
PANDArch: A Pluggable Automated Non-intrusive
Dynamic Architecture Conformance Checker

Lakshitha de Silva and Dharini Balasubramaniam

School of Computer Science, University of St Andrews, St Andrews, KY16 9SX, UK
lakshitha.desilva@acm.org, dharini@st-andrews.ac.uk

Abstract. The software architecture of a system is often used to guide and con-
strain its implementation. While the code structure of an initial implementation
is likely to conform to its intended architecture, its dynamic properties cannot be
fully checked until deployment. Routine maintenance and changing requirements
can also lead to a deployed system deviating from this architecture over time.
Both static and dynamic checks are thus required to ensure that an implemen-
tation conforms to its prescriptive architecture throughout its lifespan. However,
runtime conformance checking strategies typically alter the implementation of an
application, increasing its size and affecting its performance and maintainability.
In this paper, we describe the design of a novel dynamic conformance-checking
framework that is pluggable and non-intrusive, thereby limiting any overheads to
those periods when checking is activated. An implementation of this framework
with Java as the target language and its early evaluation are also presented.

1 Introduction

A key benefit of software architectures [9] is that they establish the basis for system
implementation. The essential structure, interactions and quality attributes captured at
the architectural level can guide the development of the system [4].

Architecture-driven development methodologies can ensure that a software system
conforms to its prescribed static architecture at the outset. However, verifying the com-
pliance of dynamic features of an implementation is not always possible until the system
is deployed in its target operational environment. In addition, routine maintenance as
well as changes to requirements and operating conditions can cause the behaviour of a
deployed system to deviate from its intended architecture. Such erosion of the architec-
ture [9] can lead to vital properties being violated and the software becoming unfit for
use [14]. Both static and dynamic conformance checks are therefore required to ensure
that an implementation and its architecture remain consistent with one another.

Dynamic architectural features include runtime instantiations, reflective method
invocations, dynamic linking, online updates and patches, and quality of service mea-
sures. Detecting runtime violations requires system execution to be monitored and rele-
vant runtime data be extracted, abstracted and checked against architectural constraints.

Most existing work in dynamic architectural conformance checking involves incor-
porating extra functionality, such as aspect weaving, or source code annotations of ar-
chitectural properties in the target system. In both cases an external monitoring system
reconstructs a runtime view of the architecture using data gathered from the added code

K. Drira (Ed.): ECSA 2013, LNCS 7957, pp. 240–248, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



PANDArch: A Dynamic Architecture Conformance Checker 241

or annotations. The extracted architecture is then used for checking conformance against
a prescriptive architecture using other tools [13]. Such conformancechecking techniques
are tightly coupled with the software product and cannot be invoked only when required.
This limitation can lead to permanent degradation of application performance, inflexi-
bility in conformance checking and poor maintainability [13].

This paper introduces PANDArch, a framework for checking conformance between
software architectures and implementations that aims to solve these problems. The
framework is designed to be automated, customisable, non-intrusive and pluggable, thus
minimising overheads on applications. We outline its design, implementation and some
early evaluation using architectures specified in the Grasp [12] architecture descrip-
tion language (ADL) and implementations in Java. The key contribution of this work is
making dynamic architecture conformance checking a viable option for developers.

The paper is organised as follows. Section 2 outlines the concept of architectural
conformance while Section 3 describes design principles that guided the framework.
Key implementation details are discussed in Section 4 and preliminary evaluation re-
sults using an open source application are presented in Section 5. Section 6 describes
related work and the paper concludes with thoughts on future work in Section 7.

2 Architecture Conformance Checking

An implementation that satisfies the constraints specified in its prescribed architecture
is said to conform to it. Conformance can relate to a number of architectural properties
relating to structure, interactions and quality of service (QoS) requirements. Our frame-
work aims to check all these properties captured in the form of conformance rules.

2.1 Static and Dynamic Checking

An architecture specification may contain multiple views associated with static (such
as code or development) or dynamic (execution) aspects of the system. As explained in
Section 1, both static and dynamic checks are required to ensure full conformance.

Static checks are done while a system is being built or when taken offline for main-
tenance. They may relate to code structures and aspects of communication integrity.

Dynamic checks are carried out while the system executes and thus require access
to runtime state and operations which are validated against architectural constraints.
Such checks may relate to structures, communication integrity, component instances
and quality of service thresholds at runtime. As method-level granularity is often re-
quired for dynamic checking, a key challenge is capturing relevant and useful data from
system execution while still keeping any performance impact to a minimum.

