- and postconditions to be of type LProp. This ensures that clients
do not introduce circular sharing patterns.4

For details about the logic see our HOCAP paper and accompanying technical
report [26,23].

4 This circular sharing pattern has been allowed by the first two authors recent
work [25].
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4 Joins Specification

In this section we present our formal specification for the joins library.
The full specification of the joins library is presented in Figure 5. To sim-

plify the specification and exposition of the joins library, we require all channels
and chords be registered before clients start sending messages.5 Formally, we
introduce three phases:

ch: This phase allows new channels to be registered.
pat: This phase allows new chords to be registered.
call: This phase allows messages to be sent.

A newly created join instance starts in the ch phase. Once all channels have been
registered, it transitions to the pat phase. Once all chords have been registered,
it transitions to the call phase. In the call phase, the only way to interact with
the join instance is by sending messages on its channels.

The specification is expressed in terms of a number of abstract representation
predicates. We use three join representation predicates, joinch, joinpat and joincall
– one for each phase – which will be explained below. In addition, we use two
representation predicates for channels and patterns:

ch(c, j): This predicate asserts that c refers to a channel registered with join
instance j.

pat(p, j,X): This predicate asserts that p refers to a pattern on join instance j
that matches the multi-set of channels X .

These representation predicates are all existentially quantified in the specifica-
tion; clients thus reasons abstractly in terms of these predicates.

Channel Initialisation Phase. In the first phase we use the join repre-
sentation predicate: joinch(A,S, j). This predicate asserts that j refers to a join
instance with asynchronous channels A and synchronous channels S.

The join constructor (Join) returns a new join instance in the ch phase with
no registered channels.

The two rules for creating and registering new channels (Sync and Async)
take as argument a join instance j in the ch phase and return a reference to
a new channel. In both cases, we get back a ch assertion, ch(r,j), that asserts
that this newly created channel is registered with join instance j. In addition,
both postconditions explicitly assert that this newly created channel is distinct
from all previously registered channels, r /∈ A ∪ S. As the channel predicate is
duplicable (ch(c, j)⇔ ch(c, j)∗ch(c, j)), to allow multiple clients to use the same
channel, we have to state this explicitly.

Chord Initialisation Phase. In the second phase we use the join represen-
tation predicate: joinpat(P,Q, j). This predicate asserts that j refers to a join
instance with channel preconditions P and channel postconditions Q. Here P
and Q are functions that assign channel pre- and postconditions to each channel.

5 This restriction rules out reasoning about self-modifying synchronisation primitives.
We are not aware of any examples of self-modifying join clients.
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To relate the pre- and postcondition of a channel (as needed, e.g., in the n-barrier
example to distinguish clients), we index each channel pre- and postcondition
with a logical argument of type Val.6 Formally P and Q are thus functions of
type P,Q : Val× τchan → LProp where τchan is the type of channel references.7

Once sufficient channels have been registered, the join instance can transition
into the chord initialisation phase using a view shift:

∀c, a. c ∈ A⇒ Q(a, c) = emp

joinch(A,S, j) ) joinpat(P,Q, j)

This forces all channel pre- and postconditions to be fixed before any chords
can be registered. This rule explicitly requires that the channel postconditions
of asynchronous channel are empty, emp, as explained in Section 2.2.

Rules When and And create a new singleton pattern, and add new channels
to an existing pattern, respectively. Note that a pattern matches a multi-set of
channels and the set-union in And is thus multi-set union.

The rules forDo are more interesting. Rule Do1 deals with patterns without
a continuation. Recall from our informal proof sketches that to add a new chord
without a continuation we showed that the combined channel preconditions of
the chord pattern implied the combined channel postconditions. Our specifica-
tion generalises this to require that the combined channel preconditions can be
view shifted to the combined channel postconditions. This generalisation allows
us to perform logical updates of phantom state when the chord fires. We will see
why this is useful in Section 5.2.

Furthermore, since our channel pre- and postconditions are now indexed by a
logical argument, we have to prove that we can perform this view shift for any
logical arguments (we have a logical argument for each channel). Formally,

∀Y ∈ Pm(Val× τchan). πch(Y ) = X ⇒ �y∈Y P (y) ) �y∈YQ(y)

where Pm(−) denotes the finite power multi-set operator and πch is the power set
lifting of π2. Y thus associates a logical argument with each channel. To register
a chord that matches channels x and y, this thus reduces to two universally
quantified logical arguments, say a and b:

∀a, b ∈ Val. P (a, x) ∗ P (b, y) ) Q(a, x) ∗Q(b, y)

The rule forDowith a continuation (Do2) is very similar, but instead of requir-
ing a view-shift, it takes a delegateb that transforms the combined preconditions
into the combined postconditions. Crucially, the delegate is given access to the
join instance in the message phase. This enables it to send messages, as used in
the reader/writer lock example (Section 2.3).

Message Phase. The final phase allows messages to be sent. We use a third
abstract predicate, joincall(P,Q, j), with the same parameters as the previous
abstract predicate joinpat(P,Q, j). Once all chords have been registered, the join

6 As Val is closed under pairs this allows us to encode an arbitrary number of logical
arguments of type Val.

7 Formally, τchan is simply a synonym for Val, introduced to improve the exposition.
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instance can transition into the third phase using a view shift: joinpat(P,Q, j) )
joincall(P,Q, j).

The only operation in the third phase is to send messages using Call. The
rule for sending a message is very similar to the standard method call rule: we
provide the precondition P (a, c) and get back the postcondition Q(a, c). Here a
is the logical argument, which the client is free to pick.

Both the joincall and ch(−) predicate is freely duplicable, to allow multiple
clients to send messages on the same channel:

ch(c, j)⇔ ch(c, j) ∗ ch(c, j)
joincall(P,Q, j)⇔ joincall(P,Q, j) ∗ joincall(P,Q, j)

Reasoning about Joins. We have verified a simple lock-based implemen-
tation of the joins library (see the accompanying technical report for details).
We have thus given concrete definitions of the abstract predicates pat, ch, joinch,
joinpat, joincall and proved that the implementation satisfies a generalisation of
the joins specification in Figure 5.

5 Reasoning with Joins

In this section we revisit the lock and the n-barrier example, and sketch their
formal correctness proofs in terms of our formal specification of the joins library.
The lock example is intended to illustrate the joins specification in general, and
has thus been written out in full. The n-barrier example is intended to illustrate
the use of logical arguments and phantom state.

5.1 Lock

We begin by formalising the previous informal lock specification. As mentioned
in Section 3, to avoid reasoning about sharing of shared mutable data struc-
tures through themselves, we require all channel pre- and postconditions to be
local assertions – i.e., assertions of type LProp. Since the channel pre- and post-
conditions are defined in terms of the lock resource invariant, the lock resource
invariant must be a local assertion. The formal specification of the lock is thus:

∀R : LProp. ∃ lock : Val→ SProp.

{R}new Lock() {r. lock(r)}
{lock(l)} l.Acquire() {lock(l) ∗R}

{lock(l) ∗R} l.Release() {lock(l)}
∧ ∀x : Val. lock(x)⇔ lock(x) ∗ lock(x)

This specification introduces an explicit lock representation predicate, lock, which
is freely duplicable.

We now formalise the proof sketch of the joins-based lock implementation
from Section 2. Hence, for any predicate R, we have to define a concrete lock

predicate and show that the above specifications for the lock operations hold for
the concrete lock predicate.
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Channel initialisation phase

{emp}new Join() {r. joinch(∅, ∅, r)}
Join

{joinch(A,S, j)}new SyncChannel(j) {r. joinch(A,S ∪ {r}, j) ∗ ch(r, j) ∗ r /∈ A ∪ S} Sync

{joinch(A,S, j)}new AsyncChannel(j) {r. joinch(A ∪ {r}, S, j) ∗ ch(r, j) ∗ r /∈ A ∪ S} Async

Chord initialisation phase

{
joinpat(P,Q, j) ∗ ch(c, j)} j.When(c)

{
r. joinpat(P,Q, j) ∗ pat(r, j, {c})} When

{
joinpat(P,Q, j) ∗

pat(p, j, X) ∗ ch(c, j)

}
p.And(c)

{
joinpat(P,Q, j)∗

pat(p, j, X ∪ {c})

} And

∀Y ∈ Pm(E). πch(Y ) = X ⇒ �y∈Y P (y) � �y∈Y Q(y){
joinpat(P,Q, j) ∗ pat(p, j,X)

}
p.Do()

{
joinpat(P,Q, j)

} Do1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

joinpat(P,Q, j) ∗ pat(p, j, X) ∗�z∈Zch(z, j) ∗
∀Y ∈ Pm(E). πch(Y ) = X ⇒
b →

{
joincall(P,Q, j) ∗
�z∈Zch(z, j) ∗�y∈Y P (y)

}{
�y∈Y Q(y)

}
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

p.Do(b)
{
joinpat(P,Q, j)

}
Do2

Message phase

{joincall(P,Q, j) ∗ ch(c, j) ∗ P (a, c)}c.Call() {joincall(P,Q, j) ∗Q(a, c)} Call

Phase transitions

∀c, a. c ∈ A ⇒ Q(a, c) = emp

joinch(A,S, j) � joinpat(P,Q, j) joinpat(P,Q, j) � joincall(P,Q, j)

ch(c, j) ⇔ ch(c, j) ∗ ch(c, j) joincall(P,Q, j) ⇔ joincall(P,Q, j) ∗ joincall(P,Q, j)

Abstract predicates

pat : τpat × τjoin × Pm(τchan) → SProp ch : τchan × τjoin → SProp
joinch : Pm(τchan)× Pm(τchan) → SProp
joinpat, joincall : (E → LProp)× (E → LProp)× Val → SProp

Here Pm(X) denotes the set of finite multi-subsets of X and

τjoin = τchan = τpat
def
= Val E def

= Val× τchan

πch(X)
def
= {π2(x) | x ∈ X} : Pm(E) → Pm(τchan)

Fig. 5. Specification of the joins library
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The channel pre- and postconditions do not change relative to the informal
proof. For any pair of channels ca and cr we define the channel pre- and post-
condition, P (ca, cr), Q(ca, cr) : E → LProp, as follows:

P (ca, cr)(a, c) =

⎧⎪⎨
⎪⎩
emp if c = ca

R if c = cr

⊥ otherwise

Q(ca, cr)(a, c) =

⎧⎪⎨
⎪⎩
R if c = ca

emp if c = cr

⊥ otherwise

In the proof, ca will be instantiated with the acquire channel and cr with the
release channel. Note that the logical argument a is simply ignored.

The lock predicate then asserts that there exists some join instance and that
fields acq and rel refer to channels with the above channel pre- and postcondition.

lock(x) = ∃a, r, j : Val. a �= r ∧ x.acq �→ a ∗ x.rel �→ r

∗ ch(a, j) ∗ ch(r, j) ∗ joincall(P (a, r), Q(a, r), j)

We explicitly require that a and r are distinct to ensure that the above definition
of P and Q by case analysis on the second argument is well-defined. The lock
predicate only asserts partial ownership of fields acq and rel, to allow the lock

predicate to be freely duplicated.
Below is a full proof outline for the lock constructor.
public Lock() {
Join j; Pattern p;

{this.acq → null ∗ this.rel → null ∗R}
j = new Join();

{this.acq → null ∗ this.rel → null ∗R ∗ joinch(∅, ∅, j)}
acq = new SyncChannel(j);
rel = new AsyncChannel(j);

{R ∗ this.acq → a ∗ this.rel → r ∗ joinch({r}, {a}, j) ∗ a �= r ∗ ch(a, j) ∗ ch(r, j)}
{R ∗ this.acq → a ∗ this.rel → r ∗ joinpat(P (a, r), Q(a, r), j) ∗ a �= r ∗ ch(a, j) ∗ ch(r, j)}
p = j.When(acq).And(rel);

{R ∗ this.acq → a ∗ this.rel → r ∗ a �= r ∗ joinpat(P (a, r), Q(a, r), j)

∗ ch(a, j) ∗ ch(r, j) ∗ pat(p, j, {a, r})}
p.Do();

{R ∗ this.acq → a ∗ this.rel → r ∗ joinpat(P (a, r), Q(a, r), j) ∗ a �= r ∗ ch(a, j) ∗ ch(r, j)}
{R ∗ this.acq → a ∗ this.rel → r ∗ joincall(P (a, r), Q(a, r), j) ∗ a �= r ∗ ch(a, j) ∗ ch(r, j)}
rel.Call();

{this.acq → a ∗ this.rel → r ∗ joincall(P (a, r), Q(a, r), j) ∗ a �= r ∗ ch(a, j) ∗ ch(r, j)}
{lock(this)}
}

The call toDo further requires that we prove:

∀Y ∈ Pm(E). πch(Y ) = {a, r} ⇒ �y∈Y P (a, r)(y) ) �y∈Y Q(a, r)(y)

which follows easily from the commutativity of ∗.
The full proof outline forAcquire is given below. The proof forRelease is similar.

public void Acquire() {
SyncChannel c;
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{lock(this)}
{this.acq → a ∗ this.rel → r ∗ joincall(P (a, r), Q(a, r), j) ∗ a �= r ∗ ch(a, j) ∗ ch(r, j)}
c = this.acq;

{this.acq → c ∗ this.rel → r ∗ joincall(P (c, r), Q(c, r), j) ∗ c �= r ∗ ch(c, j) ∗ ch(r, j)}
c.Call();

{this.acq → c ∗ this.rel → r ∗ joincall(P (c, r), Q(c, r), j) ∗ c �= r
∗ ch(c, j) ∗ ch(r, j) ∗Q(c, r)(0, c)}

{lock(this) ∗R}
}

When we call the acq channel we have to pick a logical argument a. Since the
channel pre- and postcondition ignores the a, we can pick anything. In the above
proof we arbitrarily picked 0, hence the Q(c, r)(0, c) in the postcondition.

5.2 n-Barrier

In this section we formalise a proof of the n-barrier from Section 2.4. This example
illustrates how logical arguments combined with phantom state allows us to log-
ically distinguish messages on a single channel. The example also illustrates the
use of a non-trivial view-shift to update a phantom field upon firing of a chord.

Desired Specification. In Section 2.4 we gave an informal specification of
an n-barrier, under the assumption that clients transferred the same resources to
the barrier at every round of synchronisation, and that the barrier redistributed
these resources in the same way at every round of synchronisation. As these
assumptions are unrealistic, we start by generalising the specification.

The simplified n-barrier specification was expressed in terms of two asser-
tions Bin

i and Bout
i that described the resources client i transferred to and from

the barrier at every round of synchronisation. Here, instead, we take Bin and
Bout to be predicates indexed by a client identifier i and the current round of
synchronisation m. The general n-barrier specification is given in Figure 6.

∀n ∈ N. ∀B in, Bout : {1, ..., n} × N → LProp.

(∀m ∈ N. �i∈{1,...,n} B in
i (m) � �i∈{1,...,n}B

out
i (m))) ⇒

∃barrier : Val → SProp. ∃client : Val× {1, ..., n} × N → SProp.

{n = n}new Barrier(n) {ret. barrier(ret) ∗ �i∈{1,...,n}client(ret, i, 0)}
∧ ∀i ∈ {1, ..., n}. ∀m ∈ N.

{barrier(b) ∗ client(b, i, m) ∗ B in
i (m)}

b.Arrive()

{barrier(b) ∗ client(b, i, m+ 1) ∗ Bout
i (m)}

∧ ∀x : Val. barrier(x) ⇔ barrier(x) ∗barrier(x)

Fig. 6. General n-barrier specification. This specification requires that the number of
clients, n, is known statically. This simplifies the exposition. We can also specify and
verify a specification without this assumption.
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Herebarrier is the barrier representation predicate, which can be freely duplicated.
The client predicate plays two roles: namely, (1) to witness the identity of each
barrier client (like the id predicate from Section 2.4), and (2) to ensure that every
client of the barrier agrees on the round of synchronisation, m, whenever they
arrive at the barrier. These two properties are necessary to ensure that we can
redistribute the combined resources when every client has arrived at the barrier.
When one creates a new n-barrier, one thus receives n client predicates – one for
each client – each with 0 as the current round of synchronisation. The current
round of synchronisation is incremented by one at each arrival at the barrier.

Predicate Definitions. We start by giving concrete definitions for the ab-
stract barrier and client predicate. Hence, assume n ∈ N clients and abstract
predicates Bin, Bout : {1, ..., n} × N→ LProp satisfying,

∀m ∈ N. �i∈{1,...,n} Bin
i (m) ) �i∈{1,...,n}Bout

i (m) (2)

Since the n-barrier only has a single channel, we need to pick a single channel
pre- and postcondition that works for every client, for every round of synchro-
nisation. We thus take the logical argument for the arrival channel to be a pair
consisting of a client identifier i and the current synchronisation round m. From
the specification above, when client i arrives for synchronisation round m it
transfers Bin

i (m) to the barrier and expects to receive back Bout
i (m). In addition,

the client gives up its client predicate and gets back a new one, with the same
logical client identifier i and an incremented synchronisation round, m+ 1. For
any barrier b and channel c1 we thus define the channel pre- and postcondition
P (b, c1), Q(b, c1) : E → LProp as follows:

P (b, c1)((i,m), c) =

{
client(b, i,m) ∗Bin

i (m) if c = c1

⊥ otherwise

Q(b, c1)((i,m), c) =

{
client(b, i,m+ 1) ∗Bout

i (m) if c = c1

⊥ otherwise

Here the (i,m) is the logical argument consisting of the logical client identifier
i and synchronisation round m. In the proof, c1 will be instantiated with the
arrival channel.

Above, we defined the channel pre- and postcondition in terms of an abstract
client predicate, which we have not defined yet. We thus need to define client.
This is the main technical challenge of the proof. So, to motivate its definition,
we start by considering what properties the client predicate should satisfy. Recall
that we use the client predicate to (1) witness the identity of clients, and to (2)
ensure that clients agree on the current round of synchronization when they
arrive at the barrier.

To witness the identity of clients, disjointclient predicates must refer to distinct
clients, as expressed by property (3) below. To ensure that clients agree on the
current round of synchronisation, the client predicate should also satisfy (4).
Lastly, to update the current round of synchronisation when every client has
arrived at the barrier, the client predicate should satisfy (5).
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∀b, i, j,m. client(b, i,m) ∗client(b, j,m)⇒ i �= j (3)

∀b, i, j,m, k. client(b, i,m) ∗client(b, j, k)⇒ m = k (4)

∀b,m. �i∈{1,...,n}client(b, i,m) ) �i∈{1,...,n}client(b, i,m+ 1) (5)

Note that (5) is consistent with (4), since we update all n client predicates simul-
taneously.

We can satisfy (4) and (5) by introducing a phantom field to keep track of
the current round of synchronisation. By giving each client 1/n-th permission of
this phantom field, we ensure that every client agrees on the current round of
synchronisation, (4). Furthermore, given all n client predicates, these fractions
combine to the full permission, allowing the phantom field to be updated arbi-
trarily, and thus in particular, to be incremented; thus satisfying (5). We can
satisfy (3) by associating each client identifier i with a non-duplicable resource
•i in the logic, and requiring ownership of •i in the client predicate. We thus

define client as follows, client(b, i,m) = bround
1/n�−→ m ∗ •bi , where •bi is defined as

follows: •bi = ∃v : Val. bi �→ v.
The barrier predicate is now trivial to define:

barrier(b) = ∃j, c : Val. b.arrive �→ c ∗ joincall(P (b, c), Q(b, c), j) ∗ ch(c, j)
It simply asserts thatarrive refers to a channel on a join instance with the channel
pre- and postcondition we defined above.

Proof. Now that we have defined a client predicate satisfying (3), (4), and (5),
we can proceed with the verification of the n-barrier. The main proof obligation
is proving that the barrier chord satisfies the postconditions of the channels it
matches. Since the barrier chord matches n arrival messages, by rule Do1 we
thus have to prove that:

∀Y ∈ Pm(E). πch(Y ) = {cn1} ⇒ �y∈Y P (b, c1)(y) ) �y∈YQ(b, c1)(y)

To simplify the exposition, we consider the case for n = 2. The proof for n > 2
follows the same structure. For n = 2 the above proof obligation reduces to:

∀i1, i2,m1,m2.

client(b, i1,m1) ∗Bin
i1 (m1) ∗client(b, i2,m2) ∗Bin

i2(m2) )
client(b, i1,m1 + 1) ∗Bout

i1 (m1) ∗client(b, i2,m2 + 1) ∗Bout
i2 (m2)

(6)

At this point we cannot directly apply the user-supplied redistribution property,
(2), as it requires that m1 = m2 and i1 �= i2. First, we need to use properties
(3) and (4) to constrain what logical arguments clients could have chosen when
they send their arrival messages. By property (4) it follows that m1 = m2.
Furthermore, from property (3) it follows that i1 and i2 are distinct. Since i1, i2 ∈
{1, 2}, (6) thus reduces to:

∀m. client(b, 1,m) ∗Bin
1 (m) ∗client(b, 2,m) ∗Bin

2 (m) )
client(b, 1,m+ 1) ∗Bout

1 (m) ∗client(b, 2,m+ 1) ∗Bout
2 (m)

(7)
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Using the redistribution property, (2), and (5) it follows that,

∀m. Bin
1 (m) ∗Bin

2 (m) ) Bout
1 (m) ∗Bout

2 (m)

∀m. client(b, 1,m) ∗client(b, 2,m) ) client(b, 1,m+ 1) ∗client(b, 2,m+ 1)

Combining these two we thus get (7). We have thus proven (6). Note that here
we implicitly used the ability to perform a view shift when a chord fires, to
increment the value of the phantom field round.

The verification of the constructor and Arrive method is now straightforward.
In summary, using logical arguments and phantom state we can thus show

that the generalised n-barrier from Section 2.4 satisfies the generalised barrier
specification. While the proof is more technically challenging than any of the
previous examples, it is still a high-level proof about barrier concepts. Informally,
we proved that clients agree on the current synchronisation round and that
clients identify themselves correctly; both natural proof obligations for a barrier.

6 Discussion

We first relate our specification of joins and the clients thereof to earlier work
and then evaluate what we have learned about HOCAP from this case study.

In terms of reasoning about external sharing, O’Hearn’s original concurrent
separation logic supports reasoning about shared variable concurrency using
critical regions [17]. This was subsequently extended to a language with locking
primitives by Hobor et al. [11] and Gotsman et al. [10], and to a language with
barrier primitives by Hobor et al. [12]. In all four cases, the underlying synchro-
nisation primitives were taken as language primitives and their soundness was
proven meta-theoretically.

Concurrent abstract predicates by Dinsdale-Young et al. [7] extends standard
separation logic with support for reasoning about shared mutable state by impos-
ing protocols on shared resources. Dinsdale-Young et al. used this logic to verify
a spin-lock implemented using compare-and-swap. The spin-lock was verified
against a non-standard lock specification without built-in support for reasoning
about external sharing. Hence, to reason about external sharing, clients would
have to define a protocol of their own, relating ownership of the shared resources
with the state of the lock. This type of reasoning is not modular, as it requires
the specification of concurrent libraries to expose internal implementation de-
tails of synchronisation primitives, to allow clients to define a protocol governing
the external sharing.

Jacobs and Piessens recently extended their VeriFast tool with support for
fine-grained concurrency [14] and verified a lock-based barrier implementation
[13] inspired by [11]. They verify the implementation against a specification
without built-in support for reasoning about external sharing. Compared to our
barrier specification, their specification is thus fairly low-level, requiring clients
of the barrier to use auxiliary variables to encode who has arrived and what
resources they have transferred to the barrier.

The goal of this case study was to test whether HOCAP supports modular rea-
soning about concurrent higher-order imperative libraries. To this end, we have
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proposed an abstract specification of the C� joins library, expressed in terms of
high-level join primitives. We have demonstrated that this abstract specification
suffices for formal reasoning about a series of classic synchronisation primitives,
which allow for external sharing. Compared to previous work on verifying syn-
chronisation primitives using separation logic, our specifications are stronger and
our proofs are considerably simpler. Thus, from this perspective, our case study
supports the thesis that HOCAP is useful for modular reasoning about concur-
rent higher-order imperative libraries. However, as explained in Section 3, the
joins specification presented in this paper is restricted to local pre- and postcon-
ditions for channels, which means that synchronization primitives implemented
using joins can only have local assertions as resource invariants. Recall, e.g., the
lock specification in Section 5.1, where the resource invariant ranges over LProp,
which means that clients of the lock cannot use CAP when picking a resource
invariant for the lock. In the technical report [24] we have presented a stronger
specification of joins, which does allow clients to use CAP for such resource in-
variants, but that is at the expense of complicating the specification, to avoid
circular sharing patterns. Thus future work includes finding stronger models of
HOCAP that support simple specifications and circular sharing patterns.

Acknowledgements. We would like to thank Mike Dodds, Bart Jacobs, Jonas
Braband Jensen, Hannes Mehnert, Claudio Russo, and Aaron Turon for helpful
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Abstract. Dynamic program analysis tools based on code instrumenta-
tion serve many important software engineering tasks such as profiling,
debugging, testing, program comprehension, and reverse engineering. Un-
fortunately, constructing new analysis tools is unduly difficult, because
existing frameworks offer little or no support to the programmer beyond
the incidental task of instrumentation. We observe that existing dynamic
analysis tools re-address recurring requirements in their essential task:
maintaining state which captures some property of the analysed pro-
gram. This paper presents a general architecture for dynamic program
analysis tools which treats the maintenance of analysis state in a mod-
ular fashion, consisting of mappers decomposing input events spatially,
and updaters aggregating them over time. We show that this architecture
captures the requirements of a wide variety of existing analysis tools.

1 Introduction

To gain insight about how to optimise, debug, extend and refactor large systems,
programmers often rely on dynamic program analysis tools, which observe a
program in execution and report properties of that execution. Many popular
bug-finding and profiling tools are of this form, including the Valgrind suite [25],
DTrace [5], VisualVM1, GProf [13] and others, while research literature continues
to propose diverse new tools for data race detection [11], white-box testing [29],
security policy enforcement [10] and more.

Implementing such tools is unduly difficult. One recurring source of difficulty
is that high-level requirements must be translated into code reacting to low-level
execution events. For example, a simple context-sensitive memory profiler, which
must “count allocated bytes, totalled by call chain” must be written in terms
of method entries and exits, a variety of low-level object allocation mechanisms,
and so on. Although several existing frameworks assist with creation of dynamic
analyses, all support only the same broad approach, which we characterize as

1 http://visualvm.java.net/

G. Castagna (Ed.): ECOOP 2013, LNCS 7920, pp. 352–377, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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control flow interposition: they provide the interception mechanisms for various
control-flow events, but it remains the user’s responsibility to describe how their
analysis abstracts and aggregates these events. This approach is found in byte-
code transformation libraries such as ASM2, Soot3 or Javassist [6], in aspect
languages such as AspectJ [18], in external domain-specific languages (DSLs)
such as DTrace’s D [5]4 and in embedded DSLs such as BTrace5 or DiSL [23].
By abstracting only the control-flow aspect of the task, considerable work is
repeated by successive tool authors in bridging the abstraction gap between
high-level tool requirements and low-level instrumentation.

In this paper we present a system for describing dynamic analyses more suc-
cinctly using a contrasting approach which we describe as state-oriented. The
analysis’ requirements are decomposed in terms of the structures which hold the
accumulated state of the analysis, and the semantics with which these structures
evolve. For example, our allocation profiler is defined as a composition of a call
chain recorder, a map from call chains to counts, an encapsulated definition of
allocation events, and an updater function which increments the relevant count
on each allocation. All these are re-usable library components. In our system,
dynamic analyses are built straightforwardly by using short script-style code
fragments to combine generic data structures and state transformers.

Our goal is that using such a system, a large proportion of analysis require-
ments can be catered for almost entirely by library code. In other cases, new
requirements can easily be satisfied by creating small extensions of existing li-
brary code. In rare cases where library code cannot be combined or extended
to satisfy requirements directly, the full expressiveness of control-flow interpo-
sition is available, since our system builds on an existing, more conventional
framework. So, while we preserve the expressiveness of existing control-oriented
systems, common cases are handled using library code rather than new user
code.

The contributions of this paper are threefold.

– We describe the design of a framework for composition of dynamic analyses,
focusing on its API and three key constituent interfaces which facilitate our
state-oriented decomposition: instrumentations emitting events when rele-
vant code regions are being executed; updaters describing how the analysis’s
state (meaning the state which is used to produce the analysis’s output,
such as profile data or execution monitor state) responds to new events; and
mappers routing events to the subset of output state requiring consequent
update.

– We show with examples that this factoring can express a wide variety of
analyses, including substantial real use cases presented as case studies.

2 http://asm.ow2.org/
3 http://www.sable.mcgill.ca/soot
4 We note that control-flow abstractions are a characteristic of common DTrace
providers, but not necessarily of the whole framework.

5 http://kenai.com/projects/btrace

http://asm.ow2.org/
http://www.sable.mcgill.ca/soot
http://kenai.com/projects/btrace
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– We show experimentally that our system offers performance generally com-
petitive with lower-level frameworks used like-for-like.

We begin by motivating the high-level design of our system.

2 Motivation

In this section we motivate our work by showing that (1) significant latent com-
monality exists among dynamic analysis tools, (2) frameworks currently used
to build them do not extract this commonality, and (3) a more state-oriented
decomposition of analyses can ameliorate this. We consider these issues in turn.

2.1 Latent Commonality

Instrumentation is only one of the recurring sources of complexity in dynamic
analysis tools. The state maintained by dynamic analysis tools is commonly
explained using the concept of shadowing: the job of the analysis is to update a
set of shadow values that correspond to program state elements such as objects,
fields or threads. The shadows’ role is to maintain additional data about the
program’s execution so far, supplementing the program state. Each shadow value
is updated in response to incoming events. Update rules might simply involve
incrementing an integer (in the case of counters maintained by a profiler), or
might manipulate a set (in the case of a data-race detector based on lock sets),
propagate taint bits (in the case of an information flow analysis), advance a
finite state automaton, and so on. Our insight is that by separating out the
programmer’s description of how shadows are represented and updated from
what unit of program state is modelled by each shadow, greater commonality
can be extracted re-usably from distinct tools.

To illustrate this, we observe how a variety of useful tools can be constructed
by independently recombining different shadow value mappings (i.e., what el-
ements of program state to shadow) with different update rules (i.e., how to
shadow them). First, consider a simple code coverage tool working at the basic
block level. It consists of (1) an instrumentation of basic block entries, (2) a
mapper associating a shadow boolean value to every distinct basic block ID, and
(3) an updater that, for each basic block ID that is received, sets its shadow
boolean to true.
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Instead of coverage, suppose we now require a count-based profiling tool. We
shadow the same program state elements, but now with an integer updated by
increments (instead of a boolean updated by set-to-true).

Now consider a context-sensitive profiler. We keep the same updater, but
maintain each shadow per call chain. This means our mapper now has two levels:
from call chain, to basic block, to the counter payload. The set of call chains must
itself be constructed by additional instrumentation, applied to method entry and
exit, typically to maintain a calling context tree [1].

Note that the overall form of the system is still the same, and it contains
the same kinds of units: an instrumentation that observes events of interest,
a mapper of such events to the relevant part of the analysis state (possibly
over multiple stages), and updaters of individual state elements in response to
events to reflect the context information available for such events. An interesting
property is that the mapping logic can itself maintain state and be sensitive
to events gathered using instrumentation, as with the call chain in the latter
example.

To move from each example to the next in the above series, we change either
how each analysis state element (shadow) is represented and updated (booleans
updated by set-to-true, versus integers updated by increment), or what spatial
structure of shadow elements the gathered events are mapped onto, including
how fine-grained this is (from “one shadow per basic block” to “one per basic
block, per call chain”). However, in no case we change both at the same time.
Therefore, if it were possible for the analysis developer to specify all these con-
cerns independently, each analysis could be constructed very simply by re-using
pieces of the previous one. Achieving this independence is a key contribution of
our API design (§3.4).
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2.2 Limitations of Current Infrastructure

Fig. 1 summarises our goals: to provide still greater ease of use without sac-
rificing flexibility. To achieve ease of use, we seek greater re-use in the code
used to construct dynamic analysis tools. Our insight is that despite the latent
commonality we saw in the previous section, current infrastructure makes it ei-
ther impossible or extremely difficult to structure dynamic analysis tools so that
this logic can be isolated and re-used. We survey these existing infrastructures in
two broad categories: low-level libraries for code transformation, and higher-level
instrumentation-based frameworks.

Fig. 1. Trades of ease-of-use with flexibility in existing frameworks

Low-level libraries A basic yet popular infrastructure supporting dynamic analy-
ses is libraries for manipulating code representations such as Java bytecode [20],
VEX [25], LLVM [19], or machine instructions. Convenient APIs for transforma-
tion of this representation include libVEX6, ASM7, Soot and Javassist [6]. These
reduce the effort required to perform common-case transformations, relative to
manual coding. However, they do not abstract away the complexity of this rep-
resentation, since the programmer must still have a thorough understanding of
it in order to use the API.8

Fixed-event-set frameworks Many analysis frameworks focus on relieving the
programmer of the instrumentation burden, by abstracting various low-level in-
strumentations into the form of a fixed set of hooks (to which callbacks may be
registered) or join points (for which advice may be provided) or events (for which
handlers may be defined). These frameworks are valuable, but their API designs
limit their ability to construct analyses by composition, as we now detail.

Unicast events In Chord9, for example, an analysis is defined as an imple-
mentation of the EventHandler abstract class, implementing a fixed set of

6 http://www.valgrind.org/
7 http://asm.ow2.org/
8 We note that these systems are powerful, and are not limited to the construction
of analysis tools; they can replace or transform entire sections of code in arbitrary
ways. Here, we are referring only to their suitability with respect to construction of
program analysis tools (a common use case).

9 http://pag.gatech.edu/chord/

http://www.valgrind.org/
http://pag.gatech.edu/chord/
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callback-style methods. Since there may be only one EventHandler instance
deployed by a given analysis, there is no convenient way to combine inde-
pendent analyses reacting to the same or overlapping sets of events (without
manual forwarding code). The pipeline architecture of RoadRunner [12] also
suffers from a unicast limitation, in that once an event has been discarded
by an earlier pipeline stage, it is unavailable to all later stages.

Event forwarding requirements Since Chord targets Java, where only sin-
gle inheritance is provided, it cannot combine independently-written han-
dlers for disjoint sets of events without a specially crafted EventHandler that
forwards events as required.

Limitations of pipeline-style composition Although RoadRunner provides
an apparently modular pipeline-based composition model, each pipeline
stage makes strong assumptions about the shadowing and forwarding be-
haviour of the rest of the pipeline.10 As a result, although pipeline stages
are replaceable by algorithmically distinct alternatives (a primary design goal
of the framework [11]) they are not highly re-usable, since each one is usable
only in a pipeline contexts similar to the one for which it was designed.

Fragile base classes In both Chord and RoadRunner, defining a new kind
of event creates fragile base class problems: in Chord, it requires defining a
new Instrumentation class (using the lower-level Javassist library) dispatching
to a new EventHandler-like base class. Existing analyses cannot be rebased
onto this new superclass without forwarding code. RoadRunner has a similar
property: since events are propagated through distinct methods in the Tool
base class, defining new events means modifying this base class.

To avoid the problems just seen, we must design an API that does not model
event transmission as delegation within an inheritance hierarchy, nor as method
calls across a fixed interface.

2.3 State-Oriented Abstractions

Besides an appropriate event abstraction, we must provide additional abstrac-
tions to capture the commonality seen in §2.1. Invariably, as we saw with the
examples of §2.1, non-trivial dynamic analyses maintain some kind of state; de-
scribing this state can offer a succinct way to describe the analysis.

We claim that any instrumentation-based dynamic analysis may be decom-
posed roughly using the following equation.

Analysis = Instrumentations + Mappers + Updaters

Instrumentations provide events from the base program. Updaters modify the
“primary” state of the analysis, meaning the information whose collection is
the end goal of the analysis. This might include the relative hotness of each

10 We note that RoadRunner’s implementation of shadow state allows each field in an
object to be shadowed, but by at most one pipeline stage at a given time. This forces
pipeline stages to coordinate hand-off, using a shared state machine.
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method or basic block (for a CPU profiler) or the state of each active execution
monitor (for a bug-finding analysis). Updaters include the logic which updates
these values in response to new events.11 Finally, mappers connect the other
two layers; logically speaking, they route the incoming events to a subset of the
relevant shadow values.

A key insight of our design is that the mapping stage is often an independently
re-usable part, or, in complex cases, a composition of such parts. For example,
in §2.1 we saw context-sensitive data collection implemented using a calling
context tree. Such a tree represents an intermediate mapping layer which is
independently re-usable across many analyses. In general, the same update logic
might be valid for a variety of granularities of analysis—depending, for example,
on whether profiles are being collected per method or per call chain, whether
monitoring is done per-object or per-class, and so on. A separate mapping stage
allows these granularities to be defined independently from other aspects of the
analysis.

Table 1 offers some credence to the claim of our equation’s generality. It
shows several analyses, including both simple examples of the kind seen earlier
(§2.1) and complex examples from the literature, decomposed according to this
equation. The table columns refer to the concepts we have by now introduced.
The “cardinality” column elaborates on the role of the mapping stage: most
mapping stages are designed to maintain one shadow value per some division of
program state (current or former), such as “one state machine per live object”
or “one count per call chain seen”, and we detail this explicitly.

To realise this decomposition, we require a programmatic way to express each
of the three parts separately. Furthermore, our programmatic realisation must
be efficient so as to meet the requirements of dynamic program analysis. In the
next section, we therefore describe this programmatic realisation in the form of
an API design, paying special attention to both the overall ease-of-use and the
essential implementation details on which the design’s practicability depends.

3 API Design

In this section we present FRANC, our FRamework for ANalysis Composition,
which is implemented on top of the DiSL instrumentation framework12 [23], and
which models our state-oriented decomposition of dynamic analysis tools. Like
DiSL, FRANC targets Java bytecode. We chose DiSL partly because it is an open-
source framework and (to our knowledge) the only one providing full bytecode
coverage out-of-the-box. Whereas DiSL provides instrumentation primitives and
a set of annotations allowing Java-language code snippets (static methods) to
be inlined in a user-specified manner, FRANC instead focuses on encapsulating
instrumentation behind “listener”-like13 event interfaces, and subsequently pro-
cessing events in plain, annotation-free Java code. Instrumentations are event

11 We will sometimes prefer to talk about collective “analysis state”, and sometimes
about many individual “shadow values”.

12 http://disl.ow2.org/
13 We use “listener” in the same sense as various Java libraries, notably Swing [33].

http://disl.ow2.org/
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producers. The remainder of the analysis is implemented as event consumers
which subscribe to some set of instrumentations. The underlying DiSL API is
available to handle rare cases where library-defined instrumentations do not suf-
fice. In overview, our API provides the following features:

– library-defined event sources, implemented by bytecode instrumentation;

– mappers that aggregate, decompose, augment and/or filter incoming events—
and may be built compositionally from other mappers;

– updaters that comprise a representation for an element of analysis output
state and logic for updating it in response to events;

– “auto-completion” features for inferring common wiring patterns between
event producers and consumers.

Clients of the FRANC API are submitted to a weaver which analyses the client
program’s use of various API interfaces and performs the necessary instrumen-
tation. Our use of a Java API reflects our implementation, which is both a
Java-based API and performs instrumentation of Java bytecode. However, we
believe the same conceptual decomposition could be implemented conveniently
in many other instrumentation scenarios.

3.1 API Elements

Each element of our equation (§2.3) corresponds to a small set of API-provided
definitions. We briefly survey these now, before proceeding to a full example.

Instrumentations We can construct instrumentations using code like the follow-
ing. FieldAccess is one of a collection of code region marker interfaces identifying
various bytecode patterns which can be instrumented.

Instrumentation <FieldAccess > faInstr = new Instrumentation <>();

Scheduling interfaces Code which consumes instrumentation events implements
another kind of marker interface, called scheduling interfaces, that decide
whether the code executes Before or After the instrumented feature (among
other options). Here we begin a class that will define code to run after each field
access.

class FieldMapper
implements After <FieldAccess >
// ... to be continued

Shadow value maps The shadow state of our analysis is usually stored in some ob-
ject implementing Java’s standardMap interface. Here we store a set of counters,
indexed by strings (whose values will be explained shortly).

Map <String , AtomicLong > fieldAccesses = new HashMap <>();
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Mappers Mappers are a particular kind of client of instrumentation. Usually,
they use instrumentation events to maintain a current value—on either a global,
per-thread, or some other basis. The current value denotes the key (in the shadow
state map) that is currently relevant for update. For example, our field access
mapper holds a string representing the most recently accessed field. We represent
these current values using familiar Java data types (modestly generalised) such
as ThreadLocal. We have already seen the beginning of the mapper definition; in
full, it is as follows.

class FieldMapper
extends ThreadLocal <String >
implements After <FieldAccess > {

public void after (FieldAccess codeRegion )
{ set(FieldAccessContext .getFullFieldName (codeRegion )); } // grab current field

}
FieldMapper currentField = new FieldMapper ();

Context accessors The helper class FieldAccessContext, which retrieves a unique
string identifying the field, belongs to a library of context accessor classes, whose
design confers important modularity properties. We return to this in §3.3.

Updaters How does a new FieldAccess event update the relevant element of the
fieldAccesses map? This is encapsulated in an updater object. Ours comes from
the library, and has simple “increment” semantics.

Analysis <FieldAccess > updater = new PostIncrement <>( fieldAccesses , currentField );

Subscription relationships To “wire up” the system, we can explicitly create
subscription relationships to route events from an Instrumentation to its clients—
here both the mapper and the updater.

faInstr.appendSubscriber (currentField );
faInstr.appendSubscriber (updater );

3.2 Complete Example

We now build a complete example combining the elements we just saw. Fig. 2
shows a simple analysis which counts accesses to fields and groups them a unique
identifier for that field.14 This analysis could be used to profile hotness of fields,
as a basis for cache optimisation.

As is evident from the code, a few minor tweaks have been made. These are all
changes which, it turns out, help to make the pieces fit together straightforwardly.
We discuss each of these in turn.

Shadow value map Although we could use various Map implementations to hold
our analysis’s shadow state (line 2 in Fig. 2), we use our own ShadowMap. This is
somewhat tailored to analysis use. In particular, ShadowMap additionally allows
a factory class to be supplied, enabling get(K key) to create a new map entry in
the case of an absent key.

14 This identifier is defined carefully so as to account for like-named fields occurring
within the same class (by inheritance), and for distinct class loaders.
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1 // shadow values
2 Map <String , AtomicLong > fieldAccesses = new ShadowMap < >(...);
3
4 // (a) first define a stateful mapper which latches the field being accessed
5 class FieldMapper
6 extends ThreadLocal <String > // 1. maintain a String per thread
7 implements AfterCompletion <FieldAccess > { // 2. by hooking field accesses
8 public void afterCompletion (FieldAccess codeRegion )
9 { set(FieldAccessContext .getFullFieldName (codeRegion )); } // grab current field

10 }
11 // (b) then instantiate it
12 FieldMapper currentField = new FieldMapper ();
13
14 // update rule : atomic counter increment , from the library
15 Analysis <FieldAccess > updater = new PostIncrement <>( fieldAccesses , currentField );
16
17 // deployment -- infers what instrumentations are needed
18 FRANC .deploy(FRANC .complete (currentField , updater ));

Fig. 2. Composing a simple field access counter

1 class PostIncrement <T extends CodeRegion > implements AfterCompletion <T> {
2 Map <?, AtomicLong > map; MutableReference current;
3
4 public PostIncrement (Map <?, AtomicLong > m, MutableReference c)
5 { map = m; current = c; }
6
7 public void afterCompletion (T codeRegion )
8 { map.get(current .get ()). incrementAndGet (); }
9 };

Fig. 3. A value updater included in our library—in this case, an atomic incrementer

Mapper The mapper (line 5 in Fig. 2) is essentially unchanged from earlier.
Since our analysis groups field accesses by the field’s unique identifier, it needs
to “latch” this identifier whenever a field is accessed. Since each thread may be
accessing (at most) one distinct field at a time, our mapper state is a ThreadLocal
string value, recording the unique identifier of the last-accessed field. Recall that
this state will be used to arrange that each field access is “mapped onto” a
different shadow value (i.e. element in the map) depending on what field is
being accessed.

Scheduling interfaces One change is that our mapper implements
the AfterCompletion<FieldAccess> marker interface, instead of plain
After<FieldAccess>, with the effect that it runs after only those field ac-
cesses which complete non-exceptionally.

Context accessors It is worth paying closer attention to how the context informa-
tion is accessed, in line 9 of Fig. 2, using context accessors. These form a separate
class hierarchy than both the scheduling interfaces (such as Before, After) and the
code region markers (such as FieldAccess). Here, the FieldMapper calls a static
method on FieldAccessContext to extract the field’s unique identifier. All access
to context is done through such methods, and always passing the current code
region, which represents the instrumentation site. This allows us to statically
define the relationship between context information and the instrumentation
sites at which it is available. As a concrete example, the FieldAccessContext
class requires that its codeRegion arguments are in fact FieldAccess instances.
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Consequently, even though context is defined in a separate class hierarchy, pro-
grammer errors involving inappropriate context selection are caught statically.
By contrast, these errors are only caught dynamically under existing systems
(such as DiSL, custom instrumentations in Chord, etc.). By extending this ap-
proach to custom dynamic context, to be described in §3.3, we also avoid many
scenarios in which the programmer would otherwise resort to accessing the
operand stack directly—another source of run-time errors.

Updaters For each field access we intercept, we require an update function for the
shadow values stored in the map. This is a simple increment. More precisely, it is
a post-increment, meaning the increment happens after the completed execution
of the underlying bytecode (here, after each field access). As shown in Fig. 3,
our library defines PostIncrement for this purpose, appropriately parameterised.
The user needs only to instantiate it. Note that we pass it a reference to our
currentField mapper state, and to the map itself. All that the incrementer knows
about the mapper is that it defines a method get() which will supply some
object (here the field name) usable as a key to index the map.15 This “thin
waist” hourglass design is what allows many distinct updaters to be composed
unmodified with many distinct mappers.

Autocompleted instrumentation Previously (§3.1), we saw how to manually in-
stantiate Instrumentation objects which act as sources of field access events. In
practice, in this example we do not need to construct an Instrumentation explic-
itly, since our updater implements Analysis<FieldAccess>; instead, we construct
the analysis with FRANC.complete(), which infers (from types of its arguments)
that a source of FieldAccess events must be added to the composition. Since there
is only one such source defined in the library, it is implicitly added. In some more
advanced cases, instrumentations will need to be explicitly constructed.

Ordering So far, a subtle question has gone unanswered. We have two distinct
clients of FieldAccess events, and they share state. In what order does their
code run? Our example requires that the FieldMapper runs first, so that when
the updater calls get(), it sees an up-to-date unique field identifier. Deployment
logic (in FRANC.deploy()) embodies a series of rules for deciding this ordering.
By default, these arrange that mapper logic runs before updater logic, though
the user may also specify an ordering explicitly. We discuss this issue further in
§3.5.

3.3 Open, Re-usable Event Definitions

The library defines a large number of specialised CodeRegion marker interfaces
such as BasicBlock, FieldAccess, ArrayAccess, Body (meaning method or construc-
tor body), and various others (also including most individual bytecodes). Each
represents some feature found in Java bytecode. In all cases, the user can specify

15 Here, get() is defined by ThreadLocal; see §3.4.
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1 /* marker superinterface for defining features in bytecode (body , basic block , ...) */
2 public interface CodeRegion {}
3
4 /* superinterface for instrumentation -sensitive code */
5 public interface Analysis <T extends CodeRegion > { /* see Sec. 3.3 */ }
6 /* now , fine -grained interfaces for before/after /... */
7
8 // runs before bytecode of interest
9 public interface Before <T extends CodeRegion > extends Analysis <T>

10 { void before(T codeRegion ); }
11
12 // run after bytecode of interest completes non -exceptionally
13 public interface AfterCompletion <T extends CodeRegion > extends Analysis <T>
14 { void afterCompletion (T codeRegion ); }
15
16 // run after , in exceptional case
17 public interface AfterThrowing <T extends CodeRegion > extends Analysis <T>
18 { void afterThrowing (T codeRegion ); }
19
20 // run after , in both exceptional and non -exceptional cases
21 public interface After <T extends CodeRegion > extends Analysis <T>
22 { void after (T codeRegion ); }

Fig. 4. Marker “scheduling” interfaces for code invoked at instrumentation sites

code that should run before the feature, after it, and so on, as shown in Fig. 4. A
key property of our API design is that the set of events is extensible, and that
the information accompanying each event is also (independently) extensible, and
that accesses to this information are statically checked. Here we review how this
is achieved.

Context information For any event, there will be some context information that
is accessible from all occurrences of such an event. For example, the context
information for a FieldAccess includes the object in which the field is stored,
the field’s name and type, and so on. Context information is captured by code
defined in classes separate from the instrumentation; we have FieldAccessContext,
BasicBlockContext and so on. This separation is significant; it leads a pull-style
access to context information, rather than the push-style of other frameworks.
Pull-style access brings modularity advantages; we return to this issue shortly.

New events by composition Many events are defined compositionally. For exam-
ple, the library defines an Allocation event in terms of the various Java bytecodes
that perform allocation: not only the new bytecode, but also newarray, anewarray
and multianewarray.16 Therefore, Allocation is defined as the union of several
events. Users may define new events in a similar compositional fashion. (They
may also define new events from scratch, at the bytecode level; we describe this
in §3.6.)

Custom events and custom context User-defined events may require user-defined
context information. For example, just as BasicBlockContext defines methods for
getting the size and identifier of the basic block, and AllocationContext defines
a getAllocated() method returning the allocated object, other events may wish

16 In fact, we use ObjectConstructor, the event of executing the method body of
java.lang.Object, rather than the new bytecode, because this also catches some al-
locations within the JVM or native code.
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1 @Before (marker = BytecodeMarker .class, args = "getfield ,putfield ,getstatic ,putstatic ")
2 public static void onFieldAccess (BytecodeStaticContext bcsc , ClassContext cc,
3 FieldAccessStaticContext fasc , DynamicContext dc) {
4 Object owner ; boolean isStatic ;
5 int access = bcsc .getBytecodeNumber ();
6 i f (access == Opcodes .GETFIELD ) {
7 owner = dc.getStackValue (0, Object.class );
8 isStatic = false;
9 }

10 else i f (access == Opcodes.PUTFIELD ) {
11 owner = dc.getStackValue (1, Object.class );
12 isStatic = false;
13 }
14 else {
15 owner = cc.asClass (fasc .getDeclaredOwner ());
16 isStatic = true;
17 }
18 /* method continues ... */
19 }

Fig. 5. Non-reusable DiSL code for extracting the containing object for different cases
of field access

to extract other information. These two examples represent different kinds of
context: BasicBlockContext is said to be static context, because it can be deter-
mined at load time, simply by inspecting the bytecode and constant pool of the
instrumented code. Meanwhile, AllocationContext requires inspection of the pro-
gram state (to get the allocated object from the operand stack), so is dynamic
context.

Push versus pull Custom context is a unique feature of our system: we are aware
of no other system which allows users to extract additional information at an
instrumentation site without also redefining the instrumentation site itself. For
example, in Chord or RoadRunner, we would have to write new code against
the underlying ASM or Javassist interfaces to achieve this; in doing so, we would
extend the callback signature or Event data type used to pass the information to
the client. This is push-style access to context information; the callback or Event
definition is widened to encapsulate (hopefully) all information the client might
require (else pay the cost of invasive code changes). Pull-style access, by contrast,
avoids this need to fully anticipate what context information will be required.
Rather, an unmodified instrumentation can effectively be extended simply by
defining new context providers. For example, we could extend AllocationContext
to provide a getSize() method returning the size of the object allocated, without
changing the instrumentation defined by Allocation.

Abstraction over instrumentations A second benefit of our separate context
approach is that we can abstract over multiple instrumentation sites, extracting
commonality in terms of their context information. Our Allocation example is
already an instance of this: many different bytecodes do allocations, and the
method for getting a reference to the allocated object varies a little. In previous
systems such as DiSL, with support for user-defined events (“markers”) but
not custom dynamic context, hand-rolled code would be required. Fig. 5 shows
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1 // shadow state
2 Map <Pair <CCTNode , String >, AtomicLong > state = new ShadowMap < >(...);
3
4 // subordinate mapper which maintains call chains in a calling context tree
5 final MethodCCT methodCCT = new MethodCCT (); // from the library
6
7 // primary mapper: latch the field being accessed , pairing it with current CC
8 class FieldCCMapper
9 extends ThreadLocal <Pair <CCTNode , String >> // 1. maintain per thread <CC ,String > pairs

10 implements AfterCompletion <FieldAccess > { // 2. by hooking field accesses
11 public void afterCompletion (FieldAccess codeRegion ) {
12 set(Pair .valueOf(
13 methodCCT .current.get (), // 3. and sampling the call chain
14 FieldAccessContext .getFullFieldName (codeRegion )
15 ));
16 } }
17 FieldCCMapper currentFieldAndCC = new FieldCCMapper ();
18
19 // update rule : atomic counter increment , from the library
20 Analysis <FieldAccess > updater = new PostIncrement <>( state , currentFieldAndCC );
21
22 // deployment -- infers any additional instrumentation needed
23 FRANC .deploy(FRANC .complete (methodCCT , currentFieldAndCC , updater ));

Fig. 6. Composing a call chain sensitive field access counter

a typical example of this, from an implementation of the Racer race-detection
algorithm [4] in the original DiSL. Since this hand-rolled code is written
inside the snippet, it is not easily re-used. By contrast, in FRANC equivalent
definitions can be in library code (namely FieldAccessContext).17

3.4 Separating Mappers from Updaters

As described earlier, a “thin waist” hourglass design is used to separate map-
pers (like FieldMapper) from updaters (like PostIncrement). We illustrate the key
features of this design using a slightly more developed example. We stay with
counting field accesses, as in Fig. 2, but wish to make it context-sensitive, in the
sense of keeping counts per call chain (as well as per field identity). Fig. 6 shows
such an analysis.

We note that our currentFieldAndCC (together with its equivalent in Fig. 2,
currentField) is effectively a double indirection: it is a reference to an object con-
taining a mutable reference. This is precisely what the standard Java ThreadLocal
class implements, although in this case holding one mutable reference per thread.
We provide our own ThreadLocal which rebases the standard Java implementa-
tion onto a new class hierarchy, in which it is a subclass of MutableReference.
Our “thin waist” design is based on this class: the updater requires only that
it has access to a MutableReference which records the current key object which

17 Although we could put the snippet shown in Fig. 5 into a library of such snippets,
such a snippet could only be made useful by adding the “push” limitation. To pass
on the extracted context information, here owner, would require adding code to make
a method call, bringing the same fragility already noted in Chord and RoadRunner.
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it should use to index the map (which, again, can be any map).18 The updater
performs the lookup and updates the shadow value it finds.19

The map storing the results can equally well have either identity or equality
semantics. However, we find identity to be a very useful option when mapping
through complex domains, such as call chains in this example (or actually call
chains paired with strings). Our library provides multiple tree-based data struc-
tures such as ourMethodCCT (actually a prefix tree, or trie). These have the prop-
erty that each node represents a distinct value (call chain), and the identity of the
node suffices to signify that value (since each distinct call chain is represented by
exactly one node). These prefix-structured key spaces are common in dynamic
analyses of structured programs—consider not only call chains, but lock stacks,
loop nests and others. Using these representations, key matching becomes a sim-
ple reference equality test, making identity-based maps the appropriate choice.
This approach to representing values is similar to the interned string pool in
the JVM or the autoboxing cache maintained by Integer.valueOf(n), and usually
represents a more favourable time–space trade-off than content-based value com-
parisons. Furthermore, static context information (§3.3) is always stored in the
instrumented bytecode’s constant pool; strings stored here are always interned
by the JVM, making such strings also suitable for use as keys in this way.

3.5 Supporting Common Case Usages: Autocomplete

Each instrumentation instance has a number of subscribers : the mappers
and updaters that run in response to the instrumentation-generated events.
FRANC.complete() infers, given a set of subscribers, any extra instrumentations
that must be instantiated, and what subscription relationships to create.

As an example, in Fig. 2, we saw that no FieldAccess instrumentation was
explicitly created, but two consumers of this information (both the mapper and
the updater) were created. By passing these consumers to FRANC.complete(),
the requirement for a FieldAccess instrumentation is inferred automatically.

FRANC.complete() is a variadic function. By deciding the order of the ar-
guments, the programmer controls the ordering in which different subscribers’
code will be executed. This is important because mappers and updaters inter-
act by side-effecting updates of mapper state, and may both subscribe to the
same event. Typically mappers should run first, so that an updater will make an
“up-to-date” selection of shadow value. FRANC.deploy() warns if an updater is
scheduled before a mapper. (We propose a more general approach to this issue
in §7.)
18 Here we pay a small price of not statically checking that the MutableReference yields

a key object that is type-correct with respect to the map.
19 We may compare this with the logical view presented in §2, where mappers were

depicted as “routing” events from instrumentation to updater. Unlike routers, our
mappers do not explicitly forward data; they simply maintain the state used by up-
daters to select which shadows to update. In effect, mappers implement the “control
plane” of a router; the data plane resides in the updater and event subscription logic.
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3.6 Supporting Advanced Usages

We saw in §3.3 how custom context information can be extracted from code
regions already defined. In some cases, we might wish to define not only new
context information, but an entirely new code region. This is also supported.
With this ability, we retain the full expressiveness of the underlying DiSL system.
However, this functionality is applicable only in the rare cases in which existing
code regions, or compositions thereof, do not satisfy the user’s requirements.
(One example might be superblocks or similar trace-like bytecode sequences,
which are not currently implemented in our library.) To do so, the programmer
must identify the bytecodes of interest using the underlying instrumentation
API.

4 Case Studies

In this section we illustrate the benefits of FRANC by recasting two dynamic
program analysis tools from the literature, Racer [4] and Senseo [27]. Racer is a
data-race detection tool, while Senseo is a dynamic analysis tool for code com-
prehension and profiling. Note that (author?) [2] describe different implementa-
tions of Racer based on AspectJ, while (author?) [23] compare implementations
of Senseo based on DiSL, AspectJ, and ASM.

4.1 Racer

Racer is a data race detection tool for multi-threaded Java programs. Based on
an extension of the Eraser algorithm [28], it reports a data race if two or more
threads access the same field without holding any common lock, and if at least
one of the threads is writing to the field.

The implementation of Racer addresses three major concerns. First, it main-
tains a mapping layer from field identifiers to their state. Note that the field iden-
tifier is a Pair<Object, String>: the first element identifies the object on which
the field has been accessed, while the second contains the field’s fully-qualified
name. Second, it updates a thread local set of the locks held by each thread.
Third, it intercepts field access events and updates some state corresponding to
the accessed field. State information includes the threads that accessed the field,
the intersection of the sets of locks held upon each access, and the access type
(i.e., read or write). Fig. 7 illustrates the FRANC recast of Racer.

Lines 2–15 of Fig. 7 are dedicated to the first concern that we identified in
Racer, that is, maintaining the mapping layer. In particular, line 2 defines a Map
(i.e., state), while lines 6–15 define its updating function (i.e., mapper).

This mapping layer resembles those illustrated in Fig. 2 and Fig. 6. While the
mapping layer in Fig. 2 statically identifies fields with a unique field identifier,
the implementation presented in Fig. 7 takes into account also the reference
on which the field has been accessed. Note that it is possible to replace the
mapping layer in Fig. 2 with the one in Fig. 7 without affecting the rest of the
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1 // shadow state
2 final Map <Pair <Object , String >, RacerState > state = new ShadowMap < >(...);
3
4 // mapper: latch the reference holding the field being accessed ,
5 // pairing it with the field name
6 class FieldOwnerMapper
7 extends ThreadLocal <Pair <Object , String >> // 1. maintain a pair per thread
8 implements AfterCompletion <FieldAccess > { // 2. by hooking field accesses
9 public void afterCompletion (FieldAccess codeRegion ) {

10 set(Pair .valueOf(
11 FieldAccessContext .getHolder (codeRegion ), // 3. and the field holder
12 FieldAccessContext .getFullFieldName (codeRegion )
13 ));
14 } };
15 final FieldOwnerMapper mapper = new FieldOwnerMapper ();
16
17 // lock set analysis , from the library
18 LockSetAnalysis lockSet = new LockSetAnalysis ();
19
20 class RacerAnalysis implements AfterCompletion <FieldAccess > {
21 public void afterCompletion (FieldAccess codeRegion ) {
22 state .get(mapper.get ()). onFieldAccess (
23 Context.getFullMethodName (codeRegion ), // location
24 FieldAccessContext .isFieldRead (codeRegion ), // access type
25 lockSet.get () // set of held locks
26 );
27 } };
28 RacerAnalysis racer = new RacerAnalysis ();
29
30 FRANC .deploy(FRANC .complete (lockSet , mapper , racer ));

Fig. 7. FRANC recast of the Racer data-race detection tool

code. Moreover, it is possible to combine the mapping layer in Fig. 6 with the
one in Fig. 7 by using Tuple<CCTNode, Object, String> as key.

Line 18 of Fig. 7 instantiates a lock set analysis component that is part of the
FRANC library. This maintains a thread local set of locks held by each thread,
thus addressing the second concern of Racer.

Finally, the third concern of Racer, that of updating the state associated to
the accessed field, is addressed in lines 20–28 of Fig. 7. The logic for updating the
analysis state is here an essential detail of the analysis, so is of limited reusability.
However, we note that good modularity properties remain. For example, replac-
ing the mapping layer would not require any modification to this part of the
code.

4.2 Senseo

Senseo is a dynamic analysis tool for code comprehension and profiling. It collects
context-sensitive dynamic information for each invoked method. This informa-
tion consists of (1) the number of method executions, (2) the run-time type of
method arguments, (3) the run-time type of return values, and (4) the number
of allocated objects. Each of these can be seen as collected by a smaller sub-
analysis. The implementation of Senseo addresses two key concerns. Firstly, it
must maintain the current call chain for each thread. Secondly, it must perform
the necessary analyses upon method entry, method exit, and memory allocation.

Fig. 8 illustrates the FRANC code addressing the first concern, that is, main-
taining per-thread call chains. This code is equivalent to part of the code il-
lustrated in Fig. 6. However, here we do not declare a single Map to store the
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1 // mapper which maintains call chains in a calling context tree
2 final MethodCCT methodCCT = new MethodCCT (); // from the library
3
4 // (a) first define a stateful mapper which latches the current CC
5 class CCMapper
6 extends MethodLocal <CCTNode > { // 1. maintains the current CC in a local variable
7 public CCTNode initialValue () { // 2. setting its initial value
8 return methodCCT .current.get (); // 3. by sampling the call chain
9 } };

10 // (b) then instantiate it
11 CCMapper currentCC = new CCMapper ();

Fig. 8. Mapping layer of the FRANC recast of Senseo

1 // shadow state for methodCalls
2 Map <CCTNode , AtomicLong > callsState = new ShadowMap <>(...);
3 // update rule : atomic counter increment , from the library
4 Analysis <Body > methodCalls = new BeforeIncrement <>( callsState , currentCC );

(a) Count the number of method executions

5 // shadow state for methodArgs
6 Map <CCTNode , ArgsProfile > argsState = new ShadowMap <>(...);
7 // runtime argument type analysis , from the library
8 Analysis <Body > methodArgs = new ArgumentAnalysis (argsState , currentCC );

(b) Profile the runtime type of method arguments

9 // shadow state for methodRets
10 Map <CCTNode , RetsProfile > methodRetsState = new ShadowMap < >(...);
11 // runtime return type analysis , from the library
12 Analysis <Body > methodRets = new ReturnValueAnalysis (methodRetsState , currentCC );

(c) Profile the runtime type of return values

13 // shadow state for allocs
14 Map <CCTNode , AllocsProfile > allocsState = new ShadowMap < >(...);
15 // allocation analysis , from the library
16 Analysis <Allocation > allocs = new AllocationAnalysis (allocsState , currentCC );

(d) Profile object and array allocations

Fig. 9. Different analyses in the FRANC recast of Senseo

shadow state. Rather, each specific analysis allocates its own Map. In this way,
single analyses can be added or removed without affecting the rest of the code.

1 // shadow state for bbs
2 Map <CCTNode , BasicBlockProfile > bbsState = new ShadowMap < >(...);
3 // allocation analysis , from the library
4 Analysis <BasicBlock > bbs = new BasicBlockAnalysis (bbsState , currentCC );

Fig. 10. Optional basic block analysis for the FRANC recast of Senseo

Fig. 9 illustrates the different analyses of which Senseo is composed. Each
analysis is completely independent from the others, and could be easily disabled
or extended. An advantage of this modular design is that adding an additional
analysis, for example to count the number of basic blocks of code executed within
each call chain, is as trivial as adding the code snippet presented in Fig. 10. An-
other advantage is that this code does not depend on a specific instrumentation
of BasicBlock code regions, but it can be reused for any custom instrumentation
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that intercepts code regions that implement the BasicBlock interface. This is
particularly important in this case, as developers may want to use custom algo-
rithms to define BasicBlock regions. For example, bytecodes that could throw an
exception may (or may not) define the beginning of a new basic block.

5 Performance Evaluation

In this section, we evaluate the performance of the Senseo and Racer case studies
reimplemented using the FRANC framework, and compare it to the performance
of the same tools implemented using DiSL. We compare the execution times of
both tool implementations on the benchmarks from the DaCapo [3] suite (release
9.12), excluding the tradesoap, tradebeans, and tomcat benchmarks due to well
known issues20 unrelated to our framework. We have used the default workload
size to evaluate the Senseo tools, and the small workload size to evaluate Racer
tools, due to high memory consumption with both the DiSL and the FRANC
frameworks. All experiments were run on a multicore platform21 with all non-
essential system services disabled.

We present the results in Fig. 11, both for the startup and the steady-state
performance. Each column in the plot corresponds to a single DaCapo bench-
mark, and we report the overhead factor of a FRANC-based tool over a DiSL-
based tool, when applied to that benchmark. In the last column, we report the
geometric mean of all overhead factors. The hollow data points correspond to
the mean startup overhead, while the filled data points correspond to the mean
steady-state overhead. The whiskers represent a 95% confidence interval for the
means.

To determine the startup overhead, we executed 3 runs of a single iteration
of each benchmark and measured the time from the start of the process till the
end of the iteration to capture the instrumentation overhead. We relied on the
filesystem cache to mitigate the influence of I/O operations during startup. To
determine the steady-state overhead, we made a single run with 15 iterations of
each benchmark. Based on visual inspection of the data, we excluded the first 3
iterations to minimize the influence of startup transients and interpreted code.

Since our system considerably raises the level of abstraction for the analysis de-
velopers, we expect to pay certain price in terms of performance. The additional
complexity of the inlining of event subscribers may cause additional overhead
at instrumentation. The composability of elements and the separation between
shadow value mapping and updating inevitably leads to more indirections at run
time, increasing overhead.

20 See bug ID 2955469 (hardcoded timeout in tradesoap and tradebeans) and bug
ID 2934521 (StackOverflowError in tomcat) in the DaCapo bug tracker at
http://sourceforge.net/tracker/?group_id=172498&atid=861957.

21 Intel Core2 Quad Q9650 CPU, 3.0 GHz, 8 GB RAM, 64-bit Ubuntu
GNU/Linux 12.04, kernel 3.2.0-20, Oracle Java HotSpot 64-bit Server VM 1.6.0 32,
7 GB heap.

http://sourceforge.net/tracker/?group_id=172498&atid=861957
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Fig. 11. Mean startup and steady-state overhead, with 95% confidence interval

The results confirm our expectations. While on average, the FRANC-based
Racer tool performs on par with the DiSL-based implementation, the FRANC-
based Senseo tool shows approximately 31% startup, and 25% steady-state over-
head. The average is not entirely representative in the case of Senseo, because
there are 3 benchmarks (eclipse, pmd, and xalan) showing considerably higher
steady-state overhead, and 4 benchmarks (also including jython) showing consid-
erably higher startup overhead. The absolute worst-case overhead was observed
in the eclipse benchmark under the FRANC-based Senseo tool, which yielded an
85% upper bound for the confidence interval.

However, we note that the system is still in a prototype stage, with opportu-
nities for optimization (actually enabled by the higher level of abstraction) still
unexploited. A key benefit of our design is that it has been carefully crafted to
compile down to code very similar to what an analysis developer would write
by hand using a more traditional instrumentation system, such as DiSL (which
serves as the foundation for our system). Considering that the DiSL-based Senseo
tool was more than twice as fast when compared to an AspectJ-based implemen-
tation [23], we consider the overhead found in this evaluation acceptable, and
expect the cost of the higher abstraction level to remain in reasonable bounds.

6 Related Work

Basic instrumentations. Several instrumentation systems including Pin [21] and
the instrumentation engine of Chord provide callback-based APIs which allow
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programmatic construction of analyses in response to a closed set of events. As
described in §2, these systems are valuable, but inadequate to modularise com-
plex analyses. DiSL [23] provides slightly more flexibility in defining new instru-
mentations and extracting additional data (“context information”—§3.3) but
retains the same key limitations. Aspect-oriented languages such as AspectJ [18]
or AspectC [8] provide analogous support, in the form of join points, but these
are again fixed by the system, and lack the low-level (instruction or basic block)
join points provided by instrumentation systems.

Event and shadowing abstractions in RoadRunner. RoadRunner is a dynamic
analysis framework highly specialised towards data race detection and related
analyses. Only per-field, per-lock and per-thread shadowing is provided. Adding
new event types would require changes to core interfaces, including the basic
Tool superclass. By contrast, our system supports an open set of events and a
generalised approach to shadowing based on shadow mappers (§3.2), and pro-
vides for many common requirements using library code, making it more general
but no harder to use. RoadRunner decomposes analyses into an event-processing
pipeline, admitting some modularity and re-use. The linear (pipeline) topology
of data flow in RoadRunner is also limiting, because decisions made by one
pipeline stage affect all subsequent stages; there is no provision for “forking”
of pipelines or “fan out” of events, yet many of the more complex use cases
require this. (Consider an analysis for comparing the performance of different
locking disciplines; we would want to synthesise two distinct streams of locking
events, each in a manner similar to RoadRunner’s existing FaultInjection module,
then simulate the performance of each. Unfortunately, RoadRunner’s interfaces
provide no way to distinguish the two separate streams of lock events.)

Relations in Chord. The Chord framework provides two support mechanisms
for the creation of dynamic analyses. The most basic is a set of instrumentation-
based callbacks, implemented on top of Javassist [6, 7], as already discussed. The
second is a relational storage and query model (based on Datalog) which can be
used to store and analyse collected data. These additional abstractions assist the
programmer in a manner roughly analogous to our mapper and updater facilities.
Each different kind of incoming event can be seen as a distinct “program domain”
(in Chord terminology), shadow value maps as Datalog relations, updaters as up-
dates to the contents of a relation, and mappers as join-based queries selecting
the elements to update. However, an important difference is that Chord’s stor-
age and query infrastructure is shared with its static analysis capabilities, and
consequently incorporates far-reaching design choices optimised for scalability
of static analysis problems to large input programs. In particular, all analysis
happens in a postprocessing stage, rather than being interleaved (or in parallel)
with the base program, since relations cannot be queried until each participating
domain is fully constructed. For example, a simple profiler counting basic block
executions by call chain would defer computing counts until the domain of call
chains was fully constructed, i.e. until the end of execution. Although justifiable
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within static analysis problems, when used for dynamic analysis they exclude a
key mode of application: interactively monitoring running systems.

DTrace. DTrace [5] is a system for dynamic, safe observation of both user
and kernel code in production systems. It permits an open set of events (or
“probes” in DTrace terminology), defined separately from the framework by dis-
tinct providers having user-defined semantics and implementations. Implement-
ing a new provider is a very involved process; indeed, one plausible approach
could to use a dynamic instrumentation system of the kind we have discussed.
DTrace’s built-in user-level provider eschews existing dynamic instrumentation
systems in favour of source-level macros and link-time interposition, largely to
ensure a zero overhead when disabled property. (We note that this is a property
of a provider, not of DTrace in general.) Analyses in DTrace are written in D,
an Awk-like scripting language including some powerful features for storing and
aggregating collected data. These include built-in associative mappings, which
may be keyed on various kinds of values, including call chains, and a notion
of aggregation function which can be used to schedule update operations in a
thread-local, contention-minimising fashion. However, D’s containers are built-in
and its data model is ad-hoc. Our approach is more flexible and more general:
our associative containers can be keyed not only on some fixed set of data types,
but on any domain that can be constructed by the programmer (such as call
graph edges, lock stacks, loop nests, objects, etc.). On the other hand, our sys-
tem does not share the safety or performance properties that are key constraints
on D’s design.

Other domain-specific languages. MDL [15] is a domain-specific language for
describing performance metrics in terms of instrumentation snippets that com-
pute them. It provides a closed set of join points (including procedure entry/exit
and other common cases), constraints (turning on or off instrumentation based
on the properties of a candidate instrumentation site), and program resource
definitions which can restrict instrumentation to particular parts of the pro-
gram. A limited form of composition is supported by combining new constraints
with pre-existing, less specialised metrics—but only if that constraint was an-
ticipated by the instrumentation author as being applicable. As well as offering
limited compositionality, the system is highly specialised towards performance
measurement.

7 Conclusions and Future Work

We have presented FRANC, an API which lifts dynamic analysis construction
from the level of instrumentation to an event-based publish–subscribe system
with convenient re-usable abstractions for data collection and aggregation.

Although embedding in Java has many benefits, the implicit data flow of an
imperative language is a hindrance in many circumstances where we would like to
reason explicitly about data flow—for example, to infer the appropriate ordering
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between listeners responding to the same event. A fully declarative approach is
the logical next avenue to explore. We note that the “signal” abstraction from
functional reactive programming fits neatly with our design: it has been argued as
an improvement over explicit listener-style publish–subscribe systems [9, 24, 22],
and our use of “current” values during shadow mapping (§3.2) is logically the
act of sampling a signal. We plan to explore these synergies in the near future.
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T., von Dincklage, D., Wiedermann, B.: The DaCapo benchmarks: Java bench-
marking development and analysis. In: Proc. 21st ACM SIGPLAN Conf. on
Object-Oriented Programing, Systems, Languages, and Applications, OOPSLA
2006 (2006)

4. Bodden, E., Havelund, K.: Racer: effective race detection using AspectJ. In: Proc.
Int. Symp. on Software Testing and Analysis, ISSTA 2008, pp. 155–166. ACM
(2008)

5. Cantrill, B.M., Shapiro, M.W., Leventhal, A.H.: Dynamic instrumentation of pro-
duction systems. In: Proc. USENIX Annual Technical Conference, ATEC 2004, p.
2. USENIX Association (2004)

6. Chiba, S.: Load-time structural reflection in Java. In: Bertino, E. (ed.) ECOOP
2000. LNCS, vol. 1850, pp. 313–336. Springer, Heidelberg (2000)

7. Chiba, S., Nishizawa, M.: An easy-to-use toolkit for efficient Java bytecode transla-
tors. In: Pfenning, F., Macko, M. (eds.) GPCE 2003. LNCS, vol. 2830, pp. 364–376.
Springer, Heidelberg (2003)

8. Coady, Y., Kiczales, G., Feeley, M., Smolyn, G.: Using aspectC to improve the
modularity of path-specific customization in operating system code. SIGSOFT
Softw. Eng. Notes 26(5), 88–98 (2001)
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Abstract. Call graph construction for object-oriented programs is often
difficult and expensive. Most sound and precise algorithms analyze the
whole program including all library dependencies. The separate compi-
lation assumption makes it possible to generate sound and reasonably
precise call graphs without analyzing libraries. We investigate whether
the separate compilation assumption can be encoded universally in Java
bytecode, such that all existing whole-program analysis frameworks can
easily take advantage of it. We present and evaluate Averroes, a tool
that generates a placeholder library that overapproximates the possible
behaviour of an original library. The placeholder library can be con-
structed quickly without analyzing the whole program, and is typically
in the order of 80 kB of class files (comparatively, the Java standard
library is 25 MB). Any existing whole-program call graph construction
framework can use the placeholder library as a replacement for the ac-
tual libraries to efficiently construct a sound and precise application call
graph. Averroes improves the analysis time of whole-program call graph
construction by a factor of 4.3x to 12x, and reduces memory require-
ments by a factor of 8.4x to 13x. In addition, Averroes makes it easier
for whole-program frameworks to handle reflection soundly in two ways:
it is based on a conservative assumption about all behaviour within the
library, including reflection, and it provides analyses and tools to model
reflection in the application. The call graphs built with Averroes and
existing whole-program frameworks are as precise and sound as those
built with Cgc. While Cgc is a specific implementation of the separate
compilation assumption in the Doop framework, Averroes is universal
to all Java program analysis frameworks.

1 Introduction

Constructing sound and precise call graphs for object-oriented programs is of-
ten difficult and expensive. The key reason is dynamic dispatch: the target of
a call depends on the runtime type of the receiver. One approach, Class Hier-
archy Analysis (CHA) [8], is to conservatively assume that the receiver could
be any object admitted by the statically declared type of the receiver. Because
call graphs constructed with this assumption are imprecise, most call graph con-
struction algorithms attempt to track the flow of potential receivers through the
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program [1,6,12,13,24]. Since the receiver might be created anywhere in the pro-
gram, these algorithms generally analyze the whole program. However, modern
programs have large library dependencies (e.g., the Java standard library). This
makes it very expensive to construct a call graph even for a small program. Even
if the algorithm itself is cheap, just reading all of the library dependencies of a
program takes a long time. Moreover, in many cases, the whole program may
not even be available for analysis.

Previously, we defined and evaluated the separate compilation assumption [2],
which enables a sound and reasonably precise call graph to be constructed for a
program without analyzing its library dependencies. In the rest of this paper, we
will use the singular “library” to mean all of the libraries that a program depends
on. The assumption states that the library is developed and can be compiled
without the client program that uses it. This is true of most real programs and
their dependencies. The properties that follow from the assumption and from the
Java type system effectively limit the imprecision that would otherwise result
from conservatively assuming arbitrary behaviour for the unanalyzed library
code. We have evaluated the separate compilation assumption in Cgc [2], a
prototype implementation in Datalog based on the Doop framework [6]. Our
experiments have shown that with the separate compilation assumption, the
sound call graphs constructed without analyzing the library can be nearly as
precise as those constructed by whole-program analysis. However, implementing
the constraints that follow from the assumption in popular analysis frameworks
such as Doop [6], Soot [24], and Wala [12] is difficult, and would complicate
the frameworks significantly and make them more difficult to maintain.

In this paper, we investigate whether the constraints that follow from the
separate compilation assumption can be encoded in a form that is universal to
all Java program analysis frameworks, the Java bytecode. Our goal is to enable
any existing whole-program analysis framework to take advantage of the separate
compilation assumption without modifications to the framework. To accomplish
this, we present Averroes, a Java bytecode generator that, for a given program,
generates a replacement for the program’s library that embodies the constraints
that follow from the separate compilation assumption. An existing, unmodified
whole-program analysis framework needs only to read the replacement library
instead of the original library to automatically gain the benefits of the separate
compilation assumption. For example, instead of going through all of the work
that was necessary to implement Cgc, one can now achieve the same effect
automatically by running Averroes followed by Doop. Moreover, the same
adaptation can be applied automatically not only to Doop, but to any other
whole-program call graph construction framework.

We evaluate the performance improvements that the use of Averroes enables
over the whole-program analysis frameworks Spark and Doop. The improve-
ments are very significant because the replacement library is much smaller than
the original library: for example, even version 1.4 of the Java standard library
contains 25 MB of class files, whereas the Averroes replacement library con-
tains in the order of only 80 kB of class files. Depending on the size of the
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analyzed client program, Averroes improves the running time of Spark and
Doop by a factor of 4.7x and 3.7x, respectively, and reduces memory require-
ments by a factor of 13x and 8.4x, respectively.

Averroes also enables other benefits in addition to performance. One such
benefit is generality. For example, many whole-program analysis frameworks are
designed to soundly model some specific version of the Java standard library.
However, the replacement library constructed by Averroes soundly overap-
proximates all possible implementations of the library that have the interface
used by the client application. Therefore, Averroes makes any existing whole-
program analysis framework independent of the Java standard library version.
A related benefit is the handling of difficult features such as reflection and na-
tive methods. A whole-program analysis must correctly model in detail all such
unanalyzable behaviour within the library in order to maintain soundness. On
the other hand, Averroes is automatically sound for such behaviour because it
already assumes that the library could “do anything”. That said, the generated
library must still model reflective effects of the library on the client application
(e.g., reflective instantiation of classes of the application). However, this issue is
also made easier by Averroes. Any tools or analyses that provide information
about such reflective effects (e.g., analysis of strings passed to reflection methods
or dynamic traces summarizing actual reflective behaviour) can be implemented
once and for all in Averroes. Whole-program analysis frameworks can then
take advantage of these effects without modification.

The rest of this paper is organized as follows. Section 2 provides background
information about call graph construction and the separate compilation assump-
tion. Section 3 describes how Averroes encodes the constraints that follow from
the separate compilation assumption in the Java bytecode. Section 4 discusses
the performance improvements gained by using the placeholder library gener-
ated by Averroes instead of the original library code. Section 5 presents related
work, and Section 6 concludes this paper.

2 Background

2.1 Call Graph Construction

A static call graph is an overapproximation of the method calls that may occur in
a program at run time. For every method invocation instruction in the program
(a call site), the call graph contains an edge to every target method that might be
invoked by that instruction. In Java, as well as other object-oriented languages,
the targets of method calls are selected using the run-time type of the receiver
object. Therefore, call graph construction requires a combination of two static
analyses: calculating the sets of possible receiver types (i.e., points-to analysis),
and determining the targets of method calls. The two analyses are inter-related:
receiver types decide the targets of calls, and the calling relationships between
methods determine how objects of specific types flow through the program to
the call sites. A precise call graph construction algorithm computes these two
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Fig. 1. Conservative assumptions that a sound partial-program analysis must make

inter-dependent analyses concurrently until it reaches a mutual least fixed point.
This is sometimes called on-the-fly call graph construction.

If the whole program is not available for analysis, a sound call graph construc-
tion algorithm must conservatively assume that the unanalyzed code could do
“anything”. In particular, the unanalyzed code could call any method, assign any
value to any field, and create new objects of any type, as summarized in Figure 1.
Due to the mutual dependencies between the two analyses that make up any call
graph construction algorithm, imprecise results in one analysis can quickly pol-
lute the other. Therefore, without any assumptions about the unanalyzed part
of the code, a sound algorithm generates a call graph that is so imprecise that it
is useless. However, it is frequently the case that the unanalyzed code is a library
that is developed separately and can be compiled without access to the rest of
the program. This separate compilation assumption [2] enables the construction
of a precise and sound call graph for the part of the program that is analyzed
(the application) without analyzing the library.

2.2 The Separate Compilation Assumption

The key assumption underlying both Cgc [2] and Averroes is that the library
can be compiled separately without the client application program. From this
assumption, more specific constraints are inferred that bound the possible be-
haviours of the unanalyzed library code. In Cgc, the call graph construction
algorithm is extended to conservatively assume that the library can have any
behaviour that satisfies the constraints that follow from the separate compila-
tion assumption. Averroes, on the other hand, constructs a placeholder library
that exercises all those behaviours. Any unmodified whole-program call graph
analysis can then analyze the application with the placeholder library to achieve
a similar result as Cgc. The rest of this section briefly summarizes the con-
straints that follow from the separate compilation assumption and that underlie
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Averroes. A thorough discussion of the justification of each of these constraints
is found in [2].

Constraint 1 [class hierarchy]
A library class cannot extend or implement an application class or interface.

Constraint 2 [class instantiation]
An allocation site in a library method can instantiate an object whose run-
time type is:
– a library class, or
– an application class whose name is known to the library (i.e., through

reflection).
Constraint 3 [local variables ]

Local variables in the library can point to the following objects:
– objects instantiated by the library,
– objects instantiated by the application and passed to the library due to

interprocedural assignments,
– objects stored in fields accessible by the library code, or
– objects whose run-time type is a subtype of java.lang.Throwable.

Constraint 4 [method calls]
A call site in the library can invoke:
– any method in any library class visible at this call site, or
– a method m in an application class c, but only if:

1. m is non-static and overrides a (possibly abstract) method of a li-
brary class, and

2. a local variable in the library points to an object of type c or a
subclass of c.

Constraint 5 [field access ]
A statement in the library can access (i.e., read or modify):
– any field in any library class visible at this statement, or
– a field f of an object o of class c created in the application code, if:

1. f is originally declared in a library class, and
2. a local variable in the library points to the object o.

In the case of a field write, the object being stored into the field must also
be pointed to by a local variable in the library.

Constraint 6 [array access ]
The library can only access array objects pointed to by its local variables. If
the library has access to an array, it can access any of its elements through
its index. Similar to field writes, objects written into an array element must
be pointed to by a local variable in the library.

Constraint 7 [static initialization]
The library causes the loading and static initialization (i.e., execution of the
method <clinit>()) of classes that it instantiates (according to the class
instantiation constraint).

Constraint 8 [exception handling]
The library can throw an exception object e if:
– e is instantiated by the library, or
– e is instantiated by the application and passed to the library (as discussed

in the local variables constraint).
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Fig. 2. The usual context of a whole-program analysis

Fig. 3. The context of a whole-program analysis using Averroes

3 Averroes Overview

This section presents the context in which Averroes is used, and defines in
detail the contents of the placeholder library that it generates.

The usual context of a whole-program analysis tool is depicted in Figure 2. The
tool expects to analyze all of the classes of the program, including any libraries
that it uses. The tool does not necessarily distinguish between application and
library classes. Optionally, the tool may also make use of additional information
about the uses of reflection in the program. This information could be provided
by the user or collected during execution of the program being analyzed with a
tool such as TamiFlex [5].

We have implemented Averroes, a tool that intends to provide the same
input environment to the whole-program analysis, but without analyzing any
actual code of the original library classes. We have made Averroes available
at http://plg.uwaterloo.ca/~karim/projects/averroes/. Figure 3 depicts
the context in which Averroes is used. Given any Java program, Averroes
generates an alternative placeholder library that models the constraints that
follow from the separate compilation assumption. To achieve that, Averroes
uses Soot [24] to consult the classes of the input program. Unlike a whole-
program analysis, Averroes does not inspect all classes, and does not analyze

http://plg.uwaterloo.ca/~karim/projects/averroes/
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any Java bytecode instructions. For each application class, Averroes examines
only the constant pool to find all references to library classes, methods, and fields.
Among library classes, Averroes consults only the classes that are directly
referenced by the application and their superclasses and superinterfaces. Within
this restricted set of classes, Averroes examines only the constant pool. Aver-
roes uses this information in order to build a model of the class hierarchy and
the overriding relationships between methods in the program. Since Averro-
es examines only a small fraction of classes and only a small fraction of each
class file, the execution of Averroes can be much faster than a whole-program
analysis that reads and analyzes the code of the whole program. In addition, if
the library code itself calls other dependent libraries, Averroes can process the
library even if those dependencies are not available for analysis, assuming they
are not directly referenced from the application code. Averroes also, optionally,
reads in the reflection facts generated by TamiFlex [5] for the input program.

The output of Averroes is a placeholder library. Averroes again uses Soot
to generate this library. Moreover, Averroes uses the Java bytecode verification
tools offered by BCEL [7] to verify that the generated library satisfies the spec-
ifications of valid Java bytecode. The placeholder library contains stubs of all of
the library classes, methods, and fields referenced by the application, so that the
application could be compiled with the placeholder library instead of the original
library. As a consequence, the application classes together with the generated
placeholder library make up a self-contained whole program that can be given
as input to any whole-program analysis. The placeholder library is designed to
be as small as possible, while still being self-contained, such that the whole-
program analysis can analyze it much more efficiently than the original library.
In addition, the placeholder library overapproximates all possible behaviours of
the original library, so that the call graph analysis produces a sound call graph
when analyzing the placeholder library instead of the original library. The rest
of this section defines in detail the contents of the generated placeholder library.

3.1 Library Classes

The Averroes placeholder library contains three kinds of classes: referenced
library classes, concrete implementation classes, and the Averroes library class.
We define the structure of these classes first, and we define the contents of their
methods in Section 3.2.

Referenced Library Classes. The Averroes placeholder library contains
every library class directly referenced by the application and their superclasses
and superinterfaces. In addition, it contains a small fixed set of basic classes that
are mentioned explicitly in the Java Language Specification [14] and expected by
whole-program analyses (e.g., java.lang.Object and java.lang.Throwable).

Each such referenced class contains placeholders for all of the methods and
fields that are referenced by the application. A method m is considered to be
referenced by the application if:
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– a reference to m appears in the constant pool of an application class,
– m is a constructor or a static initializer in the original library class, or
– a call to some method m′ referenced by the application may resolve to m.

A field f of type t is considered to be referenced by the application if a reference
to f appears in the constant pool of an application class. If an included library
method is native in the original library, its placeholder is made non-native. This is
because the generated placeholder library should stand alone and not depend on
other code, including native code. Furthermore, the throws clause of a generated
placeholder library method can only contain exception classes that are referenced
by the application. To ensure that every library class has at least one accessible
constructor, Averroes adds a default constructor (i.e., a public constructor
that takes no arguments) to every included library class.

Concrete Implementation Classes. The class instantiation constraint of
the separate compilation assumption states that the library code can create
an object of any library type. This includes types that are not referenced by
the application. The object of an unreferenced type could still be accessed by
the application through one of its super-types. For the purpose of constructing
an application-only call graph, the exact run-time type of the object is not
important, since any calls on the object will just resolve to the library summary
node. However, the call graph construction algorithm must be aware that an
object of such an unknown type could be the receiver of a call.

Figure 4(a) shows a sample Java program that calls the method java.util.-
Vector.elements(). The return type of the method is java.util.Enumerat-
ion, which is an interface. If the application then calls a method such as has-
MoreElements() or nextElement() on the value returned from java.util.-
Vector.elements(), the call should resolve to the library. Therefore, the call

1 class Main {
2 void foo() {
3 Vector v = new Vector();
4 ...
5 Enumeration e = v.elements();
6 while(e.hasMoreElements()) {
7 ...
8 }
9 }

10 }

(a)

1 class EnumerationConcrete
2 implements Enumeration {
3 boolean hasMoreElements() {
4 return true ;
5 }
6
7 Object nextElement() {
8 return (Object) libraryPointsTo ;
9 }

10 }

(b)

Fig. 4. An example illustrating the concept of concrete implementation classes in
Averroes: (a) sample application Java code that uses the class java.util.Enumer-
ation, (b) the concrete implementation class that Averroes creates for java.util.-
Enumeration in the placeholder library.
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graph construction analysis must be aware that the receiver of the call could be
some object that implements the java.util.Enumeration interface. However,
if the application does not implement the interface itself, and if it does not
reference any library class that implements it, then the whole-program analysis
would not know about the existence of any concrete class that implements the
interface. In this case, Averroes adds to the placeholder library a concrete class
that implements the interface, so that the call graph construction algorithm can
resolve the call on this class. Figure 4(b) illustrates the contents of the concrete
implementation class that Averroes generates for java.util.Enumeration in
the placeholder library.

Specifically, Averroes creates a concrete implementation class for each in-
terface and abstract class in the library that is referenced by the application,
but is not implemented by any concrete class already in the placeholder library.
If the original library contains a concrete class implementing the given interface
or abstract class, that concrete class would already be in the placeholder library
only if the application references that concrete class. Each concrete implemen-
tation class contains implementations of all abstract methods in the interface
or abstract class that caused the concrete implementation class to be created,
including abstract methods inherited from superclasses and superinterfaces.

Averroes Library Class. All of the conservative approximations of the possi-
ble behaviours of the library defined by the constraints listed in Section 2.2 are
implemented in one class in the placeholder library, AverroesLibraryClass. In
particular, this class models the following library behaviours: object instanti-
ation, callbacks to application methods, array writes, and exception handling.
The AverroesLibraryClass has two members:

1. The field libraryPointsTo is a public, static field of type java.lang.Ob-
ject. It represents all local variables in the original library code. Every object
that could be assigned to a local variable in the original library is assigned
to this field. The points-to set of the libraryPointsTo field corresponds to
the LibraryPointsTo set in Cgc.

2. The method doItAll() is a public, static method. It is the main Averroes
method that models all of the potential side effects that the original library
code could have.

3.2 Library Methods

Referenced Library Method Bodies. Each placeholder method in the refer-
enced library classes and in the concrete implementation classes is an entry point
from the application into the library, and should conservatively implement the
behaviours specified in Section 2.2. Most of these behaviours are implemented
just by calling the doItAll() method of the AverroesLibraryClass. In addi-
tion, each placeholder method stores all of its parameters to the libraryPoints-
To field. The return value of the method is also taken from libraryPointsTo.
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Fig. 5. The Jimple template used by Averroes to generate bodies for referenced
library methods

More specifically, the body of each placeholder method is constructed accord-
ing to the template shown in Figure 5. The template is shown in the Jimple
intermediate language of the Soot framework [24], which is used by Averroes
to generate the placeholder library. The template has three code regions:

1. Identity statements define the variables that will hold the method parame-
ters. Non-static methods have an additional identity statement for the im-
plicit this parameter.

2. Parameter assignment statements assign the parameters to the library-
PointsTo field in order to model the interprocedural flow of objects from
the application through parameters into the library (the local variables con-
straint).

3. The method footer contains two statements. The first statement is a call
to the doItAll() method in the AverroesLibraryClass to model the side
effects of the library. The second statement is the return statement of the
method. The method can return any object from the library whose type is
compatible with the return type of the method. This is modelled by reading
the libraryPointsTo field and casting its value to the method return type.
This completes the implementation of the local variables constraint. If the
return type of the method is primitive, the constant value 1 is returned.
Methods with return type void will just have an empty return statement.

The bodies of constructors of placeholder library classes are generated using the
same Jimple template. However, a call to the default constructor of the direct
superclass is generated before accessing the this parameter in the construc-
tor body. Moreover, Averroes generates statements that initialize the instance
fields of the declaring class. Each instance field is initialized by assigning it the
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value of the libraryPointsTo field after casting it to the appropriate type (the
field access constraint).

The bodies of library static initializers are simpler. Since static initializers have
no parameters or return value, no identity statements or parameter assignment
statements are generated for them. In addition, they have an empty return
statement (i.e., one that does not return any value). Moreover, for each static
initializer, Averroes initializes the static fields of its declaring class with the
value from the libraryPointsTo field through the appropriate cast (the field
access constraint).

Averroes doItAll() Method Body. The doItAll() method implements
most of the conservative approximation of the behaviour of the whole library. It
is a static method with no parameters, and therefore does not have any iden-
tity statements. The body of the doItAll() method implements the following
behaviours:

1. Class instantiation (Constraints 2 and 7): According to the class instantiation
constraint, the library can create an object of any concrete class in the library
or any application class that is instantiated by reflection. For each such class
c, two statements are generated: a new instruction to allocate the object,
and a special invocation instruction (corresponding to the invokespecial
bytecode) to an accessible constructor of the class. Finally, if the class c
declares a static initializer, Averroes generates a call to it.

2. Library callbacks (Constraints 3 and 4): Following the method calls con-
straint, the doItAll() method contains calls to all methods of the library
that are overridden by some method of the application, since at run time,
any such call could dispatch to the application method. In addition, the
doItAll() method calls all application methods known to be invoked by re-
flection. The receiver of all of these calls is taken from the libraryPointsTo
field, as are all arguments to the method. The values from the library-
PointsTo field are cast to the appropriate types as required by the method
signature. Additionally, the local variables constraint states that objects may
flow from the application to the library due to interprocedural assignments.
Therefore, in Averroes, if the target method of a library call back has a
non-primitive return type, its return value is assigned to the field library-
PointsTo.

3. Array element writes (Constraint 5): The library could store any object
reference that it has into any element of any array to which it has a reference.
Two statements are generated to simulate this. The first statement casts the
value of the libraryPointsTo field to an array of java.lang.Object, which
is a supertype of all arrays of non-primitive types. The second statement
assigns the value of the libraryPointsTo field to element 0 of the array.

4. Exception handling (Constraint 8): The library code could throw any excep-
tion object to which it has a reference. To model this, Averroes generates
code that casts the value of the libraryPointsTo field to the type java.-
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lang.Throwable, and throws the resulting value using the Jimple throw
statement (which corresponds to the athrow bytecode instruction).

In the current implementation of Averroes, the doItAll() method is a single
straight-line piece of code with no control flow. If Averroes were to be used with
a flow-sensitive analysis, control flow instructions should be added to all library
methods, including the doItAll() method. This allows the instructions to be
executed in an arbitrary order for an arbitrary number of times. This enables
a sound overapproximation for all possible control flow in the original library.
Although this would be easy to implement, we have not done it because all of
the call graph construction frameworks for Java that we are aware of mainly do
flow-insensitive analysis.

Similarly, the doItAll() method writes only to element 0 of every array. If
a framework attempts to distinguish different array elements, this should be
changed to a loop that writes to all array elements. Again, we are not aware of
any call graph construction frameworks for Java that distinguish different array
elements.

3.3 Modelling Reflection

Averroes models reflective behaviour in the library in two ways. First, whenever
a call site in the application calls a library method, Averroes assumes that any
argument of the call that is a string constant could be the name of an application
class that the library instantiates by reflection. For every such string constant
that is the name of an application class, Averroes generates a new instruction
and a call to the default constructor of the class in the doItAll() method.

Second, Averroes reads information about uses of reflection in the format
of TamiFlex [5]. TamiFlex is a dynamic tool that observes the execution of
a program and records the actual uses of reflection that occur. Averroes then
generates the corresponding behaviour in the doItAll() method. Alternatively,
a programmer who knows how reflection is used in the program could write
a sound reflection specification by hand in the TamiFlex format. Averroes
generates the following code in the doItAll() method to model the reflective
behaviour recorded in the TamiFlex format:
1. For every class that the TamiFlex file specifies as instantiated by java.-

lang.Class.newInstance(), or even just loaded by java.lang.Class.-
forName(), the doItAll() method allocates an instance of the class using
a new instruction, and calls its default constructor.

2. For every unique appearance of java.lang.reflect.Constructor.newIn-
stance() in the TamiFlex file, the doItAll()method allocates an instance
of the specified class and calls the specified constructor on it.

3. For every unique appearance of java.lang.reflect.Array.newInstance()
in the TamiFlex file, the doItAll() method allocates an array of the spec-
ified type.

4. For every unique appearance of java.lang.reflect.Method.invoke() in
the TamiFlex file, the doItAll() method contains an explicit invocation
of the appropriate method.
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Even though these behaviours are triggered by reflection in the original li-
brary, the Averroes placeholder library implements all of them explicitly (non-
reflectively) using standard Java bytecode instructions. Therefore, even if the
whole-program analysis that follows Averroes does not itself handle reflection,
it will automatically soundly handle the reflective behaviour that Averroes
knows about. This is because Averroes encodes the behaviour explicitly in the
placeholder library using standard bytecode instructions known to every analysis
framework.

In addition, the placeholder library still contains the methods that implement
reflection in the Java standard library. The doItAll() method also contains
calls to java.lang.Class.forName() and java.lang.Class.newInstance()
on the value of libraryPointsTo cast to java.lang.String. Therefore, if the
whole-program framework knows about the special semantics of these reflec-
tion methods, or if it knows about some reflective behaviour that is unknown
to Averroes, the whole-program framework can still model the additional re-
flective behaviour in the same way as if it were processing the original library
instead of the Averroes placeholder library.

3.4 Code Verification

The placeholder library that is generated by Averroes is intended to be stan-
dard, verifiable Java bytecode that can be processed by any Java bytecode anal-
ysis tool. To guarantee this, Averroes verifies the generated placeholder library
classes using the BCEL [7] verifier. BCEL closely follows the class file verifi-
cation process defined in the Java Virtual Machine Specification [14, Section
4.9]. BCEL ensures the validity of the internal structure of the generated Java
bytecode, the structure of each individual class, and the relationships between
classes (e.g., the subclass hierarchy).

