
Khalil Drira (Ed.)

 123

LN
CS

 7
95

7

7th European Conference, ECSA 2013
Montpellier, France, July 2013
Proceedings

Software
Architecture

Lecture Notes in Computer Science 7957
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Khalil Drira (Ed.)

Software
Architecture
7th European Conference, ECSA 2013
Montpellier, France, July 1-5, 2013
Proceedings

13

Volume Editor

Khalil Drira
LAAS-CNRS, Univ. de Toulouse
31031 Toulouse, France
E-mail: khalil@laas.fr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-39030-2 e-ISBN 978-3-642-39031-9
DOI 10.1007/978-3-642-39031-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013940538

CR Subject Classification (1998): D.2, D.3, F.3, H.4, C.2, K.6

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 7th European Conference on Software Architecture (ECSA 2013) aimed at
bringing together researchers and industry practitioners to exchange the recent
and innovative fundamental advances in the state of the art, to identify emerg-
ing research topics, and to take part in the next trend in the field of software
architecture. This edition of ECSA built upon a history of a successful series of
European workshops on software architecture held from 2004 through 2006, and
a series of European software architecture conferences from 2007 through 2012.

We received more than 80 submissions in the three main categories: full re-
search and experience papers (64 papers), emerging research papers (10 papers),
and research challenge papers (8 papers). The conference attracted papers coau-
thored by researchers, practitioners, and academics from 46 countries. Each pa-
per, independently of the category, was peer-reviewed by at least three reviewers,
and discussed by the Program Committee. Based on the recommendations and
the discussions, we accepted 12 full papers out of 64 full papers submitted. The
acceptance rate for the full papers is 18.75%. In the Emerging Research category,
we accepted a total of 13 papers, 3 of which were originally submitted in this
category, and 10 were submitted as full papers. Finally, we accepted 11 papers
as Research Challenge (Poster) papers.

In addition to the technical program consisting of academic and industrial
keynote talks, a main research track, and a poster session, the scope of ECSA
2013 was broadened by the SESoS 2013 workshop: the Workshop on Software
Engineering for Systems-of-Systems.

We are grateful to the members of the Program Committee for helping us to
seek submissions and provide valuable and timely reviews. Their efforts enabled
us to put together a high-quality technical program for ECSA 2013. We are in-
debted to the local arrangements team of LIRMM for the successful organization
of all conference, social, and co-located events. The ECSA 2013 submission, re-
view and proceedings process was extensively supported by the EasyChair Con-
ference Management System. We also acknowledge the prompt and professional
support from Springer, who published these proceedings in printed and elec-
tronic volumes as part of the Lecture Notes in Computer Science series. Finally,
we would like to thank our sponsors ORACLE, Bouygues Telecom, IBM Re-
search, Typesafe, La Région Languedoc-Roussillon, Montpellier Agglomération,
and GDR GPL for their support of this conference. Most importantly, we would
like to thank all authors and participants of ECSA 2013 for their insightful work
and discussions!

April 2013 Khalil Drira
Flavio Oquendo

Marianne Huchard

Organization

Conference Chair

Flavio Oquendo IRISA - University of South Brittany, France

Program Committee

Program Committee Chair

Khalil Drira LAAS-CNRS - Université de Toulouse, France

Program Committee Members

Ahmed Hadj Kacem University of Sfax, Tunisia
Alexander Egyed Johannes Kepler University, Austria
Andrea Zisman City University London, UK
Antonia Lopes University of Lisbon, Portugal
Antony Tang Swinburne University of Technology, Australia

Bedir Tekinerdoǧan Bilkent Üniversitesi, Turkey
Bradley Schmerl Carnegie Mellon University, USA
Carlos Cuesta Rey Juan Carlos University, Spain
Cecilia Rubira University of Campinas, Brazil
Claudia Maria Lima Werner Federal University of Rio de Janeiro - UFRJ,

Brazil
Claudia Raibulet University of Milano-Bicocca, Italy
Claus Pahl Dublin City University, Ireland
Cristina Gacek City University London, UK
Danny Weyns Linnaeus University - Växjö, Sweden
Darko Huljenic Ericsson Nikola Tesla, Croatia
David Garlan Carnegie Mellon University, USA
Dewayne Perry University of Texas at Austin, USA
Eduardo Santana de Almeida Federal University of Bahia and RiSE, Brazil
Eila Ovaska VTT Technical Research Centre of Finland,

Finland
Elena Navarro Castilla-La Mancha University, Spain
Elisa Yumi Nakagawa University of São Paulo, Brazil
Gerald Kotonya Lancaster University, UK
Henry Muccini University of L’Aquila, Italy
Ian Gorton Pacific Northwest National Laboratory, USA

VIII Organization

Ismael Bouassida Rodriguez University of Sfax, Tunisia
Ivica Crnkovic Mälardalen University, Sweden
Jan Bosch Chalmers University of Technology, Sweden
Javier Cámara University of Coimbra, Portugal
Jennifer Pérez Technical University of Madrid, Spain
Jesper Andersson Linnaeus University - Växjö, Sweden
John Grundy Swinbourne University of Technology, Australia
José Luiz Fiadeiro University of Leicester, UK
José Carlos Maldonado University of Sao Paulo, Brazil
Juha Savolainen Danfoss Power Electronics A/S, Finland
Kai Koskimies Tampere University of Technology, Finland
Laurence Duchien University of Lille and INRIA, France
Liming Zhu NICTA and UNSW, Australia
Marco Bernardo University of Urbino, Italy
Martin Becker Fraunhofer IESE, Germany
Mourad Oussalah University of Nantes LINA, France
Muhammad Ali Babar IT University of Copenhagen, Denmark
Nenad Medvidovic University of Southern California, USA
Nicole Levy Cédric, CNAM, France
Paola Inverardi University of L’Aquila, Italy
Paris Avgeriou University of Groningen, The Netherlands
Patricia Lago VU University Amsterdam, The Netherlands
Philippe Kruchten University of British Columbia, Canada
Prabhakar Tadinada Indian Institute of Technology Kanpur, India
Rafael Capilla Universidad Rey Juan Carlos, Madrid, Spain
Raffaela Mirandola Politecnico di Milano, Italy
Rainer Weinreich Johannes Kepler University of Linz, Austria
Régis Fleurquin IRISA - University of South Brittany, France
Riccardo Scandariato KU Leuven, Belgium
Robert Nord Software Engineering Institute, USA
Rogerio De Lemos University of Kent, UK
Sam Malek George Mason University, USA
Thais Batista UFRN Federal University of Rio Grande do

Nort, Brazil
Tomas Bures Charles University in Prague, Czech Republic
Tomi Männistö Helsinki University of Technology, Finland
Uwe Zdun Technical University of Vienna, Austria
Valérie Issarny INRIA Paris-Rocquencourt, France
Volker Gruhn University of Duisburg-Essen, Germany
Wilhelm Hasselbring Kiel University, Germany

Organization IX

Additional Reviewers

Achraf Ghabi
Alexander Nöhrer
Amal Gassara
Amrita Chaturvedi
Andreas Demuth
Ashish Agrawal
Cédric Eichler
Claudia Susie

Camargo Rodrigues
Clément Quinton
Codé Diop
Damian Andrew

Tamburri
Daniel St̊ahl
David Allison
Dominique Mery
Francisca Losavio
Francisco Monaco

H̊akan Burden
Hala Naja
Hatem Hadj Kacem
Hossein Tajalli
Huy Tran
Ilias Gerostathopoulos
Imen Tounsi
Imene Lahyani
Ioanna Lytra
Ivano Malavolta
Ivo Krka
Jae Young Bang
Jair Leite
Jan Salvador van der Ven
Jessica Dı́az
Lauret Jimmy
Liam O’Reilly

Lucas Bueno Ruas
De Oliveira

M. Pilar Romay
Milena Guessi
Mohamed Nadhmi

Miladi
Mohamed Tounsi
Mohamed Zouari
Nabil Bachir Djarallah
Nesrine Khabou
Philippe Merle
Pooyan Jamshidi
Riad Belkhatir
Riadh Ben Halima
Séverine Sentilles
Stephany Bellomo

Steering Committee

Steering Committee Chair

Flavio Oquendo IRISA - University of South Brittany, France

Steering Committee Members

Muhammad Ali Babar IT University of Copenhagen, Denmark
Ivica Crnkovic Mälardalen University, Sweden
Carlos E. Cuesta Rey Juan Carlos University, Spain
Khalil Drira LAAS-CNRS - Université de Toulouse, France
Ian Gorton Pacific Northwest Labs, USA
Volker Gruhn University of Duisburg-Essen, Germany
Rick Kazman SEI/CMU and University of Hawaii, USA
Tomi Männistö Aalto University, Finland

Organizing Committee

General Conference Chair

Marianne Huchard LIRMM, Montpellier, France

X Organization

Organization Chairs

Roland Ducournau and
Christophe Dony LIRMM, Montpellier, France

Local Organization Chairs

Elisabeth Grverie
and Justine Landais LIRMM, Montpellier, France

Workshop Chairs

Olivier Zendra INRIA Nancy, France
Reda Bendraou Université Pierre et Marie Curie, France
Damien Cassou Université Lille 1, France
Stéphane Ducasse INRIA Lille, France
Thierry Monteil LAAS-CNRS, INSA Toulouse, France

Tutorial Chairs

Naouel Moha Université du Québec à Montréal, Canada
Jean Privat Université du Québec à Montréal, Canada
Gergely Varró Technische Universität Darmstadt, Germany

Doctoral Symposium Chairs

Mireille Blay-Fornarino
and Philippe Collet Université de Nice, France

Research Project Symposium Chair

Isabelle Borne University of South Brittany, France
Ileana Ober Université de Toulouse, France

Poster and Demo Chairs

Houari Sahraoui Université de Montréal, Canada
Bernard Carré Université de Lille, France
Harald Störrle DTU Informatics, Denmark

Summer School Chairs

James Noble Victoria University of Wellington, New Zealand
Jan Vitek Purdue University, USA

Web Chairs

Chouki Tibermacine and
Clémentine Nebut LIRMM, Montpellier, France

Organization XI

Social Events Chairs

Clémentine Nebut and
Chouki Tibermacine LIRMM, Montpellier, France

Sponsorship and Industrial Relationships Chairs

Jean-Paul Rigault Université de Nice, France
Abdelhak-Djamel Seriai LIRMM, Montpellier, France

Student Volunteers Chairs

Jannik Laval École des mines de Douai, France
Floréal Morandat Université de Bordeaux, France
Petr Spacek LIRMM, Montpellier, France

Sponsoring Institutions

ORACLE
Bouygues Telecom
IBM Research
Typesafe
GDR GPL
La Région Languedoc-Roussillon
Montpellier Agglomération

Table of Contents

Architectural and Design Patterns and Models

Composition-Centered Architectural Pattern Description Language 1
Minh Tu Ton That, Salah Sadou, Flávio Oquendo, and Isabelle Borne

Software Reference Architectures - Exploring Their Usage and Design
in Practice . 17

Samuil Angelov, Jos Trienekens, and Rob Kusters

Concurrent Object-Oriented Development with Behavioral Design
Patterns . 25

Benjamin Morandi, Scott West, Sebastian Nanz, and Hassan Gomaa

Building Correct by Construction SOA Design Patterns: Modeling and
Refinement . 33

Imen Tounsi, Mohamed Hadj Kacem, and Ahmed Hadj Kacem

Towards an Architecture for Managing Big Semantic Data
in Real-Time . 45

Carlos E. Cuesta, Miguel A. Mart́ınez-Prieto, and
Javier D. Fernández

Controlled Experiment on the Supportive Effect of Architectural
Component Diagrams for Design Understanding of Novice Architects . . . 54

Thomas Haitzer and Uwe Zdun

ADLs and Architectural MetaModels

Software Architecture Documentation for Developers: A Survey 72
Dominik Rost, Matthias Naab, Crescencio Lima, and
Christina von Flach Garcia Chavez

Analysis Support for TADL2 Timing Constraints on EAST-ADL
Models . 89

Arda Goknil, Jagadish Suryadevara,
Marie-Agnès Peraldi-Frati, and Frédéric Mallet

SysADL: A SysML Profile for Software Architecture Description 106
Jair Leite, Flávio Oquendo, and Thais Batista

A Lightweight Language for Software Product Lines Architecture
Description . 114

Eduardo Silva, Ana Luisa Medeiros, Everton Cavalcante, and
Thais Batista

XIV Table of Contents

Towards a Multi-scale Modeling for Architectural Deployment Based
on Bigraphs . 122

Amal Gassara, Ismael Bouassida Rodriguez, and Mohamed Jmaiel

Architectural Design Decision-Making

Classification of Design Decisions – An Expert Survey in Practice 130
Cornelia Miesbauer and Rainer Weinreich

Team Situational Awareness and Architectural Decision Making with
the Software Architecture Warehouse . 146

Marcin Nowak and Cesare Pautasso

Architectural Decision-Making in Enterprises: Preliminary Findings
from an Exploratory Study in Norwegian Electricity Industry 162

Mohsen Anvaari, Reidar Conradi, and Letizia Jaccheri

Making the Right Decision: Supporting Architects with Design Decision
Data . 176

Jan Salvador van der Ven and Jan Bosch

Architecture-Centric Modeling of Design Decisions for Validation and
Traceability . 184

Martin Küster

Difficulty of Architectural Decisions – A Survey with Professional
Architects . 192

Dan Tofan, Matthias Galster, and Paris Avgeriou

Software Architecture Conformance and Quality

The Role of Quality Attributes in Service-Based Systems Architecting:
A Survey . 200

David Ameller, Matthias Galster, Paris Avgeriou, and Xavier Franch

Maintaining Architectural Conformance during Software Development:
A Practical Approach . 208

Claire Dimech and Dharini Balasubramaniam

Supporting Consistency between Architectural Design Decisions
and Component Models through Reusable Architectural Knowledge
Transformations . 224

Ioanna Lytra, Huy Tran, and Uwe Zdun

PANDArch: A Pluggable Automated Non-intrusive Dynamic
Architecture Conformance Checker . 240

Lakshitha de Silva and Dharini Balasubramaniam

Table of Contents XV

Architectural Repair and Adaptation

Claims and Evidence for Architecture-Based Self-adaptation:
A Systematic Literature Review . 249

Danny Weyns and Tanvir Ahmad

Towards an Optimized Software Architecture for Component
Adaptation at Middleware Level . 266

Thomas Pramsohler, Simon Schenk, and Uwe Baumgarten

Run-Time Support to Manage Architectural Variability Specified with
CVL . 282

Gustavo G. Pascual, Mónica Pinto, and Lidia Fuentes

Towards Extensive Software Architecture Erosion Repairs 299
Matthias Mair and Sebastian Herold

Short Papers

Benefits and Drawbacks of Reference Architectures 307
Silverio Mart́ınez-Fernández, Claudia P. Ayala, Xavier Franch, and
Helena Martins Marques

Swap Fairness for Thrashing Mitigation . 311
François Goichon, Guillaume Salagnac, and Stéphane Frénot

Architectural Slicing: Towards Automatic Harvesting of Architectural
Prototypes . 316

Henrik Bærbak Christensen and Klaus Marius Hansen

Describing Cloud Applications Architectures . 320
Everton Cavalcante, Ana Luisa Medeiros, and Thais Batista

MVIC – An MVC Extension for Interactive, Multimodal
Applications . 324

Marc Hesenius and Volker Gruhn

Toward Industry Friendly Software Architecture Evaluation 328
Zhao Li and Jiang Zheng

Towards Continuous Reference Architecture Conformance Analysis 332
Georg Buchgeher and Rainer Weinreich

Towards Automated Deployment of Distributed Adaptation Systems . . . 336
Mohamed Zouari and Ismael Bouassida Rodriguez

Towards a Bigraph-Based Model for Context-Aware Adaptive
Systems . 340

Taha Abdelmoutaleb Cherfia and Fäıza Belala

XVI Table of Contents

Characterising Software Platforms from an Architectural Perspective . . . 344
Ulrik Eklund, Carl Magnus Olsson, and Marcus Ljungblad

Specifying System Architecture from SysML Requirements and
Component Interfaces . 348

Samir Chouali, Oscar Carrillo, and Hassan Mountassir

Author Index . 353

Composition-Centered Architectural Pattern

Description Language

Minh Tu Ton That, Salah Sadou, Flavio Oquendo, and Isabelle Borne

Université de Bretagne Sud
IRISA

Vannes, France
{minh-tu.ton-that,Salah.Sadou,Flavio.Oquendo,Isabelle.Borne}@irisa.fr

Abstract. Architectural patterns are important artefacts containing
specialized design knowledge to build good-quality systems. Complex
systems often exhibit several architectural patterns in their design which
leads to the need of architectural pattern composition. Unfortunately, in-
formation about the composition of patterns tend to be vaporized right
after the composition process which causes problems of traceability and
reconstructability of patterns.

This paper proposes a pattern description language that first, facili-
tates several types of pattern merging operation and second, allows the
traceability of pattern composition. More specifically, the approach con-
sists of a proper description of pattern that supports composition op-
erations and a two-step pattern design process that helps to preserve
pattern composition information.

1 Introduction

A key issue in the design of any software system is the software architecture,
i.e. the fundamental organization of the system embodied in its components,
their relationships to each other and to the environment, and the principles
guiding its design and evolution [11]. In particular, from a runtime viewpoint,
an architecture description should provide a specification of the architecture in
terms of components and connectors and how they are composed together; where
components are the units of computation and connectors are the interconnections
for supporting interactions between components.

The activity of architecting software systems can benefit from the concept of
pattern, therefore providing a general reusable solution to a commonly occurring
problem within a given context. It is the case of architectural patterns, a concept
that enables to define a group of cohesive elements of a software architecture to
solve a particular problem.

However, the current use of architectural patterns has a major shortcoming
that needs to be addressed to leverage their use in complex software architec-
tures. More specifically, in real world architectures recurring problems are com-
plex and their solutions can be represented by patterns in complex forms that
require the combination and reuse of other existing architectural patterns [5].

K. Drira (Ed.): ECSA 2013, LNCS 7957, pp. 1–16, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 M.T. Ton That et al.

Moreover, in a well defined context (a given company) there may be some re-
curring problems that no classical architectural pattern fits. Thus, two problems
emerge: the definition of specific patterns and the construction of patterns by
combining existing ones. In the literature, current support for pattern composi-
tion consists in fact of using merging operators that are not part of the pattern
language [10,3,19,7]. This limitation prevents the traceability as well as the re-
constructability of patterns which are essential to solve for software evolution.

For addressing these open issues, we propose an architectural pattern descrip-
tion language, called COMLAN, that has in particular the following properties:
(i) it deserves first-class citizenship for both patterns and merging operators;
(ii) it supports the design of hierarchical patterns. This language is graphical
and can be easily integrated to an Architectural Description Language (ADL)
environment.

The remainder of this paper is organized as follows: Section 2 points out the
problem via illustrative examples. Section 3 introduces the general approach.
Section 4 goes into detail the pattern description language. Section 5 describes
the pattern refinement step. Section 6 gives some implementation information.
Section 7 discusses related work. Section 8 concludes the paper.

2 Problem Statement

Architectural patterns tend to be combined together to provide greater sup-
port for the reusability during the software design process. Indeed, architec-
tural patterns can be combined in several ways. We consider here three types
of combination: A pattern can be blended with, connected to or included in an-
other pattern. To highlight the existing problems, we first show an example for
each case of architectural pattern composition and then point out issues drawn
from them.

2.1 Blend of Patterns

By observing the documented patterns in [5,6], we can see that there are some
common structures that patterns share. For example, the patterns Pipes and
Filters and Layers share a structure saying that their elements should not form
a cycle.

If we consider to express the constraint that no circle can be formed from filters
via a pattern, we can say that the pattern Pipes and Filters is composed of two
sub-patterns (see Figure 1). We call them Sequential pattern and Acyclic pattern.
The former consists of Filter components linked together by Pipe connectors and
the latter consists of Acylic components in a way that no cycle can be formed
from them. Thus, Pipes and Filters is actually the product of the blend of these
two patterns. But unfortunately, it is impossible to reuse the Sequential pattern
or the Acyclic pattern alone because they are completely melted in the definition
of the Pipes and Filters pattern.

Composition-Centered Architectural Pattern Description Language 3

Fig. 1. Pipes and Filters

2.2 Connection of Patterns

A lot of documented patterns formed from two different patterns can be found
in [6,2]. For instance, the pattern Pipes and Filters can be combined
with the pattern Repository to form the pattern called Data-centered Pipeline as
illustrated in Figure 2.

Fig. 2. The Data-centered pipeline pattern

As we can observe, the two patterns are linked together by a special connector
which serves two purposes at the same time: convey data from a Filter and access
to the Repository. But once the composed pattern built, it is difficult to identify
the sub-patterns used in its constituent patterns.

2.3 Inclusion of Patterns

Architectural patterns themselves can help to build the internal structure of one
specific element of another pattern. In [2], we can find several known-uses of
this type of pattern composition. An example where the Layers pattern becomes
the internal structure of Repository pattern is shown in Figure 3. Indeed, when
we have to deal with data in complex format, the Layers pattern is ideal to
be set up as the internal structure of the repository since it allows the process
of data through many steps. Moreover, the inclusion of patterns can be found
at different levels. To be able to model such case, it is necessary to recursively
explore patterns through many levels.

Despite the existence of this type of composition, the proposed works have
not given the support for it.

4 M.T. Ton That et al.

Fig. 3. Layers as internal structure of Repository

2.4 Discussion

As we can observe from the example of subsection 2.2, the Pipes and Filters pat-
tern is used as a constituent pattern to build the Data-centered pipeline pattern.
When we look at the Pipes and Filters pattern in this view, we have no idea that
it is composed from other patterns as shown in Example 2.1. We think the fact
that the border between constituent patterns of a composed pattern is blurred
can reduce greatly the pattern comprehensibility. Moreover, since the composed
patterns may be then used to build another pattern, knowing the role and the
original pattern of every element in the pattern becomes really essential.

Another issue to be taken into consideration is the reconstructability of com-
posed patterns. In the example of subsection 2.1, when one of the two pattens
forming the Pipes and Filters pattern changes, we should be able to propagate
the change to the Pipes and Filters pattern. Moreover, since the Pipes and Filters
pattern has been changed, the Data-centered Pipeline in which it participates in
Example 2.2 must be also reconstructed.

In the literature, the already proposed approaches such as [10,3,19,7] present
pattern merging operators in an ad-hoc manner where information about the
composition of patterns is vaporized right after the composition process. Thus,
they ignore two aforementioned issues.

To realize the inclusion operation like one presented in the example from subsec-
tion 2.3, the pattern description language should provide the recursive definition
for pattern. More specifically, when specifying an element of a pattern we should
be able to add other patterns inside to characterize the element’s internal struc-
ture. To our knowledge, the proposed pattern description languages [9,18,14] have
not given the support to this type of hierarchical composition.

In summary, the examples shown above highlight three problems to solve:

1. Traceability of constituent patterns : One should be able to trace back to
constituent patterns while composing the new pattern.

2. Reconstructability of composed patterns: Anytime there is a change in a con-
stituent pattern, one should be able to reuse the merging operators to reflect
the change to the composed pattern.

Composition-Centered Architectural Pattern Description Language 5

3. Support for hierarchical pattern composition: While constructing a pattern,
one should be able to build the internal structure of an element by including
another pattern.

3 General Approach

We propose the process of constructing patterns including two steps as illustrated
in Figure 4. The first step consists in describing a pattern as a composition graph
of unit patterns. Thus, the pattern comprises many blocks, each block represents
a unit pattern, all linked together by merging operators.

The second step consists in refining the composed pattern in the previous
step by concretizing the merging operators. More specifically, depending on the
type of merging operator (see Section 4.1), a new element is added to the com-
posed pattern or two existing elements are mixed together. On the purpose of
automating the process of pattern refinement, we use the Model Driven Archi-
tecture (MDA) approach [16]. Each pattern is considered as a model conforming
to its meta-model in order to create a systematic process thanks to model trans-
formation techniques. Thus, each refined pattern is attached to a corresponding
pattern model from step 1 and any modification must be done only on the latter
at step 1. At this stage, we offer the architect a pattern description language
based on the use of classical architectural elements, architectural patterns and
pattern merging operators.

Fig. 4. Overall Approach

We can see that through this two-step process, anytime we want to trace back
the constituent patterns of a composed pattern in the second step, we can find
them in its corresponding pattern model. Thus, we solve the traceability problem
pointed out in the previous section.

We solve the second problem (reusability of merging operators) by the fact
that merging operators are first-class entities in our pattern description lan-
guage. In other words, merging operators are treated as elements of the pattern
language where we can manipulate and store them in the pattern model like
other elements. Therefore, the composition of patterns is not an ad-hoc opera-
tion but a part of pattern. This proposal facilitates significantly the propagation

6 M.T. Ton That et al.

of changes in constituent patterns to the composed pattern. Indeed, the latter
can thoroughly be rebuilt thanks to the stored merging operators. So, merging
operators not only do their job which performs a merge on two patterns but also
contain information about the composition process. Thus, we think documenting
them is one important task that architects should take into consideration.

Finally, to solve the third problem (support for hierarchical pattern composi-
tion), we propose to give pattern itself first-class status in our pattern descrip-
tion language. That means that patterns should play the same role as other
elements where we can make connection with, add properties and most impor-
tantly, set them up as internal elements. This recursive definition of pattern gives
the pattern description language the capacity to describe hierarchical patterns
as mentioned in the illustrative example of Section 2.3.

In the two following sections, we describe our pattern description language
and the transformation process that produces the refined pattern model from a
pattern model.

4 A Pattern Description Language for Hierarchical
Pattern and Composition

We introduce our language called COMLAN (Composition-Centered Architec-
tural Pattern Description Language) as a means to realize two main purposes:
build complex patterns from more fine-grained patterns using merging operators
and leverage hierarchical patterns.

4.1 The COMLAN Meta-Model

In this work, we reuse part of our role-based pattern language [20] which serves
for documenting architectural decisions about the application of architectural
patterns. As shown in Figure 5, our meta-model is composed of two parts: the
structural part and the pattern part. As pointed out in [13,1] and also described
in [6], the design vocabulary of an architectural pattern necessarily contains a
set of component, connector, port and role. We take these concepts into consid-
eration to build the structural part of our language. More specifically, they are
described in our language as follows:

– Component is a composite element which, through the internalElements re-
lation, can contain a set of component ports or even a sub-architecture with
components and connectors

– Component port is a simple element through which components interact
with connectors. A component port can be attached to a connector role or
delegated to another component port in an internal sub-architecture.

– Connector is a composite element which, through the internalElements re-
lation, can have a set of connector roles or even a sub-architecture with
components and connectors.

Composition-Centered Architectural Pattern Description Language 7

Fig. 5. The COMLAN meta-model

– Connector role is a simple element that indicates how components (via
component ports) use a connector in interactions. A connector role can be
delegated to another connector role in an internal sub-architecture.

The pattern aspect part (see Figure 5) of our meta-model aims at providing
functionalities to characterize a meaningful architectural pattern. To be more
specific, the meta-model allows us to describe a pattern element at two levels:
generic and concrete. Via the multiplicity, we can specify an element as generic
or concrete. A concrete element (not associated with any multiplicity) provides
guidance on a specific pattern-related feature. Being generic, an element (as-
sociated with a multiplicity) represents a set of concrete elements playing the
same role in the architecture. A multiplicity indicates how many times a pattern-
related element should be repeated and how it is repeated. Figure 6 shows two
types of orientation organization for a multiplicity: vertical and horizontal. Being
organized vertically, participating elements are parallel which means that they
are all connected to the same elements. On the other hand, being organized hori-
zontally, participating elements are inter-connected as in the case of the pipeline
architectural pattern [5].

Each element in the meta-model can be associated with a role. A role specifies
properties that a model element must have if it is to be part of a pattern solution
model [8]. To characterize a role, we use architectural constraints. A constraint
made to a role on an element helps to make sure that the element participating
in a pattern has the aimed characteristics. Constraints are represented in our
approach in form of OCL (Object Constraint Language) [17] rules.

8 M.T. Ton That et al.

Fig. 6. Orientation organization of generic elements

Similar to [10,3,19], in our language two types of merging operator are sup-
ported: stringing and overlapping as shown in Figure 7. A stringing operation
means a connector is added to the pattern model to connect one component from
one pattern to another component from the other pattern. If an overlapping op-
eration involves two elements, it means that two involving elements should be
merged to a completely new element. Otherwise, if an overlapping operation in-
volves a composite element and a pattern, it means that the latter should be
included inside the former. In both cases of merging, the participating elements
are respectively determined through two references source and target.

Fig. 7. Two types of merging operation

Pattern can contain all concepts described above and most importantly, it
inherits from Element which allows a composite element to contain it. This
special feature helps our language to include an entire pattern into an element
while constructing a pattern. In other words, hierarchical patterns are supported.

4.2 Pattern Definition through an Example

For the purpose of illustration, our pattern definition language will be used
to model an example about the pattern for data exploration and visualiza-
tion as in the Vistrails application’s architecture [4]. More specifically, this
model represents the first step of the pattern definition process. As shown in
Figure 8, this pattern model consists of three main sub-patterns: Pipes and
Filters, Client-Server and Repository, all connected together through merging
operators. Among these three patterns, the Repository pattern is a hierarchical
one whose the component of the same name includes the Layers pattern.

To explain how the pattern concepts are realized, we go into details for the Pipes
and Filters pattern. On the upper left corner of Figure 8, we can observe that
the Pipes and Filters pattern is constructed with the emphasis on the following

Composition-Centered Architectural Pattern Description Language 9

Fig. 8. Example of pattern model

elements: the component Filter specified with two roles Filter and AcyclicCom-
ponent, the connector Pipe specified with the role Pipe. The connector Pipe is
not assigned with any multiplicity. Otherwise, the component Filter is assigned
with amultiplicity since it representsmany possible filters inter-connected by Pipe
connectors. Furthermore, its horizontal multiplicity1 indicates that there may be
many instances of Filters and they must be horizontally connected. The role Filter
is characterized by the ConnectedFilter constraint. To be more specific, it stipu-
lates that a filter cannot stand alone, there must be at least one pipe connected to a
filter. Similarly, the constraintAcyclicComponent characterizing the roleAcyclic-
Component stipulates that among filters, we cannot form a cycle. Finally, the two
constraints InputConnectedPipe and OutputConnectedPipe say that for a given
pipe, there must be a filter as input and a filter as output. The above constraints
are presented as OCL invariants as follows:

invariant AcyclicComponent:
if role->includes(’AcyclicComponent’) then

Component.allInstances()->forAll(role = ’AcyclicComponent’ implies not
self.canFormCycle())

endif;

1 Upperbound = -1 indicates that there’s no limited upper threshold for a multiplicity.

10 M.T. Ton That et al.

invariant ConnectedFilter:
if role->includes(’Filter’) then

Connector.allInstances()->exists(role = ’Pipe’ and isConnected(self))
endif;

invariant InputConnectedPipe:
if role->includes(’Pipe’) then

Component.allInstances()->exists(role = ’Filter’ and
getOutputConnectors().contains(self))

endif;

invariant OutputConnectedPipe:
if role->includes(’Pipe’) then

Component.allInstances()->exists(role = ’Filter’
and getInputConnectors().contains(self))

endif;

Merging operators are used to link participating patterns together. More
specifically, in our pattern model (see Figure 8), three merging operators are used:

– An overlapping operator whose source is the Filter component in the Pipes
and Filters pattern and target is the Client component in the Client-Server
pattern.

– A stringing operator whose source is the Filter component in the Pipes and
Filters pattern and target is the Repository component in the Repository pat-
tern.

– An overlapping operator whose source is the Repository component in the
Repository pattern and target is the Layers pattern.

These three operators are used as elements of the pattern language and stored
along with the other elements.

This example has shown the ability of using our language to describe com-
plex patterns which are combined from different patterns by leveraging merging
operators.

5 Pattern Refinement

After being described as the composition of constituent patterns through merging
operators, the pattern model will be refined. We consider this second step in the
pattern definition process as a model transformation from a pattern model where
merging operators are explicitly presented to a pattern model where merging op-
erators are concretized. While realizing this transformation, three important is-
sues need to be taken into account: how to concretize a stringing operator, how to
concretize an overlapping operator and how to handle nested patterns.

5.1 Stringing Operator Transformation

Among structural elements in the pattern language, except for components which
can be linked by stringing operators, there is no interest to link together other el-
ements like connectors, component ports or connector roles. That is the reason

Composition-Centered Architectural Pattern Description Language 11

Fig. 9. The refined pattern model

why a stringing operator can only be transformed into a new connector to link
source component and target component. New component ports are also added to
the source component and the target component and attached to new connector
roles in the newly created connector. As shown in Figure 9, the stringing opera-
tor described in the previous step is now transformed to the connector DataRead-
ing/WritingPipe. This new connector contains two connector roles, one attached
to a component port in the ClientFilter component and the other attached to a
component port in the Repository component.

5.2 Overlapping Operator Transformation

The result of the transformation for an overlapping operator is a new element
which carries all the characteristics of the source element and the target element.
For composite elements, the composition begins with the fusion of all internal el-
ements. As we can see from Figure 9, the overlapping operator described in the
previous step is concretized by the component ClientFilter. This component con-
tains all component ports from the source element which is a Filter and the target
element which is a Client. Furthermore, via these component ports, the link from
the component to two connectors Pipe and Request/Reply is also preserved.

The overlapped element plays all the roles of the source element and the tar-
get element. Indeed, the ClientFilter plays three roles at once: AcyclicCompo-
nent, Filter since it participates as a Filter in the Pipes and Filters pattern and
finally, Client since it participates as a Client in the Client-Server pattern.

12 M.T. Ton That et al.

Fig. 10. The merged pattern of Client-Server and Pipes and Filters

The multiplicity is merged as follows: The lower bound of the merged element’s
multiplicity is the maximum between the lower bound of the source element’s mul-
tiplicity and the lower bound of the target element’s multiplicity. On the contrary,
the upper bound of the merged element’s multiplicity is the minimum between
the upper bound of the source element’s multiplicity and the upper bound of the
target element’s multiplicity. If the source elements multiplicity or the target el-
ements multiplicity is vertical or horizontal then merged elements multiplicity is
also vertical or horizontal. In our pattern model (Figure 9), the multiplicity of the
merged component ClientFilter is both vertical and horizontal since its source
component Client is vertical and its target component Filter is horizontal as il-
lustrated in Figure 10.

In the case of a chain of consecutive overlapping operators in which one contin-
ues another, we use a special algorithm which is sketched in Figure 11. Let’s say
we have n random elements linked together by (n-1) overlapping operators. The
algorithm consists of n-1 steps. In the first step, the overlapping operator merges
Element 1 andElement 2 to createElement 12. Next, Element 2 is replaced by El-
ement 12. In the second step, the overlapping operator merges the new Element
12 and Element 3 to create Element 123. Similarly, Element 3 is then replaced
by Element 123. The algorithm continues so on until the (n− 1)-th step when all
elements are merged into the Element 123..n. An important remark in this algo-
rithm is that thanks to the replacement mechanism, an element can reflect the
merging operation in which it participates. Thus, the merging operation is prop-
agated to every element participating in the merging chain.

Fig. 11. The algorithm in case of multiple overlapping operators

Composition-Centered Architectural Pattern Description Language 13

5.3 Nested Pattern Transformation

If a pattern participates in a merging operation, all of its internal elements will
be added in the refined pattern while the pattern itself will not be transformed.
As shown in Figure 9, all the three patterns Pipes and Filters, Client-Server
and Repository disappear leaving their internal elements in the refined pattern.
Otherwise, if a pattern does not participate in anymerging operation, a refinement
procedure (which is actually a recursive procedure) will be applied to the pattern.
Since the Layers pattern does not contain any merging operators, the refinement
procedure just simply keeps all its internal elements.

6 Implementation Information

To verify the feasibility of our approach, we developed the COMLAN tool which
allows a graphical use of the COMLAN pattern description language. With the
COMLAN tool we aim to make concrete the aforementioned concepts. Thus, this
tool provides the following functionalities:

1. Create architectural patterns
2. Compose patterns using merging operators
3. Refine the composed pattern

COMLAN is developed based on EMF (Eclipse Modelling Framework)2. We
choose EMF to realize our tool since we leverage MDA, where models are basic
building units, to develop our approach. The tool consists of two Eclipse plug-ins
built on existing Eclipse technologies:

– Pattern creation plug-in uses EMF and GMF (Graphical Modeling Frame-
work)3 modeling support in order to allow architects to define Pattern mod-
els graphically. More specifically, the editor allows to design constituent pat-
terns and compose them using two types of merging operators: stringing and
overlapping. Furthermore, hierarchical pattern description is also supported.
Besides, the editor allows the automatic propagation of changes in the con-
stituent patterns to the already composed patterns. This editor is based on
the COMLAN Meta-Model (see figure 5).

– Pattern refinement plug-in usesKermeta [15] to implement rules transforming
composed pattern model to refined pattern model. This functionality allows
the architect to obtain a pattern with all the merging operators concretized,
ready to be instantiated in the architectural model.

We applied the COMLAN tool to model the pattern of Vistrails’s architecture [4].
For a complete tutorial and a video about this tool and the applied example, the
reader is invited to visit the followingwebsite: http://www-irisa.univ-ubs.fr/
ARCHWARE/software/COMLAN/

2 Moredetails aboutEMFare accessible at: http://www.eclipse.org/modeling/emf/"
3 Moredetails aboutGMFare accessible at: http://www.eclipse.org/modeling/gmp/"

http://www-irisa.univ-ubs.fr/ARCHWARE/software/COMLAN/
http://www-irisa.univ-ubs.fr/ARCHWARE/software/COMLAN/
http://www.eclipse.org/modeling/emf/"
http://www.eclipse.org/modeling/gmp/"

14 M.T. Ton That et al.

7 RelatedWork

Our work concerns three areas of related work: i) architectural pattern descrip-
tion language, ii) pattern composition, iii) hierarchical pattern composition. In
the following we will discuss work related to these three aspects.

7.1 Architectural Pattern Description Language

In the literature there have been some efforts to model architectural patterns and
their properties. For instance, there are works focusing on the use of formal ap-
proach to specify patterns. In the Wright ADL [1], the authors tend to provide a
pattern-oriented architectural design environmentwhere patterns are formally de-
scribed. In [18], the authors use an ontological approach for architectural pattern
modeling based on a description logic language. As opposed to these domain spe-
cific languages,in [14] the authors propose to use general purpose languages such
as UML to model architectural patterns. Applying a role-based pattern modeling
approach, our language is designed to focus specifically on software architectural
patterns. However, the genericness of the language is also assured since the pattern
concepts used are those synthesized from many different ADLs.

7.2 Pattern Composition

There are mainly two branches of work on the composition of patterns. The first
including [10,3,19] proposes to combine patterns at the pattern level which means
that patterns are composed before being initialized in the architectural model. On
the contrary, the second including [7] proposes to compose pattern at instance level
where an architectural entity is allowed to belong to different patterns. However,
all of these approaches consider the composition as transient operationwhich leads
to the problemswe pointed out in previous sections. By proposing to give composi-
tion operators first-class status, our approach helps to prevent these shortcomings.
In another work [12], the authors propose a UML profile to attach pattern-related
information on merged elements in composed patterns. With this approach, al-
though one can trace back the constituent pattern in which an element partici-
pates, a composition view showing how the original pattern is composed is still
missing. Our proposal should also be compared with works on architectural con-
straint composition such as [21]. In this work, a pattern can be generally imposed
by a constraint and complex patterns can be expressed through the composition of
constraints.With our approachwe raise the level of abstraction by using models to
describe architectural patterns. Thus, not only the conformance of architectural
patterns is assured but the application of patterns is also encouraged.

7.3 Hierarchical Pattern Composition

In [22], the authors propose to use a number of architectural primitives to model
architectural patterns. Through the stereotype extensionmechanism of UML, one

Composition-Centered Architectural Pattern Description Language 15

can define primitives (which is equivalent to sub-patterns in our approach) to de-
sign a specific element of a pattern. However, the fact that pattern itself is not
considered as an element in the pattern construction totally prevents its reusabil-
ity. In our proposed language, pattern is treated as first-class status which allows
not only the modeling of primitives as patterns but also the reusability of patterns
to construct more coarse-grained patterns.

8 Conclusion

Through this paper we proposed a language for describing patterns and compose
them to build more complex patterns. This language has the particularity to make
explicit the pattern composition operators and the constituent patterns. Mak-
ing these elements explicit allows us to trace back constituent patterns in case of
changes and in this way allow the propagation of changes to the container pattern.

The use of the MDA approach in our process of building patterns allowed us to
separate the two forms of a pattern: i) its model formwhich facilitates its construc-
tion and its modification, because all of its aspects are explicit; ii) Its operational
form which leaves visible only elements that are relevant to its integration into the
architecture. This facilitates its use by architects.

We believe that the use of patterns, when building architectures, has a twofold
interest: the use of proven solutions to recurring problems, but also insure part of
the documentation on the architectural choices. In one of our previous papers [20]
we proposed a solution based on the use of patterns to handle the latter issue.

Our pattern description language covers only structural aspects of architec-
tures. Thus, patterns that are based on behavioural aspects of an architecture
can not be described using our language. One of our future work is to extend our
pattern description language to cover the behavioural aspect of architectures. To
validate this extension to behavioural aspects, we plan to use the πADL architec-
ture description language. This is motivated by the fact that somemembers of our
team have participated in its elaboration and thus their experience will be useful.

References

1. Allen, R.: A Formal Approach to Software Architecture. PhD thesis, Carnegie Mel-
lon, School of Computer Science (1997)

2. Avgeriou, P., Zdun, U.: Architectural patterns revisited a pattern language. In: 10th
European Conference on Pattern Languages of Programs (EuroPlop 2005), Irsee,
pp. 1–39 (2005)

3. Bayley, I., Zhu, H.: On the composition of design patterns. In: Proceedings of the
Eighth International Conference on Quality Software, pp. 27–36. IEEE Computer
Society (2008)

4. Brown, A., Wilson, G.: The Architecture of Open Source Applications. Lulu.com
(2011)

5. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture: a system of patterns. John Wiley & Sons, Inc.
(1996)

16 M.T. Ton That et al.

6. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Merson, P.,
Nord, R., Stafford, J.: Documenting Software Architectures: Views and Beyond, 2nd
edn. Addison-Wesley Professional (2010)

7. Deiters, C., Rausch, A.: A constructive approach to compositional architecture de-
sign. In: Crnkovic, I., Gruhn, V., Book, M. (eds.) ECSA 2011. LNCS, vol. 6903,
pp. 75–82. Springer, Heidelberg (2011)

8. France, R.B., Kim, D.K., Ghosh, S., Song, E.: A uml-based pattern specification
technique. IEEE Transactions on Software Engineering, 193–206 (2004)

9. Garlan, D., Allen, R., Ockerbloom, J.: Exploiting style in architectural design envi-
ronments. In: Proceedings of the 2nd ACM SIGSOFT Symposium on Foundations
of Software Engineering, pp. 175–188. ACM (1994)

10. Hammouda, I., Koskimies, K.: An approach for structural pattern composition.
In: Lumpe, M., Vanderperren, W. (eds.) SC 2007. LNCS, vol. 4829, pp. 252–265.
Springer, Heidelberg (2007)

11. ISO/IEC/IEEE 42010:2011. Systems and Software Engineering - Architecture De-
scription. ISO, Geneva, Switzerland (2011)

12. Jing, D., Sheng, Y., Kang, Z.: Visualizing design patterns in their applications and
compositions. IEEE Transactions on Software Engineering, 433–453 (2007)

13. Kim, J.S., Garlan, D.: Analyzing architectural styles. J. Syst. Softw., 1216–1235
(2010)

14. Medvidovic, N., Rosenblum, D.S., Redmiles, D.F., Robbins, J.E.: Modeling software
architectures in the unified modeling language. ACM Trans. Softw. Eng. Methodol.,
2–57 (2002)

15. Muller, P.-A., Fleurey, F., Jézéquel, J.-M.: Weaving executability into object-
oriented meta-languages. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005.
LNCS, vol. 3713, pp. 264–278. Springer, Heidelberg (2005)

16. O.M.G. Model-driven architecture, http://wwww.omg.org/mda
17. OMG. Object Constraint Language, OCL Version 2.0, formal/2006-05-01. Technical

report, OMG (2006)
18. Pahl, C., Giesecke, S., Hasselbring, W.: Ontology-based modelling of architectural

styles. Inf. Softw. Technol., 1739–1749 (2009)
19. Sabatucci, L., Garcia, A., Cacho, N., Cossentino, M., Gaglio, S.: Conquering fine-

grained blends of design patterns. In: Mei, H. (ed.) ICSR 2008. LNCS, vol. 5030,
pp. 294–305. Springer, Heidelberg (2008)

20. That, M.T.T., Sadou, S., Oquendo, F.: Using architectural patterns to define archi-
tectural decisions. In: 2012 Joint Working IEEE/IFIP Conference on Software Ar-
chitecture (WICSA) and European Conference on Software Architecture (ECSA),
pp. 196–200 (2012)

21. Tibermacine, C., Sadou, S., Dony, C., Fabresse, L.: Component-based specification
of software architecture constraints. In: Proceedings of the 14th International ACM
Sigsoft Symposium on Component Based Software Engineering, pp. 31–40. ACM
(2011)

22. Zdun, U., Avgeriou, P.: A catalog of architectural primitives for modeling architec-
tural patterns. Inf. Softw. Technol., 1003–1034 (2008)

http://wwww.omg.org/mda

K. Drira (Ed.): ECSA 2013, LNCS 7957, pp. 17–24, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Software Reference Architectures - Exploring Their
Usage and Design in Practice

Samuil Angelov1, Jos Trienekens2, and Rob Kusters3

1 Software Engineering Team, Fontys University of Applied Sciences,
Eindhoven, The Netherlands
s.angelov@fontys.nl

2 Information Systems Group, School of Industrial Engineering,
Eindhoven University of Technology, Eindhoven, The Netherlands

j.j.m.trienekens@tue.nl
3 Management Science Faculty, Open University, Heerlen, The Netherlands

rob.kusters@ou.nl

Abstract. Software reference architectures have been around for quite some
years. They have been designed and used with varying success. We have con-
ducted an exploratory survey among software architects and developers to es-
tablish the extent to which SRA have penetrated among practitioners and to
identify the benefits and problems practitioners face when using and designing
SRA. In this article, we present our findings.

Keywords: Reference architecture, software architecture, survey.

1 Introduction

Software reference architectures (SRA) have become one of the ways to address prob-
lems in managing complexity, size, and scope of architectures, and in managing the
dynamics of the environment in which systems are designed [1]. While comprehen-
sive methods have been defined for the design, evaluation, and application of concrete
software architectures, SRA have received relatively less attention in literature [2],
[3]. The reasons for this can be probably traced in an assumption that theory on
software architectures is directly applicable to SRA.

In our practice, we have faced difficulties in working with SRA [4], [5]. Similar
observations inspired several, recent, and with still preliminary results, research ef-
forts [6], [7]. This triggered our interest in finding out what practitioners think of
SRA. Do they design and use SRA? Do they benefit from them? Do they face prob-
lems in using them? Currently, literature does not provide insights into the status of
SRA in the software community. Finding on the use of SRA are discussed in [8], but
those are from a local and domain specific nature.

To answer our questions and establish an initial picture for the state of the practice
of SRA, we have embarked on conducting an exploratory, cross-sectional, web-based
survey on SRA, following the guidelines for data collection in software engineering
disciplines discussed in [9-14]. In our survey, we targeted the following objectives:

18 S. Angelov, J. Trienekens, and R. Kusters

1. Building awareness in the community for the global status of SRA.
2. Building awareness for differences (or lack of such) in existing practices with SRA

on the basis of geographical, experience, etc. specifics.
3. Building awareness for problems that practitioners experience and benefits they

obtain in their work with SRA.

In this paper, we present the findings from the survey. We explain our survey metho-
dology in Section 2. In Sections 3, 4, 5, and 6 we present the results from the survey.

2 Survey Methodology, Setup, and Execution

2.1 Data Collection, Target Population, and Sampling

A survey provides a “snapshot of the situation to capture the current status” [12].
Furthermore, „explorative surveys are used as a pre-study to a more thorough investi-
gation to assure that important issues are not foreseen ⁄ the information is gathered
and analyzed, and the results are used to improve the full investigation‰ [12]. This
fully matched with our goals of investigating the trends and establishing the status of
SRA. We have opted for a web-survey as a data collection method as it allows the
collection of standardized data from a large, remotely-located population, which can
be used for the establishment of the status and trends of SRA. An extensive discussion
on the advantages and disadvantages of on-line surveys is provided in [13].

The target population was defined to be software architects and developers as these
roles are the major stakeholder roles related to SRA. We aimed at respondents from
two tiers of countries as defined in [15], i.e., Tier 1 representing major software ex-
porting nations (e.g., USA, Germany, The Netherlands) and Tier 2 formed by emerg-
ing software exporting nations (e.g., Eastern European countries, developed Latin
American countries). Our sampling approach was quota sampling (defined by our tier
classification) augmented by convenience and snowball sampling [11].

2.2 Survey Design and Execution

The questions in our survey were designed on the bases of existing literature on SRA,
e.g., [1, 4, 16]. We have grouped the questions in order to present to the respondents a
clear survey structure. Group 1 questions collected information on the respondents’
background and context. Group 2 questions contained questions determining the in-
terpretation of the respondents for the term "software reference architecture". Group 3
questions investigated the experience of the respondents with usage of SRA, the bene-
fits that they have obtained, and the problems that they have faced when using them.
Group 4, respectively, investigated the design of SRA and the problems accompany-
ing the design process. The latter two groups represented the core of the survey. Fi-
nally, we have added in Group 5 questions where the respondents had an opportunity
to provide their opinions and thoughts on SRA. After addressing the feedback from
four pilot respondents, we ended with 32 questions distributed in the five groups.

 Software Reference Architectures - Exploring Their Usage and Design in Practice 19

For the distribution of the survey, we have used contacts from our network in com-
bination with posting the survey to professional forums. We have received in total
114 responses. The major set of reactions was received through personal contacts
and from relatively small but active, professional LinkedIn groups. Thus, the response
rate from the directly targeted population was high. The response rate from the
indirectly targeted population was poor. Although a low response rate “affects the
representativeness of the sample” [9], “if the objective is to understand trends, then
low response rates may be fine. The homogeneity of the population, and the sampling
technique used also affect the extent to which one can generalize the results of sur-
veys” [9]. As we discuss in Section 3, the population was relatively homogeneous
and our goal was indeed understanding trends, rather than establishing precise
percentages.

3 Results from the Introductory Questions (Groups 1 and 2)

From the total number of responses, we have filtered out the responses that did not fit
in our target population. This resulted in 90 valid responses1. We received 61 res-
ponses from 11 countries from Tier 1 (Netherlands dominating the set of responses)
and 29 responses from 5 countries from Tier 2 (dominated by Bulgaria and Chile)
giving a reasonable response from each tier. The size of the companies of the respon-
dents were equally distributed among large (>500 employees), medium (50-500), and
small (<50). Respondents from Tier 1 were predominantly from larger organizations
and respondents from Tier 2 from smaller organizations (which is a characteristic of
the tiers). The major group of respondents were employed by a "Software and servic-
es" organization (59%), followed by "Financials" (13%), and other. The respondents
were relatively experienced with architectures, with a mean value of 10 years of expe-
rience. On the basis of the answers of the respondents for their occupation, we have
classified the respondents into: 70 architects and 20 developers.

We have used the definition provided by Wikipedia (alternative definitions are
discussed in [16]) and asked whether the respondents agree with it: "A reference soft-
ware architecture is a software architecture where the structures and respective
elements and relations provide templates for concrete architectures in a particular
domain or in a family of software systems." Out of the 90 respondents, 66 (73%) felt
experienced with the term and agreed with the definition (of which 8 had minor re-
marks), 17 agreed with the definition, but indicated that to them the term was not too
clear before reading the definition, 7 indicated that they were not aware of the term
SRA. To improve the survey representativeness, the latter respondents were filtered
out from the rest of the survey results. The high percentage of respondents expe-
rienced with the term indicates the deep penetration of the term in the architecting
community. Notably, 5 of the 7 respondents unaware of the term SRA had less than 5
years of experience.

Six more respondents from the target population (but excluded from subsequent
percentage calculations) agreed also with the definition. However, at a later, control

1 Available at https://sites.google.com/site/
 samuilangelov/ECSAvalid.xls

20 S. Angelov, J. Trienekens, and R. Kusters

question, these six respondents gave examples for SRA that did not fit in the defini-
tion, referring to frameworks, methods, modelling techniques (Zachman, TOGAF,
ARIS, COBIT, ITIL). We concluded that although professionals tend to agree around
a definition on SRA, the high abstraction of the definition, and the numerous related
terms lead to differences in the interpretation of the term.

4 Results from the Questions on Usage of SRA (Group 3)

Propagation of SRA. Out of the 61 respondents who have answered the questions on
the usage of SRA, 5 have indicated to have never used a SRA in their career (8%). All
other respondents have used a SRA in their work at least 1-3 times (33%), 3-10 times
(31%), and more than 10 times (28%). This leads us to conclude that SRA have be-
come a popular tool used in the design of software architectures.

Scope and Origin of Used SRA. SRA with different scopes are used in practice with
a preponderance of SRA defined specifically for the organization of the respondent
(49%) or defined for a complete domain (43%). Intriguingly, professionals make use
predominantly of SRA defined by their own organization (63%), followed by refer-
ence architectures defined by standardization (37%), IT-consultancy (27%), consor-
tium (20%), software house (18%), or governmental organization (16%). The least
used SRA are those defined from research organizations (4%). These results imply:

• Professionals have mostly used SRA defined for their own organization and
by their own organization. However, some of these SRA were defined by the
organization to be applied at a wider scope, e.g., the complete domain.

• Research organizations have a minimal contribution to the design of used SRA.

Goals When Using SRA and Benefits Obtained. Based on literature, we have de-
fined a set of benefits introduced by reference architectures and asked the respondents
to select those sought by them when using SRA and those that they have actually
obtained from using SRA. In addition to our list of possible benefits (see Table 1),
respondents have indicated also “education and training”, “risk reduction”, and “as-
sessment tool”. Twelve respondents indicated that they are not currently using a SRA.
Since we preferred recent and therefore more relevant experiences for this question,
these respondents were cut from the sample, leaving 49 respondents.

A limited number (16%) of the respondents saw little or no benefits of the usage of
reference architectures. For a number of aims (indicated as “n/a” in Table 1), we con-
sidered that achieving them is a direct consequence from the actual usage of the SRA.
The question for the benefit achieved was therefore not asked in these cases. In all
measured aims, the actual benefits scored substantially lower than those initially ex-
pected - the difference (reduction) is fairly stable at 20%. We have also surveyed the
overall estimation on the improvement of the quality of the architectures and archi-
tecting processes when using a SRA - 43% of respondents saw improvements in the
architecture quality and 37% in the architecting process. In only 29% of the cases, do
SRA improve both the architecture quality and process – a rather low result given the
fact that following best practices is leading when implementing SRA.

 Software Reference Architectures - Exploring Their Usage and Design in Practice 21

Table 1. Sought and actual benefits from the usage of SRA (percentages reflect the % of
respondents who have mentioned a particular reason)

Goals when using SRA Benefit
sought

Benefit achieved

To follow best practices 78% n/a
To speed up design work 61% 35%
To establish a common architecture strate-
gy/vision

61% 41%

To ensure reusability 57% 37%
To ensure interoperability with other systems 55% 37%
To structure work (follow guidelines) 47% n/a
To comply with a standard 45% n/a
To improve communication in the organization 45% 22%
To decrease costs 31% 10%
To get inspiration 18% n/a
To make use of the most novel design solutions 12% n/a
For political reasons (externally imposed) 10% n/a

Problems with Using SRA. Out of 56 responders to this question, 9 respondents
(16%) did not experience any problems with the usage of reference architecture (all of
them from Tier 1 countries, and 8 of them from a large organization) and 11 (from
both Tiers) experienced only minor problems (20%). The major problems faced by
the respondents were that SRA are often too abstract (34%), the lack of common in-
terpretation of the term SRA (34%), bad documentation of SRA (23%), poor quality
of SRA (16%), and being too specific/limiting (14%). With respect to the documenta-
tion, out of the 13 respondents who have indicated problems with it, 69% missed
guidelines for the application of the SRA, 62% missed one or more viewpoints in the
documentation, 54% missed the quality attributes aimed at by the SRA, 39% had
difficulties with interpreting SRA, 23% saw the notation used as improper, 15% had
problems with the extensive volume of the documentation of SRA and 7% with the
incompleteness of the documentation. Last but not least, 7% (4 respondents) indicated
other problems in free text. Remarkably, they had a common core: inability to apply
the SRA due to the SRA complexity and/or reluctance by the stakeholders due to lack
of clear benefits and therefore of motivation. While being a low percentage, this
common response has been given in free text and therefore raises a question for its
relevance to other respondents. This is further strengthened by the conclusions drawn
in [8]. In conclusions, we infer that complexity, abstraction, documentation of SRA,
and reluctance of stakeholders to consider SRA due to lack of clear benefits are prob-
lems when applying SRA. Also, the observation made earlier on the lack of common
interpretation of the SRA concept in the domain receives a confirmation.

22 S. Angelov, J. Trienekens, and R. Kusters

5 Results from the Questions on Design of SRA (Group 4)

Number of SRA Designed. Many practitioners declared that they have designed
SRA - 35 out of the 53 respondents to this group of questions (32 of them were in an
architect role). Most respondents have designed 1-2 architectures (30%) but also 3-5
architectures collected a substantial number of votes (23%).

Scope and Origin of SRA Designs. The respondents have designed SRA for their
own organization (58%), a specific external organization (32%), a set of external
organizations (29%), and a complete domain (16%).

Goals When Designing SRA. The stated goals for the design of reference architec-
tures are manifold (see Table 2). The table shows a definite agreement on many of the
goals, with 7 of them scoring more than 50%, and with ‘Providing best practices’
peaking at 71%. An important misalignment between designing SRA and using them
is "To provide a high quality design solution for an innovative application". In other
words, although many designers aim at it, innovation is not really appreciated by
stakeholders embarking on the application of SRA. “Improving communications” and
“decreasing costs” stand out as even more distant if we compare aims of designers
with the actual benefits obtained from using SRA.

Table 2. Goals when designing SRA versus goals when using SRA (based on 31 respondents
that have recently used and designed a SRA)

Goals when designing SRA When
designing SRA

When
using SRA

To provide best practices 71% 77%
To promote reusability 58% 55%
To promote interoperability 58% 55%
To set up a common architecture strategy/vision 58% 65%
To improve communications 58% 55%
To set up a standard 52% 55%
To structure the work of designers 52% 45%
To speed up design work 48% 61%
To provide a high quality design for an innova-
tive application

42% 7%

To decrease costs 36% 23%
To provide an inspiration tool to designers 13% 16%
For political reasons (externally imposed) 13% 10%

Usage of Designs. About 40% of the respondents could not estimate the usage of the
SRA they have designed and 13% were not aware of any usage of some of the SRA
they have designed. This disconnection prevents designers from getting feedback on
their designs and on maintaining and improving the architectures.

Problems with Design SRA. The answers of the 35 respondents to this question de-
pict a multitude of problems when designing SRA (Figure 1). Problems with stake-
holders’ involvement led in the responses. They are followed by the lack of suitable

 Software Reference Architectures - Exploring Their Usage and Design in Practice 23

Fig. 1. Problems encountered during the design of SRA

methods for the design and evaluation of reference architectures. Only 14% did not
report on experiencing problems. Figure 1 leads to the conclusion that professionals
face multiple challenges during the design of SRA and existing theory and practices
are not sufficient to facilitate their work.

6 Results from Questions on Status and Future (Group 5)

Predominantly, the respondents think that more and more SRA are being designed
(51% of the respondents to this question, where 17% expressed the counter opinion).
Similarly, 55% of the respondents in the last group of questions expect that the role of
SRA will become more important in the future and only 13% expect that it will be-
come less important. The majority of the respondents indicated that they are interested
in the outcomes of the survey and that they are ready to be approached for clarifica-
tion questions. From this, we conclude that there is an interest in the community in
SRA and practitioners believe that SRA may even further grow in their importance.

7 Concluding Remarks

The survey improves the awareness in the community on state of the practice of SRA
and the strengths and weaknesses of SRA. It indicates that SRA are widely recog-
nized and used by practitioners but that there is still a lack of clear and commonly
accepted definition of SRA which undermines progress in the field. The results deli-
neate the leading benefits sought and obtained when using SRA as well as the prob-
lems encountered during the design and usage SRA. Some of the problems observed
in the results are the misalignment between SRA design goals, usage goals, and even-
tual benefits obtained and the underperformance of SRA in terms of architecture qual-
ity and documentation. Stakeholder involvement and lack of design and evaluation

0 2 4 6 8 10 12 14 16 18

Problems with involving stakeholders (17)
Missed an evaluation method (12)

Missed a design method (10)
Problems with defining NFR (9)

Problems with selecting viewpoints (8)
Problems with reaching the stakeholders (8)

Problems with distributing it (7)
Problems with identifying the stakeholders (7)

Problems with defining FR (5)
No problems (5)

Missed a SRA documenting method (4)
Unawareness of appropriate notation (4)

Other (1)

24 S. Angelov, J. Trienekens, and R. Kusters

methods lead in the reported SRA design problems. No statistically valid specifics of
the clusters in our population could be derived based on the number of responses.

Acknowledgements. We thank D. Greefhorst, M. Schuur, R. Seguel, M. Comuzzi
for helping in distributing the survey and W. van der Beek, and R. Hilliard for
commenting on the paper.

References

1. Muller, G.: A Reference Architecture Primer. Repport: Gaudi Project (2008)
2. Taylor, R., Medvidovic, N., Dashofy, E.: Software Architecture: Foundations, Theory, and

Practice. Wiley, John & Sons (2009)
3. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley

Professional (2003)
4. Angelov, S., Grefen, P.: An E-contracting Reference Architecture. The Journal of Systems

and Software 81(11), 1816–1844 (2008)
5. Angelov, S., Trienekens, J.J.M., Grefen, P.: Towards a Method for the Evaluation of Ref-

erence Architectures: Experiences from a Case. In: Morrison, R., Balasubramaniam, D.,
Falkner, K. (eds.) ECSA 2008. LNCS, vol. 5292, pp. 225–240. Springer, Heidelberg
(2008)

6. Galster, M., Avgeriou, P.: Empirically-grounded Reference Architectures: A Proposal.
In: QoSA+ISARCS 2011, Boulder, Colorado, USA, June 20-24. ACM (2011)

7. Martínez-Fernández, S., Ayala, C., Franch, X.: A Reuse-Based Economic Model for Soft-
ware Reference Architectures. Repport: ESSI-TR-12-6, Departament d’Enginyeria de Ser-
veis i Sistemes d’Informació, Barcelona, Spain (2012)

8. Galster, M., Avgeriou, P., Tofan, D.: Constraints for the Design of Variability-Intensive
Service-Oriented Reference Architectures – An Industrial Case Study. Information and
Software Technology 55(2), 428–441 (2013)

9. Shull, F., Singer, J., Sjøberg, D.: Guide to Advanced Empirical Software Engineering.
Springer (2007)

10. Fink, A.: The Survey Handbook, 2nd edn. Sage Publications, Inc. (2002)
11. Pfleeger S., Kitchenham, B.: Principles of Survey Research, parts 1-6. ACM Sigsoft,

Software Engineering Notes 26(6), 16–18, 27(1), 18–20, 27(2), 20–24, 27(3), 20–23,
27(5), 17–20, 28(2), 24–27 (2001-2003)

12. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimenta-
tion in Software Engineering. Springer (2012)

13. Punter, T., Ciolkowski, M., Freimut, B., John, I.: Conducting On-Line Surveys in Software
Engineering. In: Proceedings on the International Symposium on Empirical Software En-
gineering 2003, pp. 80–88 (2003)

14. Pfleeger, S.: Experimental Design and Analysis in Software Engineering, parts 1-5.
ACM Sigsoft, Software Engineering Notes 19(4), 16–20, 20(1), 22–26, 20(2), 14–16,
20(3), 13–15, 20(5), 14–17 (1995)

15. Carmel, E.: Taxonomy of New Software Exporting Nations. The Electronic Journal on In-
formation Systems in Developing Countries 13(2), 1–6 (2003)

16. Angelov, S., Grefen, P., Greefhorst, D.: A Framework for Analysis and Design of Soft-
ware Reference Architectures. Information and Software Technology 54(4), 417–431
(2012)

Concurrent Object-Oriented Development

with Behavioral Design Patterns

Benjamin Morandi1, Scott West1, Sebastian Nanz1, and Hassan Gomaa2

1 ETH Zurich, Switzerland
firstname.lastname@inf.ethz.ch
2 George Mason University, USA

hgomaa@gmu.edu

Abstract. Architectural modeling using the UnifiedModeling Language
(UML) can support the development of concurrent applications, but the
problem of mapping the model to a concurrent implementation remains.
This paper defines a scheme to map concurrent UML designs to a concur-
rent object-oriented program. Using the COMETmethod for the architec-
tural design of concurrent object-oriented systems, each component and
connector is annotated with a stereotype indicating its behavioral design
pattern. For each of these patterns, a reference implementation is provided
using SCOOP, a concurrent object-oriented programming model. Given
the strong execution guarantees of the SCOOPmodel, which is free of data
races by construction, this development method eliminates a source of in-
tricate concurrent programming errors.

1 Introduction

Writing concurrent applications is challenging because of the complexity of con-
current software architectures and the hazards associated with concurrent pro-
gramming, such as data races. For object-oriented applications, support for the
architectural design of concurrent software is fortunately available. Standard
notations, such as the Unified Modeling Language (UML), can provide such
support when used with a method for developing concurrent applications, such
as COMET [1]. The remaining difficulty is the mapping of the concurrent object-
oriented model to an implementation that avoids common concurrency pitfalls.

This paper describes a development method that starts with a concurrent
UML design, annotated with behavioral stereotypes, and maps the design sys-
tematically to an implementation that is guaranteed to be data-race free. Each
component and connector in the UML model is given a behavioral role, based
on COMET. For each of COMET’s component and connector types, this paper
defines a mapping to an implementation in SCOOP (Simple Concurrent Object-
Oriented Programming) [2,3], a concurrent object-oriented programming model.
Choosing this model over others simplifies concurrent reasoning [4] and offers
strong execution guarantees: by construction, the model is free of data races [2];
also, a mechanism for deadlock avoidance is available [5]. To evaluate the ap-
proach, the development process is applied to a case study of an ATM system
that covers all important connector and component patterns.

K. Drira (Ed.): ECSA 2013, LNCS 7957, pp. 25–32, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

26 B. Morandi et al.

«component»

«device I/O» «entity» «control» «algorithm»

«coordinator»
«state dependent

control»
«timer»

{execution =passive}
{exclusion = single-read |
 multi-read}

{execution = demand | periodic}

{execution = event driven | demand | periodic}
{execution = demand}{execution = periodic}{execution = demand}

«input/
output»

«output»«input»

Fig. 1. Classification of components using stereotypes

A companion technical report [6] contains additional material. The remain-
der of the paper is structured as follows. Section 2 describes behavioral design
patterns of the COMET method in UML. The implementation of the design
patterns is described in Section 3. Section 4 presents the case study. Section 5
presents a survey of related work, and Section 6 draws conclusions.

2 Behavioral Design Patterns

Behavioral design patterns used by the COMET method [1, 7] address design
issues in concurrent and distributed applications. There are two main categories:
component patterns and connector patterns.

Component Patterns. Component patterns address concurrent component de-
sign. Each component is depicted from two different perspectives, its role in the
application and the behavioral nature of its concurrency. Models of the design
use UML stereotypes to depict the decisions made by the designer. The stereo-
type depicts the component’s role criterion, which describes the component’s
function in the application such as «I/O» or «control». A UML constraint is
used to describe the type of concurrency of the component, which is based on
how the component is activated. For example, a concurrent «I/O» component
could be activated by an external event or a periodic event, whereas an «en-
tity» component is passive and access to it is mutually exclusive or by means of
multiple readers and writers. Components are categorized using the component
stereotype classification hierarchy in Figure 1. Separate stereotypes can be used
to depict the component role and the type of concurrency.

Connector Patterns. Connector patterns describe the different types of mes-
sage communication between the concurrent components. In both distributed
and non-distributed applications, connector patterns include asynchronous
communication and synchronous communication with or without reply.

A connector can be designed for each connector pattern to encapsulate the
details of the communication mechanism. Themessage buffer andmessage buffer

Concurrent Object-Oriented Development with Behavioral Design Patterns 27

send
(iin message) «connector»

aMessage
Buffer

receive (oout
message)

«component»
aConsumer

«component»
aProducer

(a) Message buffer connector for syn-
chronous communication without reply

send (iin message)
«connector»

aMessage
Queue

receive (oout message)

«component»
aConsumer

«component»
aProducer

(b) Message queue connector for asyn-
chronous communication

send
(iin message,
out response)

«connector»
aMessage
Buffer and

Reply

receive (oout
message)

«component»
aService

«component»
aClient reply (iin

response)

(c) Message buffer and reply connector for
synchronous communication with reply

send
(iin message,
in callbackHandle)

«connector»
aMessage
Queue and
Callback

receive (oout
message)

«component»
aService

«component»
aClient

reply (iin response)accept (oout response)

(d) Message queue and callback connector for
asynchronous communication with callback

Fig. 2. Connectors for communication patterns

and reply connectors respectively implement the synchronous communication
pattern without reply and with reply; the message queue and message queue and
callback connectors implement the corresponding asynchronous communication
patterns. These connectors can also be categorized using stereotypes.

Figure 2a depicts a synchronous communication without reply pattern, in
which the concurrent producer component sends a message to a concurrent con-
sumer component via a message buffer connector, and waits for the consumer to
accept the message. Figure 2b depicts an asynchronous message communication
pattern in which a producer communicates with a consumer through a message
queue connector that encapsulates the details of the asynchronous communica-
tion by: (1) adding a message from the producer to a FIFO message queue and
only suspending the producer if the queue is full (2) returning a message to a
consumer or suspending the consumer if the queue is empty. Figure 2c depicts
a synchronous communication with reply pattern in which the client component
sends a message to a service component and waits for the reply via a message
buffer and reply connector. Figure 2d depicts an asynchronous communication
with reply pattern, in which the client sends a message to a service via a message
queue and callback connector, continues executing and later receives the service
response from the connector. In this pattern, the client needs to provide an id
or callback handle to which the response is returned.

3 Implementation of Design Patterns

This section describes the SCOOP implementation of the behavioral design pat-
terns with examples, and highlights the most relevant implementation properties.
The full implementation is available online [8].

Implementing Components. Components are implemented by providing a class
hierarchy mirroring the component taxonomy in Figure 1. Specialized compo-
nents in the end user application inherit from the appropriate abstract class.

28 B. Morandi et al.

To remove ambiguity, the term component object will be used to denote an in-
stance of the component class, which is the implementation of the design pattern
component.

We examine the implementation of the periodic task in detail. It is imple-
mented as a pair of classes: one class represents the job to be done, the other
represents a “pacemaker”, which periodically calls an instance of the first class
to perform its task. The instances of each class reside on two distinct processors.

The basic interface to PERIODIC defines:

– a single iteration (step),
– an indicator that the task is finished (is_done),
– integration with the pacemaker: notify executes a step then asks the

pacemaker to schedule another call to notify (unless is_done).

This design increases the availability of the PERIODIC object to other processors.
If the waiting were to occur directly within the PERIODIC object, that object’s
processor would be unavailable for the duration of the waiting time; other ob-
jects would be unable to ask the periodic task simple queries such as is_done.
This is why the pacemaker does the waiting and calls to the task after an ap-
propriate delay. The interaction between the pacemaker and the periodic task
allows the processor containing the periodic task to remain unoccupied between
step executions.

Implementing Connectors. Each of the connectors is implemented using three
dependent pieces: the sender endpoint, the receiver endpoint, and the conduit(s).
These are implemented as a cohesive unit to guarantee the communication takes
place correctly. Conduits are data channels; they sit as a bridge between end-
points, with the endpoints responsible for using the conduit correctly (e.g., en-
suring synchronous access). We use the term connector objects to denote the
combination of endpoint objects and conduit objects, which are the realization of
a particular connector.

An example of a simple connector is the synchronous message buffer. It holds
a single message, and the sender does not proceed until the receiver has received
the message. The usage of this connector can be seen in the object diagram in
Figure 3a, which is the SCOOP implementation of Figure 2a.

Another example is an asynchronous message queue with callback, where the
sender sends its message, continues on, and then waits for a reply. The connector
is implemented using two independent conduits; one conduit is responsible for
carrying outgoing messages and the other for replies (this pattern is common in
connectors with a reply). This is seen in the implementation given in Figure 3b,
which is the SCOOP implementation of Figure 2d. The sender uses the conduits
in two basic ways:

– Sending a message, along with its identity. This allows the receiving end to
send a message back to it.

– Receiving the callback from the other end. The sender’s identity is used once
again to select the correct message to receive.

Concurrent Object-Oriented Development with Behavioral Design Patterns 29

conduitsender endpoint

component 1 component 2

receiver endpoint

(a) Message buffer connector

callback
conduit

sender endpoint

component 1 component 2

receiver endpoint

send conduit

(b) Message queue and callback connector

Fig. 3. Object diagrams for conduit and endpoints

Since connector objects come in three parts: sender/receiver endpoints and the
conduits, any component object that wants to use a connector must have access
to the connector’s endpoint functionality. This can either be done by creating
an endpoint object, or inheriting from the appropriate endpoint class. Because
the conduits are an implementation detail of the endpoints, component objects
do not need a direct reference to the conduits.

4 Case Study

This section applies the suggested development method to an ATM system [1],
shown in Figure 4a and available at [8].

Applying the Design Pattern Implementations. Figure 4b shows the result of
applying the design pattern implementations to Figure 4a. Active components
become component objects handled by separate processors; passive components
become component objects handled by one of the processors for an active compo-
nent object. The class of a component object inherits from the framework class
that corresponds to the component’s stereotype. Connectors become conduit
objects on separate processors and endpoint objects on existing processors.

Implementing Interconnections. The root object sets up the objects representing
control components, i.e., the server object and the ATM objects. It first creates
the conduit objects that connect these control component objects. It then creates
the control component objects using the conduit objects; the component objects
then create local endpoint objects. After creation, the root object starts the
new component objects. Each object representing a controlled component gets
created by the controlling object. To do so, the control object first creates the
conduit objects for the connectors along with local endpoint objects. It then
creates the controlled object using the conduit objects.

30 B. Morandi et al.

«state dependent, demand»
atm_berlin

«message buffer and reply»
touchscreen_connector

«message buffer»
atm_to_card_reader_connector

«message buffer»
receipt_printer_connector

«message buffer»
cash_dispenser_connector

«message queue»
log_connector

«message queue and callback»
server_connector

«input/output, demand»
touchscreen

«input/output, event driven»
card_reader

«output, demand»
receipt_printer

«output, demand»
cash_dispenser

«output, periodic»
log

«state dependent, demand»
atm_zurich

«coordinator, demand»
server

«state dependent, demand»
atm_fairfax

«message buffer»
card_reader_to_atm_connector

«entity, passive, single-
read»transaction

(a) Design of the ATM system. Only one ATM with one customer is detailed; however, the
server can be connected to multiple ATMs. To save space, the arrows omit the direction
of the communication as done in Figure 2; instead, the names contain this information.

atm_zurich

touchscreen

card_reader

receipt_printer

cash_dispenser

touchscreen_send_ep

card_reader_receive_ep

card_reader_send_ep

receipt_printer_send_ep

cash_dispenser_send_ep

log_send_ep

server_send_ep_zurich

log

server

server_send_conduit

server_callback_conduit

touchscreen_send_conduit

touchscreen_reply_conduit

log_send_conduit

cash_dispenser_send_conduit

receipt_printer_send_conduit

card_reader_to_atm_send_conduit

atm_to_card_reader_send_conduit

pacemaker

atm_berlin

atm_fairfax server_send_ep_fairfax

server_send_ep_berlin

atm_receive_ep

atm_send_ep

transaction

atm_receive_ep

atm_receive_ep

atm_receive_ep

atms_receive_ep

atm_receive_ep

(b) SCOOP implementation of the ATM system. The boxes group objects handled by the
same processor. Endpoint objects have the suffix ep. The names of the endpoint and con-
duit objects indicate the direction of the communication; for example, the atm receive ep
object queries the touchscreen send conduit object to receive a message from the ATM.
The colors link the connectors in Figure 4a to the resulting connector objects here.

Fig. 4. Design and implementation of the ATM system

Implementing Interactions. The interactions between components can be imple-
mented in the start features of the component objects. For instance, an ATM
object executes a loop; each iteration begins with a message from the card reader
object. Upon receiving this message, the ATM object proceeds according to the
customer’s choice. The server object executes a similar loop: it waits for messages
from one of the ATM objects and acts accordingly.

Discussion. The case study was a manual effort; the development method has
however potential for automation, using the following steps:

1. Generate one class for each component. The class inherits from the frame-
work class corresponding to the component’s stereotype. For each of the
component’s connectors, the class has a non-separate attribute for the con-
nector’s endpoint object; for each passive component, the class has a non-
separate attribute as well. The class has a creation procedure to initialize

Concurrent Object-Oriented Development with Behavioral Design Patterns 31

these attributes. For each connector, the creation procedure takes the connec-
tor’s conduit objects as arguments and uses them to initialize the endpoint
object. Finally, the creation procedure creates a non-separate component
object for each passive component.

2. Generate one root class. The root object first creates the conduit objects for
each connector. It then creates component objects on separate processors
for each active component. It links the component objects according to the
design by passing the conduit objects during construction. Lastly, the root
object triggers the execution of all created component objects.

3. In each component class, add code for the component’s interactions.

The first and second steps can be automated; the design contains the necessary
information. However, it does not contain the data for the third step.

5 Related Work

Software design patterns provide a tried and tested solution to a design problem
in the form of a reusable template, which can be used in the design of new
software applications. Software architectural patterns [9] address the high-level
design of the software architecture [10, 11], usually in terms of components and
connectors. These include widely used architectures [12] such as client/server and
layered architectures. Design patterns [13] address smaller reusable designs than
architectural patterns in terms of communicating objects and classes customized
to solve a general design problem in a particular context. The patterns described
in this paper are aimed at developing concurrent applications and are hence
different from patterns for sequential applications.

Component technologies [11] have been developed for distributed applications.
Examples of this technology include client-side Java Beans and server-side En-
terprise Java Beans (EJB). Patterns for concurrent and networked objects are
comprehensively described in [14]. However, these patterns are not used to sys-
tematically derive a concurrent program from a design, as it is the case in our
approach. Pettit and Gomaa [15] represent UML models using colored Petri
nets to conduct behavioral analyses (e.g., timing behavior). Our work focuses
on obtaining an executable system with built-in behavioral guarantees.

6 Conclusion

With the increasing need of concurrency, offering adequate support to develop-
ers in designing and writing concurrent applications has become an important
challenge. The approach taken in this paper is to base such support on widely
used architectural modeling principles, namely UML with the COMET method,
which should simplify adoption in industrial settings. We defined a mapping of
COMET’s behavioral design patterns into SCOOP programs and demonstrated
with a case study that using this approach entire concurrent UML designs can
be systematically mapped to executable programs.

32 B. Morandi et al.

For future work, it would be interesting to integrate our method with other
approaches based on UML and the COMET method, giving rise to a more
comprehensive framework with additional analyses of concurrent designs. In the
long term, we would also like to provide an automated method to translate UML
concurrent software architecture designs to an implementation.

Acknowledgments. This work was funded in part by the ERC under the EU’s
Seventh Framework Programme (FP7/2007-2013) / ERC Grant agreement no.
291389, the Hasler Foundation, and ETH (ETHIIRA). Hassan Gomaa thanks
Bertrand Meyer for the opportunity to work, during his sabbatical, with the
Chair of Software Engineering group at ETH.

References

1. Gomaa, H.: Designing Concurrent, Distributed, and Real-Time Applications with
UML. Addison-Wesley (2000)

2. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall (1997)
3. Nienaltowski, P.: Practical framework for contract-based concurrent object-

oriented programming. PhD thesis, ETH Zurich (2007)
4. Nanz, S., Torshizi, F., Pedroni, M., Meyer, B.: Design of an empirical study for

comparing the usability of concurrent programming languages. In: ESEM 2011,
pp. 325–334 (2011)

5. West, S., Nanz, S., Meyer, B.: A modular scheme for deadlock prevention in an
object-oriented programming model. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010.
LNCS, vol. 6447, pp. 597–612. Springer, Heidelberg (2010)

6. Morandi, B., West, S., Nanz, S., Gomaa, H.: Concurrent object-oriented develop-
ment with behavioral design patterns. Technical report (2012),
http://arxiv.org/abs/1212.5491

7. Gomaa, H.: Software Modeling and Design: UML, Use Cases, Patterns, and Soft-
ware Architectures. Cambridge University Press, Cambridge (2011)

8. SCOOP implementations of design patterns (2013),
https://github.com/scottgw/scoop_design_patterns

9. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture: A System of Patterns. John Wiley & Sons (1996)

10. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Disci-
pline. Prentice-Hall (1996)

11. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations,
Theory, and Practice. Wiley (2009)

12. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn.
Addison-Wesley (2003)

13. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1995)

14. Schmidt, D., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software
Architecture: Patterns for Concurrent and Networked Objects. Wiley (2000)

15. Pettit IV, R.G., Gomaa, H.: Modeling behavioral design patterns of concurrent
objects. In: ICSE 2006, pp. 202–211. ACM (2006)

http://arxiv.org/abs/1212.5491
https://github.com/scottgw/scoop_design_patterns

Building Correct by Construction SOA Design
Patterns: Modeling and Refinement

Imen Tounsi, Mohamed Hadj Kacem, and Ahmed Hadj Kacem

ReDCAD-Research Unit, University of Sfax, Sfax, Tunisia
{imen.tounsi,mohamed.hadjkacem}@redcad.org, ahmed.hadjkacem@fsegs.rnu.tn

Abstract. Modeling SOA design patterns with a standard formal
notation avoids misunderstanding by software architects and helps en-
dow design methods with refinement approaches for mastering system
architectures complexity. In this paper, we propose a formal architecture-
centric approach that aims to model message-oriented SOA design pat-
terns with the SoaML standard language. Pattern models are developed
in a stepwise manner which are then automatically translated into Event-
B specifications that can be proved using the Rodin theorem prover.
These two steps are performed before undertaking the effective cod-
ing of a design pattern providing correct by construction solutions. Our
approach is experimented through pattern examples.

Keywords: Design patterns, SoaML modeling, Event-B method, Pat-
tern transformation.

1 Introduction

The communication and integration of the heterogeneous applications poses
great challenges to computer science research works. Several research have been
made to face these challenges and find out a solution to the issue. Although,
many methods and technologies have been used such as message-oriented mid-
dleware and Enterprise Application Integration (EAI), no decisive success has
been achieved up to now.

Service-oriented architectures (SOA) offer a model and an opportunity to
solve these problems [4]. Nevertheless these architectures are subject to some
quality attribute failures (e.g., reliability, availability, and performance prob-
lems). Design patterns, as models that provide tested solutions to specific design
problems, have been widely used to solve these weaknesses.

Most design patterns are proposed in an informal way, and this could raise
ambiguity and lead to their incorrect usage. Patterns, proposed by the SOA de-
sign pattern community, are described with a proprietary notation [4]. So they
require modeling with a standard notation and then formalization. The intent
of our approach is to model and formalize message-oriented SOA design pat-
terns. These two steps are performed before undertaking the effective coding of
a design pattern, so that the pattern in question will be correct by construction.

K. Drira (Ed.): ECSA 2013, LNCS 7957, pp. 33–44, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

34 I. Tounsi, M. Hadj Kacem, and A. Hadj Kacem

Our approach allows developers to reuse correct SOA design patterns, hence we
can save effort on proving pattern correctness.

In this paper, we propose a formal architecture-centric approach that con-
sists mainly on three steps. In the first step, SOA design patterns are modeled
graphically with the semi-formal Service oriented architecture Modeling Lan-
guage (SoaML) in a stepwise manner. This modeling step is proposed in order
to attribute a standard notation to SOA design patterns. In the second step,
the resulting graphical diagrams are translated into Event-B specifications in re-
finement steps with respect to transformation rules implemented with the XSLT
language [11]. We provide both structural and behavioral features of SOA design
patterns in the modeling phase as well as in the specification phase. Structural
features of a design pattern are generally specified by assertions on types of com-
ponents in the pattern. The configuration of the elements is also described, in
terms of the static relationships between them. Behavioral features are defined
by assertions on the temporal orders of the messages exchanged between the
components. The resulting model is enriched by invariants describing relevant
properties that will be proved in the third step using the Rodin tool that gener-
ates Proof Obligations belonging to Event-B models. The third step checks the
syntax of resulting SOA design pattern specifications as well as their correctness.
In this paper we present the first and the second steps.

The remainder of the paper is organized as follows. In section 2, we present
the modeling of SOA design patterns based on the SoaML meta-modeling. In
section 3 we present the transformation of the modeled patterns into Event-B
specifications. In section 4, we examine related works dealing with pattern iden-
tification, pattern modeling, pattern specification and pattern reuse. Ultimately,
in section 5, we present conclusions and future works.

2 Patterns Modeling

We provide a modeling solution for describing SOA design patterns using a visual
notation based on the graphical SoaML language. SoaML1 [9] is a specification
developed by the OMG that provides a standard way to architect and model
SOA solutions.

SoaML consists of a UML profile and a meta-model that extends the UML 2.0
(Unified Modeling Language) meta-model to support an explicit service model-
ing in distributed environments. This extension is perfectly applied to the mod-
eling of SOA design patterns. We model structural features of design patterns
with «Participant» diagram, «ServiceInterface» diagram, «MessageType» dia-
gram and we model behavioral features with the UML2.0 sequence diagram. To
model these diagrams, we use the part of the SoaML meta-model presented in
Figure 1. Gray classes represent abstract metaclasses and white classes represent
stereotypes. Hereinafter, we only present the basic concepts that we use in the
pattern modeling.

1 http://www.omg.org/spec/SoaML/

http://www.omg.org/spec/SoaML/

Building Correct by Construction SOA Design Patterns 35

Entities, that make up the architecture of an SOA design pattern, can be
either «Participants» or «Agents». A «Participant» represents a subclass of
Component that provides and/or consumes services. «Agents» extend «Partici-
pants» with the ability to be active (their needs and capabilities may change over
time). Entities can have «Ports» that constitute interaction points with their
environment. These «Ports» are related to one or more provided or required
Interfaces and their types can be either «Service» or «Request». «ServiceInter-
faces» are used to describe provided and required operations to complete services
functionality, they can be used as protocols for a service port or a request port.
The communication path between Services and Requests within an architecture
is called «ServiceChannel», it extends the metaclass Connector.

The «MessageType» is used to specify information exchanged between ser-
vices, it extends the metaclass DataType. An «Attachment» is a part of a mes-
sage that is attached to it, it extends the metaclass Property. The stereotype
«Property» extends the metaclass Property with the ability to be distinguished
as an identifying property (“primary key" for messages).

A «Capability» is the ability to produce an outcome that achieves a result,
it extends the metaclass Class. A «Participant» can realize zero or several
capabilities with the link «CapabilityRealization».

In some SOA design patterns entities are organized in various ways across
many orthogonal dimensions, for example they can be organized by service lay-
ers or by physical boundaries. «Catalogs» provide a means of classifying and
organizing elements by «Categories» for any purpose, they extends the meta-
class Package and specializes the stereotype «NodeDescriptor». «Categories»
are related to «Catalogs» with the relation «Belongs_to». A collection of re-
lated entities are characterized by a «Category». Applying a «Category» to an
entity by using a Categorization places that entity in the «Catalog».

We develop SoaML diagrams in a stepwise manner. In the first step, an ab-
stract pattern model is defined. In the next step, we add to the model an archi-
tecture entity and its connections to the model. In a later refinement step, we
add all pattern entities.

3 Patterns Transformation

The graphic transformation of the SOA design pattern models seeks to automati-
cally generate Event-B specifications. We define transformation rules to translate
the different elements in the SoaML design pattern models to their respective
concepts in Event-B notation.

3.1 Participant Diagram Mapping

In the Participant diagram we specify entities that constitute the pattern’s ar-
chitecture, their types and their dependencies (connections). This diagram is
the static part of the defined pattern. It is specified in the Context part. The
transformation of the Participant diagram is based on four major rules allowing
the transformation of a graphical model into an Event-B specification.

36 I. Tounsi, M. Hadj Kacem, and A. Hadj Kacem

«Participant»

«S
er

vi
ce

»

«R
eq

ue
st

»

1

Port

Component «MessageType»

DataType

«Attachment»

Property
«ServiceChannel»

Connector

1..*

Interface

0..* 0..*+
/p

ro
vi

de
d

+
/r

eq
ui

re
d

12

ConnectorKind

ha
s

DelegationAssembly

enumeration

«A
ge

nt
»

«Property»
isID : Boolean

«Port»
ConnectorRequired : Boolean=True

«ServiceInterface»

0..1{R
ed

ef
in

es
ty

pe
}

0..1

{Redefines type}

*

*

Class

MessagesParticipants and Service Interfaces

0..*

1

«Categorization»

Dependency

Fr
om

Pa
rt

ic
ip

an
t

ToCategory

Class Descriptions

«Category» «Catalog»

Artifact

«Belongs_To»

FromCategory ToCatalog

«NodeDescriptor»

Package
«Capability»

«CapabilityRealization»
*

Realization

1

*

Capabilities

Fig. 1. SOA design patterns Meta-model

R1. Architecture Entities Transformation Rules. Entities that constitute
the architecture of the pattern can be Participants or Agents. Figure 2 shows
how to transform the architecture entities.

R1.1 Transformation Rule. This rule transforms entity types into new Event-
B entity types by specifying in the context PCi the entities as constants. The
set Entity is composed of the set of all Participants and the set of all Agents
(Entity = Participant∪Agent ∧ Participant∩Agent = ∅). This is specified by
using a partition in the AXIOMS clause (Entity_partition).

R1.2 Transformation Rule. This rule transforms Participants name Pi into con-
stants in the CONSTANTS clause. The set of participants is composed of all partici-
pants name. This is transformed formally to a partition (Participant_partition)
i.e. Participant = {P1,...,Pn} ∧ P1 �=P2 ∧...∧ Pn−1 �=Pn.

R1.3 Transformation Rule. This rule transforms Agents name Ai into constants
in the CONSTANTS clause in the Event-B specification. Also the set of agents is
specified using a partition in the AXIOMS clause (Agent_partition), that is Agent
= {A1,...,An} ∧ A1 �=A2 ∧...∧ An−1 �=An.

R2. Connections Transformation Rules. In the SoaML modeling, a «Ser-
viceChannel» PushEiEj is a connection between two architecture entities, it can
be between two participants (PushPiPj), two agents (PushAiAj) and between

Building Correct by Construction SOA Design Patterns 37

SETS
Entity

CONSTANTS
Participant
Agent
P1

…
Pn

A1

…
An

AXIOMS
Entity_partition: partition(Entity, Participant,Agent)
Participant_partition: partition(Participant, {P1} ,..., {P n})
Agent_partition: partition(Agent, {A1} ,..., {A n})

R1.1

R1.2

R1.3

« Participant »

Pn

« Participant »

P1

« Participant »

Pn

« Agent »

A1

« Agent »

Ai« Agent »

An

R1.1

R1.1

R1.2

R1.3R1.3

R1.2

Fig. 2. Architecture entities transformation rules

a participant and an agent. In the last case, if the direction of the connection
is from a participant to an agent, it is named PushPiAj and if it is from an
agent to a participant, it is named PushAiPj . Figure 3 shows how to transform
a service channel.

R2.1 Transformation Rule. This rule define the graphical connection with an
Event-B relation between two entities (ServiceChannel).

R2.2 Transformation Rule. This rule transforms ServiceChannels name PushEiEj

into constants in the CONSTANTS clause. The set of ServiceChannels is composed
of all ServiceChannel’s name. This is transformed formally into a partition
(ServiceChannel_partition).

R2.3 Transformation Rule. This rule generates Domain and Range axioms for
each service channel specified in R2.2 transformation rule to define its source
and its target.

R3. Class Descriptions Transformation Rules. In some SOA design pat-
terns entities are organized in various ways across many orthogonal dimensions,
for example they can be organized by service layers or by physical boundaries. In
the SoaML modeling «Catalogs» provide a means of classifying and organizing
elements by «Categories» for any purpose. A collection of related entities are
characterized by a «Category». Applying a «Category» to an entity by using
a Categorization places that entity in the «Catalog». Figure 4 shows how to
transform class descriptions.

R3.1 Transformation Rule. This rule transforms catalog type to a new Event-B
catalog type and catalogs name Ci into constants in the CONSTANTS clause. The
set of Catalogs is composed of all catalogs name. This is transformed formally
to a partition (Catalog_partition).

38 I. Tounsi, M. Hadj Kacem, and A. Hadj Kacem

« Participant »
P1

« Participant »
Pn

A t « Agent »

CONSTANTS
ServiceChannel
PushP1Pi

PushA1P1

PushA1Ai

AXIOMS
ServiceChannel _Relation: ServiceChannel Entity Entity
ServiceChannel _ partition: partition(ServiceChannel ,

{PushP1Pi} ,..., {PushA1Ai})

«ServiceChannel»
PushP1Pi

«ServiceChannel»
PushA1P1

R2.1

R2.1

R2.2

« Participant »
Pn

R2.2

« Agent »
A1

Agent
Ai« Agent »

An
PushP1Pi_Domain : dom({PushP1Pi}) = {P1}
PushP1Pi_Range : ran({PushP1Pi}) = {Pi}
…

R2.2

R2.3
«ServiceChannel»

PushA1Ai

Fig. 3. Service Channels transformation rules

R3.2 Transformation Rule. This rule transforms category type to a new Event-B
category type and categories name Cai into constants in the CONSTANTS clause.
The set of Categories is composed of all Categories name. This is transformed
formally to a partition (Category_partition).

R3.3 Transformation Rule. This rule transforms the relation of containment of
a Catalog with Categories. This is transformed to the relation Belongs_to.

R3.4 Transformation Rule. This rule transforms the link of Categorization to
a relation between a Category and an Entity.

R4. Capabilities Transformation Rules. A Capability is the ability to pro-
duce an outcome that achieves a result. Each Participant is comprised of a set
of capabilities. Figure 5 shows how to transform capabilities.

R4.1 Transformation Rule. This rule transforms capability type to a new Event-
B capability type and capability name Cpi into constants in the CONSTANTS
clause. The set of Capabilities is composed of all capabilities name. This is
transformed formally to a partition (Capability_partition).

R4.2 Transformation Rule. This rule transforms the link between a Participant
and a capability to a relation Provide.

3.2 MessageType Diagram Mapping

The MessageType diagram model messages exchanged between the different en-
tities of the architecture. This diagram is specified with the Event-B method in
the CONTEXT clause.

R5. MessageType Transformation Rule. MessageType is the type of
messages exchanged between different entities.

Building Correct by Construction SOA Design Patterns 39

« Catalog »
C

« Category »
Ca1

« Category »
Can

« Categorization »

SETS
Catalog
Category

CONSTANTS
C1

…
Cn

Ca1

…
Ca

R3.1

R3.2

R3.3

R3.1

R3.2

« Catalog »
Cn

« Participant »
Pi

« Agent »
Aj

« Categorization »
« Categorization »

Can

Belongs_to
Categorization

AXIOMS
Catalog_partition : partition(Catalog, {C1}, …, {Cn})
Category_partition : partition(Category, { }, …, {Can})
Belongs_to_Relation : Belongs_to Catalog↔Category
Belongs_to_init: Belongs_to = {Cn Ca1 ,…, Cn Can }
Categorization : Categorization Category↔ Entity
Categorization_init: Categorization = {Ca1 Pi ,…, Can Aj }

R3.3

R3.4

R3.4

Fig. 4. Class descriptions transformation rules

« Participant »
Pi

« Capability »
Cpj

SETS
Capability

CONSTANTS
Cp1

…
Cpn

Provide
AXIOMS

Capability_partition : partition(Capability, {Cp1}, …, {Cpn})

R4.1

« Capability »
Cpi

R4.1

R4.1

R4.2

Provide_Relation : Provide Participant ↔ Capability
Provide_init: Provide= {Pi Cpi ,…, Pi Cpj }

R4.2

Fig. 5. Capabilities transformation rules

R5.1 Transformation Rule. This rule transforms message type to a new Event-
B message type and messages name Mi into constants in the CONSTANTS
clause. Then messages name are attributed with their type with a partition in
the AXIOMS clause (Message_partition).