2.2 Mapping between Architecture and Implementation

An architecture may be used to derive multiple system implementations. It exists at a
higher level of abstraction and hence a single architectural feature can be implemented
using a combination of programming constructs. Many implementation details are not



242 L. de Silva and D. Balasubramaniam

significant at the architectural level. Therefore, a mapping between architectural and im-
plementation abstractions is required to perform conformance checking. We categorise
mechanisms for specifying such mappings as follows:

• Naming Conventions from Architectural to Programming Constructs. For ex-
ample, a component in the architecture is implemented by a class of the same name.
Although such a mapping primarily provides structural information, it may facilitate
checking conformance of behavioural and QoS properties as well. This technique can
be further extended by supplementing architectural elements with annotations having
rich information about corresponding implementation constructs. Conversely, anno-
tations in source code could identify relevant architectural entities. An annotation for
a class, for example, can identify the component implemented by that class. Source
code annotations, however, could be easily lost due to programmer activity.

• Combining Architecture and Implementation in a Single Artefact, as in Arch-
Java [1] or ArchWare [7]. Conformance checks are minimised or not required in
such systems since architecture and implementation are combined in one specifica-
tion. However, current approaches either require a permanent runtime platform or
that the application be implemented in a language that is not widely adopted in in-
dustry.

• External (Outwith both Architecture and Implementation) Specification of the
Mapping. While this mechanism does constrain architecture and implementation
representations, it does require a separate artefact having explicit mapping of all ar-
chitecturally significant features. The DiscoTect [11] technique uses this approach.

PANDArch adopts the first strategy for dynamic conformance checking. This decision
avoids a complex mapping scheme that could hinder adoption, while still allowing the
dynamic checks noted earlier to be carried out. It also makes the framework more read-
ily adaptable to both existing modelling notations and programming languages.

3 Design Principles

As motivated in Section 1, the following principles guided the design of the framework.

• Pluggable. Target application can execute with or without the monitoring framework;
when the framework is unplugged, the binaries have no instrumentation or other code,
• Automated. Generation of conformance rules and their checking are automated,
• Non-intrusive. The source code of the target application is not changed,
• Performance-centric. Performance impact on target application is minimised as far

as possible and limited to the period when the framework is plugged in, and
• Extensible. The framework can accommodate modifications to conformance rules.

We hypothesise that these principles lead to a more viable compliance checking frame-
work that aligns well with industry practices. The conceptual process for checking con-
formance using the proposed framework is illustrated in Figure 1 below.

An architecture specification, containing required mapping annotations, drives both
system development and the conformance process. Architectural constraints and map-
ping information are extracted from the specification after compilation, and used by



PANDArch: A Dynamic Architecture Conformance Checker 243

Architecture
Specification

Architecture
Constraints

Mapping
Scheme

Conformance
Rules

Software
Implementation

Runtime
Events

Static
Analysis Events

Conformance
Checker

guides development

Rules
Generator

Violation
Notifications

Specification 
Compiler

Application
Launcher/Executor

Static Code
Analyser

Architect

Fig. 1. Proposed conceptual process for checking architectural conformance

the rules generator to create a set of conformance rules. The mapping scheme is cus-
tomised to the specific technology or language used for the target system. For instance,
if the system is implemented in Java, then the mapping scheme is specific to Java and
object-orientation. Rules are specified as Java objects exposing a specific interface.

The conformance checker takes the set of conformance rules and validates them
against runtime events while the program executes. It may produce a series of violation
notifications where appropriate. This is a continuous process while the framework is
plugged in and the application is executing. If required, execution data is cached by
the framework until there is sufficient information to validate an architectural rule. The
same process is applicable to events generated through static analysis. Although cur-
rently not implemented, the design can accommodate a static analyser using an adaptor
to transform code inspection notifications to PANDArch events.

4 Implementation

The architecture of the conformance checking framework reflects the design principles
listed in section 3. The layered architecture of the framework is shown in Figure 2.