4 Evaluation

We evaluate how well Averroes achieves the goal of enabling whole-program
analysis tools to construct sound and precise call graphs without analyzing the
whole library. First, we quantify the improvements in performance when Aver-
roes is used with both Spark and Doop. Second, we compare the resulting call
graphs with dynamically observed call graphs to provide partial evidence that
the static call graphs are sound. Third, we compare the call graphs constructed
using Averroes to those constructed using Cgc to support the claim that
Averroes enables existing whole-program analysis implementations to perform
the kind of analysis that is prototyped in Cgc.

We conducted our experiments on two benchmark suites: the DaCapo bench-
mark programs version 2006-10-MR2 [4], and the SPEC JVM98 benchmark pro-
grams [20]. All of these programs are analyzed with the Java standard library
from JDK 1.4 (jre1.4.2_11). We ran all of the experiments on a machine with
four dual-core AMD Opteron 2.6 GHz CPUs (running in 64-bit mode) and 16
GB of RAM.
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We created an artifact for the experiments that we conducted to evalu-
ate Averroes. The artifact includes a tutorial with detailed instructions on
how to use Averroes to generate the placeholder libraries for each pro-
gram in our benchmark suites. It then shows how to reproduce all of the
statistics we discuss in this section. We have made the artifact available at
http://plg.uwaterloo.ca/~karim/projects/averroes/tutorial.php. The
artifact has been successfully evaluated by the ECOOP Artifact Evaluation Com-
mittee and found to meet expectations.

4.1 Performance

To evaluate how much work a whole-program analysis saves by using Averroes,
we first compare the size of the generated placeholder library with the size of the
original Java standard library. We then measure the reductions in execution time
and memory requirements of both Spark and Doop when using Averroes.

Averroes Placeholder Library Size. Over all of the benchmark programs
that we have experimented with, the average size of the input library is 25
MB (min: 25 MB, max: 30 MB, geometric mean: 25 MB), while the average
size of the generated Averroes library is only 80 kB (min: 20 kB, max: 370
kB, geometric mean: 80 kB). Additionally, the average number of methods in
the original input library is 36,000 (min: 19,462, max: 48,610, geometric mean:
35,615), while the average number of methods in the generated Averroes library
is only 600 (min: 137, max: 3,327, geometric mean: 570). That means that the
number of methods in the placeholder library is smaller by a factor of 62x (min:
13x, max: 286x, geometric mean: 62x). As we will see, this reduction in the
library size significantly reduces the time and memory required to do whole-
program analysis.

�

�

�

�

Finding 1: The placeholder library generated by Averroes
is very small compared to the original Java standard library.

Execution Time. We have compared the execution times of both Spark and
Doop when analyzing each benchmark with the Averroes placeholder library
and the original Java standard library. We break the total time required to
construct a call graph into three components. First, the Averroes library gen-
eration time is the time required for Averroes to inspect the application for
references to the library and to generate the placeholder library. Second, the
overhead time is the time required for Spark or Doop to prepare for call graph
construction analysis. In the case of Spark, this preparation includes reading
the whole program from disk and constructing internal data structures. In the
case of Doop, this preparation additionally includes generating the constraints
required for the analysis and encoding them in Datalog relations. Third, the
analysis time is the time required for Spark or Doop to solve the constraints
and generate a call graph.

http://plg.uwaterloo.ca/~karim/projects/averroes/tutorial.php
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Fig. 6. The execution time of whole-program tools (Spark and Doop) compared to
Averroes-based tools (SparkAve and DoopAve)

Figure 6 compares the times required for call graph construction by Spark
and Doop with the original Java library (denoted Spark and Doop) and with
the Averroes placeholder library (denoted SparkAve and DoopAve). Aver-
roes reduces the analysis time of Spark by a factor of 12x (min: 4x, max: 62x,
geometric mean: 12x) and of Doop by a factor of 4.3x (min: 0.7x, max: 9.3x,
geometric mean: 4.3x). In general, whole-program analysis is expensive not only
because of the analysis itself, but also due to the overhead of reading a large
whole program from disk and pre-processing it. Replacing the large Java library
with the much smaller Averroes placeholder library reduces the time that
Spark executes (including overhead and analysis time) by a factor of 6.8x (min:
3.3x, max: 17x, geometric mean: 6.8x), and the time that Doop executes by a
factor of 4.3x (min: 1.7x, max: 7.7x, geometric mean: 4.3x). When the Averroes
library generation time is added to the time taken by Spark or Doop to finish,
the total overall time to execute SparkAve is faster than Spark by a factor of
4.7x (min: 2.5x, max: 10.3x, geometric mean: 4.7x), and the total overall time
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Fig. 7. The memory requirements of whole-program tools (Spark and Doop) com-
pared to Averroes-based tools (SparkAve and DoopAve)

to execute DoopAve is faster than Doop by a factor of 3.7x (min: 1.5x, max:
6.5x, geometric mean: 3.7x).

�

�

�

�

Finding 2: Averroes enables whole-program tools to con-
struct application call graphs faster.

Memory Requirements. Spark and Doop store their intermediate results
in different ways. Spark does all the calculations in memory, while Doop stores
intermediate facts in a LogicBlox [15] database on disk. Therefore, we use differ-
ent methods of calculating the memory requirements of each tool. We compare
the maximum amount of heap space used during call graph construction by
SparkAve and Spark. On the other hand, we compare the on-disk size of the
database of relations computed by DoopAve and Doop.
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Figure 7 compares the memory usage of SparkAve against Spark, and
DoopAve against Doop. Overall, SparkAve requires 13x less heap space than
Spark (min: 4.8x, max: 35x, geometric mean: 13x), and DoopAve uses 8.4x less
disk space than Doop (min: 2.6x, max: 24, geometric mean: 8.4x).

�

�

�

�

Finding 3: Using Averroes reduces the memory require-
ments of whole-program analysis tools.

4.2 Call Graph Soundness

Static call graph construction is made difficult in Java by dynamic features such
as reflection, and features that are difficult to analyze such as native methods.
Averroes makes it much easier to construct a sound call graph in the presence
of these features in two ways. First, whereas whole-program analysis frameworks
try to model all behaviour of the whole program precisely, Averroes uses the
conservative assumption that the library could have any behaviour consistent
with the separate compilation assumption. Therefore, a whole-program analysis
must model every detail of dynamic behaviour or risk becoming unsound. On
the other hand, an analysis using Averroes remains sound without having to
precisely reason about dynamic behaviour within the library. Second, Averro-
es contains analyses that model how the library affects the application using
reflection. These analyses make use of information about strings passed into the
library, as well as information about reflection generated by TamiFlex [5]. A
whole-program analysis that uses Averroes can automatically benefit from the
results of these analyses without having to implement the analyses themselves.

We have evaluated the soundness of static call graphs by comparing them
against dynamic call graphs collected by *J [10]. Since a dynamic call graph
results from only a single execution, it may miss edges that could execute in
other executions. Therefore, such a comparison does not guarantee that the static
call graph is sound for all executions. Nevertheless, the comparison can detect
soundness violations, and the lack of detected violations provides at least partial
assurance of soundness. The results of this comparison are shown in Table 1.
The Dynamic line shows the number of call edges in the application portion
of the dynamic call graph. The remaining lines show how many of these edges
are missing in the static call graphs generated by Spark and Doop with and
without using Averroes. When using Averroes, only two edges are missing
from all of the call graphs. In lusearch, a NullPointerException is thrown
and the dynamic call graph records a call edge from the virtual machine to
the constructor of this exception class. This behaviour is not modeled by either
Spark or Doop. In xalan, a call edge to java.lang.ref.Finalizer.regis-
ter() from the application is missing from the call graph generated by SparkAve
since Spark does not handle calls to this library method. On the other hand,
the call graphs generated by Spark and Doop without using Averroes are
missing a significant number of dynamically observed edges in benchmarks that
make heavy use of reflection. This is despite the immense effort that has been
expended to make these analysis frameworks handle reflection soundly.
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Table 1. Comparing the soundness of Averroes-based tools to the whole-program
tools with respect to the dynamic call graphs

antlr bloat chart hsqldb luindex lusearch pmd xalan compress db jack javac jess raytrace
Dynamic 3,449 4,257 657 1,627 726 539 2,087 2,953 43 54 596 2,538 13 330
Dynamic-Spark 0 0 0 61 4 185 3 96 0 0 0 0 0 0
Dynamic-SparkAve 0 0 0 0 0 1 0 1 0 0 0 0 0 0
Dynamic-Doop 0 0 0 331 303 241 225 349 0 0 0 0 0 0
Dynamic-DoopAve 0 0 0 0 0 1 0 0 0 0 0 0 0 0
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Finding 4: Averroes reduces the difficulty of constructing
sound static call graphs in the presence of reflection.

4.3 Comparison with Cgc

We previously evaluated the soundness and precision of call graphs constructed
by Cgc [2]. Our empirical evaluation showed that the static call graphs from
Cgc are sound when compared against the corresponding dynamic call graphs.
Our results also showed that Cgc generates precise static call graphs when
compared against those generated by Spark and Doop, for most programs
in our benchmark suite. However, there are spurious edges in the call graphs
generated by Cgc. Further investigation showed that most of these spurious
edges are due to spurious library callback edges. A library callback edge is an
edge from a call site in the library back to a method in the application. Those
spurious library callback edges eventually cause a small number of spurious call
edges within the application and from the application to the library.

The design goal of Averroes is to enable existing whole-program analysis
frameworks to build call graphs without analyzing the library in the manner of
Cgc. We validate this claim by comparing the call graphs constructed by Cgc
with those constructed by Doop with Averroes, since Cgc is more similar to
Doop than to Spark. Since the separate compilation assumption overapprox-
imates the targets of call sites in the library, we focus our comparison on the
library callback edges in the call graph.

Table 2 shows the number of library callback edges in the call graph generated
by Cgc but missing from the call graph generated by DoopAve (denoted by
Cgc-DoopAve), and vice versa (denoted by DoopAve-Cgc). The table also
shows the percentage of those missing edges with respect to the total number of
edges in the call graph from DoopAve. The biggest difference is 2% of the edges,
in the chart benchmark. All of the edges missing in DoopAve and present in Cgc
(i.e., DoopAve-Cgc) are due to more precise handling of reflective constructor
calls in Averroes than in Cgc. When the library reflectively creates an object
of an application class C, Cgc considers the library to potentially call all public
constructors of C. On the other hand, Averroes generates a call edge only to
the specific constructor that is actually invoked according to TamiFlex. Further
investigation shows that some edges are missing in Cgc and present in DoopAve
(i.e., Cgc-DoopAve) due to calls of java.lang.reflect.Constructor.newIn-
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Table 2. Comparing DoopAve with Cgc with respect to library callback edges

antlr bloat chart hsqldb luindex lusearch pmd xalan compress db jack javac jess raytrace
Cgc-DoopAve 2 0 0 16 0 0 5 44 0 0 0 0 0 0
Cgc-DoopAve (%) 0.03% 0% 0% 0.15% 0% 0% 0.1% 0.35% 0% 0% 0% 0% 0% 0%
DoopAve-Cgc 7 13 54 8 10 17 9 10 0 1 0 4 0 0
DoopAve-Cgc (%) 0.1% 0.08% 2.02% 0.08% 0.83% 0.68% 0.17% 0.08% 0% 1.33% 0% 0.05% 0% 0%

stance(). Whereas Cgc ignores these calls (and handles only calls to java.-
lang.Class.newInstance()), Averroes models calls to both newInstance()
methods.

�

�

�

�

Finding 5: Averroes matches and slightly exceeds Cgc
in both precision and soundness.

5 Related Work

5.1 Call Graph Construction

A distinguishing feature of different whole-program call graph construction algo-
rithms is how they approximate the targets of dynamically dispatched method
calls. This affects how they approximate the run-time types of the receivers of
those calls.

Early work on call graph construction used simple approximations of run-
time types. Dean et al. [8] formulated class hierarchy analysis (CHA), which
uses the assumption that the run-time type of a receiver could be any subtype
of its statically declared type at the call site. Thus, CHA uses only static type
information, and does not maintain any points-to sets of the possible run-time
types of objects. Bacon and Sweeney [3] defined rapid type analysis (RTA),
which refines the results of CHA by restricting the possible run-time types only
to classes that are instantiated in the reachable part of the program.

Diwan et al. [9] presented more precise call graph construction algorithms for
Modula-3 that remain simple and fast. Rather than maintaining a single set of
possible run-time types in the whole program, as in RTA, they compute separate
sets of run-time types for individual local variables.

Sundaresan et al. [21] introduced variable type analysis (VTA). VTA generates
subset constraints to model the possible assignments between variables within
the program. It then propagates points-to sets of the specific run-time types
of each variable along these constraints. Unlike the analyses of Diwan et al. [9],
VTA computes these points-to sets for heap-allocated objects in addition to local
variables.

Tip and Palsberg [22] studied a range of call graph construction algorithms
in which the scope of the points-to sets was varied between a single set for the
whole program (like RTA) and a separate set for each variable (like VTA). Their
implementation was later used by Tip et al. [23] to implement Jax, a practical
application extractor for Java.
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Several static analysis frameworks for Java now include call graph construc-
tion implementations with a range of algorithms that can be configured for the
desired trade-off between precision and analysis cost. The Soot [24], Wala [12],
and Doop [6] frameworks all construct call graphs as prerequisites to the other
interprocedural analyses that they perform. All three frameworks use whole-
program analysis to build the call graph. However, Soot and Wala can be
configured to ignore parts of the input program and generate an unsound par-
tial call graph only for the part of the program that is analyzed. Averroes
enables these and other whole-program frameworks to construct sound partial
call graphs.

5.2 Partial-Program Analysis

The excessive cost of analyzing a whole program has motivated various efforts
to construct call graphs while analyzing only part of the program.

The analysis of Tip and Palsberg [22] analyzes partial programs by defining
a special points-to set, SE . This set summarizes the objects passed into the
unanalyzed external code (i.e., the library). Similar to Cgc [2] and Averroes,
the analysis assumes that the external library code can call back an application
method if: the application method overrides a library method; and the set SE

contains an object on which dynamic dispatch would resolve to that application
method.

The main challenge of analyzing the application part of a program while
ignoring the library is determining objects that may escape from the predefined
application scope to the library, and vice versa. This directly affects the points-to
sets of the local variables in the application and the library (or the summarized
library points-to set in the case of partial-program analyses). Grothoff et al. [11]
presented Kacheck/J, a tool that is capable of identifying accidental leaks of
heap object abstractions by inferring the confinement property [25,26,27] for
Java classes. Kacheck/J considers a Java class to be confined when objects of its
type do not escape its defining package. A partial-program analysis then needs
only to analyze the defining package of the input Java classes to infer their
confinement property.

Rountev and Ryder [18] proposed a novel whole-program call graph construc-
tion analysis for C. Although the analysis requires the whole program, it analyzes
each module of the program separately. A C program can take the address of
a function, and later invoke it by dereferencing the resulting function pointer.
Therefore, the function that is invoked depends on the target of the function
pointer. The analysis proceeds in two steps. First, conservative assumptions are
made about all possible applications that could use a given library. The analy-
sis then builds up a set of constraints that model the precise behaviour of the
library. Second, these constraints are used to model the library in an analysis
of a specific application. Rountev et al. [17] then adapted the approach to Java.
Like Averroes, their implementation encodes the constraints collected from the
library in executable placeholder code. However, unlike Averroes, this place-
holder code is a precise and detailed summary of the exact effects of the library,
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and its construction requires the entire library to be analyzed. Moreover, some of
the constraints require changes to the application code in addition to the place-
holder library. In contrast, the purpose of Averroes is to generate a minimal
library stub that enables a sound analysis of the original application code.

Rountev et al. [16] applied a similar approach to summarize the precise ef-
fects of Java libraries for the purpose of the interprocedural finite distributive
subset (IFDS) and interprocedural distributive environment (IDE) algorithms.
Although these algorithms already inherently construct summaries of callees to
use in analyzing callers, they had to be extended in order to deal with the library
calling back into application code. This is done by splitting methods into the
part before and after an unknown call. Summaries are then generated for each
part rather than the whole method. When the target of the unknown call later
becomes available, the partial summaries are composed. Rountev et al. [19] eval-
uated the approach on two instances of IDE, a points-to analysis and a system
dependence graph construction analysis.

Averroes builds on our work on Cgc [2], which defined the separate com-
pilation assumption and derived from it specific constraints that conservatively
model all possible behaviours of the library. These constraints were implemented
in Cgc as an extension of an existing whole-program call graph construction
tool. Experimental results showed that the resulting call graphs are sound and
quite precise compared to those constructed by a whole-program analysis that
analyzes the whole library precisely. Whereas Cgc required significant imple-
mentation effort to extend the whole-program framework, Averroes enables
the same approach to be implemented directly by any existing whole-program
call graph construction framework without requiring extensions.

6 Conclusions

We have shown that the separate compilation assumption can be encoded in the
form of standard Java bytecode. This enables any existing whole-program call
graph construction framework to easily make use of it. Our Averroes generator,
given an input program, automatically generates a conservative replacement for
the program’s library that embodies the constraints that follow from the separate
compilation assumption (i.e., a placeholder library).

Constructing the placeholder library is fast and does not require analyzing
the whole program. Moreover, the resulting placeholder library is very small,
especially when compared to the size of the Java standard library. We have em-
pirically shown that using Averroes with an existing whole-program analysis
framework reduces the cost of call graph construction by a factor of 4.3x to 12x
in analysis time and 8.4x to 13x in memory requirements. Averroes also makes
it easier for a whole-program framework to soundly handle reflection. That is
because Averroes makes a conservative approximation of all library behaviour,
including reflection. Additionally, Averroes provides support for modelling uses
of reflection in the application. Finally, we have shown that the call graphs gener-
ated with Averroes and an existing, unmodified, whole-program framework are
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as precise and sound as those obtained by explicitly implementing the separate
compilation assumption in some specific framework.

We plan to extend this work to generate placeholder libraries for various
widely-used Java frameworks (e.g., Android, J2EE, Eclipse Plug-in) using Aver-
roes. We hope that this will lead to an easier means of analyzing client applica-
tions developed in these frameworks without the need to analyze the framework
itself. Like a library, a framework typically satisfies the separate compilation
assumption because it is developed without knowledge of the client applications
that will be developed within it. One major difference is that in a framework,
the main entry point to the program resides in the framework rather than in the
client application. The application is then reflectively started by the framework
code. We expect that with only minor changes, Averroes will be applicable to
these and other Java frameworks.
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Abstract. Programs written in modern languages perform intricate ma-
nipulations of containers such as arrays, lists, dictionaries, and sets. We
present an abstract interpretation-based framework for automatically in-
ferring relations between the set of values stored in these containers. Re-
lations include inclusion relations over unions and intersections, as well
as quantified relationships with scalar variables. We develop an abstract
domain constructor that builds a container domain out of a Quantified
Union-Intersection Constraint (QUIC) graph parameterized by an arbi-
trary base domain. We instantiate our domain with a polyhedral base
domain and evaluate it on programs extracted from the Python test
suite. Over traditional, non-relational domains, we find significant preci-
sion improvements with minimal performance cost.

1 Introduction

Container manipulating programs are ubiquitous. Essentially all high-level pro-
gramming languages provide a standard library with container types, such as
arrays, lists, dictionaries, and sets. In this paper, we investigate static analysis
techniques for inferring assertions about the possible set of values that can be
stored in containers at run time. Our analysis abstracts containers by the set of
elements contained in them to infer facts about (a) the possible set of values in a
container; and (b) how these values relate to values stored in other containers. In
general, one may envision two main types of static analyses: (1) content-centric
analyses that infer assertions for the possible sets of values in each container, in
isolation; or (2) analyses that infer relations between the values stored in various
containers, as-a-whole.

def extendClass(X):
Y = set([x for x in X

if x >= c])
return Y

To illustrate this difference, consider the Python
code function extendClass in the inset (the name of
this function will become clearer below). This function
takes a set X and returns a set Y where Y is the subset
of elements from X such that each element is greater
than or equal to some variable c. An important post-condition of extendClass is
Y ⊆ {ν ∈ X|ν ≥ c}, but neither the content-centric nor the as-a-whole analyses
can produce this post-condition. The content-centric analysis, which represents
each set X and Y as individual variables in a domain for reasoning about values,
would produce Y ⊆ {ν|ν ≥ c} where ν ranges over the universe of values. Because
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all values of X are not related to all values of Y in some way, a content-centric
analysis cannot represent any relationship between X and Y. As-a-whole analyses,
which reason only about the relationships between sets, can produce Y ⊆ X, but
fail to infer anything about the individual elements of Y. By combining these two
classes of analyses, our analysis finds the desired invariant: Y ⊆ {ν ∈ X|ν ≥ c}.

def extendClass(D):
E = {k:v for k,v in a.iteritems()

if k >= "%"}
return E

The extendClass function is abstracted
from a function in Processing.js1. A simpli-
fied version of the original function is shown
in the inset (in Python); the original set ver-
sion models the key set of this dictionary

version. This function copies a dictionary containing a number of values to an-
other dictionary. It only copies those elements that start with letters higher than
% in the ASCII table, specifically excluding keys starting with $. These dictio-
naries are used as objects, and in the context of this framework, $ is interpreted
as private and thus should not be copied. Functions like this one are pervasive
in programs written in dynamic languages because most run-time structures are
implemented using dictionaries (or objects, maps, or tables) and those run-time
structures are directly accessible by the developer and can be modified. As a
result, previously simple operations such as inheriting a class become complex
dictionary manipulations involving copy operations. To statically analyze pro-
grams written in dynamic languages, we require powerful new static analysis
techniques that can reason about these kinds of functions.

Our analysis tracks (subset) inclusion relations between expressions involving
set abstractions of containers through a special graph structure called a QUIC
graph. A QUIC graph is a succinct encoding of set expressions and inclusion
relations between them. The expressions represented by a QUIC graph are (1)
basic, atomic sets that abstract the set of values stored in a container and sin-
gletons created by scalar expressions; (2) restricted unions and intersections of
the atomic sets; and (3) comprehensions of set expressions through first-order
predicates. The predicates are captured by an arbitrary base domain, which can
reason about program variables and formal bound variables that represent the
scalar-valued contents of a basic set. The QUIC graph is thus a compact struc-
ture for storing a conjunction of subset constraints between set expressions. In
this paper, we define QUIC graphs and build abstract domain operations over
these graphs. The QUIC graph domain is designed to yield a tight integration
between the base domain and the QUIC graph domain so that the resulting
analysis can transfer facts from one domain to another, quite seamlessly.

The content-centric analysis of containers is rather well understood (e.g.,
[7, 11, 13]). Such analyses focus on strategies for partitioning or splitting sum-
mary variables that smash the contents of the container into an essentially weak-
updated scalar variable. These techniques are orthogonal and complementary to
our work here. With summary variables, one might capture independent com-
prehensions, such as X ⊆ {ν|p(ν)} ∧ Y ⊆ {ν|p′(ν)} for some predicates p and p′.
If the predicates p and p′ are the same or related, then these facts may indirectly

1 http://processingjs.org/

http://processingjs.org/
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imply a relation between X and Y but essentially only through their contents.
On the flip side, the pure container-as-a-whole approach would track relations
directly between X and Y without characterizing their contents. Some existing
containers-as-a-whole approaches incorporate some fixed content reasoning (e.g.,
[23]). In this paper, we present a tight integration of these two approaches with
domains for reasoning about scalar variables and their relations to the set ele-
ments. As a result, the QUIC graph domain promises to be a lot more powerful
than a simple conjunction of both individual domains.

We have implemented the QUIC graph domain for a simple imperative pro-
gramming language with integers and sets (of integers). The language captures
basic arithmetic over integers and operations over sets such as union, intersec-
tions, difference, insertion/deletion of elements, and iteration over sets. We im-
plemented analyzers using the QUIC graph domain, as well as two domains
representing the content-centric and container-as-a-whole approaches. The eval-
uation was carried out by translating a variety of set manipulating programs
from the Python test suite. The results are quite promising: the QUIC graph
domain is more precise than the other domains, proving more properties than
a simple combination of a content-centric approach and a container-as-a-whole
approach.

Contributions: In this paper, we make the following contributions:

– We identify the need for simultaneous reasoning about containers as-
a-whole and their contents to enable modular, precise reasoning of
container-manipulating programs (Sect. 2).

– We describe QUIC graphs to represent universally-Quantifed Union and
I ntersection set Constraints in a canonical manner using a hypergraph data
structure. We build an abstract domain (functor) based on QUIC graphs. A
novel aspect of our domain is the use of predicate edge labels to capture set
comprehensions (Sect. 3).

– We present a framework for inference using QUIC graphs. We show how to
utilize the structure of QUIC graphs to compute all logical implications of
a given QUIC graph. We present the inference procedure for strengthening
base domain invariants within a QUIC graph. Finally, we show how laziness
significantly improves the cost of inferring consequences of QUIC graphs,
and describe an efficient implementation (Sect. 4).

– We define an abstract domain using QUIC graphs with inference and show
how all domain operations and reductions are easily implemented using lazy
inference (Sect. 5).

– We evaluate the effectiveness of our abstract domain on a set of benchmarks
from the Python test suite. We find that for a reasonable performance over-
head, our abstract domain is significantly more precise than either a content-
centric or a container-as-a-whole approach and unlike the content-centric
and container-as-a-whole approaches can automatically prove most proper-
ties specified in the Python test suite for set operations (Sect. 6).
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program ::= decl∗ stmt∗

decl ::= int scalarVar | set setVar
stmt ::= scalarVar := scalarExpr

| setVar := setExpr
| loop stmt∗

| branch stmt∗ orelse stmt∗

| havoc setVar
| assume conditional | assert conditional

setExpr ::= ∅ |{scalarExpr}| setVar | setExpr∪setExpr
| setExpr∩setExpr | setExpr\setExpr

scalarExpr ::= scalarVar | scalarConst | scalarUnary(scalarExpr)
| scalarBinary(scalarExpr, scalarExpr) | choose(setExpr)

conditional ::= scalarConditionals | setExpr⊆setExpr | scalarVar in setVar
setVar ::= X,Y, Z

scalarVar ::= x, y, z
scalarConst ::= c

Fig. 1. An imperative, set-manipulating programming language. A sequence of a sym-
bol α is written as α∗.

2 Overview

In this section, we walk through inferring the desired post-condition for the
extendClass example from Sect. 1 to highlight the main challenges in obtaining
precise combined content-as-a-whole invariants that motivate our design of the
QUIC graph domain. At a high-level, deriving the desired post-condition for
the extendClass function requires the careful application of transitive closure
of inclusion constraints, an effective reduction [6] strategy with base domain
elements, and a non-trivial join operator.

2.1 Set Language

We assume an imperative programming language with scalar values and set val-
ues whose elements are scalars, shown in Figure 1. We assume scalar operations
(e.g., addition, subtraction, multiplication, and division) are given as unary or bi-
nary operators (scalarUnary or scalarBinary, respectively). For convenience, we
fix a single scalar type (integers) in our language. Unless otherwise mentioned,
sets are assumed to range over this type (integers). However, our framework
is quite general. Because we only assume the base domain is a sound abstract
domain, we can handle a variety of types including integers, floats, and strings
by using base domains designed to reason over scalar variables of those types.
We do not address sets of sets or complex structures such as lists in this paper.
However, our framework can be extended to handle these types by instantiating
with more complex base domains such as another domain for sets.

For the purposes of analysis, we take an input program and lower the pro-
gram to introduce additional instrumentation variables. The lowering converts
all loops (e.g., for-in) into a single non-deterministic loop construct and all
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1 def extendClass(X) {
2 Y := ∅;
3 for (x in X) {
4 if (x > c) {
5 Y := Y ∪ {x};
6 }
7 }
8 return Y;
9 }

1 def extendClass(X) {
2 Xo := ∅; Xi := X; Y := ∅;
3 loop {
4 assume Xi �= ∅;
5 x := choose(Xi); Xi := Xi \ {x};
6 branch {
7 assume x > c; Y′ := Y ∪ {x};
8 Y := Y′;
9 }

10 orelse {
11 }
12 Xo := Xo ∪ {x};
13 }
14 assume Xi = ∅;
15 return Y;
16 }

Fig. 2. Left: the extendClass example that filters positive elements from a set X into
a set Y . Right: its lowered version.

conditional statements into a non-deterministic branch construct. The havoc
statement is an arbitrary value assignment for modeling unknown effects, and
the assume statement is used to encode the conditions in each branch. One key
instrumentation transforms each for-in loop over a set X to introduce two sets
Xo,Xi that are assumed to partition X (i.e., X = Xi � Xo). The set Xo represents
all variables that have been iterated over thus far. Likewise, Xi represents the
elements of X that remain to be iterated over. The iteration order is assumed to
be non-deterministic. The loop exits when Xi = ∅ or alternatively Xo = X. We
assume that iterations over a set X do not modify X in the body of the loop (as
is the standard semantics for container iteration).

Example 1. Fig. 2 (left) shows a translation of the Python extendClass example
from Sect. 1 to an imperative, set-manipulating program. This program filters
elements from an input set X greater than or equal to c into a set Y. The set Y
is a variable introduced in the translation to name the set being constructed by
the comprehension. The lowered version of this program is also shown alongside
(right).

2.2 Motivating Example

In Fig. 3, we annotate the lowered version of the extendClass from Fig. 2. At
program point 1, set Xi is initialized to X, while Xo and Y are initialized to the
empty set ∅. The extendClass loop begins at point 2. An arbitrary element x is
chosen out of set X at point 4 with the choose statement and removed from
set Xi. The element x is added to set Y in the first case (point 6) of the non-
deterministic branch, while set Y is left unchanged in the other (point 9). The
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def extendClass(X) {
1 Xo := ∅; Xi := X; Y := ∅;
2 loop {
3 X = Xi ∪ Xo ∧ Y ⊆ {ν ∈ Xo|ν > c}
4 assume Xi �= ∅; x := choose(Xi); Xi := Xi \ {x};
5 branch {
6 assume x > c; Y′ := Y ∪ {x};

7.a
X = Xi ∪ {x} ∪ Xo ∧ Y ⊆ {ν ∈ Xo|ν > c}

∧ Y′ = Y ∪ {x} ∧ x > c

7.b
X = Xi ∪ {x} ∪ Xo ∧ Y ⊆ {ν ∈ Xo|ν > c}
∧ Y′ = Y ∪ {x} ∧ {x} = {ν ∈ {x}|ν > c} ∧ x > c

Y := Y′;

8 X = Xi ∪ {x} ∪ Xo ∧ Y ⊆ {ν ∈ Xo ∪ {x}|ν > c} ∧ x > c

}
orelse {

9 X = Xi ∪ {x} ∪ Xo ∧ Y ⊆ {ν ∈ Xo|ν > c}
}

10 Xo := Xo ∪ {x};
11 }
12 assume Xi = ∅;
13 Y ⊆ {ν ∈ X|ν > c}

return Y;
}

Fig. 3. Inferring QUIC graph invariants on the extendClass example

final assignment in the loop (at point 10) simply moves the element x into set
Xo to continue the iteration.

The boxed formulas in Fig. 3 are program invariants that we infer (under the
pre-condition true), that is, the fixed-point result of an abstract interpretation.
Our goal is to be able to derive the post-condition Y ⊆ {ν ∈ X|ν > c}, that is,
output set Y is a subset of the positive elements of the input set X, at program
point 13. Here and in the rest of this paper, we use ν as the bound variable
for all comprehensions. In this figure, we selectively show the key constraints
needed to derive this post-condition. We first observe that although inclusion
constraints plus comprehension expressions are sufficient to state the desired
post-condition, the inferred loop invariant at point 3 requires a more expressive
set expression language (i.e., union expressions). It is straightforward to see that
this loop invariant X = Xi ∪Xo along with the loop exit condition Xi = ∅ implies
the desired post-condition and that the initial state where Xi = X ∧ Xo = Y = ∅
implies the loop invariant.

Let us consider the fixed point iteration of the loop (i.e., showing that loop
invariant is inductive and thus consecutes) and focus on the transition to invari-
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ant 7.a—the difference with respect to the loop invariant is shown shaded. This
transition begins with the addition of element x to set Y. The assume is reflected
in the invariant with a base domain constraint x > c shown to the right in the
box. It is necessary to transfer the relationship between Y and Xo to Y′ and Xo
to generate the desired function post-condition. Knowing when to transfer these
relationships by transitivity is critical to both performance and precision. The
QUIC graph representation allows us to limit the guesswork of when to apply
the various transitivity rules to derive additional facts.

In invariant 7.b, we show a reduction step that transfers information from the
base domain to the QUIC graph domain. In particular, we have that x > c, so it is
also the case that ∀ν ∈ {x} . ν > c (i.e., applying a ∀-introduction rule). In terms
of QUIC graphs, we have that any constraint of the form {x} ⊆ {

ν ∈ T̄ |B[ν]
}

can be strengthened to {x} ⊆ {
ν ∈ T̄ |B[ν] ∧ ν > c

}
where B is a predicate

described by the base domain and T̄ is any basic set expression, including {x}.
For abstract interpretation, the conjunction ∧ becomes a meet operator � on
base domain elements. Thus, we have that {x} ⊆ {ν ∈ {x}|ν > c} as shown in
invariant 7.b. This “seed” constraint is sufficient to derive other ones, such as
{x} ⊆ {ν ∈ Y′|ν > c}, by transitivity on demand. The QUIC graph structure
with singleton known-scalar sets enables an eager transfer of information from
the base domain coupled with lazy propagation of this information (see Sect. 4).

This reduction step is used for deriving the invariant at point 8. At point 8,
we show the invariant derived from 7.b by projecting out Y (and then renaming
Y′ to Y). From invariant 7.b, we can intuitively see that Y′ ⊆ {ν ∈ Xo|ν > c} ∪
{ν ∈ {x}|ν > c} by applying transitivity (and that union with any set is mono-
tonic), so we have that Y′ ⊆ {ν ∈ Xo ∪ {x}|ν > c}, which gets to our desired
result after projecting the old Y and renaming Y′ to Y. It is not difficult to check
this step; rather, the main challenge in an automated analysis is guessing that
these are the appropriate steps to obtain the desired invariant. For example, both
Y′ ⊆ {ν ∈ X ∪ {x}|ν > c} and Y′ ⊆ Xo ∪ {x} are sound over-approximations of
the projection that are syntactically close, but now we have lost too much pre-
cision to get our desired post-condition. From the QUIC graph perspective, this
derivation is a propagation of facts across nodes and edges that can be done on
demand by the lazy closure (see Sect. 4).

The invariant at point 9 in the unchanged case entails the invariant at which
we just arrived at point 8 (except for the base domain constraint), so the result of
the join at program point 10 is the invariant at point 8 without the base domain
constraint x > c, and after the assignment, we get exactly the loop invariant at
point 3.

In summary, it is difficult to derive enough constraints via transitivity and
strong enough ones via reduction from the base domain. On the flip side, tran-
sitive closure, even with restricted union and intersection constraints, is ex-
ponential (see Sect. 4). The QUIC graph representation eases this tension by
representing inclusion constraints over unions, intersections, and comprehensions
in a canonical manner that facilitates on-demand propagation of information.
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3 QUIC Graphs

A Quantified Union/Intersection Constraint graph is a graph data structure that
represents inclusions between set expressions. Throughout the rest of the paper
we use the notation X, Y, Z with subscripts to represent set variables and x, y, z
with subscripts to represent base domain variables. The special variable ν will
be used as a formal bound variable for set comprehensions, as will be explained
in this section. The symbol T represents atomic set expressions – one of three
possible elements: the empty set ∅, a singleton set containing a base domain
variable {x} or a set variable X . The symbols T̄ i, T̄ u represent a number of T s
in an intersection or a union respectively.

Definition 1 (QUIC edge). Let T i
1, . . . , T i

m = T̄ i and T u
1 , . . . , T u

n = T̄ u be
symbols representing finite sets and B be a base domain abstract state involving
a bound variable ν, acting as a predicate where � is true and ⊥ is false. A QUIC
edge is a constraint

m⋂
i=1

T i
i ⊆

⎧⎨
⎩ν ∈

m⋃
j=1

T u
j

∣∣∣∣∣∣ B[ν]

⎫⎬
⎭ represented using the notation

⋂̇
T̄ i ⊆̇

⋃̇
T̄ u

∣∣∣
B

which is an edge in an edge labeled hypergraph.

We use dots above the set operators simply to make clear that they are part of
the syntax of a QUIC constraint or a QUIC edge. Graphically a QUIC edge is
represented as a hyperedge:

T i
m

...
...

T i
1

T u
n

T u
1

∪∩
B[ν]

For convenience, if there is only one T in the union (respectively intersection),
we elide the union (respectively intersection) hex from the figure. Additionally,
if the label B[ν] is top in the base domain, we elide the label from the edge.

Definition 2 (QUIC graph). A QUIC graph G ∈ G̃ is an edge labeled hy-
pergraph constructed of QUIC edges. It represents a conjunction of constraints
where each constraint corresponds to one QUIC edge in the graph. A QUIC graph
has the following syntax:

G ::= G1 ∧ G2

|
⋂̇

T̄ i ⊆̇
⋃̇

T̄ u
∣∣∣
B

A QUIC graph is a canonical representation of the set of conjoined constraints. It
is designed to be compact and to allow efficient inference operations (see Sect. 4).

We provide a series of examples to demonstrate the QUIC graph
representation.
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Example 2 (Basic QUIC graphs). Consider that would be produced after line 1
from the example in Fig. 3:

Xo ⊆ ∅ ∧ Xi ⊆ X ∧ X ⊆ Xi ∧ Y ⊆ ∅

This is represented as a QUIC graph:

Xo ∅ Y X Xi

Unlike the constraint formula, the symbols X, Xi, and ∅ only occur once in the
graph. This makes the relationships more clear and eliminates possible redun-
dancy.

Conjoining multiple constraints produces a QUIC graph with multiple edges and
including unions or intersections requires a hypergraph to show the relationships:

Example 3. We wish to encode the formula:

⋂̇
X1 ⊆̇

⋃̇
X2

∣∣∣
ν≥5

∧
⋂̇

X1, X3 ⊆̇
⋃̇

X4

∣∣∣
ν≤10

.

We draw this using the following hypergraph:

X1 X2

X3 ∩ X4

ν ≥ 5

ν ≤ 10

To be practical, a representation for set constraints cannot stand alone. There
must be a way to represent relationships between sets and base domain variables
as well. To do this we construct a combined domain where elements are pairs
(G, B) ∈ S̃ = G̃ × B̃ where G is a QUIC graph domain instance and B is a base
domain instance. Note that the base domain has two roles: (a) it labels edges in
the QUIC graph and (b) it captures invariants on base domain variables.

To specify the concretization for both QUIC graphs and QUIC graphs com-
bined with an external base domain, a concretization (where γ is overloaded for
all concretizations) for the base domain is required:

γ : B̃ → P((BaseVar → BaseVal) × P(BaseVal))

The symbol BaseVar is all base domain variables, BaseVal is all base domain
values. This is a non-standard concretization because given some abstraction,
it returns a set of functions that map base domain variables to base domain
values and for each function, there is a corresponding set that contains the base
domain values to which the bound variable ν can be assigned. This is used to
define concretization for QUIC graphs
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Definition 3 (Concretization). The concretization γ of a QUIC graph G has
the following type, given that SetVar is all set domain variables:

γ : G̃ → P((SetVar → P(BaseVal)) × (BaseVar → BaseVal))

Where the result is a set of pairs of functions (η, ηB), where η maps set variables
to sets of base domain values and ηB maps base domain variables to base domain
values. These two functions mappings are valid with respect to constraints both
on the sets and on the base domain.

The concretization function is then defined as such:

γ(G1 ∧ G2) def= {(η, ηB)|(η, ηB) ∈ γ(G1) and (η, ηB) ∈ γ(G2)}
γ

(⋂̇ [
T i

1, · · · , T i
n

] ⊆̇
⋃̇

[T u
1 , · · · , T u

m]
∣∣∣
B

)
def=⎧⎨

⎩(η, ηB)

∣∣∣∣∣∣
(ηB, b̄) ∈ γ(B) and
for all ν.

(
ν ∈ η(T i

1) and · · · and ν ∈ η(T i
n)

)
implies

(
ν ∈ b̄ and (ν ∈ η(T u

1 ) or · · · or ν ∈ η(T u
m))

)
⎫⎬
⎭

The concretization for a combined domain S is the same set of pairs (η, ηB), so
the type and concretization follow:

γ : G̃ × B̃ → P((SetVar → P(BaseVal)) × (BaseVar → BaseVal))

γ((G, B)) def=
{

(η, ηB)|(η, ηB) ∈ γ(G) and (ηB, b̄) ∈ γ(B)
}

Expressivity: We now discuss the expressivity limitations of QUIC graphs. As
such, QUIC graphs allow unions, intersections and comprehensions of sets but
in a restricted manner. We motivate some of our design choices here.

The first expressivity restriction arises from the manner in which compre-
hension is introduced in our language. For instance, we are able to express
inclusions of the form X ⊆ {ν ∈ Y | B[ν]} through a QUIC edge. However,
QUIC graphs as presented here cannot express the reverse inclusions of the
form {ν ∈ X |B[ν]} ⊆ Y . There are two main reasons for this restriction: (a)
Representing reverse inclusions requires a new type of edge relation along with
fresh reduction rules for this edge. Additionally, there are many interactions
between this new type of relation and existing relations that need to be cap-
tured. (b) Reverse inclusions require an abstract domain that implements the
underapproximate semantics whereas the inclusions used in QUIC graphs use
the standard overapproximate abstract semantics. This ensures that existing ab-
stract domains can be integrated with QUIC graphs without introducing new
domain operations. A full theory of QUIC graphs that captures both types of
relations will be tackled in the future.

The other expressivity limitation arises from the introduction of union and
intersection operations. Note that the relation X ∪ Y ⊆ Z can be equivalently
expressed simply as X ⊆ Z ∧ Y ⊆ Z. Likewise the intersection Z ⊆ X ∩ Y ⇔
Z ⊆ X ∧ Z ⊆ Y . This motivates the direction of the union and intersection
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Set Operation Operation using Union/Intersection

X ⊆ Y � Z ⇔ X ⊆ Y ∪ Z ∧ Y ∩ Z ⊆ ∅
Y � Z ⊆ X ⇔ Y ⊆ X ∧ Z ⊆ X ∧ Y ∩ Z ⊆ ∅
X ⊆ Y \ Z ⇔ X ⊆ Y ∧ X ∩ Z ⊆ ∅
Y \ Z ⊆ X ⇔ Y ⊆ X ∪ Z

Fig. 4. Encoding set difference and disjoint union in QUIC graphs

hyperedges in QUIC graphs. We do not directly represent relations between
nested unions and intersections unless special existentially quantified variables
are permitted in the graph.

Example 4. For instance, the relation (X1 ∪ X2) ∩X3 ⊆ X4 cannot be expressed
unless a special existentially quantified set variable X5 is introduced with the
constraints ⋂̇

X5 ⊆̇
⋃̇

X1, X2

∣∣∣
�

∧
⋂̇

X1 ⊆̇
⋃̇

X5

∣∣∣
�

∧
⋂̇

X2 ⊆̇
⋃̇

X5

∣∣∣
�

∧
⋂̇

X5, X3 ⊆̇
⋃̇

X4

∣∣∣
�

Finally, relations involving disjoint unions and set difference can also be repre-
sented directly using QUIC graph as shown in Figure 4.

Self Loops: Self-loops on QUIC graphs are quite useful to encode assertions
that are true of the contents of X in relation to the scalar program variables
x1, . . . , xn.

Example 5. Let X be a set and x be a program variable. We wish to express that
every element in X is between x and x+10. We do so in the QUIC graph domain
using the self-loop from X to itself labeled by the assertion ν ≥ x ∧ ν ≤ x + 10.
In effect, the loop represents the containment relation written

X ⊆ {ν ∈ X | ν ≥ x ∧ ν ≤ x + 10} or ∀ν ∈ X. ν ≥ x ∧ ν ≤ x + 10 .

QUIC graphs naturally represent relationships between set variables, singleton
sets and the empty set. However, QUIC graphs do not necessarily represent all
possible relationships. In the next section, we show how to derive other relation-
ships from those already in a QUIC graph.

4 Closure

The closure of a QUIC graph adds all of the implied logical facts to both the
QUIC graph and the base domain. Most of the domain operations of a QUIC
graph are defined in terms of the closure by the application of inference rules to
add edges to a QUIC graph and strengthen the existing edge labels.
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Inference rules are shown in full in Fig. 5. We use three judgment forms.
One states when given a combined domain of a QUIC graph and a base domain,
S = (G, B), a particular containment relationship is derivable. If the relationship
is derivable, the inference judgment provides a predicate Be that holds on that
relationship. The judgment takes the form

(G, B) �
⋂̇

T̄ i ⊆̇
⋃̇

T̄ u
∣∣∣
Be

,

where T̄ i is the set of intersected vertices and T̄ u is the set of unioned vertices.
This judgment relies on an auxiliary judgment B � x = y where x and y are
base domain variables. This judgment states when an equality between variables
is derivable from a base domain element (and is supplied by the base domain).
We also define a judgment (G, B) � x = y that states when an equality can be
derived from set constraints.

4.1 Inference Rules

We now explain the inference rules for QUIC graphs in detail. A brief explanation
of the rules follow.

The (Emp) inference rule generates QUIC graph edges from the empty set
to any node, labeled with the bottom base domain element ⊥ (i.e., with the ∅
concretization or is equivalent to the predicate false).

Example 6. Consider the QUIC graph G

∅ X

By applying (Emp), we get the QUIC graph G′:

∅ X
⊥

The (Self-Loop) and (Self-Prop) inference rules generate and strengthen the
labels present on self loops in QUIC graphs. The strengthening takes information
from an outgoing edge and propagates it back to the self loop.

Example 7. Consider the QUIC graph G

Z

Y

X
∪

ν < 17

Evaluating the (Self-Loop) rule on Z gives G′ on the left. Evaluating the
(Self-Prop) rule on Z and X ∪ Y pushes the predicate ν < 17 onto the self
loop at Z, giving G′′ on the right:
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(G ∧
⋂̇

T̄ i ⊆̇
⋃̇

T̄ u
∣∣∣
Be

, B) �
⋂̇

T̄ i ⊆̇
⋃̇

T̄ u
∣∣∣
Be

(In-Graph-R)

(G, B) �
⋂̇

∅ ⊆̇
⋃̇

T̄ u
∣∣∣

⊥

(Emp)

(G, B) �
⋂̇

T ⊆̇
⋃̇

T
∣∣∣
�

(Self-Loop)

(G, B) �
⋂̇

T ⊆̇
⋃̇

T̄ u
∣∣∣

Ba

(G, B) �
⋂̇

T ⊆̇
⋃̇

T

∣∣∣
Bb

(G, B) �
⋂̇

T ⊆̇
⋃̇

T

∣∣∣
Ba�Bb

(Self-Prop)

(G, B) �
⋂̇

T̄ i ⊆̇
⋃̇

T̄ u
∣∣∣

Be

(G, B) �
⋂̇

T, T̄ i ⊆̇
⋃̇

T̄ u
∣∣∣
Be

(Add-Left)

(G, B) �
⋂̇

T̄ i ⊆̇
⋃̇

T̄ u
∣∣∣
Be

(G, B) �
⋂̇

T̄ i ⊆̇
⋃̇

T, T̄ u
∣∣∣

Be

(Add-Right)

(G, B) �
⋂̇

T i ⊆̇
⋃̇

T u
1 , · · · , T u

m

∣∣∣
B0

(G, B) �
⋂̇

T u
j ⊆̇

⋃̇
T u

j

∣∣∣
Bj

, for j = 1 · · · m

(G, B) �
⋂̇

T i ⊆̇
⋃̇

T u
1 , · · · , T u

m

∣∣∣
B0�

(⊔
m

j=1
Bj

) (Union-Prop)

(G, B) �
⋂̇

T i
j ⊆̇

⋃̇
T i

j

∣∣∣
Bj

, for j = 1 · · · m (G, B) �
⋂̇

T i
1 , · · · , T i

n ⊆̇
⋃̇

Tu

∣∣∣
B0

(G, B) �
⋂̇

T i
1 , · · · , T i

n ⊆̇
⋃̇

T u
∣∣∣
B0�

(�m
j=1 Bj

) (Inter-Prop)

(G, B) �
⋂̇

T̄ i
a ⊆̇

⋃̇
T, T̄ u

a

∣∣∣
Ba

(G, B) �
⋂̇

T, T̄ i
b ⊆̇

⋃̇
T̄ u

b

∣∣∣
Bb

(G, B) �
⋂̇

T̄ i
a, T̄ i

b ⊆̇
⋃̇

T̄ u
a , T̄ u

b

∣∣∣
Ba

(Union-Trans)

(G, B) �
⋂̇

T̄ i
a ⊆̇

⋃̇
T

∣∣∣
Ba

(G, B) �
⋂̇

T, T̄ i
b ⊆̇

⋃̇
T̄ u

∣∣∣
Bb

(G, B) �
⋂̇

T̄ i
a, T̄ i

b ⊆̇
⋃̇

T̄ u
∣∣∣

Ba�Bb

(Inter-Trans)

(G, B) �
⋂̇

T̄ i ⊆̇
⋃̇

T̄ u
∣∣∣
Be

(G, B) �
⋂̇

T̄ i ⊆̇
⋃̇

T̄ u
∣∣∣

Be�B

(Base-Str)
B � x = y

(G, B) �
⋂̇

{x} ⊆̇
⋃̇

{y}
∣∣∣

ν=x

(Eq-Base)

(G, B) �
⋂̇

T̄ i ⊆̇
⋃̇

T̄ u
∣∣∣

Ba

(G, B) �
⋂̇

T̄ i ⊆̇
⋃̇

T̄ u
∣∣∣
Bb

(G, B) �
⋂̇

T̄ i ⊆̇
⋃̇

T̄ u
∣∣∣
Ba�Bb

(Double-Edge)

(G, B) �
⋂̇

{x} ⊆̇
⋃̇

{y}
∣∣∣

Ba

(G, B) �
⋂̇

{y} ⊆̇
⋃̇

{x}
∣∣∣

Bb

(G, B) � x = y
(Eq-Set)

Fig. 5. Inference rules for closure of QUIC graphs. Notation: T̄ i, T̄ u are sets of vertices,
T are individual vertices of the graph, B, Ba, Bb are base abstract states and x, y are
base domain variables.
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Z

Y

X
∪

ν < 17
Z

Y

X
∪

ν < 17

ν < 17

The (Add-Right) rules allows adding extra elements to the union on the right-
hand side of an inclusion. (Add-Left) is the dual rule for intersection.

Example 8. Consider the QUIC graph G on the left. Applying (Add-Right) to
Z and X , adding Y , gives the QUIC graph G′ on the right:

Z

Y

X
ν > 0 Z

Y

X
∪

ν > 0

The (Union-Prop) rule pushes information from self loops backward onto edges.
(Inter-Prop) performs the same operation on intersections.

Example 9. Consider the QUIC graph G on the left. Applying (Union-Prop)

to Z, X and Y yields the graph shown to the right.

Z

Y

X
∪

ν < 12

ν > 5

ν > 3

Z

Y

X
∪

ν < 12 � (ν > 5 	 ν > 3)

ν > 5

ν > 3

The (Union-Trans) rule combines two union edges to produce a single union
edge. This rule loses information from one of the edges, but that information
can be regained through the application of (Union-Prop). We write � and �
for the meet and join operator in the base domain, respectively. (Inter-Trans)

does the same for intersection without losing information.

Example 10. Consider the QUIC graph G on the left. The two union edges are
combined to produce the union edge on the right. Even though ν < 1 is a stronger
constraint than ν < 2, the resulting constraint is the weaker ν < 2.

X0

X1

X2
∪

X3

X4

∪
ν < 2

ν < 1
X0 ∪

X1

X3

X4
ν < 2

The (Double-Edge) rule merges two edges between the same vertices into a
single edge. QUIC graphs do not track multiple edges between the same two
vertices, so a duplicate edge must immediately be converted to a single edge
with this rule.
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Example 11. Consider the two edges on the left. Since QUIC graphs cannot
represent these, they are combined into the single edge on the right.

X Y

B2

B1

X Y
B1 � B2

The rule (Base-Str) strengthens any edge in the graph with the current facts
from the base domain B. The rule (Eq-Base) strengthens relationships in the
set domain by adding a constraint on the bound variable. The latter also uses
equality in the base domain to infer equalities in the set domain. Oppositely,
(Eq-Set) uses equalities in the set domain to infer base domain equalities.

Definition 4 (Closure). Let (G, B) be a QUIC graph and a base domain pred-
icate. The closure (G∗, B∗) is the conjunction of all

⋂̇
T̄ i ⊆̇

⋃̇
T̄ u

∣∣∣
Be

such that (G, B) �
⋂̇

T̄ i ⊆̇
⋃̇

T̄ u
∣∣∣
Be

and the constraining of B with all equalities x = y given by the judgment (G, B) �
x = y.

4.2 Soundness

We first define soundness for systems of inference rules. For a QUIC graph anal-
ysis to be sound, the underlying system of inference rules must be sound.

Definition 5 (Inference Soundness). An inference is sound if the following
two conditions hold:

1. if (G, B) � ⋂̇
T̄ i ⊆̇ ⋃̇

T̄ u
∣∣∣
Be

, then γ((G, B)) ⊆ γ

(⋂̇
T̄ i ⊆̇ ⋃̇

T̄ u
∣∣∣
Be

)
.

2. if (G, B) � x = y, then for all (η, ηB) ∈ γ((G, B)), we have that ηB(x) =
ηB(y).

Let us assume that B̃, the base domain, is a sound abstract domain [5].

Theorem 1. The inference rules in Figure 5 are sound according to Defini-
tion 5.

4.3 Complexity

Closure of a QUIC graph is potentially expensive since the number of edges in
the closure can be exponential in the worst case.

Theorem 2. There are O(2n) possible hyperedges in a QUIC graph with n
vertices.

Without “tactics” to apply the rules cleverly in an implementation, the inference
over QUIC graphs is intractable.
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4.4 Lazy Inference Implementation

We now discuss how the inference operation is implemented in our approach.
The goal of the implementation is to avoid a blowup in the number of graph
edges and running time each time a closure is to be computed. Lazy inference is
a tactic that computes an effective closure on demand. It is composed of many
strategies. We describe the most important concepts used in our implementation.
(a) Simplification: We apply many simplification passes to keep the QUIC graph
in a canonical form. This automatically takes into account many of the inference
rules from Fig. 5. (b) Lazy inference: Instead of computing the closure eagerly
and adding a set of extra edges to the graph, we do so lazily whenever edge
membership queries are issued by the abstract domain. (c) Partial closure: We
note that many of the edges generated by a closure are not necessarily useful
as invariants for proving properties. Therefore, we have implemented heuristics
that choose edges to query. We call this process candidate generation since it
affects which invariant candidates are considered by our analyzer at each step.

Simplification: Simplification consists of many different parts. The first simplifi-
cation deals with edges from the empty set ∅. As such, they do not contribute to
the inference. We assume that these edges implicitly exist but do not represent
them.

Next, we consider equivalence classes of set variables. Two sets X, Y are
equivalent if X ⊆ Y ∧ Y ⊆ X . Equivalence classes are identified using a
maximal strongly connected component algorithm on the QUIC graph. Equiv-
alence classes of sets can be compacted and one representative is chosen using
a pre-defined variable ordering. All membership queries involving members of
equivalence classes are first rewritten in terms of the representative members of
the classes.

The (Double-Edge) rule is implicitly implemented by our data structure
whenever we attempt to add two edges between the same set of nodes. Finally, we
use (Self-Loop), (Self-Prop), (Union-Prop) and (Inter-Prop) to prop-
agate labels and add new edges between representatives of equivalence classes.
These rules also strengthen the labels on edges.

Lazy Inference: Next, we implement inference on demand by applying the infer-
ence rules to decide if a queried edge is present in the graph. This is performed by
iterating the (Union-Trans) and (Inter-Trans) rules to compute transitive
closures.

Candidate Generation: The computation of a lazy inference is driven by the
choice of candidate query edges that we wish to add to the graph. To this end,
a candidate generation heuristic is used in our implementation to choose candi-
date invariant facts. There are many possible heuristics for generating candidate
query edges. We use set expressions that appear in the program including prop-
erties to be proved as a source of edges to keep in the partial closure. Another
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choice includes edges that are generated through transfer functions such as as-
signments. Once generated, we keep an edge as a candidate edge for future
inference computations.

5 Domain Operations

In this section, we will discuss the abstract domain operations over the re-
duced product domain of QUIC graphs and the base domain B̃ for base domain
variables.

Notation: Let G be a QUIC graph. We will write G[X � X0] to denote the graph
obtained by changing the label of vertex X to X0. We extend the notation to
set expressions so that T [X � X0] denotes the substitution of X by X0 for each
occurrence in the expression T .

We define abstract domain transition functions using semantic functions:

�stmt�S : S̃ → S̃

These functions are parameterized by stmt, which is a command in the language
of sets and base domain operations. It takes an abstract state S = (G, B) ∈ S̃
composed of a graph G and a base domain element B and returns an abstract
state S′ that represents the state after having executed command stmt on S.

Simple Transfer Functions: The transfer functions for some basic assignment
states are represented below. In each case, the result may not be closed. There-
fore, we may apply inference on the result, if necessary.

�havoc X�S(G, B) def= (G[X � X0], B) X0 is fresh

�X:=∅�S(G, B) def=
(

G[X � X0] ∧ X ∅⊥
, B

)
X0 is fresh

�X:=T�S(G, B) def=

⎛
⎝G[X � X0] ∧ X T , B

⎞
⎠ X0 is fresh

The command havoc X assigns X to a non-deterministic value. Rather than
projecting the vertex X from the graph, we rename the existing vertex to a fresh
variable X0. The vertex X0 remains in the graph as a history variable. Operations
such as join and widening will eliminate the necessary history variables, ensuring
that they do not propagate out of scope. However history variables will exist for
as long as possible as this may allow additional relationships to be inferred.

The command X:=∅ assigns X to the empty set. Because it is performing a
destructive update to X , X is renamed to a history variable X0 as is standard
when performing a destructive update. This leaves the symbol X completely
unconstrained so that when constraints are added to X , those are the only
constraints on X . The added constraint here is X ⊆ ∅, labeling it with the
strongest possible predicate ⊥.
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The command X:=T assigns a set element T to X . This creates the two edges
representing both X ⊆ T and T ⊆ X . The edge labels are set to � and thus not
shown as all the information from B can be added to these edges through the
inference procedure.

Meet (Intersection): The meet of two abstract states (G1, B1) � (G2, B2) is the
conjunction of the set constraints and meet in the base domain (i.e., (G1 ∧
G2, B1 � B2) where we overload the � notation for both the QUIC graph and
the base domain). Note that viewing the set constraints as graphs, meet is the
union of two graphs.

Set Assignment Rule: We now complete domain operations for assignments of
the form X :=T1 ∪ T2 · · · ∪ Tn (similarly for X :=T1 ∩ · · · ∩ Tn). The basic idea is
to replace X by a history variable X0 and introduce hyper-edges to capture the
new relations formed. For simplicity, we consider the case n = 2

�X:=T1 ∪ T2�
S(G, B) def=

⎛
⎜⎜⎜⎝G[X � X0] ∧ X

T2[X �X0]

T1[X �X0]
∪ , B

⎞
⎟⎟⎟⎠

X0 is fresh
Intersection, disjoint union and set difference operations are similar. They re-
name X to a fresh variable X0 and rename T1 and T2 similarly, if appropriate.
Then a constraint that represents the appropriate equality is added to the QUIC
graph.

Base Domain Assignment: An assignment to the base domain variables x := e
will result in three changes: (a) applying the assignment to the base domain
element B, (b) applying the assignment to each edge label in the QUIC graph
G and (c) any singleton node in the graph that involves x needs to be updated
either by computing its post-condition w.r.t to the assignment, if invertible or
renamed to a fresh set variable X0 for a destructive assignment. All applications
invoke the base domain transfer function and thus rely on the base domain for
introduction (or not) of history variables. We illustrate this through a simple
example.
Example 12. Consider the QUIC graph G

X Y {y}ν ≥ x − 2

and let B : y ≥ x. Consider the destructive assignment x := y + 1. The transfer
function yields the QUIC graph G′:

X Y {y}�

with the assertion B′ : x = y + 1. We compute a partial closure on the result,
which effectively pushes the constraint x = y + 1 on the edges of the graph G′.
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Choose: The choose command selects an element from a set and assigns it to
a base domain variable. It takes quantified information from the set domain
and applies it to the resulting base domain variable. The strategy to handle
x := choose(T ) for an abstract state (G, B) is the following:

1. Perform an inference operation on (G, B) giving (G∗, B∗).
2. Extract the base domain constraint Be from a self-loop on T :

G∗ = G′ ∧
⋂̇

T ⊆̇
⋃̇

T
∣∣∣
Be

.

3. Replace the bound variable ν in Be with a fresh base domain variable y
giving By. This process transfers all the facts that apply to elements in set
T and applies them to the variable y.

4. Compute the meet B′ = B∗ � By. This transfers those facts about y to the
base domain.

5. Perform the destructive update x := y on (G∗, B′) to get the result of choose.

Projection: The projection of a base-domain variable x from (G, B) is performed
by (a) projecting x from B and (b) projecting x from each label in G. These are
performed by calling the projection defined in the base domain B̃.

The projection of a vertex T from the QUIC graph G first computes its partial
closure (G∗, B∗). Next, we remove all conjuncts involving the vertex T from G∗

to obtain the projection.

Join: Let (G1, B1) and (G2, B2) be the arguments for the join operation. We first
compute the partial closure of (G∗

1, B∗
1 ) of G1 and likewise the partial closure

(G∗
2, B∗

2) of (G2, B). The join (G, B) is then defined where B = B∗
1 � B∗

2 and G
is all conjuncts ⋂̇

T̄ i ⊆̇
⋃̇

T̄ u
∣∣∣
B1	B2

where there exists some G′
1 and G′

2 such that

G∗
1 = G′

1 ∧
⋂̇

T̄ i ⊆̇
⋃̇

T̄ u
∣∣∣
B1

and G∗
2 = G′

2 ∧
⋂̇

T̄ i ⊆̇
⋃̇

T̄ u
∣∣∣
B2

.

Widening: As such the QUIC graph domain is a product of a finite graph domain
and an abstract base domain. Widening is required iff the base domain does not
satisfy the ascending chain condition. The basic widening algorithm is precisely
the same as the join operation with the modification that the base domain
widening operation is applied for each QUIC edge instead of widening.

6 Evaluation

We now present a preliminary evaluation of our prototype analyzer. The QUIC
graphs domain introduced in this paper has two main aspects: (a) it enables
relational reasoning between sets to prove that one set (expression) is contained
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in another; and (b) it allows us to qualify relations between sets using base
domain predicates, in effect allowing us to reason with set comprehension. The
evaluation in this section is intended to answer the following questions:

1. How much does each of the two ingredients (relations between sets + set
comprehensions) add to the ability of the analysis to prove properties of
commonly encountered use cases?

2. What is the added cost due to each of the two ingredients to the overall
domain?

To carry out the evaluation, we introduce two simplified versions of the QUIC
graphs domains namely the ‘set’ and ‘elem’ domains. (A) The ‘set’ domain allows
relations between sets but no comprehensions. This is a realization of a container-
as-a-whole approach. We create this domain by using the trivial two element
(⊥, �) base domain. (B) The ‘elem’ domain disallows relations between sets but
allows us to reason about the contents of the set using a summary variable. This
is a realization of a content-centric domain. To simulate this domain, we modify
the original QUIC graphs domain to just allow self loops on nodes as the only
possible edge. In effect, the predicate on such an edge must be true of every
element in the set. Furthermore, the process is exactly equivalent to introducing
a summary variable for each set variable and performing a base-domain analysis
using this summary variable.

Benchmarks: The next step is to choose a series of benchmarks that represent
common motifs for set (container) usage in dynamic languages. To evaluate
our approach we used two sets of benchmarks. We designed our analysis using
the first set of benchmarks, which exercise four commonly occurring operations
on containers ‘copy’, ‘filter’, ‘partition’ and ‘merge’. We then ran our analysis,
unmodified, on translated versions of all of the programs from the Python test
suite [24] for dictionaries and sets. We removed extraneous parts of these tests
and simply translated the core part of each program to an equivalent program in
our input language. Each test has a set of pre-defined assertions to be established
by our analyzer.

Results: Figure 1 summarizes the results of our analysis run on these benchmarks
on an Apple MacBook Pro, on a 2.2GHz Intel Core i7 with 8GB RAM running
Mac OS X 10.8.2. We now discuss the comparison of precision and running
time. The memory required by most analysis runs was under 150 MB. It is
quite clear from the results table that the combination of relational reasoning
and comprehension using base domain predicates is quite powerful. Whereas
the QUIC graphs domain can prove a majority of the properties, restricting it
either by removing the comprehensions (set) or removing the relations between
sets (elem) are both able to prove much fewer properties. Furthermore, every
property proved by these domains is also proved by the QUIC graphs domain.

The comparison of costs indicates that the QUIC graphs domain is 1.2×
slower than the set domain. However, it is 9× slower than the elem domain. The
difference in performance is entirely expected since the QUIC graphs domain
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Table 1. Results on a set of small benchmarks. Base Vars: # of base domain
(numerical) variables, Set Vars: # of set variables, Num Prp: # of assertions to
be proved, T: Time taken (seconds), #I: number of iterations of abstract interpreter
before convergence. – represents a time out (600 seconds)

Base Set Num # Proved Time Taken (Iterations)
ID Vars Vars Prp QG set elem QGT (#I) setT (#I) elemT (#I)
copy 1 6 2 2 2 0 0.2 (2) 0.2 (2) 0 (2)
filter 4 6 2 2 1 0 0.6 (3) 0.5 (3) 0.1 (2)
generic_max 3 8 6 3 0 0 0.9 (6) 0.6 (6) 0.2 (4)
merge 2 14 2 1 1 0 0.6 (4) 0.6 (4) 0.1 (4)
partition 4 8 4 4 2 0 1.1 (3) 0.9 (3) 0.2 (2)
b_filter 6 6 2 2 0 0 0.7 (3) 0.6 (3) 0.1 (2)
b_map 9 7 2 2 2 2 0.2 (5) 0.3 (5) 0.1 (4)
b_max_min 3 4 1 1 1 1 0.4 (3) 0.3 (3) 0.1 (2)
b_reduce 7 4 1 0 0 0 0.4 (3) 0.3 (3) 0.1 (2)
iter_ind 20 12 1 1 0 0 84.4 (39) 67.9 (39) 6.8 (14)
mul_ret 9 2 2 2 0 0 0.2 (6) 0.1 (6) 0.1 (6)
nest_dep 5 7 1 0 0 0 2.2 (12) 2.2 (12) 0.4 (6)
resize1 15 5 5 4 0 0 1.7 (18) 1.1 (18) 1 (18)
simp_cond 11 5 4 3 0 0 4.6 (12) 1.6 (12) 1.3 (12)
simp_nest 9 10 2 0 0 0 – (1399) – (1612) 0.7 (6)
srange 6 2 2 2 0 0 0.1 (6) 0.1 (6) 0.1 (6)
Total 37 29 9 3 98.3 (125) 77.3 (125) 11.4 (92)

has to perform a lot more reasoning steps. We also find that one example times
out (after 600 seconds).

Limitations. While QUIC graphs are an effective abstract domain, but some
properties were not proven due to imprecision in the analysis. There are four
sources of this imprecision: (1) incomplete candidate generation, (2) imprecise
base domain, (3) no cardinality reasoning, and (4) syntactic restrictions within
QUIC graphs.

To reduce needless inference in many examples, we use candidate generation
(Sect. 4) to reduce the number of rule applications. Because candidate generation
reduces the potential edges that can result from a join, it can cause the join to
lose more information than is strictly necessary. This is this cause for many of
the failures in Table 1, including the failure to prove one of the properties in
‘merge’. Further work on candidate generation is quite important.

Because the base domain is also an abstract domain, it is imprecise and may
not be able to represent some necessary relationship. This is especially the case
when there is a transformation applied to all elements of a set. The base domain
must be able to represent that transformation that occurs to each element as a
relation. In this test suite there is only one test that exercises this ability and
the relations are all representable as linear relationships, so this imprecision does
not affect the results. However, if this were a problem, a new base domain could
be selected because QUIC graphs are agnostic to the base domain.
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The QUIC graphs domain does not track the cardinality of sets. As has been
previously shown [18], cardinality can strengthen relationships, and therefore in
QUIC graphs, cardinality constraints would create additional closure rules. For
example, if for some set X we have that {1, 3, 7} ⊆ X and that |X | = 3, then
we can infer that X ⊆ {1, 3, 7}. It is possible that cardinality information could
provide sufficient information to prove properties that failed in this test suite, but
this information could likely be inferred in another way (such as better candidate
generation) because most sets in the test suite have unknown cardinality.

QUIC graphs are syntactically restricted to allow comprehensions only on
one side of a subset relationship. Reverse inclusions (Sect. 3) are not supported.
We hypothesize that the ability to know that an element exists in a set will be
beneficial when abstracting other containers using sets.

7 Related Work

There exists a large number of container analyses, mostly focused on arrays.
Although there are many different approaches, the problem is fundamentally the
same: partitioning an array in order to summarize different segments. Gopan et
al. [13], Halbwachs et al. [15] and Cousot et al. [7] use an abstract interpretation
framework with materialization and summarization. Therein, the partitions are
inferred from the structure of the program. Seghir et al. [25] perform this in the
context of predicate abstraction, similarly to abstract interpretation. Jhala et
al [16], McMillan [22], Kovacs et al. [17], and Dillig et al. [9, 10] use theorem
provers to perform this partitioning. Our approach does not use a partitioning
scheme except for the special case of loops that iterate over sets. Furthermore,
these approaches do not, in general, reason about comprehensions or relate the
contents of different arrays.

There are several alternative approaches to reasoning about container manip-
ulations. Marron et al. [20, 21] used a shape analysis to emulate data storage of
containers. They used appropriate inductive predicates with carefully tuned, sim-
plified implementations of the containers to get an automatic analysis. Dillig et
al. [11] extended their previous work on arrays to more generic containers. Their
approach uses base domain predicates as constraints on the sets of keys for maps.
This is a highly tuned example of what we have been calling a content-centric
domain. Their approach does not directly infer relationships between contain-
ers. However, they can indirectly infer relations through data invariants that
relate their contents. Finally, Pham et al. [23] introduced a relational domain for
sets. Their domain is similar to ours in that it is designed to directly represent
relations between sets. Their approach represents what we term an as-a-whole
approach for the most part. It does support a base domain of uninterpreted
functions and can be precise for a restricted class of programs. Because they
support only uninterpreted functions for the base domain, they have been able
to implement some under-approximations required to infer equalities with pred-
icate comprehensions, but this base domain does not support any manipulation
or reductions and thus is weaker than domains that we support.
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The invariant generation procedure of [14] could infer many of the invariants
that we infer given a sufficiently expressive list of predicate templates. They select
from templates to use for quantified facts. As a result, their analysis requires
user input and guidance for success, but the approach does offer some additional
generality. Bouajjani et al. [3] present a similar, more automatic approach to
dealing with quantified invariants, by pre-selecting appropriate templates for
many applications. They apply their work to linked list structures and support
multiple bound variables to be able to maintain sortedness properties. Like the
work of [20], they use a shape analysis framework to approximate the shape and
data of lists, while maintaining quantified side conditions on an integer base
domain.

The QUIC graph data structure is similar to a formalization of constraint
graphs [2, 12] use to prove complexity of satisfaction of constraints [1]. While
the encoding is similar, there is no need for base domain labels since constraint
graphs are unable to place quantified restrictions on the contents of the sets
they constrain. In general, constraint graphs do represent sets, but they are
intended to use sets to analyze programs rather than analyzing set-manipulating
programs.

The decision procedures community has largely solved this problem of re-
lational containers, but only for the problem of entailment checking. Decision
procedures do not perform invariant generation. Bradley et al. [4] demonstrated
decision procedures for arrays and other containers. The Z3 SMT solver imple-
ments an optimized version [8] of these decision procedures to speed up these
problems. Also, Lam et al. [19] and Kuncak [18] developed a system that simulta-
neously reasons about sets and their cardinalities relationally. Since these tools
solve the decision problem rather than the inference problem, they are incom-
parable, however the optimizations used in [8] are similar to operations that we
define in our closure because they are Boolean algebra-like operations.

8 Conclusion

We have demonstrated a relational abstract domain for sets that combines a
content-centric analysis with a container-as-a-whole approach. This is achieved
through a new representation for set constraints called QUIC graphs that simpli-
fies the representation of set expressions and inclusion relations that use compre-
hensions. Our evaluation of this domain shows that a combined approach using
QUIC graphs is quite effective in practice. It outperforms weaker alternatives
such as a content-centric approach and a container-as-a-whole approach.

Going forward, we are developing tighter integration of our domain to analyze
a range of data structures in dynamic languages such as Python and JavaScript.
Our future work will complete the QUIC graph structure to encode reverse
inclusion relations (see Section 3), track set cardinalities more effectively and
enable the tracking of auxiliary data that can help extend this analysis to specific
structures such as arrays, lists and dictionaries.



424 A. Cox, B.-Y.E. Chang, and S. Sankaranarayanan

Acknowledgments. We would like to thank Xavier Rival and the CUPLV
group for insightful discussions on this work, as well as the anonymous reviewers
for the helpful comments. This work is supported in part by the National Science
Foundation through grants CCF-1055066 and CCF-1218208.

References

[1] Aiken, A., Kozen, D., Vardi, M., Wimmers, E.: The complexity of set constraints.
In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 832, pp. 1–17. Springer,
Heidelberg (1995)

[2] Aiken, A., Fähndrich, M., Foster, J.S., Su, Z.: A toolkit for constructing type-
and constraint-based program analyses. In: Leroy, X., Ohori, A. (eds.) TIC 1998.
LNCS, vol. 1473, pp. 78–96. Springer, Heidelberg (1998)

[3] Bouajjani, A., Drăgoi, C., Enea, C., Sighireanu, M.: Abstract domains for auto-
mated reasoning about list-manipulating programs with infinite data. In: Kuncak,
V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 1–22. Springer,
Heidelberg (2012)

[4] Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emer-
son, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442.
Springer, Heidelberg (2006)

[5] Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL
(1977)

[6] Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
POPL (1979)

[7] Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully
automatic and scalable array content analysis. In: POPL (2011)

[8] de Moura, L., Bjørner, N.: Generalized, efficient array decision procedures. In:
Conference on Formal Methods in Computer Aided Design, FMCAD (2009)

[9] Dillig, I., Dillig, T., Aiken, A.: Fluid updates: Beyond strong vs. Weak updates.
In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 246–266. Springer, Hei-
delberg (2010a)

[10] Dillig, I., Dillig, T., Aiken, A.: Symbolic heap abstraction with demand-driven
axiomatization of memory invariants. In: OOPSLA (2010b)

[11] Dillig, I., Dillig, T., Aiken, A.: Precise reasoning for programs using containers.
In: POPL (2011)

[12] Flanagan, C.: Effective Static Debugging via Componential Set-Based Analysis.
PhD thesis, Rice University (1997)

[13] Gopan, D., Reps, T., Sagiv, M.: A framework for numeric analysis of array oper-
ations. In: POPL (2005)

[14] Gulwani, S., McCloskey, B., Tiwari, A.: Lifting abstract interpreters to quantified
logical domains. In: POPL (2008)

[15] Halbwachs, N., Péron, M.: Discovering properties about arrays in simple programs.
In: PLDI (2008)

[16] Jhala, R., McMillan, K.L.: Array abstractions from proofs. In: Damm, W., Her-
manns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 193–206. Springer, Heidelberg
(2007)

[17] Kovács, L., Voronkov, A.: Finding loop invariants for programs over arrays using a
theorem prover. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503,
pp. 470–485. Springer, Heidelberg (2009)



QUIC Graphs: Relational Invariant Generation for Containers 425

[18] Kuncak, V.: Modular Data Structure Verification. PhD thesis, EECS Department,
Massachusetts Institute of Technology (2007)

[19] Lam, P., Kuncak, V., Rinard, M.: Hob: a tool for verifying data structure con-
sistency. In: Bodik, R. (ed.) CC 2005. LNCS, vol. 3443, pp. 237–241. Springer,
Heidelberg (2005)

[20] Marron, M., Stefanovic, D., Hermenegildo, M., Kapur, D.: Heap analysis in the
presence of collection libraries. In: PASTE (2007)

[21] Marron, M., Méndez-Lojo, M., Hermenegildo, M., Stefanovic, D., Kapur, D.: Shar-
ing analysis of arrays, collections, and recursive structures. In: PASTE (2008)

[22] McMillan, K.L.: Quantified invariant generation using an interpolating saturation
prover. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 413–427. Springer, Heidelberg (2008)

[23] Pham, T.-H., Trinh, M.-T., Truong, A.-H., Chin, W.-N.: FixBag: A fixpoint cal-
culator for quantified bag constraints. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 656–662. Springer, Heidelberg (2011)

[24] Python. Python 2.7.3 test suite (2012), http://www.python.org
[25] Seghir, M.N., Podelski, A., Wies, T.: Abstraction refinement for quantified array

assertions. In: Palsberg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 3–18.
Springer, Heidelberg (2009)

http://www.python.org


Reducing Lookups for Invariant Checking

Jakob G. Thomsen1,�, Christian Clausen1, Kristoffer J. Andersen1,
John Danaher2, and Erik Ernst1,��

1 Aarhus University
{gedefar,christia,kja,eernst}@cs.au.dk

2 Google Inc.
jsd@google.com

Abstract. This paper helps reduce the cost of invariant checking in
cases where access to data is expensive. Assume that a set of variables
satisfy a given invariant and a request is received to update a subset of
them. We reduce the set of variables to inspect, in order to verify that
the invariant is still satisfied. We present a formal model of this scenario,
based on a simple query language for the expression of invariants that
covers the core of a realistic query language. We present an algorithm
which simplifies a representation of the invariant, along with a mechan-
ically verified proof of correctness. We also investigate the underlying
invariant checking problem in general and show that it is co-NP hard,
i.e., that solutions must be approximations to remain tractable. We have
seen a factor of thirty performance improvement using this algorithm in
a case study.
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1 Introduction

An invariant is a useful and well-known device for specifying data consistency.
Assuming that a given amount of data satisfies a specific invariant, the associated
notion of consistency may be preserved across an update by checking that the
invariant holds in the updated data, and rejecting the update if it does not hold.
However, invariant checking may refer to unmodified data as well as updated
data, and some unmodified data may well be stored in such a way that access
is expensive, e.g., on a remote server, or even impossible, e.g., if the update
is performed on a mobile device that currently has no network access. This
paper presents a provably correct algorithm for simplifying the invariant to a
form that uses a smaller amount of data and still correctly determines whether
the invariant has been violated. As a result, consistency checking may now be
performed using fewer resources, or even in some situations where, otherwise, it
could not be performed at all.
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We provide a model of this scenario, with a simple query language for ex-
pressing invariants and an algorithm that simplifies invariants. Data is modeled
as a finite set of variables V with values D : V → Value, where Value is some
domain of values modeling the results of expression evaluation; a subset V ′ ⊆ V
is modified to have new values U : V ′ → Value, extended to cover all variables
by setting U(v) = D(v) for v ∈ V \V ′. Finally, a notion of consistency among the
variables is specified by means of an invariant I : (V → Value)→ Boolean, given
as an expression in the query language. For instance, the invariant could specify
that two variables have the same value, that one is greater than the other, etc.
However, we immediately reduce the Value domain to Boolean, leaving general
(and undecidable) expression evaluation implicit, and representing the expres-
sions at the logical level simply as Boolean variables. As a consequence of this,
each variable in the formal model corresponds to an entire expression (without
side-effects) in the invariants of our case study. Moreover, the case study deals
with simple objects whose fields may hold references to other objects or values
of primitive types, and each invariant is associated with specific object types,
such that it is applicable to a given update iff it affects objects of those types.
Still, it is useful to study our simplified formal model because it preserves and
thus highlights a difficult (co-NP hard) core problem.

Our algorithm analyzes and simplifies the invariant, thus detecting opportu-
nities for reducing the cost of checking the invariant. We validate the algorithm
by a proof of correctness. Finally, we show that the underlying problem is co-NP
hard. This means that a direct solution is intractable, which justifies that our
algorithm is sound but not complete, i.e., the simplified invariant will correctly
determine whether or not a violation of the original invariant exists, but the
reduced set of variables may not be minimal. In summary, the contributions of
this work are as follows:

– Specifying an invariant model and an algorithm that safely simplifies such
an invariant, thereby reducing the amount of data that needs to be checked
to detect invariant violations caused by an update

– Providing a mechanically verified correctness proof in Coq, stating that our
algorithm is sound

– Proving that the underlying problem is co-NP hard, thus establishing that
it is intractable to obtain a perfect (complete) solution

– Discussing a number of possible extensions and generalizations, thus clar-
ifying the design space in which tractable approximations to the perfect
solution must be explored

– Presenting a case study of the algorithm, where it decreases the number of
lookups by a factor of thirty compared to a unoptimized algorithm, and it
is approximately equal (within 3.5%) to an algorithm where the treatment
of each invariant is manually optimized.

The rest of the paper is structured as follows: In Sect. 2 we informally present the
ideas in the algorithm. Section 3 presents our formal model, Sect. 4 presents the
correctness theorem, and the complexity of the underlying problem is discussed
in Sect. 5. Section 6 reports on a case study where the algorithm was used
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in practice. Section 7 discusses the algorithm and results and some interesting
extensions. Finally, Sect. 8 discusses related work and Sect. 9 concludes.

2 Example

Before we go into the formal details, this section gives the intuition behind our
algorithm, based on an example execution of the algorithm.

Our algorithm takes as input an invariant of a data store and an update to
that data store. With the reduction of the Value domain to Boolean that we
mentioned in the introduction, the invariant is simply a Boolean expression.

Eq. (1) shows the invariant (inspired by our case study) that we will use in
our running example, and Eq. (2) shows the update.

(cn ∨ (cn ∧ ln)) ∧ ((top ∨ area)⇒ (cref ∧ ln)) ∧ (top ∨ cref ) (1)

[area �→ false, ln �→ false] (2)

We use standard logical notation: ⇒, ∧, ∨, and ¬ for implication, conjunction,
disjunction, and negation, respectively. The set of logical operators could easily
be extended as long as each operator can be reduced by simple (polynomial)
rewriting schemes; our formal model uses only conjunction, disjunction, and
negation. We represent an update as a map from variables to boolean values
(true or false). In the example, both area and ln are updated to false. Note
that ‘updated’ does not necessarily mean changed—they might have been false

before the update as well. Given the invariant and update, our algorithm will
simplify the invariant to the single literal shown in Eq. (8).

The invariant is used to verify the relationship between a mountain and its
enclosing country. The interpretation of the variables is as follows: cn signifies
that a given mountain has a common name; top signifies that the top of the
mountain is within the border of a given country; area denotes that at least
a certain percentage of its area is within the border of a given country; cref
signifies that the mountain has a reference to its enclosing country; and finally
ln signifies that the mountain has a local name specific to the country. The
update then signifies that for a given mountain and country, less than a certain
percentage of the mountain’s area is within the country, and that the mountain
does not have a local name. In reality, an arbitrary amount of computation may
be needed to determine these values, but we abstract that away and look only
at the result of the computations in a logical setting. The case study in Sect. 6
elaborates more on this.

For completeness we also give an example of a data store. It is not needed by
our algorithm which only depends on the update and the invariant, but it is of
course crucial for specifying what correctness means. We represent a data store
similarly to an update, namely as a map from variable names to boolean values.
In Eq. (3) we show a possible data store that satisfies the invariant.

[cn �→ true, top �→ false, area �→ true, (3)

cref �→ true, ln �→ true]
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The update should only be committed to the data store if the data store will
satisfy the invariant after the commit. Hence, a naive way of checking the in-
variant would be to compute its value using the update and the data store as
needed, and only commit the update if the invariant is satisfied. Our focus is to
reduce the costs of such a naive approach based on the assumption that variable
lookup is expensive. We do this by simplifying the invariant while maintaining
soundness: Invariant violation will be faithfully detected using the simplified in-
variant. We do this by incorporating the information from the update, and we
utilize that the invariant was satisfied for the data store before the update.

Note that we cannot avoid the costly variable lookups by caching the old
values of all variables in the invariant, which could otherwise entirely eliminate
the need for those costly variable lookups for subsequent updates, and thus
eliminate the need for our solution for all updates except the first one.

Our concrete case study illustrates one way in which this type of caching is
made impossible. The caching of variables of the formal model corresponds to
the caching of results of expression evaluation involving object fields in the case
study, and the invariants are chosen according to the types of the objects. For
example, we may have an invariant stating that if a house H has a zipcode
N and is located in a city C, then N must be the zipcode of a part of C. The
variables involved would be the fields of particular objects of type house and city
etc. containing some updated values, and we would essentially have to cache all
such objects in order to be able to cache the old values of all variables for all
usages of this particular invariant. Since the number of objects of any given type
could easily be very large, this already rules out caching of the old values of
variables. With many invariants and many types of objects, it just becomes even
more impossible.

We could have chosen to work with arrays in the formal model rather than
single variables, in order to replicate the core of this phenomenon. An invariant
would then specify a required relation among the variables in the k’th entry
of the arrays (so we would consider, e.g., top[k] ∨ cref [k] rather than simply
top ∨ cref ). In this setting, the choice of k corresponds to the selection of a set
of objects to update and check in the case study. The fact that k changes in
unpredictable ways for each update shows that we cannot cache the old values
(here: top[k] and cref [k]), because we would need to do that for every k in order
to ensure that the relevant old values for the next update are in the cache.

However, we do not use arrays like this in our formal model, because they
are just one possible reason why caching of the old values of variables may be
impossible; typed objects and type specific invariants is another such reason,
and there may be many others, each with its own particular structure. We have
instead chosen to make it an assumption that this type of caching is impossi-
ble. Consequently, our model is faithful to the intended semantics, but avoids
a significant amount of complexity, and remains directly applicable in all cases
where this type of caching is ruled out for whatever reason.

Before the algorithm starts to simplify the invariant, it is converted into
conjunctive normal form (CNF), i.e., using only conjunction, disjunction, and
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negation, with negations only at the leaves and disjunctions nested inside con-
junctions. From the invariant in Eq. (1) the corresponding CNF is shown in
Eq. (4). Many variables may be duplicated during this transformation, but in
return the shared variables enable many simplification steps. Conversion to CNF
is in the worst case an exponential blowup in the size of the expression, but in
practice it is usually not a problem, as an invariant is typically written as a big
conjunction of smaller constraints. Another strong hint that this transformation
is acceptable is the fact that SAT solvers [13] often start by transforming their
input to CNF.

(cn) ∧ (cn ∨ ln)

∧
(top ∨ cref ) (4)

∧
(¬top ∨ cref ) ∧ (¬top ∨ ln) ∧ (¬area ∨ cref ) ∧ (¬area ∨ ln)

Our algorithm simplifies the invariant in four phases. For the first phase, the
algorithm uses the property that the data store satisfies the invariant before
the update. The algorithm does so by searching for clauses with a single non-
updated literal. Note that we adopt the terminology from SAT solvers and call
clauses with one literal for unit clauses [26]. In Eq. (4) (cn) is such a non-updated
unit clause. Since the data store satisfies the invariant, we know that the unit
clause (cn) must have the value true, otherwise the invariant would not be
satisfied. Using this information about (cn) we know that the literal cn is true
and that ¬cn is false. Hence, clauses containing cn are true and does not need
to be simplified further, and ¬cn can be removed from clauses containing it.
We can perform this transformation even though some of the affected clauses
contain updated variables, because they cannot influence the value of the non-
updated variables. The first phase is repeated until a fixed point is reached.
For our example, the first phase finds one suitable literal cn, and the algorithm
simplifies Eq. (4) to Eq. (5).

(top ∨ cref )

∧ (5)

(¬top ∨ cref ) ∧ (¬top ∨ ln) ∧ (¬area ∨ cref ) ∧ (¬area ∨ ln)

In the second phase, the algorithm inserts values from the update into the for-
mula. Since area is updated to false, we know that ¬area is true and hence the
clauses containing it are true and may be eliminated. Similarly, as ln is updated
to false we remove it from its clause. Equation (6) shows the simplified version
of the invariant, after removing the satisfied clauses.

(top ∨ cref )

∧ (6)

(¬top ∨ cref ) ∧ (¬top)
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Note that (¬top) cannot be eliminated since it is a unit clause that was produced
by simplifying a clause containing updated variables. This means that we do not
know which of the literals in the original (non-unit) clause that satisfied the
clause, so we cannot infer the value of any variable from such a unit clause, and
in particular we cannot infer the value of top. Consequently, this clause must be
preserved so that we remember to check that top is false in the updated data
store, because the invariant would otherwise be violated.

In the third phase we eliminate clauses that contain all of the literals in
another clause. In Eq. (6), (¬top ∨ cref ) and (¬top) are such a pair, where we
therefore eliminate (¬top ∨ cref ). The reason why this transformation is sound
is that if (¬top) is true then so is (¬top ∨ cref ). If on the other hand (¬top) is
false, the entire expression is false. Therefore the truth value of (¬top ∨ cref )
does not matter. The resulting invariant is shown in Eq. (7).

(top ∨ cref )

∧ (7)

(¬top)
Note that in the third phase, the check is based on literals and not variables, so
(¬top) is contained by (¬top ∨ cref ), but not by (top ∨ cref ), and hence only the
former can be eliminated.

In the fourth phase the algorithm again uses the property that the invariant
was satisfied before committing the update. We therefore know that all clauses
were true before the update, and clauses that never contained any updated
literals will still be true after the update. Hence the algorithm is free to elimi-
nate clauses that initially did not contain updated literals. In the example, the
algorithm eliminates the clause (top ∨ cref ) from Eq. (6), which simplifies the
invariant to the single literal in Eq. (8).

(¬top) (8)

At this point our algorithm cannot simplify the invariant anymore. To detect a
potential violation we therefore look up top in the data store. In this case it is
false, and hence the invariant is still satisfied.

3 The Invariant Simplification Algorithm

This section presents the query language for expressing invariants and the algo-
rithm, along with correctness theorems.

Figure 1(a) shows the syntax of the query language used to express invariants,
which is simply propositional logic. We assume that the invariant has already
been converted to CNF and hence the grammar only admits CNF expressions.
Borrowing the terminology from SAT solvers [13] we denote a variable x as a
positive literal, a negated variable ¬x as a negative literal, and a topmost dis-
junction as a clause. The semantics is presented in Fig. 1(b) where U represents
the update and D represents the data store, both mapping variables to true
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(a) Query language syntax:

b ::= b ∧ b | b
b ::= b ∨ b | l
l ::= x | ¬x

(c) Set representation of invariants:

I ::= [ (C,d) ]

C ::= L | �
L ::= 2l

(b) Query language semantics:

lookup(U,D, x) =

{
U [x] if x ∈ dom(U)
D[x] if x ∈ dom(D)\dom(U)

E-PosLit

lookup(U,D, x) = true

U,D � x
E-NegLit

lookup(U,D, x) = false

U,D � ¬x

E-Disj

∃i ∈ {1, 2} : U,D � bi

U,D � b1 ∨ b2
E-Conj

U,D � b1 U,D � b2

U,D � b1 ∧ b2

(d) Set representation transformation:

S�b�(U) = [S ′�b�(U)]

S�b1 ∧ b2�(U) = S�b1�(U)++S�b2�(U)

S ′�x�(U) = ( {x}, x ∈ dom(U) )

S ′�¬x�(U) = ( {¬x}, x ∈ dom(U) )

S ′�b1 ∨ b2�(U) = (C1 ∪ C2, d1 ∨ d2)
where
(Ci, di) = S ′�bi�(U)

(e) Auxiliary functions:

pLits(C) = { x | x ∈ C }
nLits(C) = { x | ¬x ∈ C }
V ars(C) = pLits(C) ∪ nLits(C)

pLits(I) =
⋃

(C, )∈I pLits(C)

nLits(I) =
⋃

(C, )∈I nLits(C)

V ars(I) = pLits(I) ∪ nLits(I)

(f) Set representation semantics:

S-Pos

x ∈ pLits(C) lookup(U,D, x) = true

U,D � C

S-Neg

x ∈ nLits(C) lookup(U,D, x) = false

U,D � C

S-Trivial U,D � � S-Nil U,D � [ ]
S-Cons

U,D � C U,D � I

U,D � (C, ) :: I

Fig. 1. Definitions regarding invariants
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or false. The judgment U,D � b signifies that the expression b is satisfied
under the update U and data store D. The rules are straightforward, noting that
lookup consults both U and D, giving priority to U .

The algorithm works on a set representation, defined in Fig. 1(c), rather than
directly on a query language expression. A clause C is a set of literals L or the
special value ,, which signifies that the clause is trivially satisfied. An invariant
I is a list of clause and dirty bit pairs. The dirty bit is denoted d. In spite of the
fact that , is trivially satisfied and the empty disjunction is not, it turns out to
be convenient to treat , as an empty set with the usual set operators such as
∈,∪,∩. We use a terminology similar to the query language and refer to literals,
clauses (sets of literals), and invariants (lists of clauses).

The transformation from the query language to the set representation is given
in Fig. 1(d) as the function S. The transformation recursively traverses the query
and collects all literals from each clause into a set, and all such sets into a list.
The intuition is that there is a conjunction between the sets and there is a
disjunction between the literals in each set. Notationally, ‘::’ constructs a list
from an element and a list, ‘++’ appends two lists, and [ ] creates a list by
enumeration of its elements. The clause representation also carries information
about whether the clause initially contained an updated variable represented
by the dirty bit. It is true iff the clause contained an updated variable. The
dirty bit is crucial because some transformations require this bit to be false for
soundness, and it cannot be inferred from the clauses themselves.

Figure 1(e) shows some auxiliary syntactic functions. pLits(C) and pLits(I)
return the positive variables of a clause or invariant, and nLits( ) is similar but
returns the negative variables. V ars(C) and V ars(I) return all the variables in
a clause and an invariant, respectively. Finally, Fig. 1(f) defines the semantics of
the set representation. The underscore ‘ ’ denotes a value that does not need a
name because it is not used elsewhere.

The following lemma shows that S preserves the satisfiability of an invariant,
i.e., that the set representation is faithful (the proof is in the Coq code):

Lemma 1 (Correctness of S). U,D � b ⇐⇒ U,D � S�b�(U)

The dirty bit must initially be set correctly—if it is false then the set of literals
do not contain an updated literal. The converse is not required for correctness,
but quality of the output is reduced if it is violated. The wellformedness property
is defined in Def. 1:

Definition 1 (Wellformed invariant). Given I, U , and D, the invariant I
is well-formed with respect to U and D, written as wf(I, U,D), if and only if

∀(C, false) ∈ I . C �= , ⇒ V ars(C) ∩ dom(U) = ∅ ∧ V ars(I) ⊆ dom(D).

We need two auxiliary functions in the algorithm. The function R is shown
in Fig. 2(a). Given a variable and a boolean value, R returns the simplified
invariant where the variable has been replaced by the given value. If the boolean
value is true then all clauses containing positive occurrences of the variable are
collapsed to ,, whereas all negative occurrences are removed without changing
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(a) Reducing a set given the value of one variable; finding unit clauses:

R�C�(x, b) =

⎧⎪⎪⎨
⎪⎪⎩
C if x /∈ C and ¬x /∈ C
� if x ∈ C and b = true or ¬x ∈ C and b = false

C \ {x } if x ∈ C and b = false and ¬x /∈ C
C \ {¬x } if ¬x ∈ C and b = true and x /∈ C

R�I�(x,b) =

{
[ ] if I = [ ]
(R�C�(x, b), d) :: R�I ′�(x, b) if I = (C, d) :: I ′

Fu�I� =

⎧⎨
⎩

SOME C if I = I ′++(C, false) :: I ′′,
where |C| = 1 and |C′| �= 1 for all (C′, false) ∈ I ′

NONE otherwise

(b) Phase one, utilizing unit clauses:

P1�I� =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

I if Fu�I� = NONE

P1�I
′� where SOME C = Fu�I� and C = {x} for some x and

I ′ = R�I�(x,true)
P1�I

′� where SOME C = Fu�I� andC = {¬x} for some x and
I ′ = R�I�(x,false)

(c) Phase two, inserting values from the update:

P2�I�(U) =

{
I if U = [ ]
P2�I

′�(U ′) where U = (x,b) :: U ′ and I ′ = R�I�(x, b)

(d) Phase three, eliminating every clause for which there is a subset clause:

P3�I� =

⎧⎪⎪⎨
⎪⎪⎩

P3�I
′� if I = I1++(L, d) :: I2, I ′ = I ′1++(L, d) :: I ′2

I ′1 = P ′
3�L, I1�, I ′2 = P ′

3�L, I2�,
∃(L′, ) ∈ I1++I2 . L ⊆ L′, where I1 is as short as possible

I if the above constraints cannot be satisfied

P ′
3�L, I� =

⎧⎪⎪⎨
⎪⎪⎩

[ ] if I = [ ]
(�, d) :: P ′

3�L, I ′� if I = (L′, d) :: I ′ and L ⊆ L′

(L′, d) :: P ′
3�L, I ′� if I = (L′, d) :: I ′ and L �⊆ L′

(�, d) :: P ′
3�L, I ′� if I = (�, d) :: I ′

(e) Phase four, eliminating all non-dirty clauses:

P4�I� =

⎧⎨
⎩

[ ] if I = [ ]
(�, false) :: P4�I

′� if I = (C, false) :: I ′

(C, true) :: P4�I
′� if I = (C, true) :: I ′

Fig. 2. The invariant reduction algorithm
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the truth value of the containing clause. The converse is done if the boolean
value is false. The function Fu finds unit clauses and is shown in Fig. 2(a), too.

The first phase of the algorithm, shown as the function P1 in Fig. 2(b), it-
eratively finds non-updated unit clauses and utilizes that the unit clause was
satisfied before the update and hence is also satisfied after, as it did not con-
tain an updated literal. Therefore any clauses containing the literal in the unit
clause, which we will call the unit literal, are also true. Furthermore the negated
version of the unit literal can be removed from any clauses containing it, as the
negated literal is always false. This process is done iteratively until there are
no more unit clauses. In the definition of P1 we use option types to distinguish
between the two states where there was a unit clause (SOME C) and there was
not (NONE).

In the second phase of the algorithm, P2 in Fig. 2(c), the invariant is simplified
with respect to the values in the update.

During phase three, P3 in Fig. 2(d), we utilize the subset relation between
clauses. Given an invariant, I, and a clause, L, this phase transforms all the
clauses that are supersets of L to ,. This transformation is useful because re-
moving the bigger clause could reduce the number of variables to look up in the
data store. The transformation is provably sound, but it is worth considering
the intuition as well. If L is satisfied, so are all clauses containing L. Violation
of I due to any of these clauses will then definitely make L false and hence
be revealed as long as L is present. We do not know for sure that any of the
eliminated clauses are false when L is false (each of them could be true due
to some additional literal), but that is unimportant because the invariant is in
any case violated. We require that I1 be chosen such that no shorter value for I1
satisfies the constraints; this is simply needed in order to make sure that P3 is a
function rather than a relation. The implementation of this phase uses a number
of techniques to obtain good performance, e.g., working on an invariant whose
clauses are sorted by size, but for the presentation here we have given priority
to readability because these techniques are generic and well-known.

In contrast to phase one, the third phase does not depend on the dirty bit.
We still need the variables in the preserved clause to reverify the invariant. In
P1 we also utilize information about the negated version of the unit literal to
remove literals from other clauses, so P1 is not just a special case of P3.

Phase four, P4 in Fig. 2(e), eliminates certain clauses because they are known
to be satisfied (whether or not earlier phases have modified them). The intuition
is that every non-dirty clause will be true after the update because it was true
before the update and it contains no updated variables.

If a clause is simplified to the empty clause, it is not satisfiable. We may
therefore check for this situation, as a small optimization, to stop and report the
invariant violation immediately.