3.3 Service Interface Diagram Mapping

The Service Interface diagram models entities interfaces and their relations with
messages. We don’t do the mapping for all the elements of this diagram to the
event-B specifications, but we do it to know only what entity can send what
message.

R6.1 Service Interface Transformation Rule. This rule defines the relation
Can_Send and initiates it.

40 I. Tounsi, M. Hadj Kacem, and A. Hadj Kacem

«MessageType»
M1

SETS
MessageType

CONSTANTS
M1

…
Mn

AXIOMS
Message_partition : partition(MessageType, {M1},…,{Mn})

R5.1R5.1

«MessageType»
Mn

Fig. 6. MessageType transformation rule

« Interface »

Interfacej

+ Operation(pr : Mi)

«Participant»

Ei

«Request»

: ~ServiceX

Interfacej

+

Operation

«ServiceInterface»

~ServiceX

Type

CONSTANTS
Can_Send

AXIOMS
Can_Send_Relation: Can_Send Entity MessageType
Can_Send_init: Can_send = {Ei Mi ,…, Ej Mj }

R6.1

R6.1

R6.1

Fig. 7. Service Interface transformation rule

3.4 Sequence Diagram Mapping

The sequence diagram is a way to describe interactions. It provides a graph-
ical notation for modeling behavioral features of a pattern by describing in-
teractions between its several entities. It constitute the dynamic part of the
pattern, it is specified with the Event-B method in the MACHINE part. A
machine of a pattern specification PMi has a state defined by means of a
number of variables and invariants. From this diagram, we can extract for
each transition the Transition_Name (which is composed of two elements;
Transition_Id and Message_Name), the Message_Sending_Instance and the
Message_Receiving_Instance.

R7.1 Transformation Rule. This rule extracts from Transition_Names the set of
variables. Some of variables can be general like the variable Send, which denotes
the sent message and the variable Process, which denotes the message process.
If the variable is general, the invariant that defines it can be automatically gener-
ated. For example, the variable Send is defined with the invariant Send_Relation
(Send ∈ ServiceChannel ↔ MessageType) which specify that Send is a rela-
tion between a ServiceChannel and a MessageType so we know the sender, the
receiver and the sent message. The variable Process is defined with the invari-
ant Process_Function (Process ∈ Participant �→ MessageType) which specify

Building Correct by Construction SOA Design Patterns 41

that Process is a function between a Participant and a MessageType so we
know which participant is processing which message.

R7.2 Transformation Rule. This rule transforms each transition to an Event-B
event. Transition_Name is transformed to an event_name. Each pattern has its
own behavior but some events can be general like the event of sending a message
Sending_Mi and the event of processing a message Processing_Mi.

Event Sending_Mi

when
grd : G(v)

then
act : Send := Send ∪ {PushEiEj �→ Mi}

end

Event Processing_Mi

when
grd : G(v)

then
act : Process := Process �− {Pi �→ Mi}

end

3.5 Pattern Refinement

The specification of a pattern P will be too complicated and error prone if it
is done in one shot. In order to handle this complexity, we define specification
levels by using a step-wise development approach. Models are developed in a
stepwise manner which are then automatically translated into Event-B specifi-
cations. In the first level, we create a very abstract model (a context PC0 and a
machine PM0). In the next levels, we use the horizontal refinement techniques
to gradually introduce detail and complexity into our model until obtaining the
final pattern specification. By applying an horizontal refinement, we extend the
state of a pattern model by adding new variables. We can strengthen the guards
of an event or add new guards. We also add new actions in an event. Finally, it
is possible to add new events [1]. Our refinement strategy is explained in Fig-
ure 8. When we move from Level(i) to Level(i+1), we add a new entity and its
connections to the model. In Level(i+1), the context PCi is extended with the
context PC(i+1) and the machine PMi is refined with the machine PM(i+1).
The refined machine sees the extended context. The Event-B specifications are
proved by theorem provers at each refinement step.

4 Related Work

In the literature, several research [5], [6], [4] identify design patterns. Erl [4] has
proposed a set of design patterns for service-oriented architecture. Each pattern
is presented with a proprietary notation represented in a symbol legend. Hohpe
and Woolf [6] have proposed a set of design patterns which are dealing with
enterprise integration using messaging. Similarly to Erl’s patterns, these design
patterns are represented with a visual notation using their proprietary notation.
These works present their identified patterns with no standard notations and in
order to understand these patterns, we have to form a knowledge on the pattern-
related terminology and notation. Gamma et al. [5] reduce these problems by

42 I. Tounsi, M. Hadj Kacem, and A. Hadj Kacem

CONTEXT
PC0

Extends

Add a new entity Ei + Its connections

MACHINE
PM1

MACHINE
PM0

Refines

Sees

Sees

L
ev

el
0

CONTEXT
PC1 L

ev
el

1

Refines

MACHINE
PMn

CONTEXT
PCn

Extends

Sees L
ev

el
n

Fig. 8. Refinement strategy

proposing a set of design patterns in the field of object-oriented software design
described with the graphical OMT (Object Modeling Technique) notation. So,
the two first steps of the pattern definition (pattern identification and pattern
modeling) are combined. Nevertheless, this approach propose modeled patterns
without any formal specification.

Most proposed patterns are described using a combination of textual descrip-
tion and a graphical proprietary notations in order to make them easy to read
and understand. However, using these descriptions makes patterns ambiguous
and may lack details. There have been many research that define pattern spec-
ifications using formal techniques [12], [10], [3], [7], [2] but research that model
design patterns with semi-formal languages are few [8].

Zhu et al. [12] specify design patterns and pattern composition formally. They
specify 23 GoF patterns. Zhu et al. use the first order logic induced from the
abstract syntax of UML defined in the Graphic Extension of BNF (GEBNF) to
define both structural and behavioral features of design patterns. Taibi et al. [10]
develop a language called Balanced Pattern Specification Language (BPSL) to
formally specify patterns, pattern composition and instances of patterns. This
language is used as a formal basis to specify structural features of design pat-
terns in the First-Order Logic (FOL) and behavioral features in the Temporal
Logic of Action (TLA). Taibi et al. use as a case study the Observer-Mediator
pattern composition proposed by GoF. Kim et al. [7] present an approach to de-
scribe design patterns based on role concepts. First, they develop an initial role
meta-model using an existing modeling framework, Eclipse Modeling Framework
(EMF), then they transform the meta-model to Object-Z using model transfor-
mation techniques in order to specify structural features. Behavioral features
of patterns are also specified using Object-Z and integrated in the pattern role
models. Kim et al. also use GoF patterns as examples to represent their ap-
proach. Blazy et al. [2] propose an approach for specifying design patterns and
how to reuse them formally. They use the B-method to specify structural fea-
tures of design patterns. Nevertheless, this work do not consider the specification
of their behavioral features.

Building Correct by Construction SOA Design Patterns 43

All these works are dealing with object oriented design patterns, in our work
we are interested in SOA design patterns [4]. Up to now, our research works deal
with the first major step (pattern definition), we use the SoaML language for the
pattern modeling and the Event-B formal method for the pattern specification.
Like the work of Kim et al. [7], we propose a transformation approach from a
meta-modeling language to a specification method. We use the Event-B method,
which is an extension to the B method, to define both structural and behavioral
features of design patterns.

5 Conclusions

In this paper, we presented a formal architecture-centric approach supporting
the modeling and the transformation of message-oriented SOA design patterns
to formal specifications. The modeling phase allows to represent SOA design
patterns with a graphical standard notation using the SoaML language. The
formalization phase allows to formally characterize both structural and behav-
ioral features of these patterns at a high level of abstraction, so that they will be
correct by construction. Generated specifications are imported under the Rodin
platform in order to check their correctness. Currently, we are working on gen-
eralizing our approach in order to examine the other categories and formally
specify pattern compositions.

Acknowledgments. This paper is done with the support of the Ministry of
Higher Education and Scientific Research of Tunisia within the Tunisian-French
scientific cooperation (DGRS/CNRS).

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering, 1st edn.
Cambridge University Press, New York (2010)

2. Blazy, S., Gervais, F., Laleau, R.: Reuse of specification patterns with the B
method. CoRR, abs/cs/0610097 (2006)

3. Dong, J., Alencar, P.S.C., Cowan, D.D.: A behavioral analysis and verification
approach to pattern-based design composition. Software and System Modeling,
262–272 (2004)

4. Erl, T.: SOA Design Patterns, 1st edn. The Prentice Hall Service-Oriented Com-
puting Series from Thomas Erl. Prentice Hall PTR (2009)

5. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading (1995)

6. Hohpe, G., Woolf, B.: Enterprise Integration Patterns - Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley (2003)

7. Kim, S.-K., Carrington, D.A.: A formalism to describe design patterns based on
role concepts. Formal Asp. Comput. 21(5), 397–420 (2009)

8. Mapelsden, D., Hosking, J., Grundy, J.: Design pattern modelling and instantia-
tion using DPML. In: 40th International Conference on Tools Pacific: Objects for
Internet, Mobile and Embedded Applications, CRPIT 2002, pp. 3–11. Australian
Computer Society, Inc. (2002)

44 I. Tounsi, M. Hadj Kacem, and A. Hadj Kacem

9. OMG: Service oriented architecture Modeling Language (SoaML) Specification.
Technical report (2012)

10. Taibi, T., Ngo, D.C.L.: Formal specification of design pattern combination using
BPSL. Information and Software Technology 45(3), 157–170 (2003)

11. Tounsi, I., Hrichi, Z., Hadj Kacem, M., Hadj Kacem, A., Drira, K.: Using SoaML
Models and Event-B Specifications for Modeling SOA Design Patterns. In: 15th In-
ternational Conference on Enterprise Information Systems, ICEIS 2013 (to appear,
2013)

12. Zhu, H., Bayley, I.: Laws of pattern composition. In: Dong, J.S., Zhu, H. (eds.)
ICFEM 2010. LNCS, vol. 6447, pp. 630–645. Springer, Heidelberg (2010)

Towards an Architecture for Managing Big Semantic
Data in Real-Time�

Carlos E. Cuesta1, Miguel A. Martı́nez-Prieto2,3, and Javier D. Fernández2,3

1 VorTIC3 Research Group, Dept. of Comp. Languages and Systems II,
Rey Juan Carlos University, Madrid, Spain

2 DataWeb Research, Dept. of Computer Science,
University of Valladolid, Segovia & Valladolid, Spain

3 Dept. of Computer Science, University of Chile, Santiago, Chile
carlos.cuesta@urjc.es, {migumar2,jfergar}@infor.uva.es

Abstract. Big Data Management has become a critical task in many applica-
tion systems, which usually rely on heavyweight batch processes to process large
amounts of data. However, batch architectures are not an adequate choice for the
design of real-time systems, where expected response times are several orders of
magnitude underneath. This paper outlines the foundations for defining an archi-
tecture able to deal with such an scenario, fulfilling the specific needs of real-time
systems which expose big RDF datasets. Our proposal (SOLID) is a tiered ar-
chitecture which separates the complexities of Big Data management from their
real-time data generation and consumption. Big semantic data are stored and in-
dexed in a compressed way following the RDF/HDT proposal; while at the same
time, real-time requirements are addressed using NoSQL technology. Both are ef-
ficient layers, but their approaches are quite different and their combination is not
easy. Two additional layers are required to achieve an overall high performance,
satisfying real-time needs, and able to work even in a mobile context.

1 Introduction

Big Data is one of the buzzwords in the current technological landscape. A widely ac-
cepted definition says that Big Data is “when the size of the data itself becomes part
of the problem” [11]. It basically states the most obvious dimension of Big Data: the
volume. However, any definition is incomplete without considering velocity and
variety. These three V’s [8] comprises the most accepted Big Data characterization:

Volume: large amounts of data are gathered and stored in massive datasets created
for different uses and purposes. Storage is the first scalability challenge in Big
Data management since preserving the data must be our first responsibility. In turn,
storage impacts in data retrieval, processing and analysis.

Velocity means how data flow, at high rates, in increasingly distributed scenarios. Two
data streams can be distinguished: i) streams of new data (potentially generated
in different ways and sources) being progressively integrated into existing (big)

� This work has been partially funded by the Spanish Ministry of Economy and Competitiveness
through Projects TIN2012-31104, TIN2009-13838 and TIN2009-14009-C02-0; and also by
Chilean Fondecyt Grant 1-110066, the Regional Government of Castilla y Leon and the ESF.

K. Drira (Ed.): ECSA 2013, LNCS 7957, pp. 45–53, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

46 C.E. Cuesta, M.A. Martı́nez-Prieto, and J.D. Fernández

datasets, and ii) streams of query results (potentially large) to user requests. Thus,
velocity means how fast data is produced, demanded and served.

Variety refers to various degrees of structure (or lack thereof) within the Big Data
[9]. This dimension is motivated by the fact that Big Data may integrate multiple
sources: e.g. any kind of sensor network, web server logs, politics, or social net-
works, among others. Obviously, each source describes its own semantics, resulting
in different data schemas which are hardly integrable in a single model. Thus, Big
Data variety demands a logical model enabling effective data integration.

These three V’s provide a good description of Big Data, but the volume dimension
must be revised from a practical perspective. Although one could think in terabytes,
petabytes or exabytes talking about Big Data, few gigabytes may be enough to col-
lapse an application running on a mobile device or even in a personal computer. Thus,
the term Big Data is used, in this paper, to refer any dataset whose size is greater
than the computational resources available for its storage and processing in a given
system.

An architecture designed for managing Big Data [3] must consider all the dimensions
above. However, its intended purpose restricts which one is first addressed. For instance,
storage could be more critical for a mobile application than for another one running on
a powerful server, whereas data retrieval speed is a priority for a real-time system but
may not for a batch process. Thus, the dimensions must be prioritized in such a way
that the resulting architecture covers effectively its requirements.

We design our proposal on a strong assumption: the more data are integrated, the
more interesting knowledge may be generated, increasing the resulting dataset value.
Thus, we promote data variety over volume and velocity. This decision is materialized
through the model used for logical data organization. We choose a graph-based model
because it can reach higher levels of variety before data become unwieldy. This allows
more data to be linked and queried together [16]. The most practical trend, in this line,
relies on the use of the Resource Description Framework (RDF) [12] as data model.

RDF is a cornerstone of the Semantic Web [5], whose basic principles are mate-
rialized by the emergent Web of Data. It reaches all its potential when it is used in
conjunction with vocabularies providing data semantics, so we will use the term big
semantic data to refer big RDF datasets. Note that choosing RDF as data model is a va-
riety decision which does not discriminate any kind of software managing big semantic
data. However, it restricts how these data are finally structured, stored, and accessed, so
it influences on volume and velocity dimensions. Under this consideration, we design
SOLID as a high-performance architecture for real-time systems consuming RDF data.

SOLID (Service-OnLine-Index-Data architecture) tackles this scenario through a
tiered configuration which separates complexities of real-time data generation and Big
Semantic Data consumption. On the one hand, the dataset must be preserved as compact
as possible in order to save storage and processing resources. Thus, Big Data is stored
and indexed in compressed way, enabling significative spatial savings and efficient
query resolution (compression allows more data to be processed in main memory).
These responsibilities are managed in the Data and Index layers, which are built around
the RDF/HDT [13,7] features. However, these optimized representations are costly to

Towards an Architecture for Managing Big Semantic Data in Real-Time 47

update online. It means that, on the other hand, the pieces of RDF generated in real-
time must be processed in a third layer which enables efficient data updates and also
provides competitive query resolution. This Online layer is implemented using NoSQL
technology. Although both approaches are efficient by themselves, two additional lay-
ers are required to achieve an overall high performance: i) the Merge layer leverages
RDF/HDT features for integrating the “online data” into the big semantic data; and ii)
the Service layer supports efficient query resolution, by merging results retrieved from
the Index and the Online layers using SPARQL [15].

The rest of the paper is organized as follows. Section 2.1 summarizes the current
“RDF world”. Section 3 describes the architecture SOLID, whereas Section 4 realizes it
using different technologies from the state of the art. Finally, Section 5 concludes about
our achievements and devises the SOLID evolution towards its final implementation.

2 Motivation

This section provides a brief review about the RDF world and introduces the main
RDF features. More detailed information about this topic, and some examples about its
current use, can be found in [10]. Then, we illustrate a use case highlighting the core
requirements of managing big semantic data in practice.

2.1 The RDF World

The Resource Description Framework (RDF) [12] is an extremely simple data model in
which an entity (also called resource) is described in the form (subject, predicate, ob-
ject). For instance, describing a transaction (in the following example): chek-in#1,
which was made the day 01/01/2013 in station#123, involves the triples:
(chek-in#1, date, "01/01/2013") and (chek-in#1, in station,
station#123). An RDF dataset can be seen as a graph of knowledge in which en-
tities and values are linked via labeled edges. These labels (the predicates in the triples)
own the semantic of the relation, hence it is highly recommendable to use standard
vocabularies or to formalize new ones as needed.

RDF has been gaining momentum since its inception thanks to its adoption in diverse
fields, such as bioinformatics, social networks, or geographical data. The Linked Open
Data project plays a crucial role in the RDF evolution [10]. It leverages the Web infras-
tructure to encourage the publication of such semantic data [4], providing global iden-
tity to resources using HTTP URIs. Moreover, integration between data sources is done
at the most basic level of triples, that is, to connect two data sources can be as easy as
making connection between resources. For instance, a new triple: (station#123,
location, <http://dbpedia.org/page/Canal Street>), enables all
information stored in DBpedia1 about Canal Street to be directly accessed from the
aforementioned station.

This philosophy pushes the traditional document-centric perspective of the Web to a
data-centric view, emerging a huge interconnected cloud of data-to-data hyperlinks: the

1 DBpedia: http://dbpedia.org, is a partial RDF conversion of Wikipedia.

48 C.E. Cuesta, M.A. Martı́nez-Prieto, and J.D. Fernández

Web of Data. Latest statistics2 pointed that more than 31 billion triples were published
and more than 500 million links established cross-relations between datasets.

It is worth noting that, although each piece of information could be particularly small
(the Big Data’s long tail), the integration within a subpart of this Web of Data can be
seen as big semantic data. RFID labels, Web processes (crawlers, search engines, rec-
ommender systems), smartphones and sensors are potential sources of RDF data, such
as in our running example. Automatic RDF streaming, for instance, would become a hot
topic, specially within the development of smart cities [6]. It is clear that Linked Data
philosophy can be applied naturally to these Internet of Things, by simply assigning
URIs to the real-world things producing RDF data about them via Web.

2.2 Running Example

Each time we use a metro card, the transaction is recorded. A register may include, at
least, an anonymous identifier, the date and time of the transaction, and the checked
station. Let us consider an information system storing and serving all this information
for a city such as New York (NYC), having 468 stations, 5 millions rides per weekday
and a total 1,640 millions rides per year3. It conforms a really interesting Big Data to
query and analyze, subject to integration with other data (such as subway and city facili-
ties, events or services), but increasingly growing minute by minute. After, five years of
gathering, this huge information system will store 8,000 millions records and it has to
be able to serve queries efficiently for a wide range of purposes, such as prediction and
other logistic processes related to the metro management and NYC organization, statis-
tics, business intelligence, etc. Under this scenario, thousand of records are generated
every couple of minutes, which has to be integrated into the full knowledge base. On
the one hand, it makes no sense to perform continuously insertions, as this would imply
to regenerate the (huge) indexes to more than 8,000 millions records, suffering a signifi-
cant performance degradation of the tasks running in the system. On the other hand, we
could not afford an offline batch insertion (typically at the end of the day) as some of the
processes, such as prediction, requires the latest records to perform real-time processes.

Let us describe how this decision applies to the previous example. We consider,
for instance, that the check-in transaction is enhanced with data about breakdowns in
other transports, meteorology or information about cultural and sporting events held
in New York. These new data can be the glue to understand different displacement
patterns, allowing better service plans to be adopted or increasing security in days of
massive traffic, among other possible decisions. Although it is out of the scope of this
paper, the first step is to design a specific vocabulary for transaction modeling. Once
the vocabulary is agreed, each transaction is represented as a small piece of RDF which
must be integrated into the dataset. Thus, a competitive throughput must be provided to
integrate all these pieces of data since no transactions may be lost. Besides, continuous
data streams of breakdowns, weather or events are also received, but these additional
data can be considered as “small data”, so we can process them efficiently. Moreover, all
the data must be available for querying and these requests must be resolved efficiently.

2 http://www4.wiwiss.fu-berlin.de/lodcloud/state/ (September, 2011).
3 NYC statistics 2011, http://mta.info/nyct/facts/ridership/index.htm

Towards an Architecture for Managing Big Semantic Data in Real-Time 49

Fig. 1. Layered configuration of the SOLID architecture

3 The SOLID Architecture

Our solution for the stated problem –to be able to reconcile the requirements of Big
Data processing and the need to consider the flow of incoming real-time information–
is to define a generic architecture able to simultaneously deal with both approaches. The
problem could seem rather specific, but it actually applies to a large set of applications;
indeed, there are even some architectural approaches which tackle a similar problem,
such as Lambda [14]. Our proposal, however, emphasizes the use of semantic technolo-
gies, and has a different setting. Apart from that, this architecture has been designed not
to depend on any particular domain or technology.

Our proposal consists of a specific architecture, named SOLID after the enumera-
tion of its main components: Service-OnLine-Index-Data, which gathers lessons learned
from batch architectures, real-time overlays, and high-performance semantic datastores.
It can be described as a 3-tier architecture, in which the middle tier is also subdivided
in three layers (OnLine, Index and Data), defining a multi-tiered, layered architecture.
It is summarized in Fig. 1, and its five layers are quickly mentioned in the following.

Online Layer. The top layer of the architecture, which is also the one which specifically
deals with real-time needs. It captures the incoming flow of new data in a high-speed
datastore, which is used for temporary storage. It works as a large buffer for real-time
incoming data: what is not (still) in the main database is located here.

Data Layer. The bottom layer of the architecture, which contains the main datastore,
i.e. the Big Data repository. It is designed as a storage layer, able to maintain large sets
of information, their organization and their semantics - but it needs not to be inherently
fast, just self-descriptive.

Index Layer. The middle layer, which provides an index for the Data Layer, therefore
turning it into a high-speed datastore. It is built using the semantic metadata in the lower
layer, and designed to provide a fast access to the information it contains: all queries to

50 C.E. Cuesta, M.A. Martı́nez-Prieto, and J.D. Fernández

the main datastore are performed using this index. This way we are able to maintain a
large, stable datastore with a quick access.

Service Layer. The most external tier, which presents a façade to the outside user.
All queries are performed through this layer, which multiplexes them adequately, and
forwards it to both the Online and Index Layers. Each layer provides the corresponding
result set; these are joined and combined to provide an unified answer. The internal
modules in this layer can therefore be described as mediators, and have themselves a
pipe-filter structure.

Merge Layer. The most internal tier, which provides one of the key steps of our ap-
proach. In some chosen moment, the Online Layer dumps the contents of its datastore.
The Merge Layer receives and transforms this input and combines it with existing data,
producing a fresh copy of the Big Data store, which is fed into the Data Layer, with-
out altering its structure, i.e. maintaining immutability properties. This process requires
much computational effort, so it is performed in batch as a massively parallel process
using, for instance, MapReduce-based computation.

Therefore, in summary: the data architecture uses a large datastore for Big Data,
which is indexed to allow a fast access. At the same time, the flow of real-time data is
stored in a temporary datastore, until it is eventually merged in the main store by using
a massive-parallel batch process. When the architecture receives a query, it is forwarded
to the two datastores, and the corresponding result sets are merged to provide a federated
answer, in a completely user-transparent way.

This “abstract” architecture has to make certain decisions to be applied to a concrete
case - such as the nature of the datastores, or the different implementations. The next
section is devoted to explain this sort of compromises.

4 SOLID in Practice

Once we have characterized the SOLID layers, we are able to devise its implementa-
tion. First, we analyze practical decisions made around the data-centric layers: Data,
Index, and Online, which are designed by leveraging possibilities of binary RDF. Then,
we outline Merge and Service layers, emphasizing how their processes can also take
advantage of binary RDF for improving performance.

4.1 Data-Centric Layers

One main decision when managing RDF data is the underneath format, since the RDF
data model does not restrict its concrete representation. RDF/XML [2] was originally
recommended as the RDF syntax. It restructures the RDF graph to be encoded as a XML
tree, preserving a document-centric view which is not acceptable when big semantic
data must be serialized. The potential of huge RDF is seriously underexploited due to
the large space they take up [13]. Some other syntaxes has been proposed later [10], but
RDF/HDT4 [13,7] was the first designed bearing in mind final serialization sizes.

4 HDT is W3C Member Submission from 2011:
http://www.w3.org/Submission/2011/03/

Towards an Architecture for Managing Big Semantic Data in Real-Time 51

RDF/HDT is a binary syntax which reduces verbosity in favor of machine-under-
standability. It allows Big Semantic Data to be efficiently managed within the common
workflows of the Web of Data, being an ideal choice for storage and transmission (it
takes up to 15 times less space than traditional RDF syntaxes [7]). In addition, the
RDF/HDT specification comprises specific configurations of compact data structures
which enable to easily parse and load Big Semantic Data in compressed space.

The Data Layer stores the Big Semantic Data serialized in RDF/HDT. It enables
large spatial savings and guarantees data immutability in compressed space. Besides,
it allows big datasets to be efficiently mapped to the memory hierarchy by using the
RDF/HDT data structures. This feature is the SOLID core for accessing Big Semantic
Data because any RDF triple can be retrieved without prior decompression. Thus, this
layer assumes the complexity of Big Data storage and set the basis for the Index Layer.

The Index Layer exploits the Data Layer features for supporting efficient query res-
olution over the Big Semantic Data storage. It implements the HDT-FOQ (HDT Focused
on Querying) proposal [13] which, basically, builds two lightweight indexes on top of
the RDF/HDT representation. These structures enable fast lookups over the Data Layer,
and it results in efficient SPARQL resolution reporting competitive performance with
respect to the state of the art of RDF stores [13].

The Online Layer assumes the complexity of managing data generated in real-time,
keeping the Data Layer immutable. In fact, this philosophy perfectly fits the lower lay-
ers, as RDF/HDT was thought to be read-only and updates are costly. On the one hand,
the Online Layer must allow fast write operations in order to insert all new generated
data. On the other hand, it must resolve SPARQL in an efficient way, although scalabil-
ity issues are minimized in this case by considering that this Layer only stores a small
subset of data (for instance, in the running example, the check-in transactions generated
in the current day). This layer implementation depends on the computational resources
available. We suggest to use general-purpose NoSQL technology or any native RDF
store, because these report the best numbers for managing RDF [1].

4.2 Processing-Centric Layers

These two layers play intermediary roles between the data-centric layers. Both ones
leverage RDF/HDT features for implementing their processing tasks.

The Merge Layer implements the batch process which merges the Big Semantic
Data (from the Data Layer), and the data recorded in the Online Layer. It is a time-
consuming process which requires a high-performance configuration. As explained,
it can be realized using Map-Reduce. Whereas the Big Semantic Data from the Data
Layer is already in RDF/HDT, the data dumped from the Online Layer must be firstly
converted to RDF/HDT; this conversion can take place in the Merge Layer, or it can
be held in the Online Layer. In any case, the new Big Semantic Data is not obtained
from the scratch because the process leverages internal RDF/HDT ordering for efficient
merging. It results in a cost proportional to the smallest dataset size, isolating possible
Big Data drawbacks. This process finishes delivering a new Big Semantic Data rep-
resentation which replaces the previous one in the Data Layer. This fact triggers two
additional operations: i) the Index Layer updates its structures according to the new
data and ii) the Online Layer clears all data currently integrated into the Data Layer.

52 C.E. Cuesta, M.A. Martı́nez-Prieto, and J.D. Fernández

The Service Layer relies on the SPARQL expressiveness to satisfy all possible
queries. Its inner pipeline first duplicates the corresponding query and sends the copies
to the filters responsible for interacting with the Service and Index Layers. Each layer
resolves the query independently and delivers its results to the last filter, which finally
computes the results. In practice, results from the Service Layer are first obtained, and
then there is room for optimization. They can be processed to obtain a hash structure
which allows to efficiently join both result sets before final delivery.

5 Conclusions and Future Work

This paper proposes SOLID, a new architecture for managing Big Semantic Data
in real-time. It is designed upon the property of complexity isolation allowing the main
concerns to be resolved independently. On the one hand, we rely on binary RDF/HDT

features for storing and indexing RDF in compressed space. On the other hand, we use
NoSQL technology for recording real-time data. The overall dataset is queried through
a pipeline-based layer which asks to the big and online representations, retrieves results,
and then merges them for delivering. Online and Big Data are merged programmatically
by performing a parallel process: e.g. Map-Reduce.

The empirical results reported by each technology considered in SOLID bodes well
for our future work. We are currently implementing the different layers and their in-
terfaces to obtain an optimized prototype for servers. Besides, we are working on a
lightweight SOLID version designed for mobile devices because our spatial savings en-
able more data to be processed in these limited devices. Nevertheless, their practical
requirements are different and, for instance, the merge layer is discarded because its
functionality is not directly required.

References

1. Abadi, D., Marcus, A., Madden, S., Hollenbach, K.: Scalable semantic Web data manage-
ment using vertical partitioning. In: Proc. of VLDB, pp. 411–422 (2007)

2. Beckett, D. (ed.): RDF/XML Syntax Specification. W3C Recommendation (2004)
3. Begoli, E., Horey, J.: Design Principles for Effective Knowledge Discovery from Big Data.

In: Proc. 2012 Joint WICSA/ECSA Conference, pp. 215–218. IEEE (August 2012)
4. Berners-Lee, T.: Linked Data: Design Issues (2006),

http://www.w3.org/DesignIssues/LinkedData.html
(retrieved on March 01, 2013)

5. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American (2001)
6. De, S., Elsaleh, T., Barnaghi, P., Meissner, S.: An Internet of Things Platform for Real-World

and Digital Objects. Scalable Computing: Practice and Experience 13(1) (2012)
7. Fernández, J., Martı́nez-Prieto, M., Gutiérrez, C., Polleres, A., Arias, M.: Binary RDF rep-

resentation for publication and exchange (HDT). Journal of Web Semantics (in press, 2013),
http://dx.doi.org/10.1016/j.websem.2013.01.002

8. Genovese, Y., Prentice, S.: Pattern-Based Strategy: Getting Value from Big Data. Gartner
Special Report (June 2011)

9. Halfon, A.: Handling Big Data Variety,
http://www.finextra.com/community/fullblog.aspx?blogid=6129
(retrieved on March 01, 2013)

 http://www.w3.org/DesignIssues/LinkedData.html
http://dx.doi.org/10.1016/j.websem.2013.01.002
 http://www.finextra.com/community/fullblog.aspx?blogid=6129

Towards an Architecture for Managing Big Semantic Data in Real-Time 53

10. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space. Morgan &
Claypool (2011)

11. Loukides, M.: Data Science and Data Tools. In: Big Data Now, ch. 1. O’Reilly (2012)
12. Manola, F., Miller, E. (eds.): RDF Primer. W3C Recommendation (2004)
13. Martı́nez-Prieto, M.A., Arias Gallego, M., Fernández, J.D.: Exchange and Consumption of

Huge RDF Data. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.)
ESWC 2012. LNCS, vol. 7295, pp. 437–452. Springer, Heidelberg (2012)

14. Marz, N., Warren, J.: Big Data: Principles and Best Practices of Scalable Realtime Data
Systems. Manning (2013)

15. Prud’hommeaux, E., Seaborne, A. (eds.): SPARQL Query Language for RDF. W3C Recom-
mendation (2008), http://www.w3.org/TR/rdf-sparql-query/

16. Styles, R.: RDF, Big Data and The Semantic Web, http://dynamicorange.com/
2012/04/24/rdf-big-data-and-the-semantic-web/
(retrieved on March 01, 2013)

http://www.w3.org/TR/rdf-sparql-query/
http://dynamicorange.com/2012/04/24/rdf-big-data-and-the-semantic-web/
 http://dynamicorange.com/2012/04/24/rdf-big-data-and-the-semantic-web/

Controlled Experiment on the Supportive Effect
of Architectural Component Diagrams for Design

Understanding of Novice Architects

Thomas Haitzer and Uwe Zdun

Research Group Software Architecture
University of Vienna

Austria
{thomas.haitzer,uwe.zdun}@univie.ac.at

Abstract. Today, architectural component models are often used as a central
view of architecture descriptions. So far, however, only a very few rigorous empir-
ical studies relating to the use of component models in architectural descriptions
of software systems have been conducted. In this paper, we present the results
of a controlled experiment regarding the supportive effect of architectural com-
ponent diagrams for design understandability. In particular, the goal of the ex-
periment was to determine whether architectural component diagrams, provided
in addition to a non-trivial software system’s source code, have a supportive ef-
fect on the ability of novice architects to answer design and architecture related
questions about that system. Our study provides initial evidence that architectural
component diagrams have a supportive effect for understanding the software de-
sign and architecture, if a direct link from the component diagram’s elements to
the problem that requires understanding can be made. If such a direct link cannot
be made, we found evidence that it should not be assumed that architectural com-
ponent diagrams help in design understanding, for instance only by providing a
big picture view or some general kind of orientation.

Keywords: Software Architecture, Architectural Component Diagrams, Design
and Architecture Understanding, Empirical Study, Controlled Experiment.

1 Introduction

Today a software architecture description is usually comprised of multiple views
[5, 19, 20]. The component and connector model (or component model for short) of an
architecture is a view that is often considered to contain the most significant architec-
tural information [5]. This view deals with the components, which are units of runtime
computation or data-storage, and the connectors which are the interaction mechanisms
between components [5, 29]. An architectural component model is a high-level abstrac-
tion of the entities in the source code of the software system, as the software architecture
concerns only the major design decisions about a software system, and abstracts from
irrelevant details [21].

While much research work has been done in component-related research areas such
as modelling languages for component and connector models, component implemen-
tation technologies, component composition, and the formal semantics of components,

K. Drira (Ed.): ECSA 2013, LNCS 7957, pp. 54–71, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Controlled Experiment on the Supportive Effect 55

only a very few rigorous empirical studies relating to the use of component models in
architectural descriptions of software systems have been conducted. Such foundational
research is however essential to provide guidelines and tools to software architects,
based on sound evidence, to help them understand how to design component models
that are appropriate for the architectural understanding of a software system.

In this paper, we present the results of a controlled experiment regarding the sup-
portive effect of architectural component diagrams for design understandability. In par-
ticular, the goal of the experiment was to determine whether architectural component
diagrams, provided in addition to a non-trivial software system’s source code, have a
supportive effect on the ability of novice architects to answer design and architecture
related questions about that system. This goal is interesting to study, as today it is un-
clear whether component diagrams alone are sufficient to help architects to understand
complex architectural relationships in a given system in a better way than just study-
ing the source code of that system. While the literature suggests a supportive effects of
component diagrams (see e.g. [5, 31]) for design understanding, there is little empirical
evidence so far.

In addition, many existing approaches seem to assume seasoned architects as their
main target group. Assuming that component diagrams alone are a useful help to gain
a better architectural understanding of a system, as some of the software architecture
literature suggests, it is unclear whether this effect can also be observed for novice
architects. As software architecture has the goal to convey the big picture of a software
system and novices who start on a new project especially require help to gain such a
big picture quickly, it is highly interesting whether there is indeed a supportive effect
on design understanding for them. Hence, we particularly focus on novice architects.

The experiment presented in this paper studies the experiment goal by letting 60 stu-
dents with medium programming experience answer seven questions about the design
and architecture of a given software system (the computer game FreeCol). One half of
the participants, the control group, received the source code of that system as the main
source of information, while the other half of the participants, the experiment group,
additionally received architectural component diagrams for FreeCol. By showing that
the quality of the answers improves for certain questions, our study provides initial ev-
idence on how architectural component diagrams help in understanding the design and
architecture of software systems. The results indicate that architectural component di-
agrams are especially useful if a direct link from the component diagram’s elements to
the problem that requires understanding can be made and that they have in such cases in-
deed a supportive effect for software design and architecture understanding. In contrast,
if no such direct link can be made, we found evidence that it should not be assumed that
architectural component diagrams help in design understanding, for instance only by
providing a big picture view or some general kind of orientation.

This paper is organized as follows: In Section 2 we briefly discuss the related work.
Next, in Section 3 we introduce our experiment, including the goal, the hypotheses,
the parameters and variables, the experimental design, and the execution. Section 4
describes the statistical analysis and the testing of the hypotheses. Section 5 provides the
validity evaluation. Finally, Section 6 concludes and discusses possible future research
directions.

56 T. Haitzer and U. Zdun

2 Related Work

The general notion of empirical studies in software architecture has been studied by
Falessi et al. [8]. They conclude from their study that a greater synergy between em-
pirical software engineering and software architecture would support the emergence of
a body of knowledge consisting of more widely accepted and well-formed theories on
software architecture and the empirical maturation of the software architecture area.

Only a few of the empirical studies in the area of software architecture are directly
related to architecture design or design understanding. Boucke et al. [4] introduce an ap-
proach that explicitly supports compositions of models, together with relations among
models in an architecture description language. In an empirical study they show that
their approach reduces the number of manually specified elements and manual changes.

van Heesch et al. study in two surveys the reasoning process of architects, one with
students [16] and one with professionals [18]. A related study performs a controlled
experiment about the supportive effect of patterns in architecture decision recovery [17].

Many empirical studies in the field of software architecture study other aspects, like
quality aspects or other views. For instance, a number of studies related to evaluating ar-
chitectures have been conducted. Barbar et al. [2] performed an empirical study aiming
at understanding the different factors involved in evaluating architectures in industry.
The influence of software visualization on source code comprehensibility was studied
by Umphress et al. [35] based on control structure diagrams and complexity profile
graphs. Biffl. et al. [3] study the impact of experience and team size on the quality of
scenarios for architecture evaluation. A number of empirical studies aim at better un-
derstanding the relation of architecture and requirements [11, 26]. Various empirical
studies relating architecture to certain qualities or metrics have been conducted. For
example, Hansen et al. study the relation of product quality metrics and architecture
metrics [15].

A number of papers focus on the comprehension of UML diagrams. Some focus on
dynamic models [28], while others focus on specific diagrams or models like sequence
diagrams [13], state charts [7], or class diagrams [30]. The influence of the level of de-
tail in class and sequence diagrams on the maintainability of software has been studied
by Fernández-Sáez et al. [10]. These papers focus on factors that influence the under-
standability of the diagrams itself, while we focus on the effects of component diagrams
on the architecture understanding of novice architects.

Even though we found no rigorous empirical studies of architectural component
model understandability so far, aspects like reuse or fault density of components have
been studied empirically before. Fenton and Ohlsson have studied the relations of fault
density and component size in a large telecom system [9]. Mohagheghi et al. provide
a study comparing software reuse with defect density and stability [27]. Their study is
based on historical data on defects, modification rate, and software size. Malaiya and
Denton provide an analysis of a number of studies and identify the component partition-
ing and implementation as influencing, competing factors to determine the “optimal”
component size with regard to fault density [24]. Graves et al. have studied the software
change history of components to create a fault prediction model [14]. Our experiment
and these studies have in common, that they make a link between component models
and software quality, but in contrast to our experiment they only study aspects that can

Controlled Experiment on the Supportive Effect 57

solely be studied using the software systems and their historical data. In contrast, we
consider the (novice) architect’s perception of understandability as well as expert opin-
ions on their results. In addition, in those other studies components are understood as
implemented software modules, rather than architectural abstractions.

A number of approaches suggest that other aids are needed to gain a better under-
standing of the design or architecture, such as architectural views [5, 19, 20] or ar-
chitectural decision models [23, 34, 38], which would contain or augment component
models. Both research directions only focus on complementing component models with
additional knowledge, but do not research on the effects of the component models on
the understandability of a software architecture or design. Other literature suggests that
it might be hard to understand the source code only with models, and traceability links
[1] between components and code are needed to make the connection [12].

3 Experiment Description

For the design of the experiment we followed the guidelines by Kitchenham
et al. [22] and Wohlin et al. [37]. In our experiments, the guidelines by Kitchenham
et al. were primarily used in the planning phase of the experiments, while the advice by
Wohlin et al. was used as a reference for the analysis and interpretation of the results.

3.1 Goal and Hypotheses

The goal of the experiment was to determine whether architectural component dia-
grams, provided in addition to a non-trivial software system’s source code, have a sup-
portive effect on the ability of novice architects to answer questions about the design
and architecture of that system. Depending on the question asked, the guidance or help
provided by architectural component diagrams can vary greatly. The two extreme cases
are that component diagrams readily provide the answer without any need to study other
information (like the source code) and that component diagrams provide no clue for an-
swering the question. Intentionally we left out these two extreme cases and studied the
shades of grey in between. In particular, we further distinguished the following three
types of questions in our experiment:

– QT 1: A question about the software system’s design and architecture for which
the component diagrams provide some guidance or help, but the information in the
component diagrams alone is not enough to answer the question fully.

– QT 2: A question about the software system’s design and architecture for which the
component diagrams provide some guidance or help, but the same information is
easily visible from the source code.

– QT 3: A question about the software system’s design and architecture for which
the component diagrams provide no direct guidance or help, only vague orientation
in related components and connectors; digging in the source code is required for
answering the question.

58 T. Haitzer and U. Zdun

Hypotheses: We postulate the following three hypotheses about the effects of
architectural component diagrams (in addition to the source code) on the quality of
answers that novice architects provide to questions about a software system’s design
and architecture.

– In case of QT 1, i.e. if the component diagrams provide architectural guidance for
answering the question,
• the null hypothesis is that the quality does not improve, H0 QT1 : μ ≤ μ0;
• the alternative hypothesis is that the quality improves, HQT1 : μ > μ0.

– In case of QT 2, i.e. if the component diagrams provide architectural guidance for
answering the question, but the same information is visible from the source code,
• the null hypothesis is that the quality does not improve, H0 QT2 : μ ≤ μ0;
• the alternative hypothesis is that the quality improves, HQT2 : μ > μ0.

– In case of QT 3, i.e. if the component diagrams provide no direct guidance or help,
only vague orientation in related components and connectors,
• the null hypothesis is that the quality does not improve, H0 QT3 : μ ≤ μ0;
• the alternative hypothesis is that the quality improves, HQT3 : μ > μ0.

Expectations: Our expectations for the three hypotheses are:

– For design questions of type QT 1, we expect that the null hypothesis can be re-
jected. That is, component diagrams have a supportive effect on the answers that
novice architects provide to questions about a software system’s design and archi-
tecture, if the component diagrams provide architectural guidance for answering
the question.

– For design questions of type QT 2, we expect that the null hypothesis can not be
rejected. That is, component diagrams are helpful, but that novice architects with
medium software development experience are able to see the same information in
the source code, if it is easily visible. However, this expectation might be wrong as
possibly the visual information in the component diagrams might be more readily
accessible to novice architects than the easily visible information in the source code.

– For design questions of type QT 3, we expect that the null hypothesis can not be
rejected, as there is no direct relation between the question and the additional in-
formation provided by the component diagrams. However, this might be wrong
as component diagrams might have an indirect supportive effect, for instance by
providing some kind of general orientation that helps in answering this type of
questions.

3.2 Parameters and Variables

Dependent Variable. One dependent variable was observed during the experiment, as
shown in Table 1: the quality of the answer to the design question. The quality of the
answers was assessed by three independent software architecture researchers with mul-
tiple years of practical software development and architecture experience (later also
referred to as analysts) using an interval scale, ranging from 0 (worst) to 10 (best). The
interval scale nature of the rating system was explained to the analysts before their anal-
ysis (i.e., that equal distances between the points on the scale can be assumed), as this

Controlled Experiment on the Supportive Effect 59

is important for applying parametric statistical tests [33]. The analysts were assigned
per question, and each analyst rated each of the assigned questions completely in both
experiment and control group, to make sure that each question is homogeneously as-
sessed. Two analysts rated two of the questions, and one analyst rated three of the ques-
tions. Each of the analysts studied the two software systems used in the experiments
before their analysis in depth and reference answers were created before the evalua-
tion to ensure fair evaluation. The ratings were left to the analysts’ own experience and
interpretation, but they were asked to specifically take the displayed architectural under-
standing into account. The participants of the experiments were also reminded before
the beginning of the experiments that they should focus on the architectural dimension
of the questions.

Independent Variables. Table 1 also shows other variables that could influence the
dependent variables. They concern characteristics and previous experiences of the
participants.

Table 1. Observed Variables

Type Description Scale Type Unit Range
Dependent
Variable

Quality of the answer to
design question

Interval Points 0 (worst) to 10 (best)

Independent
Variable

Group Nominal N/A Possible values: experiment
group, control group

Programming experience Ordinal Years 4 classes: 0-1, 1-3, 3-6, >6
Commercial programming
experience in industry

Ordinal Years 4 classes: 0, 0-1, 1-3, >3

Experience in program-
ming computer games

Ordinal Years 4 classes: 0, 0-1, 1-3, >3

3.3 Experiment Design

To test the hypotheses, we conducted the experiment in the context of the Software
Architecture course at the Faculty of Computer Science, University of Vienna in
spring 2012.

Subjects. The subjects of the experiment are 60 students of the Software Architec-
ture course. The subjects were randomly assigned into two equally sized groups of 30
students: experiment group and control group.

Objects. The basis of the experiment is the source code of the Freecol computer game1,
an open source version of the classic computer game Colonization (a turn-based strat-
egy game) with multi-player support, implemented in Java. Both experiment group and
control group were provided with access to the complete source code of Freecol. In or-
der to avoid any bias caused by complex Integrated Development Environments (IDEs)
or code editors, source code access was only provided using the Browser-based code
navigation tool that is integrated with our locally hosted installation of Gitorious2.

1 See http://www.freecol.org/
2 See http://www.gitorious.org/

60 T. Haitzer and U. Zdun

Instrumentation. The participants of both groups received the following materials:
The Browser-based access to the source code of Freecol was provided in a Lab en-
vironment on prepared computers. All other materials were provided on paper. The
participants received a questionnaire about the independent variables regarding the par-
ticipants’ experiences. Both groups also received 7 different questions about the design
and architecture of Freecol (see below). In addition, the experiment group received
an additional document with 6 UML component diagrams showing: a FreeCol Archi-
tecture Overview, the FreeCol Server Architecture, the FreeCol Client Architecture, a
Detailed View: FreeCol Server - Control, the FreeCol MetaServer Architecture, and a
Detailed View: FreeCol Commons. The component diagrams have been created in an
architectural reconstruction of FreeCol that took place before the experiment and was
independent of the experiment.

In the experiment we have tested 7 different questions about the design and archi-
tecture of Freecol. The questions have been confirmed by the independent analysts as
being relevant questions for understanding Freecol’s design and architecture. The ques-
tions and their classifications are shown in Table 2. We have classified the questions
into the question types from Section 3.1 as follows:

– QT 1: For 3 questions (Q1, Q5, Q7) the component diagrams provide direct guid-
ance or help to better understand Freecol’s design and architecture, but the infor-
mation in the component diagrams alone is not enough to answer the question fully.

– QT 2: For 1 question (Q2) the answer can be deduced both from the component
diagrams and the source code organization (in packages) alike.

– QT 3: For 3 questions (Q3, Q4, Q6) the component diagrams provide no obvious
information, only vague orientation, and digging in the source code is required to
answer the question.

We asked 3 questions of type QT 1 and 3 questions of type QT 3, so clearly those two
question types are our main focus. We also checked QT 2, but only once, as it is a rather
seldom occurring option somewhat in between QT 1 and QT 3 that some design aspects
are directly visible from the source code organization. To illustrate the difference be-
tween the two extremes in our experiment, QT 1 and QT 3, and let us briefly explain the
difference in the level of detail modelled:

– Example for Type QT 3: For question Q3 of type QT 3 there is only a component AI
visible in the FreeCol Server Architecture model. It has a single connector with the
interface AIPlayer to the Model component. This provides only vague orientation
for answering question Q3, as it enables the participants to know that AI concerns
are implemented in the server packages and that there is a link to the model classes,
but it does not provide details for answering the question.

– Example for Type QT 1: For question Q1 of type QT 1 there are significantly more
details and links to all important aspects of the question in the component diagrams.
First of all in the FreeCol Client Architecture model, we can see a component Con-
troller that is linked through a connector with an interface GameControl to the Ac-
tions component and through another connector with an interface UpdateHandler
to the GUI component. This enables participants to understand how GUI Actions

Controlled Experiment on the Supportive Effect 61

use InGameController (and another class ConnectController) to perform model,
game, etc. updates using basic controls. It also makes it easy to find various basic
control tasks in the game’s client, which can then easily be found in the source
code. The Controller also has a connector to a port with the Model interface, which
links to details in the Commons and Server Architecture component models. In
the server, the Model component is linked to another Control component which is
modelled in a detailed view, the FreeCol Server: Control component diagram. This
enables participants to understand (1) the client-server relationship for control and
the synchronization through models and (2) the event handling for changes through
model messages.

Clearly, the level of detail for question type QT 1 is much higher. We hope this example
helps to illustrate what we mean by “providing direct guidance or help” for QT 1 in
contrast to “vague orientation” for QT 3.

3.4 Execution

The experiment was executed in the context of the Software Architecture course at the
Faculty of Computer Science, University of Vienna in the summer semester 2012/2013.
Before the experiment took place, the participants were randomly assigned to experi-
ment group and control group. Each of the two groups consisted of 30 participants (total
participant number: 60).

Figure 1 shows the previous experience of the participants for the control group
and the experiment group. In particular, the figure shows the programming experience
of the participants, which is quite comparable in the two groups, with slightly more
participants with longer experience in the experiment group. The industry programming
experience is low in both groups, with a few participants with 1, 1-3, or even more than
3 years of industry experience in both groups. Finally, the very few participants with
game programming experience are equally present in both groups.

Before the experiment started, the materials explained in Section 3.3 were handed
out to the participants and the tasks were briefly explained to both groups. After 15
minutes of introduction, the participants were given time to fill out the questionnaire
about their experiences. After all participants were ready, the answering of the questions
started. The answers were provided by the participants on paper. This main phase of the
experiment lasted for two hours.

The data collection was performed as planned in the design. No participants dropped
out and no deviations from the study design occurred.

The experiment took place in a controlled environment. The experiment was
conducted for both groups in different rooms, equipped with computers to which the
participants had logins. At least one experimenter was present in each room during
the whole experiment time to assure that participants behaved as expected. After the
experiment, all materials were collected by the experimenters before any of the
participants left the room. There were no situations in which participants behaved
unexpectedly.

62 T. Haitzer and U. Zdun

Table 2. Questions and Classification of Questions

ID Type Question Classification Details
Q1 QT1 Explain the role of the class

“InGameController” in the Package
“net.sf.freecol.client.control”. What
is its purpose?

Component diagrams provide detailed
orientation through related components
and connectors, and also hint at interest-
ing architectural concerns not easily seen
from the source code. Connection to the
source code must be made for providing
the full answer.

Q2 QT2 How many and which independent
executable programs belong to this
game?

Component diagrams provide detailed
orientation. The answer can be deduced
from component model, but also from the
package structure in the source code.

Q3 QT3 Explain how the computer players
(AI) are integrated into the game.
Which classes are responsible for
the integration and implementation
of the AI players? In which of the ex-
ecutable program(s) (see Q2) do they
run?

Component diagrams provide vague ori-
entation through components. The source
code is the main source of information.

Q4 QT3 What is the role of the
class “DOMMessage” in the
“net.sf.freecol.common.networking”
Package? How is it used in the
game?

Component diagrams provide no details
for answering the question, only vague
orientation. The source code is the main
source for getting the required informa-
tion.

Q5 QT1 What is the role of classes in the
package “net.sf.freecol.metaserver”?

Component diagrams provide detailed
orientation through related components
and connectors. Connection to the source
code must be made for providing the full
answer.

Q6 QT3 What are the roles of the
classes in the packages
“net.sf.freecol.server.model”,
“net.sf.freecol.client.control”,
“net.sf.freecol.common.model”?
How are they related to each other?

Component diagrams are useful for ba-
sic orientation, but not for answering the
question. The source code is the main
source of information.

Q7 QT1 In order to show a consistent game
state to all players, the programs of
the different players must be updated
regularly. How and by which classes
is this mechanism realized? Sketch
the control flow from one class (or
object) to the next one.

Component diagrams show related com-
ponents and connectors, and a few details
helpful for answering the question. Com-
ponent diagrams also hint at the architec-
tural big picture not easily seen only from
the source code.

Controlled Experiment on the Supportive Effect 63

Control Group Exp. Group

Programming Experience

0
5

10
15

20
25

0 to 1 years
1 to 3 years
3 to 6 years
More than 6 years

Control Group Exp. Group

Industry Programming Exp.

0
5

10
15

20
25

30

No experience
Up to 1 year
1 to 3 years
More than 3 years

Control Group Exp. Group

Game Programming Exp.

0
10

20
30

40

No experience
Up to 1 year
1 to 3 years
More than 3 years

Fig. 1. Experience of the Participants

4 Analysis

4.1 Descriptive Statistics

Figure 2 shows the medians and means for the quality of the answers given to the seven
questions Q1–Q7 for both control group and experiment group (the values can also be
seen below in Table 4). As can be seen, the medians and means for questions of type
QT 1 (Q1, Q5, Q7) are always higher in the experiment group than those in the control
group. For the question of type QT 2 (Q2) the control group yields a slightly better re-
sult. The medians and means for questions of typeQT 3 (Q3, Q4, Q6) of the experiment
group show the same or slightly better results than those of the control group.

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Medians

0
2

4
6

8
10

12

Control Group
Experiment Group

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Means

0
2

4
6

8
10

12

Control Group
Experiment Group

Fig. 2. Medians and means for the seven questions

4.2 Data Set Reduction

The deviations from the means for the ratings of all questions are in a corridor that
roughly corresponds to our previous experiences from other exercises with participants

64 T. Haitzer and U. Zdun

in our courses. Hence, we did not want to exclude individual participants from the data
set, as excluding data points would have introduced a potential vulnerability for the
study results.

An interesting outlier in the medians and means for the seven questions is Question
Q7, where both groups performed rather poorly. Hence, we studied the answers for this
question in depth to understand whether it is necessary to exclude Question Q7 from
the further analysis, for instance because it was too hard to answer or simply because
the participants did not have enough time for answering the question (which was the
last question). First we checked the protocols of the experiment and most participants
have finished before the end of the 2 hours slot, so the limited time frame does not seem
to be the cause of the poor results. To study whether the question was too difficult, we
did an in depth study of answers without knowledge whether the individual answers
were from the control group or the experiment group. The results are: Indeed, Question
Q7 seems to be a difficult question that requires complex design and architecture under-
standing and making connections across multiple parts of the FreeCol system’s design
and architecture. Most participants failed and reached 0-3 points. Very few participants
are in the middle ranks of 4-6 points. Only 6 out of the 60 participants managed to
provide a sufficient answer to the question (with a score > 6 points). As this means
that 10% of the participants were able to answer the question sufficiently, it does not
seem impossible for novice architects to answer Question Q7, just difficult. Hence, we
decided to not exclude the question from further analysis but rather view it as a case to
study a difficult question of type QT 1.

4.3 Hypotheses Testing

Testing the Normality of the Data. As a first step in analysing the data, we tested the
normality of the data by applying the Shapiro-Wilk test [32], in order to see whether
we can apply parametric tests like the t-test that assume the normal distribution of the
analysed data. The null hypothesis H0 for the Shapiro-Wilk test states that the input
data is normally distributed. H0 is tested at the significant level of α = 0.05 (i.e.,
the level of confidence is 95%). That is, if the calculated p-value is lower than 0.05
the null hypothesis is rejected and the input data is not normally distributed. If the p-
value is higher than 0.05, we can not reject the null hypothesis that the data is normally
distributed.

Table 3. Results of the Shapiro-Wilk normality test

Group N Shapiro-Wilk test p-value
Q1 Q2 Q3 Q4 Q5 Q6 Q7

Control
Group

30 0.06505 6.528e-05 0.07345 0.0852 0.005865 7.255e-05 1.362e-06

Experiment
Group

30 0.01998 9.035e-05 0.04852 0.3658 0.0002576 3.028e-05 0.0007023

In the Table 3 the p-values for the Shapiro-Wilk normality test for the seven questions
Q1–Q7 for both control group and experiment group are shown. As can be seen, most
questions do not have a normal distribution (i.e., hypothesisH0 is rejected). Some other

Controlled Experiment on the Supportive Effect 65

questions show a p-value right above 0.05 which means a very weak tendency of being
normally distributed. In order to test the normality of the variables with a p-value above
0.05, we graphically examined how well these variables fit the normal distribution using
the normal Q-Q plot. Q-Q plot is a graphical method for comparing two probability
distributions by plotting their quantiles against each other [36]. Normal Q-Q plot is a
method for graphically comparing the probability distribution of the given data sample
with the normal distribution. While some of the resulting plots fit the normal distribution
pretty well, for none of the questions both control group and experiment group showed a
strong tendency to be normally distributed. Based on these considerations of normality,
we decided to pursue non-parametric statistical tests with our data.

Comparison of the Means between Two Variables. To compare the means of the vari-
able for the control group and experiment group of a question, we applied the Wilcoxon
rank-sum test [25]. The Wilcoxon rank-sum test is a non-parametric test for assessing
whether one of two data samples of independent observations is stochastically greater
than the other. The null hypothesis of the one-tailed Wilcoxon test (appropriate for the
hypotheses in our experiment) is that the means of the first variable’s distribution is less
than or equal to the means of the second variable’s distribution,so that we can write
H0 : A ≤ B. The Wilcoxon rank-sum test tries to find a location shift in the distribu-
tions, i.e., the difference in means of two distributions. The corresponding alternative
hypothesis HA could be written as HA : A > B. If a p-value for the test is smaller
than 0.05 (level of significance), the null hypothesis is rejected and the distributions are
shifted. If a p-value is larger than 0.05, the null hypothesis can not be rejected, and we
can not claim that there is a shift between the two distributions.

Table 4. Results of the Wilcoxon rank-sum test

ID Control
Group:
Mean

Experiment
Group:
Mean

Control
Group:
Median

Experiment
Group:
Median

p-value

Q1 6.3 7.466667 7 7.5 0.02021
Q2 7.466667 7.1 9 8 0.4818
Q3 3.866667 4.3 4 4 0.263
Q4 4.266667 4.333333 4 4 0.494
Q5 3.133333 5.266667 2.5 6 0.01512
Q6 7.9 8.066667 8.5 9 0.2212
Q7 1.166667 2.433333 1 2 0.006899

In the Table 4 the p-values for the Wilcoxon rank-sum test are shown, together
with means and medians. The raw material for these results can be downloaded from
https://swa.univie.ac.at/CDE. Based on the obtained p-values, we can assess
that the following distributions show a statistically significant shift between each other:
Q1, Q5, and Q7. None of the other variables shows a statistically significant shift.

Testing Hypothesis HQT1. In our experiment, we have introduced 3 questions related
to HQT1: Q1, Q5, and Q7. Each of the three questions shows a significant location

https://swa.univie.ac.at/CDE

66 T. Haitzer and U. Zdun

shift in their distributions, and in each of them the experiment group shows better re-
sults than the control group in their means and medians. This provides evidence that
H0 QT1 can be rejected. That is, indeed there is evidence that augmenting the source
code with architectural component diagrams improves the quality of answers that novice
architects provide to questions about a software system’s design and architecture, if the
component diagrams provide architectural guidance for answering the question.

It is interesting to note that the difficult Question Q7 shows the same result (even
with the highest significance level) as Questions Q1 and Q5 (of medium difficulty).
While many of the participants in the experiment group failed as well, all but one of the
sufficient answers were in the experiment group. This result seems to indicate that com-
ponent diagrams can be especially helpful for problems that require making complex
design and architecture connections across multiple parts of the system.

Testing Hypothesis HQT2. In our experiment, we have introduced 1 question related to
HQT2: Q2. For this question we can observe higher means and medians for the control
group than for the experiment group, however the location shift is not statistically sig-
nificant. Therefore H0 QT2 can not be rejected. As expected, there is no evidence that
augmenting the source code with architectural component diagrams does improve the
quality of answers that novice architects provide to questions about a software system’s
design and architecture, if the component diagrams provide architectural guidance for
answering the question, but the same information is visible from the source code.

Testing Hypothesis HQT3. In our experiment, we have introduced 3 questions related
to HQT3: Q3, Q4, and Q6. The medians and means of the experiment group show
the same or slightly better results than those of the control group. None of the three
questions shows a significant location shift in their distributions so H0 QT3 can not be
rejected. As expected, there is no evidence that augmenting the source code with archi-
tectural component diagrams does improve the quality of answers that novice architects
provide to questions about a software system’s architecture, if the component diagrams
provide no direct guidance or help, only vague orientation in related components and
connectors.

5 Validity Evaluation

Several levels of validity have to be considered in this experiment. We consider the
classification scheme for validity in experiments by Cook and Campbell [6].

Internal Validity. The internal validity is the degree to which conclusions can be drawn
about cause-effect of independent variables on the dependent variables.

– The subjects’ experiences in the two groups have approximately the same degree
with regard to programming, industrial, and game programming experience. Of
course, a certain differences in experience between the two groups can not be
entirely excluded.

Controlled Experiment on the Supportive Effect 67

– All subjects’ have at least medium programming experiences and have passed sev-
eral courses on programming and design at our university. Hence, we consider their
responses as valid, keeping in mind that our goal was to analyse the supportive
effects component diagrams have on novice architects.

– The experiment lasted about 2 hours so fatigue effects were not considered relevant.
– The experiment happened in a controlled environment in separate rooms under

supervision of at least one experimenter. While it is not possible to completely ex-
clude misbehaviour or interaction among participants, it is not very likely that mis-
behaviour or interactions have had a big influence on the outcomes of the
experiment.

– Possibly the analysts could have been biased towards the experiment group in some
way. We tried to exclude this threat to validity by not revealing to the analysts the
identity of the participants or in which of the two groups they have participated.
Hence, it is rather unlikely that this threat occurred.

External Validity. The external validity is the degree to which the results of the study
can be generalized to the broader population under study. The greater the external valid-
ity, the more the results of an empirical study can be generalised to software engineering
practice.

– We used students of our software architecture lecture as subjects. As discussed,
they have medium programming and design experience, but limited professional
experience. Hence, we believe them to be well representative for the target group of
novice architects, but if and how the results can be translated to more experienced
architects is open to future study. We plan to replicate the experiment with other
target groups.

– The instrumentation and object in the experiment might have been unrealistic, not
representative, or too simple to allow generalization. For instance, FreeCol as an
open source game might be too simple or no representative software system for
typical architectural studies. The component diagrams used might not be represen-
tative or unrealistic. Or the questions asked might not be typical design or archi-
tecture questions. All these considerations might impede the generalizability of our
results. We do not think that this is the case as FreeCol is a widely used, non-trivial
software system implemented in Java. The component diagrams were created in an
architectural reconstruction effort that took place before the experiment and was
independent of the experiment. The questions have been confirmed by the indepen-
dent analysts as being relevant questions for understanding design and architecture
of FreeCol.

– The experimenters could have biased the measurements of the independent vari-
ables. We mitigated this risk by assigning the quality ratings to independent an-
alysts that had no knowledge about the goals of the experiment. Furthermore the
analysts did not know the identities nor the groups of the participants.

Conclusion Validity. The conclusion validity defines the extent to which the conclu-
sion is statistically valid. The statistical validity might be affected by the size of the
sample (60 participants, 30 in each group). The size can be increased in replications

68 T. Haitzer and U. Zdun

of the study in order to reach normality of the obtained data. We plan to replicate the
study with different systems and by engaging subjects who work in industry in our
future work.

Construct Validity. The construct validity is the degree to which the independent and
the dependent variables are accurately measured by their appropriated instruments. As
only one object, the FreeCol implementation and associated component diagrams, was
used in the experiment, there is the risk that the cause construct is under-represented.
Possibly, the results could look different if multiple systems and sets of diagrams would
be used for the recovery. We assume that the used system is representative for large
and medium-size object-oriented systems. This threat, however, can not totally be ig-
nored. Another potential threat to validity is that we only used one variable to measure
the quality of answers. This does not allow cross-checking the results with different
measures.

6 Conclusions

Our study provides initial evidence on how architectural component diagrams help in
understanding the design and architecture of software systems. The results indicate that
architectural component diagrams are especially useful if a direct link from the com-
ponent diagram’s elements to the problem that requires understanding can be made.
Component diagrams seem to help in such cases to understand the bigger architectural
connections that are hard to see from studying the source code alone and/or they pro-
vide orientation in the source code to understand such problems. However, there is a
different situation for problems that are readily solvable by looking at the source code
(like the question of type QT 2 in our experiment) or for problems that are only vaguely
linked to what is depicted in the component diagrams (like the question of type QT 3 in
our experiment). As expected, we found no evidence that architectural component dia-
grams help, for instance, just by providing a big picture view or providing some general
kind of orientation.

We can conclude for the design of architectural component diagrams that they should
be designed with specific important architectural problems in mind and that elements
of the component diagrams should explicitly represent links to those problems. That
is, components, connectors, and other model elements for providing an abstract under-
standing of the design that resolves the problem should be shown in the diagrams. The
component models related to questions of type QT 1 in our experiment achieve this by
leaving out irrelevant details and showing high-level connections of system parts that
are hard to reconstruct by just studying the low-level source code classes. It also seems
to be important that these links from component models to the problem in focus are
modelled in enough detail. Only vaguely showing a problem-related component in its
context of other components and connectors that are not related to the problem is not
enough.

It seems plausible, based on our results, that such details could also be provided
through other architectural views or through architectural knowledge models. Further,
it seems that making links to the source code is important for the supportive effect re-
vealed in our study. Such links can be made explicit through traceability links. Hence,

Controlled Experiment on the Supportive Effect 69

it also seems plausible that establishing traceability links between architectural compo-
nent models and code might have a further supportive effect. We plan to study these
aspects in further studies in our future work. From the combined results of this and
future studies we plan to develop design guidelines for architectural component dia-
grams. Regarding generalizability, our results are strictly limited to the target group of
novice architects with medium programming experience. We expect that similar results
will also show for seasoned architects, but potentially they can make more use of vague
information in architectural component diagrams. Again, we plan to investigate this in
our future research.

Acknowledgement. This work was partially supported by the Austrian Science Fund
(FWF), Project: P24345-N23.

References

[1] IEEE Standard Glossary of Software Engineering Terminology. Tech. rep. (1990)
[2] Babar, M.A., Bass, L., Gorton, I.: Factors influencing industrial practices of software ar-

chitecture evaluation: An empirical investigation. In: Overhage, S., Ren, X.-M., Reussner,
R., Stafford, J.A. (eds.) QoSA 2007. LNCS, vol. 4880, pp. 90–107. Springer, Heidelberg
(2008)

[3] Biffl, S., Ali Babar, M., Winkler, D.: Impact of experience and team size on the quality of
scenarios for architecture evaluation. In: Proceedings of the 12th International Conference
on Evaluation and Assessment in Software Engineering, EASE 2008, pp. 1–10. British
Computer Society, Swinton (2008)

[4] Boucké, N., Weyns, D., Holvoet, T.: Composition of architectural models: Empirical anal-
ysis and language support. J. Syst. Softw. 83(11), 2108–2127 (2010)

[5] Clements, P., Garlan, D., Bass, L., Stafford, J., Nord, R., Ivers, J., Little, R.: Documenting
Software Architectures: Views and Beyond. Pearson Education (2002)

[6] Cook, T.D., Campbell, D.T.: Quasi-Experimentation: Design and Analysis Issues for Field
Settings. Houghton Mifflin (1979)

[7] Cruz-Lemus, J.A., Genero, M., Manso, M.E., Morasca, S., Piattini, M.: Assessing the under-
standability of uml statechart diagrams with composite states–a family of empirical studies.
Empirical Softw. Engg. 14(6), 685–719 (2009)

[8] Falessi, D., Babar, M.A., Cantone, G., Kruchten, P.: Applying empirical software engineer-
ing to software architecture: challenges and lessons learned. Empirical Softw. Engg. 15(3),
250–276 (2010)

[9] Fenton, N.E., Ohlsson, N.: Quantitative analysis of faults and failures in a complex software
system. IEEE Trans. Softw. Eng. 26(8), 797–814 (2000)

[10] Fernández-Sáez, A.M., Genero, M., Chaudron, M.R.V.: Does the level of detail of uml mod-
els affect the maintainability of source code? In: Kienzle, J. (ed.) MODELS 2011 Work-
shops. LNCS, vol. 7167, pp. 134–148. Springer, Heidelberg (2012)

[11] Ferrari, R., Miller, J.A., Madhavji, N.H.: A controlled experiment to assess the impact of
system architectures on new system requirements. Requir. Eng. 15(2), 215–233 (2010)

[12] Galster, M.: Dependencies, traceability and consistency in software architecture: towards
a view-based perspective. In: Proceedings of the 5th European Conference on Software
Architecture: Companion Volume, ECSA 2011. ACM (2011)

70 T. Haitzer and U. Zdun

[13] Genero, M., Cruz-Lemus, J.A., Caivano, D., Abrahão, S., Insfran, E., Carsı́, J.A.: Assessing
the influence of stereotypes on the comprehension of uml sequence diagrams: A controlled
experiment. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MoDELS
2008. LNCS, vol. 5301, pp. 280–294. Springer, Heidelberg (2008)

[14] Graves, T.L., Karr, A.F., Marron, J.S., Siy, H.: Predicting fault incidence using software
change history. IEEE Trans. Softw. Eng. 26(7), 653–661 (2000)

[15] Hansen, K.M., Jonasson, K., Neukirchen, H.: Controversy corner: An empirical study of
software architectures’ effect on product quality. J. Syst. Softw. 84(7), 1233–1243 (2011)

[16] van Heesch, U., Avgeriou, P.: Naive architecting - understanding the reasoning process
of students: a descriptive survey. In: Babar, M.A., Gorton, I. (eds.) ECSA 2010. LNCS,
vol. 6285, pp. 24–37. Springer, Heidelberg (2010)

[17] van Heesch, U., Avgeriou, P., Zdun, U., Harrison, N.: The supportive effect of patterns
in architecture decision recovery - a controlled experiment. Sci. Comput. Program. 77(5),
551–576 (2012)

[18] van Heesch, U., Avgeriou, P.: Mature architecting - a survey about the reasoning process of
professional architects. In: Proceedings of the 2011 Ninth Working IEEE/IFIP Conference
on Software Architecture, WICSA 2011, pp. 260–269. IEEE Computer Society, Washing-
ton, DC (2011)

[19] Hofmeister, C., Nord, R., Soni, D.: Applied Software Architecture. Addison-Wesley (2000)
[20] ISO: ISO/IEC CD1 42010, Systems and software engineering — Architecture description

(January 2010)
[21] Jansen, A., Bosch, J.: Software architecture as a set of architectural design decisions. In:

Proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture, WICSA
2005, pp. 109–120. IEEE Computer Society, Washington, DC (2005)

[22] Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoaglin, D.C., El Emam, K.,
Rosenberg, J.: Preliminary guidelines for empirical research in software engineering. IEEE
Transactions on Software Engineering 28(8), 721–734 (2002)

[23] Kruchten, P., Lago, P., van Vliet, H.: Building up and reasoning about architectural knowl-
edge. In: Hofmeister, C., Crnkovic, I., Reussner, R. (eds.) QoSA 2006. LNCS, vol. 4214,
pp. 43–58. Springer, Heidelberg (2006)

[24] Malaiya, Y.K., Denton, J.: Module size distribution and defect density. In: Proceedings of
the 11th International Symposium on Software Reliability Engineering, ISSRE 2000, pp.
62–71. IEEE Computer Society, Washington, DC (2000)

[25] Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is stochasti-
cally larger than the other. Annals of Mathematical Statistics 18(1), 50–60 (1947)

[26] Miller, J.A., Ferrari, R., Madhavji, N.H.: An exploratory study of architectural effects on
requirements decisions. J. Syst. Softw. 83(12), 2441–2455 (2010)

[27] Mohagheghi, P., Conradi, R., Killi, O.M., Schwarz, H.: An empirical study of software
reuse vs. defect-density and stability. In: Proceedings of the 26th International Conference
on Software Engineering, ICSE 2004, pp. 282–292. IEEE Computer Society, Washington,
DC (2004)

[28] Otero, M.C., Dolado, J.J.: Evaluation of the comprehension of the dynamic modeling in
uml. Information and Software Technology 46(1), 35–53 (2004)

[29] Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. SIGSOFT
Softw. Eng. Notes 17(4), 40–52 (1992)

[30] Purchase, H.C., Colpoys, L., McGill, M., Carrington, D., Britton, C.: Uml class diagram
syntax: an empirical study of comprehension. In: Proceedings of the 2001 Asia-Pacific
Symposium on Information Visualisation, APVis 2001, vol. 9, pp. 113–120. Australian
Computer Society, Inc., Darlinghurst (2001)

[31] Rozanski, N., Woods, E.: Software Systems Architecture: Working With Stakeholders Us-
ing Viewpoints and Perspectives. Addison-Wesley Professional (2005)

Controlled Experiment on the Supportive Effect 71

[32] Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete samples).
Biometrika 3(52) (1965)

[33] Stevens, S.: On the theory of scales of measurement. Science 103(2684), 677–680 (1946)
[34] Tyree, J., Akerman, A.: Architecture decisions: Demystifying architecture. IEEE Soft-

ware 22, 19–27 (2005)
[35] Umphress, D.A., Hendrix, T.D., Cross II, J.H., Maghsoodloo, S.: Software visualizations

for improving and measuring the comprehensibility of source code. Science of Computer
Programming 60(2), 121–133 (2006)

[36] Wilk, M.B., Gnanadesikan, R.: Probability plotting methods for the analysis of data.
Biometrika 55(1), 1–17 (1968)

[37] Wohlin, C.: Experimentation in Software Engineering: An Introduction. Kluwer Academic
(2000)

[38] Zimmermann, O., Koehler, J., Leymann, F., Polley, R., Schuster, N.: Managing architec-
tural decision models with dependency relations, integrity constraints, and production rules.
Journal of Systems and Software 82(8), 1249–1267 (2009)

K. Drira (Ed.): ECSA 2013, LNCS 7957, pp. 72–88, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Software Architecture Documentation for Developers:
A Survey

Dominik Rost1, Matthias Naab1, Crescencio Lima2,
and Christina von Flach Garcia Chavez2

1 Fraunhofer Institute for Experimental Software Engineering
Kaiserslautern, Germany

{dominik.rost,matthias.naab}@iese.fraunhofer.de
2 Fraunhofer Project Center on Software and Systems Engineering

Software Engineering Laboratory, Department of Computer Science
Federal University of Bahia, Bahia, Brazil
{crescencio,flach}@dcc.ufba.br

Abstract. Software architecture has become an established discipline in indus-
try. Nevertheless, the available documentation of architecture is often not per-
ceived as adequate by developers. As a foundation for the improvement of
methods and tools around architecture documentation, we conducted a survey
with 147 industrial participants, investigating their current problems and wishes
for the future. Participants from different countries in Europe, Asia, North and
South America shared their experiences. This paper presents the results of the
survey. The results confirmed the common belief that architecture documenta-
tion is most frequently outdated and inconsistent and backed it up with data.
Further, developers perceive difficulties with a “one-size-fits-all” architecture
documentation, which does not adequately provide information for their specif-
ic task and context. Developers seek for more interactive ways of working with
architecture documentation that allow finding needed information more easily
with extended navigation and search possibilities.

Keywords: Software architecture, documentation, developers, implementation,
industry, survey.

1 Introduction

1.1 The Practical Problem

Software architecture is accepted as an integral part of software engineering and an
enabler for efficient and effective software development. Increasing system size and
complexity, as well as the employment of multiple, globally distributed development
teams pose new challenges and increase the importance of documenting software
architecture.

Nevertheless, many industrial organizations still do not have any architecture do-
cumentation in place. A main reason for this is that creation of architecture documenta-
tion is inherently cost intensive. As a consequence, their software development suffers
from growing communication and alignment effort, which makes implementation

 Software Architecture Documentation for Developers: A Survey 73

increasingly inefficient, inconsistent, and incompliant to the architecture. During sys-
tem evolution, this leads to architecture erosion [1] which can prevent the achieve-
ment of essential system qualities and leads to a decreasing maintainability. This
holds true even for the initial development of the system [2].

However, we also observe organizations that have architecture documentation but
are not able to leverage the potential that lies in it. The reasons for this are diverse.
For instance, the information provided in architecture documentation is often too
unspecific for a concrete usage or task. Software architects create models and docu-
ments when they design the system and provide these as a comprehensive architecture
documentation to all software developers. Developers then have to understand the
complete architecture documentation to extract the information relevant for the local
scope of their task and adapt it to their context. Another problem is inconsistencies in
content and form, making finding and understanding relevant architecture information
a challenge. Very often, the effectiveness of architecture documentation decreases
over time, because it is not kept up to date. The cost-benefit ratio of such architecture
documentation may found the decision to stop investing in architecture in general.

These challenges should be addressed by applied research on architecture docu-
mentation. Enhanced methods and tools shall support architects in creating and
maintaining architecture documentation that allows highly efficient and effective
implementation for software developers. To collect empirical facts for backing up
our project experiences and as a foundation for improving methods and tools, we
conducted a survey with developers in industry and asked them about their work with
architecture documentation. In total, 147 developers from different countries in Eu-
rope, Asia, North and South America participated, working in organizations from two
to more than 100,000 employees. In this paper, we report on the creation and results
of the study and discuss our main findings.

1.2 This Study

In this study, we focused on software architecture documentation for developers to
complement our experiences from industry projects with the views of software devel-
opers. By this, we aim to create a basis for future improvement of methods and tools
for architecture documentation, to make implementation more efficient and effective.
So, we defined the overall goal of the study according to the GQM template [3] as:

“Characterizing the current situation and improvement potential of software
architecture documentation with respect to architectural information and its repre-
sentation from the perspective of developers in industry as the basis for developing
practically applicable methods and tools to make implementation work more efficient
and effective.”

There are some aspects that need to be emphasized in this goal statement: Our main
focus is software developers. While methods and tools might target architects in the
creation of documentation, in this study we ask developers about their view as users
of the documentation. A second aspect is that we separate two dimensions: (1) archi-
tecture information vs. representation and (2) characterization of the current situation
vs. requirements for the future. The combination of both dimensions gives us four

74 D. Rost et al.

areas in which we ask developers about their views. And the last aspect is that this
study constitutes the basis for the improvement of methods and tools for advanced
architecture documentation that shall help developers to fulfill their
implementation tasks in less time, with high quality results.

From the goal statement following the two dimensions, we derived four research
questions that are the source of the structure and content of the survey:

• RQ1: Which architectural information do developers currently receive for imple-
mentation activities and which problems do they perceive?

• RQ2: Which representation of architectural information do developers currently
receive for implementation activities and which problems do they perceive?

• RQ3: Which architectural information would developers like to get for their
implementation activities?

• RQ4: Which representation of architectural information would developers like to
get for their implementation activities?

1.3 Related Studies

In 2003, Lethbridge, Singer, and Forward published the results of three studies on
how software engineers use documentation [4]. Unlike the work presented in this
paper, their studies were not focused on architecture documentation only. Most of
their main findings confirm our experiences in industry projects. They state: “docu-
mentation of all types is frequently out of date”, “much mandated documentation is
so time consuming to create that its cost can outweigh its benefits”, and “A consider-
able fraction of documentation is untrustworthy”. We were interested in whether
there has been any improvement in the past ten years concerning these factors. To
investigate this, we asked questions like “How often is architecture documentation up
to date?” or “How much architecture documentation do you have typically available
in development projects?” and specifically replicated the question of “in your expe-
rience, when changes are made to a software system, how long does it take for the
architecture documentation to be updated to reflect the changes?”. It is fair to say
that the problems from one decade ago persist to a large extent until today.

In 2006, Koning and van Vliet reported on their study of four architecture descrip-
tions from industry and their distances to the IEEE Standard 1471 in [5]. Specifically,
they studied which parts of the documents were relevant to which stakeholder con-
cern. They stated that “Our research makes it very understandable that readers com-
plain about too much information.” as well as “Almost none of the stakeholders is
interested in the full report.” This supports our assumption that unspecific architec-
ture is a factor for inefficient and ineffective implementation activities. We included
questions in our survey concerning the amount and specificity of architecture
documentation provided to developers, like “Please rate your agreement to the
statement: “The architecture documentation I work with contains a lot of unnecessary
(overhead) information.””.

In 2012, Malavolta et al. reported results on their study on the industrial usage
of architecture description languages in [6]. Main findings of their study include
“Organizations (even in domains involving critical systems) prefer semi-formal and
generic ALs than formal- and domain-specific ones like ADLs” and “[…] Code

 Software Architecture Documentation for Developers: A Survey 75

generation is not often required. Link to requirements (elicitation and specification) is
important as well”. We included questions about the usage of formal ADLs in our
survey, as well as about developers’ wishes concerning the features of architecture
documentation. Besides this, as we found it quite compelling, we adopted to a large
extent their paper’s structure.

The remainder of this paper is structured as follows: In Section 2 we introduce
fundamental work on architecture documentation. In Section 3 we describe our re-
search methodology. In Section 4, we describe the participants of our study. In Sec-
tion 4.2 we present the results and our main findings. In Section 5 the main findings
are discussed together with threats to the validity of the study and conclusions.

2 Architecture Documentation

Making software architecture explicit and persistent is a key factor of utilizing the
potential that it offers. This is reflected by the fact that almost all comprehensive ap-
proaches for software architecture also cover documentation. Examples are [7] or [8].
There is even a standard in place for the description of software architectures [9].

Architecture views have been introduced to address the need to deal with the com-
plexity of software systems and are still one of the central concepts of the discipline.
They help to separate different concerns of the software systems according to the
needs of different stakeholders. Several different view sets have been presented since
then and some of the most known and applied ones include Kruchten’s 4+1 View
model [10], the Siemens Four Views model [11], or the SEI’s Views and Beyond
approach [12]. However, the usage of different architecture view types is not suffi-
cient anymore to handle the complexity of modern software systems and to describe
them in an adequate form for different stakeholders. The amount of information can
be so high that efficient working is still hampered, making studies as ours necessary.

For description languages, different ways are used and have been proposed in prac-
tice and research. This reaches from simple whiteboard sketches to formal architec-
ture description languages. Thereby, the degree of formality is the main varying
factor. In research, high levels of formality are typically valued in architecture de-
scription languages, as they allow sophisticated analyses and automated processing of
information. Examples are ACME [13] or AADL [14]. In contrast, practice values
fast creation and understandability, as it is mainly used as a vehicle for information
exchange. The predominant description language for architectures is UML [15]. Often
UML diagrams are complemented with descriptions in natural language. Accordingly,
also the format, in which architecture documentation is distributed, varies. This in-
cludes electronic documents and presentation files, webpages, but also model files,
created with modeling tools like Sparx System’s Enterprise Architect [16].

Recent research brought up the relatively new discipline of architecture knowledge
management to explicate and persist architecture information. Farenhorst and de Boer
published a state of the art survey on this topic [17] and observed four main directions
of architecture knowledge management: 1. Sharing architecture knowledge, to make
architecture information efficiently available to stakeholders, like in [18] or [19]. 2.
Aligning architecting with requirements engineering, to create a between architecture

76 D. Rost et al.

information and requirements, like in [20]. 3. Towards a body of knowledge, for the
creation of a comprehensive encyclopedia of architecture info, like in [21]. 4. Intelli-
gent support for architecting, for efficient working with architecture and its documen-
tation, like in [22]. However, architecture knowledge management methods are
currently not applied to a large extent in practice.

3 Research Methodology

For our research, we distinguish the following phases: planning the survey, designing
and conducting the survey, and analyzing the data.

3.1 Planning the Survey

We defined the overall goal of the survey the four research questions as introduced in
Section 1.2. Based on these, we planned and designed the survey and derived the
concrete survey questions for the participants.

The target group for the survey was software developers in industry. Thereby it
was not important whether they actually had software architecture documentation
available in their implementation work, because asking them about their wishes for
the future was possible in either way. To invite participants we decided to use e-mail,
however we did not want to just contact random software companies. To increase the
chances for a high response rate, we compiled a list of fitting past and current cus-
tomers and project partners from industry. As we typically have only one or two con-
tact persons, we contacted them directly and asked to distribute the information about
the survey internally to software developers in their organization with the request to
participate. In this way we contacted 92 IT organizations from Europe, Asia, North
and South America, ranging from two to around 130,000 employees. Additionally
BITKOM1, the German Association for Information Technology, Telecommunica-
tions and New Media and the Software Foren Leipzig2 assisted by distributing the
information via their mailing lists.

3.2 Designing and Conducting the Survey

The 4 research questions (see Section 1.2) provided the framework for the derivation
of our survey questions. Fig. 1 depicts the resulting structure of survey questions as a
matrix. The key distinctions are between architectural information and its representa-
tion and the distinction between the as-is situation for the participant and wishes for a
to-be situation related to architecture documentation. Additionally, we asked for in-
formation about the participants’ background (e.g. on their company, see Section 4.1).
In Fig. 2, the flow of survey questions is presented. It starts with a question about the
preferred language for conducting the survey. As this research was done in a German-
Brazilian cooperation with many participants from Germany and Brazil expected, we
offered the languages German, Portuguese and in addition, English.

1
 http://www.bitkom.org

2
 http://www.softwareforen.de

 Software Architecture Documentation for Developers: A Survey 77

Fig. 1. Structure of survey questions and relationship to research questions

Then, we asked about the availability of architecture documentation for the partici-
pants and their tasks as a developer. This question had an impact on the further flow
of survey questions: Only if a participant indicated that architecture documentation
was available, the questions about the as-is situation were asked, otherwise they were
not visible for the participant.

Fig. 2. Flow of questions in the survey. Grey blocks are only asked in case of architecture
documentation available. The circled number indicates the number of questions.

The main part of the survey were three pages of questions, each visually separated
into a set for the as-is situation and a set for the to-be situation: First, general ques-
tions about architecture documentation were asked, not differentiating between the
aspects of information and their representation. Second, questions with a focus on
architectural information in architecture documentation were asked. Third, questions
about the representation of architecture information were asked. Finally, a set of ques-
tions about the participant’s background were asked (cf. Section 4.1). We had two
types of questions: First, questions with a fixed set of answers, partially single and
partially multi selection ones. Second, there were questions with a free text answer.

We created an online questionnaire by using the Enterprise Feedback Suite by
questback3, containing 42 questions. We conducted the survey in the period from
December 1st, 2012 to January 31st, 2013.

3.3 Analyzing the Data

Only a subset of the participants starting the survey actually finished it. We consi-
dered the survey as finished when the participants clicked the submit button. For the
analysis and evaluation, when we talk about participants we refer to the ones having
finished the survey.

A total of 147 participants (N=147) have been included in the data analysis. Never-
theless, we did not have a complete data set for each question, as not all questions
were mandatory. That is, for each question the sample varies.

3

 http://www.questback.com/solutions/market-research/

Information

Representation

as-is (current) to-be (future)

Architecture

Participant‘s
Context

RQ1

RQ2 RQ4

RQ3

Preferred
language

AD
available

General questions

as-is

to-be

8

2

Questions about
architectural information

as-is

to-be

5

3

Questions about
architecture representation

as-is

to-be

7

2

Questions about
participant‘s background

10

1

1

78 D. Rost et al.

As described, we asked about the availability of architecture documentation and ex-
cluded respective questions if there was none. Not all participants had architecture
documentation available for their tasks. Thus, for the questions about current architec-
ture documentation we have only answers of a subset of the participants (N=109).

For questions with fixed answers we counted the results in the analysis. For the
evaluation of free text results, we grouped the answers into coherent categories with
an appropriate name to cover the full range of answers. Then we additionally aligned
these answer categories across questions where it was meaningful.

Due to space limitations, we did not present all questions and answers in this
paper4.

4 Results

4.1 Overview of Survey Participants and Their Context

All participants work in industry and are somehow related to software development.
Participants are affiliated to companies in eight different countries, mainly in Germa-
ny (59%), Brazil (23%), and Finland (13%). Further participants come from France,
Japan, Sweden, Switzerland, and the United States.

The survey aims at the development perspective on software architecture. Never-
theless, many participants with a slightly different focus in their own position
contributed to the survey. Fig. 3 depicts the distribution of participants’ occupational
positions. The largest group is developers (46%), followed by architects (23%) and
managers (20%). The participant’s position was asked as free text, thus we
consolidated the answers into the depicted categories.

Fig. 3. Current position of the participants in their companies

In order to judge the professional experience of the participants we asked for the
number of years they already are in their or a similar position. The answers, grouped
from an open question, were the following: 0 to 3 years – 27%, 4 to 7 years – 34%, 8
to 11 years – 17%, 12 to 15 years – 10%, more than 15 years – 12%.

In order to characterize the companies the participants are affiliated with, we asked
for the industry sectors they work in (see Fig. 4). Most participants work for compa-
nies that have software development for multiple industries (27%) as their main busi-
ness. The other companies are developing software for customers of a dedicated
sector or for their own business units. Other strong sectors in our survey are building
construction management (10%), automotive (8%), energy (8%), and finance (8%).
While the survey in general was anonymous, we asked the participants at the end

4
 We provide the complete data set upon request.

0% 20% 40% 60% 80% 100%

N=137

Developer Architect Manager Consultant Others

 Software Architecture Documentation for Developers: A Survey 79

Fig. 4. Sectors of the participants’ companies

whether they agree with publishing their company’s name in the study. Participating
companies included among others: Accenture, Deloitte Consulting GmbH, Denso,
KSB, msg systems AG, Murex, SAP AG, Software AG, Talend, T-Systems, Tekla.

There are significant differences, in the participants’ companies in the number of
people contributing to software development. 41% reported less than 100 people in
software development, 41% reported 100 to 1000, 11% reported 1000 to 5000, and
7% reported more than 5000 people in software development.

The majority (50%) of the participants develops software according to a combina-
tion of agile and conventional development processes. 33% work completely with
agile development processes, 7% work with purely conventional development
processes. 10% do not use a structured development process at all.

Finally, we asked the participants to rate the size of the product they are contribut-
ing to. 22% contribute to a very large product, 32% contribute to a large product. 34%
contribute to a medium-size product, 11% contribute to a small product and 1% to a
very small product. How the product size was estimated was left to the participants
for simplicity of answering the question.

4.2 Main Findings

This section describes the results of the survey. Please note that the results of the gen-
eral questions are consistently integrated into this structure. We identified 5 main
findings, which are summarized below and discussed in Section 5.

1. Architecture documentation is often not up-to-date and thus strongly lacks utility.
In particular, architecture documentation is not kept up-to-date with changes in
requirements or changes in the source code.

2. Architecture documentation is often provided in a “one-size-fits-all” manner. Con-
sequently, it does not provide the right information for the specific stakeholders
and their current tasks. Developers in particular have strongly varying needs in in-
formation and the level of detail, which can only be covered with more specific
architecture documentation.

3. Architecture documentation is often inconsistent. Inconsistency comes in different
forms like inconsistent structure in and across documents, inconsistent notations, or
contradicting information. A higher level of consistency is desirable for developers
in order to easier understand the architecture and to come up with a higher quality
implementation.

0

5

10

15

20

25

30

35

40

O
cc

ur
re

nc
es

 (N
=1

42
)

80 D. Rost et al.

4. Architecture documentation does often not provide sufficient navigation support to
easily find the right information. Developers wish a more interactive way of work-
ing with architecture documentation: Better navigation (along the hierarchical de-
composition and general traceability to related aspects) and powerful search
functionality (“Google-like” was often mentioned).

5. Aggregating all the answers to the question “What architecture information do you
need for best support of your development tasks?” gives in our opinion a very
complete and mature picture what information architecture documentation should
contain. This is a helpful confirmation that what we see as architecturally relevant
is also demanded by developers. Nevertheless, it has to be taken into account that
architecture documentation should be strongly tailored to the concrete usage.

4.3 Architectural Information: The as-is Situation

In the general questions, we asked “What do you consider as the main problems with
the architecture documentation you work with?” and received with respect to architec-
tural information the following most frequent questions:

• Outdated architecture documentation (25 [occurrences])
• Inadequate level of granularity (19)
• Implementation not in sync with architecture any more (17)
• Not specific for stakeholders and concrete situation (10)

We asked about the amount of architecture documentation available and its up-to-
dateness. The results are depicted in Fig. 5. This also confirms that architecture do-
cumentation is often not up-to-date and if at all updated with a strong delay. This
supports the findings reported in [4].

Fig. 5. Amount and up-to-dateness of architecture documentation

Fig. 6. Adequacy of amount of architecture documentation provided

0

10

20

30

40

50

60

< 10 < 100 < 500 < 1000 > 1000

%

Pages

How much architecture documentation do you have
typically available in development projects? (N=105)

0

5

10

15

20

25

30

35

40

Always Very OftenSometimes Rarely Never

%

How often is architecture documentation up to date?
(N=106)

0

5

10

15

20

25

30

Few days Few weeks Few
months

Rarely Never

%

When changes are made to a software system, how
long does it take for the architecture documentation

to be updated? (N=105)

0

10

20

30

40

50

Too little Rather too
little

About
right

Rather too
much

Too much

%

How would you rate the amount of provided
architecture information? (N=106)

0
5

10
15
20
25
30
35
40
45

Strongly
agree

Agree
somewhat

Undecided Disagree
somewhat

Strongly
disagree

%

The architecture documentation I work with contains
a lot of unnecessary (overhead) information. (N=107)

 Software Architecture Documentation for Developers: A Survey 81

We asked the participants to rate their perceived adequacy of the amount of archi-
tecture information provided (see Fig. 6). A tendency can be observed that there is
rather too little architectural information available. Some participants agree that there
is also necessary information but most participants rather see no unnecessary informa-
tion provided. Keeping in mind that many participants have too little architecture
information, it is no surprise that they do not see much overhead. When architecture
documentation becomes extensive, the need for better orientation and specific
tailoring arises.

4.4 Representation of Architectural Information: The as-is Situation

In the general questions, we asked “What do you consider as the main problems with
the architecture documentation you work with?” and received with respect to
representation of architectural information the following most frequent questions:

• Inconsistencies and missing structure (15)
• Information scattered across documents (8)
• Missing traceability to other artifacts (5)

In order to get some more insights into the problems with the representation of archi-
tecture information, we asked the question described in Table 1. The answers re-
ceived, confirm and detail the answers to the general question described before. We
summarized further, non-categorized answers as “other”.

Table 1. What problems do you see in the way how architecture information is described?

Answer Category Occurrences % (N=42)
Missing common formats and structures 6 14,3
Targets too many groups and thus not specific 5 11,9
Unnecessary information 5 11,9
Wrong or varying degree of abstraction 4 9,5
Missing traceability to external information 3 7,1
Missing details in the written description 3 7,1
Hard to consistently update 3 7,1
Missing information about business logic, focus only on infrastructure 2 4,8
Other 6 14,3

We asked about the main formats in which architecture documentation is provided.
Architecture documentation is mostly provided as electronic documents, like Word or
pdf (87%), model files (50%), and web pages (45%).

Fig. 7. Notation of architecture documentation and scattering across documents

0
10
20
30
40
50
60
70
80
90

100

Natural
language

UML
diagrams

Formal ADLs Other

%

How is architecture information described? (N=109)

0

10

20

30

40

50

60

Always Very oftenSometimes Rarely Never

%

How often is architecture information scattered
across different documents? (N=105)

82 D. Rost et al.

The two key notations for the description of software architecture are natural lan-
guage and UML (see Fig. 7). Formal ADLs are used very rarely. This confirms the
findings of [6]. Mentioned under other, informal diagrams in Visio or Powerpoint are
also used. Another result is that architecture information is typically not consolidated
in a single source of information but scattered across documents (see Fig. 7).

Fig. 8. Perceived adequacy of representation of architecture information

We asked the participants how they perceive the support of their architecture
documentation to find specific information and to conduct their development tasks.
Fig. 8 depicts the results, showing that there is a tendency that the participants perce-
ive the representation as adequate. To refine the insights about problems finding the
needed architecture information, we asked the question described in Table 2.

Table 2. What problems do you see in terms of finding the architecture information you need?

Answer Category Occurrences % (N=56)
Missing clarity in structure 13 23,2
Information scattered across documents 11 19,6
Missing strong search functionality 10 17,9
Missing traceability (inside and to other artifacts) 8 14,3
Documents not up-to-date 8 14,3
Inconsistent terminology and notation 5 8,9
Too much information 4 7,1
Missing information 4 7,1
Other 6 10,7

4.5 Architectural Information: The to-be Situation

In the general questions, we asked ”What are your wishes in general for the future of
architecture documentation?” and received with respect to architectural information
the following most frequent questions:

• Up-to-date (19)
• In sync with implementation (18)
• Specific for stakeholders, concerns, tasks and contexts (14)
• Providing a system overview and the big picture (11)

For a deeper insight we asked the participants more specifically “What architecture
information do you need for best support of your development tasks?” From the an-
swers it becomes evident, that it is most important to developers to get an overall
understanding of the complete system, as well as detailed information on components
in their scope together with interfaces and relationships to other components. Table 3
shows an overview.