Architectural Constraint Generation and Validation

Generic Runtime Monitoring Interface

Java Debug Interface

Java VM

Executing
Application

<other event adapters>

Thread Pool and Event Queue Management

Java Runtime Event Adapter

Conformance Monitoring & Visualisation Tools

Runtime Probes

Fig. 2. Layered logical architecture of the conformance checking framework

PANDArch is implemented in Java and can currently check conformance of applica-
tions executed in the Java Virtual Machine (JVM). However, it is extensible to handle
other event sources. Initially the JDI platform alone was used to capture events emitted



244 L. de Silva and D. Balasubramaniam

by the JVM. However, due to their impact on performance, Class-Load and Method-
Entry events are now captured using a Java instrumentation agent [8]. The agent injects
optimised probes into the byte code whenever the JVM loads an application class. These
probes are both additive and stateless and therefore do not alter application behaviour.
Byte code streams are modified only in-memory, hence changes are not persistent. Raw
data from probes are sent to the framework through an asynchronous socket channel.

Our implementation uses architectures specified in the Grasp ADL [12], though the
framework design is not tied to this notation. Besides common architectural concepts
such as components, connectors and layers, Grasp also supports annotations. These are
name-value pairs useful for supplementing architectural elements with additional data
without altering semantics. In our case, annotations carry crucial mapping information
linking architectural entities to their implementation, as explained further in Section 5.

5 Evaluation

The initial evaluation focuses on two aspects: the ability of PANDArch to detect con-
formance violations and its impact on the performance of target applications. We chose
version 2.4.2 of Apache Jackrabbit [2], a Java content repository application, for the
initial evaluation of the framework primarily because it includes some architecture doc-
umentation. As a server application, Jackrabbit is also suitable for testing performance
impact. However, the published runtime architecture is neither complete nor up to date,
particularly with respect to interactions among architectural elements [3]. In order to
generate useful and sufficient conformance rules, the source code was manually ex-
amined to discover interactions among a few key components. Filtering capabilities of
PANDArch were configured to monitor only these components at runtime. For these
parts, conformance is guaranteed since the architecture reflects the implementation.
However, where appropriate conformance was deliberately broken to test the effective-
ness of the framework. The extracted architecture is shown in Figure 3.

The Grasp specification for the extracted portion of the architecture is shown in
Listing 1. The whole architecture is contained within an architecture block while the
runtime view is described within the system block. Components are described using
the component keyword and in this example, each component declaration has an as-
sociated annotation that begins with @confomn. These annotations map components
to implementation. For example, the annotation attached to component Data speci-
fies that it has been implemented using all the classes found in the Java namespace
org.apache.jackrabbit.core.data. Similarly, the two annotations attached to the root
architecture statement identify namespaces that should be included and excluded from
conformance monitoring.

Interactions among components are specified using the Grasp the link construct. A
link connects a requires (i.e. consumer) interface in one component to one or more
provides interfaces in other components. However, in real-world software component
interactions are not always through interfaces, as exemplified in Jackrabbit. Grasp over-
comes this by equipping every component with an intrinsic out interface to model out-
going, non-interface method calls to other components. This is evinced in Listing 1.



PANDArch: A Dynamic Architecture Conformance Checker 245

org.apache.jackrabbit.core

Query
Lucene

.query

NodeType
.nodetype

Session
.session

Util
.util

Data
.data

Value
.value

FileSystem
.fs

Id
.id

Stats
.stats

Fig. 3. Extracted architecture of Jackrabbit showing interactions among a few key components

5.1 Detecting Architecture Violations

The ability of the framework to detect architecture violations was evaluated using the
above Grasp specification. Namespace filters were set to ignore components and inter-
actions not included in this specification. Initial runtime tests were carried out using a
modified version of the SecondHop program distributed with Jackrabbit. This program
signs in to the content repository, performs a few content operations and signs out. As
expected, the framework did not report any violations in the first instance as all compo-
nents and their interactions were compliant with the architecture. The architecture and
the implementation were then changed to cause mismatches. Particular attention was
given to violations that could be detected only at runtime. For example, the AddNode-
Operation class in the Session component was modified to instantiate a class in the
Util component and invoke one of its methods using Java reflection. This interaction is
not specified in the architecture and therefore should not be allowed. In addition, this
reflective method invocation cannot be easily detected, if at all, through static analysis.
As in all other cases, the framework correctly identified this violation when the test
program was executed.

