
MVIC – An MVC Extension for Interactive,
Multimodal Applications

Marc Hesenius and Volker Gruhn

paluno - The Ruhr Institute for Software Technology
University of Duisburg-Essen

Gerlingstr. 16, 45127 Essen, Germany
{marc.hesenius,volker.gruhn}@paluno.uni-due.de

http://www.paluno.de

Abstract. MVC is considered an important architectural patterns when it comes
to interactive applications since its invention in the days of Smalltalk. However,
interaction with computers has changed. Touch-screens are as natural to users
nowadays as mouse and keyboard have been for the past decades of comput-
ing and HCI-researchers keep on developing more interaction modalities. Multi-
modal applications pose major challenges to software engineers who have to deal
with different ways for users to express the same intention. MVC does not in-
corporate the flexibility needed to cope with multimodal applications as it makes
the controller component responsible for interaction interpretation and manag-
ing the application flow. We propose MVIC, an extension to MVC dedicated to
provide a solid software architecture for multimodal, interactive applications by
introducing a dedicated interaction component.

1 Introduction

Software engineers have been optimising and refining the incorporation of classic
interaction modalities like mouse and keyboard into software products for decades.
Model-View-Controller (MVC), the architectural pattern for interactive applications,
was introduced with Smalltalk-80 [1,5] and has ever since been used by different ap-
plications in different contexts. But with the appearance of smartphones and tablets,
interaction with computers has changed. Surface gestures have become a common inter-
action modality and HCI-Researchers keep on adding new technologies to the existing
portfolio, increasing and improving interaction possibilities.

Often, the same functionality can be accessed in different ways depending on the
current situation – for example, a ringing phone can be turned off by either pressing
a button or turning the device upside down. The reasons to incorporate different in-
teraction modalities are manifold, from situational reasons to personal preferences and
cultural background. Different schemes of the same interaction modality, like novice
and expert gestures, may improve usability and applications could be easily adapted to
the customs of different cultures.

But what maybe a wonderful new world full of possibilities to users poses major
challenges to software engineers. The new interaction modalities are often highly am-
biguous and not easily interpreted – interaction has evolved from basic concepts to a

K. Drira (Ed.): ECSA 2013, LNCS 7957, pp. 324–327, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.paluno.de


MVIC – An MVC Extension 325

highly complex matter in the last years. Recent mobile devices equipped with different
sensors allow developers to implement a variety of interaction modalities. Operating
systems like Android typically give support by providing recognition functions for a
basic set of gestures. However, the implementation of custom gestures requires devel-
opers to work on raw sensor data. In a typical MVC setup, the controller is in charge
of tracking user actions and inferring the meaning for the application, which requires
developers to implement recognition and maintenance code for several input sources at
one place. As applications may change often and quickly, maintenance is made difficult.
Developers aim for using agile development methodologies, short release cycles and be
able to extend and adapt applications to current needs. The foundation for this goal is
always a sound and solid software architecture. MVC has provided this base for many
years but is reaching limits when it comes to multimodal technologies.

We describe an extension to the well-known MVC pattern named Model-View-
Interaction-Controller (MVIC) focused on separating controller and interaction
concerns. The software’s architecture should reflect the flexibility that results from the
advances in HCI and allow developers to add new interaction modalities without the risk
of breaking existing ways of interaction. In standard MVC, the controller is responsi-
ble for interpreting any kind of input and mapping it to the application’s functionality,
hence breaking separation of concerns.

Our contribution to the field of software architecture for interactive applications is
twofold. One the one hand, MVIC slims down code written in the controller and in-
troduces a dedicated interaction component, thus increasing separation of concerns. On
the other hand, MVIC adapts the reliable and familiar MVC pattern to recent needs,
making it easier to learn and implement in existing frameworks. This paper is struc-
tured as follows: Section 2 will introduce MVIC, its concepts and ideas and how the
media player implementation can be optimized. Related work is discussed in section 3.
The paper is concluded in section 4.

2 Model-View-Interaction-Controller

MVIC consists of the basic MVC elements and adds a dedicated interaction component.
It is oriented towards more recent variants of MVC, removing any relationship between
view and model. The components and their tasks are:

Model. The model in MVIC remains unchanged from its role in MVC. Its main task is
to provide the core functionality, map real world objects into the application and provide
a place to store and manipulate their current state.

View. The view has the same function in MVIC as in MVC as well – it presents data
from the model to the user and is therefore in charge of the application’s output. Dif-
ferent descriptions of MVC also interpret the view role in a distinct way, adding or
removing input responsibilites (cf. [4] for a narrow and in contrast [2,5] for a wide in-
terpretation). In MVIC this makes no difference as any input task should be delegated
to the interaction component, no matter where the input information comes from.