We can see as follows that the phases of the algorithm are ordered optimally:

– The first phase is iterated until no progress is made. This is useful because
each step may produce new non-dirty unit clauses by removing literals from
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non-dirty sets. The third phase is iterated to use every subset relation, but
the transformation itself does not create subset relations.

– No other phase produces opportunities for running the same phase or any
other phase again: P2 depends on the values of updated variables, and no
extra updated variables are ever introduced; P3 depends on subset relations,
but phase one either reduces clauses to , or removes the same literals from
all clauses, which never changes any subset relations; similarly for phase
two. Finally, P4 removes non-dirty clauses, and no operation ever adds new
non-dirty clauses.

– There are no constraints on the ordering of phase one and two. If they
would both eliminate a clause, any ordering would still eliminate it. Similarly,
if they would both simplify a clause, any ordering would still simplify it.
However, both phases should be placed before phase three because both may
open opportunities for that phase. Finally, as phase four removes potential
candidates for phase three, it should be performed at the end.

The time complexity of the algorithm is O(n3) due to P3 (P1 and P2 are O(n2)
and P4 is O(n)). Here n = max(#I,#U), where #I is the size of the invariant
and #U is the size of the update. However, we cannot prove that the algorithm is
guaranteed to minimize the set of variables. It is in fact an intractable problem
to provide that guarantee, as shown in Sect. 5. At first we will establish the
correctness of the algorithm, i.e., the guarantee that the simplified invariant
evaluates to the same value as the original one.

4 Correctness

The correctness of all four phases, Thm. 1, has been mechanically verified in the
proof assistant Coq [3] in about 8000 lines of Coq source code. For more details,
please consult the project’s home page http://cs.au.dk/~gedefar/invariant.
We have referred to correctness as soundness as well, because it shows that the
simplified invariant is satisfied in exactly the same cases as the original invariant,
i.e., that the simplifications are sound. To simplify the notation slightly, we
globally assume that the update U and data store D are wellformed, i.e., that
dom(U) ⊆ dom(D).

Theorem 1 (Phase Correctness). Given I, U , D and assuming wf(I, U,D)
and [ ], D � I, the following properties hold:

U,D � I ⇐⇒ U,D � Pi� I � for i ∈ {1, 3, 4}
U,D � I ⇐⇒ U,D � P2� I �(U)

Corollary 1 (Correctness). Given I, U , D and assuming wf(I, U,D) and
[ ], D � I, the following holds:

U,D � I ⇐⇒ U,D � P4 ◦ P3� P2� P1� I � �(U) �

http://cs.au.dk/~gedefar/invariant
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The algorithm is in fact an optimization in that it reduces the number of variables
to look up in the data store by reducing the number of literals (except in the
worst case, where the invariant could not be simplified at all). Lemma 2 proves
this optimization result.

Lemma 2 (Combined Reduction). Given I, U , D, the following then holds

|V ars(P4 ◦ P3� P2� P1� I � �(U) �)| ≤ |V ars(I)|

Note that our case study furthermore supports the claim that the simplification
provided by our algorithm is very good, in the sense that it is just as good as
an optimization which is performed manually for each invariant by experienced
engineers.

5 Complexity

In this section we characterize the complexity of the problem, showing that it
is co-NP hard, but in O(4#V ×#I), where #V is the number of variables and
#I is the size of the invariant. The ideal characterization of the problem that is
being solved is as follows:

Definition 2 (Optimal invariant check). Given a propositional expression I
and a subset V ′ of the variables V in I. Find a minimal set of variables V ′′ ⊆ V
such that there exists a function i that maps each assignment of values to the
variables in V ′∪V ′′ to a boolean value. The function i must be a perfect predictor
for I, i.e., for an arbitrary assignment of values to variables in V it must return
true iff I is satisfied.

This means that it is correct to evaluate i on the values of V ′∪V ′′ as a substitute
for evaluating I on the values of V . Moreover, this is an optimal solution under
the assumption of expensive variable lookup, because V ′ ∪ V ′′ is minimal and
caching of old variable values is impossible.

We use the phrase before the update to describe an assignment that only differs
on V ′, and note that I may or may not be satisfied before the update in this
definition. It may seem likely that the problem would be easier if we require
that there must exist a satisfying assignment before the update, i.e., that we
only consider assignments for V where we can satisfy I by changing the values
of some variables from V ′ only. As we shall see, though, both variants of the
problem are co-NP hard.

Note that it would be uninteresting to consider the complexity of the problem
when solutions are accepted that will definitely report violations, but might have
false positives. In that case we do nothing (so the running time is constant), we
choose V ′′ = ∅, and we always answer that the invariant might be violated.

The invariant check problem has an obvious solution, given enough resources.
We use this to characterize the complexity of the problem by means of an upper
bound.
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Lemma 3 (Upper bound). The problem of performing an optimal invariant
check is in O(4#V ×#I) where #V is the number of variables V , and #I is the
size of the invariant I.

Proof. The terminology is as in Def. 2. We check each subset of V that includes
V ′, ordered by size. For a given subset V ′ ∪ V ′′, we consider all possible assign-
ments of values to variables in V , and extend a truth table for V ′ ∪ V ′′ with
one extra column representing the function i. For each row, i.e., each choice of
values in V ′ ∪ V ′′, put true if I is true in all cases, i.e., for all choices of values
in V , put false if I is false in all cases, and leave it blank if I is sometimes
true, sometimes false. If the entire truth table has been filled in then V ′ ∪ V ′′

is sufficient to precisely predict the value of I, but if there are any blank entries
then this subset is insufficient and we continue with the next subset of V . This
will produce a minimal subset V ′ ∪ V ′′ of V that has a perfect predictor i of I,
and it is easy to see that this algorithm evaluates I at most 2#V−#V ′ × 2#V

times, where #V is the number of variables and #V ′ is the number of updated
variables, such that the complexity is in O(4#V ×#I). �

This shows that a straightforward, naive algorithm exists, but the exponential
complexity makes it impractical when V is anything but very small. However, it
is not just this particular algorithm that has intractable running times.

Lemma 4 (Lower bound). The optimal invariant check problem is co-NP
hard; so is the variant of the problem where it is assumed that the invariant is
satisfied before the update.

Proof. Similarly to Cook [9], we use the problem of tautology to show the com-
plexity of the invariant check problem. Let T be an arbitrary problem in TAU-
TOLOGY, i.e., a propositional expression for which we wish to decide whether
it is true that all assignments will make T true. Choose a fresh variable p′, and
consider T ′ = p′ ∨ T . Let V ′ = {p′} and find the minimal V ′′ such that V ′ ∪ V ′′

has a perfect predictor t′ for T ′. If T is a tautology then V ′′ = ∅ and the truth
table for t′ will be true in its row for p′ �→ false. If T is not a tautology then
the row for p′ �→ false will have the value false, or V ′′ will be non-empty. Note
that we can trivially satisfy T ′ by setting p′ to true, which means that this tech-
nique inherently satisfies the potential extra assumption that there must exist
a satisfying assignment before the update. Hence, the optimal invariant check
and even the seemingly weaker variant with the extra assumption will work as
an oracle for deciding every problem in TAUTOLOGY. Since TAUTOLOGY is
co-NP complete, the optimal invariant check problem and the variant are both
co-NP hard. �

We conclude that the optimal invariant check problem—both with and without
the extra assumption of satisfaction before the update—is hard. For comparison,
another well-known and difficult problem is the integer factorization problem
(the foundation of encryption), but as it lies in both NP and co-NP it is believed
to not be as hard as the optimal invariant check problem (unless NP=co-NP).
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The fact that the optimal invariant check problem as such is hard shows that we
cannot expect to improve our algorithm to deliver the ideal, minimal solution
(i.e., we cannot achieve completeness), and preserve a practical complexity. Yet,
for very small problems it is of course always possible to use the algorithm
described in the proof of Lem. 3.

6 Case Study

In this section we describe our approach to using the presented algorithm in
a case study that we performed on the Google Maps backend. We first briefly
describe invariants in Google Maps, then we describe how we represented the
invariants in the approach, and finally we report on the reduction in object
lookups achieved by using our algorithm.

The basic unit of data in Google Maps is traditionally called a feature. It
represents an individual mutable entity with identity and properties, such as
a road, a mountain, or a country. It is basically a simple object with fields,
getters, and setters, but without inheritance and without methods containing
general computational code. Our model does not need to express the setters
as the invariants do not mutate the objects. These objects can be part of a
relationship, i.e., they can hold references to each other in fields. Fields may also
store primitive values such as integers. For example, if a mountain is located in a
country, the object for the mountain may have a field which holds a reference to
the object for the country, and another field which holds a primitive integer value
indicating its height. Note that the updates are capable of building arbitrary
object graphs as long as they respect the types of fields, which means that the
complexity of the global object graph corresponds to the complexity of a heap
in a general purpose object-oriented language.

There are invariants in place to make sure that objects are well-formed (e.g.,
that street addresses are formatted correctly) and that relationships between ob-
jects do not exhibit certain kinds of incorrectness (e.g., a mountain in a country
must be located physically within the geographical border of that country).

In Google Maps the invariants are represented as a C++ program, which is ex-
ecuted whenever the database is updated to reverify the invariants. An update
to the database comes in the form of an updated object, including a specifica-
tion of what information changed. When such an updated object is received by
the database, the C++ program verifies the updated object itself, and the rela-
tionships that the updated object are part of. Several updated objects can also
be received together in a transactional style. Checking that the single object is
well-formed is cheap, but checking a relationship is expensive, because it requires
the program to fetch all the constituents of the relationship. Our algorithm was
therefore introduced and used to minimize the number of object lookups when
checking relationships.

The C++ program is separated into a set of small functions that each repre-
sent an invariant taking an object and returning a boolean, signaling whether
the object was valid or not. Furthermore each function trivially returns true if
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the invariant checked by the function does not apply to the given type of object.
In the mountain example the invariant only applies to objects of type mountain,
and so the function implementing this invariant would trivially return true for
non-mountain objects. These functions are combined, such that an object is valid
iff all functions return true (i.e. it is a big conjunction). Each function requests
objects that are in the relationship with the verified object, and the function is
basically a list of comparisons between fields in the updated object and fields
in the requested objects. The comparisons can involve arbitrary computation
expressible in C++. For the mountain example, the function which verifies that
a mountain is inside a country would request the country object for that moun-
tain from the database during the execution, and in a single comparison it would
verify that the location of the mountain is within the physical area of the coun-
try. The latter would typically be a library call. An update may affect several
relationships and hence several of these functions.

Each of these functions represent an invariant in our approach and is the tar-
get for our optimization. For our approach, the important pieces of information
in the functions are the comparisons and their location, as they represent the
formal variables and collectively the formal boolean expression in our algorithm.
To get this information, the author of the functions annotates the comparisons
in it such that at runtime the framework can reconstruct the structure of the un-
derlying boolean expression and the exact location of the comparisons in a test
environment. The annotations are method calls to the framework which must be
inserted into the C++ code. For instance, when comparing two values a and b

for equality one must use ops.areEqual(a, b) rather than ”==”, where ops is
an argument to the function implementing the invariant check. The invocation
of areEqual will record that a and b are compared, and it will return the result
of the equality comparison. Note that in the process of comparing two fields,
arbitrary computation can be involved—as long as the annotations are in place
to specify which fields are compared to which other fields. The comparisons that
only use data from the remote database are considered non-dirty, whereas all
other comparisons are considered dirty. Removing a clause in this implementa-
tion simply amounts to ignoring the comparison, because each comparison would
output a debug message if the comparison failed.

In the process of reconstructing the underlying boolean expression, we use
annotations and a dynamic test environment (using a test version of the ops

argument mentioned above). This is because we need to track the individual
objects and the comparisons in which they participate, in order to track the
dirtyness of the comparisons. We should mention that the updated object corre-
sponds to the update in our formal model, and the remote database corresponds
to the data store in our formal model.

When validating an updated object our approach runs a three-stage process.
In the first stage it executes each of the C++ functions in a test environment on the
updated object to construct the underlying boolean expression of the invariant.
It then optimizes the expression and determines which requested objects to fetch
from the database. In the second stage these requested objects are retrieved from
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the database. Finally in the third stage the function is executed again, this time
to verify the updated object, given the retrieved objects from stage two.

6.1 Experimental Setup

We evaluated the performance of our implementation by comparing the num-
ber of objects requested with implementations of two other algorithms: a non-
optimized, and a manually optimized algorithm. The non-optimized algorithm
performs a naive invariant check, and hence provides a base line for the com-
parison; it simply fetches all required objects and verifies the invariant of the
relationships. The manually optimized algorithm provides a high quality solu-
tion, which was in use before our approach was introduced. It also uses a three
stage process, but the first stage, compared to ours, is implemented by manu-
ally engineering the logic to determine whether fetching an object is necessary,
given that the changed fields in the updated object are known. This logic is
tailored to each invariant, and the logic may of course utilize arbitrary domain-
specific knowledge and arbitrary algorithms that the engineer considers helpful.
For instance, in the previously mentioned situation where it is verified that the
mountain is inside the country boundary: if the country is enlarged by adding
new areas to it there is no need to verify the relationship, since it is guaranteed
to still be valid. The second stage and third stage of the manually optimized ap-
proach is similar to ours, by fetching and verifying the updated object using the
requested objects from the first stage. Note though that the implementation for
the third stage, in contrast with our approach, is different from the first stage.

These three approaches serve as the C++ invariant program which is invoked
when an update is received by the Google Maps database. As we were interested
in the number of requested objects by these three approaches, we compared the
number of requested objects in the first stage of our approach with that number
in the non-optimized approach and in the first stage of the manually optimized
approach.

We used a strict subset of the objects in the Google Maps database as the
underlying data. Technically we selected 6 consecutive versions of the database
and for each consecutive pair of versions we randomly selected 110 mil. objects.
The object in the older version served as the pre-update object, and the newer
version as the post-update object. From that we calculated the updated object
which holds the post-update values along with indications of what fields were
updated. The updated objects were used as input to each of the three approaches.
In total we had 5 sets, of about 110 mil. updated objects each.

For each updated object in each of the five sets, we input the object into the
three approaches, and counted the number of objects requested to verify the
updated object. Finally we recorded the average size of the invariants.

6.2 Results

Table 1 shows the results of our experiment. Each row contains the result for a
particular data set, as indicated by the first column, “Set”, where the last row
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is the average of the preceeding rows. The second column, “Number of objects”,
contains the number of updated objects in the data set, as calculated from two
consecutive versions of Google Maps. The third column, “Avg. inv. vars” de-
notes the average size of the invariants, measured as the number of variables in
each invariant. Note that there were many different invariants involved, because
many different types of objects had been updated. The next three columns, “Un-
optimized”, “Manually optimized”, and “Our approach”, contain the number of

requested objects for the three algorithms. The seventh column,
Unopt.

Our
, shows

the ratio of how many more lookups the un-optimized algorithm performs com-

pared to our approach; and finally the last column,
Man. opt.

Our
, shows the ratio of

how many lookups the manually optimized approach performs compared to our
approach.

Table 1. Results from executing the three algorithms

Objects needed to check invariant Lookup ratio

Set
Number of
objects

Avg.
inv.
vars

Un-
optimized

Manually
optimized

Our
approach

Unopt.

Our

Man. opt.

Our

1 110,719,642 309 245,049,813 3,604,078 3,934,770 62.3 0.916
2 110,154,090 306 246,689,891 4,651,570 4,910,443 50.2 0.947
3 110,982,143 237 264,520,677 12,742,286 12,943,598 20.4 0.984
4 109,995,628 308 260,988,659 21,362,611 21,444,239 12.2 0.996
5 110,987,702 276 264,567,342 12,724,787 12,922,880 20.5 0.984

Avg 110,567,841 287 256,363,276 11,017,066 11,231,186 33.1 0.966

For an easier comparison of the number of requested objects we have plotted
the numbers from the three middle columns on a logarithmic scale in Fig. 3. The
graph is categorized by the three algorithms.

At first one sees that the number of requested objects for the unoptimized
approach is fairly stable throughout the data sets, ranging from 245 mil. to 264
mil. with an average of 256 mil. That is a difference of about 8%, whereas for
both the manually optimized and our approach the numbers vary heavily, from
about 3 mil. to 21 mil.; a factor of 6 in difference, with an average of 11 mil.
Secondly we see that the ratio between the manually optimized and our approach
are very close to 1, ranging from 0.996 in set 4 to 0.916 in set 1. The big difference
in the number of requested objects for the manually optimized approach as well
as our approach indicates that the amount of information changing from one
data set to another data set varies, as the unoptimized approach requests about
the same number of objects pr. data set. We have no reason to believe that the
differences reflect a development over time, it just happened to be the case that
the oldest changes enabled better optimizations than number 2–4, and the most
recent changes were again somewhat more optimizable.

We note that our approach and the manually optimized approach indeed opti-
mize the invariant check significantly, decreasing the number of requested objects
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Fig. 3. The number of requested objects per approach. Note the logarithmic scale.

by an overall average factor of thirty compared to the unoptimized approach.
Secondly the ratio between the manually optimized approach and our approach
is very close to 1, namely on average 0.966. This is also clearly visualized in
Fig. 3, where the two last pillars in each category are almost the same height.
This small difference means that we get almost the same number of reductions
as the manually optimized version, which indicates that the domain specific
knowledge employed in the manual approach does not enable it to significantly
outperform our approach.

Moreover, compared with the manually optimized invariant checks, our ap-
proach has the advantage that the person who specifies the invariant does not
need to consider the logic for figuring out whether an object should be fetched
or not. In contrast, the manually optimized invariant is specified in two “ver-
sions” of the check, one version for figuring out what objects to request, and
one version to actually reverify the update based on the requested objects. The
time overhead of our preprocessing step compared to the preprocessing step in
the manual approach is about 55%, but the cost of preprocessing is negligible
compared to the validation itself. In our current implementation, we need a few
annotations to control this three-stage approach, but in future work we hope to
limit the burden such that the annotations can be avoided. Because of the good
performance, the technique is now aimed for production for validating incoming
updates to Google Maps.
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7 Discussion

In this section we will discuss a few additional issues, including different ap-
proaches to fetching the values of variables when a simplified invariant has been
obtained.

First, we should note that some trivial simplifications can be made along with
the transformation of the query into CNF. They are not required for correctness,
but they may reduce the size of the invariant, or they may reveal that it is
unsatisfiable or always satisfied. In particular, no disjunctions should contain
both x and ¬x for any x; in this case the corresponding clause is trivially true

and may be omitted, and if all clauses are thus omitted the invariant is always
satisfied. There should not be any clauses which are exact negations of each
other; in this case exactly one of them is false for every possible assignment,
and the invariant is unsatisfiable.

It may be possible to infer more about the values of individual variables than
what we do in the current algorithm. For instance, we could exploit the existence
of both x1 ∨ x2 and ¬x1 ∨ x2 in the original invariant to get the value of x2 in
the data store: No matter whether x1 is true or false, we can only satisfy both
of these clauses if x2 is true. In general, going down this path means creating
and proving theorems about the given variables, and it is not obvious whether
it will be more effective than running the general algorithm from the proof of
Lem. 3. We have chosen to avoid using such proof based elements, but it may be
useful to heuristically select and use a set of simple theorems, which would then
give rise to an additional phase in the algorithm, and possibly a new ordering.
Section 8 briefly dissusses this issue, too.

We have not yet discussed how to use the output from our algorithm, but this
is actually not trivial, either. When the algorithm has been executed, the literals
in the simplified invariant contain the set of variables whose values we need to
look up in the data store in order to reverify the invariant. It may be important
for the performance how we fetch the values of these variables.

One approach would be to simply fetch the variables one at a time. This would
be appropriate if the data store is in shared memory, or the main point is that
we have eliminated the need to fetch some variables that are not accessible at
all, and the rest of the variables are easy to get at. On the other hand it might
be more appropriate to fetch all the variables in one operation if the data store
is a database on a remote server, and the main cost of fetching variables is the
creation and destruction of a database connection rather than the actual data
transfer. In the following we discuss both scenarios.

If the situation requires that the variables are fetched one at a time, the
lookup order of the variables is important, because one may reduce the need for
further lookups by using the (now known) value of each newly fetched variable
to run the algorithm again. Given that such a variable has a known value which
is furthermore known to be the value from before the update, we may obtain
new non-dirty unit clauses and also simplify clauses in phase two, and the entire
algorithm may thus obtain significantly better results. We do not know whether
it is better to start the algorithm from scratch or continuing with the already
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simplified invariant, but the latter would require some extra bookkeeping in
order to recognize the additional non-dirty unit clauses correctly. Due to the
inherent complexity of the problem we do not believe that it is possible to create
an optimal plan for which variable to fetch first, so that decision will have to be
made based on various heuristics.

One option is to aim for reducing clauses to ,, by looking for literals that
occur in many clauses. The variables of these literals could be prioritized over
the other variables, such that if a literal is evaluated to true these clauses are
instantaneously reduced to ,. If instead the literals are evaluated to false then
at least all of the evaluated literals can be removed from their containing clauses.
On the other hand one could aim at making one clause simplify to the empty
clause (i.e. the never satisfied clause), by searching for small clauses that do not
require many lookups to be invalidated. As soon as an empty clause arises, the
invariant is guaranteed to be violated and the algorithm can terminate. Finally,
one could aim at establishing subset relations by looking up variables occurring
in small clauses where the removal of this variable would create a subset relation
to one or more other clauses, which would then be eliminated by a run of phase
three. It may, however, be a non-trivial task to discover this type of situation.

One useful factor to consider when choosing a lookup order is the probability
of individual values. If, say, a true value is much more common than a false

value (globally or for a specific variable) then we could give more weight to the
outcome of having true than the outcome of having false. Such information
could be used to prioritize positive variables (i.e., variables that occur in positive
literals) over negative variables, because we would be more likely to satisfy a
clause based on the former than the latter. Similarly, with a focus on empty
clauses we could prioritize negative variables because they would have a high
probability of being false and hence making small clauses even smaller.

In situations the cost of fetching n variables and the cost of fetching n +
1 variables are almost the same, we should consider fetching all the required
variables in one step. Even when fetching a subset of the required variables could
enable further simplifications, it might be more costly to fetch the variables in
two batches, no matter how helpful the first batch turns out to be.

In cases where the extra cost of fetching several variables is negligible com-
pared to fetching one variable, it might still be much more expensive to fetch
many variables, due to bandwidth, congestion, etc. A hybrid approach, where a
subset of the variables are fetched together is then desirable. Using this scheme,
one could pick all the variables in one clause at a time to look for clauses to
invalidate. Or fetch variables that span all clauses and thereby either satisfy or
reduce all clauses.

Obviously, there are many ways to do it, and the many trade-offs may be
good or bad depending on a large number of complex and dynamic properties
of the environment and data values. This means that there is ample room for
heuristics and manual optimizations, and this again fits well with the knowledge
that an ideal solution to the underlying problem is intractable.
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One issue we haven’t discussed here is the situation where the cost of fetching
a variable varies. For an in-depth treatment of this situation, though in the
context of SAT solvers, we refer to Klaus Truemper [24].

8 Related Work

Optimization of invariant checking is an important area within the database
community. Reducing the number of lookups means that it is less costly to
check all the invariants and reevaluate the derived views of any of tables in the
database. The problem of detecting the effects of an update has therefore been
studied intensively in the database community. Some researchers have focused
on investigating when an update is irrelevant with respect to, or independent of,
an invariant [5,15,16,17,22]. This is also called incremental integrity checking or
constraint simplification [18]. Others have focused on whether an update is irrel-
evant with respect to a derived view of a table in the database [4,12,23]. Gener-
ally speaking, verifying the irrelevance or independence of a query with the same
level of expressive power as Datalog is undecidable. In many subcases [4,12,21],
including cases where the query language is less expressive than Datalog, it is
however decidable. In the following we will discuss some of the many techniques
that are most closely related to our approach. For more details, and a good
overview, we refer to Bry et al. [7] or Gupta et al. [14].

There is an early paper by Hammer and Sarin [16] mentioning that they use
logical analysis of database assertions for certain types of updates to construct
assertion violation checks that can be evaluated efficiently. The paper is only an
abstract giving no details at all, and there are no follow-up papers by any of
these authors that offer more insight into the details of their technique.

Nicolas [22] proposes a method for optimizing database invariants given as
predicate logic expressions. The method basically performs phase 2 and phase 4
of our algorithm by inserting the values from the updated database row into
the invariant, assuming that the invariant was satisfied before the update. This
paper deals with predicate logic, but there are some cases, such as existentially
quantified variables, that are not treated. Finally, the formalization is not asso-
ciated with mechanically verified proofs.

The work by Blaustein [5] is similar to Nicolas [22], except that he also treats
existentially quantified variables. However it is shown by Hsu & Imielinski [17]
that some of the methods by Blaustein are not correct in all situations.

Blakeley et al. [4,23] proposes techniques for detecting when an update to a
table in a database is irrelevant for a view of the table. If the update is rel-
evant for the view, they compute whether the update only requires access to
information stored in the view. If so, the update is also committed to the view,
without the need for recomputing the view and thereby accessing the underlying
table. They consider the problem both at compile-time and at run-time. Besides
having an exponential complexity, their approach does not try to minimize the
information needed from the table, if the view must be recomputed and some in-
formation from the table is required. Our algorithm is polynomial and minimizes
the information needed from the table, if any.
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Charles Elkan [12] studies when an update is irrelevant wrt. to a query (e.g.
view or invariant), but in comparison with Blakeley et al. [4] does so in a formal
setting, also considering recursive queries. Compared to our approach, his work
is not mechanically verified and he does not treat the simplification part of an
query if it is not independent.

Gupta & Widom [15] study invariant checking in a distributed database set-
ting, where a global invariant is in place. Using information from an update and
a local database, they show how to reverify the invariant using data from the
local database only, if possible. If it is not possible, their technique reverts back
to a normal invariant check. In comparison to our approach, their approach has
access to information in a local database, and their approach reverts to a full
invariant check if the local data is insufficient. Our algorithm on the other hand
reduces the information fetched from the remote data store.

Another area that has certain similarities to our algorithm is partial eval-
uation, e.g. [19]. Partial evaluation is a technique for optimizing programs by
exploiting that certain values computed by a program are known at compile
time, also known as the static parts. The parts not known at compile time are
known as the dynamic parts. Constant folding, where the values of constant ex-
pressions are computed at compile time, is a simple instance of partial evaluation.
For our algorithm one could think of the updated variables as the static part,
whereas the variables whose values are in the data store constitute the dynamic
part. Typically, partial evaluation works with Turing-complete languages where
termination is a big issue that must be delicately dealt with. Our algorithm, on
the contrary, works with propositional logic where termination is easily achieved,
and where we may exploit additional properties associated with this particular
type of data, such as the subset property of phase three. We believe that this
exploitation of type-specific knowledge goes beyond what is used in the context
of partial evaluation.

Even though there are some similarities between our algorithm and SAT
solvers [13], the underlying problem is completely different. Our algorithm as-
sumes that the boolean formula had a satisfying assignment before the update,
and now the problem is to reduce the set of variables we have to retrieve. In
SAT solving, one does not know whether a formula has a satisfying assignment,
and the job of the SAT solver is find such an assignment if it exists, and other-
wise report that no such assignment exists. The complexity of the two problems
also signifies the difference, as minimizing is co-NP hard, whereas SAT solving
is NP-complete. On the other hand, the commonalities among these two topics
are so significant that they should be considered, and so we have adopted the
notation from SAT solving and used techniques known from SAT solving, such
as utilizing unit clauses [26].

Reoptimization [6] is the problem of finding an optimal solution for a problem
instance P ′ which is obtained from a problem instance P by a suitably defined
‘small’ modification, starting from a given, optimal solution to P . A similar issue
is the problem of finding the minimum number of gates to reevaluate in a boolean
circuit, given a set of updated input bits [10,25]. Both problems are similar to our
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algorithm in that we handle modifications to problems, but they are still very
different at the core because we do not rely on knowing the optimal solution to
the original version of the problem, respectively knowing the pre-update input.

A number of approaches enable some compile-time analysis of properties of
program execution. For instance, Spec# [2] is a formal specification language for
C# that enables annotating code with pre- and postconditions, invariants, and
other assertions. Using Boogie [1] and the SMT solver Z3 [11], it is possible to
prove or refute some of these annotations at compile-time. This may involve the
automatic generation of proofs about the value of Boolean expressions, which
creates an obvious connection to our work. A similar set of tools and approaches
exists for Java, such as JML [20] and ESC/Java2 [8]. In general, we do not think
that these approaches will directly support solutions to the invariant check prob-
lem, because they focus on proving given theorems rather than finding equivalent
but simplified ones. But it would certainly be possible to use them to check cer-
tain potential solutions. In particular, if E is a simplified invariant produced by
our algorithm then ¬(I ⇔ E) would be unsatisfiable iff E is a perfect predictor
of I. The fact that the invariant has already been significantly simplified helps
keeping the cost of this operation low, and the solver adds in other techniques
than the ones that we apply, so a hybrid approach could be very promising.

9 Conclusion

We have presented an analysis of the potential simplifications that may be
achieved when an invariant is known to hold for a set of variables, and an update
is applied to some of these variables, and we wish to check whether the invariant
is violated by this update. The starting point is the assumption that it is expen-
sive to fetch the value of a non-updated variable, and hence we wish to check
the invariant based on as few variables as possible. Our approach supports the
constraint that it is impossible to cache the values of all variables in the invari-
ant, which is required in order to make the technique applicable with objects,
and invariants that apply to specific types of objects, as in our case study. Our
main contribution is an algorithm in four phases which is proven correct by a
mechanically checked proof in Coq. The algorithm is sound, i.e., it will produce
a simplified invariant with the same truth value as the original invariant, hence
making it possible to check for invariant violations based on a smaller set of vari-
ables. The algorithm is not complete, i.e., it may produce an invariant whose
set of variables is not minimal. However, we prove that the underlying problem
is co-NP hard , and hence we cannot hope for a complete solution provided by
an algorithm with an acceptable running time. We do provide a fully general al-
gorithm, though, that may be used with very small sets of variables. We report
on a case study for Google Maps, which describes a solution using the presented
technique. This solution is now aimed for production at Google. It shows that
our algorithm is indeed useful, yielding an improvement of a factor of thirty in
the number of requested objects compared with an unoptimized implementation,
and providing almost identical improvement (within 3.5%) compared with the
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ones obtained by a solution which is optimized manually. Our algorithm thus
eliminates the need for the painstaking manual optimization work.
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Abstract. Abstract predicates are the primary abstraction mechanism
for program logics based on access permissions, such as separation logic
and implicit dynamic frames. In addition to abstract predicates, it is
useful to also support classical abstraction functions, for instance, to en-
code side-effect-free methods of the program and use them in specifica-
tions. However, combining abstract predicates and abstraction functions
in a verification condition generator leads to subtle interactions, which
complicate reasoning about heap modifications. Such complications may
compromise soundness or cause divergence of the prover in the context of
automated verification. In this paper, we present an encoding of abstract
predicates and abstraction functions in the verification condition genera-
tor Boogie. Our encoding is sound and handles recursion in a way that is
suitable for automatic verification using SMT solvers. It is implemented
in the automatic verifier Chalice.

1 Introduction

Program logics based on access permissions, such as separation logic [24] and
implicit dynamic frames [27] are the foundation of many program verifiers for
heap-manipulating programs [5,11,15,21,26]. They associate an access permis-
sion with each heap location, and enforce that a method accesses a location only
if it has the permission to do so. To enable modular verification, each method
specification states which permissions the method requires from its caller (in its
precondition) and returns to its caller (in its postcondition). Upon a call, the
caller relinquishes the required permissions (we say the caller exhales the pre-
condition) and transfers them to the callee (the callee inhales them). Conversely,
when a method terminates, the method exhales its postcondition, while its caller
inhales it. This technique simplifies framing; as long as a method holds on to the
permission for a location (that is, does not exhale it), no other method can access
that location and, thus, its value remains unchanged. When permission to a lo-
cation is lost, the value recorded for that heap location should also be discarded;
in the common parlance, this (outdated) information must be havoced.

G. Castagna (Ed.): ECOOP 2013, LNCS 7920, pp. 451–476, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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class List {
var value: int;
var next: List;

predicate valid { acc(value) && acc(next) && (next �= null ⇒ next.valid) }

function length(): int
requires valid;
ensures result > 0;

{ unfolding valid in next = null ? 1 : 1 + next.length() }

function itemAt(i: int): int
requires valid && 0 ≤ i && i<length();

{ unfolding valid in i = 0 || next = null ? value : next.itemAt(i-1) }

method set(i: int, v: int)
requires valid && 0 ≤ i && i < length();
ensures valid && length() = old(length()) && itemAt(i) = v;
ensures ∀ j in [0..length()-1] • i �= j ⇒ itemAt(j) = old(itemAt(j));

{
unfold valid;
if (i = 0) { value := v; }
else { call next.set(i-1, v); }
fold valid;

}
}

Fig. 1. A Chalice [21] implementation of a singly-linked list. Methods have precon-
ditions (keyword requires) and postconditions (keyword ensures). In addition to
regular methods, Chalice supports side-effect-free functions, which may be used in
specifications. An access permission to a field o.f is denoted by acc(o.f), which corre-
sponds to o.f �→ _ in separation logic. The Chalice conjunction && treats permissions
multiplicatively (i.e., requiring the sum of the permissions in each conjunct), similarly
to the separating conjunction ∗ of separation logic. The recursive abstract predicate
valid represents the memory locations of the list structure. The unfold and fold
ghost statements replace a predicate by its body and vice versa. The ghost expression
construct unfolding. . .in is intuitively analogous to an unfold-fold block and can be
used in functions and in specifications, where statements cannot occur.

Abstract Predicates. Enumerating all locations for which a method requires
or returns permissions is not possible for recursive data structures. For instance,
a method that traverses a linked list, such as method itemAt in Fig. 1 would re-
quire permission to access this.value, this.next, this.next.value, and so on.
To solve this problem, Parkinson and Bierman [23] introduced abstract predi-
cates. The definition of an abstract predicate declares a predicate body that may
contain permissions to concrete heap locations, constraints on their values, and
possibly further predicate instances. Due to this recursion, abstract predicates
potentially represent permission to an unbounded number of heap locations. For
instance, the abstract predicate valid in Fig. 1 represents the permissions for
value, next and, if next is non-null, the permissions in next.valid. Just as with
permissions to field locations, a method may require predicate instances from
its caller. It may access a location if it possesses the corresponding permission,
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either directly or as part of a predicate instance. For example, method itemAt
requires the predicate instance valid to get access to all locations of the list.

In this paper, we employ ghost locations to describe the predicates held for a
particular object (cf. Sec. 3). Holding an instance of a predicate is represented
by holding permission to its ghost location. We use the term location for both
concrete field locations and predicate locations. We use the term permission to
describe permissions to both kinds of locations.

Abstraction Functions. Abstraction functions [14] map the concrete repre-
sentation of a data structure (say, a linked list) to an abstract value (say, a
sequence). Specifications can then be expressed in terms of the abstract val-
ues, which is important for information hiding. In the form of side-effect-free
inspector methods (pure methods), abstraction functions are a key ingredient of
contract languages such as Eiffel, JML, Spec#, and .NET CodeContracts, which
support runtime assertion checking in addition to static verification.

Many permission logics express data abstraction via parameterised abstract
predicates whose parameters represent abstracted values of a data structure and
whose bodies relate the concrete representation of the data structure to these
values. However, there are several advantages to supporting classical abstraction
functions along with abstract predicates: (1) Most data structure implementa-
tions include side-effect-free inspector methods (or functions in Chalice) such as
itemAt and length in our example. It is convenient to re-use these methods in
specifications; side-effect-free methods can be encoded naturally as abstraction
functions [8]. (2) Declaring abstraction functions does not affect the signatures
and definitions of abstract predicates. This allows additional abstractions to be
added to a library during maintenance, without changes to the predicates and
re-verification of existing client code. (3) Specifications written without abstrac-
tion functions typically use logical variables for the parameters of an abstract
predicate, which can then be used in postconditions to describe how the abstract
value has changed. Finding witnesses for these logical variables is not supported
well by SMT solvers1. By contrast, abstraction functions can be used within old
expressions to refer to their pre-state evaluation, avoiding logical variables.

Abstraction function definitions must somehow be made available to the
prover, so that it can relate a function application to the function’s body. Since
abstraction functions can be recursive, it is not possible to statically inline such
definitions. In the recursive case one must also prevent the prover from un-
rolling the function definition infinitely often. A commonly-used approach is to
use uninterpreted functions along with an axiom that relates the function to
its body. In this case, the prover might select and apply such axioms infinitely
often, which is known as a matching loop [9]. In our running example, un-
rolling the definition of the pure function x.length() would yield the expression
x.next=null ? 1 : 1+x.next.length(), in which another call to length occurs.

1 Existing tools that support rich parameterised predicates use custom reasoning en-
gines based on symbolic execution, rather than verification condition generation.
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Verification Condition Generation Verification Condition Generation (here-
after, VCG) is a popular technique for the construction of automated verifiers
[4,7,12,17,18,20], in which the problem of verifying a program is encoded as a
logical formula, and then handled by automatic theorem provers (typically SMT
solvers). Since SMT solvers reason at a purely logical level, many problem aspects
such as the program’s heap state, and (for permission logics) auxiliary state to
track the permissions currently held by a thread, are encoded as mathematical
maps (total functions). Despite this (total) representation, a verifier can still take
care that values of heap locations are only directly referred to when appropriate
permissions are held. For concreteness, we present our approach in the context
of Chalice, a VCG-based verifier for concurrent, imperative programs. Chalice
provides only non-parameterised predicates, along with (parameterised) abstrac-
tion functions. In this setting, the primary role of predicates such as valid in
Fig. 1 is to abstract over access permissions, whereas functions such as length
and itemAt abstract over the contents of a data structure. Our results apply also
to frameworks with parameterised predicates.

Contributions. The main contribution of this paper is an encoding of abstract
predicates and abstraction functions for verification condition generators that is
sound, and amenable to automation via SMT solvers.

To achieve these goals, we need solutions to the following encoding issues:
(1) how to define which permissions are part of a recursive predicate instance
(for example, to determine which permissions are transferred when it is exhaled),
(2) how to define the values of recursive abstraction functions, and (3) how to
define which heap locations the value of a recursive abstraction function depends
on (for example, to determine whether a heap update affects the value of a
function application).

The key insight motivating our solution is that, although each of the three
issues above has, in principle, to do with a statically unbounded number of un-
rollings of a recursive definition, the unrolling of these definitions is typically
only relevant up to the depth at which the program to be verified (including
its contracts) has explicitly inspected the corresponding data structure, at ei-
ther the current or an earlier program point. That is, our solution focuses on
ensuring that recursively-defined information is made available for predicate and
function bodies which have been syntactically observed at some program point
up to the current one. Our solution employs some existing ideas, but combines
and enhances them in an original way to achieve the first verification condition
generator that avoids matching loops and is sound2 (the previous version of the
Chalice tool was unsound, due to an incorrect encoding of abstract predicates
and abstraction functions). In particular, we present a novel encoding of those
permissions inside a predicate that are needed to express proof obligations.
2 Some verifiers based on symbolic execution [26,16] support both abstract predicates

and abstraction functions, and many more support only the former [11,15,5]. In the
equally important domain of verification condition generation, there is no solution
that supports both features, is sound, and avoids matching loops.
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We present our solution for implicit dynamic frames [27], but it also applies
to other permission logics, such as separation logic. We have implemented our
solution in a new version of Chalice.

Outline. Secs. 2 and 3 present our solution informally. The details of our en-
coding are explained in Secs. 4 and 5, and we argue why our solution is sound
in Sec. 6. We discuss related work in Sec. 7 and conclude in Sec. 8.

2 Abstract Predicates

In this section, we describe informally how our technique deals with the first
issue described in the contributions.

2.1 Folding and Unfolding

Whenever a method attempts to access a heap location, the verifier needs to
check whether the method has the access permission for that heap location, either
directly or as part of a predicate. However, since the definitions of predicates may
be recursive, a verifier cannot determine precisely which permissions are part of
a predicate; since the recursion is (statically) unbounded, it is neither possible
to inline the predicate’s body fully, nor is it useful to let an SMT solver reason
directly about recursive definitions in an unconstrained manner.

Many verifiers [15,21,26] work around this problem by distinguishing between
a predicate and its body. Instead of letting the SMT solver expand predicate
definitions automatically, the verifier expands only specific predicate definitions
at specific points in the program execution. Unfolding replaces a predicate by its
body, while folding has the inverse effect. Until a predicate has been unfolded, the
permissions and information implied by the predicate’s body are generally not
made available to the prover. We call a permission that has not been folded into
a predicate instance direct; all other permissions are called folded. Accessing a
field, unfolding a predicate, or exhaling a predicate all require appropriate direct
permissions.

The method set in Fig. 1 illustrates these concepts. The method body first
inhales its precondition; in particular, the predicate valid. After the inhale, it
holds valid as a direct predicate, whereas the permissions to value and next (as
well as the fields of the rest of the list) are folded. The fold statement at the
end of the method is necessary to regain direct permission to valid, which gets
exhaled as part of the postcondition.

Folding and unfolding transforms the problem of deciding how deeply to un-
roll a recursive definition to the problem of how deeply to unfold a predicate
instance. Some tools provide heuristics for inferring unfold and fold operations,
while others require programmers to indicate these operations through ghost
statements. For our approach, it is irrelevant whether the unfold and fold oper-
ations are indicated explicitly or inferred, so long as there are specific points in
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the program execution at which the transition between a predicate and its body
takes place. In our examples, we use explicit ghost statements for clarity.

It may be tempting to think that fold/unfold statements alone solve our
encoding problem. Indeed these statements, explicit or inferred, protect the SMT
solver from the recursion in the predicate definitions. However, a challenge that
remains is when and how havocing happens. In particular, it is not useful to havoc
locations immediately when the direct permission to the location is released
during a fold because abstraction functions provide a way of inspecting memory
locations whose permissions have been folded. If we were to havoc locations
upon fold, then a function that inspects a location after is has been folded into
a predicate would return an arbitrary value, which would defeat the purpose of
abstraction functions. For instance, the call to itemAt in the postcondition of
set would yield an unknown value, and the postcondition could not be verified.

Not havocing locations when their permissions get folded into a predicate com-
plicates the exhale operation: when a predicate gets exhaled, we have to havoc
every location that is folded under it because permission to these locations is
no longer held by the current method, neither directly nor folded. For exam-
ple, when exhaling the predicate location this.valid (Fig. 1), we must havoc
this.valid and every location of the linked list folded under it. This set of lo-
cations is not statically known and we must find a sound way to approximate
it.

Our approach to the implementation of exhale consists of two stages. First, we
havoc very aggressively: each time a predicate is exhaled, we havoc all memory
locations for which the method does not retain a direct permission. This ensures
soundness, but havocs too much: in fact it havocs all locations whose permissions
are folded. Second, we make this crude approximation more precise, by recovering
an underapproximation of the location values to which the method has folded
permission after the exhale.

The key insight mentioned in the introduction can now be made more con-
crete: although some information about the contents of recursively-defined pred-
icates and functions is essential, we need concern ourselves only with those predi-
cate instances whose bodies were unfolded earlier in the program text. Therefore,
we can focus on recording detailed information for precisely these instances.

2.2 Framing of Locations—Known-Folded Permissions

When the verifier has knowledge of the value of a heap location earlier in the
program, it is important to preserve this information even though the permission
to this location is now folded inside a predicate instance. This is a particular case
of our earlier insight: it is not all folded permissions that we care about, but those
(a) for which the program previously held the direct permission and (b) which
are folded inside a predicate instance that has been retained up to the current
program point. We call these permissions the known-folded permissions of a
predicate instance. In our encoding, in addition to recording direct permissions,
we record for each predicate instance those locations to which the predicate holds
known-folded permission.
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valid 

next value 
next.valid 

next value 
next.valid 

inhale valid 

exhale valid 

unfold valid 

... 

... 
fold valid 

next value 
next.valid 

... 

exhale valid 

unfold valid valid 

Fig. 2. Each trapezoid depicts all permissions held at a particular point in a method
invocation, where the white regions contain direct permissions and the gray areas
depict folded permissions. Known-folded permissions appear in the light gray region
with dashed border (connected to the predicate they belong to).

Known-folded permissions provide an under-approximation of folded permis-
sions, which (unlike the latter) can be precisely tracked in our encoding. A pred-
icate instance contains known-folded permission to a location exactly when the
direct permission to the location was folded (possibly deeply) inside the pred-
icate instance at some earlier program point, either through a fold statement
or through an unfolding expression. Because the known-folded permissions are
always a subset of the folded permissions held by the current method, when ex-
haling a predicate it is sound to havoc only those locations for which the method
holds neither direct nor known-folded permission.

Fig. 2 illustrates how our operations modify some of the possible states of the
valid predicate. The upper row depicts states in which the values of fields value
and next have not been observed; in the upper right trapezoid, the permissions
in the body of valid are folded, but not known-folded. In the lower row the
values of these fields have been observed, and permission to them is either direct
or known-folded, which protects the fields from being havoced by an exhale.

As an example, consider two distinct List objects x and y, for which the valid
predicate is held at the beginning of the execution of the following code:

var i: int := unfolding x.valid in x.value;
var j: int := unfolding y.valid in y.value;
call y.set(0,10);
assert unfolding x.valid in (i = x.value); // succeeds
assert unfolding y.valid in (j = y.value); // correctly fails to verify

The unfolding expressions at the beginning of the code make the permissions
to x.value and y.value known-folded. The call to y.set exhales y.valid and
thereby removes the permission to y.value from the known-folded permissions,
since y.value is folded inside y.valid. It havocs the state, but preserves locations
for which the method holds known-folded permission, in particular, x.value. This
makes the first assertion succeed, while the second correctly fails to verify.

If we did not havoc aggressively, the second assertion of the example would
verify, which is unsound. On the other hand, without keeping track of known-
folded permissions, the first assertion would fail to verify, which is too imprecise.
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3 Abstraction Functions

In this section, we explain how we handle the other two issues mentioned in the
introduction, i.e., the definition and framing of abstraction functions.

3.1 Definition of Abstraction Functions

We encode each abstraction function as an uninterpreted function symbol to-
gether with a definitional axiom that relates the function symbol to the cor-
responding body. For recursive functions, this axiom might lead to a matching
loop if the instantiation of the axiom is not controlled. Our approach lets the
prover unroll the function definition only a statically known number of times.

A typical recursive abstraction function such as length in Fig. 1 requires
permission to the locations of the data structure in its precondition (often via a
predicate) and recurses on the data structure to compute its result. In particular,
the body of such a function typically unfolds a predicate from its precondition
before recursing on the next node in the structure via the same function (cf.
length). The definitional axiom of such a function relates a function applica-
tion that depends on a predicate to an expression that depends on the locations
whose permissions are folded inside the predicate’s body. Therefore, an instan-
tiation of the axiom will typically only provide useful information if the verifier
has observed some information about these contents. For instance, if a method
does not have direct or known-folded permission to o.next and o.next.valid
then it cannot observe the values of o.next and o.next.length(). Without any
knowledge about these values, the definitional axiom for o.length() is not useful.

This observation leads us to tie the instantiation of function definitions to the
occurrence of predicate instances which have been unfolded at some earlier point
in the program code. Essentially, we again follow our key insight; it is enough to
ensure that functions are unrolled to at least the depth that the corresponding
predicate instances have been unfolded (at some program point up to the current
one). Thus, the instantiation of axioms proceeds in lockstep with the method’s
traversal of the corresponding data structure.

The following example illustrates our approach. Assume that unroll is an ad-
ditional method of class List. The method precondition mentions length, which
allows the prover to expand the recursive definition only one level deep to avoid
a matching loop. Therefore, the prover cannot conclude from the precondition
that next.next is null. However, since the method cannot observe the value of
next.next at this point (the permission is folded inside valid), the information
would be useless anyway. The second unfold statement unfolds the predicate
instance required by the function application next.length() and, therefore, al-
lows the prover to instantiate the definitional axiom for this application, which
provides the information necessary to verify the assertion.
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method unroll()
requires valid && length() = 2

{
unfold valid;
unfold next.valid;
assert next.next = null;

}

The approach outlined above avoids matching loops by controlling the instan-
tiations of recursive definitional axioms. It supports the typical uses of abstrac-
tion functions, but does not handle recursion that is not tied to the traversal
of a data structure (e.g., a factorial function). The automatic handling of such
functions is beyond the scope of this paper.

3.2 Termination of Abstraction Functions

A common problem in allowing arbitrary recursive definitions in specifications,
is the potential for introducing unsoundness to the logic, via non-well-founded
recursion. For example, the definition of a function f() = 1 + f() is inconsistent
and therefore must be forbidden.

The usual approach to handling this problem is to insist on the existence of a
well-founded termination measure for each recursive function definition provided.
In our approach, a function passes the termination-check if the verifier can show
that every recursive function call is made within the body of an unfolding ex-
pression (that is, after unfolding a predicate instance). The number of predicate
instances held defines a well-founded measure because every predicate instance
can be unfolded only finitely many times during the execution of a program.
States at which an infinite predicate instance is held are unreachable3. Notice
that the termination measure described above permits the definitions of the
abstraction functions in our running example.

It is important to note that this treatment of predicates does not rule out cyclic
heap structures. For instance, doubly-linked structures can be easily handled with
fractional permissions, while cyclic lists can be handled (as in separation logic)
using list segment predicates4.

3.3 Framing of Abstraction Functions

Since an SMT solver cannot unroll a recursive function definition arbitrarily
deeply, it cannot use the function definitions to frame function applications,
that is, to determine whether a heap update potentially affects the value of
a function application or not. Therefore, an encoding of abstraction functions
requires a framing axiom in addition to the definitional axiom, to express the
circumstances under which the value of a function application can be framed.

Intuitively, the value of a function can be framed if none of the heap locations
on which the function depends are modified. These locations are a subset of the
3 A formal treatment of these issues is provided by Summers and Drossopoulou [28].
4 See the online tool [1] for further examples, including a cyclic list.
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locations for which the function requires permission in its precondition. However,
if the function requires a recursive predicate then this set cannot be determined
precisely by the verifier or the SMT solver.

Similarly to existing tools such as Spec# [4] and VeriCool [26], we handle this
problem by abstracting over the locations folded inside a predicate instance, via
versioning. The idea is as follows: if we can be sure that a predicate instance has
been neither unfolded nor exhaled since an earlier program point, we know that
all locations nested inside the predicate are unmodified. We label the predicate
with the same version to identify this case.

Predicate versions are recorded as the values of predicate locations in the
heap, which are treated like field locations: in particular, we retain knowledge of
a predicate version so long as we hold either direct or known-folded permission to
the predicate location. When we hold neither direct nor known-folded permission
to such a location, it will naturally be havoced during an exhale. In addition,
the version is havoced when the predicate is unfolded. Thus, our solution for
function framing is closely tied to the framing of locations.

The details of our handling of functions are given in Sec. 5, but the framing
axiom is, informally, as follows: two applications of the same function in two
states evaluate to the same value if the receiver and all arguments of the function
applications are the same and the two states agree on the values of all locations
to which the function precondition requires direct permission; in particular, this
includes the versions of the required predicate instances.

To illustrate our approach, consider again two distinct List objects x and y
for which the valid predicate is held at the beginning in the following code:

var i: int := x.itemAt(0);
var j: int := y.itemAt(0);
call y.set(0,10);
assert x.itemAt(0) = i; // succeeds
assert y.itemAt(0) = j; // correctly fails to verify

The exhale operation of the call to y.set gives away y.valid, thereby havocing
the version of that predicate. The predicate x.valid is not affected, and keeps
the same version, which allows the prover to correctly verify the first assertion,
using the framing axiom. The second assertion is not necessarily true, and indeed
fails to verify because the version of y.valid has changed.

4 Encoding of Abstract Predicates

In this and the next section, we present an encoding of our solution in the
verification condition generator Boogie [18]. Verification with Boogie consists of
three steps: (1) a translator translates the source program and its specification
into the Boogie language, (2) Boogie computes verification conditions, and (3) an
SMT solver attempts to prove the verification conditions. Here, we focus on how
the translator encodes abstract predicates without giving recursive definitions
or axioms to the prover. The complementary encoding of abstraction functions
will be presented in the next section.
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Heaps and Permission Masks. Our encoding represents the current heap
with a variable Heap, which is a map from locations to values. We use the notation
(o, l) to refer to the location l of object o; its value in the map Heap is denoted
by Heap[o, l]. Permissions are tracked using permission masks, which are sets of
locations. The variable Mask stores the current mask, which represents the direct
permissions held by the current method.

We also store information about predicate instances in the heap. For an ab-
stract predicate p, we use (ghost) predicate locations (o, p) to store a record.
Such a record contains the predicate version (as an integer) along with a mask
representing the known-folded permissions under the predicate instance o.p; we
call this the predicate mask. We write Heap[o, p].vrs to denote the version of pred-
icate instance o.p, and Heap[o, p].msk to denote the corresponding predicate mask
for known-folded permissions. At the beginning of verifying a method body, we
assume all predicate masks to not contain permissions, that is, to be the empty
set.

For two heaps H and H ′, and for a mask M , we say that H ′ preserves H

according to M , written H ′ M←− � H , if H and H ′ agree on the location values
for which direct or known-folded permission are held in the state described by
(H, M), and for all other predicate locations, the predicate mask in H ′ is empty.
More precisely, H ′ M←−� H if, for all locations (o, l):

1. If either (o, l) ∈ M or ∃ (o′, p′) ∈ M such that (o, l) ∈ H [o′, p′].msk, then:
H ′[o, l] = H [o, l].

2. Otherwise (when the criteria for the previous point to apply do not hold),
if l = p for some predicate name p (i.e., (o, l) is a predicate location), then:
H ′[o, p].msk = ∅.

An important property of our encoding is that the known-folded permissions
of a predicate instance o.p include the known-folded permissions of predicates
instances in the body of o.p (informally, the predicate masks record informa-
tion transitively). This property is maintained as part of our encoding of a fold
statement, and when evaluating an unfolding expression. Storing transitive in-
formation in this “flattened” form means we never need to recursively traverse
predicate masks in our encoding.

Encoding of Exhale. As explained in Sec. 2, the exhale operation aggressively
havocs the heap and preserves information only for those locations to which
the method holds direct or known-folded permission after the exhale. In the
encoding of exhale (see top of Fig. 3), this is reflected by introducing a fresh
heap H ′, assuming that H ′ is a framed heap for the state after the exhale and
then making H ′ the new current heap. The actual exhaling is encoded via an
auxiliary operation exhale′, which is explained next.

The exhale′ operation recursively traverses the assertion to be exhaled, as-
serting all logical properties, and removing the required permissions from the
current mask (see Fig. 3). Exhaling a boolean expression amounts to asserting
that the expression holds. Exhaling a conjunction results in exhaling the two
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[[exhale A]] = var H′ ; havoc H′ ; [[exhale′ A]] ; assume H′ Mask←− � Heap ; Heap := H′

[[exhale′ e]] = assert 

e��
[[exhale′ A1 && A2]] = [[exhale′ A1]] ; [[exhale′ A2]]
[[exhale′ e ⇒ A]] = if (

e��) { [[exhale′ A]] }
[[exhale′ acc(e.f)]] = assert (

e��, f) ∈ Mask ; Mask := Mask \ {(

e��, f)}
[[exhale′ acc(e.p)]] = assert (

e��, p) ∈ Mask ; Mask := Mask \ {(

e��, p)}
[[exhale′ unfolding e.p in e′]] = [[inhale body(

e��, p)]]false

Heap[��e��,p].msk ;
assert 

e′��

Fig. 3. Encoding of exhale. We use A to denote general assertions, which may include
permissions, and e to denote expressions without any permissions. To emphasize the
uniform treatment of field permissions and predicates, we write acc(e.p) to denote the
predicate instance e.p, but simply write e.p in our examples for brevity. [[_]] denotes
the translation of source statements to Boogie instructions. In the encoding, we treat
exhale and exhale′ like statements even though they cannot occur in source pro-
grams. 

_�� denotes the translation of source expressions to Boogie expressions; it is
straightforward and therefore omitted. Both translation functions refer to the global
variables Heap and Mask. body() yields the declared body of a predicate instance.

conjuncts sequentially; the side-effects of these exhales are accumulated. Impli-
cations are handled via if-statements in the Boogie output. Exhaling permission
to a field or predicate location amounts to checking that the permission is cur-
rently held, and then removing it. Exhaling an unfolding expression is the most
complicated case. First, the body of the unfolded predicate is inhaled, but us-
ing the predicate mask for the predicate instance instead of the Mask variable.
This has the dual effect of assuming any logical properties from the body of
the predicate, and recording the permissions encountered as known-folded (but
not direct) permissions. The translation of inhale used here is described below.
Finally, the body of the unfolding expression is asserted to be true.

Encoding of Inhale. The translation of inhale is given in Fig. 4. In con-
trast to exhale, the translation of inhale is parameterised by a mask because
it sometimes operates on primary and sometimes on known-folded permissions
stored in a particular predicate mask. The boolean parameter b of the transla-
tion function indicates whether the inhale is of direct permissions or not. inhale
traverses the assertion to be inhaled, assuming all logical properties, and adding
the required permissions to the current mask. The assumption of (

e��, f) /∈ M in
the case of inhaling field permissions encodes the fact that we cannot hold per-
mission to the same location twice. This assumption is not made for permissions
to predicate locations, since it is possible to hold the same predicate more than
once5. Additionally, when inhaling known-folded permission to a predicate e.p, all
known-folded permissions from the predicate mask for e.p are added to the mask
5 In this paper, this can happen only for trivial predicates without permissions, but

the assumption is important once fractional permissions are employed.



VCG for Abstract Predicates and Abstraction Functions 463

[[inhale e]]bM = assume 

e��
[[inhale A1 && A2]]bM = [[inhale A1]]bM ; [[inhale A2]]b

M

[[inhale e ⇒ A]]bM = if (

e��) { [[inhale A]]bM }
[[inhale acc(e.f)]]bM = assume (

e��, f) /∈ M ; M := M ∪ {(

e��, f)}
[[inhale acc(e.p)]]bM = M := M ∪ {(

e��, p)} ;

#if (¬b) { M := M ∪ Heap[

e��, p].msk }
[[inhale unfolding e.p in e′]]bM = #if (b) { [[inhale body(

e��, p)]]false

Heap[��e��,p].msk ; }
assume 

e′��

Fig. 4. Encoding of inhale. The #if -conditionals are resolved by the translator.

being used for the inhale. In this way, we maintain the invariant that known-
folded permissions are transitively closed; that is, if (o, p) ∈ Heap[o′, p′].msk and
(o′′, l′′) ∈ Heap[o, p].msk then (o′′, l′′) ∈ Heap[o′, p′].msk.

When exhaling or inhaling an unfolding expression for a predicate instance
e.p, the permissions in the body of e.p become known-folded permissions. There-
fore, they get inhaled into the predicate mask of e.p. In this case (which is
indicated by b being false), inhaling a predicate permission e.p “copies” any
known-folded permissions from the inner predicate instance to the outer; that
is, we flatten the known-folded permissions under e.p. Due to this flattening, an
unfolding expression affects permissions only when we are inhaling direct per-
missions (that is, b is true). If we are already inhaling known-folded permissions,
any permissions folded under an inner predicate instance are already part of the
known-folded masks of the outer predicates.

Encoding of Source Statements. Chalice statements are generally desugared
into appropriate combinations of inhale and exhale statements. For example, a
(void) method call is simply encoded with an exhale of the precondition followed
by an inhale of the postcondition (see Fig. 5). The havocing of heap locations
that takes place as part of the exhale takes care of invalidating any information
that the called method may have changed.

fold and unfold statements do not require a general havoc of the heap, since
no permissions are actually released to another method; they are simply reorgan-
isations of permissions amongst predicate instances. Therefore, their translations
use exhale′. In addition to swapping a predicate instance with its body, fold
statements record known-folded permissions, and unfold statements havoc the
version of the predicate instance.

We verify loops as usual by using a loop invariant and verifying the loop body
independently of the surrounding code. To access locations in the loop body, the
verifier requires the appropriate permissions in the loop invariant. To commu-
nicate knowledge about known-folded locations between the loop body and the
surrounding context, one can use an unfolding expression in the invariant. Our
encoding of unfolding then ensures that the necessary known-folded permissions
are added when the loop invariant is evaluated.
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[[call e.m()]] = [[exhale pre(

e��, m)]] ; [[inhale post(

e��, m)]]true
Mask

[[fold e.p]] = [[exhale′ body(

e��, p)]] ; [[inhale body(

e��, p)]]false
Heap[��e��,p].msk ;

[[inhale acc(e.p)]]true
Mask

[[unfold e.p]] = [[exhale′ acc(e.p)]] ; havoc Heap[

e��, p].vrs ;
Heap[

e��, p].msk := ∅ ; [[inhale body(

e��, p)]]true

Mask

Fig. 5. Encoding calls, fold, and unfold statements. pre() and post() yield the pre-
condition and postcondition of a method with the appropriate substitutions.

5 Encoding of Abstraction Functions

In this section, we present our encoding of abstraction functions, building upon
the handling of predicates and known-folded permissions in the previous section.
The presented approach is based on uninterpreted functions and axioms, but
again avoids presenting the prover with recursive axioms that can be applied in
an unbounded way. This is achieved by a combination of versioning predicate
instances, and careful selection of axiom triggering strategies [9].

5.1 Function Definitional Axioms and Triggers

Each Chalice function is represented by a corresponding uninterpreted function
in the generated Boogie program, in which the heap, the receiver as well as
parameters to the Chalice function are turned into explicit parameters. For ex-
ample, function length() from Fig. 1 gives rise to the following uninterpreted
Boogie function declaration (by convention, we prepend a # symbol to the func-
tion name, to differentiate it from its Chalice counterpart):
function #length(heap: HeapType, this: ref) returns (int);

In Boogie, it is standard to specify properties of an uninterpreted function via
quantified axioms, e.g., defining the value of a function application, for all states.
We call such an axiom (providing the definition of a function) a definitional ax-
iom. In the common case that this axiom mentions further (recursive) function
applications, the prover needs a strategy to decide when to instantiate the def-
initional axiom. For example, consider the “direct” translation of the Chalice
definition of function length(), as a Boogie axiom (we assume here that H, M,
and this range over heaps, masks, and references, respectively):
axiom ∀ H, M, this • (this,valid) ∈ M =⇒

#length(H,this) = (H[this,next] �= null ? (1 + #length(H,H[this,next])) : 1)

This axiom states that, provided that the function’s precondition holds, a func-
tion application is always equal to its body. Note that Boogie allows multiple
quantified variables to be introduced together under one universal quantification.
Allowing the prover to instantiate these quantifiers in arbitrary ways, would lead
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to two problems. First, the prover might instantiate the axiom with a heap and
a mask that belong to different execution states. Second, since the function is
recursive, the prover might instantiate its definitional axiom indefinitely in a
matching loop.

To solve the first problem, our encoding introduces a boolean uninterpreted
function state which takes a heap and a mask as arguments. The function ap-
plication state(Heap, Mask) is assumed to yield true in our encoding every time
a state is changed, for instance, after an exhale is translated (but not for the
intermediate states during the translation). All axioms that quantify over a heap
and mask use the state function as a premise. We write ∀ (H,M) • P(H, M) to
abbreviate ∀ H,M • state(H, M) ⇒ P(H, M).

To solve the second problem, we make use of Z3’s and Boogie’s facility to
associate universal quantifiers with sets of syntactic triggers. A trigger set is a
set of terms (the triggers), written {t1,t2,...}, which can be associated with
a universal quantification in Boogie by placing it just before the body of the
quantified formula. Trigger sets do not affect the logical meaning of the formula,
but prescribe a strategy for controlling the instantiation of the quantifiers intro-
duced. The rule enforced is that the prover must have encountered (somewhere
in its proof search) terms matching all of the forms {t1,t2,...}, before a corre-
sponding instantiation of the quantified formula can be made. Multiple trigger
sets can be provided; in this case, only one set of terms need be fully matched.
For example, an axiom of the form

∀ x • {f(x),g(x)} {f(g(x))} f(x) = f(g(x))

will allow instantiations f(t)=f(g(t)) to be generated only for terms t such that
(1) both the terms f(t) and g(t) have already been encountered by the prover
or (2) the term f(g(t)) has already been encountered.

In the following, we explain how we encode abstraction functions and use
triggers in a way that allows the prover to obtain sufficient information from the
recursive definitions of the functions, without having the possibility of entering
a matching loop.

Limited and Unlimited Functions. To avoid matching loops in the defini-
tional axioms for abstraction functions, we adopt a technique employed in other
tools [19]. For each Chalice function we introduce two Boogie functions (called
the limited and unlimited functions). Their logical meanings are intuitively the
same, but their practical use in axioms and triggers is different. For example,
for the length() function, we introduce the limited form (which we identify by
adding a ’ to the name) along with the original definition:

function #length(heap: HeapType, this: ref) returns (int);
function #length’(heap: HeapType, this: ref) returns (int);

Now, we define the definitional axiom above as follows: every occurrence of a
function application that comes from the body of the function definition, is re-
placed by its corresponding limited function. The unlimited form of the function
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is used in the trigger set for the axiom (and is still used in the translation of
source-level Chalice expressions). For example, for length we generate the follow-
ing definitional axiom (all our axioms that quantify over both the heap and mask
include state(H,M) as part of each trigger, but we omit this for conciseness):
axiom ∀ (H,M), this • {#length(H,this)} (this,valid) ∈ M =⇒

#length(H,this) = (H[this,next] �= null ? (1 + #length’(H,H[this,next])) : 1)

Because the body of this axiom does not introduce any new applications of the
unlimited function #length(), an instantiation of the axiom does not give rise
to any further instantiations; the potential matching loop is avoided. In order to
give a meaning to the #length’() function, the following addition axiom is used,
which also does not introduce any new applications of the unlimited function
#length().
axiom ∀ (H,M), this • {#length(H,this)} #length’(H, this) = #length(H, this)

Effectively, this allows to prover to unroll a function’s definition exactly once for
any given occurrence of that function in the source program.

Controlled Triggering. To implement the idea presented in Sec. 3.1 of allow-
ing the prover to unroll a function definition when the corresponding predicate
has been folded or unfolded at some point in the program, we proceed as follows.
We introduce a boolean function for every predicate, to be used as a trigger for
functions that depend on it. We illustrate this using the predicate valid:

function #validtrig(this: ref) returns (bool);

This function indicates that the corresponding predicate has been folded or
unfolded in some state for the given receiver. This is introduced in our encoding
by instrumenting the translation of fold e.valid and unfold e.valid with an
extra assumption of #validtrig(e).

Additionally, we are interested in unrolling the definitional axiom for a func-
tion application with a given list of arguments only if that application for the
same arguments has been mentioned somewhere in the program. Otherwise, the
prover cannot learn useful information by expanding the function’s definition.
To this end, we add another boolean function along with an axiom:

function #lengthtrig(this: ref) returns (bool);
axiom ∀ (H,M), this • {#length’(H, this)} #lengthtrig(this)

We use the function application #lengthtrig(e) in triggers to indicate that
length has been applied to the receiver e in some state. The axiom shown encodes
this meaning.

We now add an additional trigger set to our definitional axiom for length.
It allows the prover to instantiate the definitional axiom in the cases described
in Sec. 3.1, but still does not cause matching loops. Note that this trigger cor-
responds to our “key insight” in the introduction since it allows the prover to
expand recursive definitions up to the depth at which the program has inspected
the data structure. The resulting (and final) definitional axiom, is:
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axiom ∀ (H,M), this • {#length(H,this)} {#lengthtrig(this), #validtrig(this)}
(this,valid) ∈ M =⇒
#length(H,this) = (H[this,next] �= null ? (1 + #length’(H,H[this,next])) : 1)

In the general case, a trigger set such as the second one above is introduced
for each predicate in the precondition of the function that also gets unfolded
in the body of the function before any recursive function calls that occur. If
the predicate is not unfolded, or the recursive calls are not in the body of the
corresponding unfolding expression, the recursion of the function is not tied to
traversing the predicate over the data structure, and the additional trigger is
not added.

5.2 Function Framing Axiom

To frame functions, we employ an additional axiom which essentially states that,
if no part of the state mentioned in a function’s precondition differs between two
heaps, then the function’s value is also the same in the two heaps. As we discussed
in Sec. 3.3, we use predicate versions to abstract over the locations folded into
the predicate instance, thus avoiding giving recursive predicate definitions to the
prover. For example, the framing axiom for length() is as follows:
axiom ∀ (H1, M1), (H2, M2), this • {#length’(H1,this),#length’(H2,this)}

H1[this,valid].version = H2[this,valid].version =⇒
#length’(H1, this) = #length’(H2, this)

This axiom is phrased in terms of the limited function #length’, but by the axiom
relating unlimited and limited functions presented in the previous subsection, it
can also be used to frame unlimited functions.

Note that our use of predicate versioning is asymmetrical; if a predicate ver-
sion is the same in two heaps, then we assume the contents of the predicate
instance to be the same, but not vice versa. For example, unfolding and fold-
ing a predicate (without modifying any contents) will yield a new version (see
Fig. 5). However, our function definitional axiom will be triggered in this case,
deducing the relationship to the locations immediately contained inside the pred-
icate instance. If these are known to be preserved, then the prover can conclude
that the function value has not changed.

6 Soundness

In this section, we give an informal justification for the soundness of our ap-
proach. As we have explained in Sec. 3.2, the definitional axioms for the Boogie
functions that we use in our encoding are consistent. The soundness arguments
in this section furthermore justify (1) our approach to function framing, and
(2) our approach to heap location framing.
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6.1 Soundness of Function Framing

To justify our approach to function framing, we use the following definition:

Definition 1 (Permission and Heap Footprints). The permission footprint
of a predicate in a heap is the set of heap locations defined by recursively evaluat-
ing the predicate definition in the given heap, and collecting the locations whose
permissions are required by the definition.

The permission footprint of a function in a heap is the set of heap locations
defined by evaluating the function’s precondition in the given heap, and collecting
the locations whose permissions the precondition requires, as well as the permis-
sion footprints of all predicates the precondition requires in that evaluation.

The heap footprint of the predicate or function in a heap is the set of location-
value pairs such that the location is in the corresponding permission footprint,
and the value is the value stored in the heap at that location.

It is sufficient to observe the following:
(1) Evaluation of a function application (at runtime) reads only locations in

its permission footprint. This property is enforced by a well-formedness check for
each function definition, as is standard for logics supporting user-supplied defi-
nitions. In particular, a function application’s value is a function of its receiver,
arguments, and its heap footprint. Function bodies can also apply functions, but
the checking of preconditions ensures that heap footprints for recursive applica-
tions are always subsets of the original one.

(2) Like functions, predicate definitions are checked to ensure that they read
only heap locations that fall within their permission footprint. Thus, the per-
mission and heap footprints of a predicate are fixed by the permissions folded
inside of it. Since we havoc version numbers whenever a predicate is unfolded
or exhaled, the version of a predicate location at two different program points
can be known to be the same only if the heap footprint of the predicate is also
identical at both points.

(3) Consider a situation in which our framing axiom allows the prover to
equate a function value between two program points. By (1), we know that
it is sufficient to know that the function’s heap footprint remains the same
between both points. The heap footprint is made up of locations to which explicit
permission is required in the function’s precondition (which the axiom requires
to have the same values), and the heap footprints of those predicate locations
that the function’s precondition requires (which the axiom requires to have the
same versions). By (2), the function value is the same in both states.

6.2 Soundness of Heap Location Framing

For the soundness of heap location framing, the argument depends on a precise
definition of the notions of folded and known-folded locations for predicate in-
stances. We address here the soundness of our use of predicate masks to record
the known-folded permissions per predicate instance. Our encoding maintains
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an invariant regarding these masks whose intuition is simple: we record and re-
member known-folded permissions until the corresponding predicate instances
are lost, and make sure they are recorded in the masks of all predicate instances
that enclose the locations. It is also important for our argument that we do
not selectively record the known-folded permissions from a predicate’s body, but
always record everything that the body depends on at a time.

We need to define several notions to explain our argument. Since many of our
definitions treat both types of location uniformly, we use the meta variable l to
range over both predicate and field location names.

Definition 2 (Folded Locations).

– In a heap H, a location (o′, l′) is directly folded inside a predicate location
(o, p), written directFolded(o, p, o′, l′, H), if evaluating the body of the predi-
cate instance o.p in H results in directly requiring permission to the location
(o′, l′).

– In a heap H, a location (o′, l′) is folded inside a predicate location (o, p),
written folded(o, p, o′, l′, H), as defined by (the least fixpoint of):

folded(o, p, o′, l′, H) ⇔ (directFolded(o, p, o′, l′, H) ∨
∃o′′, p′′.(directFolded(o, p, o′′, p′′, H) ∧ folded(o′′, p′′, o′, l′, H)))

We now provide the definitions which characterise the auxiliary information that
our encoding records about known-folded permissions.

Definition 3 (Recorded Predicate Bodies and Known-Folded Permis-
sions).

– In a heap H, a predicate location (o, p) has its body recorded, as defined by:

bodyRecorded(H, o, p) ⇔ (∀o′, l′.(directFolded(o, p, o′, l′, H) ⇒
(o′, l′) ∈ H [o, p].msk ∧

(l′ is a predicate location ⇒ H [o′, l′].msk ⊆ H [o, p].msk))

– In a heap H, a location (o′, l′) is known-folded inside a predicate location
(o, p), written knownFolded(o, p, o′, l′, H), as defined by (the least fixpoint of):

knownFolded(o, p, o′, l′, H) ⇔ bodyRecorded(H, o, p) ∧
(directFolded(o, p, o′, l′, H) ∨
∃o′′, p′′.(directFolded(o, p, o′′, p′′, H) ∧ knownFolded(o′′, p′′, o′, l′, H)))

Our definition of bodyRecorded requires not only that every location directly
required by a predicate body is stored in the corresponding predicate mask,
but also that the recorded information is transitive; any information in predi-
cate masks for nested predicate instances must be included in the level above.
Our definition of knownFolded insists on this organisation of the information in
predicate masks “all the way down”—all of the predicate instances in between
must also satisfy bodyRecorded. This definition of known-folded locations approx-
imates the folded locations for a predicate instance (the definitions are similar,
but knownFolded enforces extra constraints).
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One of the properties we assume about the underlying methodology, is that
locations to which folded permission is held, never have their permissions also
in the direct mask. This is a special case of the more-general property that
permissions should never be forged/duplicated, but only transferred. Note that
this is a soundness property of the underlying semantic model.

In the following we argue soundness of our particular encoding. Therefore, we
use the two variables Heap and Mask to refer to the heap and mask, respectively,
at a given location in the program.

Lemma 1 (Folded Locations cannot be in the Direct Mask). Before and
after every Chalice program statement, it holds that

∀o, p, o′, l′. ((o, p) ∈ Mask ∧ folded(o, p, o′, l′, Heap)) ⇒ (o′, l′) /∈ Mask

Finally, we can state the invariant that describes how the information in our
predicate masks relates to the definition of knownFolded locations above:

Theorem 1 (Predicate Mask Permissions are Known-Folded
Locations). Our encoding preserves the following invariant:

∀o, p, o′, l′.((o′, l′) ∈ Heap[o, p].msk ⇒
(((o, p) ∈ Mask ∨ ∃o′′, p′′.((o′′, p′′) ∈ Mask ∧
knownFolded(o′′, p′′, o, p, Heap))) ∧ knownFolded(o, p, o′, l′, Heap)))

Proof Sketch. We show that the property is preserved across the four most
relevant operations concerning known-folded permissions: folding, unfolding, in-
haling, and exhaling predicate instances. For each, we assume the invariant holds
beforehand, and show that it holds afterwards. To do this, we consider the cases
in which the location (o′, l′) can newly have become a member of Heap[o, p].msk
(in which case the consequent of the implication must also be checked), as well
as the cases in which the consequent of the implication may have been falsified
(in which case we must be sure that the antecedent is also now false).

Folding o1.p1: Consider the set of locations directly required in the body of
o1.p1. Permissions to all of these locations are removed from Mask and added to
Heap[o1, p1].msk. Furthermore, any of these locations which are predicate loca-
tions have their predicate masks added to Heap[o1, p1].msk (cf. Fig. 3). In particu-
lar, these operations result in bodyRecorded(Heap, o1, p1) holding. Finally, (o1, p1)
is added to Mask. Since these operations only add to predicate masks, they do
not falsify any previous instances of knownFolded.

Considering the invariant, the antecedent (o′, l′) ∈ Heap[o, p].msk can newly
have been made true only in the case o = o1, p = p1 and for (o′, l′) being one
of the locations directly folded in the body of o1.p1. For all such cases, we have
knownFolded(o1, p1, o′, l′, Heap) as required. On the other hand, since a set of
locations is removed from Mask, we must also take care that the antecedent is
not falsified when (o, p) is one of those locations. However, since all such locations
are contained in Heap[o1, p1].msk by the operation, the second disjunct can be
shown in these cases, taking o′′ = o1 and p′′ = p1.
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Unfolding o1.p1: This operation adds (o1, p1) to Mask, and removes any infor-
mation associated with the predicate instance. In particular, Heap[o1, p1].msk is
set to the empty set ∅. Since we do not add to any predicate masks, we cannot
make the antecedent of the invariant true in any new cases. Since we only re-
move locations from the predicate mask Heap[o1, p1].msk, the only instances of
knownFolded that can be falsified by this are those concerning locations known-
folded in (o1, p1), i.e., those (o2, l2) for which knownFolded(o1, p1, o2, l2, Heap)
holds (by Lemma 1, we know that (o1, p1) was not itself folded inside any predi-
cate instance). Thus, considering the consequent of the invariant, the only cases
we need worry about are when either o = o1 and p = p1 (in which case, the
antecedent of the invariant is necessarily false, since we reset the predicate mask
to ∅), or o′′ = o1 and p′′ = p1. In this latter case, unrolling the definition of
knownFolded(o′′, p′′, o, p, Heap) in the state before the operation, in combination
with the fact that we record all direct-folded locations from the body of o1.p1 in
the Mask, provides sufficient information to show that the invariant still holds.

Inhaling o1.p1: This operation simply adds (o1, p1) to Mask, which cannot
falsify the consequent of the invariant, or make the antecedent newly true.

Exhaling o1.p1: This operation removes (o1, p1) from Mask, and then generates
a “global havoc”, constrained by the assumption H′ Mask←−� Heap. Let’s consider the
point just after this havoc operation (see Fig. 3), but before the new heap H′ is
assigned to Heap (so that we have names for both the new and old heaps). The
havoc operation means that all predicate masks H′[o.p].msk are set to ∅, except
in the case that either (o, p) ∈ Mask still holds after the operation, or, for some
(o′′, p′′), (o′′, p′′) ∈ Mask ∧ (o, p) ∈ Heap[o′′, p′′].msk holds. In particular, consider
the cases in which the antecedent of the invariant (o′, l′) ∈ H′[o, p].msk could
possibly hold. This would require that H′[o, p].msk �= ∅, and, since nothing is
added to the predicate masks in the operation, also that (o′, l′) ∈ Heap[o, p].msk
held. By the argument above, along with the assumption of the invariant in the
state before the operation, we deduce that:

(o′, l′) ∈ H′[o, p].msk ⇒
(((o, p) ∈ Mask ∨ ∃o′′, p′′.((o′′, p′′) ∈ Mask ∧
knownFolded(o′′, p′′, o, p, Heap)) ∧ knownFolded(o, p, o′, l′, Heap)))

Thus, all we need to know in order to deduce that the invariant holds in the new
heap H′ is that the occurrences of knownFolded mentioned here are still true for
H′. This follows because, in both cases, the known-folded information is recorded
under a predicate instance to which direct permission is held. By the soundness
of the underlying permission logic, we know that the locations folded inside this
outer predicate instance cannot be modified, and thus, that the meanings of all
nested predicates are preserved. Furthermore, any predicate instances known to
be folded inside this outer instance must have their entire bodies recorded in the
corresponding predicate mask, and therefore, their meanings and directly folded
locations remain unaffected by the global havoc. Therefore, a simple induction
shows that knownFolded information is preserved in the new heap. �
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Corollary 1 (Predicate Masks record only Folded Permissions). Before
and after the translation of every Chalice statement, the following property holds:

∀o, p, o′, l′. ((o, p) ∈ Mask ∧ (o′, l′) ∈ Heap[o, p].msk ⇒ folded(o, p, o′, l′, Heap))

By this corollary, which follows directly from Theorem 1, the locations framed
across a global havoc are always either locations to which direct permission is
held, or which are folded inside a predicate instance to which direct permission is
held; in both cases, the soundness of the underlying permission handling implies
that framing these location values is sound.

7 Related Work

The concept of abstract predicates [23] is used in both separation logic [24] and
implicit dynamic frames [27]. In terms of VCG verifiers, abstraction functions
are used along with abstract predicates in Chalice [20] and VeriCool [27].

The VeriCool VCG implementation handles abstract predicates and abstrac-
tion functions soundly but, unlike our solution, introduces the possibility of
matching loops in the SMT solver. To assess whether matching loops are a
problem in practice, we took an example from VeriCool and translated it into
Chalice. We experimented with partial specifications by leaving out parts of
the main loop invariant. We found that the VeriCool verification time signifi-
cantly increased for failed proof attempts, from 2.3 minutes to up to one hour
(at which point we terminated the verifier). In some cases, removing logically
redundant parts of the specification also increased the verification time (to 16
minutes). These are typical symptoms of matching loops. Our new version of
Chalice verifies the translated program in less than 20 seconds (with or without
the redundant specifications) and reports failed attempts for partially specified
versions even faster. Details about this experiment can be found at [1]. In par-
ticular, the site contains the code in both languages and marks the conjuncts of
the VeriCool invariant according to how their removal affected the verification
attempt and what the corresponding behavior of Chalice was.

The previous Chalice encoding of predicates and functions is unsound. The
encoding considered only direct permissions and havoced the heap lazily, that
is, when permissions are (re-)obtained. This ensures that values of fields are
preserved, but also leaves invalid information in the heap, which caused the
unsound behaviour. In particular, folded locations were never havoced.

Symbolic execution is an alternative technique to VCG and is used in tools
such as [5,11,15,16,26]. Typically, symbolic execution engines use partial heaps
and other more elaborate data structures for the representation of the program
state. In the presence of such data structures, the problem treated in this paper
is not as intricate. In particular, symbolic execution engines can iterate through
their heap representation to determine folded permissions, whereas for VCG with
SMT solvers, this is not possible in the presence of recursive predicates. Symbolic
execution forgets heap information by chopping off the corresponding part from
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the partial heap. Framing of function values can be sufficiently handled as in
VCG by predicate versioning.

The mechanism of predicate versioning typically seen in symbolic execution
engines differs from ours. A version in these systems is a snapshot of the under-
lying heap. If a predicate is unfolded and folded back immediately, its version
does not change and functions depending on that predicate are known to not
have changed their value either. In contrast, our approach always changes the
version number at unfold statements. However, the use of the definitional axiom
allows the prover to unroll the definition one level and prove function equiva-
lence nonetheless. In this way, we can achieve the same effect as in the predicate
versioning of symbolic execution, without using the symbolic execution-specific
data structures, which are unsuitable in a VCG setting. Versioning in Spec# [4]
is also similar to our predicate versioning, but more incomplete: the user must
explicitly mention the functions whose return values must be preserved.

Bardou’s PhD thesis [3] presents a verification technique that uses hierarchies
of memory regions. To improve performance, the encoding into the Why inter-
mediate language flattens these hierarchies into a number of separate heaps. For
recursive regions, a complete flattening would result in an unbounded number of
heaps. Therefore, Bardou’s encoding determines statically how deeply to flatten
such hierarchies, based on the access paths in a method and a fixed depth limit.
Our approach requires neither such a static analysis nor a fixed limit because
unfold statements determine when to expand a predicate definition, and triggers
control where the prover may expand a function definition.

Madhusudan et al. [22] present a logic to express complex properties of tree
structures, and a procedure that decides these efficiently. Their core idea of
expanding a recursive definition a statically known number of times that depends
on the program under verification is similar to ours. Compared to our work, their
logic is restricted in expressiveness: it tackles only tree structures and it considers
only functions with a single tree argument and a specific definition pattern.

Shape Analysis has been successfully applied in the context of three-valued
logic [25], and more recently adapted to separation logic [10], with the aim of
inferring the recursive structure of the current heap. The approach is typically
based on a fixed set of recursive definitions, but some techniques (e.g., [13]) aim
also to infer these definitions. The idea that recursive definitions need only be
handled up to a certain depth is central to shape analysis, but the problem tack-
led is different; we do not aim at such inference, while we do support arbitrary
user-defined predicates and dependent abstraction functions.

Suter et al. provide a generic approach to constructing decision procedures for
recursive algebraic data types [29]. In particular, their work supports recursive
abstraction functions, to allow a more abstract representation of the underlying
data to be used in specifications. While their approach applies only to func-
tional data types, they employ a notion of partial evaluation of the abstraction
functions that is similar to our controlled instantiation of function definitions.
It would be interesting to see if their work, as well as work on shape analyses
could be adapted to our setting, perhaps to infer unfold and fold statements.
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8 Conclusion

In this paper, we have presented a VCG encoding technique for abstract pred-
icates and abstraction functions. To prevent matching loops one must refrain
from giving recursive definitions to the prover, even though in general the defi-
nitions of both predicates and functions can be recursive. We solve this challenge
with the insight that proof obligations can typically be discharged by allowing
the prover to unroll recursive definitions for the parts of the program data struc-
tures which have been observed by the program at some earlier point. Inspecting
the program text allows us to encode this with the use of trigger strategies as
well as the introduction of known-folded permissions.

Our encoding is, to the best of our knowledge, the only sound encoding of both
features that prevents matching loops. Our comparison with the VeriCool VCG
verifier shows that prevention of matching loops makes an important difference
in the verification experience.

We have implemented the methodology for the more general setting of frac-
tional permissions [6] in a new version of Chalice6 [2]. We ran our implementation
on the Chalice test suite of 100 interesting examples and regression tests and
observed no unsoundness or incompleteness. The timings are predictable, even
for examples with faulty specifications. Our tool can also be tried out online [1],
where we also provide several challenging examples.
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Abstract. Even when implemented in a purely procedural programming lan-
guage, properly designed programs possess elements of good design that are ex-
pressible through object-oriented constructs and concepts. For example, placing
structured types and the procedures operating on them together in the same mod-
ule achieves a weak form of encapsulation that reduces inter-module coupling.
This paper presents a novel technique, and a supporting tool AutoOO, that ex-
tracts such implicit design elements from C applications and uses them to build
reengineered object-oriented programs. The technique is completely automatic:
users only provide a source C program, and the tool produces an object-oriented
application written in Eiffel with the same input/output behavior as the source. An
extensive evaluation on 10 open-source programs (including the editor vim and
the math library libgsl) demonstrates that our technique works on applications
of significant size and builds reengineered programs exhibiting elements of good
object-oriented design, such as low coupling and high cohesion of classes, and
proper encapsulation. The reengineered programs also leverage advanced fea-
tures such as inheritance, contracts, and exceptions to achieve a better usability
and a clearer design. The tool AutoOO is freely available for download.

1 Introduction

The reasons behind the widespread adoption of object-oriented programming languages
have to be found in the powerful mechanisms they provide, which help design and im-
plement clear, robust, flexible, and maintainable programs. Classes, for example, are
modular constructs that support strong encapsulation, which makes for components
with high cohesion and low coupling; inheritance and polymorphism make classes
extensible, thus promoting flexible reuse of implementations; exceptions can handle
inter-procedural behavior without polluting functional and modular decomposition; and
contracts seamlessly integrate specification and code, and support abstract yet expres-
sive designs.

Competent programmers, however, try to achieve the same design goals—encapsu-
lation, extensibility, and so on—even when they are implementing in a programming
language that does not offer object-oriented features. A developer adopting the C pro-
gramming language, for example, will use files as primitive modules collecting structs
and functions operating on them; will implement exception handling through a disci-
plined use of setjmp and longjmp; will use conditional checks and defensive program-
ming to define valid calling contexts in a way somewhat similar to preconditions.

G. Castagna (Ed.): ECOOP 2013, LNCS 7920, pp. 477–501, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

firstname.lastname@inf.ethz.ch


478 M. Trudel et al.

Following these observations, this paper describes work to automatically reengineer
procedural C programs to introduce object-oriented features, based on design elements
such as files, function signatures, and user-defined types. The result of our work is a
fully automated technique and supporting tool that extract such implicit design informa-
tion from C programs1 and use it to reengineer functionally equivalent object-oriented
applications in the Eiffel object-oriented programming language.

Given the huge availability of high-quality C applications, an automatic technique to
reengineer C into object-oriented code has a major potential practical impact: reusing
legacy code in modern environments. In fact, this is not the first attempt at supporting
object-oriented reengineering, and porting procedural applications to a modern pro-
gramming paradigm is a recurrent industrial practice. A careful analysis of related
work, which we present in Section 8, shows however that previous approaches have
limitations in terms of comprehensiveness, automation, applicability to real code, and
achieved quality of the reengineering. In contrast, our approach constitutes a significant
contribution with the following distinguishing characteristics.

– The reengineering technique is fully automatic and implemented in the freely avail-
able tool AutoOO. Users only need to provide an input C project; AutoOO outputs
an object-oriented Eiffel application that can be compiled.

– The technique and tool work on real software of considerable size, as demonstrated
by an extensive evaluation on 10 open-source programs including the editor vim
and the math library libgsl.

– As demonstrated by quantitative analysis of the products of the automatic reengi-
neering, the object-oriented code achieves good encapsulation and introduces in-
heritance, contracts, and exceptions when feasible.

– The reengineering is correct by construction: the generated object-oriented pro-
grams achieve the same functional behavior as the source programs and do not
introduce potentially incorrect refactorings that might break the code.

These characteristics make AutoOO a valuable asset to reuse good-quality software in
object-oriented environments. We have experienced the usefulness of this service first-
hand with the Eiffel user community, which is not as large as those of other mainstream
languages, and hence it lacks a wide choice of libraries in some application domains.
Prompted by numerous requests, in addition to the 10 programs discussed in Section 5,
we used AutoOO to port some C libraries that were sorely needed by the Eiffel devel-
oper’s community: the driver for the MongoDB database; the PCRE regular expression
library; and the SDL mixer audio library. After being produced with minimal effort, the
Eiffel versions of these libraries are now being used by Eiffel developers. Requests for
converting more libraries keep coming, and AutoOO is starting to be directly used by
programmers other than its authors. This gives us confidence that our work is practical
and helps solve a real and recurrent problem: automatic and scalable reuse.

While AutoOO translates C to Eiffel, the principles and reengineering techniques it
implements are based on standard object-oriented features, and hence are readily appli-
cable to other programming languages—such as C++, Java, and C#—offering classes,

1 We target ANSI C and GCC extensions.
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static members, visibility modifiers, and exceptions.2 In fact, to highlight the generality
of the reengineering, the presentation will use a Java-like syntax; this will be palatable
to readers familiar only with C-based programming languages without misrepresenting
any conceptually relevant aspect. We assume knowledge of the standard terminology
and notions of object-oriented programming [15].

Fig. 1. Object-oriented reengineering with C2Eif and AutoOO

C2Eif and AutoOO. The reengineering techniques described in this paper are com-
bined with our previous work on C2Eif [27] and implemented as part of the toolchain
shown in Figure 1. The toolchain implements an overall transformation that inputs a C
program and outputs an object-oriented Eiffel project with the same functionality. The
C source program is first processed by CIL [19], which simplifies some C constructs
(for example, there is only one type of loop in CIL). In the second stage, C2Eif translit-
erates the CIL output into procedural Eiffel, whose structure replicates that of the C
input program without introducing elements of object-oriented design. We described
this stage in previous work [27]; its details are largely independent of the reengineering
techniques implemented by AutoOO, which only uses C2Eif as a back-end. Finally,
AutoOO processes the C2Eif output, introduces the transformations described in Sec-
tions 3 and 4, and outputs the reengineered object-oriented Eiffel programs that can be
compiled.

Tool Availability. AutoOO is available online at http://se.inf.ethz.ch/
research/c2eif. The webpage includes AutoOO’s sources, pre-compiled binaries,
source and binaries of all translated programs of Table 2, and a user guide. AutoOO’s
distribution has been successfully evaluated by the ECOOP artifact evaluation com-
mittee and found to meet expectations. For ease of presentation, we will use the name
AutoOO to denote not only the tool but also the reengineering technique it implements.3

2 The only two features used by AutoOO that may not be universally available are contracts
and member renaming during inheritance. Contracts, however, are increasingly provided in
other languages as libraries or assertions (e.g., CodeContracts for C#, assert in Java). Member
renaming plays a limited role in the refactorings produced by AutoOO (Section 3.4), and a
translator targeting another language could make up for it by using the same name in the
super- and subclasses, or even (as we suggest in Section 3.4) by dropping inheritance in the
few cases where renaming is required.

3 In the latest distributions, C2Eif and AutoOO are integrated into a single translator (called
C2Eif for simplicity), which offers the option to apply the object-oriented reengineering trans-
formations presented in this paper.

http://se.inf.ethz.ch/research/c2eif
http://se.inf.ethz.ch/research/c2eif
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Outline. In the rest of the paper, Section 2 defines the goals of AutoOO reengi-
neering, how they are assessed, and the design principles followed. Section 3 discusses
how AutoOO introduces elements of object-oriented design—in particular, how it pop-
ulates classes. Section 4 discusses how it introduces contracts and exceptions. Section 5
presents the evaluation of the correctness, scalability, and performance of AutoOO
based on 10 reengineered applications and libraries. Section 6 reviews the fundamental
aspects of the object-oriented design style introduced by AutoOO and how they make
for usable reengineered programs. Section 7 discusses the current limitations of Au-
toOO. Section 8 reviews related work and compares AutoOO against existing tools and
approaches to object-oriented reengineering. Section 9 concludes and outlines future
work.

2 O-O Reengineering: Goals, Principles, and Evaluation

The overall goal of AutoOO reengineering is expressing the design implicit in proce-
dural programs using constructs and properties of the object-oriented paradigm. For
example, we restructure and encapsulate the code into classes that achieve a high cohe-
sion and low coupling, we make use of inheritance to reuse code, and so on. The main
motivation for introducing object-oriented constructs is that they can explicitly express
design and structure of programs concisely and in a way amenable to further flexible
extension and reuse.

While reengineering in its most general meaning—the reconstruction of “a system
in a new form” [2]—may also introduce new functionality or mutate the existing one
(for example, with corrective maintenance), the present work tries not to deviate from
the original intentions of developers as reflected in the procedural implementations.4

For example, we do not introduce exceptions unless the original program defines some
form of inter-procedural execution path. We adopt a conservative approach because we
want a reengineering technique that:

– is completely automatic, not just a collection of good practices and engineering
guidelines;

– always produces correct reengineerings, that is programs that are functionally
equivalent to the original procedural programs.

Improving and extending software are important tasks, but largely orthogonal to our
specific goals and requiring disparate techniques. For example, there are serviceable
tools to infer specifications from code (to mention just a few: [5,12,28]) which can be
applied atop our reengineering technique to get better code specification automatically;
but including them in our work would weaken the main focus of the contribution.

From the user perspective, AutoOO is a translator that takes an input C program and
converts it to an object-oriented Eiffel program that replicates its functionality. The rest
of this section presents other specific goals of AutoOO and how we assess them.

4 This entails that, when applied to C programs that do not contain elements conducive to object-
oriented design, AutoOO should simply introduce few changes. The experiments with the
programs of Table 1 suggest, however, that AutoOO’s heuristics are often applicable with
success.
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Case Studies. The evaluation of AutoOO, described in the following sections, targets
10 open-source programs totalling 750 KLOC. The 10 programs include 7 applications
and 3 libraries; all of them are widely-used in Linux and other “*nix” distributions.
hello world is the only toy application, which is however useful as a baseline. The
other applications are: micro httpd 12dec2005, a minimal HTTP server; xeyes
1.0.1, a widget for the X Windows System that shows two googly eyes following the
cursor movements; less 382-1, a text terminal pager; wget 1.12, a command-line
utility to retrieve content from the web; links 1.00, a simple web browser; vim 7.3, a
powerful text editor. The libraries are: libcurl 7.21.2, a URL-based transfer library
supporting protocols such as FTP and HTTP; libgmp 5.0.1, for arbitrary-precision
arithmetic; libgsl 1.14, a powerful numerical library. Section 5 discusses more de-
tails about the programs used in the experiments.

Correctness, Scalability, and Performance. In addition to systematic interactive
usage, we assess correctness of the reengineering produced by AutoOO by running
the standard regression test-suites available with the programs, hereby verifying that
the output is the same in C and Eiffel. We also consider the translation time taken by
AutoOO to guarantee that it scales up; and the performance of the Eiffel reengineered
program to ensure that it does not incur a slowdown that severely compromises usabil-
ity. Section 5 discusses these correctness and performance results.

Object-Oriented Design. AutoOO creates an object-oriented program consisting of
a collection of classes; each class aggregates data definitions (fields) and functions oper-
ating on them (methods). Section 3 presents the technique that extracts object-oriented
design; we evaluate the quality of the object-oriented design produced by AutoOO with
the following measures:

Soundness: We manually inspected 43% of all classes produced by AutoOO (all
projects but vim and libgsl) and we determined how many methods belong
to the correct class, that is are indeed methods operating on the fields of the class.5

Coupling and Cohesion: The coupling of a class is measured as the ratio: number of
accesses to members of other classes / number of accesses to members of the same
class. When this ratio is low (less than 1 in the best cases), it shows that classes are
loosely coupled and with high cohesion.6

Information Hiding Is measured as the ratio of private to public members. A high ratio
indicates that classes make good usage of information hiding for encapsulation.

Instance vs. Class Members: The ratio of instance to class members (called static
members in Java) gives an idea of the “object-orientedness” of a design. A high
ratio indicates a really object oriented design, as it makes limited usage of “global”
class fields and methods.

Inheritance: We manually inspected all uses of inheritance introduced by AutoOO
and we determined how many correctly define substitutable heir classes.

5 As we illustrate in Section 3, soundness refers to whether reengineering moves members to
the “right” classes from a design point of view. Soundness is thus a notion orthogonal to
correctness: AutoOO reengineerings do not alter behavior and hence are always correct (as
per standard regression testsuites and general usage).

6 Cohesion is normally defined as the dual of coupling.
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Contracts and Exceptions. In addition to the core elements of object-oriented de-
sign, AutoOO also introduces high-level features often present in object-oriented lan-
guages: contracts and exceptions. AutoOO clearly distinguishes the purpose of con-
tracts vs. exceptions.

Contracts. Replace annotations (not part of ANSI C but available as GCC extensions)
and encode simple requirements on a function’s input and guarantees on its output;
they are discussed in Section 4.1.

Exceptions. Replicate the behavior of setjmp and longjmp which divert the structured
control flow in exceptional cases across functions and modules; they are discussed
in Section 4.2.

3 Object-Oriented Design

Table 1. Object-oriented design metrics after each reengineering step applied to the ten case study
programs
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1. source files 12,445 0 3,628 5,337 – 8.87 – 0.33 0
(0%) (60%) 1.54

2. function signature 7,724 4,721 3,628 5,337 94% 2.33 – 0.88 0
(38%) (60%) 1.20

3. call graph 6,471 5,974 2,881 6,084 96% 2.00 0.12 1.12 0
(47%) (68%) 1.06

4. inheritance 6,471 5,974 2,881 6,084 96% 2.00 0.12 1.12 4
(47%) (68%) 1.06

AutoOO produces object-oriented designs that consist of collections of classes. The
generated classes are of two kinds with different purposes:

– a datatype class combines the data definitions translating some C type definition
(struct or union) with a collection of instance methods translating C functions
operating on the type.

– a bundle class collects global variables and global functions present in some C
source file and makes them available to clients as class members.