5.2 Performance Impact

The SecondHop program was also used to evaluate the performance of PANDArch.
The program executes for ten iterations during a single run, and makes four such runs
for each test case. The results of these tests are shown in Table 1. A significant per-
formance gain is achieved by using instrumentation probes instead of JDI. Although



246 L. de Silva and D. Balasubramaniam

Listing 1. Grasp specification of modules and interactions shown in Figure 3

@confmon(include=["org.apache.jackrabbit.core"])
@confmon(exclude=["org.apache.jackrabbit.core.query.lucene"])
architecture Jackrabbit {

template NamespaceComponent() {}
system Core {

// Components
@confmon(ns=["org.apache.jackrabbit.core.nodetype"], classes=["*"])
component NodeType = NamespaceComponent();
@confmon(ns=["org.apache.jackrabbit.core.session"], classes=["*"])
component Session = NamespaceComponent();
@confmon(ns=["org.apache.jackrabbit.core.query"], classes=["*"])
component Query = NamespaceComponent();
@confmon(ns=["org.apache.jackrabbit.core.util"], classes=["*"])
component Util = NamespaceComponent();
@confmon(ns=["org.apache.jackrabbit.core.data"], classes=["*"])
component Data = NamespaceComponent();
@confmon(ns=["org.apache.jackrabbit.core.value"], classes=["*"])
component Value = NamespaceComponent();
@confmon(ns=["org.apache.jackrabbit.core.fs"], classes=["*"])
component FileSystem = NamespaceComponent();
@confmon(ns=["org.apache.jackrabbit.core.id"], classes=["*"])
component Id = NamespaceComponent();
@confmon(ns=["org.apache.jackrabbit.core.stats"], classes=["*"])
component Stats = NamespaceComponent();
// Interactions
link NodeType.out to Session, Util, Data, Value, FileSystem, Id;
link Session.out to NodeType, Data, Value, Stats, Id;
link Query.out to NodeType, Session, FileSystem, Id, Stats;
link Util.out to Id, Util, Id, Value;
link Value.out to Data, FileSystem, Id;

}
}

our test application still runs almost 31% slower with probes, this may be an accept-
able compromise given that the framework can be easily unplugged when conformance
testing is not required.

The framework allows users to choose between JDI or probes for the purpose of fine
tuning conformance checks. In comparison to probes, the JDI mode offers a more thor-
ough conformance validation at the cost of reduced performance. The choice between
the two may be dependent on a number of factors including whether dynamic confor-
mance checking takes place as part of system testing prior to deployment or while the
system is in operation, and how often such checks are carried out.

We also verified that PANDArch generates conformance rules automatically, does
not affect the source code, and can be unplugged without recompiling the target.

6 Related Work

DiscoTect [11] uses runtime events, state information and rules for known architec-
tural styles to discover the architecture of an executing Java program. It uses a mapping
language to bridge the abstraction gap between architecture and implementation and
conformance is checked manually. In contrast, PANDArch automatically validates con-
straints extracted from an architecture, irrespective of style, against the implementation.

A later work by Ganesan et al. [6] adapts DiscoTect by replacing its mapping lan-
guage with Coloured Petri nets to link architecture to implementation. This technique



PANDArch: A Dynamic Architecture Conformance Checker 247

Table 1. A comparison of performance impact between JDI and instrumention probes. Tests were
executed in a system with 2.26 GHz Core 2 Duo processors and 8GB of memory.

Run Framework unplugged (µs) Framework using probes (µs) Framework using JDI (µs)

1 107,762 139,091 472,472
2 107,254 137,622 486,169
3 101,573 135,551 449,602
4 104,677 139,057 468,763

Average 105,317 137,830 (+30.9%) 469,251 (+345.6%)

is pluggable, non-intrusive and some aspects of the discovered architecture can be ver-
ified automatically. However, its mappings are also distinct from the architecture spec-
ification and stylistic architectural properties must be manually pre-configured in the
checker. PANDArch uses a single architecture specification with in-built mappings,
from which constraints used by the conformance checker are automatically generated.

Popescu and Medvidovic [10] propose a semi-automatic approach for checking dy-
namic compliance between an event-based system and its architecture. This approach
injects probes and recorders into components, extracts and filters runtime data on events
and compares it to a prescriptive sequence of events. It focuses on communications in
event-based systems and requires some human interpretation to decide conformance.

The SAVE tool [5] uses runtime events as well as source code to extract architectural
views, though runtime compliance checking is not possible.