0
5

10
15
20
25
30
35
40
45

Strongly
agree

Agree
somewhat

Undecided Disagree
somewhat

Strongly
disagree

%

The documentation structure supports me to easily
find the architecture information I need. (N=104)

0

10

20

30

40

50

60

Strongly
agree

Agree
somewhat

Undecided Disagree
somewhat

Strongly
disagree

%

How architecture information is described is adequate
to support me in my development tasks. (N=103)

 Software Architecture Documentation for Developers: A Survey 83

Table 3. What arch. information do you need for best support of your development tasks?

Answer Category Occurrences % (N=103)
Components, interfaces, relationships, decomposition 44 42,7
Big picture 20 19,4
Mapping to implementation 12 11,7
Functional modularization 11 10,7
Data model and data flow 11 10,7
Deployment and deployment alternatives 9 8,7
Patterns and best practices 9 8,7
Project context 9 8,7
Technologies, frameworks and standards 9 8,7
(Discarded) Architecture decisions and rationale 8 7,8
Architecture drivers 8 7,8
Behavior 7 6,8
Other 17 16,5

Additionally, we asked the participants how much architecture documentation they
perceive as optimal. This question is a bit provocative and as expected, the most fre-
quent answer was: “It depends”. But mainly it depends on the target group and task,
but also on the system and context. However the answers also suggest that a reduction
of the information to the indispensable amount is desirable. Table 4 shows the results.

Table 4. How much architecture documentation is optimal?

Answer Category Occurrences % (N=83)
Depends on target group and task 16 19,3
Depends on project / system 15 18,1
Enough to provide an overview of the system and context 9 10,8
As minimal as possible 9 10,8
Other 42 50,6

4.6 Representation of Architectural Information: The to-be Situation

In the general questions, we asked the question ”What are your wishes in general for
the future of architecture documentation?” and received with respect to representation
of architectural information the following most frequent questions:

• Easy creation, handling, updating, and maintenance (20)
• Connected and integrated information, artifacts and tools (16)
• Readable and understandable (12)
• Consistent and systematically structured and described (11)

For a deeper insight, we asked the participants more specifically “In what format
should architecture documentation be provided in the future?”. Table 5 shows an
overview. It can be noted that webpages, electronic documents and diagrams are the
predominant wishes. UML also plays a significant role, formal ADLs do not. Addi-
tionally, participants frequently voted for standard formats, for which no specific
(reader) tool has to be installed.

We asked “What means should architecture documentation provide to help you in
finding the information you need?” It can be observed that developers wish for inter-
active ways of working with architecture documentation, where it is possible to search
information in different ways and navigate through hierarchical structures and related

84 D. Rost et al.

Table 5. In what format should architecture documentation be provided in the future?

Answer Category Occurrences % (N=117)
Webpages 25 21,4
Electronic documents 24 20,5
Diagrams 23 19,7
UML 19 16,2
Natural language 17 14,5
Standard formats 11 9,4
Architecture models 10 8,5
Wikis 9 7,7
Other 44 37,6

Table 6. What means should architecture documentation provide to help you in finding the
information you need?

Answer Category Occurrences % (N=84)
Interactive search functionality 25 29,8
Links and navigation 24 28,6
Traces to artifacts 15 17,9
Directories 10 11,9
Clear structure 9 10,7
Mapping to implementation 8 9,5
Other 28 33,3

elements. Also traces to other artifacts, like requirements documents have been rated
as important. Table 6 shows an overview of the result data.

Finally we asked how architecture should be described to make it more useful for
the developer’s implementation task. Table 7 shows the results. It becomes evident,
that clarity and structure are of highest importance, in diagrams and language.

Table 7. How should arch. information be described to make it more useful for your dev. tasks?

Answer Category Occurrences % (N=71)
Self-explaining, simple diagrams 15 21,1
Clear, concise, uniform, consistent 10 14,1
Clear terminology and language 6 8,5
Other 32 45,1

5 Discussion

In the following sections we discuss the survey result as well as threats to the validity
of the study and present our conclusions and next steps.

5.1 Survey Results

With this study we wanted to confirm our experiences from many industrial projects
and to lay the foundation for innovative and practically applicable architecture docu-
mentation methods for improved implementation. From this perspective we revisit our
main research questions and the responses we received from the participants.

Concerning architectural information, it became evident that one of the partici-
pants’ main concerns is up-to-dateness. Architecture documentation suffers signifi-
cantly from outdated in the majority of cases, making it less relevant and useful for

 Software Architecture Documentation for Developers: A Survey 85

developers. To improve this situation, the maintenance of architecture documentation
has to be simplified and be made more efficient. Centralization of architecture infor-
mation is the most feasible way we see to achieve this. But this requires powerful
tooling that allows efficient and automated creation of architecture documentation
that is tailored to the needs of individual developers. Such specific architecture infor-
mation was another of the main aspects, mentioned by the participants. General and
all-encompassing architecture documentation seems not adequate anymore to face the
size and complexity of modern software systems and development situations. Devel-
opers ask for architecture information specific for their scope, task, and context. Ana-
logously to the aspect mentioned before, centralization of architecture information
and automatic generation may be feasible strategies to address this. We outlined a
first idea of such an approach in [23]. In terms of needed architectural information,
developers mainly ask for a system overview, providing the big picture of the system
and its basic principles, complemented with detailed information within their scope,
like components, interfaces, relationships, data, patterns, deployment, technologies,
architectural drivers, etc. However, it is of major importance to reduce the amount of
overhead information to the necessary minimum, but without leaving needed aspects
out. In general we can say that the closer to the scope of the developer, the more de-
tails are needed, and analogously, the more details need to be left out, the farer away
from the scope. And finally, a clear, easy to understand and to follow connection be-
tween architecture information and the implementation is a major concern of develop-
ers. While with model driven development and code generation techniques, such a
connection can be established for detailed design, for architecture in general this is
currently not possible. Here we see the potential for further research and development
of advanced tool support.

Concerning the representation of architecture information, consistency and uni-
form structure were two of the main concerns of developers. More effort might be
needed to establish internal standards and a common terminology within organiza-
tions. But also extended automation, for example with generation techniques might
contribute to achieve this goal. This fits also quite well to the need for a single source
of information, that developers mentioned repeatedly. Besides this, developers pre-
dominantly asked for interactive documentation that allows easy navigation and
searching. We understand that static architecture documents as they are common are
not adequate to serve the needs of developers. Future research needs to concentrate on
such forms of documentation. And finally, readability and understandability need to
be increased, in which we see another argument for standardization and clarity
through reduction of information.

5.2 Validity

In this section, we describe threats to validity and limitations of the survey.

• Not all participants finished the study and submitted their results. As described in
Section 4.3, we found that the answers of the participants having not finished con-
siderable diverged from the participants having finished. However, we decided not
to include unfinished surveys as they are not confirmed by the participants.

86 D. Rost et al.

• The survey included questions that are not mandatory. Thus, not all participants
filled in all questions. We always took the number of answers given as the
reference and typically indicated how many results we got.

• We did not restrict the number of participants in a single company. This leads to
the effect that some companies are represented by a single participant while others
are represented by multiple participants. However, contexts and projects in larger
companies are so different that we see it as valuable to get multiple contributions.

• Our survey is mainly targeted at developers, as indicated in the research question.
Although we clearly put this in the survey invitation, several participants indicated
that their main role is rather architect or manager. However, we nevertheless see
this as valuable input and assume that these participants took a developer perspec-
tive (currently doing actual implementation work, having done it earlier, or
supervising people that do implementation work).

• The questions we raised in the survey are not fully disjoint. So we received
partially similar answers to our questions. However, this confirmed the general
tendencies and top results fairly well.

• For free text questions, we derived categories from the participants’ answers for
aggregation. These categories might depend on our background. However, we see
a good match of these categories and typical topics in literature.

• The study is related to further own research [23] Although we tried to maintain
neutrality, we might have been biased in survey design and analysis.

5.3 Conclusions

We conducted an international study on the as-is and to-be situation of software archi-
tecture documentation from the perspective of developers. We are happy having
received contributions from as much as 147 participants from industry to this research.

The study confirmed that software architecture is a very important topic in indus-
trial software development and that many companies are successfully engaged in it.
Aggregating the answers what practitioners wish as architectural support for their
development activities is an impressing list, covering nearly the whole literature top-
ics on software architecture documentation. We identified a lot of interesting
improvement opportunities how software architecture can become even more helpful.

Our main findings are that architecture documentation has to become up-to-date
and consistent in order to better serve the developers’ needs. Additionally, developers
demand for more specific architecture documentation, targeted at their concrete con-
text and tasks. Such an architecture documentation should be complemented by
improved navigation and search possibilities.

As researchers of Fraunhofer, we strongly aim at improving the industrial applica-
bility of software architecture methods and tools. We conducted this survey to com-
plement our own experiences from projects and discussions with practitioners. The
survey confirms that architects need more tool support for the creation of adequate
architecture documentation. For the near future we plan to extend tools and increase
the level of automation as next steps towards the identified improvement potentials.

 Software Architecture Documentation for Developers: A Survey 87

Acknowledgements. This survey has been conducted in the context of the Fraunhofer
Germany-Brazil cooperation between Fraunhofer IESE and UFBA. We would like to
thank all the participants that contributed by answering our questions. Additionally,
we would like to thank our colleagues, business partners, and networks (Bitkom,
Softwareforen Leipzig) who supported us in inviting and reaching so many partici-
pants for the study. We thank our colleagues Jessica Jung for her help on the
empirical aspects and Jens Knodel for reviewing the paper.

References

1. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. ACM
SIGSOFT Software Engineering Notes 17, 40–52 (1992)

2. Knodel, J.: Sustainable Structures in Software Implementations by Live Compliance
Checking. Fraunhofer Verlag (2011)

3. Basili, V.R., Rombach, H.D.: The TAME project: towards improvement-oriented software
environments. IEEE Transactions on Software Engineering 14, 758–773 (1988)

4. Lethbridge, T.C., Singer, J., Forward, A.: How software engineers use documentation: the
state of the practice. IEEE Software 20, 35–39 (2003)

5. Koning, H., van Vliet, H.: Real-life IT architecture design reports and their relation to
IEEE Std 1471 stakeholders and concerns. Automated Software Engg. 13, 201–223 (2006)

6. Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., Tang, A.: What Industry Needs from
Architectural Languages: A Survey (2012),
http://www.computer.org/csdl/trans/
ts/preprint/tts2012990044-abs.html

7. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley
Professional (1998)

8. Rozanski, N., Woods, E.: Software Systems Architecture: Working With Stakeholders
Using Viewpoints and Perspectives. Addison-Wesley Professional (2005)

9. International Organization of Standardization: ISO/IEC/IEEE 42010:2011 - Systems and
software engineering – Architecture description (2011)

10. Kruchten, P.: The 4+1 View Model of Architecture. IEEE Software 12, 42–50 (1995)
11. Hofmeister, C., Nord, R., Soni, D.: Applied Software Architecture. Addison-Wesley Pro-

fessional (1999)
12. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Merson, P., Nord, R.,

Stafford, J.: Documenting Software Architectures: Views and Beyond. Addison-Wesley
Professional (2002)

13. Garlan, D., Monroe, R.T., Wile, D.: Acme: architectural description of component-based
systems. In: Foundations of Component-based Systems, pp. 47–67 (2000)

14. Feiler, P., Gluch, D., Hudak, J.: The Architecture Analysis & Design Language (AADL):
An Introduction (2006)

15. OMG: UML Superstructure Specification 2.4.1 (2011)
16. Sparx Systems: Enterprise Architect, http://www.sparxsystems.com/
17. Farenhorst, R., De Boer, R.C.: Knowledge Management in Software Architecture: State of

the Art. In: Ali Babar, M., Dingsøyr, T., Lago, P., van Vliet, H. (eds.) Software Architec-
ture Knowledge Management, pp. 21–38. Springer, Heidelberg (2009)

18. Farenhorst, R., Izaks, R., Lago, P., van Vliet, H.: A Just-In-Time Architectural Knowledge
Sharing Portal. In: Seventh Working IEEE/IFIP Conference on Software Architecture
(WICSA 2008), pp. 125–134. IEEE (2008)

88 D. Rost et al.

19. Babar, M.A., Gorton, I.: A Tool for Managing Software Architecture Knowledge.
In: SHARK/ADI 2007: ICSE Workshops 2007 Second Workshop on Sharing and Reusing
Architectural Knowledge - Architecture, Rationale, and Design Intent, p. 11. IEEE (2007)

20. Pohl, K., Sikora, E.: COSMOD-RE: Supporting the Co-Design of Requirements and Arc-
hitectural Artifacts. In: 15th IEEE International Requirements Engineering Conference
(RE 2007), pp. 258–261. IEEE (2007)

21. Babu, T.L., Seetha Ramaiah, M., Prabhakar, T.V., Rambabu, D.: ArchVoc–Towards an
Ontology for Software Architecture. In: Second Workshop on Sharing and Reusing Archi-
tectural Knowledge - Architecture, Rationale, and Design Intent, SHARK/ADI 2007: ICSE
Workshops 2007, p. 5. IEEE (2007)

22. Tang, A., Liang, P., van Vliet, H.: Software Architecture Documentation: The
Road Ahead. In: 2011 Ninth Working IEEE/IFIP Conference on Software Architecture,
pp. 252–255. IEEE (2011)

23. Rost, D.: Generation of task-specific architecture documentation for developers. In: Pro-
ceedings of the 17th International Doctoral Symposium on Components and Architecture -
WCOP 2012, p. 1. ACM Press, New York (2012)

Analysis Support for TADL2 Timing Constraints
on EAST-ADL Models

Arda Goknil1, Jagadish Suryadevara2, Marie-Agnès Peraldi-Frati1,
and Frédéric Mallet1

1 AOSTE Team, UNS-I3S-INRIA, Sophia-Antipolis, France
2 Formal Modeling and Analysis Group, Mälardalen University, Västerås, Sweden

arda.goknil@inria.fr, jagadish.suryadevara@mdh.se,
{map,frederic.mallet}@unice.fr

Abstract. It is critical to analyze characteristics of real-time embedded systems,
such as timing behavior, early in the development. In the automotive domain,
EAST-ADL is a concrete example of the model-based approach for the architec-
tural modeling of real-time systems. The Timing Augmented Description Lan-
guage v2 (TADL2) allows for the specification of timing constraints on top of
EAST-ADL models. In this paper we propose a formal validation & verification
methodology for timing behaviors given with TADL2. The formal semantics of
the timing constraints is given as a mapping to the Clock Constraint Specifica-
tion Language (CCSL), a formal language that implements the MARTE Time
Model. Based on such a mapping, the validation is carried out by the simula-
tion of TADL2 specifications. The simulation allows for a rapid prototyping of
TADL2 specifications. The verification is performed based on a TADL2 map-
ping to timed automata modeling using the UPPAAL model-checker. The whole
process is illustrated on a Brake-By-Wire application.

1 Introduction

Non-Functional properties and time are central concerns in real-time embedded sys-
tems. The increasing complexity of automotive systems requires the early identification
of specification problems and the use of common/standard formalisms to cover all as-
pects of the systems. In the automotive domain, EAST-ADL [9] is a concrete example
of the model-based approach for the architectural modeling of safety-critical embedded
systems. EAST-ADL has been developed to provide a standard architecture description
language aligned with Autosar [10]. The new release of EAST-ADL (v2) has recently
adopted the timing model proposed in the Timing Augmented Description Language
(TADL) [19]. TADL allows for expressing and composing basic timing constraints such
as repetition rates, end-to-end delays, and synchronization constraints.

The TIMMO-2-USE project [2] goes one step beyond TADL by recently introducing
TADL2 [19]. The time model of TADL2 specializes the time model of the UML Pro-
file for MARTE (Modeling and Analysis of Real-Time and Embedded systems) [18].
It elaborates on TADL and adds constructs borrowed from the MARTE companion
language, the Clock Constraint Specification Language (CCSL) [8], a formal language
dedicated to the specification of temporal and causality constraints. In particular, it adds

K. Drira (Ed.): ECSA 2013, LNCS 7957, pp. 89–105, 2013.
© Springer-Verlag Berlin Heidelberg 2013

90 A. Goknil et al.

new modelling capabilities such as the explicit notion of time base and the ability to use
symbolic timing expressions in timing constraints.

In this paper, we propose a formal validation and verification methodology for tim-
ing constraints specified using TADL2. The validation is carried out by the simula-
tion of TADL2 specifications, based on a mapping of TADL2 to CCSL. With such
a mapping the simulation of TADL2 timing constraints becomes possible through
TIMESQUARE [11], the framework dedicated to the analysis of CCSL specifications.
This mapping gives a semantic reference interpretation for TADL2 constraints and the
simulation with CCSL allows for a rapid prototyping of TADL2 specifications. Com-
plementary to the simulation, the formal verification is performed by model checking,
based on a mapping of TADL2 to timed automata (TA) for using the UPPAAL model-
checker [17]. We use a Brake-By-Wire (BBW) application as a running example to
illustrate and compare the results of those mappings.

The remainder of the paper is organized as follows. Section 2 introduces the BBW
system used as a running example. Section 3 gives a brief overview of TADL2. Section
4 describes the mapping between TADL2 and CCSL and the analysis results provided
by TIMESQUARE. In Section 5, we present the mapping between TADL2 and TA as
well as the verification results using the UPPAAL model-checker. Section 6 discusses
the benefits of using both the analysis approaches together. In Section 7, we discuss the
related work. We conclude the paper in Section 8.

2 Running Example: Brake-By-Wire Application

A distributed Brake-By-Wire (BBW) application with an anti-lock braking functionality
illustrates our approach. The BBW application is one of the validator proposed by Volvo
Technology in the TIMMO-2-USE project [2].

The structural decomposition of the braking functionality is shown in Figure 1.
It gives the BBW functional design architecture in East-ADL: the parts denote sub-
functions and the connectors represent data dependencies. The BBW is composed of
two mains functions. First, the brake controller reads the wheel speed sensors and the
brake pedal sensor. The brake controller computes the desired brake torque applied to
the wheels. In addition to this basic brake controller functionality, a second function
Anti-lock Braking System (ABS) adapts the brake force on each wheel if the speed of
one wheel is significantly smaller than the estimated vehicle speed. The brake force is
reduced on that wheel until it regains the speed that is comparable with the estimated
vehicle speed. The braking functionality has the following components (Fig. 1):

– BrakePedalSensor (BPS) reads the pedal position percentage on port EISignal.
– BrakeTorqueCalculator (BTC) receives the pedal position percentage from BPS

and computes the desired global torque.
– The wheel sensors—RearRightWheelSensor (RRWS), RearLeftWheelSensor

(RLWS), FrontRightWheelSensor (FRWS) and FrontLeftWheelSensor (FLWS)—
read the speed values for each wheel.

– GlobalBrakeController (GBC) receives the speed values measured by the wheel
sensors and the global torque calculated by BrakeTorqueCalculator. It calculates
the torque required for each wheel.

Analysis Support for TADL2 Timing Constraints on EAST-ADL Models 91

– The ABS components—ABSatRearRightWheel (ABSrrw), ABSatRearLeft-
Wheel (ABSrlw), ABSatFrontRightWheel (ABSfrw) and ABSatFrontLeftWheel
(ABSflw)—control the wheel braking to prevent locking the wheels.

– The brake actuators—RearRightBrake (RRB), RearLeftBrake (RLB), FrontRight-
Brake (FRB) and FrontLeftBrake (FLB)—apply the brake force on each wheel.

Sensors, actuators and the Electronic Control Units (ECUs) are distributed through a
unique Controller Area Network (CAN).

source target

<<designFunctionType>>

FunctionalDesignArchitecture

structure

<<designFunctionPrototype>>

+ BrakePedalSensor

EISignal

PositionPercent

<<designFunctionPrototype>>

+ GlobalBrakeController

RearRightWheel_rpm

TorqRearRightWheel

GlobalTorque

RearLeftWheel_rpm

FrontRightWheel_rpm

FrontLeftWheel_rpm

TorqRearLeftWheel

VehicleSpeedEst_kmph

TorqFrontRightWheel

TorqFrontLeftWheel

<<designFunctionPrototype>>

+ RearRightBrake

TorqCmd
EISignal

so
u r

ce

target

TC10: Synchronization X10 = 5ms

TC5: Delay X5 = 0.4*X1

s o
u r

ce

<<designFunctionPrototype>>

+ RearRightWheelSensor

Ticks
SpeedRpm

<<designFunctionPrototype>>

+ RearLeftWheelSensor

Ticks
SpeedRpm

<<designFunctionPrototype>>

+ FrontRightWheelSensor

Ticks

SpeedRpm

<<designFunctionPrototype>>

+ FrontLeftWheelSensor

Ticks

SpeedRpm

<<designFunctionPrototype>>

+ BrakeTorqueCalculator

PedalPercent

DriverReqTorq

<<designFunctionPrototype>>

+ ABSatRearRightWheel

RequestedTorq

ABSBrakeTorque

VehicleSpeed_kmph

WheelSpeed_rpm

<<designFunctionPrototype>>

+ ABSatRearLeftWheel

RequestedTorq

ABSBrakeTorque

VehicleSpeed_kmph

WheelSpeed_rpm

<<designFunctionPrototype>>

+ ABSatFrontRightWheel

RequestedTorq

ABSBrakeTorque

VehicleSpeed_kmph

WheelSpeed_rpm

<<designFunctionPrototype>>

+ ABSatFrontLeftWheel

RequestedTorq

ABSBrakeTorque

VehicleSpeed_kmph

WheelSpeed_rpm

<<designFunctionPrototype>>

+ RearLeftBrake

TorqCmd EISignal

<<designFunctionPrototype>>

+ FrontRightBrake

TorqCmd EISignal

<<designFunctionPrototype>>

+ FrontLeftBrake

TorqCmd EISignal

so
ur

ce

target so
ur

ce

so
ur

ce

target

target

t arget

source target

TC9: Synchronization X9 = 5msTC3: Repeat X3 = 10ms

TC1: Delay X1 = [70ms – 120ms]

TC2: Delay X2 = [5ms-15ms]

TC4: Delay X4 = [1ms-2ms] TC7: Delay X7 = [1ms-2ms]

TC6: Delay X6 = [40ms-50ms] TC8: Delay X8 = [5ms-15ms]

Fig. 1. Brake-By-Wire functional view augmented with TADL2 timing constraints

Table 1. The main timing constraints for the functional architecture of the BBW

ID Constraint Description
TC1 Four delays X1 are measured from the brake pedal stimulus (EISignal on BPS) to the brake

actuator responses (the EISignal ports on RRB, RLB, FRB and FLB). The delays are bounded
with a minimum value of 70 ms and a maximum value of 120 ms.

TC3 The acquisition of the wheel sensors (the Ticks ports on RRWS, RLWS, FRWS, FLWS) must be
done periodically every X3=10 ms.

TC5 Four delays X5 are measured from the wheel rpm signal (the RRW rpm, RLW rpm, FRW rpm
and FLW rpm ports on GBC) to the brake torque calculation (the TRRW, TRLW, TFRW, TFLW
ports on GBC). The delay constraint X5 applied on the global brake controller is 40 percent of
the initial time budget X1 given in TC1.

TC10 First and last wheel brake actuations (the EISignal ports on RRB, RLB, FRB, FLB) must follow
each other by no more than X10 =5 ms.

92 A. Goknil et al.

This functional decomposition is augmented with thirty one TADL2 timing con-
straints. Figure 1 and Table 1 reflect the main types of timing constraints attached to
the BBW architecture and provide an intuitive description of them. Some of these con-
straints are about a periodic sensor acquisition (see TC3). The distributed nature of the
system generates some potential de-synchronizations. Therefore, some synchronization
constraints that represent the temporal consistency of events (TC9 and TC10) are intro-
duced in the BBW timing specification. Delays on the ports are represented by delay
constraints (TC1, TC2, TC4, TC5, TC6. TC7 and TC8).

3 TADL2: Timing Augmented Description Language

In this section, we introduce TADL2 and give an informal semantics of the timing con-
straints. We also briefly describe the increment from TADL2 over TADL. The first
improvement with TADL2 concerns symbolic timing expressions used to express dura-
tions such as maximum/minimum delay and tolerance. The second improvement is the
ability to define explicit time bases by using modeling elements: TimeBase, Dimension
and Unit. For a more detailed description of TADL2 please refer to [19].

3.1 TADL2 Timing Constraints

In this paper, we consider the following TADL2 timing constraints, sufficient to capture
the constraints described in Figure 1 (See [9] for the whole set of constraints):

– DelayConstraint imposes duration bounds (minimum and maximum)
between two events source and target.

– SynchronizationConstraint is a constraint on a set of events. All events
must occur within a sliding window, specified by the tolerance attribute, i.e.,
maximum allowed skew between the events.

– RepeatConstraint imposes a period of the successive occurrences of a single
event. upper and lower give the time interval between two subsequent occurrences.

The TADL2 timing constraints mostly constrain the identifiable state changes formu-
lated as Events. The causally related events are contained as a pair by EventChains.
Based on Events and EventChains, it is possible to represent data dependencies and
critical execution paths as additional constraints for an EAST-ADL functional architec-
ture model, and to apply timing constraints on these paths.

Timing attributes like tolerance, upper and lower are given as Timing Expressions.
There are three types of timing expressions: Value, Variable and Symbolic. Variable
Timing Expressions stand for free variables and constants. Symbolic Timing Expressions
integrate basic arithmetic and relation operators associated with timing values.

3.2 TimeBase, Dimension and Unit in TADL2

TimeBase represents a discrete and totally ordered set of instants. An instant can be seen
as an event occurrence called a tick. It may represent any repetitive event in the system.
Events may refer to the classical time dimension or to some evolution of a hardware
part (e.g., rotation of crankshaft, distance). The type of TimeBase is Dimension with a

Analysis Support for TADL2 Timing Constraints on EAST-ADL Models 93

kind that represents the nature of TimeBase. Time, Angle and Distance, often used in
automotive specifications, are proposed as a predefined dimension kind.

Dimension has a set of units to express durations measured on a given TimeBase.
Each Unit is related to another Unit with factor, offset and reference to enable conver-
sions. Only linear conversions are allowed. Because Timebase is a discrete set of in-
stants, a discretization step is specified with precisionFactor and precisionUnit. Listing
1.1 gives examples of TADL2 declarations for Dimension and TimeBase. The physical-
Time dimension has three units where 1 second is equal to 106 micros and 1 ms is equal
to 103 micros (lines 2-4). universal time is declared based on physicalTime (lines 7-8).

1 Dimens ion p h y s i c a l T i m e {
U n i t s { mic ros{ f a c t o r 1 . 0 o f f s e t 0 . 0} ,

3 ms{ f a c t o r 1000 . 0 o f f s e t 0 . 0 r e f e r e n c e mic ros } ,
s econd{ f a c t o r 1000000 . 0 o f f s e t 0 . 0 r e f e r e n c e mic ros } }

5 k ind Time
}

7 TimeBase u n i v e r s a l t i m e { d imens ion p h y s i c a l T i m e p r e c i s i o n F a c t o r 1
p r e c i s i o n U n i t mic ros }

Listing 1.1. Declaration of Dimension and TimeBase in TADL2

3.3 BBW Example in TADL2

Listing 1.2 gives some of the BBW timing constraints in TADL2. For the complete
TADL2 specification of the BBW example, please refer to [1].

Event b r a k e P e d a l S e n s o r A c t i v a t i o n {} Event p o s i t i o n P e r c e n t {}
2 Event f i r s t W h e e l B r a k e A c t u a t i o n {} Event f i r s t W h e e l r p m {}

Event f i r s t W h e e l S e n s o r A c q u i s i t i o n {} Event t o r q F i r s t W h e e l {}
4

E ven tCha in ec1 {
6 s t i m u l u s b r a k e P e d a l S e n s o r A c t i v a t i o n r e s p o n s e f i r s t W h e e l B r a k e A c t u a t i o n

e v e n t C h a i n s ec1a , ec1b , ec1c , ec1d , ec1e , ec1 f , ec1g
8 }

E ven tCha in ec1a { s t i m u l u s b r a k e P e d a l S e n s o r A c t i v a t i o n r e s p o n s e
p o s i t i o n P e r c e n t }

10

v a r X1min ms on u n i v e r s a l t i m e := 7 0 . 0
12 v a r X1max ms on u n i v e r s a l t i m e := 120 . 0

D e l a y C o n s t r a i n t t c 1 a {
14 s o u r c e b r a k e P e d a l S e n s o r A c t i v a t i o n t a r g e t f i r s t W h e e l B r a k e A c t u a t i o n

lower = X1min upper = X1max
16 }

18 v a r X3 ms on u n i v e r s a l t i m e := 1 0 . 0
R e p e a t C o n s t r a i n t t c 3 a {

20 e v e n t f i r s t W h e e l S e n s o r A c q u i s i t i o n lower = X3 upper = X3 s pa n = 1
}

22

v a r X5min ms on u n i v e r s a l t i m e := (X1min * 0 . 4 0)
24 v a r X5max ms on u n i v e r s a l t i m e := (X1max* 0 . 4 0)

D e l a y C o n s t r a i n t t c 5 a {
26 s o u r c e f i r s t W h e e l r p m t a r g e t t o r q F i r s t W h e e l lower = X5min upper =

X5max
}

28

S y n c h r o n i z a t i o n C o n s t r a i n t t c 1 0 {
30 e v e n t s f i r s t W h e e l B r a k e A c t u a t i o n , s econdWhee lBrakeAc tua t ion ,

t h i r d W h e e l B r a k e A c t u a t i o n , f o u r t h W h e e l B r a k e A c t u a t i o n
32 t o l e r a n c e = (5 . 0 ms on u n i v e r s a l t i m e) }

Listing 1.2. Some BBW Timing Constraints in TADL2

94 A. Goknil et al.

In Listing 1.2, we give only a part of events and event chains (lines 1-3). ec1 gives
the execution path between the activation of the brake pedal sensor and the actuation of
the first wheel brake (lines 5-8). It contains other event chains ec1a, ... , ec1g (line 7)
which give the intermediate executions. ec1a states that positionPercent is provided just
after the activation of the brake pedal sensor (line 9). Each event is attached to a port in
EAST-ADL. brakePedalSensorActivation and firstWheelBrakeActuation are attached to
EISignal of BPS and EISignal of RRB in Figure 1 respectively.

We have variable declarations as variable timing expression (e.g., lines 11-12). All
delay and repeat constraints in Figure 1 are replicated for the four wheels. tc1a, tc3a and
tc5a (TC1, TC3 and TC5) are only for the first wheel. The lower and upper bounds of
tc5a (line 25) are computed by using symbolic timing expressions (“X1min*0.40” and
“X1max*0.40” in lines 23-24). tc3a describes the occurrences of the first wheel sensor
acquisition with a period (lower and upper). tc10 is about the maximum tolerated time
difference among the wheel brake actuations (TC10). Its tolerance attribute is equal to
a value timing expression (“5 ms on universal time” in line 32).

4 TADL2 to MARTE/CCSL: Simulation Approach

The TADL2 timing constraints are described informally in the previous section. How-
ever, to conduct validation and verification it is required to rely on a formal semantics.
In this section, we use CCSL to capture the semantics of those constraints. We then rely
on the CCSL operational semantics to execute the BBW example. This is the first part
of our proposal to make TADL2 specifications executable. CCSL was selected because
it supports both kinds of constraints available in TADL2: causal ones (event chains)
and temporal ones (delay, synchronization, repeat). After a brief introduction to CCSL,
we give a mapping from TADL2 to CCSL. At the end, we illustrate our proposed vali-
dation framework for TADL2.

4.1 The Clock Constraint Specification Language (CCSL)

MARTE is the UML profile for Modeling and Analysis of Real-Time and Embedded
systems [18,7]. It defines a broadly expressive formal Time Model [8] that provides
a generic timed interpretation for UML models through the notion of clock. A clock
c (not to be confused with the UPPAAL clocks) denotes particular UML events on
which we want to impose a constraint. Clocks (events) are ordered sets of instants (event
occurrences), I. When the set is discrete, c[i] denotes the ith occurrence of event c.
The Clock Constraint Specification Language (CCSL) was defined as a non-normative
annex of MARTE as a language to build causal and timed constraints on clocks. CCSL
considers two kinds of binary instant relations: precedence (denoted≺) and coincidence
(denoted ≡). Given two instants i and j ∈ I, i ≺ j denotes that the event occurrence
i must be observed before j, whereas i ≡ j denotes that i and j must be observed
simultaneously. A labeling function λ : I → T associates instants with a time tag.

Based on these two primitive relations on instants, CCSL derives relations on clocks.
We only describe here the clock relations pertinent to our running example. Eq.1 gives
an example of a non-functional clock relation where mic universalT ime is a logical

Analysis Support for TADL2 Timing Constraints on EAST-ADL Models 95

clock, such that ∀i ∈ N
�, λ(mic universalT ime[i]) = i ∗ 0.000001, it models a

discrete clock of period 1 mic (1 microsecond) since IdealClock is defined relative to
the unit second.

mic universalT ime = IdealClock discretizedBy 0.000001 (1)

Eq.2 gives an example of synchronous clock relation that defines a new discrete logical
clock ms such that ∀i ∈ N

�,ms[i] ≡ micro universalT ime[(i− 1) ∗ 1000 + 1].

ms isPeriodicOn mic universalT ime period 1000 (2)

A basic asynchronous constraint is given by the clock relation precedes. ”a precedes
b” (symbolically denoted by a ≺ b) specifies that for all natural number k, the kth

instant of a precedes the kth instant of b: ∀k ∈ N
�, a[k] ≺ b[k].

Some clock constraints mix precedence and coincidence relations. ”a causes b” or
”b dependsOn a” (both denoted a � b) specifies that for all natural number k, the

kth instant of a precedes or is coincident with the kth instant of b: ∀k ∈ N
�, a[k] ≺

b[k] ∨ a[k] ≡ b[k]).
CCSL also provides expressions to build new clocks from existing ones. For instance,

the CCSL expression c = inf(a, b) builds a new clock c such that c is the slowest
clock that is faster than both a and b: (∀k ∈ N

�, c[k] ≡ a[k] if a[k] ≺ b[k] , c[k] ≡
b[k] otherwise). Similarly, ”d = sup(a, b)” is the fastest clock slower than both a

and b: ∀k ∈ N
�, d[k] ≡ b[k] if a[k] ≺ b[k] , d[k] ≡ a[k] otherwise. Most of the

time, inf and sup are neither a nor b. inf and sup are easily extended to sets of clocks.
Finally, the expression delayedFor builds a delayed clock.”c = a delayedFor

n on b” imposes c to tick synchronously with the nth tick of b following a tick of a. It
is considered as a mixed constraint since a and b are not assumed to be synchronous.

TimeSquare. TimeSquare [11] is a software environment (set of Eclipse plugins) dedi-
cated to the analysis of MARTE time model and CCSL specifications. It has four main
functionalities: 1) interactive clock-related specifications, 2) clock constraint checking,
3) generation of a solution and 4) displaying and exploring waveforms. The second
functionality relies on a constraint solver that yields a satisfying execution trace for
CCSL clocks. The traces are given as waveforms written in VCD (Value Change Dump)
format [14]. The solver intensively uses Binary Decision Diagrams (BDD) to compose
symbolically boolean equations induced by CCSL clock constraints.

4.2 Modelling TADL2 Constraints in CCSL

We first give the MARTE time model as a representation of basic TADL2 elements
TimeBase, Dimension and Unit in CCSL. Then we express the semantics of Event,
EventChain and some of the TADL2 constraints in CCSL.

4.2.1 TimeBase, Dimension and Unit
Each Unit of a Dimension in a TimeBase represents a set of ticks. Hence, we represent
each Unit in a given TimeBase as a CCSL clock. The reference unit in a dimension

96 A. Goknil et al.

is a special unit whose corresponding clock is derived by discretizing IdealCLK. Eq.1
defines a discrete chronometric clock mic universalTime for the micro Unit of physical-
Time in universal time in Listing 1.1.

Clocks for other units in the TimeBase are defined as a subclock of the reference unit
clock with a period. Eq.2 defines ms as a subclock of mic universalTime with period
1000 (factor of the ms unit) for the ms unit of universal time.

4.2.2 Timing Constraints
Each TADL2 Event on which we want to attach timing constraints is associated with
a CCSL Clock. An event denotes something that occurs (e.g., the start of an action, the
receipt of a message.). Therefore, a CCSL clock represents the set of instants at which
the related event occurs.

An EventChain in TADL2 contains causally related events. It is mapped to the
causes relation in CCSL. For instance, we have the following clock constraints for ec1
and ec1a event chains: (bpsa � fwba) and (bpsa � pp) where the CCSL clocks
bpsa, fwba and pp correspond to the TADL2 events brakePedalSensorActivation, first-
WheelBrakeActuation and positionPercent respectively.

DelayConstraint. It specifies an end-to-end delay between the source and target events
where the attributes lower and upper denote minimum and maximum values of the
delay respectively. tc1a (Listing 1.2) specifies the permissible delay between the
source event brakePedalSensorActivation and the target event firstWheelBrakeActua-
tion. Eqs. 3-6 give the corresponding CCSL clocks and clock constraints for tc1a.

Clock bpsa, fwba (3)

Clock lower = bpsa delayedFor 70 onms (4)

Clock upper = bpsa delayedFor 120 onms (5)(
lower � fwba

)
∧
(
fwba � upper

)
(6)

Eq.3 declares two CCSL clocks for the source and target events brakePedalSensorAc-
tivation (bpsa) and firstWheelBrakeActuation (fwba). The CCSL constraint delayedFor
delays an initial clock (bpsa) for a given duration. Combining delayedFor and causes
allows for specifying distances between two clocks. Eqs. 4-5 build two clocks lower
and upper delayed for 70 and 120 ms respectively from the source event clock bpsa.
Eq. 6 enforces the target event clock fwba to tick between the corresponding ticks of
the clocks lower and upper.

SynchronizationConstraint. It specifies the bounds on the delay among event occur-
rences specified by the attribute tolerance. tc10 (see Listing 1.2) specifies the output
synchronization among the four brake actuators that must occur within the specified
time duration. Eqs. 7-10 give the corresponding CCSL clocks and constraints for tc10.

Analysis Support for TADL2 Timing Constraints on EAST-ADL Models 97

Clock fwba, swba, twba, ftwba (7)

Clock fastest = inf(fwba, swba, twba, ftwba) (8)

Clock slowest = sup(fwba, swba, twba, ftwba) (9)

slowest � (fastest delayedFor 5 on ms) (10)

The constraint concerns the distance from the earliest event to the latest event. It has
four events, one for each wheel. Eq. 7 declares clocks for events firstWheelBrakeAc-
tuation (fwba), secondWheelBrakeActuation (swba), thirdWheelBrakeActuation (twba)
and fourthWheelBrakeActuation (ftwba). In Eqs. 8-9 we get the fastest/slowest clocks
among all clocks slower/faster than fwba, swba, twba and ftwba. Eq. 10 states that
slowest must not tick later than 5 ms after the respective ticks of fastest.

RepeatConstraint. It specifies the periodic occurrence of an event. The duration of the
period is specified by the attributes lower, upper and span. This constraint defines
the basic notion of repeated occurrences. If the span attribute is 1 and the lower and
upper attributes are equal, the accepted behaviors must be strictly periodic. If lower is
less than upper, the event occurrences may deviate from a strictly periodic one in an
accumulating fashion. tc3a (Listing 1.2) specifies the strictly periodic nature of the
sensor value acquisition, for one of the four wheels. Eqs.11-14 give the corresponding
CCSL clocks and clock constraints for tc3a.

Clock fwsa (11)

lower isPeriodicOnms period 10 (12)

upper isPeriodicOnms period 10 (13)(
lower � fwsa

)
∧
(
fwsa � upper

)
(14)

Eq. 11 declares the CCSL clock fwsa for the event firstWheelSensorAcquisition.
Eqs. 12-13 build two clocks lower and upper of period 10 from ms. Eq. 14 enforces
the event clock fwsa to tick between the corresponding ticks of the clocks lower and
upper. Since lower and upper have the same period, fwsa ticks every 10 ticks of ms. We
defined both lower and upper clocks to propose an exhaustive transformation in case
lower and upper bounds differ.

4.3 Executing TADL2 Specification with TimeSquare

Based on the mapping presented in Section 4.2, we obtain an executable CCSL speci-
fication from the Brake-By-Wire TADL2 description. A simulation trace produced by
TimeSquare is partially shown in Figure 2. The focus here is on the constraint TC10.
The dashed (blue) arrows are the precedence relations, whereas the vertical plain (red)
connectors are the coincidence relations between two instants. The first entry shows the
fastest (fastest) of the four wheel brake actuator events (fwba, swba, twba, ftwba).
It is followed by the four events. The sixth entry is the slowest of the four events
(slowest). Coincidence relations show that there is always one occurrence of each of

98 A. Goknil et al.

Fig. 2. CCSL Simulation focusing on the constraint TC10 of the BBW Example

the four actuator between an occurrence of fastest and an occurrence slowest. Ad-
ditionally, it also shows that slowest always occur before the deadline, which is 5 ms
after fastest. The deadline is shown as the last entry of the simulation.

In TimeSquare runs consist of multiple execution steps. At each step, the CCSL
solver builds a boolean solution and computes a set of all the valid configurations. A
configuration is a set of enabled clocks, i.e., clocks that are allowed to tick at the given
step. If the CCSL specification is deterministic, there is only one valid configuration. If
it is nondeterministic, for each step the simulator fires one of the valid configurations.
This selection is based on a scheduling policy. When TimeSquare manages to produce a
valid trace, this means there is a way to satisfy the constraints. If the system is not deter-
ministic there may be other runs that do not satisfy all the constraints.This is why such a
tool must be complement with exhaustive analyses when possible. However, it must be
noted that in the general case it is not possible to conduct exhaustive analyses of CCSL
specifications, whose state-space can be infinite. In such cases, TimeSquare provides an
early support to validate and refine the specification. When focusing on TADL2 tim-
ing constraints (delay, repeat and synchronizations) the state-space is bounded and can
be explored by model-checking. However, event chains with indeterminate delays may
cause problems and need to be further refined. This is discussed in the next section.

On this example, TimeSquare has found one possible run that satisfies the TADL2
specification meaning that the specification is consistent and a solution exists. In
the following section, UPPAAL shows that there also may be runs such that the
synchronization constraint TC10 is violated (see eq. 20).

5 TADL2 to Timed Automata/UPPAAL: Verification Approach

In this section, we present a formal verification approach for TADL2 specifications.
For this, we have chosen UPPAAL [17], a model-checking tool, and present a mapping
for a subset of TADL2 into timed automata, the modeling language of UPPAAL.

5.1 UPPAAL Model-Checker: An Overview

UPPAAL extends timed automata (TA), originally introduced by Alur and Dill [6], with
a number of features, such as, global and local (bounded) integer variables, arithmetic
operations, arrays, and a C-like programming language. The tool consists of three parts:
a graphical editor for modeling timed automata, a simulator for trace generation, and

Analysis Support for TADL2 Timing Constraints on EAST-ADL Models 99

a verifier for symbolic (exhaustive) verification of a system modeled as a network of
timed automata. A subset of CTL (computation tree logic) is used as the input language
for the verifier.

A timed automaton (TAn) is a tuple < L, l0, C,A,E, I >, where L is a set of
locations, l0 ∈ L is the initial location, C is the set of clocks, A is the set of actions,
co-actions and the internal τ -action, E ⊆ L × A × B(C) × 2C × L is a set of edges
between locations with an action, a guard, a set of clocks to be reset, and I : L → B(C)
assigns clock invariants to locations. A location can be marked urgent (u) or commit-
ted (c) to indicate that the time is not allowed to progress in the specified location(s),
the latter being stricter form indicating further that the next transition can only be taken
from the corresponding locations. Synchronization between two automata is modeled
by channels (e.g., x! and x?) with rendezvous or broadcast semantics.

Semantically, the state of a TAn represents the current location (several in case of
a network of TA) and current evaluation of all the variables. An enabled edge (that is,
when the guard becomes true) indicates a transition that may be taken in the current
state. The semantics of a TAn defines transitions between locations as well as the time
progress; an enabled edge at a current location may be taken (non-deterministically
in case of many), when the invariant at the corresponding target location is preserved,
otherwise no transition is taken and the time is allowed to progress as long as the invari-
ant at the current location holds. For further details, we refer the reader to the UPPAAL

tutorial [17].

5.2 Modeling TADL2 in UPPAAL

To begin with, we present the TA modeling of basic time (chronometric) aspects in
TADL2, such as, timebase, dimension and unit. Next, we will show that the timing
constraints in TADL2 can be modeled as TA.

5.2.1 TimeBase, Dimension and Unit
In the semantics of TA, time progresses symbolically, that is, through construction of
so-called “region-graphs” 1. Hence, we represent a time dimension and a given time
unit in TADL2, corresponding to a given time base, as a single step of (chronometric)
time progress in TA clocks. Concretely, a timebase can be modeled as a TAn using
a clock variable which implicitly represents the associated dimension and the corre-
sponding unit. As a timebase, the automaton is a reference clock for a TADL2 timing
specification (or part of it, in case of multiple time bases in the specification).

In Figure 3, we present the TAn for the universal time in BBW specifica-
tion, a timebase as defined in Listing 1.1. The corresponding dimension, that is, the
physical time and the time unit ms (Eqs. 1 and 2) are implicitly represented by the
clock variable ‘x’. The duration of the time unit is represented by the invariant x<=1
and the guard x>=1 at the location L0; it represents a single step of the discrete time
progress or tick’ of the universal time. The time progress can be observed by the
successive ticks of ut tick (modeled as a broadcast channel) during simulation.

1 Makes reachability analysis decidable by transforming otherwise an infinite-state timed au-
tomaton into finite-state.

100 A. Goknil et al.

Fig. 3. universal time: a timebase automaton

5.2.2 Timing Constraints
Timing constraints can be specified for Event and EventChain in TADL2. An event
chain can be modeled as a TAn with synchronization channels representing the corre-
sponding events. For instance, in Fig. 4(a), we present the TA modeling of the event-
chain ec1 (Listing 1.2). It consists of events brakePedalSensorActivation (bpsa)
as the source (stimulus) event and firstWheelBrakeActuation (fwba) as the target
(response) event, modeled as synchronization channels. The causality among the events
is modeled by the receiving(?) and sending(!) signals of the corresponding channels re-
spectively.

DelayConstraint. In Figure 4(b), we present the TA modeling of the delay constraint
tc1, for the event chain ec1. The transition from L0 is taken when the source event
bpsa occurs. At location L1, the permissible delay, specified in terms of the invariant
and the guard (on outgoing edge) using clock variable x, is allowed before the target
event fwba occurrence. It can be observed that the TA modeling of the delay con-
straint tc1 is a time constrained model of the corresponding event-chain automaton
(Fig. 4(a)).

Fig. 4. TADL timing constraints as TA: (a) EventChain ec1 (b) DelayConstraint tc1 (c) Repeat-
Constriant tc3a (d) SynchronizationConstraint tc10

SynchronizationConstraint. In Figure 4(d), we present the TA modeling of the
synchronization constraint tc10 (Listing 1.2). It consists of two locations L0
and L1; the edges between the locations contain synchronization channels (re-
ceiving signals) corresponding to the events of the specified event group, that

Analysis Support for TADL2 Timing Constraints on EAST-ADL Models 101

is, firstWheelBrakeActuation(fwba), secondWheelBrakeActuation(swba),
thirdWheelBrakeActuation(twba) and fourthWheelBrakeActuation(ftwba);
corresponding transition is taken when anyone of these occur first. At location L1, the
other three events need to occur, before the transition back to L0 is taken, within the
specified tolerance value denoted by the invariant x <= TOL.

RepeatConstraint. In Figure 4(c), we present the TA modeling of the constraint tc3a
(Listing 1.2). When span is 1, and upper is equal to lower, the specified event is periodi-
cally generated. Thus the event fwsa (firstWheelSensorAcquistion) periodically occurs
with the specified period.

5.3 Verification Results

For a TADL2 specification, the corresponding network of TA models is an executable
specification that can be simulated and verified. However, to support the verification,
we further extend the composed model to enable verification. For example, for event
chains with no associated delay constraint, we make the non-initial locations urgent
to skip indeterminate delays. Further, we introduce a synchronization pattern (Fig. 5
(a) and (b)), for event chains with common response event. Also, we use an observer
TAn, e.g. Fig. 5 (c), to verify delay constraints. To begin with, we can verify general
properties, such as, well-formedness as discussed below:

– well-formedness : we define a TADL2 specification as well-formed, if every loca-
tion in the composed TAn is reachable. For example, we can verify a location L in
an automaton T is reachable by verifying that the property E<> T.L is satisfied
(i.e., there exists a path where the boolean predicate T.L eventually holds).

Fig. 5. (a) join stimulus (b) join response (c) Observer TA to verify ‘tc1a’

We have verified TADL2 timing constraints, presented in Table 1. And, the constraints
are verified in isolation, to keep the statespace minimal. Verification of the delay con-
straints, using the property (15) shows that there is no deadlock. And, property (16),
a liveness property using leads to, implemented as --> in UPPAAL, shows that the
event ‘bpsa’ always leads to (�) the corresponding response event ‘fwba’. Further,
we can verify that the DelayConstraints are consistent. In TADL2 specification of BBW
example [1], the event chain ec1a is defined in terms of ec1a, ... , ec1g (Listing 1.2).
From this, we can verify the timing behavior of ec1a given by tc1a w.r.t. the combined
timing/causality behavior of ec1a, ... , ec1g (Fig. 1). For the verification, we compose
the specification model with an observer TAn (for tc1a), using a boolean variable v and

102 A. Goknil et al.

a clock variable c (Fig. 5 (c)). The corresponding properties (17) and (18) show the
timing property tc1a is not satisfied.

A[] not deadlock //satisfied (15)

tc1a.L1 --> tc1a.L0 //satisfied (16)

A[] v imply c >= 70 //satisfied (17)

A[] v imply c <= 120 //not satisfied (18)

E <> v1 imply c1 <= 5 //satisfied (19)

A[] v1 imply c1 <= 5 //not satisfied (20)

To verify the output synchronization constraint TC10, we have extended the correspond-
ing TAn with variables c1 and v1 (similar mechanism as in observer TAn in Fig. 5(c)
for verifying tc1a). Verification using (19), a reachability property, shows the existence
of a solution satisfying TC10, which confirms the TimeSquare simulation results pre-
sented in Section 4.3. However, Property (20) shows that the constraint is not satisfied
for all execution paths. This means that the TADL2 specification needs to be constrained
further w.r.t a refined description of the system behavior.

6 Discussion of the Approach

This section discusses the benefits of combining two formal models CCSL and Timed
Automata to offer a complete support for the analysis of TADL2 specifications. First
it should be noted that one major extension of TADL2 over TADL is the addition of
explicit references to time bases. Such time bases can be either logical or physical. This
extension took a direct inspiration from the MARTE Time model. It recognizes the im-
portance of logical clocks in high-level specifications where information about physical
time is not always available. As a specification language, MARTE CCSL offers a full
support to build both logical and physical clocks as well as capturing time expressions
referring to such clocks. CCSL specifications can be analyzed by TimeSquare that was
specifically designed for the purpose. TimeSquare provides several features. The first
important one is a support for model simulation. Thus, the transformation from TADL2
to CCSL provides a support for making TADL2 specifications executable directly in-
side a UML environment (like Papyrus). Other features of TimeSquare offer support
for exhaustive analyses of CCSL specifications. Those features mainly focus on logi-
cal aspects and offer little or no benefit for the exhaustive analysis of physical-based
constraints such that those shown in this paper. Timed Automata, however, are a pow-
erful formalism to handle physical time constraints through the UPPAAL clocks. By
offering a transformation to Timed Automata, we then provide a support for the ex-
haustive analysis of physical-based constraints. This is why the two formalisms are
used in a complementing way, CCSL to support model execution and analysis of log-
ical time aspects, Timed Automata/UPPAAL for the exhaustive analysis of physical
time constraints. However, having a coordinated analysis of mixed logical and physical
constraints is out of the scope of this paper and is still an on-going research work.

Furthermore, exhaustive verifications can only be conducted with finite specifica-
tions. However, early specifications may remain incomplete and therefore may not be

Analysis Support for TADL2 Timing Constraints on EAST-ADL Models 103

sufficiently refined to be bounded. For instance, event chains with indeterminate delays
are typical unbounded specifications (the time may progress arbitrarily without any up-
per bound constraint). As discussed in the previous sections, we had to complete the
event chains to conduct the analysis with UPPAAL.

7 Related Work

A number of approaches in the literature address modeling and analyzing timing con-
straints. Klein and Giese [16] present Timed Story Scenario Diagrams (TSSD), a visual
notation for scenario specifications that takes structural system properties into account.
In TSSD it is possible to specify Time Constraints that allow setting lower and up-
per bounds for delays. There is no mention of analysis support for TSSD. Alfonso et
al. [5] present VTS, a visual language to define complex event-based constraints like
freshness, bounded response, and event correlation. VTS does not support the notion of
explicit time units coded as time bases. A mapping between VTS and timed automata
is provided to model and analyze VTS scenarios. Aegedal [4] presents a general mod-
elling language for Quality of Service (QoS). The language uses a time model where
different clocks can be specified.

In the context of EAST-ADL, several approaches have been proposed for TA-based
modeling. Qureshi et al. [20] present TA templates for EAST-ADL timing constraints.
These modeling templates model various error scenarios and are based on informal se-
mantics of the EAST-ADL architectural models. In comparison, the automata templates
presented in this paper specify event chains and associated causality and temporal be-
havior. Kang et al. [15] present a method for formal modeling of EAST-ADL mod-
els, for verification using UPPAAL. And, Enoiu et al. [13], provided a tool support for
EAST-ADL models, also limited aspect of timing verification. In comparison to these
works, in this paper, we have addressed the analysis of timing specifications based on
the explicit notion of timebases and the timing constraints. We have also presented the
complimentary use of different analysis approaches for timing specifications.

8 Conclusions

In this paper, we have presented both simulation and model-checking approaches for
formal analysis of TADL2 specifications. We have mapped TADL2 specifications into
CCSL for simulations in TimeSquare and to timed automata for exhaustive verifica-
tions using UPPAAL model-checker. In addition to well-formedness and consistency
checking, we have also verified the TADL2 timing constraints. The main limitation
of the verification approach is the statespace explosion problem with model-checking.
However, this may be addressed by using compositional techniques for event chains in
TADL2 specifications.

We have used a real industrial example proposed by Volvo Technology in the
TIMMO-2-USE project [2] to show the capability of our approach for handling tim-
ing behavior of industrial systems. However, a natural question arises about the scal-
ability and the efficacy of the proposed analysis approach on larger case studies. As

104 A. Goknil et al.

future work, we plan to apply the proposed analysis techniques on larger case stud-
ies. We also plan to consider a detailed comparison of analysis benefits of using both
TimeSquare and UPPAAL for TADL2 specifications. Further, the mappings can be ex-
tended to multiple timebases and timebase relationships in TADL2, for specification
and verification of timing constraints for distributed embedded systems, i.e., systems
with multiple ECUs, with each ECU has its own timebase. The mappings provide a
basis for automated model transformations from TADL2 specifications to CCSL and
UPPAAL. The automated model transformation from TADL2 to CCSL [3] is already
implemented with QVTo [12]. Currently, we are working on the model transformation
from TADL2 to UPPAAL.

Acknowledgement. This was a joint work by AOSTE Research Group at INRIA
(Sophia-Antipolis) and Formal Modeling and Analysis Group at Mälardalen University,
Sweden. The work was funded by the PRESTO project (ARTEMIS-2010-1-269362)
under the ARTEMIS Joint Undertaking Programme, the TIMMO-2-USE project in
the framework of the ITEA2, the Swedish Research Council (VR) through ARROWS
project and Mälardalen University in Sweden.

References

1. BBW Spec in TADL2,
http://www-sop.inria.fr/members/Arda.Goknil/bbw/

2. ITEA TIMMO-2-USE Project, http://timmo-2-use.org/
3. TADL2-CCSL QVTo Transformation,

http://www-sop.inria.fr/members/Arda.Goknil/bbw/
4. Aegedal, J.: Quality of service support in development of distributed systems. PhD Thesis

(2001)
5. Alfonso, A., Braberman, V.A., Kicillof, N., Olivero, A.: Visual timed event scenarios. In:

ICSE 2004, pp. 168–177 (2004)
6. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–

235 (1994)
7. André, C.: Syntax and semantics of the Clock Constraint Specification Language (CCSL).

Research Report 6925, INRIA (May 2009)
8. André, C., Mallet, F., de Simone, R.: Modeling time(s). In: Engels, G., Opdyke, B., Schmidt,

D.C., Weil, F. (eds.) MoDELS 2007. LNCS, vol. 4735, pp. 559–573. Springer, Heidelberg
(2007)

9. ATESST (Advancing Traffic Efficiency through Software Technology). East-ADL2 specifi-
cation (March 20, 2008), http://www.atesst.org

10. Autosar Consortium. AUTOSAR specification, release 4.0 (2009),
http://www.autosar.org/

11. DeAntoni, J., Mallet, F.: Timesquare: Treat your models with logical time. In: Furia, C.A.,
Nanz, S. (eds.) TOOLS Europe 2012. LNCS, vol. 7304, pp. 34–41. Springer, Heidelberg
(2012)

12. Dvorak, R.: Model transformation with operational qvt. In: EclipseCon 2008 (2008)
13. Enoiu, E.P., Marinescu, R., Seceleanu, C.C., Pettersson, P.: Vital: A verification tool for

EAST-ADL models using uppaal port. In: ICECCS 2012, pp. 328–337 (2012)
14. IEEE Standards Association. IEEE Standard for Verilog Hardware Description Language.

Design Automation Standards Committee, IEEE Std 1364TM-2005 (2005)

http://www-sop.inria.fr/members/Arda.Goknil/bbw/
http://timmo-2-use.org/
http://www-sop.inria.fr/members/Arda.Goknil/bbw/
http://www.atesst.org
http://www.autosar.org/

Analysis Support for TADL2 Timing Constraints on EAST-ADL Models 105

15. Kang, E.-Y., Schobbens, P.-Y., Pettersson, P.: Verifying functional behaviors of automotive
products in EAST-ADL2 using uppaal-port. In: Flammini, F., Bologna, S., Vittorini, V. (eds.)
SAFECOMP 2011. LNCS, vol. 6894, pp. 243–256. Springer, Heidelberg (2011)

16. Klein, F., Giese, H.: Joint structural and temporal property specification using timed story
scenario diagrams. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422,
pp. 185–199. Springer, Heidelberg (2007)

17. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a Nutshell. Int. Journal on Software Tools
for Technology Transfer 1(1-2), 134–152 (1997)

18. OMG. UML Profile for MARTE, v1.0. Object Management Group (November 2009)
(formal/2009-11-02)

19. Peraldi-Frati, M.A., Goknil, A., DeAntoni, J., Nordlander, J.: A timing model for specifying
multi clock automotive systems: The timing augmented description language v2. In: ICECCS
2012, pp. 230–239 (2012)

20. Qureshi, T.N., Chen, D.-J., Törngren, M.: A timed automata-based method to analyze EAST-
ADL timing constraint specifications. In: Vallecillo, A., Tolvanen, J.-P., Kindler, E., Störrle,
H., Kolovos, D. (eds.) ECMFA 2012. LNCS, vol. 7349, pp. 303–318. Springer, Heidelberg
(2012)

K. Drira (Ed.): ECSA 2013, LNCS 7957, pp. 106–113, 2013.
© Springer-Verlag Berlin Heidelberg 2013

SysADL: A SysML Profile for Software Architecture
Description

Jair Leite1, Flávio Oquendo2, and Thais Batista1

1 UFRN – Federal University of Rio Grande do Norte, Natal, Brazil
{jair,thais}@dimap.ufrn.br

2 IRISA – University of South Brittany, Vannes, France
flavio.oquendo@irisa.fr

Abstract. In this paper we propose SysADL, a SysML profile for expressing
architecture descriptions using the well-known and consolidated abstractions
from the ADL community. We present the SysADL constructs for describing
architectures and demonstrate its use in the context of a case study.

Keywords: Architecture Description Language, SysML, Profile, Components,
Connectors, Configuration.

1 Introduction

In the last decades, software architecture [1] has become a key activity for software
and systems development and considerable progress has been done in two comple-
mentary approaches. On one side, a plethora of Architecture Description Languages
(ADL) [1] has been proposed by both industry and academia, for describing the archi-
tecture as a composition of interacting components. Although different ADLs present
particular approaches to specify software architecture, the taxonomy presented by
Medvidovic and Taylor [4] states that components, connectors, and configuration are
the main abstractions used to represent an architecture. On the other side, OMG (Ob-
ject Management Group) has proposed standardized modeling languages such as
UML (Unified Modeling Language) [3] and SysML (Systems Modeling Language)
[2], which have high acceptance by the software development community. To date,
there are a number of tools and developers skilled in using the UML notation. SysML
is a customized version of UML for systems engineering, and it is being increasingly
used by systems engineers and inheriting the popularity of UML.

Although the popularity of the OMG modeling languages, they do not support the
high-level architectural description as ADLs do, using the CCC (component, connec-
tor, configuration) concepts. On the other hand, ADLs do not support multiple views,
which are essential for the distinct involved stakeholders, and none of them have a
broad adoption as the OMG modeling languages. Thus, it is clear that the integration
of the two strands of modeling languages holds significant potential, providing an
unique language that has the advantages of the OMG modeling standards and allow
the high-level description of the architecture using the ADLs main concepts. In fact,

 SysADL: A SysML Profile for Software Architecture Description 107

the marriage of the modeling capabilities enables the ADL community and the OMG
modeling language users to exploit the powerful of both modeling worlds.

In this paper we propose SysADL, a SysML profile for expressing architecture de-
scription using the well-known and consolidated abstractions from the ADL commu-
nity. A profile is a lightweight extension of a language that allows specializing its
syntax using stereotypes that represents both a well-defined syntactic element and a
set of additional semantic constraints for each stereotyped metaclass. We decided to
use SysML as it is an OMG standard that focuses on systems and software. This is
important as it provides a systemic view of the software architecture, meaning that the
software will be integrated with the other system elements such as hardware, stake-
holders, and information, which are important for the architecture analysis. As UML,
SysML can be easily customized for expressing the architectural concerns.

This paper is structured as follows. Section 2 presents SysML and architecture de-
scription main concepts. Section 3 presents SysADL. Section 4 illustrates the use of
SysADL. Section 5 discusses related work. Section 6 presents our final remarks.

2 Background

In this section we briefly present the main concepts of SysML and ADLs that are the
basis to understand our profile.

SysML [2] is a standardized modeling language for systems engineering that ex-
tends UML. We do not use all SysML elements in our profile. The elements used in
SysADL are the ones that have architectural concerns: blocks, ports, flow, and con-
nectors. Blocks are the generalization of the UML class concept to modularly
represent system description, allowing the description of system decomposition, inter-
connection, and properties. SysML blocks may include both structural and behavioral
features and also an ability to define internal connectors. There are two types of block
diagrams in SysML: (i) Block definition diagrams (bdds), used to define blocks in
terns of properties and operations, and relationships; (ii) Internal block diagrams
(ibds), used to model the internal structure of each block, which can include parts,
ports, connectors. SysML blocks include several notational extensions. We use in this
work the notation with multiple optional compartments, which can partition the fea-
tures according to various criteria. Some standard compartments are defined by
SysML, such as: flow properties, operations, and constraints. Ports and flows support
the design of blocks with clearly defined ways of connecting and interacting with
their context of use. Ports define the interactions among blocks and parts. They are a
special class of property used to specify allowable types of interactions between
blocks. Connectors in SysML are used to define relationships between parts or other
properties of the same containing block. They can be typed by associations, which can
specify more detail about the links between parts or other properties of a system,
along with the types of the connected properties. Connectors establish a bind between
elements. SysML has its own extension mechanisms to support extensions: stereo-
types and profiles. Stereotypes add new language concepts, extending existing SysML
language concepts with additional properties and constraints. They are defined by

108 J. Leite, F. Oquendo, and T. Batista

either extending a metaclass or subclassing a stereotype. Profiles are represented in
packages grouping the stereotypes.

In terms of architecture description concepts, in this paper we follow the taxonomy
presented by Medvidovic and Taylor [4], which states that components, connectors,
and configuration are the abstractions used to represent an architecture. A component
is the loci of computation and state [1]. It has a clearly defined interface specification
and it distinguishes between components types and instances. Interfaces are common-
ly represented with the notion of ports and can have attributes and constraints. Com-
ponent types are abstract components that can be instantiated multiple times in an
architecture specification. A connector is the element responsible for mediating the
interaction among components, establishing rules that govern those interactions. It is a
first-class architectural concern in ADLs. Although connectors have been neglected in
several languages and tools for software modeling, such as in the first versions of
UML, for instance, it has an important role in software architecture descriptions as an
element that mediate the interactions among components. A connector’s interface is a
set of interactions points between it and the components attached to it. The interfaces
of connectors are similar to component interfaces are referred under different names
such as ports or roles. An architectural configuration defines the associations among
components and connectors, shaping the topology of the architecture, specifying the
overall behavior of the composed elements, and properly defining the architecture of
the system. In the configuration, part of the architectural description, components’
ports are attached to connectors’ interfaces.

3 SysADL

In this section, we introduce SysADL, our proposal to model basic architectural con-
cepts extending the System Modeling Language. SysADL specializes few SysML
elements to describe the software architecture concepts described in Section 2 – com-
ponents, connectors and configurations. All others SysML elements can be used in
SysADL models. Figure 1 illustrates the SysADL extension of SysML. The SysADL
profile imports some elements of SysML. Figure 2 details the stereotypes defined in
the SysADL profile.

Fig. 1. SysADL extension of SysML

 SysADL: A SysML Profile for Software Architecture Description 109

Fig. 2. The SysADL profile stereotypes

Components. A SysADL component is a stereotype that specializes a block with a
subset of its properties. A component can have a set of features that specify its defini-
tion. The features are parts, references, values, constraints and properties. These fea-
tures enable a system and software architect to model each component at the level of
detail that is appropriate for an architectural description. Features represent characte-
ristics, roles or usages in the context of the component or its environment. Features
can describe the state of the component, including relations between elements that
define its structure (parts and references), constraints, properties types and values that
apply to them. Parts specify the other elements that compound the component. They
can be other components or connectors. References specify the elements that are used
by the component. The difference between parts and reference is that the former is a
composition and the latter is an aggregation in UML/SysML terms. Values specify the
values of particular properties in a component that characterize it. Constraints are
properties that specify particular characteristics of the component. The property
feature can be used to define general properties of the component. The behavior of a
component is specified in terms of its interfaces as defined by its ports and
corresponding protocols. We describe ports later in this paper.

In SysADL, we represent a component using the SysML block graphical notation
with the stereotype indication. The notation is a rectangle that can have optional com-
partments. The upper label in a rectangle should have the name <<component>> to
indicate that it is a stereotype. Figure 3(a) depicts possible representations of compo-
nents. A simple rectangle is used to identify a component in a model. In Figure 3(a),
to specify the properties of a Component1 we use a rectangle with compartments.
Component1 has several properties – parts, constraints, references, values, and prop-
erties. Component2 and Component3 are shown in short notations when it is not
relevant to present the details. Component4 has a port p of type Port1.

The SysML block definition diagram (bdd) is used to define components and its re-
lationships with other elements. BDD diagrams have a diagram frame, which has a
header and a content. The header describes the kind of diagram, the diagram name,

110 J. Leite, F. Oquendo, and T. Batista

─
(a) Representation of Components

─

(b) Representation of Connectors

Fig. 3. Representation of Components and Connectors

and some contextual information. The content are the place define describe the
components in the model. Composition and aggregation relationships between com-
ponents are also specified in a BDD.

Connectors. A Connector in SysADL is a stereotype that specializes a SysADL com-
ponent to represent the interactions between components, as shown in Figure 2. In
SysADL, we are promoting connectors to be first-class elements and they can have all
features that a component has. Components and connectors have different roles in
system architecture. Connectors have the role to mediate interactions – communica-
tion and control – between components. The specification of a connector is very simi-
lar to a component. The example in Figure 3(b) defines a connector type composed of
a and b components, and a p port. It also uses a d component. The connector has two
ports: p1 and p2. A property type NumberOfPackages is defined and is used to con-
strain that the connector transmits e.g. a maximum of 5 packages at a time. Figure
3(b) also shows a simple representation of the same connector with its two ports. The
SysADL connector is different from the SysML connector that simply binds elements.
In SysADL a connector follows the idea of Shaw and Garlan [1], containing a proto-
col specification that makes explicit the rules about the types of interactions.

Configurations. A configuration defines the structure of a system as a composition of
components and connectors. In a configuration, component ports are linked to con-
nector ports using SysML connectors. Both ports need to be of the same type. A
SysML connector provides a bind between ports. In SysADL, a configuration is a
specialization of a component. Figure 2 shows the representation of a configuration in
the SysADL profile. Both configuration and connectors are specialization of compo-
nent. As a composite, a configuration is composed by one or more components, and,
in extension, by connectors and other configurations. Because component and con-
nectors can be composite elements and can have a configuration themselves, the
internal block diagram (ibd), as depicted in Figure 4 can be used to define the confi-
guration of a component and a software architecture configuration. The Figure 4

 SysADL: A SysML Profile for Software Architecture Description 111

shows a configuration of two components c1 and c2 and one connector. An unnamed
instance of CS-Connector links c1 and c2. The connector is linked to the components
by SysML connectors. It is important to differentiate SysADL and SysML connectors.
In SysML, a connector in a direct association between blocks. It binds them linking
their ports. In SysADL, a connector has several features that allow the definition of
properties, parts, constraints and values. However, in SysADL we use SysML connec-
tors to bind a component and a connector. In other words, a SysML connector binds
SysADL components and connectors using their ports. Figure 4 also shows the two
types of connectors.

Fig. 4. An example of configuration using an IBD diagram

Ports. A Port is an interface that specifies services in both components and connec-
tors. Services can be functionalities or information required or provided by compo-
nents and connectors. A SysADL Port is a specialization of a SysML Port. The
specification of a SysADL port in the profile is depicted in Figure 2. Both compo-
nents and connectors can have ports. Component and connectors are linked using
SysML binding connectors to their specific ports. The two ends ports of a binding
connector must have the same type to assure their compatibility. Required and pro-
vided features can be services and non-flow information that a component provides
for other components or requires of others components. They are defined as required
and provided interfaces. For example, a component might provide a data sorting ser-
vice to other components in one port and the availability state information in other
port. Flowports can also be specified.

4 Case Study

The case study consists of a Central Conditioner System (CCS) composed of elements
that supports the automatic control of the mechanical parts of the system. The parts
are: (i) the User Interface; (ii) the Temperature Sensor; (iii) the Condenser; and (iv)
the Fan. These elements are integrated to provide an automatic control the desired
temperature. Using the User Interface component the user can set the desired temper-
ature, and get current temperature (setTemp and getTemp). The Temperature Sensor
component continuously gets the ambient temperature to inform it to the Controller
component. The Controller component receives the parameters from both the User
Interface component and the Temperature Sensor and decides which parameters
(Pressure and Fan) are to be sent to the Condenser component and to the Fan com-
ponent in order to reach the user desired temperature. Figure 5 represents the detailed

112 J. Leite, F. Oquendo, and T. Batista

configuration of CCS, a connected graph including all components, ports, and con-
nectors. The User Interface component contains two ports represented by the pro-
vided features SetTemp and GetTemp. They are provided to the user respectively set
and get the temperature. It has also a port ITemperature that requires and provides the
temperature SetT and GetT, represented by required features used to connect this
component to the Controller component. The Controller component contains a port
that provided features – SetT and GetT – and three required features ports GetCur-
Temp, SetPress, SetSpeed. The GetCurTemp port is used to get the current tempera-
ture from the Temperature Sensor component. The setPress is used to connect this
component to the Condenser component, to set the pressure needed to achieve the
user desired temperature. The SetSpeed is used to connect this component to the Fan
component, to set the air Speed needed to quickly achieve the desired temperature.
The Condenser component has the setPressure provide feature port. The Fan compo-
nent has the setSpeed provide feature port. There are four connectors: IUC connector,
CTS connector, CC connector, and CF connector.

Fig. 5. CCS Configuration

5 Related Work

We briefly discuss some works in terms of profiles for the OMG modeling languages.
Medvidovic et al [7] conducted a pioneering work in evaluating the use of UML for
modeling software architectures in the manner in which existing ADLs model archi-
tectures. They concluded that UML lacks support for capturing and exploiting certain
architectural concerns and also that UML lacks direct support for modeling and
exploiting architectural styles, explicit software connectors, and local and global arc-
hitectural constraints. Although new versions of UML were released after that publi-
cation, to date UML still neglects the idea of using components, connectors and

 SysADL: A SysML Profile for Software Architecture Description 113

configuration to represent an architecture description, as ADLs do. Our profile ad-
dresses this gap and enriches SysML with ADL-related concepts. Behjati et al. [5]
propose the ExSAM profile (Extended SysML for Architecture Analysis Modeling)
that consists in a SysML extension including concepts of the Architecture Analysis
and Design Language (AADL). Our proposal is different as we create a generic and
simple SysML profile to support architecture description. DesyreML [6] is a SysML
profile for the formal description of heterogeneous embedded systems. The proposal
of this work is different from ours. It focuses on formal description of embedded sys-
tem and our goal is to provide a generic SysML-based ADL to model any kind of
system. In addition, it is verbose, in comparison with our proposal, as it creates a
number of stereotypes to allow the definition of embedded components with different
models of computation.

6 Final Remarks

In this paper we defined SysADL, a SysML profile that incorporates in SysML con-
solidated concepts from ADLs, allowing the high-level description of the architecture
using the ADLs main concepts As SysADL is a lightweight extension of an existing
standard, it can be easily adopted by the OMG modeling language community, both
from academy and industry, which can use an unique language with tool support to
exploit the power of two complementary modeling languages. We investigated the
applicability of SysADL through a case study of a Central Conditioner System and we
concluded that the consensual structural concepts of ADLs are fully covered by Sy-
sADL. As future work we are developing an architectural-driven execution platform
using the Action Language for Foundational UML (ALF) [8] that will allow dynamic
analysis of system behavioral properties at design time.

References

1. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline.
Prentice Hall (1996)

2. OMG Systems Modeling Language, http://www.omgsysml.org
3. OMG UML, http://www.omg.org/spec/UML/
4. Medvidovic, N., et al.: A Classification and Comparison Framework for Software Architec-

ture Description Languages. IEEE Trans. Software Eng. 26(1), 70–93 (2000)
5. Behjati, R., et al.: An AADL-Based SysML Profile for Architecture Level Systems Engi-

neering: Approach, Metamodels, and Experiments. ModelME! Tech. Report 2001-03
(2011)

6. Ferrari, A., et al.: DesyreML: A SysML Profile for Heterogeneous Embedded System.
In: Embedded Real Time Software and Systems (ERTS), Toulouse, France (2012)

7. Medvidovic, N., et al.: Modeling Software Architecture in the Unified Modeling Language.
ACM Trans. on Software Eng. and Methodology (TOSEM) 11(1), 2–57 (2002)

8. OMG 2012. Action Language For Foundational UML – ALF (2012),
http://www.omg.org/spec/ALF/

A Lightweight Language for Software Product

Lines Architecture Description

Eduardo Silva, Ana Luisa Medeiros, Everton Cavalcante, and Thais Batista

DIMAp – Department of Informatics and Applied Mathematics
UFRN – Federal University of Rio Grande do Norte

Natal, Brazil
{eduafsilva,analuisafdm,evertonranielly,thaisbatista}@gmail.com

Abstract. The architecture description of a software product line (SPL)
is essential to make it clear how the architecture realizes the feature
model and to represent both the domain and application engineering ar-
chitectural artefacts. However, most architecture description languages
(ADLs) for SPL have limited support regarding variability management
and they do not express the relationship between features and the archi-
tecture, besides the lack of tools for graphical and textual modelling and
a non-clear separation between the domain and application engineering
activities. In order to overcome these deficiencies, this paper presents
LightPL-ACME, an ADL whose main goal is to be a simple, lightweight
language for the SPL architecture description, and enable the associa-
tion between the architectural specification and the artefacts involved in
the SPL development process, including the relationship with the feature
model and the representation of both domain and application engineering
elements.

Keywords: Software product lines architectures, Architecture
description languages, ACME, LightPL-ACME.

1 Introduction

Software product lines (SPLs) [1] consist of an approach for deriving applications
that shares a specific set of common features (commonalities) and have variabil-
ities that distinguish the specific applications, thus supporting the development
of a product family. The SPL development process follows two main activities:
(i) domain engineering, which aims to systematize the gathering, organization,
and storage of reusable and consistent information in the form of artefacts, thus
exploring similarities while preserving the ability to build different products,
and; (ii) application engineering, which aims to specify and customize different
products from the artefacts generated by the domain engineering activity.

The architectural description is one of the activities involved in the develop-
ment of an SPL that enables to anticipate important decisions regarding the
system design and represent architectural characteristics of the SPL. In the soft-
ware architecture context, architecture description languages (ADLs) [2] provide

K. Drira (Ed.): ECSA 2013, LNCS 7957, pp. 114–121, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Lightweight Language for SPL Architecture Description 115

abstractions for representing architectures through components, connectors, and
configurations. Components represent software functionalities, connectors are
communication elements, and configurations describe the relationship between
components and connectors.

Although there are some ADLs for describing SPL architectures [3–5], most
of them have limited support regarding the management of variabilities since
they only focus on documenting SPL concepts (similarities and variabilities)
and architectural elements rather than the relationship and traceability between
the variabilities represented in the feature model and the architecture of an
SPL. Moreover, these ADLs do not express the relationship between features
and the architecture and suffer from the following limitations: (i) high verbosity
that makes the architectural description confusing and difficult to understand;
(ii) complexity for instantiating products; (iii) lack of tools for graphical and
textual modeling; and (iv) lack of a clear separation between the domain and
application engineering activities in the SPL development process.

In this context, this paper presents LightPL-ACME, an ADL that aims to
provide a lightweight strategy for describing architectures of SPLs in order to
overcome the abovementioned limitations. We have chosen the ACME ADL [6]
as basis of the proposed ADL since ACME provides generic structures to cope
with a wide range of systems and includes a language based on first-order pred-
icate logic called Armani [7], which is used to design architectural constraints.
The main features of LightPL-ACME are: (i) semantic enrichment of ACME
elements originally used to specify the SPL architecture, the so-called base ar-
chitecture; (ii) elements designed to enable the definition of the referenced ar-
chitecture, which is a base architecture whose elements refer to the features of
the SPL; and (iii) products instantiation, which is based on the architectural
description of the SPL and the referenced architecture. In this paper, we illus-
trate the main elements of the LightPL-ACME ADL with the GingaForAll [8]
SPL for Ginga [9], the middleware adopted by the Brazilian Digital Television
System (SBTVD).

This paper is structured as follows. Section 2 describes the basic concepts re-
garding SPLs and provides an overview about the ACME/Armani ADL. Section 3
presents LightPL-ACME and its application for describing the GingaForAll SPL.
Section 4 presents the LightPL-ACME Studio tool. Section 5 presents related
work. Finally, Section 6 contains final remarks and future works.

2 Background

2.1 Software Product Lines

Software product lines (SPLs) [1] enable the creation of a family (or product
line) of similar products by using a common software infrastructure to mount
and configure parts designed to be reused among products and following two
main activities, namely domain engineering and application engineering [11].
The construction of a software product, also called instantiation or derivation,

116 E. Silva et al.

is made from a configuration of core assets, which consists of an arrangement of
the software artefacts that implement the product.

In the SPL development, the members of a family have a basic set of com-
mon functionalities and associated variants that individualize each one of these
members. Typically, similarities and variabilities among products of a family are
modelled in terms of features, which are concepts that may be a requirement,
a function, or a non-functional feature [1]. Features are organized in feature
models, which that represent similarities, variabilities, and constraints related
to the variations between features and their relationships. In general, feature
models have a tree structure in which features are represented by nodes of the
tree and the variations between features are represented by edges and feature
groups, so that the hierarchical organization of the diagram describes the key
concept from more general to more specific concepts as they descend the tree.
Furthermore, features can be [10]: (i) mandatory, i.e. the feature must be in-
cluded in a product; (ii) optional, i.e. the feature may or may not be included if
the feature from which it derives is selected; (iii) inclusive-or, i.e. among the set
of related features at least one of them must be selected, and; (iv) alternative,
i.e. among the set of related features exactly one of them must be selected.

2.2 ACME/Armani

ACME [6] is a generic ADL that provides a basis for developing new domain-
specific ADLs. A system is described in ACME by seven basic elements:
Component, Connector, System, Attachment, Port, Role, and Representation.
Components are computational entities that can have multiple interfaces called
Ports. The ports of a component are bound to the ports of other components
through Connectors, which can have multiple interfaces called Roles. Systems
are abstractions that represent configurations of components and connectors in-
cluding a set of Component elements, a set of Connector elements, and a set
of Attachment elements that describe the topology of the system in terms of
Port–Role associations. Representations are alternative architecture views of an
element or more detailed decompositions of a given element (component, con-
nector, port or role). Furthermore, architectural elements can be annotated in
order to represent behavioral and non-functional properties by using Property
elements. Properties have the form of <name, type, value> triples and can be
used in any of the ACME elements. ACME also enables to define architectural
styles in order to increase reuse and expressiveness, which is done through the
Type and Family elements. In ACME, an architectural style defines a family of
systems, through Family element, in terms of a structural organization pattern
that contains a vocabulary of element types and a set of constraints that indi-
cate how these elements can be combined, and the Type element is used to define
a vocabulary of abstract types of ACME elements. In turn, Armani [7] is an
ACME extension and consists of a predicate language based on first-order logic
used to express architectural constraints over ACME elements. Such constraints
are defined in terms of invariants, design constraints that must be fulfilled, and
heuristics, design constraints that may or may not be fulfilled.

A Lightweight Language for SPL Architecture Description 117

3 LightPL-ACME

LightPL-ACME is an ADL proposed as an ACME extension that aims to pro-
vide a lightweight, simple language for SPL architecture description, so that it
is possible to associate such description with the artefacts related to the do-
main engineering and application engineering activities in the SPL development
process. It supports the separation of these SPL activities by creating specific
abstractions for features (related to the domain engineering activity) and prod-
ucts (related to the application engineering activity). Moreover, LightPL-ACME
was designed envisioning the representation of the architecture and its relation-
ship with the features. The following subsections present the main elements of
the LightPL-ACME ADL.

3.1 ProductLine, Feature, and Product Elements

The ProductLine element has similar characteristics to the ACME Family ele-
ment, which is semantically and syntactically enriched in order to represent the
SPL, thus enabling the user to describe its specific elements, such as features
and products. Within the ProductLine element, the Feature element is defined
to represent the features that compose the SPL and is specified by the defini-
tion of an identifier and an associated type related to the types of features that
may occur in an SPL: (i) Mandatory, which represents mandatory features; (ii)
Optional, which represents optional features; (iii) Alternative, which represents
alternative features, and; (iv) InclusiveOr, which represents inclusive-or features.
Additionally, the extends mechanism provided by ACME enables to establish an
inheritance relationship between two features.

Fig. 1 illustrates the definition of the Demultiplexer, Hardware, and Software
features for the GingaCC ProductLine element and its corresponding feature
model. The Demultiplexer feature is mandatory (line 3), and the Hardware and
Software features are alternative and derived from the Demultiplexer feature
(lines 4 and 5).

Fig. 1. Features and product description in a ProductLine element and its correspond-
ing depiction as a feature model

In order to complement the description of the features in an SPL, LightPL-
ACME provides Armani [7] functions for specifying constraints between Feature

118 E. Silva et al.

elements in a ProductLine element, namely the requires (for dependency) and
excludes (for mutual exclusion) functions, which receive as parameters the iden-
tifiers of the Feature elements included in the relationship.

Finally, the Product element corresponds to the concept of products that can
be generated by an SPL. The specification of this element consists of an identifier
regarding the product that is being specified and a set of identifiers regarding the
Feature elements that compose this product. The inclusion of Feature elements
also occurs by hierarchy, so that the inclusion of a Feature element in a Product
element includes all of its direct dependencies, which take place through the
inheritance relationship.

3.2 Referenced Architectures

In LightPL-ACME, referenced architectures are artefacts related to the system
architecture and consist of a description of the base architecture that is enriched
with references to the Feature elements previously described in a ProductLine
element. This notion of referenced architectures in terms of mapping architec-
tural elements to features is part of the well-known concept of configuration
knowledge [11], which represents all available information used to support the
product derivation process and includes this mapping between SPL artefacts and
features.

In LightPL-ACME, the mapping mechanism between architectural elements
and features in order to compose the referenced architecture is made by using
the keyword MappedTo followed by a set of Feature elements and can be added
to the specification most of the conventional ACME elements after their names.
In order to make Feature elements (that represent the features) accessible in the
referenced architecture, it is necessary that the System element that represents
the complete system has been adhered to the architectural style described by
a ProductLine element. Fig. 2 illustrates the mapping between the base archi-
tecture and the GingaForAll SPL architectural description in order to compose
the referenced architecture, which is represented by the GingaFull System that
adheres to the GingaForAll ProductLine. It is important to highlight that all
features described in the ProductLine element associated with the referenced
architecture must be mapped to at least one element of the architecture, oth-
erwise the architecture does not fulfill the ProductLine. However, there may be
architectural elements that are not being mapped to Feature elements and then
they can be interpreted as implementation-specific elements.

4 LightPL-ACME Studio

LightPL-ACME Studio1 [12] is a tool developed as an Eclipse IDE plug-in that
was designed to assist the SPL development and support the textual specifica-
tion and graphical representation of architectures described in LightPL-ACME.

1 The LightPL-ACME Studio tool is available as free download from:
http://www.dimap.ufrn.br/lightplacmestudio/downloads.php

http://www.dimap.ufrn.br/lightplacmestudio/downloads.php

A Lightweight Language for SPL Architecture Description 119

Fig. 2. Mapping to the referenced architecture in LightPL-ACME

The tool enables to specify architectural descriptions, create and edit LightPL-
ACME elements (e.g. ProductLine), and represent referenced architectures, be-
sides maintaining an automatic correspondence between textual and graphic
descriptions. Fig. 3 illustrates a partial textual description of the GingaForAll
SPL in LightPL-ACME and its corresponding graphical representation in the
LightPL-ACME Studio tool.

Fig. 3. Partial textual description of the GingaForAll ProductLine (left) and its cor-
responding graphical representation

Furthermore, LightPL-ACME Studio also enables to define the mapping be-
tween elements in the base architecture and features of the SPL by accessing the
properties of the architectural element and choosing the features to which such
element will be mapped, as exemplified in Fig. 4.

5 Related Work

In this section we present some proposals of the literature regarding ADLs to SPL
architectural description. In ADLARS [3] the relationship between features and
the architectural description is explicitly done through conditional expressions,
so that a Component Template specifies the collection of possible component

120 E. Silva et al.

Fig. 4. Mapping from the Ginga CommonCore component in the base architecture to
the Ginga feature in the LightPL-ACME Studio tool

configurations and associates these components to the features. xADL 2.0 [4]
specifies the architecture using XML (eXtensible Markup Language) schemas,
but this ADL does not define specific elements for representing SPL architec-
tures, thus hampering the identification of the variation points and their rela-
tion with the system architecture. In turn, PL-AspectualACME [5] represents
variabilities by purely using the conventional ACME abstractions. It combines
Representation elements for identifying product variations and Port elements
for representing the mechanism of variability selection, features are described as
Component Type elements, and the type of a feature (mandatory, optional or
alternative) is defined through properties.

Unlike LightPL-ACME, none of the abovementioned languages addresses an
explicit separation between the domain engineering and application engineering
activities and has the concept and representation of the referenced architecture.
Moreover, xADL 2.0 and PL-AspectualACME architectural descriptions tend
to be verbose, whereas LightPL-ACME provides a simple, lightweight way for
describing SPL architectures. Furthermore, LightPL-ACME enables the descrip-
tion of any sort of system since the proposed ADL is a general-purpose language,
unlike ADLARS, which is a specific language for embedded systems.

6 Final Remarks

This paper presented LightPL-ACME, a simple, lightweight ADL for describing
SPL architectures that introduces three essential elements (ProductLine, Feature,
and Product) in order to reduce the verbosity and complexity in the description
of SPL concepts and enrich elements present in the ACME ADL for SPL de-
scription and enable the description of the referenced architecture, a key concept
that denotes a base architecture with references to the features described in
the SPL. Finally, the LightPL-ACME strategy promotes a clear separation be-
tween the domain engineering and application engineering activities that are in-
volved in the SPL development process. and maintains characteristics related to
generality, simplicity, expressiveness, and extensibility inherited from ACME
by using the existing abstractions of this ADL and avoiding the addition of
many new abstractions. The proposed language has also an associated tool called

A Lightweight Language for SPL Architecture Description 121

LightPL-ACME Studio, which provides textual and graphical support for repre-
senting SPL architectures specified in this ADL.

LightPL-ACME was evaluated by a controlled experiment with a real-world
case study, the GingaForAll SPL, as available at http://www.dimap.ufrn.br/
lightplacmestudio/experiments.php. In this experiment, it was possible to
observe that LightPL-ACME is able to express important elements of an SPL
(such as features and the products that can be generated from them) in a simple,
lightweight, clear, and objective way. As directions to future work, we intend to
use the LightPL-ACME ADL within a model-driven development strategy in
order to automatically generate customized source code from product models
and also check the correlation between the source code and the architectural
model.

References

1. Clements, P., Northrop, L.: Software product lines: Practices and patterns.
Addison-Wesley, USA (2001)

2. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for
software architecture description languages. IEEE Trans. on Software Engineer-
ing 26(1), 70–93 (2000)

3. Bashroush, R., et al.: ADLARS: An architecture description language for soft-
ware product lines. In: 29th Annual IEEE/NASA Software Engineering Workshop,
pp. 163–173. IEEE Computer Society, USA (2005)

4. Dashofy, E.M., et al.: A highly-extensible, XML-based architecture descrip-
tion language. In: 2001 Working IEEE/IFIP Conf. on Software Architecture,
pp. 103–112. IEEE Computer Society, USA (2001)

5. Barbosa, E.A., Batista, T., Garcia, A., Silva, E.: PL-AspectualACME: An aspect-
oriented architectural description language for software product lines. In: Crnkovic,
I., Gruhn, V., Book, M. (eds.) ECSA 2011. LNCS, vol. 6903, pp. 139–146. Springer,
Heidelberg (2011)

6. Garlan, D., et al.: ACME: An architecture description interchange language.
In: 1997 Conf. of the Centre for Advanced Studies on Collaborative Research,
pp. 169–183. IBM Press (1997)

7. Monroe, R.: Capturing software architecture expertise with Armani. Technical re-
port, School of Computer Science, Carnegie Mellon University, USA (1998)

8. Saraiva, D., et al.: Architecting a model-driven aspect-oriented product line for
a digital TV middleware: A refactoring experience. In: Ali Babar, M., Gorton, I.
(eds.) ECSA 2010. LNCS, vol. 6285, pp. 166–181. Springer, Heidelberg (2010)

9. Ginga Middleware, http://www.ginga.org.br/en
10. Kang, K.C., et al.: Feature-oriented domain analysis (FODA) feasibility study.

Technical report, Software Engineering Institute, Carnegie Mellon University, USA
(1990)

11. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, tools, and ap-
plications. ACM Press/Addison-Wesley, USA (2000)

12. LightPL-ACME Studio, http://www.dimap.ufrn.br/lightplacmestudio/
13. Batista, T., et al.: Aspectual connectors: Supporting the seamless integration

of aspects and ADLs. In: XX Brazilian Symposium on Software Engineering,
pp. 17–32. SBC, Brazil (2006)

http://www.dimap.ufrn.br/lightplacmestudio/experiments.php
http://www.dimap.ufrn.br/lightplacmestudio/experiments.php
http://www.ginga.org.br/en
http://www.dimap.ufrn.br/lightplacmestudio/

Towards a Multi-scale Modeling

for Architectural Deployment Based on Bigraphs

Amal Gassara1, Ismael Bouassida Rodriguez1,2,3, and Mohamed Jmaiel1

1 ReDCAD, University of Sfax, B.P. 1173, 3038 Sfax, Tunisia
{amal.gassara,bouassida}@redcad.org,

mohamed.jmaiel@enis.rnu.tn
2 CNRS, LAAS, 7 Avenue du colonel Roche, F-31400 Toulouse, France

3 Univ de Toulouse, LAAS, F-31400 Toulouse, France

Abstract. With the evolution of distributed systems in size and com-
plexity, software deployment remains a challenging task. Despite the exis-
tence of several approaches, most of them use informal models that lack
a solid mathematic foundation. In this paper, we propose a bigraphi-
cal based approach for modeling and formalizing the deployment of dis-
tributed applications. This approach relies on multi-scale modeling. So,
we start by modeling the first scale with a bigraph. This bigraph is en-
riched, through a series of reaction rules, until reaching the last scale
that represents the deployment architecture.

Keywords: Deployment, Multi-scale modeling, Bigraphs.

1 Introduction

With significant advances in software development, software applications become
more and more complex, and distributed over a large network. These applications
need to deal with hardware constraints and user requirements during the exe-
cution. Thus, software components must be placed on the suitable hosts among
the distributed target environment to run the application properly. We called
this process software deployment.

By placing software components on hardware nodes, we can have several de-
ployment architectures. So, it is necessary to select the more efficient one in terms
of QoS. Consequently, the designer needs to specify the possible deployment ar-
chitectures in order to select the suitable one. This process remains a challenging
task. In this paper, we focus on the modeling of the deployment architectures.
In future work, we will analysis these models in qualitative and quantitative way
allowing the selection of the appropriate deployment architecture.

Despite the efficiency of existing models, most of them are informal and lack
of a solid mathematic foundation. Since bigraphs have a highly logical algebraic
language, we use it as a formal model. So, the aim of this paper is to propose
a bigraphical based approach for modeling and formalizing the deployment for
distributed applications. We follow a multi-scale modeling approach. So, we start

K. Drira (Ed.): ECSA 2013, LNCS 7957, pp. 122–129, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Multi-scale Modeling for Architectural Deployment Based on Bigraphs 123

with modeling the first scale which is defined by a bigraph. This bigraph is en-
riched using bigraphical reactive system (BRS) to reach the scales one by one.
At the last scale, we obtain bigraphs that represent the deployment architec-
tures. The latter includes hosts and software components. The enriching rules
are defined through a series of reaction rules.

The remainder of this paper is organized as follows. In Section 2, we explain
our proposal for the formal modeling of deployment architecture. In this section,
we present also overviews of bigraphs and multi-scale modeling. Then, we present
in the section 3 a case study called “Smart Home” which illustrates the feasibility
of our approach. We briefly review most related work in Section 4. Finally,
Section 5 concludes this paper and presents future work.

2 The Proposed Approach

We propose an approach aiming the modeling and the formalizing of deployment
for distributed applications. This approach performs three steps to generate
deployment architectures. In this paper, we focus only on the two first steps.

– Step 1: Modeling The designer starts with defining the different scales.
Then, he models the first scale using bigraphs.

– Step 2: Enriching The models specified by the designer are enriched by
applying reaction rules to reach the scales one by one. At the end of this
step, we obtain the set of the possible deployment architectures.

– Step 3: Selecting Each deployment architecture obtained at the previous
step is quantified in order to select the suitable one.

2.1 Overview of Bigraphs

The Static Structure. Bigraphs [1], proposed by Milner, formalise distributed
systems by emphasising both locality and connectivity. We use Fig. 1 to intro-
duce bigraphs informally. A bigraph consists principally of hyperedges and nodes
which can be nested and have ports. Each hyperedge can connect many ports on
different nodes (for example, v0, v1and v2 are joined by e1). A bigraph combines
two graphical structures, a place graph and a link graph, hence the term bigraph.
Fig 2 depicts the place and link graphs of the bigraph G.

0 1

0 1

e1

e0

x0 x1

y0 y1 y2

v0
v1 v2

K
K

M

Fig. 1. A Bigraph G

0

0 1

e1

e0

x0 x1

y0 y1 y2

v0

v1

v2

1

v0

v1

v2

Fig. 2. place and link graphs

x

A

R

x

A

R

Redex R Reactum R’

0 0

Fig. 3. A reaction rule

124 A. Gassara, I. Bouassida Rodriguez, and M. Jmaiel

Place Graph. The place graph is a hierarchical tree that describes the locality
of the nodes. In this graph, branches establish the nesting relationship of nodes
in the bigraph. Trees of are rooted by regions represented by dashed rectangle.
Within the place graph, in addition to nodes and regions, there can also be sites,
represented as grey rectangles. A site is a hole that can host new nodes.