Only datatype classes are germane to object-oriented design, which emphasizes proper
encapsulation of data definitions with the operations defined on them; bundle classes,
however, are still necessary to collect elements that do not clearly belong exclusively
to any datatype, such as globals shared by multiple clients. Thus, bundle classes are a
safe fall-back that keeps the original modular units (the source files) instead of forcing
potentially unsound refactorings.

Corresponding to their roles, datatype classes contain mainly “proper” instance mem-
bers (Section 3.3 discusses the exceptions), whereas bundle classes contain only class
members (also called static).

AutoOO generates datatype and bundle classes in four steps:
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1. Source file analysis creates the bundle classes and populates them based on the
content of source files; it creates a datatype class for each structured type definition
(struct or union).

2. Function signature analysis refactors methods from bundle to datatype classes,
moving operations closer to the data definition they work on.

3. Call graph analysis refactors members from bundle to datatype classes, and shuf-
fles methods among datatype classes, moving members to classes where they are
exclusively used.

4. Inheritance analysis creates inheritance relationships between datatype classes
based on their fields.

The following subsections 3.1–3.4 describe the steps in detail with examples.
Table 1 reports how the various metrics mentioned in Section 2 change as we ap-

ply the four steps to the 10 case study programs. For each reengineering step, Table 1
reports:

– The number of bundle and datatype members7 created, partitioned in methods and
fields.

– The percentage of sound datatype methods.8 A method m of a datatype class T—
that contains the data definition of a struct T or union T—is sound if manual anal-
ysis confirms that m implements an operation whose primary purpose is modifying
or querying instances of T.

– The average (median) coupling of classes, where the coupling of a class T (with
respect to the rest of the system) is defined as follows. An access is the read or
write of a field, or a method call; an access in the body of a method m of T is in
if it refers to a member of T other than m; it is out if it refers to a member of a
class other than T. When counting accesses in a method m we ignore duplicates:
if m’s body calls r more than once, we only count it as one access. T’s coupling is
the ratio of out to in accesses of all its members. For each step, Table 1 reports two
values of coupling; the value on top puts all classes of all programs together (hence
larger projects dominate), while the bottom value computes medians per programs
and then the median across programs.

– The hiding of classes, measured as the ratio of private and protected to public
members.

– The ratio of instance to class members.
– The number of classes defined using inheritance.

The rest of this section discusses the figures shown in Table 1 to demonstrate how each
reengineering step improves these object-oriented design metrics. A word of caution is
necessary about the reliability of metrics such as those we use to assess the improve-
ment of design quality, something which eludes general quantitative definitions [3].
Nonetheless, metrics give an idea of how the design changes through the various trans-
formations; while the exact values they report should be taken with a grain of salt, they
are still useful to complete the picture of how AutoOO performs in practice.

7 A bundle (or datatype) member is a member of a bundle (or datatype) class.
8 Evaluated on all projects but vim and libgsl, as discussed in Section 2.



484 M. Trudel et al.

3.1 Source File Analysis

For each source file F.c in the program, the first reengineering step creates a bundle
class F and populates it with translations of all the global variables and function defini-
tions found in F.c. For each definition of a structured type T in F.c, the first step also
creates a datatype class T that contains T ’s components as fields. AutoOO only has to
consider structured type definitions using struct or union; atomic type definitions and
enums are handled in the initial processing by C2Eif. Since AutoOO’s reengineering
treats the two kinds of structured type declarations uniformly, we only deal with structs
in the following to streamline the presentation; the handling of unions follows easily.

int majority age = 18;

struct person
{

int age;
bool sex;

};

void set age(struct person ∗p, int new age) {
if(new age≤ 0) return;
p→age = new age;

}

bool overage(int age) {
return (age >majority age);

}

bool is adult(struct person ∗p) {
return overage(p→age);

}

Fig. 2. C source file PersonHandler.c.

For example, when processing the C source file in Figure 2, the first step generates
the datatype class Person and the bundle class PersonHandler in Figure 3.

Source file analysis sets up the dual bundle/datatype design and defines the classes
of the system. The result is still far from good object-oriented design as the datatype
classes are just empty containers mapping structs one-to-one, and in fact we have
no hiding and a low instance/class member ratio (the only instance members are the
datatype fields).

The overall coupling (first row in Table 1) is also quite high after step 1. This does not
come as a surprise: because all methods are located in bundle classes, every read or write
of a struct field from the original C code becomes an out access. The proliferation of
out accesses is especially evident in libgmp, where the majority of modules have only
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class Person
{

int age;

boolean sex;
}

class PersonHandler
{

static int majority age = 18;

static void set age(Person p, int new age) {
if(new age≤0) return;
p.age = new age;

}

static boolean overage(int age) {
return (age >majority age);

}

static boolean is adult(Person p) {
return overage(p.age);

}
}

Fig. 3. Datatype class Person (left) and bundle class PersonHandler (right) initially created for
the C file in Figure 2

out accesses. In general, coupling is higher for libraries in our experiments; this may
indicate that coupling for library code should be measured differently, for example by
considering the library in connection with a client. In any case, this is not a problem for
our evaluation: the value of coupling after step 1 is merely a baseline that corresponds
to purely procedural design; our goal is to measure how this value changes as we apply
the next reengineering steps.

3.2 Function Signature Analysis

The second reengineering step moves methods from bundle to datatype classes accord-
ing to their signature, with the intent of having data and methods operating on them in
the same class.

Consider a method m of bundle class M with signature

t0 m (t1 p1,t2 p2,. . .,tn pn) ,

for n ≥ 0. An argument pk of m is data-bound if its type tk = T∗ (pointer to T),
where T is a datatype class. When a routine has more than one such argument, we
consider only the first one in signature order. A data-bound argument pk is globally
used by m if it is accessed (read or written) at least once along every path of m’s control
flow graph, except possibly for argument handling paths. An argument handling path
is a path guarded by a condition that involves some argument ph, with h �= k, and
terminated by a return.

For each method m of a bundle class M that has a data-bound argument pk of
type tk = T∗ which is globally used, the second reengineering step moves m into the
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datatype class T and changes its signature—which becomes non-static and drops argu-
ment pk—and its body—which refers to pk implicitly as this. Accordingly, m’s body
may have to adjust other references to members of M that are now in a different class;
also any call to m has to be adjusted following its new signature.

Continuing the example of Figure 2, the second reengineering step determines that
set age and is adult can be refactored: argument p is data-bound and globally used in
both methods (with the first instruction in set age being an argument handling path).
Hence, the two methods are moved from class PersonHandler to class Person which
becomes:

class Person
{

int age;

boolean sex;

void set age(int new age) {
if(new age≤0) return;
age = new age;

}

boolean is adult() {
return PersonHandler.overage(age);

}
}

Function signature analysis introduces fundamental elements of object-oriented design.
As reported in Table 1, manual inspection reveals that 94% of the methods moved to
datatype classes are indeed operations on that type; this means that 97% of the members
of datatype classes (fields plus sound methods) are refactored correctly. Remember that
our definition of soundness refers to design, not to correct behavior: even the 6% =
100%− 94% “unsound” methods behave correctly as in the original C programs, even
if they are arguably not allocated to the best class. Inspection also reveals some common
causes of unsound refactorings. Some functions use a generic pointer (type void∗) as
first argument, and then cast it to a specific struct∗ in the code; and in a few cases the
pointer arguments are simply not reliable indicators of data dependence or are in the
wrong order (more details below).

Coupling drastically reduces after step 2, because many methods that access fields of
datatype classes are now located inside those classes. This dominates over the increase
in out accesses to bundle members from within the methods moved to datatype classes,
also introduced by step 2. In particular, function signature analysis mitigates the high
coupling we measured in the libraries. Finally, many methods have become instance
methods, with an overall instance/class ratio of 0.88.

How restrictive is the choice to consider only the first data-bound argument to a
datatype class for deciding where to move methods? For example, if the code in Fig-
ure 2 had another function void do birthday(struct person ∗p, struct log ∗l) that in-
creases p’s age and writes to the log pointed to by l, should we move do birthday to
datatype class log instead of person? The empirical evidence we collected suggests that
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our heuristics is generally not restrictive: we manually analyzed all 77 functions with
multiple arguments of type “pointer to struct” in the case study programs and found
only 3 cases where the “sound” refactoring would target an argument other than the
first.

Another feature of function signature analysis as it is implemented in AutoOO is the
choice to ignore methods with an argument p whose type t corresponds to a struct,
but that is passed by copy (in other words, whose original type in C is t rather than
t∗); we found 131 such cases among the programs of Table 2 and only 56 (43%) of
them would have generated a sound refactoring. In all, we preferred not to consider
arguments passed by copy because it would lead to unsound refactoring in the majority
of cases; a more sophisticated analysis of this aspect belongs to future work.

Finally, the refactoring requirement that a data-bound argument must be globally
used is not necessary, in most cases, to achieve soundness, but dropping it would intro-
duce incorrect translations that change the behavior of the program in some cases. In
fact, a function with an argument not used globally includes valid executions where the
argument is allowed to be null; therefore, it cannot become an instance method which
always has an implicit non-null target this.

As an interesting observation about the application of reengineering to the programs
of Table 2, we found that 40% of the methods moved to datatype classes in step 2 have
a name that includes the datatype class name as prefix. For example, the methods oper-
ating on a datatype class hash table in wget are named hash table get, hash table put,
and so on. This suggests that, in the best cases, even purely syntactic information carries
significant design choices. AutoOO takes advantage of this finding and removes such
prefixes to increase the readability of the created code (see also the client example in
Section 6).

3.3 Call Graph Analysis

The third reengineering step moves more members to datatype classes according to
where the members are used, with the intent of encapsulating “utility” members to-
gether with the datatype definitions that use them exclusively.

Consider a member n of any class N that is accessed (read, written, or called) only in
a datatype class T. For each such member n, the third reengineering step moves n into
the datatype class T. If n is an instance method or a class method, it becomes an instance
method; if it is a class field, it remains a class field to preserve the original semantics
of static fields corresponding to global C variables (this is the only case where we add
class members to datatype classes). Members moved to datatype classes in this step
also become private, since they are not used outside the class they are moved to. Since
moving a member out of a class changes the global call graph, AutoOO performs the
third reengineering step iteratively: it starts with the member n with the largest number
of accesses, and updates the call graph after every refactoring move, recalculating the
set of candidate members for the next move.

Continuing the example of Figure 2, assume that method overage of bundle class
PersonHandler is only called by is adult in datatype class Person, and that field
majority age is instead read also by other modules. Then, AutoOO moves overage to
Person where it becomes non-static and private:
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private boolean overage(int age) {
return (age >PersonHandler.majority age);

}
The field majority age, instead, stays unchanged in class PersonHandler.

As reported in Table 1, call graph analysis refines the object-oriented design and
introduces hiding when possible, that is for 12% of the members. Even if there are 2,290
private members, these are localized in only 139 classes, hence the average hiding per
class is low (3% mean). Coupling decreases once more, as a result of moving utility
methods to the class where they are used. The percentage of sound refactored methods
increases to 96%; overall, 98% of the datatype members are refactored correctly. Step
3 also makes instance members the majority (53% of all members, or 1.12 instance
member per class member).

Under the conservative approach taken by AutoOO, which creates functionally equiv-
alent code, the values of hiding, coupling, and instance/class members reached after
steps 1–3 strike a fairly good balance between introducing object-oriented features and
preserving the original design as not to harm understandability due to unsound mem-
bers in classes of the reengineered application. The example in Section 6 reinforces
these conclusions from a user’s perspective.

3.4 Inheritance Analysis

The fourth reengineering step introduces inheritance in order to make existing subtyp-
ing relationships between datatype classes explicit. In the original C code subtyping
surfaces in the form of casts between different struct pointer types. Because the lan-
guage does not provide any way to make one struct type conform to another, modelling
subtyping in C requires frequent upcasting (conversion from a subtype to a supertype)
as well as downcasting (from a supertype to a subtype). Inheritance analysis finds such
casting patterns and establishes inheritance relationships between the involved types.

Consider two type declarations in the source C program:

struct r { t1 a1; t2 a2; . . . ; tm am; };
struct s { u1 b1; u2 b2; . . . ; un bn; };

We say that type s is cast to type r if there exists, anywhere in the program’s code, a
cast of the form (struct r∗) e with e an expression of type struct s∗. We say that type
s extends type r if n > m9 and, for all 1 ≤ i ≤ m, the types ti and ui are equivalent.
For every such types r and s such that s extends r and s is cast to r, r is cast to s, or
both, the fourth reengineering step makes the datatype class for s inherit from r. Using
a renames clause10 to rename fields with different names, s becomes:

class s extends r renames a1:b1, a2:b2, . . ., am:bn
{

um+1 bm+1;
. . .

9 The case n = m could be also supported but would rarely be useful with the programs tried
so far.

10 Available natively in Eiffel and not in Java, but whose semantics is straightforward.



Really Automatic Scalable Object-Oriented Reengineering 489

un bn;
// Rest of the class unchanged.

}
Notice that AutoOO bases inheritance analysis on type information only, not on field
names. Therefore, it requires renaming of fields in general; implementing this fea-
ture in Java or similar languages, where renaming is not possible, would require some
workaround (or simply dropping inheritance when renaming is required).

Continuing the example of Figure 2, assume another struct declaration is
struct student { int age; bool sex; int gpa; } and that, somewhere in the program, a
variable of type person ∗ is cast to (student ∗). Then, datatype class Student becomes:

class Student extends Person
{

int gpa;
/∗...∗/

}
While AutoOO identified 1,875 pairs t1, t2 of types where t1 extends t2, and 96 pairs
where t1 is cast to t2, only 4 pairs satisfy both requirements. Hence, the introduction of
inheritance in our experiments is limited to 4 classes (2 in each of xeyes and less).
This is largely a consequence of the original C design where extensions of structs
along these lines are infrequent, combined with the constraint that our reengineering
create functionally equivalent code and be automatic. All few uses of inheritance Au-
toOO identified are, however, sound, in that the resulting types are real subtypes that
satisfy the substitution principle. In contrast, manual inspection reveals that none of the
other 92 = 96− 4 pairs of cast types determine classes that are related by inheritance.
Introducing inheritance for the other 1,871 pairs solely based on one type extending the
other is most likely unsound without additional evidence. Many structs, for example,
are collections of integer fields, but they model semantically disparate notions that are
not advisable to combine. The other metrics in Table 1 do not change after inheritance
analysis, assuming we count fields in the flattened classes.

Interestingly, the two instances of inheritance we found in less use renaming to
define lists as simplified header elements. For example:

struct element list {
struct element ∗first;

};

struct element {
struct element ∗next;
char ∗content;

};

The two types are indeed compatible, and the renaming makes the code easier to under-
stand even without comments.

4 Contracts and Exceptions

AutoOO introduces contracts and exceptions to improve the readability of the classes
generated in the reengineering. Section 4.1 explains how AutoOO builds contracts from
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compiler-specific function annotations and from simple implicit properties of pointers
found by static analysis. Section 4.2 discusses how exceptions can capture the semantics
of longjmp.

4.1 Contracts

Contracts are simple formal specification elements embedded in the program code that
use the same syntax as Boolean expressions and are checked at runtime. AutoOO con-
structs two common kinds of contracts that annotate methods, namely preconditions
and postconditions. A method’s precondition (introduced by requires) is a predicate
that must hold whenever the method is called; it is the caller’s responsibility to estab-
lish the method’s precondition before calling it. A method’s postcondition (introduced
by ensures) is a predicate that must hold whenever the method terminates; it is the
method’s body responsibility to guarantee the postcondition upon termination.

AutoOO creates contracts from two information sources commonly available in C
programs:

– GCC function attributes;
– globally used pointer arguments.

Based on these, AutoOO added 3,773 precondition clauses and 13 postcondition clauses
to the programs in Table 2.

GCC Function Attributes. The GCC compiler supports special function annota-
tions with the keyword attribute . GCC can use these annotations during static anal-
ysis for code optimization and to produce warnings if the attributes are found to be
violated. Among the many annotations supported—most of which are relevant only
for code optimization, such as whether a function should be inlined—AutoOO con-
structs preconditions from the attribute nonnull and postconditions from the attribute
noreturn. The former specifies which of a function’s arguments are required to be
non-null; the latter marks functions that never return (for example, the system func-
tion exit). For each method m (t1 p1, . . . , tm pm) corresponding to a C function with
attribute nonnull (i1, . . . , in), with n ≥ 0 and 1 ≤ i1, . . . , in ≤ m denoting arguments
of m by position, AutoOO adds to m the precondition

requires pi1 �= null, pi2 �=null, . . ., pin �=null

that the arguments pi1 , . . . , pin be non-null. For each method m corresponding to a C
function with attribute noreturn, AutoOO adds to m the postcondition ensures false
that would be violated if m ever terminates.

Extending the example of Figure 2, the function:

attribute (( nonnull (2), noreturn ))
void kill(struct person ∗p, struct person ∗q) {

/∗...∗/
printf(”A person is killed at age %d”, q→age);
exit(1);

}
gets the following signature after reengineering (assuming the first argument becomes
this):
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void kill(Person q) requires q �= null ensures false

GCC function attributes determined 266 precondition and 13 postcondition clauses in
the programs of Table 2.

Globally Used Pointers. Section 3.2 defined the notion of globally used argument:
an argument that is accessed (read or written) at least once along every path in a
method’s body. Based on the same notions, for each pointer argument p of a method
m that is globally used in m on all paths (including argument-handling paths), AutoOO
adds to m the precondition requires p �=null that p be non-null. The precondition does
not change the behavior of the method: if m were called with p = null, m would even-
tually crash in every execution when accessing a null reference, and hence p �= null is
a necessary condition for m to correctly execute.

Through globally used pointer analysis, AutoOO introduced 3,507 precondition
clauses in the programs of Table 2.

Defensive programming is a programming style that tries to detect violations of im-
plicit preconditions and takes countermeasures to continue execution without crashes.
For example, when function set age in Figure 2 is called with a non-positive new age,
it returns without changing p’s age field, thus avoiding corrupting it with an invalid
value. While defensive programming and programming with contracts have similar
objectives—defining necessary conditions for correct execution—they achieve them
in very different ways: while contracts clearly specify the semantics of interfaces and
assign responsibilities for correct execution, defensive programming just tries to com-
municate failures while working around them. This fundamental difference is the rea-
son why we do not use contracts to replace instances of defensive programming when
reengineering: doing so would change the behavior of programs. In the case of set age,
for example, a precondition requires new age > 0 would cause the program to termi-
nate with an error whenever the precondition is violated, whereas the C implementation
continues execution without effects. In addition, C functions often use integer return ar-
guments as error codes to report the outcome of a procedure call; introducing contracts
would make clients incapable of accessing those codes in case of error.

Relaxed Contracts for Memory Allocation. The GCC distribution we used in the
experiments provides attribute annotations (see Section 4.1) also for system li-
braries. In particular, the memory allocation functions memcpy and memmove:

attribute (( nonnull (1, 2) ))
extern void ∗memcpy(void ∗dest, const void ∗src, size t n);

attribute (( nonnull (1, 2) ))
extern void ∗memmove(void ∗dest, const void ∗src, size t n);

require that their pointer arguments dest and src be non-null. By running the reengineer-
ing produced by AutoOO, we found that this requirement is often spuriously violated at
runtime: when the functions are called with the third argument n equal to 0, they return
without accessing either dest or src, which can therefore safely be null. Correspond-
ingly, AutoOO builds the contracts for these functions a bit differently:

requires n == 0 || (dest �=null && src �=null)
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that is dest and src must be non-null only if n is non-zero. This inconsistency in GCC’s
annotations does not have direct effects at runtime in C because annotations are not
checked. We ignore whether it might have other subtle undesirable consequences as the
compiler may use the incorrect information to optimize binaries.

4.2 Exceptions

Object-oriented programming languages normally include dedicated mechanisms for
handling exceptional situations that may occur during execution. While error handling
is possible also in procedural languages such as C, where it is typically implemented
with functions returning special error codes, exceptions in object-oriented languages are
more powerful because they can traverse the call stack searching for a suitable handler;
this makes it possible to easily cross the method and class boundaries in exceptional
situations, without need to introduce a complex design that harms the natural modular
decomposition effective in all non-exceptional situations.

C programmers can explicitly implement a similar mechanism that jumps across
function boundaries with the library functions setjmp (save an arbitrary return point)
and longjmp (jump back to it). AutoOO detects usages of these library functions and
renders them using exceptions in the object-oriented reengineering. AutoOO defines a
helper class CE EXCEPTION which can use Eiffel’s exception propagation mechanism
to go back in the call stack to the allocation frame of the method that called setjmp.
There, local jump instructions reach the specific point saved with setjmp within the
method’s body. We do not discuss the details of the translation because they refer to
several low-level mechanisms discussed in [27] that are out of scope in the present
paper. From the point of view of the reengineering, however, the translation expresses
the complex semantics of longjmp naturally through the familiar exception handling
mechanism.

AutoOO found 6 usages of longjmp in the programs of Table 2, which it replaced
with exceptions.

We did not make a more extensive usage of exceptions, for example for replacing
return error codes. In many cases, it would have complicated the object-oriented design
and slowed down the program, without significant benefits. A fine-grained analysis of
the instances of defensive programming, with the goal of selecting viable candidates
that can be usefully translated through exceptions, belongs to future work.

5 Correctness, Scalability, and Performance

In addition to the metrics of object-oriented design displayed in Table 1 and discussed
in the previous sections, we evaluated the behavior of the reengineering produced by
AutoOO on the 10 programs in Table 2. All the experiments ran on a GNU/Linux box
(kernel 2.6.37) with a 2.66 GHz Intel dual-core CPU and 8 GB of RAM, GCC 4.5.1,
CIL 1.3.7, EiffelStudio 7.0.8.

The reengineering of each program proceeds as previously shown in Figure 1, with
the end-to-end process (from C source to object-oriented Eiffel output) being push-
button.



Really Automatic Scalable Object-Oriented Reengineering 493

Table 2. Reengineering of 10 open-source programs

SIZE (LOCS) TRANS- BINARY

PROCEDURAL O-O # LATION SIZE

(C) (EIFFEL) CLASSES (S) (MB)
hello world 8 15 1 1 1.1
micro httpd 565 1,983 16 1 1.3
xeyes 1,463 10,665 77 1 1.6
less 16,955 22,709 75 5 2.3
wget 46,528 61,040 178 24 4.1
links 70,980 108,726 227 31 12.5
vim 276,635 414,988 669 138 22.6
libcurl 37,836 70,413 272 17 –
libgmp 61,442 82,379 223 20 –
libgsl 238,080 378,025 729 81 –
TOTAL 750,492 1,150,943 2,467 319 45.5

For each program used in our evaluation, Table 2 reports: the size of the source
procedural program in C (after processing by CIL); the size of the reengineered object-
oriented program in Eiffel output by AutoOO; the number of classes generated by the
reengineering; the source-to-source time taken by the reengineering (including both
C2Eif’s translation and AutoOO’s reengineering, but excluding compilation of Eif-
fel output to binary); the size of the binary after compiling the Eiffel output with
EiffelStudio11.

Correctness. In all cases, the output of AutoOO successfully compiles with Eif-
felStudio without need for any adjustment or modification. After compilation, we ran
extensive trials on the compiled reengineered programs to verify that they behave as in
their original C version. We performed some standard usage sessions with the interac-
tive applications (xeyes, less, links, and vim) and verified that they behave as
expected and they are usable interactively. We also performed systematic usability tests
for the other applications (hello world, micro httpd, and wget) which can be
used for batch processing; and ran standard regression testsuites (also automatically
translated from C to Eiffel) on the libraries. All usability and regression tests execute
and pass on both the C and the translated Eiffel versions of the programs, with the same
logged output.

Scalability of the reengineering process is demonstrated by the moderate translation
times (second to last column in Table 2) taken by AutoOO: overall, reengineering 750
KLOC of C code into 1.1 MLOC of Eiffel code took less than six minutes.

Performance. We compared the performance of AutoOO’s reengineered out-
put against C2Eif’s non-reengineered output for the non-interactive applications and
libraries of Table 2. The performance is nearly identical in C2Eif and AutoOO for
all programs but the libgsl testsuite, which even executed 1.33 times faster in
the reengineered AutoOO version. This shows that the object-oriented reengineering

11 In EiffelStudio, libraries cannot be compiled without a client.
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produced by AutoOO improves the design without overhead with respect to a bare
non-reengineered translation. The basic performance overhead of switching from C to
Eiffel—analyzed in detail in [27]—significantly varies with the program type but, even
when it is pronounced, it does not preclude the usability of the translated application or
library in standard conditions. These conclusions carry over to programs reengineered
with AutoOO, and every optimization introduced in the basic translation provided by
C2Eif will automatically result, at the end of the tool chain, in faster reengineered
applications.

6 Discussion: AutoOO’s Object-Oriented Style

All object-oriented designs produced by AutoOO deploy a collection of classes parti-
tioned into bundle and datatype classes, as explained in Section 3. While this prevents
a more varied gamut of designs from emerging as a result of the automatic reengineer-
ing, in our experience it does not seem to hamper the readability and usability of the
reengineered programs, as we now briefly demonstrate with a real-world example. We
attribute this largely to the fact that AutoOO produces sound reengineering in most
cases, and programs with correct behavior in all cases. Therefore, the straightforward
output design is understandable by programmers familiar with the application domain,
who can naturally extend or modify it to introduce new functionality or a more refined
design.

As mentioned in Section 1, we have distributed to the Eiffel developers community a
number of widely used C libraries translated with AutoOO. One of them is MongoDB,
a document-oriented (non-relational) database12. Consider a client application that uses
MongoDB’s API to open a connection with a database and retrieve and print all docu-
ments in a collection tutorial.people. Following the API tutorial, this could be written
in C as shown in Figure 4 on the left. A client using the MongoDB library translated
and reengineered by AutoOO would instead use the syntax shown in Figure 4 on the
right.

On the one hand, the two programs in Figure 4 are structurally similar, which entails
that users familiar with the C version of MongoDB will have no problem switching to its
object-oriented counterpart, and would still be able to understand the C documentation
in the new context. On the other hand, the program on the right nicely conforms to
the object-oriented idiom: variable definitions are replaced by object creations (lines
2 and 7); and function calls become instance method calls (lines 3, 8, 12, and 17).
Method names are even more succinct, because they lose the prefixes “mongo ” and
“mongo cursor ” unnecessary in the object-oriented version where the type of the target
object conveys the same information more clearly.

The only departure from traditional object-oriented style is the call to the cursor
destruction function on line 14, which remains a static method call with identical sig-
nature. AutoOO did not turn it into an instance method because its implementation can
be called on null pointers, in which case it returns without any effect:

int mongo cursor destroy(mongo cursor ∗cursor) { if(!cursor) return 0; /∗ ... ∗/ }
12 http://www.mongodb.org/display/DOCS/C+Language+Center

http://www.mongodb.org/display/DOCS/C+Language+Center
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1 // connect to database
2 mongo conn[1];
3 int status = mongo connect(conn,
4 ”127.0.0.1”, 27017);
5
6 // iterate over database content
7 mongo cursor cursor[1];
8 mongo cursor init(cursor, conn,
9 ”tutorial.people”);

10 while(mongo cursor next(cursor)
11 == MONGO OK) {
12 bson print(&cursor→current);
13 }
14 mongo cursor destroy(&cursor);
15
16 // disconnect from database
17 mongo destroy(conn);

// connect to database
Mongo conn = new Mongo();
int status = conn.connect(

”127.0.0.1”, 27017);

// iterate over database content
MongoCursor cursor = new MongoCursor();
cursor.init(conn.address,

”tutorial.people”);
while(cursor.next() == MONGO OK)
{

cursor.current.print();
}
Mongo.mongo cursor destroy(cursor.address);

// disconnect from database
conn.destroy();

Fig. 4. A MongoDB client application written in C (left) and the same application written for the
AutoOO translation of MongoDB (right)

As discussed in Section 3.2, AutoOO does not reengineer such functions because the
target of an object-oriented call is not allowed to be null. In such cases, users may
still decide that it is safe to refactor by hand such examples; in any case, the AutoOO
translation provides a proper reengineering of most of the library functionalities.

7 Limitations

By and large, the evaluation with the programs of Table 2 demonstrates that AutoOO is
a scalable technique applicable to programs of considerable size and producing good-
quality object-oriented designs automatically. This section discusses the few limitations
that remain, distinguishing between those of the underlying C to Eiffel translation and
those of the object-oriented reengineering.

C to Eiffel Translation. As discussed in detail in [27], the raw translation from
C to Eiffel provided by C2Eif does not currently support: a few rare programming
patterns that rely on specific memory layouts, such as how the arguments passed to
a function are stored next to one another; and a few GCC exotic extensions. Using
CIL as preprocessor, while it contributes to simplifying and maintaining the translation,
also carries its own limitations: K&R legacy C is not supported; and comments are
stripped and formatting is lost, and hence this information cannot be used to improve
the readability and formatting of the translated Eiffel code. None of these limitations is
intrinsic to the AutoOO approach, and lifting them is largely an engineering effort: we
plan to remove the dependency on CIL as well as to support additional non-standard
features of the C language if they will be often needed by users of AutoOO.

Object-Oriented Reengineering. All the limitations of our reengineering technique
follow the decision to be conservative, that is not to change the behavior in any case, to
only extract design information already present in the C programs, and to only introduce
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refactorings with empirically demonstrated high success rates, in terms of accurately
capturing design elements. For example, Section 3.2 discussed how a refactoring based
on struct arguments passed by copy would lead to less than 50% of sound refactorings,
while we normally aim at success rates over 90%.

While these requirements make it possible to have a robust and fully automatic tech-
nique, they may also be limiting in some specific cases where users are willing to push
the reengineering, accepting the risk of having to revise the output of AutoOO before
using it.

Formal Correctness Proofs. A final limitations of our work is the lack of formal
correctness proofs of the basic C translation and of the reengineering steps. While the
evaluation (discussed in Section 5) extensively tested the translated applications without
finding any unexpected behavior—which gives us good confidence in the robustness of
the results—this still falls short of a fully formal approach such as [4]. This is planned
as future work.

8 Related Work

Reengineering [2] is a common practice—and an expensive activity [22]—in profes-
sional software development. Given the wide adoption of languages with object-oriented
features, object-oriented reengineering is frequently necessary. In this section, we briefly
review some general literature on reengineering of legacy systems (8.1), followed by a
detailed analysis of significant approaches to object-oriented reengineering (8.2). For
lack of space, we do not include a general review of refactoring techniques and meth-
ods [7], as the focus of this paper is extracting object-oriented designs automatically
from the analysis of procedural code rather than refactoring per se.

8.1 Reengineering of Legacy Systems

The main goal in reengineering a legacy system is raising the level of abstraction. Typ-
ically, this is achieved by translating an implementation written in an old programming

Table 3. Tools translating C to object-oriented languages
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Ephedra [14] Java no no + no no no no
C2J++ [26] Java no no + no no no no
C2J [21] Java no yes − no yes no no
C++2Java [25] Java no yes + no no no no
C++2C# [25] C# no yes + no no no no
AutoOO Eiffel yes yes + yes yes yes yes
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language—such as K&R C, Fortran-77, or old COBOL—into a modern programming
language such as Java [16,1,29]. This process does not normally include improving
the object-oriented design but only making the same system available in a supported
environment.

To summarize the state-of-the art in this area, Table 3 lists five tools that translate
C to an object-oriented language without object-oriented reengineering and compares
them against AutoOO. The table is taken from our previous work on C2Eif [27], the C
to Eiffel translator on top of which we built AutoOO—which therefore appears as last
entry of the table. For each tool, Table 3 reports (see [27] for more details):

– The target language.
– Whether the tool is completely automatic, that is whether it generates translations

that are ready for compilation without need for any manual rewrite or adaptation.
– Whether the tool is available for download and usable.
– An assessment of the readability of the code produced.
– Whether the tool supports unrestricted calls to external libraries, unrestricted

pointer arithmetic, unrestricted gotos, and inlined assembly code.

Even at the level of bare translation of C programs without object-oriented reengineer-
ing, the currently available tools do not support the full C language used in real pro-
grams because they cannot translate features such as external libraries and unrestricted
pointer arithmetic, whose exact behavior is very complicated to get right but is neces-
sary to have fully automatic translation tools. A recent comparative evaluation covering
a wide range of tools for legacy system reengineering [18] points to similar limitations
that prevent achieving complete automation. AutoOO, in contrast, can count on C2Eif’s
full support of the complete C language used in real programs, which underpins the
development of a robust and scalable object-oriented reengineering tool.

8.2 Object-Oriented Reengineering

Among the broad literature on reengineering for modern systems, we identified nine
approaches that target specifically object orientation. Table 4 summarizes their main
features and compares them with ours. Following the primary goals of our work, de-
scribed in Section 2, Table 4 lists:

– The source and the target languages (or if it is a generic methodology).
– Whether tool support was developed, that is whether there exists a tool or the paper

explicitly mentions the implementation of a tool. A YES in small caps denotes the
only currently publicly available tool, namely AutoOO.

– Whether the approach is completely automatic, that is if it performs O-O reengi-
neering without any user input other than providing a source procedural program.

– Whether the approach supports the full source language or only a subset thereof.
– Whether the approach has been evaluated, that is whether the paper mentions evi-

dence, such as a case study, that the approach was tried on real programs. If avail-
able, the table indicates the size of the programs used in the evaluation.

– Whether the approach performs class identification, that is if it groups fields and
methods in classes.
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– Whether the reengineering technique introduces object-oriented features, namely
it identifies instance methods (as opposed to class methods which should have a
restricted role in object orientation) and uses of inheritance.

Table 5 gives some notes about limitations of the approaches.

Table 4. Comparison of approaches to O-O reengineering
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Gall [9] methodology no no – yes yes ? no
Jacobson [10] methodology no no – yes yes no –
Livadas [13] C–C++ yes no no no yes yes no
Kontogiannis [11] C–C++ yes no ? 10KL yes ? yes
Frakes [8] C–C++ yes no no 2KL yes ? no
Fanta [6] C++–C++ yes no no 120KL yes ? no
Newcomb [20] Cobol–OOSM yes yes no 168KL yes ? no
Mossienko [17] Cobol–Java yes no no 25KL yes no no
Sneed [23] Cobol–Java yes yes no 200KL yes ? no
Sneed [24] PL/I–Java yes yes no 10KL yes ? no
AutoOO C–Eiffel YES yes yes 750KL yes yes yes

Table 5. Overview of limitations

LIMITATIONS

Gall [9] requires assistance of human expert
Jacobson [10] only defines a process; 3 case studies from industry
Livadas [13] prototype implementation; no support for pointers
Kontogiannis [11] sound reengineering for only about 36% of the source code
Frakes [8] translation may change the behavior; requires expert judgement
Fanta [6] requires expert judgement
Newcomb [20] only a model is generated, no program code
Mossienko [17] only partial automation; the translation may change the behavior
Sneed [23] domain-specific translation
Sneed [24] domain-specific translation

[20] and [23] are the only authors that report evaluations on code bases of significant
size. [20]’s reengineering, however, produces OOSM (hierarchical object-oriented state
machine models) models; mapping OOSM to a standard compilable object-oriented
language is not covered. [23] reports that some manual corrections of the automatically
generated Java code were necessary during the translation of the code base, although
these manual interventions were later implemented as an extension of the translator;
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anyway, [23] targets the translation of domain-specific applications and in fact does not
support the full input language; the authors of [23] expect that tackling new applications
will require extending the tool.

[11]’s approach to introduce inheritance is based on the analysis of struct fields and
of function signatures. AutoOO also uses struct field analysis to introduce inheritance,
but limits the analysis to field types and ignores field names (see Section 3.4).

A direct detailed comparison of other tools with AutoOO on specific object-oriented
features is difficult to obtain as several of these works focus on some aspects of the
reengineering but provide few concrete details about other aspects or about how the
reengineering is performed on real code. This is also the reason for the presence of “?”
in the column “instance methods”, corresponding to cases where we could not figure
out the details of how methods are refactored. In light of the evidence collected (or lack
thereof), it is fair to say that identifying instance methods automatically without expert
judgement is an open challenge; and so are full source language support and complete
automation. These features are a novel contribution of AutoOO.

9 Conclusions and Future Work

We presented a new completely automatic approach to object-oriented reengineering
of C programs and a freely available supporting tool AutoOO. AutoOO scales to ap-
plications and libraries of significant size, and produces reengineered object-oriented
programs that are directly compilable and usable with the same behavior as the source
C programs. The reengineered object-oriented designs produced by AutoOO encap-
sulate fields and methods operating on them with a high degree of soundness—thus
lowering coupling and increasing cohesion—and make judicious usage of inheritance,
contracts, and exceptions to improve the quality of the object-oriented design.

Future Work. The remaining limitations of AutoOO, discussed in Section 7, suggest
items for future work:

– When we recognize the usage of standard library services (e.g., generic data struc-
tures), we will replace them with their Eiffel counterparts when possible, extending
existing approaches for mapping APIs [30].

– Section 3 discussed possible additional sources of information to improve the
amount of sound reengineered methods in datatype classes (e.g., struct arguments
passed by copy). The empirical data we collected in our experiments suggest, how-
ever, that these sources would frequently lead to unsound refactorings if directly
applied. For these cases, we will investigate more sophisticated analyses that try to
understand in which cases a sound refactoring is possible.

– Finally, we will explore the possibility of combining AutoOO’s completely auto-
matic approach with additional user input (e.g., domain knowledge useful to un-
derstand the software design), with the goal of tailoring the reenginering to each
application.

Acknowledgments. This work was partially supported by the ETH grant “Object-
oriented reengineering environment”.
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Abstract. The availability of automated refactoring tools in modern
development environments allows programmers to refactor their code
with ease. Such tools, however, enable developers to inadvertently create
code clones that quickly diverge in form but not in meaning. Further-
more, in the hands of those looking to confuse plagiarism-detection tools,
automated refactoring may be abused to avoid discovery of copied code.

We present Cider, an algorithm that can detect code clones regardless
of various refactorings that may have been applied to some of the copies
but not to others. Most significant is the ability to discover interproce-
dural clones, where parts of one copy have been extracted to separate
methods. We evaluated Cider on several open-source Java projects, at-
tempting to detect interprocedural clones between successive versions
of each project. Interprocedural clones were detected in all evaluated
projects, demonstrating the pervasive nature of the problem. Compared
to a manual assessment, Cider performed well in terms of both recall and
precision.

1 Introduction

Code duplication occurs for a variety of reasons [1]. Once duplicated, each copy
takes on a life of its own, as different transformations are applied to it. Some
of these transformations may be behavior-preserving (that is, refactorings [2,3]),
while other may modify the behavior of a copy. Such modifications may be due
to genuine differences between the ways the copies are used; others, however,
may need to be performed on all copies, as they are related to the common func-
tionality. Cloning therefore creates the risk of changes not being propagated to
all copies. While not all code copying is detrimental to software quality, copy-
ing is far too common in practice. Many software errors are due to diverging
clones, and thus it is important to be able to find such clones in order to inves-
tigate whether changes in one should also have been made to others; better yet,
clones should be detected when checking-in code to the code repository, and the
developers alerted immediately.

In many cases, abstracting common behavior to reduce clones can improve
code quality. Another motivation for our work on clone detection is the availabil-
ity of our Extract Computation refactoring tool [4], which can use information

G. Castagna (Ed.): ECOOP 2013, LNCS 7920, pp. 502–526, 2013.
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from the comparison of found clones to automatically extract common parts (see
Section 6 for a further discussion of this issue).

Sometimes code is copied illegally; this can be intentional plagiarism, but,
given the complexity of software licenses, can also happen as a result of a mis-
taken belief by a developer that a certain piece of code can legally be copied.
Software-development companies need to protect themselves against both kinds
of violations.

Clone detection tools [5,6,7,8,9,10,11,12] attempt to find copied code, to assist
in all challenges listed above. They use a variety of techniques in order to identify
clones that may have been changed in various ways. Roy et al. [13] classify code
clones into four types, depending on the variations allowed between the copies.
Type-1 clones vary in whitespace, layout, and comments; type-2 clones can ad-
ditionally vary in identifiers, literals, and types; type-3 clones may also have
changed, added, or removed statements; and type-4 clones are broadly defined
as “code fragments that perform the same computation but are implemented by
different syntactic variants.” Clone detection tools use various techniques, and
address different parts of this space. Syntax-oriented tools typically handle type-
2 and some type-3 clones (depending on the amount of code inserted, changed, or
removed). Tools that employ more semantic representations can also find some
type-4 clones.

The availability of automated refactoring support in modern development
environments (such as Eclipse,1 IntelliJ,2 and Microsoft Visual Studio3) further
complicates the task of clone detection, as they make it very easy for developers
(and plagiarists) to make significant and wide-ranging syntactic changes to code
without changing its functionality. For example, the task of manually renaming
a variable, field, or method is tedious and error-prone; because the same name
is often used in multiple ways, it is easy to change the wrong one or forget
to change the right one. With a refactoring tool, this task is almost effortless,
leading to the proliferation of type-2 clones.

Refactorings such as Extract Method (and its inverse, Inline Method) typically
create type-4 clones, by replacing a potentially large piece of code with a method
call. This results in significant changes to the program syntax, and also to the
graph representations used by semantic clone detection tools; this makes it much
more difficult for these tools to find such clones.

We consider the detection of refactored clones to be an important research
problem, with implications both for code quality and plagiarism discovery. As
part of this research, we developed an algorithm and a tool, called Cider,4 to
find clones despite refactorings such as Rename, Extract Local Variable, Inline
Variable, and, most significantly, Extract Method and Inline Method.

Soares et al. [14] analyzed the changes in large open-source projects. They
concluded that 27% of the changes in those project can be attributed to refac-

1 http://www.eclipse.org
2 http://www.jetbrains.com/idea
3 http://msdn.microsoft.com/vstudio
4 Standing for “Clone Identifier.”

http://www.eclipse.org
http://www.jetbrains.com/idea
http://msdn.microsoft.com/vstudio
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toring and out of those more than third (36%) were inter-procedural; our results
(see Section 4) are consistent with this finding.

Section 2 presents a motivating example, taken from one of the open-source
projects we used to evaluate Cider. Section 3 presents the algorithm, with an
evaluation in Section 4. Section 5 summarizes related work, and Section 6 con-
cludes with a discussion and future work.

2 Example

The code in Figure 1 is taken from version 4.9 of the JUnit project.5 The class
FailOnTimeout consists of a single constructor and a single method. In version
4.10, this class was refactored to the form shown in Figure 2, which still has a
single constructor but now contains multiple methods, as well as an inner class
(shown in Figure 3). Superficial inspection is likely to suggest that these two
classes are quite different, although these are in fact type-4 clones.

The code of version 4.9 was refactored in several steps to arrive at that
of version 4.10. The most significant change is the creation of the class
StatementThread (Figure 3) to encapsulate information about the thread
used in the evaluate method of Figure 1. This information includes the field
fFinished of the original class, as well as fThrown, which has been renamed
to fExceptionThrownByOriginalStatement. The field fTimeout has remained
unchanged, while fNext has been renamed to fOriginalStatement.

The constructors of class FailOnTimeout in the two versions are identical up
to renaming (i.e., are type-2 clones). However, the evaluatemethod has changed
in several ways. The thread in version 4.9 had the static type Thread, and the
object’s actual type is that of the anonymous inner class defined in the evaluate
method; in version 4.10 it has the type StatementThread which inherits from
Thread.

The value of the Statement object in the enclosing class is copied to the field
fStatement of the inner class; but it is used in the run method of that class
in the same way that the original field was used in the corresponding method
of the anonymous inner class in the evaluate method of version 4.9. The only
piece of brand new code in the run method is the clause that catches exceptions
of type InterruptedException.

After the thread is created, it is run and joined in exactly the same way;
this computation happens inside the evaluate method of Figure 1, but in Fig-
ure 2 these operations have been extracted into the new evaluateStatement

method. The latter, however, has another brand new statement, which inter-
rupts the thread. The computation now continues in the evaluate method of
both versions, but the test of the field fFinished has been replaced by testing
the corresponding field of the StatementThread object, and the sense of the
comparison has been reversed without changing the behavior.

5 http://www.junit.org

http://www.junit.org
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public class FailOnTimeout extends Statement {

private Statement fNext;

private final long fTimeout;

private boolean fFinished= false;

private Throwable fThrown= null;

public FailOnTimeout(Statement next, long timeout) {

fNext= next;

fTimeout= timeout;

}

@Override

public void evaluate() throws Throwable {

Thread thread= new Thread() {

@Override

public void run() {

try {

fNext.evaluate();

fFinished= true;

} catch (Throwable e) {

fThrown= e;

}

}

};

thread.start();

thread.join(fTimeout);

if (fFinished)

return;

if (fThrown != null)

throw fThrown;

Exception exception= new Exception(String.format(

"test timed out after %d milliseconds", fTimeout));

exception.setStackTrace(thread.getStackTrace());

throw exception;

}

}

Fig. 1. Example code from the JUnit project, version 4.9
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public class FailOnTimeout extends Statement {

private final Statement fOriginalStatement;

private final long fTimeout;

public FailOnTimeout(Statement originalStatement, long timeout) {

fOriginalStatement= originalStatement;

fTimeout= timeout;

}

@Override

public void evaluate() throws Throwable {

StatementThread thread= evaluateStatement();

if (!thread.fFinished)

throwExceptionForUnfinishedThread(thread);

}

private StatementThread evaluateStatement()

throws InterruptedException {

StatementThread thread= new StatementThread(fOriginalStatement);

thread.start();

thread.join(fTimeout);

thread.interrupt();

return thread;

}

private void throwExceptionForUnfinishedThread(StatementThread thread)

throws Throwable {

if (thread.fExceptionThrownByOriginalStatement != null)

throw thread.fExceptionThrownByOriginalStatement;

else

throwTimeoutException(thread);

}

private void throwTimeoutException(StatementThread thread)

throws Exception {

Exception exception= new Exception(String.format(

"test timed out after %d milliseconds", fTimeout));

exception.setStackTrace(thread.getStackTrace());

throw exception;

}

private static class StatementThread extends Thread {

// See Figure 3

}

}

Fig. 2. Code from Figure 1, as refactored in version 4.10 of the JUnit project
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private static class StatementThread extends Thread {

private final Statement fStatement;

private boolean fFinished= false;

private Throwable fExceptionThrownByOriginalStatement= null;

public StatementThread(Statement statement) {

fStatement= statement;

}

@Override

public void run() {

try {

fStatement.evaluate();

fFinished= true;

} catch (InterruptedException e) {

} catch (Throwable e) {

fExceptionThrownByOriginalStatement= e;

}

}

}

Fig. 3. Inner class from Figure 2

The next part of the original code, which throws either the exception caught
by the thread’s run method if there was one, or a new timeout exception, has
been extracted into two new methods. Checking which exception to throw is done
in throwExceptionForUnfinishedThread, which checks a field of the inner class
instead of a field of the outer class. The creation and throwing of the timeout
exception has been extracted into the new method throwTimeoutException.

This analysis demonstrates that the two versions perform identical computa-
tions, with only one real addition (interrupting the thread). However, the two
versions are quite different syntactically, and state-of-the art clone-detection
tools do not do well with this code. Deckard [7] was able to locate very few
similar code fragments, mostly in the non-functional part of the files (the im-
port section). CCFinderX [8] performed better, but reported six different clone
sets, each containing several clone regions. Neither tool reported the evaluate

method of version 4.10 (Figure 2) as being part of a clone. This outcome is
not surprising, as both tools rely on the syntactic properties of the source code,
which have changed significantly between the two version. (Both Deckard and
CCfinderX were used with various settings; the best results were obtained using
non-default setting to locate relatively small clones.) Sematic clone detectors
such as Komondoor and Horwitz’s [10], Duplix [11], GPLAG [15], and Gabel et
al.’s [12] are not expected to perform much better, as the clone analysis applied
by these tools is limited to the boundaries of a single method. Hence, these tools
will also report multiple small clones, if any. Unfortunately, these tools were not
available for us to experiment with.
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3 The Cider Algorithm

Cider is a new clone-detection tool specifically aimed at finding clones that have
diverged by one or more refactoring steps. This section explains the underlying
representation, how the matching algorithm works, and how initial seeds are
found (in two different scenarios), and demonstrates how the algorithm works
on the example of Section 2.

3.1 The Internal Representation

Like other graph-based algorithms, Cider searches for clones on a graph rep-
resentation of the program, starting from a set of initial seeds. Unlike other
algorithms, however, Cider uses the plan calculus [16,17] to represent programs.
The plan representation is canonical to a large extent, in the sense that dif-
ferent syntactic variants expressing the same computation are represented by
the same plan. For example, because data flow is represented directly by edges
rather than through the use of variable names, the representation is insensitive
to names of local variables (although this information is available if needed).
The plan representation has been used in several projects, including some that
were commercially successful [18,19].

Figure 4 shows the plan representation of the evaluate method of Figure
2, as generated (and drawn) by Cider. The plan is a graph whose nodes are
computational elements (drawn as rectangles), tests that split control flow into
two parts (drawn as split boxes with two bottom sections, corresponding to the
true and false branches), and joins that serve the dual purpose of merging control
flows and at the same time indicating which data flows from which incoming side
(drawn as split boxes with two sections on top, representing the control flows
being joined). The plan has two types of edges, indicating data flow (full edges,
labeled with the variables or temporary values they carry) and control flow
(dashed edges). Side effects on objects are represented by data flow that carries
the modified object; Figure 4 shows the current object this as an input as well
as an output of this method, as well as of called methods that might potentially
modify it.

It is possible to generate the plan representation at various levels of gran-
ularity. Each statement could be represented by a single operation node, as is
typical of other representations such as the Program-Dependence Graph (PDG)
[20]. This makes the representation insensitive to changes inside individual state-
ments, as long as the data and control flow between statements remain the same.
For example, inserting a negation in an expression would not change the graph
of such a coarse-grained plan (nor the PDG representation). Our current imple-
mentation of the plan formalism uses a finer-grained approach, in which each
operation is represented as a separate node. This means that modifying ex-
pressions does change the structure of the graph, requiring more sophisticated
matching (see Section 6). On the other hand, statement boundaries no longer
affect the graph; for example, the Extract Local Variable refactoring, which re-
places an expression by a variable and adds an assignment statement preceding
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Fig. 4. The plan representation of the evaluate method of Figure 2

the statement that contained the expression, does not change the structure of
the graph. Since one of our goals is to use our Extract Computation refactoring
[4] to automatically re-combine the common parts of detected clones, sensitivity
to expressions and not to statements is appropriate.
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3.2 Finding Interprocedural Clones

The Cider algorithm is similar in general form to Krinke’s [11], but extended for
interprocedural matching. The algorithm starts with a seed, which is a proposed
match between two plan nodes. The algorithm attempts to enlarge the seed
to a match between two sub-plans, by successively adding new nodes to the
match, searching both forwards and backwards, in order to obtain as large a
match as possible. Unlike other graph-matching algorithms, Cider searches for
new nodes by matching paths rather than single edges. This is necessary for
several reasons, most (but not all) of which have to do with the fact that the
search is interprocedural.

In the case of control-flow edges, the algorithmmust extend paths that connect
to test or join nodes, since the clone may match only one side of a conditional;
for example, the fragment

A; if (p) B else C; D;

should match the fragments6

A; B; D; and A; C; D;.

Similarly,
A; f(); C;

where the body of f is B should match

A; B; C;.

This requires a single control flow edge in the latter fragment to match a path
that goes from A through the call to f to B, and likewise for the path from B

through the exit node of f to C.
Suppose now that the method f has a parameter whose value is computed in A

and used in B, and that f returns a value used in C. The data-flow paths from the
source of the parameter to its use in B, and from the source of the return value to
its use in C, each corresponds to a single edge in A; B; C;. The Cider algorithm
recognizes these cases and follows paths through tests, joins, method calls, and
returns, in order to allow these kinds of matches. Because Cider is built on top
of WALA,7 it can utilize WALA’s pointer analysis to provide information about
possible targets for polymorphic calls, improving the algorithm’s accuracy.

When matching nodes, Cider uses a configurable similarity test, to support
various levels of strictness in the search. Each node in the plan has an associated
semantics; in the case of the primitive language operators (including object con-
struction with new), it indicates which operator it is; for method calls, it indicates

6 In our current implementation, this will only work if there is data flow from A

to B (or C), or if p is a variable whose computation precedes A, since otherwise
the computation of p intervenes between A and the test node. See Section 6 for a
discussion of ways to overcome this limitation.

7 The T. J. Watson Libraries for Analysis, http://wala.sourceforge.net

http://wala.sourceforge.net
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which method is called. In the prototype described in this paper, nodes match
only if they have the same semantics; names, however, are not required to match
(see Algorithm 5). This makes the match insensitive to method names, and may
erroneously match unrelated methods that happen to have similar implemen-
tations. It is possible to require names to match perfectly; this will make the
match sensitive to method names (unlike names of local variables), and will not
find clones that underwent renaming of methods (or classes). A middle approach
is also possible; for example, by using tools such as RefactoringCrawler [21] that
attempt to discover renamings and allow those to match. Cider does not require
both data flow and control flow to match for the same node. This allows some
variability in the clones, since code modifications that only affects control flow
will be ignored by the search through data-flow edges, and vice versa.

More formally, the matching algorithm receives two plans to be matched, a
seed, consisting of an initial match between two semantically-equivalent nodes,
one from each plan, and a scope that limits the search.8 Plan nodes are classi-
fied as either computational or intermediary, based on their type and the given
scope. Computational nodes must match between the clones, but intermediary
nodes are ignored. Operation nodes are computational, and all tests and joins
are intermediary. Method call nodes and method entry and exit nodes are con-
sidered intermediary if they are in scope and their source code is available, and
computational otherwise.

We define a flow to be a path in the interprocedural plan that starts and ends
in computational nodes, and all whose internal nodes (if any) are intermediary.
All edges in a single flow have the same type (data or control). The algorithm
matches a flow in one plan to another flow in the other. A clone candidate is a
collection of plan nodes and flows connecting them. The algorithm is shown as
Algorithm 1.

In each iteration, the algorithm computes a frontier for each clone candidate.
The frontiers, computed by Algorithm 2, consist of all flows that bridge the can-
didate with other code. However, a history is kept so that each edge appears in
the frontier only once. This is done in order to prevent an edge being matched
with an irrelevant part of the second candidate. (The next version of the algo-
rithm will support flow that cross computational nodes, in order to allow the
addition or removal of arbitrary code (see Section 6). In that version, the algo-
rithm keeps a mapping between matched nodes in the two candidates, and the
history is not necessary.) Frontiers from one candidate are compared to those of
the other, using a flexible similarity criterion expressed by the function called
“similar”; the version we used in the evaluation is shown in Algorithm 5. Fi-
nally, matching flows are added to both candidates, using the expand function
(Algorithm 4), and the process repeats.

8 For simplicity, we describe the algorithm as working on two clones candidates, al-
though it is able to handle more than two simultaneous candidate clones. Similarly,
the seeds can be generalized from single nodes to be sub-graphs that have already
been matched in some other way.
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Algorithm 1. find-clone-candidates((s1, s2): seed, p1: plan, p2: plan, c: scope)
returns a pair of clone candidates

{Initialize clone candidates}
cand1 ← {s1}
cand2 ← {s2}
{Initialize frontier histories}
H1 ← ∅
H2 ← ∅
repeat

F1 ← frontier(cand1, p1, c, H1)
F2 ← frontier(cand2, p2, c, H2)
matches ← {(f1 ∈ F1, f2 ∈ F2) | similar(f1, f2)}
expand(cand1, {f1 | ∃f2. (f1, f2) ∈ matches})
expand(cand2, {f2 | ∃f1. (f1, f2) ∈ matches})

until matches = ∅
return (cand1, cand2)

Algorithm 2. frontier(cand: clone-candidate, p: plan, c: scope, H : history)
returns a set of flows; modifies H

Eforward ← {e ∈ p | source(e) ∈ cand ∧ target(e) /∈ cand}
Ebackward ← {e ∈ p | source(e) /∈ cand ∧ target(e) ∈ cand}
F ← ⋃

e∈Eforward

flow-forward(e, p, c) ∪ ⋃
e∈Ebackward

flow-backward(e, p, c) \H
H ← H ∪ F
return F

Algorithm 3. flow-forward(f : edge or flow, cand: clone-candidate, c: scope, p:
plan)
returns a set of flows

if target(f) is computational according to c then
return {f}

else
next ← outgoing-edges(type(f), target(f), p)
next ← filter(next, c)
if next = ∅ then

return ∅
else

return
⋃

e∈next

flow-forward(f || e, p, c)
end if

end if

Frontiers are computed starting with edges that exit the candidate, both
forwards and backwards, extending them to complete flows by the flow-forward
and flow-backward functions. Both flow functions work on partial flows, which
may end in intermediary nodes; however, each returns a set of full flows. The flows
in the frontiers of both candidates are then compared for similarity; those that
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Algorithm 4. expand(cand: clone-candidate, F : set of flows)
modifies cand

for all f ∈ F do
for all node n in f do

add n to cand
end for

end for

Algorithm 5. similar(f1: flow, f2: flow)

return type(f1) = type(f2) ∧
semantics(source(f1)) = semantics(source(f2)) ∧
semantics(target(f1)) = semantics(target(f2))

are found to be similar are used to extend the two candidates. The process ends
when the candidates cannot be extended any further, and the final candidates
are returned. At that point, filters can be applied to decide whether the returned
candidates should really be considered to be clones, based, for example, on their
sizes.

The flow-forward function (Algorithm 3) computes flows for edges whose
source is in the candidate but whose target is outside it. (The flow-backward
function, not shown here, is analogous.) It tries to extend incomplete flows (i.e.,
those that end in an intermediary node) by considering all outgoing edges from
the last node of the flow; these can be data or control edges, depending on the
type of the flow. This set is pruned by the filter function, based on the scope.
This leaves room for various criteria to be applied at this stage.

3.3 Finding Seeds

We consider two different types of scenarios for Cider. In the first, we are looking
for a relatively small number of clones in a large corpus (or between two corpora,
in the case of a search for plagiarism). In the second, we are looking for non-
identical clones between two versions of the same software system; in this case,
most of the code is identical, and we are looking for changes that look different
but have very similar functionality, as in the example of Section 2. While the
matching algorithm described in Section 3.2 is the same in these two scenarios,
the computation of the seeds is necessarily different.

In the first scenario there are many potential seeds. For example, any addi-
tion operation in the program may be matched to any other such operation.
The main challenge is to find good seeds that will lead to clones that are large
enough to be interesting. The Cider algorithm is relatively expensive, and it is
impossible to apply it to every such pair. We therefore use a hybrid approach,
where a more efficient clone detector is used to winnow the potential seeds based
on (mostly) syntactic criteria. For example, we have used Deckard [7] to provide
initial seeds for Cider. We used Deckard with somewhat unusual search param-
eters, which are more suitable for finding seeds for Cider than for finding actual
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clones. Specifically, we used strong criteria for matches, but accepted clones that
are relatively small and possibly insignificant by themselves.

The second scenario requires a different strategy. Here, almost all the code is
identical and would normally be considered to be cloned. We are interested in
code that changed in certain ways; specifically, by method extraction or inlining.
We call such cases interprocedural clones, or IPC for short. We therefore look for
method calls that appear in only one version but not the other. This is done by
comparing the call graphs of the two versions, looking for a method in one version
containing a call that does not appear in the corresponding place in the other
version. We call these IPC candidates. Our current implementation searches
for methods with identical signatures (including names), with some call that
appears only in one version. The starting criterion can obviously be extended,
for example, by using renamed candidates suggested by RefactoringCrawler [21]
or similar tools.

Each IPC candidate is then analyzed to see whether it really is an interpro-
cedural clone, some other kind of clone, or not a clone at all. In order to do
that, we need to find seeds in the corresponding methods. There can still be a
prohibitively large number of such seeds, and so an additional heuristic is needed
in order to prune their number. We start by selecting pairs of identical opera-
tions (according to the similarity function mentioned above). For each pair we
apply the Cider algorithm with a scope that does not cross method boundaries
(making it intraprocedural). Each pair results in two matching sub-plans, which
may be small. We select as seeds only those pairs of operations that appear in a
large fraction of the generated sub-plans; these are likely to be central operations
in the clones, and are more likely to yield interprocedural clones with the full
version of the Cider algorithm. By experimenting on one set of IPC candidates,
we came up with the following step threshold function. If there are up to 10
pairs, we require seeds to appear in at least 50% of the sub-plans; if there are
between 11 and 50 initial pairs, we require seeds to appear in 80% of the sub-
plans; between 51 and 100 the requirement drops to 70%, and then to 60%. The
rationale for this choice is that as the number of initial pairs grow, we are more
likely to discover separate clone “islands,” and requiring too high a percentage
will eliminate most of the matches that could lead to interprocedural clones.

3.4 Cider Example

This section shows an example of how the Cider algorithm can be applied to
the JUnit example of Section 2. In this experiment, we manually chose the two
operations that access the fTimeout field (in the evaluate method of Figure 1
and the evaluateStatement method of Figure 2) as a seed, and set the scope
of the exploration to include all the methods in the class.

Starting from the chosen seed, the algorithm proceeds to compute the frontiers
(Algorithm 2). The backward frontier in version 4.9 is:

Control: [invoke start(...)]→ [getfield fTimeout]

Data: [entry: evaluate]→ [getfield fTimeout];
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the data edge is due to the data flow of the this pointer from the entry of the
method to the getfield operation.

The forward frontier is:

Control: [getfield fTimeout]→ [invoke join(...)]

Data: [getfield fTimeout]→ [invoke join(...)].

The data edge is due to the result of the getfield operation, which is used
as the parameter to the thread.join() call. The call to thread.join() is not
considered an intermediary node, since this is a library method and is outside
the search scope. Similarly, the entry of the evaluate method is out of scope,
since no callers of this method exist inside the class definition.

In version 4.10, the control predecessor of the getfield operation is the pre-
ceding node, invoke start, as in version 4.9. The data predecessor, in con-
trast, is the entry node of evaluateStatement, since the data for the field
fTimeout comes from the current object (this), which is unchanged from its
value on entry. This entry node, however, is an intermediary node, and so the
flow-backward function will extend this edge to a longer flow, through the call
of evaluateStatement in evaluate to the entry of evaluate; this is a compu-
tational node, since no callers are in scope. The backward frontier in version 4.10
is therefore:

Control: [invoke start(...)]→ [getfield fTimeout]

Data: [entry: evaluate(...)]→ [getfield fTimeout];

The forward frontier is same as in the other version:

Control: [getfield fTimeout]→ [invoke join(...)]

Data: [getfield fTimeout]→ [invoke join(...)]

The two [entry: evaluate] nodes obviously match, as do the [invoke

start(...)] and [invoke join(...)] nodes, and all three pairs are added
to the clone candidates.

Following the data flow of the thread pointer forward from the
thread.join() call in version 4.9 leads to thread.getStackTrace() (just be-
fore the exception is thrown on the last line). Following both control and
data flow from thread.join() in version 4.10 lead to the following state-
ment, thread.interrupt(). Because the similarity function ignores names,
these are considered to match, and both are added to the clone candidates.
In the next step, data flow from thread.getStackTrace() in version 4.9
leads to exception.setStackTrace() on the same line. In version 4.10, trac-
ing data flow from the thread.interrupt() call leads, through the exit of
evaluateStatement back to the body of evaluate, then into the call to
throwExceptionForUnfinishedThread, to the throwTimeoutException() call,
and finally to thread.getStackTrace() call in the next-to-last line of that
method. Again, because similarity ignores names, this pair is added to the clone
candidates.

Following flows from the matching entries of evaluate() will produce some
additional matches, resulting in the clones identified in Figures 5 and 6. In both
cases, lines in the detected clones are marked with two plus signs. This result
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public class FailOnTimeout extends Statement {

private Statement fNext;

private final long fTimeout;

private boolean fFinished= false;

private Throwable fThrown= null;

public FailOnTimeout(Statement next, long timeout) {

fNext= next;

fTimeout= timeout;

}

@Override

++ public void evaluate() throws Throwable {

++ Thread thread= new Thread() {

@Override

public void run() {

try {

fNext.evaluate();

fFinished= true;

} catch (Throwable e) {

fThrown= e;

}

}

};

++ thread.start();

++ thread.join(fTimeout);

if (fFinished)

return;

if (fThrown != null)

throw fThrown;

++ Exception exception= new Exception(String.format(

++ "test timed out after %d milliseconds", fTimeout));

++ exception.setStackTrace(thread.getStackTrace());

++ throw exception;

++ }

}

Fig. 5. Clone detected in Figure 1; compare with Figure 6

is very close to the best that a human would find. These clones do not include
the code in the run() methods of the two Thread subclasses, since these are not
reachable from the found clones; they can be discovered by an different seed.

The second clone erroneously includes the thread.interrupt() call of version
4.10, due to the wrong matching of this call with thread.getStackTrace()

in version 4.9. Such inaccuracies are balanced by a careful choice of seeds, as
described in Section 3.3. Section 6 describes the changes we are making in our
next prototype, which will be sensitive to names, but will explore flows that
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public class FailOnTimeout extends Statement {

private final Statement fOriginalStatement;

private final long fTimeout;

public FailOnTimeout(Statement originalStatement, long timeout) {

fOriginalStatement= originalStatement;

fTimeout= timeout;

}

@Override

++ public void evaluate() throws Throwable {

++ StatementThread thread= evaluateStatement();

if (!thread.fFinished)

++ throwExceptionForUnfinishedThread(thread);

++ }

++ private StatementThread evaluateStatement()

throws InterruptedException {

++ StatementThread thread= new StatementThread(fOriginalStatement);

++ thread.start();

++ thread.join(fTimeout);

++ thread.interrupt();

++ return thread;

++ }

++ private void throwExceptionForUnfinishedThread(StatementThread thread)

throws Throwable {

if (thread.fExceptionThrownByOriginalStatement != null)

throw thread.fExceptionThrownByOriginalStatement;

else

++ throwTimeoutException(thread);

}

++ private void throwTimeoutException(StatementThread thread)

throws Exception {

++ Exception exception= new Exception(String.format(

++ "test timed out after %d milliseconds", fTimeout));

++ exception.setStackTrace(thread.getStackTrace());

++ throw exception;

++ }

}

Fig. 6. Clone detected in Figure 2; compare with Figure 5

bypass some nodes in order to find matches in spite of added statements. We
expect that version to find more accurate clones in this example, including the
identification of the correspondence between clone nodes.
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Table 1. Benchmark project statistics

IPC Cider Run
Project Version SLOC Methods Candidates Time (sec)

JUnit
4.9 15629 2441

7 2.4
4.10 16434 2539

HSQLDB
2.2.7 158972 10129

33 24.5
2.2.8 159278 10166

PDFBox
1.5 52791 4388

135 318.8
1.6 55316 4531

PMD
4.3 62369 6072

122 74.2
5.0.1 75959 7560

4 Evaluation

Because Cider’s major difference from other clone-detection tools is its ability
to find clones that have diverged by refactoring, we wanted the evaluation to
concentrate on such clones, and, in particular, on clones that underwent method
extraction. We therefore chose to search for such clones between successive ver-
sions of the same software project. We used a simple threshold seed oracle as
described in Section 3.3, and limited the scope of the search to the method
containing the candidate.9

Table 1 summarizes the relevant characteristics of the open-source projects
on which we tested the tool. For each project, we chose two versions on which
to perform the evaluation. JUnit (from which we took the example of Section 2)
is a unit testing framework for Java; HSQLDB10 is a relational database en-
gine; PDFBox11 is a library for working with PDF documents; and PMD12 is
a Java code analyzer. These projects range in size from JUnit’s 16K SLOC to
HSQLDB’s 160K SLOC,13 and contain from 2500 methods (JUnit) to over 10000
(HSQLDB). The last column in the table displays the number of IPC candidates
discovered by the call graph analysis described in Section 3.3. This number is
reasonably small, enabling our untuned implementation to check all candidates
within seconds or minutes (the precise times are given in the last column of
Table 1; each number is Cider’s running time on the given sample in seconds, as
an average of 10 runs).

Cider classified each IPC candidate into one of three categories: (1) true in-
terprocedural clones (IPC); (2) clones that are not interprocedural (NIPC); or
(3) not clones (NC). Out of all 291 IPC candidates that were found in the sam-

9 Note that this scope is smaller than the one used in the example of Section 3.4.
10 http://hsqldb.org
11 http://pdfbox.apache.org
12 http://pmd.sourceforge.net
13 As determined by CLOC (http://cloc.sourceforge.net)

http://hsqldb.org
http://pdfbox.apache.org
http://pmd.sourceforge.net
http://cloc.sourceforge.net
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Table 2. Recall and precision in the identification of interprocedural clones (IPC) in
IPC candidates

Project Manual Cider Both Recall(%) Precision(%)

JUnit 4 3 3 75 100
HSQLDB 4 4 4 100 100
PDFBox 7 14 6 86 43
PMD 13 13 10 77 77

Total 28 34 23 82 68

Table 3. Recall and precision in the identification of clones (IPC and NIPC) in IPC
candidates

Project Manual Cider Both Recall(%) Precision(%)

JUnit 7 7 6 86 86
HSQLDB 10 10 10 100 100
PDFBox 43 40 32 74 80
PMD 33 33 28 85 85

Total 93 90 76 82 84

ple projects, we used 43 as a training set to adjust the threshold function. In
order to assess the accuracy of Cider’s results, we manually classified a random
sample consisting of 117 of the remaining 248 IPC candidates and compared our
manual classification with that of Cider. We computed recall and precision14 for
the decision of whether the candidate is an interprocedural clone (i.e., classified
as IPC), and whether it is a clone at all (i.e., IPC or NIPC). Table 2 shows the
results of the first comparison, and Table 3 shows the results of the second. In
each table, the column headed “Manual” gives the number of cases in which we
decided that the criterion holds based on manual inspection; the “Cider” column
gives the number of cases identified by Cider, and the “Both” column gives the
number of cases in which both agreed that the criterion holds (i.e., the number
of true positives).

First, it is interesting to note that there were interprocedural clones in all
projects; in total, 24% of the IPC candidates in the sample were found to be
real interprocedural clones by manual inspection. Cider performs quite well both
in terms of precision and recall. We investigated several of the cases in which
Cider’s classification disagreed with ours. In some cases, we found these to be
artifacts of the way some language features are implemented.

For example, Figure 7 shows two versions of the compareTo method of class
COSWriterXRefEntry in PDFBox. The class has been refactored to use generics,

14 For a given criterion, recall is the percentage of cases that the algorithm correctly
classified out of those that actually match the criterion, and indicates the frequency
of false negatives. Precision is the percentage of cases that the algorithm correctly
classified out of those it classified as matching the criterion, and indicates the fre-
quency of false positives. In both cases, 100% indicates the best recall or precision.
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public class COSWriterXRefEntry implements Comparable {

// ...

public int compareTo(Object obj)

{

if (obj instanceof COSWriterXRefEntry)

{

return (int)(getKey().getNumber()

- ((COSWriterXRefEntry)obj).getKey().getNumber());

}

else

{

return -1;

}

}

// ...

}

(a)

public class COSWriterXRefEntry implements Comparable<COSWriterXRefEntry>

// ...

public int compareTo(COSWriterXRefEntry obj)

{

if (obj instanceof COSWriterXRefEntry)

{

return (int)(getKey().getNumber() - obj.getKey().getNumber());

}

else

{

return -1;

}

}

// ...

}

(b)

Fig. 7. The COSWriterXRefEntry.compareTo method in PDFBox: (a) version 1.5; (b)
version 1.6

and so the method signature changed from compareTo(Object) to compareTo

(COSWriterXRefEntry). (In fact, this change has been done carelessly; the con-
ditional is no longer necessary in the generic version.) There are no other changes,
and from a developer’s point of view there is no interprocedural clone. However,
the method compareTo(Object) still exists in the new class, even though it has
no representation in the text; this method checks the dynamic type of its ar-
gument, and forwards to the type-specific method as appropriate. It is the two
compareTo(Object)methods that Cider compares, and it correctly identifies an
interprocedural clone.
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In other cases, Cider found relatively small sub-plans it considered spuriously
to be interprocedural clones. We intend to experiment with the thresholds on
the sizes of the matching parts in the calling and called methods to see how they
affect recall and precision.

5 Related Work

Komondoor and Horwitz [10] proposed the use of the PDG for clone detection.
By employing a lock-step slicing [22] technique using a combination of back-
ward slicing with limited forward slicing, they were able to compute isomorphic
subgraphs of the PDG. They seeded their algorithm with a set of syntactically-
equivalent node pairs, and performed backward slicing from each pair with a
single forward slicing step for matching predicates nodes. Their method was
applied to several open-source software systems written in the C programming
language, with results demonstrating the capability of slicing to detect non-
contiguous code clones.

Krinke [11] introduced Duplix, which uses a fine-grained PDG to represent
procedures. Clones are identified by maximal similar subgraphs, which are con-
structed in a lock-step manner starting from a pair of predicate nodes and ex-
tending the subgraph by adding similar outgoing edges. This process is more
general than that used by Komondoor and Horwitz; Cider’s graph search is
similar to Krinke’s.

GPLAG [15] uses a relaxed form of subgraph isomorphism of PDGs for the
purpose of plagiarism detection. The authors note that PDGs are resilient to
some semantics-preserving modifications, like (unrelated) statement insertion,
statement reordering, and control replacement. Before attempting to locate iso-
morphic subgraphs, GPLAG reduces the search space by filtering methods based
on size and structural similarity metrics. This heuristic is likely to fail when Ex-
tract or Inline Method have been performed.

Jiang et al. [7] focused their attention on the scalability of semantic clone
detection. As a first step, they introduced Deckard, a token-based detection tool
that maps trees to feature vectors, and uses distance metrics to find similar
trees. Subsequently, Gabel et al. [12] extended this approach to handle subgraph
similarity by first reducing carefully selected PDG subgraphs to their related
abstract syntax trees, then applying Deckard to those trees. They report that
this approach can scale to millions of lines of code.

The above-mentioned tools do not attempt to find interprocedural clones.
Godfrey and Zou [23] used what they call “origin analysis” to detect splits and
merges in procedural source code. (These terms correspond to the effects of the
Extract Method and Inline Method refactorings, respectively.) Origin analysis
consists of entity and relationship analysis. Each entity (function) in the code
is represented by a set of metrics, such as number of lines of code, number of
local/global variables used, cyclomatic complexity, etc. Relationship analysis is
computed using call graph analysis to compute caller/callee relationships. The
authors implemented their technique as part of the semi-automatic Beagle tool,
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whose goal is to help developers gain insight of a system’s evolution. To detect
splits and merges, the user specifies an entity of interest and a set of entities the
tool should analyze.

While their tool is able to detect simple split and merge transformations based
on syntactic metrics, it is susceptible to other kinds of changes that may alter
the metrics of the extracted code. These could include inlining or extracting a
local variable, which changes the number of lines of code; field encapsulation,
which creates new caller/callee relations where none existed before; and other
simple refactorings that Cider is oblivious to.

Like Godfrey and Zou, Dig et al. [21] attempt to infer refactoring transfor-
mations between two version of a project. First, they find matching code entity
pairs, where an entity can be a method, class, or package, using shingles (a
metric-based fingerprinting method). Then they employ a more expensive se-
mantic analysis to determine the relationships between entities. They use a set
of strategies in a fixed order that enables them to take advantage of previously-
inferred refactorings; for example, information about package renaming can be
used when searching for method renaming. Their focus is on API-level refactor-
ing such as Rename, Move, Pull Up Method, and Push Down Method rather
than code-level refactorings such as Extract Method or Inline Method.

6 Discussion and Future Work

The fact that we found interprocedural clones in every project that was evaluated
strongly suggests that such clones are ubiquitous. The occurrence of interproce-
dural clones is likely to grow further as refactoring tools improve, and developers’
awareness of such tools increases. The same is true for other refactorings, such as
Rename, Extract Local Variable, etc. Furthermore, modern development envi-
ronments provide other types of automatic code transformations, such as adding
or removing blocks around single statements, or inverting a conditional and
switching the “then” and “else” parts. (In Eclipse, these are provided as part of
the Quick Fix facility.)

These tools are very convenient for the programmer (or plagiarist), but create
a challenge for clone-detection tools that need to discover the equivalence of the
code after one or more such changes have been applied to the original version.
The changes can be quite extensive, even crossing module boundaries. For ex-
ample, it is easy to follow an Extract Method refactoring by Move Method, Pull
Up, or Push Down, causing part of the code clone to move to another source
file.

As mentioned at the end of Section 2, syntax-based clone detectors cannot
cope with such changes. They can only discover matches between code segments
that remained together, so that they will find smaller fragments, which may be
below their reporting thresholds. Even if they are larger, discovering interproce-
dural clones would still require manual inspection. The semantic clone detectors
we are aware of limit themselves to a single method, and do not find interpro-
cedural clones either.
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In order to discover clones despite extensive refactoring, new, more semantic,
techniques are required. Cider demonstrates several such techniques, from the
use of data edges instead of relying on variable names, to the interprocedural
detection algorithm. Other, non-obvious, issues become relevant. For example,
it is important to know which method can be invoked as a result of a given call;
this implies that accurate pointer analysis, which reduces the potential candi-
dates, can be an important tool for clone detection. Increasing use of semantic
information at the expense of syntax also creates artifacts such as that of Figure
7, in which an interprocedural clone exists at the implementation level but is
not apparent as such in the text.

Cider is a step in the direction of clone detection in the presence of ubiquitous
refactoring tools. We believe that the plan representation, which abstracts away
many syntactic details and is canonical to a large extent, is useful as the basis of
such clone detectors. Some features of the plan representation eliminate the effect
of certain refactorings; as mentioned in Section 3.1, the plan does not change
when variables are renamed, or when Extract Local Variable (or its inverse,
Inline Variable) is performed, since data flow is expressed by data edges rather
than by name. Changing the syntactic form in which control flow is expressed,
such as replacing a a for loop by a while form, likewise preserves the plan form.

Other, more global, changes do affect the plan representation, and the clone-
detection algorithm needs to cater to them explicitly. The Cider algorithm shown
in Section 3 finds interprocedural clones, by following data and control paths
across calls and returns. The fact that data flow is represented by edges con-
siderably simplifies the algorithm, which can ignore the difference between data
flow through local variables or through method parameters and return values. As
mentioned above, information about refactorings that are likely to have been per-
formed can help Cider identify clones more precisely; for example, Refactoring-
Crawler [21] can suggest methods that have been renamed, providing seeds for
the Cider algorithm to search from. It is interesting to note that Cider can also
be used to enhance RefactoringCrawler by allowing it to discover instances of
Extract Method and Inline Method.

The use of the plan representation also makes Cider easy to apply to other
programming languages. Cider is built on top of IBM Research’s implementation
of the plan representation, and can therefore be applied to any language for which
a path to the plan exists.

The Cider algorithm can be applied to other representations, but may require
extending them in various ways. The interprocedural extension of the PDG is
the System Dependence Graph (SDG) [24]. As we noted earlier, the fine-grained
representation of operations in the plan causes some refactorings (such as Extract
Local Variable) to have no effect on the plan representation. Recognizing such
refactorings with the SDG will require modifying it appropriately; for example,
Krinke [11] used a “fine-grained PDG”to find intraprocedural clones. The SDG
does not normally contain information about ordering between statements in
the same control block. This makes it difficult to recognize those clones that
contain consecutive but unrelated statements. Whether or not this is desirable
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depends on the specific application; in any case, using the plan representation
it is possible to ignore this information or use it to filter possible matches. Both
Krinke [11] and Higo and Kusumoto [25] extended the PDG with dependence
edges that correspond to the plan’s control-flow edges. We also believe that the
explicit interprocedural data- and control-flow edges in the plan will make it
easier to implement various kinds of path-matching heuristics, as we discuss
next.

Cider can be extended in various ways in order to discover clones that have
been even further modified. Because the Cider algorithm does not require a
simultaneous match of both data and control, it is able to follow data edges
in spite of other code that has been inserted or removed in the control path
between the source and target of the edge. Similarly, it can follow control edges
even when data sources have changed. As discussed in Section 3.2, Cider can
find clones even when parts are embedded inside conditionals in one case but
not the other. The use of an expression in the conditional can confuse the current
implementation when other clues (such as data flow) are not available. However,
the algorithm can be modified to bypass the condition in its search for matching
data or control paths. More generally, it can also be extended to match paths
even when interior nodes do not match. As mentioned in Section 3.2, Cider
matches flows, defined to be paths that start and end in computational nodes
and only go through intermediary nodes. It is possible to allow computational
nodes inside flows as well, thus bypassing some computations in the match. For
example, the addition of a negation operator into part of a boolean expression
will result in an additional computational node for that operation in the plan.
By matching the data path that includes that new node to the original edge, the
algorithm can discover the similarity in spite of the change. Of course, this can
lead to combinatorial explosion if not done carefully; we are now investigating
how to use this technique effectively to find more clones.

As mentioned above, there are various parameters of the algorithm we need
to investigate. The size thresholds on identified clones, which determine which
fragments will be classified as clones, have an obvious affect on both recall and
precision. The similarity criteria that determine which nodes can be matched also
have a significant effect on the clones that can be detected and the refactorings
that can be overcome in the process. Finally, better seeds will obviously result
in better clones, and the generation of good seeds is an important direction for
future research.

Syntax-based clone detectors, especially those based on k-gram matching [5],
can scan large code bases efficiently in order to find pairs of matches across
the whole corpus. Semantic detectors like Cider can never hope to match this
efficiency. As a result, Cider needs to use other, faster, methods to discover seeds.
The method used to find the initial seeds affects the operation of Cider in two
ways: more seeds can improve recall, while fewer seeds improve efficiency. Good
heuristics for finding seeds can improve both aspects, and merit further research.

As mentioned in the introduction to this paper, we have previously developed
the Extract Computation refactoring [4], which is a significant generalization of
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Extract Method that is able to extract non-contiguous pieces of code, and split
loops, including the generation of data structures to pass information from one
incarnation of the loop to the next. The code to be extracted can be specified
manually, but it can also come from some other tool. Specifically, we are inter-
ested in clone remediation by abstracting common parts of two or more clones.
By comparing the semantic structure of clones found, we hope to be able to
automatically identify those common parts, and then use Extract Computation
to perform the remediation.

Acknowledgments. We are grateful to Amiram Yehudai for helpful discussions
and encouragement.
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Abstract. Recent studies suggest that programmers greatly underuse
refactoring tools, especially for complex refactorings. Complex refactor-
ings tend to be tedious and error-prone to perform by hand. To pro-
mote the use of refactoring tools for complex changes, we propose a new
paradigm for automating refactorings called compositional refactoring.
The key idea is to perform small, predictable changes using a tool and
manually compose them into complex changes. This paradigm trades
off some level of automation by higher predictability and control. We
show that this paradigm is natural, because our analysis of program-
mers’ use of the Eclipse refactoring tool in the wild shows that they
frequently batch and compose automated refactorings. We then show
that programmers are receptive to this new paradigm through a survey
of 100 respondents. Finally, we show that the compositional paradigm
is effective through a controlled study of 13 professional programmers,
comparing this paradigm to the existing wizard-based one.

1 Introduction

Refactoring is defined as changing code without affecting the observable behavior
of the program [6, 9, 21]. Refactoring is not only recommended by expert prac-
titioners [6, 11], but also commonly practiced by programmers [17, 19, 27, 34].
The first refactoring tool was invented more than a decade ago to make the
refactoring process faster and more reliable [23]. Today, modern Integrated De-
velopment Environments (IDEs), such as Eclipse, IntelliJ IDEA, NetBeans, and
Xcode, support many refactorings that rename, move, split, or join various pro-
gram elements including methods, classes, and packages. In addition, researchers
continue to propose new tools for automating complex changes [4,13,25,29,33].

Despite the expected benefits of automated refactorings, studies have shown
that programmers greatly underuse these tools, especially for complex changes.
Although complex refactorings are more tedious and error-prone than simple
ones to perform manually, programmers use the refactoring tools mostly for
performing simple refactorings such as Rename, Extract Local Variable, and
Extract Method [19, 20, 27].

The mainstream refactoring tools follow a wizard-based paradigm. Typically, a
programmer selects a piece of code in the editor and invokes an automated refac-
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toring from a menu. The programmer may then change some of the configuration
options on the wizard. These options control the outcome of the refactoring by
specifying the entities that should be created, copied, or moved. The tool may
also preview the change, e.g., by showing snapshots of the affected files before
and after the refactoring side-by-side.

Prior studies have identified several problems with the wizard-based paradigm
of refactoring [19,27]. For instance, the long list of automated refactorings in the
menu leads to higher learning and invocation costs. The context-switch from a
code editor to a wizard disrupts the programming workflow. The wizard imposes
an upfront configuration cost, making it difficult to control the outcome of the
tool. The preview page of the wizard is often too cluttered, which makes the
refactoring tool less predictable. That is, the programmer cannot easily predict
how the tool is going to affect her code. Even if a programmer makes her way
through all the steps of invocation, configuration, and preview, the wizard may
still notify her at the end that the refactoring is impossible or unsafe to perform.
These problems call for rethinking the design of refactoring tools.

The main contribution of this paper is a new paradigm, called compositional
refactoring, for automating complex refactorings. The key idea is to have the
tool automate small, predictable changes and let the programmer manually com-
pose these changes into complex ones. For instance, rather than performing a
large refactoring such as Extract Superclass in a single step, the compositional
paradigm automates small steps, e.g., Create New Superclass and Move Member
to Immediate Superclass, leaving it to the programmer to compose these steps.

The compositional paradigm offers a lower level of automation than the wizard-
based one by automating small changes. It puts the programmer in control by
letting her compose the small changes. Although it may seem counterintuitive
that reducing the level of automation improves an automated tool, this phe-
nomenon is not new. Other fields such as aviation, health-care, and manufac-
turing have gone through a similar process. Motivated by the perceived benefits
of automation, highly automated systems were invented, often neglecting the
role of the human operators. Further studies showed that often a less automated
system with a human-centered design performs better, concluding that less is
(sometimes) more, when it comes to automation [2, 12, 31].

The idea of compositional refactoring is inspired by our studies of the refac-
toring practices in the wild. Even though expert practitioners recommend that
programmers perform refactorings as a composition of smaller ones [6,11], little
is known about how programmers compose refactorings in practice. Therefore,
we mined two refactoring data sets: the Eclipse foundation and Illinois data
sets. The Eclipse foundation has collected data from hundreds of thousands of
programmers over the years. Our data mining of this large corpus of data shows
that programmers frequently invoke a variety of multiple automated refactor-
ings within a short period of time. Nonetheless, refactorings invoked in close
time proximity may be semantically unrelated. Therefore, we consulted the Illi-
nois data set, which we collected during a prior field study from 30 programmers
over eight months. The Illinois data set is smaller but contains more contextual
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information about refactoring invocations. We manually inspected a sample of its
refactorings that were invoked in a short time span. This analysis reveals some
of the rationales for systematically composing refactorings, providing further
evidence for the naturalness of the compositional paradigm to programmers.

We evaluated the idea of compositional refactoring in two ways. We first dis-
tributed an online survey to get early feedback from hundreds of programmers
on our design (Section 5). The survey presented mockup screenshots of com-
positional and wizard-based refactorings and asked the participants to compare
the two paradigms. The survey results showed that programmers are receptive
to the idea of compositional paradigm and provided improvement suggestions.
This positive response motivated us to implement the compositional paradigm.

We enhanced the design based on the feedback we received from the sur-
vey participants. Then, we implemented it as an Eclipse plug-in. Finally, we
conducted a lab study with 13 professional programmers at a large software
company (Section 6). We instructed the participants to perform a refactoring
on an open-source project using the compositional and wizard-based refactoring
tools in a random order. Like the survey participants, the majority (nine) of the
lab study participants were more satisfied with the compositional paradigm than
the wizard-based one. In addition, the participants were more likely to finish the
task correctly and significantly faster in the compositional paradigm.

Overall, the participants of the survey and lab studies appreciated the compo-
sitional paradigm because of its perceived higher level of control, easier method
of invocation, and interactivity. In addition, they suggested features like abstract
views and multi-selections. These results suggest that compositional refactoring
is a promising paradigm for assisting programmers in performing complex refac-
torings. Our work contributes to the refactoring practice in several ways:

1. We provide empirical evidence for the prevalence and nature of automated
refactorings that are invoked in close time proximity (Section 2).

2. We discuss some of the rationales for composing automated refactorings
based on our manual inspection of the Illinois data set (Section 3).

3. We propose a new paradigm for automating complex refactorings, namely
compositional refactoring (Section 4).

4. We provide an implementation of compositional refactoring as an Eclipse
plug-in (Section 6.1).

5. We show the effectiveness of compositional refactoring through a survey
(Section 5) and a lab study (Section 6).

6. We draw implications from our analyses of refactoring usage data, survey
study, and lab study for designing future tools that better support complex
refactoring.

Our tool and study artifacts are available at http://codingspectator.cs.

illinois.edu/compositional-refactoring. These artifacts have been suc-
cessfully evaluated by the ECOOP artifact evaluation committee and found to
meet expectations.

http://codingspectator.cs.illinois.edu/compositional-refactoring
http://codingspectator.cs.illinois.edu/compositional-refactoring
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2 Frequent Refactoring Sets

In this section, we answer the following research questions:

– How frequently do multiple kinds of refactorings occur in a short time span?
– How diverse are the refactorings frequently invoked in a short time span?

Answers to these questions provide a bird’s-eye view of the phenomenon of in-
voking several automated refactorings in a short time span.

2.1 Eclipse Foundation Data Set

Usage Data Collector (UDC) is a pre-installed plug-in in Eclipse, which records
uses of Eclipse commands, views, and perspectives. UDC generates a fresh iden-
tifier for the user and persists it in the home folder of the user. For each event or
action performed by the user, UDC captures the timestamp, the event identifier,
the user identifier, and the bundle that generated the event. If a user agrees, UDC
regularly sends the user’s data to the Eclipse foundation’s servers. We analyzed
a subset of the UDC data that contained information about the invocations of
the Eclipse refactoring tool for Java. The Eclipse foundation has released the
data from a total of 195,105 programmers who used the Eclipse refactoring tool
for Java during 20 months from January 2009 until August 2010.

2.2 Data Analysis

We used the large data set of Eclipse foundation to infer the frequent refactoring
sets, the sets of automated refactorings that are frequently invoked in a short
time span. Since the refactorings invoked in temporal proximity may not be
semantically related, this analysis only provides a bird’s-eye view of the frequency
and variety of compositions of automated refactorings in the wild.

Refactoring Batches. Intuitively, a refactoring batch is a maximal set of auto-
mated refactorings, such that the consecutive refactorings are invoked within a
close time proximity. A refactoring batch is a nonempty set of refactoring kinds.
For instance, the refactoring batch {Move, Rename} may stand for one or more
invocations of Move and Rename in any order within a close time proximity.

We partitioned the refactoring events into refactoring batches using a heuris-
tic. The heuristic uses the large gaps between the invocation times of consecutive
refactorings as the partition boundaries. This heuristic is based on the assump-
tion that refactorings invoked far apart in time are less likely to be semantically
related. First, the partitioning algorithm sorts the refactoring events of every
UDC user by invocation time. Next, the algorithm creates a new batch for each
user and adds the kind of the first refactoring event of the user to the batch. If
a refactoring event is invoked by the same user within δ minutes of the preced-
ing event, the algorithm will add the kind (Rename, Move, etc.) to the batch
of the preceding event. Otherwise, the algorithm will add the kind to a new
batch. When the batch of every refactoring event is determined, the algorithm
terminates and returns the set of refactoring batches.
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Mining Frequent Refactoring Sets. A refactoring set is a nonempty subset
of a refactoring batch. The support of a refactoring set R is the fraction of
refactoring batches that are supersets of R. We applied a frequent itemset mining
algorithm [10, pp. 246–50] on the set of refactoring batches to infer the frequent
refactoring sets—the refactoring sets with the highest supports.

We used an implementation of the frequent itemset mining algorithm in the
statistical computing software R [1]. We provided the algorithm with refactoring
batches (δ = 10) and set the parameter minsup to 0.001. The output of the
algorithm is a list of refactoring sets with a support of at least minsup.

We repeated the analysis for each δ ∈ {5, 10, 20, 40}, and compared the re-
sulting frequent refactoring sets. Due to the negligible effect of such changes of
δ on the most frequent refactoring sets, we present the results for only δ = 10.

Table 1. The 20 most frequent refactoring sets of UDC active users. A refactoring batch
is the kinds of a set of automated refactorings such that the consecutive refactorings
are invoked within 10 minutes. A refactoring set is a subset of a refactoring batch. For
instance, the refactoring set {Pull Up} stands for one or more invocations of Pull Up
in a refactoring batch. The support of a refactoring set R is the fraction of batches
that are supersets of the R.

refactoring set support
{Rename} 0.591

{Extract Local Variable} 0.270
{Extract Method} 0.154

{Inline} 0.090
{Extract Local Variable, Rename} 0.076

{Move} 0.058
{Extract Method, Rename} 0.057
{Change Method Signature} 0.055

{Extract Constant} 0.043
{Extract Local Variable, Extract Method} 0.042

{Inline, Rename} 0.033
{Extract Local Variable, Inline} 0.031

{Extract Method, Inline} 0.027
{Convert Local Variable to Field} 0.025

{Move, Rename} 0.024
{Change Method Signature, Rename} 0.022

{Extract Local Variable, Extract Method, Rename} 0.020
{Pull Up} 0.016

{Extract Local Variable, Inline, Rename} 0.015
{Extract Constant, Rename} 0.015

2.3 Results

The data mining algorithm inferred 47 frequent refactoring sets for all UDC
users. However, the vast majority of UDC users use automated refactorings
rarely. Most (98.6%) users invoked the refactoring tool at most 50 times, and
98.9% invoked at most five kinds of automated refactorings. We consider users
who invoked at least five kinds of automated refactorings for a total of at least
50 times active and the rest inactive. This leads to 1,188 active users with a
total of 112,885 refactoring events.
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We hypothesized that the data of inactive users conceals some of the frequent
refactoring sets of the active ones. Thus, we repeated the data mining algorithm
on the active users alone. This resulted in about three times more frequent refac-
toring sets (N = 150), 44 of which were also inferred for all users. This indicates
that limiting the data set to active users uncovers more frequent refactoring sets.
Table 1 lists the most frequent refactoring sets of active UDC users. This table
shows the following:

1. Programmers invoke a variety of automated refactorings in a short time span.
2. Some refactoring sets with multiple refactoring kinds are more frequent than

those with a single kind. For instance, {Extract Local Variable, Extract
Method} is about 2.5 times more frequent than {Pull Up}. In other words,
a refactoring batch is more likely to contain Extract Local Variable and
Extract Method than at least one Pull Up. This result reveals a limitation
of prior studies [17, 19, 27], which focused only on individual refactorings.

3 Refactoring Composition Patterns

The frequency and variety of refactoring sets (Section 2.3) led us to the hy-
pothesis that programmers systematically compose certain kinds of automated
refactorings to apply larger changes. This section presents answers to the follow-
ing reseach questions:

– Do programmers compose automated refactorings?
– What are some of the rationales for composing automated refactorings?

The analysis of the Eclipse foundation data set showed that certain kinds of
automated refactorings (e.g., {Extract Local Variable, Extract Method}) are
frequently invoked in a short time span. Although this data set is huge, it does
not capture enough context about each event to infer the rationales for invoking
several automated refactorings in a short time span. Therefore, we analyzed the
smaller but more detailed Illinois data set.

3.1 Illinois Data Set

The Illinois data set comes from two of our Eclipse-based data collectors, namely
CodingSpectator and CodingTracker [27, 28]. CodingTracker records applica-
tions of all 33 automated refactorings of Eclipse, and CodingSpectator records
more detailed data (e.g., the piece of code surrounding the refactored program
element and error messages reported by the refactoring tool) for 23 automated
refactorings.

The Illinois data set contains data from 30 programmers consisting of a total
of 2,296 programming hours over eight months. Fourteen of our participants
were external developers who we recruited by sending invitation messages to
individual programmers, mailing lists, and IRC channels of open-source projects.
We also recruited twelve graduate students and four interns from six research
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labs at the computer science department of the University of Illinois at Urbana-
Champaign. Based on the results of our demographic survey that 28 participants
took, 1, 5, 15, and 7 participants had 1–2, 2–5, 5–10, and more than 10 years of
programming experience, respectively.

3.2 Data Analysis

The partitioning algorithm (Section 2.2) found 1,633 refactoring batches of 244
kinds in the Illinois data set. We selected 32 kinds of batches, which were frequent
in the Illinois data set or contained the frequent refactoring sets of the Eclipse
foundation data set. Then, we manually analyzed a random sample of at most
ten batches of each kind, leading to a total of 139 batches.

We examined the information captured for each refactoring event in a batch,
e.g., the kind, invocation time, error messages, and the piece of code surrounding
the selection. Based on these data, we decided if the refactorings in the batch were
semantically related, and inferred a rationale for the batch. Next, for each batch
kind,we collected the rationales of thebatches of thatkind.Finally,we collectedfive
refactoring composition patterns. A refactoring composition pattern is a recurring
set of automated refactorings that programmers compose for similar rationales.

3.3 Results

We found that the majority (81%, i.e., 112 of 139) of the analyzed batches con-
tained related refactorings. The following presents the refactoring composition
patterns that we observed in our sample of refactoring batches. Each pattern re-
veals some of the rationales for composing refactorings, providing evidence that
programmers systematically compose automated refactorings. The value of n in
parentheses shows the number of refactoring batches with a particular property.

Refactoring Closely Related Entities (n = 47). We found that program-
mers frequently compose refactorings to refactor closely related entities that are
not related by name binding. For instance, the participants composed several Re-
name refactorings on program entities with similar names (n = 8) or a method
and the variable that gets the return value of the method (n = 2). As another
example, our participants performed the Rename refactoring to rename a field
and the constructor parameter that initialized the field (n = 2).

Refactoring tools only update the entities that are syntactically related. For
instance, the Rename refactoring updates the declaration and all references of
a name. One recommendation for future tools is to support this refactoring
composition pattern by reliably detecting the names that are likely to co-evolve.

Adapting Extract Method (n = 34). We found that programmers compose
three kinds of refactorings, Extract Local Variable, Extract Method, and Inline
Local Variable, to adapt the outcome of Extract Method (Figure 1). This refac-
toring composition pattern consists of three steps: preparation, method extrac-
tion, and simplification. First, the programmer performs Extract Local Variable
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public static void main(String[] args) {
int factorial = 1;

for (int i = 1; i <= 10 ; ++i) {

factorial *= i;
}
System.out.println(factorial);

}

(a) The initial code. The programmer ex-
tracts 10 into a new local variable n.

public static void main(String[] args) {
int factorial = 1;

int n = 10;

for (int i = 1; i <= n; ++i) {
factorial *= i;

}
System.out.println(factorial);

}

(b) The programmer moves the declaration
of n to exclude it from her future selection.

public static void main(String[] args) {
int n = 10;

int factorial = 1;

for (int i = 1; i <= n; ++i) {

factorial *= i;

}

System.out.println(factorial);
}

(c) The programmer extracts the computa-
tion of factorial of n into a new method.

public static void main(String[] args) {

int n = 10;

int factorial = getFactorial(n);
System.out.println(factorial);

}

private static int getFactorial(int n) {
int factorial = 1;
for (int i = 1; i <= n; ++i) {

factorial *= i;
}
return factorial;

}

(d) The programmer inlines local variable
n, which is now used just once.

Fig. 1. Participants composed Extract Local Variable, Extract Method, and Inline
Local Variable to extract methods with their desired signatures

so that the upcoming Extract Method refactoring infers a method parameter cor-
responding to the extracted local variable. Second, she invokes Extract Method
on a piece of code excluding the declarations of any variables added during the
preparation step. Finally, the programmer invokes Inline Local Variable to sim-
plify the code. A refactoring batch with method extraction may contain only
the preparation step (n = 11), only the simplification step (n = 19), or both (n
= 4). It is impossible to configure the refactoring wizard of Extract Method to
extract the same method in one step.

Instead of composing three refactorings to include certain parameters in the
signature of the extracted method, the programmer could compose just two
refactorings, namely, Extract Method and Introduce Parameter. However, there
were no instances of the latter in the Illinois data set. In general, the automated
Introduce Parameter refactoring is used infrequently and fewer programmers
know about it [19, 27]. Nonetheless, a programmer can adapt Extract Method
without the need to learn the Introduce Parameter refactoring.