7 Conclusions and Future Work

We have introduced a dynamic architecture conformance checking framework that is
pluggable, automated, non-intrusive, and minimises overhead on target applications.
An implementation of the framework for Grasp and Java is currently being evaluated.

This work opens up many avenues for further research. Extensive evaluation using
different types of applications under different loads is required to determine viability
and effectiveness of the framework. Although the core design of the framework does
not preclude them, the current implementation does not support distributed applica-
tions or static conformance checking. We intend to incorporate these functionalities to
improve applicability. Furthermore, a challenge faced by any dynamic program moni-
toring tool is ensuring sufficient execution coverage. We plan to address this issue by
employing static analysis to preconfigure the runtime checker, so that runtime archi-
tectural violations can be meaningfully interpreted with relation to the amount of code
covered during execution.

Acknowledgment. This work is supported through a PhD studentship awarded by
Scottish Informatics and Computer Science Alliance (SICSA) and University of St An-
drews.



248 L. de Silva and D. Balasubramaniam

References

1. Aldrich, J., Chambers, C., Notkin, D.: ArchJava: Connecting software architecture to imple-
mentation. In: Proceedings of the 24th International Conference on Software Engineering,
pp. 187–197. ACM (2002)

2. Apache Software Foundation: Apache Jackrabbit (2010),
http://jackrabbit.apache.org/ (accessed April 2013)

3. Apache Software Foundation: Jackrabbit Architecture (2010),
http://jackrabbit.apache.org/jackrabbit-architecture.html
(accessed April 2013)

4. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. Addison-
Wesley (2003)

5. Duszynski, S., Knodel, J., Lindvall, M.: SAVE: Software architecture visualization and eval-
uation. In: Proceedings of the 13th European Conference on Software Maintenance and
Reengineering, pp. 323–324. IEEE (2009)

6. Ganesan, D., Keuler, T., Nishimura, Y.: Architecture compliance checking at run-time. Infor-
mation and Software Technology 51(11), 1586–1600 (2009)

7. Morrison, R., Kirby, G., Balasubramaniam, D., Mickan, K., Oquendo, F., Cimpan, S., War-
boys, B., Snowdon, B., Greenwood, R.M.: Support for evolving software architectures in
the ArchWare ADL. In: Proceedings of the 4th Working IEEE/IFIP Conference on Software
Architecture, pp. 69–78. IEEE (2004)

8. Oracle: Package java.lang.instrument (2013),
http://docs.oracle.com/javase/7/docs/api/java/lang/
instrument/package-summary.html (accessed April 2013)

9. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. ACM SIGSOFT
Software Engineering Notes 17(4), 40–52 (1992)

10. Popescu, D., Medvidovic, N.: Ensuring architectural conformance in message–based sys-
tems. In: Proceedings of the Workshop on Architecting Dependable Systems (2008)

11. Schmerl, B., Garlan, D., Yan, H.: Dynamically discovering architectures with DiscoTect. In:
Proceedings of the 13th ACM International Symposium on Foundations Software Engineer-
ing, pp. 103–106. ACM (2005)

12. de Silva, L., Balasubramaniam, D.: A model for specifying rationale using an architec-
ture description language. In: Crnkovic, I., Gruhn, V., Book, M. (eds.) ECSA 2011. LNCS,
vol. 6903, pp. 319–327. Springer, Heidelberg (2011)

13. de Silva, L., Balasubramaniam, D.: Controlling software architecture erosion: A survey. Jour-
nal of Systems and Software 85(1), 132–151 (2012)

14. van Gurp, J., Bosch, J.: Design erosion: problems and causes. Journal of Systems and Soft-
ware 61(2), 105–119 (2002)

http://jackrabbit.apache.org/
http://jackrabbit.apache.org/jackrabbit-architecture.html
http://docs.oracle.com/javase/7/docs/api/java/lang/instrument/package-summary.html
http://docs.oracle.com/javase/7/docs/api/java/lang/instrument/package-summary.html

	PANDArch: A Pluggable Automated Non-intrusive Dynamic Architecture Conformance Checker
	1 Introduction
	2 Architecture Conformance Checking
	2.1 Static and Dynamic Checking
	2.2 Mapping between Architecture and Implementation

	3 Design Principles
	4 Implementation
	5 Evaluation
	5.1 Detecting Architecture Violations
	5.2 Performance Impact

	6 Related Work
	7 Conclusions and Future Work
	References