Link Graph. The link graph is a hyper-graph that describes the connectivity
of nodes. Within this graph, there can be outer names (Fig. 2 y0, y1, y2) and
inner names (Fig. 2 x0, x1) represented as open links. These names define the
connection points at which coincident names may be fused to form a single link.
So, they give bigraphs the possibility to be composed by joining the inner names
of one bigraph with the corresponding outer names of another bigraph.

Control and Signature. Each node in the bigraph is assigned a control. Con-
trols (in this example K and M) indicate the node ports’ number through the
arity and how it behaves dynamically through the status which is either active or
passive or atomic. An atomic node cannot contain any node and a non atomic
node can be active or passive which means whether reactions may take place
within the node. We can use the notation “X-node”, which means a node that
has been assigned the control X. The set of controls forms the signature.

The Dynamic Structure. A BRS is a set of bigraphs and a set of reaction rules
that may be applied to rewrite these bigraphs. Each reaction rule consists of two
bigraphs: a Redex R and a Reactum R’. The application of the rule consists of
identifying the image of R in a bigraph and replacing it by the corresponding R’.
For example in Fig. 3, the rule allows an A-node to enter a R-node which is placed
in the same region. The site (grey rectangle) in the Redex represents all other
possible occupants of the R-node which are unchanged after applying this rule.
The graphical representation used above is handy for modeling, but unwieldy
for reasoning. Fortunately, bigraphs have an associated term language [2]. The
corresponding algebraic expression (using details in table 1) of this rule is:

Ax | R.d0 → R.(Ax | d0)

Table 1. The term language for Bigraphs

Algebraic Meaning
expression

U||V Juxtaposition of roots

U|V Juxtaposition of nodes

U.V Nesting (U contains V)

Kx K-Node linked to an outer name x

di Site numbered i

1 The barren (empty) root

/x.U U with outer name x replaced by an edge

A Multi-scale Modeling for Architectural Deployment Based on Bigraphs 125

2.2 Multi-scale Modeling

Our approach is based on multi-scale modeling [3]. In fact, a scale is a generic
model that provides additional details of the design and describes a level or a
layer in a system. Multi-scale methodologies are based on the fundamental prin-
ciple: model each phenomenon across the most relevant. For this, these method-
ologies have two key points: the first is to distinguish between different scales
and the second is to model the relationships between these different scales.

Multi-scale Modeling with Bigraphs. In our approach, a scale is represented
as a bigraph, where nodes correspond to deployment nodes (i.e., physical envi-
ronment, hosts, devices, etc) or software components, edges represent interaction
between linked nodes. Moreover, the transition from one scale to another is con-
sidered as bigraphical reactive system. This transition is an enriching performed
through a series of meta-reaction rules. In fact, a meta-reaction rule contains
nodes having a variable control (i.e., a variable can represent any control from
the signature). Thus, the meta-reaction rule can be instantiated to several ones
with different controls.

3 Case Study: Smart Home

In order to illustrate our approach, we consider an example of an M2M appli-
cation named “Smart Home” denoted in the Fig. 4. A smart home is composed
of rooms. Each room can be equipped with heterogeneous devices (sensors like
thermometer, presence sensor, light sensor, etc and actuators like air conditioner,
lamp, etc). Between these devices, there is a need of communication. Sensors
monitor and record information related to the environment such as rooms lu-
minosity, human presence, temperature, etc. These information are transmitted
to a control unit. Once received, the control unit, by analyzing them, makes
the appropriate decisions to configure the devices and propagate these decisions.
Now we apply our approach on Smart Home.

3.1 Step 1: Modeling

This step allows the designer to determine the application scales. Until now,
our approach enables the deployment of the software entities ensuring the

ThermometerAir conditioner

Lamps

Presence
sensor

Light
sensor

Temperature communication group

Luminosity communication group

Fig. 4. Smart Home

0

H

R

R

R

CU

Sr

Ac

SrSr

Ac

Fig. 5. Deployment infrastructure scale

126 A. Gassara, I. Bouassida Rodriguez, and M. Jmaiel

communication of an application. So, we propose three scales: the deployment
infrastructure scale, the communication scale and the deployment scale. After
that, the designer models the first scale using a bigraph.

Scale 0: Deployment Infrastructure Scale. This scale includes physical
environment, hosts, devices, etc. The bigraph defined in the Fig. 5 illustrates
this scale for a smart home. The nodes H and R represent the home and a room
respectively. Whereas, the nodes CU , Sr and Ac represent the control unit, a
sensor and an actuator respectively. Initially, these nodes are empty. A hyperedge
depicts a need of communication. For example, the hyperedge at right depicts the
temperature communication group between the air conditioner (Ac-node) and
the thermometer (Sr -node) and the control unit. The other hyperedge depicts
the luminosity communication group.

3.2 Step 2: Enriching

Scale 1: Communication Scale. This scale represents explicitly the entities
that take part in the communication. Each communication group is formed by
a set of senders and receivers. So, the bigraph defined in the first step (Fig. 5),
is enriched by applying three meta-reaction rules: R1.1, R1.2 and R1.3.

Rule to add a sender: R1.1 This rule consists of nesting a sender (S -node)
in each empty sensor (Sr -node depicting a thermometer, a presence sensor
or a light sensor) having an outer name x . In fact, a communication group
is defined by an hyperedge that links nodes with the same outer names (i.e.,
outer names are not represented explicitly in the Fig. 5 because they are
joined to form hyperedges). Then, we nest in this S -node an x-node to mark
its communication group. For lack of space, we present the reaction rules
only with algebraic expressions.
R1.1: Srx .(1) → Srx .(S .x)

Rule to add a receiver: R1.2 This rule consists of nesting a receiver (R-
node) in each empty actuator (Ac-node depicting a lamp or an air con-
ditioner) having an outer name x . Like with the rule R1.1, we nest in the
R-node an x -node.
R1.2: Acx .(1) → Acx .(R.x)

Rule to add a pair of sender and receiver: R1.3 This rule allows to add
a pair of sender and receiver in the empty control unit (CU -node) for each
communication group (i.e., outer names x and y). We also nest an x -nodes
in the first pair and y-nodes in the second one.
R1.3: CUx ,y .(1) → CUx ,y .(S .x | R.x | S .y | R.y)

The meta-reaction rules R1.1, R1.2 and R1.3 are instantiated by changing the
name of the control x according to the outer name. In our example, we instantiate
R1.1 and R1.2 twice by replacing x with g0 then g1 for the temperature and the
luminosity communication group respectively. These rules are applied several
times until there are no more empty devices (Sr and Ac nodes). We instantiate

A Multi-scale Modeling for Architectural Deployment Based on Bigraphs 127

R1.3 once by replacing x with g0 and y with g1 and the intantiated rule is
applied one time.

The Fig. 6 shows the application effect of the instantiated rules on the bigraph
given on the Fig. 5. In this bigraph, there are S -node in sensors, R-node in
actuators and both of them in the control unit. The S-nodes and the R-nodes
belonging the temperature communication group, contain g0-node. Whereas,
those belonging the luminosity communication group, contain g1-node .

Scale 2: Deployment Scale. This scale represents the middleware components
that ensure the communication between the application components. Here, we
use the Event-Based Communications (EBC) which provides three types of enti-
ties: event producers (EP), event consumers (EC) and channel managers (CM).
The EP and EC are connected to CM . The EP sends data to the CM to which
they are connected. The CM returns a copy of the received data to all the EC
which are connected to it. Therefore, we enrich the bigraph obtained at the
previous scale (defined in Fig. 6) by applying the following meta-reaction rules:

Rule to add a CM : R2.1 This rule enables to add a CM -node to each com-
munication group (e.g. a set of juxtaposed nodes linked by one hyperedge).
The CM -node is placed in one node belongs to the communication group. It
contains also a nested node to mark its communication group.
R2.1: /x Y 1x || Y 2x || ... || Ynx → /x Y 1x || Y 2x || ... || (Ynx | CM .x)

Rules to add an EP and an EC : R2.2 and R2.3 These rules enable to
add an EP -node to each sender and EC -node to each receiver. The x -
node indicates the communication group to which the receiver or the sender
belongs.
R2.2: S .x → S .EP .x
R2.3: R.x → R.EC .x

Rules to link EPs and EC s with CM : R2.4 and R2.5 The meta-reaction
rule R2.4 allows to link an EP and a CM that belong to the same commu-
nication group (i.e, having a nested x -node). whereas R2.5 allows to link an
EC and a CM .
R2.4: EP .x || CM .x → /y EPy || CMy .x
R2.5: EC .x || CM .x → /y ECy || CMy .x

The above meta-reaction rules are instantiated by replacing x with g0 then g1
for the temperature and the luminosity communication group respectively. The
Fig. 7 shows the application effect of the set of these instantiated rules on the
bigraph given on the Fig. 6. For the luminosity communication group, we find
EP -node nested in each sender and EC -node nested in each receiver belonging
this group. All of them are connected to the CM -node which is nested in the CU -
node. Also, for the temperature communication group, all the EP -nodes and the
EC -nodes belonging this group are connected to the CM -node which is nested
in the Ac-node. This bigraph is one of a set of possible bigraphs obtained after
applying these rules due to the choice of the channel manager placement (i.e.,
the CM -node is deployed on one node belongs to the communication group).

128 A. Gassara, I. Bouassida Rodriguez, and M. Jmaiel

0

H

R

R

R

CU

Sr

Ac

SrSr

Ac

Sg1 Sg1

Rg1

S g0

g0R

Rg1

Sg1

R

S

g0

g0

Fig. 6. The communication scale

0

H

R

R

R

CU

Sr

Ac

SrSr

Ac

S
EP

S

R

S

R

R

S

R

S

EP

EC

EC EC

EP EP

EP

EC

CM

CM

g1

g0

Fig. 7. The deployment scale

4 Related Work

Current research studies on component deployment propose various approaches.

Architecture-Based Approaches. These approaches use Architecture De-
scription Langauge (ADL). The work[4] presents an ADL extension for specifying
a context-aware deployment. This deployment is performed in a propagative way
and is driven by constraints put on the resources of the target hosts. However,
it does not perform the automatic deployment planning and optimization.

MDA-Based Approaches. These approaches use usually OMG D&C specifi-
cation [5] which offers three models. The component model defines descriptors for
components and configurations, the target model defines descriptors for the tar-
get site on which applications can be deployed and the execution model defines
the DeploymentPlan, which describes deployment decisions. It defines an Exe-
cutionManager which executes application according to this deployment plan.

Some frameworks have been developed on the top on this approach to support
component deployment like DAnCE [6], Dacar [7] and Deployment factory [8].
DAnCE is a QoS-enabled Component Deployment and Configuration Engine
targeted for DRE systems. This framework deals only with CORBA Component
Model. Whereas Deployment Factory is an unified environment for deploying
component based applications. This framework does not deal with reconfigurable
systems. However, Dacar is a model-based framework for deploying autonomic
software distributed systems. Some MDA-based approaches use UML includ-
ing [9]. This work proposes a UML extension named “DM profile” ensuring a
high-level description for modeling the deployment and its management in dis-
tributed application. All these research activities do not focus on deployment
planning and deployment optimization.

5 Conclusion and Future Work

In this paper, we have presented an approach for modeling and formalizing
the deployment. We have proposed a multi-scale modeling approach based on

A Multi-scale Modeling for Architectural Deployment Based on Bigraphs 129

bigraphs and bigraphical reactive system. It performs three scales: deployment
infrastructure scale, communication scale and deployment scale. The first scale
is given by the designer. Whereas the other scales are obtained using a BRS. So,
we define a series of meta-reaction rules ensuring the transition between scales.
These meta-reaction rules are instantiated according to the bigraphical models
specified by the designer.

In future work, we aim to generalize this contribution and alter the enriching
rules to generic ones. Besides, we plan to define more scales for modeling and
accomplish the third step of our approach (selecting a deployment architecture).

Acknowledgments. This research is supported by the Itea2’s A2Nets
(Autonomic Services in M2M Networks) project1.

References

1. Jensen, O.H., Milner, R.: Bigraphs and mobile processes. Technical Report UCAM-
CL-TR-580, University of Cambridge, Computer Laboratory (February 2004)

2. Birkedal, L., Debois, S., Elsborg, E., Hildebrandt, T., Niss, H.: Bigraphical models
of context-aware systems. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006.
LNCS, vol. 3921, pp. 187–201. Springer, Heidelberg (2006)

3. Khlif, I., Hadj Kacem, M., Drira, K.: Une approche de description multi-échelles
et multi points de vue pour les architectures logicielles dynamiques. In: Conférence
Francophone sur les Architectures Logicielles, Montpellier, France (May 2012)

4. Hoareau, D., Mahéo, Y.: Constraint-based deployment of distributed components
in a dynamic network. In: Grass, W., Sick, B., Waldschmidt, K. (eds.) ARCS 2006.
LNCS, vol. 3894, pp. 450–464. Springer, Heidelberg (2006)

5. Object Management Group, Inc.: Deployment and configuration of component-
based distributed applications specification, version 4.0 (April 2006)

6. Deng, G., Balasubramanian, J., Otte, W., Schmidt, D.C., Gokhale, A.: Dance: A
qos-enabled component deployment and configuration engine. In: Dearle, A., Savani,
R. (eds.) CD 2005. LNCS, vol. 3798, pp. 67–82. Springer, Heidelberg (2005)

7. Dubus, J., Merle, P.: Towards Model-Driven Validation of Autonomic Software Sys-
tems in Open Distributed Environments. In: Workshop M-ADAPT, in Conjunction
with ECOOP 2007, Berlin, Germany (July 2007)

8. Hnetynka, P.: A model-driven environment for component deployment. In: Proceed-
ings of the Third ACIS Int’l Conference on Software Engineering Research, Manage-
ment and Applications, SERA 2005, pp. 6–13. IEEE Computer Society, Washington,
DC (2005)

9. Miladi, M.N., Krichen, F., Jmaiel, M., Drira, K.: A UML based deployment and
management modeling for cooperative and distributed applications. In: Proceedings
of the ACIS International Conference on Software Engineering, Management and
Applications (SERA 2010), Montreal, Canada, 16 p. (May 2010)

1 https://a2nets.erve.vtt.fi/

https://a2nets.erve.vtt.fi/

Classification of Design Decisions – An Expert

Survey in Practice

Cornelia Miesbauer and Rainer Weinreich

Johannes Kepler University Linz, Austria
{cornelia.miesbauer,rainer.weinreich}@jku.at

Abstract. Support for capturing architectural knowledge has been iden-
tified as an important research challenge. As the basis for an approach
for recovering design decisions and capturing their rationale we have
performed an expert survey in practice to gain insights into the different
kinds, influence factors, and sources for design decisions and also on how
they are currently captured in practice. The survey has been performed
with software architects, software team leads, and senior developers from
six different companies in Austria with more than 10 years of experience
in software development on average. The survey confirms earlier work
by other authors on design decision classification and influence factors
but also identifies additional kinds of decisions and influence factors not
mentioned in this previous work. In addition, we gained insight into the
practice of capturing, the relative importance of different decisions and
influence factors, and on potential sources for recovering decisions.

Keywords: Software Architecture Knowledge Management, Design
Decisions, Design Decision Classification, Capturing Design Decisions.

1 Introduction

Documenting the rationale of architectural choices is at the heart of software
architecture knowledge management (SAKM) [1]. During the last years sev-
eral approaches for capturing design decisions and documenting their rationale
have been proposed and also successfully applied in practice [1]. If architectural
knowledge has been captured adequately it serves as a means for preserving
otherwise tacit knowledge. However, capturing and maintaining design decisions
and their rationale raises the same issues as creating and maintaining other kinds
of documentation, like the high effort involved in documenting [2][3], the lack of
immediate benefits [4], the lack of time and budget [5] and the general difficulty
of documenting design decisions during product development [4][6].

Different approaches have been developed to specifically address the problem
of efficiently and systematically capturing design decisions. For example, ADDR
[7] is an approach that aims at recovering architectural design decisions by com-
paring architectural views from different releases of a software system. The result
is an architectural delta, which provides clues to an architect for recovering deci-
sions. Another example is presented by Eloranta and Koskimies [8], which aim at

K. Drira (Ed.): ECSA 2013, LNCS 7957, pp. 130–145, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Classification of Design Decisions – An Expert Survey in Practice 131

systematically recovering and documenting architectural design decisions during
architecture reviews. They specifically use the DCAR [9] review method, which
is a decision-oriented review method, though in principle, any other architecture
review method could be used. For example, identifying design decisions and ra-
tionale as part of architectural approaches is also an important aspect of ATAM
(see [10], p.48).

We are currently working on an approach combining several strategies for fa-
cilitating the capturing of design decisions both on technical and process levels.
On the process level we intend to support capturing and maintaining architec-
tural decisions during architectural reviews through context information [11] and
through providing a conceptual framework for capturing specific types of archi-
tectural decisions and influence factors for such decisions. On a technical level we
intend to (automatically) detect design decisions in code and other artifacts and
to support the (manual) recapturing of the rationale for the detected decisions.
We intend to base this work on already existing work on extracting architectural
structures from already implemented software systems [12].

To support these planned (and partly ongoing) research activities we con-
ducted an expert survey in practice to identify the potential kinds of architec-
tural decisions, their drivers, and the sources of their documentation as used
in practice. The survey has been performed with software architects, software
team leads, and senior developers from six different companies in Austria with
more than 10 years of experience in software development on average. It con-
firms earlier work by other authors on design decision classification and influence
factors but also identifies additional kinds of decisions and influence factors not
mentioned in this previous work. In addition, we gained insight into the practice
of capturing, the relative importance of different decisions and influence factors,
and on potential sources for recovering decisions.

The remainder of this paper is structured as follows: In Section 2 we discuss
some previous and related work on design decision classification and on potential
influence factors for these decisions. In Section 3 we present the research objec-
tives and research questions. In Section 4 we describe the research approach and
the study design. In Section 5 we present the results of the survey. The findings
are discussed in more detail in Section 6. Validation and limitations are discussed
in Section 7. The paper is concluded with the main findings in Section 8.

2 Previous and Related Work

A taxonomy of design decisions is presented by Kruchten [13][14] and Kruchten
et al. [15]. In this taxonomy architectural design decisions are classified into exis-
tence decisions, nonexistence decisions (bans), property decisions, and executive
decisions. An existence decision states that some element/artifact will exist in
the systems design or implementation [14]. Existence decisions can affect either
the structure or the behavior of systems. Structural decisions lead to the cre-
ation of subsystems, layers, and components while behavioral decisions are more
related to how elements interact to address some functional or nonfunctional

132 C. Miesbauer and R. Weinreich

requirement. Kruchten argues that existence decisions are the least important
to capture since they are the most visible element in the systems design or im-
plementation. Still they should be captured in order to relate them to other
decisions (e.g., to alternatives). We should add that Kruchten implies that the
rationale for a decision is documented as part of the design or implementation
artifact. The second kind of decisions is nonexistence decisions or bans. Such
decisions state that some element will not appear in the design or implementa-
tion. It is very important to document such decisions and their rationale since
they are not visible from the resulting architecture design or implementation
[14]. The third kind of decisions is property decisions. Property decisions state
central qualities of a system and include design rules and guidelines as well as
constraints on a system (in the sense of a property the system will not exhibit).
Finally, executive decisions do not relate to the design or the system qualities
and are driven by the business environment. They constrain the other kinds of
decisions and affect the development process, the people, the organization, and
the choices of technologies and tools.

Influence factors are very important for characterizing a design decision and
for providing the rationale for a design decision. Therefore, many authors pro-
pose to capture influence factors [5], also called forces [15][9] and drivers [7][16].
In a survey on architectural design rationale Tang et al. [5] identified several fac-
tors that influence decision-making using a quantitative survey on design rational
with 81 practitioners with more than 3 years of experience. The participants were
asked about factors that influence their design choices. Tang et al. proposed a
number of generic factors identified in literature including design constraints,
design assumptions, weakness of a design, cost and benefit of a design, design
complexity, certainty of design, certainty of implementation and tradeoffs be-
tween alternative designs. They then collected the relative importance of these
factors according to the participants of the study, the frequency of use, and
the frequency of documentation. For most of the presented generic factors they
observed that the usage frequency is less than the perceived importance, and
the documentation frequency is again less than the usage frequency. In terms
of usage frequency, constraints on the design, design benefits, and certainty of
design were rated highest. In addition to these generic factors, the participants
revealed a number of additional influence factors (without commenting on their
importance, their frequency of use and their frequency of documentation). Tang
et al. classified these additional influence factors into the three broad categories:
business-goals-oriented, requirements-oriented, and constraints and concerns.

In the study presented in this paper we also build on the work presented above
and contribute to its validation.Wemainly asked questions about the kind of archi-
tectural design decisionsmade in practice, how they aredocumented, andhow they
can be classified based on examples mentioned by practitioners.We related the re-
sults of the study to the classification presented by Kruchten and discussed above.
Since we also intend to support capturing of the rationale of decisions in our future
work, we additionally wanted to know which factors typically influence design de-
cisionsmade in practice and how strong this influence is perceived by practitioners.

Classification of Design Decisions – An Expert Survey in Practice 133

This relatesmainly to the perceived importance and the frequency of use of factors
as reported by Tang et al. As an important difference, we related our findings not
only to the generic factors mentioned in the work by Tang et al. but included the
additional factors they identified during their study on generic factors.

3 Objectives and Research Questions

The main objective of the study is to understand how architects, but also de-
velopers, deal with design decisions in practice. As part of this objective we
first wanted to know how design decisions are actually made and how they are
documented. Therefore, the first research question is

RQ1: How are design decisions made in practice and how are they docu-
mented?

In order to further support the automatic detection of design decisions in
different artifacts like code and design we wanted to find out which design deci-
sions architects and senior developers think about and how those decisions can
be classified.

RQ2: Which kinds of design decisions are typically made in practice and how
can they be classified?

The third aim of conducting this survey has been to get more information on
factors that usually influence decisions. We wanted to figure out which factors
architects and senior developers are aware of and which factors they are not.

RQ3: Which factors usually influence design decisions and how strong is this
influence as perceived by architects and senior developers?

We used the factors identified by Tang et al. (and discussed in the previous
section) as a basis for rating influence factors and extended these factors with
additional factors from the answers given to the previous questions and from our
own experience.

4 Research Approach

The study has been performed using expert interviews. Expert interviews are
a widely used and integral part of qualitative research [17]. We decided to use
qualitative expert interviews since they are typically used when the focus is
on generating new knowledge instead of quantifying existing knowledge. We
decided on qualitative interviews with a guide that contains open questions to
gather as many examples of design decisions as possible. Our decision to use
open questions was made in order to get new information about design decisions
and to find out, which types of design decisions experts are aware of and which
kinds of decisions are made unaware and as a consequence are not documented.
We assumed to get more specific information about how architects, but also
developers think about design decisions in practice by conducting the interviews
in the style of a discussion. To interpret the results we used content analysis
with a-priori codification to assign statements to specific research questions.

134 C. Miesbauer and R. Weinreich

After defining our research goals and questions, we planned the survey. The
study has been performed in four steps. First we defined the criteria for the
selection of the experts. This was followed by the definition of the interview
guide with questions addressing our research questions. We selected a predefined
categorization for codifying the interviews. In the third step we conducted the
interviews using the guide and transcribed them word-by-word. Finally, we used
codification on the basis of the predefined categories for data analysis. These
steps are described in greater detail below.

Sampling. We targeted software engineers, lead developers and software archi-
tects from different companies in Austria. We aimed particularly at people who
had more than three years of professional experience in software architecting
and development. All in all we interviewed 9 experts from six different compa-
nies with expertise in industrial and enterprise software system development. All
study participants were male and had at least a master degree in computer sci-
ence. In addition, they had at least 3 years of professional experience in software
engineering, the average experience being more than 10 years. Seven of them are
actually working as a team lead or software architect. They work in teams of
varying size between 2 and 15 developers, but only two teams are larger than
5 team members. 4 participants of the study have gained experiences in more
than three companies.

Definition of Interview Guide. We conducted the interviews using an inter-
view guide with open questions according to [18]. The questions have been defined
in such a way that the experts were able to talk very openly about their profes-
sional experiences, previous projects and teams. We divided the guide into three
parts containing 16 main questions. Each of the main questions contained 2 to
4 subquestions, which we asked when the participants were not actually talking
about a specific topic. In the first part (2 questions) wewanted to knowmore about
the experts and their background. The second part (10 questions) aimed at col-
lecting examples of design decisions and design decision categories. In this part
we asked questions about the decision making and documentation process. We
placed the questions without giving any examples. For example, we asked, who
would make design decisions, whether they could provide examples of design de-
cisions, when decisions are made, and whether they are documented or not. We
aimed at being able to construct decision categories solely from the examples men-
tioned by the study participants. Again, the questions were asked conversationally
to not restrict the participants in their conversation, but to inspire them to talk
freely. The last part (4 questions) of the guide focuses on the known categories
for design decisions and influence factors we discussed in Section 2. In this case,
we confronted them with the specific categories, asked them for examples in the
categories and asked them about the role (i.e., the frequency) of such decisions
in their work (including previous projects). We also asked them how and where
certain types of decisions are documented. The questions in this part strived for
completeness, i.e., to get information on types of decisions they had not mentioned
previously, but also on the perceived frequency of such decisions.

Classification of Design Decisions – An Expert Survey in Practice 135

Conduction of Interviews. All interviews were conducted personally by the
same person and recorded on agreements with a Dictaphone. The interviews took
between 30 and 60 minutes per expert, 43 minutes on average. The interview
guide ensured that all needed questions were answered, but the interviews had
the character of a natural conversation. We wanted the participants to talk freely
about their experiences.

Data Analysis. We transcribed all interviews literally to make them available
for analysis and then analyzed the text using content analysis. This included
systematically searching and coding with predefined categories using a-priori
coding as suggested by Mayring [19]. This step was performed using the 4-eyes
principle to mitigate threats to validity. Based on the research questions from
Section 3 we defined the following main categories for analysis:

Background of Experts. Interesting facts about the experts are encoded to get
basic information about the background of the experts. We defined professional
experience, functions, and project sizes as the three subcategories to make state-
ments about their experience. The subcategory interesting facts should contain
additional information of interest about the experts, their experience, and/or
personal preferences.

Capturing Design Decisions. This category is used for gathering all informa-
tion about making and capturing design decisions, but also for getting informa-
tion about how decisions are documented in the project or company. Information
in this category helps us to answer our first research question (see Section 3).
We further divide this category into four subcategories: the decision-making pro-
cess subcategory captures information about the decision making process; the
decision maker subcategory collects information about who makes and/or doc-
uments decisions; in the decision-reasoning subcategory we gather information
on documenting the rationale of decisions; finally, in the decision documentation
subcategory we collect all information on how decisions are documented, what
is actually documented, and where they are documented.

Design Decision Classification. This main category contains subcategories
for examples on design decisions, definitions of the term design decision and
mentioned categories for classifying design decisions. The information from the
subcategories example and categories is used for determining categories for design
decisions classification solely based on the examplesmentioned by the participants
of the study. A further category, called categories used, is used for collecting the
opinions of experts on given decision types (according to the classificationprovided
by Kruchten). The information collected in all subcategories is used for answer-
ing the second research question (RQ2). Information encoded with subcategory
categories used is also used for answering the first research question (RQ1).

Influence Factors for Decision Making. All mentioned influence factors for
decision-making are collected within this category. The subcategory influence
factors impact collects influence factors and their perceived impact after having
provides examples for influence factors published by Tang et al. [5]. Informa-
tion from this category is used for answering the third research question (RQ3)
mentioned in Section 3.

136 C. Miesbauer and R. Weinreich

5 Survey Results

We have structured the results into three different areas addressing the primary
research questions. In the following subsection we comment on the different kinds
of design decisions that have been mentioned by the survey participants and how
they can be related to the taxonomy presented by Kruchten. This is followed by
results on how and when design decisions are captured. Finally, we will present
results on potential influence factors for design decisions.

5.1 Classification of Design Decisions

When talking about design decisions we asked the experts about the kinds of
decisions they are usually confronted with. In addition, we collected the different
kinds of decisions when asking about which decisions are usually documented
and which not. Overall we collected 22 different categories of architectural de-
sign decisions. We then mapped these categories to the taxonomy proposed by
Kruchten. This taxonomy includes existence decisions (structural, behavioral,
ban), executive decisions (tool, technology, process, organization), and property
decisions (guidelines, design rules, constraints). The result is shown on the left
side of Figure 1. As shown in the figure 73% of all mentioned categories could
be mapped to existence decisions, but no bans were mentioned. 23% could be
mapped to executive decisions, though none of them were process or tool deci-
sions. 4% of could be mapped to property decisions. We noted that participants
usually classified design decisions using different levels, e.g., personal, project,
organizational, module, deployment and architecture level. From the mentioned
levels we were able to identify four main levels: implementation, architecture,
project, and organization. We will discuss this in more detail in Section 6.

Additionally, we collected categories based on the examples for decisions pro-
vided by the participants (contrary to the mentioned decision types or categories
as discussed above). In total we collected 120 examples of design decisions. We
then mapped the examples to the categories of the Kruchten taxonomy. The re-
sult of this analysis is shown in the right side of Figure 1. As shown in the figure,
both kinds of analysis provided nearly the same results. About two-thirds of the
examples were existence decisions and about a quarter of all examples could be
assigned to the executive decision category (most of them technology decisions).

�������

����

�������	�
�����������
�

	
�����������������

������������������

	
�����������������

����
���

����

�������	����������	�

Fig. 1. Categories mentioned based on the Kruchten taxonomy [14]

Classification of Design Decisions – An Expert Survey in Practice 137

�� �� �� �� �� ���

� �!" !�	#���"$%$��%�
��&�'$���#���"$%$��%�

	���($% ��"����"$%$��%�)���%*�

��% ��$� %�

��%$����!#�%�
!$��#$��%�

�����$+�����
���"�%%�

��"&��#��,�
���#%�

	!���������(��� %�

��&�'$���#���"$%$��%�

��% ��$� %�

���#%�

�($% ��"����"$%$��%�
�
������ ,���"$%$��%�
�
�(�"!�'����"$%$��%�

Fig. 2. Categories from examples mentioned by number of experts

Figure 2 provides a more detailed overview of the number of experts that
mentioned examples belonging to one of the subcategories in the Kruchten tax-
onomy. As shown in the figure, most survey participants provided examples for
structural (components, interfaces, layering) and technology decisions (middle-
ware, libraries, protocols). Decisions on tools and processes were not mentioned
by any of the participants. As shown in the next section, such decisions are
actually made, but rarely documented.

5.2 Capturing Design Decisions

The participants provided several examples, where the documentation of central
design decisions would be useful, including training of new employees, argu-
ing with customers during development, resolving production problems, impact
analysis during product maintenance, and preventing knowledge vaporization.
About half of the participants mentioned that they experienced to be personally
affected by knowledge vaporization, meaning they forgot decisions they made
themselves. All in all, all participants agreed on the usefulness of capturing de-
sign decisions.

We also asked them about the decision process and about whether and how
decisions are documented. Decisions with a local scope (e.g., within a component)
are usually made by developers on their own. Such decisions were usually called
low-level decisions during the interviews. Architectural decisions (also high-level
or cross-component decisions) are typically a group effort with one person in
charge being responsible for making the final decision.

They also named a number of places for documenting design decisions. Exam-
ples named were source code (for low-level decisions), meeting minutes (in larger
teams), project diaries (in smaller teams), issue tracking systems, and wikis. Es-
pecially wikis seemed to work well, which corresponds to experiences reported by
other authors [20]. However, the most frequent form of documentation is meet-
ing minutes. Also, most of the participants noted that while important design

138 C. Miesbauer and R. Weinreich

decisions are usually documented, their rationale is not. One exception seems to
be technology decisions, which are made carefully and which are usually docu-
mented.

In the second part of the interview we explicitly provided all subcategories
to the experts and asked if and how decisions from the different categories are
made and documented. The results of this second round of questions are shown
in Figure 3.

�����������	�
�
���

�	���
������	�
�
���

��	�
��	�	��	�
�
���

����	�����	�
�
���

����
-����

����	���

�	��������

������

�	�
�
�����������
�����	�	��

�	�
�
�����	��������
�����	�	��

�	�
�
��������	�

Fig. 3. Decisions made and documented (expert answers)

The results confirm the importance of technology decisions. According to the
study participants technology decisions are made at an early stage of the project
and hardly change during development. Typically different alternatives are ex-
plored and discussed. The results also show that decisions on tools are not im-
portant during the design process. It is interesting that process decisions are
made by all experts, but were not mentioned when we asked for different kinds
of decisions without providing any categories. All experts mentioned that they
document structural decisions, at least partially. But after we brought into ques-
tion what they document exactly, we found that they usually only document the
result of the decision, but not the rationale or the alternatives. They also men-
tioned that the level of abstraction is important for documentation. Decisions on
high-level design (i.e., architectural decisions) are usually documented. Decisions
with a local scope are either documented in code, in issue tracking systems or
they are not documented at all.

The results on tool-related decisions reinforce the previous findings that de-
cisions about tool selection are of low significance. The interviews revealed that
the tool suite is either predetermined, or not important.

Contrary to the previous results on process decisions (without providing the
Kruchten taxonomy) the experts consider also those decisions. None of the 120
mentioned examples or 22 categories of design decisions (see Section 5.1) could be
assigned to this category. According to what is shown in Figure 3 those decisions
are important, but rarely documented.

Classification of Design Decisions – An Expert Survey in Practice 139

5.3 Influence Factors for Decision Making

We also wanted to know different influence factors on the design decisions taken.
For this we asked the study participants for examples of influence factors (with-
out mentioning of any factors) and mapped the provided influence factors to
different categories. As the basis for the categories we used the factors identified
in a survey conducted by Tang et al. [5], which we extended with additional
factors that emerged from the provided answers.

��
��

$�
��

�	
�

$�$
��
��

��
�$�

��
��

��
���
��
	�
��
��
��
�

�

��
��
��
��

��
��
��

$�
�

��

.��
��
��
��
�

��

�

�
�$
��
�$
��
�

��

.��
��
	�

�

��$
��

�

�

��

�

�
��
���

��
�$
��
�
��
��

�

�
��
�$�
��
��

�$�
��
��

�

�$
�
��

�$
��

�

��
��

��
�	

��
�

&�
��
�
��
��
�$
��
�$
�$�
��

�

�
��
�
��

��
���

��
��
��
�

��

�

 �
��
��
�$
��
��

 �
��
��

��
��
$
�

��
�

&�
��
�

$�
�.
��
��
	�

�

 �
�
��
��

$��
�

��
�	
��
!�

�

��
��
��
��

��
��
��
�

��

�

"�

/�

0�

#�

$�

%�

&�

'�

(
��

��
���

���
��
��
��

�

Fig. 4. Influence factor categories based on Tang et al. [5]

The results are shown in Figure 4. The figure shows how many experts
mentioned influence factors in these categories. It is interesting that the most
frequently mentioned influence factor was personal experience, which was men-
tioned by two thirds of the participants, followed closely by user requirements
and constraints. Business goals, time and quality attributes were mentioned by
30% of the study participants. Further factors that were mentioned include the
qualification of employees, available personnel resources, and emerging technolo-
gies and trends.

We later asked the participants about the degree of influence of certain in-
fluence factors (large, medium, low). In this case we used factors mentioned by
Tang et al. and extended them by factors that already emerged when preparing
the study, like personal experience and previous decisions. Therefore, some cate-
gories that emerged as result of the questioning itself (like emerging technologies
and trends) are not included.

The results are shown in Figure 5. Most participants (7 of 9) mentioned that
personal experience and preferences have a large influence. It is interesting that
6 of them had already mentioned this before. The influence of quality attributes
in general has not been rated as high as we would have expected. Some experts
mentioned that quality attributes are considered in principle, but that other
factors ultimately have more weight. While business goals and strategies seem to
be very important for decision-making, the influence of management preferences

140 C. Miesbauer and R. Weinreich

������%�����%���%�

	�%���%%�
���%�����% � �
���

��%�����	(������������������%�

���� ��������������� �������,����

�%����������� %�

����� ,������ �%�

�����

��%��

�����������������
,����������� ,��

����
���� ���������%�

��
��

�������

����

Fig. 5. Influence factors as rated by experts

seems to be rather low. While the influence of previous decisions did not emerge
when asking for examples for influences above, it was quite highly ranked when
we specifically asked for the importance of this category.

6 Summary and Discussion of Results

We will discuss the results primarily from the perspective of the research ques-
tions stated in Section 3.

6.1 On Making and Documenting Decisions

The participants of the study were aware of the importance of documenting de-
sign decisions and of documentation in general. They mentioned various reasons
in favor of documentation. The problem of knowledge vaporization even on a
personal level was mentioned by several of the participants.

In terms of making decisions they mainly distinguished between decisions with
a local and a global (cross-component) scope. Local decisions are made by indi-
viduals and sometimes discussed in reviews afterwards. Such low-level decisions
are documented at various places including source code and issue management
systems, or they are not documented at all. Global decisions (e.g., architectural
decisions) are usually discussed in team meetings and documented in project
diaries, meeting minutes, and wikis. Minutes of meeting seemed to be used most
often, wikis were mentioned to be very useful, and project diaries are useful in
small teams.

Structural and behavioral decisions as well as technology decisions are usually
documented, while decisions on tools, process, organization, properties, and bans
are only documented by a few. Decisions on tools and bans seem to be not

Classification of Design Decisions – An Expert Survey in Practice 141

important for most of the participants. Finally, while most important decisions
seem to be documented, their rationale is often not.

We can draw some conclusions from these findings. For example, documenting
decisions makes even sense in smaller teams, because knowledge vaporization is
also present at the level of individuals. Lightweight approaches like diaries can
be used in such a case. In larger teams, support for collaborative decision-making
is required, both on a process and on a tool level. Finally, we need to further
investigate ways to explicitly support the capturing of rationale with minimal
effort.

6.2 On Design Decision Classification

When analyzing the types of decision and possible decision categories from ex-
amples provided by the experts, and mapping them to the taxonomy provided
by Kruchten, we saw that about 70% of all decisions mentioned are existence
decisions (with structural decisions dominating) and about 25% are related to
technology decisions. This shows that the participants of the study are still heav-
ily structure- and technology-minded when thinking about architecture. Also
nonexistence decisions (bans) were never mentioned and are not documented.
This is a problem, since (as pointed out by Kruchten) such decisions would be
important to document, because they are not manifested in the documentation
of architectural solution structures and also cannot be derived from an imple-
mentation. Bans are usually expressed to gradually eliminate possible design
alternatives [15].

While the collected types of design decisions could be mapped to the taxon-
omy provided by Kruchten, we noted that the study participants mostly classified
design decisions according to different levels, like personal level, implementation
level, project level, etc. By aggregating semantically similar levels we were able
to identify four main levels: implementation, architecture, project, and organiza-
tion. The reason for this could be that we also asked for the process of decision
making, i.e., how decisions are made, how they are documented, and by whom
(other interpretations have been suggested by the participants of the study when
we provided them with the results for validation; see Section 7).

For example, decisions at the organizational level are made by the manage-
ment in coordination with qualified persons, such as software architects for tech-
nical advice. Decisions at this level are usually made once and rarely change.
While they are only constrained by other decisions in this level they limit the
decision space of the other levels. Decisions made within this level, like program-
ming guidelines or strategic (technical) orientation are often well documented.
Project-level decisions are made by project managers, architects, and also cus-
tomers at the beginning of a project. They include requirements, constraints, and
process decisions. They are usually documented (except for process decisions)
but their rationale is not captured because it is not considered to be relevant
for decisions at lower levels. Decisions at the architecture level are typically
made by software architects and team leads. They are discussed in meetings and
workshops and they are documented in meeting minutes and wikis. Decisions

142 C. Miesbauer and R. Weinreich

at this level are constrained by decisions within the same level or by decisions
at higher levels. Finally, implementation level decisions (i.e., decisions within a
component) are often made ad hoc and independently by developers. Such de-
cisions are documented in the code, in issue tracking systems, or they are not
documented at all. Decisions at this level are constrained by decisions at higher
levels.

Whether the described levels are adequate for partitioning the decision space
needs to be further investigated, but we think they might be useful when think-
ing about how to support decision capturing, since they provide separation of
concerns in terms of stakeholders involved, the process of capturing, and the
potential means used for capturing.

6.3 On Influence Factors

Influence factors mentioned by most participants were requirements and con-
straints. The importance of constraints aligns well with the study on design
rationale by Tang et al. [5], who state that ”the design constraint rationale
is used most frequently ... (because) designers are usually expected to explore
the solution space within certain business and technical constraints”. They did
not investigate the influence of requirements in their study, but it is not sur-
prising that requirements drive design decisions. What is interesting, however,
is that personal experience and preferences, and previous decisions have been
mentioned multiple times by nearly all participants of our study. This supports
another work by Tang [21] where he states that design making is heavily influ-
enced by various kinds of biases, which might potentially lead to unsound design
decisions. He proposes various techniques for design reasoning. An important
technique is documentation and making all influences and assumptions explicit.
This is the basis for self-reflection, which can further reduce biases. We agree
with Tang that while documenting design decisions may be costly, wrong deci-
sions are costly, too. But all in all, we still need to further investigate design
reasoning to find ways for better supporting the reasoning process of decision-
making. Capturing the rationale and making influence factors explicit could be
elements of an approach for supporting the decision making process.

7 Validity

The criteria for research rigor and quality in quantitative empirical research
methods do not fit with qualitative methods [22]. Gasson [23] discusses and
compares quality criteria of quantitative and qualitative methods. In general,
the notion of validity is replaced by trustworthiness. Criteria like objectivity,
reliability, internal and external validity are replaced by confirmability, depend-
ability/auditability, internal consistency, and transferability [23].

Various techniques for ensuring these criteria have been proposed [23][19]. For
example confirmability can be addressed by using reflexivity to reduce subjec-
tivity, making assumptions and frameworks explicit, documenting the rationale

Classification of Design Decisions – An Expert Survey in Practice 143

underlying the constructs used, and getting feedback on research results. De-
pendability/auditability can be addressed by establishing clear and repeatable
procedures for the research process and making the process explicit (through
documentation). Internal consistency can be achieved by comparing different
views on the same data and by explaining from which data the constructs dis-
cussed are derived. Finally, transferability requires an explicit description of the
context of a study like education and background of participants to be able to
judge the applicability of the results in other contexts.

We addressed confirmability by performing intermediate steps like the assign-
ment of categories on the basis of the four-eyes-principle. In addition we used
communicative validation by summarizing intermediate results and asking the
experts for reflection and general feedback on the results. We received feedback
from eight out of nine experts. Through this feedback we got additional interest-
ing facts from the experts. Two of them mentioned that they would not include
process decisions in the design decisions, so presumably these decisions were not
mentioned when we asked for examples and categories of decisions (see Section
5.1). One of them noted that decisions about tools are not directly related to
the architecture, as they are already provided indirectly through technology de-
cisions. Quite contrary, another expert mentioned that he would have thought
that tool and process decisions are usually documented as, especially in large
companies, a lot of time and money is spent on standardization and documen-
tation. Two emphasized again that the personal factor has a very high impact
on their decision-making.

In terms of dependability/auditability we followed a standardized research
process (documented in Section 4) and used approved methods for data analy-
sis, such as the qualitative content analysis method as described by Mayring [19].
Internal consistency is addressed describing different views on collected data like
the generation of decision categories from mentioned categories and from men-
tioned examples from decisions. Finally, transferability is addressed by capturing
and describing the background of the study participants.

Like most surveys our study has several shortcomings. As many qualitative
studies, we have a limited number of samples. This is acceptable from our point
of view, since our main aim was to get suggestions for new ideas and approaches
on supporting the capturing of architectural knowledge and not the evaluation
of existing knowledge. There are also shortcomings in terms of transferability.
While we were able to question rather experienced people with a master degree
in computer science and more than 10 years of professional experience, most of
them were educated at two universities in Upper Austria. This means that many
of them had a similar school of thought. This has also been pointed out by one of
the participants when reflecting on the results concerning the different levels of
design decisions. To overcome these shortcomings, we plan to extend the study
be including further international experts as part of our future work.

144 C. Miesbauer and R. Weinreich

8 Conclusion

Our long-term research objective is to improve the capturing of design decisions
in software development processes. We aim specifically at making the process
more efficient by detecting decisions in various artifacts and by providing support
for capturing decisions and their rationale at the process and tool level.

In this study, we gained important insights in how decisions are currently
made and captured in practice, in the kinds of decisions that are made and ac-
tually documented, and in the influence factors or drivers for design decisions
(which might provide the rationale for decisions). The results of our study con-
firm results of other work in this area. Architects and designers mainly think
of structural and technology decisions. Important decisions are usually docu-
mented, though their rationale is often not. Main influence factors are user re-
quirements and other constraints. But the participants also mentioned the high
influence of personal experience and preferences. This is not necessarily a prob-
lem and can even be beneficial, especially if someone has years of experience
in a specific problem domain. However, as Tang [21] points out this may also
lead to wrong decisions. Therefore, we also consider it worthwhile to investigate
on techniques for reducing such biases and thus supporting an objective and
reasoned decision process.

The alternative classification of design decisions based on different abstraction
and organizational layers (implementation, architecture, project, business) may
be an interesting basis for our planned work on decision detection and capturing.
Especially, since stakeholders, techniques used for capturing, kind of information
captured on the different levels, and processes for capturing seem to be different
on these levels.

References

1. Babar, M.A., Dingsøyr, T., Lago, P., van Vliet, H. (eds.): Software Architecture
Knowledge Management: Theory and Practice. Springer (2009)

2. Lee, J.: Design rationale systems: Understanding the issues. IEEE Intelligent Sys-
tems 12(3), 78–85 (1997)

3. Capilla, R., Nava, F., Carrillo, C.: Effort estimation in capturing architectural
knowledge. In: 23rd IEEE/ACM International Conference on Automated Software
Engineering, pp. 208–217 (2008)

4. Lee, L., Kruchten, P.: Capturing software architectural design decisions. In: Cana-
dian Conference on Electrical and Computer Engineering, pp. 686–689 (2007)

5. Tang, A., Babar, M.A., Gorton, I., Han, J.: A survey of architecture design ratio-
nale. J. Syst. Softw. 79(12), 1792–1804 (2006)

6. Capilla, R., Dueñas, J.C., Nava, F.: Viability for codifying and documenting archi-
tectural design decisions with tool support. J. Softw. Maint. Evol. 22(2), 81–119
(2010)

7. Jansen, A., Bosch, J., Avgeriou, P.: Documenting after the fact: Recovering archi-
tectural design decisions. J. Syst. Softw. 81(4), 536–557 (2008)

Classification of Design Decisions – An Expert Survey in Practice 145

8. Eloranta, V.P., Koskimies, K.: Agile software architecture knowledge management.
In: Babar, M.A., Brown, A.W., Koskimies, K., Mistrik, I. (eds.) Agile Software Ar-
chitecture: Aligning Agile Processes and Software Architecture. Elsevier (to appear,
2013)

9. van Heesch, U., Eloranta, V.P.P., Avgeriou, P., Koskimies, K., Harrison, N.: DCAR
- decision-centric architecture reviews. IEEE Softw. Early Access (2013)

10. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures: Methods
and Case Studies. Addison-Wesley Professional (2001)

11. Miesbauer, C., Weinreich, R.: Capturing and maintaining architectural knowledge
using context information. In: Joint 10th Working Conf. on Software Architecture
& 6th European Conf. on Software Architecture. IEEE (2012)

12. Weinreich, R., Miesbauer, C., Buchgeher, G., Kriechbaum, T.: Extracting and fa-
cilitating architecture in service-oriented software systems. In: Joint 10th Working
Conf. on Software Architecture & 6th European Conf. on Software Architecture.
IEEE (2012)

13. Kruchten, P.: An ontology of architectural design decisions in software intensive
systems. In: 2nd Groningen Workshop on Software Variability, pp. 54–61 (2004)

14. Kruchten, P.: Documentation of software architecture from a knowledge manage-
ment perspective design representation. In: Ali Babar, M., Dingsøoyr, T., Lago,
P., Vliet, H. (eds.) Software Architecture Knowledge Management, pp. 39–57.
Springer, Heidelberg (2009)

15. Kruchten, P., Lago, P., van Vliet, H.: Building up and reasoning about architectural
knowledge. In: Hofmeister, C., Crnkovic, I., Reussner, R. (eds.) QoSA 2006. LNCS,
vol. 4214, pp. 43–58. Springer, Heidelberg (2006)

16. Zimmermann, O., Koehler, J., Leymann, F., Polley, R., Schuster, N.: Managing
architectural decision models with dependency relations, integrity constraints, and
production rules. Journal of Systems and Software 82(8), 1249–1267 (2009)

17. Buber, R., Holzmüller, H.H. (eds.): Qualitative Marktforschung. Betrieb-
swirtschaftlicher Verlag Dr. Th. Gabler/GWV Fachverlage GmbH, Wiesbaden
(2007)

18. Helfferich, C.: Die Qualität qualitativer Daten Manual für die Durchführung qual-
itativer Interviews. VS, Verl. für Sozialwiss. Wiesbaden (2011)

19. Mayring, P.: Einführung in die qualitative Sozialforschung: eine Anleitung zu qual-
itativem Denken. Beltz, Weinheim (2002)

20. de Boer, R.C., van Vliet, H.: Experiences with semantic wikis for architectural
knowledge management. In: 2011 Ninth Working IEEE/IFIP Conference on Soft-
ware Architecture, pp. 32–41 (2011)

21. Tang, A.: Software designers, are you biased? In: Proceedings of the 6th Interna-
tional Workshop on SHAring and Reusing Architectural Knowledge, SHARK 2011,
pp. 1–8. ACM, New York (2011)

22. Adolph, S., Hall, W., Kruchten, P.: Using grounded theory to study the experience
of software development. Empirical Software Engineering 16(4), 487–513 (2011)

23. Gasson, S.: Rigor in grounded theory research: An interpretive perspective on gen-
erating theory from qualitative field studies. In: Whitman, M.E., Woszczynski,
A.B. (eds.) The Handbook of Information Systems Research. Idea Group Inc. (IGI)
(2004)

Team Situational Awareness and Architectural

Decision Making with the Software Architecture
Warehouse

Marcin Nowak and Cesare Pautasso

Faculty of Informatics, University of Lugano, Switzerland
marcin.nowak@usi.ch, c.pautasso@ieee.org

http://saw.inf.usi.ch

Abstract. The core of the design of software architecture is all about
architectural decision making. A high-quality design outcome sets high
requirements, not only on the skills and knowledge of the design team
members, but also on the management of the decision making process.
We claim that in order to deliver high quality decisions, the design team
needs to obtain a high level of situational awareness. To address this, we
present an analysis of the problem of team situational awareness in de-
sign workshops and propose a model on how stakeholder positions help
to build consensus within the argumentation viewpoint of architectural
decisions. We show how the Software Architecture Warehouse tool has
been extended to support the argumentation viewpoint within its live
design document metaphor to provide support for co-located and dis-
tributed design workshops.

1 Introduction

As a result of the trend of globalization in the software industry, remote collab-
oration and decision making within distributed teams is growing in importance.
Due to the complex nature of software systems, the design of software architec-
ture holds many qualities specific to so-called wicked problems [6,17] and often
cannot be addressed with simple goal-driven optimization methods [7]. To ad-
dress these problems, the discipline of Software Architecture KnowledgeManage-
ment (SAKM [3]) was born and a number of systems specialized in architectural
decisions management have been proposed (PAKME [4], ADDSS [5], ArchDe-
signer [2], (e)AREL [19], ADkwik [22]). Whereas a subset of these tools explicitly
targets the collaboration needs of distributed or co-located design teams, only
limited support is offered for raising the level of situational awareness in the
context of design workshops.

This paper makes the following contributions: it proposes a novel argumen-
tation viewpoint for capturing architectural knowledge, in which the positions
of multiple stakeholders and design team members can be captured. The po-
sitions follow a well defined life cycle and their state can be aggregated to 1)
determine the level of consensus around each design issue 2) track the progress

K. Drira (Ed.): ECSA 2013, LNCS 7957, pp. 146–161, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://saw.inf.usi.ch

Team Situational Awareness and Architectural Decision Making 147

of the design workshop; and 3) facilitate capturing the rationale of each decision
made by the team. The argumentation view has been implemented as part of the
Software Architecture Warehouse, a collaborative design tool based on the live
design document metaphor. Thanks to its real-time synchronization of design
spaces, it provides an additional, complementary communication channel that
in our experience can enhance the efficiency of both the open, divergent and the
closed, convergent phases of design discussions [10].

This paper is structured as follows: in next Section we present an a brief
relation over background and related work about collaborative architectural de-
cision management; then we delimit the scope of the problem addressed by our
research. In Section three we introduce the concept of argumentation viewpoint.
Section four positions situational awareness in the context of architectural de-
cision making. The Software Architecture Warehouse - the collaborative design
tool implementing the argumentation viewpoint – is presented in Section five.
In Section six we present our preliminary evaluation results and wrap up with
conclusions in Section seven.

2 Related Work and Background

The decision making process [13], and in particular the software architectural
decision making process have been a subject of many studies [9]. The topic of
collaborative design has been less studied and it is only partially supported in
the ISO 42010 decision meta-model [1]. Out of the seven architectural decision
modeling tools reviewed in [18] only three provide support for collaboration, but
none of them is suitable for a low-latency, design workshop environment. Our
work is complementary to existing frameworks and meta-models, since it targets
dynamic decision making activities within a team.

2.1 The Problem of Collaborative Design

The factors that limit the efficiency of the decision making process within a
design team are manifold [10], e.g., the partial overlap of the participants’ ex-
pertise, the complexity of the domain and the wicked nature of the software
architectural design problem [17].

In our experience running design workshops, we have observed that the de-
cision making process can be very chaotic, difficult to control and to organize
without a proper reference framework and tool support. A solid framework for
organizing the decision making process was proposed in [22].

Another problem is related to the volatility of the decisions. Systematic record-
ing and documentation of the discussion flow is needed to mitigate decision evap-
oration. An open challenge for the architectural decision management tools is to
capture useful content as much as possible during the workshop without hinder-
ing the brainstorming or the decision making activities. The goal is to reduce the
cognitive load required to record alternatives and decisions, without the need to
resort to dedicated minute takers or scribes.

148 M. Nowak and C. Pautasso

We also see a big potential in groupware support for creating an environ-
ment in which awareness of the design is shared between team members. Due to
the inherently limited and partially overlapping expertise of each design team
member, in order to achieve high decision quality, the efficient reuse of previous
decision experience is essential. In other words, before making design decisions,
it is essential to elicit and decide what is to be decided out of the available design
space. The elicitation of design issues can be done offline as part of the workshop
preparation, but the selection of relevant architecture alternatives sometime can
only happen during the live brainstorming.

Another major difficulty in efficiently running architectural design workshops
is to keep the focus of the entire design team on the same design issue. In a
co-located design workshop, thanks to high bandwidth of face to face communi-
cation, depending on the size of the team, this requires some good moderation
by the lead architect, but still may be time consuming. Due to the more limited
communication bandwidth, in distributed workshops it becomes more challeng-
ing to keep the collective attention of all remote participants in focus. This is
critical when pruning possible alternatives: as the decision making time grows
near, all team members need to be aware of which decision is about to be made.

Another fundamental problem concerns the nature of the architectural de-
sign solutions. There are many ways how solution can be unsuitable for the
stakeholders. The most critical cases are when solution is either internally in-
consistent (decisions contradict each other), or unacceptable (due to violation
of constraints). These two cases can be relatively easily eliminated when using
a systematic decision making process that includes solution validation activities
(see [22]). It is often the case that there are multiple valid, acceptable solutions.
In such situation the best solution candidate should be chosen by evaluating its
value for the stakeholders. Given that only some of the qualities of the solution
are easy to assess quantitatively, this process can be automated (see [7]) only to
a certain extent. When the alternative solutions lie on the Pareto frontier, it be-
comes necessary to trade-off different quality attributes against one another. It
is particularly challenging to do so without a high level of situational awareness
among the design team.

All in all, out these challenges, in this paper we target the need for 1) prepar-
ing the discussion by re-using existing architectural knowledge; 2) focusing the
attention of the team; 3) recording the individual position of each stakeholder;
4) making the consensus building process transparent.

2.2 From Situational Awareness to Good Decisions

One fundamental assumption that we are making in this paper is that good
design decisions are well-informed decisions made by a team with a high level of
situational awareness.

Situational awareness is the term used to describe the perception and com-
prehension of a particular environment, which can vary – as proposed by [8] –
across three levels:

Team Situational Awareness and Architectural Decision Making 149

– Perception (SA1) – the status, properties, features of relevant elements of
the environment are recognized and monitored,

– Comprehension (SA2) – making sense of, recognizing relations, and inter-
preting the values of the attributes perceived on the previous level (SA1),

– Projection (SA3) – predictions over the future state of the environment
are made based on the knowledge about its current condition (SA1) and
expected dynamics (SA2).

The original application of the concept of situational awareness was in the ap-
plications involving efficient decision making within fast-changing, dynamic en-
vironments such as emergency services or battlefield operations. Under such
conditions, for the sake of efficiency, decision making is often centralized and
authoritative and must happen within strict time limits. Such strategy is often
not suitable for the situations when the expertise required to make decisions is
distributed among multiple stakeholders.

Although conditions requiring situational awareness of the battlefield are sig-
nificantly different from the ones within an architecture design workshop, we find
a certain number of similarities that lead us to propose to apply the concept of
team situational awareness to enhance the efficiency and quality of the collabo-
rative architecture design process. In particular the situational awareness shared
among the whole team can help to efficiently argument and build consensus
about each decision. A design team sharing a high level of situational awareness
can gather relevant information, interpret it from different viewpoints of the
involved stakeholders, exchange (well grounded and justified) positions based
on assumptions, expectations and predictions over the quality of the resulting
architecture, and eventually converge to a single consensus decision.

3 Decision Model and Argumentation Viewpoint

The starting point of our considerations is the decision meta-model proposed
in the standard ISO 42010 [1] (see Figure 1). We propose to use the Archi-
tectural Decision entity (see Figure 2) to establish a relation between a design
issue (representing the problem domain) and multiple design alternatives (from
the solution domain). This is similar to what Kruchten proposes in [14] with a
relation type named is an alternative to which is meant to relate decisions
“addressing the same issue”. Similarly to [11], we propose to introduce the De-
sign Issue as a first-class entity. An advantage of representing design issues and
design alternatives explicitly, is that identification and reuse of design decisions
is promoted [15].

The argumentation viewpoint we propose consists of:

Design Issue – A reusable aspect of the system design (from the problem do-
main) that can can be addressed with one or more design alternative to
produce an architectural decision model.

Design Alternative – An action, method, or pattern that can be used to ad-
dress particular design issues. In some cases, each design alternative can be
reused within the context of multiple design decisions.

150 M. Nowak and C. Pautasso

Fig. 1. Elementary architectural decision meta-model after ISO 42010 [1]

Position – A subjective take of a design team member on a design alternative
applied in the context of particular design issue. For example, the position
can be positive, negative, or neutral. The rationale for the position can also
be captured with a natural language description. This can be complemented
by a weight associated to the uncertainty or confidence level of the position.

In the simplest case, undecided or open architectural decision would be repre-
sented just by the design issue with no alternatives or positions associated to
it. Normally, the agenda of a design workshop includes a set of open design is-
sues to be discussed. During the workshop, the design team elicits, generates or
captures one or more design alternatives that are related to the design decision
under discussion. At this point, positions are used to state the subjective eval-
uation of each stakeholder or each design workshop participant. Additionally,
positions can be justified by relating them to the decision force or an action
(see [21]) that a particular stakeholder recommends to be taken. This provides
added value by helping to refine and express the rationale justifying the position.
The uncertainty of the position can be explicitly expressed by the stakeholder

Fig. 2. The argumentation viewpoint meta-model of the architectural decision with
Position related to other decision model elements: Action, Stakeholder taken from [20],
Decision Force from [21].

Team Situational Awareness and Architectural Decision Making 151

Fig. 3. An example design decision from the service oriented architecture design space
together with a number of positions

so that its weight can be taken into account while bringing the decision process
to the end. The result is a closed architectural decision which binds the design
issue with the chosen alternative.

In Figure 3 we present an example of a design decision from the design space
of service oriented architectures. Three design alternatives have been proposed
to address the design issue of selecting a Web services security mechanism. Six
stakeholders positions have been recorded. Colors and symbols reflect the actions
(see [20, Fig. C.3]): green (+) for validate and red (-) red for reject respectively.

3.1 The Life Cycle of Positions within Alternatives

At the beginning of the workshop, each architectural decision starts with no
stakeholders’ positions recorded (Figure 4). The aligned state is reached when all
the positions associated to one alternative refer to the same action. For example,
in Figure 3 all positions related to HTTPS are positive. This can be interpreted
as representing the state of consensus among all stakeholders. The colliding set
of positions exists when positions refer to more than one different action. In the
example, both positive and negative positions are associated with WS-Security.

Fig. 4. The state diagram of the life cycle of architectural alternatives. The state of
the alternative is aggregated from the actions of its positions.

152 M. Nowak and C. Pautasso

In this situation, when stakeholders cannot agree on the action to be taken,
the architect leading the workshop can solve the conflict by overriding the con-
flicting positions expressed by the team members. Thus, after manually naming
one action as being the outcome of the discussion, it will proceed to seal the al-
ternative, marking the end of the discussion. The state in which there are either
no positions recorded, or positions are colliding will be referred as inconclusive;
conversely aligned or sealed positions will be referred to as decided.

3.2 The Life Cycle of a Design Decision

The aggregated state of architectural decisions made over the design alterna-
tives within the context of a particular design issue can be conveniently used to
monitor the progress of the decision making process (see Figure 5).

Design decisions about a given design issue start their life-cycle with no alter-
natives recorded. As the design progresses, stakeholders elicit (or reuse) one or
more relevant design alternative, leaving the design decision in the state with no
decisions, since no single alternative has yet been selected. Later, stakeholders
record their positions and make decisions. In the situation when at least one
alternative is in an inconclusive state, one can speak about incomplete choice.
The case when all design alternatives are decided, we recognize three types of
complete choice. To distinguish them we need to check not only whether there
is an agreement on the positions about the alternative, but also on whether the
agreement is about a positive (i.e., acceptance, validation, approval – see [20]), or
negative (i.e., rejection) decision. Rejected alternatives are discarded and based
on how many alternatives remain we distinguish: 1) the conclusive choice hap-
pens when there is exactly one remaining alternative; 2) the inconclusive choice
happens where there are multiple acceptable alternatives; 3) the warring choice
represents the case where no alternative is left on the table.

In the example shown in Figure 6, we see a design decision with four alterna-
tives. The first two (BEEP, TCP) have been rejected, while the last two (MQ,
HTTPS) have been validated. Therefore the state of decision is inconclusive,
since there is more than one alternative left. Assuming that only one alternative
is required to settle the issue, another iteration of the discussion will be required

Fig. 5. The state diagram of the life cycle of a design decision. The state of the decision
is aggregated from the state of its alternatives.

Team Situational Awareness and Architectural Decision Making 153

Fig. 6. An example design issue of a transport protocol selection with four design
alternatives (protocols) and a complete, inconclusive choice between the alternatives

to refine the choice among the two remaining alternatives, for example, based on
additional constraints given by other design issues, concerns or decision forces.

4 Shared Situational Awareness of the Design Space

In the previous sections we have introduced the concept of situational awareness,
we scoped the problem of collaborative decision making and finally, we proposed
the argumentation viewpoint for modeling architectural decisions. In this section
we combine those elements into a mechanism for supporting design teams in the
efficient design of software architecture.

First we shall explain that by shared situational awareness, in the context
of the architectural decisions, we understand 1) providing decision stakeholders
with a customized view over the design space that delivers exactly the infor-
mation needed for making high quality decisions, 2) providing the means to
synchronize the focus of attention of the team, and 3) recording, sharing and
analyzing the positions of the design workshop participants. The aim of the first
two techniques is to bring the situational awareness of the team to the level of
perception (SA1), whereas the third enables comprehension (SA2).

Architecture design is a process leading the design team towards the creation
of software architecture that has qualities desired by the stakeholders. In general
terms, decision making within the design can be principally divided into two
modes [12]. The first mode, so-called open, happens when the design discussion
tends to be divergent and exploratory both in the problem and the solution
domains. In this mode, new design alternatives are discovered and new design
issues are identified. The closed mode, instead, is used to evaluate features and
properties of elicited design issues and alternatives. At first, during the fast
triage, unfeasible design alternatives are quickly excluded from the scope of the
design space. Next, based on the stakeholder’s evaluation choices are made within
the “closed” project design space. In fact, there is no strict temporal separation
between these two modes of operation. Often, transitions between open and
closed are needed due to the refinement of the available domain expertise that

154 M. Nowak and C. Pautasso

implies need for readjustment of the choices previously made. In a way, the
synergy between open and closed decision making modes is similar to the twin
peaks model relating software architecture and requirements engineering [16].

Within these modes we are going to make a distinction between collocated
and distributed team configurations. In both setups we assume that all team
members have personal computers and network connectivity. In the collocated
configuration the team is sharing a meeting room with common facilities such as
whiteboard and beamer. In the distributed configuration, additionally we assume
that team sites are connected through audio (and video) conferencing systems.

4.1 Open Mode, Divergent Discussion

In the open mode, the design team brainstorms freely over an open design space,
creates, edits and destroys design issues, alternatives and decisions. The main
needs of the team operating in this mode are related to the efficient capturing of
decision model items without getting in the way of the decision making process.
The captured information needs to be delivered to the all design team mem-
bers in a form that stimulates further brainstorming. Not getting in the way is
particularly important in the co-located scenario, when the bandwidth of the
face to face communication is very high and – for some kind of interactions – a
collaboration tool may become an obstacle. The clear benefit of tool-supported
collaboration in this phase lies in the efficiency of generating new design alter-
natives in parallel, since each participant can propose his ideas through the tool
interface. The moderator can drive the discussion towards the new contributions
in due time, but in any case, the proposed alternatives do not evaporate. Further-
more, thanks to the shared view over the design space and the low-latency with
which additions are propagated, everyone on the team is aware about everyone
else’s contributions (and thus redundant contributions can be culled).

4.2 Closed Mode, Convergent Discussion

In the closed mode, the design team focuses mainly on the evaluation of the
elicited design elements in order to find and agreement over a possibly optimal
solution. To this end we find it particularly important to build a shared awareness
of stakeholders’ positions about the design alternatives in question. This can be
achieved by sharing each position in real-time within the context of particular
design issues and alternatives. For small, co-located teams such awareness can
be intuitively built by the design team leader summarizing the current state of
the discussion, but in large and/or distributed teams, management of explicit
stakeholders’ positions is essential.

The efficient capture and reuse of the design discussion comes with the risk
of easy derailment in case when it is not moderated appropriately. Discussion
moderation of the co-located team can be done by the lead architect by bringing
the attention of the group to the particular topic, which can be for example
visualized on the beamer. The non-verbal communication bandwidth in the dis-
tributed configuration is very limited, so we see a big potential in asynchronous

Team Situational Awareness and Architectural Decision Making 155

Fig. 7. A detailed view of the design issue during the collaborative editing of one of
its attributes

sharing of design space pointers and view references in a manner similar to in-
stant messaging systems. These pointers identify a design issue, alternative or a
decision and are particularly useful to bring the attention of the design team to
a particular attribute or feature. Being able to efficiently share a precise refer-
ence to a view over the design space is very useful to synchronize the focus of
attention quickly and then proceed with the decision making to converge.

5 The Software Architecture Warehouse

In this section we present details of the prototypical functionality that we im-
plemented in the Software Architecture Warehouse (SAW) to address the needs
and requirements introduced in the previous sections.

5.1 Shared Design Space Awareness

SAW is implemented as a tool to help the entire software architecture design
team achieve a high level of situational awareness about architectural decisions
and the corresponding design space being traversed during a design workshop.

156 M. Nowak and C. Pautasso

Fig. 8. A project details view listing referenced design issues together with design
alternatives

In order to provide designers with an elementary (perception) level of the shared
awareness (SA1) we have introduced the live design document metaphor. Any
change to the design elements and relations between them are immediately prop-
agated (with low-latency) to all the design team members participating in the
workshop (see Figure 7). Due to the connected nature of the architectural deci-
sion representation, the live-document paradigm extends beyond content updates
within particular views. To this end, SAW propagates design space alterations
to all views. For example alterations made to a design alternative are instantly
reflected in the project details and project summary views (see Figure 8). To
deal with conflicting edits, SAW follows an optimistic strategy whereby users
can see which parts of the document are being edited by others and thus can
refrain from entering concurrent modifications. The same mechanism also helps
users to see where the attention of other users is being directed.

Additionally, in order to ease interpretation of the decision state, and thus bring
users to a higher level of situational awareness (comprehension - SA2) we have im-
plemented visual aids indicating the state of particular design space elements. For
example the decision status of the design issues and alternatives is color-coded so
that stakeholders can get an overview at first glance about the level of consensus
(see Figure 9). Also in the case of positions, new contributions can be entered in
parallel and updates are immediately propagated to all participants.

Targeting the projection level of situational awareness (SA3), participants may
base their positions on the knowledge associated with each design issue alterna-
tive (e.g., decision drivers, concerns). Likewise, they may navigate through the

Team Situational Awareness and Architectural Decision Making 157

Fig. 9. A view presenting a design issue with three alternatives, two of which have
aligned positions (second and third), the other (first) has colliding positions

design space following arbitrary kinds of relationships (influence) between issues
and/or alternatives. This way, the impact of decisions can be analyzed from a
global perspective.

5.2 System Architecture

Client-Server split – Traditional Web applications rely on the thin-client
paradigm. Over time, many server-side Web-frameworks were conceived to cope
with the growing complexity of Web applications (RoR, Django, etc.). The tra-
ditional Web applications leave all MVC layers to be handled by the server side,
leaving only view rendering for theWeb browser. This approach has the advantage
of containing all application code within a single location, however it is not suit-
able to support the live document metaphor. Since every user interaction with the
system triggered a call to a rather heavy server-side stack, the result was rather
limited scalability. In the process of architecting and implementing SAW we have
soon realized that the level of interactivity required to realize the desired liveness
of the user experience could not be implemented with the use of traditional server-
side frameworks. To this end we have implemented server-side SAW as a thin layer
wrapping aNoSQLdatabase.The interactive user-interface is implemented follow-
ing the MVVC pattern in JavaScript (with Backbone http://backbonejs.org/
and Marionette http://marionettejs.com/).

http://backbonejs.org/
http://marionettejs.com/

158 M. Nowak and C. Pautasso

Node graph observer, notification system – SAW uses the graph paradigm
to persist decision models and design spaces. In order to deliver high user aware-
ness over the shared design space, a suitable data replication mechanism is
needed. We have implemented a light-weight notification mechanism, which dis-
tributes identifiers of the altered graph nodes, so that clients can reload node
data if needed. In case when the graph structure changes, by creating or remov-
ing edges between nodes, a notification of this event is propagated to the nodes
influenced by the change (see Figure 10). The notification system is very general
and has also been used to implement the view pointer broadcast feature.

Fig. 10. Event propagation over the shared graph model. Views can subscribe to ob-
serve changes within a certain distance of their model elements.

6 Formative Evaluation

The concept of team situational awareness and its support within the Software
Architecture Warehouse has been validated through three formative evaluation
cycles over the past 2 years. Different releases of SAW has been used in more
than 50 co-located design workshops, with groups of 5-10 students attending
each session. In some cases, the same participants have repeatedly used the tool,
and provided us with feedback about its progress, performance and usability.
The participants played the role of software architects (including the lead ar-
chitect), software developers as well as other stakeholders, such as customers or
end-users of the systems being designed. SAW has also used in distributed design
workshops over conference calls and in hybrid workshops with some co-located
participants and others connecting remotely. For space reasons we focus in ana-
lyzing the experience we have gathered in the co-located design workshops. The
feedback received has helped to refine the concept of team situational awareness
and improve the tool usability and scalability.

We have observed that the usage patterns and load may greatly vary in inten-
sity over a design workshop session (in average 2h), making the real-time perfor-
mance requirement very challenging to achieve without sufficient resources on

Team Situational Awareness and Architectural Decision Making 159

the server-side and over an unreliable network. We have tested the performance
of the system, and there is no noticeable delay of event propagation with up to
20 participants who are collaboratively editing a design space made of up to 100
issues (with 5 alternatives each). The tool is also ready for a Cloud-based de-
ployment and each tier can be separately distributed for additional performance.

Concerning the impact on the cognitive load of the lead architect, we have
found out that only users that have accumulated some experience with the tool’s
user interface can be effective in capturing the discussion while leading it. In
other cases we had to resort to recruiting minute takers (or scribes) that would
act as a proxy between the lead architect at the whiteboard and the design
decisions tracked by the tool and displayed with the beamer. In general, since
all participants have the possibility to contribute their input into the shared
knowledge repository, over multiple sessions, we observed that it was no longer
necessary to employ a single dedicated scribe as this role was spontaneously
shared among all participants, after they realized about the presence of the
additional communication channel.

The feature to broadcast pointers over the design space was suggested by one
user in order to make it efficient to navigate to a specific design view. The user
would copy and paste the URI of the page displaying the relevant information
and share it with the rest of the participants with an instant messenger. After
observing this behavior we decided to implement explicit support for this feature
by taking advantage of the existing notification infrastructure. This way we can
guarantee that it is very efficient to ensure that all participants are seeing the
same view at the same time.

Concerning the tracking of positions within the argumentation view, we ex-
perimented with two levels of detail. The initial lightweight solution was a simple
positive or negative vote over each alternative. Then we added the ability to re-
tract positions and recast votes, since people needed to be able to change their
mind as the consensus building process was taking place. At a more fine-granular
level, users can also enter the rationale and confidence level of their position. This
required additional time and effort and has been met with some resistance. In
particular, not all users can immediately and independently provide a rationale
for their position and prefer to wait for others to express their viewpoints and
piggy back their position on the previous ones.

Another feature added based on explicit user feedback, was the ability to seal
the state of decisions to explicitly mark the conclusion of the discussion over
certain issues. This has also been used to track the progress of the workshop.
This way the tool can provide a separate list of open issues, which need to be
decided upon - this list keeps shrinking during the closed phase of the discussion,
providing all participants with a sense of accomplishment, while the list of sealed
and decided issues grows.

We have also observed that SAW added an additional communication chan-
nel to the discussion, in a way that workshop participants could contribute to
the design space without interrupting the ongoing discussion. Similarly, some
participants which were intimidated by the lead architect, felt empowered to

160 M. Nowak and C. Pautasso

make their contributions through SAW, silently and in the background. Once
discovered by the rest of the team, these contributions have often proven to be
highly relevant for the quality of the final design.

In the feedback surveys we conducted, the majority of workshop participants
reported that thanks to the possibility to access shared positions of other de-
signers, they felt more confident about the quality of the decisions being made
during the design workshops actively supported with SAW.

7 Conclusion

In this paper we have performed an analysis of the problem of collaborative de-
cision making in the context of software architecture design workshops. Based
on the idea of enhancing the situational awareness of the whole design team, we
have proposed a novel argumentation viewpoint of the standard software archi-
tectural decision model and discussed the life cycle of design decisions within the
open and closed phases of a lightweight collaborative design process. The con-
cepts presented in this paper are fully implemented by the Software Architecture
Warehouse, a prototype architectural decision management tool targeting real-
time support for co-located and distributed design teams. Selected aspects of
the tool architecture have been discussed together with the promising results of
our preliminary evaluation.

Future work aims on developing metrics and detection strategies to raise fur-
ther the team situational awareness to the projection level (SA3). In the near
future we plan an extensive evaluation with our industry partners for closely
studying the dynamics of collaborative design processes within distributed de-
sign teams.

Acknowledgement. This work is partially supported by the Swiss National
Science Foundation with the CLAVOS project (Grant Nr. 125337).

References

1. ISO/IEC 42010 – Systems and software engineering – architecture description
(2011)

2. Al-Naeem, T., Gorton, I., Babar, M.A., Rabhi, F., Benatallah, B.: A quality-driven
systematic approach for architecting distributed software applications. In: Proc. of
the 27th International Conference on Software Engineering (2005)

3. Babar, M.A., Dingsøyr, T., Lago, P., van Vliet, H.: Software Architecture Knowl-
edge Management - Theory and Practice. Springer (2009)

4. Babar, M.A., Gorton, I.: A tool for managing software architecture knowledge.
In: Proceedings of the Second Workshop on SHAring and Reusing Architectural
Knowledge Architecture, Rationale, and Design Intent, SHARK-ADI 2007 (2007)

5. Capilla, R., Nava, F., Pérez, S., Dueñas, J.C.: A web-based tool for managing
architectural design decisions. SIGSOFT Softw. Eng. Notes 31(5), 4 (2006)

6. Conklin, J.: Dialogue Mapping. Wiley (2006)

Team Situational Awareness and Architectural Decision Making 161

7. de Gooijer, T., Jansen, A., Koziolek, H., Koziolek, A.: An industrial case study
of performance and cost design space exploration. In: International Conference on
Performance Engineering (2012)

8. Endsley, M.R.: Theoretical underpinnings of situation awareness: a critical review.
In: Endsley, M.R., Garland, D.J. (eds.) Situation Awareness Analysis and Mea-
surement. Lawrence Erlbaum Associates, Mahwah (2000)

9. Falessi, D., Cantone, G., Kazman, R., Kruchten, P.: Decision-making techniques for
software architecture design: a comparative survey. ACM Computing Surveys 43
(2011)

10. Hirokawa, R.Y., Poole, M.S. (eds.): Communication and Group Decision Making,
2nd edn. SAGE Publications, Inc. (1996)

11. Jansen, A., Bosch, J.: Software architecture as a set of architectural design de-
cisions. In: Proceedings of the 5th Working IEEE/IFIP Conference on Software
Architecture, WICSA 2005 (2005)

12. Kerr, D.S., Murthy, U.S.: Divergent and convergent idea generation in teams: A
comparison of computer-mediated and face-to-face communication. Group Decision
and Negotiation 13, 381–399 (2004)

13. Klein, G.: Sources of Power. MIT Press (1999)
14. Kruchten, P., Lago, P., van Vliet, H.: Building up and reasoning about architectural

knowledge. In: Hofmeister, C., Crnković, I., Reussner, R. (eds.) QoSA 2006. LNCS,
vol. 4214, pp. 43–58. Springer, Heidelberg (2006)

15. Nowak, M., Pautasso, C., Zimmerman, O.: Architectural decision modeling with
reuse: Challenges and opportunities. In: Proceedings of the 5th Workshop on Shar-
ing and Reusing Architectural Knowledge, SHARK 2010 (2010)

16. Nuseibeh, B.: Weaving together requirements and architectures. IEEE Computer,
115–119 (2001)

17. Potts, C., Burns, G.: Recording the reasons for design decisions. In: Proc. of the
10th International Conference on Software Engineering, pp. 418–427 (1988)

18. Shahin, M., Liang, P., Khayyambashi, M.-R.: Architectural design decision: Ex-
isting models and tools. In: Joint Working IEEE/IFIP Conference on Soft-
ware Architecture 2009 and European Conference on Software Architecture 2009,
WICSA/ECSA 2009, pp. 293–296 (2009)

19. Tang, A., Jin, Y., Han, J.: A rationale-based architecture model for design trace-
ability and reasoning. Journal of Systems and Software 80(6), 918–934 (2007)

20. van Heesch, U., Avgeriou, P., Hilliard, R.: A documentation framework for archi-
tecture decisions. Journal of Systems and Software 85(4), 795–820 (2012)

21. van Heesch, U., Avgeriou, P., Hilliard, R.: Forces on architecture decisions - a
viewpoint. In: Joint Working IEEE/IFIP Conference on Software Architecture and
European Conference on Software Architecture, WICSA/ECSA, Helsinki, Finland,
August 20-24. IEEE (2012)

22. Zimmermann, O., Koehler, J., Leymann, F., Polley, R., Schuster, N.: Managing
architectural decision models with dependency relations, integrity constraints, and
production rules. Journal of Systems and Software 82(8), 1249–1267 (2009)

K. Drira (Ed.): ECSA 2013, LNCS 7957, pp. 162–175, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Architectural Decision-Making in Enterprises:
Preliminary Findings from an Exploratory Study

in Norwegian Electricity Industry

Mohsen Anvaari, Reidar Conradi, and Letizia Jaccheri

Norwegian University of Science and Technology, Trondheim, Norway
{mohsena,conradi,letizia}@idi.ntnu.no

Abstract. Motivation: The current literature in the architectural knowledge
domain has made a significant contribution related to documenting software
architectural decisions. However, not many studies have been conducted to
assess the architectural decision-making and decision reuse processes through
empirical investigations. Besides, the effect of the relationships among the
actors in a software ecosystem on the architectural decisions-making process of
each actor is not well studied. Goal: The objective of this paper is to identify
the main processes and issues on the architectural decision-making in large-
scale enterprises by considering the relationships among the enterprises and
other actors of the ecosystem. Method: We conducted semi-structured
interviews with six Norwegian companies in the software ecosystem of
electricity industry. Results: Regarding the architectural decision-making
process, the findings are in line with previous empirical studies, showing that
most of the companies are not using well-known academic approaches such as
ATAM, they are rather using their own procedures. The study also shows that
the relationships among the actors of a software ecosystem could significantly
affect the architectural-decision making process in each of the actors, for
example, by limiting their alternative solutions. Finally, the results confirm that
it is advantageous for the enterprises to reuse the architectural decisions across
their various projects or for cooperative companies to reuse the decisions across
their similar projects. Conclusion: Improving the reusable architectural
decision frameworks by considering the relationships among the actors in a
software ecosystem would be beneficial for the industry.

Keywords: Architectural decision making, enterprise applications, empirical
study, software ecosystem, electricity industry.

1 Introduction

In the current industrial environments, enterprises1 employ various software applications
to automate their daily business processes and activities. They buy the applications from
different vendors and use them either separately or as an integrated system based on a high

1 “An enterprise is one or more organizations sharing a definite mission, goals and objectives to

offer an output such as a product or a service” (Chen et al., 2008).

 Architectural Decision-Making in Enterprises: Preliminary Findings 163

level structure (architecture). Therefore the concepts such as enterprise application2 ,
enterprise application development (EAD), enterprise application integration (EAI),
enterprise architecture and similar terms have been developed and used for many years in
the both academia and industry.

By evolving and expanding the usage of such systems, the amount of transactional data
between different applications have been dramatically increased and as a result many
enterprises automate the data transfer between their applications. Therefore a movement
from software as an island to software as a systems-of-systems has been emerged for
many years (Maier, 1998). A classical challenge in this landscape is integration and
interoperability issue (Chen et al., 2008)(Fisher, 2006) because the applications are
developed based on different platforms (programming languages, operating systems,
network protocols, etc.). Many approaches, trends and standardizations have been
introduced to decrease the interoperability challenges (Chen et al., 2008) but still
interoperability is one of the main concerns in EAD.

One of the most successful approaches for solving the interoperability issue is service-
oriented development and many enterprises are using service-oriented architecture (SOA)
as their architectural style. Although SOA is shown to be highly successful to alleviate
the interoperability problem, implementing a SOA in an enterprise is not easy and has
to meet domain-specific non-functional requirements with explicit software quality
criteria (Zimmermann et al., 2007). There are many ways of implementing a SOA and
no single SOA fits all purposes and constraints of an organization. Therefore many
architectural design issues and tradeoffs arise (ibid), and architects have hard time to
make “right” architectural decisions. Such decisions would include strategic concerns
about technology and product selection, finding the right service interface granularity,
and numerous decisions that deal with non-functional aspects (ibid). Zimmermann et
al. have captured 130 such SOA decisions till 2007. This shows how challenging is to
choose between different decisions (ibid).

How do enterprises deal with complex integration and how do they make efficient
architectural decisions? What are their main challenges (technical and organizational)
to make the right decisions? Do the enterprises reuse their architectural decisions in
their different but similar projects? What about software consultant companies, do
they reuse architectural decisions in different enterprises in the same domain? How
the relationships between different companies and organizations in an industrial
domain would affect their architectural decisions?

Even though the architectural decision concept (and the broader concept,
architectural knowledge3) has gained increasing attention in the software architecture
community in the last decade, still there are some deficiencies in answering to the
mentioned questions:

• Based on our literature review, existing works in the architectural knowledge are
more theoretical frameworks and tools developed in the academia and very few
empirical researches exist in the area. Even though the theoretical works have been
often evaluated by industrial case studies, the assumptions and claims about
architectural decision-making in enterprises are seldom obtained through empirical

2 An enterprise application is a distributed, software-intensive system that automates business

processes and activities in an enterprise (Zimmermann, 2009).
3 Architectural knowledge = architectural decisions + architectural design (Kruchten et al.,

2006).

164 M. Anvaari, R. Conradi, and L. Jaccheri

studies. The motivations for developing such frameworks and tools are mostly
gained from either previous literature or authors’ personal experiences in the
industry. There is a lack on getting insights from the industry in a more systematic
way.

• Even those few empirical studies in the area (we will try to cover them in the
related work section) are mostly focused on the decision documentation and
representing. The decision-making process in the industry has not been often
studied empirically.

• Despite all these, still there are some empirical studies and surveys to understand
the decision-making and reasoning process of architects in the industry. But first of
all they are not discussing the reusable architectural decisions in EAD
(Zimmermann, 2009). Furthermore they don’t consider the effect of companies
relationships on the decision-making process.

Considering the above issues, the goal of this paper is to get insights for answering to
the mentioned questions by observing the current situation of software development
and integration in the Norwegian electricity industry. The remainder of the papers is
organized as follows: In the section 2 the related work will be discussed. Section 3
presents the design of the research including the research goal and questions and the
research method. Section 4 presents the results of the study and section 5 analysis the
resutls. Finally section 6 remarks the conclusions and also discusses the future work.

2 Related Work

To find out the related areas to this research, we consider three dimensions: topic of
interest, research method and research context. The topic of our research is generally
related to the architectural knowledge and more specifically the architectural decision
area. If we divide the works in this dimension to the making the decisions and
documenting the decisions, our work is focused more in the making the decisions.
Concerning the research method, if we consider theoretical-based researches and
empirical investigations, this research is related to the empirical investigations. Regarding
the context, we split the current work into the research that studies the architectural
decisions in a company regardless of its position in the software ecosystem (SECO), and
research that considers the company position in SECO. Our work focus is on the latter.

2.1 Making Architectural Decisions

Making architectural decision is the process of selecting one alternative among different
alternatives for solving a design issue in a software system (Falessi et al., 2011). As we
mentioned earlier, this concept is a part of architectural knowledge and has become
increasingly important in the software architecture community since the beginning of
2000s. Many researchers have worked in this area and have discussed the importance of
the decisions and the rationale behind the decisions. Many tools and frameworks have
been developed by the researchers to support the practitioners in the activities around the
architectural decisions. Babar et al. in their book that published in 2009 have reviewed and
gathered many of the works that have been done in this area in the last decade (Babar et
al., 2009). Tang et al. have also covered some of the existing architectural knowledge
management tools (Tang et al., 2010).

 Architectural Decision-Making in Enterprises: Preliminary Findings 165

Although the existing work in architectural knowledge area focuses more on
documenting and representing the decisions, still there is some work that supports the
decision-making process. For example Falessi et al. have reviewed and compared the
available techniques and tools for making architectural decisions in their comparative
survey (Faless et al., 2011). However, most of the existing frameworks and tools have a
general approach and are not specified for the enterprise application development and
integration (Zimmermann, 2009) that is the interest of this research. Furthermore, seldom
they consider reusing the architectural decisions in the similar projects or domains while
many issues recur in the enterprise projects and reusing the architectural decisions from
previous projects would be helpful (Zimmermann, 2009). Although Falessi et al. have
mentioned that reuse can help to simplify the architecting (Falessi et al., 2011) they have
not considered it in their analysis. Zimmermann’s work (Zimmermann, 2009) is actually a
reusable architectural decision model in enterprise application development and
integration and therefore is a source of inspiration for our work. Even though, he has not
considered the effect of companies relationships on their architectural decisions.

Finally, as discussed earlier, the motivations and insights for developing frameworks,
techniques and tools that support the decision making process in the industry have been
gained mostly from researchers’ personal experiences and not through a systematic
empirical observation. Nevertheless, recently some few empirical studies have been
conducted in this area that we will discuss them in the next part.

2.2 Empirical Studies

In software engineering research in general, without knowing the fundamental
mechanisms that derive the costs and benefits of software tools and methods for a certain
application, “we can’t say whether we are basing our actions on faulty assumptions,
evaluating new methods properly, and inadvertently focusing on low-payoff
improvements. In fact, unless we understand the specific factors that cause tools and
methods to be more or less cost-effective, the development and use of a particular
technology will essentially be a random act. Empirical studies are a key way to get this
information and move towards well-founded decisions” (Perry et al., 2000). It is the same
situation in the architectural decisions area and conducting empirical studies and
observations would be the base for developing effective methods, frameworks and tools.

Till 2005, there were little empirical evidence about architectural decisions and
how practitioners treat them in the practice (Tang et al., 2005). Tang et al. conducted
a survey on the use and documentation of architecture design rationale in 2005. Even
though, their main focus was to understand how practitioners think about decision
rationale, how they use and document them, and what factors prevent them from
documenting decision rationale (ibid). Making the decisions were not the focus of
their investigations. Hoorn et al. were interested in the same direction and did a broad
survey to better understand what architects really do and what kind of support they
need for sharing architectural knowledge (Hoorn et al., 2011).

Ivanovic and America has conducted a study to gain knowledge on information needed
for architecture decisions made by architects and managers (Ivanovic and America, 2010).
The reuse aspect of the decisions is not in their work. Also they have conducted their study
only in one industrial organization and therefore considering the ecosystem relationships
that we are interested in is not in their research.

Finally, van Heesch and Avgeriou in their study have investigated how experienced
architects reason in the context of industrial projects, how they prioritize the problem

166 M. Anvaari, R. Conradi, and L. Jaccheri

space, how they propose solutions for the problem and how they choose among solutions
(van Heesch and Avgeriou, 2011). Their work is relevant to our research topic but still
lacks the reuse aspect and also has not considered software ecosystem relationships. In the
next part we will explain the software ecosystem concept and what we mean by a software
ecosystem relationship and how we want to illustrate the software ecosystem of our
research context.

2.3 Software Ecosystem

A software ecosystem (SECO) is “a set of actors functioning as a unit and interacting with
a shared market for software and services, together with the relationships among them”
(Jansen et al., 2009). The actor type in a SECO could be supplier, independent software
vendor, software consulting company or intermediary, and customer (Brinkkemper et al.,
2009). Interaction or relationship type could be product flow, service flow, financial flow
and content flow (ibid). There are several ways to model and illustrate a software supply
network (SSN) within a SECO (Lucassen et al., 2012). In the section 3.2, to illustrate the
SSN of our research context that is Norwegian electricity industry, we have created a
figure that is based on the model by (Brinkkemper et al., 2009). Since we are interested to
see how the SECO relationships would affect the architectural decisions, some
customizations have been made to the model to fit to our context and intentions. To our
best knowledge there is no empirical study that has considered the effect of SECO
relationships on the architectural decision processes.

3 Research Design

Our investigation is an exploratory study (Robson, 2011) which aims to identify the
situation in a real world context. Qualitative data is collected by interviews and
analyzed using thematic synthesis. In the following sections we explain the research
questions, the context of the study, data collection and analysis methods and threats to
results validity.

3.1 Goal

The goal of this research is to identify the main processes and issues on making and
reusing architectural decisions in large-scale enterprises by considering the relationships
among the enterprises and other actors of the ecosystem. To reach to the goal we are
interested to find out:

RQ1. How do industrial companies make architectural decisions for enterprise
application development with respect to decision-making methodology?
RQ2. How do the companies reuse the architectural decisions in various projects?
RQ3. How do the software ecosystem relationships affect the decision making
process?

By RQ1 we aim to explore the general attitude of companies in making their significant
architectural decisions. Such decisions would include the high-level blueprint of their
software and information systems to the detailed technical decisions such as choice of

 Architectural Decision-Making in Enterprises: Preliminary Findings 167

integration platform. Although the previous research studies had explored this aspect (van
Heesch and Avgeriou, 2011), we investigate the answer to RQ1 by the means of
qualitative observations to find out the possible uncover aspects of decision-making
process in companies.

The aim of RQ2 is to discover whether companies reuse their architectural decisions in
different projects and if the answer is no to investigate if it is possible to do so or not.

RQ3 considers the relationships among various actors in the software ecosystem and its
possible effect on the process of making and reusing architectural decisions in each actor.

3.2 Context

Since this research is contextualized in a larger research project on software engineering
support for Smart Grid, our main case of the study is the Norwegian electricity industry.

Fig. 1. Current software supply network in the Norwegian electricity industry

The software market in this industry, the same as other domains, has become a software
ecosystem including different actors and various relationships between them. The actors
make a software supply network to develop and integrate the required software products.
Fig. 1. shows the current state of software supply network in the Norwegian electricity
industry. It is based on the result of a previous interview that we conducted with an expert
in the Norwegian electricity industry and later confirmed by some other experts. The chain
of supply network could differ among various customers based on their size and
organizational policies, but a typical path can be described as follows: A grid utility
(customer) needs different software products to run its daily business activities. The utility
negotiates with different national and international independent software vendors (ISV).
The ISVs themselves should buy some of their fundamental software components and
packages (OS, DB, etc.) from their suppliers and develop their products based on the
provided components. Grid utilities later on integrate various software products

168 M. Anvaari, R. Conradi, and L. Jaccheri

themselves or ask software consultant companies (SCC) to do it for them. Sometimes
ISVs also ask SCCs to help them regarding the software development to produce more
interoperable solutions. There is also a national regulator that although doesn’t deliver
software product or service to the customers but affect the software development in ISVs
and software integration in grid utilities by the rules and regulations. So we have added
“regulator” as a new actor to the model from (Brinkkemper et al., 2009). Also to show
how the SECO relationships would affect the architectural decisions (see sections 4.4 and
5.2), we have added a new object to the model (the dashed arrow).

3.3 Data Collection and Analysis Methods

To answer to the research questions (see section 3.1) the semi-structured interview has
been chosen as the main data collection method of this research. As it was discussed in
the context part, our target companies lie in four categories based on their role in the
software ecosystem of Norwegian electricity industry: grid utilities, software vendors,
software consultant companies and regulator. Our initial plan was to select different
samples from each of these categories. Currently there are almost 150 grid utilities in
Norway, but the software vendors and also the software consultant companies that are
delivering products and service to them are very few and it makes the sample selection
challenging. For this stage of our research we conducted interview with 5 grid utilities (all
of them have more than 75.000 grid customers) and one software vendor that have 80
percent of market share in Norway. We couldn’t convince either the regulator or any
software consultant companies that have experiences with software for electricity industry
to participate in our study within out time frame.

To prepare the questionnaire, initially we selected 10 questions regarding the decision
making process that applies to all categories of companies regardless of their role in the
SECO. Some of the questions were inspired by the questionnaire van Heesch and
Avgeriou have used in their survey (van Heesch and Avgeriou, 2011). The preliminary set
of questions were written as follows:

1. A brief summary of ICT in your organization, your software related activities and
roles, your business model, and your software integration approach.

2. What is your typical process for making architectural decisions?
3. What are your challenges (technical and social) in making the decisions?
4. How do you identify architecturally significant requirements from a set of

architectural concerns and business context?
5. Who are involved in the analysis process and how do they collaborate?
6. Do you search for alternative solutions for your requirements when you make

decisions? Even if you already had a solution in mind?
7. How do you select among alternative solutions? Do you consider and reuse

architectural patterns, styles, reference architectures, industrial standards, etc.?
8. Do you reuse the already made decisions between your various projects?
9. How do you validate your final solution? Do you use some approaches like

ATAM, CBAM, etc.?
10. Do you validate your architectural solution only in design stage or even later

when the whole system is launched?

As it is clear in the above list, the RQ3 is not covered by any of the questions. After doing the
first interview, we realized that the effect of SECO relationships is an important influencing

 Architectural Decision-Making in Enterprises: Preliminary Findings 169

factor on the decision-making process and we had not considered it. So we added it to the
questionnaire for the next interviews. To this end, we added specific questions for each
category to explore the subject from each category aspect. For example we were interested to
see whether the decisions in the software vendors are made mainly by them or it is more
customer-driven. The similar question was asked from the customers but from the opposite
direction to see whether their decisions are affected by vendors or consultant companies.

After finalizing the questionnaire and making appointments with interviewees, the
interviews were conducted. Since the data collection method was semi-structured
interview, we considered some flexibility in asking the questions based on the answers we
got from the interviewees. It means the above set of questions was more an interview
guide; some questions would be skipped (for example if the interviewee didn’t have any
idea about the question) and some new questions would be added during the interview.