The following are some of the rationales of this composition pattern:

– configuring a refactoring in ways not supported by a wizard
– avoiding the need to learn additional kinds of automated refactorings
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If a refactoring tool is aware of the composition patterns for adapting a refac-
toring, the tool could offer to perform the simplifications in one step.

Backtracking Refactorings (n = 12). Not all refactorings in a batch con-
tribute to the overall effect of the batch. For example, a pair of Extract Local
Variable and Inline Local Variable refactorings may cancel the effects of each
other (n = 6). A refactoring batch may also contain a refactoring that is later
undone (n = 6). For example, we found that the participants extracted a piece
of code into a local variable, undid the refactoring, and finally extracted the
same piece of code into a constant (n = 2). This indicates that programmers
experiment with refactorings or accidentally invoke the wrong refactoring.

Composition-over-configuration (n = 8). Composition-over-configuration
is a composition pattern that we found programmers employ to avoid the upfront
configuration cost of refactoring wizards. With this pattern, the programmer
composes multiple automated refactorings to perform a refactoring that could
have been done by configuring a refactoring wizard.

For example, it is possible to configure the Pull Up refactoring wizard to move
one or more members (fields or methods) of a class to a superclass in one step.
However, the participants sometimes composed two Pull Up refactorings to pull
up two members of a class one at a time (n = 2).

As another example, the Extract Local Variable refactoring wizard allows the
programmer to set the name of the new variable. Nevertheless, a participant
composed Extract Local Variable by a Rename (n = 1).

Observing the composition-over-configuration pattern, we propose the com-
positional paradigm of automating refactorings (Section 4). We implemented
the compositional paradigm using a feature of Eclipse called Quick Assist (Fig-
ure 2). Quick Assist is a popular method of invoking refactorings that supports
composition-over-configuration [27]. For example, if a programmer invokes Ex-
tract Method through Quick Assist, it would apply Extract Method with a de-
fault name and then initiate a composition with Rename on the method name.

Fig. 2. A screenshot of Eclipse Quick Assist (CTRL+1). In this case, Quick Assist sug-
gests Extract Method as a refactoring applicable to the selected piece of code.
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Multiple Refactorings on an Entity (n = 6). A program entity may un-
dergo multiple refactorings. For instance, the participants composed Extract
Method with Pull Up on the same method to refactor to the Template Method
design pattern (n = 2) [7, p. 325]. As another example, a participant composed
Push Down with Encapsulate Field on the same field (n = 1).

4 Design of a Compositional Refactoring Tool

Based on the lessons learned from our data analysis, literature review, and our
prior research studies, we compiled a list of design goals for a new refactoring
tool. These goals inspired the design and implementation of a tool for com-
positional refactoring. The tool currently supports several refactorings such as
Extract Superclass, Extract Interface, Pull Up, and Push Down, and can be ex-
tended to support other refactorings. In this section, we first discuss our design
goals and then explain the steps involved in performing the Extract Superclass
refactoring using our tool.

4.1 Design Goals

Predictability. Our prior study showed that programmers rarely use the au-
tomated refactorings whose outcomes are not easily predictable [27], e.g., the
refactorings that affect several files. Our goal is to make such refactorings more
predictable. One strategy to achieve predictability, employed by the wizard-based
refactorings, is to assist the programmer in reviewing the changes. Another strat-
egy, which we have explored in our compositional paradigm, is to divide a large
refactoring into smaller, predictable refactorings.

Control. Programmers prefer to maintain control over the evolution of their
code during a refactoring [27]. One way to control a refactoring is to allow the
programmer to configure it upfront. However, configuration dialogs increase the
cost of using the tool [19, 27], and programmers rarely configure the refactoring
tool [19]. An alternative paradigm is to put the programmer in control by as-
sisting her in performing the refactoring in smaller steps. In this paradigm, she
can evaluate the refactoring at each step and intersperse it with manual edits.

Discoverability. Researchers and tool vendors continue to automate more re-
curring code transformations [4, 13, 25, 29, 33]. However, programmers discover
only a subset of the automated refactorings [27]. Quick Assist makes the refac-
torings more discoverable by proposing them based on the current context. Pro-
grammers frequently use Quick Assist to discover and invoke refactorings [27].
Thus, our tool relies on Quick Assist as its method of invocation.
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Learnability. The list of automated refactorings in modern IDEs is long. The
cost of learning so many tools is a barrier to their adoption. Our goal is to
solve this problem by allowing programmers learn a small number of reusable
refactorings and compose them to perform many kinds of larger refactorings.

Low Disruptiveness. Although configuration dialogs make the refactoring tool
more powerful and customizable, they distract the programmer from the code
and disrupt her flow of programming [19,27]. We aim to design refactoring tools
that are highly interactive and allow the programmer to focus on the code.

Correctness. Wizard-based refactorings guarantee correctness by checking a
set of preconditions. Similarly, compositional refactorings check the preconditions
of the individual steps. Because the steps are small, we expect that programmers
can verify them more easily. Moreover, the programmer can run tests after each
step. This allows the programmer to identify the exact step that led to a problem.

4.2 Compositional Extract Superclass Refactoring

Our goals informed the design of a compositional refactoring tool. We use the
Extract Superclass refactoring as an example to demonstrate the compositional
paradigm. This refactoring lets the programmer create a superclass for one or
more classes and move some of the members of the subclasses to the superclass.
We chose Extract Superclass because it is one of the more complex and less
frequently used automated refactorings of Eclipse [19, 27]. Figure 3 shows our
mockup of compositional Extract Superclass. We later improved the mockup and
implemented it as an Eclipse plug-in (Section 6.1). In the following, we briefly
describe how the tool works.

1. The programmer selects the class (Daisy) to extract a superclass from.

2. She selects “Create new superclass in file” from the Quick Assist menu.

3. This creates a new empty superclass and prompts for a new name (Flower).

4. The programmer invokes “Move to immediate superclass” on method water.

5. This moves method water from Daisy to Flower.

6. The programmer invokes “Move type to new file” on class Flower.

7. This moves class Flower to a new file and completes the refactoring.

The outcome of each of the above steps is immediately visible to the program-
mer in the code editor. At each step, the Quick Assist menu suggests a set of
actions that are applicable to the selected element. The steps are independent
of each other. That is, Quick Assist suggests the steps regardless of what step
was previously performed. The programmer does not have to perform every step
using our Quick Assist actions. Rather, she can perform some steps manually.



538 M. Vakilian et al.

Fig. 3. Mockup screenshots of compositional Extract Superclass. See Section 4.2 for
a description of each screenshot. The survey used similar screenshots (Section 5). We
later implemented the mockup as an actual tool (Section 6.1).

5 Survey Study

We distributed a survey to assess our design goals and compare our compositional
prototype of the Extract Superclass refactoring (Figure 3) with the existing
wizard-based user interface of this refactoring in Eclipse. The goal of the survey
study is to answer the following research questions:

– How do programmers compare the compositional and wizard-based
paradigms?

– Are programmers likely to adopt the compositional paradigm?
– What are some opportunities for improving the compositional paradigm?

Answering these questions shows how receptive programmers are to the new
compositional paradigm.
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5.1 Method

We recruited 100 programmers by announcing the survey1 on reddit.com2,
twitter.com, and mailing lists of open source projects. The survey was esti-
mated to take 20 minutes, and started with questions about the experience of
the respondent with programming, IDEs, and refactoring. Then, it asked about
the programmer’s strategy in performing the Extract Superclass refactoring. Fi-
nally, the survey presented screenshots of the two user interfaces of the Extract
Superclass refactoring, and asked the respondent to evaluate and compare them.

5.2 Thematic Coding

We employed thematic coding [32], a systematic qualitative method, to analyze
the responses to open-ended questions. The coding was inductive (data-driven)
as opposed to deductive (theory-driven). We extracted the opinions and ideas
associated with each segment of the comments. Through an iterative process, we
defined, merged, and split the themes to better identify the central ideas. The
goal of such a coding is to identify the major ideas not to count the frequencies of
keywords. This coding allowed us to reliably decide if two participants provided
equivalent responses. For each statement that we report, we include the number
of participants that agree with it as an indication of its overall support.

5.3 Participants

The participants were familiar enough with modern programming environments
to evaluate the compositional paradigm. The majority (91%) of the survey re-
spondents had more than five years of programming experience. Of all the par-
ticipants, 76% considered themselves to be experts in at least one programming
language (on a five-point Likert scale ranging from “Unfamiliar” to “Expert”),
and 99% rated themselves as either very familiar with or expert at one or more
languages. The respondents indicated that they were familiar with Eclipse (81%),
Visual Studio (58%), NetBeans (39%), IntelliJ (36%), and Xcode (28%).

5.4 Results

The survey presented screenshots of the steps to perform the Extract Superclass
refactoring using both the compositional and wizard-based paradigm on the same
page. The survey asked the participant how often she would use each interface
on a five-point Likert scale ranging from “Never” to “Nearly every time”. The
majority (66%) of respondents said that if both compositional and wizard-based
paradigms are available, they would use the compositional paradigm at least as
frequently as the wizard-based one. More interestingly, those who did not use
an existing tool for Extract Superclass or used the tool some of the time were

1 https://illinois.edu/fb/sec/8454746
2 http://www.reddit.com/r/programming

reddit.com
twitter.com
https://illinois.edu/fb/sec/8454746
http://www.reddit.com/r/programming
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more likely to prefer the compositional paradigm (Table 2). This shows that the
compositional paradigm is a promising technique for increasing the utilization
of automated refactorings.

Table 2. Joint distribution of respondents’ frequency of using the Extract Super-
class refactoring wizard and their preferred paradigm (compositional vs. wizard-based).
Since three respondents did not indicate their frequency of using the wizard, the last
row is slightly different from the sum of the other rows.

Prefe
rs com

posi
tion

Has no pref
eren

ce

Prefe
rs wizard

Does not use the wizard 21% 4% 6%
Sometimes uses the wizard 16% 5% 9%

Uses the wizard 15% 3% 20%

All respondents 52% 14% 34%

Finally, the survey asked the participants to compare and evaluate the
paradigms. We applied a qualitative analysis method (Section 5.2) on the com-
ments provided by 50 participants. The following discusses the result of this
analysis, which reveals the strengths and weaknesses of each paradigm and high-
lights opportunities for improvement.

Control. Three survey respondents indicated that they would prefer the com-
positional paradigm, because it provides more control over the evolution of code.
For instance, P5 wrote:

I think the second [compositional] UI [...] gives me the idea of having the
control over what’s happening, and how further can I go with it.

This result is consistent with the findings of a prior study, which showed
that programmers prefer to maintain control over their code and use automated
refactorings whose outcomes are predictable [27].

Invocation Method. Two respondents reported that it was difficult to invoke
the wizard-based refactorings from the menu mostly because the menu was too
cluttered. Five said that they would prefer keyboard shortcuts. For instance, P10

suggested the following as a way to improve the wizard-based interface:

Make refactoring initiated by keyboard short-cut and not buried so deeply in
a menu.

However, as one respondent said, keyboard shortcuts are hard to remember.
Quick Assist is a middle-ground, because it is keyboard navigable and proposes
only the refactorings that are applicable to the current context. Two participants
said that Quick Assist was an easier way of invoking refactorings.
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Incrementality and Testability. Six respondents mentioned that they do
not want refactoring tools with modal dialogs. Five said that modal dialogs are
distracting, and three said that the dialogs are too complex. On the contrary,
five people indicated that the compositional paradigm is more interactive and
two indicated that it allows running tests after each step. For instance, P7 said:

The second [compositional] one provides a more stepwise view, giving me more
intermediate feedback, as well as an ability to run my tests at each step. This
goes a long way to making sure the refactoring is the right decision.

Nonetheless, one respondent said that the compositional paradigm had too
many steps, and two preferred to perform the refactoring in a single step. For
example, P8 said:

I don’t write Hello World examples. I need control over what gets moved up
and what not, what’s made abstract and so forth. I want to do this in one
pass, not six [four].

We made compositional paradigm incremental to achieve high control and
testability. We decided that compositional refactoring fits programmers’ work-
flow, because it mimics manual refactorings and programmers already compose
refactorings (Section 3).

Abstract View. Nine participants were concerned that the compositional
paradigm may not be suitable for large refactorings. For example, P2 said:

[I’m] Not sure I’d want to use that [wizard-based] UI for any refactoring work.
However, [the wizard-based UI is] probably better for very large refactoring
tasks than the second [compositioanal] UI—but if you’re doing that, you’re
doing too much in one go.

Four respondents said that a high-level view of the code would be useful for
performing large refactorings. For instance, P3 said:

[...] However, specifying the methods to be moved one by one rather than
selecting them from a list might cause methods that should be extracted into
a superclass to be missed. In some sense, it is mostly about whether an abstract
view of the methods is preferable to a code level view when choosing whether
to extract them. Sometimes I find myself leaving the extract superclass dialog
to figure out what a method actually does and whether it should be extracted.

The wizard-based paradigm lets the programmer operate at the level of classes
and methods, but, makes it difficult to switch between the code and its higher-
level view. On the other hand, the compositional paradigm that we demonstrated
on the survey was tightly coupled with the code, which makes it easy to inter-
sperse low-level code changes with refactorings. To offer the benefits of both, the
tool could make the switch between the two views seamless, e.g., by making the
refactorings available both in the code editor and graphical views.
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Multi-selections. Five respondents preferred to be able to select multiple pro-
gram entities and manipulate them at the same time. For example, P4 said:

Usually, I’m extracting a common superclass to remove duplication from more
than one similar class, so I’d need to be able to select multiple classes.

Extending the compositional paradigm to support an abstract view will make
it possible to select multiple program elements from the abstract view in one
step.

Coding Conventions. The mockups of the compositional paradigm showed
how to first create an empty superclass in the same file and move it to a new
file later (Figure 3). Although one could move the superclass to a new file right
after creating the superclass, nine preferred the tool to adhere to the coding
conventions strictly and never introduce two classes in the same file.

6 Lab Study

The survey study showed the overall preference of programmers towards compo-
sitional refactoring based on participants’ evaluations of the mockup screenshots.
The goal of the lab study was to answer the following research questions based
on programmers’ experience with real tools that support refactoring in the two
compositional and wizard-based paradigms.

– Which paradigm of refactoring do programmers prefer?

– Which paradigm is faster?

– Which paradigm is less error-prone?

6.1 Tool

We implemented an Eclipse plug-in to support Extract Superclass, Extract In-
terface, Pull Up, and Push Down in the compositional paradigm. Based on the
survey study, we improved the design of our tool in several ways. First, we re-
placed the “Create new superclass in file” action by “Create a new superclass
for T in a new file”. We made this change to adhere to the coding conventions of
Java more strictly. Second, we added an action to the menu called “Create New
Superclass” to support multi-selections. When the user selects multiple classes,
e.g., in the Package Explorer view, this action would create an empty super-
class for the selected classes. Finally, we implemented additional actions such as
“Move type T to a new file”, where T is a type name, and “Add parameter to
method m for expression”, where m is a method name (Introduce Parameter in
Quick Assist). However, the participants did not use these three actions as they
were not applicable to the refactoring task of the lab study.
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6.2 Participants

All of our participants were experienced programmers who used Eclipse for Java
development at a large software company. We first ran a pilot study on three
programmers. Then, we conducted the main study on 13 programmers. Of all the
participants, two reported having five to ten years of programming experience
and 11 reported more than ten years. One participant reported that he was
familiar with Java, nine participants considered themselves as being very familiar
with Java, and three indicated that they were experts. One participant reported
that he was somewhat familiar with Eclipse, four participants rated themselves
as familiar, seven said they were very familiar, and one rated himself as expert.

6.3 Study Design

We instructed each participant to finish the task in both compositional and
wizard-based paradigms (within-subject). Each participant tried the paradigms
in a random order (counterbalancing) to overcome the potential carryover effect.
We did not ask each participant to try only one paradigm (between-subject)
for several reasons. First, individual differences would affect the results of such
a study. Second, a between-subject study requires more participants to draw
meaningful conclusions. Third, such a study would allow only a quantitative
comparison (e.g., efficiency and correctness) of the two paradigms. However, we
felt that such measures were not enough to reliably compare the two paradigms.
A participant can offer a qualitative comparison only if she tries both paradigms.

At the beginning of the study, we asked the participants to complete a preques-
tionnaire. Then, we asked them to perform some introductory tasks to familiarize
themselves with the code. We then instructed each participant to perform the
task twice in a random order, once using the compositional paradigm and an-
other time using the wizard-based paradigm. Finally, we asked the participants
to rate the two paradigms of refactoring in a postquestionnaire and participate
in a semi-structured interview with us. The study took about an hour for each
participant, and we offered a $25 gift card to each participant.

Refactoring Task. We used a refactoring that had occurred in the open-source
project HTMLParser as our refactoring task. Kerievsky used this refactoring as
an example of Extract Composite [11, p. 214] in his book. Several classes of an
old revision of the code base exhibit code duplication. These classes contain a list
and a method that iterates over the list and computes its string representation.
The fields had different names in different classes and the methods accessed the
elements in slightly different ways. We asked our participants to remove this code
duplication between two classes by extracting the common field and method into
a new common superclass. We limited the refactoring to two classes to make it
feasible to finish the refactoring in about 20 minutes.

Pilot Study. During the pilot study, we noticed that some participants acci-
dentally introduced subtle errors while refactoring the code. So, we asked the
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participants of the main study to check that the unit tests passed at the begin-
ning and end of the study. In addition, we instructed the participants to ensure
that the new superclass is only referenced by its subclasses. We decided that
the existing uses of the subclasses should not be replaced by the new superclass,
because of the existing dynamic type checks and casts.

6.4 Data Analysis

We measured the task completion time and checked the correctness of the per-
formed task to compare the two paradigms quantitatively. If a participant fin-
ished the refactoring task, we compared his resulting code with the expected
code in the instructions. If the participant missed some expected changes or
introduced unexpected ones, we considered it an incorrect refactoring.

Similar to the analysis of survey comments (Section 5.2), we employed the-
matic coding [32] to systematically analyze the retrospective interviews.

6.5 Results

Task Completion Time. The medians of the task completion times using
the wizard-based and compositional refactorings were 16.5 and 10.5 minutes, re-
spectively. A Wilcoxon signed-rank test shows that there is a significant effect of
refactoring tool on the task completion time (W = 41, Z = 2.25, p = 0.02 < 0.05,
r = 0.50, two-tailed). Two participants did not finish the refactoring task using
either tools during the allotted time. Another participant could not finish the
task using the wizards. We excluded these three participants from our signifi-
cance test. One participant finished the refactoring faster using the wizards. The
other nine participants finished the task faster using the compositional paradigm.

Correctness. Participants were more likely to complete the task correctly in
the compositional paradigm. Seven participants introduced accidental changes
to the code base using the wizard-based refactorings, while only one participant
left the refactoring incomplete using the compositional paradigm.

The Extract Superclass refactoring wizard has an option called “Use the ex-
tracted class where possible”, which is checked by default. This option causes
the tool to replace all occurrences of the selected classes by the superclass when-
ever this replacement does not introduce any compilation problems. The Pull Up
refactoring wizard has a similar option. Only three participants unchecked this
option on the wizard and only one participant noticed the unexpected changes
in the preview and deselected them. The other seven participants were surprised
when they discovered unexpected references to the new superclass at the end.
At that point, it was difficult to revert the unexpected changes because the par-
ticipants had already changed the code too much since the application of the
wizard-based refactoring. Two participants failed to finish the task using wizards
because reverting the unwanted changes was too time-consuming for them.
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Qualitative. The majority of our participants were more satisfied with the
compositional paradigm, found it easier to learn and use, felt more control and
confidence over the refactoring, and expected more opportunities for using it in
their code (Table 3).

Table 3. Number of participants of the lab study who preferred each paradigm of
refactoring (the first two rows) with respect to each quality (columns). The last row
lists the number of participants with no preference.

cont
rol

corr
ectn

ess

ease
of le

arni
ng

ease
of u

se

oppo
rtun

ity to use

satis
facti

on

compositional 9 6 7 7 7 9
wizard-based 3 5 4 2 1 3
no preference 1 2 2 4 5 1

During the interviews, we asked about the advantages and disadvantages of
the two paradigms of refactoring. The following presents the themes that we
extracted from the participants’ responses.

Control Participants felt they had more control in the compositional paradigm,
because the steps are small, predictable, and mimic their manual refactorings.
One participant said:

The wizard gives this illusion of just doing everything for you. [...] The down-
side is that there were a number of options that I read and didn’t quite make
sense of, and said I guess I don’t have to care about that. And, of course, I
found my sorrow that that wasn’t true. It did things that I completely didn’t
expect. [...] And, it doesn’t give control.

On the other hand, one participant attributed his feeling of control in the
wizard-based paradigm to the previews.

Correctness A participant said:

The thing that I like about it [compositional paradigm] is that you’re taking
actions yourself. So, when you see an error, you usually have an idea of which
action that you took caused the error.

Another participant explained why he did not trust the correctness of com-
positional refactorings as much as the wizard-based ones as follows:

I was not sure if it [the compositional refactoring tool] was seeing the full
picture of the changes. Since it was stepwise [and] I’m doing [each step] one
by one, I’m not sure if each of the steps is going to be integrated correctly.

In practice, the participants were more likely to refactor incorrectly using
wizards.
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Change Review. Seven participants preferred the tool to inform them about the
effects of an automated refactoring on their code. However, most participants
did not inspect the previews of wizard-based refactorings. As a result, seven
participants did not catch unintended changes of the wizard-based refactorings in
their previews. Four participants mentioned that the previews were too cluttered.
One participant said that previews are good for beginners who want to learn a
new refactoring wizard. Our prior study showed that programmers rarely preview
their refactorings in practice [27].

Multi-selections. Four liked the wizard’s ability to refactor multiple entities at
the same time. During the study, five participants tried to use the Extract Su-
perclass wizard to extract a common superclass from two classes at once. The
rest either found it easier to refactor in smaller steps or did not notice the con-
figuration option to extract from multiple classes.

Configuration Options and Error Messages. Although the wizard-based refac-
torings provide many options to customize the refactorings, the participants only
used a subset of these options. Because one of the methods that the participants
had to move to the superclass referenced other members of the subclass, the
refactoring wizard reported an error message. The refactoring wizard has an
“Add Required” button that when pressed selects all members that are refer-
enced by the currently selected members. However, none of the participants used
this configuration option. Instead, they performed the refactoring and fixed the
resulting compilation problem manually. One of the participants said that he
ignored the error message of the wizard because it was not actionable:

It [The refactoring wizard] came up with something like: “Sorry, this method
is referring to this other variable that we can’t change”. I didn’t know what I
could do about that in the window. I was like: “OK. Thanks for the informa-
tion!” [laughter ]

These observations are consistent with the results of prior studies that showed
programmers rarely configure the refactoring wizards [19] and usually apply an
automated refactoring that has reported problems [27].

Composition Order. Three participants mentioned that one has to be careful
with the order in which she composes the refactorings. On the other hand, one
participant indicated that sometimes significant work is required to transform the
code to a state that is amenable to the application of a wizard-based refactoring.

6.6 Design Suggestions

The participants suggested improvements to the compositional and wizard-based
paradigms. For the compositional paradigm, two participants proposed that the
tool suggests the entities that the programmer might want to refactor next.

For the wizard-based paradigm, two participants suggested the ability to
match up similar entities. For instance, the Extract Superclass refactoring could
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detect similar members in multiple classes, or let the programmer match up the
related members and pull them up to the superclass in one step. In addition, one
participant proposed that the refactoring wizard provides an incremental pre-
view. An incremental preview gets updated as the programmer manipulates the
configuration options. Finally, one participant suggested that the tool presents
the previews graphically.

7 Limitations

Like any study, each of our prior field study [27], inference of refactoring sets
(Section 2) and composition patterns (Section 3), survey (Section 5) and lab
study (Section 6) has its own limitations. However, their results with respect to
the effectiveness of compositional refactoring corroborate one another. The rest
of this section discusses some of the limitations of our work.

Eclipse Foundation Data Set. The Eclipse foundation data (Section 2.1),
while huge, lacks precision. For instance, it does not differentiate certain refac-
torings, e.g., Inline Local Variable and Inline Method. In addition, this data set
does not include the project and workspace in which the refactoring is invoked.
Moreover, it misses refactorings invoked through Quick Assist. Despite these lim-
itations, the Eclipse foundation data serves as a good starting point to quantify
the prevalence of frequent refactoring sets (Section 2).

Participants. The Illinois data set, while more precise, comes from a smaller
pool of participants. We found the recruitment challenging due to issues such
as privacy, confidentiality, and lack of trust in the reliability of research tools.
Nonetheless, our participants come from diverse backgrounds, have various levels
of experiences, and work on a variety of nontrivial projects. Thus, we believe that
our participants are representative of real-world programmers.

The majority of the lab study participants were very familiar with Eclipse.
Further studies are needed to understand the effect of experience on the preferred
paradigm of refactoring.

Generalizability. Due the constraints of the survey and lab studies, we evalu-
ated the compositional paradigm using two refactorings, i.e., Extract Superclass
and Extract Composite. We have implemented refactorings such as Pull Up,
Push Down, and Extract Interface in the compositional paradigm. More evalu-
ation is left to future work.

Our data sets were limited to the use of the Eclipse refactoring tool for Java.
However, we expect our results to hold for similar refactoring tools, because they
follow a similar user interaction model, i.e., wizard-based refactoring.
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Refactoring Tasks. The comments of survey participants were based on screen-
shots not use of the tools. However, these refactorings are based on familiar fea-
tures of Eclipse, i.e., wizards and Quick Assist. The insightful comments of the
participants indicate that they understood the two paradigms well.

The survey study relied on a small piece of code. We intentionally kept the sur-
vey simple to make it understandable for programmers who may not be familiar
with the intricacies of the refactoring wizards.

For the lab study, we selected a single realistic refactoring task that Kerievsky
used in his book to introduce Extract Composite [11, p. 214]. As some of our
participants speculated, the wizard-based refactoring might be more appropri-
ate for refactorings that affect hundreds of files. Further studies are needed to
compare the two paradigms of refactoring on a variety of refactoring tasks.

Participant Response Bias. A common limitation of user studies is that
participants may favor the interface that they think the researcher has developed.
However, we think that our results are less affected by this bias, because most
of our participants could not tell which interface was ours. At the end of the lab
study, most participants asked us which interface was ours. This is because the
Extract Superclass wizard is rarely used [19,27], and few programmers remember
all Quick Assist actions to identify the actions contributed by our plug-in.

8 Related Work

Composite Refactorings. One way of automating composite refactorings is to
build tools that execute a sequence of smaller refactorings atomically [16,30]. We
introduce a radically different paradigm. Rather than building a monolithic tool
from several refactorings, we propose that a large refactoring be decomposed into
smaller ones. These two paradigms suit different needs. The monolithic paradigm
is suited for toolsmiths who are in charge of applying a refactoring on a large
code base in batch mode. The compositional paradigm is designed for interactive
refactoring in an IDE. In addition, the monolithic paradigm aims to provide
correctness guarantees by inferring preconditions [3, 14, 24]. The compositional
paradigm makes it easy for the programmers to verify the correctness of the
refactoring by making each step easy to predict and verify.

Murphy-Hill et al. [19] reported that developers often repeat an automated
refactoring within 60 seconds. Negara et al. [20] found that more than one third
of manual and automated refactorings are performed in batches. Our study goes
beyond reporting the frequencies of refactoring sets (Section 2) and sheds light
on the rationales of composing automated refactorings (Section 3).

Schäfer et al. [26] argued that a very fine-grained decomposition of a refactor-
ing into a composition of micro-refactorings over an extended language makes
the implementation of the refactoring tool more reliable. They used Extract
Method as an example to demonstrate their technique. While their focus was
on reliability, ours is on usability. Generalizing their results, the compositional
paradigm should lead to more reliable implementations of large refactorings.
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Usability of Refactoring Tools. Empirical studies [19,27] showed that refac-
toring tools are underused. These results prompted research on improving the
usability of refactoring tools.

Murphy-Hill and Black [18] developed a prototype tool that visualizes code
selections and error messages. They evaluated their tool on a single refactoring,
namely Extract Method. Similarly, we evaluated compositional refactoring on
two refactorings, Extract Superclass and Extract Composite.

Researchers have proposed refactoring auto-completion systems [5, 8], which
prompt programmers to automatically complete a manual refactoring. Others
have proposed alternative methods of invoking refactorings drag-and-drop [15]
and multi-touch [22] gestures. While these systems aim to make the invoca-
tion of refactoring tools seamless, compositional refactoring makes automated
refactoring more predictable. Nonetheless, alternative methods of invocations are
complementary to our work, because they can streamline the invocation of the
individual steps of a composite refactoring.

9 Future Work

We evaluated the compositional paradigm using a survey and a lab study. Fu-
ture research can evaluate this paradigm in the field for more refactorings and
program transformations in general.

One area of future work would be to investigate other ways of assisting pro-
grammers in composing refactorings. For example, how accurately can a tool
predict the next refactoring that a programmer may invoke in a compositional
paradigm? Can a history of previously invoked refactorings and frequent refac-
toring sets be used to accurately make such a prediction?

Another line of future work would be to study the pedagogical aspects of
the compositional paradigm. While our discussion of refactoring composition
patterns (Section 3) could serve as a starting point for learning these patterns,
more research is needed to deliver a more comprehensive catalog. One technique
to make people adopt new skills is to make it easy to learn from their peers.
How can we facilitate the transfer of refactoring composition skills in a team?

10 Conclusions

We feel a rush to more automation in the software engineering community, often
through wishful thinking or superficial claims about the impact of additional
automation on the productivity of programmers. Despite the push to automate
more refactorings and other recurring program transformations, studies have
shown that programmers greatly underuse such tools [18, 20, 27].

Rather than offering more automation, we took the opposite direction, and
proposed the compositional paradigm for refactoring. In this paradigm, the tool
automates the individual steps, and puts the programmer in control by letting
her manually compose the steps into a complex change.
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The compositional paradigm was inspired by our analysis of the refactoring
practices of programmers in the wild. Our data mining and manual examination
of two refactoring usage data sets provided evidence for the prevalence, diversity,
rationales, and naturalness of composing automated refactorings. In addition,
our survey and lab studies showed that the compositional paradigm is more
effective than the existing wizard-based paradigm of refactoring.

The compositional paradigm outperforms the wizard-based one by reducing
the automation level. Although this result may seem counterintuitive, it is not
unique to software engineering. Designers of other fields, e.g., aviation, health-
care, and manufacturing, struggle with similar problems. What is an appropriate
level of automation? What should the role of the human operator be? Often,
researchers find that less is more. That is, a modest design, which provides
clear, immediate feedback, outperforms a design with a high level of automation
that does not integrate the human operator well [2, 12, 31].
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Abstract. Despite the enormous success that manual and automated
refactoring has enjoyed during the last decade, we know little about
the practice of refactoring. Understanding the refactoring practice is im-
portant for developers, refactoring tool builders, and researchers. Many
previous approaches to study refactorings are based on comparing code
snapshots, which is imprecise, incomplete, and does not allow answering
research questions that involve time or compare manual and automated
refactoring.

We present the first extended empirical study that considers both
manual and automated refactoring. This study is enabled by our al-
gorithm, which infers refactorings from continuous changes. We imple-
mented and applied this algorithm to the code evolution data collected
from 23 developers working in their natural environment for 1,520 hours.
Using a corpus of 5,371 refactorings, we reveal several new facts about
manual and automated refactorings. For example, more than half of the
refactorings were performed manually. The popularity of automated and
manual refactorings differs. More than one third of the refactorings per-
formed by developers are clustered in time. On average, 30% of the per-
formed refactorings do not reach the Version Control System.

1 Introduction

Refactoring [10] is an important part of software development. Development
processes like eXtreme Programming [3] treat refactoring as a key practice.
Refactoring has revolutionized how programmers design software: it has enabled
programmers to continuously explore the design space of large codebases, while
preserving the existing behavior. Modern IDEs such as Eclipse, NetBeans, Intel-
liJ IDEA, or Visual Studio incorporate refactoring in their top menu and often
compete on the basis of refactoring support.

Several research projects [7, 17, 18, 23–25, 27, 31, 33] made strides into under-
standing the practice of refactoring. This is important for developers, refactoring
tool builders, and researchers. Tool builders can improve the current generation
of tools or design new tools to match the practice, which will help developers to
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perform their daily tasks more effectively. Understanding the practice also helps
researchers by validating or refuting assumptions that were previously based on
folklore. It can also focus the research attention on the refactorings that are
popular in practice. Last, it can open new directions of research. For example, in
this study we discovered that more than one third of the refactorings performed
in practice are applied in a close time proximity to each other, thus forming a
cluster. This result motivates new research into refactoring composition.

The fundamental technical problem in understanding the practice is being
able to identify the refactorings that were applied by developers. There are a
few approaches. One is to bring developers in the lab and watch how they refac-
tor [24]. This has the advantage of observing all code changes, so it is precise.
But this approach studies the programmers in a confined environment, for a
short period of time, and thus, it is unrepresentative.

Another approach is to study the refactorings applied in the wild. The most
common way is to analyze two Version Control System (VCS) snapshots of the
code either manually [2, 7, 21, 22] or automatically [1, 4, 6, 15, 19, 29, 32]. How-
ever, the snapshot-based analysis has several disadvantages. First, it is impre-
cise. Many times refactorings overlap with editing sessions, e.g., a method is both
renamed, and its method body is changed dramatically. Refactorings can also
overlap with other refactorings, e.g., a method is both renamed and its arguments
are reordered. The more overlap, the more noise. Our recent study [27] shows
that 46% of refactored program entities are also edited or further refactored in
the same commit. Second, it is incomplete. For example, if a method is renamed
more than once, a snapshot-based analysis would only infer the last refactoring.
Third, it is impossible to answer many empirical questions. For example, from
snapshots we cannot determine how long it takes developers to refactor, and we
cannot compare manual vs. automated refactorings.

Others [25, 31] have studied the practice of automated refactorings recorded
by Eclipse [7, 16], but this approach does not take into account the refactorings
that are applied manually. Recent studies [24, 25, 31] have shown that program-
mers sometimes perform a refactoring manually, even when the IDE provides an
automated refactoring. Thus, this approach is insufficient.

We present the first empirical study that addresses these five serious limita-
tions. We study the refactoring practice in the wild, while employing a continuous
analysis. Such analysis tracks code changes as soon as they happen rather than
inferring them from VCS snapshots. We study synergistically the practice of
both manual and automated refactorings. We answer seven research questions:

RQ1: What Is the Proportion of Manual vs. Automated Refactorings?
RQ2: What Are the Most Popular Automated and Manual Refactorings?
RQ3: How Often Does a Developer Perform Manual vs. Automated Refactor-

ings?
RQ4: How Much Time Do Developers Spend on Manual vs. Automated Refac-

torings?
RQ5: What is the Size of Manual vs. Automated Refactorings?
RQ6: How Many Refactorings Are Clustered?
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RQ7: How Many Refactorings Do Not Reach VCS?

Answering these empirical questions requires us to infer refactorings from con-
tinuous code changes. Recent tools [9,14] that were developed for such inference
were not designed for empirical studies. Therefore, we designed and implemented
our own refactoring inference algorithm that analyzes code changes continuously.
Currently, our algorithm infers ten kinds of refactorings performed either manu-
ally or automatically, but it can be easily extended to handle other refactorings
as well. The inferred ten kinds of refactorings were previously reported [31] as
the most popular among automated refactorings. Table 1 shows the inferred
refactorings, ranging from API-level refactorings (e.g., Rename Class), to par-
tially local (e.g., Extract Method), to completely local refactorings (e.g., Extract
Local Variable). We think the inferred refactorings are representative since they
are both popular and cover a wide range of common refactorings that operate
on different scope levels. In the following, when we refer to refactorings we mean
these ten refactoring kinds.

Table 1. Inferred refactorings. API-level refactorings operate on the elements of a
program’s API. Partially local refactorings operate on the elements of a method’s
body, but also affect the program’s API. Completely local refactorings affect elements
in the body of a single method only.

Scope Refactoring

API-level

Encapsulate Field
Rename Class
Rename Field

Rename Method

Partially local
Convert Local Variable to Field

Extract Constant
Extract Method

Completely local
Extract Local Variable
Inline Local Variable

Rename Local Variable

In our previous study [27], we continuously inferred Abstract Syntax Tree
(AST) node operations, i.e., add, delete, and update AST node from fine-grained
code edits (e.g., typing characters). In this study, we designed and implemented
an algorithm that infers refactorings from these AST node operations. First, our
algorithm infers high-level properties, e.g., replacing a variable reference with
an expression. Then, from combination of properties it infers refactorings. For
example, it infers that a local variable was inlined when it noticed that a variable
declaration is deleted, and all its references are replaced with the initialization
expression.

We applied our inference algorithm on the real code evolution data from 23
developers, working in their natural environment for 1,520 hours. We found
that more than half of the refactorings were performed manually, and thus,
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the existing studies that focus on automated refactorings only might not be
generalizable since they consider less than half of the total picture. We also
found that the popularity of automated and manual refactorings differs. Our
results present a fuller picture about the popularity of refactorings in general,
which should help both researchers and tool builders to prioritize their work.
Our findings provide an additional evidence that developers underuse automated
refactoring tools, which raises the concern of the usability problems in these
tools. We discovered that more than one third of the refactorings performed by
developers are clustered. This result emphasizes the importance of researching
refactoring clusters in order to identify refactoring composition patterns. Finally,
we found that 30% of the performed refactorings do not reach the VCS. Thus,
using VCS snapshots alone to analyze refactorings might produce misleading
results.

This paper makes the following contributions:

1. We answered seven research questions about the practice of manual and
automated refactoring and discovered several new facts.

2. We designed and implemented an algorithm that employs continuous change
analysis to infer refactorings. Our inference algorithm and infrastructure
have been successfully evaluated by the ECOOP artifact evaluation com-
mittee and found to meet expectations. Our implementation is open source
and available at http://codingtracker.web.engr.illinois.edu.

3. We evaluated our algorithm on a large corpus of real world data.

2 Research Methodology

To answer our research questions, we employed the code evolution data that we
collected as part of our previous user study [27] on 23 participants. We recruited
10 professional programmers who worked on different projects in domains such as
marketing, banking, business process management, and database management.
We also recruited 13 Computer Science graduate students and senior under-
graduate summer interns who worked on a variety of research projects from six
research labs at the University of Illinois at Urbana-Champaign.

The participants of our study have different affiliations, programming expe-
rience, and used our tool, CodingTracker [27], for different amounts of time.
Consequently, the total aggregated data is non-homogeneous. To see whether
this non-homogeneity affects our results, we divided our participants into seven
groups along the three above mentioned categories. Table 2 shows the detailed
statistics for each group as well as for the aggregated data. For every research
question, we first present the aggregated result, and then discuss any discrepan-
cies between the aggregated and the group results.

To collect code evolution data, we asked each participant to install the Cod-

ingTracker plug-in in his/her Eclipse IDE. During the study, CodingTracker

recorded a variety of evolution data at several levels ranging from individual
code edits up to the high-level events like automated refactoring invocations and

http://codingtracker.web.engr.illinois.edu
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Table 2. Size and usage time statistics of the aggregated and individual groups

Metric

Group

Aggregated
Affiliation Tool usage Programming

Students Professionals
(hours) experience (years)

≤ 50 > 50 < 5 5 – 10 > 10

Participants 23 13 10 13 10 5 11 6

Usage time, hours 1,520 1,048 471 367 1,152 269 775 458

Mean 66 81 47 28 115 54 70 76

STDEV 52 54 44 16 38 46 52 62

interactions with Version Control System (VCS). CodingTracker employed ex-
isting infrastructure [31] to regularly upload the collected data to our centralized
repository.

At the time when CodingTracker recorded the data, we did not have a
refactoring inference algorithm. However, CodingTracker can accurately replay
all the code editing events, thus recreating an exact replica of the evolution
session that happened in reality. We replayed the coding sessions and this time,
we applied our newly developed refactoring inference algorithm.

We first applied our AST node operations inference algorithm [27] on the
collected raw data to represent code changes as add, delete, and update operations
on the underlying AST. These basic AST node operations serve as input to
our refactoring inference algorithm. Section 4 presents more details about our
refactoring inference algorithm.

Next, we answer every research question by processing the output of the
algorithm with the question-specific analyzer. Note that our analyzers for RQ1
– RQ5 ignore trivial refactorings. We consider a refactoring trivial if it affects
a single line of code, e.g., renaming a variable with no uses.

3 Research Questions

RQ1: What Is the Proportion of Manual vs. Automated Refactorings?
Previous research on refactoring practice either predominantly focused on au-
tomated refactorings [23, 25, 31] or did not discriminate manual and automated
refactorings [7,33]. Answering the question about the relative proportion of man-
ual and automated refactorings will allow us to estimate how representative au-
tomated refactorings are of the total number of refactorings, and consequently,
how general are the conclusions based on studying automated refactorings only.

For each of the ten refactoring kinds inferred by our algorithm, we counted
how many refactorings were applied using Eclipse automated refactoring tools
and how many of the inferred refactorings were applied manually. Fig. 1 shows
our aggregated results. The last column represents the combined result for all
the ten refactoring kinds.
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Fig. 1. Relative proportion of manual and automated refactorings

Overall, our participants performed around 11% more manual than automated
refactorings (2,820 vs. 2,551). Thus, research focusing on automated refactorings
considers less than half of the total picture. Moreover, half of the refactoring
kinds that we investigated, Convert Local Variable to Field, Extract Method,
Rename Field, Rename Local Variable, and Rename Method, are predominantly
performed manually. This observation undermines the generalizability of the
existing studies based on the automated execution of these popular refactorings.
Also, it raises concerns for tool builders about the underuse of the automated
refactoring tools, which could be a sign that these tools require a considerable
improvement.

We compared the number of manual and automated refactorings performed by
each group. Table 3 shows the total counts of manual and automated refactor-
ings as well as the relative fraction of manual over automated refactorings. The
results for the groups in the Affiliation and Usage time categories are consis-
tent with the results for the aggregated data. At the same time, the programming
experience of our participants has a greater impact on the ratio of the performed
manual and automated refactorings. In particular, developers with less than five
years of programming experience tend to perform 28% more manual than auto-
mated refactorings, while those with an average experience (5 – 10 years) perform
more automated thanmanual refactorings. This result reflects a common intuition
that novice developers are less familiar with the refactoring tools (e.g., in RQ3
we observed that novices do not perform three kinds of automated refactorings
at all), but start using them more often as their experience grows. Nevertheless,
developers with more than ten years of experience perform many more manual
than automated refactorings (49%). One of the reasons for this behavior could
be that more experienced developers learned to perform refactorings well before
the appearance of the refactoring tools. Also, experts might think that they are
faster without the refactoring tool. For example, we observed that such develop-
ers mostly perform manually Rename refactorings, which could be accomplished
quickly (but less reliably) using the Search & Replace command.

RQ2: What Are the Most Popular Automated and Manual Refac-
torings? Prior studies [23, 31] identified the most popular automated refac-
torings to better understand how developers refactor their code. We provide a
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Table 3. Manual and automated refactorings performed by each group

Category Group Manual Automated Manual over Automated

Aggregated All data 2820 2551 10.5%

Affiliation
Students 1645 1516 8.5%

Professionals 1175 1035 13.5%

Usage time
≤ 50 hours 485 471 3%
> 50 hours 2335 2080 12.3%

Experience
< 5 years 292 228 28%

5 – 10 years 1282 1459 -12.1%
> 10 years 1237 829 49.2%

more complete picture of the refactoring popularity by looking at both manual
and automated refactorings. Additionally, we would like to contrast how similar
or different are popularities of automated refactorings, manual refactorings, and
refactorings in general.

To measure the popularity of refactorings, we employ the same refactoring
counts that we used to answer the previous research question. Fig. 2, 3, and 4
correspondingly show the popularity of automated, manual, and all refactorings
in the aggregated data. The Y axis represents refactoring counts. The X axis
shows refactorings ordered from the highest popularity rank at the left to the
lowest rank at the right.

Our results on popularity of automated refactorings mostly corroborate previ-
ous findings [31]1. The only exceptions are the Inline Local Variable refactoring,
whose popularity has increased from the seventh to the third position, and the
Encapsulate Field refactoring, whose popularity has declined from the fifth to the
seventh position. Overall, our results show that the popularity of automated and
manual refactorings is quite different: the top five most popular automated and
manual refactorings have only three refactorings in common — Rename Local
Variable, Rename Method, and Extract Local Variable, and even these refac-
torings have different ranks. The most important observation though is that
the popularity of automated refactorings does not reflect well the popularity of
refactorings in general. In particular, the top five most popular refactorings and
automated refactorings share only three refactorings, out of which only one, Re-
name Method, has the same rank. Having a fuller picture about the popularity of
refactorings, researchers would be able to automate or infer the refactorings that
are popular when considering both automated andmanual refactorings. Similarly,
tool builders should paymore attention to the support of the popular refactorings.
Finally, novice developers might decide what refactorings to learn first depending
on their relative popularity.

Refactoring popularity among different participant groups is mostly consistent
with the one observed in the aggregated data. In particular, for three groups
(Usage time > 50 hours, Experience 5 – 10 years, and Experience > 10 years),

1 Note that we can not directly compare our results with the findings of Murphy et
al. [23] since their data represents the related refactoring kinds as a single category
(e.g., Rename, Extract, Inline, etc.).
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Fig. 2. Popularity of automated refactorings
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Fig. 3. Popularity of manual refactorings
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Fig. 4. Popularity of refactorings
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the top five most popular refactorings are the same as for the aggregated data,
while for the rest of the groups, four out of five most popular refactorings are
the same.

RQ3: How Often Does a Developer Perform Manual vs. Automated
Refactorings? In our previous study [31], we showed that developers may un-
deruse automated refactoring tools for a variety of reasons, one of the most
important being that developers are simply unaware of automated refactoring
tools. Answering this question will help us to better understand whether devel-
opers who are aware about an automated refactoring tool use the tool rather
than refactor manually.

In the following, we denote the quantity of automated tool usage as A. We
compute A as a ratio of automated refactorings to the total number of refactor-
ings of a particular kind performed by an individual participant. For each of the
ten inferred refactoring kinds, we counted the number of participants for a range
of values of A, from A = 0% (those who never use an automated refactoring tool)
up to A = 100% (those who always use the automated refactoring tool).

Both for the aggregated data and for all groups, we observed that the fraction
of participants who always perform a refactoring manually is relatively high for
all the ten refactoring kinds (with a few exceptions). Also, in the aggregated
data, there are no participants who apply Convert Local Variable to Field, En-
capsulate Field, Extract Method, and Rename Field using the automated refac-
toring tools only. In groups, there are even more refactoring kinds that are never
applied using automated refactoring tools only. Overall, our results provide a
stronger quantitative support for the previously reported findings [25, 31] that
the automated refactoring tools are underused.

To get a better insight into the practice of manual vs. automated refactoring
of our participants, we defined three properties:

– High full automation: The number of participants who always perform the
automated refactoring (A = 100%) is higher than the number of participants
who always perform this refactoring manually (A = 0%).

– High informed underuse: The number of participants who are aware
about the automated refactoring, but still apply it manually most of the
time (0% < A ≤ 50%) is higher than the number of participants who apply
this refactoring automatically most of the time (50% < A ≤ 100%).

– General informed underuse: The number of participants who apply the
automated refactoring only (A = 100%) is significantly lower than the num-
ber of participants who both apply the automated refactoring and refactor
manually (0% < A < 100%).

Table 4 shows refactoring kinds that satisfy the above properties for each group
as well as for the aggregated data. For each group, we present only the difference
with the aggregated result, where “−” marks those refactoring kinds that are
present in the aggregated result, but are absent in the group result, and “+” is
used in the vice-versa scenario.

Our aggregated results show that only for two refactorings, Extract Con-
stant and Rename Class, the number of participants who always perform the
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Table 4. Manual vs. automated refactoring practice

Category Group
Property

High High General
full automation informed underuse informed underuse

Aggregated
Extract Constant Extract Method

All
Rename Class Rename Local Variable

Affiliation

Students
-Extract Constant +Conv. Loc. Var. to Field
-Rename Class +Extract Constant

+Rename Method

Professionals
+Rename Method -Rename Local Variable -Extract Constant

-Rename Class
-Rename Method

Usage time
≤ 50 hours

-Extract Constant -Extract Constant
+Rename Method -Rename Class

> 50 hours -Rename Class +Rename Method -Extract Constant

Experience

< 5 years
-Extract Constant -Conv. Loc. Var. to Field
-Rename Class -Extract Constant

-Inline Local Variable

5 – 10 years
-Extract Constant -Rename Local Variable -Extract Constant

+Conv. Loc. Var. to Field
+Extract Constant

> 10 years
-Extract Constant +Encapsulate Field

+Rename Method

automated refactoring is higher than the number of participants who always
perform the refactoring manually. Another important observation is that for
two refactoring kinds, Extract Method and Rename Local Variable, the number
of participants who are aware of the automated refactoring, but still apply it
manually most of the time is higher than the number of participants who apply
this refactoring automatically most of the time. This shows that some automated
refactoring tools are underused even when developers are aware of them and ap-
ply them from time to time. Our results for groups show that students tend to
underuse more refactoring tools than professionals. Also, developers with more
than five years of experience underuse more refactoring tools that they are aware
of than those with less than five years of experience. At the same time, novice
developers do not use three refactoring tools at all, i.e., they always perform the
Convert Local Variable to Field, Extract Constant, and Inline Local Variable
refactorings manually. Thus, novice developers might underuse some refactoring
tools due to lack of awareness, an issue identified in a previous study [31].

The aggregated result shows that for each of the ten refactoring kinds, the
number of participants who apply the automated refactoring only is significantly
lower than the number of participants who both apply the automated refactoring
and refactor manually. The result across all groups shows that no less than
seven refactoring kinds satisfy this property. These results show that developers
underuse automated refactoring tools, some more so than the others, which could
be an indication of a varying degree of usability problems in these tools.

RQ4: How Much Time Do Developers Spend on Manual vs. Auto-
mated Refactorings? One of the major arguments in favor of performing a
refactoring automatically is that it takes less time than performing this refactor-
ing manually [30]. We would like to assess this time difference as well as compare
the average durations of different kinds of refactorings performed manually.
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To measure the duration of a manual refactoring, we consider all AST node
operations that contribute to it. Our algorithm marks AST node operations
that contribute to a particular inferred refactoring with a generated refactor-
ing’s ID, which allows us to track each refactoring individually. Note that a
developer might intersperse a refactoring with other code changes, e.g., another
refactoring, small bug fixes, etc. Therefore, to compute the duration of a manual
refactoring, we cannot subtract the timestamp of the first AST node operation
that contributes to it from the timestamp of the last contributing AST node
operation. Instead, we compute the duration of each contributing AST node
operation separately by subtracting the timestamp of the preceding AST node
operation (regardless of whether it contributes to the same refactoring or not)
from the timestamp of the contributing AST node operation. If the obtained
duration is greater than two minutes, we discard it, since it might indicate an
interruption in code editing, e.g., a developer might get distracted by a phone
call or take a break. Finally, we sum up all the durations of contributing AST
node operations to obtain the duration of the corresponding refactoring.

We get the durations of automated refactorings from CodingSpectator [31].
CodingSpectator measures configuration time of a refactoring performed auto-
matically, which is the time that a developer spends in the refactoring’s dialog
box. Note that the measured time includes neither the time that the developer
might need to check the correctness of the performed automated refactoring nor
the time that it takes Eclipse to actually change the code, which could range
from a couple of milliseconds to several seconds, depending on the performed
refactoring kind and the underlying code.

Fig. 5 shows our aggregated results. On average, manual refactorings take
longer than their automated counterparts with a high statistical significance
(p < 0.0001, using two-sided unpaired t-test) only for Extract Local Variable,
Extract Method, Inline Local Variable, and Rename Class since for the other
refactoring kinds our participants rarely used the configuration dialog boxes.
This observation is also statistically significant across all groups. Manual exe-
cution of the Convert Local Variable to Field refactoring takes longer than the
automated one with a sufficient statistical significance (p < 0.04) for the aggre-
gated data, while for most groups this observation is not statistically significant.
The most time consuming, both manually and automatically, is the Extract
Method refactoring, which probably could be explained by its complexity and
the high amount of code changes involved. All other refactorings are performed
manually on average in under 15 – 25 seconds. Some refactorings take longer
than others. A developer could take into account this difference when deciding
what automated refactoring tool to learn first.

Another observation is that the Rename Field refactoring is on average the
fastest manual refactoring. It takes less time than the arguably simpler Rename
Local Variable refactoring. One of the possible explanations is that developers
perform the Rename Field refactoring manually when it does not require many
changes, e.g., when there are few references to the renamed field, which is sup-
ported by our results for the following question.
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Fig. 5. Average duration of performing manual refactorings and configuring automated
refactorings. The black intervals represent the standard error of the mean (SEM). The
configuration time bar for the Encapsulate Field refactoring is missing since we do not
have data for it.

RQ5: What is the Size of Manual vs. Automated Refactorings? In an
earlier project [31], we noticed that developers mostly apply automated refac-
toring tools for small code changes. Therefore, we would like to compare the
average size of manual and automated refactorings to better understand this
behavior of developers.

To perform the comparison, we measured the size of manual and automated
refactorings as the number of the affected AST nodes. For manual refactorings,
we counted the number of AST node operations contributing to a particular
refactoring. For automated refactorings, we counted all AST node operations
that appear in between the start and the finish refactoring operations recorded
by CodingTracker. Note that all operations in between the start and the fin-
ish refactoring operations represent the effects of the corresponding automated
refactoring on the underlying code [27].

Fig. 6 shows our aggregated results. On average, automated refactorings affect
more AST nodes than manual refactorings for four refactoring kinds, Convert
Local Variable to Field, Extract Method, Rename Field, and Rename Local Vari-
able, with a high statistical significance (p < 0.0001), and for three refactoring
kinds, Extract Local Variable, Inline Local Variable, and Rename Method, with
a sufficient statistical significance (p < 0.03). One of the reasons could be that
developers tend to perform smaller refactorings manually since such refactorings
have a smaller overhead. At the same time, this observation is not statistically
significant for all the above seven refactoring kinds in every group. In particu-
lar, it is statistically significant in five out of seven groups for three refactoring
kinds, Convert Local Variable to Field, Extract Method, and Rename Field, and
in fewer groups for the other four kinds of refactorings.

Intuitively, one could think that developers perform small refactorings by hand
and large refactorings with a tool. On the contrary, our findings show that devel-
opers perform manually even large refactorings. In particular, Extract Method
is by far the largest refactoring performed both manually and automatically – it
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Fig. 6. Average size of manual and automated refactorings expressed as the number of
the affected AST nodes. The black intervals represent the standard error of the mean
(SEM). The scale of the Y axis is logarithmic.

is more than two times larger than Encapsulate Field, which is the next largest
refactoring. At the same time, according to our result forRQ3, most of the devel-
opers predominantly perform the Extract Method refactoring manually in spite
of the significant amount of the required code changes. Thus, the size of a refac-
toring is not a decisive factor for choosing whether to perform it manually or with
a tool. This also serves as an additional indication that the developers might not
be satisfied with the existing automation of the Extract Method refactoring [24].

RQ6: How Many Refactorings Are Clustered? To better understand
and support refactoring activities of developers, Murphy-Hill et al. [25] identified
different refactoring patterns, in particular, root canal and floss refactorings. A
root canal refactoring represents a consecutive sequence of refactorings that are
performed as a separate task. Floss refactorings, on the contrary, are interspersed
with other coding activities of a developer. In general, grouping several refactor-
ings in a single cluster might be a sign of a higher level refactoring pattern, and
thus, it is important to know how many refactorings belong to such clusters.

To detect whether several refactorings belong to the same cluster, we compute
a ratio of the number of AST node operations that are part of these refactorings
to the number of AST node operations that happen in the same time window
as these refactorings, but do not belong to them (such operations could happen
either in between refactorings or could be interspersed with them). If this ratio
is higher than a particular threshold, T , we consider that the refactorings belong
to the same cluster. That is, rather than using a specific time window, we try to
get as large clusters as possible, adding refactorings to a cluster as long as the
ratio of refactoring to non-refactoring changes in the cluster does not fall below
a particular threshold. The minimum size of a cluster is three. Note that for the
clustering analysis we consider automated refactorings of all kinds and manual
refactorings of the ten kinds inferred by our tool.

Fig. 7 shows the proportion of clustered and separate refactorings for aggre-
gated data for different values of T , which we vary from 1 to 10. T = 1 means that
the amount of non-refactoring changes does not exceed the amount of refactoring
changes in the same cluster. Fig. 8 shows the average size of gaps between separate
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refactorings (i.e., refactorings that do not belong to any cluster) expressed as the
number of AST node operations that happen in between two separate refactorings
or a separate refactoring and a cluster.
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Fig. 7. Proportion of clustered and separate refactorings for different values of the
threshold T
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Fig. 8. The average size of gaps between separate refactorings expressed as the number
of AST node operations. The X axis represents the values of the threshold T .

Our aggregated results show that for T = 1, 45% of the refactorings are
clustered. When the threshold grows, the number of the clustered refactorings
goes down, but not much — even for T = 10, 28% of refactorings are clustered.
The average gap between floss refactorings is not very sensitive to the value of
the threshold as well. Overall, developers tend to perform a significant fraction
of refactorings in clusters. This observation holds for all groups except for the
novice developers, where for T = 1 only 8% of the refactorings are clustered.
One of the reasons could be that novices tend to refactor sporadically, while
more experienced developers perform refactorings in chunks, probably compos-
ing them to accomplish high-level program transformations (e.g., refactor to a
design pattern). Our results emphasize the importance of researching refactoring
clusters in order to identify refactoring composition patterns.

RQ7: How Many Refactorings Do Not Reach VCS? Software evolution
researchers [6, 8, 11–13, 20, 34] use file-based Version Control Systems (VCSs),
e.g., Git, SVN, CVS, as a convenient way to access the code histories of different
applications. In our previous study [27], we showed that VCS snapshots provide
incomplete and imprecise evolution data. In particular, we showed that 37%
of code changes do not reach VCS. Since refactorings play an important role



566 S. Negara et al.

in software development, in this study, we would like to assess the amount of
refactorings that never make it to VCS, and thus, are missed by any analysis
based on VCS snapshots. Note that in our previous study [27] we looked at how
much automated refactorings are interspersed with other code changes in the
same commit in the aggregated data only, while in this study, we look at both
automated and manual refactorings, we distinguish ten refactoring kinds, we
distinguish different groups of participants, and we are able to count individual
refactorings that are completely missing in VCS (rather than just being partially
overlapped with some other changes).

We consider that a refactoring does not reach VCS if none of the AST node op-
erations that are part of this refactoring reach VCS. An AST node operation does
not reach VCS if there is another, later operation that affects the same node, up to
themoment the file containing this node is committed to VCS. These non-reaching
AST node operations and refactorings are essentially shadowed by other changes.
For example, if a program entity is renamed twice before the code is committed
to VCS, the first Rename refactoring is completely shadowed by the second one.

Fig. 9 shows the ratio of reaching and shadowed refactorings for the aggregated
data. Since even a reaching refactoring might be partially shadowed, we also
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Fig. 9. Ratio of reaching and shadowed refactorings
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Fig. 10. Ratio of reaching and shadowed AST node operations that are part of reaching
refactorings
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compute the ratio of reaching and shadowed AST node operations that are part
of reaching refactorings, which is shown in Fig. 10.

Our aggregated results show that for all refactoring kinds except Inline Local
Variable, there is some fraction of refactorings that are shadowed. Overall, 30%
of refactorings are completely shadowed. The highest shadowing ratio is for the
Rename refactorings. In particular, 64% of the Rename Field refactorings do not
reach VCS. Thus, using VCS snapshots to analyze these refactoring kinds might
significantly skew the analysis results.

Although we did not expect to see any noticeable difference between manual
and automated refactorings, our results show that there are significantly more
shadowed manual than automated refactorings for each refactoring kind (except
Inline Local Variable, which does not have any shadowed refactorings at all).
Overall, 40% of manual and only 16% of automated refactorings are shadowed.
This interesting fact requires further research to understand why developers
underuse automated refactorings more in code editing scenarios whose changes
are unlikely to reach VCS.

Another observation is that even refactorings that reach VCS might be hard to
infer fromVCS snapshots, since a noticeable fraction of AST node operations that
are part of themdo not reachVCS.This is particularly characteristic to theExtract
refactorings, which have the highest ratio of shadowed AST node operations.

Our results for all groups are consistent with the aggregated results with a
few exceptions. In particular, the percentage of completely shadowed refactor-
ings for those participants who used our tool for less than 50 hours, is relatively
small — 12%, which could be attributed to the fact that such participants did
not have many opportunities to commit their code during the timespan of our
study. Another observation is that for novice developers, the fraction of com-
pletely shadowed automated refactorings is significantly higher than the fraction
of completely shadowed manual refactorings (38% vs. 10%). One of the reasons
could be that novices experiment more with automated refactoring tools while
learning them (e.g., they might perform an inappropriate automated refactor-
ing and then undo it). Also, novice developers might be less confident in their
refactoring capabilities and thus, try to see the outcome of an automated refac-
toring before deciding how (and whether) to refactor their code, which confirms
our previous finding [31]. On the contrary, for the developers with more than
ten years of programming experience, the amount of completely shadowed auto-
mated refactorings is very low — 2%, while the amount of completely shadowed
manual refactorings is much higher — 39%. Thus, the most experienced devel-
opers tend to perform automated refactorings in code editing scenarios whose
changes are likely to reach VCS.

4 Refactoring Inference Algorithm

4.1 Algorithm Overview

Inferring Migrated AST Nodes. Many kinds of refactorings that we would
like to infer rearrange elements in the refactored program. To correctly infer such
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refactorings, we need to track how AST nodes migrate in the program’s AST.
Fig. 11 shows an example of the Extract Local Variable refactoring that results
in many-to-one migration of the extracted AST node. Fig. 12 shows the effect
of this refactoring on the underlying AST. Note that the extracted AST node,
string literal "-", is deleted from two places in the old AST and inserted in a
single place in the new AST — as the initialization of the newly created local
variable.
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Fig. 11. An example of the Extract Local Variable refactoring that results in many-
to-one migration of the extracted AST node
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Fig. 12. The effect of the Extract Local Variable refactoring presented in Fig. 11 on
the underlying AST

Our refactoring inference algorithm infers migrate operations from a sequence
of basic AST node operations: add, delete, and update. The algorithm assigns a
unique ID to each inferred migrate operation and marks all basic AST node
operations that make part of the inferred operation with its ID.

Inferring refactorings. Our algorithm infers ten kinds of refactorings shown
in Table 1. To infer a particular kind of refactoring, our algorithm looks for
properties that are characteristic to it. A refactoring property is a high-level
semantic code change, e.g., addition or deletion of a variable declaration. Fig. 13
shows an example of the Inline Local Variable refactoring and its characteristic
properties.

Our algorithm identifies refactoring properties directly from the basic AST
node operations that represent the actions of a developer. A refactoring property
is described with its attributes, whose values are derived from the correspond-
ing AST node operation. Our algorithm identifies 15 attributes, e.g., entityName,
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entityNameNodeID, parentID, migrateID, migratedNode, enclosingClassNodeID, etc.
A property may contain one or more such attributes, e.g., Migrated To Us-
age property has attributes migratedNode, migrateID, and parentID, and Deleted
Entity Reference property has attributes entityName, entityNameNodeID, and
parentID. When the algorithm checks whether a property can be part of a par-
ticular refactoring, the property’s attributes are matched against attributes of
all other properties that already make part of this refactoring. As a basic rule,
two attributes match if either they have different names or they have the same
value.
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Fig. 13. An example of the Inline Local Variable refactoring and its characteristic
properties

Our algorithm combines two or more closely related refactoring properties in
a single refactoring fragment. Such fragments allow to express high level proper-
ties that could not be derived from a single AST node operation. For example,
replacing a reference to an entity with an expression involves two AST node
operations: delete entity reference and add expression. Consequently, the corre-
sponding refactoring fragment, Replaced Entity With Expression, contains two
properties: Migrated To Usage and Deleted Entity Reference.

The algorithm considers that a refactoring is complete if all its required char-
acteristic properties are identified within a specific time window, which in our
study is five minutes. Some characteristic properties are optional, e.g., replacing
field references with getters and setters in the Encapsulate Field refactoring is
optional. Also, a refactoring might include several instances of the same charac-
teristic property. For example, an Inline Local Variable refactoring applied to a
variable that is used in multiple places includes several properties of migration
of the variable’s initialization expression to the former usage of the variable.

Putting It All Together. Fig. 14 shows a high level overview of our refac-
toring inference algorithm. The algorithm takes as input the sequence of basic
AST node operations marked with migrate IDs, astNodeOperations. The output
of the algorithm is a sequence of the inferred refactorings, inferredRefactorings.

The refactoring inference algorithm processes each basic AST node operation
from astNodeOperations (lines 4 – 45). First, the algorithm removes old pending
complete refactorings from pendingCompleteRefactorings and adds them to in-
ferredRefactorings (line 5). A complete refactoring is considered old if no more
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input: astNodeOperations // the sequence of basic AST node operations
output: inferredRefactorings
1 inferredRefactoringKinds = getAllInferredRefactoringKinds();
2 inferredRefactorings = �; pendingCompleteRefactorings = �;
3 pendingIncompleteRefactorings = �; pendingRefactoringFragments = �;
4 foreach (astNodeOperation ∈ astNodeOperations) {
5 inferredRefactorings ∪= removeOldRefactorings(pendingCompleteRefactorings);
6 removeTimedOutRefactorings(pendingIncompleteRefactorings);
7 removeTimedOutRefactoringFragments(pendingRefactoringFragments);
8 newProperties = getProperties(astNodeOperation);
9 foreach (newProperty ∈ newProperties) {
10 foreach (pendingRefactoringFragment ∈ pendingRefactoringFragments) {
11 if (accepts(pendingRefactoringFragment, newProperty) {
12 addProperty(pendingRefactoringFragment, newProperty);
13 if (isComplete(pendingRefactoringFragment) {
14 remove(pendingRefactoringFragments, pendingRefactoringFragment);
15 newProperties ∪= pendingRefactoringFragment ; break;
16 }
17 }
18 }
19 if (canBePartOfRefactoringFragment(newProperty) {
20 pendingRefactoringFragments ∪= createRefactoringFragment(newProperty);
21 }
22 foreach (pendingCompleteRefactoring ∈ pendingCompleteRefactorings) {
23 if (accepts(pendingCompleteRefactoring, newProperty) {
24 addProperty(pendingCompleteRefactoring, newProperty);
25 continue foreach line9; // the property is consumed
26 }
27 }
28 foreach (pendingIncompleteRefactoring ∈ pendingIncompleteRefactorings) {
29 if (accepts(pendingIncompleteRefactoring, newProperty) {
30 newRefactoring = clone(pendingIncompleteRefactoring);
31 addProperty(newRefactoring, newProperty);
32 if (isComplete(newRefactoring) {
33 pendingCompleteRefactorings ∪= newRefactoring ;
34 continue foreach line9; // the property is consumed
35 } else pendingIncompleteRefactorings ∪= newRefactoring ;
36 }
37 }
38 foreach (inferredRefactoringKind ∈ inferredRefactoringKinds) {
39 if (isCharacteristicOf(inferredRefactoringKind, newProperty) {
40 newRefactoring = createRefactoring(inferredRefactoringKind, newProperty);
41 pendingIncompleteRefactorings ∪= newRefactoring ;
42 }
43 }
44 }
45 }
46 inferredRefactorings ∪= pendingCompleteRefactorings;

Fig. 14. Overview of our refactoring inference algorithm
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properties were added to it within two minutes. Also, the algorithm removes
timed out pending incomplete refactorings from pendingIncompleteRefactorings
(line 6) as well as timed out pending refactoring fragments from pendingRefac-
toringFragments (line 7). An incomplete refactoring or a refactoring fragment
times out if it was created more than five minutes ago.

In the following step, the algorithm generates refactoring properties specific
to a particular AST node operation (line 8). The algorithm processes the gener-
ated properties one by one (lines 9 – 44). First, every new property is checked
against each pending refactoring fragment (lines 10 – 18). If there is a refactor-
ing fragment that accepts the new property and becomes complete, then this
refactoring fragment itself turns into a new property to be considered by the al-
gorithm (line 15). If the new property can be part of a new refactoring fragment,
the algorithm creates the fragment and adds it to pendingRefactoringFragments
(lines 19 – 21).

Next, the algorithm tries to add the new property to pending complete refactor-
ings (lines 22 – 27). If the new property is added to a complete refactoring, the algo-
rithmproceeds to the next new property (line 25). Otherwise, the algorithm checks
whether this property can be added to pending incomplete refactorings (lines 28 –
37). If an incomplete refactoring accepts the property, it is added to a copy of this
incomplete refactoring (lines 30 – 31). If adding the new property makes the new
refactoring complete, it is added to pendingCompleteRefactorings (line 33) and the
algorithm proceeds to the next new property (line 34). Otherwise, the new refac-
toring is added to pendingIncompleteRefactorings (line 35).

If the new property does not make any of the pending incomplete refactor-
ings complete, the algorithm creates new refactorings of the kinds that the new
property is characteristic of and adds these new refactorings to pendingIncom-
pleteRefactorings (lines 38 – 43).

Finally, after processing all AST node operations, the algorithm adds to in-
ferredRefactorings any of the remaining pending complete refactorings (line 46).

More details about our algorithm, including the full list of properties and
their component attributes as well as composition of refactorings and refactoring
fragments, can be found in our technical report [26].

4.2 Evaluation of Refactoring Inference Algorithm

Unlike the authors of the other two similar tools [9, 14], we report the accuracy
of our continuous refactoring inference algorithm on real world data. First, we
evaluated our algorithm on the automated refactorings performed by our partic-
ipants, which are recorded precisely by Eclipse. We considered 2,398 automated
refactorings of the nine out of the ten kinds that our algorithm infers (we disabled
the inference of the automated Encapsulate Field refactoring in our experiment
because the inferencer did not scale for one participant, who performed many
such refactorings one after another). A challenge of any inference tool is to estab-
lish the ground truth, and we are the first to use such a large ground truth. Our
algorithm correctly inferred 99.3% of these 2,398 refactorings. The uninferred
16 refactorings represent unlikely code editing scenarios, e.g., ten of them are
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the Extract Local Variable refactorings in which Eclipse re-writes huge chunks
of code in a single shot.

Also, we randomly sampled 16.5 hours of code development from our corpus
of 1,520 hours. Each sample is a 30-minute chunk of development activity, which
includes writing code, refactoring code, running tests, committing files, etc. To
establish the ground truth, the second author manually replayed each sample
and recorded any refactorings (of the ten kinds that we infer) that he observed.
He then compared this to the numbers reported by our inference algorithm. The
first and the second authors discussed any observed discrepancies and classified
them as either false positives or false negatives. Table 5 shows the sampling
results for each kind of the refactoring that our algorithm infers. Overall, our
inference algorithm has a precision of 0.93 and a recall of 1.

Table 5. Sampling results

Refactoring
True False False

positives negatives positives

Convert Local Variable to Field 1 0 1
Encapsulate Field 0 0 0
Extract Constant 0 0 0

Extract Local Variable 8 0 0
Extract Method 2 0 1

Inline Local Variable 2 0 0
Rename Class 3 0 0
Rename Field 5 0 0

Rename Local Variable 28 0 2
Rename Method 4 0 0

Total 53 0 4

5 Threats to Validity

5.1 Experimental Setup

We encountered difficulties in recruiting a larger group of experienced program-
mers due to issues such as privacy, confidentiality, and lack of trust in the relia-
bility of research tools. However, we managed to recruit 23 participants, which
we consider a sufficiently big group for our kind of study. Our dataset is not
publicly available due the non-disclosure agreement with our participants.

Our dataset is non-homogeneous. In particular, our participants have different
affiliations, programming experience, and used CodingTracker for a various
amount of time. To address this limitation, we divided our participants in seven
groups along these three categories. We answered each research question for every
group as well as for the aggregated data and reported the observed insignificant
discrepancies.
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Our results are based on the code evolution data obtained from developers
who use Eclipse for Java programming. Nevertheless, we expect our results to
generalize to similar programming environments.

We infer only ten kinds of refactorings, which is a subset of the total number
of refactorings that a developer can apply. To address this limitation to some
extent, we inferred those refactoring kinds that are previously reported as being
the most popular among automated refactorings [31].

5.2 Refactoring Inference Algorithm

Our refactoring inference algorithm takes as input the basic AST node operations
that are inferred by another algorithm [27]. Thus, any inaccuracies in the AST
node operations inference algorithm could lead to imprecisions in the refactoring
inference algorithm. However, we compute the precision and recall for both these
algorithms applied together, and thus, account for any inaccuracies in the input
of the refactoring inference algorithm.

Although the recall of our refactoring inference algorithm is very high, the
precision is noticeably lower. Hence, some of our numbers might be skewed,
but we believe that the precision is high enough not to undermine our general
observations.

To measure the precision and recall of the refactoring inference algorithm, we
sampled around 1% of the total amount of data. Although this is a relatively
small fraction of the analyzed data, the sampling was random and involved
33 distinct 30-minute intervals of code development activities, thus a manual
analysis of 990 minutes of real code development.

6 Related Work

6.1 Empirical Studies of Refactoring Practice

The practice of refactoring plays a vital role in software evolution and is an
important area of research. Studies by Xing and Stroulia [33], and Dig and
Johnson [5] estimate that 70 – 80% of all code evolution can be expressed as
refactorings.

Murphy et al. [23] were the first to study the usage of automated refactoring
tools. Their study provided the first empirical ranking of the relative popularities
of different automated refactorings, demonstrating that some tools are used more
frequently than others. Subsequently, Murphy-Hill et al.’s [25] study on the use of
automated refactoring tools provided valuable insights into the use of automated
refactorings in the wild by analyzing data from multiple sources.

Due to the non-intrusive nature of CodingTracker, we were able to deploy
our tool to more developers for longer periods of time, providing a more complete
picture of refactoring in the wild. We inferred and recorded an order of mag-
nitude more manual refactoring invocations compared to Murphy-Hill et al.’s
sampling-based approach. Murphy-Hill sampled 80 commits from 12 developers
for a total of 261 refactoring invocations whereas our tool recorded 1,520 hours
from 23 developers for a total of 5,371 refactoring invocations.
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Murphy-Hill et al.’s [25] study found that (i) refactoring tools are underused
and (ii) the kinds of refactorings performed manually are different from those
performed using tools. Our data (see RQ3) corroborates both these claims. Due
to the large differences in the data sets (261 from Murphy-Hill et al. vs. 5,371
from ours), it is infeasible to meaningfully compare the raw numbers for each
refactoring kind. Our work also builds upon their work by providing a more
detailed breakdown of the manual and automated usage of each refactoring tool
according to different participant’s behavior.

Vakilian et al. [30] observed that many advanced users tend to compose several
refactorings together to achieve different purposes. Our results about clustered
refactorings (see RQ6) provide additional empirical evidence of such practices.

6.2 Automated Inference of Refactorings

Traditionally, automated refactoring inference relies on comparing two differ-
ent versions of source code and describing the changes between versions of code
using higher-level characteristic properties. A refactoring is detected based on
how well it matches a set of characteristic properties. Our previous tool, Refac-
toringCrawler [6], used references of program entities (instantiations, method
calls, and type imports) as its set of characteristic properties. Weißgerber and
Diehl [32] used names, signature analysis, and clone detection as their set of char-
acteristic properties. More recently, Prete et al. [28] devised a template-based
approach that can infer up to 63 of the 72 refactorings cataloged by Fowler [10].
Their templates involve characteristic properties such as accesses, calls, inherited
fields, etc., that model code elements in Java. Their tool, Ref-Finder, infers the
widest variety of refactorings to date.

All these approaches rely exclusively on VCS snapshots to infer refactorings.
We have shown in RQ7 that many refactorings do not reach VCS. This compro-
mises the accuracy of inference algorithms that rely on snapshots. To address
such inadequacies, our inference algorithm leverages fine-grained edits. Similar
to existing approaches, our algorithm infers refactorings by matching a set of
characteristic properties for each refactoring. In contrast to existing approaches,
our properties are precise because they are constructed directly from the AST
operations that are recorded on each code edit.

In parallel with our tool, Ge et al. [14] developed BeneFactor and Foster
et al. [9] developed WitchDoctor. Both these tools continuously monitor code
changes to detect and complete manual refactorings in real-time. Though con-
ceptually similar, our tools have different goals — we infer complete refactorings,
while BeneFactor and WitchDoctor focus on inferring and completing partial
refactorings in real time. Thus, their tools can afford to infer fewer kinds of refac-
torings and with much lower accuracy. Nonetheless, both highlight the potential
of using refactoring inference algorithms based on fine-grained code changes to
improve the IDE. We compare our tool with the most similar tool, WitchDoctor,
in more detail in our technical report [26].
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7 Conclusions

There are many ways to learn about the practice of refactoring, such as ob-
serving and reflecting on one’s own practice, observing and interviewing other
practitioners, and controlled experiments. But an important way is to analyze
the changes made to a program, since programmers’ beliefs about what they do
can be contradicted by the evidence. Thus, it is important to be able to ana-
lyze programs and determine the kind of changes that have been made. This is
traditionally done by looking at the difference between snapshots. In this paper,
we have shown that VCS snapshots lose information. A continuous analysis of
change lets us see that refactorings tend to be clustered, that programmers of-
ten change the name of an item several times within a short period of time and
perform more manual than automated refactorings.

Our algorithm for inferring change continuously can be used for purposes other
than understanding refactoring. We plan to use it as the base of a programming
environment that treats changes intelligently. Continuous analysis is better at
detecting refactorings than analysis of snapshots, and it ought to become the
standard for detecting refactorings.
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Abstract. Inheritance is a distinguishing feature of object-oriented programming
languages, but its application in practice remains poorly understood. Program-
mers employ inheritance for a number of different purposes: to provide subtyping,
to reuse code, to allow subclasses to customise superclasses’ behaviour, or just
to categorise objects. We present an empirical study of 93 open-source Java soft-
ware systems consisting over over 200,000 classes and interfaces, supplemented
by longitudinal analyses of 43 versions of two systems. Our analysis finds inher-
itance is used for two main reasons: to support subtyping and to permit what we
call external code reuse. This is the first empirical study to indicate what pro-
grammers do with inheritance.

1 Introduction

Inheritance is a concept that is given significant visibility to those learning object-
oriented design, with texts on object-oriented programming often devoting several chap-
ters to the subject (e.g. [4]). This raises the question of to what degree is inheritance
actually used. In previous work we measured how much inheritance was used in a soft-
ware system in terms of how often a developer made the decision to create an inheritance
relationship between two types [28]. What we found was, on average, 3 out of 4 types
were defined using some form of inheritance: inheritance is clearly important within
Java programs.

Our results however do not tell the full story with regards inheritance use. While
they tell us how much inheritance is used, they do not tell us what the designer uses it
for, they do not tell us to what degree its use is necessary. It may be that some of the
use we have observed is not appropriate use of inheritance. The main goal of the study
presented in this paper is to determine whether or not this is the case. If the use is mainly
appropriate, then this is important to know for two reasons. The first is that our earlier
results become much more relevant in demonstrating the importance of inheritance. The
second reason is the systems we analysed provide a benchmark for how inheritance is
used.

Our previous study simply measured the amount of inheritance in programs, that
is, what inheritance relationships exist between types. We only had to look at the
extends and implements clauses of type declarations. In this study, we must look
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at the implementation of each method to understand how those inheritance relation-
ships were actually exercised. Whereas our last study considered the question “How do
programs use inheritance?”, in this study our question is “What do programmers do
with inheritance?”, that is, having made the decision to use inheritance at the design
level, what benefits follow from the use of inheritance. We are particularly interested
in discovering unnecessary uses of inheritance, that is, cases where an inheritance re-
lationship exists, but where it is not required. We address this question by studying a
large corpus of open source Java systems.

This paper makes the following contributions:

– We develop a model of inheritance that represents how inheritance is used.
– We present the results of evaluating a corpus of open source Java systems against

our model of inheritance, and make our data set available.
– Our overall conclusion is that inheritance in Java is mostly used to support subtyp-

ing and to permit external reuse. Additionally, a significant fraction of subclasses
rely on polymorphic self-calls to customise their superclasses’ methods’ behaviour.

The rest of the paper is organised as follows. In the next section, we identify four re-
search questions by considering previous discussions of why inheritance is used. Sec-
tion 3 discuses inheritance in Java in detail, a necessary precursor to section 4, which
presents our model of inheritance and the methodology of our study. In section 5 we
present our results, and discuss their consequences in section 6. Finally, we present
conclusions and discuss future work in section 7.

2 Motivation and Research Questions

There is much discussion in the research literature and trade press on inheritance as
it applies to software, but there seems to be little on understanding how it is actually
used. There seems to be a considerable uncertainty as to what it is or how to use it, if
the number of web sites, blogs, and articles in the trade press are anything to go by.
At the same time, there are quite public criticisms of inheritance, through writings with
provocative titles such as “Why extends is evil” [15] or “Inheritance is evil, and must
be destroyed” [24]. Examining such criticisms, we might conclude they are overstating
the case based on a small set of examples, as there is little objective evidence that the
problems they identify are widespread. Nevertheless, authors such as Gamma et al.
instruct us to “Favor object composition over class inheritance” [12], which suggests
they at least have seen enough questionable use of inheritance as to prompt such advice.

Within the research community, the recent focus has been on measuring inheritance
with the hope of understanding the relationship between its use and some notion of
quality of the software. For example Chidamber and Kemerer introduced the DIT and
NOC metrics that measure two aspects of a individual class’ use of inheritance [8,7].
There have been several studies to establish the relationship between measurements
from these and similar metrics and quality attributes such as maintenance ([18]) or
prediction of fault prone classes [1,3].

We detail three further related studies, those by Daly et al. [10], Cartwright [6], and
Harrison et al [14]. Daly et al. examined the impact of depth of inheritance (using DIT)
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on maintenance, with the conclusion that inheritance had a negative effect on main-
tenance time. In a rare replication Cartwright carried out a similar study, with results
suggesting that depth of inheritance had a positive effect on maintenance. Another repli-
cation was carried out by Harrison et al. Their results suggest that depth of inheritance
made it harder to modify systems, but that size and functionality of a system may affect
understandability more than the “amount of inheritance” used.

There could be several explanations for these inconsistent results. For example, it
could be that the systems under study were too small for inheritance to be the main
factor affecting maintenance effort. It could also be possible that the uses of inheritance
were not the same in all studies, or that depth of inheritance is not sufficient to charac-
terise how inheritance is used. For example, as we have previously reported, different
uses of overriding could explain the variation [27]. Another possibility, which we ex-
plore in this paper, is that programmers choose to use inheritance for different reasons.
It could have been that the systems in the different studies used inheritance for different
purposes, meaning the studies were not in fact comparing like with like.

In the early discussions of inheritance, there was much debate as to how it could be
used, how languages should provide it, and whether it was even a good idea. Inheritance
has been the subject of much discussion within the research community, The discussion
explored such things as its interaction with encapsulation [23], how type systems are
affected by inheritance [9], how it relates to other features such as genericity [19], or
whether variants such as multiple inheritance are worth having [5,30].

Of particular interest to us are two reports of how inheritance is or can be used.
Meyer described what he regarded as 12 different valid uses of inheritance [20]. Taival-
saari discussed the many varieties and uses of inheritance, and provided a taxonomy
for analysing inheritance [25]. Taivalsaari also observed that there seemed to be many
benefits compared to other programming language features, but – crucially — described
inheritance “an incremental modification mechanism in the presence of late-bound self-
reference” and concluded that this seemed to be its most profound benefit. This con-
clusion is interesting. Late-bound self-reference — that method invocations on this
(in Java) are also polymorphic as with any method invocation — is a feature of object-
oriented languages that usually does not get much attention, and in some cases not much
language support (e.g. Go [22]). This gives us our first research question:

RQ1: To what extent is late-bound self-reference relied on in the designs of Java
systems?

Neither Taivalsaari nor Meyer provided empirical evidence to support their conclu-
sions, and some of the uses of inheritance they described have no obvious operational-
isation. These papers are also now quite old, and so it could be argued may not be
relevant now, however they provide a useful starting point for understanding inheri-
tance. In particular, Taivalsaari’s taxonomy identifies three dimensions for analysing
inheritance — what he called incremental modification, property inheritance, and inter-
face inheritance. This provides a good basis for an empirical study, as we discuss in the
next section.

Taivalsaari also observes that one view of inheritance is that it supports conceptual
specialisation, but he and others have observed that most languages allow a class that
inherits to almost arbitrarily change its behaviour, and so in such cases the inheritance
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relationship would not reflect true conceptual specialisation. He comments, however,
that “Subtyping, on the other hand, expresses conceptual specialization” and
summarises the then thinking on the relationship between inheritance and subtyping.
In Java, the subtype relationship is expressed using the Java inheritance mechanisms,
and we will discuss this in more detail in the next section.

Taivalsaari also comments “In fact, the use of inheritance for conceptual specializa-
tion seems to be an ideal that is rarely realized” referring to Smalltalk and C++ libraries
of the day. This is a surprising claim, as if true it would mean that the subtype relation-
ship is “rarely” used. This has not been our personal experience with Java code, and in
fact there is advice advocating using inheritance for subtyping. For example, Bloch says
“Inheritance is appropriate only in circumstances where the subclass really is a subtype
of the superclass” [2](p85). We know of no empirical evidence to support or refute such
a claim. This leads to our next question:

RQ2: To what extent is inheritance used in Java in order to express a subtype relation-
ship that is necessary to the design?

We will discuss the details of what it means to be “necessary” in section 4.
While Meyer (and to a lesser extent Taivalsaari) discuss a number of ways inher-

itance might be used, contemporary advice seems to be more conservative. As noted
above, Gamma et al. caution against some forms of use. Bloch repeats the advice “Fa-
vor composition over inheritance” [2](Item 16) and provides a compelling example to
support this. The advice is based on the argument that the form of inheritance referred
to by Gamma et al. and Bloch fundamentally is an implementation decision. As such,
inheritance breaks encapsulation, as observed previously by Snyder [23]. In fact Bloch
shows a mechanical procedure to convert from this use of inheritance to composition
(replacing inheritance with delegation).

Given that advice by such prominent authors is to avoid inheritance where possible,
we might expect that there is infrequent use of the form of inheritance they refer to.
Specifically, we might expect that inheritance is avoided in favour of composition. It is
difficult to tell when something is being avoided, but we can tell when it is not, so for
our next research question we ask:

RQ3: To what extent can inheritance be replaced by composition?

There has been other discussion regarding use of inheritance either directly or indirectly.
For example, Johnson and Foote discuss how features of object-oriented languages,
including inheritance, can be used to develop reusable code [16]. In a similar vein,
various specific uses have been recorded [12,13]. We do not repeat this work, but are
interested in identifying any inheritance idioms in common use:

RQ4: What other inheritance idioms are in common use in Java systems?

3 Understanding Inheritance

In order to measure how inheritance is used, we need to understand what it means.
The study we present is of Java code, and so some of the details are Java specific.
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For example, by “inheritance” we mean when a Java type (class, interface, annotation,
enum) extends or implements another type. While the details are Java specific,
we believe the general concepts apply to most object-oriented languages.

class P { class C extends P {
void p() { void c() {
q(); q();// internal

} }
void q() { }
...

}
}
class M { class D extends P {

void m(P aP) { void q() {
aP.p(); ...

} }
} }

class N {
void useReuse() {
C aC = new C();
aC.p(); // external

}
void useSubtype() {
M anM = new M();
C aC = new C();
anM.m(aC); // subtype
D aD = new D();
aD.p(); // downcall when executing D#p()

}
}

Fig. 1. Uses of Inheritance: “external reuse”, “internal reuse”, and “subtype”. Modifiers have been
elided.

Inheritance is often presented as what Taivalsaari refers to as “property inheritance”
— one class (the child) acquires properties of another (the parent) by inheriting them.
This is one way in which inheritance supports reuse; the inheriting class can be written
faster because the inherited code does not have to be rewritten. This is illustrated in
Figure 1. In the method N#useReuse() the method p() is invoked on an instance of
C, however the code that is actually executed was not written for C but C has acquired it
through inheriting (extending) P. Note that p() was accessed from outside the class C,
which we refer to as external reuse. The method C#c() also makes use of an inherited
method, but does so from within C, which we refer to as internal reuse. Figure 2 shows
a more well-known example of internal reuse.

For external or internal reuse, every access to a member of a type is examined. If the
member is not declared in that type, then it is some form of reuse. If the type that the

N#useReuse()
p()
C
C
C
P
p()
C
C#c()
C
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class Stack<E> extends Vector<E> {
...
public E push(E item) {

addElement(item);
return item;

}
...

}

Fig. 2. Stack demonstrates internal reuse by making a “self-call” (in bold) on its parent Vector
as part of the implementation of one of its methods

member is declared in is an ancestor of type containing the code where the access takes
place, then it is internal reuse, otherwise it is external reuse.

If a child class has all of the properties of a parent class, then it seems reasonable
to expect that an object from the child can be used wherever an object from the parent
is expected. This is Taivalsaari’s interface inheritance dimension, although it is perhaps
best known as the Liskov Substitution Principle [17]. This ability to substitute child
objects for parent objects is formally recognised in the Java type system by regarding
the type associated with the child class to be a subtype of that associated with the parent
class. In the method N#useSubtype() in Figure 1, an instance of C is legally passed
to the method M#m(P), even though that method expects an instance of P. Without the
subtype relationship, the code in N#useSubtype() would have to be duplicated in
order to handle types other than P.

As noted in the previous section, many languages, Java included, allow the inher-
iting class to change what it inherits. The mechanism for doing so (for methods) is
overriding. While doing so can result in inheritance no longer corresponding to con-
ceptual specialisation, it can also allow quite sophisticated behaviour to be described.
Taivalsaari includes this in his incremental modification dimension, but it is the late-
bound self-reference aspect of it that is of interest to us. In Figure 1, when aD.p() in
N#useSubtype() executes, it invokes P#p() which in turn uses the (implied) self-
reference to invoke q(). However in this case, the late binding of the self-reference
means that it is actually D#q() that is called. Late bound self-reference means one
method can call another method “below” it in the inheritance hierarchy, which we refer
to as a downcall for brevity. For a downcall to take place, a method in a class must
make a self-call to another method, that other method must be overridden by a descen-
dant class, and the calling method must be invoked on an object of the descendant class.

The uses described above come from the standard descriptions of inheritance. We are
aware of other possibilities. One idiom is the constants interface, where an interface is a
repository of useful constants, and any class “implementing” it can use those constants
without the need to qualify them. While this practice is no longer recommended [2], it
does represent a use of inheritance. Another idiom is the so-called “marker” interface.
Such interfaces have no members, but it is necessary that classes implement to indicate
they have certain capabilities that have no associated methods.

N#useSubtype()
C
M#m(P)
P
N#useSubtype()
P
aD.p()
N#useSubtype()
P#p()
q()
D#q()
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4 Methodology

Our goal is to determine why developers have made the decision to create an inheritance
relationship between two types, that is, what purpose did they likely have in mind? We
can infer this by examining the use they make of the relationship. We then measure the
uses with respect to a collection of systems.

4.1 Modelling Inheritance

Metrics can be defined by different means [11]. One means is to base the definitions on
a model of what is to be measured. The measurements we present in this work come
from metrics based on the model of how inheritance is used in software, which we call
the inheritance graph.

Measurement assigns numbers to attributes of entities, and it is the entities that we
model. We want to measure the software that makes up what we generically refer to
as a “system,” however defining exactly what this is difficult, as we have discussed
elsewhere [26]. To resolve these difficulties we consider a system to be just those types
that were created for that system. This excludes the Java Standard API and third-party
libraries, a decision whose consequences we discuss further below.

For this study, we limit the types to just classes and interfaces, and furthermore,
for classes we do not include exceptions (generally, any type that is a descendant of
java.lang.Throwable). Enums, annotations, and exceptions are all defined using
inheritance and so this use of inheritance is not a choice by the developer.

For a given system, its inheritance graph is a directed graph where the vertices rep-
resent any type (class or interface) associated with the system implementation and the
edges connect any pair of types that have some kind of explicit inheritance relationship
(extends or implements), that is, the relationship is described in the code. This
means we do not model edges between system types and non system types (third-party
code). The vertices are named by the fully qualified name of the type they represent.

The edges have a set of attributes that capture the information for this study, which is
defined below. Direct metrics are then defined in terms of boolean expressions describ-
ing the presence or absence of attributes on edges. Some attributes represent properties
inherent in the system code, some represent what we have observed in the system code
in terms of why the inheritance relationships are needed, and some represent informa-
tion that has been established only by heuristics. We will indicate which applies when
necessary. In the interests of brevity, we will uses phrases such as “subtype edges”,
by which we mean “inheritance relationships that we observed were relied on for the
purpose of supporting the subtype relationship.”

CC, CI, II: An edge will have one of these attributes if it represents, respectively, a
Class-Class (extends), a Class-Interface (implements), or an Interface-Inter-
face (extends) relationship between system types.

External Reuse: An edge from type S (child) to T (parent) has the external reuse at-
tribute if there is a class E that has no inheritance relationship with T (or S), it
invokes a method m() or accesses a field f on an object declared to be of type S,
and m() or f is a member (possibly inherited) of T.
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The class E is using a member of S that was not declared in S, which is only possible
because S has an inheritance relationship with T, so the inheritance relationship
is necessary for this to be possible. This definition does not assume S and T are
classes, but we only discuss external reuse with respect to classes in this paper.

Internal Reuse: An edge from classes A (child) to B (parent) has the internal reuse
attribute when a method declared in A invokes a method m() or accesses a field f
on an object constructed from A and m() or f is a member (possibly inherited)of
B.
Without the stated inheritance relationship, it would not be possible to invoke m()
or access f in this way.

Subtype: An edge from types S (child) to T (parent) has the subtype attribute when
there is a class E (which could be S or T) in which an object of type S is supplied
where an object of type T, or a supertype of T, is expected.
Within E, this might be assigning an object of type S to a variable declared to
be type T, passing an actual parameter of type S to a formal parameter of type
T, returning an object of type S when the formal return type is T, or casting an
expression of type S to type T.
Without the stated inheritance relationship, S would not be a subtype of T, and so
the substitution would not be possible. This means that this relationship is necessary
in order for the code to compile.

Downcall: An edge from classes C (child) to D (parent) has the downcall attribute when
a method d() that is a member (possibly inherited) of D invokes a method m() as
a self-call that is declared in C.
The inheritance relationship is necessary for d() to invoke m(). The method m()
must be declared in D or an ancestor of D, so d() is making a self-call to m(), but
C overrides that declaration. The object on which the invocation takes place must
be constructed from C or one of its descendants.

Framework: An edge from types P to Q that does not have external reuse, internal
reuse, subtype, or downcall, has the framework attribute if Q is a descendant of a
third-party type. (See also Section 4.3.)

Constants: An edge from types E to F has the constants attribute if F has only fields
declared in it and the fields are constants (static final), and all outgoing edges
(if any) from F either have the constants attribute or are to java.lang.Object.
The type F can be either an interface or a class.

Marker: An edge from type G to interface H has the marker attribute if H has nothing
declared in it and all outgoing edges (if any) from H have the marker attribute.

Super: An edge from class K to class L has the super attribute if a constructor for K
explicitly invokes a constructor in L via super. (See also Section 4.2.)

Generic: An edge from type R to type S has the generic attribute if there is a cast from
Object to S and there is an edge from R to some (non-Object) type T (See also
Section 4.3).

4.2 Study Details

We studied the 93 open-source Java systems from the 20101126 release of the Qualitas
Corpus [26] listed in Figure 3. Not all systems from this release of the corpus were
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ant-1.8.1 antlr-3.2 aoi-2.8.1 argouml-0.30.2 aspectj-1.6.9 axion-1.0-M2 c_jdbc-2.0.2
castor-1.3.1 cayenne-3.0.1 checkstyle-5.1 cobertura-1.9.4.1 colt-1.2.0 columba-1.0 derby-
10.6.1.0 displaytag-1.2 drawswf-1.2.9 drjava-stable-20100913-r5387 emma-2.0.5312
exoportal-v1.0.2 findbugs-1.3.9 fitjava-1.1 fitlibraryforfitnesse-20100806 freecol-0.9.4
freecs-1.3.20100406 galleon-2.3.0 ganttproject-2.0.9 heritrix-1.14.4 hibernate-3.6.0-beta4
hsqldb-2.0.0 htmlunit-2.8 informa-0.7.0-alpha2 ireport-3.7.5 itext-5.0.3 jFin_DateMath-
R1.0.1 james-2.2.0 jasml-0.10 javacc-5.0 jchempaint-3.0.1 jedit-4.3.2 jext-5.0 jfreechart-
1.0.13 jgraph-5.13.0.0 jgraphpad-5.10.0.2 jgrapht-0.8.1 jgroups-2.10.0 jhotdraw-7.5.1
jmeter-2.4 jmoney-0.4.4 joggplayer-1.1.4s jparse-0.96 jpf-1.0.2 jrat-0.6 jre-1.5.0_22
jrefactory-2.9.19 jruby-1.5.2 jsXe-04_beta jspwiki-2.8.4 jtopen-7.1 jung-2.0.1 junit-
4.8.2 log4j-1.2.16 lucene-2.4.1 marauroa-3.8.1 maven-3.0 megamek-0.35.18 mvnforum-
1.2.2-ga myfaces_core-2.0.2 nakedobjects-4.0.0 nekohtml-1.9.14 openjms-0.7.7-beta-1
oscache-2.4.1 picocontainer-2.10.2 pmd-4.2.5 poi-3.6 pooka-3.0-080505 proguard-4.5.1
quickserver-1.4.7 quilt-0.6-a-5 roller-4.0.1 rssowl-2.0.5 sablecc-3.1 springframework-1.2.7
squirrel_sql-3.1.2 struts-2.2.1 sunflow-0.07.2 tapestry-5.1.0.5 tomcat-7.0.2 trove-2.1.0
velocity-1.6.4 webmail-0.7.10 weka-3.7.2 xalan-2.7.1 xerces-2.10.0

Fig. 3. Systems studied, including version identifier

included as the tools we used had memory limitations that restricted the size of the sys-
tems that we could analyse. Table 1 gives provides statistics of some of these systems.

We also studied the history of two systems: ant, with 20 releases from version 1.1
to 1.8.1, and freecol, with 23 releases from version 0.3.0 to 0.9.4. We chose these
two systems due to having the data for all releases in the corpus, and because they come
from quite different domains (ant is a build tool with a plug-in architecture and man-
aged through XML documents; freecol is a strategy game with a graphical interface,
multi-media components, client-server architecture, and network communication).

The details of the systems can be found on the corpus website[26], in particular
details of how we identified types belonging a given system. We analysed the bytecode
of these systems. While most of what was needed for the analysis is in the bytecode,
there is some loss of information as discussed below (Section 4.3).

There are several different kinds of analysis performed. To determine the subtype
attribute, we first examine the code to find where substitution can occur. The specific
cases we detect are: passing a parameter, returning a value, assignment, and cast. For
example, if the declared return type of a method is T, but the return statement refer-
ences a variable of a different type S, then there must be a subtype relationship between
S and T, a relationship that is necessary for the code to compile. An example of the
parameter passing case is shown in method N#useSubtypes of Figure 1, where an
object of type C is passed to a method whose formal parameter type is P.

The subtype analysis uses what is essentially a reachability analysis for all reference
type definitions to all uses. Where the type of the def does not match the type of the use,
and since we know the code compiled (as we are analysing bytecode), we know we are
dealing with subtype use. The tool we use is based on the Soot framework [29].

Having identified when subtype substitution is used, we then match the relationships
required to the relationships expressed in the code. This is necessary because those
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Table 1. Statistics for representative subset of systems studied (version elided). Types — number
of types (including nested) in the system; KLOC — non-commented non-blank lines of code
(thousands); CC, CI, II — number of the respective kinds of edges.