Interaction. Here processing of all interaction takes place. In MVC, the controller
solely is responsible for this task, which involves identification as well as interpreta-
tion of input. Whatever the user did is transferred to the controller and it decides how



326 M. Hesenius and V. Gruhn

Fig. 1. MVIC Structure

the application should react. In MVIC, the interaction component is in charge of inter-
preting the user input: It receives input data from any device sensor, tries to figure out
what the user wants to do, and sends a message to the controller containing the user’s
intention; hence we call this message a UserIntent. UserIntents should be designed to
carry additional information needed for the controller to perform actions (e. g. touch
coordinates). The interaction component will usually consist of several smaller compo-
nents called InteractionHandlers, each of them dedicated to processing a certain input
modality. All code previously crammed up in the controller is now distributed over
various dedicated components, enforcing separation of concerns and leading to a more
structured architecture. Although the InteractionHandlers map a certain kind of input
to a specific UserIntent, they are oblivious to its meaning. Mapping the UserIntent to
functionality and calling the model is still the controller’s task.

Controller. The main purpose of the controller remains unchanged. As in MVC, the
controller is in charge of the whole application flow. However, it does not receive de-
tailed input information from sensors anymore and is completely oblivious to how in-
teraction processing is implemented. Instead, it waits for the arrival of UserIntents. As
a consequence, the application needs a precise interaction concept, which maps user
input to UserIntents to specific functionality.

Summarized, MVIC strips the controller of any detailed user input recognition, sen-
sor data is transferred to the interaction component. This component is in charge of
identifying the user’s intention and inform the controller about it. Whatever actions
within the application are necessary to satisfy the user’s wishes is up to the controller,
who will call the appropiate functions on the model.

3 Related Work

Another architecture for multimodal applications strictly following the MVC pattern
is the W3C recommendation Multimodal Architecture and Interfaces1 (MMI). MMI is

1 http://www.w3.org/TR/mmi-arch/, Feb. 2013

http://www.w3.org/TR/mmi-arch/


MVIC – An MVC Extension 327

divided into three components, each representing one part of MVC, and all components
are interconnected via a Runtime Framework providing infrastructure which is not de-
fined by the W3C recommendation and left to platform specific implementations.

MMI and MVIC share common goals and target the same class of applications but
differ in details. MVIC is more oriented towards recent technology like Android and
iOS, while MMI is more loosely coupled and takes e.g. distribution of components into
account. MMI emphasises the use of markup and scripting, which is not specifically
defined in MVIC. However, using markup for configuration of InteractionHandlers is
an interesting option to define an interaction concept and is part of our future research.

How to use MMI in a mobile environment is demonstrated by Cutugno et al. in
[3]. They present a framework for multimodal mobile applications with focus on the
possibility to configure MMI’s controller via an XML file, but they extend MMI by
adding Input Recognizers and Semantic Interpretation Components for each interaction
modality, providing an interesting alternative to MVIC.

The idea of UserIntents is closely related to the typical way of calling other applica-
tions in Android. When an Android application needs to trigger e.g. a phone call it will
do this by invoking an Intentwithout actually knowing what application will answer.
Android will answer to the user’s intention by bringing up its phone app. UserIntents
bring this concepts deeper into applications on a much finer level.

4 Conclusion

We presented MVIC, an extension to the well-known MVC pattern targeting multi-
modal applications. We expect MVIC to make interactive applications more flexible
and easier to extend and maintain. MVIC is build around the idea that dedicated inter-
action components for the different interaction modalities are in charge of interpreting
the user input and identifying his or her intentions – a task left solely to the controller
in MVC. Identified UserIntents are then send to the controller for further processing,
so in MVIC the controller is still in charge of managing the application flow. Taking
the interaction matters out of the controller will decrease the chance of breaking the UI
when making changes to existing or adding new interaction modalities.

References

1. Burbeck, S.: Applications programming in smalltalk-80 (tm): How to use model-view-
controller (mvc). Smalltalk-80 v2. 5. ParcPlace (1992)

2. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented Software
Architecture, vol.1 - A system of patterns. Wiley, Chichester (1996)

3. Cutugno, F., Leano, V.A., Rinaldi, R., Mignini, G.: Multimodal framework for mobile interac-
tion. In: Proceedings of the International Working Conference on Advanced Visual Interfaces,
AVI 2012, pp. 197–203 (2012)

4. Freeman, E., Robson, E., Sierra, K., Bates, B.: Head First Design Patterns. O’Reilly, Se-
bastopol (2004)

5. Krasner, G.E., Pope, S.T.: A description of the model-view-controller user interface paradigm
in the smalltalk-80 system. Journal of object oriented programming 1(3), 26–49 (1988)


	MVIC – An MVC Extension for Interactive,Multimodal Applications
	1 Introduction
	2 Model-View-Interaction-Controller
	3 Related Work
	4 Conclusion
	References