To conduct the interview with grid utilities, in some cases the interview had two parts:
more general questions were answered by a project manager or head of ICT and the more
detailed questions by a software architect or developer. So totally 8 interviews were conducted
of which 4 were face-to-face and 4 were through Skype. Among 8 interviewees, 4 were heads
of ICT, 2 were software architects, one was software developer and one was project manager.
The interviews were captured by a voice recorder and lately were transcribed.

For analyzing the interview data, the step-by-step thematic synthesis proposed by
Cruzes and Dybå was applied. It is mainly proposed for a systematic literature review, but
is applicable for analyzing the qualitative interview transcripts similar to stage-by-stage
method by (Burnard, 1991). The essential aim of these methods is to increase the
abstraction level of transcribed texts from the text level to the code and theme level and
create taxonomy of higher-order themes (Cruzes and Dybå, 2011). We did the same to
reach from the interview results to the answer of our research questions.

4 Results

By thematic synthesis we extracted 18 codes from interview transcripts and those 18 codes
were categorized into 4 themes that are described in the following sections. Section 4.1
and 4.2 correspond to RQ1, section 4.3 is related to RQ2 and section 4.4 refers to RQ3.

4.1 Making Architectural Decisions for Enterprise Application Development

In all of the energy companies we interviewed, there is an IT section either as a
department (if the organization composes of only one company) or a company within the
whole group (if the organization consists of many companies). IT section has a general
roadmap or high level strategy for making architectural decisions regarding software
enterprise application integration. For instance in some grid utilities the rules from IT
sections imply that new products should have proper interfaces or adaptors to be integrated
through ESB (enterprise service bus). Or they are emphasizing on reducing information
redundancy by engaging SOA-based development. Some of the grid utilities have
developed their guidelines based on some international frameworks for developing
enterprise architecture. Later on when every department wants to make architectural
decisions for their projects, they should make their decisions in alignment with guidelines
and principles from IT section of the organization.

The lower level architectural decisions are made at project level in different
departments. So each department has either its own software architects or they hire

170 M. Anvaari, R. Conradi, and L. Jaccheri

architects from IT department. Then the decisions are made by several meeting
among the software architects and project manager (or product owner). If there is a
decision about a common solution like ESB, it is rather made at the IT department.

Most of the grid utilities are not familiar with the terms and concepts like ATAM. In
practice they are conducting some structured procedure which could be more informal
than approaches like ATAM but still they are satisfied with the results. They have several
meetings among related stakeholders, define possible alternatives and look at their
possible advantages and disadvantage, consider the important non-functional
requirements, also look at their organizational limitations and project schedule, and select
a solution among alternatives. Some of them do the proof of concept for the selected
solution to check whether the solution supports their business requirements.

4.2 Using Standards for Making Architectural Decisions

Although there have been some standards for software integration in Smart Grid for
several years (for example IEC 61970 which is also called CIM), almost none of the grid
companies have done their integration based on those standards and this makes their
architectural decisions more challenging. They are now becoming more aware of the need
to apply standards to reduce the interoperability challenges, so they are exploring the
standards and are going to use them. Also some of the software vendors are starting to
deliver their products based on those standards. So the future of the Smart Grid in Norway
would be standard based but currently is not.

4.3 Documenting and Reusing the Architectural Decisions

Some of the companies document important architectural decisions. To this end, they
either keep the meeting minutes or use an internal wiki for documentation rather than a
specific tool. One of the documentation issues they often have with these approaches is the
maintenance of the documentations, especially when it comes to the decisions about
software integration, which these days is very dynamic in these companies. So it is hard
for them to always update the latest version of the documents.

The situation of reusing the decisions depends on the level of decisions. In high level
decisions, 4 out of 6 companies are reusing their high level software integration processes
across different projects. The reuse happens in an ad-hoc manner and as it was explained
earlier, it is mainly done by setting some high level rules or guidelines by IT departments
and different projects should apply them in their integration. One of the companies is
composed of both energy and telecommunication parts and is an interesting case in this
aspect because overall processes which have been developed in telecommunication is
reused in the smart grid initiatives too.

When it comes to the low level architectural decisions almost none of the companies
are reusing the decisions across different projects and the decisions are not transferring
between different projects in a written sense. The decisions are rather kept in the head of
the decision makers even if they are participating in different projects. So some of the
companies showed their interest to be familiar with reusable architectural decision
frameworks and believe that it would be useful to learn from history and apply the
experiences from previous projects in the future projects. One of the companies has a
successful experience where for choosing ESB they have reused the requirements and
available alternatives from other companies and they were satisfied with the results.

 Architectural Decision-Making in Enterprises: Preliminary Findings 171

4.4 Effect of Software Ecosystem Relationships on the Architectural Decisions

Most of the grid utilities (customers) believe that the market is vendor driven while the
software vendor believes that the market is customer driven. The examples from both
sides confirm both claims. So it essentially means that as an actor of an ecosystem each of
them affect the other one. From customers point of view they are limited to what vendors
deliver and from the vendors side they limit their development to what the customer
require. Besides, there are some regulating organizations that also affect the choices of
software integration in grid utilities. So in general the interviews showed that the
relationship among different actors of the software ecosystem affects the architectural
decisions in each actor. The effect of these relationships is described as follows.

Effect of Regulators on the Architectural Decisions of Grid Utilities
One obvious example to show the effect of regulators on the architectural decisions in the
grid utilities is SCADA (supervisory control and data acquisition) system. The grid
utilities want to have a fully integrated system and therefore desire to add SCADA to their
SOA-based integrated system as well, but the security regulations from Norwegian
electricity regulator, which in opinion of grid utilities are old-fashion, have limited them.
So they should treat SCADA as a silo system and do all the interactions and information
exchange manually.

Effect of Vendors on the Architectural Decisions of Grid Utilities
An interesting example that shows the effect of vendors on the architectural decisions is a
situation in one of the grid utilities where they wanted to decide choosing between IPv6
and the lower versions. For launching AMS (advanced metering system) project, they will
install more than 200,000 IP-based devices in their municipality, so technically they
preferred IPv6. But their challenge was that most of current vendors don’t deliver products
that support IPv6. Now some more professional vendors like Cisco are joining the Smart
Grid market and that grid utility has finally decided to use IPv6. Another example by the
same grid utility is a decision about separating the database of DMS (distribution
management system) from other systems. The reason for the decision also relates to what
the vendors deliver. The DMS should use a NIS (network information system) and a NIS
itself is based on a GIS (geographical information system). The problem is that the current
GIS suppliers don’t have a electric schematic layer. What is now on the GIS is a general
network of nodes and edges. So the DMS the grid utility has bought should have a
separate database to include electric schematic layer.

Effect of Customers on the Architectural Decisions of Vendors
The interviewed software vendor with an example showed how their architectural
decisions depend on what the customers require. The vendor has two alternatives for
deliver their products based on SOA: WS or REST-based services. Although they are
aware of some advantages of REST-based services they are still stick to the WS and the
reason is that none of their customers have asked for REST-based services in their request
for proposal.

172 M. Anvaari, R. Conradi, and L. Jaccheri

5 Discussion

In this part we discuss our findings in position with the previous findings from related
literature. The part is organized based on our three research questions. In addition, section
5.4 discusses the possible threats to validity.

5.1 Architectural Decision-Making for Enterprise Application Development

As we discussed in the related work, the study by van Heesch and Avgeriou is a relevant
empirical research about architectural decision-making in industrial companies that is
actually the aim of our RQ1 too. One of the results of their study is that the greatest part of
architects doesn’t follow particular architecture approaches from the literature (such as
ATAM, SAAM, goal-oriented paradigm, etc.), they rather adopt architecture activities to
define their own customized approach to making architectural decisions (van Heesch and
Avgeriou, 2011). The result of our study also in line with their finding showed that most
of the companies are not using systematic approaches such as ATAM to make and
evaluate their architectural decisions. Even thought, it doesn’t mean that the companies are
making their architectural decisions in a totally intuitive way. Both our results and
findings from van Heesch and Avgeriou’s survey show that the companies identify
architecturally significant requirements (architectural analysis), find different candidate
solutions for the requirements consider advantages and disadvantages for candidate
solutions (architectural synthesis) and validate the chosen solution against the
requirements (architectural evaluation) (van Heesch and Avgeriou, 2011). In spite of
similarities, different companies of our study have different procedures for each of
mentioned processes. For example for architectural evaluation some use proof of concept
while some launch real industrial prototype to evaluate the chosen solution.

5.2 Reusing Architectural Decisions

Zimmermann has done a significant work on reusing the architectural decisions for
enterprise application development. Before that not many researches have been conducted
on this topic (Zimmermann, 2009). One of our aims was to find out whether the
interviewed enterprises predict the required architectural decisions in a new project based
on experiences from previous projects that have been done in either their department of
other departments of the same organization. As results show, some of them reuse high-
level architectural decisions in term of architectural guidelines or rules but none of them
reuse the low-level architectural decisions across various projects.

Reusable architectural decision model (RADM) developed by Zimmermann has been
evaluated by several case studies and the results show how efficient it would be to reuse
the architectural decisions in similar projects (Zimmermann, 2009). Zimmermann has
employed his model in different industrial cases, from software vendors to software
consultant companies and large-scale enterprises like telecommunication companies. But
he has mainly applied his model on several projects within each company. What we
observed through the interviews was the potential to also reuse the architectural decisions
across different companies within a software ecosystem. Some of the companies have had
collaboration on either writing requirement specification for an enterprise solution (e.g.
ESB) or developing reference architecture for smart grid. Applying reusable architectural
decisions frameworks like RADM would be very promising for these collaborations and
through that the new requirements and justifications to improve RADM would be gained.

 Architectural Decision-Making in Enterprises: Preliminary Findings 173

5.3 Effect of Software Ecosystem Relationships on the Architectural Decisions

The results of our study show that the relationships among the actors of a software
ecosystem could significantly affect the architectural-decision making process in each of
the actors. Some previous studies have also discussed the non-technical influences on the
architectural decisions. Van Heesch et al. have defined architectural decision forces as any
aspect of an architectural problem arising in the system or its environment to be
considered when choosing among the available decision alternatives (van Heesch et al.,
2012). The non-technical forces they have talked about are personal preferences or
experience of the architects, business goals such as quick-time-to-market, low price, or
strategic orientations towards specific technologies (ibid). Their reference for considering
the influence factors on software architecture is an empirical study by Mustapic et al. that
have been conducted to investigate the possible real world influences of software
architecture (Mustapic et al., 2004). What they have gained as the influence factors are
relationships of system, computer hardware and software architecture, reuse and legacy in
architectural design, business and application domain factors, choice of technologies,
organizational factors, process related factors and resources used for architectural design
(ibid). The most relevant factors to our results are business and application domain factors
and organizational factors. The more specific factors they have investigated for these
categories are standards, type of customers, production volume, product lifetime, non-
functional requirements, distributed development, outsourcing, size and maturity of
organization (ibid). So the SECO relationships have not been explicitly covered by the
mentioned studies and the results of our study can be considered as a decision factor in
addition to what they have extracted before.

5.4 Threats to Validity

Internal. One potential threat to internal validity of our research is that there were too few
interviews to make reliable results. However, all of the companies were the largest
enterprises and software vendor in the same software ecosystem. It means that there were
few differentiations between the characteristics of the companies (type, size, products,
business processes, structure, etc.). Also there is little disagreement among the
interviewees from different companies. Therefore we do not assume that interviewing
more companies will result to different conclusions. Even though, interviewing with
software consultant companies and regulating organizations in the same software
ecosystem would increase the reliability of the results. As we mentioned earlier, we
couldn’t convince them to participate in our study within the time schedule we had.

External. The generalization of the results to all large-scale enterprise based on the
enterprises from one industrial domain is arguable. Although large-scale enterprises from
other domains like telecommunication, finance or health-care have also challenges on
making architectural decisions for enterprise application development, our study shows
that the software integration in the electricity industry is more immature than other areas
due to lack of standardization and it can affect the architectural decision issues. So we are
aware of the threat to external validity and conducting the same interviews with
enterprises from other domains would make the results more reliable.

6 Conclusions and Future Work

In this paper we presented the result of interviews with six companies within software
ecosystem of Norwegian electricity industry being five grid utilities and one software

174 M. Anvaari, R. Conradi, and L. Jaccheri

vendor. Our main goal was to empirically investigate the architectural decision making
and reusing situation in the large-scale enterprises to enrich the state of practice in the
architectural decisions area. We gained three explicit results:

1- In line with few previous empirical studies, our study show that most of the
companies are not using well-known academic approaches such as ATAM, they
are rather using their own structured procedures.

2- The relationships among the actors of a software ecosystem could significantly
affect their architectural-decision making processes for example by limiting their
alternative solutions. This factor should be also considered as an influencing factor
on architectural decision making process in addition to the factors previous studies
have extracted from the industry.

3- There is a high potential among enterprises to reuse the architectural decisions
across their various projects or across different companies within a software
ecosystem. The previous reusable architectural decision frameworks have been
applied mainly in various projects within one company while our study shows that
such frameworks can be applied also in different companies within a software
ecosystem that have some kind of collaboration.

In the next step, we are going to apply reusable architectural decision frameworks (such as
RADM by Zimmermann or decision forces viewpoint by van Heesch et al.) on some of the
large-scale enterprises or software consultant companies in the Norwegian electricity
industry. By doing such case studies we are going to investigate how these frameworks
can be improved and customized for the electricity industry based on the feedbacks we get
from the case studies.

Acknowledgements. The authors would like to thank all interviewees for their
participation and their valuable responses.

References

1. Babar, M.A., Dingsøyr, T., Lago, P., van Vliet, H.: Software Architecture Knowledge
Management. Springer (2009)

2. Brinkkemper, S., Soest, I.V., Jansen, S.: Modeling of Product Software Businesses:
Investigation into Industry Product and Channel Typologies. In: Barry, C., et al. (eds.)
Information Systems Development: Challenges in Practice, Theory, and Education, vol. 1,
pp. 307–325 (2009)

3. Burnard, P.: A Method of Analysing Interview Transcripts in Qualitative Research. Nurse
Education Today 11, 461–466 (1991)

4. Chen, D., Doumeingts, G., Vernadat, F.: Architectures for Enterprise Integration and
Interoperability: Past, Present and Future. Computers in Industry 59, 647–659 (2008)

5. Cruzes, D.S., Dybå, T.: Recommended Steps for Thematic Synthesis in Software
Engineering. In: The Proceedings of the 5th International Symposium on Empirical
Software Engineering and Measurement, ESEM 2011, Banff, AB, Canada (2011)

6. Falessi, D., Cantone, C., Kazman, R., Kruchten, P.: Decision-Making Techniques for
Software Architecture Design: a Comparative Survey. ACM Computing Surveys 43(4)
(2011)

7. Fisher, D.A.: An Emergent Perspective on Interoperation in Systems of Systems, Software
Engineering Institute, Technical Report, CMU (2006)

 Architectural Decision-Making in Enterprises: Preliminary Findings 175

8. Hoorn, J.F., Farenhorst, R., Lago, P., van Vliet, H.: The Lonesome Architect. The Journal
of Systems and Software 84, 1424–1435 (2011)

9. Ivanovic, A., America, P.: Information Needed for Architecture Decision Making. In:
Proceedings of the 2010 ICSE Workshop on Product Line Approaches in Software
Engineering, pp. 54–57 (2010)

10. Jansen, S., Finkelstein, A., Brinkkemper, S.: Business Network Management as a Survival
Strategy: A Tale of Two Software Ecosystems. In: Proceedings of the First Workshop on
Software Ecosystems. CEUR–WS, vol. 505 (2009)

11. Kruchten, P., Lago, P., van Vliet, H.: Building up and Reasoning about Architectural
Knowledge. In: Hofmeister, C., Crnkovic, I., Reussner, R. (eds.) QoSA 2006. LNCS,
vol. 4214, pp. 43–58. Springer, Heidelberg (2006)

12. Lucassen, G., Brinkkemper, S., Jansen, S., Handoyo, E.: Comparison of Visual Business
Modeling Techniques for Software Companies. In: Cusumano, M.A., Iyer, B.,
Venkatraman, N. (eds.) ICSOB 2012. LNBIP, vol. 114, pp. 79–93. Springer, Heidelberg
(2012)

13. Maier, M.W.: Architecting Principles for Systems-of-Systems. Systems Engineering 1(4),
267–284 (1998)

14. Mustapic, G., Wall, A., Norstrom, C., Crnkovic, I., Sandstrom, K., Froberg, J., Andersson,
J.: Real World Influences on Software Architecture – Interviews with Industrial System
Experts. In: Proceedings of the Fourth Working IEEE/IFIP Conference on Software
Architecture, WICSA (2004)

15. Perry, D.E., Porter, A.A., Votta, L.G.: Empirical Studies of Software Engineering: A
Roadmap. In: Proceedings of the Conference on The Future of Software Engineering,
Limerick, Ireland, pp. 345–355 (2000)

16. Robson, C.: Real World Research: A Resource for Users of Social Research Methods in
Applied Settings, 3rd edn. Wiley, Chichester (2011)

17. Tang, A., Babar, M.A., Gorton, I., Han, J.: A Survey of the Use and Documentation of
Architecture Design Rationale. In: 5th Working IEEE/IFIP Conference on Software
Architecture (WICSA), pp. 89–98 (2005)

18. Tang, A., Avgeriou, P., Jansen, A., Capilla, R., Babar, M.A.: A Comparative Study of
Architecture Knowledge Management Tools. Journal of Systems and Software 83(3), 352–
370 (2010)

19. van Heesch, U., Avgeriou, P.: Mature Architecting – A Survey about the Reasoning
Process of Professional Architects. In: 9th Working IEEE/IFIP Conference on Software
Architecture (WICSA), pp. 260–269 (2011)

20. van Heesch, U., Avgeriou, P., Hilliard, R.: Forces on Architecture Decisions – A
Viewpoint. In: Proceeding of Joint Working Conference on Software Architecture and 6th
European Conference on Software Architecture, pp. 101–110 (2012)

21. Zimmermann, O., Koehler, J., Leymann, F.: Architectural Decision Models as Micro-
Methodology for Service-Oriented Analysis and Design. In: SEMSOA Workshop,
Hannover, Germany (2007)

22. Zimmermann, O.: An Architectural Decision Modeling Framework for Service-Oriented
Architecture Design. PhD Dissertation, University of Stuttgart (2009)

K. Drira (Ed.): ECSA 2013, LNCS 7957, pp. 176–183, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Making the Right Decision:
Supporting Architects with Design Decision Data

Jan Salvador van der Ven1 and Jan Bosch2

1 University of Groningen, Groningen, The Netherlands
2 Chalmers University of Technology Gothenborg, Sweden

mail@jansalvador.nl, jan.bosch@chalmers.se

Abstract. Software architects are often forced to make design decisions based
on limited information. In this paper, we present an approach that allows
software architects to study information about design decisions made by
hundreds or more software architects by automatically analyzing the version
management data of large open-source repositories. The contribution is, first,
that it develops a conceptual model to reason about the automatic derivation of
specifically medium level architectural design decisions. Second, we show that
it is indeed possible to derive these design decisions automatically from open
source projects. This provides a basis for statistical and quantitative reasoning
about software architecture design decisions that allows software architects to
make better-informed decisions.

Keywords: Architecture, Design Decisions, Architectural Knowledge,
Components, Open Source Projects.

1 Introduction

Architects are lonely [1] because they often are the only ones with a system-wide
overview and have no peers within the organization. These architects are responsible
for making design decisions concerning the system or systems that they are
responsible for. A significant portion of these design decisions involves the selection
of 3rd party open source or commercial components. In our experience with architects
at dozens of companies, this selection is done based on descriptions on websites,
anecdotal experiences or sometimes proof of concept implementations [2].
Consequently, despite the best intentions and efforts of the software architect, the
design decisions often are guesses based on circumstantial evidence that are only
validated once the system has been built or changed and it is, once again, in operation.
The vast majority of decisions that software architects are faced with have been made
earlier software architects in other organizations working on similar systems.
Wouldn’t it be great if software architects could get access to the decisions made by
other architects, that would allow them to determine what selections were made from
a set of alternatives and with what frequency? That would give software architects
hard, quantified data to base their own decisions on. The question of course is: how
we can access these decisions? Interestingly, over the last decade or more, several

 Making the Right Decision: Supporting Architects with Design Decision Data 177

open-source software repositories have achieved broad adoption and host thousands
of projects in virtually any programming language and application domain
imaginable. Examples include SourceForge1 and GitHub2 with millions of repositories
millions of developers. As many of the projects in these repositories are public, there
is a large amount of data available about the structure of these projects as well as the
evolution of these structures over time. In order to provide the lone software
architects with objective, quantified and statistical information about the design
decisions that other architects have made, version management systems provide an
excellent source of data. However, considering the sheer volume of data, this requires
an automated, rather than manual, approach to derive the information that software
architects require. In order to achieve that, the first question, which is the research
question of this paper, is whether it is feasible to automatically identify design
decisions from commit data.

The contribution of this paper is twofold. First, it develops a conceptual model to
reason about the automatic derivation of architectural decisions. Second, it shows that
it is indeed possible to derive these design decisions automatically. This paper is
organized as follows. First, the concept of architectural decision is introduced. Then,
our hypotheses are presented. Sequentially, a description of how we acquired and
processed the data is given, followed by the analysis or our results. This paper ends
with the discussion and future work, related work and some concluding words.

2 Architectural Design Decisions

In research about architectural design decisions [3, 4], typically four aspects of
decisions are considered: the decision topic, the choice, the alternatives that are
considered and the rationale (sometimes formalized as ranking) of the decision. We
use these four aspects of architectural decisions to identify decisions in repository
data of open source projects. There are different abstraction levels of architectural
decisions. As described by de Boer et al. [3], decisions are often related to each other,
and this relationship typically forms a tree structure down from more abstract to more
concrete (decisions cause new decision topics). Fig. 1. symbolically visualizes such a
graph. Generally speaking three levels of decisions can be distinguished:

− High-Level Decisions. High-level architecture decisions affect the whole product,
altough they are not necessarily always the decisions that are debated or thought
through the most. Often, people that are not involved in the realization of the project
(e.g. management or enterprise architects) heavily affect these decisions. Typical
examples of high-level decisions are the choice to adopt an architectural style, use a
programming language, application server, or specific large (COTS) components.
Changing these decisions typically has a huge impact.

− Medium Level Decisions. Medium level decisions involve the selection of specific
components or frameworks, or describe how specific components map to each other

1 http://sourceforge.net/
2 https://github.com/

178 J.S. van der Ven and J. Bosch

according to specific architectural patterns. These decisions are often debated in the
architecture and development teams and are evaluated, changed and discarded as
needed. They have a high impact on the (nonfunctional) properties of the product
and are relatively expensive to change.

− Realization Level Decisions. Realization level decisions involve the structure of
the code, the location of specific responsibilities (e.g. design patterns), or the usage
of specific APIs. These decisions are relatively easy to change, and have relative
low impact on the properties of the system.

Fig. 1. Relationships between Design Decisions

As we have experienced in our industrial cases [5], the architectural decisions that
are hardest to make are the medium level decisions, for the following reasons: a) these
decisions have a high impact on the functional and non-functional properties of the
system; b) they change constantly, especially compared to high-level decisions that
only change when remaking the system; c) they are costly to change because of the
impact on the system; d) because new components and version are created constantly,
it is hard to stay knowledgeable about all relevant alternatives, and; e) they have
unpredictable results until they are implemented in the system.

The focus of this paper is on medium level design decisions that change during
development or maintenance. These decisions express themselves through changes in
the version management system, i.e. commits of new and changed code. All of the
previously mentioned aspects of a design decision have a reflection in the version
history or implementation of the system. The decision topic and the choice have a
reflection in the (architecturally relevant) commits. The rationale for the decision can
be reflected in the commit message, and the author of the commit can be contacted for
additional rationale. Alternatives have reflection in the history of the architecturally
relevant commits.

3 Hypotheses

The research approach we utilize consists of the following steps. First, we formed
hypotheses about how design decisions are potentially represented in the version
history of projects. Second, we selected a set of projects to test our hypotheses on.
From these projects, we generated the data that potentially contained architectural

 Making the Right Decision: Supporting Architects with Design Decision Data 179

design decisions, rationale and information about alternatives. This data was used to
validate our hypotheses in a quantitative and qualitative way. The following three
hypotheses are used in the remainder of this paper:

− Hypothesis 1: Medium level design decisions can be identified in the version
history of projects.

− Hypothesis 2: Commits in version management systems contain rationale of the
made architectural decisions.

− Hypothesis 3: Alternatives can be found in the structure of commits in version
management systems.

4 Mining Git Repositories

This section describes how the data from the git repositories was processed to usable
data in the Gitminer tool. We have looked at projects that contained a Gemfile, that
were used by the community (>1 watcher, >1 fork), were active (change in last
month) and were of moderate size (between 0,3 and 10Mb). From Google’s BigQuery
API3 we have searched project urls that satisfied these criteria, resulting in 710
projects.

Fig. 2. Processing of Repos to Gitminer

For the processing of the data from the repos, we used git4 tooling. We only looked
at the history of the Gemfile, as this file contained information about used
components. In Fig. 2. this processing is visualized. First, a set of repos is selected
and cloned to a local computer. Then, every commit on the Gemfile is taken, and
every line that changed in the Gemfile within the commit is processed to a database
insert query. To do this, we have automatically processed the output from the git log
command, which outputs the history of a file. At last we inserted the queries to the
database.

3 https://developers.google.com/bigquery/
4 http://git-scm.com/

180 J.S. van der Ven and J. Bosch

Table 1. Acquired Repo Data

Parameter Total #

Projects involved 710

Total commits 12600

Total commit messages > 30 characters 7527

Total changed lines 40464

In our processing, we removed lines that were added and removed in the same

commit (typically a copy-paste of lines to a different location in the same file) and
lines that did not concern gems (but, for example comments). A summary of the
resulting amounts after the above-mentioned steps is presented in Table 1.

4.1 Analyses Tool: Gitminer

In order to proof or disproof the hypotheses posed in this paper, we created two
different ‘views’ on the data in the Gitminer database. The Gitminer Web Interface is
a web interface that enables users to browse thought commits. This tool shows the
commits that removed the component you are looking for, as this indicates that a
specific decision was made to remove (or replace) a component. The view includes
the commit messages, the date of the commit and the contact details of the authors. In
this view you can see for every component: A) what replacements of this component
are often used, and B) what this component was often replaced for. As a second view,
the Gitminer Relationship Visualization provides a visual way to identify what
components are related. A state machine displays a relationship when a component
was removed in the same commit as where another component was added. A number
representing the amount of projects accompanies the arrows in the diagram. In this
view it is possible to see patterns of relationships between components.

5 Results

For our quantitative results, we have presented 100 different commits to six subject
matter experts. We randomly picked 100 commits from the Gitminer database that
had commit messages of more then 30 characters (therefore, had a solid chance of
containing rationale). We distributed the commits among our subject matter experts.
The participants that conducted the research were experienced Ruby software
developers, experienced software architects, and researchers with software
engineering background and experience. We asked them to answer if the presented
commit involved a design decision, rationale for a decision and relevant information
about alternatives for a decision.

Table 2. Quantitative Results

% Decision? Rationale? Alternatives?

% Yes 61,75 % 25,50 % 4,75 %

% No 38,00 % 68,75 % 84,00 %

% Empty 0,25 % 5,75 % 11,25 %

 Making the Right Decision: Supporting Architects with Design Decision Data 181

During our analysis of the data collected with the Gitminer tool, we found
additional qualitative results in addition to the quantitative results. We identified
different aspects related to design decisions, that we used as expert validation:

− There were commit messages that indicated changes of components and rationale
about them. E.g. “use mysql2 instead of mysql because of shit encoding”.

− Commit messages where a decision is made, but the rationale was clearly missing:
“Changed to jeweler2”, or “remove thin”

− Many messages described configuration issues: “Unfortunately, we can’t put ruby-
debug in the gemfile because it breaks 1.9.2 compatibility …”.

6 Analysis

As shown in Table 2, roughly 60% of the commits on Gemfiles were considered as
concerning a design decision. For our whole dataset, this would mean that 60% of the
7527 commit messages contains decisions (~4500). Of course, the other commit
messages (with < 30 characters) could also contain decision information, so this
number could very well be higher. Calculated in the same way, about 1900 commit
messages contain rationale about made decisions. When relating this to the number of
projects, on average every open source project we used contained ~ 6 decisions in
commits and ~3 commit messages with relevant rationale. Following, we will discuss
our hypotheses and related results.

Hypothesis 1: Medium level design decisions can be identified in the version
history of projects. The subject matter experts have identified architecture design
decisions in the commit messages. This is a clear quantitative indication that decisions
exist in the commit messages of open source projects. Qualitatively, the researchers
found several interesting design decisions. This qualitatively strengthens the validity
of this hypothesis. Concluding, hypothesis 1 is confirmed by our data.

Hypothesis 2: Commits in version management systems contain rationale of the
made architectural decisions. Rationale was found in 25,5% of the commits that were
inspected by the subject matter experts. Qualitatively the researchers found rationale
in many cases. This qualitatively strengthens the validity of this hypothesis.
Concluding, hypothesis 2 is also confirmed by our data.

Hypothesis 3: Alternatives can be found in the structure of commits in version
management systems. Our subject matter experts have not found many alternatives in
the commit messages from the version management system (< 5%). So, quantitatively
we have no evidence that alternatives can be found. So, hypothesis 3 is not confirmed
by our data. However, alternatives were clearly identified by the researchers in the
Relationship Visualization. So, based on the qualitative data we still think we could
be able to find information about alternatives, but not solely in the commit messages.

7 Discussion and Future Work

In order to be able to discuss the architectural design decisions we discovered in this
paper, we had to scope the definition of these decisions. We selected medium level
design decisions that concerned component selection. For the validation we have

182 J.S. van der Ven and J. Bosch

taken only the commit messages that contained more then 30 characters. Based just
on this research, it is tough to generalize to other kinds of architectural decisions.

We assumed that every added or removed line in the Gemfile was a potential
decision. However, in Gemfiles there are non-gem lines too. For example, there can
be conditional lines or groups that are only called in specific situations. We have
chosen to remove those lines. Hence, dependent on how often this happens, it could
be that some of our found decisions are conditional.

As a reflection on our research, we considered the commit messages to be very
useful in understanding what happened in a project. However, the messages were
sometimes cryptic and short. In that case, data from multiple projects needed to be
used for making similar decisions. The component relationships were interesting from
a research point of view as an indication for dependencies and alternatives.

We are investigating ways to increase the number of repositories in the database, to
be able to base the advice on a larger data set. In addition to this, we are planning to
experiment with our approach on other programming languages. For example, the
pom file of Maven (Java) projects could be used similar to Gemfiles. Also, we are
working on making the results accessible to the public. As noted by several people
that studied our results, the results could be used to statistically advice people about
their architecture.

8 Related Work

There has been much attention to documenting software architectures [6], as well as
documentation templates [7] and computational modeling [8]. A topic that is being
discussed heavily is the role of the architect [1] and the role of ’the architecture
document’ in the design process [5]. Here, often the architect is responsible for
creating and maintaining the architecture documentation. However, the architect is
never supported in making these decisions in any way.

In the architecture design decision research hierarchical structures are used to
model architectural knowledge [3] or design decisions [9, 10]. This research often
emphasizes the recording of decisions, and the extraction of decisions later in the
development process. However, we have not find any work where statistical data is
used to help architects make better decisions. Dagenais and Robillard [11]
investigated open source development for finding decisions based on surveys and
documentation. Another mining initiative involves searching open source java
frameworks [12], that focuses on code fragments instead of architectural decisions.

On the web, there are several initiatives that provide statistical data about software
projects. For example, there are tools that help developers increase code quality by
providing statistics about the code [13]. However, to the best of our knowledge no
research or practical solution exists that actually searches for design decisions in the
version history of software projects.

9 Conclusions

In this paper, we have given architects the first step to a wider knowledgebase for
relying their architecture decisions on. We have shown that it is possible to extract

 Making the Right Decision: Supporting Architects with Design Decision Data 183

architectural design decision information from the version management of open
source projects, by automating the process of extracting the decisions, and validated
that architectural decisions can be derived from commits on the system.

Architects that are facing problems related to selecting components can benefit
from this, by seeing what happened in similar situations in other software projects.
The information presented in this research is based on real world projects, which are
actually used, build and maintained around the world. By using this information,
architects can be supported statistically for making their decisions.

Acknowledgements. We would like to thank the subject matter experts for helping us
with the research. Also, we would like to thank the people of Factlink for the help
during the development of our theory and tooling.

References

[1] Farenhorst, R., Hoorn, J.F., Lago, P., van Vliet, H.: The Lonesome Architect. J. Syst.
Softw. 84(9), 1424–1435 (2011)

[2] Gorton, I., Liu, A., Brebner, P.: Rigorous Evaluation of COTS Middleware Technology.
IEEE Computer 36(3), 50–55 (2003)

[3] de Boer, R.C., Farenhorst, R., Lago, P., van Vliet, H., Clerc, V., Jansen, A.: Architectural
knowledge: getting to the core. In: Overhage, S., Ren, X.-M., Reussner, R., Stafford, J.A.
(eds.) QoSA 2007. LNCS, vol. 4880, pp. 197–214. Springer, Heidelberg (2008)

[4] Tyree, J., Akerman, A.: Architecture Decisions: Demystifying Architecture. IEEE
Softw. 22(2), 19–27 (2005)

[5] van der Ven, J.S., Bosch, J.: Architecture Decisions: Who, How and When? To be
Published in: ASA. Agile Software Architectures (2013)

[6] Clements, P., Garlan, D., Bass, L., Stafford, J., Nord, R., Ivers, J., Little, R.:
Documenting Software Architectures: Views and Beyond. Pearson Education (2002)

[7] Kruchten, P.: The Rational Unified Process: An Introduction. Addison-Wesley (2003)
[8] OMG. UML Specification, Version 2.0 (2012), http://www.omg.org/spec/UML/
[9] Jansen, A.G.J., Bosch, J.: Software Architecture as a Set of Architectural Design

Decisions. In: Proceedings of the 5th IEEE/IFIP Working Conference on Software
Architecture, WICSA 2005 (2005)

[10] van der Ven, J.S., Jansen, A., Nijhuis, J., Bosch, J.: Design Decisions: The Bridge
between Rationale and Architecture. In: Rationale Management in Software Engineering,
pp. 329–348. Springer (2006)

[11] Dagenais, B., Robillard, M.P.: Creating and evolving developer documentation:
understanding the decisions of open source contributors. In: Proceedings of the
Eighteenth ACM SIGSOFT International Symposium on Foundations of Software
Engineering (2010)

[12] Thummalapenta, S.: SpotWeb: Detecting Framework Hotspots via Mining Open Source
Repositories on the Web. In: Proceedings of the 2008 International Workshop on Mining
Software Repositories, MSR (2008)

[13] Bluebox, Code Climate (2013), https://codeclimate.com/

Architecture-Centric Modeling of Design

Decisions for Validation and Traceability

Martin Küster

FZI Research Center for Information Technologies, Software Engineering,
Haid-und-Neu-Str. 10-14, 76131 Karlsruhe, Germany

kuester@fzi.de

http://www.fzi.de/se

Abstract. Access to previously made architectural design decisions al-
lows for faster understanding and more educated decisions during
software evolution. Templates and ontologies have been proposed to doc-
ument such decisions. In this paper we argue that documenting the archi-
tectural design decisions can be intertwined with a standard architecture
documentation process. For that, we propose architecture-specific deci-
sion types equipped with OCL constraints capable for decision confor-
mance checks. We present an initial evaluation based on a preliminary
case study with a typical three-tier web-application and the decisions
associated with its implementation.

Keywords: design decision, architectural model, traceability, constraint
checking.

1 Introduction

Documented design decisions on an architectural level are beneficial for many
reasons. For example, while modifying an architecture, explicit statements about
the intention and rationale of architectural elements help the architect to make
better decisions, without repeating himself or invalidating decisions taken before
(cf. [1]).

In [2], based on a case study, we identified requirements for beneficial decision
documentation. One central element was the connection of the specification of
the software (such as use case diagrams, or textual requirements documents or
models) to design artifacts, especially on the architecture level to avoid context
switches. This work proposes a solution for the linkage between decision- and
architectural elements to ease architecture evolution.

In this paper, we build on existing decision models, and focus on semantic
linkage to architecture elements for automatic validation of existing decisions.
Links to drivers of a decision enable traceability and system understanding.
We propose to combine the two prime use cases of decision models (validation
and traceability) with an integration into architectural decscription langauges
(ADLs).

K. Drira (Ed.): ECSA 2013, LNCS 7957, pp. 184–191, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.fzi.de/se

Architecture-Centric Modeling of Design Decisions 185

Instead of providing a generic linking or tracing mechanism we propose a
compact domain-specific language (DSL) for recording architectural decisions.
The proposed decision types are supplied with OCL constraints that can check
whether the decision is still valid. This is especially useful when the architectural
model changes over time and the decisions made have to be reconsidered.

The approach and the elements of the decision types are evaluated using a
simple real-world implementation of a three-tier web application and its archi-
tectural model. Typical evolution scenarios show how the modeled decisions can
improve evolutions steps and changes made to the architecture.

2 Motivating Example

Virtualization techniques in software architectures bring many benefits. How-
ever, the work of an architect managing such virtualized environments got more
difficult as a result of more degrees of freedom. Here, the explicit consideration of
decisions taken while designing the different virtualized layers is more important
than before to support system understanding and longevity of the software- and
hardware architecture.

IBM HS21 7995G3G

«device»

VM (Ubuntu 7.10)

«node»

Apache Tomcat Server v6

Banking
Web-App

«executionEnvironment»

banking.war
«artifact» «manifest»

In the context of the banking web
app, we decided to virtualize the
Tomcat server running the servlet
for legacy support of the OS and
consolidation of the servers.

«component»

Fig. 1. Example of a virtualization decision following the Y-template as described
in [3]. Architecture model following the UML 2.4.1 standard [4].

Introducing virtualization is a typical decision taken by an architect. Fig. 1
examplifies the situation. The decision attached to the deployed web app states
that the Banking web application is deployed in a Tomcat server that runs in a
virtualized Linux box. The basic problem with such an annotation-based mech-
anism is that the additional information is not linked semantically to the archi-
tecture model. When the architecture changes, or when a driver of the decision
(e.g. a consolidation issue) is reverted or reconsidered, the necessary informa-
tion which elements could be affected cannot be achieved easily. Validation of a
changed architecture is only possible if all decisions are reviewed.

We propose to introduce a designated decision model element (virtualization)
that can be linked to the relevant artefacts and which can be automatically
checked by an OCL constraint.

186 M. Küster

3 Modeling of Architectural Design Decisions

The key idea of the proposed architectural design decision model to express
architectural design decisions with special constructs that reference the archi-
tectural model. These links allow for validation of the decisions with pre-defined
OCL constraints.

The metamodel builds on existing work by Capilla et al. [5] and extends it by
adding direct links to elements as found important by Falessi [6].

3.1 Constraint Checking with OCL

Consider the example ADD (replication) given in Fig. 2. The element Replication
is a subclass of Decision and inherits all attributes. It brings (by the additional
references and by the OCL constraint) semantics that cannot be expressed with-
out explicit type-safe modeling of the respective design decision. In the case of
replication, we reference a UML Class and a UML Component. The semantics
that are expressed by the OCL constraint in the grey box states that the refer-
enced component should be instantiated multiple times (given by the attribute
numberReplicas). The element that contains the replicas is referenced by clazz.
This class contains the replicated component instances as UML Properties refer-
enced by ownedAttribute. Therefore, we get the constraint counting the number
of owned attributes (contained elements) that conform to the referenced compo-
nent. It must be equal to the stated number of replicas.

Fig. 2. Replication decision with OCL constraint and links to UML

We can easily see that given a reasonable set of semantically rich decision
types, we can specify a lot of typical architectural decisions and ensure the
validity of the decision in the architectural model by the OCL constraints that
the decision types bring along.

3.2 Decision Types

The different types of decisions that we consider most relevant for architecture
evolution is listed in Table 1. We do not claim that the list is complete. It is based

Architecture-Centric Modeling of Design Decisions 187

on the two main viewpoints for architecture modeling, which is the structural
and deployment viewpoint. We introduced a decision type for each architectural
element that should (and can) be validated or linked to issues or requirements.
The table gives, for each decision type, the set of linked architectural elements
on which the OCL constraint can be evaluated. The constraint itself is described
textually. The OCL constraints are stored directly in the Ecore model as anno-
tations.

Table 1. Table summarizing the decision types including a textual description of the
semantics of the constraint that is attached to the architectural design decision

Decision Type Constraint

Virtualization ExecutionEnvironments are not put directly to devices (deploy-
ment via Nodes).

AllocateSeparately Components are deployed separately (on different Nodes).
AllocateToghether Components are explicitly deployed on the same Nodes.
NeverAllocateTo The Component is not deployed to the referenced Nodes.
AllocateTo The Component shall only be deployed to the referenced Nodes.
InterfaceDesign Method (must be part of an interface) is introduced as a result

of an issue.
Replication The Component is replicated (multiple instantiation) within

the referenced Class.
SingleInstatiation The Component is instantiated only once (explicit exclusion of

replicas).
IntroduceComponent The Component is introduced as a result of an issue. Do not

remove without considering the decision.
ReuseComponent An existing Component (e.g. third-party lib) is added to the

architecture. Do not remove without considering the decision.
SplitComponents The realized functionality (given by a functional requirement)

is split between the referenced Components.
Decision Arbitrary OCL constraints.

Most of the elements listed under the deployment and structure viewpoint
are hoped to be self-explanatory. The user-defined decision type can be used to
specify technical decisions such as project guidelines, programming languages
etc., or non-technical consideration such as teams, deadlines, etc.

4 Case Study

For the case study outlined in the following, we implemented a typical three-tier
web application. The application offers services for storing and retrieving user
data. A servlet serves the http requests and accesses a relational user database
via an object-relational mapper.

By giving the architectural design decisions of a real-world example, we want
to show that the decision types that we proposed in Sec. 3 are sufficient for mod-
eling typical decisions in a component-based system. The list can be extended

188 M. Küster

Fig. 3. Case study architecture: a web application for user management

whenever finding a recurring decision type that is used in a real-world example
and that is necessary for validation or traceability.

The overall complexity of the application is fairly low. But still, the number
of decisions taken while designing the system is significant (seven decisions for
only four server components and additional three decisions for three assembled
components).

4.1 Initial Architecture and Design Decisions

The initial component architecture of the case study is depicted in Fig. 3. The
initial deployment of the components on a local machine is shown in Fig. 4. The
decisions are attached as notes for better readability. In the model, all design
decisions are linked with the architectural element and an issue that was the
driver of the decision (not part of the diagram).

i43-ATIS (hardware unknown)

i43pc164.ipd.kit.edu
(virtualizied centOS)Event Client

Cafeteria Client

Event
Client

Cafeteria
Client

Relational
Database

University of Karlsruhe IntranetWorld Wide Web

Rationale:
We do not want to host
the service. In the
university data center,
you only get virtualized
resources.

Rationale:
Load on the user
service is low. No
separate deployment
of DB necessaryApache

Reverse Proxy AllocateTo

Apache Tomcat

UserMgmt Servlet

VirtualizationVirtualizationVirtualization

AllocateTogether

Fig. 4. Case study architecture: Deployment of the web application

Architecture-Centric Modeling of Design Decisions 189

4.2 Change Scenarios for Validation

Validation of documented design decision is a key concept of the outlined model-
based approach. In this section, we show what kind of changes to the architecture
can be supported with the built-in OCL constraints. In a larger architecture, the
effect of the automation that comes with the incorporated constraints is more
visible since not all decisions can be kept in mind. However, the change scenarios
we show are examples of changes that are protected against architectural drift.

System Structure. Any existence decision (such as Introduce- or ReuseCompo-
nent) is protected against removal of its element. Deletion of the element violates
the existence constraint leading to an invalidated design decision. In case of the
reuse of a component (O/R mapper library), the interface is external and cannot
be modified. Changing the interface of a reused component leads to a violation.
Changes to interfaces that are guarded by an InterfaceDesign lead to violations
only if a method that has been added intentionally is removed. For example, the
CRUD-operations in the UserREST interface are marked by a design decision.
If either of them is removed, the decision is invalidated.

The violations are marked as icons in the architecture model as well as in the
problem view of the integrated development environment (IDE).

Deployment. Twodecisions in Fig. 4 are intentional allocations of components to a
specific node (AllocateTogether andAllocateTo). Moving one of the components to
a different node will lead to a violation. TheVirtualization decision checkswhether
there is (at least one)virtualNodebetween theDeviceand theallocated component.
Deploying the component directly to a device invalidates the decision.

4.3 Change Scenarios for Understanding and Traceability

For traceability, the issues and requirements linked to design decisions are of
importance. For better readability, they are not included in the figures (Fig. 3
and Fig. 4). To illustrate the benefit of the upstream traceability included in the

Traceability

Apache
Reverse Proxystatus = StatusEnum.taken

...

:IntroduceComponent component

spec. = „The user service
shall be available from the
WWW.“
...

:Requirement

summary = „Tomcat cannot
be configured to listen to
port 80“
...

:Issuetriggers

desc. = „Use an Apache Httpserver with module
mod_proxy_ajp to forward requests from port 80
to port 8009"

:Rationale

rationale

resolves

Fig. 5. Evolution context of the Apache Reverse Proxy component

190 M. Küster

decision model, we give the full decision model with linked issues as a separate
object graph (Fig. 5). As we identified in our previous work [2], it is crucial
for good system understanding to avoid switches between the different artifacts
(requirements, issues, architectural elements).

The graph shows that the elements that represent the evolution context of the
component are navigable from the architectural element. The related elements,
especially the issues that triggered the existence of the element or its modifica-
tion, can be displayed around the architectural element in one view. By that,
we can support the architect with additional information that is needed for the
deliberate evolution of the software architecture.

In the example, the reverse proxy was introduced because of a technical limi-
tation, which was the inability to configure reserved ports (0..1023) in the servlet
engine. The problem was raised to an architectural issue, which could be solved
by introducing an additional component delegating to a different port.

From our experience, this is a common pattern. The architecture is initially
designed based on functional or non-functional requirements. But after a while,
modifications or additions are made that are hard to understand without explicit
knowledge management support. Instead of browsing a (possible large) document
of architectural decisions, the architect can simply navigate to the element about
which she needs additional information.

With the proposed approach, the architecture understanding can be improved
especially for architects new to the system or parts of it.

5 Related Work

Decision templates as given by Tyree et al. [7] have been the earliest forms of
architecture knowledge management. They are complete, but do not link into
the solution space, which is the architecture. Early work on decision views were
presented by Dueñas and Capilla [8]. They outlined the idea of additions to
UML for decision support, but did not provide any implementation. The idea
was refined in Tang’s work [9] on AREL (Architecture Rationale and Elements
Linkage). The architectural elements (AE) are not differentiated, making it im-
possible to check constraints in a type-safe manner as outlined in this paper.
Validation is the key contribution of Könemann and Zimmermann’s work [10]
on combining design decisions with design documents. The concept of having
constraints that check whether a decision is still fulfilled is very similar to ours.
By introducing special decision types, we can make checks or validations that
are impossible with the ones in Könemann’s work, which is mostly conservative
checking if the referenced elements still exist. A different representation, seman-
tic wikis, are proposed by DeGraaf et al. [11]. There are parallels between the
ontology that they presented and our decision model. We propose to keep the
requirements model separate from the architecture model. Our decision model
is in the middle knowing both worlds, the requirements and the architecture
world. The finding that they make in the paper can be summarized by saying
that the expressive links between wiki pages lead to a higher effectiveness of

Architecture-Centric Modeling of Design Decisions 191

software architects and developers. We follow this line of argument, but use a
different representation (model instead of ontology). Lastly, a recent publication
by van Heesch et al. [12] showed that decision making support is suited explicitly
for young developers lacking years of experience. The findings suggest that the
different decision viewpoints help in exploring and evaluating solution options.

Acknowledgments. The authors thank Zoya Durdik from FZI and Anne
Koziolek from KIT for fruitful discussions of the decision model. We thank
Armağan Kilic for supporting us as part of his Master’s thesis. We thank Emre
Taşpolatoğlu for implementing the user management system. The work has been
funded by BMBF project grant no. 01IS12012B (MOHITO).

References

1. Farenhorst, R., de Boer, R.: Knowledge management in software architecture: State
of the art. In: Babar, M.A., Dingsøyr, T., Lago, P., van Vliet, H. (eds.) Software
Architecture Knowledge Management, pp. 21–38. Springer, Heidelberg (2009)

2. Küster, M., Trifu, M.: A Case Study on Co-Evolution of Software Artifacts Using
Integrated Views. In: Proceedings of the WICSA/ECSA 2012 Companion Volume
- WICSA/ECSA 2012, p. 124 (2012)

3. Zimmermann, O.: Making Architectural Knowledge Sustainable The Y-Approach.
In: SATURN Conference. Software Engineering Institute, CMU (2012)

4. Object Management Group (OMG): UML Infrastructure (2011)
5. Capilla, R., Zimmermann, O., Zdun, U., Avgeriou, P., Küster, J.M.: An enhanced

architectural knowledge metamodel linking architectural design decisions to other
artifacts in the software engineering lifecycle. In: Crnkovic, I., Gruhn, V., Book,
M. (eds.) ECSA 2011. LNCS, vol. 6903, pp. 303–318. Springer, Heidelberg (2011)

6. Falessi, D., et al.: A Value-Based Approach for Documenting Design Decisions
Rationale: A Replicated Experiment, pp. 63–69 (2008)

7. Tyree, J., Akerman, A.: Architecture Decisions: Demystifying Architecture. IEEE
Software 22, 19–27 (2005)

8. Dueñas, J.C., Capilla, R.: The decision view of software architecture. In: Morri-
son, R., Oquendo, F. (eds.) EWSA 2005. LNCS, vol. 3527, pp. 222–230. Springer,
Heidelberg (2005)

9. Tang, A., Jin, Y., Han, J.: A rationale-based architecture model for design trace-
ability and reasoning. Journal of Systems and Software 80, 918–934 (2007)

10. Könemann, P., Zimmermann, O.: Linking design decisions to design models in
model-based software development. In: Babar, M.A., Gorton, I. (eds.) ECSA 2010.
LNCS, vol. 6285, pp. 246–262. Springer, Heidelberg (2010)

11. de Graaf, K.A., et al.: Ontology-based Software Architecture Documentation. In:
2012 Joint Working IEEE/IFIP Conference on Software Architecture and Euro-
pean Conference on Software Architecture, pp. 121–130. IEEE Computer Society
(2012)

12. van Heesch, U., Avgeriou, P., Tang, A.: Does decision documentation help junior
designers rationalize their decisions? - A comparative multiple-case study. Journal
of Systems and Software (2013)

K. Drira (Ed.): ECSA 2013, LNCS 7957, pp. 192–199, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Difficulty of Architectural Decisions –
A Survey with Professional Architects

Dan Tofan1, Matthias Galster2, and Paris Avgeriou1

1 University of Groningen, The Netherlands
d.c.tofan@rug.nl, paris@cs.rug.nl

2 University of Canterbury, New Zealand
mgalster@ieee.org

Abstract. Much research exists on architectural decisions, but little work
describes architectural decisions in the real-world. In this paper, we present the
results of a survey with 43 architects from industry. We study characteristics of
86 real-world architectural decisions and factors that contribute to their
difficulty. Also, we compare decisions made by junior architects and senior
architects. Finally, we compare good and bad architectural decisions. Survey
results indicate that architectural decisions take an average time of eight
working days. Dependencies between decisions and the effort required to
analyze decisions are major factors that contribute to their difficulty. Compared
to senior architects, junior architects spend a quarter of the time on making a
decision. Good architectural decisions tend to include more decision
alternatives than bad decisions. Finally, we found that 86% of architectural
decisions are group decisions.

1 Introduction

The architecture of a software system is the result of a set of architectural design
decisions [1]. Architectural decisions have a key influence on the functional and
quality characteristics of software systems [2]. Examples of architectural decisions are
choosing development frameworks or architectural patterns. Given the importance of
architectural decisions and their significant impact on system development, much
interest exists for research on architectural decisions. However, characteristics of
architectural decisions and factors that contribute to their difficulty have not yet been
studied in industrial practice. An in-depth understanding of the characteristics and
difficulty of architectural decisions would enable researchers to propose approaches
that help practitioners in their decision making activities. Thus, we conducted a
survey to answer the following research questions:

RQ1. What Are the Characteristics of Architectural Decisions?
To answer RQ1, we define measurable characteristics (Table 1) of architectural
decisions. Previous research has shown that the concept of architectural decisions
gained importance among practitioners, despite the fact that the definition of software
architecture in terms of architectural decisions was not completely adopted in practice

 Difficulty of Architectural Decisions – A Survey with Professional Architects 193

[3]. Another survey with practitioners provides insights on knowledge sharing for
architectural decisions [4]. However, we could not find any study that investigates the
characteristics of architectural decisions.

RQ2. What Factors Make Architectural Decisions Difficult?
To answer RQ2, we defined a list of factors derived from literature and discussions
with experts. The resulting metrics were 22 factors (Table 2) that survey participants
rated. Once we know what makes architectural decisions difficult, we can devise
approaches that focus on mitigating the difficulty of making decisions.

RQ3. What Are the Differences between Junior and Senior Software Architects?
The experience of architects influences their decision making [5,6]. Thus, we propose
RQ3 to investigate how difficulty and characteristics of decisions vary with the level
of experience. This helps researchers propose targeted solutions to address the
difficulties perceived by either junior architects or experienced architects. Previous
research showed that naïve architects (i.e. undergraduate students) do not make trade-
off between requirements, and do not evaluate critically their decisions [5].
Furthermore, professional architects very often search for many design alternatives in
their decision making [6]. Additionally, professional architects do not consider risk
assessment as very important [6].

RQ4. What Are the Differences between Good and Bad Architectural Decisions?
We propose RQ4 for studying the differences between decisions with a more
preferable outcome (i.e. good decisions) and decisions with a less preferable outcome
(i.e. bad decisions). Answering RQ4 highlights characteristics and difficulty factors
linked to good and bad outcomes of architectural decisions.

2 Survey Design and Results

2.1 Survey Design

To develop the survey, we reviewed existing literature on architectural decisions (e.g.
[2,5,6]). From the literature, we identified factors that contribute to the difficulty of
architectural decisions. Next, we interviewed four senior architects, each with at least
ten years of experience as an architect. We asked each architect to identify two
architectural decisions they had been involved in, and discussed the difficulty factors
for both decisions. Afterwards, we asked the architects to propose other items that
contribute to the difficulty of a decision to be included in the questionnaire used to
collect the survey data. The architects also provided thoughtful feedback on the
structure of the questionnaire. We piloted the questionnaire with other practitioners,
and improved it by rephrasing some questions to increase clarity.

After a welcome message, participants had to confirm that they were directly
involved in making architectural decisions during the last two years. The survey
continued with a few questions about the background of participants. Next,
participants were asked to indicate a good architectural decision (i.e. good or bad
outcome, according to their judgment), and described its characteristics (Table 1).
Next, participants were asked to rate the 22 statements in Table 2 about the difficulty

194 D. Tofan, M. Galster, P. Avgeriou

of their good architectural decision on a Likert scale. Similar steps had to be
performed for the bad architectural decision.

Our target population was software architects who were directly involved in
making software architectural decisions during the last two years. To reach our target
population, we sent survey invitations to architects in our personal networks.
Furthermore, we posted survey invitations on LinkedIn groups and ran paid ad
campaigns using LinkedIn and Google. We received 43 valid responses from 23
countries on five continents. Twelve participants had up to two years of experience as
architects, ten participants had three to five years of experience, thirteen participants
had six to ten years of experience, seven participants had eleven to fifteen years of
experience, and one participant had more than fifteen years of architecting experience.

2.2 Results for RQ1 - Characteristics of Architectural Decisions

Participants indicated the actual and the elapsed time (i.e. actual time is spread over
the elapsed time, as architects are also involved in other activities) they spent for
making the 86 architectural decisions (Table 1). On average, architectural decisions
took about eight working days, and elapsed over around 35 working days. Participants
indicated how many people were involved directly and indirectly in making the
architectural decisions. The number of indirectly involved persons excludes the
directly involved persons. The results are shown in Table 1. On average, each
architectural decision involved three persons that were directly involved. When
making an architectural decision, more alternatives are considered. We asked
participants to indicate the number of alternatives they considered at the beginning of
their decision making process, and the number of alternatives they studied for an
extended period of time. Results are shown in Table 1. Architects consider quality
attributes in their decisions. However, it is not clear how many quality attributes they
consider in practice, so we asked them to indicate this number for their decisions
(Table 1).

Table 1. Metrics for actual/elapsed time (in working days), number of directly and indirectly
involved persons, number of alternatives considered in the beginning/extended time, and
number of quality attributes considered when making the architectural decisions

Metric Actual Elapsed Direct Indirect Begin Extend #QA
Average 7.85 34.74 3.12 7.05 2.91 1.96 4.74
Std. dev. 9.22 70.59 1.54 8.91 1.43 0.84 4.19
Min. 0.50 0.63 1 0 1 0 0
Max. 44 600 8 50 8 4 30
Mode 1 5 3 3 3 2 3

2.3 Results for RQ2 - Difficulty of Decisions

Participants rated 22 factors (Table 2) on the difficulty of their architectural decisions,
indicating their level of agreement with the statements, using the following values:
(strongly) disagree, neutral, (strongly) agree, and not applicable.

 Difficulty of Architectural Decisions – A Survey with Professional Architects 195

Results for each factor are summarized in Fig. 1 (left). From the bar charts, we
notice the following. Participants indicated most agreements (including strong
agreements) with statements on dependencies with other decisions (F13 for 69
decisions), major business impact (F14 for 60 decisions) and serious negative
consequences (F16 for 59 decisions). Participants indicated most disagreements
(including strong disagreements) with statements on having too many alternatives (F8
for 57 decisions), too many people involved in decision making (F12 for 49
decisions), lack of domain-specific knowledge (F21 for 46 decisions), and having too
few alternatives (F9 for 45 decisions). Participants indicated most neutral standpoints
with statements on respecting existing architectural principles (F15 for 24 decisions),
needing lot of effort for analyzing decision alternatives (F10 for 21 decisions), and
having much peer pressure (F18 for 21 decisions).

Table 2. List of 22 factors that contribute to the difficulty of architectural decisions

ID The decision was difficult because…

F1
you received conflicting recommendations from various sources about which decision
alternative to choose

F2 there were no previous similar decisions to compare this decision against

F3
it was hard to identify a superior decision alternative from the alternatives under
consideration

F4 the decision required a lot of thinking from you
F5 it was hard to convince stakeholders to accept a certain decision alternative
F6 stakeholders had strongly diverging perspectives about the decision

F7
you needed to influence some stakeholders without having formal authority over
them

F8 the decision had too many alternatives
F9 the decision had too few alternatives
F10 analyzing alternatives for this decision took a lot of effort
F11 some quality attributes were considered too late in the decision making process
F12 too many people were involved in making the decision
F13 dependencies with other decisions had to be taken into account
F14 the decision had a major business impact
F15 you had to respect existing architectural principles
F16 serious negative consequences could result from the decision
F17 too little time was available to make the decision
F18 you had a lot of peer pressure
F19 of the trade-offs between quality attributes
F20 you lacked experience as an architect
F21 you lacked domain-specific knowledge (e.g. new customer)
F22 more information was needed to reduce uncertainty when making the decision

Fig. 1 (right) shows average values for all factors, calculated as follows. We assign
numerical values to the Likert scale: strongly disagree (1), disagree (2), neutral (3),
agree (4), and strongly agree (5). Not applicable values are ignored. We acknowledge
challenges with treating a Likert scale as either an interval or categorical data. Still,
we use averages because they are easy to understand for a large audience.

196 D. Tofan, M. Galster, P. Avgeriou

From Fig. 1 (right), we notice that dependencies with other decisions (F13) and
major business impact (F14) have highest average agreements across participants.
Negative consequences (F16) received second highest average. Effort for analyzing
alternatives (F10), lack of similar decisions (F2) and requiring a lot of thinking (F4)
received high agreements from participants.

Fig. 1. Survey results for each factor (left), and sorted average values for factors (right) - a
higher average indicates stronger agreement with the difficulty of a factor

We notice that some factors have averages that suggest disagreement that they
contribute to the difficulty of architectural decisions, i.e. have averages smaller than
three (neutral). For example, too many (F8) or too few (F9) alternatives contribute
little to difficulty, similar to lack of experience (F20) and domain-specific knowledge
(F21). However, the last two factors need to be considered in the context that many
participants were senior architects, who might have enough experience and
knowledge.

2.4 Results for RQ3 - Differences between Junior and Senior Architects

We divide survey participants in junior and senior architects as follows. Junior
architects have up to five years of experience as architects, and senior architects have
six or more years of experience as architects. Based on this criterion, 22 junior and 21
senior architects answered the survey.

To compare the answers from junior and senior architects, we use the Mann-
Whitney U test, a non-parametric test. We investigate the differences between junior
and senior architects with regard to the 22 factors in Table 2, and the metrics in Table
1. We obtain significant statistical differences (p-values less than 0.05) between junior

4 5 2 4 7 7 4 7 5
0

9 10
2 1 3 1 3 2 0

12
5 3

20 17
19 14

21
16 20

50

40

14

26

39

9 10

20
16

34
29

21

28 41

21

17

10
16

17

17

17

5

9

17

21

11

12

6
14

24

10

19

21

20

20 8

9

28

27

28
28

17 25

30

15 21

34

29

15

49 33

25

36

22
25

37

23
26

35

12
26 17 23

20 17
21

4 2

17 8 9
20

27

12
23

6 6 6
3

5

17

5
1 4

0
4 4 6

1 1 0 3 1 0 1 2 0 2 3 2
0 1 1

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22

Strongly disagree Disagree Neutral Agree Strongly agree Not applicable ID Avg.

F13 3.88
F14 3.88
F16 3.74
F10 3.63
F2 3.61
F4 3.6
F7 3.55
F22 3.49
F3 3.48
F6 3.35
F19 3.33
F1 3.3
F5 3.27
F15 3.27
F18 3.05
F11 3.01
F17 2.93
F21 2.82
F20 2.73
F9 2.71
F12 2.69
F8 2.52

 Difficulty of Architectural Decisions – A Survey with Professional Architects 197

and senior architects for five difficulty factors and one characteristic. Junior architects
considered conflicting recommendations on what to consider for a decision (F1) as
more significant to making a decision difficult. Also, in contrast to senior architects,
junior architects found that if lots of thinking is required (F4), decisions become more
difficult. In turn, senior architects found that decisions become more difficult if they
have a major business impact (F14). There are differences between junior and senior
architects on experience (F20) and domain-specific knowledge (F21); these
differences can be expected to some extent, because senior architects have more
experience and domain-specific knowledge. Additionally, senior architects spend four
times more actual time on their decisions than junior architects.

2.5 Results for RQ4 - Differences between Good and Bad Decisions

Comparing participants’ answers on their good and bad architectural decisions
increases our understanding on the quality of architectural decisions, by analyzing the
link between the two aspects of quality: difficulty (the 22 factors in Table 2) and
outcome (good and bad decisions). Furthermore, we analyze the link between the
characteristics of architectural decisions and their outcome (e.g. are there differences
between the time spent on good or bad decisions?).

We compare differences between the 43 good and 43 bad decisions using the
Wilcoxon signed ranks test, a non-parametric statistical test for comparing groups of
two related samples. We treat ‘not applicable’ answers as missing values. Similar to
the analysis in Section 2.4, we investigate the differences between good and bad
decisions related to the data in Table 1 and Table 2.

We found statistically significant differences on having too few alternatives (F9),
with a tendency for disagreement with F9 on good decisions, and for neutral with F9
on bad decisions. For bad decisions, participants indicated that some quality attributes
were considered too late (F11), in contrast with good decisions. Also, dependencies
with other decisions (F13) are more difficult for good than bad decisions. Participants
disagreed on too little available time (F17), much peer pressure (F18), and lack of
experience (F20) for the good decisions, in contrast with the bad decisions.

Regarding the decisions characteristics, we found statistically significant
differences between the number of alternatives considered at the beginning of the
decision making process, number of alternatives studied for an extended period of
time, and the number of quality attributes. For all these, the good decisions had higher
numbers.

3 Discussion

An architectural decision takes an average actual time of around eight working days,
over an average elapsed time of 35 working days (Table 1). The survey results
indicate no significant differences between good and bad decisions regarding actual
and elapsed time. However, participants considered they had enough time for the
good decisions, and not enough time for the bad decisions.

198 D. Tofan, M. Galster, P. Avgeriou

The actual time junior architects spend on making a decision is one quarter of that
spent by senior architects. We expected senior architects to spend less or similar
amounts of time to junior architects, because of their extra experience. A possible
explanation is that senior architects might deal with higher impact, time-consuming
decisions than juniors. A future comparison should use a ratio of time per decision
impact, which can be quantified as the estimated cost of reversing the decision.

Another insight from this survey concerns the number of people involved in
architectural decisions. The importance of stakeholders in architectural decisions is
widely recognized in the literature. Stakeholders are always involved indirectly in
decision making. However, no studies mention the direct involvement of stakeholders
in decisions, as decision makers, rather than decision influencers. Researchers need to
know if architectural decisions are typically made by one person (i.e. the architect) or
by groups of persons (i.e. one or more architects, and other stakeholders). For
example, researchers can propose group decision making approaches, if a relevant
proportion of architectural decisions are made in groups. A surprising result is that
only 14% of the decisions in the survey were made by individuals. The typical
architectural decision has three decision makers (Table 1). We consider that group
architectural decision making is a much needed research direction.

Regarding difficulty of decisions, we notice that dependencies with other decisions
contribute much to difficulty of decisions. Results from a related survey [6] indicate
that architects often come across such dependencies. Moreover, researchers proposed
various approaches for handling decisions dependencies (e.g. [7]). Our survey
confirms the relevance of the topic, and the need for disseminating research results to
practitioners. We also found that analysis effort and lack of similar (or previously
made) decisions increase difficulty of decision making. This suggests that
practitioners welcome approaches that help them analyze decisions, and appreciate
examples of similar decisions as opportunities to reuse architectural knowledge.

Regarding differences between junior and senior architects, we found that junior
architects need help to address the difficulties of analyzing decisions, such as
handling conflicting recommendations. This is not relevant for senior architects. We
consider that existing documentation approaches help junior architects. However,
documentation could be improved by adding capabilities for analyzing decisions.

Regarding differences between good and bad decisions, the survey results indicate
that good decisions have more alternatives than bad decisions. Therefore, as a rule of
thumb, we recommend practitioners to identify three or more alternatives. Also, this
study confirms that practitioners should pay attention to quality attributes and
decisions dependencies while making architectural decisions.

To increase internal validity, we piloted and refined the questionnaire to ensure
that participants could understand it. Also, we added explanatory text with small
examples to the questions, so that participants could easily interpret the questions. To
address construct validity, we discussed our conceptualization of decision difficulty
with experienced architects, who helped us refine it. The very low numbers of ‘not
applicable’ answers to survey items indicates that the survey items indeed measure
difficulty of decisions. We increased the external validity of this survey by recruiting
participants from multiple venues.

 Difficulty of Architectural Decisions – A Survey with Professional Architects 199

4 Conclusion and Future Work

We have two take-away messages for practitioners. First, since architects make
decisions that have major business impact, it is important (especially for junior
architects) to use decision making tools and processes that help them analyze
alternatives and dependencies with other decisions. For example, based on our
previous work [8,9], we are developing an open-source tool [10] that will include
support for group decision making, analyzing alternatives and dependencies with
other decisions. Second, during architectural decision making, considering more
alternatives and more quality attributes leads to better decisions.

This paper encourages researchers to conduct future descriptive work on real-world
architectural decision making (e.g. provide more data about decisions). Also,
researchers can propose decision making support for architects based on their
experience levels, and the actual difficulties faced by architects. Finally, this paper
provides evidence for the need of future research on group architectural decision
making.

References

1. Jansen, A., Bosch, J.: Software Architecture as a Set of Architectural Design Decisions. In:
5th Working IEEE/IFIP Conference on Software Architecture, pp. 109–120. IEEE (2005),
doi:10.1109/WICSA.2005.61

2. Zimmermann, O.: Architectural Decisions as Reusable Design Assets. IEEE
Software 28(1), 64–69 (2011), doi:10.1109/MS.2011.3

3. Clerc, V., Lago, P., van Vliet, H.: The Architect’s Mindset. In: Overhage, S., Ren, X.-M.,
Reussner, R., Stafford, J.A. (eds.) QoSA 2007. LNCS, vol. 4880, pp. 231–249. Springer,
Heidelberg (2008)

4. Farenhorst, R., Hoorn, J., Lago, P., van Vliet, H.: The Lonesome Architect. In: Joint
Working IEEE/IFIP Conference on Software Architecture & European Conference on
Software Architecture, pp. 61–70. IEEE (2009), doi:10.1109/WICSA.2009.5290792

5. van Heesch, U., Avgeriou, P.: Naive Architecting - Understanding the Reasoning Process
of Students. In: Babar, M.A., Gorton, I. (eds.) ECSA 2010. LNCS, vol. 6285, pp. 24–37.
Springer, Heidelberg (2010)

6. van Heesch, U., Avgeriou, P.: Mature Architecting - A Survey about the Reasoning
Process of Professional Architects. In: 9th Working IEEE/IFIP Conference on Software
Architecture, pp. 260–269. IEEE (2011), doi:10.1109/wicsa.2011.42

7. Jansen, A., Avgeriou, P., van der Ven, J.S.: Enriching Software Architecture
Documentation. Journal of Systems and Software 82(8), 1232–1248 (2009),
doi:10.1016/j.jss.2009.04.052

8. Tofan, D., Galster, M., Avgeriou, P.: Capturing Tacit Architectural Knowledge Using the
Repertory Grid Technique (NIER Track). In: 33rd International Conference on Software
Engineering, pp. 916–919 (2011), doi:10.1145/1985793.1985944

9. Tofan, D., Galster, M., Avgeriou, P.: Reducing Architectural Knowledge Vaporization by
Applying the Repertory Grid Technique. In: Crnkovic, I., Gruhn, V., Book, M. (eds.)
ECSA 2011. LNCS, vol. 6903, pp. 244–251. Springer, Heidelberg (2011)

10. Tool for Repertory Grid Technique, https://github.com/danrg/RGT-tool
(accessed April 2013)

K. Drira (Ed.): ECSA 2013, LNCS 7957, pp. 200–207, 2013.
© Springer-Verlag Berlin Heidelberg 2013

The Role of Quality Attributes
in Service-Based Systems Architecting: A Survey

David Ameller1, Matthias Galster2, Paris Avgeriou3, and Xavier Franch1

1 Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
{dameller,franch}@essi.upc.edu

2 University of Canterbury, Christchurch, New Zealand
mgalster@ieee.org

3 University of Groningen, The Netherlands
paris@cs.rug.nl

Abstract. Quality attributes (QA) play a fundamental role when architecting
software systems. However, in contrast to QA in traditional software systems,
the role of QA when architecting service-based systems (SBS) has not yet been
studied in depth. Thus, we conducted a descriptive survey to explore how QA
are treated during the architecting of SBS. Data were collected using an online
questionnaire targeted at participants with architecting experience. Our survey
shows that QA and functional requirements of SBS are mostly considered
equally important. Also, QA are usually treated explicitly rather than implicitly.
Furthermore, dependability and performance appear to be the most important
QA in the context of SBS. Our results partially show that general findings on
QA also apply to the domain of SBS. On the other hand, we did not find a
confirmation that QA are primary drivers for the architecting of SBS, or that
certain application domains would focus on particular QA.

Keywords: quality attributes, service-based systems, survey, architecting.

1 Introduction

Quality attributes (QA) are characteristics that affect the quality of software systems
[1]. Quality attribute requirements are requirements that refer to these quality
attributes. For example, demanding a response time of 1 millisecond for a particular
function of a system is a quality attribute requirement referring to performance (the
QA). QA tend to be more difficult to achieve because they are often not explicitly
described by stakeholders, exhibit trade-offs, or are subjective. It has been
acknowledged that QA affect the architecting of software systems and thus should be
considered from the very start of a software project [2, 3]. One type of software
system that has become popular in industry is that of service-based systems (SBS) [4].
In contrast to conventional software systems, the role of QA in the context of SBS has
not yet been studied extensively. However, quality is a top challenge in SBS
engineering [2, 5]. Even though proposals for quality attributes in SBS exist, there is a
lack of empirical studies that investigate QA in practice [6]. To contribute to the

 The Role of QA in SBS Architecting: A Survey 201

understanding of the role of QA in SBS by providing insights into how QA are treated
in practice, we present a descriptive survey. Using the GQM approach [7], the goal of
our survey is defined as to analyse and characterise (purpose) the role of QA (issue)
in SBS architecting (object) from the perspective of practitioners and researchers
with practical architecting experience (viewpoint). Section 2 summarizes our
research method. Section 3 presents the results of our study. In Section 4 discuss our
results. We conclude the paper in Section 5.

2 Research Method

Surveys collect qualitative and quantitative information to provide a “snapshot” of the
current status related to a phenomenon [8]. To ensure rigor, repeatability and to
reduce researcher bias, we designed a survey protocol following the template
proposed for evidence-based software engineering1. We defined three research
questions:

– RQ1: How important are QA compared to functionality when architecting SBS?
– RQ2: To what extent are QA specific to application domains of SBS?
– RQ3: What kind of architectural decisions are used to address QA in SBS?

Current literature, such as [9, 10, 11], suggests that QA drive the design of software
architectures. RQ1 investigates if this is also the case for SBS, or if QA are treated as
factors that suggest the use of a service-based solution in the first place but are not
considered architecture drivers (service-orientation claims to achieve “qualities”, such
as interoperability, flexibility, reusability [12]). For RQ2, we aim at providing
guidance for software architects by focusing on the QA that are most important for a
certain application domain (e.g., healthcare, telecommunication). Finally, RQ3
investigates the transition from QA to architectural decisions by relating QA to the
architecture decision types and categories proposed by Kruchten [13].

Survey Design. We conducted a descriptive survey. We required participants to have
practical experience in architecting SBS. This included practitioners from industry,
researchers, and participants with mixed background (e.g., participants that moved to
academy after working in industry, practitioners with part-time academic positions).
Participants were recruited through several cycles of advertising (e.g., LinkedIn
groups, conferences, and online communities), between May and September 2011.

Data Preparation and Collection. All survey questions2 on the online questionnaire
referred to one particular project that participants had worked on in the past. For most
questions, participants could provide comments to complement their answer.

Data Analysis. To ensure the quality of the data obtained from the questionnaire, we
applied sanity checks to find obvious errors in data. We used descriptive statistics to
analyze the data [14]. Free text answers were coded [15] and underwent content
analysis [16] involving all four authors.

1 http://www.dur.ac.uk/ebse/resources/templates/SurveyTemplate.pdf
2 All questions can be found at
www.essi.upc.edu/~dameller/publications/ecsa13-ap.pdf

202 D. Ameller et al.

Internal Validity. Confounding variables could bias our results [17]. Thus, we
applied exclusion and randomization [9]. Exclusion means that participants who are
not sufficiently experienced were excluded from the study. Randomization means that
we used a sampling technique which led to random participants. Furthermore, to
mitigate the risk of ambiguous and poorly phrased questions, we piloted the
questionnaire in multiple iterations. Another limitation is that participants might not
have answered truthfully to the questions [9]. Thus, we made participation voluntary
and anonymous. Finally, the protocol was reviewed by external reviewers.

External Validity. External validity is concerned with generalizing the results to the
target population. We assume that our results are applicable to a population that meets
the sampling criteria of our survey (i.e., architects with experience in SBS).

3 Results

We obtained 31 valid responses. From these, 18 participants (58%) had experience in
both academia and industry. 10 participants (32%) had only experience in industry,
whilst 3 (10%) were participants from academia.

3.1 RQ1: How Important Are QA Compared to Functionality When
Architecting SBS?

Importance and Explicitness of QA. Functionality and QA were considered equally
important by most respondents (Figure 1). When asked whether QA were considered
implicitly or explicitly, most respondents (71%) answered “explicitly” (see Figure 2).
To identify dependencies between the importance of QA and their implicit or explicit
nature, we created a cross-tabulation (Table 1). Eighteen respondents (58%)
considered QA and functionality equally important and at the same time made QA
explicit. In 6 cases (20%), QA were not made explicit and QA were considered less
important than functionality. In all 4 answers (12%) where QA were more important
than functionality, QA were made explicit. Fisher’s exact test led to p < 0.001 which
means that there is a statistically significant relationship between the importance of
QA and their implicit or explicit nature. Thus, there is a high probability that projects
which treat functionality and QA equally important also make QA explicit.

Table 1. Cross-tabulation of the importance of QA and their implicit or explicit nature

 QA explicit QA implicit Total
QA were AS important AS functionality 18 (58%) 3 (10%) 21 (68%)
QA were LESS important THAN functionality 0 (0%) 6 (20%) 6 (19%)
QA were MORE important THAN functionality 4 (12%) 0 (0%) 4 (13%)
Total 22 (71%) 9 (29%) 31 (100%)

 The Role of QA in SBS Architecting: A Survey 203

Fig. 1. QA compared to functionality

Fig. 2. Implicit / explicit nature of QA

Impact of Role on How QA Are Perceived. Even though all participants had
architecting responsibilities in the project for which they answered the questions, they
had different roles. Architects and designers were the majority (17 participants or
55% of all participants). Additional roles included 3 project managers (10%), 2
developers (7%), and 1 participant of each of the following roles: consultant, quality
engineer, analyst, industrial researcher, unit manager and standards developer. Cross-
tabulations are shown in Table 2 and Table 3. Three participants did not provide any
role. Thus, the total number in Table 2 and Table 3 is 28. Fisher’s exact test indicated
a dependency between the role of participants and the importance of QA (p = 0.078).
Given the number of architects that considered QA as equally important compared to
functionality, this dependency means that architects and designers tend to treat QA
and functionality equally important. Furthermore, 71% of architects and designers
treated QA explicitly (not statistically significant; Fisher’s exact test led to p = 0.151).

Table 2. Cross-tabulation of the importance of QA and the role of participants

 Architect Other Total
QA were AS important AS functionality 14 (82%) 6 (55%) 20 (71%)
QA were LESS important THAN functionality 2 (12%) 3 (27%) 5 (18%)
QA were MORE important THAN functionality 1 (6%) 2 (18%) 3 (11%)
Total 17 (100%) 11 (100%) 28 (100%)

Table 3. Cross-tabulation of the nature of QA and the role of participants

 Architect Other Total
QA explicit 12 (71%) 8 (73%) 20 (71%)
QA implicit 5 (29%) 3 (27%) 8 (29%)
Total 17 (100%) 11 (100%) 28 (100%)

21
(68%)

6
(19%)

4
(13%)

QA and functionality were equally important

QA were less important than functionality

QA were more important than functionality

9
(29%)

22
(71%)

QA were addressed implicitly

QA were addressed explicitly

204 D. Ameller et al.

3.2 RQ2: To What Extent Are QA Specific to Application Domains of SBS?

To answer RQ2, we used responses to the question about the most important QA that
participants had experienced. During analysis we mapped all QA stated by
participants in terms of scenarios to QA for SBS as defined by the S-Cube quality
model [18]. This was done through content analysis where combinations of three
researchers categorized each QA. Figure 3 shows the frequency distribution of QA.
We grouped data-related quality attributes from the S-Cube quality model (data
reliability, completeness, accuracy, integrity, validity). Dependability and
performance are the most frequently addressed QA. As not all participants provided a
complete scenario, the total number in Figure 3 is 28.

Fisher’s exact test did not reveal any correlation between QA and domains (p =
0.456). We analyzed the correlation between the QA and their importance, and we
found that except for dependability and performance which tend to be considered
more important than functionality, there is no correlation between other QA and their
importance (p = 0.983).

Fig. 3. Frequency distribution of QA

3.3 RQ3: What Kind of Architectural Decisions Are Used to Address QA in
SBS?

We used two classifications to differentiate the kinds of decisions. First, we used
Kruchten’s taxonomy of decision types [13]. Second, we classified decisions based on
decision categories: Ad-hoc: Solution that is specific to a concrete problem of the
project (e.g., the architect decides to create a separate service to store sensitive
information about the users to improve the security of the system). Pattern: Reusable
and widely-known architectural solution (e.g., the decision to use of the Model-View-
Controller pattern). Technology: A piece of implemented software that fulfills some
required functionality (e.g., the use PostgreSQL instead of other DBMS).

Assigning decisions made to accommodate QA to types and categories of decisions
was made based on a content analysis involving all authors. Figures 4 and 5 show the
results. One decision was not classified because the participant did not provide a
description for it. We found a correlation between decision types and decision

1

11

2

7

4

2 1
0

2

4

6

8

10

12

 The Role of QA in SBS Architecting: A Survey 205

categories (Fisher’s exact test: p = 0.018): 83.3% of technology decisions are
existence decisions, 69.2% of the ad-hoc decisions are property decisions, and 54.5%
of pattern decisions are also property decisions.

QA and Decision Classification. We tried to find correlations between the decision
classifications and the QA mentioned by the participants. The results were not
significant. We obtained p = 0.835 (for types) and p = 0.741 (for categories).

QA Treatment and Decision Documentation. As part of analysing the types of
decisions made to accommodate QA, we studied if these decisions were actually
documented or treated implicitly. There is a correlation between treating QA
explicitly and documenting decisions (Fisher’s exact test: p = 0.022, Table 4). All
participants that treated QA explicitly also documented the decisions to accommodate
this QA. Also, all participants that did not document decisions treated QA implicitly.
We also found a relationship between the importance of a QA and if decisions have
been documented (p = 0.112, Table 5). Note that only 26 participants provided
information about the degree of documentation of their architecture decisions.

Fig. 4. Decision types

Fig. 5. Decisions categories

Table 4. Cross-tabulation of the nature of QA and documentation

 Not documented Documented Total
QA explicit 0 (0%) 18 (78.3%) 18 (69.2%)
QA implicit 3 (100%) 5 (21.7%) 8 (30.8%)
Total 3 (100%) 23 (100%) 26 (100%)

Table 5. Cross-tabulation of the importance QA and documentation

 Not doc. Documented Total
QA were AS important AS functionality 1 (33.3%) 17 (73.9%) 18 (69.2%)
QA were LESS important THAN functionality 2 (66.7%) 3 (13.0%) 5 (19.2%)
QA were MORE important THAN functionality 0 (0%) 3 (13.0%) 3 (11.5%)
Total 3 (100%) 23 (100%) 26 (100%)

15

10

5

0

2

4

6

8

10

12

14

16

Property
decision

Existence
decision

Executive
decision

13

11

6

0

2

4

6

8

10

12

14

16

Ad-hoc
solution

Pattern Technology

206 D. Ameller et al.

4 Discussions of Results

Literature argues that QA are important and a major challenge when architecting SBS
[2]. Our study showed that 71% of the participants indicated that QA were treated
explicitly. This could be an indicator that special attention is paid to QA because they
pose a major challenge. On the other hand, general literature about software
architecting and design claims that QA drive the architecture [3]. We found that QA
were rarely more important than functionality. However, stating that QA drive the
architecture is different from stating that QA are more important than functionality.
Also, we had indicators that QA were treated as global influence factors or
architectural drivers for high-level architectural decisions. This also indicates that
using a service-based solution is not only a technology-driven decision but has sound
rationale based on QA.

We found that the majority of participants treated QA and functionality as equally
important in the context of SBS, in contrast to [9] who argued that QA are more
important than functional requirements. In another study, van Heesch and Avgeriou
[10] said that more than 80% of participants indicated that quality requirements play a
prominent role during architecting. A similar result can be found in our study with
practitioners in the context of SBS as only 19% of our participants indicated that QA
were less important than functionality.

In [19] the authors conducted a survey to evaluate a catalogue of non-functional
properties for SOA. The study found that security was prioritized as being absolutely
essential in a quality model for SOA. However, our study showed that security only
occurred in two projects. Reusability or dependability, two main features of SBS were
not found to be relevant non-functional characteristic in SOA in [19].

A study in the embedded systems industry [20] studied how quality requirements
are handled in practice. The study found that usability and performance are the most
important quality aspects. While in our study dependability and performance are the
most important QA, with usability being the least important QA. The difference in the
importance of usability could be due to the nature of embedded systems versus SBS.

Non-functional requirements as seen by architects were studied by Poort et al. [21].
The study found that if architects are aware of non-functional requirements, they do not
adversely affect project success. This is in line with our results that most participants
consider quality attributes explicitly and at least equally important as functionality.

5 Conclusions and Future Work

We presented the results of a survey to study the role of QA in the context of SBS
architecting. Our study provides empirical evidence of the current state of practice.
Future work includes the extension of this study by gathering more responses, and a
more detailed analysis of QA in industry, for example, by using case studies rather
than broad surveys can be used to confirm or refute the findings of our study.

Acknowledgments. This work has been supported by the Spanish project TIN2010-
19130-c02-01 and NWO SaS-LeG, contract no. 638.000.000.07N07.

 The Role of QA in SBS Architecting: A Survey 207

References

1. IEEE Computer Society Software Engineering Standards Committee, IEEE Standard
Glossary of Software Engineering Terminology (1990)

2. Gu, Q., Lago, P.: Exploring Service-oriented System Engineering Challenges: A Systematic
Literature Review. Service Oriented Computing and Applications 3, 171–188 (2009)

3. Ozkaya, I., Bass, L., Sangwan, R., Nord, R.: Making Practical Use of Quality Attribute
Information. IEEE Software 25(2) (2008)

4. O’Brien, L., Bass, L., Merson, P.: Quality Attributes and Service-Oriented Architectures,
Technical Report, SEI CMU, Pittsburgh, PA (2005)

5. O’Brien, L., Merson, P., Bass, L.: Quality Attributes for Service-oriented Architectures. In:
International Workshop on Systems Development in SOA Environments, pp. 1–7. IEEE
Computer Society, Minneapolis (2007)

6. Mahdavi-Hezavehi, S., Galster, M., Avgeriou, P.: Variability in Quality Attributes of
Service-based Software Systems: A Systematic Literature Review. Information and
Software Technology 55(2), 320–343 (2013)

7. Basili, V., Caldiera, G., Rombach, D.: The Goal Question Metric Approach. In: Marciniak, J.J.
(ed.) Encyclopedia of Software Engineering, pp. 528–532. John Wiley & Sons, New York
(1994)

8. Wohlin, C., Hoest, M., Henningsson, K.: Empirical Research Methods in Software
Engineering. In: Conradi, R., Wang, A.I. (eds.) ESERNET 2001. LNCS, vol. 2765, pp. 7–23.
Springer, Heidelberg (2003)

9. van Heesch, U., Avgeriou, P.: Mature Architecting - A Survey about the Reasoning
Process of Professional Architects. In: WICSA, 2011, pp. 260–269 (2011)

10. van Heesch, U., Avgeriou, P.: Naive Architecting - Understanding the Reasoning Process
of Students - A Descriptive Survey. In: Babar, M.A., Gorton, I. (eds.) ECSA 2010. LNCS,
vol. 6285, pp. 24–37. Springer, Heidelberg (2010)

11. Bachmann, F., Bass, L.: Introduction to the Attribute Driven Design Method. In: ICSE
2001, pp. 745–746.

12. Erl, T.: Service-Oriented Architecture (SOA): Concepts, Technology, and Design. Prentice
Hall, Upper Saddle River (2005)

13. Kruchten, P.: An Ontology of Architectural Design Decisions in Software-intensive
Systems. In: 2nd Groningen Workshop on Software Variability, Groningen, The
Netherlands, pp. 54–61 (2004)

14. Kitchenham, B., Pfleeger, S.L.: Principles of Survey Research - Part 6: Data Analysis.
ACM SIGSOFT Software Engineering Notes 28, 24–27 (2003)

15. Miles, M.B., Huberman, A.M.: Qualitative Data Analysis, 2nd edn. Sage Publications,
Thousand Oaks (1994)

16. Krippendorff, K.: Content Analysis: An Introduction to its Methodology, 2nd edn. Sage
Publications, Thousand Oaks (2003)

17. Ciolkowski, M., Laitenberger, O., Vegas, S., Biffl, S.: Practical Experiences in the Design and
Conduct of Surveys in Empirical Software Engineering. In: Conradi, R., Wang, A.I. (eds.)
ESERNET 2001. LNCS, vol. 2765, pp. 104–128. Springer, Heidelberg (2003)

18. Gehlert, A., Metzger, A.: Quality Reference Model for SBA, Deliverable #CD-JRA-1.3.2, S-
Cube, p. 64 (2009)

19. Becha, H., Amyot, D.: Non-functional Properties in Service Oriented Architecture – A
Consumer’s Perspective. Journal of Software 7(3), 575–587 (2012)

20. Svensson, R.B., Gorschek, T., Regnell, B.: Quality requirements in practice: An interview
study in requirements engineering for embedded systems. In: Glinz, M., Heymans, P. (eds.)
REFSQ 2009 Amsterdam. LNCS, vol. 5512, pp. 218–232. Springer, Heidelberg (2009)

21. Poort, E.R., Martens, N., van de Weerd, I., van Vliet, H.: How Architects see Non-Functional
Requirements: Beware of Modifiability. In: Regnell, B., Damian, D. (eds.) REFSQ 2011.
LNCS, vol. 7195, pp. 37–51. Springer, Heidelberg (2012)

Maintaining Architectural Conformance during

Software Development: A Practical Approach

Claire Dimech and Dharini Balasubramaniam

School of Computer Science, University of St Andrews,
St Andrews KY16 9SX, UK

cl.dimech@gmail.com, dharini@st-andrews.ac.uk

Abstract. Software architecture provides a high-level design that serves
as the basis for system implementation and communication among stake-
holders. However, changes in requirements and lack of conformance checks
during development can cause the implemented architecture to deviate
from the intended one. Such architecture degradation can cause rapid soft-
ware aging and high maintenance costs. Conformance checking to detect
inconsistencies between a model and its corresponding implementation is
one of the strategies used to minimise architecture degradation. Existing
conformance checking tools often require formal architecture specifications,
which are not usually available outwith academic settings, ormanual inter-
vention in the process, which affects their viability. This paper describes an
automated approach that uses mappings between architecture models in
UML and corresponding implementations in Java to check conformance.
These notations have been chosen for their adoption in industry. A cus-
tomisable tool called Card, which implements this approach, is also intro-
duced and evaluated.

Keywords: conformance checking, software architecture, architecture
degradation.

1 Introduction

Software Architecture [1] defines the structure of a system in terms of its compo-
nents and their interactions. It is a key tool for the software industry because it
improves communication between stakeholders, facilitates early design decisions,
promotes transferable abstractions of a system and can be used as the basis for
system implementation [2].

One of the current challenges facing software industry is architecture erosion
[3], which refers to the deviation of the descriptive architecture (reflecting the
implementation) from the prescriptive architecture (as defined by the software
architect) [2]. Such architectural degradation may arise due to several factors,
including: (i) unawareness by software developers; (ii) possibly conflicting re-
quirements that are unforeseen in the early stages; (iii) technical difficulties that
arise during implementation; and (iv) the pressure of deadlines that are not
uncommon in software development.

K. Drira (Ed.): ECSA 2013, LNCS 7957, pp. 208–223, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Maintaining Architectural Conformance during Software Development 209

Potential consequences of architecture erosion include failure tomeet functional
or quality requirements, brittle systems, high maintenance costs and ultimately
rapid software aging [4] and obsolescence. Architecture erosion is a well-recognised
problem and a number of approaches have been proposed to prevent, minimise or
repair erosion [5], mainly based on the concept of conformance. However most of
these approaches require a formal and rigorous specification of software architec-
ture as well as one or more conformance tools. The former is not typically available
in industrial practice except in a few specialised domains, while the latter are not
necessarily integrated into a standard software development environment. They
may also require a degree of manual intervention in the checking process, which
limits their viability in industry.

The aim of the work presented in this paper is to develop a widely accessible
and automated means to identify architecture erosion without the need for formal
specifications, architecture description languages (ADLs) and stand-alone con-
formance checking tools. This work resulted in a tool called Card (Controlling
Architectural Degradation), which uses the Unified Modeling Language (UML)
2.0 for software architecture representations and Java as the implementation
language.

Some of the novel features of this work include:

– A set of rules defining conformance between UML 2.0 class and sequence
diagrams and Java constructs,

– The concept of a master specification, which can be either the model or
implementation, to cater for different software development methodologies,
and

– An Eclipse plug-in, implementing conformance checking as defined by the
above rules with a variety of customisation features.

The combination of a flexible model, an implementation using industrially rele-
vant languages and the ability granted to users to select only required features
is a significant contribution to the state of the art.

The paper is structured as follows. Section 2 introduces a case study that
is used to illustrate relevant concepts and implementation details. The notion
of architectural conformance in software development is discussed in Section 3
and the design and implementation of our tool is presented in Section 4. Section
5 contains details of the evaluation carried out while Section 6 compares the
framework with some related work. Finally, we provide some conclusions and
thoughts on future work in Section 7.

2 Example

In order to illustrate our approach, we introduce a simple case study using part
of an application that sends requests to music servers in the form of query
strings, and collects and stores the responses in appropriate data structures
for further processing. The UML 2.0 package diagram representing the relevant
overall architecture is shown in Fig. 1.

210 C. Dimech and D. Balasubramaniam

Fig. 1. High-level Package Structure of the Application

Thus, the application contains components that model the relevant logical
concepts, handle responses from servers and implement the concepts.

Two architecture representations of the same system are presented: the orig-
inal design as intended by the architect (Fig. 2), which serves as the master,
and a possibly deviated architecture extracted from the implementation (Fig. 3
overleaf), which acts as the slave that must conform to the master specification.

The catalog package defines all the interfaces that are used in the application,
such as Query, Resource, and SearchResult. Album and Track inherit from the
superclass Resource. The CatalogFactory class is a factory for Catalog imple-
mentations.

The impl package consists of all the classes that implement the above inter-
faces. Therefore, the same relations must be maintained between classes, espe-
cially among Album, Track and Resource. The impl package communicates with
the handler package, and specifically with a class called CatalogPlayerRespon-
seHandler. CatalogImpl has to receive music details from external servers and
the handler is used to process responses received from these services. The main
class resides in the main package.

We will use these designs in later sections to illustrate our approach and tool.

Fig. 2. UML 2.0 Class Diagram for Master Architecture

Maintaining Architectural Conformance during Software Development 211

Fig. 3. UML 2.0 Class Diagram for Slave Architecture

3 Architecture Conformance for Software Development

Three main strategies are used to control architecture erosion: minimise, prevent
and repair [5]. The strategy to minimise erosion, which is arguably the most
useful in practice, can be implemented by several techniques including architec-
ture design documentation, architecture analysis and architecture compliance
(or conformance) monitoring. The last technique is used to establish whether an
implementation conforms to its intended architecture according to some rules
defined to capture the notion of conformance between the two artefacts.

3.1 Conformance Model

Fig. 4 below illustrates our vision of conformance checking in the broader con-
text of the software development lifecycle and shows the possible evolutions of
interactions between a model and its implementation.

Fig. 4. Overview of Conformance between Model and Implementation

The model and the code can change independently. The conformance checking
operation detects any incompatibilities between the two descriptions as viola-
tions of the conformance rules. A novel feature of our approach is that either

212 C. Dimech and D. Balasubramaniam

the model or the implementation may be the initiator of change (master) and
conformance may be checked against this artefact.

Conformance can be statically checked during development and when the
system is off-line for maintenance, or dynamically during execution. Static and
dynamic checking can be used in a complementary manner.

Conformance checking requires one artefact to act as the correct version (the
master) against which another artefact (the slave) is compared. Traditionally,
the prescriptive architecture or design is considered the master, while the imple-
mentation acts as the slave, from which a descriptive architecture is extracted.
In this work, we provide users with the ability to choose either the architec-
ture or the implementation as the master and tailor conformance analysis to the
approach taken in specific project development scenarios. Our proposed solu-
tion can therefore extend to methodologies beyond Model-Driven Architecture
(MDA) and include more modern approaches such as Agile Development.

Given two small UML diagrams of a system, a human can detect any vi-
olations by visually comparing the models. However, this is time consuming,
difficult and error-prone for non-trivial systems, which may have multiple views
of the architecture and complex diagrams representing them. Automated con-
formance checking is preferable in such cases, and requires suitable architecture
representations of the master and the slave as well as a set of rules that define
conformance between the two. Data structures for architecture representations
are discussed in Section 4.2.

We divide conformance rules into two categories: structural and interaction
rules. The former is concerned with the architecture’s static structure, such as
existence of certain elements and inheritance, while the latter is concerned with
aspects such as the order of method invocation and communication integrity.
In Card, structural rules are mainly derived from UML 2.0 class diagrams while
interaction rules are derived from both class and sequence diagrams. Some of the
rules were inspired by the work carried out by [6]. Examples of conformance rules
used in our framework are introduced in subsections 3.2 and 3.3. A description
of all 19 conformance rules currently used in Card is available from [7].