System Types KLOC CC CI II
ant 1202 108 672 290 18
aspectj 3127 412 1142 626 110
derby 2755 593 697 525 91
drjava 5051 62 1269 1119 86
fitjava 85 2 43 0 0
freecol 1542 82 392 127 3
jrat 255 14 34 37 0
jre 11736 831 5735 5102 799
jruby 5783 160 3671 735 12
jsXe 144 9 11 3 0
jtopen 3482 397 1347 687 16
megamek 2969 259 1283 213 10
mvnforum 4194 51 18 45 0
nakedobjects 4963 110 1307 732 349
nekohtml 2016 7 10 8 0
trove 715 2 126 269 0
weka 2125 224 516 1047 10

class MapboardAction extends FreeColAction {
...

}
class LoadAction extends MapboardAction {

...
}

Fig. 4. Classes from freecol illustrating the need to use transitivity to determine the subtype
attribute. (Package name and modifiers elided)

required may not be explicit. For example, given the declarations from freecol
shown in Figure 4, it is possible to substitute LoadAction for FreeColAction
despite the fact that there is no direct subtype relationship between these two types.
Any code that depends on such a substitution being possible will result in the edges
representing the LoadAction – MapboardAction and MapboardAction –
FreeColAction relationships being given the subtype attribute.

There are also two special cases that must be addressed. One is the “sideways” cast,
where Java allows what looks like a cast between unrelated types. In the example in
Figure 5, the cast will be successful provided an instance of C is passed to the method.
Such situations represent use of the subtype relationship between C and its parents, and
so must be detected in order to correctly identify all subtype uses.

The other case involves the pseudo variable this, which can change its type in the
presence of inheritance. This change can indicate the use of a subtype relationship. In
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interface SidewaysA {}
interface SidewaysB {}
class SidewaysC implements SidewaysA, SidewaysB {}
class SideWays {

public void demo(SidewaysA sa) {
SidewaysB sb = (SidewaysB) sa;

}
}

Fig. 5. Example of a “sideways” cast

class P {
// A constructor expects type P
private A anA = new A(this);

}
class C extends P {

// C is passed to A constructor
}

Fig. 6. Example showing this changing type

the example in Figure 6, the use of this in the constructor call to A indicates the use
of the subtype relationship between P and C.

For external or internal reuse, every access to a member of a type is examined. If the
member is not declared in that type, then it is some form of reuse. If the type that the
member is declared in is an ancestor of the type containing the code where the access
takes place, then it is internal reuse, otherwise it is external reuse.

If a method invocation is a self-call (whether on a method declared in that class
or due to internal reuse), then it could be a downcall. In such cases, all descendants are
examined and if the method being invoked is overridden, then we make the conservative
assumption that a downcall can take place.

When doing the analysis, we ignore the use of default constructors. There must al-
ways be a call by a class (in its constructors) to the constructor in its parent. This would
look like internal reuse, however it would often happen without any intervention by the
programmer. As we want to understand what decisions programmers make with respect
to inheritance, we separate out these calls. Since calls via super are somewhat under
the control of programmers, we distinguish those from calls to the default constructor
with the super attribute.

Note that we take a very liberal view of when reuse occurs. Whether external reuse
or internal reuse, we will mark inheritance relationships (edges) as such if only one
member is used. This means that a child class might inherit 100 methods from its parent,
and only 1 of those 100 methods might be used, but we would still consider this an
indication of reuse.
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package org.jgraph.graph;
...
import javax.swing.TransferHandler;
...
public class GraphTransferHandler

extends TransferHandler {
...

}

Fig. 7. The “framework” problem. Uses of some inheritance relationships may not be visible in
the analysed code.

List list = new Vector();// Raw type
T aT = new R(); // R is a subtype of T
list.add(at); // Subtype use of edge R to Object
S anS = (S)list.get(0); // Cast from Object to S

// Only succeeds if R is a subtype
// of S

Fig. 8. Example of a how a “generic” container based on java.lang.Object relies on the
subtype relationship

As noted above, we do not include edges to the standard API and third-party libraries.
The main reason for this is that we do not have reliable information regarding which
version of the API or libraries are assumed. Even if we had this information, including
them would significantly increase the amount of code to be analysed (the standard API
is one of the largest systems in the corpus), and the memory limitations of our tool
would prevent us from doing the analysis.

4.3 Analysis Challenges

Because we do not consider the use of third-party libraries or the Java Standard API, the
purpose of some inheritance relationships cannot be determined. For example, consider
Figure 7 showing the jgraph class GraphTransferHandler. This class inher-
its from a class in the Swing framework and so where it is substituted for that class,
TransferHandler, may only be visible in the Swing implementation, but not in the
code we analyse. This also means that descendants of GraphTransferHandler
might also be substituted for TransferHandler, but our analysis would not detect
this. When we suspect this situation is possible, the edge will get the “framework”
attribute.

Another limitation of our analysis is when generic types are implemented using cast-
ing to and from java.lang.Object. An object of one type can be put into a generic
container and then cast to a different type on its removal. This behaviour depends on
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class P {
public void parent() { ... }

}
class C extends P {
public void child() { ... }

}
class U {
void user() {

C aC = new C();
aC.parent();

}
}

Fig. 9. In some cases, the indicated invocation will show P as the invoked type, not C

a subtype relationship existing between the two types, as shown in figure 8. When we
suspect this situation is possible, the edge will get the generic attribute.

Bytecode does not always directly map on to source code, and this can effect some of
our analysis. One example is shown in Figure 9. Method invocation is indicated in the
bytecode with an instruction such as INVOKEVIRTUAL, and will include information
on which method is being invoked. In the case of the example, when U is compiled,
we might expect that it is C#parent() that is written into the bytecode as the method
being invoked, as that is a correct representation of what should happen. However, some
compilers will write P#parent into the bytecode. As this information is not used in
method lookup, the difference does not cause problems in execution, but it does affect
model fidelity. It will mean it is possible for some relationships for which external reuse
use occurs in the source code to to not be attributed as such in the model. We have been
unable to reproduce this case ourselves with compilers we have access to, but do know
it happens, albeit rarely, in code in the corpus.

5 Results

We present our results here organised around our research questions. Due to the volume
involved, we cannot present all the data1, so we present those results that best indicate
trends, and of systems of interest such as ant, freecol, and jre (the largest system
studied by any measure of size).

5.1 RQ1: Late-Bound Self-reference

Downcall edges must be CC edges. Figure 10 shows, for each system, the proportion of
CC edges that are downcall edges. The systems are in increasing order of the number
of CC edges. The order was chosen to determine whether or not there was a trend with

1 Available from http://www.cs.auckland.ac.nz/∼ewan/qualitas/studies/
inheritance

ant
freecol
jre
http://www.cs.auckland.ac.nz/~ewan/qualitas/studies/inheritance
http://www.cs.auckland.ac.nz/~ewan/qualitas/studies/inheritance
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Fig. 10. Proportion of CC edges over which downcalls may occur. X-axis labels indicate order of
magnitude of number of CC edges.
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Fig. 11. Downcalls ant and freecol (x-axis is release order))

respect to this size metric (and the equivalent order will be used for most other charts).
The x-axis labels indicate the order of magnitude of the number of edges (e.g. “00”
indicates from 102 up to (not including) 103 edges).

The results indicate quite wide variation between systems, from zero (freecs —
61 edges, jasml — 21, megamek — 1283) to to 86% (jFin_DateMath — 22).
The median is 34% (aoi). For the systems of interest, ant had 28%, freecol had
35%, and jre had 9%.

Figure 11 shows the downcall proportions for the releases of ant and freecol.
Both show non-trivial uses of downcall (20% for ant and nearly 40% for freecol),
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Fig. 12. This shows CC edges that are subtype edges (ST), external reuse edges but not subtype
edges (EX-ST), or only internal reuse edges (INO)

but both also show quite large changes between some releases (increasing and
decreasing).

There is no obvious trend with respect to size as measured by number of CC edges
between user-defined types. Our conclusion is that late-bound self-reference plays a
significant role in the systems we studied — around a third (median 34%) of CC edges
involve downcalls.

5.2 RQ2: Subtype Relationship

CC, CI, and II edges can all be subtype edges. We present the results for each kind of
edge separately. For the CC edges, we first identified those CC edges that were at least
one of subtype, external reuse, or internal reuse. Figure 12 shows (bottom segment,
“ST”) the proportion of those CC edges that are subtype edges (other values will be
discussed below), with the systems ordered as in Figure 10.

Again we see wide variation, with the smallest being at 11% (checkstyle), two
with 100% (magemek with 1283 CC edges, jasml with 21), and the median at 76%
(jmeter). The largest system (jre) had a measurement of 95%, indicating that almost
all of the extends relationships between classes had some subtype use within its
implementation.

Figure 13 shows the subtype use of all CI edges in a system. The bottom segment
(“ST”) indicates proportion of CI edges for which subtype use was seen. The second
segment (“SUS”) indicate the proportion of edges for which we suspect there is subtype

checkstyle
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Fig. 13. CI edges that are subtype edges (ST), suspected to be subtype (SUS), organisational
(ORG), or of unknown purpose (UNK)

use, but limitations of our analysis means we did not directly observe such. We include
these so as to not bias our results against use of subtype. The other segments will be
discussed below.

There is one system (fitjava) with no CI edges. Of the remainder, there are 3
systems (nekohtml, jsXe, and joggplayer) for which all CI edges were subtype
edges, however they all had fewer than 10 CI edges. In a further 4 systems (jasml,
jmoney, jparse, javacc) all CI edges where either subtype or suspected of being
subtype edges. The median use was 69% (checkstyle considering subtype only,
or 85% (megamek if including suspected subtype edges). For the other systems of
interest, jre had 82% being subtype edges, or 91% including those suspected, ant
had 63% and 78% respectively, with freecol having 83% and 94%.

Figure 14 shows the use of II edges, with the systems ordered in increasing order of
number of II edges. There are 23 systems with no II edges (and so have no values in the
chart), and 51 systems in total with fewer than 10 edges. As before, the bottom (“ST”)
segment shows the subtype edges. Of these, 13 systems had all II edges being subtype
edges, however the largest (jhotdraw) had only 14 edges. The median use was 63%
(findbugs). Of the systems of interest, jre had 71% (of 799 II edges), ant had
94% (18), and freecol had 67% (3). The system with the second largest number if II
edges (nakedobjects with 349) had 66%.

Our conclusion is that at least two thirds of all inheritance edges are used as subtypes
in the program — inheritance for subtyping is not as rare as Taivalsaari implies [25].
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end)

5.3 RQ3: Inheritance vs. Composition

Our interest here is identifying use of inheritance that could have been changed to com-
position using a procedure such as that proposed by Bloch [2]. Briefly, the procedure is,
remove the inheritance relationship and add to the child: a) a field that stores an instance
of the parent class; and b) wrapper methods that delegate all references to attributes of
original parent class to the instance stored in the field. This procedure would not apply
when the purpose for using inheritance was to establish a subtype relationship, so we
need to identify those edges that are internal or external reuse, but not subtype.

The procedure described by Bloch can be tedious to apply for parents with many
members, and so it could be argued it is not always practical, however it is much simpler
(and hence requires less effort) when only internal reuse is involved. Consequently we
identify also those edges that are internal reuse only.

Figure 12 shows, as well as the proportion of subtype edges, those edges that are
external reuse (and possibly internal reuse) but not subtype, and those edges that are
internal reuse only.

The system with the largest proportion of external reuse (but not subtype) edges was
checkstyle, with 88% of 193 CC edges. The median was 22% (javacc, 88 edges).
For internal reuse edges only, the largest was 30% (jpf, 37 edges) and the median was
2% (lucene, 446 edges). There were 24 systems with no internal reuse only edges,
the largest being megamek. For other systems of interest, ant had 20% external reuse
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only internal reuse edges (INO) over time for ant and freecol
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Fig. 16. Use of CI edges for ant and freecol (legend as for Figure 13, x-axis is release order)

and 1% internal reuse, freecol had 13% external and less than 0.5% internal, and
jre had 4% external and less than 0.5% internal.

Figure 15 shows the same data as Figure 12 for ant and freecol. One point to
keep in mind when interpreting these charts is that ant grew from 44 CC edges to
672 edges, and freecol grew from 53 to 392 edges. The proportions are remarkably
constant after about the 5th release (ant-1.5 has 401 CC edges, freecol-0.6.0
has 239). It would be interesting to know why this is so, for example is it due to its
architecture, or some other reason.

Figure 16 shows the same data as Figure 13 for ant and freecol. The subtype
use is noticeably less for ant than freecol, although the subtype use increases over
time. The subtype use in freecol for CI edges is similar to that for CC edges. The
differences between the two systems could be indicative of the different nature of the
systems.

Our conclusion is that there is generally opportunity for replacing inheritance with
composition, with 22% or more uses of inheritance between classes needed for exter-
nal reuse but not subtyping in half the systems we examined. For internal reuse edges
only, there are many fewer opportunities for replacing inheritance with composition, but
they do exist for 2% or more of such uses in half the systems. We cannot say whether
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Fig. 17. Uses of CC edges that are not subtype, external reuse, or internal reuse edges — super
constructor (SUP), organisational (ORG), or unknown purpose (UNK)

replacing inheritance with composition is worth the effort because we have no way to
quantify the costs of not doing so. We do believe, however, that the prevalence of this
use of inheritance is high enough to justify further research effort needed to understand
how to quantify the costs, and also to give greater emphasis in teaching to avoid such
uses of inheritance.

5.4 RQ4: Other Uses of Inheritance

It is instructive to consider those inheritance relationships that do not support at least
one of external reuse, internal reuse, or subtype, as this helps us understand to what
other purpose developers might use inheritance. For the remainder of this section we
will only be referring to these as yet uncategorised edges.

We noted the possible use of interfaces (or classes) solely to define constants, and
the use of marker interfaces. For the former, only 13 systems had CC edges where the
parents held constants and 5 of these had more than 1%, the largest of these being
fitlibraryforfitnesse, with 13% of 259 edges. For CI edges 45 systems had
no occurrences, and 18 had more than 10%. The largest was 100% by jasml (but only
2 edges), but 4 systems had more than 50%. While some of these results were clearly
due to such things as parser-generators (or similar), they do indicate that this idiom is
fairly common, remembering that edges reported as subtype, external reuse, or internal
reuse can also support this idiom.

fitlibraryforfitnesse
jasml
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For use of marker interfaces, 61 systems had no occurrences of CI edges being re-
lationships to marker interfaces, however of those that did, they predominantly came
from the larger systems. The largest proportion was 47% (jext with 43 CI edges), but
(for example) weka had 14% of 1047 edges in this category. These results suggest that
the use of marker interfaces is also a common (sole) reason for using inheritance.

As discussed in Section 4.3, some edges may be framework or generic edges. For
CC edges, 58 systems had no occurrences of framework or generic edges that were also
not constants or marker edges. Of those that did, 16 had less than 1%. The largest was
17% (webmail, with 24 CC edges). For CI edges, 38 had none, 8 had more than 10%,
with oscache having 58% (of 12 edges). For II edges, only jmeter had any (5% of
20).

Of the remaining CC edges, one pattern we noticed was children whose only use
of the relationship with the parent class was via calling a non-default constructor (via
super). Another pattern we noticed for all edge types was one edge may appear to
have no purpose, but an edge from a sibling to the common parent was one of subtype,
internal reuse, or external reuse. It could be that the parent was playing an organisation
role, indicating types that are conceptually related but which relationship may play no
role within the implementation. We report such edges as organisational (“ORG” in
figures 13, 16, and 14).

Figure 17 shows the unused CC edges with (light gray) showing those whose sole use
is super constructors, (medium gray) showing remaining edges that were organisational,
and edges with no purpose was identified in our analysis in (dark). As can be seen, the
measurements are mostly small. The large value (38%) for calls to super constructors
is in trove, and are by classes that appear to be all generated. There are 57 systems
where we could associate some purpose to all edges, with 15 having more than 1% and
being mostly systems with a large number of CC edges. The largest is jre with 8% of
CC edges having no obvious purpose.

Figure 13 also shows our analysis of those CI edges that are not subtype edges. The
third segment (“ORG”) show those CI edges that are organisational, and the top segment
(“UNK”) show the proportion of CI edges for which we could find no purpose. Only 9
systems had no edges for which we could find no purpose (jparse was the largest of
these having 41 CI edges). The system with the most such edges was jre (470 edges,
9% of its CI edges), with the median number of edges being 20 (velocity, 32%).
The system with the largest proportion of such edges was c_jdbc (70% of 30 edges),
and the median proportion was 15% (of the 113 CI edges of pooka).

Figure 14 also shows the other uses we observed of II edges. The segments indicate
proportions for the different categories as in Figure 13, with the addition of a (second)
segment (“RE-ST”) are “reuse” edges that are not subtype. In the context of II edges
this means that a method was seen to be invoked on an interface type, but in fact that
edge was declared in an ancestor interface. While the majority are subtype, the reuse
category stands out. This category shows interfaces whose sole purpose is to indicate
where there is shared behaviour between types in the implementation. There are 54
systems with such edges. The maximum value was 100% (colt, 3 edges). Of the 70
systems with any II edges, the median value was 17% (jgrapht, 6 edges). The largest
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system jre had 4% (of 799 edges), ant had 6% (18 edges) and nakedobjects had
27% of 349 edges.

For edges with no purpose, this was true of all 2 of checkstyle’s II edges and
13% of jre’s edges. Only 21 systems had any such edges.

Our conclusion is that our conservative inheritance model classified over 58536 out
of 67529 (87%) of all edges in our graph (38122/39973 or 95% of all CC relationships)
— as either subtype edges, external reuse, and internal reuse, that is, subtype, external,
and internal reuse explain most of the inheritance relationships in our corpus.

6 Discussion

As indicated, there are some limitations to our analysis, so the natural question is to
what degree do they threaten the validity of our conclusions. The first point to make
is that the results for RQ2, and RQ3 indicate edges for which we actually observed
subtyping and reuse respectively. That is, we may have false negatives, but no false
positives, so the analysis is conservative with respect to these questions.

Regarding RQ1, it is possible our results overstate reality, since we assume that if a
self-call exists, and a descendant overrides that method, that a downcall will occur at
the self-call. Since this depends on the run-time behaviour of the system, we cannot be
sure that this will always be the case. We did limited manual inspection and found no
overestimation.

For RQ4, we are quite confident about the accuracy of the measurements for classes
and interfaces containing only constants, and for use of marker interfaces. For those
edges that we reported for framework and generic use, if our assumption is correct and
they are in fact used within frameworks or for generic types, then this would indicate
the degree to which our subtype results are under-reporting the true situation. We know
this is the case for a number of systems through manual inspection.

The most uncertainty exists for those edges we cannot easily classify, those that we
report as UNK. The CI category of edges had the highest incidence of such edges (figure
13), which is surprising, given there is no obvious purpose to a class implementing an
interface other than use the subtype relationship. Only 9 systems had no edges in this
category (jparse was the largest of these having 41 CI edges). The system with the
most such edges was jre (470 edges, 9% of its CI edges), with the median number
of edges being 20 (velocity, 32%). The system with the largest proportion of such
edges was c_jdbc (70% of 30 edges), and the median proportion was 15% (pooka,
113 CI).

We have manually examined a number of unused CI edges. We classified them as
one of: implementations provided by the system for use by other clients; intended for
future development; unable to classify; and having no good reason for existing.

For the first category we noted that the systems were frameworks or libraries, there
were no names declared of the relevant types, the names had “Default” or “Adaptor”
in them (e.g. DefaultActionNameBuilder in struts), or we had some other
reason (e.g. comments) to think the types were intended for clients of the framework,
not the framework itself. The jre is a good example of this. Given its purpose, it
should be unsurprising that some of the types it provides are not used within it, and
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so if those types are defined using inheritance we cannot expect to see the use of the
inheritance relationship in any way within jre. In fact, we observed subtype use of
95% of extends edges in jre.

This represents the other side of the “framework” issue we discussed in section 4.
Because we do not include third-party libraries in our analysis, we cannot detect uses
of inheritance that cross the boundary between system code and third-party code.

The last three categories were ever more subjective. The category “future develop-
ment” was adjudged if we had some reason (e.g. comments) to believe the relationships
would be used in future releases. The category “unable to classify” we choose if we
had some reason to not be able to make a judgement. For example, the possibility of
reflection meant it was possible we missed some cases (although many would in fact be
correctly identified by our tools), or the complexity of the design and the limited time
available meant we could not come to any conclusion. The last category (no good rea-
son) we chose when we could find no reason for the relationship (e.g. when we found no
declarations of the interface type but many declarations with the implementation types).
While this discussion refers specifically to CI edges, we performed a similar analysis
for a subtype of CC and II edges as well.

Despite the subjectivity of some of our analysis, we did see cases where even with
the most generous interpretation there seemed no reason for having an inheritance rela-
tionship. Nevertheless, such occurrences were fairly rare, and so we feel we can quite
confidently state that there is little evidence of systematic unnecessary inheritance.

There is quite wide variation in the size of the systems. Using the total of CC, CI,
and II edges as a size metric (see also Table 1), jre was the largest (11636), followed
by jruby (4418), and drjava (2474). Most systems were only 10% of jre (75
with fewer than 1000 edges, the smallest jsXe had 14). Despite this, no one system
dominates any of our measurements, suggesting that how inheritance is used is not
determined by the size of the system.

The longitudinal studies (figures 11, 16, and 15) show some abrupt changes. They
all correspond to significant changes in the number of inheritance relationships (CC,
CI, and CC respectively), and generally to significant changes in the overall code bases.
This all points to changes in the design, however our measurements cannot show what
led to those changes. That will require much deeper analysis, both of the code base and
of the developers’ thinking.

We have only considered relationships between system types, and so framework re-
lationships (e.g. Figure 7) are not modelled. Due to the framework issue, we believed
we would not be able to adequately represent the situation, and indeed when we include
such edges we see generally a lower proportion of subtype edges. Nevertheless, they do
indicate decisions made by the developer and we would like to be able to study these
edges in more detail in the future.

We take a very liberal view of when we classified a relationship as for subtype or
reuse. For example, there may be only one point in the implementation where subtype
is needed, but many uses of external reuse, however we would report that edge as use
of subtype. Our view is coarse-grained, but it does give an overall indication of how
inheritance is used. With these results, we can now identify more specific questions of
how inheritance is used, and they also help us restrict the systems we need to investigate
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to answer the questions. In particular, it would be valuable to revisit the studies done
previously ([10,6,14]) but using (for example) degree of use of subtype versus external
reuse as the independent variable, rather than DIT. Such studies would determine the
validity of advice regarding composition versus inheritance.

Also, we report use of subtyping from a static perspective, asking essentially does the
code pass the type checks. There is still the possibility that, while there may be a subtype
relationship, this relationship does not correspond to conceptual specialisation. In fact,
recent work by Pradel and Gross on detecting subclasses that are unsafe substitutes for
their superclasses suggests this may be an issue [21]. Their technique may allow a more
careful study of developers’ use of subtype.

While authors such as Meyer [20] and Taivalsaari [25] suggest there are many uses
for inheritance, our studies suggests there are only two main uses in Java code. This
could be due to how we classify relationships. More study is needed in this regard.

Our results also appear to disagree with Taivalsaari’s observations. He characterised
use of subtype as rare. It would be interesting to know whether this is due to the lan-
guages he referred to (Smalltalk and C++), due to the reasons programmers use in-
heritance having changed over time, or due to his observations being based only on
his experience. Only further objective empirical studies will definitively answer such
questions.

7 Conclusions

Our overall goal is to understand how design decisions impact the quality (however it is
defined) of software. We are currently examining how inheritance is used by developers.
In this paper we have presented a study of 93 open-source Java systems. We found about
one third of subclasses rely on late bound self-reference (downcalls) to customise their
superclasses’ behaviour (RQ1). Java developers mostly use inheritance for subtyping,
with about two thirds of inheritance relationships needed for this (RQ2). While there is
not a large opportunity to replace inheritance with composition (RQ3), the opportunity
is significant (median of 2% of uses are only internal reuse, and a further 22% are only
external or internal reuse). While there are other uses of inheritance, their use is not
generally significant (RQ4).

Our results suggest there is no need for concern regarding abuse of inheritance (at
least in open-source Java software), but they do highlight the question regarding use
of composition versus inheritance. If there are significant costs associated with using
inheritance when composition could be used, then our results suggest there is some
cause for concern. We believe understanding these costs is an important open question.

This research also provides support for our previous work [28]. Our conclusion in
that work was that there was a considerable amount of use of inheritance. We can now
say that most of that use is justified, in that without it code would not compile (at mini-
mum). Whether this use was the best design choice remains to be seen, but it emphases
the importance of inheritance, at least for Java programmers. It also means that future
research on the use of inheritance can use the same systems we have used without con-
cern that unnecessary use of inheritance might taint the results.

There are many other possible avenues of research following from the work pre-
sented here. One of particular interest to us is to understand the rationale behind a
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programmer’s use of inheritance. We will use qualitative techniques based on grounded
theory to gain this understanding. It is also important that our research be replicated,
including with other Java (particularly closed-source) systems, and systems in other
languages.
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Abstract. In software evolution, developers typically need to identify
whether the failure of a test is due to a bug in the source code under test
or the obsoleteness of the test code when they execute a test suite. Only
after finding the cause of a failure can developers determine whether to
fix the bug or repair the obsolete test. Researchers have proposed several
techniques to automate test repair. However, test-repair techniques typi-
cally assume that test failures are always due to obsolete tests. Thus, such
techniques may not be applicable in real world software evolution when
developers do not know whether the failure is due to a bug or an obsolete
test. To know whether the cause of a test failure lies in the source code
under test or in the test code, we view this problem as a classification
problem and propose an automatic approach based on machine learning.
Specifically, we target Java software using the JUnit testing framework
and collect a set of features that may be related to failures of tests. Us-
ing this set of features, we adopt the Best-first Decision Tree Learning
algorithm to train a classifier with some existing regression test failures
as training instances. Then, we use the classifier to classify future failed
tests. Furthermore, we evaluated our approach using two Java programs
in three scenarios (within the same version, within different versions of a
program, and between different programs), and found that our approach
can effectively classify the causes of failed tests.

1 Introduction

After software is released to its user, it is still necessary for developers to modify
the released software due to enhancement, adaptation or bug1 fixing [32], which
is typically referred to as software evolution. As estimated, 50%-90% of total
software development costs [31,46,16] are due to software evolution.

In software evolution, developers usually perform regression testing to make
sure that their modifications to the software work as expected and do not intro-
duce new faults. Modifications in software evolution include changing function-
ality, fixing bugs, refactoring, restructuring code, and so on.

In software evolution, some modifications (e.g., changing functionality) may
further imply changes of the specifications on program behaviors. In such cases,

1 Bugs and faults are used interchangeably in this paper.

G. Castagna (Ed.): ECOOP 2013, LNCS 7920, pp. 602–628, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Is This a Bug or an Obsolete Test? 603

developers may need to modify the corresponding tests to reflect developers’
changing expectation on program behaviors. Thus, when a regression test fails2,
it may just indicate that the specification the test represents is obsolete and
the test itself needs repair. If developers do not want to change their specifica-
tions of the program in software evolution, a regression test failure may indicate
that developers should modify the program without modifying the test. In other
words, the tests and the software under test should be developed and maintained
synchronously [59].

Specifically, developers for software systems often reuse and adapt existing
tests to evolve test suites [40]. As these existing tests are developed for the old
version of the software, when some of them cause failures of the new version
in regression testing, the failures may not be due to bugs introduced in the
modifications [36,8]. That is to say, some failures are due to bugs in the modified
source code under test, but other failures are due to the obsoleteness3 of some
tests. Specifically, an internal study of ABB Corporate Research indicates that
around 80% of failures in regression testing are due to bugs in the software under
test and the other failures are due to obsolete tests [45].

As testing frameworks like JUnit4 have been widely used in practice, the tests
constructed by developers are also pieces of code. For example, Fig. 1 presents
a Java program and its tests. To distinguish the tests and software under test,
we denote the source code of the tests and the source code of the software under
test as test code and product code to make our presentation concise. In practice,
it is necessary for developers to identify whether such a failure is caused by a
bug in the source code of the software under test or an obsolete test. Otherwise,
developers would not know how the regression test failures reflect the quality of
the software under test. However, as it may be challenging to guess developers’
intention as the product code does not reflect developers’ intention(i.e., whether
or not changing the specifications of the program) explicitly in software evolu-
tion, it is not straightforward to know whether the failure of a regression test
is due to faulty program changes or obsolete specifications represented by tests.
Moreover, as reported in a technical report from Microsoft Research, the test
code is often larger than the product code in many projects [50]. As both the
test code and the product code are large, it is tedious and difficult for developers
to determine the cause of a failure by manually examining the test code and/or
the product code. Furthermore, if developers take obsolete tests as bugs in the
software, they may submit some false bug reports and thus incur extra burdens
for bug-report processing (e.g., triaging [54]).

Furthermore, the knowledge about whether regression test failures are due
to bugs or obsolete tests not only can help understand what is going on in the

2 If the output of a test is as expected (i.e., being as asserted), we call that the test
passes; otherwise, we call that the test fails.

3 Due to the difference between the new version and the old version of software under
test, some existing tests for the old version cannot be used to test the new version.
We call tests that need modification for the new version as obsolete tests.

4 http://www.junit.org

http://www.junit.org
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public class  Account{
private String  thisAcnt;
private double  balance;

  public  Account(String acnt, double amt) {
     this.balance=amt;
     this.Acnt=acnt;}

public double getBalance(){
     return this.balance; }
  public void setBalance(double balance) {

 this.balance=balance; }
  public void  sendto(String account) {
    // send money to target account}
 public boolean  deposit(double amt) {

if (amt > 0) {
      setBalance(getBalance() + amt);

 return  true;}
else

return  false;}
public boolean  withdraw(double amt) {

double  fee=amt*0.1;
 if(getBalance()>=amt+fee && amt>0){

            setBalance(getBalance()-amt-fee);
 return  true;

       }
else return  false;

  }
  public boolean  transfer(double amt, String anoAcnt) {

double  fee=0.01;  // should be fee=amt*0.1
if(getBalance()>=amt+fee && amt>0){

          withdraw(amt+fee);
          sendto(anoAcnt);

return  true;
       }

    else return  false;
 }

(a) Released Software

public class  Testcases{
  Account a;
 protected void  setUp(){

     a=new Account(100.0, "user1");}
 protected void  tearDown(){}

 public void  test1(){
    a.transfer(50.0, "user2 ");
    a.withdraw(40.0);
    assertEquals(9.5,a.getBalance());}

 public void  test2(){
    a.withdraw(40.0);
    assertEquals(56,a.getBalance();//should be 60}
  ...

}

(c) JUnit Tests

public class  Account{
private String  thisAcnt;
private double  balance;

  public  Account(String acnt, double amt) {
     this.balance=amt;
     this.Acnt=acnt;}

public double getBalance(){
     return this.balance; }
  public void setBalance(double balance) {

 this.balance=balance; }
  public void  sendto(String account) {
    // send money to target account}
 public boolean  deposit(double amt) {

if (amt > 0) {
      setBalance(getBalance() + amt);

 return  true;}
else

return  false;}
public boolean  withdraw(double amt) {

if(getBalance()>=amt && amt>0){
            setBalance(getBalance()-amt);

 return  true;
       }

else return  false;
  }
  public boolean  transfer(double amt, String anoAcnt) {

double  fee=0.1;  // should be fee=amt*0.1
if(getBalance()>=amt+fee && amt>0){

          withdraw(amt+fee);
          sendto(anoAcnt);

return  true;
       }

    else return  false;
 }

(b) Modified Software

changewithdraw

fix
bugs

Fig. 1. An Example Program and Its JUnit Tests

regression testing process but also can help reduce the cost of code modification
to fix bugs or repair tests. If the failure is due to a bug, developers can use
automated techniques (e.g., [52,56]) to decrease the cost of debugging in the
product code; if the failure is due to an obsolete test, developers can also use
automated techniques (e.g., [6,7,8]) to decrease the cost of test repair in the
test code. It should be noted that techniques for automated debugging typically
assume tests to be correct and focus on the product code to fix bugs. Similarly,
techniques for automated test repair typically assume that the cause of the failure
lies in the obsoleteness of tests. Therefore, it becomes the preceding condition for
developers to identify the cause of the failure when they observe a failure [41].
That is to say, understanding the cause of a failure actually serves as an indicator
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for whether to apply automated debugging techniques or automated test-repair
techniques.

In this paper, we propose a novel approach to classifying the causes of regres-
sion test failures for Java programs using JUnit as the framework for regression
testing. In particular, we transform the problem of classifying the cause (i.e.,
buggy product code or obsolete test code) of a regression test failure into a
problem of learning a classifier based on the data of various features related to
failures. Specifically, our approach adopts the Best-first Decision Tree Learning
algorithm [47,48], which is one of the typical machine-learning algorithms in the
literature. Moreover, we collect the data of the failure related features used for
classification via analyzing the software under test and its test code.

To evaluate our machine-learning based approach, we performed three empir-
ical studies on two Java programs: Jfreechart and Freecol. The first study aims
to evaluate whether our approach is effective when being applied for the same
version of a program. That is, the training set and the testing set consist of
instances from the same version of a program. The second study aims to evalu-
ate whether our approach is effective when being applied between versions of a
program. That is, the training set and the testing set are instances of different
versions of a program. The third study aims to evaluate whether our approach
is effective when being applied between different programs. That is, the train-
ing set and the testing set are instances of different programs. According to the
results of our empirical studies, our approach is effective in correctly classifying
the causes of regression test failures when it is applied within the same program
(including the same version and different versions).

In summary, this paper makes the following main contributions.

– First, we present a machine-learning based approach to classifying the causes
of regression test failures. To our knowledge, this is the first piece of research
that tries to classify the cause of a regression test failure as a bug in the
product code or an obsolete test.

– Second, we performed three empirical studies to evaluate the effectiveness of
the proposed approach in three scenarios: being applied within the same ver-
sion, being applied within different versions of a program, and being applied
between different programs.

The rest of this paper is organized as follows. Section 2 summarizes the related
work. Section 3 illustrates the problem in this paper by an example. Section 4
presents the details of our approach. Section 5 presents the setup of our empirical
studies. Section 6 presents the findings of the empirical studies. Section 7 presents
the discussion and Section 8 concludes.

2 Related Work

To our knowledge, the work presented in this paper is the first approach to clas-
sifying the causes of regression test failures in software evolution. The research
most related to our work is fault repair, including debugging in the product code
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and test repair, which will be discussed in Section 2.1 and Section 2.2. Our work
is also related to regression testing as our work deals with tests in regression
testing, and thus we will discuss regression testing techniques in Section 2.3.
Furthermore, our work can be viewed as an application of machine-learning and
thus we will discuss application of machine-learning in software quality engineer-
ing in Section 2.4.

2.1 Debugging in Product Code

Software debugging focuses on identifying the locations of faults and then fixing
the faults by replacing the faulty code with the correct code.

Most existing research [2,22,52,64] on software debugging focuses on the first
step, which is fault localization. Typically, spectrum-based fault-localization ap-
proaches [20,27,34] compare the execution information of failed tests and that
of passed tests to calculate the suspiciousness of each structural units, and then
localize the locations of faulty structural units by ranking the structural units
based on their suspiciousness. As the effectiveness of these approaches is depen-
dent on the test suites [1] and faults, some research focuses on improving these
approaches via test selection [19] and generation [51]. Besides these spectrum-
based fault localization techniques, some researchers transform fault localization
to other mathematical problems, like the maximal satisfiability problem [28] and
the linear programming problem [9]. To fix bugs, several techniques [17,56] have
been proposed to automate patch generation. For example, Weimer et. al [56]
proposed to fix faults by using genetic programming to generate a large number
of variants of the program. However, as these techniques may generate nonsen-
sical patches, Kim et al. [29] proposed a patch generation approach (i.e., PAR),
which uses fix patterns learned from existing human-written patches.

The research on fault localization is related to our work because potentially
these techniques may be extended to solve our problem. To verify the effec-
tiveness of these techniques on classifying the causes of regression test failures,
we have conducted a preliminary experiment and found that direct application
of these fault-localization techniques can hardly correctly classify the causes of
regression test failures. Details of this experiment are presented in Section 7.

2.2 Test Repair

When changing requirements invalidate existing tests, tests are broken. Besides
deleting obsolete tests [69] or creating new tests to exercise the changes [57], test-
repair techniques [58] are proposed to repair broken tests rather than removing or
ignoring these tests. Specifically, Galli et al. [15] proposed a technique to partially
order broken unit tests rather than arbitrary order, according to the sets of
methods these tests called. Daniel et al. [8] presented a technique (i.e., ReAssert)
based on dynamic analysis and static analysis to find repairs for broken unit tests
by retaining their fault-revealability. As ReAssert cannot repair broken tests
when they have complex control flows or operations on expected values, Daniel
et al. [6,7] presented a novel test-repair technique based on symbolic execution to
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improve ReAssert to repair more test failures and provide better repairs. These
techniques aim to repair broken unit tests in general, while some techniques
have been proposed to repair broken tests in graphical user interfaces [36] or
web applications [24].

To learn whether existing test-repair techniques are applicable in real practice,
Pinto et al. [41] conducted an empirical study on how test suites evolved and
found that test repair does occur in practice.

Existing research on debugging in product code and test repair (including
those introduced by Section 2.1 and Section 2.2) assumes that developers have
known whether the failure to be due to the product code or the test code. That
is, when a failure occurs, developers may have to manually determine the cause
of this failure before applying existing techniques on debugging in the product
code or on test repair. Without such knowledge, developers risk to locate the
faults in the wrong places. Unfortunately, to our knowledge, except our work
reported in this paper, there is no previous study in the literature on this issue.

2.3 Regression Testing

Regression testing [33,66] is a testing process, whose aim is to assure the quality
of a program after modification. After a program is modified, developers often
reuse existing tests for the program before modification and may add some tests
for the modification. As it is time-consuming to run the aggregated tests, many
test selection and/or reduction techniques [5,21,65,71] have been proposed to
reduce the number of tests used in regression testing. To optimize the cost spent
on regression testing, test prioritization techniques [61,62,68] have been proposed
to schedule the execution order of tests. Most research in test selection, reduc-
tion and prioritization investigates various coverage criteria, including statement
coverage, function coverage [12], modified condition/decision coverage [44], and
so on. Other research investigates various test selection, reduction, and prior-
itization algorithms, including greedy algorithms [25], genetic algorithms [35],
integer linear programming based algorithms [5,21,71], and so on.

Our work is related to regression testing, especially related to test selection.
However, our work aims to determine the causes of regression test failures,
whereas test selection aims to select tests that are effective in exposing faults
in the modified program. Specifically, test selection aims to select tests whose
output becomes obsolete for the new version, whereas our work tends to identify
the tests that become obsolete and should be modified to test the new version.

2.4 Application of Machine Learning in Software Quality
Engineering

It is a relatively new topic to apply machine learning to software quality en-
gineering [4,14,18,23,42]. Brun and Ernst [4] isolated fault-revealing properties
of a program by applying machine learning to a faulty program and its fixed
version. Then the fault-revealing properties are used to identify other potential



608 D. Hao et al.

faults. Francis et al. [14] proposed two new tree-based techniques to classify fail-
ing executions so that the failing executions resulting from the same cause are
grouped together. Podgurski et al. [42] proposed to use supervised and unsu-
pervised pattern classification and multivariate visualization to classify failing
executions with the related cause. Bowring et al. [3] proposed to apply an active
learning technique to classify software behavior based on execution data. Haran
et al. [23] proposed to apply the Random Forest algorithm to classify passing ex-
ecutions from failing ones. Wang et al. [53] proposed to apply Bayesian Networks
to predict the harmfulness of a code clone operation when developers’ perform-
ing copy-and-paste operation. Host and Ostvold [26] proposed to identify the
problem in method naming by using data mining techniques. Zhong et al. [70]
proposed an API usage mining framework MAPO using clustering and asso-
ciation rule mining. Furthermore, machine-learning techniques have also been
widely applied to software defect prediction [37,30,60].

Generally speaking, the existing research on application of machine learning in
software quality engineering mostly aims to automate fault detection or identify
failing executions, whereas our work aims to identify whether faults are in the
product code or in the test code.

3 Motivating Example

In software evolution, if developers’ intention (e.g., changing functionality) in-
curs specification changes when making modifications, such failures may indicate
obsolete test code. If developers’ intention does not incur specification changes
when making modifications, such failures probably indicate faulty product code.
As code changes do not explicitly reflect developers’ intention, it is challenging
to determine through automatic program analysis whether an observed failure
in regression testing is due to bugs in the product code or obsolete tests.

Fig. 1 presents an example Java class Account (including the version before
modification and the version after modification) and its JUnit tests. The for-
mer version of Account is shown by Fig. 1(a), which contains a bug in method
transfer. Fig. 1(c) gives its JUnit tests, including two tests (at the test-method
level) test1 and test2.

When developers run this version of Account with the two tests, test1 fails but
test2 passes. To fix the bug in Account that causes the failure of test1, developers
may modify method transfer, shown by Fig. 1(b). In using this version of class
Account, the bank wants to remove extra fees when consumers withdraw their
savings, and thus developers have to modify method withdraw of Account. In
summary, when evolving Account from Fig. 1(a) to Fig. 1(b), developers modify
two methods of Account due to different reasons. Method withdraw is modi-
fied because developers change their expectations on the behavior of withdraw,
whereas method transfer is modified because developers want to fix a bug in
the method.

After modification, two failures are observed when developers run the modified
software in Fig. 1(b) with test1 and test2. The failure for test1 is due to modified
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Account, whereas the failure for test2 is due to the obsoleteness of this test. That
is, the two failures have different causes (i.e., either in the product code or in
the test code), resulting from developers’ different intentions. As it is hard to
automatically induce developers’ intention based on only the software and its
tests, it is not straightforward to tell whether an observed failure is due to the
product code or the test code. That is, it is a challenging problem to classify the
cause of an observed failure in software evolution. To our knowledge, our work
is the first research that tries to solve this problem.

4 Approach

Despite the difficulty of our target problem, there are still some clues. For exam-
ple, the complexity of the source code, the change information between versions,
and testing information of the regression test failures may be related to the cause
classification of a regression failure. Specifically, as developers are more likely to
make mistakes in complex code, the failure for a regression test whose product
code is complex is more likely due to bugs in the product code than the obsolete
test. For example, as shown by Fig. 2, which shows the static call graphs of
test1 and test2, the product code tested by test1 is complex as many methods
of Account are called during the execution of test1, and thus the failure for
test1 is probably due to bugs in the product code. Furthermore, more frequently
changed and less tested product code is intuitively to be fault-prone. Since it is
difficult to obtain some discriminative rules to classify the cause of an observed
failure based on these clues, we present a machine-learning based technique to
learn a classifier by using the failures whose causes are known.

In the following, we first give an overview of the proposed approach in Sec-
tion 4.1. Then we present the features that we extract from the software under
test and its test code in Section 4.2. Finally, we present how we train the classifier
and use the classifier to classify regression test failures in Section 4.3.

4.1 Overview

In our approach, we view the problem of classifying the cause of a regression
test failure as a problem of learning a classifier based on the data of failure-
related features, which can be extracted and collected by analyzing the software
under test and its test code. Specifically, we adopt a typical machine-learning
algorithm, the Best-first Decision Tree Learning algorithm [47,48].

In existing software development environment, when a failure occurs in the
execution of a test, there is no place to record whether the cause of the failure is
due to the product code or the obsolete test. To collect failures for training our
classifier, our approach requires developers to record the cause of each failure
when they resolve a regression test failure. After labeling the cause of each
failure, our approach assigns values to seven failure-related features by statically
and dynamically analyzing the software under test and its test code. Using the
failures with their causes and failure-related features, our approach trains a
classifier. Finally, the trained classifier can be used to classify future failures.
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test1()

transfer() withdraw()

getBalance() setBalance()getBalance() sendto()withdraw()

getBalance() setBalance()

getBalance()

assertEquals()

test2()

withdraw()

getBalance() setBalance() getBalance()

assertEquals()

(a) Static Call Graph for test1

(b) Static Call Graph for test2

Fig. 2. Static Call Graph for the Tests

4.2 Identified Features

Our approach uses a set of features related to regression test failures to identify
whether the cause of a regression test failure is due to the product code or
the test code. Specifically, we use seven features, which can be further divided
into three categories (i.e., two complexity features, one change feature, and four
testing features).

Complexity Features. The complexity features are concerned with how com-
plex the interaction between the test and the software under test is. Intuitively,
the more complex the interaction is, the more likely the test can reveal a bug
in the software under test. In other words, the more complex the interaction is,
the more likely the failure is due to a bug in the product code.

As our target is Java programs using the JUnit testing framework, we are able
to extract complexity features via statically analyzing the call graph of each test.
As a JUnit test is a piece of executable source code containing testing content
(i.e., a sequence of method invocations), we can determine what methods each
JUnit test invokes and use such information to construct static call graphs for
JUnit tests.

Given a JUnit test that induces a regression test failure, we consider the
following complexity features, which are defined based on the call graph of this
test at the level of methods.
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– Maximum depth of the call graph (abbreviated asMaxD).MaxD represents
the length of the longest chain of nested method calls of the JUnit test.
Intuitively, the larger MaxD is, the more complex the interaction between
the test and the software under test is, and thus the more likely the failure
is due to a bug in the product code.

– Number of methods called in the graph (abbreviated asMethodNum), which
is the total number of methods called directly or indirectly by the JUnit test
by counting each method only once. Intuitively, the larger MethodNum is,
the more likely the failure is due to a bug in the product code.

Change Feature. The change feature is concerned with the change between the
current version and its previous version of the software under test. Intuitively,
if the software under test undergoes a substantial revision, it is more likely that
developers want to change some behavior of the software and thus a regression
test failure is more likely due to the obsoleteness of the tests; but if the software
under test undergoes a very light revision, it is more likely that developers do not
want to change the behavior of the software and thus a regression test failure is
more likely due to the product code. To consider this factor, we use the following
change feature in our approach.

– File change (abbreviated as FileChange), which denotes the ratio of modi-
fication on the files that contain the methods called directly or indirectly by
the failure inducing test. For a given test t, we use set F (t) to represent the
set of files that contain the methods called directly or indirectly by t. For a
file f belonging to F (t), we denote its previous version before the revision
as fb and its latter modified version as fl. Furthermore, we use |fb| and |fl|
to represent the number of lines of executable code (i.e., without counting
lines containing only comments and/or blanks) of fb and that of fl, respec-
tively. We then use Change(fb, fl) to denote the number of different lines of
executable code between fb and fl. Specifically, many tools (e.g., the unix
command “Diff”) can be used to compare two files and generate the differ-
ent lines. Finally, we calculate FileChange using the equation in Formula 1.
Intuitively, the more total changes are involved in the call graph of a failure
inducing test, the more likely the failure is due to an obsolete test.

FlieChange(t) =

∑
∀f∈F (t)Change(fb, fl)∑

∀f∈F (t)maximum{|fb|, |fl|} (1)

Testing Features. The testing features are concerned with the testing results
of all the executed tests. By using these features, our approach is able to consider
the testing results of the whole test suite. In particular, we consider the following
four testing features.
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– Type of failure (abbreviated as FailureType), which denotes the type of
the failing testing results returned by JUnit. In particular, FailureType can
be Failure, Compile Error or Runtime Error, where Failure denotes an
assertion that is broken, Compile Error denotes compiling problem when
the compiler fails to compile the source code (including the product code
and the test code) and Runtim Error denotes a runtime exception when
executing the product code with the test code.

– Count of plausible nodes in the call graph (abbreviated as ErrorNodeNum),
which denotes the number of the methods that are called by the given failure
inducing test and by at least another failure inducing test. Intuitively, if the
call graph of the failure inducing test contains many such methods, the cause
of the failure is more likely to lie in the product code than in the test code
because one obsolete test may be unlikely to cause other tests to fail.

– Existence of highly fault-prone node in the call graph (abbreviated as
FaultProneNode), which denotes whether the given failure inducing test
calls a highly fault-prone method. Specifically, we define the highly fault-
prone method as the methods that are called by more than half of the failed
tests. As the highly fault-prone method is likely to contain bugs, the failure
of a test calling such a method is more likely due to this method. That is,
if the call graph of the failure inducing test contains such highly fault-prone
methods, the cause of the failure is more likely to lie in the product code
than in the test code.

– Product innocence (abbreviated as ProInn), which aims to measure the ratio
of innocent product code involved in the call graph of the failure inducing
test. For a given failure inducing test t, we use M(t) to denote the set of
methods called by t. Moreover, for a method m, we use nump(m) to denote
the number of passed tests that call m and num(m) to denote the total
number of tests that call m. Then for any failure inducing test t, we calculate
ProInn using the equation in Formula 2, where k is the smoothing coefficient
and set to be 1 in our approach. If a failure inducing test t has larger ProInn,
most of the product code t calls is innocent (according to Formula 2), and
thus the cause of the failure is more likely to be that t itself is obsolete. That
is, the larger ProInn is for a failure inducing test, the more likely the failure
is caused by an obsolete test in the test code.

ProInn(t) =
∏

∀m∈M(t)

nump(m) + 1

num(m) + k
(2)

Note that, although the collection of data for the four testing features requires
executing the test suite, there is no need to instrument the product code to
record coverage information. Based on the testing results returned by the JUnit
testing framework, the data collection can be done through statically analyzing
the call graph.
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4.3 Failure-Cause Classification

We use the following steps to learn the classifier for failure-inducing tests. First,
we collect the failure-inducing tests from the software repository. Second, we
extract the values of the identified seven features and label each failure-inducing
test. Finally, we train a classifier using the failure-inducing tests whose feature
values and failure causes are known.

Collecting Failure-Inducing Tests. When a failure is observed in regression
testing, developers can record the failing tests. Such information can be stored in
the software repository as a part of artifacts during software development. From
the repository, our approach collects these failure-inducing tests, which are the
training instances used to train a failure-cause classifier in this paper.

Determining Feature Values and Failure Causes. For the seven identified
features, we determine their values by analyzing the product code under test
and the tests.

For the complexity features (i.e.,MaxD andMethodNum), we calculate their
values using the call graph of the failure inducing test. Specifically, we use our
previous work [38] and its corresponding tool Jtop [67] to implement the static
call graph used in this paper.

To determine the value of FileChange, we first find the methods called by
the failure inducing test, and then use the method signature to identify the
corresponding source code in the previous version and that in the current version.
After matching the two versions, we can calculate the value of FileChange.

The value of FailureType can be directly obtained from the JUnit testing
framework. To calculate the values of ErrorNodeNum, FaultProneNode, and
ProInn, we first obtain the testing results of all tests from the JUnit testing
framework, then mark methods in the call graph of the failure inducing test as
either plausible or innocent, and finally calculate the three values.

To determine the cause of each regression test failure, we require developers
evolving the software to label whether a regression test failure in the training
set is due to the product code or the obsolete test.

Training a Classifier. Based on the training set (which contains a set of train-
ing instances with their features and labels), we are able to train a classifier for
our target problem. Specifically, we adopt a typical machine-learning algorithm,
the Best-first Decision Tree Learning algorithm [47,48]. The Best-first Decision
Tree Learning algorithm is based on a decision tree model, which expands the
“best” nodes first rather than in depth-first order used by C4.5 algorithm [43].
The “best” node is the one whose split will lead to maximum reduction impurity
among all the nodes.

After training a classifier using the Best-first Decision Tree Learning algo-
rithm, we use the classifier to classify the cause of future failure-inducing tests.
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5 Experimental Studies

5.1 Research Questions

We have conducted three empirical studies to investigate the performance of the
proposed approach in three scenarios.

In scenario (1), our approach constructs a classifier based on some regression
test failures for a version of a program and uses the constructed classifier to
classify the causes of other regression test failures for the same version. Thus, the
first research question (RQ1) is as follows: Is our approach effective in classifying
the causes of regression test failures when being applied within one version of
each program?

In scenario (2), our approach constructs a classifier based on regression test
failures for one version of a program and uses the constructed classifier to classify
the causes of regression test failures for the subsequent version of the program.
Thus, the second research question (RQ2) is as follows: Is our approach effective
in classifying the causes of regression test failures when being applied between
two versions of each program?

In scenario (3), our approach constructs a classifier based on one program and
uses the constructed classifier to classify the causes of regression test failures for
another program. Thus, the third research question (RQ3) is as follows: Is our
approach effective in classifying the causes of regression test failures when being
applied across different programs?

5.2 Studied Subjects

In our experimental studies, we used two non-trivial Java programs (i.e.,
Jfreechart and Freecol), whose product code and test code are available from
SourceForge5. Jfreechart6 is a Java application used to construct graphs and
tables. Freecol7 is a software game. Each of these two programs has several
available versions whose test code is written in the JUnit framework. In our ex-
perimental studies, we used only the versions whose release dates are not in the
same year so that the changes between versions are nontrivial.

Table 1 depicts the statistics of these two programs. Specifically, the first four
columns depict the number of files, the total number of lines of executable code
(by removing comments and blanks), the number of classes, and the number of
methods in the product code, whereas the latter four columns depict the number
of files, the total number of lines of executable code, the number of classes, and
the number of methods in the test code.

As our approach is proposed to classify the cause of a regression test failure
as a bug in the product code or an obsolete test, it is necessary to collect these
two types of failures from practice.

5 http://sourceforge.net
6 http://www.jfree.org/jfreechart/
7 http://www.sourceforge.net/projects/freecol

http://sourceforge.net
http://www.jfree.org/jfreechart/
http://www.sourceforge.net/projects/freecol
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Table 1. Subjects in Our Studies

Program Product Code Test Code
#Files #LOC #Classes #Methods #Files #LOC #Classes #Methods

Jfreechart 1.0.0 463 68,761 465 6,028 273 26,847 273 1,751
Jfreechart 1.0.7 538 80,927 540 7,335 356 42,052 356 2,634
Jfreechart 1.0.13 585 91,101 587 8,296 383 47,930 383 3,078
Freecol 0.10.3 578 94,031 579 6,757 85 13,022 85 493
Freecol 0.10.5 602 95,404 603 7,061 87 13,226 87 497

Developers usually release a version of the software when its tests cannot re-
veal any major faults in this version. Therefore, it is difficult to obtain faults
that cause the regression test fail. Thus we manually injected faults in the prod-
uct code by following some standard procedures [20]. Specifically, we randomly
selected statements scattered in different files of the product code for each pro-
gram and then generated faults by using mutant operators including negating a
decision in conditional statements like “if” and “while”, changing the values of
some constants, and so on. After applying the test suite to the faulty product
code, more failures would appear. We viewed the failures caused by the injected
faults as due to bugs in the product code.

It is accessible to collect obsolete tests in practice. For either Jfreechart or
Freecol, developers have released several versions during its development (as
shown by Table 1). In regression testing, the tests for the old version may become
obsolete for the new version and thus developers may need to modify existing
tests or add new tests. Therefore, to access the obsolete tests in practice, we
applied the test suite for a previous version of each program to the product code
of the current version of the program. As the version of the used test suite is
not consistent with the version of the product code, some tests may fail due to
test obsoleteness. Here, we also refer to obsolete tests as faults in the test code,
since they represent defects of the used test suite.

We summarize the statistical information of the faults in both product code
and test code in Table 2, in which the first column depicts the abbreviation of
the program, the following two columns depict the product code and the test
code, and the latter three columns depict the number of tests in each test suite,
the number of faults in the test code, and the number of faults in the product
code.

5.3 Experimental Design

After preparing faulty product code and faulty test code, we collected the values
of features of each program by analyzing the call graphs constructed by Jtop8

and the testing results returned by JUnit. Based on the above data, we performed
the following three studies.

In our first study, we constructed a classifier and evaluated the effectiveness
of the constructed classifier by using the instances from the same version of a

8 Jtop is a test management tool built in our previous research and is accessible at
http://jtop.sourceforge.net/

http://jtop.sourceforge.net/
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Table 2. Faults in Our Studies

Abbreviation Program Test Suite #Tests # Faults # Faults
in Test in Product

J1 Jfreechart 1.0.7 Jfreechart 1.0.0 1,037 9 17

J2 Jfreechart 1.0.13 Jfreechart 1.0.7 1,706 8 18

F Freecol 0.10.5 Freecol 0.10.3 362 82 74

program (i.e., Jfreechart 1.0.7, Jfreechart 1.0.13, or Freecol 0.10.5). For each
version of a program, we used all its collected regression test failures, which
are labeled by their causes (i.e., faults in the product code or faults in the test
code), as instances and randomly split all the instances into a training set and
a testing set. To reduce the influence of random selection, we used the 10 fold
cross-validation technique to implement the selection process. Specifically, for
a given set of data whose number of instances (i.e., regression test failures) is
M , the 10 fold cross-validation technique divides the given set into 10 subsets
of data equally so that each subset has M

10 instances. Then the 10 fold cross-
validation technique uses each of these subsets as a testing set and the other
subsets as a training set. In other words, the 10 fold cross-validation technique
randomly selects M∗9

10 instances of the given set as a training set, and takes the
rest instances as a testing set. Moreover, the preceding process has been repeated
10 times within the 10 fold cross-validation technique. Based on each training
set, our approach generates a classifier, which is evaluated by the instances of
the testing set. Specifically, the Best-first Decision Tree Learning algorithm used
in our approach is implemented on Weka 3.6.69, which is a popular environment
for knowledge analysis based on machine learning and supports most machine-
learning algorithms.

In our second study, we constructed a classifier by using the instances from
a version of a program (i.e., Jfreechart 1.0.7) and evaluated the effectiveness of
the constructed classifier by using the instances from the subsequent version of
the program (i.e., Jfreechart 1.0.13). Specifically, we used all the regression test
failures of Jfreechart 1.0.7 as the training set and all the regression test failures
of Jfreechart 1.0.13 as the testing set. Based on the training set, our approach
generates a classifier, which is evaluated by the instances of the testing set.

In our third study, we constructed a classifier by using the instances from one
program (i.e., both the two versions of Jfreechart (including 1.0.7 and 1.0.13)
or Freecol 0.10.5) and evaluated the effectiveness of the constructed classifier by
using the instances from another program (i.e., Freecol 0.10.5 or both versions
of Jfreechart). That is, we used all the regression test failures of one program as
a training set and all the regression test failures of another program as a testing
set. Based on each training set, our approach generates a classifier, which is
evaluated by the instances of the testing set.

For each failed test in the testing set, we recorded (1) the number of failures
correctly classified as faults in the product code, and (2) the number of failures

9 http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/
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correctly classified as faults in the test code. We then calculated the values of
the metrics in Section 5.4 to evaluate our approach.

5.4 Evaluation Metrics

We used the following metrics to evaluate our approach.

– OverAcc, which denotes the overall accuracy of the proposed approach. This
metric measures the likelihood of our approach to make a correct classifica-
tion considering both causes of regression test failures.

– AccFT , which denotes the accuracy of classifying regression test failures due
to faults in the test code. This metric measures the likelihood of our approach
to make a correct classification considering only regression test failures due
to faults in the test code.

– AccFP , which denotes the accuracy of classifying regression test failures
due to faults in the product code. This metric measures the likelihood of our
approach to make a correct classification considering only regression test
failures due to faults in the product code.

An ideal approach should achieve values close to 1 for the OverAcc metric.
Furthermore, for an ideal approach, the values of AccFT and the values of
AccFP should not differ very much. It is not complete and reliable to compare
two classification approaches based on only AccFT or AccFP . For example,
supposing that there are totally 50 obsolete tests in the test code and 50 faults
in the product code, if we classify all of them to be obsolete tests in the test
code, the AccFT is 100% but its AccFP is 0% and its OverAcc is 50%. This
approach is obviously bad as a good approach should have a high OverAcc with
balanced AccFT and AccFP .

5.5 Threats to Validity

The threat to construct validity comes from the tests whose failures are due
to the product code. It is hard to collect bugs in the product code in software
evolution since developers usually release a software product after fixing bugs
exposed by tests. To reduce this threat, we manually inject faults in the product
code following the standard procedure [20] in software testing and debugging.
The standard procedure is similar to mutant generation. We did not use existing
mutation tools (e.g., MuJava10) to generate mutants because such tools usually
generate a very large number of mutants [63]. The threat to internal validity
comes from our implementation. To reduce this threat, we reviewed all the code
before conducting our experiments. The threats to external validity lie in the
subjects used in the studies and the impact of machine learning. In this paper,
we used five versions of two open source Java programs, which are not neces-
sarily representative of other programs. As we considered three scenarios, the

10 http://cs.gmu.edu/~offutt/mujava/

http://cs.gmu.edu/~offutt/mujava/


618 D. Hao et al.

overall workload of evaluation for our research can be already similar to or even
more than that for an existing piece of research on test repair, from which our
research stems. To further reduce the threat from subjects, we need to evaluate
our approach on larger programs in other language (e.g., C#, C++) with more
failure-inducing tests. Another external threat comes from machine learning, as
our approach constructs a classifier by applying some existing machine-learning
algorithm to some subjects. Although machine learning does not have the power
to identify the cause-effect chain to pinpoint the differentiator between the prod-
uct code and the test code, it is a highly generalizable way to generate a solution
to pinpoint the preceding differentiator. For example, if we construct a solution
based on some observations, the solution can be applicable to only subjects for
which the observations hold. However, as a machine-learning-based approach
has the ability to summarize observations from existing data, we reply on ma-
chine learning instead of inventing a classifier manually. Note that there may
not necessarily be just one same classifier for all different subjects.

6 Results and Analysis

In this section, we first present the results and analysis of the three studies in
Section 6.1, Section 6.2, Section 6.3, then give a decision-tree sample in Sec-
tion 6.4, and finally summarize the main findings of our experimental studies in
Section 6.5.

6.1 Study I – Within the Same Version

Fig. 3 presents the results of our first study. Specifically, the top sub-figure
depicts the overall accuracy of classification results (i.e., OverAcc), whereas the
bottom sub-figures depict the accuracy of classification failures due to faults in
the test code (i.e., AccFT ) and the accuracy of classification failures due to
faults in the product code (i.e., AccFP ). For simplicity, we use J1, J2, and F to
represent Jfreechart 1.0.7, Jfreechart 1.0.13, and Freecol 0.10.5. In study I, the
training instances and testing instances are collected from the same version of
a program (i.e., version 1.0.7 of Jfreechart using the test suite of version 1.0.0,
version 1.0.13 of Jfreechart using the test suite of version 1.0.7, version 0.10.5 of
Freecol using the test suite of version 0.10.3).

Concerning the comparison of the overall accuracy (OverAcc) of our approach
with 50%, which can be regarded as a random classification or a blind guess of
failure causes, all of our approach’s OverAcc values for the programs are are
around 80%, much larger than 50%. Furthermore, the values of AccFT and
AccFP are usually close to the corresponding values of OverAcc except for
Jfreechart 1.0.7. That is to say, the classifier of our approach constructed by
using one version of a program can usually classify the causes of regression test
failures of the same version quite accurately. Our approach is not very effective in
classifying the faults in the test code of Jfreechart 1.0.7. We suspect the reason to
be that Jfreechart 1.0.7 has a small number of tests (test suite of version 1.0.0)
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Fig. 3. Results of Study I

and a small number of faults in the test code so as to bias the classification
results.

6.2 Study II – Between Versions

Fig. 4 depicts the results of our second study. The results for Jfreechart 1.0.7 are
based on the training instances collected from version 1.0.7 of Jfreechart (using
the test suite of version 1.0.0) and the testing instances collected from version
1.0.13 of Jfreechart (using the test suite of version 1.0.7).

The OverAcc value of our approach is higher than 50%, which is 96.15%.
That is to say, the classifier constructed using some version of a program may
be used to classify the cause of a regression test failure of another version of the
program. Moreover, the results AccFT and AccFP for Jfreechart 1.0.7 are both
close to 100%.

Furthermore, comparing the classification results of Jfreechart 1.0.13 (whose
training instances and testing instances are all from Jfreechart 1.0.13) in Fig. 3
and those (whose training instances are from Jfreechart 1.0.7 but testing in-
stances are from Jfreechart 1.0.13) in Fig. 4, the results (including OverAcc,
AccFT , and AccFP ) of the program increase. Although the differences between
versions may harm the accuracy of a classifier, more instances are used to train
the classifier in study II than study I, and thus our approach produces better
results in study II than in study I.
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Fig. 4. Results of Study II

6.3 Study III – Across Programs

Fig. 5 depicts the results of our third study, where J is the abbreviation of
Jfreechart (including its 1.0.7, and 1.0.13). The training instances are from ver-
sion 1.0.7 and version 1.0.13 of Jfreechart and the testing instances are from
version 0.10.5 of Freecol, or vice versa.

The OverAcc values of our approach are still higher than 50%, which are
68.18% and 71.15%, respectively. That is to say, our approach can still provide
some help over the baseline. However, comparing to the classification results
in Fig. 3 and Fig. 4, there are significant decreases. Furthermore, when closely
examining the AccFT results and the AccFP results, the former may not be ac-
ceptable, because the values of AccFT are too low. In other words, the approach
classifies too many failures as faults in the product code. We suspect the reason
to be that the two programs used in the training set and in the testing set have
significant differences in their structures so that the training process may have
to face many noises.

The results of our third study are not satisfactory enough to be applied in
practice, but it indicates the possibility that our approach may be applied be-
tween programs by improving the classifier using more features. It should be
noted that cross-program validation is notoriously difficult for mining based ap-
proaches [53,72]. One possible way to alleviate this drawback is to set up a
multi-program training set to prevent the trained classifier from being too spe-
cific to one program.
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Fig. 5. Results of Study III

6.4 A Decision-Tree Sample

Fig. 6 presents a decision tree that are constructed using the all the regression
test failures of Jfreechart 1.0.7 as training instances. In this decision tree, only
three features (i.e., FileChange,MaxD, and ErrorNodNum) have contribution
to differentiate the faults in the test code and the faults in the product code.
In particular, if the values of FileChange are smaller than 9.0, the causes of
regression test failures are classified as faults in the product code; if the values
of FileChange are no smaller than 9.0 and the values of MaxD are no smaller
than 11.5, the causes of regression test failures are also classified as faults in the
product code; if the values of FileChange are no smaller than 9.0 and the values
of MaxD are smaller than 11.5 and the values of ErrorNodeNum are smaller
than 8.5, the causes of regression test failures are classified as faults in the test
code. If the values of FileChange are no smaller than 9.0 and the values of
MaxD are smaller than 11.5 and the values of ErrorNodeNum are no smaller
than 8.5, the causes of regression test failures are not clear and may be classified
as faults in the product code or in the test code. We did not present the decision
trees generated in the three studies due to the large number of generated decision
trees.

6.5 Summary

In summary, the main findings of our experimental studies are as follows.
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– First, our approach produces acceptable results when the training instances
and the testing instances are from the same version of one program or from
the different versions of one program.

– Second, when the training instances and the testing instances are from dif-
ferent programs, our approach is not as effective as being applied in the same
program.

According to the two findings, our machine-learning based approach is generally
effective to classify causes of regression test failures when the training instances
and the testing instances are from the same program (including different versions
and the same versions).

7 Discussion

In this section, we will discuss some issues that are related to our approach.

Adjustment of Features. Although our approach uses only seven features
to construct a classifier, more features may be added to improve the effective-
ness of the approach. Specifically, the complexity features and the change fea-
ture are collected by static analysis, whereas the testing features are collected
by lightweight dynamic analysis. Dynamically collected features and statically
collected features are complementary, and we will consider their cost and effec-
tiveness in constructing a classifier in our future work. Furthermore, the seven
features are intuitively correlated with the cause of a regression test failure, but
our experimental studies did not investigate the impact of each feature on the
classification results. Moreover, our intuition that how each feature impacts the
classification results (e.g., a regression test failure is more likely due to buggy
product code if the corresponding test has a small value of FileChange) is not
encoded in the classifier since our intuition may not be consistent with the actual
practice. To learn explicitly the contribution of each feature on classification re-
sults, we will conduct more experiments on various combination of these features
in the future.

Applicability of Fault Localization Techniques. Our preliminary exper-
imental results show that existing fault localization approaches can hardly be
directly used to solve the problem of this paper. Conceptually, fault localization,
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Table 3. Results of Tarantula in Classifying Test Failures

Program Faults in the Test Code Faults in the Product Code
–Test Suite #Total #Correct #Wrong #Miss #Total #Correct #Wrong #Miss

Jfreechart 1.0.7
– Jfreechart 1.0.0 9 4 2 3 17 0 2 15
Jfreechart 1.0.13
– Jfreechart 1.0.7 8 1 7 0 16 15 0 1

Freecol 0.10.5
– Freecol 0.10.3 82 0 14 68 74 0 1 73

especially spectrum-based fault localization approaches may be extended to solve
the problem in this paper. Therefore, we conducted a preliminary experimental
study on two programs (with the same seeded faults) and their test suites in
Table 2 using Tarantula [27], which is an effective and widely used spectrum-
based fault localization approach. For each program and its test suite, Tarantula
generates a ranked list of suspicious methods based on the descendent order of
their suspiciousness, which measures the possibility that the methods contain
faults. Formally, the ranked list of suspicious methods is denoted as m1, m2, . . .,
mn, where mi and mj (1 ≤ i, j ≤ n) denotes any methods of the program and
its test suite. Supposed that sus(mi) and sus(mj) represent the suspiciousness
of methods mi and mj , respectively, then sus(mi) ≤ sus(mj) iff j ≤ i. If m1 is a
method in the product code and any method mk in the test code satisfying that
sus(m1) > sus(mk), we deem that the faults are in the product code; if m1 is a
method in the test code and any method mk in the product code satisfying that
sus(m1) > sus(mk), we deem that the faults are in the test code; otherwise, it
is not clear where the faults are since both the method in the product code and
the method in the test code have the largest suspiciousness. Based on this as-
sumption, the classification results of Tarantula can be summarized as Table 3,
where #Total shows the total number of faults in either the test code or the
product code, #Correct shows how many faults (in either the test code or the
product code) have been correctly classified by Tarantula, #Wrong shows how
many faults have been incorrectly classified by Tarantula (i.e., the faults in the
test code have been classified as faults in the product code, or the faults in the
product code have been classified as faults in the test code), and #Miss shows
how many faults (in either the test code or the product code) cannot be clearly11

classified by Tarantula. According to this table, Tarantula can hardly precisely
classify the cause of a failed test in most cases, especially when the faults are
due to an obsolete test. Therefore, existing fault localization approaches cannot
be directly applied to solve the problem in this paper. In the future, we will
consider how to utilize the results of fault localization approaches to improve
the classification.

Impact of Structure Changes. To collect the change feature, our approach is
required to identify changes between versions, but some structural changes (e.g.,

11 Sometimes methods in the product code and methods in the test code are assigned
with the same suspiciousness and thus Tarantula cannot tell whether the faults are
due to the test code or the product code.
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renaming) may cause noise in matching the entities between versions. Changes
on the program’s behavior should be manifested on its test case, whereas changes
only on the program’s structure may not. Therefore, it is important to precisely
map the entities between versions so as to reduce the noise in gathering the
change feature. Refactoring [11,49] is an important type of changes in object-
oriented software, which changes the structure of a program without affecting
its behavior [13]. As there exist many refactoring tools [10,55], we will use these
tools to match entities between versions in collecting the change feature so as to
reduce the noise resulting from some structure changes in the future.

Other Machine-Learning Algorithms. In this paper we present and eval-
uate our approach using a typical machine-learning algorithm (i.e., Best-first
Decision Tree algorithm), but there exist many machine-learning algorithms in
the literature. Besides Best-first Decision Tree algorithm, we have implemented
our approach using another algorithm the Naive Bayes algorithm [39], and found
that the latter was much worse than the former. Besides machine-learning algo-
rithms, there are many other factors (e.g., size of samples) that may influence
the effectiveness of the proposed approach. As this paper is only a first step
on classifying the cause of a regress test failure, we will further investigate the
impact of these factors in our future work.

8 Conclusions and Future Work

In software evolution, when we apply an existing test suite to the modified soft-
ware, some regression tests may fail. The failures of these regression tests may
be due to buggy product code or obsolete test code. Before applying existing de-
bugging techniques in the product code or test-repair techniques, it is necessary
to determine whether a failure is due to the bug in the product code or obsolete
tests. In this paper, we propose a machine-learning based approach, which col-
lects values of seven features that may be related to failures of regression tests
and then constructs a classifier by using a machine-learning algorithm (i.e., the
Best-first Tree Learning algorithm). Furthermore, we evaluated this approach in
three scenarios and found that the overall accuracy of our approach on correctly
classifying regression failures is mostly about 80% when being applied within a
program.

In future, we will identify more failure-related features to further improve the
classification accuracy. We will also evaluate the proposed approach on a variety
of projects written in different programming languages. As the empirical study
did not evaluate the effectiveness of the given features on classification, we will
evaluate which features play a leading role in the classification in our future
work. Furthermore, we will work on the feasibility of establishing a discrimina-
tive model, aiming at classifying the causes of regression test failures based on
features.
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Abstract. Testing refactoring engines is a challenging problem that has
gained recent attention in research. Several techniques were proposed to
automate generation of programs used as test inputs and to help devel-
opers in inspecting test failures. However, these techniques can require
substantial effort for writing test generators or finding unique bugs, and
do not provide an estimate of how reliable refactoring engines are for
refactoring tasks on real software projects.

This paper evaluates an end-to-end approach for testing refactor-
ing engines and estimating their reliability by (1) systematically apply-
ing refactorings at a large number of places in well-known, open-source
projects and collecting failures during refactoring or while trying to com-
pile the refactored projects, (2) clustering failures into a small, manage-
able number of failure groups, and (3) inspecting failures to identify
non-duplicate bugs. By using this approach on the Eclipse refactoring
engines for Java and C, we already found and reported 77 new bugs
for Java and 43 for C. Despite the seemingly large numbers of bugs, we
found these refactoring engines to be relatively reliable, with only 1.4%
of refactoring tasks failing for Java and 7.5% for C.

Keywords: Refactoring engines, Systematic testing, Test clustering.

1 Introduction

Refactorings [11] are behavior-preserving code transformations that developers
traditionally apply to improve the design of existing code. Modern IDEs—such as
Eclipse, NetBeans, or Visual Studio—contain refactoring engines that automate
applications of refactorings. Previous studies [6, 8, 28, 45] show that most com-
monly applied refactorings include renaming program elements, extracting meth-
ods, and inlining methods. The list of refactorings is growing as researchers and
practitioners recognize new patterns that are worth automating [5, 9, 10, 36, 48].
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Testing refactoring engines is an important yet challenging problem. It is im-
portant because bugs1 in refactoring engines can affect programmer productivity,
introduce errors in the code being refactored, and reduce the confidence of the
programmer who may decide to perform manual refactorings that can be even
more error-prone. It is challenging because refactoring engines require complex
test inputs, i.e., programs/projects to be refactored; such test inputs are hard
to generate using naive random generation or symbolic execution [14].

Automated testing of refactoring engines has gained attention in research [7,
12, 17, 35, 38, 39, 41]. Most proposed techniques require manually writing test
generators that use sophisticated random or bounded-exhaustive generation to
produce the required complex test inputs. Such techniques have had some im-
pact on the research and practice of building refactoring engines, e.g., by finding
real bugs in widely used IDEs [7, 12, 38, 39] or by affecting design of refactoring
engines [15, 31, 34, 35]. However, such techniques also have several deficiencies.
First, they require substantial manual effort for writing test generators. Sec-
ond, the generated test inputs may not represent real refactoring scenarios; the
generators often produce “corner cases” that IDE developers or users do not
care about. Third, they do not provide any estimate of how reliable refactoring
engines are for tasks on real software projects.

Instead of using artificially generated programs to evaluate refactoring en-
gines, several research projects [4, 5, 37, 41, 44] use real programs. Spinellis [41]
mentions testing the Rename refactoring of his CScout refactoring engine on all
identifiers in the Linux kernel. Independently, Thies and Steimann [44] tested
two refactorings in Eclipse in a similar manner. However, these projects did
not consider the overall process from applying refactorings to inspecting fail-
ures to reporting new, unique bugs, and they did not quantify the reliability of
widely used refactoring engines such as those in Eclipse. While previous stud-
ies [7,35,38,39] show (and our current study confirms) that systematic testing of
refactoring engines can expose a large number of failures, it is important to map
these failures to bug reports. Jagannath et al. [17] proposed a technique that
clusters failures to help in inspection, but they evaluated the technique only on
artificially generated programs. (Section 6 discusses related work in more detail.)

This paper makes two contributions.

End-to-End Approach: We propose testing refactoring engines and evaluating
their reliability by combining techniques that systematically apply refactorings
on a large number of places in real software projects [4, 5, 41, 44] and that ef-
fectively cluster the failures to a small number of (likely unique) bugs [17]. Our
approach consists of the following steps: (1) given a set of projects, systemati-
cally apply refactorings in many places and collect failures where the refactoring

1 The term “bug” used in this paper is more formally called a “fault”, i.e., an error
in the code of a refactoring engine, in contrast to a “failure”, i.e., an error observed
from an execution of the refactoring engine.
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engine throws an exception or produces refactored code that does not compile2,
(2) split these failures into clusters such that all failures in the same/different
cluster/clusters are likely due to the same/different underlying bug/bugs, (3) in-
spect randomly selected failures from the clusters, minimize them, identify non-
duplicate bugs, and report them. We fully automated step 1, semi-automated
step 2, and, for now, manually perform step 3.

While previous work explored some individual steps separately, our combined
approach leads to a more effective, end-to-end methodology for evaluating refac-
toring engines. In contrast to techniques that automate test generation [7, 12,
17, 38, 39], our approach does not require manually writing test generators, finds
bugs that occur in real refactoring tasks, and allows us to characterize reliability
of refactoring engines for real refactoring tasks. We expect that bugs commonly
found in real applications are more likely to be fixed than bugs discovered from
artificially generated corner cases.

Evaluation: We use our approach to extensively evaluate the Eclipse refac-
toring engines for two programming languages—Java and C. Our study is the
first to test all refactorings—23 for Java and 5 for C—currently implemented
in Eclipse for these two languages. So far we have found 77 bugs in 21 refac-
torings for Java (not finding any bug in two refactorings) and 43 bugs in 5
refactorings for C, which is more bugs than any previous study that we are
aware of [7, 12, 38, 39]. We reported these bugs to the Eclipse developers, who
acknowledged our reports—“Thanks for opening all the useful bug reports.
Much appreciated!” (http://dev.eclipse.org/mhonarc/lists/jdt-ui-dev/
msg01278.html)—and have already fixed 8 of these bugs. Our clustering tech-
nique effectively reduces almost 15000 failures in Java and C to 356 clusters to
be inspected. Moreover, we find refactoring engines to be relatively reliable, with
the average rate of failing refactoring tasks being 1.4% for Java and 7.5% for C.

To the best of our knowledge, our study is the first to (1) evaluate this end-
to-end approach of applying refactorings on real software projects and mapping
the failures to unique bugs, (2) cluster failures of refactoring engines on real
projects, (3) highlight the challenge of finding duplicate failures and bug reports,
(4) show that this approach can be easily adopted for multiple programming
languages unlike test generators that need to be written from scratch for each
language, and (5) report failure rates for refactoring engines as a way to estimate
their reliability. Our promising results provide motivation for the community to
automate various steps from our approach, including minimization of programs
that lead to failures [27, 33, 50] and searching for duplicate bug reports that
involve programs as test inputs.

The key automated steps of our approach have been successfully evaluated by
the ECOOP Artifact Evaluation Committee (http://ecoop13-aec.cs.brown.
edu/) and found to meet expectations. Our main results with the links to the
reported bugs are available online: http://mir.cs.illinois.edu/rtr.

2 One can use other test oracles [7, 39] in addition to refactored code not compiling.
Note that we check compilation only when the refactoring engine raises no warning
that the refactoring should not proceed because some precondition is violated.

http://dev.eclipse.org/mhonarc/lists/jdt-ui-dev/msg01278.html
http://dev.eclipse.org/mhonarc/lists/jdt-ui-dev/msg01278.html
http://ecoop13-aec.cs.brown.edu/
http://ecoop13-aec.cs.brown.edu/
http://mir.cs.illinois.edu/rtr
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2 Example

As an example, we illustrate using our approach to test the Change Method

Signature refactoring for Java. This refactoring takes as input one method and
a set of changes to make to various parts of the method signature: visibility (e.g.,
private), return type, method name, and parameter list (add, remove, or reorder
parameters). Changing the signature of one given method can lead to changing
several other methods (e.g., those that override or are overridden by the given
method) and can require changing the call sites to the method(s) being changed.

Our approach has three steps. In the first step, our automated tool compiles
our corpus of real programs and finds all the program elements where a given
refactoring can be applied (Section 3.1). For Change Method Signature,
this corresponds to finding all the methods. For each such element, the tool then
repeatedly applies the applicable refactoring tasks that pass the preconditions,
records if there is a failure, and undoes the applied refactoring so that the next
refactoring task can be applied. For Change Method Signature, our tool
performs four refactoring tasks for each method: (1) changes visibility, (2) adds
a parameter in first position, (3) removes the first parameter, and (4) reverses
the order of parameters. (Section 3 has a detailed list.) Note that some tasks
may not apply to some methods, e.g., a parameter cannot be removed if the
target method has no parameters.

For the experiments, we use five popular Java projects: JPF, JUnit, log4j,
Lucene, and Math (Section 5). On these projects, our tool performs a total of
28526 refactoring tasks for Change Method Signature. These tasks result
in 565 failures. While the absolute number of failures is relatively large, the
relative rate of failures is 565/28526=2.0%, i.e., only a relatively small fraction
of all refactoring tasks result in a failure. Of these 565 failures, 555 are compiler
errors denoting that the resulting program does not compile any more, and 10
are exception cases in which the refactoring engine throws an exception while
applying the change. For each failure, our tool records where the refactoring is
applied, the type of failure, and the messages produced by the failure—compiler
error messages or exception stack traces.

It is worth pointing out that no prior study on testing refactoring engines [7,
12, 17, 35, 38, 39, 41, 44] report finding any exception case. At least one paper [7]
explicitly states checking for such cases but finding no failure, and other papers
use automated tools that would likely crash for uncaught exceptions and thus
be observed by the researchers. Hence, the large number and diversity of real
refactoring tasks, arising from applying our approach systematically on several
open-source projects, enables us to discover these cases missed by previous work.

Even when the absolute number of failures is relatively large, many of them
are due to the same underlying bug in the refactoring engine. Inspecting all
the failures is prohibitively expensive and unnecessary to identify unique bugs.
Since one of our goals is to identify new, unique bugs in the refactoring engine,
we want to inspect a relatively small number of the failures that likely have
different underlying bugs. A naive approach that randomly selects some number
of failures to be inspected does not work well [17], and it is not obvious a priori
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how many failures to randomly inspect. Thus, one can end up wasting time by
inspecting several failures with the same underlying bug, or one can miss a bug
by not inspecting any failure for that bug.

In the second step, our tool splits the failures into clusters based on the mes-
sages produced by the failure (Section 3.2). Ideally, clustering should satisfy two
conditions: (1) all the failures in the same cluster should have the same underly-
ing bug such that inspecting only one representative from each cluster will not
miss any bug, and (2) the failures from different clusters should have different
underlying bugs such that inspecting representatives from multiple clusters will
not find duplicate bugs. To cluster the failures, we build on the idea of abstract
messages [17]. This idea was previously proposed for automatically generated
test inputs for refactoring engines but was not evaluated for failures on real
refactoring tasks.

For Change Method Signature, our clustering splits 555 failures with
compiler errors into 10 clusters (that have between 1 and 526 failures per cluster)
and splits 10 failures with exceptions into 2 clusters (that have 4 and 6 failures).
If one has insufficient resources to inspect all the clusters, one can prioritize
the clusters based on the type of bugs one is looking for. For example, one can
inspect clusters that have more failures before clusters that have fewer failures
(thus looking for common bugs rather than looking for more “corner cases”), or
inspect clusters that have failures arising from multiple projects before clusters
that have failures arising from only one project (thus looking for bugs that
are more common to be encountered by the users), or inspect clusters with
exceptions before clusters with compiler errors (our anecdotal experience shows
that Eclipse developers fix the exception cases faster as they may consider these
bugs to be more severe).

In the third step, we manually analyze the clusters to identify and report
non-duplicate bugs. For our running example, we inspect one randomly selected
failure from each of these 10+2 clusters. This inspection involves two tasks:
(1) minimizing the input project to understand the underlying bug and to pre-
pare a bug report that makes debugging easier, and (2) identifying likely dupli-
cates among the bugs in our clusters and bugs already in the Eclipse Bugzilla
database. While there is research on automated minimization [27,33,50], we cur-
rently perform minimization manually. We experienced that minimizing a failure
can sometimes take less time and effort than identifying duplicate bugs. Mini-
mizing a failure took us 5–60 minutes, with an average around 10 minutes, while
identifying duplicates sometimes took over 60 minutes, with an average around
15 minutes. For the examples in figures 1a and 1b, the minimization took 10 and
60 minutes, respectively. In the end, by inspecting 10+2 (compiler+exception)
failures, we found 4+2 unique bugs, and of those 1+2 bugs were previously
unreported in Eclipse Bugzilla.

We discuss in more detail the two bugs that lead to uncaught exceptions.
Figure 1a shows the minimized code based on the Lucene project [24] that leads
to a NullPointerException when the Change Method Signature refactoring
is used to reorder the two parameters of the method m. In this case, the names
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// C. java
class C {

C(Object o ) {}
void m() {

new C(new Object ( ) {
// Reorder parameters
void m( int i , int j )
{}

} ) ;
}

}
(a) NullPointerException

// . s e t t i n g s /org . e c l i p s e . j d t . core . p re f s
org . e c l i p s e . j d t . core . compi l e r . source =1.4

// A. java
class A {

// Remove parameter
void add( int i ) {
}

}

(b) IndexOutOfBoundsException

Fig. 1. Examples of bugs found in Change Method Signature by applying refac-
torings on Lucene and log4j projects, respectively

of the class, method, and parameters are not relevant for reproducing the ex-
ception. Figure 1b shows the minimized code from log4j [23] that leads to an
IndexOutOfBoundsException when Change Method Signature is used to re-
move the parameter of the method add; as opposed to the first bug, the method
name must be add in order to be able to reproduce the bug. Additionally, the
project must be using Java version 1.4 or lower (shown in the settings file in
Figure 1b). Indeed, we find that reproducing some bugs requires more informa-
tion about the project rather than just the source code of the program. This
bug cannot be exposed by existing automated techniques for testing refactoring
engines [7,12,38,39], because they focus on generating Java source code and not
project configurations. In contrast, we found these bugs by applying refactorings
on real projects.

While the minimized versions can look like “corner cases”, the bugs actually
arise on real code, and the IDE developers can use that information to priori-
tize fixing of the bugs. For example, NullPointerException related to Figure 1a
arises in four refactoring tasks, whereas IndexOutOfBoundsException related to
Figure 1b arises in six refactoring tasks.

3 Approach

This section describes in more detail our end-to-end approach for testing refac-
toring engines. Our approach consists of three main steps: (1) collecting failures
discovers all refactoring tasks, runs these tasks, and outputs failing tasks (Sec-
tion 3.1), (2) clustering failures splits failing tasks into clusters (Section 3.2), and
(3) inspecting failures minimizes one failing task per cluster and finds duplicate
failures to report new, unique bugs (since this step is currently manual, we do
not discuss it in this section).

3.1 Collecting Failures

Figure 2 outlines the basic procedure for collecting failures. The procedure takes
three inputs: the refactoring under test (RUT), a Java/C project containing the
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1 collect failures(refactoring, project, threshold):
2 elements = find elements(refactoring, project)
3 for el in elements:
4 if is reached(threshold): break
5 refactoring tasks = create refactoring tasks(refactoring, project, el)
6 for task in refactoring tasks:
7 configure properties(task)
8 try:
9 if check preconditions(task):

10 refactored project = perform(task)
11 else: continue
12 except exc:
13 report(”Failure: Refactoring threw an exception”, exc, task)
14 continue
15 errors = compile(refactored project)
16 if errors is not empty:
17 report(”Failure: Refactored program failed check”, errors, task)
18 continue
19 report(”Success”, task)

Fig. 2. Collecting failures for one given refactoring and project

program on which the refactoring will be applied, and a threshold that deter-
mines the maximum number of times to apply the RUT on the project. The
procedure first finds the set of program elements in the given project on which
the RUT can be applied and then computes a set of refactoring tasks for each
element. For example, for Change Method Signature, the set of elements
consists of all methods in the project, and the set of tasks can include chang-
ing method visibility, adding a parameter, removing a parameter, and reversing
parameter order.

For each refactoring task, the procedure performs several steps in a loop. It
first configures the properties for the refactoring task: in addition to the input
project and program element, each refactoring can have a number of properties.
For example, changing method visibility in Change Method Signature re-
quires providing the new visibility: private, protected, default, or public. The
specific property values depend on the particular refactoring task. For example,
to actually change the method visibility we need to choose a new value for the
visibility that differs from the old value, so different values can be provided for
different refactoring tasks.

The procedure next checks if the refactoring task should proceed (line 9).
In some cases the refactoring engine gives a warning that the refactoring could
change the program behavior thus violating the definition that refactorings are
behavior-preserving. For example, the refactoring engine could give a warning
if we attempt to change visibility of a method to private when the method is
called from outside its class. In those cases, our procedure does not proceed
with the refactoring as checking the resulting program for compiler errors could
produce many false positives because the problems do not arise from real bugs
in the refactoring engine but from the ignored warnings. An alternative would
be to proceed despite warnings but to check only whether the refactoring engine
throws an exception and not whether the refactored program compiles.
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1 # the procedure maintains a set called ”abstractions”
2 # each abstraction maps a concrete message (exception or compiler error) to an abstract message
3 # applying abstractions to a concrete message returns either an abstract message or ”cannot abstract”
4

5 cluster failures(refactorings, projects, threshold):
6 # collect all failures
7 failures = {} # empty set
8 for rf in refactorings:
9 for pj in projects:

10 failures += collect failures(rf, pj, threshold)
11

12 # cluster all failures
13 all abstract messages = {} # empty set
14 for failure in failures:
15 failure.abstract messages = {} # empty set
16 for c msg in failure.concrete messages:
17 if apply(abstractions, c msg) = ”cannot abstract”:
18 if can automatically abstract messages(): # JDT tool
19 abstractions += automatically abstract message(c msg, failure.task)
20 else: # current CDT tool
21 abstractions += ask user for abstraction(c msg)
22 a msg = apply(abstractions, c msg)
23 failure.abstract messages += a msg
24 all abstract messages += a msg
25

26 clusters = {} # empty set of sets of failures
27 for rf in refactorings:
28 for type in { exception, compiler }:
29 for a msg in all abstract messages:
30 cluster = { f ∈ failures | f.refactoring = rf ∧ f.type = type ∧
31 a msg ∈ f.abstract messages }
32 clusters += cluster

Fig. 3. Clustering failures for several given refactorings and projects

The procedure then performs the program transformation. Note that both
this action and the previous action (lines 9 and 10) execute the actual RUT code
from the refactoring engine. If these actions result in an uncaught exception, the
procedure records a failure with an exception message.

If the refactoring task produced a refactored project, the procedure checks
whether the new project compiles (line 15). One could optionally check other
oracles [7,39], e.g., whether the refactored project still passes all its tests [41]. If
there are any compiler errors, the procedure records a failure with all the error
messages. Note that when one refactored project does not compile, there can be
multiple compiler error messages, whereas when the refactoring engine throws
an exception, there is only one message with a stack trace.

3.2 Clustering Failures

Figure 3 shows the procedure that runs a set of refactorings on a set of projects
(up to the maximum number of refactoring tasks per refactoring and project
pair), collects the failures, and then clusters the failures (lines 12 to 24). The
goal of clustering is to reduce the number of failures that should be inspected to
detect unique bugs.
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The clustering first computes abstract messages from the concrete messages
that were recorded with the failures. Each failure corresponds to a refactor-
ing task that either threw an exception during the refactoring or produced
compiler error(s) on the refactored project. The concrete messages are the ac-
tual strings, e.g., “The type new MultivariateFunction(){} must implement the

inherited abstract method MultivariateFunction.value(double[])” and “The
type FieldValueHitQueue<T>.OneComparatorFieldValueHitQueue<T> must impleme-

nt the inherited abstract method PriorityQueue<T>.lessThan(Object, T, T)”.
The goal of abstracting these messages is to form clusters of failures that are
likely due to the same underlying bug.

The procedure maintains a set of abstraction functions, each of which maps a
concrete message (exception or compiler error) to an abstract message. For ex-
ceptions, our tool currently maps a failure to the top stack frame from the stack
trace. For compiler errors, the abstractions are regular expressions. Our tool for
Eclipse JDT automatically creates a regular expression from an object repre-
senting a compiler error during Eclipse execution; to obtain the error object, our
tool reruns the refactoring task (line 19) and replaces all the arguments (e.g.,
new MultivariateFunction(){}) of the error message with “.*”. For example,
it can create a regular expression “The type .* must implement the inherited

abstract method .*”. Our tool for Eclipse CDT currently requires the user to
manually provide a set of such regular expressions; we do not have full automa-
tion because some messages are more project specific because they are output
from make not just compiler errors. These regular expressions typically ignore the
project-specific details such as identifiers, file names, or line/column numbers.
For each error, the tool checks whether the error matches one of the regular ex-
pressions; if not, the user is asked to provide a new expression. If yes, the regular
expression itself is used as the abstract message. For example, the two messages
from the previous paragraph are both abstracted to the same abstract message
from this paragraph. Note that many regular expressions can be reused across
refactorings. Across all failing refactoring tasks in our experiments, we had 112
automatically generated regular expressions for Java and 50 manually written
regular expressions for C; it takes under a minute to manually write one regular
expression, and we did not find it to be a big burden.

After the messages are abstracted, the clustering splits the failures into groups
that have the same refactoring name (ignoring options for the refactoring task),
the same type of failure (either exception or compiler error), and contain the
same abstract message. As a result, one failure can belong to multiple clusters
(known as “overlapping clustering” or “multi-view clustering” [16]), i.e., if a
failure has multiple compiler errors, it is put in all the clusters that correspond
to these errors. The expectation is that failures in the same cluster are likely due
to the same bug, and failures in different clusters are likely due to different bugs.
(Note that one failure by itself may be due to several bugs.) The clustering
splits the failures based on the refactoring name because the chance is lower
that failures for different refactorings are caused by the same bug, although the
chance is not zero as some refactorings share code. Likewise, the clustering keeps



638 M. Gligoric et al.

separate the clusters for exceptions and compiler errors because those clusters
are unlikely to be caused by the same bug.

4 Implementation

This section describes how we implemented our approach for two refactoring
engines in Eclipse—JDT [18] for Java and CDT [3] for C. While we implemented
the approach only for Eclipse because of our familiarity with the infrastructure,
the approach also applies to other IDEs.

4.1 Testing JDT

We implemented our tool as an Eclipse plug-in that supports testing all 23 refac-
torings available in the Eclipse refactoring menu (the first column of Figure 4)3.
Our plug-in fully automates all the steps from figures 2 and 3 for the Eclipse
JDT refactoring engine.

Our plug-in selects the set of relevant program elements for each refactoring
based on the refactoring specification [32] (e.g., it selects methods for Change

Method Signature). The second column of Figure 4 shows the precise set of
elements that our tool selects by default. It selects only a subset of elements for
some refactorings to match what was used in previous studies [7,12,38,39], e.g.,
for Rename these studies selected all fields, local variables, and methods but
not types or packages. Our implementation offers a number of options that can
select a superset or subset of the default set of elements, but our evaluation uses
the default set.

Many refactorings have a number of properties that can be configured, e.g.,
for Convert Local Variable to Field the properties include: mark the field
as final, mark the field as static, name for the field, location of initialization, and
modifiers. By default our plug-in uses only one configuration of property values.
Our experiments (Section 5) show that using one configuration suffices to find
many new bugs in the current Eclipse refactoring engines; in the future, we plan
to explore testing multiple configurations. The third column of Figure 4 lists
the precise pairs (property, value) for all properties that our plug-in explicitly
sets. For the properties that are not listed, our plug-in uses the default values
that Eclipse provides. We select the values such that refactorings are likely to
proceed and not raise warnings about violated preconditions, e.g., we rename a
program elements to a name that is new to the project rather than some existing,
conflicting name.

The main loop of our plug-in executes refactoring tasks and checks the results.
These operations would be very slow if implemented naively by first creating a
new Eclipse Java project for each refactoring task, then populating this project
with the source code under test, refactoring the code, and compiling the entire
refactored project to check for compiler errors. Our plug-in provides two im-
portant optimizations. First, it does not create a new Eclipse Java project for

3 The order of the refactorings matches the order in the Eclipse refactoring menu.
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Refactoring Elements (Property, Value)

Rename
fieldsF

local variablesL

methodsM

F,L,Mnew name, non-conflicting
L,Mupdate references, true

Move
instance methodsIM

static methodsSM

IM,SMdelegate updating, true
IM,SMdeprecate delegates, true
IMinline delegator, true
IMuse getter/setters, true
IMtarget, non-primitive
parameter types

SMtarget, previous type in
lexicographical order

Change Method Signature
methodsM

parametersP

Mvisibility, private
Pdefault value for added, null
Padd/remove position, 0
Pnew order, reverse

Extract Method expressions
new name, non-conflicting
visibility, public
replace duplicates, true

Extract Local non-void expressions
declare final, true
replace all occurrences, true
new name, non-conflicting

Extract Constant
literals
exp.s with literals
method invocations

replace all occurrences, true
visibility, public
qualify references, true

Inline
constantsC

local variables

methodsM

Cremove declaration, true
Mdelete source, true

Convert Local To Field local variables -

Convert Anonymous anonymous classes
new name, non-conflicting
declare static, true

Move Type To New File non-local types -

Extract Superclass top level classes

create method stubs, true
instanceof, true
delete methods, true
elements, all public methods

Extract Interface types
annotations, true
visibility, public
replace, true

Use Supertype types destination, all supertypes

Push Down types element to push, a member

Pull Up types

use keyword this, true
override annotation, true
destination, a supertype
element to pull, a member

Extract Class fields create getter/setter, true

Introduce Param. Object methods top level, false

Introduce Indirection methods update references, true

Introduce Factory methods protect constructor, true

Introduce Parameter expressions -

Encapsulate Field fields
visibility, public
encapsulate declaring class, true

Generalize Declared Type types destination, a supertype

Infer Type Arguments compilation units -

Fig. 4. Default set of elements and (property, value) pairs for JDT
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Refactoring Elements (Property, Value)

Rename

global variables
local variables
function parameters
functions
structure members
macros

new name, non-conflicting

Extract Function
expressions
single statements

new name, non-conflicting

Extract Local Variable expressions new name, non-conflicting

Extract Constant literals new name, non-conflicting

Toggle Function functions create header, true

Fig. 5. Default set of elements and (property, value) pairs for CDT

each task; instead, it creates one Eclipse Java project for the first task and then,
after applying the refactoring and checking the results, it undoes the refactoring
to restore the original project state. Undoing the refactoring is over an order
of magnitude faster than creating a new Eclipse project. Currently, we rely on
the Eclipse implementation of undo refactoring. However, as this implementa-
tion may be incorrect by itself, we could optionally copy the project to check
the undo and to ensure that the project under refactoring is consistent before
each refactoring task. Second, the plug-in does not compile the entire refactored
project but only focuses on the file that contains the program element being
refactored. Although this optimization significantly improves the performance,
it may lead to false negatives as compiler errors may be in other affected files or
the files that depend on the affected files. Our plug-in could be easily configured
to compile the entire project after each refactoring task.

4.2 Testing CDT

Our implementation for Eclipse CDT, which targets the C and C++ program-
ming languages, is similar to the implementation for JDT. For CDT we also
implemented an Eclipse plug-in that supports all five C-specific refactorings
available in CDT. We tested Eclipse 4.2.1 and CDT 8.1.1 (the Juno SR1 release
of both Eclipse and CDT) [21].