In the following examples, we assume that:

– the Prescriptive Architecture (PA) refers to the master,
– the Descriptive Architecture (DA) refers to the slave,
– P(DA) refers to the set of architectural properties extracted from the DA,

and
– P(PA) refers to the set of architectural properties extracted from the PA.

3.2 Some Structural Rules

Definition 1. (Element Existence Rule). DA conforms to PA only if every el-
ement that exists in PA, exists also in DA.

Definition 2. (Inheritance Relationship Rule). DA conforms to PA only if for
every inheritance relationship in PA, there is a corresponding relationship in
DA.

Maintaining Architectural Conformance during Software Development 213

Considering the examples in Figs. 2 and 3, it can be observed that TrackImpl
does not inherit the class ResourceImpl, and therefore this rule is violated.

3.3 Some Interaction Rules

Definition 3. (Communication Integrity - Absent Link Rule). DA conforms to
PA only if every entity that communicates with another entity in PA has the
same association in DA.

In the example shown earlier, there is a communication link missing between the
packages impl and handler, thus resulting in a violation of this rule.

Definition 4. (Temporal Rule). DA conforms to PA only if the same sequence
of method calls is maintained in both PA and DA.

This rule can be expressed using UML 2.0 sequence diagrams, such as the one
below:

Fig. 5. Sequence Rule Example

In the example shown above, it can be observed that in PA, method callB
is called before method callC. On the other hand, in DA, callC is called before
callB, and therefore, the sequence is violated.

Currently Card only checks simple interactions. Choices and iterations are
part of our plans for future work.

4 Card: An Eclipse Plug-in to Support Conformance
Checking

In this section, we describe the design and implementation of an Eclipse plug-in
to support static conformance checking between UML and Java according to the
rules described in Section 3. A release of Card and associated documentation
can be found at https://code.google.com/p/card-plugin/downloads/list.

https://code.google.com/p/card-plugin/downloads/list

214 C. Dimech and D. Balasubramaniam

4.1 The Design of Card

The overall architecture of Card is depicted in Fig. 6 below:
The framework contains two pre-processing modules: one for UML 2.0 di-

agrams and the other for Java source code. The Card Engine accepts users’
preferences and the output from the pre-processing phases as input, checks their
conformance and displays any violations to users. In this case, typical users
are likely to be Software Developers and Software Architects. The following list
explains in more detail the purpose of each of these modules.

Fig. 6. Eclipse Plug-in Design Overview

– Pre-processing. Card searches for UML and Java files in the chosen Eclipse
project and uses the pre-processors to extract architecturally relevant prop-
erties. These properties are stored in customised data structures for later
conformance analysis. Existing APIs and frameworks such as the Eclipse
Java Development Tools (JDT) API [8] and Eclipse Modeling Framework
(EMF) [9] are used to extract relevant properties.

• Java Code Extraction Tool. This tool is able to access Java projects by
requesting a handle to the current instance of IJavaProject. This ob-
ject, which is accessible through the JDT API, provides a pointer to the
project’s resources such as Java package fragments, classes, interfaces,
methods and fields. The packages and classes of the chosen project are
navigated to extract architectural properties and store them in a Map
data structure (Section 4.2).

• UML Extraction Tool. Card supports UML 2.0 diagrams constructed
using the Papyrus1 plug-in. Papyrus generates a standardised underlying
XML format for representing UML diagrams that is recognised by the

1 www.eclipse.org/papyrus

www.eclipse.org/papyrus

Maintaining Architectural Conformance during Software Development 215

EMF. The XML files are then parsed into a data structure where each
node represents a possible architectural property. Relevant properties
are then stored in a map structure (Fig. 9).

– User Preferences. Users’ preferences, which define the settings chosen by
users through a wizard, are also among the inputs to the Card engine. Users
can select (i) all or a subset of the conformance rules, (ii) the importance /
severity level of these rules (HIGH, MEDIUM or LOW), (iii) whether con-
formance should be checked automatically on each update or on user request
(iv) the master artefact and (v) whether UML files should be automatically
or manually selected. Fig. 7 shows a screenshot of the wizard that provides
these customisation features.

Fig. 7. Card Preferences

– Card Engine. This module is the core of our conformance checking frame-
work and can be further decomposed into the following modules.
• The Conformance Rules Executor executes conformance rules on the
properties that were extracted from UML and Java files according to
the users’ preferences. Rules are implemented as Java methods which
are invoked over the stored architectural properties.

• The Violations Manager displays appropriate messages to the user show-
ing details of any violations detected. Violations are displayed in the form
of compilation errors. If Java is the slave, each error message contains
a line number corresponding to the mismatch; otherwise the violation
refers to the relevant .uml file.

216 C. Dimech and D. Balasubramaniam

4.2 Representation of Architectural Properties

Fig. 8 below shows the class diagram for the metadata structure that holds
the architecturally relevant properties captured by Card. EntityProperties is
an abstract class from which two other classes, ClassProperties and Interface
Properties, inherit. They represent class and interface details. In addition to the
inherited elements, ClassProperties contains a list of InterfaceProperties and
an instance of itself. The former holds the list of interfaces that a class may
implement, while the latter is used to refer to the class from which it may inherit.
Thus a class can implement multiple interfaces, but extend only one class. On
the other hand, InterfaceProperties can only extend a list of interfaces. This
design conforms to the definition of UML [10].

Fig. 8. Representing Architectural Properties

The Attribute class holds properties related to an attribute, such as attribute
name and its data type, while Operations holds properties related to methods,
such as method name, its return type and a list of Attribute parameters.

Properties that can be expressed in UML 2.0 sequence diagram are also fun-
damental to Card. These include Lifeline and Message. The Lifeline can be
represented as a combination of the instance name together with the class name
[11]. The class name will be a reference to the previously introduced ClassProp-
erties. Message refers to the operation name and the interaction between two
lifelines: sender and receiver.

Maintaining Architectural Conformance during Software Development 217

Card currently assumes that naming conventions are maintained between
UML and Java code. The following design decisions were also made regarding
UML 2.0 sequence diagrams:

1. Lifeline name will have the following format: Instance name : Class name
[11].

2. Iterations and conditions are not taken into account during conformance
checking for the initial implementation.

3. Two levels of nesting will be considered.

4. Card will always choose the first object encountered in the map that matches
both Lifeline and Message.

5. The application is single-threaded.

A hash map data structure, shown in Fig. 9, is used to hold properties from both
UML and Java code. Rules are executed over this data structure to detect any
violations between the master and the slave.

Fig. 9. Map Structure for Storing Properties

A generic map is used to store the package name as the key and a pointer
to another map as the value. The package name refers to the package that
the entity resides in. Entity refers to either a Class or an Interface. A unique
package name is strongly recommended. However, Sun’s2 convention ensures
that identical package names are not allowed in a single Java project [12].

The second map stores the entity name as the key and an instance of type
EntityProperties as the corresponding value. The EntityProperties will hold all
the properties extracted from that specific entity. As mentioned in the previous
section, an EntityProperties object can either be of type ClassProperties or
InterfaceProperties, depending on the type of entity.

To eliminate the second map, it was initially planned to concatenate the pack-
age name and the class name together as the key. However, due to efficiency issues
involved in processing strings every time, the chosen approach was preferred.

2 http://www.java.com/en

http://www.java.com/en

218 C. Dimech and D. Balasubramaniam

4.3 Some Highlights of Card Implementation

This section introduces some of the interesting features of Card implementation.

Extensibility and Flexibility. Card has been implemented with extensibility
and flexibility as guiding principles. For instance, if new rules are required, they
can be easily implemented in separate classes and registered with Card. Since
rules are developed in the form of Java methods, researchers and practitioners
can build their own rules and embed them in the tool. As shown before, users
will also have the option of customising the plug-in as desired.

Precedence of Rules. Some of the conformance rules have to be given prece-
dence over others because there is an implicit ordering imposed by model and
language semantics. For instance, the rules concerned with inheritance should
not be executed before the confirmation that the class or interface exists.

Whenever a class or interface extends or implements some other entity, the
communication integrity rule should exclude these entities. This is because by
the time that the system checks whether there is a violation in communica-
tion integrity, the implementation and inheritance rules will have already been
executed, and therefore the user already knows whether there is a missing inheri-
tance or implementation relationship. Hence, all those entities that are extended
or implemented by the entity itself should be excluded from the list of checking
communication integrity rules.

Thus inheritance and implementation are given precedence over communica-
tion integrity. It is assumed that if there is a missing inheritance relationship
between two entities, then only the first error should be displayed.

At this point, software architects have no discretion with regards to precedence
of rules. This is determined a priori by the tool itself.

Code Changes Listener. One of the features offered by the Card plug-in is
to perform conformance analysis whenever there is a significant change in the
code. This functionality can be enabled or disabled from the users’ preferences.
Code change listeners are built on top of existing listeners. These take the form
of an event listener in the Eclipse Plug-in Framework. Whenever a listener is
triggered, the rules that have been selected prior to execution are applied.

4.4 Example: Violations Detected

The violations detected by Card between the representations in Figs. 2 and 3 are
shown in a partial screenshot in Fig. 10. Violations detected by Card are shown
as Eclipse compilation errors. A customised marker was introduced by Card in or-
der to cater for architecture violations. Each violation has an associated code to
identify exactly which rule has been violated. For instance, COMEXTR refers to
CommunicationExtra, where an extra link between two entities, which violates the
architecture, has been noted. In this case, an extra communication link is detected
in classCatalogPlayerResponseHandler. This violation can be observed in the class
diagrams inFigs. 2 and 3. Another rule calledCOMMISS refers to Communication

Maintaining Architectural Conformance during Software Development 219

Fig. 10. List of Violations Detected by Card

Missing, which indicates that a missing communication link is identified. In the ex-
ample, CatalogImpl does not communicate with CatalogPlayerResponseHandler
as the architecture demands. The third violation refers to a missing Implementa-
tionRelationship (IMPREL), whereCatalogImpl does not implement the interface
Catalog. The same applies to the fourth violation, but with a different class and
interface. The fifth error refers to an absent Inheritance Relationship (INHREL),
whereTrackImpl does not inherit from classResourceImpl. The last violation is for
information and not an error because the severity level is set as LOW.Each rule can
be customised independently, based on the users’ preferences. This violation refers
to the type of entity, where Catalog has a different entity type (interface/class) in
the slave when compared to its master.

5 Evaluation

5.1 Soundness and Completeness

The plug-in was tested with Eclipse projects of different sizes, with different
number of violations. We verified that the correct number of violations was
detected in all cases, as defined by our rules. All the violations that existed
in the slave were noted down a priori in each case. A manual comparison was
carried out to confirm that the plug-in flagged up all these errors. Thus, while we
can not guarantee soundness and completeness without formal proofs, extensive
testing so far has not identified any false positives or missed violations.

5.2 Usability

Usability is a crucial attribute for this work. Our aim was to develop a tool
that is user-friendly, flexible and offers suitable options for software developers
while integrated well within the Eclipse IDE. All system features were designed
and implemented with this goal. An evaluation of usability with a user study is
envisaged for the future.

5.3 Performance

A project with approximately 8KLoC excluding comments is used for the initial
evaluation of the performance of the tool. This project consisted of 9 packages,
with a total of 42 classes and interfaces.

220 C. Dimech and D. Balasubramaniam

Fig. 11. Number of Violations against Total Time Taken(s) Graph

The time taken to execute this project with different number of violations was
recorded. The experiment was repeated three times per execution run, having
the same number and type of violations in the same project, to ensure that the
results are consistent across different runs. The average value was then taken
from all the repetitions. These readings were taken on a Mac OSX computer
with 1.8GHz Intel Core i7 and 4GB RAM. The results are plotted in the graph
shown in Fig. 11.

As might be expected, the time taken to check conformance increases with
the number of violations detected. The time taken is also proportional to lines
of code and complexity of the rules selected (not shown). A more extensive
evaluation including scalability and impact of dependencies is planned as part
of future work.

6 Related Work

Several research projects such as ArchJava [13], DiscoTect [14] and Rainbow
[15] provide mechanisms and frameworks to control architectural degradation
by using different approaches. ArchJava aims to bridge the gap between the
architecture represented in an ADL and the implementation in Java. However,
it requires users to learn and use a new language, which is likely to prove a
drawback for real world applications. Both Rainbow and DiscoTect deal with
runtime conformance, which is outwith the scope of this work.

MagicDraw [16] and IBM3 Rational Rose [17] are commercial products. Mag-
icDraw allows users to draw UML diagrams and generate code from them to
different languages such as Java and C#. RationalRose provides support for
model-driven development projects in order to improve the delivery of software
product on the market. However, neither product provides support for detecting
changes and therefore conformance violations between UML and code.

In [18], the authors present three different techniques for static architecture
conformance checking: Reflexion models, Relation Conformance Rules, and Com-
ponent Access Rules. Reflexion models require a human expert to manually map

3 www.ibm.com

www.ibm.com

Maintaining Architectural Conformance during Software Development 221

high-level components onto source code elements. This method may be tedious
and inaccurate, especially for large-scale systems. Relation Conformance Rules
make use of regular expressions to map component names. It focuses on the
communication between components. Component Access Rules focus on public
methods as the means of how a component is exposed to others.

The tool presented by [19] focuses on test cases for evaluating a UML mod-
elling tool for standard compliance. It processes OCL statements, and by using
several other intermediary tools, generates a set of test programs.

The work in [20] also aims to detect mismatches between an architecture and
its implementation. It uses Common Off The Shelf products, such as Xlinkit [21],
to generate a conformance checking framework. It generates an XMI description
from the model and an XML representation of the abstract syntax tree from the
source code, which are then used for testing conformance. However, this work
lacks the flexibility and customisability of the solution presented in this paper.

The research carried out in [22] provides a method to check and measure static
conformance in object-oriented systems. However, its approach requires the de-
veloper to inject and annotate Java code to refer to the ownership domain. These
annotations are then extracted as architectural structures. The developer has to
make a significant contribution here and the approach cannot work without
manual annotations. It makes use of ACME ADL to provide a mapping between
implementation and design model. This is also different from our work as we use
the more accessible UML 2.0 notations.

In [23], a formal approach is used to check architectural compliance in
component-based systems. An Eclipse plug-in is provided as a prototypical tool
of this conceptual framework. The plug-in works by defining structures as fact-
bases, and queries are defined as first order logic statements. This approach
requires fundamental user involvement, and queries and structures have to be
maintained manually as the project evolves, which can lead to errors. In con-
trast, our approach automatically identifies the structure of the system without
user intervention.

The approach from [24] uses event-notifications to capture traceability be-
tween different artefacts in a system, with the advantage that it can be ap-
plicable in heterogeneous and globally distributed development environments.
However, conformance checking is only applied between requirements and other
software artefacts. Whenever a change is detected, a notification is sent to the
event server, and messages are then sent to relevant subscribers. This approach
focuses on maintaining software systems as their requirements change and evolve.

Structure101 [25] offers a family of products to extract and enforce architec-
tures and remove code tangles. However, their work does not offer the flexibility
of choosing a master and a slave between architecture and code and the graphical
notation used in not a standard one.

7 Conclusions and Future Work

This paper outlines a practical approach for controlling software architecture
degradation, from the conceptual framework that uses a set of rules to define

222 C. Dimech and D. Balasubramaniam

architectural conformance between a model and an implementation, to a func-
tional Eclipse plug-in. It provides a round-trip method to support conformance
and evolution that can be applied to different development methodologies.

A more comprehensive evaluation and addressing some of the current limi-
tations (such as lack of support for choice and iteration in sequence diagrams)
are two of the immediate plans for further work. Relaxing the need for names
to be maintained in the implementation will improve the usability of the tool.
The addition of traceability features to provide a link between design and im-
plementation may significantly reduce the impact of conformance analysis, since
filtering out rules that are not applicable will improve the overall performance
of the tool. The Eclipse plug-in may be extended to suggest corrections for any
violations in the slave with respect to the master architecture. Further enhance-
ments will be the addition of rules for more abstract UML 2.0 diagrams, such
as Component Diagrams, and the ability to check consistency between UML
diagrams as well as against Java implementations.

References

1. Perry, D.E., Wolf, A.L.: Foundations for the Study of Software Architecture. ACM
SIGSOFT Software Engineering Notes 17, 40–52 (1992)

2. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations,
Theory, and Practice, 1st edn. Wiley (2009)

3. van Gurp, J., Bosch, J.: Design erosion: problems and causes. Journal of Systems
and Software 61, 105–119 (2002)

4. Parnas, D.L.: Software aging. In: Proceedings of the 16th International Conference
on Software Engineering, ICSE 1994, pp. 279–287. IEEE Computer Society Press,
Los Alamitos (1994)

5. de Silva, L., Balasubramaniam, D.: Controlling software architecture erosion: A
survey. Journal of Systems and Software 85, 132–151 (2012)

6. Tsiolakis, A.: Consistency Analysis of UML Class and Sequence Diagrams based on
Attributed Typed Graphs and their Transformation. In: ETAPS 2000 Workshop
on Graph Transformation Systems, pp. 77–86 (2000)

7. Dimech, C.: CARD: Controlling Architectural Degradation in Real-life Applica-
tions. Master’s thesis, University of St Andrews, Scotland, UK (2012)

8. Eclipse: Eclipse Java Development Tools (JDT) Overview, www.eclipse.org/jdt

9. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd edn. Addison-Wesley, Boston (2009)

10. OMG Unified Modeling Language (OMG UML), Infrastructure, V2.1.2. Technical
report (2007)

11. Bell, D.: UML basics: The Sequence Diagram (2004),
http://www.ibm.com/developerworks/rational/library/3101.html

12. Friesen, J., Friesen, G.: Java 2 by Example. By Example Series. Que (2002)

13. Aldrich, J., Chambers, C., Notkin, D.: ArchJava: Connecting Software Architecture
to Implementation, pp. 187–197. ACM Press (2002)

14. Yan, H., Garlan, D., Schmerl, B., Aldrich, J., Kazman, R.: DiscoTect: A System
for Discovering Architectures from Running Systems. In: Proc. Int’l Conf. Software
Engineering (ICSE), Edinburgh, Scotland (2006)

www.eclipse.org/jdt
http://www.ibm.com/developerworks/rational/library/3101.html

Maintaining Architectural Conformance during Software Development 223

15. Cheng, S.W., Huang, A.C., Garlan, D., Schmerl, B., Steenkiste, P.: Rain-
bow: Architecture-based self-adaptation with reusable infrastructure. IEEE Com-
puter 37, 46–54 (2004)

16. Magicdraw open api user guide, http://www.nomagic.com/files/manuals/
MagicDraw%20OpenAPI%20UserGuide.pdf

17. IBM: Rational rose,
http://www-01.ibm.com/software/awdtools/developer/rose

18. Knodel, J., Popescu, D.: A Comparison of Static Architecture Compliance Check-
ing Approaches. In: Proceedings of the Sixth Working IEEE/IFIP Conference on
Software Architecture, WICSA 2007, pp. 12–21. IEEE Computer Society, Wash-
ington, DC (2007)

19. Bunyakiati, P., Finkelstein, A.: The Compliance Testing of Software Tools with
Respect to the UML Standards Specification - The ArgoUML Case Study. In:
Dranidis, D., Masticola, S.P., Strooper, P.A. (eds.) AST, pp. 138–143. IEEE (2009)

20. Boerman, R.: On Software Architecture Conformance in the Context of Evolving
Systems. Master’s thesis, Department of Software Engineering, The Faculty of
Electrical Engineering, Mathematics and Computer Science Delft University of
Technology (2004)

21. Nentwich, C., Capra, L., Emmerich, W., Finkelstein, A.: xlinkit: A Consistency
Checking and Smart Link Generation Service. ACM Trans. Internet Technol. 2,
151–185 (2002)

22. Abi-Antoun, M., Aldrich, J.: Checking and Measuring the Architectural Structural
Conformance of Object-Oriented Systems. Technical Report CMU-ISRI-07-119,
Carnegie Mellon University, Pittsburgh, PA 15213 (2007)

23. Herold, S.: Checking architectural compliance in component-based systems. In:
Proceedings of the 2010 ACM Symposium on Applied Computing, SAC 2010, pp.
2244–2251. ACM, New York (2010)

24. Cleland-Huang, J., Chang, C.K., Christensen, M.: Event-Based Traceability for
Managing Evolutionary Change. IEEE Trans. Softw. Eng. 29, 796–810 (2003)

25. Chedgey, C., Hickey, P., O’Reilly, P.: Structure 101,
http://www.headwaysoftware.com/index.php

http://www.nomagic.com/files/manuals/MagicDraw%20OpenAPI%20UserGuide.pdf
http://www.nomagic.com/files/manuals/MagicDraw%20OpenAPI%20UserGuide.pdf
http://www-01.ibm.com/software/awdtools/developer/rose
http://www.headwaysoftware.com/index.php

Supporting Consistency between Architectural Design
Decisions and Component Models through Reusable

Architectural Knowledge Transformations

Ioanna Lytra, Huy Tran, and Uwe Zdun

Faculty of Computer Science
Software Architecture Group
University of Vienna, Austria

{ioanna.lytra,huy.tran,uwe.zdun}@univie.ac.at

Abstract. In recent years, the software architecture community has proposed to
use architectural design decisions (ADDs) for capturing the design rationale and
the architectural knowledge (AK). As software systems evolve both ADDs and
architectural designs need to be documented and maintained. This is a tedious
and time-consuming task because of the lack of systematic and automated sup-
port for bridging between ADDs and designs. As a result, decisions and designs
become inconsistent over time. We propose to alleviate this problem by intro-
ducing an AK transformation language supporting reusable AK transformations
from pattern-based ADDs to component-and-connector models. In addition, we
devise reusable consistency checking rules for verifying the consistency between
decisions and designs. Through the use of model-driven transformations, as well
as reusable, pattern-based decision models, we ensure the reusability of our ap-
proach. We apply our approach in an industrial case study and show that it offers
high reusability, is largely automated and scalable, and can deal with the com-
plexity of large numbers of recurring decisions.

1 Introduction

Today, software architectures are usually described in various architectural views [7,3].
The component-and-connector (C&C) model of an architecture is a view that is often
considered to contain the most significant architectural information [3]. Although C&C
models offer a natural representation of software systems to software architects and
designers, they fail to model the design rationale of the architecture and support the
sharing of this knowledge among stakeholders. In recent years, software architecture is
no longer solely regarded as the solution structure, but also as the set of architectural
design decisions (ADDs) that led to that structure [8]. The actual solution structure,
or architectural design, is merely a reflection of those design decisions. Architectural
design views [11] document the design rationale of the architecture and contribute to
the gathering of Architectural Knowledge (AK) and its sharing among different stake-
holders. For organizing and documenting AK, various tools and methods that use AK
templates [23], ontologies [13] or meta-models [25] have been proposed in the liter-
ature. To minimize the effort of documenting architectural decisions, approaches for
reusable architectural decision modeling [25] and using design patterns as a basis for
documenting reusable ADDs (as [6]) have been proposed.

K. Drira (Ed.): ECSA 2013, LNCS 7957, pp. 224–239, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Supporting Consistency between Architectural Design Decisions 225

Unfortunately, in practice, the ADDs frequently are neither maintained nor synchro-
nized over time with the corresponding C&C diagrams (or other design views) [11].
Thus, ADDs and design views drift apart as software systems evolve. This leads to a
potential loss of architectural knowledge, a phenomenon which is known as architec-
tural knowledge vaporization [8,6]. The main reason for the resulting inconsistency and
lack of traceability between ADDs and design views is that there is no formal mapping
between them. As a consequence, there is no automation for the translation between
ADDs and design views, and in practice keeping them synchronized is a tedious man-
ual task that depends highly on the architects’ experience and interpretation. Making
matters worse, the actual documentation of ADDs is also a tedious and time-consuming
task, especially for similar ADDs that occur repeatedly throughout a design.

Our previous work [16] has partially solved this problem by addressing the bridging
between the ADDs and designs. It introduced a formal mapping model between dif-
ferent ADD types, on the one hand, and elements and properties of C&C models, on
the other hand. Based on this formal mapping model, preliminary component models
and OCL-like constraints for consistency checking can be derived. Yet, so far this map-
ping model had to be manually created and modified. Therefore, the approach is not
efficient for handling large numbers of ADDs and/or complex design models. More-
over, in reality there are often several recurring ADDs which can be applied in different
contexts and for different elements or properties of the ADDs and designs. As a result,
maximizing the reusability of such recurring decisions would significantly enhance the
productivity in creating and maintaining the formal mappings between the decisions
and the designs. This has not been addressed in our previous work [16] as the formal
mapping and the derived constraints can not directly be reused because they are bound
to specific elements or properties of the ADDs and designs.

We present in this paper a novel approach aiming to address the aforementioned
challenges. In particular, our approach introduces an architectural knowledge transfor-
mation language that supports the specification of primitive and complex actions whose
enactment leads to automatic updating of design models (i.e., C&C diagrams) based
on changes in the ADD view. The transformation languages can be used to formulate
the expected outcomes of a certain decision ranging from individual actions, such as
creating new elements, grouping a number of elements, and deleting or updating exist-
ing elements in the C&C diagrams, to composite actions (e.g., for capturing reusable
pattern-based ADDs) that might contain many primitive and/or other composite ac-
tions. These actions are designed to support the reusability of specifications in our AK
transformation language, as existing actions can be efficiently reused and adapted for
different designs where similar architectural decisions are taken. Each action also trig-
gers the instantiation of corresponding constraint checking rule(s).

After the instantiation of the actions for concrete ADDs, we exploit template-based
generation rules and model-driven techniques for automatically enacting the actions and
generating consistency checking rules automatically. The linking of reusable ADDs to
reusable actions and consistency rules (templates) offers higher reusability and automa-
tion and results in less complexity and modeling effort for the software architect. The
reusability is achieved here (1) through the automatic derivation of parts of the C&C di-
agrams and consistency checking rules using model-driven templates and (2) by reusing
common abstractions shared between common design patterns (see [24]).

226 I. Lytra, H. Tran, and U. Zdun

To demonstrate our approach, we have implemented a prototype based on two exist-
ing tools from our previous work: ADvISE1 – a tool for assisting architectural decision
making for reusable ADDs, and VbMF2 – a tool for describing architectural view mod-
els and performing model-driven code generation. Our approach presented in this paper
will act as a bridge between ADvISE and VbMF. The prototypical implementation of
our approach has been evaluated in scenarios extracted from an industrial case study to
show that it is feasible and scalable for large numbers of ADDs.

The remainder of the paper is structured as follows. First, in Section 2 we explain
the background for ADvISE and VbMF. In Section 3 we give an overview of our ap-
proach and describe the details about the reusable AK transformations and consistency
checking rules. The application of our approach in the industrial case study and the
evaluation of the reusability, complexity and modeling effort are presented in Section 4.
We compare to related work in Section 5 and summarize key contributions in Section 6.

2 Background

In this section we briefly present ADvISE and VbMF, the two tools we integrate for
demonstrating our approach.

2.1 Architectural Design Decision Support Framework

The Architectural Design Decision Support Framework (ADvISE) is an Eclipse-based
tool that supports the modeling of reusable ADDs using Questions, Options and Cri-
teria (QOC) [17] and the decision making under uncertainty. In particular, it assists
the architectural decision making process by introducing for each design issue a set of
questions along with potential options, answers and pattern-based solutions, as well as
dependencies and constraints between them.

The advantage of the reusable ADD models is that they need to be created only once
for a recurring design situation. In similar application contexts, corresponding ques-
tionnaires can be automatically instantiated and used for making concrete decisions.
Based on the outcomes of the questionnaires answered by software architects through
the decision making process, ADvISE can automatically generate architectural decision
documentations. Our approach in this paper additionally introduces an architectural
knowledge transformation framework (see Section 3) that supports the specification of
reusable actions and the association of these actions with the elements of the aforemen-
tioned ADD models for automatically transforming ADDs into the underlying design
models and generating constraints for consistency checking between them.

2.2 View-Based Modeling Framework

The View-based Modeling Framework (VbMF) is also an Eclipse-based tool that imple-
ments a model-driven, architectural view model. That is, it leverages the notion of view

1 http://swa.univie.ac.at/Architectural Design Decision Support

Framework (ADvISE)
2 http://swa.univie.ac.at/View-based_Modeling_Framework

http://swa.univie.ac.at/Architectural_Design_Decision_Support_Framework_(ADvISE)
http://swa.univie.ac.at/Architectural_Design_Decision_Support_Framework_(ADvISE)
http://swa.univie.ac.at/View-based_Modeling_Framework

Supporting Consistency between Architectural Design Decisions 227

models for describing various concerns of the software systems at different abstraction
levels and model-driven development techniques for generating code and configurations
from those view models [22]. Among other views, VbMF provides a high-level service
component view model –similar to a typical C&C model such as UML component
model– for representing essential architectural design elements such as components,
ports, connectors, and properties that are independent from the underlying platforms
and technologies. Technology- and platform-specific information will be described sep-
arately in the low-level view models that refine and enrich the high-level counterparts.

In this paper, we mainly use the high-level service component view model of VbMF
(or in short form, the VbMF C&C view) for describing the architectural design of a
software system. The advantage of using VbMF is that we can leverage the existing
view model integration and transformation mechanisms of VbMF which are based on
Eclipse technologies and therefore can be integrated well with ADvISE.

3 Reusable AK Transformations and Consistency Checking Rules

To illustrate the “big picture” of our approach we depict in Fig. 1 an overview of the
tools and artifacts along with their interconnections. The artifacts that are automatically
derived using model-driven techniques are indicated with dark-gray color.

The ADD Model Editor in ADvISE is a tool that is used to create the reusable ADD
models (i.e., the artifact Reusable ADDs in the figure). It is created only once per appli-
cation domain. From it, ADvISE can automatically generate Questionnaires for mak-
ing Actual ADDs. They are made, possibly multiple times if multiple ADDs are derived
from the same reusable ADD model, using the Questionnaire Editor tool. For using and
manipulating C&C Diagrams VbMF provides the C&C View Editor. Our approach sup-
ports generating the first instance of the C&C Diagrams automatically from the ADD
model using Transformation Actions. It can further execute automatic Transformation
Actions on existing view models. In VbMF C&C Diagrams can be manually manipu-
lated. To ensure that changes in the C&C models do not violate the ADDs, Consistency
Checking Rules are generated from the Transformation Actions, which are automati-
cally enacted on the C&C Diagrams upon changes.

To achieve this in a reusable fashion, the Reusable ADDs are formally mapped to
AK Transformation Language Templates, which are edited with the AK Transforma-
tion Language Editor. This way, for Actual ADDs we can instantiate the correspond-
ing Transformation Actions and Consistency Checking Rules. Using model-driven tech-
niques they are automatically enacted on the corresponding VbMF C&C Diagram.

The binding of templates is realized using Apache Velocity Engine3. The parsing
and execution of the transformation actions are implemented using Xtend4, a statically-
typed language built on top of Java.

The AK transformation language and its enactment engine play an important role in
our approach for enabling the automated and reusable transformation of ADDs into the
design models. In the subsequent parts of this section, we explain the language in detail
and its illustrative usage in realistic development circumstances.

3 http://velocity.apache.org
4 http://www.eclipse.org/xtend

http://velocity.apache.org
http://www.eclipse.org/xtend

228 I. Lytra, H. Tran, and U. Zdun

VbMF

execute on

map toReusable
ADDs (QOC)

Actual ADDs

AK Transformation
Language Template

Transformation
Actions

generate
derive

Consistency
Checking Rules

C&C View
Editor

C&C diagram

use for

ADD Model
Editor

Questionnaire
Editor

use
for

use
for

AK Transformation
Language Editor

ADvISE

derive

use for

bind

apply on

Questionnaire

edit

Fig. 1. Approach Overview

3.1 Architectural Knowledge Transformation Language

Essentially, the goal of the AK transformation language is to express the actions that
create or update the underlying architectural models (e.g., C&C models) according to
the intentions of the software architects reflected by the design decisions. Unlike gen-
eral model transformation languages (as ATL) our domain-specific language (DSL) is
intended to provide simple and comprehensible architecture-specific transformation ac-
tions, as well as the structures for grouping, extending and inheriting these actions.
Listing 1 presents a formal definition of the AK transformation language in terms of
a EBNF like syntax developed using the Xtext DSL framework5. Please note that the
square brackets in Xtext enable cross-references to other models, in our case, to the ele-
ments of the VbMF C&C view. We also use Xtext to generate an Eclipse-based textual
editor that can support several useful features such as syntax highlighting, content assist
and auto-completion, validation and quick fixes, automated external cross-references
resolutions, and so on.

The core of the language consists of basic actions that can be used to create or alter
individual elements of the architectural models, for instance, creating a new component,
deleting an existing connector, or updating a port. In addition, we introduce special
structures, such as Group, Loop, and Compound to support the compositions and exten-
sions of the predefined actions. A Group (defined by the grammar rules in lines 41–42)
indicates the grouping of a finite set of components that are sub-components of a partic-
ular component. For efficiently handling the iteration and application of similar actions
to a finite set of elements of the design model, a Loop (see line 43–44) can be used.
A Compound (see line 45–46) represents a structure that embraces multiple actions and
even other Compounds. Through an extension, a Compound can inherit the definition
of existing Compounds and extend the inherited behavior with additional actions. The
semantics of a Compound is an atomic (i.e., all-or-nothing) sequential execution of its
inherited compounds and constituting actions.

5 http://www.eclipse.org/Xtext/

http://www.eclipse.org/Xtext/

Supporting Consistency between Architectural Design Decisions 229

1 Action:

2 Add | Delete | Update | Group | Loop;

3 Add:

4 AddComponent | AddConnector | AddPort | AddProperty | AddStereotype | AddPrimitive;

5 AddComponent:

6 "add component" name=STRING;

7 AddConnector:

8 "add connector" name=STRING "from" source=[component::Port|FQN] "to" target=[component::

Port|FQN];

9 AddPort:

10 "add port" name=STRING "kind=" kind=PortKind "to" component=[component::Component|FQN];

11 AddStereotype:

12 "add stereotype" "<<" text=STRING ">>" "to" target=[core::Element|FQN];

13 AddProperty:

14 "add property" name=STRING "type=" type=STRING "value=" value=STRING "to" target=[core::

Element|FQN];

15 AddPrimitive:

16 "add compound" primitive=[Compound|FQN] name=STRING "("(args+=ID|LIST)+")";

17 Delete:

18 DeleteComponent | DeleteConnector | DeletePort | DeleteProperty | DeleteStereotype;

19 DeleteComponent:

20 "delete component" component=[component::Component|FQN];

21 DeleteConnector:

22 "delete connector" conn=[component::Connector|FQN];

23 DeletePort:

24 "delete port" port=[component::Port|FQN];

25 DeleteProperty:

26 "delete property" property=[component::Property|FQN];

27 DeleteStereotype:

28 "delete stereotype" stereotype=[component::Stereotype|FQN];

29 Update:

30 UpdateComponent | UpdateConnector | UpdatePort | UpdateProperty | UpdateStereotype;

31 UpdateComponent:

32 "update component" component=[component::Component|FQN] "name=" newName=STRING;

33 UpdateConnector:

34 "update connector" conn=[component::Connector|FQN] "name=" newName=STRING;

35 UpdatePort:

36 "update port" port=[component::Port|FQN] ("name=" newName=STRING)? ("kind=" newKind=

PortKind)?;

37 UpdateProperty:

38 "update property" prop=[component::Property|FQN] ("name=" newName=STRING)? ("type=" newType

=STRING "value=" newValue=STRING)?;

39 UpdateStereotype:

40 "update stereotype" stereotype=[component::Stereotype|FQN] "text=" newText=STRING;

41 Group:

42 "group" component=[component::Component|FQN] "container" container=[component::Component|

FQN];

43 Loop:

44 "for" "(" element=ID ":" (params+=FQN)+")" (actions+=Action)+ "end";

45 Compound:

46 "compound" name=ID ("extends" (parent+=[Compound|FQN])*)? spec=Spec;

47 Spec: "("(args+=ID)+")" "{" (actions+=Action)* "}";

48 Import: "import" importedNamespace=FqnWildcard;

50 enum PortKind: provided="PROVIDED"|required="REQUIRED";

51 FQN returns ecore::EString: ID ("." ID)*;

52 FqnWildcard: FQN ".*"?;

53 LIST: ID","ID(","ID)*;

Listing 1. Grammar of the AK transformation language

230 I. Lytra, H. Tran, and U. Zdun

The core actions of the AK transformation language presented in Listing 1 mainly
aim at expressing particular changes to individual elements of the corresponding VbMF
C&C view. Using the ADvISE tooling, we can associate the options and answers of
a certain ADD model with one or many transformation actions in template form, in
order to enable the automation of creating and/or updating of the architectural C&C
models. Once the generated questionnaires from the ADD model are answered resulting
in concrete decisions, the related actions will be bound to concrete elements of the
underlying architectural models.

For instance, suppose in a simple case that a selection of an option in an ADD model
leads to the definition of the type of a component which will be indicated by introducing
a stereotype. In the example in Listing 2 a new stereotype with the value of the template
variability TypeOfComponent as its name is created and attached to the component
denoted by the template variability A.

add stereotype <<"${TypeOfComponent}">> to ${A}

Listing 2. Example of a parametrized transformation action for adding a stereotype

The binding of the template variables during decision making will result in an exe-
cutable transformation action, such as the one in the example in Listing 3.

add stereotype <<"Remote Proxy">> to example.ServiceProxy

Listing 3. Example of a transformation action for adding a stereotype

The execution of the transformation action updates the corresponding C&C diagram
as it can be seen in Fig. 2.

Fig. 2. AK Transformation Language Editor and C&C View Editor

3.2 Recurring Pattern Primitives as Reusable AK Transformations

In the course of decision making, software architects often leverage several recurring
architectural elements and structures such as proxies, adapters, gateways, layers, and
so forth. The idea of proposing primitives as fundamental elements for describing such
recurring design patterns and architectural styles has been investigated by various stud-
ies. For example, Zdun and Avgeriou described architectural patterns through a number
of recurring architectural primitives in the component-and-connector view using UML
profiles [24]. Mehta and Medvidovic developed a framework for defining abstract prim-
itives shared by all architectural styles for composing their elements [18]. In this section,
we will describe how to define recurring architectural primitives for modeling certain
patterns or styles as action sets, as an example of how to realize reusable AK transfor-
mations with our language.

Supporting Consistency between Architectural Design Decisions 231

In particular, the expressiveness of our AK transformation language and the support
for compositions and extensions through the composite structures mentioned above en-
able us to define such recurring architectural primitives in a reusable and extensible
way. In our approach, we specify such recurring primitives using parameterized action
sets that are based on compounds and can be inherited and extended further. Each action
set represents one primitive abstraction that can be used to realize a number of patterns
that use this particular primitive as part of their solution (as defined in [24]). The action
sets are used via their name and appropriate parameters. In the action set specifications
we use variable access in the form ${p-name} to refer to the parameter p-name. When
actual ADDs are made, the compound parameters are replaced, which also leads to the
variable binding of their primitive actions.

In Listing 4, we present the indirection compound. Indirection happens when one or
more related “proxy” components receive a message on behalf of one or more “target”
components, forward the message to these “targets” and receive results from these “tar-
gets” also through the “proxy” components [24]. Proxies and adapters are examples of
indirection. The parameters cv, A, and B refer to the target component view, the target
component, and the client respectively. The variable n will be bounded to the name of
the compound “instance” (e.g., Proxy, Adapter, etc.).

compound indirection (cv A B) {
add component "${A}${n}"
add port "${A}${n}_I1" kind=PROVIDED to ${cv}.${A}${n}
add port "${A}${n}_I2" kind=REQUIRED to ${cv}.${A}${n}
add port "${A}_I" kind=REQUIRED to ${cv}.${A}
add port "${B}_I" kind=PROVIDED to ${cv}.${B}
add connector "${A}_I_${A}${n}_I1" from ${cv}.${A}.${A}_I to ${cv}.${A}${n}.${A}${n}_I1
add connector "${A}${n}_I2_${B}_I" from ${cv}.${A}${n}.${A}${n}_I2 to ${cv}.${B}.${B}_I
add stereotype <<"${n}">> to ${cv}.${A}${n}

}

Listing 4. Indirection compound action specification

An example of using the indirection compound is presented in Listing 5.

add compound indirection "Proxy" (example Facade Service)

Listing 5. Usage example of indirection compound action

This compound action will create a proxy for invoking the component “Service”
from the component “Facade”. This will happen by replacing the variables n, cv, A and
B with “Proxy”, the C&C view name “example” and the components “Service” and
“Facade”, respectively. The transformation of the C&C view includes the creation of
a component, two connectors, the corresponding ports and a stereotype. The execution
of the compound transformation action triggers the execution of its containing actions.
In our example, the enactment of Listing 5 will trigger the execution of the primitive
actions in Listing 6.

add component "ServiceProxy"
add port "ServiceProxy_I1" kind=PROVIDED to example.ServiceProxy
add port "ServiceProxy_I2" kind=REQUIRED to example.ServiceProxy
...

Listing 6. Binding of primitive actions of indirection compound action

A compound can extend other compounds, and therefore, inherits the corresponding
action sets of these compounds, thus increasing reusability of the AK transformations.

232 I. Lytra, H. Tran, and U. Zdun

3.3 Generation of Consistency Checking Rules

Consistency checking is an important mechanism to ensure the integrity of the design
models under consideration. For this, we developed a set of predefined parameterized
constraint templates that are related to the basic actions of the AK transformation lan-
guage shown in Listing 1. As a result, the instantiation and binding of the parameterized
constraint templates for each action are performed automatically at the same time and in
the same manner as the actions, without requiring any additional effort from the devel-
opers and architects. In addition, further constraint templates can be easily formulated
in an OCL-like syntax supported by the Eclipse Xpand model validation library 6 and
connected to the relevant actions. Again, constraint templates need to be defined only
once at the model-level and can then be reused for concrete instantiations of the ADD
model. For instance, the following parameterized transformation action of Listing 7 will
create a component with name A.

add component "${A}"

Listing 7. Example of a parametrized transformation action to add a component

The resulting C&C model can be checked for its consistency against the related
decision ADD by the predefined constraint template of Listing 8, which checks that the
added component is present in the C&C model.

context component::ComponentView ERROR "ADD ${ADD}: Component ${A} does not exist":
element.typeSelect(component::Component).exists(c|c.name == "${A}");

Listing 8. Example of a parametrized consistency checking rule

We have designed and developed respective constraint templates for each AK trans-
formation language element and each architectural primitive defined above. Similar to
the AK transformation language, the ${...} syntax in the constraint rule templates
allows to access a variable that is instantiated and bound to particular values of the
related actions and models. The outcomes of the instantiation and binding of the pa-
rameterized constraint templates are concrete constraints that can be enacted by our
model-driven tools. The combination of transformation actions with automatically gen-
erated constraints that check that the transformation’s semantics are not violated in the
C&C diagram, enables us to allow developers and architects to manually change the
C&C model. If a manual change violates an architectural decision that has triggered
transformation actions, the corresponding constraint checking will signal an error.

4 Case Study and Evaluation

4.1 Case Study

We illustrate the applicability of our approach in the context of an industrial case study
on service-based platform integration in the area of industry automation. In our case
study, three heterogeneous platforms, a Warehouse Management System—WMS (stor-
age of goods or storage bins into racks via conveyor systems), a Yard Management

6 http://www.eclipse.org/modeling/m2t/?project=xpand

http://www.eclipse.org/modeling/m2t/?project=xpand

Supporting Consistency between Architectural Design Decisions 233

System—YMS (scheduling, coordination, loading and unloading of trucks), and an
Enterprise Resource Planning System—ERP (overall commissioning and handling of
goods on an abstract level beyond real storage places) need to provide domain-specific
services in an integrated manner. For this, an intermediate integration layer will pro-
vide services to operator applications developed on top of it. The integration layer must
handle various integration aspects including interface adaptation between the platforms,
integration of service-based and non-service-based solutions, routing, enriching, aggre-
gation, splitting, etc. of messages and events, synchronization and concurrency issues,
adaptation, and monitoring of events.

Table 1. An excerpt of the service-based platform integration ADD model and its corresponding
AK transformation actions

ADD Options AK Transformation Actions

Type of Integrating
Component

– None
– Same Interface
– Different Interface

add port "${PS}_p1" kind=PROVIDED to ${cv}.${PS}
add port "${IC}_p1" kind=REQUIRED to ${cv}.${IC}

#if(${TypeOfComponent} == "None")
add connector "${IC}_${PS}" from ${cv}.${IC}.${IC}_p1 to ${cv}.${PS

}.${PS}_p1
add stereotype <<"Direct call">> to ${cv}.${IC}_${PS}

#elseif(${TypeOfComponent} == "Same Interface")
add compound indirection "Proxy" (${PS} ${IC})

#elseif(${TypeOfComponent} == "Different Interface")
add compound indirection "Adapter" (${PS} ${IC})

#end

Type of Proxy

– Local
– Remote

add stereotype <<"${TypeOfProxy} Proxy">> to ${cv}.${PS}Proxy

Type of Adapter

– Local
– Remote

add stereotype <<"${TypeOfAdapter} Adapter">> to ${cv}.${PS}Adapter

Heterogeneous systems

– No
– Yes

#if(${HeterogeneousSystems} == "Yes")
add compound integrationAdapter "Integration Adapter" (${PS} ${IC})

#end

Interchangeability

– No
– Yes

add property "${PS}Adapter_Interchangeability" type="
Interchangeability" value="${Interchangeability}" to ${cv}.${PS}
Adapter

Adaptation Parameters
(String)

add property "${PS}Adapter_params" type="Parameters" value="${
Parameters}" to ${cv}.${PS}Adapter

To handle these integration aspects in the platform integration domain, in our previ-
ous work, we have introduced an ADD model for resolving architectural design issues
related to integration and adaptation, interface design, communication style, and com-
munication flow [15]. We present in Table 1 an excerpt of the ADD model of the plat-
form integration scenario consisting of questions and different alternative options (or
answers). This would be normally modeled using ADvISE. Note that the dependencies
and constraints between the questions, decisions and options are not present in Table 1
for simplicity reasons. This example assists the decision making on the type of integrat-
ing component between a platform service PS of one of the three platforms in our case

234 I. Lytra, H. Tran, and U. Zdun

study (WMS, YMS and ERP) and a component of the integration layer IC (cv refers
to the target C&C view). Along with the ADD model excerpt we present its associated
primitive actions and compound actions based on pattern primitives in pattern form, as
defined in Section 3. It consists of 6 questions, uses 8 primitive actions and 2 compound
actions (integrationAdapter once and indirection twice) and is related to 3 pat-
terns: Proxy (local or remote), Adapter (local or remote) and Integration Adapter. We
defined in total 6 basic compounds (indirection, shield, grouping, callback, transformer
and router) that are used to describe 21 design patterns in our decision model [15]. The
definitions of the compounds are omitted because of the space limitation.

The integration of the Velocity template language with our AK transformation lan-
guage allows us not only to use placeholders (${...}) but also statements (if, foreach,
etc.) which begin with the # character and are parsed by the template engine, but ignored
by the AK transformation language editor.

To give an example of the binding of the transformation actions, suppose that the ar-
chitect opts for a remote proxy as an integrating component between the YMS service
TruckMgmnt and the integration layer component OperatorFacade. The actual ADDs
will be reflected in the corresponding C&C view by executing the transformation ac-
tions of Listing 9.

add port "TruckMgmnt_p1" kind=PROVIDED to example.TruckMgmnt
add port "OperatorFacade_p1" kind=REQUIRED to example.OperatorFacade
add compound indirection "Proxy" (TruckMgmnt OperatorFacade)
add stereotype <<"Remote Proxy">> to example.TruckMgmntProxy

Listing 9. Transformation actions example from case study

4.2 Generalizability

Our approach is generic to a large extent. The transformation actions and constraint
templates constitute reusable AK assets that can be customized and re-used in various
reusable decisions. These templates can be applied for any existing ADD model or
ADD documentation because the essential concepts and elements of these models and
those in the ADvISE ADD model are almost equivalent. In most cases, the binding
between the template variables and the elements of ADD models might need human
intervention. That is, in order to properly associate a reusable parameterized action
template containing some input parameters with a certain ADD, we need to align the
parameters with the corresponding values in the ADD.

The C&C view that is created or updated by enacting the transformation actions
contains all the information captured by the corresponding ADDs derived from the
ADD meta-model. Nevertheless, the AK transformation language is generic and can be
applied to similar C&C models or architectural views on different scenarios as well.
Please note that the VbMF C&C view contains very similar elements as other typical
C&C views. Therefore, our approach is also applicable for most of existing component
models such as UML component diagram with marginal effort for adapting the actions
to accommodate new elements. This effort will be added to the effort for editing the AK
transformation language templates and constraint templates.

Supporting Consistency between Architectural Design Decisions 235

4.3 Reusability

Regardless of the initial efforts for creating the reusable AK transformations, architects
will benefit from reduced total efforts in case of recurring ADDs and AK transforma-
tions. In our approach, reusability is achieved at various levels. First of all, the AK
transformations are edited only once for each ADD model and are afterwards instanti-
ated when actual ADDs are made. This kind of reuse is possible by taking advantage
of the benefits of model-driven techniques and template engines. In addition, the use
of compound actions that can be extended and inherited increases reusability. Finally,
the use of the AK transformation language hides the complex model actions which are
embedded in its enactment engine.

4.4 Modeling Effort and Scalability

We present in this section a quantitative evaluation on the modeling effort of using our
approach. In particular, we document the number of actions (primitive and compound),
primitive actions and model actions that are needed per number of recurring ADDs
and for four different ADDs that have been already documented in Section 4.1. For the
definition of the action templates 4, 4, 6 and 5 actions had to be edited manually for the
reusable decisions Direct Calls, Proxy, Adapter and Integration Adapter respectively.
With the use of compound actions we reduced the number of required actions in the
last three cases, where 7, 6 and 12 actions were contained in the compound actions add
compound indirection and add compound integrationAdapter (extends indirection). The
number of the actions that are directly applied on the C&C model are 13, 35, 32 and
42 respectively for the four ADDs, which means that without the use of the Action
Transformation Language the modeling effort would increase significantly.

This benefit is dramatically increased in case ADDs can be reused. For example, in
our case study, the integration of the WMS system currently requires some 35 proxies
and adapters, meaning that very similar decisions need to be taken over and over again
and, as a consequence, they need to be modeled in C&C diagrams over and over again.
Table 2 shows this dramatic increase for the aforementioned decisions, in case of a spe-
cific decision outcome being selected 1, 5, 10, 20, 50, and 100 times. Clearly, primitive
actions already scale much better in terms of modeling effort than manual change ac-
tions in models; reusable actions with compounds offer an additional level of support.
In particular, in the cases we study, the modeling effort would increase up to 240% if
the compound actions would be replaced by primitive actions and up to 740% if instead
of the AK Transformation Language single model actions would be used.

We estimated the scalability of our approach by measuring the performance for bind-
ing the action templates variables and transforming the actions into C&C views. We
opted to conduct our measurements on a normal desktop machine, as our approach will
usually need to run on the local machines of the software architects and designers. The
machine for testing had an Intel Quad Core i5 2.53GHz with 8GB of memory running
Java VM 1.6 and Eclipse Indigo on Debian Linux. Each measurement is performed 100
times and the resulting time, in milliseconds, is calculated on average. We report only
the average, as the deviations calculated were small. Table 3 presents the time needed
for the binding of the action template variables and for the transformation of the actions
into the C&C views per number of actions, respectively.

236 I. Lytra, H. Tran, and U. Zdun

Table 2. Modeling Effort for Reusable ADDs

Reusability of ADDs−−−−−−−−−−−−−→ Average increase
of modeling effort1 5 10 20 50 100

Direct Calls
Actions (with compounds) 4 20 40 80 200 400 -
Primitive Actions 4 20 40 80 200 400 0%
Model Actions 13 65 130 260 650 1300 225%

Proxy
Actions (with compounds) 4 20 40 80 200 400 -
Primitive Actions 11 55 110 220 550 1100 175%
Model Actions 35 175 350 700 1750 3500 775%

Adapter
Actions (with compounds) 6 30 60 120 300 600 -
Primitive Actions 13 65 130 260 650 1300 117%
Model Actions 32 160 320 640 1600 3200 433%

Integration
Adapter

Actions (with compounds) 5 25 50 100 250 500 -
Primitive Actions 17 85 170 340 850 1700 240%
Model Actions 42 210 420 840 2100 4200 740%

Table 3. Performance Measurement

Primitive Actions 5 10 20 50 100 200 500 1000 5000
Binding Time (in msec) 2 3 4 5 6 8 13 21 77
Transformation Time (in msec) 96 102 111 125 147 210 331 671 2748

We can see that the binding and the transformation time increase in a linear man-
ner with respect to the number of actions and remain considerably low even for a big
number of actions. In particular, the binding and transformation for 100 actions are ac-
complished in roughly 6 and 150 ms, for 1000 actions in approximately 20 and 670
ms, and for 5000 actions in about 80 and 2700 ms, respectively. Thus, our approach
scales well enough for being integrated in the typical development flow of developers
and architects on a typical work station, even for ADDs that create or update large C&C
models.

5 Related Work

The documentation of the design rationale, as well as the gathering of Architectural
Knowledge (AK) have promoted ADDs to first class citizens in software architecture.
For this, many approaches based on decision-capturing templates [23], on ontologies for
architectural decisions [13] and decision meta-models [25] have been proposed in the
literature. Also, a considerable amount of tools have been developed to ease capturing,
managing and sharing of ADDs [21]. These approaches mainly target reasoning on
software architectures, capturing and reusing of AK and do not tackle the maintenance
and consistency of ADDs with architectural views.

The generation of architectural design views from specifications or other architec-
tural views has been studied extensively in the literature. Pérez-Martı́nez and Sierra-
Alonso [20] use model-to-model transformations to generate component-and-connector
architecture models from classes and packages analysis models by using OCL map-
ping rules. In a different approach [14] variability elements from the problem space
are connected to architecture elements in the solution space using a Variability Mod-
eling Language (VML) that provides primitives for referencing and invoking decisions

Supporting Consistency between Architectural Design Decisions 237

which result in fine-grained or coarse-grained compositions of variable and common
core architectural elements. This approach supports rather the composition than the
generation of software architectures as it requires that all architectural elements are
predefined. Consistency checking between the different models or the documentation
of design rationale are not considered in any of the approaches.

A considerable amount of research has been conducted in relating requirements with
software architectures. For example, Kaindl et al. [9] suggest that with the use of model-
driven approaches we can map requirements to architectural design and Grunbacher
et al. [5] introduce the mapping from requirements to intermediate models that are
closer to software architecture. A different approach by van Lamsweerde et al. [12]
derives software architectures from the formal specifications of a system goal model
(KAOS) using transformation rules and refines the architectures incrementally using
patterns that satisfy quality of service goals like availability and fault tolerance. In the
aforementioned approaches, although the transformations are done automatically, the
mapping has to be done manually and is not reusable. Another disadvantage compared
to our approach is that the rationale that led from the requirements to the architectural
views is not documented. In our work we assume that architectural decision making
follows the collection of requirements and precedes the design of software architectures
and set our focus on the linking of reusable ADDs to C&C models.

Our approach is not the first one to relate ADDs to software architectures. The prob-
lem of inconsistencies between ADDs and software architectures that cause design
knowledge vaporization has been discussed before by Choi et al. [2]. For this, they pro-
pose to make ADDs more explicit by introducing a meta-model for relating decisions
with architectural elements and a decision constraint graph for representing decision re-
lationships and studying decision change impact analysis. Compared to our approach,
this approach demands that most of the work is done manually: decision making, archi-
tectural design and change propagation during software evolution. STREAM-ADD [4]
also relates architectural decisions documented in decision templates with requirements
and architectural models generated from these requirements. This approach focusses
rather on the integration of systematic documentation of structural and technological
decisions with requirements and architectural models than on the consistency checking
between decisions and designs.

Traceability links between decision models and architecture models have been used
extensively in the literature. Capilla et al. [1] introduce fine-grained traceability links
between design decisions and other software artifacts. Knemann and Zimmermann [10]
establish links between design decisions and design models in model-based software
development in order to support architectural knowledge documentation and reuse, as
well as to check consistency. Mirakhorli and Cleland-Huang [19] introduce the TTIM
approach that provides a reusable infrastructure for tracing architecture tactics to de-
signs used to trace from tactic-related design decisions to architecture components in
which a decision is realized. Also, most of the approaches require significant amount
of manual work for the establishment of the traceability links, which can be in our ap-
proach automated for recurring ADDs from the mapping of the ADDs to transformation
actions and to constraints at template level. Apart from that, none of these approaches
target the reusability of these links between ADDs and architectural views, nor do they
tackle the complexity of big numbers of reusable ADDs.

238 I. Lytra, H. Tran, and U. Zdun

6 Conclusions

We present a novel approach that provides reusable and extensible transformation ac-
tions and consistency checking rules for (semi-)automatically mapping of the design ra-
tionale and knowledge reflected by ADDs onto architectural component models. In par-
ticular, our approach introduces an AK transformation language for specifying reusable
actions that need to be enacted to automatically create or update the underlying archi-
tectural models with respect to particular ADDs. The transformation language provides
basic actions for updating individual model elements, as well as expressive composite
structures for describing actions applied in a set of elements such as compounds and
loops. This enables us, for instance, to define recurring architectural primitives, e.g., to
realize reusable specifications for architectural patterns or styles in the transformation
language. In addition, our approach supports the specification and automatic generation
of consistency checking rules to make sure no manual changes of the component mod-
els violate the ADDs. The application of our approach in an industrial case study shows
that our approach is applicable in a realistic scenario. Our evaluation illustrates the
benefits of our approach in terms of potential modeling effort reduction, as well as its
scalability in a typical work environment, even for large model sizes. As discussed, the
use of a template engine and model-driven techniques, as well as the support for inheri-
tance and extension in the transformation language significantly enhance its reusability
and extensibility. In our future work, we plan to study repair actions for resolving in-
consistencies between reusable ADDs and component views, as well as the possibility
for bidirectional transformations, i.e., also from component views onto decisions.

Acknowledgment. This work was partially supported by the European Union FP7
project INDENICA (http://www.indenica.eu), grant no. 257483.

References

1. Capilla, R., Zimmermann, O., Zdun, U., Avgeriou, P., Küster, J.M.: An Enhanced Ar-
chitectural Knowledge Metamodel Linking Architectural Design Decisions to other Arti-
facts in the Software Engineering Lifecycle. In: Crnkovic, I., Gruhn, V., Book, M. (eds.)
ECSA 2011. LNCS, vol. 6903, pp. 303–318. Springer, Heidelberg (2011)

2. Choi, Y., Choi, H., Oh, M.: An architectural design decision-centric approach to architec-
tural evolution. In: 11th Int’l Conf. on Advanced Communication Technology (ICACT),
Gangwon-Do, South Korea, pp. 417–422. IEEE Press (2009)

3. Clements, P., Garlan, D., Bass, L., Stafford, J., Nord, R., Ivers, J., Little, R.: Documenting
Software Architectures: Views and Beyond. Pearson Education (2002)

4. Dermeval, D., Pimentel, J., Silva, C.T.L.L., Castro, J., Santos, E., Guedes, G., Lucena, M.,
Finkelstein, A.: STREAM-ADD - Supporting the Documentation of Architectural Design
Decisions in an Architecture Derivation Process. In: 36th Annual IEEE Computer Software
and Applications Conf. (COMPSAC), Izmir, Turkey, pp. 602–611. IEEE Comp. Soc. (2012)

5. Grunbacher, P., Egyed, A., Medvidovic, N.: Reconciling Software Requirements and Archi-
tectures with Intermediate Models. Softw. Syst. Model. 3(3), 235–253 (2003)

6. Harrison, N.B., Avgeriou, P., Zdun, U.: Using Patterns to Capture Architectural Decisions.
IEEE Softw. 24(4), 38–45 (2007)

7. ISO: ISO/IEC CD1 42010, Systems and software engineering — Architecture description
(2010)

http://www.indenica.eu

Supporting Consistency between Architectural Design Decisions 239

8. Jansen, A., Bosch, J.: Software Architecture as a Set of Architectural Design Decisions. In:
5th Working IEEE/IFIP Conf. on Software Architecture (WICSA), Pittsburgh, PA, USA,
pp. 109–120. IEEE Comp. Soc. (2005)

9. Kaindl, H., Falb, J.: Can We Transform Requirements into Architecture? In: 3rd Int’l Conf.
on Software Engineering Advances (ICSEA), Sliema, Malta, pp. 91–96. IEEE (2008)

10. Könemann, P., Zimmermann, O.: Linking Design Decisions to Design Models in Model-
Based Software Development. In: Babar, M.A., Gorton, I. (eds.) ECSA 2010. LNCS,
vol. 6285, pp. 246–262. Springer, Heidelberg (2010)

11. Kruchten, P., Capilla, R., Dueñas, J.C.: The Decision View’s Role in Software Architecture
Practice. IEEE Softw. 26(2), 36–42 (2009)

12. van Lamsweerde, A.: From System Goals to Software Architecture. In: Bernardo, M., Inver-
ardi, P. (eds.) SFM 2003. LNCS, vol. 2804, pp. 25–43. Springer, Heidelberg (2003)

13. Lee, L., Kruchten, P.: Capturing Software Architectural Design Decisions. In: 2007 Canadian
Conf. on Electrical and Computer Engineering, pp. 686–689. IEEE Comp. Soc. (2007)

14. Loughran, N., Sánchez, P., Garcia, A., Fuentes, L.: Language Support for Managing Vari-
ability in Architectural Models. In: Pautasso, C., Tanter, É. (eds.) SC 2008. LNCS, vol. 4954,
pp. 36–51. Springer, Heidelberg (2008)

15. Lytra, I., Sobernig, S., Zdun, U.: Architectural Decision Making for Service-Based Platform
Integration: A Qualitative Multi-Method Study. In: Joint 10th Working IEEE/IFIP Conf. on
Software Architecture & 6th European Conf. on Software Architecture (WICSA/ECSA),
IEEE Comp. Soc., Helsinki (2012)

16. Lytra, I., Tran, H., Zdun, U.: Constraint-based consistency checking between design de-
cisions and component models for supporting software architecture evolution. In: 16th
European Conf. on Software Maintenance and Reengineering (CSMR), Szeged, Hungary,
pp. 287–296. Springer (2012)

17. MacLean, A., Young, R., Bellotti, V., Moran, T.: Questions, Options, and Criteria: Elements
of Design Space Analysis. Human-Computer Interaction 6, 201–2502 (1991)

18. Mehta, N.R., Medvidovic, N.: Composing architectural styles from architectural primitives.
In: 9th European Software Engineering Conf. held jointly with 11th ACM SIGSOFT Int’l
Symposium on Foundations of Software Engineering (ESEC/FSE-11), Helsinki, Finland,
pp. 347–350. ACM (2003)

19. Mirakhorli, M., Cleland-Huang, J.: Using tactic traceability information models to reduce
the risk of architectural degradation during system maintenance. In: 27th IEEE Int’l Conf.
on Software Maintenance (ICSM), Williamsburg, VA, USA, pp. 123–132. IEEE (2011)

20. Pérez-Martı́nez, J.E., Sierra-Alonso, A.: From Analysis Model to Software Architecture: A
PIM2PIM Mapping. In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066,
pp. 25–39. Springer, Heidelberg (2006)

21. Shahin, M., Liang, P., Khayyambashi, M.R.: Architectural design decision: Existing models
and tools. In: Joint Working IEEE/IFIP Conf. on Software Architecture and European Conf.
on Software Architecture (WICSA/ECSA), Cambridge, UK, pp. 293–296. IEEE (2009)

22. Tran, H., Zdun, U., Dustdar, S.: View-based and Model-driven Approach for Reducing the
Development Complexity in Process-Driven SOA. In: Int’l Conf. Business Process and Ser-
vices Computing (BPSC). LNI, pp. 105–124 (2007)

23. Tyree, J., Akerman, A.: Architecture Decisions: Demystifying Architecture. IEEE
Softw. 22(2), 19–27 (2005)

24. Zdun, U., Avgeriou, P.: Modeling Architectural Patterns Using Architectural Primitives. In:
20th ACM Conf. on Object-Oriented Programming, Systems, Languages & Applications
(OOPSLA), pp. 133–146. ACM Press (2005)

25. Zimmermann, O., Gschwind, T., Küster, J., Leymann, F., Schuster, N.: Reusable architec-
tural decision models for enterprise application development. In: Overhage, S., Ren, X.-
M., Reussner, R., Stafford, J.A. (eds.) QoSA 2007. LNCS, vol. 4880, pp. 15–32. Springer,
Heidelberg (2008)

PANDArch: A Pluggable Automated Non-intrusive
Dynamic Architecture Conformance Checker

Lakshitha de Silva and Dharini Balasubramaniam

School of Computer Science, University of St Andrews, St Andrews, KY16 9SX, UK
lakshitha.desilva@acm.org, dharini@st-andrews.ac.uk

Abstract. The software architecture of a system is often used to guide and con-
strain its implementation. While the code structure of an initial implementation
is likely to conform to its intended architecture, its dynamic properties cannot be
fully checked until deployment. Routine maintenance and changing requirements
can also lead to a deployed system deviating from this architecture over time.
Both static and dynamic checks are thus required to ensure that an implemen-
tation conforms to its prescriptive architecture throughout its lifespan. However,
runtime conformance checking strategies typically alter the implementation of an
application, increasing its size and affecting its performance and maintainability.
In this paper, we describe the design of a novel dynamic conformance-checking
framework that is pluggable and non-intrusive, thereby limiting any overheads to
those periods when checking is activated. An implementation of this framework
with Java as the target language and its early evaluation are also presented.

1 Introduction

A key benefit of software architectures [9] is that they establish the basis for system
implementation. The essential structure, interactions and quality attributes captured at
the architectural level can guide the development of the system [4].

Architecture-driven development methodologies can ensure that a software system
conforms to its prescribed static architecture at the outset. However, verifying the com-
pliance of dynamic features of an implementation is not always possible until the system
is deployed in its target operational environment. In addition, routine maintenance as
well as changes to requirements and operating conditions can cause the behaviour of a
deployed system to deviate from its intended architecture. Such erosion of the architec-
ture [9] can lead to vital properties being violated and the software becoming unfit for
use [14]. Both static and dynamic conformance checks are therefore required to ensure
that an implementation and its architecture remain consistent with one another.

Dynamic architectural features include runtime instantiations, reflective method
invocations, dynamic linking, online updates and patches, and quality of service mea-
sures. Detecting runtime violations requires system execution to be monitored and rele-
vant runtime data be extracted, abstracted and checked against architectural constraints.

Most existing work in dynamic architectural conformance checking involves incor-
porating extra functionality, such as aspect weaving, or source code annotations of ar-
chitectural properties in the target system. In both cases an external monitoring system
reconstructs a runtime view of the architecture using data gathered from the added code

K. Drira (Ed.): ECSA 2013, LNCS 7957, pp. 240–248, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

PANDArch: A Dynamic Architecture Conformance Checker 241

or annotations. The extracted architecture is then used for checking conformance against
a prescriptive architecture using other tools [13]. Such conformancechecking techniques
are tightly coupled with the software product and cannot be invoked only when required.
This limitation can lead to permanent degradation of application performance, inflexi-
bility in conformance checking and poor maintainability [13].

This paper introduces PANDArch, a framework for checking conformance between
software architectures and implementations that aims to solve these problems. The
framework is designed to be automated, customisable, non-intrusive and pluggable, thus
minimising overheads on applications. We outline its design, implementation and some
early evaluation using architectures specified in the Grasp [12] architecture descrip-
tion language (ADL) and implementations in Java. The key contribution of this work is
making dynamic architecture conformance checking a viable option for developers.

The paper is organised as follows. Section 2 outlines the concept of architectural
conformance while Section 3 describes design principles that guided the framework.
Key implementation details are discussed in Section 4 and preliminary evaluation re-
sults using an open source application are presented in Section 5. Section 6 describes
related work and the paper concludes with thoughts on future work in Section 7.

2 Architecture Conformance Checking

An implementation that satisfies the constraints specified in its prescribed architecture
is said to conform to it. Conformance can relate to a number of architectural properties
relating to structure, interactions and quality of service (QoS) requirements. Our frame-
work aims to check all these properties captured in the form of conformance rules.

2.1 Static and Dynamic Checking

An architecture specification may contain multiple views associated with static (such
as code or development) or dynamic (execution) aspects of the system. As explained in
Section 1, both static and dynamic checks are required to ensure full conformance.

Static checks are done while a system is being built or when taken offline for main-
tenance. They may relate to code structures and aspects of communication integrity.

Dynamic checks are carried out while the system executes and thus require access
to runtime state and operations which are validated against architectural constraints.
Such checks may relate to structures, communication integrity, component instances
and quality of service thresholds at runtime. As method-level granularity is often re-
quired for dynamic checking, a key challenge is capturing relevant and useful data from
system execution while still keeping any performance impact to a minimum.

2.2 Mapping between Architecture and Implementation

An architecture may be used to derive multiple system implementations. It exists at a
higher level of abstraction and hence a single architectural feature can be implemented
using a combination of programming constructs. Many implementation details are not

242 L. de Silva and D. Balasubramaniam

significant at the architectural level. Therefore, a mapping between architectural and im-
plementation abstractions is required to perform conformance checking. We categorise
mechanisms for specifying such mappings as follows:

• Naming Conventions from Architectural to Programming Constructs. For ex-
ample, a component in the architecture is implemented by a class of the same name.
Although such a mapping primarily provides structural information, it may facilitate
checking conformance of behavioural and QoS properties as well. This technique can
be further extended by supplementing architectural elements with annotations having
rich information about corresponding implementation constructs. Conversely, anno-
tations in source code could identify relevant architectural entities. An annotation for
a class, for example, can identify the component implemented by that class. Source
code annotations, however, could be easily lost due to programmer activity.

• Combining Architecture and Implementation in a Single Artefact, as in Arch-
Java [1] or ArchWare [7]. Conformance checks are minimised or not required in
such systems since architecture and implementation are combined in one specifica-
tion. However, current approaches either require a permanent runtime platform or
that the application be implemented in a language that is not widely adopted in in-
dustry.

• External (Outwith both Architecture and Implementation) Specification of the
Mapping. While this mechanism does constrain architecture and implementation
representations, it does require a separate artefact having explicit mapping of all ar-
chitecturally significant features. The DiscoTect [11] technique uses this approach.

PANDArch adopts the first strategy for dynamic conformance checking. This decision
avoids a complex mapping scheme that could hinder adoption, while still allowing the
dynamic checks noted earlier to be carried out. It also makes the framework more read-
ily adaptable to both existing modelling notations and programming languages.

3 Design Principles

As motivated in Section 1, the following principles guided the design of the framework.

• Pluggable. Target application can execute with or without the monitoring framework;
when the framework is unplugged, the binaries have no instrumentation or other code,
• Automated. Generation of conformance rules and their checking are automated,
• Non-intrusive. The source code of the target application is not changed,
• Performance-centric. Performance impact on target application is minimised as far

as possible and limited to the period when the framework is plugged in, and
• Extensible. The framework can accommodate modifications to conformance rules.

We hypothesise that these principles lead to a more viable compliance checking frame-
work that aligns well with industry practices. The conceptual process for checking con-
formance using the proposed framework is illustrated in Figure 1 below.

An architecture specification, containing required mapping annotations, drives both
system development and the conformance process. Architectural constraints and map-
ping information are extracted from the specification after compilation, and used by

PANDArch: A Dynamic Architecture Conformance Checker 243

Architecture
Specification

Architecture
Constraints

Mapping
Scheme

Conformance
Rules

Software
Implementation

Runtime
Events

Static
Analysis Events

Conformance
Checker

guides development

Rules
Generator

Violation
Notifications

Specification
Compiler

Application
Launcher/Executor

Static Code
Analyser

Architect

Fig. 1. Proposed conceptual process for checking architectural conformance

the rules generator to create a set of conformance rules. The mapping scheme is cus-
tomised to the specific technology or language used for the target system. For instance,
if the system is implemented in Java, then the mapping scheme is specific to Java and
object-orientation. Rules are specified as Java objects exposing a specific interface.

The conformance checker takes the set of conformance rules and validates them
against runtime events while the program executes. It may produce a series of violation
notifications where appropriate. This is a continuous process while the framework is
plugged in and the application is executing. If required, execution data is cached by
the framework until there is sufficient information to validate an architectural rule. The
same process is applicable to events generated through static analysis. Although cur-
rently not implemented, the design can accommodate a static analyser using an adaptor
to transform code inspection notifications to PANDArch events.

4 Implementation

The architecture of the conformance checking framework reflects the design principles
listed in section 3. The layered architecture of the framework is shown in Figure 2.

Architectural Constraint Generation and Validation

Generic Runtime Monitoring Interface

Java Debug Interface

Java VM

Executing
Application

<other event adapters>

Thread Pool and Event Queue Management

Java Runtime Event Adapter

Conformance Monitoring & Visualisation Tools

Runtime Probes

Fig. 2. Layered logical architecture of the conformance checking framework

PANDArch is implemented in Java and can currently check conformance of applica-
tions executed in the Java Virtual Machine (JVM). However, it is extensible to handle
other event sources. Initially the JDI platform alone was used to capture events emitted

244 L. de Silva and D. Balasubramaniam

by the JVM. However, due to their impact on performance, Class-Load and Method-
Entry events are now captured using a Java instrumentation agent [8]. The agent injects
optimised probes into the byte code whenever the JVM loads an application class. These
probes are both additive and stateless and therefore do not alter application behaviour.
Byte code streams are modified only in-memory, hence changes are not persistent. Raw
data from probes are sent to the framework through an asynchronous socket channel.

Our implementation uses architectures specified in the Grasp ADL [12], though the
framework design is not tied to this notation. Besides common architectural concepts
such as components, connectors and layers, Grasp also supports annotations. These are
name-value pairs useful for supplementing architectural elements with additional data
without altering semantics. In our case, annotations carry crucial mapping information
linking architectural entities to their implementation, as explained further in Section 5.

5 Evaluation

The initial evaluation focuses on two aspects: the ability of PANDArch to detect con-
formance violations and its impact on the performance of target applications. We chose
version 2.4.2 of Apache Jackrabbit [2], a Java content repository application, for the
initial evaluation of the framework primarily because it includes some architecture doc-
umentation. As a server application, Jackrabbit is also suitable for testing performance
impact. However, the published runtime architecture is neither complete nor up to date,
particularly with respect to interactions among architectural elements [3]. In order to
generate useful and sufficient conformance rules, the source code was manually ex-
amined to discover interactions among a few key components. Filtering capabilities of
PANDArch were configured to monitor only these components at runtime. For these
parts, conformance is guaranteed since the architecture reflects the implementation.
However, where appropriate conformance was deliberately broken to test the effective-
ness of the framework. The extracted architecture is shown in Figure 3.

The Grasp specification for the extracted portion of the architecture is shown in
Listing 1. The whole architecture is contained within an architecture block while the
runtime view is described within the system block. Components are described using
the component keyword and in this example, each component declaration has an as-
sociated annotation that begins with @confomn. These annotations map components
to implementation. For example, the annotation attached to component Data speci-
fies that it has been implemented using all the classes found in the Java namespace
org.apache.jackrabbit.core.data. Similarly, the two annotations attached to the root
architecture statement identify namespaces that should be included and excluded from
conformance monitoring.

Interactions among components are specified using the Grasp the link construct. A
link connects a requires (i.e. consumer) interface in one component to one or more
provides interfaces in other components. However, in real-world software component
interactions are not always through interfaces, as exemplified in Jackrabbit. Grasp over-
comes this by equipping every component with an intrinsic out interface to model out-
going, non-interface method calls to other components. This is evinced in Listing 1.

PANDArch: A Dynamic Architecture Conformance Checker 245

org.apache.jackrabbit.core

Query
Lucene

.query

NodeType
.nodetype

Session
.session

Util
.util

Data
.data

Value
.value

FileSystem
.fs

Id
.id

Stats
.stats

Fig. 3. Extracted architecture of Jackrabbit showing interactions among a few key components

5.1 Detecting Architecture Violations

The ability of the framework to detect architecture violations was evaluated using the
above Grasp specification. Namespace filters were set to ignore components and inter-
actions not included in this specification. Initial runtime tests were carried out using a
modified version of the SecondHop program distributed with Jackrabbit. This program
signs in to the content repository, performs a few content operations and signs out. As
expected, the framework did not report any violations in the first instance as all compo-
nents and their interactions were compliant with the architecture. The architecture and
the implementation were then changed to cause mismatches. Particular attention was
given to violations that could be detected only at runtime. For example, the AddNode-
Operation class in the Session component was modified to instantiate a class in the
Util component and invoke one of its methods using Java reflection. This interaction is
not specified in the architecture and therefore should not be allowed. In addition, this
reflective method invocation cannot be easily detected, if at all, through static analysis.
As in all other cases, the framework correctly identified this violation when the test
program was executed.

5.2 Performance Impact

The SecondHop program was also used to evaluate the performance of PANDArch.
The program executes for ten iterations during a single run, and makes four such runs
for each test case. The results of these tests are shown in Table 1. A significant per-
formance gain is achieved by using instrumentation probes instead of JDI. Although

246 L. de Silva and D. Balasubramaniam

Listing 1. Grasp specification of modules and interactions shown in Figure 3

@confmon(include=["org.apache.jackrabbit.core"])
@confmon(exclude=["org.apache.jackrabbit.core.query.lucene"])
architecture Jackrabbit {

template NamespaceComponent() {}
system Core {

// Components
@confmon(ns=["org.apache.jackrabbit.core.nodetype"], classes=["*"])
component NodeType = NamespaceComponent();
@confmon(ns=["org.apache.jackrabbit.core.session"], classes=["*"])
component Session = NamespaceComponent();
@confmon(ns=["org.apache.jackrabbit.core.query"], classes=["*"])
component Query = NamespaceComponent();
@confmon(ns=["org.apache.jackrabbit.core.util"], classes=["*"])
component Util = NamespaceComponent();
@confmon(ns=["org.apache.jackrabbit.core.data"], classes=["*"])
component Data = NamespaceComponent();
@confmon(ns=["org.apache.jackrabbit.core.value"], classes=["*"])
component Value = NamespaceComponent();
@confmon(ns=["org.apache.jackrabbit.core.fs"], classes=["*"])
component FileSystem = NamespaceComponent();
@confmon(ns=["org.apache.jackrabbit.core.id"], classes=["*"])
component Id = NamespaceComponent();
@confmon(ns=["org.apache.jackrabbit.core.stats"], classes=["*"])
component Stats = NamespaceComponent();
// Interactions
link NodeType.out to Session, Util, Data, Value, FileSystem, Id;
link Session.out to NodeType, Data, Value, Stats, Id;
link Query.out to NodeType, Session, FileSystem, Id, Stats;
link Util.out to Id, Util, Id, Value;
link Value.out to Data, FileSystem, Id;

}
}

our test application still runs almost 31% slower with probes, this may be an accept-
able compromise given that the framework can be easily unplugged when conformance
testing is not required.

The framework allows users to choose between JDI or probes for the purpose of fine
tuning conformance checks. In comparison to probes, the JDI mode offers a more thor-
ough conformance validation at the cost of reduced performance. The choice between
the two may be dependent on a number of factors including whether dynamic confor-
mance checking takes place as part of system testing prior to deployment or while the
system is in operation, and how often such checks are carried out.

We also verified that PANDArch generates conformance rules automatically, does
not affect the source code, and can be unplugged without recompiling the target.

6 Related Work

DiscoTect [11] uses runtime events, state information and rules for known architec-
tural styles to discover the architecture of an executing Java program. It uses a mapping
language to bridge the abstraction gap between architecture and implementation and
conformance is checked manually. In contrast, PANDArch automatically validates con-
straints extracted from an architecture, irrespective of style, against the implementation.

A later work by Ganesan et al. [6] adapts DiscoTect by replacing its mapping lan-
guage with Coloured Petri nets to link architecture to implementation. This technique

PANDArch: A Dynamic Architecture Conformance Checker 247

Table 1. A comparison of performance impact between JDI and instrumention probes. Tests were
executed in a system with 2.26 GHz Core 2 Duo processors and 8GB of memory.

Run Framework unplugged (µs) Framework using probes (µs) Framework using JDI (µs)

1 107,762 139,091 472,472
2 107,254 137,622 486,169
3 101,573 135,551 449,602
4 104,677 139,057 468,763

Average 105,317 137,830 (+30.9%) 469,251 (+345.6%)

is pluggable, non-intrusive and some aspects of the discovered architecture can be ver-
ified automatically. However, its mappings are also distinct from the architecture spec-
ification and stylistic architectural properties must be manually pre-configured in the
checker. PANDArch uses a single architecture specification with in-built mappings,
from which constraints used by the conformance checker are automatically generated.

Popescu and Medvidovic [10] propose a semi-automatic approach for checking dy-
namic compliance between an event-based system and its architecture. This approach
injects probes and recorders into components, extracts and filters runtime data on events
and compares it to a prescriptive sequence of events. It focuses on communications in
event-based systems and requires some human interpretation to decide conformance.

The SAVE tool [5] uses runtime events as well as source code to extract architectural
views, though runtime compliance checking is not possible.

7 Conclusions and Future Work

We have introduced a dynamic architecture conformance checking framework that is
pluggable, automated, non-intrusive, and minimises overhead on target applications.
An implementation of the framework for Grasp and Java is currently being evaluated.

This work opens up many avenues for further research. Extensive evaluation using
different types of applications under different loads is required to determine viability
and effectiveness of the framework. Although the core design of the framework does
not preclude them, the current implementation does not support distributed applica-
tions or static conformance checking. We intend to incorporate these functionalities to
improve applicability. Furthermore, a challenge faced by any dynamic program moni-
toring tool is ensuring sufficient execution coverage. We plan to address this issue by
employing static analysis to preconfigure the runtime checker, so that runtime archi-
tectural violations can be meaningfully interpreted with relation to the amount of code
covered during execution.

Acknowledgment. This work is supported through a PhD studentship awarded by
Scottish Informatics and Computer Science Alliance (SICSA) and University of St An-
drews.

248 L. de Silva and D. Balasubramaniam

References

1. Aldrich, J., Chambers, C., Notkin, D.: ArchJava: Connecting software architecture to imple-
mentation. In: Proceedings of the 24th International Conference on Software Engineering,
pp. 187–197. ACM (2002)

2. Apache Software Foundation: Apache Jackrabbit (2010),
http://jackrabbit.apache.org/ (accessed April 2013)

3. Apache Software Foundation: Jackrabbit Architecture (2010),
http://jackrabbit.apache.org/jackrabbit-architecture.html
(accessed April 2013)

4. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. Addison-
Wesley (2003)

5. Duszynski, S., Knodel, J., Lindvall, M.: SAVE: Software architecture visualization and eval-
uation. In: Proceedings of the 13th European Conference on Software Maintenance and
Reengineering, pp. 323–324. IEEE (2009)

6. Ganesan, D., Keuler, T., Nishimura, Y.: Architecture compliance checking at run-time. Infor-
mation and Software Technology 51(11), 1586–1600 (2009)

7. Morrison, R., Kirby, G., Balasubramaniam, D., Mickan, K., Oquendo, F., Cimpan, S., War-
boys, B., Snowdon, B., Greenwood, R.M.: Support for evolving software architectures in
the ArchWare ADL. In: Proceedings of the 4th Working IEEE/IFIP Conference on Software
Architecture, pp. 69–78. IEEE (2004)

8. Oracle: Package java.lang.instrument (2013),
http://docs.oracle.com/javase/7/docs/api/java/lang/
instrument/package-summary.html (accessed April 2013)

9. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. ACM SIGSOFT
Software Engineering Notes 17(4), 40–52 (1992)

10. Popescu, D., Medvidovic, N.: Ensuring architectural conformance in message–based sys-
tems. In: Proceedings of the Workshop on Architecting Dependable Systems (2008)

11. Schmerl, B., Garlan, D., Yan, H.: Dynamically discovering architectures with DiscoTect. In:
Proceedings of the 13th ACM International Symposium on Foundations Software Engineer-
ing, pp. 103–106. ACM (2005)

12. de Silva, L., Balasubramaniam, D.: A model for specifying rationale using an architec-
ture description language. In: Crnkovic, I., Gruhn, V., Book, M. (eds.) ECSA 2011. LNCS,
vol. 6903, pp. 319–327. Springer, Heidelberg (2011)

13. de Silva, L., Balasubramaniam, D.: Controlling software architecture erosion: A survey. Jour-
nal of Systems and Software 85(1), 132–151 (2012)

14. van Gurp, J., Bosch, J.: Design erosion: problems and causes. Journal of Systems and Soft-
ware 61(2), 105–119 (2002)

http://jackrabbit.apache.org/
http://jackrabbit.apache.org/jackrabbit-architecture.html
http://docs.oracle.com/javase/7/docs/api/java/lang/instrument/package-summary.html
http://docs.oracle.com/javase/7/docs/api/java/lang/instrument/package-summary.html

Claims and Evidence for Architecture-Based
Self-adaptation: A Systematic Literature Review

Danny Weyns and Tanvir Ahmad

Department of Computer Science
Linnaeus University, Vaxjo, Sweden

danny.weyns@lnu.se, ta222aw@gmail.com

Abstract. Engineering the upcoming generation of software systems and guar-
anteeing the required qualities is complex due to the inherent uncertainties at
design time, such as new user needs and changing availability of resources.
Architecture-based self-adaptation is a promising approach to tackle these chal-
lenges. In this approach, a system maintains a model of itself and adapts itself to
realize particular quality objectives using a feedback loop. Despite a vast body
of work, no systematic study has been performed on the claims associated with
architecture-based self-adaptation and the evidence that exists for these claims.
As such insight is important for researchers and engineers, we performed a sys-
tematic literature review covering 20 leading software engineering conferences
and journals in the field, resulting in 121 studies used for data collection. The
review shows that self-adaptation is primarily used to improve performance, reli-
ability, and flexibility. The tradeoffs implied by self-adaptation have not received
much attention, and evidence is mainly obtained from simple examples. From the
study, we derive a number of recommendations for future research in architecture-
based self-adaptive systems.

1 Introduction

Engineering the upcoming generation of software systems and guaranteeing the re-
quired qualities (performance, robustness, etc.) pose severe challenges due to the in-
herent uncertainty resulting from incomplete knowledge at design time. Examples of
uncertainties are new user needs, subsystems that come and go at will, dynamically
changing availability of resources, and faults that are difficult to predict. These chal-
lenges have motivated the need for self-adaptive software systems. Self-adaptation en-
dows a system with the capability to adapt itself to internal changes and dynamics in
the environment in order to achieve particular quality goals in the face of uncertainty.

Over the past fifteen years, researchers have developed a vast body of work on engi-
neering self-adaptive systems. Two prominent loosely connected approaches to realize
self-adaptation are architecture-based self-adaptation and control-based self-adaptation.
Architecture-based self-adaptation [1–3] emphasizes software components for feedback
loops, runtime models and mechanisms, and the interaction with the managed system.
Control-based self-adaptation [4, 5] applies principles from control theory to design
and analyze feedback control loops for computing systems. Our focus in this paper is
on architecture-based self-adaptation.

K. Drira (Ed.): ECSA 2013, LNCS 7957, pp. 249–265, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

250 D. Weyns and T. Ahmad

Despite more than a decade of research on self-adaptation, it is not clear how the re-
search results have actually contributed to improvements of engineering complex soft-
ware systems. Recent efforts resulting from two Dagstuhl seminars summarize achieve-
ments in software engineering for self-adaptive systems and outline challenges for fu-
ture research [6, 7]. But, to the best of our knowledge, no systematic study has been
performed on the claims associated with self-adaptation and the evidence that exists for
these claims. However, such an insight is crucial for researchers and engineers.

Recently, two related surveys have been conducted. Patikirikorala et al. [8] surveyed
engineering approaches for control-based self-adaptation. The authors investigated con-
trol methodologies in self-adaptive systems and identified a set of design patterns. How-
ever, this survey did not investigate the evidence of self-adaptive systems. Moreover,
the survey covered only 9 venues tailored to control-based approaches. In a previous
effort [9], we performed a pilot study in which we investigated claimed benefits and
supporting evidence for self-adaptation from studies published by the SEAMS com-
munity (http://www.self-adaptive.org/) between 2006 and 2012. Most of these studies
focus on architecture-based self-adaptation. While this pilot provided useful insights
for the SEAMS community, the survey was limited in scope and time and as such did
not provide conclusive insights for the field as a whole.

The goal of the research presented in this paper is to perform a comprehensive study,
aiming to identify:

1. The focus of research on architecture-based self-adaptation,
2. The claimed benefits of architecture-based self-adaptation,
3. The evidence that is provided for these claims.

To that end, we have performed a systematic literature review. In this review we searched
20 main software engineering venues and journals in the period 2000-2012, resulting in
121 primary studies for data collection. All material of the systematic literature review
is available at the survey website.1

Paper Overview. Section 2 provides a short introduction of architecture-based self-
adaptation. In Section 3, we describe the method we used in our research. In Section 4
we present and analyze the data extracted from the primary studies to answer the re-
search questions. Section 5 discusses limitations of our study. Finally, we derive conclu-
sions from the review and highlight a number of recommendations for future research
in architecture-based self-adaptation in Section 6.

2 A Brief Introduction to Architecture-Based Self-adaptation

Figure 1 shows the primary elements of a self-adaptive system situated in an environ-
ment. We use the general terms managed subsystem and managing subsystem to denote
the constituent parts of a self-adaptive software system [2, 3, 10].

The environment refers to the part of the external world with which the self-adaptive
system interacts and in which the effects of the system will be observed and evalu-
ated. The distinction between the environment and the self-adaptive system is made

1 http://homepage.lnu.se/staff/daweaa/SLR/CESAS/CE-SAS.htm

http://homepage.lnu.se/staff/daweaa/SLR/CESAS/CE-SAS.htm

Claims and Evidence for Architecture-Based Self-adaptation: A SLR 251

Fig. 1. Constituent parts of a self-adaptive software system

based on the extent of control. The managed subsystem comprises the application logic
that provides the system’s domain functionality. The managing subsystem manages the
managed subsystem. The managing subsystem comprises the adaptation logic that deals
with one or more concerns. To realize its goals, the managing subsystem monitors the
environment and the managed subsystem and adapts the latter when necessary. Other
layers can be added to the system where higher-level managing subsystems manage
underlying subsystems, which can be managing subsystems themselves. One common
approach to describe the functions of managing subsystems is by means of a Monitor-
Analyze-Plan-Execute-Knowledge loop [2] (MAPE-K loop). The MAPE elements map
to the basic functions of a feedback loop, while the K component maps to runtime mod-
els maintained by the managing system to support the MAPE functions [10].

It is important to note that the managed and managing subsystems can be deployed
centralized or distributed, and both subsystems can be explicitly separated or they can
be (partially) interwoven. Furthermore, the managing system can consist of one or more
feedback loops, and the MAPE functions can be mapped to distinct components, or they
can be integrated in one or more components.

3 Research Method

Our study uses a systematic literature review [11], which is a well-defined method
to identify, evaluation and interpreting all relevant studies regarding a particular re-
search question or topic of interest. A systematic literature review comprises three main
phases: planning, executing, and reporting. In the planning phase, the protocol for the
review is defined. This protocol describes the procedure that will be followed to con-
duct the review. In the execution phase, studies are selected, data is extracted, and the
results are analyzed. In the reporting phase, the study results are documented.

Three researchers were involved in the systematic literature review. The team defined
the protocol. To minimize bias, each primary study was assigned to two researchers that

252 D. Weyns and T. Ahmad

independently collected the data. During discussion sessions with the three reviewers,
the collected data was compared and in case of differences, conflicts were resolved.
The data was then entered in a data base system for further processing. Data analysis
was performed by two researchers and discussed with the third researcher. Finally, two
researchers produced the final report of the review. The report was checked by the third
researcher and adjustments were made where needed.

We now discuss the research questions, searched sources, search strategy, inclusion
and exclusion criteria, collected data items, and approach for data analysis.

3.1 Research Questions

We formulated the goal of the review using the Goal-Question-Metric (GQM) perspec-
tives (purpose, issue, object, viewpoint) [12]:

Purpose: Analyze and characterize
Issue: the claims and evidence
Object: for architecture-based self-adaptive software systems
Viewpoint: from a researcher’s viewpoint.

This overall goal can be translated to three concrete research questions:

RQ1: What is the focus of research in architecture-based self-adaptation?
RQ2: What are the claims made for self-adaptation and what are the tradeoffs im-
plied by self-adaptation?
RQ3: How much evidence is available for the claims and what are the types of
evidence?

With RQ1, we want to get insight in the trends of research on architecture-based self-
adaptation and the current state of the art. RQ2 is motivated by the need to get clear
understanding of the benefits of architecture-based self adaptation, that is, we are inter-
ested in identifying which concerns are addressed in self adaptive systems and what are
the tradeoffs implied by applying self-adaptation. With RQ3 we aim to investigate what
assessment methods have been used to obtain evidence for the research results and how
much evidence is available for the applied methods.

3.2 Searched Sources

To guarantee high quality of the primary studies and obtain solid data to answer the
research questions, we searched the main conferences and journals for publishing re-
search results on self-adaptive systems, software architecture, and software engineering.
The selected sources are listed in Table 1. Rank is based on the Australian Research
Council ranking and H-index2. Instead of a general search, we opted for searching the
main specialized venues and the premier software architecture and engineering venues,
guaranteeing inclusion of high-quality primary studies for data collection.

2 ARC: http://www.arc.gov.au/era/era 2010/archive/era journal
list.htm, H-index: http://www.scimagojr.com and
http://academic.research.microsoft.com/

http://www.arc.gov.au/era/era_2010/archive/era_journal_list.htm
http://www.arc.gov.au/era/era_2010/archive/era_journal_list.htm
http://www.scimagojr.com
http://academic.research.microsoft.com/

Claims and Evidence for Architecture-Based Self-adaptation: A SLR 253

Table 1. Searched Sources

ID Conference/Journal Rank H-index

Adaptive Adaptive and Self-adaptive Systems and Applications n/a n/a

ASE International Conf. on Automated Software Engineering A 24

DEAS Design and Evolution of Autonomic Application Software n/a n/a

ECSA European Conference on Software Architecture n/a 8

FSE Foundations of Software Engineering A 31

ICAC International Conference on Autonomic Computing B 32

ICSE International Conference on Software Engineering A 63

ICSM International Conference on Software Maintenance A 57

ISARCS International Symposium on Architecting Critical Systems n/a n/a

ISSTA International Symposium on Software Testing and Analysis A 35

SASO Self-Adaptive and Self-Organizing Systems n/a 9

SEAMS Software Engineering for Adaptive & Self-Managing Systems n/a n/a

SefSAS Software Engineering for Self-Adaptive Systems n/a n/a

WADS Workshop on Architecting Dependable Systems n/a n/a

WICSA Working International Conference on Software Architecture A n/a

WOSS Workshop on Self-Healing n/a n/a

JSS Journal of Systems and Software A 48

TAAS Transactions on Autonomous and Adaptive Systems n/a 16

TOSEM Transactions on Software Engineering and Methodology A* 47

TSE Transactions on Software Engineering A* 93

3.3 Search Strategy

The search strategy combines automatic with manual search. In a first step we searched
primary studies by automatic search using the following search string:

((Title:adaptive OR Title:adaptation OR Title:self OR Title:autonomic
OR Title:autonomous) OR
(Abstract:adaptive OR Abstract:adaptation OR Abstract:self OR Ab-
stract:autonomic OR Abstract:autonomous))

We performed automated search on three data search engines: IEEE Explore, ACM
Digital Library, and Springer for the respective venues. Search was based on title and
abstract. To ensure that the search string provides the right scope of studies, we applied
pilot searches on the set of studies from three venues: TAAS, ICAC, and SEAMS.

In the second step, two researchers read the abstracts, introduction and conclusions
of all the primary studies selected in the first step and used the inclusion/exclusion
criteria to filter out the studies that were not relevant for the review. For a number of
papers, we further looked into other sections. We explain the selection criteria below.

254 D. Weyns and T. Ahmad

3.4 Inclusion and Exclusion Criteria

We used the following inclusion criteria in our search:

• Studies which were published between January 2000 to December 2012. We used
2000 as starting date as self-adaptive systems have become subject of active re-
search around that time.

• Studies on self-adaptive systems that at least partially separate the managing system
(adaptation logic) from the managed system (domain logic).

• Studies that concern the engineering of self-adaptation, i.e. the realization of self-
adaptation or parts of self-adaption.

• Studies that provide a minimal level of assessment of the research, which may be
in the form of example application, simulation, rigorous analysis, empirical, or real
world example.

We used the following exclusion criteria:

• Surveys and roadmap papers, as we are only interested in studies that provide a
minimal level of assessment of research results.

• We also excluded tutorials, short papers, editorials etc. because these papers do not
provide reasonable data.

A paper was selected as a primary study if it met all inclusion criteria and eliminated if
it met any exclusion criterion.