Similar to our plug-in for testing the JDT refactorings, the set of relevant
program elements for the CDT refactorings was derived from the refactoring
specification. The default sets of elements and the default configurations for the
refactorings are shown in Figure 5.

5 Evaluation

Our main goal was to evaluate how our proposed end-to-end approach helps in
testing refactoring engines and estimating their reliability. This section describes
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Subject Description Version LOC

Java

JPF [19] Model checking tool hg:960 95962
JUnit [20] Unit testing framework git:r4.8.1-408-ge8b91fa 18199
log4j [23] Logging framework svn:1406847 30058
Lucene [24] Text search engine library 3.5.0 129820
Math [26] Library of mathematics components 3.3.0 120424

C
GMP [13] Arbitrary precision arithmetic library 4.3.2 81900
libpng [22] Official PNG reference library 1.2.6 33908
zlib [51] Lossless data-compression library 1.2.5 19855

Fig. 6. Subject programs used in the experiments

the projects that we used for testing Eclipse JDT and CDT refactoring engines,
the failures that were collected, the clusters that were created, and the bugs that
we reported to Eclipse Bugzilla.

5.1 Projects under Refactoring

Figure 6 shows the Java and C projects that we use in our evaluation. We tab-
ulate the project name and the reference from which the project was obtained,
a brief description of each project, version/revision number, and the number of
(non-comment, non-blank) lines of code. We selected these projects because we
were familiar with them, and they provide a diverse set of projects of various
sizes (#LOC, #classes, #methods) and using different programming language
features and design styles. For example, JUnit is a representative of a highly
modular object-oriented design, whereas Math has a large number of local vari-
ables and constants.

5.2 Failure and Clustering Statistics

Figures 7 and 9 show the execution statistics from applying refactorings (in
configurations from figures 4 and 5) on the selected set of projects for Java and
C, respectively. For each refactoring and project, we tabulate the number of times
that the refactoring is applied, the number of failures, and the total execution
time (which includes finding the places where to apply the refactoring, applying
the refactoring, and checking the refactored project).

JDT Results. We ran all JDT experiments on a 64-core Intel Xeon CPU L7555
@ 1.87GHz with 64GB of main memory, running Oracle Java version 1.7.0 04.
In all runs we set the maximum number of refactoring tasks per file to 100 to
limit the execution time. The runs still took over 200hrs of machine time overall.

The bottom of Figure 7 shows the ratio of the total number of failures and
the total number of refactoring tasks applied on each project. The maximum
ratio of 2.0% indicates that the Eclipse JDT refactoring engine is quite reliable,
but there is still space for improvements.
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Compiler Error Exception
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Rename 81713 92 90 5 1 54 ‡6 2 1 2 2 1
Move 3498 5 5 2 1 4 1 0 0 - - 0

Change Method Signature 28526 565 555 10 1 526 8 10 2 4 6 2
Extract Method 120003 668 665 14 1 390 5 3 1 3 3 0
Extract Local 151388 0 0 0 - - 0 0 0 - - 0
Extract Constant 81513 0 0 0 - - †1 0 0 - - 0
Inline 72521 1505 1475 42 1 790 12 30 3 2 23 0

Convert Local To Field 27689 13 13 9 1 5 2 0 0 - - 0
Convert Anonymous 903 44 29 8 1 10 2 15 1 15 15 0
Move Type To New File 1435 51 50 22 1 18 5 1 1 1 1 0

Extract Superclass 1576 0 0 0 - - 0 0 0 - - 0
Extract Interface 4800 1157 1143 16 1 725 4 14 1 14 14 0
Use Supertype 3484 85 85 21 1 16 6 0 0 - - 0
Push Down 8515 183 183 11 1 121 6 0 0 - - 0
Pull Up 12819 162 45 10 1 23 3 117 2 3 114 0

Extract Class 2770 574 574 16 1 275 3 0 0 - - 0
Introduce Param. Object 22025 1001 839 15 1 455 2 162 4 2 140 0

Introduce Indirection 17082 121 72 7 4 31 1 49 3 4 32 2
Introduce Factory 3479 231 231 7 1 223 3 0 0 - - 0

Introduce Parameter 9403 1517 0 0 - - 0 1517 2 1 1516 ‡3
Encapsulate Field 11483 230 212 10 1 94 8 18 1 18 18 0

Generalize Declared Type 10403 1224 1176 22 1 339 8 48 3 6 26 1
Infer Type Arguments 3253 91 7 7 1 3 1 84 2 83 84 2∑

680281 9519 7449 254 87 2070 27 11
#Failures/#Refact. Tasks 1.4%

Fig. 8. Failure and cluster statistics for Java projects. (The number of bugs is likely
higher; while we minimized one failure from each of 281 clusters, we have not checked
duplicates for 141 minimized failures.) †The refactoring implements too strong precon-
dition. ‡We reported two bugs that had the same stack trace but result in different
compiler errors in the latest version of Eclipse.

Figure 8 shows additional statistics about failures. The column “#Refact.
Tasks” shows the number of refactoring tasks performed across all the projects,
and the column “#Failures” shows the total number of failures. The next two
groups of columns split the results for the failures that have compiler errors or
exceptions. Each group tabulates the number of failures, the number of clus-
ters, the minimum and maximum sizes of clusters (measured by the number of
failures), and the number of bugs we found based on these clusters.

We believe that the total of 680281 refactoring tasks cover a diverse spectrum
of refactoring tasks and allow us to identify bugs that can be encountered in
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Rename 6688 555 739 2395 43 118 1569 0 9

Extract Method 16742 1176 579 5092 548 172 1496 58 24

Extract Local 5893 363 1240 2660 554 65 3473 406 59

Extract Constant 18788 387 902 2208 142 62 2800 331 28

Toggle Function 1434 403 10 302 293 2 332 167 1∑
49545 2884 3470 12657 1580 419 9670 962 121

#Failures/#Refact. Tasks 5.8% 12.4% 9.9%

Fig. 9. Execution statistics of our CDT plug-in on a set of C projects

practice. The total number of failures is 9519, which may look large but is a
relatively small fraction of the total number of refactoring tasks.

These failures are split into a total of 281 clusters: 254 compiler error clusters
and 27 exception clusters. Clusters vary in size from 1 to 1516 failures, with the
median and mean of 5 and 40.3, respectively. Recall that the cluster size can
be used to prioritize inspection and/or fixing of bugs, and the same failure can
appear in multiple clusters. For example, consider the two exception clusters for
Infer Type Arguments. One cluster has all 84 failures, and the other cluster
has 83 failures. It means that 83 failures have two messages each, and one failure
has only one message (that abstracts to the same abstract message as one of the
two messages from the other failures).

CDT Results. We ran all CDT experiments on an Intel Xeon Quad Core CPU
X3440 @ 2.53GHz with 16GB of main memory.

ForRename, we run refactoring tasks on all C files in a given project. For each
file, we attempt to rename at most 50 local variables, 50 function parameters, 20
global variables, 20 function names, and 20 macros. Across all three projects, the
Rename refactorings run for a total of 866 minutes—overall, 10652 refactorings
are attempted with 598 failures. Of these failures, 42% are compiler errors, while
58% are exception failures. We find a larger percentage of exceptions in CDT,
presumably because it is less stable than JDT.

For Extract Function, we attempt to extract at most 100 statements and
100 expressions per C file. Out of 23330 attempts, 1782 fail, with 1453 compiler
error failures and 329 exception failures. The total run takes 775 minutes. For
Extract local Variable, Extract Constant, and Toggle Function,
we attempt to extract at most 100 expressions, literals, and functions per C
file, respectively. Across all refactorings, libpng has the highest failure rate with
12.4%, followed by zlib and GMP.

While we only check that the refactored program compiles, one can use other
oracles [7, 39]. For example, for the Rename refactoring on GMP, we ran tests
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Rename 10652 598 252 3 1 173 2 346 2 3 343 0

Extract Method 23330 1782 1453 34 1 435 21 329 8 1 56 3

Extract Local 12026 1323 754 11 3 412 7 569 4 6 263 3

Extract Constant 23796 860 142 3 1 84 2 718 3 125 426 2

Toggle Function 2068 863 9 2 1 8 1 854 5 23 409 2∑
71872 5426 2610 53 33 2816 22 10

#Failures/#Refact. Tasks 7.5%

Fig. 10. Failure and cluster statistics for C projects

(‘make test’) in addition to compilation (‘make’). However, this did not produce
any extra errors and was taking too much time, so we did not run tests for other
cases. In the future, we plan to evaluate our approach with other oracles.

Figure 10 shows additional statistics about failures. We had 75 clusters in
total: 53 compiler errors clusters and 22 exception clusters. These clusters vary
in size from 1 to 435, with the median and mean of 27 and 79.5, respectively.

5.3 Bugs

After clustering all the failures, we inspected one, randomly selected failure from
each of 281+75 clusters. We first minimized the project under refactoring such
that the failure is preserved in the minimized version. We performed minimiza-
tion manually, which took between a few minutes and 1hr, with the average of
around 10min. In the future, we plan to evaluate the existing automated mini-
mization techniques [27, 33, 50].

After we prepared a minimized version, we want to check whether it is a new,
unique bug. We compared the minimized version with the other bugs that we
found and also searched through the Eclipse Bugzilla database to ensure that
the bug we found had not been reported before. This search for duplicates is
also performed manually and took on average 15min per bug. (So far we have
performed the search for 140 of 281 clusters for JDT and all 75 clusters for
CDT.) Our goal was to report as few duplicates as possible, and we found it
somewhat harder to search for duplicates than to minimize the project. One
could consider searching for duplicates directly from failures, even before mini-
mization, but our experience showed that the result is not obtained faster, e.g.,
searching based purely on compiler errors does not provide a good result. The
existing techniques [1,40,47] for searching duplicate bug reports mostly use nat-
ural language processing and do not focus on searching for programs that are
inputs to refactoring engines. We leave it as future work to explore automated
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search for duplicates in this context. We point out that our study is the first
to raise this concern; previous related studies [7, 12, 17, 35, 38, 39, 41, 44] did not
report the effort for inspecting duplicates, presumably because (1) they found a
smaller number of bugs than we found, (2) the number of bug reports for Eclipse
was smaller at the time when they searched for duplicates than it was when we
searched for duplicates, and/or (3) they did not search for duplicates.

So far we have reported a total of 77 bugs in JDT and 43 bugs in CDT. Each
report includes the minimized example on which the bug can be reproduced.
Our work is ongoing; we have 141 more Java minimized examples to check for
duplicates and plan to run our tool for more projects in the future. The updated
list of our reports is available online: http://mir.cs.illinois.edu/rtr.

Java Results. Figure 11 shows summary information about the bugs we have
reported for Eclipse JDT so far. The first column lists the refactorings. The
next column lists how many of the bugs we found are likely duplicates (either
of previously reported bugs in Bugzilla or among our own clusters), which we
did not report. The next group of columns lists how many reports we submitted
and the current status of those reports in Bugzilla (NEW - the bug is reported but
not yet considered by the Eclipse developers, ASSIGNED - the bug is confirmed
and assigned to a developer, FIXED - the bug is fixed, and DUPLICATE - the bug is
marked as a duplicate by the Eclipse developers).

The last row of the table summarizes the results: of the 77 bugs reported, 8
were already fixed, 62 assigned as real bugs, 4 marked as duplicates, and the rest
were not inspected. We have noticed that the developers were more responsive
if a reported bug causes an exception rather than a compiler error.

The remaining groups of columns for Java show the results for reproducing in
two other IDEs, specifically NetBeans and IntelliJ IDEA, the bugs we found in
Eclipse. The goal is to find how many of these bugs appear in one IDE but not
another. Presumably the developers of an IDE may want to prioritize more the
bugs that are unique to their IDE. We attempted to run on NetBeans and Intel-
liJ each minimized example that we used as part of our bug reports for Eclipse.
We find that some of the bugs from Eclipse do not apply in other IDEs (e.g.,
because they do not have an equivalent refactoring or have too strong precondi-
tions for the refactoring). Of the bugs that do apply, some are shared between
independent implementations of refactorings, 24 between Eclipse and NetBeans,
and 26 between Eclipse and IntelliJ (although not the same as NetBeans). A
number of bugs (12) is shared even for all three IDEs. Of the bugs that could
potentially apply, a number of bugs from Eclipse do not appear in the other
IDEs. Note that this does not imply that the other IDEs are more reliable as we
did not evaluate their bugs on Eclipse. Indeed, our goal was to find how bugs
we found are shared among refactoring engines rather than to compare IDEs.

Anecdotal Experience. We found out that even duplicate reports can help
developers, confirming some published results [1]. After inspecting a failure from
one of the exception clusters, we discovered that the bug had been reported

http://mir.cs.illinois.edu/rtr
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Rename 2 5 2 3 0 0 0/5/0 1/4/0 0 2 1/1/0 0/0/2
Move 0 1 0 1 0 0 1/0/0 0/1/0 0 - - -

Change Meth. Sig. 7 3 1 1 1 0 0/2/1 0/2/1 0 - - -
Extract Method 0 5 0 4 1 0 4/1/0 2/3/0 2 24 17/7/0 5/2/17
Extract Local 0 0 0 0 0 0 0/0/0 0/0/0 0 10 0/0/10 0/0/10
Extract Constant 0 1 0 1 0 0 0/0/1 0/1/0 0 4 0/0/4 0/0/4
Toggle Function - - - - - - - - - 3 0/0/3 0/0/3
Inline 5 7 0 7 0 0 4/3/0 4/3/0 3 - - -

Loc. To Field 0 2 0 2 0 0 1/0/1 0/2/0 0 - - -
Anon. To Nested 0 2 0 2 0 0 1/1/0 0/2/0 0 - - -
Move Type 3 2 0 2 0 0 0/2/0 1/1/0 0 - - -

Extract Superclass 0 0 0 0 0 0 0/0/0 0/0/0 0 - - -
Extract Interface 0 4 0 4 0 0 0/1/3 3/1/0 0 - - -
Use Supertype 1 5 0 4 0 1 2/2/1 2/3/0 1 - - -
Push Down 2 4 0 3 0 1 3/1/0 1/3/0 1 - - -
Pull Up 0 3 0 2 1 0 2/1/0 2/1/0 2 - - -

Extract Class 0 3 0 3 0 0 0/0/3 0/0/3 0 - - -
Intro. Param. Obj. 0 2 0 2 0 0 0/2/0 1/1/0 0 - - -

Intro. Indirection 0 3 0 3 0 0 0/0/3 0/0/3 0 - - -
Intro. Factory 0 3 0 3 0 0 3/0/0 1/2/0 1 - - -
Intro. Param. 0 3 0 1 0 2 1/2/0 1/2/0 0 - - -
Encapsulate Field 1 7 0 5 2 0 2/5/0 5/2/0 2 - - -

Gen. Decl. Type 0 9 0 8 1 0 0/0/9 2/6/1 0 - - -
Infer Gen. Type 0 3 0 1 2 0 0/0/3 0/3/0 0 - - -∑

21 77 3 62 8 4 24/28/25 26/43/8 12 43 18/8/17 5/2/36

Fig. 11. Number of bugs for each refactoring from the Eclipse refactoring menu

previously. However, the original bug reporter explicitly stated being unable to
create a small example that causes the exception. After we added our minimized
example to the bug report, it was fixed within a day (by adding one line and
updating one line), more than 4 years after the bug had been originally reported.

We also found out that some refactorings are quite reliable. As can be seen
from Figure 11, we did not report any new bug for the Extract Local Vari-

able and Extract Superclass refactorings. Suspecting that our configura-
tions (Section 4.1) may be incorrect for these refactorings, we modified the con-
figurations and rerun the refactorings but still did not find any failure. In the
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future, we would like to explore many more additional configurations for these
refactorings and to investigate the implementation of these refactorings to iden-
tify the reasons for their reliability.

C Results. Figure 11 (rightmost columns) shows summary information about
the bugs we have reported for Eclipse CDT so far. The “Eclipse” column lists
the number of bugs, and they are all still marked NEW in Bugzilla. We tried to
manually reproduce the 26 Rename and Extract Function CDT bugs in two
other refactoring engines: Visual Assist X (VAX) [46] and XRefactory [49]. The
other three refactorings are not supported in these refactoring engines. VAX is
a plugin that provides refactorings for Visual Studio; XRefactory is a plugin for
Emacs, xEmacs, and jEdit. We used VAX running on Visual Studio 2008 and
XRefactory version 2.0.14 running on Emacs version 24.1.

Of the two Rename bugs in CDT, one was about renaming functions in sys-
tem/external libraries (e.g., printf), and the other one was about renaming a
macro in a file that has been declared or used in another file. VAX successfully
handled the first case, but failed in the second case. The bugs were not applicable
to XRefactory, which did not make any changes on the given inputs. Interest-
ingly, XRefactory does not allow renaming of any function except main. This is
obviously a bug, but not exactly the one that we identified in CDT. Hence, we
marked this case as not applicable.

Of the 24 bugs in Extract Function, 17 could be reproduced in VAX. Of
these bugs, 8 produced the same outputs as CDT after extraction. The remain-
ing 9 produced outputs that were different from CDT outputs, but they were
incorrect too. 6 failures were related to incorrect return type of the functions.
For example, when a user attempts to extract an assignment expression with
VAX, the extracted function has a boolean return type, even if the assignment’s
type is not boolean. CDT also introduces incorrect return type for an Extract

Function refactoring: it incorrectly determines the return type of a pointer
variable to be a non-pointer variable of that type.

We could not apply 17 out of 24 Extract Function bugs in XRefactory.
Most of them (16 out of 17) were about applying Extract Function on ex-
pressions, whereas XRefactory only allows extraction on statements. Another
case was about extracting multiple configurations of the C preprocessor; in this
case, XRefactory did nothing. Among the remaining 7 cases that were applica-
ble, 5 were buggy. These cases failed while attempting to extract a statement
related to a macro definition, a statement containing a variadic function, or a
goto statement to a function.

We also looked at the quality of our clustering approach. In GMP, we found
one duplicate compiler error bug across 6 different clusters and another duplicate
compiler error bug across other 3 different clusters. We also found 4 different
compiler error bugs within one cluster. Predictably, there are more bugs in the
extract refactorings, because they are more complex. The search for duplicates
is easier in CDT as it has fewer overall bugs reported for it. It is also less actively
developed, so we did not see any change in Bugzilla for our CDT bug reports.
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Application to OpenRefactory/C. We are actively integrating the approach
described in this paper to test OpenRefactory/C [30], a new refactoring engine
for C that we are developing. The approach is established as an essential part
of developer testing: we are accumulating a set of well-known, open-source C
projects, and refactorings are not eligible to be deemed “production quality”
until they have successfully passed on those projects.

To use our approach for continuous developer testing, we have found it helpful
to keep the number of tests relatively small (e.g., 50–100), at least during the
early stages of testing. This typically produces just a few clusters, which the
developer can investigate and fix immediately. Test results are persisted outside
of Eclipse runs (currently in a database), which allows the developer to re-run
failed tests after fixing a bug, or to continue running tests where a previous test
run stopped. At the time of this writing, only one refactoring—Rename—in
OpenRefactory/C is mature enough to be continously tested using this approach.
Applying it to GMP, libpng, and zlib has already identified seven bugs: four bugs
in the Rename refactoring itself (one unexpected exception) and three bugs in
the supporting infrastructure (including one unexpected exception).

Use Frequency vs. Failure Rate. Several researchers have studied the fre-
quency of refactoring use in Java IDEs [6, 8, 28, 45] and ranked Rename, Ex-
tract Local Variable, Inline, Extract Method, and Move as the top
five most commonly performed automated refactorings in practice. It would be
reasonable to expect the most commonly used refactorings to have fewer bugs
and thus a smaller failure rate. However, our study does not find a very strong
correlation between the frequency of use and failure rate of a refactoring. While
the top five used refactorings are also among the most reliable refactorings, the
ordering based on the failure rate does not perfectly match the ordering based
on the use frequency. Also, we find that Extract Superclass, which is almost
unused in practice (its share reported as less than 0.2%), is one of the most
reliable refactorings; on the other hand, Extract Interface is the least reli-
able refactoring that has some number of real uses (reported as around 0.5%).
We believe that the frequency of refactoring use should be a factor that aids in
ranking the importance of bug reports.

6 Related Work

Testing refactoring engines requires input programs, which are rather complex
test inputs. Programs can be represented as data structures such as abstract syn-
tax trees (ASTs). Automated systematic generation of complex data structures
has been proposed a while ago [2, 25], but only more recently Daniel et al. [7]
proposed a systematic technique, called ASTGen, for testing refactoring engines.
ASTGen requires the user to write imperative generators that can build parts
of Java programs and offers a new approach to combine these generators. Given
these generators, ASTGen systematically generates a large number of (small)
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Java programs described with the generators. Although ASTGen exposed sev-
eral bugs in Eclipse and NetBeans, it comes at the cost of writing the imperative
generators, requires skillful users, and may not be adequate for describing some
properties of complex inputs. We proposed UDITA [12], a non-deteministic lan-
guage that enables the users to combine imperative generators with declarative
filters to describe a set of complex test inputs in a concise way. Like ASTGen,
UDITA requires rather sophisticated users. More recently Soares et al. [38, 39]
follow an approach similar to UDITA and combine it with random testing to
search for semantic changes introduced by refactorings. In contrast to these
approaches, the approach presented in this paper introduces an end-to-end ap-
proach for testing refactoring engines on existing projects: applying refactorings
on a number of existing projects, clustering failures, minimizing failing inputs,
and detecting duplicate bugs. Our approach avoids the effort of writing test gen-
erators and increases the confidence that the bugs found are more important.
However, our approach requires minimization of programs, which for now we
perform manually; in the future, we plan to evaluate automated minimization
approaches [27, 33, 50].

Applying refactorings on real programs has been explored by several re-
searchers in different contexts. Spinellis [41] tested theRename refactoring of his
CScout refactoring engine on the Linux kernel source by systematically applying
CScout to replace all identifiers with mechanically derived names and testing the
correctness of the refactored code by checking that it compiles correctly. Thies
and Steimann [44] tested two Eclipse refactorings, Move Class and Pull Up

Method, by systematically applying them on existing open-source projects.
Schäfer et al. [37] applied a few refactorings on more than million lines of open-
source projects to investigate scalability of their refactoring implementation.
Cinneide et al. [4] automatically applied refactorings on a number of projects as
part of evaluating and comparing software metrics. Coker and Hafiz [5] tested
three program transformations that fix C integer problems (signedness, overflow,
underflow, and widthness problems) by applying these transformations on real
C programs. In constrast, our paper evaluates an end-to-end approach for test-
ing refactoring engines and evaluating their reliability on all refactorings in both
Eclipse JDT and Eclipse CDT, and points out some key challenges in the process
from applying refactorings to finding bugs, e.g., minimizing failing inputs and
finding duplicate bugs.

Jagannath et al. [17] proposed clustering based on abstract messages of fail-
ures obtained by refactoring small corner-case programs. Our paper evaluates
clustering on failures in real programs (there is no a priori reason to believe
that a technique that works for small artificial corner cases also works well for
real failures), applies it to the C language, and automates the abstraction of
messages for JDT. Clustering has been also used for determining which program
runs result in failures; most recently, Sun et al. [43] proposed a cost-sensitive
strategy for inspecting clusters of program runs. In our approach, the outcome
of each test is known after the execution of the test, and our end-to-end approach
focuses on finding new, unique bugs.



Systematic Testing of Refactoring Engines on Real Software Projects 651

Several projects have studied the usage of refactorings [6, 8, 28, 29, 45] and
agreed that refactoring engines are underused. Most recently, Vakilian et al. [45],
through a field study followed up by semi-structured interviews, investigated
the reasons for low usage of refactorings and reported that the low usage is
mostly due to unpredictability of the refactorings rather than their reliability.
Our findings empirically confirm that the number of failures is not too high,
but there is still a need for improvement and developing new infrastructure for
building more reliable refactoring engines [15, 31, 34, 42, 45].

7 Conclusions

We presented a simple yet extremely effective approach to detect unique, real
bugs in refactoring engines and to estimate their reliability. As opposed to previ-
ous techniques that generate input programs, our approach uses existing projects
as inputs. As opposed to previous techniques that used existing projects as in-
puts for testing/evaluating refactorings, our approach identifies unique bugs us-
ing clustering, minimization, and finding duplicates. We applied our approach
on testing Eclipse refactoring engines for Java and C, and we found and reported
77 new bugs for Java and 43 for C. We expect that bugs commonly found from
real applications are more likely to be fixed than bugs discovered from artificially
generated corner cases; in fact, the Eclipse developers already fixed 8 of the bugs
we reported and confirmed 62 more as real bugs.

The main message of this paper is not that refactoring engines are buggy but
that the proposed end-to-end approach works well to find these bugs. However,
the approach also has challenges to be addressed in the future, e.g., automated
minimization of programs and finding of duplicate bugs. While the paper focused
on testing refactoring engines, we believe that the same approach can be used
to test other aspects of IDEs that require programs/projects as test inputs, and
to estimate their reliability on real projects.
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Abstract. Feedback-driven program optimization (FDO) is common in
modern compilers, including Just-In-Time compilers increasingly adopted
for object-oriented or scripting languages. This paper describes a system-
atic study in understanding and alleviating the effects of sampling errors
on the usefulness of the obtained profiles for FDO. Taking a statistical
approach, it offers a series of counter-intuitive findings, and identifies
two kinds of profile errors that affect FDO critically, namely zero-count
errors and inconsistency errors. It further proposes statistical profile rec-
tification, a simple approach to correcting profiling errors by leveraging
statistical patterns in a profile. Experiments show that the simple ap-
proach enhances the effectiveness of sampled profile-based FDO dramat-
ically, increasing the average FDO speedup from 1.16X to 1.3X, around
92% of what full profiles can yield.

1 Introduction

Feedback-Driven Optimization (FDO) is a technique modern compilers use to
optimize programs based on some profiles of the program dynamic behaviors,
such as the frequencies of basic blocks and function invocations. FDO has proven
effective for improving program performance. It has been part of most commer-
cial compilers (e.g., IBM XLC, Intel ICC) of traditional imperative languages.
It is also essential for modern languages with a managed environment (e.g.,
Java, Javascript, Python.) The runtime engines of these languages nowadays
commonly employ Just-In-Time (JIT) compilers to complement interpreters for
producing code with a good performance. Most optimizations by the JIT com-
pilers are FDO: They make optimization decisions based on some profiles the
runtime engine collects throughout the current execution. With JIT compilation
becoming popular for modern languages, the effectiveness of FDO is becoming
increasingly important for the efficiency of modern computing.

The profiles used for FDO are often collected through sampling, because col-
lecting full profiles requires some detailed instrumentations and hence incurs lots
of overhead. It is especially true for JIT-based languages, as for them, profile
collections happen usually on the fly.

G. Castagna (Ed.): ECOOP 2013, LNCS 7920, pp. 654–678, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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Sampling unavoidably introduces some inaccuracy into the collected profiles,
which may in turn impairs the effectiveness of FDO. There have been some
studies on reducing biases in the sampling schemes used in Java runtime sys-
tems [16], and some proposals of improved sampling schemes—such as bursty
sampling [5, 6, 11, 15]. Although these techniques can improve the profiles qual-
ity in a certain degree, the speedup by FDO on the sampled profiles still has a
substantial gap from what it produces on full profiles, as Figure 1 shows.
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Fig. 1. The speedups (compared to static compilation with the highest-level optimiza-
tions enabled) produced by the FDO of IBM XLC (v12.1) compiler, when sampled
(bursty at rate of 5%) and full profiles are used respectively

In this work, we attack the problem from a different angle: Rather than refin-
ing sampling schemes, we try to rectify the errors in a profile after it is collected.
It is called profile rectification.

For profile rectification to work, we must answer some fundamental questions:
What are the relations between sampling rates, accuracy of the collected profile,
and its usefulness for FDO? How do the errors in a profile influence the opti-
mizations? And how to rectify the critical errors? Answers to these questions are
essential for guiding the directions of profile rectification. But to the best of our
knowledge, none of these questions have been systematically studied on modern
compilers and programming systems.

Prompted by these open questions, we conduct two investigations in this
work. First, as Section 2 will show, we design a set of systematic measurements
to reveal the statistical correlations among sampling rates, profile accuracy, and
the corresponding FDO benefits. To avoid biases in the analysis, we conduct
7680 runs, which cover seven most important factors in four levels, including
the usage of two mature compilers, two sampling methods with six sampling
rates for each, two platforms, eight SPEC benchmarks with some non-trivial
FDO potential, four inputs per benchmark, and ten repetitions for each setting.
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The systematic measurements reveal some counter-intuitive observations. It is
commonly perceived that a higher sampling rate tends to give more accurate
profiles, which in turn would help FDO produce code that has a better perfor-
mance. However, the measurement suggests that even though a higher bursty
sampling rate gives a more accurate profile in general, the perception does not
hold for uniform sampling, which samples once in a fixed time period1. More-
over, the results show that for both types of sampling methods, when a more
accurate profile is given to the FDO, it often fails to produce code with a better
performance. In other words, in the sampling rate range, profile accuracy does
not have an apparent correlation with the FDO speedups.

The surprising observations prompt our two-fold investigation (Section 3).
We conduct a deep analysis of the influence cast on FDO by various types
of sampling errors. We identify two types of errors that have some important
influence. The first is zero-count errors, which refer to the case when a counter
in sampled profile equals zero but its value in the full profile is not. The second
is inconsistency errors, which refer to the case when two counters in the same
function have different values in the sampled profile but have the same value
in the full profile. Our analysis shows that although these two types of errors
do not affect the overall profile accuracy much, they alter the behaviors of the
FDO dramatically. Based on the findings, we propose to rectify the two types of
errors through exploitation of the statistical patterns in profile counters derived
from some training runs. The rectification, although being simple, turns out to
boost the usefulness of the sampled profiles for FDO significantly, increasing the
average speedup from 1.16X to 1.3X, around 92% of what full profiles can yield.

There are two prior studies on correcting sampling errors in a profile for
FDO [10, 14]. They both apply a minimum cost circulation algorithm to the
control flow graphs of a program, hence subject to the static constraints in the
program (detailed in Section 4). Our rectification method is distinct in exploiting
statistical patterns shown in dynamic profiles. The exploited dynamic patterns
are essential for correcting the two kinds of critical errors.

In summary, this work makes three main contributions.

– Correlations It provides the first study in modern systems that system-
atically uncovers the correlations among sampling rates, profile accuracy,
and the usefulness for FDO. Through a comprehensive measurement using
contemporary sampling techniques and compilers, the study produces some
findings contrary to common perceptions.

– Influence of Errors It offers a set of novel insights on sampling and its
influence on FDO:

• The zero-count and inconsistency errors in sample profiles hurt FDO
substantially, despite their modest influence on the overall profile accu-
racy.

• Uniform sampling not only underperforms bursty sampling, but shows
a weak correlation between sampling rate and profile accuracy, which

1 The “time” here could be wall-clock time or logical time (e.g., a number of instruc-
tions or basic blocks).
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reinforces the superiority of bursty sampling over uniform sampling for
FDO.

• Commonly defined accuracy, either weighted or unweighted, fails to quan-
tify the actual quality of a profile for FDO.

– Statistical Profile Rectification To our best knowledge, this is the first
work showing that simple statistical profile rectification can dramatically
enhance the usefulness of a profile for FDO.

The rest of the paper is organized as follows. In Section 2, we first briefly intro-
duce the two FDO compilation systems, the two sampling methods, and some
other experiment settings. Then we present the findings of the correlations. In
Section 3, we present a deep analysis of the sampling errors, and describe the
simple profile rectification method. We discuss some related work in Section 4
and then conclude the paper with a summary.

2 Counter-Intuitive Correlations

This section starts with an introduction to the FDO in the two compilers we
use. It then presents the design of the empirical measurements and reports the
findings on the correlations among sampling, profiles, and their usefulness.

2.1 Background on FDO

FDO is part of many modern compilers. The implementations of FDO in different
compilers may differ in what set of optimizations they contain, but mostly follow
a similar high-level design. We briefly describe the way FDO works in a mature
commercial compiler, IBM XLC, as follows.

To enable FDO, two stages of compilations are necessary. For XLC, in the first
stage, the compiler must be invoked with a special option (“-qpdf1”). With that
option, the compiler instruments the programwith some monitoring instructions.
An execution of the generated executable will produce a profile of that execution.
In the second stage, the compiler is invoked again with another special option
(“-qpdf2”). In this round of compilation, the compiler enables FDO, which reads
the profile and produces an optimized executable.

JIT follows a similar two-stage scheme. The main difference from XLC-like
offline compilers is just that JIT invokes the two rounds of compilation implicitly
at runtime. For instance, in a Java virtual machine JikesRVM [1], the first-time
compilation of a newly loaded Java method inserts some yielding points into the
generated code, which help to sample runtime behaviors of the method in its
execution. If the Java runtime decides to recompile that method later in that
run, its JIT compiler will use the sampled profile to do a FDO on that method.

As the profiles capture some runtime behaviors (e.g., the hotness of a function
or basic block), they can provide the optimizers some hints that static code
analysis is unable to provide. FDO heavily exploits those hints to enhance code
layout, inline functions, and so on. An inaccurate profile may hence mislead FDO
into making wrong optimization decisions.
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2.2 Experimental Design

We design a set of experiments to empirically measure the relations among sam-
pling rate, profile accuracy, and the influence on the effectiveness of FDO. In
the design, we carefully cover seven dimensions that are closely relevant to the
relations to minimize the bias in the measurement. They fall into four levels.
Table 1 shows the dimensions, the number of optional values in each dimension
(the “Variations” column) and a brief description of the optional values. We
explain these dimensions in more details as follows.

Table 1. Dimensions covered in the experiment design

Levels Dimensions Variations Description

workload benchmarks 8 from SPEC CPU2000 and
CPU2006

inputs 4 1 train input, 3 ref inputs

system compilers 2 XLC, GCC
platforms 2 Intel Xeon & IBM POWER7

sampling methods 2 Bursty, Uniform
frequencies 12 6 for Bursty, 6 for Uniform

noise avoidance repetitions 10 number of repetitive runs per
setting

Benchmarks and Inputs. Given that the focus of this work is on FDO, when
choosing benchmarks, we concentrate on those that exhibit some non-trivial
speedups when FDO is applied. Meanwhile, our current infrastructure works on
C programs only. Among the programs in SPEC CPU2000 and CPU2006 [2], we
find eight of them meeting both criteria, as listed in Table 2. All these bench-
marks are integer programs, and have complex control flows and a large number
of functions, posing challenges for static analysis and hence exhibiting good po-
tential for FDO. As Figure 1 shows, these benchmarks show an average 1.33X
speedup when FDO is applied (on the exact profiles of the execution inputs)
compared to their performance through static compilations using XLC.

For each program, besides including both its train and ref inputs coming by
default with the benchmark suite, when necessary, we collect or create two extra
representative inputs by searching for the real usage of their original applica-
tions or reading the source code. The extra inputs are used in the experiments
described in Section 3 for examining the stableness of profile value patterns
across different inputs. For FDO, the profiles are collected on the train input
and evaluated on the ref input.

Compilers. For compilers, there are two possible choices: some mature highly
polished offline compilers, or some JIT compilers. We choose the former for the
following reasons. First, as Section 2.1 mentions, the FDO in JIT compilers is
triggered by some decisions made by the runtime engine and is hard to control
and hence experiment with. Using it would add more noise into the measurement.
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Table 2. Benchmarks and FDO speedup from exact profiles over O5 compilation

Program Benchmark Suite Description FDO speedup

gzip CPU2000 Compression 1.19X

gap CPU2000 Group Theory, Interpreter 1.18X

vortex CPU2000 Object-oriented Database 1.63X

vpr CPU2000 FPGA Circuit Placement and Routing 1.19X

libquantum CPU2006 Quantum Computing 2.09X

perlbench CPU2006 Perl Interpreter 1.22X

hmmer CPU2006 Search Gene Sequence 1.25X

gobmk CPU2006 Artificial Intelligence 1.11X

Second, JIT compilers are not as mature as offline compilers. The FDO in offline
compilers has been developed for decades and has reached a quite stable state.
Compared to JIT, the implementation in offline compilers usually tap into the
potential of FDO to a much higher degree, because for the tradeoff between
runtime overhead and code quality, what optimizations JIT compilers should
include is still an active research topic yet to settle. For all these reasons, using
current JIT compilers is hard to uncover the principled relations between profile
accuracy and FDO.

We select the recent versions of XLC (v12.1) and GCC (v4.6.2) as our com-
pilers. Both compilers have been developed for more than a decade. The former
is the main commercial compiler of IBM for C and C++, and shares the core
with many other IBM compilers for other languages. Its FDO is sophisticatedly
polished by a large compiler team for many years, able to exploit profiles to con-
duct a number of advanced intra-procedure and inter-procedure optimizations.
GCC is a result of the many years of efforts by the open-source community. Its
performance has been shown to get close to commercial compilers in many cases.
Its FDO component has also been developed for quite a while. We use both com-
pilers for this study to examine the influence of different FDO implementations
on the studied relations.

In the instrumentation stage of XLC, each procedure’s control flow graph is
explored to find out some straight lines of basic blocks that must have the same
counts. Only the first basic block of a straight line needs to be instrumented to
collect access frequency. A mapping data structure records which functions are
invoked in which basic blocks based on static call graphs. During recompilation,
function calling frequencies and control flow branch probabilities are inferred
from basic block counters and the mapping, serving as hints for the FDO. A
similar implementation scheme is shown in GCC, although differences exist in the
set of optimizations they include and how those optimizations are implemented.

Platforms. We run XLC-related experiments on an IBM Power7 machine,
which has the AIX 7 operating system installed. We conduct the GCC-related
experiments on a machine equipped with Intel Xeon W3550, running a Open-
SUSE Linux, version 12.1.
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Sampling Methods and Frequencies. We experiment with two sampling
methods. The first is uniform sampling, which is the most commonly used sam-
pling method. It tries to get a sample after a given time interval. For example,
when being applied to collect basic block frequency profiles, the runtime sampler
checks which instruction is being executed and finds out which basic block that
instruction belongs to after a given time interval; it then increases the counter
corresponding to the basic block by one. The second sampling method is bursty
sampling. In this method, there are two predefined parameters, the execution
period length τe and the profiling period length τp. The runtime switches between
normal execution and profiled execution periodically. During an execution, af-
ter a τe-long period of normal execution, the runtime switches the execution
to a fully instrumented version and runs that version for a τp-long period of
time to collect some profiles, and then switches back to normal execution. The
back-and-forth switching continues throughout the program execution.

Since we use static compilers, which do not have a runtime sampling system,
we simulate the two sampling methods. For uniform sampling, we assume that
each instruction’s execution takes equal time and thus has the same probability
to be sampled. The full profiles are processed to obtain the sample profiles.
For bursty sampling, we modify the instrumentation, so one execution directly
produces one sample profile.

Previous studies have shown that the bursty sampling, although being more
complicated to implement, can often produce a more accurate profile than the
uniform sampling does at the same sampling rate [5]. Bursty sampling has been
implemented in some runtime systems, such as Jikes RVM [6]. Using both sam-
pling methods helps us examine the influence of different sampling schemes on
the relations between profile accuracy and FDO.

We experiment with six sampling rates for each of the sampling methods.
These rates subsume the typical range of sampling rates used in practical sys-
tems. The sampling rate of uniform sampling is determined by a single parame-
ter, the sampling period length. Because the bursty sampling has two parameters,
the execution period length τe and profiling period length τp, each of its sampling
rates is represented with the ratio of a pair, τp/(τe+τp). Specifically, for uniform
sampling, the used sampling rates are 100, 1000, 10, 000, 50, 000, 100, 000, 500, 000;
for bursty sampling, the rates are 1/1000, 10/1000, 50/1000, 100/1000, 200/1000,
400/1000.

Time Measurement. In all runs, the highest optimization level is enabled. We
see some minor fluctuations in the execution times of multiple runs in the same
setting. But still to minimize the influence of random noise, we repeat each run
for 10 times and use their average time for comparison.

2.3 Measurements and Findings

The coverage of the various factors leads to 7680 runs in total. This subsection
presents the findings we have obtained from these measurements. But before
that, we first explain some metrics we use to quantify profile accuracy and cor-
relations.
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Accuracy Metrics. Let Bi represent the exact profile (or called full profile)
of a run on input i. Exact profiles can be obtained through a full profiling. Let
SP ′i be the profile obtained by sampling. Before comparing the two profiles, we
multiply each counter in SP ′i by the ratio between the sum of the counters in Bi

and that in SP ′i so that the two profiles are at the same scale for comparison. We
denote the scaled sampled profile with SPi. We use SPi[j] and Bi[j] to denote
the counter values of the jth item (e.g., basic block frequency counter) in the
sampled and exact profiles, respectively. For the purpose of explanation, we use
basic block frequency profiles as our example in the following discussion. In such
a profile, each item corresponds to the frequency of a basic block being accessed.

The definition of the accuracy should quantify the similarity between SPi and
Bi. Following common practices, we define the accuracy (Acc) of a basic block
counter as follows:

Acci[j] = 1− |SPi[j]−Bi[j]|
max(SPi[j], Bi[j])

The use of max in the denominator is to normalize the accuracy to the range of
[0, 1]. We use two definitions for the overall accuracy of a profile. An unweighted
accuracy (UAcc) is just an arithmetic average of all basic blocks’ accuracies. It
treats each basic block equally. A weighted accuracy (WAcc) of a profile is a
weighted average as follows:

WAcci =
∑
j

Acci[j]× Bi[j]∑
j Bi[j]

where, the weights are proportional to the significance of a basic block in the
program in terms of its access frequency.

Correlation Metrics. Among the different variations of commonly used corre-
lations metrics, we find the Spearman’s rank correlation coefficient (called rank
coefficient in short) suiting our needs. Let X and Y represent two ordered lists
of values. For instance, in our experiment, we set X to be the list of accuracies
of a number of sampled profiles, and Y be the list of speedups brought by FDO
based on those profiles. Elements in both X and Y are sorted in an ascending
order of their values. The position of an element in the ordered list is called the
rank of that element. The rank coefficient is defined as follows:

r =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
∑

i(yi − ȳ)2
,

where, x[i] and y[i] are the ranks of X [i] and Y [i] in X and Y respectively.
For example, consider the following case. We have four sampled profiles of a

program. Their accuracies are shown as the X column and their FDO speedups
as the Y column in Table 3. The ranks of each profile in the two lists are shown
in the two rightmost columns. In the definition of the correlation metric, xi and
yi represent the ranks; when i = 2, they equal 1 and 4 respectively. The symbols,
x̄ and ȳ in the rank coefficient formular, represent the average of the ranks in
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X and Y. They both equal 2.5 in this example. The rank coefficient between X
and Y is -0.4.

Table 3. Example for illustration of rank coefficient

profile-ID X Y X’s rank Y’s rank

1 0.89 1.1 3 3
2 0.93 1.08 1 4
3 0.90 1.2 2 1
4 0.86 1.15 4 2

Recall that the questions we try to answer are whether a higher sampling
rate leads to a more accurate profiles and hence more benefits from FDO. The
rank coefficient fits our needs as it assesses how well the relationship of two
variables fits in a monotonic function. In comparison, the standard Pearson
coefficient measures whether two variables form a linear relation, which is a
property unnecessarily stronger than what we need.
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Fig. 2. (a) Weighted accuracy of bursty sampling. (b) Weighted accuracy of uniform
sampling.

The value of a rank coefficient is always between -1 and 1, with a value close
to 1 implying a strong co-increasing relation between X and Y , and a value close
to -1 implying that the two variables’ values are taking an opposite trend.

Sampling Rate and Profile Accuracy. Figures 2 and 3 report the weighted
and unweighted accuracies of the sampled profiles of all benchmarks when dif-
ferent sampling rates are used. The profiles for the bursty sampling have a close-
to-perfect weighted accuracy across all sampling rates, while the profiles for the
uniform sampling have an average 64% accuracy. The intuition behind the large
accuracy disparity is that because each time the uniform sampling checks only
one instruction, a larger basic block gets some larger chance to be sampled than
a smaller basic block does if the two blocks actually have the same frequencies
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of being executed. The issue is less serious in bursty sampling. For bursty sam-
pling, block size may cast some influence on which block the sampling period
starts from, but the influence is much weaker to the overall accuracy because
within a sampling period, the size of a basic block less affects the chance for it
to get sampled. These results echo some previous observations on the two sam-
pling methods [5,11]. The unweighted accuracy difference is smaller, but bursty
sampling still outperforms uniform sampling in general.
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Fig. 3. (a) Unweighted accuracy of bursty sampling. (b) Unweighted accuracy of uni-
form sampling.

Table 4 provides the rank coefficients between sampling rate and profile ac-
curacies. When weighted accuracy is used, the coefficients are all 1 for bursty
sampling, indicating the very strong correlation between sampling frequency
and profile accuracy. In other words, the profile accuracy will definitely increase
when we use a higher sampling rate. When unweighted accuracy is used, the
correlations are slightly lower, but still close to one for most programs.

Uniform sampling shows much weaker correlations with profile accuracy. The
average of the rank coefficient is only -0.22 when weighted accuracy is used.
Two programs, hmmer and libquantum, are exceptions. For hmmer, a higher
sampling rate leads to more accurate profiles, while for libquantum, the trend
is the opposite. Overall, a higher rate of uniform sampling does not lead to a
more accurate profile. The reason for the weak correlations comes from the same
source (the effects of basic block sizes) for the low profile accuracy mentioned
earlier in this section. To further understand the severity of the effects, we extend
the sampling rate to some large values (20%, 40%, 80%) that are rarely used in
actual runtime sampling. The results show that even at such a level of sampling
rates, the correlations are no much stronger than what Table 4 has shown.
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Table 4. Rank correlation coefficients between sampling frequency and profile accuracy

Program Weighted Bursty Unweighted Bursty Weighted Uniform Unweighted Uniform

gzip 1 0.43 0.09 0.66

gap 1 1 -0.6 0.94

vortex 1 0.83 -0.03 -0.94

vpr 1 0.94 -0.43 -0.37

libquantum 1 1 -0.94 0.086

perlbench 1 1 -0.49 -0.6

hmmer 1 0.94 1 -0.66

gobmk 1 1 -0.37 -0.43

Median 1 0.97 -0.4 -0.4

These results provide two insights. First, they confirm and further reinforce
that bursty sampling is more suitable for program profiling than uniform sam-
pling. Second, the weak correlations of uniform sampling suggest that the short-
coming of uniform sampling for program profiling is deeply inherent in the
method, and can hardly be overcome by an increase in sampling rate. Given that
uniform sampling is still the most commonly used runtime profiling method in
today’s systems, these insights hopefully will prompt developers to revisit the
sampling methods they select.

Profile Accuracy and FDO Benefits. Figure 4 reports the speedups FDO
produces on the full profiles and profiles collected through bursty sampling at
three sampling rates. Recall that for bursty sampling, higher sampling rates al-
ways lead to more accurate profiles. However, the bars in Figure 4 show a quite
irregular pattern in the speedups as sampling rate increases. While gap, vor-
tex and perlbench follow the intuitive trend of benefiting more from more accu-
rate profiles, all other benchmarks show an opposite trend sometimes—degraded
performance from more accurate profiles. The extreme case on libquantum even
shows 75% more speedup from the lowest sampling rate than from the high-
est sampling rate. Overall, the FDO shows the best effectiveness on the exact
profiles, 17% more speedups than on the best sampled profiles.

Table 5 reports the rank coefficients between profile accuracies and the
speedups. No benchmarks have near 1 correlation coefficient. Only two bench-
marks (vortex, perlbench) have coefficients larger than 0.8 on bursty sampling
when weighted accuracy is used. So for them, higher bursty sampling rates are
likely to bring better optimizations. But for most benchmarks, there is only weak
or no correlation between profile accuracy and the usefulness for FDO. The pro-
gram gap even has a coefficient of -0.85 on uniform sampling, indicating a largely
monotonic decreasing relation between profile accuracy and usefulness for FDO.

Short Summary. Current FDO optimization systems are constructed mostly on
a common perception that larger sampling rates tend to lead to better perfor-
mance. This section debunks the intuition by first showing that higher sampling
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Fig. 4. Speedup comparison between sampled profiles of three sampling rates(1/1000,
10/1000 and 50/1000) and exact profiles

frequency does not necessarily give us more accurate profiles, and it depends on
the sampling method used. This indicates that we should be more careful about
the design of sampler. More surprisingly, we show that there are very weak
correlations between the accuracy of a profile and its usefulness for FDO, no
matter which sampling method is used. It does not mean that we can just feed the
compiler with randomly generated profiles for good FDO-driven performance.
As results show, the best performance mostly still come from the exact profiles
for most benchmarks. The findings suggest that current understanding to how
profiling errors influence FDO is preliminary; some deep analysis into the results
are necessary, as given in the next section.

Table 5. Rank Correlation coefficients between profile accuracy and performance

Program Weighted Bursty Unweighted Bursty Weighted Uniform Unweighted Uniform

gzip -0.14 -0.29 -0.15 0.58

gap 0.75 0.75 -0.85 0.34

vortex 0.88 0.59 0.08 -0.8

vpr 0.62 0.79 -0.01 -0.07

libquantum -0.08 -0.08 -0.5 0.16

perlbench 0.82 0.82 0.51 0.63

hmmer 0.47 0.41 0.11 -0.76

gobmk 0.41 0.41 -0.42 -0.59

Median 0.55 0.5 -0.08 0.05

3 Demystification and Profile Rectification

The previous section showed that for most benchmarks, there exists only very
weak correlation between profile accuracy and its usefulness for FDO. However,
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we observe that sampled profiles do not perform as well as exact profiles, which
means sampling errors do play an important role. After analyzing the influence
of various types of errors, we identify two kinds of sampling errors that criti-
cally affect the FDO benefits: zero-count errors and inconsistency errors. In this
section, we first present some analysis results on how these two kinds of errors
impair the effectiveness of FDO, and then show that both types of errors can
be fixed through a simple profile rectification, and finally report the dramatic
speedup increment the rectification helps FDO generate.

3.1 Deep Analysis on Profile Errors

Zero-count Errors. The first type of errors is zero-count errors, referring to
the case when a counter in a sampled profile equals zero but its value in the full
profile is not. For the purpose of explanation, we will concentrate our discussion
on basic block frequency profiles.

Sampling, by nature, misses some parts of a program execution. But basic
blocks that have a small value in the exact profile are especially easy to be
missed completely by the sampler. Given the 20-80 rule (i.e., commonly 20%
of a program is responsible for about 80% of its execution), most basic blocks
are relatively cold, and hence have some good probabilities to get missed by the
sampler, causing zero-count errors.
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Fig. 5. Basic block coverage comparison between exact profiles and sampled profiles

Figure 5 shows the basic block coverage of the sampled profiles2. The coverage
is defined as the percentage of the non-zero counters in the exact profile that
also have non-zero values in the sampled profile. This metric shows how well the
sampled profile represents the coverage pattern of the exact profile. We observe
an average of 56% basic block coverage reduction by bursty sampling. In the

2 Without noting, the results in this and following figures are similar across sampling
rates, and the results at the lowest sampling rate is used.
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worst case shown on hmmer, more than 92% of basic blocks are completely
missed by the sampler. The coverage by uniform sampling is even worse, only
18%.

Through a detailed analysis of the influence of zero-count errors on the various
optimizations in FDO, we find that two optimizations, function inlining and loop
optimizations, are influenced the most. As Section 2.2 has mentioned, function
calling frequencies are inferred from basic block frequencies in XLC. If the basic
block containing a function call has zero frequency, the recompilation totally
ignores the corresponding call edge. If all basic blocks invoking a function have
zero frequencies, all the profile information of that function is ignored. This
implies that the counter values of calling basic blocks play an important role in
making inlining decisions, which is supported by Figure 6. It reports the number
of function inlinings the FDO does when it uses a sampled profile, normalized
by the number when it uses the full profile. On average, the zero-count errors
cause the FDO to miss 79% inlining opportunities.
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Fig. 6. Normalized number of inlined functions

The second type of transformation, loop optimizations, also leverages profile
information heavily. For example, in XLC, the iteration counts of all loops are
calculated through the basic block counters in loop body and that of the loop pre-
header. If a loop’s preheader’s counter value is 0, its iteration count is annotated
as “unknown”. Since iteration count is one of the most important parameter in
most loop transformations (e.g., loop versioning, loop unrolling, etc.), false infor-
mation on loop iteration count may seriously impair the transformation quality.
However, due to the fact that loop preheader is usually executed much less fre-
quently than its corresponding loop body, it is quite possible that although the
sampler obtains a reasonable profile of the loop body, it can not take advantage
of it because of a zero counter value of the loop preheader. Figure 7 shows the
percentage of loops which have “unknown” iteration counts when the sampled
profile is used, while non-zero iteration counter when the exact profile is used.
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Fig. 7. Normalized number of loops having non-zero iteration counts

On average, only 33% of loops derived their iteration count information from the
sampled profile. This percentage dropped to 3% for uniformly sampled profiles.

We now try to rectify the zero-count errors to show their impact on per-
formance. Figure 8 reports the results when the zero counters in the sampled
profile are set to the values of their counterparts in the exact profile. That is,
this rectification replaces the zero counters in the sampled profile with perfect
information and hence completely removes the zero-count errors. We observe
an increase of 10% and 19% performance improvement for bursty and uniform
sampling respectively. It echoes the results of basic block coverage and inlining
decision difference, and shows that zero-count errors are one of the main sources
leading to reduced FDO benefit.

Inconsistency Errors. Zero-count errors mainly happen on cold events, while
inconsistency errors also happen on warm or hot events. An inconsistency error
refers to the case when two counters of two basic blocks in the same function
have different values in the sampled profile but have the same value in the full
profile.

For hot events, both sampling methods can get pretty good approximation of
their values, which is reflected by the very high weighted accuracy reported in
Section 2. However, a decent approximation cannot prevent inconsistency errors
from happening.

To help quantify the amount of inconsistency errors in the sampled profiles,
we introduce a concept called consistency score. Let G represent a group of
basic blocks in an exact profile that have the same counter values, and G′ be
the largest subset of G that have identical counter values in a sampled profile.

The consistency score of G in the sampled profile is |G
′|
|G| . So the score must

fall between 0 and 1; the higher it is, the better is the consistency preserved in
the sampled profile. The overall consistency score of a sampled profile is just the
average of the consistency scores of all the consistent groups in the corresponding
exact profile.
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Fig. 8. Performance improvement after fixing zero-count errors with exact profiles

Figure 9 reports the consistency scores of the sampled profiles. On average,
the profiles have consistency scores of 0.47 and 0.01 for bursty and uniform
sampling respectively, suggesting that the sampling methods cannot preserve
the consistency relation among counters well.
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Fig. 9. Consistency scores of all benchmarks

We study the potential performance gain by leveraging exact profiles to help
rectify the inconsistency errors in the sampled profiles. We identify all the basic
block groups of each function in the exact profile that have the same counter
value. Then, we set the counters in each group of the sampled profiles to their
average. In this way, we maintain the equality relationship without changing
the sampled profile’s accuracy much. Figure 10 shows an improvement of up
to 34% for uniform sampling on vortex, demonstrating the large potential of
fixing inconsistent basic block counters. For bursty sampling, we have an outlier
libquantum, for which the rectification degrades the performance by 90%. A
plausible reason is that as the rectification is applied to its inconsistency errors
only, the rectified profile somehow forms some serious conflict with the zero-count
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Fig. 10. Performance improvement after fixing inconsistency errors with exact profiles

errors remaining in the profile. Such an inference comes from an observation the
next subsection (Figure 13) will show: The degradation is completely reversed
when zero-count errors are also fixed.

A detailed analysis shows that the primary influence of the inconsistency
errors is also on function inlining. The XLC compiler makes inlining decisions
based on function hotness, size, and other factors. It first chooses the functions
whose calling frequencies exceed a threshold to inline. If two functions have the
same frequency, it chooses the smaller one to inline. So consider two functions, A
and B (assuming A is much larger than B), have the same frequency in the exact
profile but different in the sampled one (A has a larger frequency than B). The
inconsistency error may hence cause A rather than B to be inlined in the FDO
on the sampled profile. As A is quite large, inlining it could cause many other
functions to fail to get inlined because of the limit on the size of the resulting
function. We observed a large degree of differences in inlining decisions of FDO
before and after the inconsistency errors are fixed, especially on programs vortex
and vpr (details skipped for lack of space).

It is worth noting that both types of errors have very limited influence on
the weighted accuracy of a profile: zero-count errors are on cold blocks, which
have small weights in the accuracy calculation; inconsistency errors happen on
warm and hot events, but being inconsistency does not prevent those events
from being sampled enough times to get a good approximation of their exact
values. For unweighted accuracy, zero-count errors play some more substantial
role in the calculation, which explains why the unweighted accuracies are much
lower than the weighted ones in Section 2. However, the unweighted accuracy
still cannot well capture the actual effects of inconsistency errors. These reasons
explain why there is no strong correlations between the accuracy of a profile
and its usefulness for FDO, despite that profile errors—more specifically, the
zero-count and inconsistency errors—affect FDO substantially.
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3.2 Simple Profile Rectification

We analyzed the two critical types of sampling errors and showed the perfor-
mance potential after fixing them with exact profiles. However, in reality we do
not have exact profiles in hand when recompiling the programs. We consider two
alternative options.

The first is through static analysis. By purely analyzing the program, it tries
to find out which basic blocks will be executed for sure and which basic blocks
must have the same execution frequency. Recall that the XLC tries to find out
straight lines of basic blocks, and only instruments the first basic block in each
straight line. This instrumentation optimization is a kind of static analysis. It
not only reduces instrumentation overhead, but also maintains the equality re-
lationship among the basic blocks in each straight line. However, to rectify these
two types of errors, more sophisticated static analysis is necessary. Furthermore,
the conservativeness of static analysis may also form some barriers for the rec-
tification. For two basic blocks that in practice almost always have the same
counter values, static analysis cannot give such a conclusion if there is no way to
prove that they must have the same counter values. A probabilistic rectification
is possible to bring more benefits than conservative static analysis for the nature
of program optimizations.

In this work, we choose a second option, which uses a training profile (on a
smaller input) to rectify sampled profiles. The rectification is simple. We assign
1 to the counters of the basic blocks, which are covered in the training profile
but missed in the sampled profile. There are some other options, to use the
exact counter value in the training profile or its scaled version. However, our
experiments show that the minimal value change (from 0 to 1) is sufficient. We
then identify all consistency groups (e.g., basic blocks that have equal counter
values) in the training profile, and maintain the relation in the sampled profile by
setting the counter of every block to the average counter value of the consistency
set that block belongs to.

We justify this solution by answering three questions in the rest of this section.
First, are the basic block coverage pattern and counter equality pattern hold
across different ref inputs? Second, is the relatively small training input similar
enough with ref input in terms of these two patterns? Third, does the FDO
performance from the rectified sampled profiles outperform the performance of
just using training profiles?

Pattern Stableness across Ref Inputs. We use a training profile for the
rectification based on our claim that once collected, it can be used to rectify
many future sampled profiles of production runs. To support this claim, we need
to show that the basic block coverage and counter equality patterns are stable
across ref inputs. We use 3 ref inputs for each program, and collect their exact
profiles. We quantify the basic block coverage pattern stableness by calculating
the basic block coverage percentage for each pair of the three exact profiles and
get their average. Similarly, to quantify the counter equality pattern stableness,
we just replace the basic block coverage percentage with the consistency score.
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As Figure 11 (a) shows, the basic block coverage among ref inputs is reasonably
stable with a minimum of 70% and an average of 89%. The counter equality pat-
tern similarity is a bit less (on average 85%) due to the difficulty in maintaining
it in different profiles.
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Fig. 11. (a) Basic block coverage pattern similarity across ref inputs. (b) Basic block
counter equality pattern similarity across ref inputs.

Pattern Stableness between Train and Ref Inputs. Figure 12 (a) reports
the basic block coverage percentages in the training and ref profiles. We observe
that on average 87% basic blocks executed on the ref input are also executed
on the training input. Figure 12 (b) shows that training profiles’ basic block
equality patterns are very similar to that of exact profiles, with a consistency
score of 83% on average.

The stableness of the patterns across inputs suggests the promise of using
training profiles for profile rectification. It is tempting to wonder why not just
simply use the training profile as the approximated ref profile for FDO. The
reason is that although the training profile carries some value patterns applicable
to other profiles, the exact values it contains differ significantly from ref profiles
for the high sensitivity of profile values to program inputs. Directly using training
profiles for FDO may hence result in some less desirable performance, as we show
next.

Performance Results. We use the sampled profiles of the lowest sampling
frequencies for evaluation. As Figure 13 shows, the sampling error rectification
based on training profiles perform very well by obtaining 92% and 81% of the full
FDO benefit from exact profiles for bursty and uniform sampling respectively.
Compared to the sampled profiles, the FDO performance benefit recovery from
the rectification is 59% and 43% for the two sampling methods. We also include
the FDO benefit from purely using training profiles. On average, the rectified
sampled profiles of bursty sampling brings 4.6% more speedup than training
profiles, which shows the usefulness of training profiles for rectification. For the
specially input-sensitive program perlbench, the training profile gives even 6%
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Fig. 12. (a) Basic block coverage pattern similarity between training profiles and exact
profiles of ref inputs. (b) Counter equality pattern similarity between training profiles
and exact profiles of ref inputs.
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Fig. 13. Speedup comparison of FDO based on exact profiles, training profiles and
rectified sampled profiles. (Most bars of “libquantum” are out of the range of the
graph; their values are respectively 2.08, 2.09, 1.92, 2, 2.01.)

slowdown, while the sampled profiles—rectified or not—produce 1.04X to 1.25X
speedup. It demonstrates that the basic block counter distribution could be very
different between training profiles and exact profiles, and so the recompilation
based on training profiles may optimize the program in a way not suitable for
the ref inputs. We also observe that the rectification reduces FDO benefit by
7% and 21% for bursty and uniform sampling, respectively. This anomaly, along
with several other cases in which exact profile does not produce the best perfor-
mance, implies the imperfect implementation of the FDO due to the complexity
in program optimizations, rather than some inherent rules.
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Fig. 14. Speedup by Gcc

3.3 Results from Gcc

Despite the different implementations between Gcc and XLC, most of the in-
sights reported on XLC hold on Gcc. A prominent difference is that Gcc tends to
have a smaller degree of speedups by its FDO than those by the FDO of XLC.
The reason probably comes from the relatively less sophistication of its FDO
implementation.

Figure 14 reports the speedups when bursty sampling of different sampling
rates are used. (Vortex is elided as it cannot run through the modified Gcc for
some unknown reasons.) The settings include the cases of the highest static com-
pilation, FDO on the exact profiles and fixed sampled profiles. The results show
that three benchmarks (gzip, libquantum, perlbench) have considerable speedups
from FDO when the full profiles are used. For all of them, the rectified profiles
help materialize most of the potential of FDO. The four sampling rates, although
differing by up to 100 times, do not show much different influence on the FDO
benefits when the profile is rectified. On program gap, the rectified profiles offers
even higher speedups than the full profile. The reason is due to the imperfect
design of FDO as mentioned in Section 3.2.

3.4 Discussions

The results in this section indicate that simple profile rectifications go a long
way: Despite the simplicity of the profile rectifications through training profiles,
the rectified profiles—at even the lowest sampling rate—can help tap into most
of the potential of FDO.

Second, when the two kinds of rectifications are applied, speedups replace
the performance degradation seen in Section 3.1 when only inconsistency errors
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are rectified. It suggests that the two kinds of value patterns have some subtle
relations among each other. Fixing them together can help avoid some conflicts
subsumed by the relations.

Finally, using a training profile helps explore the potential of profile rectifica-
tion in this experiment, but after getting the insights that simple rectification
to the two types of errors is sufficient, one may choose some other ways to do
the rectification. For instance, one could combine sophisticated static program
analysis with lightweight profiling on some ambiguous branches to identify the
two kinds of value patterns of counters. Combined with cross-production run
lightweight profiling [19], the method may provide more seamless integration
with the JIT-based runtime engines. Detailed research in this direction is future
work.

4 Related Work

Levin and others proposed the use of a Minimum Cost Circulation algorithm
to adjust an incomplete edge profile of a control flow graph [14] for post-link
optimization. The basic idea is to find minimum adjustment to the edge and
basic block weights (i.e., frequencies) in a sampled profile such that after the
adjustment, the weights meet the constraints defined by the control flow graph,
that is, the sum of the weights of all incoming edges of a block equals the sum of
the weights of all outgoing edges of the block. A later study by Chen and others
extended the idea to higher level compilation and explored the usage of extra
hardware performance counters for alleviating sampling errors [10]. Our work
concentrates on the two special types of sampling errors, namely zero-count and
inconsistency errors. Both types of errors impose some challenges to the prior ap-
proach. For zero-count errors, consider a loop with its preheader block executed
once and the loop body executed 1000 times. Due to the inaccuracy in sampling,
the sampled frequencies could be 0 for the preheader block, 92 for the loop body
and 93 for the loop back edge. The previous algorithm may adjust the back edge
to 92 to meet the constraint on incoming and outgoing edges of the loop header
block. But that adjustment fails to correct the zero-count error of the preheader
block. The algorithm is even less effective in fixing inconsistency errors. The
algorithms may be able to adjust the frequencies such that two blocks that are
dominator and postdominator of each other have the same frequency. But as
Section 2.2 mentions, such kind of relations are already being explored by many
compilers by default. Most inconsistency errors we observed happen on blocks
across functions or branches. They often reflect dynamic patterns rather than
static invariants. Although they are hard to capture by the prior algorithm on
static control flows, they are fixable through the statistical rectification method
proposed in this work.

In a previous exploration [16], Mytkowicz and others have studied existing
profilers and showed that they failed to agree with each other on the identifica-
tion of hot functions. They found the sources of incorrectness and proposed a
prototype of a random sampler to remove the biases in the previous implementa-
tions of random samplers. The only study we have found directly on the relation
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between profile sampling and the usefulness of profiles for FDO is by Langdale
and others [13]. In that study, the authors have used only uniform sampling
on machines a decade old. More importantly, the authors used compilers with
quite preliminary FDO implementation: The full potential of the FDO on exact
profiles is only about 3% speedups. Because of all these limitations, most con-
clusions from that work are out of date and even contrary to what we observe
on modern compilers and machines (e.g., the results on busty sampling.) To
the best of our knowledge, the study presented in this current paper is the first
systematic study on the relations among sampling, profile accuracy, and profile
usefulness on modern compilers, machines, and sampling methods. Moreover, we
are not aware of previous proposals of the two types of profile error rectification.
The novel insights this study obtains are multi-fold on many aspects, including
sampling for profiling, FDO, profile rectification, and cross-input stableness of
value patterns in profiles.

Many FDO-related studies focus on efficient instrumentation. Knuth and
Stevenson show in [12] that they only need to instrument a minimum num-
ber of edges of the control flow graph and calculate the counters for all other
edges in an offline analysis. Ball and Larus [7] propose an efficient path profil-
ing technique, which encodes each path into a non-negative integer and uses it
as an index to update global counters efficiently. In [20], the authors separate
interesting paths and profile them with low overhead. Some other studies focus
on reducing profiling overhead through sampling. Bond et al. [8] identifies that
Ball’s path profiling algorithm overhead bottleneck is counter update, and uses
sampling to reduce the overhead to provide continuous profiling. Arnold and oth-
ers [6] reduce instrumentation overhead of a JAVA JIT compilation system by
creating a fully instrumented copy for each function and periodically switching
execution to that copy to collect profile information.

Many researchers propose to take advantage of different kinds of profiling in-
formation for various optimizations. Pettis and Hansen [17] leverage execution
counter profile to order procedures and position BBs within each procedure. By
exploring the correlations among BBs, this optimization improves greatly code
cache performance and reduces branch penalty. Chang and others [9] have imple-
mented an inter-file inliner that automatically uses profile information. Wu [22]
explored memory load profiles to find stride patterns and identify the responsible
load instructions for prefetching. Rajagopalan and others [18] profile event-based
programs to identify commonly occurring event sequences, and reduce the over-
head from function indirections. One of our previous papers [21] finds correlations
among program behaviors through multiple profiles and applies the technique
to runtime version selection.

With the trend of adding more kinds of hardware counters in modern ma-
chines, we have seen increasing interests in exploring those hardware resources.
Ammons et. al [4] attach hardware counter information on calling context sensi-
tive paths. Adl-Tabatabai and his colleagues [3] leverage hardware counters to
smartly inject prefetching instructions in a JIT compilation system.
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5 Conclusion

This paper presents a systematic exploration on the relations among sampling
rates, profile accuracy, and profile usefulness for FDO. The exploration covers
seven factors in four levels. It reveals some counter-intuitive relations, the most
prominent of which are that higher sampling rates (within a typical sample rate
range) do not lead to more accurate profiles when uniform sampling is used, and
more importantly, no matter which sampling method is used, the accuracy of
the profiles does not show a strong correlation with their usefulness for FDO.
The paper then describes a detailed analysis and points out that two types
of sampling errors, zero-count errors and inconsistency errors, play an essential
role in restraining the power of FDO. Based on empirically confirmed cross-input
stableness of two kinds of value patterns in profiles, the paper presents a simple
way to rectify the two types of errors through statistical patterns. The dramatic
enhancement of the FDO benefits concludes that statistical rectification of the
two types of errors in a profile is promising in tapping into the full potential of
FDO. It also suggests that with profile rectification, sampling rate (and hence
sample overhead) can be significantly lowered without hurting the FDO benefits.
In addition, the study exposes some subtle relations among the rectification
of the two types of errors, and meanwhile, reinforces that bursty sampling is
superior to uniform sampling for collecting profiles for FDO.

These multi-fold novel insights provide the first principled understanding in
effective collection of profiles for FDO. They may help advance the profile col-
lection in modern runtime systems, and open up many new opportunities for
modern program optimizations.
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The Shape of Things to Run

Compiling Complex Stream Graphs to Reconfigurable
Hardware in Lime

Josh Auerbach, Dave F. Bacon, Perry Cheng, Steve Fink, and Rodric Rabbah

IBM T.J. Watson Research Center, Yorktown Heights, NY 10598 USA

Abstract. Reconfigurable hardware can deliver impressive performance
for some applications, when a highly static hardware design closely
matches application logic. Obliged to express efficient static hardware
structures, hardware designers cannot currently employ abstractions us-
ing dynamic features of modern programming languages.

We present the design and implementation of new features in the
Lime programming language that admit construction of stream graphs
of arbitrary shape using the expressive power of an imperative, object-
oriented language. The Lime programmer marks computations destined
for hardware, and the compiler statically checks these computations for
repeatable structure. If the check succeeds, the system guarantees it can
extract the static structure needed for hardware synthesis.

We describe the language design in detail and present case studies of
10 Lime benchmarks, each successfully synthesized to a Xilinx Virtex 5
FPGA.

1 Introduction

The end of frequency scaling has driven computer architects and developers to
parallelism in search of performance improvements. Since multi-core processors
can be inefficient and power-hungry, many have turned to specialized accelerators
including GPUs and other more radical architectures.

The most radical programmable architecture is reconfigurable hardware in
the form of Field-Programmable Gate Arrays (FPGAs). Compiling a program
directly into hardware eliminates layers of interpretation, which can dramatically
improve performance, power, or energy consumption.

Today, the vast majority of FPGA developers rely exclusively on low-level
hardware description languages (HDLs) such as VHDL and Verilog. These HDLs
provide low-level abstractions such as bits, arrays of bits, registers, and wires.
With low-level abstractions and tools, FPGA development takes much more
expertise, time, and effort than software development for comparable functions.

HDL designs derive their efficiency from hardware structures tailored to closely
match application logic. The structure of a hardware design represents a dataflow
graph, where each node encapsulates some behavior, and the nodes exchange
data over wires and queues. An HDL design implements a data flow graph by
instantiating hardware modules and explicitly connecting individual wires be-
tween modules. These hardware structures must be static – the design must

G. Castagna (Ed.): ECOOP 2013, LNCS 7920, pp. 679–706, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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fully elaborate all hardware structures at synthesis time, when tools compile an
HDL design to a binary circuit representation. Synthesis often takes hours to
complete, and may entail exploration of a configuration space of tuning options.

To improve programmer productivity describing data flow graph computa-
tions, several software systems provide language support for stream program-
ming. Some streaming systems, such as StreamIt [1] and SPL [2], provide re-
stricted, self-contained languages to describe data flow graphs, so that their
structure can be analyzed statically. Other approaches, such as FlumeJava [3],
embed operators as first-class objects in a general purpose language, without,
however, enabling static extraction of their structure.

Embedding streaming constructs in a general purpose language has many ad-
vantages. Specifically, the programmer can use the full power of the language to
describe stream graphs, exploiting modern language features and abstractions.
For example, modern language features such as higher-order functions and pa-
rameterized types allow the developer to encapsulate design patterns in reusable
libraries and software components.

Unfortunately, when compiling stream graphs to an FPGA, the power of a gen-
eral purpose language cuts as a double-edged sword. Modern software patterns
tend to abstract and obscure structural information, which must be elaborated
statically to synthesize efficient hardware.

A number of previous projects have adopted streaming programming abstrac-
tions for reconfigurable hardware [4,5,6,7]. These projects require a separate
compile-time language to express stream graphs (often with restricted topolo-
gies). We are not aware of any previous work that supports stream graphs as
first-class objects in a modern, general-purpose language, and yet still can com-
pile efficient hardware for an FPGA.

This paper describes new features in Lime (a Java-derived language), which
marry the benefits of first-class streaming language constructs with the ability
to synthesize efficient hardware. In Lime, stream graphs are first-class objects
which can be manipulated with the full power of the language.

In general, Lime allows the programmer to express graphs whose structure
cannot be known until run-time. However, the programmer can denote certain
graph expressions for relocation to hardware, in which case the language enforces
additional invariants using simple local constraints based on compositional lan-
guage features. When a stream graph construction type-checks as relocatable,
the language guarantees that the compiler can extract static structure needed
to synthesize efficient hardware. Furthermore, we show a language/compiler co-
design that allows the system to extract static structure without heroic program
analysis and without symbolic execution.

The contributions of this work are:

– object-oriented language support for first-class stream graphs: tasks and
stream graphs are first-class entities in the language, allowing creation of rich
structures and abstracting complex topologies into graph creation libraries;

– repeatable expressions: (first introduced in [8]), are generalized and exploited
to support extraction of static graph structure;
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Inputs:
an integer x
array of coefficients [a0, a1, . . . , an]

Output:
f(x), f = a0x

n + a1x
n−1 + . . .+ an

Algorithm:
r = 0
for i ∈ [0, . . . , n] :

r = r ∗ x+ ai

return r
a)

r 

x 

r 

x 

r 

x 

r 

x 

r := r * x + 1 r := r * x -3 r := r * x + 4 r := r * x + 7 

r 
0 

b)

Fig. 1. a) Pseudo-code for Horner’s rule. b) Pipeline to evaluate f(x) = x3−3x2+4x+7.

– relocatable task graphs: a simple syntactic construct to denote stream graphs
intended for hardware acceleration. The compiler enforces type-checking con-
straints (based on repeatability) which guarantee that it can extract the
required static graph structure for hardware;

– implementation: our compiler implements a limited partial evaluator using
Java bytecodes which is sufficient to extract graph structures built using the
full feature set of the language (avoiding the need for symbolic execution or
aggressive program analysis); and

– compilation into hardware: we show that our language is sufficient to ex-
press a variety of structured graphs, and additionally can express irreducible
graphs and incorporate unstructured imperative code into stream graph con-
struction routines.

2 Overview

Consider a simple motivating example: a stream evaluator for a polynomial.
Given a polynomial f(x), when presented a stream of inputs {x0, x1, . . .}, the
program should produce the stream {f(x0), f(x1), . . .}. Assume a non-functional
requirement: we need a pipelined implementation on an FPGA, which consumes
and produces one value per cycle.

We base our algorithm on Horner’s rule for evaluating a polynomial; see
Figure 1a.

Example 1. Consider the polynomial f(x) = x3 − 3x2 + 4x + 7. Figure 1b
shows the structure of a pipelined implementation to evaluate f(x) according
to Horner’s rule. Each pipeline stage performs one multiply-add, which we as-
sume can synthesize in one cycle. If presented one value x per cycle, this pipeline
produces one value f(x) per cycle.

Next, we describe how one could express this stream graph in Lime.

2.1 Stream Graphs in Lime

Lime is based on the Java Programming Language [9], but adds a number of con-
structs to express invariants helpful when compiling programs to hardware [8].
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Here we sketch those Lime constructs needed to understand the motivating ex-
ample. In Section 3 we describe the relevant features of Lime more completely.

Briefly, the Lime type system includes various types that enforce immutabil-
ity and restrict side effects. For the purposes of this section, we assert that any
method marked with the local qualifier has no side effects and can be consid-
ered a pure function. Additional, we will use the Lime tuple types: the syntax
‘(x,y,z) indicates a tuple with three elements, and the syntax ‘(int,int,int)
specifies the type meaning “tuples of three integers”. Lime supports type infer-
ence for local variables; the programmer can elide the type in a local variable
declaration, and simply use var or final instead.

Lime supports a streaming dataflow programming model; a Lime program
constructs a stream graph by creating tasks and composing them into an acyclic
graph. A Lime program applies the task operator to a “method description” to
produce a Lime task, a node in a stream dataflow graph.

The full Lime language supports a number of syntactic forms for method
descriptions, which correspond to instance methods, and support object state for
stateful tasks. For expository purposes, we restrict our attention in this paper to
stateless Lime tasks constructed from static methods. However, all the concepts
presented in this paper translate naturally to the full Lime language, including
stateful tasks.

Definition 1 (Task Construction). Let T0 Foo.m(T1, ..., Tk) be the sig-
nature of a static method m declared on class Foo, which takes parameters of
types T1 through Tk, and returns a value of type T0. If all of the types T0 .. Tk

are value types (Section 3.1), then the expression

task Foo.m(T1, ..., Tk)

is a task construction expression.

If the signature without parameter types Foo.m is unambiguous, then task

Foo.m is accepted as shorthand for the full signature.
A task construction constructs an object of type Task, which represents a

node in a stream graph. The constructed task takes k inputs, whose types are
T1 through Tk. If T0 is void, the task returns zero outputs. If T0 is a tuple
type of cardinality m, the task produces m outputs with types corresponding
to the tuple components. Otherwise the task produces one output of type T0.
Each time it activates, the constructed task consumes inputs, applies the pure
function represented by method m, and outputs the result.

Task is an abstract type – the language provides subclasses of Task that
describe its shape. For example, class Filter <IN, OUT> extends Task is a
commonly-used subtype, that describes a task that consumes an input of type
IN and produces an output of type OUT. Task and all its subclasses are value
types (Section 3.1).

The program can eagerly bind (curry) one or more input arguments to a task,
by specifying the bound values in the task construction expression. The curried
expression is evaluated once, at task initialization time.
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static local ‘(int, int) ingress(int x) { return ‘(x, 0); }
static local int egress(int x, int r) { return r; }
static local ‘(int, int) update(int x, int r, int coef) { return ‘(x, r * x + coef); }

var pipe = task ingress => task update(int, int, 1) => task update(int, int, -3) =>
task update(int, int, 4) => task update(int, int, 7) =>
task egress

Fig. 2. Lime code to construct a pipeline to evaluate f(x) = x3 − 3x2 + 4x+ 7

Definition 2 (Task Initializer). Let t = task Foo.m(T1, ..., Tk) be a valid
task construction. Let e be a valid expression of type Tj for 1 ≤ j ≤ k. Then the
expression t′ which substitutes e for Tj in t,

task Foo.m(T1, ..., e, ... Tk),

is a valid task construction. In t′, e is called a task initializer. The meaning of
t′ is the same as t, where the value of the jth parameter is statically bound to
the value of e.

Lime programs compose tasks into simple stream graphs using the connect (=>)
operator. If t1 and t2 are tasks, the expression t1 => t2 describes a stream graph
where the outputs of t1 flow to the inputs of t2.

Example 2. Figure 2 shows the Lime code to construct the pipeline for the poly-
nomial f(x) = x3 − 3x2 + 4x+ 7. The resultant pipeline matches the structure
described in Figure 1b. Note that each instance of the update task statically
binds the coef input to an appropriate integer coefficient value.

In Figure 2, the structure of the stream graph, meaning its shape and the imple-
mentation of each task, is static and clearly evident from the code. When compil-
ing to hardware, the compiler must elaborate this structure statically in order to
synthesize an efficient hardware design that produces one value per cycle.

2.2 Polynomial Parser

We now turn to a more challenging problem, which motivates the novelties of
this paper. Suppose we wish to write a library which can generate circuits for
arbitrary polynomials, represented by strings.

In software, general purpose languages naturally support this style of library.
Clearly, we can build some abstract data structure that represents a polynomial,
and an evaluation engine which interprets the data structure at runtime. We can
use the same philosophy to write a library routine that generates Lime stream
graphs.

Returning to the example, let’s represent a polynomial by an array of int, so
the polynomial f(x) = x3−3x2+4x+7 corresponds to int[] f = { 1, -3, 4,

7}. We need a parse method that converts a string representing a polynomial
to an array of coefficients, and a method pipeline that constructs a Lime task
graph from an array of integers. Figure 3a sketches a simple implementation in
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0 value class string {...}
1 static int[] parse(string s) {...};
2 static Task pipeline(int[] coef) {
3 var pipe = task ingress;
4 for (int c: coef) {
5 pipe = pipe => task update(int,int,c);
6 }
7 return pipe => task egress;
8 }
9 int[] f = parse("x^3 - 3x^2 + 4x + 7");
10 var pipe = pipeline(f);

a)

0 value class string { ...}
1 static local int[[]] parse(string s) {...};
2 static local Task pipeline(int[[]] coef) {
3 var pipe = task ingress;
4 for (int c: coef) {
5 pipe = pipe => task update(int,int,c);
6 }
7 return pipe => task egress;
8 }
9 final f = parse("x^3 - 3x^2 + 4x + 7");
10 var pipe = ([ pipeline(f) ]);

b)

Fig. 3. a) Lime code to generate a pipeline to evaluate a polynomial represented by an
array of int. b) Similar code enhanced with new Lime language constructs.

Lime. We elide the details of the parse method, which implements basic string
processing using imperative operations.

The code in Figure 3a correctly expresses the necessary logic in Lime. However,
in contrast to Figure 2, the code in Figure 3a does not mirror the structure of
the resultant stream graph for any polynomial. The structure of the stream
graph depends on the contents of a string (line 9), relatively complex imperative
parsing code (line 1), and a loop (lines 4 - 6) that constructs a task graph.

The Lime runtime system will happily build and interpret this task graph
at runtime, running in software. When running in software, the system can
construct and interpret fully dynamic graphs, at run-time. However, in order
to exploit reconfigurable hardware, the compiler needs more static information.
In order to generate hardware efficiently, the compiler needs to determine the
structure of the stream graph at compile-time.

To determine the structure of a stream graph for the polynomial example,
clearly the compiler requires that the string (line 9) which determines the poly-
nomial be known at compile-time. However, even when the string is known,
extracting the stream graph structure from vanilla Java code in Figure 3a rep-
resents a daunting program analysis challenge. Effectively the compiler must
partially evaluate the stream graph constructor for a given input, which carries
all the inherent difficulties of binding-time and side-effect analysis for Java.

The main contribution of this paper consists of a language/compiler co-design
that makes this problem tractable. We present Lime language extensions to
add small but powerful type constraints that allow the compiler to extract the
relevant stream graph structure without heroic program analysis. As we shall
show, the language remains sufficiently general to express rich structured and
unstructured stream graphs.

Figure 3b shows Lime code to construct the pipeline using the new language
extensions. The revised code relies on the following Lime concepts:

– immutable arrays: The double bracket syntax (int[[]]) indicates an array
whose contents are immutable. (lines 1, 2)
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– values: A class marked as a value is deeply immutable. Line 0 shows that the
library class lime.lang.string is a value class. Instances of value classes
and immutable arrays are called values.

– local functions: A method marked as local (line 1) cannot write to mutable
static data. Thus, a static method must be a pure function if the following
conditions hold: i) it is local, ii) all parameters are values, iii) it returns a
value.

– repeatable expressions: Informally, any expression which is composed from
compile-time constants, value constructors, and pure function applications
is considered repeatable. The compiler can safely evaluate a repeatable ex-
pression at compile-time. In the example, the expression parse("x^3- 3x^2

+ 4x + 7") is repeatable.

– relocation brackets: An expression in relocation brackets e.g.,([e]) defines
a stream graph, intended to be executed on (i.e., relocated to) a specialized
device such as an FPGA. In relocation brackets, e must satisfy constraints
that guarantee the compiler can extract the relevant static graph structure.

Immutable arrays, values, and local functions were previously presented in [8].
Repeatability in [8] applied only to static fields, and is greatly generalized in this
work. Relocation brackets and the analysis to support them is new.

We will fully explain the constraints involving relocation brackets and local
methods in this paper. For this example, it suffices to note that if the expression
in relocation brackets is repeatable, then it satisfies the constraints. Later we
will present other scenarios which relax the restriction to increase expressive
power. Note that in Figure 3b, the expression in relocation brackets at line 10
is repeatable (the type Task returned by pipeline is a value type, as is the
argument, and the function is local).

What Have We Accomplished? We have introduced language constructs which
allow the programmer to write a relatively complex stream graph generating
library, using all the imperative facilities of Java. In order to guarantee that the
compiler can determine the relevant graph structure statically, we have intro-
duced simple type constraints at the library boundary.

Note that all the type constraints mentioned here are simple local properties
which can be checked in a modular fashion. Compile-time evaluation of repeat-
able expressions would be inter-procedural and arbitrarily complicated if done
by conventional means; however, the language design permits a simple concrete
evaluator to run at compile-time to evaluate repeatable expressions. No complex
analysis is required. We will discuss implementation issues in building a robust
concrete evaluator in Section 7.

We have shown a simple example to motivate the desire to use arbitrary im-
perative code to define stream graphs. We have presented only a simple pipeline
graph structure; however, the same mechanisms work for all reducible [10] graph
structures, which include operators to split and join dataflow tokens.
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Fig. 4. FFT butterfly network

2.3 Irreducible Graphs

Consider the well-known FFT butterfly stream graph for the decimation-in-time
FFT algorithm, shown in Figure 4. This stream graph differs fundamentally
from the graphs considered previously in many streaming languages, including
previous versions of Lime. The FFT butterfly graph is irreducible [10]: it cannot
be expressed as a composition of pipelines, splits, and joins.

We have extended Lime with the ability to define stream graphs with manual
connections. Briefly, we allow the programmer to construct stream graphs with
an unstructured graph construction API, which allows arbitrary connections
between tasks.

As long as the graph construction code obeys the constraints imposed by
relocation brackets, the compiler can extract the relevant structure, even for
irreducible graphs created through the programmatic graph API. This property
holds even for recursive graph construction routines, which arise frequently in
complex graph construction logic.

This facility allows Lime to express a richer graph language than previous
streaming languages such as StreamIt[1] which are restricted to reducible graphs.
Furthermore, we have implemented complex graph structures such as systolic
arrays and FFT, and can statically extract the graph structure and compile the
structures to hardware.

3 Lime Preliminaries

Lime is a superset of Java, adding additional language features to express par-
allelism and locality to exploit heterogeneous architectures. We first review key
Lime language features presented previously [8], before introducing the new lan-
guage contributions in subsequent sections.

3.1 Value Types

Lime introduces a category of value types which are immutable (like the primitive
types) but are declared similarly to reference types (with fields and methods).
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One merely adds the valuemodifier to a type declaration to revise the semantics
and obtain additional checking to enforce deep immutability. The fields of a value
type are implicitly final and must themselves be value types. For example, Lime
provides the library type bit as a value enum with possible values zero and
one. The primitive types inherited from Java are redefined to be value types.

A special array declarator allows some arrays to be values. The type bit[] is
a mutable array of bits and the type bit[[]] is an immutable array of bits (a
value type).

The language defines a non-null default type for every non-abstract value type
and prohibits null values for such types.

The construction rules for values prohibit cycles, so each value represents a
tree that can be linearized and passed-by-value.

3.2 Local Methods

Lime introduces the local modifier on methods, which can be used to enforce
invariants regarding side effects and isolation. The local modifier asserts that a
method does not access mutable static fields, and only calls other local meth-
ods. Type checking these rules requires only simple intra-procedural scanning.

The rules give no general guarantee that a localmethod is free of side-effects,
since it can modify instance fields in its receiving object or mutable objects
reachable from method arguments. However, if a local method has only values
as arguments and return type, then it is easy to establish that the method is
pure.

Note that a local method established to be pure is not obligated to call only
pure methods. It is free to call methods that are merely local, since any mutations
that may occur inside those methods must be limited to objects created in the
activation stack of the outermost localmethod. Any such mutable objects must
all die before the outermost method returns, since the outermost pure method
must return a value and cannot write to mutable static data structures.

Local methods are allowed to read certain static fields (if they are final and
repeatable). Section 5 will present Lime’s concept of repeatable expressions.

3.3 Stream Graphs

Section 2 introduced the Lime task constructors and task initializers, which can
be used to build stream graph pipelines. Lime also provides a set of system
tasks called splitters (one input, many outputs) and joiners (many inputs, single
output), which can be connected to form a rich set of possible graph structures.

– The multitask constructor task [ t1, . . . , tk ] constructs a composite task
consisting of a vector of k tasks which are not connected to each other.
Instead, this composite task takes a k-ary tuple as input and produces a
k-ary tuple output. The ith component in the input tuple flows to task ti,
which produces the ith component of the output tuple.
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value class Task {
Task named(string id);

}
value class TaskGraph extends Task {
TaskGraph add(Task t);
TaskGraph connect(Task src, int outPort,

Task dest, int inPort);
}

static local int twice(int x) { return 2*x; }
Task t = task twice;
Task a = t.named("a");
Task b = t.named("b");
TaskGraph tg = new TaskGraph();
tg = tg.add(a);
tg = tg.add(b);
tg = tg.connect(a, 0, b, 0);

Fig. 5. a) TaskGraph API b) Example client

– Let T = ‘(t1, ..., tk) be a tuple type with cardinality k. Then the
constructor task split T creates a task that consumes an input of type T,
and produces k outputs, one for each component of the tuple type. A splitter
task splits a tuple stream into individual streams for each component.

– Let T = ‘(t1, ..., tk) be a tuple type with cardinality k. Then the
constructor task join T creates a task that consumes k inputs, one for
each component of the tuple type, and produces a tuple of type T. A joiner
task creates a stream a tuples from streams of the individual components.

With connect, split, and join, Lime programs can construct any acyclic reducible
stream graph shape.

4 Manual Graph Connections

In order to express irreducible graphs such as the FFT butterfly example in
Section 2.3, we have extended Lime to support construction of arbitrary stream
dataflow graphs.

Figure 5a shows the key API methods for the TaskGraph class, which provides
a programmatic interface for stream graph construction. The TaskGraph.add

method adds a task to a graph, and the connect method connects an output of
one task to the input of another.

Note that TaskGraph is a value class – it is deeply immutable. Thus the
add and connect methods create a new TaskGraph value, and do not mutate a
graph in place. The immutability of tasks plays a key role when reasoning about
repeatability of task construction code, described in more detail later.

Similarly, the Task class itself is also immutable. However, we note that
in many complex graphs, such as systolic arrays, the program must build
up a network which contains many copies of a particular task. In order to
support this, each Task instance has a unique string identifier. The method
Task.named(string id) creates a new copy of a task, but with a different string
identifier. The string identifier dictates object identity for task objects, which
allows the programmer to distinguish between copies of a functional unit when
building complex graphs.

Figure 5b shows Lime code to build a graph equivalent to task twice =>

task twice. Although this simple graph is obviously reducible, it should be
clear that a program can use the TaskGraph API to build an arbitrary graph
structure.



The Shape of Things to Run 689

Lime only accepts acyclic graphs. When the manually constructed portion
of the graph is further connected using =>, the result is checked for acyclicity.
In general, this will result in a run-time exception, but if the graph is being
relocated, the evaluation technique presented in Section 7 finds the error at
compile-time.

5 Repeatability

Next we introduce the concept of repeatable expressions, which generalize the
repeatable static fields of [8], extending the notion of constancy to arbitrary
expressions.

A repeatable expression has no side effects, can be evaluated any number of
times, and will always produce the same result. The class of repeatable expres-
sions are those built from repeatable terms composed with pure functions.

Base Terms. The base repeatable terms (those containing no operations) are a
superset of the set regarded as “compile-time constant” in Java. First, all literals
of value types are repeatable. This includes the primitive type literals defined in
Java plus the literals added by Lime for bits, ordinal types (discussed shortly),
value enums, and string literals.

Generalizing Java’s rule for constants, a simple name reference is repeatable
if it is a reference to a final field or variable that has an explicit repeatable
initializer. A qualified name reference (like Foo.a) is repeatable if it is a reference
to static final field that has an explicit repeatable initializer.

Built-in Operators. Lime includes a set of built-in operators which represent
pure functions. (e.g.,+, -, *, %, /). If expression e consists of a pure operator
applied to arguments that are all repeatable, then e is repeatable.

User-Defined Functions and Types. We increase the set of repeatable expressions
with two capabilities not supported for constants in Java. First, we exploit the
local invariants discussed in Section 3.2 to reason about calls to user methods
that must be pure functions. So, a method invocation produces a repeatable
result if the method is pure and all of its actual arguments are repeatable.

Second, we regard a value creation (with the new operator) as repeatable if
the constructor is pure and all the actual arguments are repeatable.

Claim: If e is a repeatable expression, and evaluation of e terminates, then e

evaluates to the same value in all possible executions. This can be shown by
structural induction over the forms of repeatable expressions.

5.1 Ordinal and Bounded Types

When compiling to an FPGA, the generated design must fit in limited physical
resources, and cannot exploit a virtual address space. For this reason, the com-
piler must often be able to compute the size of arrays at compile-time, in order
to use scarce logic resources efficiently.
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To help the compiler reason about array sizes, Lime includes bounded array
types. Informally, the type “int[[N]]”, where N is an integer, represents an
array of exactly N integers. More generally, Lime supports ordinal types, where
the type “ordinal N” 1 represents the set of non-negative integers i where i <
N . Lime programs can use ordinal types just like any other types in Java; in
particular they can be used as type parameters to generic methods. Additionally
Lime supports restricted constructs to convert between ordinal types and integer
values, so ordinal types represent an extremely limited form of dependent integer
types.

The rules for repeatability for integer values extend naturally to define re-
peatability for ordinal types and type parameters. With repeatable ordinal types
and generics, the Lime programmer can build task graphs recursively to express
divide-and-conquer algorithms for arrays.

Example 3. Figure 6 sketches a recursive implementation of merge sort, using
ordinal type parameters. The type parameter N (line 1) indicates the size of the
input array. Note that the code constructs a new ordinal type HALF, used in the
divide and conquer recursion.

Observe that the type system ensures that sort is a pure function. Thus, when
sort is invoked on a repeatable input (line 15), the type system ensures that
all type parameters used in the recursive expansion of sort are also repeatable.
Thus, the compiler can statically determine the bounds of all arrays used in the
call to sort at line 15. Furthermore, since sort is pure, the result b at line 15 is
also repeatable and can be computed at compile-time.

Although Figure 6 shows simple single-threaded code, the same concepts apply
when constructing stream graphs from generic methods with bounded array
inputs and outputs. This pattern arises frequently in stream graphs for Lime
programs on FPGAs. Repeatable bounded array types are a key feature in being
able to statically bound space usage in hardware designs for complex stream
graphs.

5.2 Repeatability Issues

Termination. Lime provides no guarantee that a repeatable expression will ter-
minate without throwing an exception, or even terminate at all. However, the
behavior (terminating or not) will be reproducible, and can be monitored at
compile-time. When the compiler evaluates repeatable expressions, it checks for
exceptions and imposes a time out. Should evaluation not terminate normally in
a reasonable interval, the compiler reports the failure as a compile-time error.

Determinism. Invariants for localmethods and constructors guarantee freedom
from side-effects, but not necessarily determinism. We tacitly assume that such
methods cannot contain any non-deterministic operations. This assumption is

1 For expository purposes, we take some liberties to simplify the syntax of ordinal
types, as compared to the implemented language design.
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1 local static <ordinal N> int[[N]] sort(int[[N]] input) {
2 if (N.size > 1) {
3 final int HALF = N.size/2;
4 int[[HALF]] low = lowerHalf(input);
5 int[[HALF]] high = upperHalf(input);
6 low = MergeSort.<HALF>sort(low);
7 high = MergeSort.<HALF>sort(high);
8 return merge(low,high);
9 } else {
10 return input;
11 }
12 }
13 local static <ordinal N, ordinal M> int[[M]] merge(int[[N]] a, int[[N]] b) { ... }
14 final int[[8]] a = {4, 6, 2, 8, 9, 4, 3, 12 };
15 final b = sort(a);

Fig. 6. Merge Sort

true today in Lime, because Lime has no core language constructs that are non-
deterministic. The type system prevents local methods from calling native code
or across a foreign function interface.

Generalizing Repeatability. The current definition of repeatability includes two
pragmatic compromises. First, we insist (as with Java compile-time constants)
that any final fields must first have an explicit initializer before we consider
whether that initializer is repeatable. Second, we limit qualified names like Foo.a
to the case where they denote a static field. While it would be possible to relax
both restrictions, it would complicate the engineering of the repeatable expres-
sion evaluator, and also involve more complex rules for the user to understand.
We elide the technical details due to space constraints. Section 7 discusses im-
plementation issues in greater detail.

6 Relocation Expressions

In this Section, we introduce the language constructs that guarantee that the
compiler can extract static information about stream graphs, needed in order to
relocate a stream graph computation from software onto an FPGA.

Relocation Expressions. If e is a Lime expression, we introduce the syntax ([e]),
which we call a relocation expression , using “relocation brackets” syntax.

A relocation expression type-checks if either a) e is repeatable, or b) e satisfies
additional constraints specific to unrepeatable task initializers (Definition 2) for
stream graphs. We next discuss each case and explain the additional constraints
which define case b).

The key insight is that if e is a relocation expression which generates a stream
graph, then the compiler guarantees that it can extract static structural infor-
mation (hereafter called stream graph structure) sufficient to enable hardware
synthesis.
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Definition 3 (Stream Graph Structure). Let g be an object of type Task

( i.e., a stream graph). A stream graph’s structure consists of 2

1. the topology of the graph, a canonical form of its nodes and connections,
2. for each edge, the type of all values that flow on it,
3. for each node, the Lime method providing its behavior, and
4. for each method parameter of the previous, whether or not it is curried ( i.e.,

constructed via a task initializer as per Definition 2).

For part 4, the actual value bound to the parameter is not considered part
of graph structure. Therefore, the stream graph structure does not completely
determine the function to be executed in each node. The “code” is determined
by part 3, the curried signature is refined by part 4, but the task initializers (see
Definition 2) are still unknown.

6.1 Repeatable Stream Graph Expressions

Clearly, when a stream graph expression is repeatable, the compiler can fully
evaluate the expression, and walk the resultant data structure to determine the
graph structure. In Section 7 we will discuss implementation details relating to
the compile-time repeatable graph evaluator. We have already seen an example
of a repeatable graph, in the polynomial example of Section 2.

Stream graph repeatability motivates the design decision discussed in Sec-
tion 4, where Tasks are designed as immutable values, allowing us to reason
about repeatability for library methods that produce and consume Task objects.

As a simple example, consider:

static local Task connect(Filter<int,int> a, Filter<int,int> b) { return a => b; }

If we want to use connect in a repeatable (or relocatable) expression, then the
type system must establish that connect is a pure function. Recall that we have
this guarantee for local methods that produce and consume values. Thus Lime
Task objects are deeply immutable, as discussed in Section 4.

6.2 Unrepeatable Task Initializations

In Section 2, we considered a pipelined implementation for polynomial evalu-
ation, where the degree and coefficients to the polynomial were static. In this
case, both the stream graph structure and all the task initializers are repeatable,
so all the node functions were completely determined.