3.5 Data Items

Table 2 shows the data items we extracted to answer the research questions. For each
research question, we identified 3 to 4 data items that aim to provide data to answer the
research question. Several of these data items are defined based on the insights derived
from the pilot study [9].

We briefly discuss the different data items. The concrete options for each data item
are further discussed in the next section. For a detailed description of the data items, we
the protocol that is available at the survey website.

F1-F5: The data items author(s), year, title, venue, citation count are used for documen-
tation.

F6: Quality score assesses the quality of study, which is important for data analysis and
interpretation of results. Based on [13] and the pilot study, we assessed the following
quality items: (1) problem definition of the study, (2) problem context, i.e., the way the
study is related to other work, (3) research design, i.e., the way the study was organized,
(4) contributions and study results, (5) insights derived from the study, (6) limitations of
the study. For each item, we have quality levels: explicit description (2 points), general
description (1 point), and no description (0 points). A quality assessment score (max
12) is calculated by summing up the scores for all the items for a study.

F7: Subject of the study refers to the software engineering field that is addressed in the
study. We used the SWEBOK sub-disciplines [14] to define the options, including soft-
ware requirements, software design, software construction, software testing, software
maintenance, among others.

Claims and Evidence for Architecture-Based Self-adaptation: A SLR 255

Table 2. Data Items

Item ID Field Use

F1 Author(s) Documentation

F2 Year Documentation

F3 Title Documentation

F4 Venue Documentation

F5 Citation count Documentation

F6 Quality score RQ1-3

F7 Subject of the study RQ1

F8 Feedback loop architecture RQ1

F9 Application domain (if applicable) RQ1

F10 Quality concerns RQ2

F11 Claimed benefits RQ2

F12 Tradeoffs RQ2

F13 Validation setting RQ3

F14 Assessment approach RQ3

F15 Evidence level RQ3

F16 Repeatability RQ3

F8: Feedback loop architecture refers to the structure of the feedback loop(s) (or parts
of it) that are the focus of the study. Options range from: focus on particular MAPE
functions, to single MAPE loop, and mutiple MAPE loops.

F9: Application domain refers to the kind of application for which self-adaptation is
used. We started from the an initial list of application domains taken from our pilot
study [9] and added additional domains when they appeared during the review.

F10: Quality concerns refer to the concerns related to self-adaptation. We defined the
following option based on IEEE 9126 and ISO/IEC 25012: reliability, availability, us-
ability, efficiency/performance, maintainability, portability, security, accuracy, flexibil-
ity, and other concern.

F11: Claimed benefits refer to the concerns of self-adaptation (identified in F10) with
positive impact. Options are: preserving quality of the software, improving quality of
the software, assuring quality of the software, and improving other concerns.

F12: Tradeoffs refer to the concerns of self-adaptation (identified in F10) with a neg-
ative impact. Option are: quality concerns that are negatively influenced due to self-
adaptation, and other concerns that are negatively influenced due to self-adaptation.

F13: Validation setting refers to the context in which validation is performed, with the
options: academic effort, academic/industry collaboration, and industrial effort.

F14: Assessment approach refers to the method used for evaluating the research results.
Options are: example application, simulation (use of a model of the real world), rigorous

256 D. Weyns and T. Ahmad

analysis (typically based on formal methods), empirical study (case study, controlled
experiment), and experience from real examples.

F15: Evidence level expresses the degree of evidence for the research results. Evidence
can be obtained from: demonstration or application to simple examples, expert opinions
or observations, empirical studies, and industrial evidence.

F16: Repeatability of the study is one of the following options: the study is not repeat-
able (no useful material is available to repeat the study), a partial description is available
to repeat the study, the material to repeat the study is partially available, all the material
is available to repeat the study.

3.6 Approach for Analysis

The data items of the primary studies was collated to answer the research questions.
Analysis included: (i) obtaining consensus among the reviewers in case of conflicts,
(ii) analyzing the data, for which we used descriptive analysis and multiple regression
to identify correlations, and (iii) answering research questions. Based on the analysis
results, we derived conclusions and recommendations for future research in the area of
architecture-based self-adaptation, and we reflected on threats to validity of the review.

4 Results Analysis

We start by giving an overview of the primary studies selected for the review. Then we
discuss the results for each research question.

4.1 Selected Primary Studies

From 7400 studies published at 20 conferences/journals we retrieved 1296 studies after
applying the search string. From these studies we selected 121 primary studies after
applying the inclusion/exclusion criteria. A list with the selected primary studies is
available at the survey website. Figure 2 shows the number of selected studies per venue.

We see that JSS is the most popular journal to publish papers on architecture-based
self adaptive systems with 21.5% of the studies, while SEAMS is the most prominent
conference with 19.9% of the studies. TSE and TAAS represent 14.9% of the studies
and the top software engineering conferences ICSE, FSE and ASE represent 9.9% of
the studies. The architecture focused venues, WICSA, ECSA, and ISARCS represent
6.7% of the studies. 10.7% of the studies were published between 2000 and 2005 and
89.3% between 2006 and 2012, which shows the growing research interest in this area.

Figure 3 summarizes the quality scores for the selected primary studies.
The results show that researchers provide descriptions of the problem they tackle

and how the problem relates to other efforts. Contributions and insights are also re-
ported, although not always explicitly. However, the majority of studies do not describe
research design, i.e. the way the research is organized, and most studies ignore report-
ing limitations of the results (although we notice that a growing number of researchers
have started reporting limitations after 2008). Providing an explicit description of re-
search design is common practice for empirical studies, but less common in software

Claims and Evidence for Architecture-Based Self-adaptation: A SLR 257

 �
!�

 �

!"�

 � "�
#�

 �

$�

%�

&�

#�

%�

"� "�

&� &�

!$�

'�

#�

%'�

%#�

!'�

!#�

 '�

����� ����� ����� ������ 	��
��� ���� ������� ���� ����� �	���� 	���� 	���� 	���� ����� ������� ����� ���� ����

���������� �,��������� ������������ ����� ������!��

�
��

��
���

���
��
��
��

�
����������	�������������
����
�������
��

Fig. 2. Primary studies per venue/journal

Table 3. Number of studies and quality score for different publication fora

Venues Regression Eq. R Mean S.D.

Journals y = -0,0672x + 2,3498 -0,11 6,11 1,7

Conferences y = -0,1502x + 2,4545 -0,27 5,39 1,68

Symposia y = -0,1067x + 1,998 -0,15 5,67 1,37

Book Chapters y = -0,0178x + 0,2895 -0,16 5,38 1,75

Workshops y = -0,0791x + 0,9051 -0,37 4,28 1,33

engineering in general. The results confirm this trend for the primary studies in this
review. However, the poor treatment of limitations deserves attention as this should be
a key part of any engineering study. Table 3 shows the regression analysis between the
number of studies and quality score for different publication fora.

The values confirm common sense that the primary studies with the best quality
scores are published in journals, while studies presented at workshops have lower qual-
ity scores. However, with a mean of the overall score of 5.6 (on a max of 12), the quality
of the selected primary studies can be considered as reasonably good.

4.2 RQ1: What Is the Focus of Research in Self-adaptation?

Research focus is derived from data items: subject of the studies (F7), feedback loop
architecture (F8), and application domain (F9).

258 D. Weyns and T. Ahmad

 � �

!"�

!� !�

#$�

!"� !"�

$#�

%)�

&)�

""�

$&� $&�

"�

"#�

"#�

#"�

 �

�

" �

) �

$ �

" �

% �

! �

�

& �

�

��������	�
����� ���������������� ���������	������ ������������ ��������� ����������

�
��

��
���

	�

��
�
�

�

������������
��
���	��������� �����������	�� 	��������	���������

Fig. 3. Quality scores for the primary studies

The most popular subject of the studies (F7) in terms of SWEBOK software engi-
neering fields is software design with 48% of the studies, followed by software quality
with 17%, software requirements with 8% and software testing with 8%. Design activ-
ities are an evident focus of architecture-based self-adaptation. Requirements for self-
adaptive systems have gained increasing attention during the last years (all studies on
requirements are from 2006 onward), confirming that handling dynamic changing user
needs is a topic of increasing importance in software engineering.

Figure 4 shows the frequency of feedback loop architecture (F8). The dominant focus
has been on single feedback loops, with 37% of the studies using distinct components
for each of the MAPE functions and 32% using components that mix (some of) the
MAPE functions. 20% of the studies (24 in total) focus on multiple feedback loops.
All studies directly or indirectly refer to the MAPE functions in their solutions, which
shows that MAPE serves a reference model (i.e., a division of functionality together
with flows between the pieces [15]). However, as a significant number of studies do
not map these functions one-to-one to components, MAPE is not generally considered
as a reference architecture (i.e., a reference model mapped to software elements). The
numbers show that researchers have payed less attention to engineering self-adaptive
systems with multiple control loops. However, we notice that 92% of these studies have
been published in the last four years, which underpins the growing interest in this area.

Figure 5 shows the frequency of application domains (F9).
Only 69% of the studies do consider an explicit application domain. The remaining

studies refer to abstract applications, such as resource management, service-based sys-
tem, networking, etc. The dominant application domains are embedded systems (46%)
and web applications (30%); the latter are e-commerce (such as travel planning, book
store, etc.) and information systems (such as news services, social media, etc.). Embed-
ded systems have always been an important domain in research on self-adaptation. In
the last years, dynamic service composition has gained increasing attention. We found
that 86% of the studies with multiple feedback loops are applied to the domains of

Claims and Evidence for Architecture-Based Self-adaptation: A SLR 259

Fig. 4. Feedback loop architectures

embedded systems, traffic, and robotics, which can be explained by the fact that these
domains are characterized by loosely coupled, physically distributed entities.

Summary for RQ1: The main focus of research in engineering architecture-based self-
adaptation has been on software design of a single feedback loop, applied to the do-
mains of embedded systems and web applications. Driven by the engineering challenges
of future software systems, there is a growing interest in requirements for self-adaptive
systems, dynamic service composition, and multiple feedback loops.

4.3 RQ2: What Are the Claims Made for Self-adaptation and What Are the
Tradeoffs Implied by Self-adaptation?

The answer to RQ2 is derived from quality concerns (F10), claimed benefits (F11), and
tradeoffs (F12).

The top three concerns related to self-adaption (F10) are efficiency/performance
(55% of the studies), reliability (41%), and flexibility (28%). Accuracy, security, usabil-
ity, maintainability, and availability account each for 6% or less of the studies. Other
reported concerns are engineering effort, complexity, stability, and cost. These concerns
are considered in only 6% of the studies (in total). This latter observation is remarkable
as seminal papers in the area of self-adaptation use these other concerns as the primary
arguments for the need of self-adaptation [1–3].

260 D. Weyns and T. Ahmad

�(�

�'�
���

(� (�

��
 �

(�

'�

�(�

�'�

 (�

 '�

�(�

�'�

�(�

��������� ���	���
��� ��	
���	��
��������

�	�	���� �
�����
�
����	
���	��

���������� ������

�
��

��

��

	��
�
�
��

�

���������	
��	���
�

Fig. 5. Studied application domains

We analyzed the correlation between the main quality concerns and the main appli-
cation domains. Table 4 shows the results of this regression analysis.

Table 4. Correlation between main quality concerns and application domains

Application Domains Efficiency/Performance Reliability Flexibility

Embedded 0,89 0,84 0,59
Information Systems 0,88 0,68 0,78
E-commerce 0,75 0,63 0,81

The results tell us that efficiency/performance is relevant to self-adaptation in all pri-
mary domains, while reliability is more relevant to embedded systems and flexibility to
web-based systems. Reliability is a classic quality concern in embedded systems. On the
other hand, in web-based systems, flexibility provides an alternative for reliability tai-
lored to open environments. For example, a common approach to deal with uncertainty
about the availability of services is to exploit self-adaptation to replace dynamically a
service that becomes unavailable.

We also looked at the number of concerns considered in individual studies and mea-
sured that 57% of the studies consider a single concern, 40% consider 2 concerns, the
remaining 3% consider more concerns. We can conclude that most researchers take a
narrow view on engineering self-adaptive systems, focusing on a particular concern,
without considering the interplay with other concerns.

Figure 6 summarizes the data for claimed benefits (F11) and tradeoffs (F12). This
important figure clearly shows that most studies focus on concerns with a positive ef-
fect, i.e., 91% of the concerns related to self-adaptation are claimed to be positively
influenced. Broken down, 81% of the studies state that a quality of the software is im-
proved by self-adaptation, 5% state that a quality is assured, and the remaining 5% state
that a quality is preserved.

Claims and Evidence for Architecture-Based Self-adaptation: A SLR 261

56�

5��

���

5�

7�

6�

 �

6�

��

 �

��

��

��

 ��

��

 �

��

��

��

��

��

��

 �

 �

 �

 �

���������	�
��
�����

������������

������������

����
����

����
����

����������

�������������

����������������

��������������

� �
��

!���������

�������"�#���

!����

$
��
���
��
�%

��
��
��

�
&
�'
�

��
��
��

�
��

�����
����
�
�	��
���
�
	���#��� (�)�#���

Fig. 6. Claims and tradeoffs of self-adaptation

On the other hand, little attention is given to concerns with a negative effect, i.e., the
tradeoffs implied by self-adaptation. 10.7% of the studies state that self-adaptation has
an efficiency/performance cost, a single study considers a negative effect on flexibility,
and 3.3% of the studies state a negative effect on other engineering aspects (effort, com-
plexity, stability and cost). Concretely, seven studies report an efficiency/performance
tradeoff against flexibility and six studies against reliability. Three the four studies re-
port negative effects to other concerns against performance, the other one against accu-
racy.

This analysis confirms that the majority of researchers focus on a single concern
only (see F10). Even if multiple concerns are considered, they mainly look at the posi-
tive effects of self-adaptation. To further understand these observations, we looked into
the studies and found that 80% of the studies that do not consider tradeoffs in their
evaluation, simply ignore implications of self-adaptation. 13% of the studies recognize
possible tradeoffs and acknowledge the limitations of their study in that respect, the
other 7% of the studies postpone the issues related to tradeoffs to future work.

Summary for RQ2: Most researchers on self-adaptive systems claim improvements of
software qualities, in particular for efficiency/performance, reliability, and flexibility.
Tradeoffs are hardly considered at all, neither with respect to other qualities nor the
effects on concerns such as effort and cost. A minority of researchers recognize the
limitations of their work with respect to tradeoffs or they postpone it to future work.

262 D. Weyns and T. Ahmad

4.4 RQ3: How Much Evidence Is Available for the Claims and What Are the
Types of Evidence?

To answer this question, we analyze the data extracted from validation setting (F13),
assessment approach (F14), evidence level (F15) and repeatability (F16).

For validation setting (F13), we found that out of 121 studies, only two studies were
performed in a joint effort between academic and industry. No industry-only studies
have been reported. These numbers give a strong indication that the research results of
architecture-based self-adaptation have not found their way to practice (at least, they
have not been reported in the main software engineering venues).

Figure 7 shows the assessment methods that have been used in the studies (F14).
Example application accounts for 67.8% of the studies, simulation for 19.8%, rigorous
analysis for 8.3%, empirical study for 2.5% and experience from real-world example
for 1.7%. Closer examination reveals that almost all studies use simple basic example
applications to assess the research findings. The reported empirical studies were in fact
quasi empirical studies. No controlled experiments have been reported in the area of en-
gineering architecture-based self-adaptation and experiences with real-world examples
is very limited. The lack of both empirical evidence and studies with industry partners
hampers industrial adoption of architecture-based self-adaptation in general.

Fig. 7. Assessment approaches

Table 5 shows that example applications are used in all application domains. Sim-
ulation is mainly used in web-based systems (e-commerce and information systems),
while rigorous analysis is mainly used for embedded systems and e-commerce.

Table 5. Correlation between assessment methods and application domains

Assessment Methods Embedded Robotics E-commerce Traffic and
transport.

Information
systems

Example Application 0,93 0,93 0,84 0,88 0,85

Simulation 0,78 0 0,84 0,14 0,82

Rigorous Analysis 0,73 0 0,86 0 0,20

Claims and Evidence for Architecture-Based Self-adaptation: A SLR 263

Given the used assessment methods, it is not surprising that most studies have a low
evidence level (F15). Concretely, 95.8% of the studies provide minimal evidence from
demonstrations or simple/toy examples, 1.7% provide evidence from expert opinions or
observation, and 2.5% provide (weak) empirical evidence.

Summary for RQ3: Most research on architecture-based self-adaptive systems is as-
sessed using simple example applications with a minimal level of evidence. Few em-
pirical studies exist and there is hardly any industrial application of architecture-based
self-adaptation reported. Weak evidence and poor connection with practice shows that
research in architecture-based self-adaptation is still more exploratory than exploitative.

5 Limitations of Study

Despite the sound methodology, this study has some limitations. First, our study is lim-
ited to 20 major venues in the field. While we believe that these are the most prominent
venues for research on architecture-based self-adaptive systems, we may have missed a
number of primary studies that have been published elsewhere. Second, we used com-
mon terms to formulate the search string. However, these terms may not fully cover all
studies on architecture-based self-adaptation, as there is no generally agreed consensus
on the key terms in the field. This limitation is inherent to a field where research is
still in an exploratory phase. To minimize this threat, we performed a number of pilot
searches to get optimal coverage of automatic search. Third, there is a potential bias of
the reviewers. We believe that the comprehensive selection and data extraction process
that involved two reviewers who cross-checked the search results, supported by a third
reviewer to obtain consensus in case of conflicts, should minimize this threat of bias.

6 Conclusion

Research on architecture-based self-adaptation is widely recognized as key for tack-
ling several of the hard challenges we currently face in software engineering. However,
reflecting on the results and analysis of our study, we conclude that there are opportu-
nities for improving coherence in research to move the field forward. We recommend
coherence improvements in three dimensions.

First, coherence among the researchers can be improved. We observe that different
groups follow specific lines of research that are only weakly connected. Researchers
apply their results to specific applications and mostly ignore limitations. Furthermore,
there is a lack of empirical studies. Clear and fair treatment of limitations and evidence
for findings provide a basis for both consolidation of results and starting points for
future research efforts in the field. However, there are some positive signs. First, we
notice that researchers have started reporting limitations of their work. Over 85% of the
studies that report limitations have been published since 2008. Furthermore, a recent
study [16] reports the results of a first controlled experiment on design improvements
of using external feedback loops to realize architecture-based self-adaptation.

Second, coherence of research that spans software engineering fields can be im-
proved. We observe a clear dominance of attention for the design of self-adaptive
systems. Clearly, there is a need to integrate design with other engineering activities
of self-adaptive systems, including requirements, testing and engineering processes.

264 D. Weyns and T. Ahmad

Here too, we observe some positive signs. During the last years, we notice a growing
interest in the study of requirements for self-adaptive systems, lead by different groups
in the world. We also notice a growing interest in other activities, e.g. the 10 studies
on testing were all published since 2008. Finally, a recent publication [17] shows an
interest of the community in engineering processes for self-adaptive systems.

Third, coherence of research with the surrounding world can be improved. Currently,
research is primarily evaluated using simple applications without making the material
available to others. Worse, collaborations with industry partners are very rare. Avail-
ability of experimental material and industrial involvement are essential to the field to
obtain maturity. But again, there is some hope. The community took the initiative to
establish exemplars that provide model problems for the community (http://seams.self-
adapt.org/wiki/Exemplars). We also refer to a recent study [18] that reports experiences
of an industrial application of architecture-based self-adaptation.

We performed a systematic literature review study that shed light on the claims that
are made for architecture-based self-adaptation and evidence that is provided for these
claims. We hope that this study can contribute to push this important field forward.

References

1. Oreizy, P., et al.: Architecture-based runtime software evolution. In: ICSE (1998)
2. Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1) (2003)
3. Garlan, D., et al.: Rainbow: Architecture-based self-adaptation with reusable infrastructure.

IEEE Computer 37, 46–54 (2004)
4. Hellerstein, J., et al.: Feedback Control of Computing Systems. Wiley (2004)
5. Filieri, A., et al.: Self-adaptive software meets control theory: A preliminary approach sup-

porting reliability requirements. In: ASE (2011)
6. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J.: Software engineering for

self-adaptive systems: A research roadmap. In: Cheng, B.H.C., de Lemos, R., Giese, H.,
Inverardi, P., Magee, J. (eds.) Self-Adaptive Systems. LNCS, vol. 5525, pp. 1–26. Springer,
Heidelberg (2009)

7. de Lemos, R., et al.: Software engineering for self-adaptive systems: A second research
roadmap. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Self-Adaptive Systems.
LNCS, vol. 7475, pp. 1–32. Springer, Heidelberg (2013)

8. Patikirikorala, T., et al.: Survey on the design of self-adaptive software systems using control
engineering approaches. SEAMS (2012)

9. Weyns, D., et al.: Claims and supporting evidence for self-adaptive systems: A literature
study. Software Engineering for Adaptive and Self-Managing Systems (2012)

10. Weyns, D., et al.: Forms: Unifying reference model for formal specification of distributed
self-adaptive systems. ACM TAAS (2012)

11. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in soft-
ware engineering. In: EBSE 2007-001, Keele and Durham University (2007)

12. Basili, V., et al.: Goal question metric approach. In: Encyclopedia of Soft. Eng. (1994)
13. Dybå, T., Dingsøyr, T.: Empirical studies of agile software development: A systematic re-

view. Inf. Software Technology 50, 833–859 (2008)
14. Abran, A., et al. (eds.): Guide to the Software Engineering Body of Knowledge - SWEBOK.

IEEE Press, Piscataway (2001)

Claims and Evidence for Architecture-Based Self-adaptation: A SLR 265

15. Bass, L., et al.: Software Architecture in Practice. Addison-Wesley (2003)
16. Weyns, D., et al.: Do external feedback loops improve the design of self-adaptive systems?

a controlled experiment. In: SEAMS (2013)
17. Andersson, J., Baresi, L., Bencomo, N., de Lemos, R., Gorla, A., Inverardi, P., Vogel, T.:

Software eng. processes for self-adaptive systems. In: de Lemos, R., Giese, H., Müller, H.A.,
Shaw, M. (eds.) Self-Adaptive Systems. LNCS, vol. 7475, pp. 51–75. Springer, Heidelberg
(2013)

18. Camara, J., et al.: Evolving an adaptive industrial software system to use architecture-based
self-adaptation. SEAMS (2013)

Towards an Optimized Software Architecture

for Component Adaptation at Middleware Level

Thomas Pramsohler1, Simon Schenk2, and Uwe Baumgarten2

1 BMW Forschung und Technik GmbH, München, Germany
thomas.pramsohler@bmw.de

2 Technische Universität München, Lehrstuhl für Betriebssysteme,
Garching bei München, Germany
{schenksi,baumgaru}@in.tum.de

Abstract. The amount of software in the automotive domain is steadily
increasing. Existing functions are adapted or enhanced on a regular
basis. Often, such adaptations do not allow to keep the interfaces of
the concerned components stable, leading to incompatibilities with for-
mer systems. In this contribution, we propose an optimized adaptation
software architecture to deal with mismatching interfaces. We extend
existing middleware solutions with transparent adapter loading capabili-
ties. This enables for seamless adapter integration on those systems. As
adapter model we use a finite-state machine aside with a domain spe-
cific language. By extracting static adaptations from the state machine
we achieve state reduction and performance gain. The approach is eval-
uated using an automotive case-study.

Keywords: behavioral adaptation, adaptation architecture, software
components, middleware adapter, software composition.

1 Introduction

A modern vehicle features a complex IT infrastructure: up to seventy electronic
control units (ECUs) are forming the computational backbone of a car. They
are interlinked with up to six different networking technologies. These ECUs
host differently complex software components, ranging from chassis and engine
control to computationally intensive tasks like visual traffic sign recognition.

Not only the in-car network is heterogeneous and distributed, but also single
ECUs (for instance the headunit) are composed of different software compo-
nents, which are connected via different inter-process comunication mechanisms.
Sometimes software components are re-used from other product lines without
modification to simplify the validation process and reduce costs. Furthermore,
cars already in production are upgraded with components from newer products,
meaning that a component must be able to correctly operate in different envi-
ronments.

On the one hand, such component interfaces have to be stable in order to
support development using common building blocks. On the other hand, the

K. Drira (Ed.): ECSA 2013, LNCS 7957, pp. 266–281, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Model-Based Adaptation 267

software interface has to be flexible in order to operate in different environments.
For this reason current automotive software components support several inter-
faces at the same time. Adding the requirement of backward compatibility, this
results in ever-increasing interface size and complexity.

A promising solution to keep the component interface small, flexible, and back-
ward compatible would be software adaptation. Thereby adaptation allows for
the composition of components with mismatching interfaces [13] and the adapter
acts as mediator [15] between these components. Adaptation is not completely
new in the field of automotive software engineering. Current gateway ECUs for
instance can be configured for signal adaptation and the AUTOSAR1 runtime
environment supports basic adaptation at design time.

The selection of a suitable adaptation technique depends on the target domain.
Currently, in the infotainment domain, there is no sufficient solution to adapt
software components. An adapter for infotainment components has to fulfill sev-
eral requirements which arise from the domain specific properties. First, the
hardware does not offer much headroom, because automotive hardware matches
the software requirements very well. Second, most of the control flow is imple-
mented using client-server communication. In contrast to the electrical system
which uses cyclic broadcast signals, the client-server communication uses com-
plex protocols and data. Finally, software components are developed by suppliers
and thus are treated as black-boxes with a rigid interface. These properties lead
to the following requirements:

– Hardware limitations: The execution of the adapter must not be compu-
tational intensive. Small interface changes should be adapted in a simple and
efficient way.

– Client-server Communication: The adaptation approach has to be ap-
plied on client-server communication. This includes the adaptation of method
calls, their responses, and broadcasts by the server. The adaptation approach
should support rich behavioral models.

– Black-box components: The adapter has to be injected between the client
and server without changing the respective black-boxes.

In this contribution we present an architecture for interface adaptation which
suits these requirements. The presented approach puts current adaptation tech-
nologies into practice and adds the concepts needed for a efficient adaptation and
seamless integration in the communication layer. We consider complex adapta-
tion scenarios and support the adaptation of syntactical (signature) and be-
havioral (protocol) mismatches. We use a model-based interface and adapter
definition which can be used for automatic adapter-code generation. The adapter
is integrated in the middleware by delegation and can be loaded transparently.
We describe the approach on an abstract level, hence it could be applied to other
domains like web services.

The remainder of this paper is structured as follows. Section 2 presents our
running example which will be used throughout the paper. Section 3 introduces

1 http://www.autosar.org

http://www.autosar.org

268 T. Pramsohler, S. Schenk, and U. Baumgarten

an interface- and adapter-notation. Section 4 presents our software architecture
and seamless adapter integration. In section 5 we show an example adaptation
using our case study. Section 6 compares our approach to related work and
section 7 will conclude the paper.

2 Case Study

In this section, we present our example of mismatching components. The target
domain is the inter-process communication in an automotive infotainment sys-
tem. We will use this example throughout the paper to explain the modeling
approach and the software architecture. This is a fictitious example and real
interfaces usually have more parameters and additional timing constraints. But
even this small example shows the different adaptation cases that occur when
adapting software interfaces.

At this point the basic functionality of both components is explained. The
specification of the use case will be refined in the next chapters using our mod-
eling approach.

ParkA1 defines a simple protocol, whereas ParkA2 is more sophisticated (see
Table 1). To be able to receive any sensor values, the client has to start the
ParkA1 first with an asynchronous boot procedure calling a startup method
and waiting for a started broadcast. Once the ParkA1 is started the client can
request sensor values, or shut down the ParkA1.

Table 1. Method overview of the ParkA interfaces in version 1 and 2

ParkA1 ParkA2

startup() connect(retry, lastErr, errCode)

shutdown() disconnect()

getSensors(f_l,f_m,f_r) getSensorAndStatus(fl,fml,fmr,fr,status)

started

The second version of the component, ParkA2, is capable of providing sensor
values, even when it is in idle mode. Thereby the last measured sensor values
are returned instead of starting the real-time measuring. To get real-time sen-
sor values, the client has to connect to the ParkA2 with a synchronous connect
procedure. Similar to ParkA1 the client can request new sensor values and termi-
nate the connection. Additionally, the ParkA2 component will handle connected
components with higher priority and adds a status parameter to the results
indicating the quality of the current values. Table 2 gives an overview of the
differences between ParkA1 and ParkA2:

Model-Based Adaptation 269

Table 2. Feature comparison between ParkA1 and ParkA2

ParkA1 ParkA2

sensor values when shut down no yes
sensor status no yes
startup procedure asynchronous synchronous
startup retry no yes
sensor count 3 4

3 Interface and Adapter Model

We distinguish between an Interface Model and an Adapter Model. Interface
Models are related to a specific version of an interface and needed as input for
the adapter construction. Each Interface Model has to provide three sub-models:
A Syntax Model, an Event Model, and a Behavior Model. Figure 1 shows the
different models and their relationships. We are constructing the adapter from
the client point of view. That is, a client interface will be adapted to communicate
with a different server interface. Each Adapter Model consists either of a Static
Adapter Model, or a Dynamic Adapter Model, or both.

Syntax

Events

Behavior

Interface 1.0

Adapter 1.0 to 1.3
Static

Dynamic

Static

Dynamic

Adapter 1.0 to 2.0

Middleware

Server 2.0
Client 1.0

Adapter Pool

Syntax

Events

Behavior

Interface 1.3
Syntax

Events

Behavior

Interface 2.0

In
te

rfa
ce

 M
od

el
s

A
da

pt
er

 M
od

el
s

R
un

tim
e

Fig. 1. Interface and Adapter models

3.1 Interface Model

The Interface Model consists of three parts. The Syntax Model, the Behavior
Model, and the Event Model.

270 T. Pramsohler, S. Schenk, and U. Baumgarten

– Syntax Model: The Syntax Model includes information about the interface
name, interface version and the methods, broadcasts, and type definitions.
This model is usually provided in a middleware-specific Interface Definition
Language (IDL) and can be used to generate server and client stubs.

– Event Model: The Event Model extends the Syntax Model with the defini-
tion of events. An event specifies an occurrence of a method execution or a
broadcast execution. In case of a method the occurrence can be the method
call or the method response. Therefore we distinguish between InputEvent
(CallEvent) and OutputEvent (ResponseEvent and BroadcastEvent). Each
event can specify a constraint with a logical expression using the parameters
of the referenced method or broadcast. The InputEvent is constrained using
the input parameters of the method and the OutputEvent using the output
parameters of the method or broadcast.

In order to generate an event, each argument has to be set in such way that
the constraint evaluates to true. For this purpose we provide an Emulation
field to the modeler. An Emulation for a CallEvent, for instance, defines a
default value or a calculation rule for every input parameter of the referenced
method. Using this definition the adapter can produce the event by executing
the Emulation.

– Behavior Model: The Behavior Model specifies the valid sequences of
events between a client and a server [2]. We use a finite-state machine for
behavioral description. In this contribution we use the UML [14] nomencla-
ture when referring to finite-state machines. The Behavior Model consists
of states, transitions, and initial states. We use instances of the events de-
fined in the Event Model as transition triggers. Hence, a transition of the
current state triggers, if the corresponding method was called and the event
constraint holds true. Event constraints can be compared to UML guard
conditions.

The direction of an event can be derived from the event itself. InputEvents
are signals from client to server and OutputEvents are signals from server
to client. In case a method or broadcast is executed, we need a deterministic
behavior of the state machine. Therefore an implementation of this model has
to ensure that outgoing transitions of the same state do not have overlapping
event constraints. Overlapping means, that one parameter configuration will
cause multiple constraints to hold true.

Figure 2 shows the relationships between the three models using ParkA2 of
our example. The connect method is used to establish a connection to the
server. The disconnect method releases the connection. If connecting fails, the
client has to retry the connection process until the connection is successfully
established. This has to be done calling the connect method with the retry

parameter set to true. In order to retrieve the sensor values and the status the
client has to call getSensorsAndStatus. This can be done with or without an
established connection.

Model-Based Adaptation 271

connect (

 in: retry, lastErr

 out: errCode)

getSensorsAndStatus (

 out: fl,fml,fmr,fr,status)

disconnect ()

conn?(retry == false)

reconn?(retry == true)

connOK!(errCode != ret.ERR)

connErr!(errCode == ret.ERR)

getSAS?()

getSAS!()

disconn?()

disconn!()

Syntax Model ParkA2 Event Model ParkA2 Behavior Model ParkA2

getSAS?

getSAS!

conn?

connErr!

reconn?

connOK!

getSAS?

getSAS!

disconn?

disconn!

a

b

c

d

e

f

g

Fig. 2. Interface Models describing the ParkA2 service. InputEvents of the service are
denoted using ? and OutputEvents using !

3.2 Adapter Model

For the model point of view it is not relevant whether the client or the server is
adapted. Without loss of generality, we will always refer to client-adapters in this
contribution. Hence, every client Interface Model can store adapters for several
server Interface Models with different version. Each Adapter Model may have
two submodels, a Static Adapter Model which describes adaptations that oc-
cur anytime and/or a Dynamic Adapter Model which specifies context-sensitive
behavior depending on the current state of the communication between the com-
ponents (communication state).

In this contribution we do not focus on automated adapter construction but
there exist approaches for semi-automated adapter construction. The reader may
refer to [4,16,6,11].

Static Adapter Model. The static adaptation is the most common case of
adaptation. The Static Adapter Model describes all the adaptations which are
not dependent on the current communication state. Hence, static adaptations
for a concrete interface artifact will be executed each time the interface artifact
is involved in the communication. The Static Adapter Model consists of three
independently defined mappings: a Method Mapping, a Parameter Mapping and
a Type Mapping.

– Method Mapping: Methods of the client interface are mapped to a se-
quence of methods in the server interface. Each time the client calls a method,
its mapped server methods will be called by the adapter. If no Method Map-
ping exists, the adapter will handle the method call and return the value
defined in the Parameter Mapping.

– Parameter Mapping: A parameter mapping can be defined for each out-
put parameter of the adapter. This includes input parameters of the server-
side interface and output parameters of the client-side interface. The pa-
rameter mapping is defined using a default value and an optional algebraic

272 T. Pramsohler, S. Schenk, and U. Baumgarten

expression containing other parameters, random numbers etc. The param-
eter mapping is not restricted to parameters of the same method, but can
refer to any method parameter. The modeler has also the possibility to re-
fer to parameters of past method invocations, for instance the last but two
(param[1]). Such definition will cause the argument to be stored at runtime.

– Type Mapping: This mapping defines the transformation of parameter
types such as structs and enumerations. In this contribution we will not put
special emphasis on this kind of mapping.

Figure 3 shows an example mapping using the ParkA interfaces. This static
mapping causes the adapter to redirect a start call to the renamed method
connect. Also getSensors and shutdown are mapped to their counterparts.

In this example all the output parameters of the getSensorsmethod (f l, f m,
and f r) are mapped to the parameters of the getSensorsAndStatus method
(fl, fml, fmr and fr). The parameters for the front left (fl) and the front right
(fr) sensor values are matched directly to the corresponding server parameters
(f l and f r). The parameters for the middle sensors, fml and fmr, do not
exist in the server interface and are calculated as mean value of other server
parameters. If a parameter is not mapped statically it has to be set by the
dynamic adapter. For simple one-to-one mappings with the same parameter
types the Static Adapter Model can be generated and tested using the original
unit test cases of the interfaces [10].

client interface server interface

start
getSensors
shutdown
f_l
f_m
f_r

connect
getSensorsAndStatus
disconnect
-1 | fl[0]
-1 | (fml[0] + fmr[0]) /2
-1 | fr[0]

Method mapping:
Method mapping:
Method mapping:
Parameter mappping:
Parameter mappping:
Parameter mappping:

Fig. 3. Static Adapter Model describing independent Method- and Parameter-
Mappings

Dynamic Adapter Model. The Dynamic Adapter Model describes all the
adaptations which are dependent on the current communication state. This
model does not have to represent the whole behavior of the adapter compo-
nent but only the behavioral differences between client and server which are not
part of the Static Adapter Model. We use a finite-state machine for the nota-
tion and include additional actions which are executed by the adapter once the
transition is triggered.

A trigger can be any event specified in the client or server Interface. This en-
ables the Dynamic Adapter to perform additional actions in any communication
state. The actions are events defined in the Event Model. In order to execute an
action, the output arguments of the referenced method are assigned as defined

Model-Based Adaptation 273

in the corresponding Emulation definition of the event. Additionally each state
specifies a return flag which is needed to define a rigorous execution semantics.
The default value of the return flag is true and we use the *-Symbol to mark
such a state in our models (see figure 4 and figure 8).

Figure 4 shows the Behavior Models for the ParkA use case. The client uses
version one of the interface and the server implements version two with the
corresponding behavior. The first task designing a Dynamic Adapter Model is
to apply the mappings defined in the Static Adapter Model and the second is to
identify the remaining mismatches.

In this example we use the Static Adapter Model presented in figure 3. The
dashed arrows in figure 4 mark the transitions handled by the Static Adapter and
the black colored states mark the deadlock situations which arise. A deadlock
occurs, if the client and server are in a circular wait condition where the client
expects an action from the server but the server expects a client action. The
first deadlock situation occurs in state c of the server. In case the connect

ResponseEvent of the server equals connErr, the server expects the client to
invoke the connect method again and waits for the reconn event. In this case
the Dynamic Adapter is used to resolve the mismatch. We use the incoming
triggers of the deadlock state c (connErr) as trigger for the Dynamic Adapter
to emulate the reconn event with an action.

The second deadlock situation occurs in state 3 of the client where the client
awaits a started broadcast. Since the server does not provide the broadcast,
we will resolve this mismatch with another transition in the Dynamic Adapter
Model. In order to guarantee the server to be started, we use the server connOK
event as trigger to execute the started Emulation on the client side. This leads
to a Dynamic Adapter with only two transitions.

3.3 Execution Semantics

In order to understand the expressive power of the models we define the execution
semantics of Static and Dynamic Adapter Models. The execution semantics is
important if both, static and dynamic adaptations are performed for a method
call or broadcast. The Static Adapter executes the Static Adapter Model and the
Dynamic Adapter executes the state machine defined in the Dynamic Adapter
Model.

The Static Adapter is the entry point for method calls from the client and
broadcasts from the server. It forwards each incoming or outgoing event to the
Dynamic Adapter. The event can easily be generated by evaluating the con-
straints defined in the Event Mapping. While the Dynamic Adapter processes
the events, the Static Adapter has to pause. This processing may last for more
then one transition. Thus the modeler has to define which states belong to one
processing step which can be done using the return flag. If this flag is set, the
state is a return state. Once the Dynamic Adapter has reached such a return
state, it pauses and the Static Adapter resumes.

274 T. Pramsohler, S. Schenk, and U. Baumgarten

Behavior Model ParkA2

getSAS?

getSAS!

conn?

connErr!

reconn?

connOK!

getSAS?

getSAS!

disconn?

disconn!

Behavior Model ParkA1

start?

started!

getS?

getS!

shutdown?

shutdown!

start!

s:connErr! / s:reconn?

s:connOK! / c:started!

Dyn. Adapter ParkA1 client

apply static mapping and identify behavioral mismatches

1
6

2

3

4

5

a

b

c

d

e

f

g

Behavior Model ParkA1

start?

started!

getS?

getS!

shutdown?

shutdown!

start!

1
6

2

3

4

5

Behavior Model ParkA2

getSAS?

getSAS!

conn?

connOK!

getSAS?

getSAS!

disconn?

disconn!

a

b d

e

f

g

*
connErr!

reconn?c

Fig. 4. Dynamic Adapter Model describing an additional broadcast and method call
sent by the adapter. Return states are denoted using *

4 Runtime Architecture

In order to integrate the adapter in a transparent manner we suggest to extend
the middleware with adapter loading capabilities. An adapter loading mechanism
will be integrated into the software stack generated by the IDL code generator.
The client invokes a function call to a proxy. The proxy itself should be mid-
dleware independent and uses a middleware specific serializer interface to access
the messagebus. At startup the platform dependent serializer is loaded to split
the method calls into messages. Figure 5 shows the overall architecture.

In the adaptation case we hook into the process with a different serializer. Each
serializer implements the method getServerVersion. First, the default serializer
is loaded, the getServerVersion-Method is called and the proxy checks whether
the interface version of the server matches with the client (1), or not. In the
latter case, a SerializerAdapter is loaded from a default directory (2). For
the adaptation we use the design pattern adaptation by delegation [7]: Thus,
the adapter implements the serializer interface of the client-side version and
delegates the calls to a serializer instance of the server-side version (3). This
serializer is then used to communicate with the server (4).

Model-Based Adaptation 275

Middleware

R
un

tim
e

A
rc

hi
te

ct
ur

e Client

Server

Proxy

Serializer2Impl
2.0

delegation

Serializer1Impl

SerializerAdapter

Client
Server

Data Storage

static
adapter

dynamic
adapter

re
ad

/w
rit

e

re
ad

/w
rit

e

trigger

block

call

return

bcast

bcast

call

return

call

return

bcast

A
da

pt
er

 A
rc

hi
te

ct
ur

e

<<interface>>
Serializer2

2.0

1.0

1.0

1.0

1.0

2.0

<<interface>>
Serializer1

1.0

getServerVersion()

getServerVersion()SerializerAdapter
1.0

SerializerAdapter
1.0

Serializer1Impl
1.0

SerializerAdapterSerializerAdapter

load

1

2

4

3

Fig. 5. Runtime architecture and integration of the adapter into a messagebus system

The architecture of the adapter itself is closely related to the adapter model.
Thus the adapter is divided into two parts: the Static Adapter and the Dy-
namic Adapter (see figure 5). The Static Adapter provides the serializer inter-
face and thus is responsible for communicating with the proxy. The Dynamic
Adapter is implemented as finite-state machine that can be triggered using the
process event command. Since the Dynamic Adapter cannot be triggered by
the proxy, the Static Adapter has to identify the current event by evaluating the
event constraints (see section 3.1) and forward it to the Dynamic Adapter.

A data storage is used to store parameters. Storing is necessary in order to
implement the parameter mapping defined in section 3.2. Both parts of the
adapter interact directly with the serializer and the data storage.

4.1 Static Adapter

As shown, the Static Adapter is the module which is triggered by the client.
Whenever a method is called by the client, two major actions have to be per-
formed:

– any statically mapped server methods are called

– every Input- or OutputEvent is forwarded to the Dynamic Adapter

276 T. Pramsohler, S. Schenk, and U. Baumgarten

call
MappedMethod1

clientCall

storage dynamic adapter

clientResponse

static adapter

store InArgs «write» client: CallEvent

server: CallEventMM1

store OutArgs1 «write»
server: ResponseEventMM1

assign InArgs2 «read»

server: CallEventMM2

...

store OutArgsn «write»
server: ResponseEventMMn

response
MappedMethod1

call
MappedMethod2

response
MappedMethodn

client: ResponseEvent

s:connErr! / s:reconn?

s:connOK! / c:started!

assign OutArgs «read»

*

Fig. 6. An overview of what is happening inside the Static Adapter during a client call

Figure 6 gives an overview of the interaction between Static Adapter, Dynamic
Adapter and data storage.

The first thing to do after a method is called is storing the input parameters.
Then, the Dynamic Adapter is triggered by forwarding the CallEvent correspond-
ing to the called method. Then the Static Adapter computes and assigns the
input parameters for the mapped server methods using the parameter mappings
defined in the adapter model. Once all arguments are assigned the server method
is called and the Dynamic Adapter is informed about this call by triggering the
corresponding CallEvent.

The actions of the Static Adapter after the server method has returned are
similar to those after the client method has been called. First, the output ar-
guments of the server method are stored, then a ResponseEvent is sent to the
Dynamic Adapter. Before returning, the output arguments of the called client
method have to be computed and assigned and the ResponseEvent of the client
method has to be triggered inside the Dynamic Adapter.

4.2 Dynamic Adapter

As seen in section 3, each transition of the Dynamic Adapter Model has a trigger
event and optional action events.

Triggering an event may cause the Dynamic Adapter to perform a transition.
Thereby all action events corresponding to this transition have to be executed.
In general there are three different types of actions caused by different action
events:

Model-Based Adaptation 277

– CallEvent to the server: The action computes the input parameters and
calls the server method referenced by the event. Furthermore, it triggers the
CallEvent of this method (an event can be both an action and a trigger).
After the server method has returned, the output arguments are stored and
the RespnseEvent is triggered.

– ResponseEvent to the client: The action evaluates the emulation field of
the ResponseEvent and assigns the values to the output parameters of the
referenced method. The method return itself will be handled by the static
adapter.

– BroadcastEvent to the client: The action method computes the output
arguments of the broadcast and executes the broadcast using the serializer.

As mentioned in section 3 the dynamic adapter remains active until he reaches
a return state. At all other states, the adapter does not return and the static
adapter has to be blocked, even though the processing of the triggered event
finished. To block and unblock the static adapter, one of two additional actions
– blockSA and unblockSA – is added to the transitions. blockSA puts the thread,
the Static Adapter is running on to sleep, and thus blocks its execution until
the unblockSA action wakes it up again. The outcome of this is the following
execution trace:

action1 | ... | actionN | blockSA* | unblockSA*,

where the * means that executing this action is optional and not done by all
transitions. A transition going into a return state has to unblock the static
adapter. All other transitions have to block it.

5 Practical Realization

We implemented the Interface Model and the Adapter Model with a Domain
Specific Language using the Eclipse Modeling Framework (EMF2). We used a
textual notation for the Static Adapter Model and a graphical notation for the
Dynamic Adapter Model.

Additionally we implemented a code generator to directly extract the adapter
implementation from the model. The code generator is divided in an adapter
specific and a middleware specific part. We implemented the middleware specific
layer for the D-Bus middleware3.

In order to get a more complex example, the interface versions of client and
server are switched compared to the example used in section 3. As a result, the
client uses the ParkA interface in version 2 whereas the server provides the same
interface in version 1. The resulting adapters are shown in figure 7 and figure 8.

When the client calls the connect method, the call is received by the Static
Adapter. Since there is no static mapping for the connect method, the Static
Adapter has only to delegate the connect CallEvent to the Dynamic Adapter.

2 http://www.eclipse.org/modeling/emf/
3 http://dbus.freedesktop.org/

http://www.eclipse.org/modeling/emf/
http://dbus.freedesktop.org/

278 T. Pramsohler, S. Schenk, and U. Baumgarten

client interface server interface

disconnect
fl
fml
fmr
fr

shutdown
-1 | f_l[0]
-1 | (f_l[0] + f_m[0]) /2
-1 | (f_r[0] + f_m[0]) /2
-1 | f_r[0]

Method mapping:
Parameter mappping:
Parameter mappping:
Parameter mappping:
Parameter mappping:

Fig. 7. The Static Adapter of the evaluation example. The client using ParkA interface
version 2 and the server using interface version 1.

Behavior Model ParkA2

getSAS?

getSAS!

conn?

connOK!

getSAS?

getSAS!

disconn?

disconn!

Behavior Model ParkA1

start?

started!

getS?

getS!

shutdown?

shutdown!

start!

c:conn? / s:start?

s:started! / c:connOK!

Dyn. Adapter ParkA2 client

c:getSAS? / s:getS? , c:getSAS!

c:disconn! 1 6

2

3

4

5

*

*

connErr!

reconn?c

d

e

f

g

Fig. 8. The Dynamic Adapter of the evaluation example. The client uses the ParkA
interface version 2 and the server interface version 1.

The Dynamic Adapter gets triggered by the CallEvent and calls the server’s
starup method. In this case the Dynamic Adapter has to remain active (return
flag = false) until he receives the broadcast from the server. Once the started

event is received, the server assigns OK to the result parameter of the connect

method and unblocks the Static Adapter which returns the method call to the
client.

When the getSensorAndStatus method is called and client and server are
connected, the adaptation is performed by the Dynamic Adapter. In this case the
getSensorValues-method gets called, the response parameters (sensor values)
are stored in the data storage and the data is returned to the client.

When the client and the server are not connected, no transition is triggered
inside the Dynamic Adapter. In this case only the Parameter Mapping is per-
formed by getting the last sensor values from the storage and returning them to
the client.

Since the disconnect method is statically mapped the Static Adapter, once
the disconnectmethod is called, calls the shutdownmethod on the server. After
the shutdown method returns, it returns the disconnect method and triggers
the Dynamic Adapter causing it to go into disconnected state.

Model-Based Adaptation 279

6 Related Work

The main goal of component based software engineering (CBSE) is the planned
reuse of software artefacts. Component adaptation and adapter generation is a
promising approach to extend the reuse of components even if their interfaces
do not match. In this section we will refer to a variety of adapter modeling
techniques and adaptation formalisms. We focus on horizontal adapters which
adapt the communication between components.

Most of works addressing component adaptation deal with adapter generation
approaches from formal service-descriptions [1,3,9,8,5,12]. Our Static Adapter
Model can be compared to the approaches presented in [1,9,8]. Gierds et. al. spec-
ify elementary activities which include message creation, multiplication, deletion,
transformation, message splitting, merging and recombination. The approach
composes the adapter using this elementary activities and results in one adapter
Petri-net. Dynamic adaptation can be achieved non-deterministic using alterna-
tive elementary activities.

Bracciali et. al. use dedicated non-deterministic actions [1] but no insight is
given of how the adapter chooses which rule to take in a certain state.

Martin and Pimentel [12] present an approach for automatic adapter genera-
tion using a guided search with a heuristic. Their modeling formalism describes
services in the mean of methods and parameters but does not facilitate the
possibility to refine constraints for a transition. This means that a state with
more than one leaving transition labeled with the same method will lead to non-
deterministic behavior. The generation approach relies on the presumption that
method parameters are already matched between the services.

Canal et. al. [5] also present an approach for adapter generation. They use
finite-state machines with labeled transitions to describe the behavior of com-
ponents. The formalism focuses on the behavioral aspects and is limited to the
usage of events which are represented as strings.

Since the mentioned activities focus on the formal derivation of adaptation
contracts they do not give special emphasis on the adaptation architecture. Our
approach differs in various ways from the presented work on component adapta-
tion.

All of the mentioned approaches use a monolithic behavioral model for the
adaptation which usually results in a poor performance for large components.
To improve the performance of the adapter, the classical partitioning of syn-
tactical and behavioral mismatches could be converted to Static and Dynamic
Adapter Model and implemented using our proposed architecture. A simple way
to achieve this would be to identify elementary static mappings in the monolithic
behavioral adapter model and to split it in a static and dynamic part.

The high-level protocol notation with string-based messages is not applica-
ble to real infotainment interfaces and should be mapped to concrete methods,
parameters and types. We define such an extension using the Event Model.

Additionally to the modeling part we describe an approach for dynamic
adapter loading as part of the client-stub. This has two mayor benefits. The
adapter is transparent for the communicating components and the adapter can

280 T. Pramsohler, S. Schenk, and U. Baumgarten

be added or changed without changing the binary code of the communicating
components. The direct loading of the adapter in the client has performance
advantages compared to a dedicated mediator component on the messagebus.
Only the adapter uses a serializer and the interface to the client can be realized
using internal method-calls.

7 Conclusion and Future Work

In this paper we illustrated an adaptation technique for the composition of clients
and services with mismatching interfaces. We focused on both, the syntactical
interface and the protocol. In contrast to previous approaches we divide the
adaptation contract into static and dynamic adaptations. Static adaptations are
the most usual case when an interface evolves and can be implemented straight
forward without triggering a state machine. Dynamic adaptations are needed if
the adapter behavior for a certain event depends on the communication state
between client and server. Partitioning the adapter into a static and a dynamic
part enables us to reduce the complex adaptations which need a state machine
execution.

We use an event definition model in order to link the adapter models to a
concrete interface with methods, parameters, types and broadcasts. This model
was precise enough to directly generate code for the DBUS middleware. We
implemented a prototype for modeling and code generation and demonstrated
the approach with an automotive example.

A first perspective of our work is the semi-automated adapter model genera-
tion and completely automated adapter model verification. A second perspective
is to enhance the modeling approach with timing constraints and parallel regions.
Parallel regions are needed, for instance, to model an adapter which mediates
between a client which expects the server sending cyclic values and a server
which provides a method for value retrieval. In this case one parallel region has
to handle the cyclic broadcasts to the client and the other parallel region the
sensor retrieval from the server.

References

1. Bracciali, A., Brogi, A., Canal, C.: A formal approach to component adaptation.
Journal of Systems and Software 74(1), 45–54 (2005)

2. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

3. Brogi, A., Popescu, R.: Automated generation of BPEL adapters. In: Dan, A.,
Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 27–39. Springer, Heidel-
berg (2006)

4. Camara, J., Salaun, G., Canal, C., Ouederni, M.: Interactive specification and
verification of behavioural adaptation contracts. In: 9th International Conference
on Quality Software, QSIC 2009, pp. 65–75 (2009)

5. Canal, C., Poizat, P., Salaun, G.: Model-based adaptation of behavioral mismatch-
ing components. IEEE Transactions on Software Engineering 34(4), 546–563 (2008)

Model-Based Adaptation 281

6. Canal, C., Poizat, P., Salaün, G.: Synchronizing behavioural mismatch in soft-
ware composition. In: Gorrieri, R., Wehrheim, H. (eds.) FMOODS 2006. LNCS,
vol. 4037, pp. 63–77. Springer, Heidelberg (2006)

7. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc.,
Boston (1995)

8. Gierds, C., Mooij, A.J., Wolf, K.: Reducing adapter synthesis to controller synthesis.
IEEE Transactions on Services Computing 5(1), 72–85 (2012)

9. Gierds, C., Mooij, A.J., Wolf, K.: Specifying and generating behavioral service
adapters based on transformation rules. Univ., Inst. fur Informatik (2008)

10. Hummel, O., Atkinson, C.: Automated creation and assessment of component
adapters with test cases. In: Grunske, L., Reussner, R., Plasil, F. (eds.) CBSE 2010.
LNCS, vol. 6092, pp. 166–181. Springer, Heidelberg (2010)

11. Inverardi, P., Tivoli, M.: Deadlock-free software architectures for COM/DCOM
applications. Journal of Systems and Software 65(3), 173–183 (2003)

12. Mart́ın, J.A., Pimentel, E.: Automatic generation of adaptation contracts. Elec-
tronic Notes in Theoretical Computer Science 229(2), 115–131 (2009)

13. Mateescu, R., Poizat, P., Salaün, G.: Adaptation of service protocols using pro-
cess algebra and on-the-fly reduction techniques. IEEE Transactions on Software
Engineering 38(4), 755–777 (2012)

14. OMG. UML version 2.2 superstructure. Technical report, OMG (2009)
15. Wiederhold, G.: Mediators in the architecture of future information systems. Com-

puter 25(3), 38–49 (1992)
16. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM

Trans. Program. Lang. Syst. 19(2), 292–333 (1997)

Run-Time Support to Manage Architectural

Variability Specified with CVL�

Gustavo G. Pascual, Mónica Pinto, and Lidia Fuentes

Departamento de Lenguajes y Ciencias de la Computación
University of Málaga, Málaga, Spain

CAOSD group
http:/caosd.lcc.uma.es

{gustavo,pinto,lff}@lcc.uma.es

Abstract. The execution context in which pervasive systems or mobile
computing run changes continuously. Hence, applications for these sys-
tems should be adapted at run-time according to the current context.
In order to implement a context-aware dynamic reconfiguration service,
most approaches usually require to model at design-time both the list of
all possible configurations and the plans to switch among them. In this
paper we present an alternative approach for the automatic run-time gen-
eration of application configurations and the reconfiguration plans. The
generated configurations are optimal regarding different criteria, such as
functionality or resource consumption (e.g. battery or memory). This is
achieved by: (1) modelling architectural variability at design-time using
Common Variability Language (CVL), and (2) using a genetic algorithm
that finds at run-time nearly-optimal configurations using the informa-
tion provided by the variability model. We also specify a case study
and we use it to evaluate our approach, showing that it is efficient and
suitable for devices with scarce resources.

Keywords: Architectural Variability, CVL, Dynamic Reconfiguration,
Genetic Algorithm, Context, Pervasive Systems.

1 Introduction

Mobile applications demand runtime reconfiguration services that make it pos-
sible to adapt their behaviour to the continuous contextual changes that occur
in their environment. One accepted approach to manage the runtime variabil-
ity of applications is the Dynamic Software Product Line (DSPL) approach.
DSPLs produce software capable of adapting to changes, by means of binding
the variation points at runtime [1]. This means that the variants of the DSPL
are generated at runtime.

Moreover, mobile applications run of lightweight devices with scarce resources
(e.g. battery, memory, CPU, etc.), so they have the necessity of optimizing

� Work supported by Projects TIN2008-01942, P09-TIC-5231, TIN2012-34840 and
INTER-TRUST FP7-317731.

K. Drira (Ed.): ECSA 2013, LNCS 7957, pp. 282–298, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http:/caosd.lcc.uma.es

Run-Time Support to Manage Architectural Variability Specified with CVL 283

their functionality to the continuous resource variations, and also to the user
needs. Ideally, such optimization should be managed autonomously by the ap-
plication, which should be self-adapted. In this sense, it is widely accepted by
the distributed systems community the use of the Autonomic Computing (AC)
paradigm [2] to endow distributed systems with self-management capacities.

Combining the ideas of DSPL with AC, the development of a software system
with self-adaptation capacities implies the following steps: (1) modelling as part
of the software architecture (SA) the variation points that the designer foresees
that may change at runtime; (2) the runtime environment needs to be monitored
to listen for contextual changes that may affect the variation points; (3) when a
contextual change occurs, the system must analyse how the change affects the
variation points, and if a reconfiguration is needed; (4) if so, a plan defined as
the set of changes that need to be performed in the current configuration over
the set of variation points must be generated, ideally at runtime, and finally (5)
the architectural variation points that are affected by the reconfiguration must
be modified according to the plan generated in the previous step.

For the first step, a language to model the system variability is needed. Vari-
ability is modeled at different abstraction levels, mostly using feature models
(FM) [3] at the requirements level and UML profiles or Architecture Descrip-
tion Languages (ADLs) [4–6] at the architectural level. In our approach, we
model variability at the architectural level using the Common Variability Lan-
guage [7](CVL). The reasons for choosing CVL are twofold. First, it is a MOF-
based variability language and this means that any MOF-based application
model can be easily extended with variability information using CVL; second,
it has been submitted to the OMG for its standardization and it is expected to
be accepted soon as the standard for modelling and resolving variability.

For the rest of steps, we follow the typical MAPE-K loop of the AC paradigm,
where “MAPE”’ stands for Monitoring-Analysis-Plan-Execution and ‘K’ stands
for Knowledge. Existing approaches [8–12, 3, 13] mainly consists on doing at
design time the analysis of the contextual changes and the generation of the re-
configuration plans to meet the new environmental conditions. Then, the set of
valid configurations are pre-calculated, as well as the differences between pairs
of configurations and the conditions to adapt the system from one configuration
to another one, loading them into the device as part of the knowledge base.
This is a shortcoming which limits the number of possible configurations and
avoid generating the optimal ones. The alternative of using models@runtime
approaches [14, 15] has also limitations in mobile environments since these ap-
proaches normally demand high computing resources. Thus, one of the contri-
butions of our approach is the generation of the application configurations and
the reconfiguration plans automatically at runtime.

Moreover, most DSPL approaches do not consider the optimization of the
used resources at runtime. However, when the availability of certain resources
decreases or increases significantly, the ideal situation would be to be able to
decide which architectural configuration provides the best functionality, while
not exceeding the available resources. Thus, fast algorithms to calculate the

284 G.G. Pascual, M. Pinto, and L. Fuentes

optimum configuration at runtime are desirable. Since this can be formulated as
an optimization problem, genetic algorithms (GAs) can be used to optimize the
selection of architectural variation points that will conform to the new configu-
ration. In this sense, a second contribution of our approach is the optimization
of the used resources using genetic algorithms.

Specifically, our approach defines a Context Monitoring Service (CMS) for
monitoring the environment and providing this information to a Dynamic Re-
configuration Service (DRS), which covers the analysis of the monitored informa-
tion and the generation and execution of the reconfiguration plans. Both services
are designed to be integrated in a middleware for adaptive applications develop-
ment [16], although in this paper we focus on presenting the details of how the
DRS accomplishes the runtime reconfiguration of mobile applications. On the
one hand, our DRS has the SA with variability specified using CVL available at
runtime as part of the knowledge base, using it to perform reconfiguration. On
the other hand, when the availability of certain resources decreases or increases
significantly, the DRS has to decide which architectural configuration provides
the best functionality, while not exceeding the available resources. For this we
use a GA [17] which have already been used in static SPL – i.e. the optimization
is performed at design-time. Since our DRS is installed inside a mobile device,
we present some evaluation results showing that our approach is feasible and
efficient for being executed with the fairly limited resources of a mobile device,
resulting in good response times and nearly-optimal architectural configurations.

The rest of the paper is organized as follows. The motivation of our approach,
the main contributions and the case study used throughout the paper are pre-
sented in Section 2. Then, the approach is further described in Section 3. Evalu-
ation results are presented in Section 4, related work discussed in Section 5 and
finally our conclusions and on-going work are described in Section 6.

2 Motivation and Approach Overview

In this section we show the motivation for our work discussing challenges that
have to be taken into account for specifying the DRS. The basics of CVL, an
overview of our approach and a case study are also presented.

2.1 Common Variability Language (CVL)

CVL is a domain-independent language for specifying and resolving variability
that allows the specification of variability over any model which has been defined
using a MOF-based metamodel. The approach proposed by CVL can be seen
in Figure 1. The base model of an application does not contain any information
about variability. Instead, the variability information is separately specified in a
variability model, according to the CVL metamodel. One of the main advantages
of CVL is that it is executable, meaning that it is possible to automatically
generate resolved models. To this end, resolution models are specified to decide
the choices in the variability models that are selected in order to automatically

Run-Time Support to Manage Architectural Variability Specified with CVL 285

Variability
Model

Base Model

CVL

Execution

MOF-compliant DSL model
Resolution

Model

Resolved
Model

CVL model

Legend

Fig. 1. CVL Approach

generate a fully specified product (i.e. without variability). In CVL, a variability
model consists of three main parts:

1. Variation points. Define the points of the base model that are variable
and can be modified during the CVL execution. For instance, some of the
variation points supported by CVL are the existence of elements of the base
model or the links among them, or the assignment of an attribute’s value.

2. Variability Specification Tree (VSpec tree). Tree structures whose ele-
ments represent choices bound to variation points. These choices are resolved
by a resolution model and propagated to variation points and the base model,
generating the resolved model without variability. As it is explained in Sec-
tion 2.4, VSpec trees show many commonalities with respect to FMs.

3. OCL Constraints. CVL supports the definition of OCL constraints among
elements of a VSpec tree, providing a highly flexible mechanism for delimiting
the bounds of variability, being able to discard invalid configurations.

2.2 Challenges

In order to achieve our goal of building a DRS that reacts to the runtime con-
textual changes by optimizing the configurations according to the availability
of certain resources (e.g. battery, memory, CPU), we have identified a list of
challenges that must be taken into account:

Challenge 1: Optimizing the architectural configuration. Mobile devices have
scarce resources, so the challenge is to generate optimal configurations at run-
time. We use an optimization algorithm that is able to find a nearly-optimal
configuration taking into account the resource usage of the valid architectural
configurations 1. Concretely, the algorithm optimizes an utility function that
quantify the architectural variation points according to a criterion specified by

1 An exact algorithm cannot be used because the problem to be solved is NP-hard
(non-deterministic polynomial-time hard).

286 G.G. Pascual, M. Pinto, and L. Fuentes

the SA. This utility function typically refers to the general user satisfaction, al-
though our approach is independent of the chosen utility function. For instance,
the criterion can be the precision in the case of a component that is focused
on providing location information, or the quality in the case of a component for
video streaming. Because of its ability to fit well with optimization problems
based on variability, the concept of utility function has been applied before in
other proposals, such as MUSIC [12] and [11].

Challenge 2: Generating the reconfiguration plan at runtime. In our approach
this challenge is straightforwardly satisfied. Since a configuration is specified as
an array of bits (the output of the optimization algorithm), the reconfiguration
plan to go from the running configuration to a new optimized one can be gener-
ated at runtime just by applying an XOR operation between the arrays of bits
representing the source and target configurations (see Section 3).

Challenge 3: Executing the service in mobile environments. An important chal-
lenge of any service executing on a mobile environment is to reduce to the mini-
mum the resources (time, memory, CPU, battery) consumed by the service itself.
In particular, for a reconfiguration service, the time is critical since, in order to
be useful, applications must be reconfigured without appreciating the extra time
employed for the reconfiguration process. Regarding this, in Section 4 we demon-
strate that our DRS is fast enough to avoid harming the user response time or
the performance of the system.

2.3 Our Approach

All these challenges have been addressed in our approach, summarized in Fig-
ure 2. We propose a middleware in which the CMS and the DRS provide support
for deploying adaptive applications by covering the steps of the MAPE-K loop.

Knowledge. As shown in Figure 2, in our approach the knowledge is repre-
sented by (1) the variation points; (2) the VSpecs tree; (3) the OCL constraints;
(4) the software architecture; (5) the resource and utility information, and (6)
the reconfiguration policy. The SA specifies the variability model in CVL, con-
taining the variation points, the VSpecs tree and the OCL constraints, as well
as an estimation of the resource usage and the utility provided by the compo-
nents of the architecture. This information provides an optimization criterion
for run-time reconfiguration and, therefore, using it we can generate different
configurations at run-time which maximize the utility of the application without
exceeding the availability of a concrete resource, addressing the Challenge 1.

Monitor. The CMS provides the DRS with information about the evolution of
the availability of a certain resource, such as the battery level or the memory.
When a change is detected, the DRS is notified.

Analyse. When a Context Change event is received, the DRS analyses if the
change is significant enough to trigger the adaptation process –i.e. if the recon-
figuration criteria is satisfied. There can be several criteria for measuring the
significance of a context change. For instance, a change in the battery level can

Run-Time Support to Manage Architectural Variability Specified with CVL 287

be significant if it has changed more than a 5% since the last measurement, or if
it changes more than 10% per hour. Therefore, several reconfiguration policies
can be defined, and the policy applied is part of the Knowledge base.

Plan. In case the analyser decides that the application needs to be adapted,
the GA is executed in order to find a nearly-optimal configuration according to
the current context. Then, the differences between the current realization model
and the new one are calculated, generating a plan for switching between them
(Challenge 2). As it has been explained in Section 2.2, calculating the difference
between two configurations is quite straightforward since it is directly obtained
by performing an XOR operation between both configurations.

Execute. Finally, the plan is executed in order to adapt the running architec-
ture of the application.

Dynamic Middleware for Adaptive Applications

MAPE-K LOOPMONITOR

PLAN

EXECUTE

ANALYSE

MAPE-K LOOP

Variation
points

KNOWLEDGE

VSpec Tree Software
Architecture

Resource &
Utility

Information

Reconfiguration
Policy

Context
Monitoring

Service

Battery
Memory

CPU
Network

...
Dynamic Reconfiguration Service

Adapt
Run-time

Architecture

Context
Change

Adaptation
Request

Execute Plan

Generate
plan

YES

NO

Is
reconfiguration

criteria
satisfied?

No Adaptation XOR
(RM1, RM2)

Execute GA

OCL
Constraints

Fig. 2. Approach Overview

2.4 Case Study

In the following sections we use a case study that consists of an application that
assists attendees of international congresses, keeping them up to date with the
latest news and providing several social facilities. The application provides the
following variable set of services:

288 G.G. Pascual, M. Pinto, and L. Fuentes

1. Access to information about the events, stands and news about the congress.

2. Receive a video stream of keynotes or conferences in the mobile phone. The
quality of the received video is variable (high, medium, low).

3. Check-in in the stands/events to track your activity. The technology used is
variable and either NFC or Bluetooth may be used.

4. Access information about your friends: location, visited events and stands,
agenda. Location is obtained using GPS or WLAN, and the measuring rate
is variable (high, medium or low).

5. Exchange public messages or with your friends using a message board.

�������	
������ ������������������ ������������������

������������������

������������������

������������������ ������������������ ����	
������

B
A

S
E
 M

O
D

E
L

V
A

R
IA

T
IO

N
 P

O
IN

T
S

��������	��
�����

����
��

����
������ ����
����	�

����

�����
�

������������

����

�����
��� � �����
��!"�������

����

��#�$������ $������!���%

V
A

R
IA

B
IL

IT
Y

 S
P

E
C

IF
IC

A
T

IO
N

S
 T

R
E
E

����	
������

�������	
�������������	
������

Fig. 3. Case study (Base model and variability model)

Run-Time Support to Manage Architectural Variability Specified with CVL 289

This application can be adapted according to user preferences (e.g. high qual-
ity of video is preferred), to the availability of the resources (e.g. WLAN is used
because GPS is not available) or to the amount of consumed resources (e.g. use
low quality of video because the mobile battery is low). In this paper we focus
on this last kind of reconfiguration.

Figure 3 shows an excerpt of the component-and-connector view of the soft-
ware architecture of our case study – i.e. components model the basic behaviour
of the application and communicate with each other using connectors. All the
connectors, except MessageBoardConn have been omitted from the figure for leg-
ibility reasons. The variability model is also shown in the Figure, including
both the variation points and the variability specifications tree. For instance,
using CVL we define optional components (ObjectExistence variation point), dif-
ferent variants for a component (ObjectSubstitution variation point), parametriz-
able components (SlotValueAssignment variation point) and optional links between
elements (LinkExistence variation point).

The main component of the architectural model is the CongressAssistant. On
the one hand, it communicates with the DataAggregator component for access-
ing information about events, stands, news or for receiving a video stream of a
conference. On the other hand, it communicates with the SocialManager compo-
nent in order to take advantage of the social facilities of the application. The
Location component is responsible for providing the location of the owner of
the mobile device for tracking his/her position, and can be realized either by
the Location GPS or the Location WLAN variants. The GPS variant measurements
are more precise but it is also much more expensive regarding battery con-
sumption. On the other hand, the Checkin component can also be realized by
Checkin NFC and Checkin Btooth components. As we can see in the figure, this is
specified in the architectural model by applying the ObjectSubstitution variation
points to the components and realizations. On the other hand, the components
Location GPS and Location WLAN have a configurable parameter, frequency, which
defines the measuring rate. To this end, the SlotValueAssignment variation point
has been applied to the parameters of the components.

The architectural elements with an ObjectExistence variation point can be re-
moved from the configuration. For instance, the Location component if the battery
level is low. Then, the links between the SocialManager and Location components,
which are not shown in detail in the figure, should be removed too. Our DRS
detects when a connector or a component is not necessary and removes it auto-
matically in order to ensure that the resulting configuration is always consistent.
We can see that a LinkExistence variation point has been associated to the links
which connect the SocialManager and the MessageBoard components because they
are removed in case the connector is deleted from the architectural model.

Each variations point has to be bound to a VSpec of the VSpec tree. We use
two different kinds of VSpecs: choices and variables. Choices, which are shown
in the figure as rectangles with rounded corners, are evaluated to true or false.
On the other hand, variables can be evaluated to values of different types. For
instance, if the VSpec NewsManager is decided false, the linked ObjectExistence

290 G.G. Pascual, M. Pinto, and L. Fuentes

variation point is disabled and the NewsManager component is removed from
the architectural configuration. On the other hand, the value provided to the
variable frequency is propagated to the frequency attribute of the Location WLAN

and Location GPS components because they are bound to this variable through
SlotValueAssignment variation points. An Vspec can be bound to its parent by a
solid or a dotted line. In the first case, it means that in case the parent has been
decided true, a value has to be decided for that VSpec too. Then, a dotted line
means that if the parent has been evaluated false, it is not necessary to decide
a value for this VSpec. For instance, if the Location Vspec is decided false, it is
not necessary to decide a value for Loaction GPS or Location WLAN.

The information about resource usage and utility is provided as a table in
which each entry specifies the resource usage and the utility of different ele-
ments of the architectural model (components, variants or parameters). This
information, together with the VSpec tree, are the input for the GA which is
executed by the DRS in order to find a configuration of the application that fits
the current context. In this case, the resource we are restricting is the battery
usage. Some of these values are shown in Table 1.

Table 1. Resource usage and utility information table

Element Battery Utility

Location GPS 60 35

Location WLAN 30 15

Location WLAN.frequency.High 15 9

Location WLAN.frequency.Medium 10 7

Location WLAN.frequency.Low 5 4

3 Dynamic Reconfiguration Service

As previously described, the DRS is responsible for adapting the applications
at runtime according to the current context, while the CMS provides the DRS
with context information. In this section we mainly focus on the plan stage of
the MAPE-K loop (Plan Generator), which is part of the DRS and uses the vari-
ability model, the context information and the utility and resources information.

As Brataas et al. show in [18], the reconfiguration time is divided in three
different tasks: (1) analyse the context data; (2) plan (decide) the new configu-
ration and (3) execute the plan in order to deploy the new configuration. They
prove that the cost of the first and third tasks can be considered fixed, while it
is critical to make the plan task as efficient as possible because it depends on the
number of configuration variants. Therefore, the challenge is finding the set of
choices for the VSpecs Tree (i.e. the resolution model) that defines the optimal
configuration (the one that provides the highest utility while not exceeding the
resources limitations) in a very efficient way. However, it is an NP-hard prob-
lem [19] and, therefore, it is impossible to use exact techniques to solve this
optimization problem for our purpose. Concretely, as shown in [17], exact tech-
niques can only be applied to small cases at the cost of a very high execution

Run-Time Support to Manage Architectural Variability Specified with CVL 291

time. Nevertheless, artificial intelligence algorithms can find nearly-optimal so-
lutions in an efficient and scalable way. In this paper, we use a genetic algorithm
based on the algorithm of Guo et al. [17], which focus on optimizing feature
models configurations, for optimizing the Vspecs Tree, since it has been proven
to be efficient and produces nearly-optimal results. Concretely, this algorithm
is able to generate configurations with about 90% of optimality, which means
that the utility of the solutions obtained using this algorithm is approximately
the 90% of the utility of the optimal configuration that would be obtained using
an exact algorithm. Although the algorithm by Guo et al. is not focused on a
DSPL approach, we show in this paper that their algorithm is applicable to the
DSPL domain. Furthermore, thanks to the great improvement in the processing
and memory capacities of smartphones, using artificial intelligence algorithms in
mobile devices is feasible and efficient, as it is proven in this paper.

Therefore, the plan generator of the DRS relies on a genetic algorithm to
decide which configuration should be deployed according to the current context.
In genetic algorithms, solutions are modelled as chromosomes. A chromosome
consist of a sequence of genes, where each gene is a boolean value. In our case,
VSpecs are mapped to genes in this way: (1) VSpec tree is traversed in a concrete
order, which can be either breadth-first or depth-first; (2) each choice VSpec is
modelled as a gen. In case the gen is evaluated as true, the VSpec is also decided
true and (3) each variable VSpec is modelled as a set of genes. Concretely, a gen
is added for each possible value of the VSpec. Only one of these genes can be
evaluated as true simultaneously. Then, the gen whose value is true provides the
value for the VSpec.

The steps taken during the execution of the algorithm are as follows:
1. Population initialization. A set of initial chromosomes (configurations)

is generated. They are generated randomly, and therefore it is necessary to
transform each one to get a valid solution from each randomly-generated one.
The transformation process performs the necessary additions and exclusions of
Vspecs from the randomly generated one, returning a chromosome which rep-
resents a valid configuration as a result which, in addition, does not exceed the
available resources.

2. Evolution through generations. Once an initial population of valid configura-
tions has been generated, the next step is evolving the population through genera-
tions in order to find better configurations, which provide a higher utility. In each
generation, two chromosomes randomly chosen from the population are crossed.
The resulting chromosome is transformed to get a a valid solution, and the worst
chromosome of the population is replaced with the new one. This process is re-
peated until a stopping condition is reached. For instance, the evolution can be
stopped once a maximum number of generations is reached or when the popula-
tion has not evolved after a certain number of consecutive generations. In our case,
we use both conditions, stopping the evolution when the first one is reached.

3. Return the best chromosome. The best chromosome, which represents the
configuration which provides the highest utility, is returned as the solution to
the optimization problem.

292 G.G. Pascual, M. Pinto, and L. Fuentes

In the rest of this section, this approach is applied to our case study, as il-
lustrated by Figure 4. First, before the application is started, it is necessary to
deploy the initial configuration. An initial population of chromosomes that repre-
sent valid configurations and fit the resource constraints is generated. Our VSpec
Tree is mapped to a chromosome that contains 81 genes but, due to the lack of
space, we only show a reduced set (NewsManager, Location WLAN, Location GPS, Lo-

cation.frequency.High, Location.frequency.Medium, Location.frequency.Low in Figure 4).
Then, in every generation, two chromosomes are randomly selected for perform-
ing a crossover. A crossover between the two selected parents (...110100... and
...101010...) is performed taking genes randomly from both parents, and the re-
sulting offspring (...110010...) is mutated by changing the value of one of its
genes (...111010...). However, the offspring will probably be an invalid chromo-
some because it does not fit the constraints of the VSpec Tree. For instance,
in our example, the offspring has the Location GPS component selected (i.e. its
bit is 1), but no location frequency is specified. Therefore, it is necessary to ap-
ply a transformation to the offspring, which adds all the missing decisions. The
transformation mechanism adds them, and its output is a valid configuration
where, in this case, the Location.frequency VSpec is set to medium (...110010...).
Then, this new chromosome replaces the chromosome with lowest value of the
population, and this process is repeated until the stopping condition is reached.

…110100…
…101010… …110010…

Parents Offspring

Crossover

…110000…
Mutation

Transformation

…110010…

New valid chromosome

VSpec Variation point Architectural Elements

NewsManager ObjectExistence NewsManager

Location.frequency SlotValueAssignment Location_GPS.frequency
Location_WLAN.frequency

Location_GPS ObjectSubstitution Location, Location_GPS

Location_WLAN ObjectSubstitution Location, Location_WLAN

{...NewsManager, Location_WLAN, Location_GPS, Location.frequency.High,
Location.frequency.Medium, Location.frequency.Low…}

Fig. 4. Applying the genetic algorithm in the Dynamic Reconfiguration Service

4 Evaluation

In this section we evaluate the ability of the optimization algorithm to find
nearly-optimal configurations according to the available resources. Furthermore,
since the resources of mobile devices are very limited, it is very important to

Run-Time Support to Manage Architectural Variability Specified with CVL 293

Fig. 5. Case Study configurations distribution

verify the efficiency of the algorithm. Concretely, the time elapsed by the al-
gorithm during the optimization process has been measured. To this end, the
optimization algorithm has been applied to our case study using an ASUS Nexus
7 device running Android 4.2.1.

The VSpec tree defined for the variability specification of our case study con-
tain 2400 valid configurations that fulfill all the constraints. Figure 5 shows
how these configurations are distributed according to their resource usage. Con-
cretely, we can see that there is a peak in the distribution of configurations at
around 500 units of resource usage. Therefore, we can expect a significant de-
crease in the execution time of the algorithm as the available resources increase
and get closer to 500 units because it is increasingly easier to find a valid con-
figuration. On the other hand, once the peak is exceeded, the number of new
valid configurations decreases fast. Therefore, we can expect a nearly-constant
execution time despite the increase in the available resources.

All the experiments have been repeated 100 times and the mean value and
standard deviation (both for utility and time) has been calculated. The size
of the population is 30, while the maximum number of generations for each
repetition of the experiment is 20, stopping the algorithm if no better solutions
are found after 3 consecutive generations. These settings have been proven to
provide good results, although an exhaustive optimization of them, which will
be addressed in future work, has not been performed. For the evaluation of the
effectiveness of the algorithm we have compared the solutions obtained using
the genetic algorithm with the optimal solutions. In order to find the optimal
solutions we have generated a list of all the valid configurations, calculating then
the resource usage and the utility of each one of them. This step (obtaining the
optimal solutions) have been executed in a desktop computer since it is too
expensive to be run in a mobile device.

Results are shown in Figure 6 and summarized in Table 2. If we use the
concept of optimality presented in [17], which can be defined as the ratio between
the utility of the solution obtained using the genetic algorithm and the one
obtained using the exact method, the results show that the degree of optimality

294 G.G. Pascual, M. Pinto, and L. Fuentes

of the solutions obtained is always over 87%. The optimality slightly decreases as
the available resources increase because there are much more valid configurations
whose utility is much lower than the optimal one. However, even in the worst
case the degree of optimality is very high, specially taking into account that the
optimization problem is NP-hard.

On the other hand, we have evaluated the time elapsed in the execution of
the algorithm. We distinguish between the initialization time, which is the time
needed to generate the initial population, and the analysis time, elapsed iterating
over the successive generations. The results for the initialization time are shown
in Table 2. As it is expected, when the restrictions are harder (less resources
are available) it is more difficult to obtain valid solutions. Therefore, the time
elapsed in the generation of the initial population is higher. In the worst case, the
initialization time is 334.584 ms. However, as the available resources are higher,
it becomes much easier to find valid solutions and the initialization time drops
significantly, falling below 100 ms when the available resources are higher than
380 units. Further optimizations can be introduced in the algorithm in order to
minimize the initialization time. For instance, those elements of the population
that remain valid can be reused along different executions of the optimization
algorithm. However, it has not been still evaluated and will be addressed in future
work. Regarding the analysis time, we can see that it is very low compared with
the initialization time. Although its value does not vary significantly with respect
to the available resources, we can see that it increases slightly as the number
of available resources increase. This behaviour can be explained because, when
there are less available resources, the algorithm usually stops before reaching 20
generations because no better solutions are found.

According to the results obtained, we consider that our approach is suitable
for providing support for dynamic reconfiguration on mobiles devices, generating
nearly-optimal configurations without introducing an excessive overhead.

Table 2. Evaluation Results Summary

Resource limit Obtained utility Optimality Initialization time (ms) Analysis time (ms)

205 425 (σ = 0) 100% 334.584 (σ = 55.207) 2.416 (σ = 0.995)

255 474.62 (σ = 1.886) 99.92% 177.312 (σ = 29.056) 3.224 (σ = 2.697)

300 524.59 (σ = 10.755) 96.79% 147.137 (σ = 22) 4.055 (σ = 2.169)

350 580.9 (σ = 17.514) 94.61% 115.03 (σ = 17.483) 4.321 (σ = 2.419)

400 614.52 (σ = 19.865) 92.13% 96.291 (σ = 11.877) 5.03 (σ = 2.195)

450 641.635 (σ = 20.333) 89.49% 81.319 (σ = 8.577) 6.055 (σ = 3.738)

500 665.075 (σ = 23.652) 90.24% 76.067 (σ = 7.128) 7.128 (σ = 4.577)

550 680.445 (σ = 27.414) 87.91% 74.043 (σ = 6.316) 8.013 (σ = 5.52)

600 692.66 (σ = 32.322) 87.68% 75.165 (σ = 9.921) 9.484 (σ = 6.762)

655 691.904 (σ = 32.656) 87.03% 73.682 (σ = 6.091) 8.83 (σ = 6.381)

Run-Time Support to Manage Architectural Variability Specified with CVL 295

Fig. 6. Optimality Evaluation

5 Related Work

In this section we discuss those approaches comparable to the work presented in
this paper. On the one hand, our approach is driven by the MAPE-K loop on
which AC rely, providing the applications for mobile devices with the ability to
reconfigure their architecture in an autonomic and optimal way according to the
available resources. We can find several approaches in the literature which also
rely on the same principals. For instance, Gamez et al. [3] propose a reconfigu-
ration mechanism that switches among different architectural configurations at
run-time. The valid configurations are manually specified and represented using
FMs, while the reconfiguration plans are automatically generated from the dif-
ferences among them. Therefore, both are specified at design-time, which leads
to the deployment of sub-optimal configurations at run-time.

There are also many work that do not exactly follow the principals of AC but
provide support for reconfiguration at the application level [8, 13], or also at the
middleware layer [9–12]. However, they are not usually available for evaluation or
they are not runnable on mobile devices. MUSIC [12] is an OSGi-based middle-
ware for developing context-aware adaptive applications. It is a component based
and service oriented approachwhichmainly consists of two different parts: the con-
text and the adaptation middlewares. The adaptation middleware is responsible
for adapting the applications, deploying the configuration that best fits the cur-
rent context. The main difference between MUSIC (as well as the other existing
approaches) and our approach is that they require having available at runtime all
the valid configurations of an application, while in our approach this configuration
is generated on demand using the optimization algorithm.

Other work use CVL to manage variability and provide reconfiguration sup-
port. For instance, Ayora et al. [15] propose a mechanism for managing vari-
ability in business processes. At design time, variability is modelled using CVL.
Then, process variants are adapted following a models@runtime approach, which
is not suitable for devices with scarce resources. In [20], Cetina et al. also model
variability using CVL, applying it to smart-homes environments. Concretely, sev-

296 G.G. Pascual, M. Pinto, and L. Fuentes

eral mechanisms for applying the necessary model transformations are evaluated.
However, as in the previous approach, it is not applicable to mobile devices.

Finally, we use an optimization algorithm to select a nearly-optimal configu-
ration that satisfies the resource constraints and maximizes a utility function. In
this sense, there are similar algorithms that allow the automatic generation of a
resolution model according to different criteria. However, they are applied to (1)
variability modelling techniques different than CVL VSpec trees, such as FMs,
and (2) to static SPLs. In [19], an FM is transformed into a Multi-dimensional
Multiple-choice Knapsack Problem that allows nearly-optimal FM configura-
tions in polynomial-time to be found. This is also the objective of [17], but using
genetic algorithms, being even faster than the previous one. On the other hand,
the proposal of Benavides et al. [21] always finds the optimal configuration using
Constraint Satisfaction Problems with exponential-time complexity, making it
unsuitable for runtime optimization.

The main difference with our approach is that all these algorithms have been
used in static SPLs, while we use it in DSPLs. In a static SPL a product con-
figuration is generated during the design time in order to deploy one particular
product from the family of products. This means that the algorithm is applied
only once at design time. We use the algorithm to implement a DSPL, mean-
ing that the optimization algorithm is used at runtime by the DRS in order to
adapt the product. The most similar approach to ours is the work presented
in [22], where an optimization algorithm is also used to improve user interface
adaptation at runtime. An important difference is that their work is specific to
a user interface architectural model, while our approach is more general because
it can be applied to the architectural model of any kind of applications They
use a different optimization algorithm although, as in our case, their approach
does not depend on a particular optimization algorithm and is designed to work
with other algorithms. Finally, the average adaptation time of our approach is
considerable lower than the one reported in [22].

6 Conclusions

In this paper we have presented a novel approach that provides support for
the dynamic reconfiguration of mobile applications, optimizing the system con-
figuration according to the available resources. In order to do that we model
the variability of the application architectural model using CVL. In this way,
we take advantage of available algorithms to optimize the variability resolution.
Concretely, the use of a GA has been proposed to obtain nearly-optimal con-
figurations at runtime using the VSpec tree, the context information and the
resource and utility information as input. In order to describe and evaluate our
approach we have applied it to a case study. A set of experiments have been
defined to evaluate the efficiency of the optimization algorithm applied to our
case study in order to verify that it is suitable for resource-constrained devices.
The results obtained show that it is efficient and can be used to provide dynamic
reconfiguration in mobile devices without introducing an excessive overhead.

Run-Time Support to Manage Architectural Variability Specified with CVL 297

References

1. Hallsteinsen, S., Hinchey, M., Park, S., Schmid, K.: Dynamic software product
lines. Computer 41(4), 93–95 (2008)

2. IBM: Autonomic Computing White Paper — An Architectural Blueprint for Au-
tonomic Computing. IBM Corp. (2005)

3. Gamez, N., Fuentes, L., Aragüez, M.A.: Autonomic computing driven by feature
models and architecture in famiware. In: Crnkovic, I., Gruhn, V., Book, M. (eds.)
ECSA 2011. LNCS, vol. 6903, pp. 164–179. Springer, Heidelberg (2011)

4. Haber, A., Kutz, T., Rendel, H., Rumpe, B., Schaefer, I.: Delta-oriented architec-
tural variability using monticore. In: Proceedings of the 5th European Conference
on Software Architecture: Companion Volume, ECSA 2011, pp. 6:1–6:10. ACM,
New York (2011)

5. Adachi Barbosa, E., Batista, T., Garcia, A., Silva, E.: Pl-aspectualacme: an aspect-
oriented architectural description language for software product lines. In: Crnkovic,
I., Gruhn, V., Book, M. (eds.) ECSA 2011. LNCS, vol. 6903, pp. 139–146. Springer,
Heidelberg (2011)

6. Gomaa, H.: Designing software product lines with uml 2.0: From use cases to
pattern-based software architectures. In: Morisio, M. (ed.) ICSR 2006. LNCS,
vol. 4039, p. 440. Springer, Heidelberg (2006)

7. CVL: Common Variability Language, http://www.omgwiki.org/variability/
8. Chan, A., et al.: MobiPADS: a reflective middleware for context-aware mobile

computing. IEEE Transactions on Software Engineering, 1072–1085 (2003)
9. Gu, T., et al.: A service-oriented middleware for building context-aware services.

Journal of Network and Computer Applications 28(1), 1–18 (2005)
10. Janik, A., Zielinski, K.: AAOP-based dynamically reconfigurable monitoring sys-

tem. Information and Software Technology 52(4), 380–396 (2010)
11. Paspallis, N.: Middleware-based development of context-aware applications with

reusable components. University of Cyprus (2009)
12. Rouvoy, R., Barone, P., Ding, Y., Eliassen, F., Hallsteinsen, S., Lorenzo, J.,

Mamelli, A., Scholz, U.: MUSIC: Middleware support for self-adaptation in ubiq-
uitous and service-oriented environments. In: Cheng, B.H.C., de Lemos, R., Giese,
H., Inverardi, P., Magee, J. (eds.) Self-Adaptive Systems. LNCS, vol. 5525,
pp. 164–182. Springer, Heidelberg (2009)

13. Cuervo, E., Balasubramanian, A., Cho, D., Wolman, A., Saroiu, S., Chandra, R.,
Bahl, P.: Maui: Making smartphones last longer with code offload. In: Proceedings
of the 8th International Conference on Mobile Systems, Applications, and Services,
pp. 49–62. ACM (2010)

14. Welsh, K., Bencomo, N.: Run-time model evaluation for requirements model-driven
self-adaptation. In: 2012 20th IEEE International Requirements Engineering Con-
ference (RE), pp. 329–330. IEEE (2012)

15. Ayora, C., Torres, V., Pelechano, V., Alférez, G.H.: Applying CVL to business pro-
cess variability management. In: Proceedings of the VARiability for You Workshop:
Variability Modeling Made Useful for Everyone, VARY 2012, pp. 26–31. ACM,
New York (2012)

16. Pascual, G.: Aspect-oriented reconfigurable middleware for pervasive systems. In:
Proceedings of the CAiSE Doctoral Consortium, vol. 731. CEUR-WS (2011)

17. Guo, J., White, J., Wang, G., Li, J., Wang, Y.: A genetic algorithm for optimized
feature selection with resource constraints in software product lines. Journal of
Systems and Software 84(12), 2208–2221 (2011)

http://www.omgwiki.org/variability/

298 G.G. Pascual, M. Pinto, and L. Fuentes

18. Brataas, G., et al.: Scalability of decision models for dynamic product lines (2007)
19. White, J., et al.: Selecting highly optimal architectural feature sets with filtered

cartesian flattening. Journal of Systems and Software 82(8), 1268–1284 (2009)
20. Cetina, C., Haugen, O., Zhang, X., Fleurey, F., Pelechano, V.: Strategies for vari-

ability transformation at run-time. In: Proceedings of the 13th International SPLC,
SPLC 2009, pp. 61–70. Carnegie Mellon University, Pittsburgh (2009)

21. Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated reasoning on feature
models. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520,
pp. 491–503. Springer, Heidelberg (2005)

22. Blouin, A., et al.: Combining Aspect-Oriented Modeling with Property-Based Rea-
soning to Improve User Interface Adaptation. In: ACM SIGCHI Symposium on
Engineering Interactive Computing Systems, Pisa, Italy, pp. 85–94 (June 2011)

Towards Extensive Software Architecture

Erosion Repairs

Matthias Mair and Sebastian Herold

Clausthal University of Technology, Department of Informatics
Julius-Albert-Strasse 4, 38678 Clausthal-Zellerfeld, Germany
{matthias.mair,sebastian.herold}@tu-clausthal.de

Abstract. Software architecture erosion can reduce the quality of soft-
ware systems significantly. It is hence of great importance to repair ero-
sion efficiently, for example, by means of refactoring. However, existing
refactoring approaches do not address architecture erosion holistically.

In this paper, we describe the problem of optimally repairing soft-
ware architecture erosion and investigate the applicability and limita-
tions of current refactoring approaches. We argue that a heuristic search
for adequate repairs using formalized and explicit knowledge of software
engineers could overcome those limitations.

This paper outlines an approach we have been starting to investigate
in our recent research and also aims at stimulating a discussion about
further research challenges in repairing software architecture erosion.

Keywords: software architecture, software architecture erosion, refac-
toring, software maintenance.

1 Introduction

The more complex a software system is and the longer its lifetime is, the higher
the risk is that software architecture erosion or architectural drifts occur [1,2].
Both terms describe the divergence of the intended software architecture and its
realization. The reasons for architecture erosion and architectural drifts are man-
ifold, e.g., changes in code for bug-fixing or adapting to new requirements [3]. In
general, architecture erosion leads to a degradation of system quality attributes
such as maintainability and reusability. In the long term, progressing erosion
leads to software that requires to be replaced by completely and expensively
redeveloped systems [4].

Approaches dealing with software architecture erosion can be divided into
three categories [5]. Approaches to avoid erosion couple architecture design and
implementation such that divergence is unlikely to happen. The second category
concludes approaches to minimize erosion mainly based on consistency check-
ing, e.g., reflexion modeling [6] or generative techniques to establish consistency
(semi-)automatically, such as model-driven engineering (MDE) approaches.

Approaches of the third category try to repair erosion and become important
if complete avoidance is impossible, or to complement minimizing approaches.

K. Drira (Ed.): ECSA 2013, LNCS 7957, pp. 299–306, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

300 M. Mair and S. Herold

Intended
Architecture

1 2
3 …

Realization

…

…

Available
Repair Actions

Repair Sequences

Architecturally
consistent

realizations

Architectural constraints

Fig. 1. The problem of finding optimal architecture erosion repair sequences

This group of approaches consists mostly of reengineering and refactoring tech-
niques [7,8]. However, repairing architecture erosion requires a broad understand-
ing of the—often rather complex—software system at hand. It might be difficult
for software designers and programmers to find a good or even optimal way to
refactor an eroded software system.

In this paper, we will investigate the problem of how to support software
engineers in repairing eroded software systems. We will discuss how the state of
the art in refactoring addresses this problem and propose an outline of a heuristic
approach to determine good repair actions for a broad set of possible cases of
erosion.

2 Problem Analysis

In an eroded software system, the realization of the system does not conform
to the intended architecture. Repairing or reversing the erosion process can be
understood as the task of transforming and manipulating the realization such
that conformance is re-established. Finding the optimal way to do that is the
task of finding a sequence of repair steps that is optimal regarding a measure of
costs, e.g. least steps to perform, required time to perform, etc.

Following Eden et al. [9], a software architecture can be understood as a set
of logical statements about possible realizations. A realization conforms to an
architecture, if and only if it fulfills the set of logical statements given by the
architecture. For example, the layers pattern [10] defines constraints about the
allowed dependencies between components of the system. Only realizations in
which dependencies are going from “upper” layers to “lower” layers conform to
this pattern. Eden lists many different examples of architectural aspects, such
as patterns, reference architecture, naming conventions, metrics that can be
interpreted this way and expresses them as first-order logic statements.

Figure 1 illustrates the difficulty of finding optimal repair sequences to repair
architectural erosion. Given is an intended software architecture represented as
a set of first-order logic statements and a realization that does not fulfill these

Extensive Architecture Erosion Repairs 301

Application
<<layer, soa>>

Application

<<layer>>
GUI

<<layer>>
Data

Intended
Architecture Realization

Component
must provide
a service

Reduce Architecture
Aspects (A1)

Architecture Violation

Reduce
Refactorings (A2)

N
O

M
O
D
I
F
I
C
A
T
I
O
N
S

Aspired Solution

Application

<<component, service>>
C1, C2, …

GUI

<<component>>
Logger

<<component>>
…

<<use>>

<<component, service>>
C1, C2, …

<<component>>
…

<<component>>
Logger

<<use>>
<<layer, soa>>

Application

<<layer>>
GUI

<<layer>>
Data

<<layer>>
Utility

<<
co

m
po

ne
nt

>>

Lo
gg

er

GUI

Fig. 2. Application scenario that shows current approaches and their deficits

statements. Furthermore, there is a set of atomic repair actions, such as a catalog
of refactorings [8] defining how structures in a realization can be modified.