However, we can also efficiently support hardware stream graphs where the
stream graph structure is repeatable, but the functions of individual nodes in the
graph depend on dynamic data provided through unrepeatable task initializers.
We now present language extensions to support this.

Consider a variant of the polynomial pipeline for functions of the form f(x) =
a0x

3+ a1x
2+ a2x+ a3, where the degree of the polynomial is fixed at 3, but the

coefficients of the polynomial are unknown at compile-time.

2 We elide details specific to stateful tasks in the full Lime language.
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int[4] a = readFromInput(); // assumed dynamic
var pipe = ([ task ingress => task update(int, int, a[0]) =>

task update(int, int, a[1]) =>
task update(int, int, a[2]) =>
task update(int, int, a[3]) =>
task egress])

Fig. 7. Lime code to construct a pipeline to evaluate a 3rd-degree polynomial f(x) =
a0x

3 + a1x
2 + a2x+ a3, where the coefficients ai are not repeatable. Refer to Figure 2

for definitions of update, ingress, and egress.

Intraprocedural Case. Figure 7 shows Lime code to build a stream graph
for this problem. In this case, we assume that the coefficient array a is not
repeatable.

Clearly the relocated expression in Figure 7 is not repeatable. To allow this
expression to type-check, we relax the type-checking rules.

For the moment, consider the subset of Lime which excludes procedure calls.

Definition 4 (Relocatable Expressions (no calls)). A (legal) Lime expres-
sion e is relocatable if and only if one of the following holds:

1. e is repeatable
2. e is of the form task M.foo(p1, ... pk),
3. e is of the form e1 => e2 where both e1 and e2 are relocatable
4. e is of the form task [e1, ..., ek] where each expression ei is relocatable,
5. e is of the form split e1 or join e1, where e1 is relocatable
6. e is of the form e1.add(e2) where both e1 and e2 are relocatable
7. e is of the form e1.connect(e2,e3) where e1, e2 and e3 are relocatable

Case 2 represents the interesting case — it allows a relocatable expression to
use unrepeatable expressions as task initializers (recall Definition 2). This case
allows the stream graph in Figure 7 to type check as relocatable. Specifically,
the unrepeatable coefficients a[i] appear only inside expressions of the form
task e.

Intuitively, this definition of relocatable constrains the code such that the
stream graph structure is repeatable, but the logic that implements each user
task in the graph can use runtime values. The system can implement this pattern
efficiently in hardware by laying out the stream graph statically, and laying down
wires to route the dynamic values to the appropriate functions at runtime.

Interprocedural Case. Next, we extend the definition of relocatable expres-
sions to support procedure calls, so we can encapsulate stream graph construc-
tions in a library, even when they employ unrepeatable values as task initializers.

Figure 8 shows the library method encapsulation for the running example.
Note that the expression in relocation brackets at line 10 now contains a proce-
dure call.
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1 static local Filter<int,int> thirdDegree(task int a0, task int a1,
2 task int a2, task int a3) {
3 return task ingress => task update(int, int, a0) =>
4 task update(int, int, a1) =>
5 task update(int, int, a2) =>
6 task update(int, int, a3) =>
7 task egress;
8 }
9 int[4] a = readFromInput(); // assumed dynamic
10 var pipe = ([ thirdDegree(a[0], a[1], a[2], a[3]) ]);

Fig. 8. Lime code to construct a pipeline to evaluate a 3rd-degree polynomial f(x) =
a0x

3 + a1x
2 + a2x+ a3, where the coefficients ai are not repeatable. Refer to Figure 2

for definitions of update, ingress, and egress.

We add additional type qualifiers that pass constraints about relocatable ex-
pressions across procedure boundaries, but still allow modular local type check-
ing. We re-use the task keyword for this purpose – we now allow the task

keyword as a type qualifier on formal parameters (lines 1 and 2 in the figure).
When a task qualifier decorates a formal parameter p of a method m, we

call p a dynamic parameter. There exist only two legal ways p can appear in
expressions inside m:

1. In an expression task M.foo(p1, ... pk), a dynamic parameter p can ap-
pear as a bound value for a task initializer pj.

2. p can be used as the actual parameter in a call, where the corresponding
formal parameter q in the callee is a dynamic parameter.

Any other use of p fails to type check.
In Figure 8, note that each formal parameter of thirdDegree is dynamic, but

the method type checks because all uses of formal parameters in the procedure
satisfy condition 1.

Definition 5 (Relocatable procedure calls). A procedure call expression
M.foo(p1, ..., pk) is relocatable if and only if for each j, 1 ≤ j ≤ k, either

– pj is repeatable, or
– the jth formal parameter of M.foo is a dynamic parameter.

Borrowing a concept from the partial evaluation literature [11], we define an
expression e to be oblivious if, during the evaluation of e, every conditional ex-
pression evaluated is repeatable. Intuitively, if an expression is oblivious, then its
evaluation will follow the same control flow branches in every possible environ-
ment.

Claim: All Relocatable Expressions Are Oblivious. This property is simple to
establish with structural induction on the shape of relocatable expressions. If
a relocatable expression is repeatable, obviously it is oblivious. Otherwise, it
suffices to note that in each syntactic form listed in definitions 4 and 5, no
unrepeatable values can affect control flow.
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We next establish a key property, that allows the compiler to extract the
shape of relocatable expressions without aggressive program analysis.

Repeatable Structure Property. Suppose a call expression e = M.foo(e1,

... p, .. ek) is relocatable, where all actual parameters except p are repeat-
able, and p corresponds to a dynamic parameter of M.foo of type T . Assume the
evaluation of e terminates without an exception, producing the stream graph
object g1. Now let e2 = M.foo(e1, ..., p2, ... ek) be the expression e,
substituting any value p2 of type T for p. Then evaluating e2 terminates with-
out an exception, producing a stream graph object g2. Furthermore, g1 and g2
have the same stream graph structure.

Informally, we can establish this property with an argument based on informa-
tion flow [12]. We consider the body of M.foo as a function with k inputs, where
the ith input ini is the dynamic parameter corresponding to actual parameter p.
We note that the type checking rules for dynamic parameters guarantee that no
statement in M.foo can be control-dependent on ini, and only task constructions
can be data dependent on ini. Thus the effects of ini on the object resulting
from evaluating either e1 or e2 must be confined to task constructions. Thus
the stream graph structure must be repeatable.

This key property allows our system to evaluate relocatable expressions that
produce stream graphs at compile-time, substituting place-holders during eval-
uation for any dynamic parameters. The claim shows that the structure of the
resultant stream graph does not depend on dynamic parameters – instead, dy-
namic parameters may only flow untouched to task initializers. With this prop-
erty, the compiler can establish the stream graph structure for relocatable graphs
with a relatively simple concrete evaluator, which will be described in Section 7.

7 Implementation

This section addresses implementation issues regarding design of compiler sup-
port to extract graph structure. We first discuss issues with repeatable expres-
sions, and then consider partial evaluation for relocatable expressions with un-
repeatable sub-expressions.

In a functional language which represents programs as values, a repeatable
expression evaluator would be trivial (e.g., eval e in Lisp). However, Lime, an
imperative language based on Java, does not represent programs as values. Like
a Java compiler, the Lime compiler generates JVM bytecodes. So, the compiler
can employ the JVM to evaluate repeatable expressions at compile-time.

Namely, our compiler generates bytecode representations of repeatable expres-
sions called snippets. The snippet evaluator implementation raises some design
questions:

1. How do we manage the Java virtual machine runtime environment when
running the snippet evaluator?

2. How can the result of a snippet evaluation (an Object or primitive value) be
translated to a useful compile-time representation?



696 J. Auerbach et al.

3. Relocatable expressions can include unrepeatable dynamic parameters, and
these can’t be evaluated at compile time, so how does the snippet evaluator
perform the implied partial evaluation task?

7.1 Runtime Environment for Snippet Evaluation

The Lime compiler generates bytecode representations of all user code before
running any snippet evaluation. So the snippet evaluator can run with a JVM
classpath that includes all the generated bytecode. This classpath reflects the an-
ticipated runtime environment at the granularity of packages and visible classes.

In order to reproduce within-class scoping of names that appear in the ex-
pression, the compiler constructs a snippet method which represents a repeatable
expression. A snippet method has no parameters, and is declared in the class in
which the repeatable expression occurs. To build a snippet method, the compiler
first creates a single return statement with a copy of the expression. That is, if
the expression is i + j, then the snippet method starts out as

private static int snippetMethod12345() { return i + j; }

This method will not type-resolve, since i and j are variables with arbitrary
bindings. The second step visits all the names in the expression and either de-
termines that the correct i and/or j will actually be in scope, or replays the
declaration(s) of i or j inside the method. Since all names are resolved at this
point, this analysis can be done accurately.

From the definition of repeatability, we know that any qualified names (e.g.
b.i) denote static fields. If a name refers to a static repeatable field, then no
additional steps are required, since the scope already binds the name. If a simple
name refers to a local variable, the compiler replays the variable declaration
inside the snippet method. If a simple name refers to an instance field defined
in the encompassing class or one of its supertypes, then the compiler generates
an equivalent local variable declaration in place of the field declaration. When
a variable or instance field declaration is replayed, it might trigger transitive
replay of other variables or instance fields referenced in the declaration.

The replay strategy is sound for the following reasons. If the snippet is based
on a fully repeatable expression, i and j must denote final variables or fields
with explicit repeatable initializations. If the expression contains unrepeatable
task initializers, they are replaced by placeholders (which have repeatable be-
havior and don’t include name references).

We can now see why supporting non-static qualified names complicates the
analysis (see Section 5.2). It is far more difficult to replay the sequence of declara-
tions backing such names since some segments represent objects whose creations
have already occurred while others are just field references. In general, one might
not even have the source for the class that defines the type of the object or in
which the object was created.
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7.2 Interpreting Snippet Evaluation Results

Translating a runtime value back into a compile-time representation is simplified
by the fact that repeatable expressions always produce Lime values, which are
containment trees with no cycles or internal aliases. Translation from runtime
back to a compile-time representation can use any of the following techniques.

– Literal: If the value is of a type that has a literal representation, use the
literal.

– Default: If the value corresponds to the default value of its type, use a
standard Lime expression to produce that default value.

– Reconstruction: Inspect the value’s structure (which is alias-free and
acyclic) and build a compile-time representation of that structure for use
by later compiler phases.

– Otherwise, if the value is an array and its elements can be represented by
the previous rules, construct the appropriate array literal.

The present implementation uses the reconstruction technique for the stream
graph structure and uses the literal or default technique or their array general-
izations for any repeatable task initializers it finds. Unrepeatable task initializers
(and those repeatable ones that can only be encoded by reconstruction) are han-
dled using the technique of the next section. In the future we expect to handle
more repeatable task initializers by reconstruction, yielding more efficient code.

7.3 Partial Evaluation

Section 6 defined relocatable expressions so that the stream graph structure
was required to be repeatable but task initializers could be unrepeatable. The
Repeatable Structure Property gives the key insight that allows us to use the
snippet evaluator for all relocatable expressions, even with some unrepeatable
parameters: we know that we can substitute any legal value of the correct type
for a dynamic parameter, and the resulting objects from evaluation will have the
same stream graph structure. So, in snippet evaluation, we simply generate a
unique placeholder value for each unrepeatable parameter, and run the snippet
with an unmodified JVM. In the resulting object, the placeholders may flow
to task initialization parameters, but (from the Repeatable Structure Property)
cannot affect any other aspect of the computation.

As a result, the evaluated object must have the same stream graph structure as
the stream graph that will arise at runtime. The implementation may or may not
choose to evaluate repeatable parameters that flow to task initializers. Dynamic
parameters will be clearly identified by placeholder values in the resultant stream
graph object. When interpreting the resultant stream graph object, the compiler
maps placeholder values to the appropriate expressions in the generated code,
which causes dynamic parameters to flow to generated tasks at runtime.
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Table 1. Benchmarks and Results

Benchmark Description Graph Param. Static Dynamic Idiom Freq.
Size Value task task (MHz)

Beamformer directional audio 9 + 5(C + B) C = 12 19 89 map 113
signal processing B = 4

Channel vocoder voice coder 9 + 6(N − 1) N = 17 15 105 repeat 78-133
DES encryption 6 + N N = 16 7 22 recursive 148
FFT FFT, bulk pipeline 6log2(N) N = 32 9 24 recursive 130
Filterbank signal processing 4 + 10N N = 8 14 84 map 119-161
FM radio signal processing 8 + 9N N = 10 17 98 map 135-312
iDCT 2D inverse DCT 5 + 3N N = 8 8 29 repeat 144

Mergesort sort 9N
2 − 6 N = 16 9 66 d&c 119

Vocoder rate reducing coder 51 + 7N N = 15 58 156 map 181-236

FFT butterfly FFT butterfly 2 +
3Nlog2(N)

2 N = 8 5 38 manual 134

8 Results and Evaluation

To evaluate the features described in this paper, we implemented a number of
benchmarks, listed in Table 1. All but the irreducible benchmark (FFT
butterfly) are drawn from the StreamIt benchmark suite [13]. We chose these
as a representative sample of reducible graphs, constructed using iterative and
recursive coding styles.

Our goal was to evaluate Lime support for stream graph construction using
rich abstractions and control flow constructs that include conditionals, loops,
and recursion. In the following, we highlight the following findings:

1. Lime permits compact graph construction code using a number of idioms
which may be factored into library methods.

2. Graph construction may be parameterized in terms of size via repeatable
parameters, and function via tasks as first-class values.

3. The Lime compiler succeeds in extracting the task graphs and synthesizes
the Lime code into FPGA circuits.

8.1 Benchmark Characteristics

Each of the streaming applications considered takes a parameter which indicates
a problem size. A particular problem size induces the shape of a task graph, which
dictates the level of task-parallelism inherent to the algorithm. Table 1 includes
the formula for calculating the graph size for each of the benchmarks. In all
but one case, a single parameter N defines the problem size. The exception is
beamformer which is parameterized by two values. The table includes the actual
parameter values used for graph extraction and FPGA synthesis.

For each benchmark, we inspected the Lime code and counted the static oc-
currences of the task operator. These are labeled static tasks in the table and
provide an indication of code complexity. In contrast, the dynamic tasks is the
size of the graph after graph extraction. It is computed by evaluating the size
formula for the given parameter values.
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task Filter<bit[[64]], bit[[64]]> recursive(task KeySchedule keys, int round) {
if (round == 0)

return task des.F(keys.lookup(round), true, bit[[64]]);
else return recursive(keys, round - 1) =>

task des.F(keys.lookup(round), round != 15, bit[[64]]);
}

local Filter<bit[[64]], bit[[64]]>[[]] makeFilters(KeySchedule keys) {
final coder = new Filter<bit[[64]], bit[[64]]>[16];
for (int round = 0; round < 16; round++)

coder[round] = task des.F(keys.lookup(round), round != 15, bit[[64]]);
return new Filter<bit[[64]], bit[[64]]>[[]](coder);

}

public class Idioms {
static task <V extends Value> Filter<V,V> pipeline(Filter<V,V>[[]] filters) {

var pipe = filters[0];
for (int i = 1; i < filters.length; i++)

pipe = pipe => filters[i];
return pipe;

}
}

Fig. 9. Recursive graph construction for DES

The benchmarks considered exhibit five dominant coding patterns, shown in
the column labeled idioms :

– Recursive: Constructs a graph using recursion. The idiom is useful for
constructing a sequence of connected tasks.

– Divide and Conquer: A form of recursive graph construction for divide
and conquer (d&c) algorithms.

– Map: Constructs a k − ary multitask from a single task, and curries the
task’s vector-position into the task worker method. The map is useful for
data- and task-parallel multitasks that operate on partitioned streams.

– Repeat: Constructs a k − ary multitask from one or more tasks, currying
the task’s vector-position into the task worker method. Unlike the map idiom
where the tasks operate on a partitioned stream, here every task operates
on identical values.

– Manual: Constructs arbitrary acyclic graphs using the manual task and
connect API. The idiom is most useful for irreducible graphs (e.g., butterfly)
but is applicable for reducible topologies as well (e.g., reduction tree).

The ability to treat stream graphs and tasks as first-class objects makes it pos-
sible to factor the graph construction idioms into library utility methods. We
illustrate a few such examples in the sections that follow.

8.2 Recursive

Three of the benchmarks build graphs using a recursive idiom. Figure 9 shows
an example that builds a sequence of tasks that perform the encryption required
by DES. In this sequence, all but the last task behave identically modulo the
curried encryption key (a KeySchedule). The last stage performs a bit reversal,
indicated by the curried task initializer expression round != 15.
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public class Idioms {
static task <V extends Value, ordinal N> Task dnc(Task t) {

final HALF = N.size/2;
if (N.size > 2)

return (V #) =>
task split V[[2]] =>
task [ Idioms.<V, HALF>dnc(t), Idioms.<V, HALF>dnc(t) ] =>
task join V[[2]] =>
(# V[[N]]) => t => (# V);

else return t;
}

}

Fig. 10. Graph construction using divide and conquer

At each level of the recursion, the graph grows by one task. Although it is
convenient to express graph construction in this way, it is often easier to create
an array of filters and chain them together using a common utility method. We
illustrate this in Figure 9: makeFilters creates the array and the library method
Idioms.pipeline constructs the pipeline.

The graph extracted from ([ recursive(new KeySchedule(), 15) ]) is
structurally equal to that constructed with the following expression:

([ Idioms.<bit[[64]]>pipeline(makeFilters(new KeySchedule())) ]).

8.3 Divide and Conquer

Divide and conquer extends the recursive idiom with parameterized ordinal types
(Section 5.1). We present an example of a library utility which exploits first-class
task values with higher-order logic.

Figure 10 shows a generic method Idioms.dnc parameterized by the type V

of the values flowing between tasks and the input size N. This method builds a
graph that divides the input recursively until the base case is reached, connects
a task t to perform the desired computation, and inserts joiners to combine the
results from each level of recursion.

The mergesort benchmark uses this idiom to construct its task graph as in
Idioms.<int, 16>dnc(task Merge.sort) where task Merge.sort creates a
task to sort a given (merged) array of integers.

The example relies on Lime matchers which appear as # in the code. This
paper did not present matchers, but they were explained in previous work [8].
Conceptually, the simplest matchers (as in this example) perform aggregation
to convert a stream of V to V[[N]] or deaggregation for the reverse conversion.
Lime provides type inference across the connect operator so that the left or right
side of the conversion may be omitted.

8.4 Map and Repeat

Iterative and recursive construction predominantly serve to construct sequences
of connected tasks. An alternate idiom uses multitask constructors (Section 3.3),
which construct vectors of tasks not directly connected to each other.
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public class Beamformer {
static task Task makeBeams(int N) {

var beams = new Task[N];
for (int b = 0; b < N; b++) beams[b] = makeBeam(b);
return task [ beams ];

}

static local Task makeBeam(int id) { return task Beamformer.formBeam(id, float); }
static local float formBeam(int id, float val) { ... }

}

public class Idioms {
static task <ordinal N, V extends Value> Task repeat(Filter<V,V>[[N]] filters) {

return (V # V[[N]], repeat N.size) =>
task split V[[N]] => task [ filters ] => task join V[[N]];

}
}

Fig. 11. Multitask construction example for map and repeat idioms

Figure 11 shows an example, drawn from the beamformer benchmark and
simplified for exposition. The makeBeams method initializes an array of tasks
and then returns the multitask composition of the array elements. The Lime
map operator (@) [8] permits a more concise encoding as

static task Task makeBeams(int N) {

return task [ @ makeBeam(indices(N)) ]; }

but we omit the details of the map and indices method for lack of space.
We distinguish between two classes of multitasks: those that operate on parti-

tioned streams and constructed using map, and those that operate on a repeated
stream. In the former, a single stream is split and distributed to each of the tasks.
In the latter, the values in a stream are repeated k times immediately before the
splitter. The end result is that each of the connected tasks observe and operate
on the same values.

We implemented a library utility method called Idioms.repeat that accepts
a multitask, and returns a graph consisting of a task that repeats values the
required number of times, and connects it to a splitter, multitask and joiner.
The example (Figure 11) illustrates another feature of matchers (i.e., the repeat
count) that is not covered in this paper. Conceptually, the matcher repeats every
value it consumes N times on every invocation.

8.5 Manual

The preceding examples all exhibit reducible graph topologies. Other important
topologies can only be expressed with manual connections. These include not
only irreducible graphs, but also use cases that are simply easier to express
using a richer programmatic interface.

Toward this end, the Lime manual connection API (Figure 5) has proved
useful. Using manual connection, we created several library utilities to express
a variety of graph shapes. These include butterfly networks, systolic arrays and
reduction trees. In each case, the library utilities establish the desired shape,
parameterized by a small number of values, and allow the programmer to pass
in tasks as first-class values to connect internally.
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We rely on the power of Lime to encapsulate complex manual graph con-
struction algorithms in libraries using higher-order functions, while still enjoy-
ing parameterized types and sizes, type safety, and repeatable graph shapes. The
ability to write the graph construction code in the same language and semantic
domain as the rest of the application also means a single development and de-
bugging environment is needed. This is especially helpful for the construction of
irreducible graphs where the code is relatively more complex compared to idioms
illustrated earlier.

8.6 Extraction and Synthesis Results

The Lime compiler successfully extracted the relocatable graphs in each of the
benchmarks. An FPGA-specific backend compiled the Lime code to Verilog and
using a commercial toolchain, synthesized the code into circuits suitable for
programming an FPGA. We used Xilinx ISE version 14.1 to synthesize designs
for a Virtex 5 XCV5LX330T FPGA. The last column of Table 1 reports the
clock frequencies achieved for each of the benchmarks.

All of the benchmarks are written so there is one extractable graph; however
the FPGA backend cannot generate code for every task in some of the graphs.
Usually limitations arise from matcher tasks with advanced features not dis-
cussed in this paper. In such cases, the compiler partitions the task graph into
the largest non-overlapping subgraphs, and synthesizes each partition indepen-
dently. For these, we report the range of frequencies achieved for the subgraphs.
We are working to address the implementation gaps in our FPGA compiler so
that the entire extracted graph is compiled into one large circuit.

The synthesis results provide evidence that the graph extraction and relo-
cation concepts are sufficiently powerful to synthesize task graphs into FPGA
circuits from high-level object-oriented code. The compiler can fully pipeline the
logic for task graphs that consist only of matchers and tasks created from pure
methods that are considered combinational. The polynomial evaluation algo-
rithm illustrated throughout the paper is one such example. The data encryption
standard des is another. The remaining benchmarks contain non-combinatorial
tasks that our compiler does not yet fully pipeline. Hence, the achieved frequency
is not an absolute measure of throughput for the majority of the benchmarks.

9 Related Work

Streams-C [5] pioneered the idea of using streaming language extensions for
programming FPGAs. Streams-C provided a simple, static macro language for
describing stream graphs, and let the programmer express kernel logic in a subset
of C. The stream graph macro language, following the Communicating Sequen-
tial Processes (CSP) model [14], allowed the construction of arbitrary graph
shapes. The graph language did not include any substantial constructs to sup-
port abstraction or code reuse.
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Several other projects have targeted FPGAs with CSP-style streaming con-
structs and kernels written in C subsets. For example, ASC [6] incorporates
streaming directives into C kernels based on loops. Plavec et al., [4] marry ker-
nels in C with the Brook [15] streaming language. These projects did not address
issues relating to abstraction, encapsulation, or reuse of stream graph construc-
tion algorithms.

Lime support for streaming was inspired by the influential StreamIt lan-
guage [16]. In particular, Lime builds on work by Hormati et al., [7] which
compiles StreamIt to FPGAs. Unlike work based on CSP, StreamIt provides a
structured language suitable for reducible stream graphs. As in Lime, expressions
which describe stream graphs may be parameterized by compile-time constants.
As we have shown, Lime supports a much more general notion of compile-time
constants than previous object-oriented languages.

StreamIt provides a small language for specifying stream graphs; in contrast,
Lime embeds the stream graph construction in a general purpose object-oriented
language. As such, Lime provides a richer language with more advanced abstrac-
tion, which can be used to construct stream graphs. We have shown innovations
in Lime which allow it to support irreducible stream graphs constructed with
complex code, which can still be synthesized to an FPGA.

Like StreamIt, SPL [2] provides a restricted separate language for describ-
ing stream graphs. Recently, Hirzel and Gedik [2] introduced higher-order com-
posite operators into SPL, to support richer abstractions for describing stream
graphs. Hirzel and Gedik introduce specialized macros to express higher-order
constructs. In contrast, our approach inherits higher-order constructs for free by
embedding graphs in a general purpose object-oriented language.

The Flask project [17] presents a domain-specific streaming language embed-
ded in Haskell, targeting sensor networks. Flask guarantees static structure of
stream graphs by staging the static graph construction code earlier than the
dynamic object programs which run on devices, using concepts introduced for
two-level meta-programming in functional languages [18]. The Lime constructs
presented here might be considered an approach to support limited multistage
programming in a Java-like language.

9.1 Partial Evaluation

Our work is related to strategies for off-line partial evaluation [11]. In particular,
Lime constructs presented here can be viewed as binding-time annotations, which
specify a division to drive off-line partial evaluation of certain Lime constructs.

Several previous systems introduced annotations into programming languages
to drive specialization. Notable systems have targeted ML [19] and the C pro-
gramming language [20,21,22]. Our work, targeting an imperative language, has
several aspects in common with previous systems for C.

Consel and Noel presented Tempo, a system for runtime specialization of C
programs [22]. Tempo adds annotations to C programs to mark variables as
static or dynamic, including constructs to denote holes to represent runtime val-
ues that should be plugged in to specialized template code at runtime. Tempo



704 J. Auerbach et al.

incorporates non-trivial alias analysis in order to propagate annotations dur-
ing binding-time analysis. Tempo supports more than oblivious algorithms, and
includes significant support for expanding specialization templates at runtime.

Poletto et al. presented ‘C [20] in which the programmer could mark general
expressions as “runtime constants”, and the system would defer code generation
using such values until runtime. In DyC [21], the programmer could annotate
function parameters to provide an initial division of the program into static and
dynamic components. The DyC system provided significant runtime support to
specialize the dynamic division online, including support for polyvariant special-
ization and division, and interprocedural specialization at runtime.

Similar to these systems, Lime allows the programmer to specify an initial
division which drives partial evaluation. However, Lime differs from the previ-
ous work for C in several significant aspects. First, Lime supports solely off-line
specialization, whereas many previous systems such as ‘C, DyC, and Fabius [19]
provide significant support for runtime specialization. Lime targets code gener-
ation for devices such as FPGAs, where runtime specialization is not practical
with current synthesis technology. Instead, Lime restricts the relevant code to
oblivious algorithms amenable to off-line evaluation.

Second, Lime’s binding time annotations are fully integrated into the type
system, which provides safe, modular checking. In contrast, previous systems
for C were usually unsafe, or relied on aggressive interprocedural alias analysis
to reason about side effects and reaching definitions. For example, in DyC, the
programmer could annotate array contents as immutable, but the system could
not verify these annotations.

In general, binding time analysis in traditional partial evaluation systems
must perform aggressive, challenging interprocedural static analysis to compute
a global division from annotations e.g., [23,22]. Experience has shown that such
analysis often fails to be sound for real-world Java programs. Instead, the Lime
language allows modular, sound type checking.

Additionally, Lime restricts the static division to oblivious code sequences [11],
which can include holes for values, but where dynamic values cannot affect con-
trol flow. We are not aware of any previous type systems or languages which
specifically target oblivious algorithms.

10 Conclusion

We have presented language constructs that allow the programmer to use the
full power of an object-oriented language to construct stream graphs, yet still
allow the compiler to extract static shape information needed to compile to an
FPGA. This work was motivated by constraints when compiling to hardware,
which makes knowledge of static structure a necessity, and not just an opti-
mization. However, our language approach might prove useful in other domains
which would benefit from analysis of complex static structures built with general
purpose language abstractions.
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Abstract. Reactive programming with first class time-varying values as
in Functional Reactive Programming (FRP) is a powerful paradigm for
designing and implementing event-based applications. Existing imple-
mentations deal with simple values. Time-varying collections can only
propagate whether they have changed or not but not what has changed.
This is inefficient compared to fine-grained callback driven logic that
propagates incremental changes. In this work, we present a framework,
Scala.React, with reactive abstractions for event streams, time-varying
values as well as an incremental reactive list. Our reactive lists support
both first-order reactivity by means of composition similar to functional
collections via map, filter, fold and alike, as well as higher-order reactiv-
ity with support for time-varying collection elements. The framework au-
tomatically propagates incremental changes and guarantees strong data
consistency. We show in examples that our system is convenient to use
and performs well.

1 Introduction

In contrast to batch mode systems, reactive systems constantly interact with
their environment. They require substantial effort to process input, track data
dependencies and produce output. Common examples of reactive systems are
user interface applications, trading applications, simulations, games, embedded
systems, and sensor networks. Traditionally, event handling is implemented in
imperative languages in terms of callbacks. Reasoning about complex event logic
and dynamic data flow in callback-driven code quickly becomes impossible. Var-
ious approaches to raise the level of abstraction and to simplify the implemen-
tation of reactive systems have been investigated for almost 50 years now [26].

A fairly recent approach, which greatly simplifies local reasoning about data
flow, is functional reactive programming (FRP). It moves the burden of tracking
data dependencies from the application programmer to a general reactive frame-
work and takes care of propagating changes in the correct order. Common ab-
stractions of FRP systems integrated into imperative programming languages are
time-varying values (in the following called signals) and event streams [7,21,19].
An event stream represents an entity that emits events and can be composed
functionally. We can, for example, create an event stream that emits all events
from two input event streams. A signal, on the other hand, holds a value and
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can be composed using expressions from the host language which automatically
change when one of the referred signals change. These abstractions are first-class,
i.e., they can be used to abstract over them and a signal or event stream can
hold or emit other signals and event streams.

Existing FRP implementations propagate absolute values, with no support
for incremental changes in data structures. Many reactive applications, however,
maintain time-varying lists of elements in memory. Simulations and games main-
tain lists of agents, a task manager a list of tasks, an address book a list of address
entries, file managers directory contents, etc. These lists are constantly changed,
queried and displayed as a whole or partially. In existing FRP implementations,
such time-varying lists must be represented as signals of non-reactive collections.
When combined with functional collection composition, this results in reevalu-
ating entire collections even for the smallest changes. For an example, consider
an address book application that manages a time-varying list of contact records
with a name, address and phone number. If we map that list to a list of the
corresponding names, e.g., for display in a list view, we don’t want to recompute
the entire names list when a single contact gets added to the contact collection.
We rather want to just add the name of the new contact to the names list. We
can take this idea one step further. In practice, names, addresses and phone
numbers can change, i.e., they are time-varying. A contact entry can therefore
be represented as a record of signals. In this case, we also want to perform the
least amount of recomputation when an existing contact name changes – ideally
just change the affected name in the names list.

1.1 Contributions

In this work, we develop a reactive programming framework, Scala.React, with
support for functional reactive collection composition and propagation of incre-
mental changes. We develop a reactive list data structure that supports higher-
order reactivity. Our main contributions are in particular:

– We show how an incremental reactive list data structure that supports com-
mon combinators such filter, map, fold integrated into a functional reactive
language simplifies the implementation of complex event logic and higher-
order data flow involving time varying collections.

– We discuss the conceptual as well as practical challenges that arise in the
definition and implementation of collection operations such as filter, flatMap,
folds and in the support for higher-order reactivity. We introduce a binary
tree of sequence segments, which automatically balances itself in reaction to
changes and uniformly solves the problems we identified.

– We give time as well as space complexities for reactive lists and their op-
erations and present a performance analysis that compares our reactive list
with time-varying non-incremental lists.
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2 Overview

In this section, we examine how we address the problems identified above in our
reactive programming model with the help of a representative example.

Consider the implementation of an in-memory database of albums, artists and
songs in a media player. An entry is of type Album which stores a list of tracks.
The abstract base types are defined as follows:

abstract class Album {

def title: Signal[String]

def artist: Signal[String]

def tracks: RSeq[Track]

def category: Signal[String]

}

abstract class Track {

def album: Album

def number: Signal[Int]

def title: Signal[String]

def file: Path

}

Most album and track properties in a media player can be modified by the user.
Therefore, they are of type Signal[T], the base class for time-varying values of
type T in Scala.React. We can create a label that shows the currently playing
track using signal composition as follows:

val currentTrack: Signal[Track] = ... // the currently playing track

val playingLabel: Signal[String] = Signal {

val t = currentTrack()

"Playing " + t.title() + " by " + t.album.artist()

}

The resulting string signal playingLabel will change whenever any of its dependen-
cies change. A signal created via syntax Signal { expr } establishes dependencies
with all signals that were accessed in expr with function call syntax and reeval-
uates expr whenever they change. We say expr applies those signals accessed via
function call syntax. In the example, playingLabel applies and therefore depends
on the currentTrack, the current tracks title and the artist of its album. We could
now use playingLabel to create a label view in the user interface, for example.

The album class contains a reactive list of tracks. It is of type RSeq[Track],
the base class for reactive sequences in Scala.React. We could have defined it as
of type Signal[Seq[Track]], using base type Seq for non-reactive collections from
Scala’s standard library. This would lead to the problems we identified in the
introduction. For example, given a list of albums of type Signal[Seq[Album]], to
create a list of all album titles we would have to write:

val albums = new Var[Seq[Album]](Nil)

val albumTitles: Signal[Seq[String]] = Signal {

albums() map { album => album.title() }

}

Class Var[T] implements a mutable signal of T and takes an initial value in its
constructor – in this case an empty list. The resulting signal albumTitles would
now depend on the albums signal and each album’s title and would create a new
mapped sequence for every change in the albums list or in any of the album titles.
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Obviously, this implementation would be very expensive (see Section 6). Instead,
we store the list of albums in a reactive buffer which we can map directly:

val albums = new RBuffer[Album]

val albumTitles: RSeq[String] = albums sigMap { album => album.title() }

Class RSeq[T] is the base class for reactive sequences with elements of type T.
Class RBuffer[T] is a subtype of RSeq[T] which exposes a mutable interface just
like Var does for signals. Throughout this paper, we use the terms reactive list
and reactive sequence interchangeably.

Operator sigMap works like the common map operator on immutable collec-
tions with an important difference: it tracks all changes in the input collection
albums. It also establishes dependencies to all applied signals in the closure ar-
gument – every album’s title in the example. The resulting RSeq albumTitles is
now connected to the original album list and will automatically change, whenever
albums changes, e.g., when an album is inserted or removed. On every change,
albumTitles will incorporate changes and only those changes from its input list
albums. For instance, if a new album gets appended to albums, albumTitles will
only append the title of that album to itself. The reactive list albumTitles will
also automatically change whenever any title of an album currently contained in
list albums changes. We will discuss details on the precise effects of such changes
in Section 4.

trait Seq[+A] {

def size: Int

def apply(idx: Int): A

def contains[B >: A](a: A): Boolean

def count(p: A=>Boolean): A

def exists(p: A=>Boolean): Boolean

def map[B](f: A => B): Seq[B]

def filter(p: A => Boolean): Seq[A]

def flatMap[B](f: A => Seq[B]): Seq[B]

def ++[B >: A](that: Seq[B]): Seq[B]

def fold[B >: A](z: B)(op: (B, B) => B): B

def foldLeft[B](z: B)(op: (B, A) => B): B

def foldRight[B](z: B)(op: (A, B) => B): B

}

Fig. 1. The main interface of a Scala standard collection sequence

There are many more operators defined in class RSeq. Figure 2 shows the
most commonly used methods from RSeq. The interface largely mimics the in-
terface of non-reactive Seq shown in Figure 1 for reference1. All methods in RSeq

now return signals or reactive sequences instead of plain values or non-reactive
1 The hierarchy is slightly simplified and some methods actually defined in base classes.
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sequences reflecting the fact that anything can change. Some methods come in
two versions, one with a sig prefix. This prefix indicates that in this version of
the method, the argument function is allowed to apply signals. We call such a
version higher-order reactive since it is parameterized by an (unknown and po-
tentially varying) number of signals. Methods without a sig version depend only
on a fixed and known number of dependencies and are therefore called first-order
reactive. Figure 4 shows a few examples using different operations on RSeq. Note
that we are free to use any Scala expression inside those queries.

trait RSeq[+A] extends Reactive[RSeqDelta[A], Seq[A]] {

def now: Seq[A]

def size: Signal[Int]

def apply(idx: Int): Signal[A]

def contains[B >: A](a: B): Signal[Boolean]

def count(p: A=>Boolean): Signal[Int]

def sigCount(p: A=>Boolean): Signal[Int]

def exists(p: A=>Boolean): Signal[Boolean]

def sigExists(p: A=>Boolean): Signal[Boolean]

def map[B](f: A => B): RSeq[B]

def sigMap[B](f: A => B): RSeq[B]

def filter(p: A => Boolean): RSeq[A]

def sigFilter(p: A => Boolean): RSeq[A]

def flatMap[B](f: A => RSeq[B]): RSeq[B]

def sigFlatMap[B](f: A => RSeq[B]): RSeq[B]

def ++[B >: A](that: RSeq[B]): RSeq[B]

def foldUndo[B](init: B)(op: (B, A) => B)(undo: (B, A) => B): Signal[B]

def aggregate[B](init: B)(op: (B, A) => B)(combine: (B, B) => B): Signal[B]

def sigAggregate[B](init: B)(op: (B, A) => B)(combine: (B, B) => B): Signal[B]

}

Fig. 2. Most commonly used methods in the base interface of reactive sequences

For reference, Figure 3 shows the mutable interface of an RBuffer which is the
same as the interface for non-reactive Buffers in Scala (not shown).

2.1 Evaluation Model

Before we will discuss individual collection operations, we give a conceptual
overview of Scala.React’s evaluation model and how it propagates changes2.

Scala.React maintains a number of acyclic dependency graphs each encapsu-
lated in their own domain. Domains can communicate asynchronously with each
other, but propagation inside a single domain is synchronous. Asynchronous com-
munication across domains is out of the scope of this paper – we will limit our
view to that of a single domain. A domain proceeds in discrete, non-overlapping
2 We will simplify details that are not relevant in the context of this work.
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trait RBuffer[A] extends RSeq[A] {

def insert(idx: Int, elems: A*)

def update(idx: Int, a: A)

def +=(a: A)

def append(as: A*)

def remove(idx: Int, count: Int)

def remove(idx: Int)

def clear()

}

Fig. 3. The mutable interface of reactive sequences

turns. Between turns, a domain receives updates to source nodes, which are nodes
that do not depend on other nodes, such as the albums RBuffer from above. As
soon as there is a pending update, a domain makes sure that a turn is scheduled.
A turn consists of two phases, admission and propagation.

When a domain enters a turn, it starts with the admission phase, where all
pending updates to source nodes are collected and added to a list of updated
sources. The domain then enters propagation, where admitted changes are tran-
sitively propagated through the dependency graph, for example from the RBuffer

albums to the RSeq[Track] tracks and then to the RSeq[String] trackNames in the
examples from Figure 4.

Scala.React generalizes signals, event streams and reactive collections into
reactives of type Reactive[P,V]. A reactive holds a value of type V, which can be
obtained via method now: V. In a turn in which a reactive changes, it holds a
pulse of type P, which represents a change. For signals, a pulse represents the
new value, therefore Signal[A] is a subclass of Reactive[A,A]. Event streams only
exist for their pulses. Their values never change. Therefore, Events[A] is a subclass
of Reactive[A, Unit]3. A reactive list RSeq[A] has a standard Seq[A] as its current
value and a pulse of type RSeqDelta[A]. The pulse of an RSeq is a delta to its
previous value. We specify a delta of an RSeq[T] as an element of set Δ, defined
as follows:

ΔIns = {InsΔ(i, e) | i ∈ N, e ∈ T}
ΔRem = {RemΔ(i, e) | i ∈ N, e ∈ T}
ΔA = ΔIns ∪ΔRem ∪ {εΔ}
ΔC = {ConcΔ(δ1, δ2) | δ1, δ2 ∈ Δ}
Δ = ΔC ∪ΔA

3 Type Unit in Scala is equivalent to java.lang.Void in Java. We won’t go further
into event streams, since they are not relevant for this work beyond demonstrating
the more general concept of reactives.
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// all albums in the blues category

val bluesAlbums: RSeq[Album] = albums sigFilter { album =>

album.category().toLowerCase == "blues"

}

// all blues albums by artist Eric Clapton

val bluesAlbumsCountByClapton: RSeq[Album] = bluesAlbums sigCount { album =>

val artist = album.artist().toLowerCase

artist == "clapton" || artist == "eric clapton" || artist == "clapton, eric"

}

// a list of all tracks

val tracks: RSeq[Track] = albums flatMap { _.tracks }

// a list of all tracks names, e.g., for use in a list view

val trackNames: RSeq[String] =

tracks sigMap { t => "#" + t.number() + " " + t.name() }

// the total disk space occupied by all track files

val totalFileSize: Signal[Int] =

tracks.foldUndo(0) { (res, track) => res + track.file.size }

{ (res, track) => res - track.file.size }

// (One of) the album(s) with the fewest tracks.

val albumWithFewestTracks: Signal[Album] =

albums.sigAggregate[Option[Album]](None) { minAlbum _ } { (result, album) =>

result match {

case Some(res) => Some(minAlbum(res, album))

case _ => Some(album)

}

}

// helper function for the fewest tracks query

def minAlbum(a1: Album, a2: Album) =

if(a1.tracks.size() < a2.tracks.size()) a1 else a2

Fig. 4. Some queries on the list of albums
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A delta can either be an atom, the smallest unit of change, or a concatenation
of other deltas. Atoms InsΔ and RemΔ represent element insertions and removals
of an element e at index i. εΔ represents the null pulse, i.e., no change in the
reactive list. We include εΔ in the set of deltas in order to make all helper
functions below total, which will prove useful later. Note that delta concatenation
is not commutative. For example, InsΔ(0, x) followed by InsΔ(0, y) is a different
change than InsΔ(0, y) followed by InsΔ(0, x) for x �= y.

When a reactive is evaluated during propagation, it evaluates its pulse and
value based on the pulses and values of its dependencies. A signal simply eval-
uates expression e in signal constructor Signal{ e }. A reactive list evaluates its
pulse based on which combinator it was created by. In the following, we will
discuss how these pulses are evaluated to understand the complexity of different
operations on reactive lists and eventually their implementation. Note that we
abstract from dynamic dependency management and the propagation strategy
in our descriptions. Because we include εΔ in the set of deltas, we can evaluate
the pulse of a derived RSeq in any turn. Since the dependency graphs we create
are acyclic, we can assume that a reactive is always evaluated after its depen-
dencies. A pulse and value of a reactive r can be evaluated from current pulses
and values of other reactives and the previous value of r.

3 The Concat Tree

In well-designed applications, the choice of data structures influences the design
of the application and vice versa. The choice of data structure is influenced by
factors such as expected access patterns and space consumption. In a higher-
order reactive system like ours, access patterns are generally impossible to pre-
dict. Moreover, the choice of data structure in one reactive list has an effect on
all dependent lists. Consider a list created by sigMap or sigFilter. An update of
an element at a random position in the input list results in a random access into
the dependent list and possibly in transitive dependents.

In the following, we will introduce a data structure that allows us to implement
almost all operations on reactive lists in O(log n) or less time. We call the data
structure a concat tree. A concat tree is a binary tree that recursively subdivides
a list as shown in Figure 5 and automatically balances itself when the underlying
list changes. The leaves split a list into non-overlapping segments without any
gaps between segments. Each inner node represents the concatenation of its two
children. The root therefore represents the entire list. Each node stores two child
pointers, a parent pointer and a length, which is the number of elements in the
list represented by the node. The length of an inner node is therefore the sum of
the lengths of its children. It is important that nodes do not store their positions
in the entire list.

There exist different variations of this tree in our system, all sharing the
same base functionality. An RBuffer uses a mutable concat tree (which we call a
segment buffer) that stores a dynamic array in each leaf. A segment buffer is a
generalization of a dynamic array or more generally a gap buffer, with efficient



Higher-Order Reactive Programming with Incremental Lists 715
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Fig. 5. A concat tree, recursively decomposing a sequence with leaves projecting seg-
ments from an underlying sequence. Nodes show lengths of their segments.

insertion and removal at random indices. Inserting or removing an element at
a random list index i in a segment buffer of n elements and m leaves works as
follows. We first search the leaf whose range contains i, starting from the root
recursively choosing a child by comparing lengths. As we will see, a concat tree
is balanced, therefore finding the corresponding leaf takes O(logm) time. We
then insert or remove the element in the leaf segment, which takes O(g) time,
where g depends on the representation of the list segment. As this changes the
leaf length, we follow parent pointers to the root, updating length values on
the way, which takes O(logm) time. Note that if we would store positions in
nodes, an insertion or removal in a leaf segment would invalidate positions of
all following segments, making insertions and removals O(m) time operations on
average. Without the need to update node positions, insertions and removals take
O(g+logm) time. For example, if leaf segments are dynamic arrays with length
bounded by constant l, then O(g) = O(l) = O(1) and total insertion/removal
time is O(logm).

The other major use case of the concat tree in our system is to obtain a stable
segmentation of an existing time-varying list so that a change in one segment
does not invalidate other segments. Imagine the tree in Figure 5 subdivides an
underlying list xs of unknown representation. Leaves do not store contents but
by their length value and position in the tree represent or project a segment of
xs. When elements gets inserted or removed from xs, the tree needs to adapt
the length values and only those that have changed. For example, if xs inserts
an element at index 9 in the list in Figure 5, we first find that this change affects
the third leaf from the left in O(logm) time, just like we do for insertions into
segment buffers. The leaf then needs to update its length value to 5, as well as
its ancestors up to the root to 18 and 26. Because nodes do not store indices, we
don’t have to update other leaves and their ancestors. Therefore, adapting the
concat tree to a single insertion or removal takes O(logm) time. We essentially
just retraced the execution of an insertion into a segment buffer.

We often want a concat tree to split a list into segments not smaller than
a threshold smin and not larger than a threshold smax. For a segment buffer,
for example, if smax is not bounded, insertion and removal become O(n) opera-
tions. If smin is too small, the tree becomes large and operations on the leaves will
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benefit less from cache locality. Therefore, if a leaf length becomes larger than
a given constant threshold s, the tree will split the leaf into two. Conversely,
if a leaf length becomes less than smin, the leaf is merged with a neighboring
leaf. Of course, smin and smax and the exact split and merge strategy have to
be chosen in such way that a split does not create leaves smaller than smin or
a merge does not create leaves larger than smax. Continuous updates of a list
can result in an imbalanced tree if not counteracted. Every split or merge can
therefore result in a number of tree rotations to balance the tree. Scala.React’s
internal interfaces do not depend on a specific algorithm. Therefore, the precise
balancing approach is implementation specific and can easily be changed. We
require that rebalancing is an O(log n) operation, however, so that our O(log n)
time guarantee for all operations can be upheld.

4 Incremental Sequences

In this section, we will describe individual operations, their complexities and how
they are evaluated. For space reasons, we will not describe every operation in
detail but concentrate on those operations that demonstrate the most important
ideas.

Before we proceed, we define a few helper functions on list deltas. The size of
a delta sizeΔ : Δ→ N is defined as the number of atoms in it :

sizeΔ(ConcΔ(δ1, δ2)) = sizeΔ(δ1) + sizeΔ(δ2)

sizeΔ(δ) = 1, δ ∈ ΔA

Pulse composition / : Δ×Δ→ Δ combines pulses sequentially. It is defined so
that null pulses do not occur in ConcΔ:

δ1 / δ2 =

⎧⎪⎨
⎪⎩
δ1, if δ2 = εΔ

δ2, if δ1 = εΔ

ConcΔ(δ1, δ2), otherwise

Pulse composition is therefore an O(1) operation. We define two transformation
functions on deltas. Function mapi : Δ× (N→ N)→ Δ maps indices and keeps
elements:

mapi(ConcΔ(δ1, δ2), f) = ConcΔ(mapi(δ1, f),mapi(δ2, f))

mapi(InsΔ(i, e), f) = InsΔ(f(i), e)

mapi(RemΔ(i, e), f) = RemΔ(f(i), e)

mapi(εΔ, f) = εΔ,
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Function mape : Δ × (T → T) → Δ is similarly defined and maps elements but
keep indices:

mape(ConcΔ(δ1, δ2), f) = ConcΔ(mape(δ1, f),mape(δ2, f))

mape(InsΔ(i, e), f) = InsΔ(i, f(e))

mape(RemΔ(i, e), f) = RemΔ(i, f(e))

mape(εΔ, f) = εΔ,

Function translateΔ : Δ× N→ Δ moves indices by a constant:

translateΔ(δ, j) = mapi(δ, i �→ i+ j)

It is easy to see that mapping indices takes O(k · g) time, where k is the size
of the input delta and O(g) the complexity of the given map function f . For
translation, f takes O(1) time, therefore translation takes O(k) total time.

4.1 Mutating RBuffers

The mutable interface of an RBuffer may be accessed only during the admission
phase of a turn. An RBuffer stores a buffer for its value internally. Individual
operations compose the pulse of their RBuffer in a straightforward way. Method

def remove(idx: Int)

for example, retrieves the current value v at index idx, e.g., via v = now(idx),
set the current pulse δ to δ = δ / RemΔ(idx, v), and updates its internal buffer.
Setting the pulse during admission takes O(k) total time, where k is the size of
the delta. Updating the value depends on the underlying buffer implementation.
For a segment buffer, this takes O(k logn) time, which therefore is also the total
time of admitting a delta for an RBuffer.

4.2 Mapping

Method map maps elements from one list to elements in an output list and is
defined in RSeq[A] as follows:

def map[B](f: A => B): RSeq[B]

The resulting list’s pulse δ is solely based on the pulse δ′ of the original list:
δ = mape(δ

′, f). Processing deltas for map therefore takes O(sizeΔ(δ′) · g) time,
given f takes O(g) time. Internally, a mapped list maintains a segment buffer as
its value, which is updated for each pulse in O(log n) time. Updating pulse and
value hence takes O(sizeΔ(δ′) · g · logn) time.
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4.3 Concatenation

Method ++ concatenates two lists and is defined in RSeq[A] as follows:

def ++[B >: A](that: RSeq[B]): RSeq[B]

The pulse δ of the resulting list is a combination of the current pulses δ1, δ2
of the left and right input lists and the current size s of the left input list:
δ = δ1 / translateΔ(δ2, s). Processing pulses for ++ therefore takes O(sizeΔ(δ2))
time. The value is a simple wrapper that delegates to the values of the two inputs
and does not need to be updated.

4.4 Reversible Folds

Most common operations on non-reactive collections can be implemented in
terms of folds (also known as catamorphisms [20]). Folds fix the structure of the
recursion process and leave the initial value and the applied operation open. The
recursion process is sequential; left and right fold iterate over a collection from
left to right or vice versa, applying a function to each value and the accumulated
result starting from an initial value. In the context of incremental collections,
their sequential nature makes them seem out of place. Consider changing a value
in the middle of the original list. In order to update the result of a left fold, we
need to traverse the entire list, making left folds an Ω(n) time operation even for
the smallest change. We can however put different constraints on the supplied
operations and obtain a more efficient way to incremental folding. The most
efficient version is foldUndo, which is defined in RSeq[A] as follows4:

def foldUndo(init: A)(op: (A, A) => A)(undo: (A, A) => A): Signal[A]

It takes an initial value init of type A, an operation op that is associative and
commutative, and an undo operation for which the following must hold:

b op a undo a = b, ∀a, b ∈ A

Because of associativity and commutativity of op, we can reorder applications of
op at will. Because of the above constraint on undo, we can "remove" an element
from the result as follows:

a op ... op x op ... op z undo x = a op ... op z op x undo x

= a op ... op z

In practice, (A, op) often forms a commutative monoid with identity element
init.

The signal resulting from foldUndo performs a left fold with op on creation to
obtain its initial value. It then evaluates its current pulse (and therefore value)
4 In practice, we can put weaker constraints on the types to obtain

the signature def foldUndo[A](init: B)(op: (B, A) => A)(undo: (B, A) => A):

Signal[B]. This complicates the algebraic properties of op and undo, however. We
will restrict the discussion to the simple case.
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from its previous value v ∈ B and the current pulse δ ∈ Δ of the sequence
according to function f : B ×Δ→ B defined as follows:

f(v, ConcΔ(δ1, δ2)) = f(f(v, δ1), δ2)

f(v, InsΔ(i, e)) = v op e

f(v, RemΔ(i, e)) = v undo e

f(v, εΔ) = v

It easy to see that f processes deltas δ in O(sizeΔ(δ)) time. We can now write,
for example:

val sum: Signal[Int] = xs.foldUndo(0){_ + _}{_ - _}

This sums all elements to obtain an initial value. For every element that is
inserted into xs, its value is added to the resulting signal’s value. For every
element that is removed, its value is subtracted from the resulting signal.

Examples. Method size is implemented in terms of foldUndo:

def size: Signal[Int] = foldUndo(now.size) { (x,y) => x+1 } { (x,y) => x-1 }

The initial value is the size of the list in the turn in which size is called, adding
and subtracting one when elements get inserted or removed. Operator exists or
contains are implemented in terms of a count operation, using foldUndo as follows:

def count(p: A=>Boolean): Sig[Int] =

foldUndo(0) { (res, x) => if(p(x)) res+1 else res }

{ (res, x) => if(p(x)) res-1 else res }

def exists(p: A=>Boolean): Sig[Boolean] = {

val c = count(p)

Sig { c() > 0 }

}

We are using foldUndo to keep track of the element count that fulfills the predicate
and then use a signal expression to convert it to a boolean signal.

4.5 Associative Folds

Not all operations commonly used in folds are both associative and commu-
tative or are reversible. Binary minimum or maximum, e.g., is associative and
commutative but is not reversible. String concatenation is associative but not
commutative. Operations that are at least associative are in fact very common.
Parallel collection frameworks often rely on precisely this fact to efficiently paral-
lelize the folding process [24,25]. The signature of our associative fold operation
is as follows:
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def aggregate[B](init: B)(op: (B, A) => B)(combine: (B, B) => B): Signal[B]

The structure of such a fold recursively splits a list into segments as shown in
Figure 5. This tree can be modelled as an abstract data type of the form:

Tree = Seg(x0, ..., xn) | Conc(xs, ys)

The fold operation f used by aggregate uses a left fold for the leaves and has a
binary recursive structure for the inner nodes:

f(Seg()) = init

f(Seg(x0, ..., xn)) = ((x0 op x1) op ...) op xn

f(Conc(xs, xs)) = f(xs) combine f(ys)

The leaves could be modelled as single elements, which would simplify the struc-
ture of the fold. Unrolled segments as above, however, have multiple advantages
in practice. We can customize the depth of the tree, use CPU caches more ef-
fectively, and as we will see below, customize the granularity of higher-order
reactive operations.

In order to be able to react to changes in the original reactive list, the list
resulting from aggregate reifies the above data flow graph of an initial run of the
fold operation – in a conceptually similar way to how the core reactive frame-
work stores a dependency graph, but more specialized to the tree structure. The
structure of that tree is exactly the structure of our concat tree from Section 3.
In the aggregate version of the concat tree, every node stores not only a length
but also a value that is an intermediate result of the fold operation5. The root’s
value is therefore the final result. Leaf segments do not store elements directly,
but merely project a slice from the underlying list to fold. The slice is determined
by the segment length and its position in the tree.

We now go through an example that describes how the aggregated signal
reacts to changes in the input list. Consider the input list inserts an element as
shown in Figure 5. In order to update the fold result, we first find that insertion
affects the third segment (of length l=4), update lengths and potential rebalance
in O(logm) time, where m is the number of leaves, as described in Section 3.
Given an op that runs in O(g) time, we then left fold the segment in O(g · l) time.
Given a combine that runs in O(h) time, the result is then propagated up the tree
in O(h · logm) time, reusing intermediate fold results from previous runs. The
total operation therefore has an average time complexity of O(g · l̄ + h · logm),
where l̄ is the average segment length. This process is shown in Figure 6. For
composite deltas, we can naively repeat this process for every atom, leading to
O(k·(g·l̄+h logm)) average time complexity, where k is the size of the delta. Since
segment lengths are always constant bounded in our implementation, updating
the result of an aggregate signal takes O(k · logn) time for O(1) op and combine

operations.
5 This is sometimes called a monoid-cached tree [15,25], since the combine operation

together with element init usually form a monoid.
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Even though not conceptually, but in practice, we can process composite deltas
faster by evaluating all leaves first and then propagate up the tree in topological
order. This is in fact how our list is implemented as we show in Section 5.
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Fig. 6. Propagating a value up to the root. Reevaluated nodes are shaded.

Reversible folds and associative folds or more generally incrementally prop-
agating changes up the tee as described above are the keys to efficient incre-
mental reactive programming with lists. Obtaining incremental operations on
reactive lists from batch operations on non-reactive collections essentially means
translating linear recursion of sequential folds to tree recursion of associative
folds or ideally eliminating recursion with reversible folds – replacing O(n) with
O(k · logn) or O(1) operations. The tree data structure above comes with a
O(logm) cost in memory, though.

4.6 Higher-Order Reactivity with flatMap

Until now, all collection operations we discussed were first-order reactive in that
there was a fixed number of reactive inputs. As we have seen in the overview, our
system also supports higher-order reactivity in that reactive collections (in fact
any reactive) can contain other reactives. One example is flatMap, which takes a
function from the list element type to a reactive list:

def flatMap[B](f: A=>RSeq[B]): RSeq[B]

The resulting sequence therefore depends not only on the input collection, but
also on a varying number of lists obtained from argument function f.

Interestingly, flatMap and in fact many higher-order operations, can be imple-
mented in a similar way to an associative fold using a concat tree. This time,
the leaves of the tree store the lists obtained from f, as depicted in Figure 7 and
not just length values of an input list. For every change in the input list, the
implementation applies argument function f in O(g) time, inserts or removes a
leaf in the tree, potentially followed by a rebalancing operation, which both take
O(log n) time, where n is the size of the input list. Therefore, a single insertion
or removal in the input list results in an O(g+ logn) time update of the current
list value of the flatMapped sequence.
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Fig. 7. A concat tree for flatMap. Leaves store collections.

The nodes of the concat tree store deltas as values. For changes in the leaf
lists, we perform a tree traversal as for aggregate in Figure 6. Function op, applied
sequentially at the leaves, simply takes the current delta of the corresponding
RSeq, whereas function combine, combining results at the inner nodes, takes the
delta δ1 and length l from the left child and the delta δ2 from the right child
and composes them as the concat (++) operation, i.e.:

δ1 combine δ2 = δ1 / translateΔ(δ2, l)

In this fashion, the delta indices are stepwise translated and on reaching the root
eventually reflect the absolute index into the resulting flatMapped list. We have
already seen that this combine operation takes O(1) time, applied O(log n) times
to all nodes on the path from the leaf to the root. Therefore, updating the pulse
in this fashion takes O(log n) time. In total, propagating a delta from the input
to the flatMapped sequence takes O(k · (g + logn)) time, where k is the size of
the delta.

4.7 Higher-Order Reactivity with Time-Varying Elements

Since we want to be able to deal with collections that contain signals (directly
or indirectly), collection combinators can semantically take function arguments
that return signals:

def map[B](f: A=>Signal[B]): RSeq[B]

def filter(f: A=>Signal[Boolean]): Signal[Boolean]

def aggregate[B](init: B)(op: (B, A) => Signal[B])

(combine: (B, B) => Signal[B]): Signal[B]

A sequence mapped with the map function defined above would not only depend
on the input list but also on the signals defined by argument function f. We have
seen examples of this in Section 2, where we have also seen that we use signal
applications in argument functions. This is because the above definitions have a
big disadvantage. Consider the following, hypothetical filter operation:

class Person(name: Signal[String], address: Signal[String])

val persons: RSeq[Person] = ...

persons filter { p => Signal { p.name().startsWith("a") } }



Higher-Order Reactive Programming with Incremental Lists 723

This creates a new signal, i.e., new node in the dependency graph, for every
person that gets added and removed to the collection. This is very fine-grained
and can lead to large dependency graphs. What is worse is that some of these
signals are used just once but are not disposed before the next garbage collection
cycle6. This is a general problem with higher-order reactivity in FRP and a
variation of the dangling dependent problem of the functional reactive drag
operation as discussed in [19].

The above operations therefore come in pairs as we have seen in Figure 2, one
first-order reactive version and one higher-order reactive version for which the ar-
gument functions are explicitly allowed to call Signal.apply. The implementation
of those methods use the same mechanism as signals to establish dependencies,
but have control over the granularity. They create one dependent per leaf seg-
ment of the original collection, which will be notified whenever the segment is
modified or signals change that the argument functions have accessed during the
evaluation of that segment. This way, the number of dependents created by a
higher-order reactive list operation is reduced and stays constant if the list size
stays roughly constant, even if elements get inserted and removed constantly.
Details of this are implementation specific and discuss in Section 5.

Examples. Similar to how exists is implemented in terms of count, which in
turn is implemented in terms of foldUndo, sigExists is implemented in terms of
sigCount, which in turn is implemented in terms of sigAggregate as follows:

def sigCount(p: A=>Boolean): Signal[Int] =

sigAggregate(0) { (res, x) => if(p(x)) res + 1 else res } { _ + _ }

def sigExists(p: A=>Boolean): Signal[Boolean] = Signal {

val c = sigCount(p)

Signal { c() > 0 }

}

A change in a signal applied in the predicate will invalidate a segment in the
underlying sigAggregate tree and eventually propagate up the concat tree.

5 Implementation

We already gave an overview of the general mode of operation in Section 2.1. We
will now discuss the most important aspects of our implementation in reactive
lists and relevant parts of the general reactive framework.

5.1 Establishing Signal Dependencies

Some reactives, such as the from the first-order reactive map, foldUndo, or ++ se-
quence combinators, know their dependencies since they are explicitly supplied
6 Internally, dependencies are stored in weak references to ensure that a dependency

does not prevent a reactive from being collected.
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as arguments. For signals created with syntax Signal { ... } and higher-order
reactive combinators such as sigMap or sigAggregate, however, dependencies are
supplied implicitly via signal application. We now give a quick overview how this
works. The framework maintains a stack of dependents that is used by signals
and reactives from other higher-order combinators. Before such a reactive evalu-
ates a closure that is allowed to use signal application, it first pushes itself onto
the stack as follows:

def evaluate[A](dependent: Node, closure: ()=>Unit): A = {

dependentStack.push(dependent)

try { closure() }

finally { dependentStack.pop() }

}

where dependent is the node that is about to evaluate closure (class Node is an
internal generalization of class Reactive and simply represents any node in the
dependency graph). Signal application, which can be used in argument closure

above, is defined in Signal[V] as follows:

def apply(): V = {

checkTopology()

subscribe(dependentStack.top)

validate()

getValue

}

It registers the top of the stack as a dependent, i.e., a node which will be notified
when the enclosing signal changes. It then validates the signal and returns its
current value. When a signal sig defined as Signal{ a() + b() }7 is evaluated by
calling evaluate(sig, { a() + b() }), method apply in signals a and b automatically
establish dependencies between a, b and sig. This approach allows clients to use
any language expression in signals and higher-order reactives. We need to use a
stack of dependents, because method validate above can call evaluate recursively.

5.2 Data Consistency and Topology Mismatch

A domain maintains data consistency during a propagation turn, i.e., makes sure
that no reactive can access the current state of another reactive that might have
to be reevaluated because of a change during admission. This is an important
invariant that enables local reasoning about reactive data-flow. Consider the
following example:

def alwaysTrue_?(s: Signal[Boolean]) = {

val notS = Signal { !s() }

Signal { s() || notS() }

}

Given any input signal s, the function is rightfully expected to return a signal
that is always true. However, if the resulting signal is updated before notS is
7 Syntax a() is shorthand for a.apply() in Scala.
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updated on a change in s, it might evaluate to false. This violation of data
consistency is commonly referred to as a glitch.

In order to prevent glitches, nodes are evaluated in topological order by as-
signing levels to each node and traversing the graph from a priority queue. A
source always has level 0, and the system maintains the invariant that a depen-
dent has a strictly greater level than all of its dependencies. This ensures that
no node is updated after any of its dependent nodes has been updated.

As we have seen, signals as well as collection operations can access arbitrary
other signals during evaluation. Therefore, the topological order of the depen-
dency graph can change during propagation. This can give rise to what we call
a topology mismatch: a reactive r can access a node that has a level greater or
equals its own level. Since this would violate data consistency, any such access is
intercepted by the engine, stopping evaluation of r, increasing its level and those
of its dependents if necessary and restarting r’s evaluation once the propagation
loop reaches the new level. It is also necessary that the levels of all nodes that
transitively depend on r are adapted. In practice, topology mismatches are suf-
ficiently rare and don’t affect performance noticeably. The abortion mechanism
is implemented in method checkTopology in the implementation of apply above
by means of throwing an exception. Closure evaluation in evaluate is therefore
wrapped in a try-finally block. The exception is finally caught by the propagation
loop of the domain which performs the necessary level changes.

Since many reactives are largely opaque to the engine, it is the reactive’s
responsibility to ensure that this partially duplicate evaluation does not have
adverse effects, such as applying pulses twice. For this reason, an RSeq needs to
take special care to avoid redundant evaluation as discussed below.

5.3 The Concat Tree

We have seen the concat tree being used for three purposes: as the backing
structure of a segment buffer, to partition a list for associative folds and to
partition a list for higher-order combinators. The last use case needs further
explanation.

Every leaf in a concat tree created by a higher-order reactive operation stores a
dependency node in the domain’s graph, which is used as the dependent in a call
to evaluate when left folding its corresponding segment, establishing dependencies
with any signal applied in the fold operation. When the dependency node of the
leaf is notified by the domain of a change in one of its dependencies, it adds itself
to an invalid queue of the tree, which in turn notifies the enclosing reactive of a
change. When the enclosing reactive evaluates itself, it asks the tree to propagate
from invalid leaves to the root of the tree.

When processing invalid leaves and folding a segment with an operation that
can contain signal applications, the enclosing reactive has to prepare for the
fact that a topology mismatch can happen. The concat tree therefore tracks its
progress so that an RSeq can safely be aborted and resumed where it aborted
when a mismatch occurs. For example, sigAggregate and others maintain a queue
of invalid segments, which are updated one after the other so that after a level
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mismatch the queue still contains the remanding invalid segments. How other
types of reactives handle topology mismatches can be found in [19].

Balancing and Propagating. Our current implementation uses an AVL tree
to balance a concat tree. We chose an AVL tree because it stores heights on
its nodes. Heights define a topological ordering with leaves being the smallest
elements, which we can use for propagation. Consider the tree in Figure 6. If
in addition to the depicted change, there is an additional change in leaf with
length 8, the propagation mechanism has to make sure that node with length
13 is updated before its value is obtained during evaluation of node with length
18. This is a glitch as discussed in Section 5.2. Propagating in topological order
from lower to higher heights makes sure that glitches cannot occur.

When an AVL tree rebalances itself, it performs a number of tree rotations.
The concat tree needs to make sure that length values are updated accordingly.
Variants that propagate values from the leaves to the root, such as the trees
used by aggregate or flatMap, also need to reevaluate parts of the subtree. This
is shown in Figure 8. Since node R has different children after the rotation, its
value needs to be reevaluated, which then causes P and all other ancestors to be
evaluated. The lengths only change for the two nodes about which the rotation
was performed, i.e., P and R in the example.
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BA
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R
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rotate16

8 3
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3 5

8

16

8

Fig. 8. A right rotation, showing lengths. Node R is immediately invalidated, node P
is invalidated by R during propagation.

6 Discussion and Evaluation

A reactive sequence has two advantages over a signal of a non-reactive sequence.
First, it is more convenient to use. Operations can be invoked on the sequence di-
rectly instead of wrapping calls in a signal constructor. Secondly, it can be much
more efficient, both in terms of memory footprint as well as propagation times,
but can also have lower baseline performance due to maintenance of a larger de-
pendency graph. In the following, we will evaluate how performance is affected
by multiple factors. All benchmarks are run with Scala 2.10 on Java Hotspot
7. We followed established performance measurement methodologies [11] and
average results over multiple VM invocations with sufficient warmup iterations.

An RSeq propagates changes incrementally, which allows new operations such
as reversible folds, reducing propagation times from O(n) to O(k), where k is the
size of a delta. Other operations reduce running times from O(n) to O(k logn)
by keeping the dependency graph in memory and only reevaluating invalidated
data-flow paths. Figure 9 shows the effect of using foldUndo compared to a signal
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of a high-performance immutable vector from Scala’s standard library. We also
include signals folded with aggregate (segment size = 32) even though the oper-
ation satisfies foldUndo’s requirements and does not access signals. This gives us
an indication of the overhead of tree propagation as well as dependency creation.
We show two tests, one (1) updating a single element at a random position in the
source RBuffer, and another (2) removing a single element at a random position
and inserting a random element at another random position. A single observer
on that signal tracks the value in the folded list or signal. As expected, we can
see that foldUndo beats every other case by an increasing margin for lists larger
than about n = 15. Left folding vectors with updated elements stays ahead of
all other cases for a small number of elements, due to the smaller dependency
graph and less indirections. Insertion and removal at random indices is less effi-
cient for a vector than for an RBuffer, however, which results in lower performance
than for aggregate, even for very short lists. Both aggregate cases beat case (1)
for foldLeft with increasing margin from starting at around 100 elements. The
aggregate cases slowly diverge because case (2) results in unbalanced trees. The
continuous rebalancing results in only moderately slower performance.

Fig. 9. Sum with different folds

Figure 10a shows how different map arguments affect performance. The graph
shows numbers for mapping to squares compared to mapping to cubic roots.
The test consists of updating a single element at a random position. For the
inexpensive squares operation, the incremental nature of RSeq.map pays off for lists
longer than around n = 30 elements, whereas for the relatively expensive cubic
root operation, it already starts paying off for lists with more than 3 elements.
Again, the margins keep increasing for greater n, reaching about factor 100,
respectively 1500 for n = 10000.
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Finally, the segment size of the concat tree affects performance in two ways.
Smaller segment sizes lead to smaller linear folds at the leaves resulting in fewer
reevaluations. On the other hand, smaller segment sizes also result in larger
graphs, i.e., higher memory footprint and more work for change propagation as
well as more tree balancing. Figure 10b shows the effects of varying segment
sizes for aggregated lists of elements of size 3000. For inexpensive operations
such as simple sums, very small segment sizes are not beneficial. Dependency
and tree management as well as cache effects affect performance noticeably. More
expensive operations such as summing up cubic roots, already benefit from very
small segment sizes at the cost of larger trees and dependency graphs.

(a) Mapping lists with different f (b) aggregate with different segment sizes

Fig. 10. Performance of map and aggregate with varying parameters

7 Related Work

Our main framework is based on an extension of functional reactive program-
ming, which has been explored in many variations [9,16,23,7,21]. Our imple-
mentation based on a topological sort is most closely related to FrTime [7] and
Flapjax [21]. Details are very different, however. The way we automatically deal
with any host language expression is closely related to the constraint system
Amulet [28]. We are not aware of an FRP implementation with support for
incremental updates or custom nested propagators as in our reactive list imple-
mentation in terms of the concat tree.

In terms of incrementality, the most closely related work is self-adjusting com-
putation which is concerned about taking existing non-incremental programs
and convert them into incremental versions with minimal manual work. Adaptive
function programming (AFP) [2] is one example. AFP logs and replays arbitrary
operations on mutable variables using a time stamped dependency graph. This
allows to implement time-varying data structures in AFP. Dependency manage-
ment, however, is very fine-grained, potentially creating very large dependency
graphs, which makes it less suitable for implementing efficient incremental col-
lections with time-varying elements. Recent work [1] has addressed the issue of
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granularity, by tracing the effects of operations on arbitrary data types. Our
work, on the other hand, focusses on specially designing a functional reactive
data structure and its operations to be amenable for incremental computation,
reusing an existing higher-order FRP propagation framework. Burckhardt et al.
extend the parallel programming model of concurrent revisions[4] to incremental
parallel programming in [5]. It is a form of self-adjusting computation that sup-
ports a notion of adaptive granularity using the fork/join style revision model.

Incoop [3] is an incremental MapReduce framework built on top of Hadoop
which is the most closely related self-adjusting computation system in terms of
data structure design. In contrast to our work, Incoop’s focus is on distributed,
parallel programming in the MapReduce model, whereas we focus on in-memory
collections with more general functional combinators such as folds. Incoop, as
well as Scala.React, rely on a stable partitioning scheme to allow for general
incremental operations and granularity control. For this purpose, Incoop extends
Hadoop’s distributed file system to split the input into segments. Stability of
those segments is achieved by a content-based splitting mechanism operating on
binary data, whereas in Scala.React, stability is a achieved by fixing segment
capacities and exposing stable segment references (note that a content-based
partitioning for in-memory structures would likely be less efficient than our stable
segment scheme). In both approaches, partitioning isn’t perfectly stable, i.e., in
some situations, the segments are rearranged: in Incoop for large changes in the
input data, in Scala.React when a segment shrinks or grows beyond a threshold
and is subsequently combined or split. Ultimately, self-adjusting computation
systems focus on obtaining efficient algorithms in the presence of incremental
updates, starting from the traditional batch programming model with explicit
mutations. In contrast, our focus is on integrating incremental data structures
into a higher-order reactive programming model to simplify complex event logic,
establishing and maintaining functional dependencies instead of tracing effects.

Another related area is incremental view maintenance in databases
[6,13,12,14,17]. Gluche et al. [12] formalize collection composition and decompo-
sition into segments in terms of monoids, where the monoid operation is con-
catenation for lists and union for sets and bags. Incremental operations over
collections are then expressed in terms of monoid homomorphisms. Our con-
cat tree is essentially an implementation of such a decomposition. Fegaras and
Maier [10] give a similar formalism extended with a calculus of monoid com-
prehensions which allows to combine collections of different types, for example,
mapping lists into sets. They model indexed sequences as sets of value-index
pairs, which is different from our representation. In contrast to these formaliza-
tions, we focus on a practical implementation of an in-memory data structure
and discuss issues of data structure design, tree balancing and delta propagation.

Related to incremental view maintenance is research on query caching and
incrementalization, for example, for XQuery [8], JQL [27] or general object lan-
guages [18]. The work in [8] on XQuery is different from ours in that it works
on structured XML data. The work in [27] on JQL is different from ours in that
it caches queries and their results for repeated similar queries on data that has
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been updated since the last query. In contrast to our work, it does not work with
folds. Liu et al. [18] show how to automatically incrementalize basic operations
on sets but also does not work with folds. These systems are more related to
adaptive programming in that they focus on obtaining efficient programs from
existing non-incremental ones. Therefore, the same distinction to our work ap-
plies: in contrast to these systems, we expose reactivity to clients in form of our
reactive sequence integrated into a broader reactive framework with abstractions
for time-varying values (signals).

8 Conclusion

We have presented the first higher-order functional reactive data structure, inte-
grated into a system with high-order reactive programming abstractions such as
time-varying values and event streams, substantially improving the expressive-
ness and efficiency of the system.

Our current implementation can be further optimized, mostly by reducing
the number of indirections. We hope to bring down constant factors to make the
incremental sequence competitive with signals of non-incremental sequences for
even smaller sizes and less expensive operations. We are also currently applying
the techniques learned in this work to implement reactive sets and maps. As
hash table based implementations rehash when the size of the table changes,
they do not allow stable segmentation like a sequence does. Our set and map
implementations are therefore based on hash tries [22].

Our implementation of Scala.React can be downloaded from the first author’s
homepage at http://lamp.epfl.ch/~imaier.
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A Handbook for [ECOOP] PC Chairs

Giuseppe Castagna

Abstract. These notes describe how I organized the selection process
for ECOOP. In particular they contain a list of tasks that are responsi-
bility of the Program Committee (PC) chair before, during, and after the
selection, as well as a description of the six-phases organization I used
for selection.

Background. In these notes I summarize my experience about chairing ECOOP.
Initially, I started them as a simple personal memorandum and vademecum to
help me during the chairing task. As they grew in size and were enriched by
external feedback, they became a sort of handbook that I intended to pass to
my successors in order to spare them some head-aches (this is why the prose ad-
dresses to a future PC chair). Finally, several persons spurred me to make them
available to a wider audience, which is why you find them in the “front matter”
of the proceeding of ECOOP 2013. Whether you are a future (not necessarily
ECOOP’s) Program Committee Chair in search for new ideas and suggestions,
or just a reader curious to know the behind-the-scenes of a program committee,
I hope you will enjoy this reading.

Overview. For the future or soon-to-be PC chairs I want to stress that these
notes are not intended to impose any particular organization of the PC but just
as an help, to speed up the process and remind of a few points that may have
been forgotten or overlooked. In particular you will find a lot of information that
is missing from the ECOOP PC chair FAQ in the AiTO Handbook [1]. I would
like to suggest you considering the way I handled PC submissions (Section 4)
and organized the selection (Section 3), since I received positive returns on both
of them. Of course, you have complete freedom to organize your PC as you like.
Just, enrich these notes with your experience (I will be happy to provide the
sources of this handbook) and pass them to the next PC chair.

The content of these notes is organized in four sections:

1. How to fix the dates
2. How to form a PC
3. How to organize the phases of the selection process
4. How to handle submissions of PC members

1 How to fix the dates

The first task of the PC Chair is to fix the following dates: (a.) submission
deadline; (b.) rebuttal phase; (c.) PC meeting; (d.) notification; (e.) camera
ready version.
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a. Submission deadline: Although long-standing conferences have their dead-
lines in well-established time spans, you must nevertheless check that there is no
overlap with the selection phases of related conference.

For ECOOP the submission deadline is traditionally in December.

Criteria: if possible (i) at least one week (but 10 days are better) af-
ter ETAPS notifications (ii) not right before Christmas holidays since
external reviewers are then hard to find (rule of thumb: no later than
December the 15th.)

I strongly suggest to make this deadline (as well as the other dates) strict. Two
expedients should help to maintain strictness: (1) explicitly state the strictness of
the deadline in the call for paper and on the submission site and (2) put enough
time between your submission deadline and the notification dates of related
conferences (eg, for ECOOP, the notification dates of ESOP and FoSSaCS) so
to have a safety cushion in case that any of these conferences does not respect
its notification date.

b. Rebuttal: At least 7 weeks after the submission deadline. Reports must be
available at least 9 days before the beginning of the rebuttal (safety for late
arrivals, important time for a preliminary discussion on conflicting reports and
for asking further external reviews to unravel these conflicts and/or to ensure
at least one expert review for each paper: see the Pre-rebuttal roundup phase
in Section 3); five days for bidding, two for assignment, one week for finding
external reviewers and 4 weeks for preparing reviews. For ECOOP, however,
consider that there will be Christmas holidays in the middle, so 8 weeks would
be safer. Also avoid deadlines that are a couple of days before Christmas unless
you are ready to accept that few PC members will complete their bids.

Set the rebuttal so that it includes at least one week-end day and one work
day. Take into account time zones: make rebuttal start in the morning of Auck-
land and end in the night of San Francisco so that everybody has about the
same amount of daylight to work on the rebuttal.

Rule of thumb: 7 weeks after submission deadline excluding holidays.

c. PC meeting: If you organize a physical PC meeting —as customary for
ECOOP—, then block a complete week at least twenty days after the end of
the rebuttal. After you formed your Program Committee consult it to choose a
couple of days in that week. You may use less than twenty days if you decide
not to implement the Middle round phase of the reviewing process described in
Section 3.

d. Notification: At least 3 days after the PC meeting, so that PC members
have the time to travel back and update their reviews (though you’d better ask
them to update their reviews during the meeting).

If you decide not to have a physical PC meeting and to carry on selection on
line, then notification must be set at least four weeks after rebuttals
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Remark: it is important to meet the notification deadline. Other con-
ferences may have set their submission deadlines in function of your
notification date.

In particular, for ECOOP, check that your notification deadline leaves a couple
of weeks of margin to set the OOPSLA deadline (usually mid-April).

e. Final version: Springer requires camera ready to be sent 9 weeks before
the start of the conference. So set the deadline for final versions at least 10 weeks
before it. If your conference uses a different publisher, then check with it.

2 How to form a PC

Forming the PC is a delicate matter and it is advised to consult previous PC
chairs for suggestions and advice, especially on the reliability of persons. In
forming your PC you have to take into account different factors listed below.

a. Reliability of PC members. If you are a PC chair you have probably
participated in a number of PC meetings already, so you know a good deal of
people who are (or are not) reliable. I can never stress enough that in choosing
a PC member, reliability is far more important than visibility. Ask previous
PC chairs about particular persons they would recommend to include or exclude
from the PC. Ask PC chairs of other conferences or persons you know for further
confirmations if needed.

b. Spectrum. Make a list of areas your PC should cover and make sure you
have two or three experts for each area. This list is very important since you
will use it to assign papers (those that did not receive enough bids) and to form
thematic discussion groups (see the Middle round phase in Section 3). Rule of
thumb: enrich/modify the list of the previous edition (a lot of knowledge was
already poured in it).

The geographical distribution of the PC members should be related to the
geographical distribution of the authors who typically publish in your conference.
Consider however that in case of a physical PC meeting (as it is tradition for
ECOOP) members will be required to travel to attend the PC meeting, thus
limit the number of PC members who have to travel more than 6 hours to
attend it. Try to balance nationalities and consider gender representativity (as
long as these aspects do not hinder scientific criteria). Try to add some “fresh
blood”: at least two or three young and brilliant researchers will be a real bonus,
especially in a physical PC meeting, and so will few experienced researchers who
were never invited to the PC before.

c. Statistics. Use previous editions’ statistics about the spread of topics in
submitted and accepted papers. Of course, put in your PC more experts for
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topics that attract more submissions. And prepare statistics for the next PC
chair.

A great tool to help you to prepare you PC is Frank Tip’s PC-miner tool [2]
which allows you to query a database of past publications and PC members of
several conferences, among which is ECOOP. So for instance you can select all
people that published at least 5 papers in ECOOP or OOPSLA but haven’t
served on the ECOOP committee yet.

d. Planning. When you send the invitations to take part in the PC you should
include a clear plan and a list of commitments for the work ahead:

- Are submissions by PC members allowed? If so, outline how their selection
will be organized and which criteria will be used (see Section 4).

- Ask for a strong commitment to be present at the PC meeting. The presence
of all PC members at the meeting is really important so do not hesitate to
insist on it.

- Expected work load:
- Include a description of the phases of reviewing process and ask for

commitments about availability for discussions.
- Make it clear that there will be a rebuttal phase and that it is very

important that external reviewers will be aware of it.
- Describe the conflicts of interest
- State your position about the use of external reviewers

For what concerns external reviewers I am quite in favor of using external re-
viewers. Actually, I suggest to ask every PC member to add to its personal
review the review of an external reviewer whenever (s)he cannot produce an “X”
(for eXpert) rated review (see the beginning of Section 3 for the classification
of the reviews). While in principle this should ensure that all submissions will
have an expert review, in practice this will not happen; nevertheless, this rec-
ommendation will reduce the number of reviews you will have to ask during the
Pre-rebuttal phase (see Section 3).

As a side note, I suggest to send to PC members as few emails as possible
and to repeat all important information in every mail: never assume that if you
wrote something in a mail, then every member of the PC knows it (my personal
experience was that many of the important pieces of information I wrote in my
mails were missed by one or two members, not always the same ones).

f. Special PC members. Ask the steering committee to let you know the
name of the next PC chair as soon as possible (before the paper submission
deadline you can add to and remove from your PC as many members as you
need) and invite her/him to join your Program Committee: it will be a very
useful experience for her/him.

For ECOOP, it is a tradition that you invite to your ECOOP 20xx PC the
PC chair of OOPSLA 20xx-1 (minus one, so if you chair ECOOP 2023, invite
the chair of OOPSLA 2022... if both conferences still exist).
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3 How to organize the phases of the selection process

Traditionally ECOOP follows the Identify the Champion policy [3]. In a nut-
shell, reviewers classify each submission from A to D with the meaning A: I will
champion this paper at the PC meeting (advocate/accept); B: I can accept this
paper, but I will not champion it (accept, but could reject); C: this paper should
be rejected, though I will not fight strongly against it (reject, but could accept);
D: serious problems, I will argue to reject this paper (detractor). Reviewers also
classify their own expertise from X to Z (X: I am an expert; Y: I am knowledge-
able in the area, though not an expert; Z: I am not an expert, my evaluation
is that of an informed outsider). Then at the PC meeting only papers that are
championed (at least one A) and without detractors (no D) are accepted: the
discussion at the PC meeting is there to verify whether a submission satisfies
these conditions. Oscar Nierstrasz explains in [3] how to prepare and organize
the discussion for the PC meeting to implement such a policy.

Inasmuch as crucial the PC meeting is, it is only one of the several phases
in which the selection process is organized. Your main role as a PC chair is
to organize the reviewing process so that the decisions are taken on rational
grounds. You can organize it as you think it is better, but here you are the
methodology I followed for ECOOP 2013.

I organized the selection process in six phases: 1. Reviewing, 2. Pre-rebuttal
roundup, 3. Rebuttal, 4. Middle round, 5. PC meeting, 6. Post meeting.

Phase 1: Reviewing

Ask PC members to return reviews as soon as possible and, in any case, no later
than 9 days before the start of the rebuttal phase. Then

– As soon as the reports are in you should read them and try to clarify issues.
– You should spot reports that attribute a note without justification and ask

the PC member responsible of the report to elaborate. Likewise, ask politely
PC members who confuse review reports with Twitter tweets (and their 140
chars limit) to expand their reviews and give more details: explain that these
are not just their personal notes for the PC meeting but must allow the PC
chair and other persons of the committee to form an idea about the paper
without reading it.

– You should check, as far as possible, that PC members are consistent in their
evaluations.

The reviewing phase needs some preliminary organization, in particular you must
prepare review forms and instructions so as it is clear that:

– there is a rebuttal phase and thus (1) deadlines are strict and (2) reviewers
may ask direct questions to authors;

– PC members that cannot prepare an eXpert review should ask a further
review to external expert reviewers;

– there will be specific periods in which external reviewers may be contacted
again for further information.
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Phase 2: Pre-rebuttal roundup

Pre-rebuttal roundup is the phase that takes place between the deadline for
returning reviews and the start of the rebuttal phase. It is a crucial phase that
will greatly influence the quality of the reviews you will work with and, thus,
of your final program. I suggest to reserve 9 days for this phase, which must be
used to:

1. ensure that every paper has at least 3 reports and at least an expert review
and assign additional external reviewers if they do not.

2. smooth away divergences before rebuttals: ask reviewers with diverging opin-
ions to react to each other reports (anonymized, for external ones). Assign
external reviewers for further opinions.

3. [optional] start rejecting papers (personally, I prefer to do it in the Middle
round phase, since I want to read rebuttals before taking any decision).

Last but not least this phase is an important safety cushion against late review-
ers.

Rationale for a roundup of 9 days. In my opinion 9 days are the perfect
delay: if you have to ask an extra review you can ask the external reviewer
to prepare it in a week so that it will be available for the rebuttal or,
if that is not possible, you can ask it in 3 or 4 weeks so that it will be
ready for the PC meeting.

The first two days of this phase are crucial: you must try spot most of the
papers that need further reviews and send the corresponding requests to external
reviewers in these two days.

It is very important that in this phase you carefully supervise the choice
of external reviewers and monitor their work: ask for suggestions of external
reviewers to all the PC members allocated to the paper and select the reviewer
with them by a (very short) online discussion. In this way you will have the
highest chances to get high quality external reviewers for all papers that need
them.

Phase 3: Rebuttal

This phase will be a welcome pause in your activity.

– use the time of this phase to prepare the thematic groups for the next Middle
round phase (see below).

– although several PC Chairs put a length limit on rebuttals because they are
afraid to be obliged to “read a second paper”, three past experiences where a
limit was not imposed (ESOP 2011, POST 2012, and ECOOP 2013) suggest
that it may not be useful to limit the length of the rebuttal, it suffices to ask
(I suggest, firmly) authors to be concise and remind that the attention span
of tired PC members will probably be not much longer than a few hundreds
words.

– once the rebuttals are entered, try to spot not only the questions that were
answered but, above all, the questions that were not answered.
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Phase 4: Middle round

Exclude all papers that are very weak or very strong (and any PC member
paper), and organize the remaining papers in thematic groups (alternatively you
may decide to include in the thematic groups strong papers, too: see below).

Assign PC members to each group (asking for volunteers is neither fair nor
appropriate and, probably, useless) provide some preliminary comparison in few
synthetic points of the papers in the group and ask the PC members to assess
the papers in their group. Assessing the papers of the group means:

Browse (skim, have a quick look at) the papers, read the reviews, the
rebuttals and the online discussions. If the reviewer feels competent on
some paper of the group, the are very welcome to write an additional
review. The aim is that for the final decision reviewers shall be able to
give a (rough) relative ranking to the papers in their group.

The goal of thematic groups is that the best papers of each group should be
accepted so as to ensure a good balance of topics and that all the spectrum of
the conference is covered.

A secondary goal is to avoid to have at the PC meeting the classic 30mins-
I’ll-give-a-look-at-it reviews (I always feel uneasy with them). Other advantages
are that with thematic groups PC members have a broader vision of the papers
that will be discussed. And there is a core of few fixed persons that have a view
of all undecided papers in a particular thematic area. In some sense you want to
distribute over the whole PC the global vision that otherwise only the PC chair
can have.

In my case I organized the papers in 7 thematic groups formed of 6 to 9
papers and assigned 4 PC members to each group. PC members were assigned
to groups so as to maximize the number of papers they already reviewed in the
group. The rationale is that this should have a strong correlation with their bids
and experience (the more the papers they have in a group the more likely that
they bidded for those papers and that they are experts in the topic). In any case
do not expect to achieve a fair distribution.

Rationale: whether to include strong papers in the thematic groups is
a matter of trade-off. If you include them, then each group member
will surely have a better vision of the theme, but in this way you also
increase their charge of work and thus decrease the time they can spend
on undecided papers. I preferred not to include strong papers in the
thematic groups in the middle round phase.

Use also this phase to briefly discuss every weak paper (only C and D) and check
whether everybody agrees not to discuss it in the PC meeting.

Finally, this phase is also used to decide submissions of PC members (see
Section 4).
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Phase 5: PC meeting

Exclude papers that have only C’s and D’s (you should have already agreed on
that in the previous phase) and discuss all the others.

Plan 10 minutes of discussion for each paper and add one hour of buffer (if
everything goes as planned, then PC members will use this time to update their
reviews before leaving, otherwise you will be happy to have planned this extra
hour). I strongly advice to ask somebody external from the PC to help you to
keep track of the results of the discussion (you won’t be able to do it during the
meeting).

For the order in which papers are examined Identify the Champion [3] sug-
gests to proceed from the best to the worse.1 Frank Tip suggests to adopt a
random order, instead. He gave me the following reasons:

I have done this at ISSTA’11 and PLDI’12 and I found it is better,
because PC members won’t automatically expect that the next paper will
be accepted/rejected just because the previously discussed one was.

I actually followed a mixed order. I grouped the papers to be discussed according
to the thematic groups I used in the middle round (to which I added the strong
papers) and then discussed the papers in each group ordered by their scores2.

In my opinion this organization of the discussion in thematic groups has
several advantages and a big drawback. The first advantage is that you will
discuss papers on similar topic and with a consistent group of PC members.
Second, PC members can profit that the discussion is on groups far from their
expertise to take a little pause (typically to update their reviews or just to catch
their breath: do not underestimate tiredness). Third, the rotation of thematic
groups avoids the problem singled out by Frank Tip in the remark above. The
big drawback is that according to the results of the first groups you will see that
PC members will start panicking about the fact that the committee is accepting
too many or too few papers. Therefore, this discussion order puts on you the
burden of controlling all along the discussion that the final acceptance rate will
be compatible with the format of the conference.

For the order of discussion of the groups you will not have much choice: it
will depend on the PC members who are absent, leave earlier, arrive later, and
if and when they can connect via video-conference. Rule of thumb: two or three
PC members absent that leave in a close time zone, you can handle it (by video-
conference); two PC members who live in a time zone 9 hours far from the place
of the PC meeting, it gonna be tough; three of them absent and you can forget
any reasonable organization.

In any case the order must be established at the beginning of the meeting so
as people has time to prepare themselves for the discussion of the next paper.

1 A paper is in the class XY if its higher score is X and lower score is Y and classes
use the lexicographic order.

2 I used the lexicographic order of (the alphabetically ordered juxtaposition of) their
scores.
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I distributed summaries for the whole discussion order and customized for each
PC member (no excuse if you catch them distracted).

Finally, you will probably notice that your committee will use a slow the pace
for the discussion at the beginning of the PC and tend to accelerate it at the
end (because of tiredness). You must make sure that this will not happen so as
to ensure a fair discussion to all papers.

A final word on organization. Logistics must be flawless since you cannot afford
any delay in the progress of the meeting: choose a large room3 with good wifi net-
work and two (possibly, ceiling-mounted) video-projectors with their screens; test
everything at least one week before the meeting (wifi, video, acoustic, videocon-
ferencing) and send PC members their wifi passwords in advance; install enough
power plugs for all PC members (rule of thumb: one and a half power plug for
each PC member) and, if possible, have some plug converters ready for those
who forgot it at home or at their hotel; have a back up for every important piece
of hardware (laptop, wifi access point, omnidirectional microphones, web-cams,
video-projectors) and configure them so that they are ready for use; make avail-
able at the meeting printed copies of all papers and of all important information
(eg, discussion order, wifi passwords); do not neglect catering. Try to anticipate
as many problems as possible, though problems will arise all the same.4

Phase 6: Post meeting

Once decisions are made, give 3 days to PC members to update their reviews so as
they reflect the discussions in the PC meeting. However, Sophia Drossopoulou
(chair of ECOOP ’10) strongly suggests to ask PC members to update their
reviews immediately after the meeting when memory is still fresh (the 3 days
are just for safety) while James Noble (chair of ECOOP ’12) strongly suggests
to have it updated during the meeting (I did as suggested by James and the
thematic group discussion order helped a lot in doing that).

You can send acceptance/rejection notifications right after the meeting and
send the revised review reports a few days later.

Also if, as for ECOOP, you have/want to assign a best paper award, I suggest
to do it by e-mail few days after the PC meeting using an Election by Majority
Judgment [4]. In practice, make a list formed by half of the accepted papers
that received the best scores (PC member papers excluded) and send it to PC
members together with the following instructions:

1) Consult the joint list of XX papers (these are the accepted papers that received
the best score from which I removed PC papers).

3 To sit in a round 30 PC members (actually, in a U-shaped configuration with the
video screens at the open side of the U) you will need a room for 60 persons (possibly
not oblong).

4 I spent two days testing everything and nevertheless the day of the meeting I dis-
covered that one of the two wall screens of the room had been removed overnight:
fortunately the painting on the wall was clear enough to project on it.



742 G. Castagna

2) Pick as many papers in the list as you want. These papers must be chosen
either because you think that they merit the award or because you think that
they do not merit it.

3) Assign to each paper you chose a score from -2 (worse) to +2 (best) with the
following meaning:
+2 It definitively deserves the award,
+1 A nice paper that may be awarded,

0 I’m neutral on this paper / I do not know,
-1 I am mildly against awarding this paper,
-2 It must not be awarded.
[not picking a paper is equivalent to give a score 0 to it]

4) Return your list of papers with their scores within a week

Then you sum all the scores of each paper and pick the paper with the highest
score. Do not forget to notify the decision to all the persons concerned (above
all the sponsors of the award: for ECOOP it is Springer).

4 How to handle submissions of PC members

Personally I am against PC member submissions because it does not seem fair to
be judge and judged at the same time (whatever safety policy you impose) and I
did not and will not submit to a conference in whose PC I take part in. However,
there is a tradition in ECOOP to allow them. Actually, this is explicitly stated
in the AiTO FAQ for ECOOP [1] that I quote:

Q: Are PC members allowed to submit papers?
A: Yes, though the PC chair should not. PC papers are handled specially.
The authors should not learn who reviewed their papers, and should leave
the room when their papers are discussed at the PC meeting. Normally
PC papers should be accepted only if they are of “above average” quality.
In practice, this means that PC papers are rejected automatically if there
is any objection from one of the referees.

Furthermore there is a current trend in top-notch conferences to allow PC mem-
bers to submit and use an External Reviewer Committees to handle them (eg,
PLDI, POPL, OOPSLA). A couple of arguments also argue in favor of PC sub-
missions:

1. Forbidding them would exclude a significant number of well-qualified leaders
of the community from submitting (in ECOOP 2013 the submission that had
the highest score —five A’s— was coauthored by a PC member).

2. Persons that have a number of students who have work that they will be
likely to submit to your conference may decline the invitation to take part
in the PC. This would deprive the PC of the expertise of some leaders of the
community.



A Handbook for [ECOOP] PC Chairs 743

Now, how to organize the review of PC member submissions? If you established
an External Reviewers Committee (ERC), then this seems an obvious choice.
For the rationale behind the ERC see Steve Blackburn’s post on the subject [5].
I strongly prefer not to use an ERC since I do not want to limit a priori my
choice for external reviewers.5

In ECOOP 2013 I established a different policy according to the following
principles:

1. The policy to be followed for PC papers must be clearly and unambiguously
established before submission time. I would say it will be the first thing that
the PC will discuss. By discuss I mean, you have to propose a policy and
may ask for suggestions of possible modifications to be sent directly to you:
you then will synthesize them. Bottom line: avoid an open global discussion
on such a delicate topic.

2. For what concerns the acceptance of a PC paper, after discussing it there
must not be the slightest doubt that the PC paper deserves ECOOP publi-
cation.

3. Acceptance/rejection must be decided before the PC meeting (by e-mail,
telephone, VOIP, ...). The reason for this (which I consider to be a key
ingredient of the selection of PC papers) is threefold:
(a) the quality of a PC paper must be established in absolute terms (we must

be completely sure that if we take a PC paper it will not take the slot of
a better paper discussed later in the PC meeting: this is the reason why
they must be excluded from thematic groups, cf. phase 3 in Section 3),

(b) I want to avoid people entering/exiting the PC meeting room, and to
have a discussion about a paper of a person that 30 seconds before was
sitting at the same table and is now waiting outside the room,

(c) PC members with a submitted paper can discuss other papers freely
without ulterior motive about how the discussion might influence the
decision on their paper (unfortunately, that happens too, as Ken Birman
confirmed me) since this decision is already taken.
Important: try to schedule the time for discussing PC papers right
after the assignment (or, in any case, as early as possible), because
it may be quite difficult to find slots that fit everybody, especially if
you want to hold a voice discussion. Also, try to have it in the first
week after rebuttal and in any case as soon as possible after it: it is
a good thing to leave some time between this decision and the PC
meeting.

5 Many people, whose opinion I highly regard, disagree with me on this point. Never-
theless I believe that if you stick to two points that I suggested in this handbook,
namely, (1) ask PC members to find external expert reviewers when they cannot
prepare an eXpert review themselves (cf. point d in Section 2) and (2) carefully
supervise the choice of external reviewers in the pre-rebuttal phase by deciding their
selection together with the concerned PC members (cf. phase 2 in Section 3), then
you should obtain reviews of a quality higher than with an ERC.
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4. Acceptance/rejection of PC papers will be communicated after the end of
the PC meeting with all other notifications, so that a possible rejection of
their paper cannot influence the behavior of PC members at the meeting
(state this point quite clearly in your invitation email: cf. point d in Sec-
tion 2).

Notice that in Section 1 I suggested to leave one month between the deadline
for the reviews and the PC meeting, and three weeks between rebuttals and the
PC meeting. This should give enough time to discuss PC papers.

As for what the exact meaning of “above average” or “higher criteria” for PC
papers is, I think reasonable to request that they have a majority of A’s (after
discussion, so that these can be “upgraded” scores) and that any C must be
compensated by a couple of very strong A’s.

The important point here for me is that a PC paper must be discussed (of
course only if it did not receive unanimously negative reviews), as well as be
given the possibility to make a rebuttal. So, a PC paper that has a D can be
accepted if for example the D turns out to be a low confidence reviewer that
missed the point, or the rebuttal showed that the error spotted by the reviewer
was not an error. On the contrary a PC paper that has only B’s or that has only
one lukewarm defender must not be accepted.
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