Due to the undecidability of first-order logic, the set of realizations conforming
to the given architecture is not computable. Consequently, the set of sequences
of repair actions is not computable as well. This implies that we have to perform
an exhaustive search for the optimal sequence of repair actions that transforms
the actual, non-conforming realization into a conforming one. Checking potential
solutions hence means to perform first-order logic model checking.

Two issues have to be considered for this search: first, it is not clear that the
search will terminate (is there a sequence transforming the current realization
into architecturally conformable one at all?); second, the search-space of this
problem is very “broad” depending on the number of available repair actions
and possible places for application. For example, Fowler’s catalog of refactorings
consists of about 90 refactorings. The Move Class refactoring alone has cp−1

possible applications for c classes and p possible places to move classes.
Thus, the general problem of finding optimal repair sequences is very complex.

Most applicable solutions from the field of automated refactorings in practice
apply heuristic search techniques. There are several restrictions and possibilities
to reduce complexity in order to provide practical solutions:

– Reduce architecture aspects. This reduces the complexity of checking solu-
tion candidates to something less complex (see Sec. 3) than general first-order
logic model checking. On the other hand, flexibility is sacrificed by a certain
degree because there are remaining architectural constraints that cannot be
checked—hence, not every case of architecture erosion can be considered.

– Reduce available refactorings to decrease the size of the search space. This
implies that not every way of how architecture erosion can be repaired, can
be considered.

302 M. Mair and S. Herold

Consider, for example, the application scenario depicted in Fig. 2. The Intended
Architecture follows a strict layered architecture with GUI, Application and Data.
Additionally a service-oriented architecture (SOA) is used in the Application
layer. More specific, this architecture implies three architectural constraints or
rules : (1) GUI layer is allowed to use Application layer, (2) Application layer is
allowed to use Data layer and (3) all components inside the Application layer
must provide a service (represented as stereotype �service�). In the Realization
a logger component is placed in the GUI layer and causes thereby architecture
violations.

Let us assume that A1 is an approach reducing the supported architecture
aspects by not considering SOAs and that hence ignores rule (3). It could suggest
a refactoring that moves the logger component to the Application layer. This
is correct inside the restricted view of the approach A1 but is not the aspired
solution. An approach A2 that supports only Move Class refactorings, would not
find a better solution than the current realization. A possible aspired solution,
however, with a more extensive set of refactorings and knowledge about both
architectural aspects, would solve the problem by creating a new Utility layer
and moving the logger component inside it.

In the following, we will discuss how current approaches address the complex-
ity of the general problem of finding appropriate refactorings, and the restrictions
they make.

3 State of the Art of Complex Refactoring

The following approaches do often not explicitly name architecture erosion as one
of the motivating use cases. Nevertheless, most of them use heuristic techniques
to find opportunities for applying refactorings in complex systems which includes
somehow evaluating the “goodness” of an application in a certain context. This
is comparable to the situation we are faced with if we are searching for a repair
sequence.

As discussed in Sec. 2, one way to reduce the complexity of the general prob-
lem of finding repair sequences is focusing on architectural aspects. For example,
many approaches are focusing on the evaluation of metrics to find opportunities
in systems for the application of refactorings. Ouni et al. [11] use metrics for a
multi-objective approach for Fowler’s catalog of refactorings. Seng et al. [12] and
in a similar way O’Keeffe et al. [13] restrict their approaches to metrics regard-
ing class structures and support the relevant refactorings from the same catalog.
Ivkovic et al. [14] refine softgoals to metrics to determine applications of refac-
torings. All these approaches are appropriate for using architectural principles
as source for possible refactorings as far as those principles can be quantified by
metrics. They do not consider architectural aspects like dependency constraints
or other structural constraints.

Other approaches focus on single structural constraints such as simple graph
patterns on program dependency graphs [15], or cycles in such graphs [16]. While
the formalism—graphs—provides great expressiveness, the set of actual expres-
sions they investigate is limited. The same holds for approaches focusing on

Extensive Architecture Erosion Repairs 303

other structural dependencies or properties, such as code clones [17], layering of
systems [18,19], or a set of bad smells [20].

Most approaches limit also the set of supported refactorings. The already
mentioned work described by Dietrich et al. [15], for example, detects unwanted
graph patterns in program dependency graphs and uses the removal of edges
only as refactoring. Shah et al. [16] use only the Move Class refactoring to re-
solve dependency cycles. Tsantalis et al. [21] identify Move Method refactoring
opportunities, Hotta et al. [17] for Form Template Method refactorings. Other ap-
proaches mentioned above, consider 5–15 different refactorings [12,13,22,19,23].
The work of Terra et al. [24] allows to define user-specific refactorings by com-
bining seven atomic refactorings. The considered architectural aspects are only
limited by the Dependency Constraint Language (DCL); however, they only de-
tect opportunities of refactorings without searching for optimal solutions.

It must be concluded that the current state of the art provides appropriate
support for finding solutions for single kinds of architectural erosion. The restric-
tions that the approaches exhibit, however, are too strong to let them address
the general problem of repairing software architecture erosion adequately. Es-
pecially the restrictions to single or few architectural aspects do not allow a
seamless support to the general problem; erosion especially occurs if different,
potentially conflicting architectural aspects are applied.

4 Solution Outline

The application scenario in Fig. 2 illustrates that current approaches cannot
address the general problem satisfyingly, thus a new and more powerful approach
with the following properties is needed:

– Support of many architecture aspects
– Support of many, possibly user-specific, atomic and composite repair actions
– Search for and recommend optimal repair sequences
– Formalize software engineering expertise to keep the heuristic search focused

An overall process of a new approach is depicted in Fig. 3. The Architecture
Checking process transforms the intended architecture and the realization into
logical facts of a Knowledge Representation and Reasoning (KRR) system. Further-
more, the architecture rules are represented as queries that can be executed by
the KRR system; results returned by executing these queries indicate architec-
tural violations; these are tuples of violated architecture rules and the binding
of variables causing the violation.

Afterwards, the Repair Recommendation process tries to find and recommend
optimal repair sequences. Inside the process the Heuristic Search is supported by
the Rating process which computes after each step—adding a new repair action
to the repair sequence—if the current solution is closer to the demanded opti-
mum. The result of the repair recommendation process is a set of ranked repair
sequences, i.e. ranked system solutions by remaining architecture violations.

304 M. Mair and S. Herold

Architecture
Checking

Architecture
Rules (AR)

Architecture
Violations (AV)

Repair Recommendation

Rating

Set of
Ranked
Repair
Sequences

Heuristic
Search

Knowledge Representation and Reasoning (KRR)

Intended
Architecture

Realization

Repair Actions
(RA) {RA, AR, costs, action}

{RA1, AR1, 1, “Move component”},
{RA2, AR1, 2, “Switch components”},
…

{AV, RA} = {#AVs, #costs, #metrics}
{AV1, RA1} = {15, 1, 4.7},
{AV2, RA1} = {9, 1, 5.8},
…

{AV, AR, variable binding}
{AV1, AR1, “?X=GUI; ?Y=App.; C1; Logger”},
{AV2, AR2, “?Z=App.; Logger”},
…

{AR, priority, rule}
{AR1, 5, “Layer ?X is allowed to use layer ?Y”},
{AR2, 2, “SOA constraint in layer ?Z”}

Engineer’s Expertise

Fig. 3. Overview and process of the proposed approach

The heuristic search operates on the facts in the KRR system, the previously
identified architecture violations and the repair actions. The repair actions are pos-
sible solutions for violations and extended by their costs. In addition, the architec-
ture rules are prioritized, for example, by their negative influence on the system
and thereby candidates that should be repaired first. Prioritization is not easy and
should be done well with software engineering expertise. Executing the heuristic
search computes the next step by choosing all violations with the same highest pri-
ority and apply their repair actions. The result are tuples of architecture violations
and repair actions which the rating process can evaluate and rank.

The optimum is a vector with values which includes but is not limited to:
number of violations, costs and metrics (e.g., coupling, cohesion, etc.). Further-
more, it might be useful to assign weights to the values in the vector to specify
a demanded optimum. The overall goal is to get rid of violations, but through
changing the factors the heuristic search can be controlled to focus on, for ex-
ample, costs or metric values.

Inside the rating process for each tuple of architecture violation and repair
action the number of violations are determined by executing the architecture
checking process again. The cost value is taken from the repair action and the
metric values are calculated in the KRR system. Afterwards the ranking is done
on basis of the demanded optimum. If there are still violations, the heuristic
search chooses an arbitrary number of repair sequences and continues with the
next step, otherwise the algorithm terminates. Due to the fact that first-order
logic is undecidable, the heuristic search algorithm terminates alternatively by
setting a cost limit or a maximal step depth.

A big advantage of this approach and the main distinction to other approaches
is the more extensive usage of explicitly modeled engineering expertise. The
knowledge, for example, is used in prioritization of architecture rules and the
connection of them with repair actions. Additionally the vector values can be
extended through new software engineering aspects, for example, new metrics
which bring up better system solutions. Furthermore, the knowledge is used

Extensive Architecture Erosion Repairs 305

to model new repair actions that resolve architecture violations, for example,
creating a new layer to resolve a layer dependency violation (see Fig. 2).

The focus of the current work is on the repair recommendation process. For
the architecture checking process the approach uses the toolArchitecture Checker
(ArCh) [25] which can handle different architecture aspects formalized as first-
order logic statements. The output of ArCh are architecture violations that the
approach can use directly.

A first evaluation of the approach is currently in progress which tries to find
optimal repair sequences for dependency violations in layered architectures. As
case study serves the open source software jEdit. Within the evaluation different
heuristic search algorithms are tested that try to find an optimum in regard to
the number of violations and costs.

5 Conclusion

Software architecture erosion happens very likely during the lifetime of complex
software systems and cannot be avoided completely in general. Repairing eroded
software architectures is therefore an important task. Refactoring techniques are
an important puzzle piece to tackle this task.

Existing approaches limit the set of considered architectural aspects or the
set of possible repairs to deal with the overall complexity of the task. Both
limitations lead to approaches that do not address the overall problem holistically
as shown by a simple application scenario. Instead, we suggest to formalize
more existing engineering knowledge of how to repair architecture violation to
realize a more effective heuristic search for good architectural repairs in complex
eroded systems, and outline a possible approach to extensive architecture erosion
detection.

In the future, we will further elaborate this approach and plan to conduct
extensive industrial case studies to show the applicability to “real life” erosion
cases and the usefulness for dealing with software architecture erosion.

References

1. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. ACM
SIGSOFT Softw. Eng. Notes 17, 40–52 (1992)

2. van Gurp, J., Bosch, J.: Design erosion: problems and causes. J. Syst. Softw. 61(2),
105–119 (2002)

3. Lindvall, M., Muthig, D.: Bridging the software architecture gap. IEEE Com-
puter 41, 98–101 (2008)

4. Sarkar, S., Ramachandran, S., Kumar, G.S., Iyengar, M.K., Rangarajan, K.,
Sivagnanam, S.: Modularization of a large-scale business application: A case study.
IEEE Softw. 26(2), 28–35 (2009)

5. de Silva, L., Balasubramaniam, D.: Controlling software architecture erosion: A
survey. J. Syst. Softw. 85(1), 132–151 (2012)

6. Murphy, G.C., Notkin, D., Sullivan, K.J.: Software reflexion models: bridging the
gap between design and implementation. IEEE Trans. Softw. Eng. 27(4), 364–380
(2001)

306 M. Mair and S. Herold

7. Opdyke, W.F.: Refactoring object-oriented frameworks. PhD thesis, University of
Illinois at Urbana-Champaign (1992)

8. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
(1999)

9. Eden, A., Hirshfeld, Y., Kazman, R.: Abstraction classes in software design. IEE
Proc. - Softw. 153(4), 163–182 (2006)

10. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.: A System of Patterns:
Pattern-Oriented Software Architecture, vol. 1. John Wiley & Sons (1996)

11. Ouni, A., Kessentini, M., Sahraoui, H., Boukadoum, M.: Maintainability defects
detection and correction: a multi-objective approach. Automated Software Engi-
neering 20, 47–79 (2013)

12. Seng, O., Stammel, J., Burkhart, D.: Search-based determination of refactorings
for improving the class structure of object-oriented systems. In: Proc. of the 8th
Conf. on Genetic and Evolutionary Computation, pp. 1909–1916. ACM (2006)

13. O’Keeffe, M., Cinneide, M.: Search-based software maintenance. In: Proc. of the
10th Europ. Conf. on Software Maintenance and Reengineering (2006)

14. Ivkovic, I., Kontogiannis, K.: A framework for software architecture refactoring
using model transformations and semantic annotations. In: Proc. of the 10th Europ.
Conf. on Software Maintenance and Reengineering, pp. 135–144. IEEE (2006)

15. Dietrich, J., McCartin, J., Tempero, E., Shah, S.M.A.: On the existence of high-
impact refactoring opportunities in programs. In: Australasian Computer Science
Conf., vol. 122, pp. 37–48. ACS (2012)

16. Shah, S.M.A., Dietrich, J., McCartin, C.: Making smart moves to untangle pro-
grams. In: Proc. of the 2012 16th Europ. Conf. on Software Maintenance and
Reengineering, pp. 359–364. IEEE (2012)

17. Hotta, K., Higo, Y., Kusumoto, S.: Identifying, tailoring, and suggesting form tem-
plate method refactoring opportunities with program dependence graph. In: 16th
Europ. Conf. on Software Maintenance and Reengineering, pp. 53–62 (2012)

18. Bourqun, F., Keller, R.K.: High-impact refactoring based on architecture viola-
tions. In: Proc. of the 11th Europ. Conf. on Software Maintenance and Reengi-
neering, pp. 149–158. IEEE (2007)

19. Schmidt, F., MacDonell, S.G., Connor, A.M.: An automatic architecture recon-
struction and refactoring framework. In: Lee, R. (ed.) Software Eng. Research,
Management & Appl. 2011. SCI, vol. 377, pp. 95–111. Springer, Heidelberg (2012)

20. Pérez, J., Crespo, Y.: Computation of refactoring plans from refactoring strate-
gies using htn planning. In: Proc. of the Fifth Workshop on Refactoring Tools,
pp. 24–31. ACM (2012)

21. Tsantalis, N., Chatzigeorgiou, A.: Identification of move method refactoring op-
portunities. IEEE Trans. Softw. Eng. 35(3), 347–367 (2009)

22. Ouni, A., Kessentini, M., Sahraoui, H., Hamdi, M.: Search-based refactoring: To-
wards semantics preservation. In: 28th IEEE Int. Conf. on Software Maintenance,
pp. 347–356 (2012)

23. Moghadam, I.H., Cinneide, M.O.: Automated refactoring using design differencing.
In: Proc. of the 16th Europ. Conf. on Software Maintenance and Reengineering,
pp. 43–52. IEEE Computer Society (2012)

24. Terra, R., Valente, M.T., Czarnecki, K., da Silva Bigonha, R.: Recommending
refactorings to reverse software architecture erosion. In: Proc. of the 16th Europ.
Conf. on Software Maintenance and Reengineering, pp. 335–340. IEEE (2012)

25. Herold, S.: Architectural Compliance in Component-Based Systems. Foundations,
Specification, and Checking of Architectural Rules. PhD thesis, Clausthal Univer-
sity of Technology (2011)

K. Drira (Ed.): ECSA 2013, LNCS 7957, pp. 307–310, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Benefits and Drawbacks of Reference Architectures

Silverio Martínez-Fernández1, Claudia P. Ayala1, Xavier Franch1,
and Helena Martins Marques2

1 GESSI Research Group, Universitat Politècnica de Catalunya, Barcelona, Spain
{smartinez,cayala,franch}@essi.upc.edu

2 everis, Barcelona, Spain
hmartinm@everis.com

Abstract. Reference architectures (RA) have been studied to create a consistent
notion of what constitutes them as well as their benefits and drawbacks. How-
ever, few empirical studies have been conducted to provide evidence that sup-
port the claims made. To increase this evidence, this paper investigates the
actual industrial practice of using RAs. The study consists of a survey with 28
stakeholders from everis, a multinational consulting company based in Spain.
We report the findings and contextualize them with previous research.

Keywords: Software reference architecture, empirical software engineering.

1 Introduction

Software reference architectures (RA) have emerged as an approach to guide the de-
velopment, standardization and evolution of concrete software architectures for new
systems [5]. As in [1], we refer to the definition of RA as stated by Bass et al.: “a
reference model mapped onto software elements and the data flows between them”.

RAs have become widely studied and used in research and practice [1], as they are
claimed to increase speed, reduce operational expenses and improve quality in soft-
ware systems development mainly due to reuse [6]. Nonetheless, limited evidence
exists to support these claims [7]. Therefore, the goal of this study is to investigate:

How practitioners perceive the potential benefits and drawbacks of RAs?

Industrial Context. This study is part of an ongoing action-research initiative among
everis and our research group, aimed to improve everis’ architectural practices. everis
is a software consulting company that offers solutions for big businesses that provide
a wide spectrum of services to their customers. The solution that everis provides them
is based on the deployment of an RA in their company, from which concrete software
architectures are derived and used in a wide spectrum of applications. In this context,
everis commissioned our research group to systematically gather empirical evidence
about the benefits and drawbacks of the adoption of RAs for their clients, in order to
avoid just relying on anecdotal evidences.

308 S. Martínez-Fernández et al.

2 Benefits and Drawbacks of RAs from the Literature

We identified the following benefits (B) and drawbacks (D) from the literature:

• (B1) Standardization of concrete architectures of systems [1][4][5][7][8].
• (B2) Facilitation of the design of concrete architectures for system development

and evolution [1][5], improving the productivity of system developers [3][4][8].
• (B3) Systematic reuse of common functionalities and configurations in systems

generation [2][4][5], implying shorter time-to-market and reduced cost [3][4].
• (B4) Risk reduction through the use of proven and partly prequalified architectural

elements [2][4].
• (B5) Better quality by facilitating the achievement of quality attributes [3][8].
• (B6) Interoperability of different systems [2][4][5].
• (B7) Creation of a knowledge repository that allows knowledge transfer [2][7].
• (B8) Flexibility and a lower risk in the choice of multiple suppliers [2].
• (B9) Elaboration of the organization mission, vision and strategy [2].
• (D1) The need for an initial investment [6].
• (D2) Inefficient instantiation for the organization’s systems [5].

3 Benefits and Drawbacks of RAs from Our Study

9 RA projects executed in 9 different organizations that were clients of everis were
analyzed. 28 stakeholders from these projects participated in the study. They covered
3 essential roles: 9 software architects and 9 architecture developers that designed and
implemented RAs for the 9 client organizations; and 10 application builders who
created RA-based applications. We report the benefits and drawbacks of RAs for the
development of systems as seen by these practitioners. Fig. 1 includes a bar chart that
shows the frequency in which stakeholders mentioned RA benefits and drawbacks.
The reader is encouraged to see how this study was conducted in
www.essi.upc.edu/~gessi/papers/ecsa13-annex.pdf .

Main Benefits of RA Adoption. We report benefits for RA acquisition organizations
with the code “Ben” whereas we use the code “Ven” for the benefits to RA vendors.

• (Ben-A) Reduced development costs. Mainly due to software component reuse that
facilitate functionality and speed up the process, leading to shorter time-to-market.

• (Ben-B) Reduced maintenance costs. Because of: better understandability of sys-
tems derived from the RA; the fact that RA common elements have fewer errors.

• (Ben-C) Easier development and increased productivity of application builders by
architecturally-significant requirements already addressed and RA artifacts.

• (Ben-D) Incorporation of latest technologies, which among other things facilitates
the recruitment of professionals with the required technological skills.

• (Ben-E) Applications more aligned with business needs.
• (Ben-F) Homogenization (or standardization) of the development and maintenance

of a family of applications by defining procedures and methodologies.

 Benefits and Drawbacks of Reference Architectures 309

Fig. 1. Benefits and Drawbacks of RA adoption in organizations as seen by practitioners

• (Ben-G) Increased reliability of RAs software elements, which are common for
applications, that have been tested and matured, with the reliability that it implies.

• (Ben-H) Others benefits.
• (Ven-A) The consulting company harvests experience for prospective RA projects.

The main reason is that requirements are very similar between client organizations.
• (Ven-B) Reusing architectural knowledge can speed up prospective RA projects

and reduce time-to-market (e.g., by reducing their planning and development time).
• (Ven-C) They gain reputation for prospective client organizations and gain organi-

zational competence.
• (Ven-D) Previous experience reduces the risks in future projects because a “to-be”

model exists. It can be used in projects without very specific requirements.
• (Ven-E) It provides a shared architectural mindset.
• (Ven-F) It turns tacit knowledge into explicit knowledge in the reference model.

Some tool support (e.g., wiki technologies) helps in managing such knowledge.

Main Drawbacks of Using RAs.

• (Dra-A) Additional high or medium learning curve for using the RA features.
• (Dra-B) Limited innovation by giving prescriptive guidelines for applications.
• (Dra-C) Applications’ dependency over the RA. When applications have require-

ments that the RA does not offer yet, applications development is stopped.
• (Dra-D) Complexity. Participants who indicated that the use of the RA is complex.
• (Dra-E) None. Responders who indicated that RA adoption presents no drawbacks.
• (Dra-F) Wrong decisions about the technologies to be used in all the applications.
• (Dra-G) Other drawbacks.

4 Discussion of Main Findings and Conclusions

Table 1 summarizes the benefits and drawbacks of RAs respectively. Its columns
respectively indicate: 1) benefits or drawbacks from the literature and uncovered ones
by our survey that we could not match to the former ones; 2) the extent to which the
results from our survey confirm (√), partially support or help to understand (±), do not

0

5

10

15

20

25

Be
n-

A
Be

n-
B

Be
n-

C
Be

n-
D

Be
n-

E
Be

n-
F

Be
n-

G
Be

n-
H

Ve
n-

A
Ve

n-
B

Ve
n-

C
Ve

n-
D

Ve
n-

E
Ve

n-
F

D
ra

-A
D

ra
-B

D
ra

-C
D

ra
-D

D
ra

-E
D

ra
-F

D
ra

-G

N
um

be
r

of
 in

du
st

ri
al

 p
ra

ct
iti

on
er

s

Application
builder

Architecture
developer

Software
architect

310 S. Martínez-Fernández et al.

Table 1. Summary of benefits and drawbacks of RAs

Benefits D1 Findings Drawbacks D1 Findings
Standardization (B1) √ Ben-F Investment (D1) ± Dra-G

Facilitation (B2) √ Ben-C Inefficient
instantiation (D2)

± Imp-C

Reuse (B3) √ Ben-A, Ben-B,
Ven-B

Learning curve new Dra-A

Risk reduction (B4) √ Ben-G, Ven-D Limited innovation new Dra-B

Enhanced quality (B5) ± Ben-E RA dependency new Dra-C

Interoperability (B6) °
2 Complexity new Dra-D

Knowledge repository (B7) √ Ven-A, Ven-F Wrong decisions new Dra-F

Flexibility for suppliers (B8) ± Ven-E

Mission, vision, strategy (B9) ×
3

Latest technologies used new Ben-D

Reputation new Ven-C

a. Notes: 1) diagnostic; 2) not mentioned as a benefit; 3) mentioned as enterprise architecture benefit.

explicitly mention (°), refuse theoretical evidences (×) or uncover new results (new);
and 3) survey findings related to such benefits or drawbacks.

In conclusion, a survey was conducted to analyze benefits and drawbacks of RAs
in the industrial practice. It provides evidence to corroborate or refuse existing re-
search. The main findings were: 1) the support of already known RAs benefits, main-
ly cost savings in the development and evolution of software systems, and the facilita-
tion of the design of concrete software architectures; 2) new risks of adopting RAs
emerged, such as additional learning curve, less room for innovation and complexity.
As future work, we plan to perform further analysis of this survey.

Acknowledgements. This work has been supported by “Cátedra everis” and the
Spanish project TIN2010-19130-C02-00. We thank all participants of the survey.

References

1. Angelov, S., Grefen, P., Greefhorst, D.: A framework for analysis and design of software
reference architectures. Information and Software Technology 54(4), 417–431 (2012)

2. Cloutier, R., Muller, G., Verma, D., Nilchiani, R., Hole, E., Bone, M.: The concept of refer-
ence architectures. Systems Engineering 13(1), 14–27 (2010)

3. Dobrica, L., Ovaska, E.: Analysis of a Cross-Domain Reference Architecture using Change
Scenarios. SAVA@ECSA (2011)

4. Gallagher, B.: Using the architecture tradeoff analysis method sm to evaluate a reference
architecture: A case study. SEI CMU Tech. rep., DTIC Document (2000)

5. Galster, M., Avgeriou, P.: Empirically-grounded reference architectures: A proposal. In:
QoSA-ISARCS, pp. 153–158 (2011)

6. Martínez-Fernández, S., Ayala, C., Franch, X., Martins, H.: REARM: A Reused-Based
Economic Model for Software Reference Architectures. In: ICSR (2013)

7. Muller, G., Laar, P.: Researching reference architectures. In: CSER (2009)
8. Nakagawa, E.Y., Antonino, P.O., Becker, M.: Reference architecture and product line architec-

ture: A subtle but critical difference. In: Crnkovic, I., Gruhn, V., Book, M. (eds.) ECSA 2011.
LNCS, vol. 6903, pp. 207–211. Springer, Heidelberg (2011)

Swap Fairness for Thrashing Mitigation

François Goichon, Guillaume Salagnac, and Stéphane Frénot

University of Lyon
INSA-Lyon, CITI-INRIA

F-69621, Villeurbanne

Abstract. The swap mechanism allows an operating system to work with
more memory than available RAM space, by temporarily flushing some
data to disk. However, the system sometimes ends up spending more time
swapping data in and out of disk than performing actual computation.
This state is called thrashing. Classical strategies against thrashing rely
on reducing system load, so as to decrease memory pressure and increase
global throughput. Those approaches may however be counterproductive
when tricked into advantaging malicious or long-standing processes. This is
particularily true in the context of shared hosting or virtualization, where
multiple users run uncoordinated and selfish workloads.

To address this challenge, we propose an accounting layer that forces
swap fairness among processes competing for main memory. It ensures that
a process cannot monopolize the swap subsystem by delaying the swap
operations of abusive processes, reducing the number of system-wide page
faults while maximizing memory utilization.

1 Introduction

When the operating system is under memory pressure, the virtual memory man-
ager picks some arbitrary memory pages and temporarily moves them out of RAM,
to free up some space. Whenever such a page is later requested, the hardware gener-
ates a page fault, i.e. an event informing the OS that the page needs to be reloaded
–swapped in– again in RAM. While swapping gives applications the illusion of an
“infinite” memory, it may turn into a severe performance bottleneck, as accessing
secondary storage is several orders of magnitude slower than main memory. Un-
der high memory pressure from multiple tasks, the system has to constantly swap
pages in and out, yielding low CPU utilization. This state is called thrashing, and
is a common issue on shared systems, where the activity of a unique user may have
a significative impact on the system behavior [5].

Classical strategies [1,3,4,11] to avoid thrashing either reduce global memory
utilization or are very expensive to implement. More recently, Jiang et al.’s token-
ordered LRU policy [9] proposes to protect the most memory-intensive task by
keeping all its pages in main memory. This approach expects a quicker termination
of that task and release of its memory pressure.

However, modern systems are typically running uncoordinated workloads, from
multiple users. In this context, trying to favour the most memory-hungry task

K. Drira (Ed.): ECSA 2013, LNCS 7957, pp. 311–315, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

312 F. Goichon, G. Salagnac, and S. Frénot

may obliterate lighter tasks performance, especially when heavier tasks are long-
standing. An obvious solution to this issue would be to use memory quotas. How-
ever, figuring out suitable settings is challenging, and even impossible when the
workloads are not known in advance. Moreover, statically pre-allocating space
leads to poor memory utilization.

On the contrary, our approach tries to dynamically minimize the impact of
deviant behaviors, while still maximizing memory utilization. Our idea is to inter-
cept and manipulate page faults: if N users contend for memory, then we restrict
each one to be causing no more than a 1

N fraction of the overall swapping time.
Delaying swap-in requests of abusive users reduces the total number of page faults
and allow other tasks to run more smoothly.

2 Related Work

This section first reviews existing approaches aiming at detecting or preventing
thrashing. We then discuss past work on fairness for disk usage, which is an im-
portant topic in the real-time systems community.
Thrashing Mitigation. Past proposals mainly focus on reducing system-wide load.
The idea is to first try and evaluate the needs of each task, and then to take appro-
priate actions when memory pressure arises, from task suspension to bin-packing
and memory-aware scheduling [3,4,11]. Even though they were implemented [6,12],
such approaches increase overall throughput at the expense of increased latency
for individual tasks, and cannot adapt to fluctuating memory demands [10].

To cope with dynamicity, Jiang and Zhang [8,9] propose to temporary pro-
tect the most memory-intensive task: while protected, the task’s pages cannot be
swapped out. If the process finishes faster, its memory is freed, reducing system-
wide memory pressure and early thrashing peaks. The Linux kernel implements
this idea, starting with v2.6.9, with the name swap token. The main limitation of
this approach is the hypothesis that memory-hungry tasks are transient. If several
long-running tasks compete for memory, the swap token is of no help, and can
even make things worse.

On the contrary, the local page replacement policy [1] aims at isolating tasks
performance, as it restricts every process to only swap out its own pages. However,
this idea requires specific memory allocations schemes [2,7], which are difficult to
fine-tune, and do not maximize memory space utilization.

Disk Usage Fairness. To improve performance, the OS typically interposes several
software layers between user programs and hardware devices. Each layer reorders
requests to increase overall throughput. Unfortunately, this enables adverse ef-
fects caused by one task to have a significant impact on other tasks. For instance,
abusing filesystem locality may cause request starvation, as both the operating
system’s I/O scheduler and on-disk schedulers try to minimize disk head move-
ment [15]. Many techniques have been proposed to address request starvation,

Swap Fairness for Thrashing Mitigation 313

such as draining the request queue [13], or dynamically adapting the number of
best-effort requests allowed to be passed to the I/O scheduler, considering missed
deadlines by real-time requests [14]. Whereas these ideas are designed for real-time
environments, they apply the idea of sporadic scheduling as a fairness mechanism
for device requests, focusing on delaying requests that can negatively impact the
reponse time of others.

Discussion. While most approaches to mitigate thrashing ignore individual per-
formance, others [1] bring up the idea of performance isolation, a requirement on
shared platforms. On the other hand, researchers from the real-time community
have developped dynamic approaches to reduce or bound the maximum duration
of disk requests. In the next section, we propose an approach aiming at controlling
the fairness of swap usage, to reduce page faults from memory heavy processes,
thus bounding the impact of deviant workloads while still maximizing memory
utilization.

3 Our Approach

Our approach to mitigate thrashing is to enforce fairness among the different users
requesting memory. We refer to those users as swapping domains. A swapping
domain may consist of one process, or of all the processes of a system user or
system group. In this section, we present our approach with further detail and
argue why fairness on swap operations can help to mitigate thrashing.

Fairness on Swap Operations to Mitigate Thrashing. The natural circumventions
to domains monopolizing main memory - quotas or local page replacement [2] - do
not use the system’s space at its full potential and are hard to setup in practice.
Our approach to deal with this problem is to disregard space usage, and instead
to account for the amount of work that each domain induces on the swapping
subsystem. When the system is thrashing, it means that one swapping domain
must be preventing others to establish their working sets. This implies that this
domain has to constantly produce page faults to keep its own pages in main memory.
Therefore, the system spends more time in swapping operations on behalf of this
particular domain than for other domains. Our approach aims at detecting this
situation, and reacting by delaying requests from abusive domains until other
domains have had their share of swapping time. This may increase the actual
execution time of memory-heavy processes but reduces global page faults rate,
while providing non-abusive domains with guaranteed periods of time where their
pages will remain available. This strategy is almost the opposite of the swap-token
approach, in which a process causing more page faults becomes less likely to have
its pages swapped out.

Approach Formalization. We consider a set of N swapping domains {Di}i∈{1..N},
and we write S(Di) to denote the cumulated duration of swapping operations
caused by domain Di. A domain D is said to be abusive if S(D) > 1

N

∑
S(Di).

314 F. Goichon, G. Salagnac, and S. Frénot

In other words, a domain is abusive when it induces more, or longer, swapping oper-
ations than other competing domains. Whenever a swapping domain is detected as
being abusive, we delay all its future swap-in operations until S(D) ≤ 1

N

∑
S(Di)

holds again.
The main OS events required to calculate the S(Di) are the swap request issue

dates and completion dates: by calculating the time difference between these two
events we can deduce the precise duration of each swap-in operation. The sum of
these durations reflects the pressure that a particular swapping domain is putting
on the virtual memory subsystem. Please note however that neither the disk de-
vices nor the software I/O layers have a FIFO behavior. As a result, multiple disk
requests sometimes cost less than a single one. Therefore, computing the duration
of the requests and not just counting them provides a sounder basis for the ac-
counting. Implementing such an approach in a monolithic kernel brings up many
efficiency concerns, that we detail and address in a companion technical report [5].

Prototype. To evaluate our idea, we implemented our accounting layer within the
Linux kernel, and compared its performance and its fairness to the Linux swap-
token implementation. As expected, when a memory-hungry (maybe malicious)
process runs for a long enough time, then the swap token makes it harder for other
legitimate processes to execute smoothly. With our swap accounting layer, legit
workloads that are intensive in memory are allocated more swap time than with the
swap token, and their performance is improved significantly as a result. Moreover,
forcing fairness on the swap-in operations is equivalent to force a general fairness
in terms of computation, and induces a better predictability of execution duration.
More details on our experiments results can be found in [5].

4 Conclusion

The problem of physical memory shortage, with thrashing as its side effect, has
been an open problem for more than 50 years. As a result, the virtual memory
subsystem has been widely studied and many improvements over the existing
page replacement policies have been presented to allow concurrent processes to
run more smoothly. The most recent step is the introduction of the token-ordered
LRU, or swap token, which selects processes for LRU evasion. This mechanism
allows processes with important memory demands to keep their pages in main
memory and hopefully finish quickly enough to reduce system pressure.

In this paper, we highlight the fact that the swap token may be counterproduc-
tive when in presence of malicious or uncoordinated workloads that do not end
their execution quickly. As an alternative, we propose a lightweight accounting
layer that delays swap requests from processes monopolizing the virtual memory
subsystem without any preliminary configuration. Such a system allows processes
with legit memory needs to have normal access to the swap space at the expense of
abusive processes. Our first results show that the approach is promising in terms
of performance and fairness, and is well adapted to shared hosting platforms.

Swap Fairness for Thrashing Mitigation 315

References
1. Aho, A.V., Denning, P.J., Ullman, J.D.: Principles of optimal page replacement.

Journal of the ACM 18(1), 80–93 (1971)
2. Alderson, A.: Thrashing in a multiprogrammed paging system. Technical report,

University of Newcastle (1972)
3. Denning, P.J.: Thrashing: its causes and prevention. In: 1968 Fall Joint Computer

Conference, pp. 915–922. ACM (1968)
4. Denning, P.J.: The working set model for program behavior. Commun. ACM 11(5),

323–333 (1968)
5. Goichon, F., Salagnac, G., Frnot, S.: Swap fairness for thrashing mitigation. Techni-

cal report, INRIA (2013)
6. Hewlett-Packard. HP-UX 11i Version 3: serialize(1) (2010)
7. Iyer, S.: Advanced memory management and disk scheduling techniques for general-

purpose operating systems. PhD thesis, Rice University (2005)
8. Jiang, S., Zhang, X.: TPF: a dynamic system thrashing protection facility. Software:

Practice and Experience 32, 295–318 (2002)
9. Jiang, S., Zhang, X.: Token-ordered LRU: An effective page replacement policy and

its implementation in Linux systems. Perform. Eval. 60(1-4), 5–29 (2005)
10. Morris, J.B.: Demand paging through utilization of working sets on the MANIAC II.

Commun. ACM 15(10), 867–872 (1972)
11. Reuven, M., Wiseman, Y.: Medium-term scheduler as a solution for the thrashing

effect. Computer J. 49(3), 297–309 (2006)
12. Rodriguez-Rosell, J., Dupuy, J.-P.: The design, implementation, and evaluation of a

working set dispatcher. Commun. ACM 16(4), 247–253 (1973)
13. Stanovich, M.J., Baker, T.P., Wang, A.I.: Throttling on-disk schedulers to meet soft-

real-time requirements. In: Real-Time and Embedded Technology and Applications
Symposium, RTAS 2008 (2008)

14. Wu, J., Brandt, S.: Storage access support for soft real-time applications. In: Real-
Time and Embedded Technology and Applications Symposium, RTAS 2004 (2004)

15. Yu, Y.J., Shin, D.I., Eom, H., Yeom, H.Y.: NCQ vs. I/O scheduler: Preventing
unexpected misbehaviors. ACM Transactions Storage 6(1), 2 (2010)

Architectural Slicing: Towards Automatic

Harvesting of Architectural Prototypes

Henrik Bærbak Christensen1 and Klaus Marius Hansen2

1 Department of Computer Science, Aarhus University, Aarhus, Denmark
hbc@cs.au.dk

2 Department of Computer Science (DIKU), University of Copenhagen,
Copenhagen, Denmark

klausmh@diku.dk

Abstract. Architectural prototyping is a widely used practice, con-
cerned with taking architectural decisions through experiments with light-
weight implementations. However, many architectural decisions are only
taken when systems are already (partially) implemented. This is prob-
lematic in the context of architectural prototyping since experiments
with full systems are complex and expensive and thus architectural learn-
ing is hindered. In this paper, we propose a novel technique for harvesting
architectural prototypes from existing systems, “architectural slicing”,
based on dynamic program slicing. Given a system and a slicing crite-
rion, architectural slicing produces an architectural prototype that con-
tains the elements in the architecture that are dependent on the elements
in the slicing criterion.

1 Motivation

Software architecture work does not stop once a systems has been deployed.
New quality attribute demands may trigger the wish to change the software
architecture to better accommodate such requirements. However, experimenting
with architectural changes in large systems is usually prohibitively expensive as
even minor changes have ripple effects that are costly to fix even though they
are unrelated to the architectural challenge.

Architectural prototypes (APs) [1] constitute a lightweight and cost efficient
approach to explore changes to software architecture: an AP is a minimal exe-
cuting system that only contains the core architectural elements relevant for the
architectural issue explored, but of course the AP must be valid in the sense that
architectural knowledge gained from the AP will be true also for the original sys-
tem (e.g., that a certain communication component architecture change indeed
improves performance). As the AP has a much smaller codebase, the software
architect can explore the architectural design space much more freely and faster.
Christensen [3] describes harvesting as the process of extracting a valid AP from
an existing system.

However, the apparent appeal is somewhat offset by the cost of the harvesting
process itself: core elements must be copied from the host system to form the AP,

K. Drira (Ed.): ECSA 2013, LNCS 7957, pp. 316–319, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Towards Automatic Harvesting of Architectural Prototypes 317

usually trimmed for irrelevant methods, the dependency graph analyzed in order
to include dependent elements while stubbing others deemed irrelevant for the
architectural issue. This cost results in a reluctance to harvest and a tendency
to either experiment within the original system itself or even worse avoid the
experiments all together.

In this research challenge paper we propose to take the ideas of program
slicing [7,5] and apply them in an software architectural context i.e. viewing
the process of harvesting an AP from a host system as an architectural slicing
process.

1.1 Example

In a research project related to CO2 emission monitoring, the readings from 3,180
sensors in a student apartment complex are uploaded to a database every five
seconds. The software architecture is a three tier system in which the complex’s
sensor collector gateway publishes raw data to a message queue. A server side
consumes raw data from the queue and stores them in a MongoDB database.
The producer API is tested through a small set of end-to-end JUnit test cases
as outlined in the pseudo code:

1 @Test public void shouldSupportEnd2EndScenario () {
2 read ings = new SensorReadings () ;
3 [i n s e r t s en sor r ead ings 0 . . 3 180 in to ’ r ead ings ’]
4 chr = new ClientRequestHandler () ; // POSA Vol 4 p 246
5 chr . send (read ings) ;
6 // v a l i d a t e t ha t ’ read ings ’ are s a f e l y s t o r ed
7 query = new Query ([l a s t i n s e r t ed read ing o f sen sor 0]) ;
8 double value = chr . r e t r i e v e (query) ;
9 as se r tEqua l s (r ead ings . getValueOfSensor (0) , va lue) ;

10 }

The ClientRequestHandler is responsible for serializing the SensorReadings object
and publishing it on a message queue.

Now, the software architect is requested to improve the architecture’s mod-
ifiability, by making the ClientRequestHandler more flexible with respect to the
type of data transmitted, so third-party developers can develop Android apps
for sending GPS and motion sensor data to the database.

However, it is difficult to experiment because the above test case relies on a
running test environment (message queue and MongoDB) and has dependencies
on many server side abstractions (MongoDB schemas, server side deserializers,
etc.). Changing the client API will require changes in a lot of places that are not
really relevant for the architectural issue but required just to keep the test case
running.

A harvested AP would consist of the above test case, the ClientRequest-
Handler’s send and retrieve methods, transitively dependent methods and
components (serializer, SensorReadings) and just a test stub implementation of
the message queue library. This allow experimentation without changes rippling

318 H.B. Christensen and K.M. Hansen

into the server and database tiers. It is this harvesting process we propose to
automate.

2 Background

Weiser [7] originally introduced the concept of a “program slice” as pieces of a
program decomposed by dataflow and provided algorithms for calculating slices
from procedural programs (“slicing”). Generally, a distinction is made between
“static slicing” (in which slicing is performed without making assumptions on a
program’s input) and “dynamic slicing” (in which slicing relies on test cases) [6].

Program slicing has been applied in numerous areas including debugging,
software maintenance, and testing [6,5]. Furthermore, program slicing techniques
have been applied to software architecture descriptions (in particular in ACME
and Rapide) [4]. In this paper, we propose to slice system on an architectural
level, but based on the implementation of the system, so as to support software
architects in architectural prototyping.

Christensen [3] defined an operational conceptual framework for architectural
prototyping including the concepts of “harvesting” and “retrofitting”. Harvest-
ing refers to the process of extracting an AP from an existing system, whereas
retrofitting refers to changing an existing system to accommodate architectural
decisions made in an architectural prototype. Our contribution relates to the
automation of these processes.

3 Approach

Based on the definition of software architecture by Bass et al. [2], we informally
define an architectural slice as

An architectural slice of a system is an executable subset of the system.
The software architecture of the architectural slice comprises a subset of
the software elements and relations of the software architecture of the
system, selected according to a slicing criterion

Architectural slicing is then the tasks of computing an architectural slice, essen-
tially automating the harvesting of an architectural prototype. The slicing crite-
rion may statically select elements of interest or dynamically select elements of
interest based on executions of a system. In the following, we are concerned with
dynamic slicing, using test cases to select elements and relations of interest.

We currently consider Java-based systems and their execution, but the ideas
should generalize to any language with strong instrumentation and code genera-
tion tools. In the Java case, elements are packages, interfaces, classes from which
objects are constructed, and the methods that are exercised by test case exe-
cutions. We envision a process in which the test cases are executed on the host
system(s) while architectural harvesting processes are monitoring and collect-
ing execution data, the harvested element set. The harvest element set records

Towards Automatic Harvesting of Architectural Prototypes 319

information on executing methods and objects, type and package relationships,
return values, etc. Once the tests cases have finished execution, the architect is
presented with an overview that allows him/her to optionally annotate elements
in the set. Annotations may mark elements to ignore or elements to replace with
stubs. As an example, the message queue client library used in the example above
would be annotated as “stub” as we want real calls to the message queue to be
stubbed/replaced with simple replay of return values recorded in the harvesting
phase. In a final step, the annotated element set is used to construct an AP
that is faithful to the host system, passes the selection criteria test case(s), but
only include elements as defined by the architect’s annotations. Thus the AP
will have a significantly (orders of magnitude) smaller code base allowing much
easier experimentation.

Note that the harvesting processes must coordinate across machine boundaries
in the most likely case of distributed systems, as client calls must be matched
by server invocations.

3.1 Initial Experiments

We have designed and implemented an experimental architectural slicer, APHar-
vest, for Java. The slicer is implemented as a Java agent (that may, e.g., be
added as an argument in an Ant java task). The agent traces a program exe-
cution dynamically through a sensor implemented using AspectJ. The events
of the sensor are received by a harvester that collects information on elements
(methods, classes and packages) that are affected by execution. Subsequently, a
generator uses CodeModel to generate a Java project containing the slice.

References

1. Bardram, J., Christensen, H.B., Hansen, K.M.: Architectural Prototyping: An Ap-
proach for Grounding Architectural Design and Learning. In: WICSA, pp. 15–24
(2004)

2. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 3rd edn.
Addison-Wesley (2012)

3. Christensen, H.: Towards an Operational Framework for Architectural Prototyping.
In: 5th Working IEEE/IFIP Conference on Software Architecture (WICSA 2005),
pp. 301–302 (2005)

4. Kim, T., Song, Y.-T., Chung, L., Huynh, D.T.: Dynamic Software Architecture Slic-
ing. In: Proceedings of the Twenty-Third Annual International Computer Software
and Applications Conference, COMPSAC 1999, pp. 61–66. IEEE (1999)

5. Silva, J.: A vocabulary of program slicing-based techniques. ACM Computing Sur-
veys 44(3), 1–41 (2012)

6. Tip, F.: A Survey of Program Slicing Techniques. Journal of Programming Lan-
guages 3(3), 121–189 (1995)

7. Weiser, M.: Program Slicing. IEEE Transactions on Software Engineering 10(4),
352–357 (1984)

Describing Cloud Applications Architectures

Everton Cavalcante, Ana Luisa Medeiros, and Thais Batista

DIMAp – Department of Informatics and Applied Mathematics
UFRN – Federal University of Rio Grande do Norte

Natal, Brazil
evertonrsc@ppgsc.ufrn.br, analuisafdm@gmail.com, thais@ufrnet.br

Abstract. The architecture of cloud applications differs from tradi-
tional software architectures mainly regarding their basic architectural
elements, the services, the metadata about the services for expressing in-
formation related to quality parameters and pricing models, and the con-
straints over the applications and the used services. This paper presents
Cloud-ADL, a seamless extension of the ACME ADL to support the
architectural representation of cloud applications by relying on the ex-
isting ACME abstractions. In addition, it defines contracts to modularly
encapsulate typical contract information of cloud applications, such as
quality parameters, pricing model of the services, and constraints. Fi-
nally, Cloud-ADL also supports the dynamic reconfiguration of cloud
applications through programmed changes, which can be foreseen at de-
sign time and specified at the ADL level.

1 Introduction

Cloud Computing is a new computing paradigm that enables ubiquitous, conve-
nient, on-demand network access to a shared pool of resources (e.g. networks,
servers, applications, and services) that can be rapidly provisioned and released
with minimal management effort or interaction with the service provider [1]. The
emergence of this paradigm brings several new challenges to be addressed in the
Cloud Computing context, and one of them is related to methods, tools, and tech-
niques to support developers to design, project, and deploy new software systems
that make use of the cloud technology. In fact, building cloud-based applications
is a challenging task as they are significantly more complex due to the intrin-
sic complexity of using cloud service providers. The particular nature of Cloud
Computing applications creates specific requirements that also demand changes
in terms of the development of such applications, which encompass methodolo-
gies and techniques for requirements elicitation, architecture, implementation,
deployment, testing, and evolution of software [2,3].

In terms of software architecture, architectures of service-oriented applications
(such as cloud applications) differ from the architecture of traditional applica-
tions mainly re- garding their basic architectural elements, the services, and
their dynamic behavior, thus dealing with issues related to heterogeneity inter-
operability, and changing requirements [4,5]. As most of the works addressing

K. Drira (Ed.): ECSA 2013, LNCS 7957, pp. 320–323, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Describing Cloud Applications Architectures 321

cloud-related challenges focus on the underlying infrastructure or on discussions
about the cloud services provided by third-party providers, there is an impor-
tant gap in terms of architectural support in order to enable the use of the cloud
technology in a systematic way. For instance, it is reasonable to think that soft-
ware architectures need to be described in a different way if they are deployed on
the cloud. Therefore, it is necessary to provide an architectural support to their
project and means to model them and capture important elements regarding the
Cloud Computing paradigm.

In this perspective, this paper gives an overview of Cloud-ADL (see Section 2),
a customized architecture description language (ADL) [6] that takes advantage of
ACME [7] elements to model the architecture of a cloud application, thus relying
on the existing abstractions and avoiding the addition of many new ones. In this
perspective, Cloud-ADL enables to specify the resources (cloud services) to be
used by the applications, as well as to define their relationships, metadata about
the services, constraints, and dynamic reconfiguration actions according to QoS
and resource provisioning constraints.

2 Cloud-ADL: An Overview

ADLs [6] usually provide both a conceptual framework as a concrete syntactic
notation to characterize software architectures in terms of components, connec-
tors, and configurations. Although there is a myriad of ADLs in the literature,
the architectural features of cloud applications goes beyond what is currently
supported by the existing ADLs, so that it is missing models that capture spe-
cific and important aspects always present in the Cloud Computing context, such
as: (i) the logical separation between the cloud platforms and the applications
that use the provided services; (ii) the agreed contract between these players,
and; (iii) the QoS model for the services. To the best of our knowledge, there
are no proposals in the literature for modeling cloud-based applications, and
despite of they are service-oriented, there are very few proposals for describing
service-oriented software architectures [4,5].

Cloud-ADL is a seamless extension of the ACME [7] general-purpose ADL
for modeling Cloud Computing applications. The philosophy of Cloud-ADL is
to take advantage of ACME elements to describe architectures of a cloud applica-
tion, thus relying on existing abstractions and avoiding the addition of many new
abstractions and maintaining characteristics related to generality, simplicity, and
expressiveness inherited from ACME. Cloud-ADL enables to describe the archi-
tecture of the applications and: (i) the services provided by cloud platforms and
that are used by the applications, thus making a clear and modular separation
between the definition of the cloud services and the specification of the appli-
cations that use them; (ii) the agreed contracts between service providers and
clients, in terms of quality metadata, pricing models, and constraints regarding
the services; (iii) application-level constraints, and; (iv) dynamic reconfiguration
actions according to QoS and resource provisioning constraints.

322 E. Cavalcante, A.L. Medeiros, and T. Batista

The complete specification of a cloud application in Cloud-ADL encompasses:

1) Definition of Cloud Services Provided by Cloud Computing Plat-
forms and Essential Characteristics Related to This Context. In this
step, the ACME Family element is customized to the cloud scenario for repre-
senting the set of services provided by a cloud platform, so that a new Family
abstraction must be created for each cloud platform. In the Family element,
each service provided by a cloud platform is represented by a Type associated
to a Component element, similarly to the specification of component types in
ACME. In the architectural description of the application, the component types
that represent provided cloud services can be instantiated in order to indicate
which services are being used by the application.

Furthermore, Cloud-ADL comes with a novel mandatory first-class primitive
called Contract for specifying the agreed contract of service providers in terms of
cloud both static and/or quality attributes and constraints over them, and also
the pricing model of the services. Within such element associated to a given ser-
vice, there are four main elements: (i) the QualityParameters element, in which
the properties regarding the quality parameters are specified; (ii) the Pricing-
Model element, which defines details about the pricing model of the service;
(iii) a constraints section specified in Armani [8], which determinate the mini-
mal warranties offered by the service provider related to the quality parameters,
and; (iv) a section in which the software architect can annotate any additional
information using the conventional Property element defined in ACME. In ad-
dition, Cloud-ADL introduces the Dynamic clause associated to elements of the
Contract that enables to specify monitorable parameters at runtime.

2) Specification of a Cloud Application Itself in Cloud-ADL. The speci-
fication of an application in Cloud-ADL is very similar to the ACME architectural
description of systems by using the same basic architectural elements
defined in such ADL. In a Cloud-ADL architectural description of an application,
cloud services (represented by Component elements) are instances of the services
(represented by Component Type elements) defined in the Family elements that
abstract the cloud platforms. In this perspective, a System element that describes
a cloud application must extend (adhere) the Family element that represent the
cloud platforms that are providers of the services used by the application. For in-
stance, in the statement System A : B, C, the applicationA uses services provided
by the cloud platforms represented by the B and C Family elements. In Cloud-
ADL, describing a component x in a System element as an instance of a component
type y defined within a Family element means that the application component x
uses the cloud service defined by the component type y.

As theDynamic clause present inCloud-ADL supports the specification ofmon-
itorable parameters at runtime and these dynamic attributes can change over time,
a reconfiguration action is required in order to better satisfy the application needs.
In this perspective, Cloud-ADL currently addresses dynamic reconfiguration in
terms of architectural programmed changes, which can be foreseen at design time,
thus following ideas proposed in the Plastik framework [9], which extends the
ACME/Armani ADL to enable this dynamic reconfiguration support.

Describing Cloud Applications Architectures 323

3 Final Remarks

In this paper we briefly introducedCloud-ADL, a simple, seamless extension of the
ACME ADL that relies on the existing ACME abstractions and their associated
extensions (e.g. Armani and Plastik) and avoids adding many new abstractions.
Cloud-ADL makes a clear and modular separation between the definition of the
cloud services and the specification of cloud applications that use them. By relying
on the ACME/Armani ADL, it is possible to specify the high-level architectural
representation of cloud service providers and cloud applications, as well as the re-
lated constraints. In this perspective, our philosophy in the design of Cloud-ADL
was to avoid reinventing the wheel by taking advantage of existing abstractions,
reusing and adapting them to the fit the needs of the cloud domain, and to offer a
simple and small language. As far as we are concerned, this is the first proposal in
terms of provisioning a customized ADL for modeling cloud domain specificities.
Furthermore, an important issue considered by Cloud-ADL is the dynamic recon-
figuration of cloud applications at the ADL level combined with the specification
of monitorable parameters at runtime.

References

1. Mell, P., Grance, T.: The NIST Definition of Cloud Computing. Technical report,
National Institute of Standards and Technology, USA (2011)

2. Chhabra, B., et al.: Software Engineering issues from the cloud application per-
spective. International Journal of Information Technology and Knowledge Manage-
ment 2(2), 669–673 (2010)

3. Sriram, I., Khajeh-Hosseini, A.: Research agenda in cloud technologies. Computing
Research Repository. Cornell University, USA (2010)

4. Xie, D., et al.: An approach for describing SOA. In: 2006 IEEE International Con-
ference on Wireless Communications, Networking and Mobile Computing, pp. 1–4.
IEEE Computer Society, USA (2006)

5. Jia, X., et al.: A new architecture description language for service-oriented archi-
tecture. In: 6th International Conference on Grid and Cooperative Computing, pp.
96–103. IEEE Computer Society, USA (2007)

6. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for soft-
ware architecture description languages. IEEE Transactions on Software Engineer-
ing 26(1), 70–93 (2000)

7. Garlan, D., et al.: ACME: An architecture description interchange language. In:
1997 Conference of the Centre for Advanced Studies on Collaborative Research,
pp. 169–189. IBM Press, USA (1997)

8. Monroe, R.: Capturing software architecture expertise with Armani. Technical re-
port, Carnegie Mellon University, USA (1998)

9. Batista, T.V., Joolia, A., Coulson, G.: Managing dynamic reconfiguration in
component-based systems. In: Morrison, R., Oquendo, F. (eds.) EWSA 2005. LNCS,
vol. 3527, pp. 1–17. Springer, Heidelberg (2005)

MVIC – An MVC Extension for Interactive,
Multimodal Applications

Marc Hesenius and Volker Gruhn

paluno - The Ruhr Institute for Software Technology
University of Duisburg-Essen

Gerlingstr. 16, 45127 Essen, Germany
{marc.hesenius,volker.gruhn}@paluno.uni-due.de

http://www.paluno.de

Abstract. MVC is considered an important architectural patterns when it comes
to interactive applications since its invention in the days of Smalltalk. However,
interaction with computers has changed. Touch-screens are as natural to users
nowadays as mouse and keyboard have been for the past decades of comput-
ing and HCI-researchers keep on developing more interaction modalities. Multi-
modal applications pose major challenges to software engineers who have to deal
with different ways for users to express the same intention. MVC does not in-
corporate the flexibility needed to cope with multimodal applications as it makes
the controller component responsible for interaction interpretation and manag-
ing the application flow. We propose MVIC, an extension to MVC dedicated to
provide a solid software architecture for multimodal, interactive applications by
introducing a dedicated interaction component.

1 Introduction

Software engineers have been optimising and refining the incorporation of classic
interaction modalities like mouse and keyboard into software products for decades.
Model-View-Controller (MVC), the architectural pattern for interactive applications,
was introduced with Smalltalk-80 [1,5] and has ever since been used by different ap-
plications in different contexts. But with the appearance of smartphones and tablets,
interaction with computers has changed. Surface gestures have become a common inter-
action modality and HCI-Researchers keep on adding new technologies to the existing
portfolio, increasing and improving interaction possibilities.

Often, the same functionality can be accessed in different ways depending on the
current situation – for example, a ringing phone can be turned off by either pressing
a button or turning the device upside down. The reasons to incorporate different in-
teraction modalities are manifold, from situational reasons to personal preferences and
cultural background. Different schemes of the same interaction modality, like novice
and expert gestures, may improve usability and applications could be easily adapted to
the customs of different cultures.

But what maybe a wonderful new world full of possibilities to users poses major
challenges to software engineers. The new interaction modalities are often highly am-
biguous and not easily interpreted – interaction has evolved from basic concepts to a

K. Drira (Ed.): ECSA 2013, LNCS 7957, pp. 324–327, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.paluno.de

MVIC – An MVC Extension 325

highly complex matter in the last years. Recent mobile devices equipped with different
sensors allow developers to implement a variety of interaction modalities. Operating
systems like Android typically give support by providing recognition functions for a
basic set of gestures. However, the implementation of custom gestures requires devel-
opers to work on raw sensor data. In a typical MVC setup, the controller is in charge
of tracking user actions and inferring the meaning for the application, which requires
developers to implement recognition and maintenance code for several input sources at
one place. As applications may change often and quickly, maintenance is made difficult.
Developers aim for using agile development methodologies, short release cycles and be
able to extend and adapt applications to current needs. The foundation for this goal is
always a sound and solid software architecture. MVC has provided this base for many
years but is reaching limits when it comes to multimodal technologies.

We describe an extension to the well-known MVC pattern named Model-View-
Interaction-Controller (MVIC) focused on separating controller and interaction
concerns. The software’s architecture should reflect the flexibility that results from the
advances in HCI and allow developers to add new interaction modalities without the risk
of breaking existing ways of interaction. In standard MVC, the controller is responsi-
ble for interpreting any kind of input and mapping it to the application’s functionality,
hence breaking separation of concerns.

Our contribution to the field of software architecture for interactive applications is
twofold. One the one hand, MVIC slims down code written in the controller and in-
troduces a dedicated interaction component, thus increasing separation of concerns. On
the other hand, MVIC adapts the reliable and familiar MVC pattern to recent needs,
making it easier to learn and implement in existing frameworks. This paper is struc-
tured as follows: Section 2 will introduce MVIC, its concepts and ideas and how the
media player implementation can be optimized. Related work is discussed in section 3.
The paper is concluded in section 4.

2 Model-View-Interaction-Controller

MVIC consists of the basic MVC elements and adds a dedicated interaction component.
It is oriented towards more recent variants of MVC, removing any relationship between
view and model. The components and their tasks are:

Model. The model in MVIC remains unchanged from its role in MVC. Its main task is
to provide the core functionality, map real world objects into the application and provide
a place to store and manipulate their current state.

View. The view has the same function in MVIC as in MVC as well – it presents data
from the model to the user and is therefore in charge of the application’s output. Dif-
ferent descriptions of MVC also interpret the view role in a distinct way, adding or
removing input responsibilites (cf. [4] for a narrow and in contrast [2,5] for a wide in-
terpretation). In MVIC this makes no difference as any input task should be delegated
to the interaction component, no matter where the input information comes from.

Interaction. Here processing of all interaction takes place. In MVC, the controller
solely is responsible for this task, which involves identification as well as interpreta-
tion of input. Whatever the user did is transferred to the controller and it decides how

326 M. Hesenius and V. Gruhn

Fig. 1. MVIC Structure

the application should react. In MVIC, the interaction component is in charge of inter-
preting the user input: It receives input data from any device sensor, tries to figure out
what the user wants to do, and sends a message to the controller containing the user’s
intention; hence we call this message a UserIntent. UserIntents should be designed to
carry additional information needed for the controller to perform actions (e. g. touch
coordinates). The interaction component will usually consist of several smaller compo-
nents called InteractionHandlers, each of them dedicated to processing a certain input
modality. All code previously crammed up in the controller is now distributed over
various dedicated components, enforcing separation of concerns and leading to a more
structured architecture. Although the InteractionHandlers map a certain kind of input
to a specific UserIntent, they are oblivious to its meaning. Mapping the UserIntent to
functionality and calling the model is still the controller’s task.

Controller. The main purpose of the controller remains unchanged. As in MVC, the
controller is in charge of the whole application flow. However, it does not receive de-
tailed input information from sensors anymore and is completely oblivious to how in-
teraction processing is implemented. Instead, it waits for the arrival of UserIntents. As
a consequence, the application needs a precise interaction concept, which maps user
input to UserIntents to specific functionality.

Summarized, MVIC strips the controller of any detailed user input recognition, sen-
sor data is transferred to the interaction component. This component is in charge of
identifying the user’s intention and inform the controller about it. Whatever actions
within the application are necessary to satisfy the user’s wishes is up to the controller,
who will call the appropiate functions on the model.

3 Related Work

Another architecture for multimodal applications strictly following the MVC pattern
is the W3C recommendation Multimodal Architecture and Interfaces1 (MMI). MMI is

1 http://www.w3.org/TR/mmi-arch/, Feb. 2013

http://www.w3.org/TR/mmi-arch/

MVIC – An MVC Extension 327

divided into three components, each representing one part of MVC, and all components
are interconnected via a Runtime Framework providing infrastructure which is not de-
fined by the W3C recommendation and left to platform specific implementations.

MMI and MVIC share common goals and target the same class of applications but
differ in details. MVIC is more oriented towards recent technology like Android and
iOS, while MMI is more loosely coupled and takes e.g. distribution of components into
account. MMI emphasises the use of markup and scripting, which is not specifically
defined in MVIC. However, using markup for configuration of InteractionHandlers is
an interesting option to define an interaction concept and is part of our future research.

How to use MMI in a mobile environment is demonstrated by Cutugno et al. in
[3]. They present a framework for multimodal mobile applications with focus on the
possibility to configure MMI’s controller via an XML file, but they extend MMI by
adding Input Recognizers and Semantic Interpretation Components for each interaction
modality, providing an interesting alternative to MVIC.

The idea of UserIntents is closely related to the typical way of calling other applica-
tions in Android. When an Android application needs to trigger e.g. a phone call it will
do this by invoking an Intentwithout actually knowing what application will answer.
Android will answer to the user’s intention by bringing up its phone app. UserIntents
bring this concepts deeper into applications on a much finer level.

4 Conclusion

We presented MVIC, an extension to the well-known MVC pattern targeting multi-
modal applications. We expect MVIC to make interactive applications more flexible
and easier to extend and maintain. MVIC is build around the idea that dedicated inter-
action components for the different interaction modalities are in charge of interpreting
the user input and identifying his or her intentions – a task left solely to the controller
in MVC. Identified UserIntents are then send to the controller for further processing,
so in MVIC the controller is still in charge of managing the application flow. Taking
the interaction matters out of the controller will decrease the chance of breaking the UI
when making changes to existing or adding new interaction modalities.

References

1. Burbeck, S.: Applications programming in smalltalk-80 (tm): How to use model-view-
controller (mvc). Smalltalk-80 v2. 5. ParcPlace (1992)

2. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented Software
Architecture, vol.1 - A system of patterns. Wiley, Chichester (1996)

3. Cutugno, F., Leano, V.A., Rinaldi, R., Mignini, G.: Multimodal framework for mobile interac-
tion. In: Proceedings of the International Working Conference on Advanced Visual Interfaces,
AVI 2012, pp. 197–203 (2012)

4. Freeman, E., Robson, E., Sierra, K., Bates, B.: Head First Design Patterns. O’Reilly, Se-
bastopol (2004)

5. Krasner, G.E., Pope, S.T.: A description of the model-view-controller user interface paradigm
in the smalltalk-80 system. Journal of object oriented programming 1(3), 26–49 (1988)

Toward Industry Friendly Software Architecture

Evaluation

Zhao Li and Jiang Zheng

ABB US Corporate Research Center
940 Main Campus Drive, Raleigh, NC, USA 27606

{Zhao.Li,Jiang.Zheng}@us.abb.com

Abstract. Due to the increasingly complexity of industry software prod-
ucts, software architecture evaluation is getting important to effectively
identify potential risks and ensure the quality goals of the resulting sys-
tem are well addressed in the design phase. However, despite the plethora
of evaluation approaches proposed in academia, few of them have proven
suitable to evaluate architecture designs of wide spread industry applica-
tions. As the initial efforts of addressing this issue, this paper identifies
the gaps between an ideal industry friendly software architecture evalu-
ation approach and existing evaluation methods.

Keywords: Software Architecture, Architecture Evaluation, Architec-
ture Analysis.

1 Introduction

Nowadays, most industry software products have become increasingly complex:
Externally, they are network-based, large-scaled, and distributed; internally, they
are multi-threaded. This results in the complexity of software architecture and
deeply hidden defects. Since detecting potential defects and risks in the archi-
tecture design phase effectively reduces the waste resulting from an unsuitable
design in the early stages of the life cycle of a software product, identifying an
industry friendly software evaluation approach becomes the focal point of the
recent industry research.

The objectives of this paper are to briefly review software architecture evalua-
tion approaches in state of the art and identify the gaps between an ideal industry
friendly software architecture evaluation approach and these evaluation methods.
The rest of the paper is organized as follows: Section 2 highlights the charac-
teristics of software architecture evaluation. Section 3 reviews primary software
architecture evaluation approaches in state of the art and identifies the gaps be-
tween an ideal industry friendly software architecture evaluation approach and
those in state of the art. Section 4 concludes the paper.

2 Essentials of Software Architecture Evaluation

As a ubiquitous process found everywhere in our daily life, the evaluation activity
has been well addressed by researchers primarily from the disciplines of sociology

K. Drira (Ed.): ECSA 2013, LNCS 7957, pp. 328–331, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Toward Industry Friendly Software Architecture Evaluation 329

and psychology [1]. The software architecture evaluation is the application of the
above evaluation activities to the software engineering discipline. Based on the
set of architectural design decisions as the evaluation target and the functional
and non-functional requirements as the evaluation criteria, the activities of the
software architecture evaluation are formulated as follows [2]:

– Elaborate the precise statements of an architectural design decision
– Elaborate the precise statements of the functional requirements and its re-

lated quality attribute requirements
– Evaluate the architecture design decisions to determine whether they address

the quality attribute requirements

Practically, as shown in Fig. 1, the above software architecture evaluation pro-
cess, uniquely triggers a series of activities, including checklists, interviews, sce-
narios, questionnaires, workshops, simulations, metrics architecture patterns,
prototypes, and brainstorming. The effectiveness of these activities is determined
by four factors: 1) existing knowledge of the software architecture, 2) the expe-
rience and expertise of the evaluator, 3) the inputs of stakeholders, and 4) the
impact of the business factors.

The above four underground factors permeate every corner of the software
architecture evaluation, directly influencing the qualities of evaluation results
and the software architecture evaluation is a process of dealing with these fac-
tors via a series of activities and methods (e.g., interviews and brainstorming).
An effective software architecture evaluation process should organize the above
factors systematically to maximize their contributions to the evaluation.

Fig. 1. Factors that influence software architecture evaluation

330 Z. Li and J. Zheng

3 Research Challenges

3.1 Architecture Evaluation in State of the Practice

In literature, software architecture evaluation methods fall into two categories:
the quantitative evaluation and the qualitative evaluation. The quantitative eval-
uation consists of metrics, simulation, and prototype; while the qualitative eval-
uation includes scenario-based and attribute-model-based evaluation.

The quantitative evaluation is an experimental-oriented method. It is based on
a prototype and/or a simulation of a software architecture design and provides
more insights of the resulting system. However, the high cost of the quantitative
evaluation prevent it from widely adoption. The qualitative evaluation is expe-
rience oriented, mostly relying on the experience and expertise of participants.
As the major technologies used in the qualitative evaluation are questionnaires,
checklists and scenarios, it is relatively cheaper to assess a large system or a group
of quality attributes using qualitative methods. However, over dependency on
the experiences and expertise of the evaluators makes the qualitative evalua-
tion more subjective and its results are generally non-repeatable. Practically,
to enhance the evaluation results, quantitative evaluation is generally used as a
complementary approach to the qualitative evaluation method.

In industry, besides the design review, a lightweight ATAM [3] with a formal
evaluation framework is a typical solution for software architecture evaluation.
Recently, to avoid the subjectiveness of the existing evaluation methods, some
new methods (e.g., TARA [4]) are proposed, which utilizes existing artifacts
(e.g., source code) to improve the objectiveness of the evaluation.

3.2 Developing an Industry Friendly Software Architecture
Evaluation Method

After 20 years examination, software architecture evaluation has been fully dis-
cussed in academia. Theoretically, proposed evaluation methods can identify
most of the hidden defects and potential risks in an ideal situation. However, in
practice, the evaluation process is primarily constrained by factors that do not
always surface in academic research (e.g., limited budgets, geographically dis-
tributed evaluator, and different schedule of the evaluator), applying academic
methods to industry applications does not always produce expected results.

The development of an efficient industry friendly method of evaluating soft-
ware architecture can be facilitated in the following ways: First, guaranteeing the
quality of the evaluation results requires a formal evaluation framework that can
temporally organize events and activities associated with the evaluation process.
Second, the most effective way to collect evaluation data is face-to-face negotia-
tion/workshop with stakeholders, but it is prohibitively expensive, and therefore,
is impractical for a general industry application. A less costly solution for indus-
try applications is a lightweight workshop or interviews (e.g., a network-based
forum and individual interviews with stakeholders). However, compared to the
face-to-face methods, the lightweight methods unavoidably lose some effective-
ness. Third, bypassing the expensive scenario collection process and instead fully

Toward Industry Friendly Software Architecture Evaluation 331

relying on an evaluators subjective judgments is a risky venture but obviously
is the most cost saving approach affordable by industry applications. However,
the tradeoff is it causes the evaluation more subjective. In practice, mitigating
the subjectivity calls for remedial actions such as TARA, which lends objectivity
to the process by adding a new step: checking the collected data against source
code. Finally, as the budget for the software architecture evaluation varies case
by case, mostly, the architecture evaluation is launched with limited budgets
will end up at the certain point without generating any useful results. Under
this situation, adapting the evaluation process to the wide range of budgets and
producing the corresponding results per the provided budget become important.

4 Conclusion

Because the evaluation environment in industry differs considerably from that in
academia, the results of evaluation method (e.g., ATAM) applied in one environ-
ment do not necessarily apply to the other. Hence, even though the plethora of
the evaluation methods in academia, few of them have been successfully applied
to real industry situations. On the other hand, in industry, the design review
is widely used to assess the quality of software architecture design. However,
design reviews cannot generate high quality and reproduced assessment results
due to lacking of a formal evaluation framework and over-dependency on the
evaluators.

Regardless an evaluation method from academia or industry, it consists of
subjective factors and objective factors. The more objective factors an evaluation
method has, the better its evaluation results. Hence, adding objective factors
extracted from the research in academia into the industry design review becomes
a promising direction. A more recently proposed approach, TARA, demonstrates
the trend along this direction.

References

1. Lopez, M.: Application of an evaluation framework for analyzing the architecture
tradeoff analysis method. The J. of System and Software 68(3) (December 2003)

2. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures, methods
and case studies. Addison-Wesley (2002)

3. Kazman, R., Klein, M., Barbacci, M., Lipson, H., Longstaff, T., Carriere, S.J.: The
Architecture Tradeoff Analysis method. In: Proc. Fourth Intl Conf. Eng. Of Complex
Computer Systems (ICECCS 1998) (August 1998)

4. Woods, E.: Industrial Architectural Assessment using TARA. In: 2011 Ninth Work-
ing IEEE/IFIP Conference on Software Architecture (2011)

Towards Continuous Reference Architecture

Conformance Analysis

Georg Buchgeher1 and Rainer Weinreich2

1 Software Competence Center Hagenberg, Austria
georg.buchgeher@scch.at

2 Johannes Kepler University Linz, Austria
rainer.weinreich@jku.at

Abstract. Reference architectures (RA) are reusable architectures for
artifacts in a particular domain. They can serve as a basis for design-
ing new architectures, but also as a means for quality control during
system development. Quality control is performed through checking the
conformance of systems in development to (company-wide) reference ar-
chitectures. If performed manually, reference architecture conformance
checking is a time- and resource-intensive process. In this paper we out-
line an approach for reference architecture conformance checking of ap-
plication architectures in the banking domain. Reference architectures
are defined on the basis of reusable rules, consisting of roles and of con-
straints on roles and role relationships. Conformance checking can be
performed semi-automatically and continuously by automating impor-
tant steps like the extraction of the actual application architecture, the
binding of reference architecture roles to the elements of a specific ap-
plication architecture, and the evaluation of the reference architecture
rules for an application architecture.

Keywords: Software Architecture, Reference Architectures,
Conformance Analysis.

1 Introduction

Multiple definitions have been provided for the term reference architecture both
in the context of software architecture[1][2][3] and beyond [4][5]. While the per-
spective on what constitutes a reference architecture and how it is represented
still varies quite a bit [5], there is a consensus on some defining characteristics.
First, there is a focus on reuse [5][1]. Reference architectures are defined to be
reused for the definition of concrete architectures of specific systems. This means
they are more generic [2][4] and sometimes at a higher level of abstraction [2]
than concrete architectures. Second, they encode important design decisions for
applications in a particular domain. This means they are usually domain-specific
[3][1], though this may depend on how one defines a domain [5]. Third, reference
architectures can take different roles in software development [4]. They can take
an instructive role for designing new application architectures, an informative

K. Drira (Ed.): ECSA 2013, LNCS 7957, pp. 332–335, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Towards Continuous Reference Architecture Conformance Analysis 333

role for sharing architectural knowledge, and a regulative role for restricting the
design space of systems in development. A reference architecture can take all
three roles, though it depends on how it is actually represented.

In this paper we focus on the regulative role of reference architectures and
propose an approach for continuous reference architecture conformance checking.
Reference architectures are specified as a set of rules that consist of roles and
constraints among these roles and their relationships. Roles defined in a reference
architecture specification are mapped onto elements of an existing architecture
(model), which is then automatically checked against the defined reference ar-
chitecture rules. Main contributions of the proposed approach are a way for
defining and storing reference architectures as a reusable set of rules, and for
automatically binding these rules to and evaluating them for specific application
architectures. Since binding and evaluation activities are mostly automated, the
approach can be used as a means for continuous quality control. The approach
is currently being used for checking the architecture of service-oriented appli-
cations to company-wide reference architectures in the banking domain and is
based on previous work on architecture extraction and review support [6] in this
domain.

2 Approach

The main aim of the proposed approach is support for automatically analyzing
the architecture of existing enterprise application systems for conformance to
company-wide reference architectures. The approach consists of the two main
activities shown in Figure 1: The definition of reusable reference architecture
specifications, and the actual use of such a specification for checking the con-
formance of existing application architectures to the constraints of the reference
architecture specification.

 Reference Architecture Conformance Checking

Architecture
Extraction

Reference Architecture
Mapping

Rule
Checking

 Reference
Architecture
Specification

(Rules) Map
Roles

Check
Properties

Fig. 1. Approach Overview

A reference architecture is defined as a set of rules. Conceptually a rule consists
of roles, required and/or forbidden relationships between these roles, and a set
of constraints on both roles and relationships. During the checking process roles
are mapped onto elements of the architecture of the checked system. These
elements are then analyzed for conformance to relationships and constraints
defined in the rules of the reference architecture. Roles and constraints can be

334 G. Buchgeher and R. Weinreich

specified using a structured editor, which works directly on the constraint model
representing the reference architecture specification. The actual conformance
checking is performed in three steps:

– In the first step the actually implemented architecture is automatically ex-
tracted from the system implementation. For a description of the extraction
process we refer to [6].

– In the second step roles are assigned to elements of the extracted architecture
model. Role assignment is performed semi-automatically. For each role it
is possible to specify so-called role assignment rules. For example, a role
assignment rule might specify to assign a role to all components based on a
specific technology (e.g., EJB) or using a specific naming convention (e.g., to
all components containing Service in their name). Roles may have additional
properties, which are required for analysis. During role assignment we check
whether elements with this role are able to provide the required properties.
If properties cannot by provided by the elements themselves, they can be
provided manually by the user or through extensions to the conformance
checker.

– The final step of the checking process is the actual conformance checking. In
this step the rules of the reference architecture are evaluated for an applica-
tion architecture with assigned roles.

3 Related Work

Software architecture conformance checking is addressed by numerous approaches
in both research and practice. Dependency analysis approaches like Lattix, Struc-
ture 101 and SonarJ support architecture/implementation conformance checking
at the programming language abstraction level by analyzing source code depen-
dencies. Analysis at higher abstraction levels, and analysis of information be-
yond static dependencies (e.g., communication protocols used) is not supported.
Dependency analysis approaches also provide no support for defining reusable
reference architectures.

Schmerl and Garlan [7] describe an approach for defining and automatically
analyzing architectural styles based on the ACME/Armani architecture descrip-
tion language [8]. Their approach consists of two separate activities. (1) The
definition of an architectural style and (2) the definition of architecture design
models based on a previously defined architectural style. Their work is targeted
at defining and checking new architectures based on architectural styles, and
not at the continuous conformance checking of already implemented systems as
supported in our approach.

Deiters et al. [9] present an approach with similar concepts to ours, which is
based on so-called architectural building blocks (ABBs). Rules and constraints
are Prolog-like fact bases which are defined textually in their approach, while
we use a projectional editor on a constraint model. Their architecture model is
simpler (entities and dependencies) and automatic role assignment is not sup-
ported in their approach. The differences are mainly because their approach is

Towards Continuous Reference Architecture Conformance Analysis 335

also more targeted at supporting composition during design than at continuous
conformance checking during system evolution and development.

4 Conclusion

We have presented an approach for reference architecture conformance checking.
The approach is currently being used by architects as a means for continuous
quality control for enterprise applications in the banking domain. However, the
developed concepts and tools are not limited to this domain. The basic concepts
for defining reference architectures like roles, properties, relationships, and con-
straints are quite general and could also be used for checking the conformance to
reference architectures in other domains, to patterns, and to architectural styles.
We are currently investigating the use of the approach for automatically checking
the correct application of security patterns. We are also working on strategies for
eliminating human intervention during the checking process, which might cur-
rently still be required in some cases (like the provisioning of missing property
values during role assignment).

References

1. Nakagawa, E.Y., Oliveira Antonino, P., Becker, M.: Reference Architecture and
Product Line Architecture: A Subtle But Critical Difference. In: Crnkovic, I.,
Gruhn, V., Book, M. (eds.) ECSA 2011. LNCS, vol. 6903, pp. 207–211. Springer,
Heidelberg (2011)

2. Angelov, S., Trienekens, J.J.M., Grefen, P.W.P.J.: Towards a method for the evalua-
tion of reference architectures: Experiences from a case. In: Morrison, R., Balasubra-
maniam, D., Falkner, K. (eds.) ECSA 2008. LNCS, vol. 5292, pp. 225–240. Springer,
Heidelberg (2008)

3. Hofmeister, C., Nord, R., Soni, D.: Applied Software Architecture. Addison-Wesley
Professional (November 1999)

4. Greefhorst, D., Proper, E.: Architecture Principles: The Cornerstones of Enterprise
Architecture, vol. 4. Springer (2011)

5. Cloutier, R., Muller, G., Verma, D., Nilchiani, R., Hole, E., Bone, M.: The concept
of reference architectures. Systems Engineering, 14–27 (2009)

6. Weinreich, R., Miesbauer, C., Buchgeher, G., Kriechbaum, T.: Extracting and fa-
cilitating architecture in service-oriented software systems. In: 2012 Joint 10th
IEEE/IFIP Working Conference on Software Architecture & 6th European Con-
ference on Software Architecture (WICSA-ECSA 2012). IEEE (2012)

7. Schmerl, B., Garlan, D.: Acmestudio: supporting style-centered architecture devel-
opment. In: Proceedings of 26th International Conference on Software Engineering,
ICSE 2004, pp. 704–705 (2004)

8. Monroe, R.T.: Capturing Software Architecture Design Expertise with Armani.
Carnegie-mellon univ pittsburgh pa school of computer Science (October 2001)

9. Deiters, C., Rausch, A.: A constructive approach to compositional architecture de-
sign. In: Crnkovic, I., Gruhn, V., Book, M. (eds.) ECSA 2011. LNCS, vol. 6903,
pp. 75–82. Springer, Heidelberg (2011)

Towards Automated Deployment of Distributed

Adaptation Systems

Mohamed Zouari1,2 and Ismael Bouassida Rodriguez1,2,3

1 CNRS, LAAS, 7 Avenue du Colonel Roche, F-31400 Toulouse, France
2 Univ de Toulouse, LAAS, F-31400 Toulouse, France

3 ReDCAD, University of Sfax, B.P. 1173, 3038 Sfax, Tunisia
{mohamed.zouari,bouassida}@laas.fr

Abstract. The development of a single software product is inefficient
when groups of product are related since the development cost could be
high. In addition, some products need to be self-adaptive in order to
take into account the execution context changes. In this case, the imple-
mentation and management of the adaptation mechanisms variability is
challenging especially for distributed systems due to the distribution is-
sues. We address in this paper such issues by proposing a method for the
software engineering of distributed adaptation systems. We propose an
architectural model for distributed management of dynamic adaptation.
We define also a graph grammar based approach to automate the tasks
needed to construct and configure the adaptation system1.

Keywords: Distributed adaptation, Software architectural model, Au-
tomated deployment, Graph grammar.

1 Introduction

Several applications running in fluctuating and heterogeneous environments re-
quire dynamic adaptation [1]. This is especially necessary when users may have
different and variable QoS requirements and resources are highly dynamic and
unpredictable. The adaptation approach enables to deal with the different fluc-
tuations in available resources, to meet new user requirements, and to improve
the application services.

In general, an adaptation engine monitors the execution context (resources
characteristics, user profile, terminal capabilities, etc) in order to trigger dynamic
adaptation whenever it detects significant variations. Then, it makes decisions
regarding the adaptation and controls the modification of the application in
order to achieve the appropriate configuration. When a decentralized application
is running in heterogeneous environments, distributed adaptation system may
be required in order to improve the adaptation mechanisms quality such as
efficiency, robustness, and scalability. The distributed management of adaptation
leads to the concurrent execution of multiple adaptation processes performed

1 This work is partially funded by the IMAGINE IP European project.

K. Drira (Ed.): ECSA 2013, LNCS 7957, pp. 336–339, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Towards Automated Deployment of Distributed Adaptation Systems 337

by several engines. The customization and the deployment of the engines may
need to perform complex dedicated tasks and be time consuming. Facilitating
these tasks and reducing the development cost of distributed adaptation systems
is challenging. In fact, current approaches do not offer development facilities of
distributed adaptation systems where the activities of several adaptation engines
are coordinated without a central control entity.

In this paper, we propose an approach for easy customization and deployment
of distributed adaptation systems.The aim of this approach is to provide facil-
ities for the elaboration of the system configuration and for its deployment in
automated way. Actually, we provide firstly an architectural model of distributed
adaptation systems. Secondly, we offer a tool called factory that performs the
deployment tasks. The factory processes the appropriate system configuration
using a graph grammar-based approach and then, it sets up the system. Our
case study concerns data management in medical environments for collaborative
remote care delivery. We enable to make self-adaptive data replication systems
in order to improve the data availability and response times for data requests.

The remainder of the paper is organized as follows. We present our method
to build distributed adaptation systems in Section 2. Then, we conclude and
discuss future work in Section 3.

2 Method to Build Self-adaptive Applications

Our approach aims at facilitating the component-based development of dis-
tributed self-adaptive applications. We follow the separation of concerns prin-
ciple between the adaptation concerns and the business aspects. Moreover, we
externalize the mechanisms of adaptation control for reusability. Some appli-
cation components provide well defined control interfaces that define primitive
operations to observe and modify them (see Figure 1). The adaptation system
is connected to the application trough such interfaces to produce a self-adaptive
application.

We design the adaptation mechanisms in a modular way and we offer facil-
ities for adaptation system building. In fact, we define an tool called factory
to facilitate the customization of the adaptation system according to the target
application and to ensure the automatic deployment of the system. As shown
in Figure 1, an architect provides a software architectural model of adaptation
systems and an expert in deployment provides a set of deployment strategies for
the set up of concrete systems. This architectural model specifies a set of com-
ponent types, the possible connections among them and several constraints that
must be meet when constructing a concrete system. Each deployment strategy
is a set of graph grammars processed to choose the distribution of the adap-
tation system according to targeted application to adapt and specific required
quality criteria of the adaptation system. The configuration manager determi-
nates the adaptation system architecture description that specifies the compo-
nents that compose the adaptation system, the connections among them, the
values of configuration parameters, and the connections with the application

338 M. Zouari and I. Bouassida Rodriguez

���������

	�
��� ��

�	��������
������

�������
��

����������
�������� ��

��������
���������
�������

��������������
��	���
���
�	��������

�����	�

�����������
�������

����������

������
�	���������
�����

��������	
��

���������

������ ����������
���������
 ��������

������
�������

	
�������
��
����
����

��

�������	
�
�
��	
��
�

����������
������

��������	
�������������	� �����������

Fig. 1. Building a self-adaptive application

components. The architecture is expressed in the GraphML language which is
an XML dialect for representing graphs [2]. For that, the configuration man-
ager applies the grammars related to a chosen deployment strategy and verifies
that the constraints of the architectural model are well respected. The selection
of the suitable strategy is done by the adaptation expert. We use GMTE2 in
order to process the graph grammars. In addition, the configuration manager
uses a set of policies provided by the adaptation expert. These policies enable
the configuration manager to customize the behaviour of some adaptation sys-
tem components. Then, the deployment manager sets up the adaptation system
and connect it with the application according to the architecture description
provided by the configuration manager. The connections are realized through
the dedicated control interfaces provided by the application. The outcome is a
self-adaptive application deployed in a decentralized execution environment.

Our architectural model [3] specifies two component types ContextManager
and AdaptationManager to perform the adaptation steps. An adaptation system
is composed of several context managers and adaptation managers. A component
type ContextManager collects, interprets, and aggregates some contextual data.
A component type AdaptationManager determines which components of the
application must be adapted and the means to achieve it.

The factory allows several strategies for deploying the adaptation system.
The strategies are divided based on the expected load of the adaptation system,
the customization requirements of managers’ behaviour, and the distribution
requirements. We are currently evaluating the different strategies in order to
provide a guide that allows the adaptation expert to choose the appropriate

2 Graph Matching and Transformation Engine (GMTE),
available at http://homepages.laas.fr/khalil/GMTE .

http://homepages.laas.fr/khalil/GMTE

Towards Automated Deployment of Distributed Adaptation Systems 339

strategy based on many factors. We are particularly interested in the following
deployment strategies: (1) Centralized deployment : In this situation, a single
context manager and a single adaptation manager control the adaptation of
all the application components. (2) Location-based deployment : The difference
is the use of multiple context managers and adaptation managers. The distri-
bution is based on geographic location of the application components. Each
manager controls a group of components hosted by machines in a specific site
(organization, department, vehicle, etc). (3) Service centric deployment : This
deployment strategy is characterized by the consideration of the different ser-
vices provided by the application components. An adaptation manager (resp.,
context manager) is associated with a component or group of components that
offers specific service (the data consistency achievement, the replica placement,
etc). (4) Hybrid deployment : This strategy combines the two previous strate-
gies: location-based and service centric deployment. The goal is to combine the
best of both. (5)Distributed deployment : This strategy is characterized by a
fully distributed system where an adaptation manager (resp., context manager)
is associated with a single application component.

3 Conclusion

In this paper, we addressed how to manage effectively and in a structured way
variability in distributed adaptation systems. We enable variable configuration
for distributed adaptation systems in order to meet specific requirements regard-
ing the adaptation system QoS. We presented a systematic approach to model,
implant and manage the variability of such systems based on the architectural
model. Among the benefits of this model are reusability and the support of sev-
eral types of variations like the behaviour and the distribution of the system. Our
experience shows that our factory provides an effective and easy way to manage
variability that turns up during the construction of an adaptation system.

There are several possible directions for future work. We are interested in
facilitating more the customization process. Currently, human actor makes de-
cision related to the deployment strategy. It will possible to extend the factory
in order to allow choosing automatically the appropriate strategy. Moreover, we
are exploring the connection between the architectural model and the existing
components models. Our vision is to make the factory able to support several
components models and service oriented architectures.

References

1. Cheng, B.H., Lemos, R., Giese, H.: Inverardi: Software engineering for self-adaptive
systems, pp. 1–26. Springer, Heidelberg (2009)

2. Brandes, U., Eiglsperger, M., Herman, I., Himsolt, M., Marshall, M.S.: GraphML
progress report. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS,
vol. 2265, p. 501. Springer, Heidelberg (2002)

3. Zouari, M., Segarra, M.T., André, F., Thépaut, A.: An architectural model for
building distributed adaptation systems. In: IDC 2011, pp. 153–158 (2011)

K. Drira (Ed.): ECSA 2013, LNCS 7957, pp. 340–343, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Towards a Bigraph-Based Model for Context-Aware
Adaptive Systems

Taha Abdelmoutaleb Cherfia and Faïza Belala

Department of Software Technologies and Information Systems,
University of Constantine II, Constantine, Algeria

taha.cherfia@gmail.com, belalafaiza@hotmail.com

Abstract. In the last decade, context-aware computing has become the central
focus of the ubiquitous computing where computers disappear in the back-
ground of people’s everyday life activities. Context-aware adaptive systems are
able to adapt themselves according to the gathered context information. In this
context, many approaches have been proposed in order to model the former sys-
tems but only few of them tackle at the same time all the features of these sys-
tems. This paper presents a formal modeling approach based on Bigraphical
Reactive Systems to deal with both the structural and behavioral aspects of
context-aware adaptive systems. It provides a clear separation between the con-
text-aware information that affect the system and the system itself. Indeed, we
specify the context and the system using two distinct bigraphs, then we combine
them using the bigraphs composition operation to represent the whole system.

1 Introduction

Context-aware adaptive systems are able to dynamically adapt their behavior at run-
time in response to changes on the context information without an explicit user inter-
vention. In the literature, there are many definitions of the term “context” but until
now there is no universal one. Dey and Abowd [1] gave a generic definition which
encompasses the existing ones given by previous authors where context is referred as
“any information that can be used to characterize the situation of an entity. An entity
is a person, place or object that is considered relevant to the interaction between a
user and an application, including location, time, activities and the preferences of each
entity”. However, the lack of a solid formal foundation in the most existing defini-
tions represents a clear challenge to the context-aware systems community. Hence,
the modeling of context-aware adaptive systems represents an essential task for cap-
turing and managing the changes of these systems.

In this context, graph-based approaches are commonly used within this field. Au-
thors in [2] introduced a modeling framework of context-awareness for ubiquitous
computing based on contextual graphs. Moreover, according to [3], one of the prin-
cipal aims for the theory of Bigraphical Reactive Systems (or BRS in short) is to
model ubiquitous systems, capturing mobile locality in the place graph and mobile
connectivity in the link graph. Within the same line of thought, two classes of work

 Towards a Bigraph-Based Model for Context-Aware Adaptive Systems 341

have arisen. The first class consists of extending and combining BRS with other mod-
els in order to formalize some aspects of context-aware systems. Authors of the rele-
vant works [4], [5] argued that BRS in their current form, as introduced by Milner [3],
are not suitable for directly modeling context queries. The second class of work used
directly bigraphs to formalize the context-aware systems. The proposed approaches
[6], [7] introduced different types of nodes to model context-awareness.

In the above work, authors only used the graphical presentation of BRS formalism
to model context-aware systems and their evolution. They did not give any informa-
tion or formal definition of the relationship between the context changes and the sys-
tem reactions. With the objective to gain a better understanding on how to model,
process, and manage the context information, and how a system adapts itself in re-
sponse to (unanticipated) changes in the context information; the idea presented in
this paper is quite similar to the previous ones since it is based on the same used for-
malism, but it models separately the context-aware information and the system. Fur-
thermore, it exploits the operation of composition in bigraphs to define the whole
context-aware system. Thus, it enriches the existing BRS model by appending the
context information to a new set of reaction rules, in order to capture the relationship
between the context changes and the system reactions.

2 Bigraphs and Context-Aware Adaptive Systems

According to Milner and co-workers, a Bigraphical Reactive System is a graphical
model which emphasizes both locality and connectivity. A BRS comprises a category
of bigraphs and a set of reaction rules that maybe applied to rewrite these bigraphs.
Structurally, a bigraph consists of two independent sub-graphs; a place graph express-
ing usually the physical location of nodes whereas the link graph represents the mo-
bile connectivity among them. Moreover, BRS defines various operations derived
from categorical theory. In this paper, we particularly focus on the operation of com-
position. Basic definitions used in this paper can be found in [3].

Context-awareness is a central aspect in the modeling of adaptive systems. It pro-
vides detailed information about entities such as people, places, and things. Each enti-
ty is characterized by an identity, location, status and time. Identity refers to the abili-
ty to embed a unique identifier for each entity. Location represents the spatial infor-
mation of an entity. Status (or activity) represents the intrinsic properties of an entity.
Finally, time refers to the relative ordering of events. Furthermore, context always
changes resulting in behavioral modifications of context-aware adaptive systems.
These latter can be able to control and adapt themselves in response to the context
transitions.

Hence, in order to clarify the formalization task of the structure and behavior of
context-aware adaptive systems, we propose a set of formal mapping rules defining
correspondences between context-aware adaptive system elements and bigraph con-
cepts (see Table 1). First, we model solely both the context and the system using two
distinct bigraphs (and) and then, we combine them together with the operation of
composition (to represent the entire system . Thus, each context entity (i.e.
person, place, or object) is specified by a bigraph node assigned with a control

342 T.A. Cherfia and F. Belala

to represent its identity. Also, the interaction among entities is formalized by bigraph
hyper-edges . Then, we propose a new bigraphical reaction rules category to for-
malize the behavioral aspect of the context-aware adaptive system.

Table 1. Mapping context-aware elements to Bigraphs

Context elements Bigraphical semantics

Context-aware structure
Context Bigraph: , , , , :
System Bigraph: , , , , :
Context-aware System Bigraph: :
Entity Node: / and
Identity of entity Control: /
Interaction Hyper-edge: / and

Context-aware behavior
Context transition Context Reaction rule: where , ,

Definition 1. A bigraph modeling a context-aware adaptive system in a context
 over a signature takes the form where: , , , , :

• and is a finite set of nodes in a current context .
• and is a finite set of edges.
• is an extended signature defined by a set of controls where each

control indicates how many fixed-ports and context-ports the node has.
• : is a new control map assigning to each node a control .
• ° and ° represent respectively the place graph and the

link graph of .
• , and , represent respectively the inner face and the outer face

of ; where represents the number of sites, is a set of inner names,
represents the number of regions and finally, is the set of outer names.

Definition 2. A bigraph modeling a context over a signature takes the form , , , , :

• is a finite set of context-nodes where each node defines a context entity.
• is a finite set of context-edges where each edge connects different context-

nodes.
• is a context-signature whose elements are controls, and a map :

assigns a control to each node dictating how many context-ports the node has.
• and represent context-place graph and context-link graph respectively.

Now, let be a bigraph modeling an adaptive system. Formally takes the form , , , , :

 Towards a Bigraph-Based Model for Context-Aware Adaptive Systems 343

Unlike an ordinary bigraph, , is the inner face of the bigraph in which
represents the number of sites where each region of containing context-nodes
can be planted into the site of . is the set of inner names where each inner
name is linked to its related outer name of to form a context-edge.

Finally, a context transition which takes the form , is defined by a Con-
text Reaction Rule given by , where models the current state of a context-aware
adaptive system and models the next state of the system in a new context.

3 Conclusion

This paper presents an idea of a new formal modeling approach based on bigraphs for
context-aware adaptive systems. Bigraph is more than a graphical representation; it is
a unifying theory of process models for distributed, concurrent and ubiquitous compu-
ting. In the present paper, we have shown the convenience of this formalism to
provide a high level modeling of context-aware adaptive systems. Our contribution
consists in providing an extended BRS-based approach to formalize the structure and
behavior of context-aware adaptive systems. It provides a clear separation between
the context and the system. In other words, each one is modeled separately using a
bigraph. Hence, their composition yields a new bigraph representing the structure of
context-aware adaptive system. Besides, a new set of bigraphical reaction rules, called
context reaction rules, to deal with context changes is proposed. These rules adopt the
context-aware information resulting from any context change to formalize the beha-
vior of context-aware adaptive systems.

References

1. Dey, A., Abowd, G.: Towards a better understanding of context and context-awareness. In:
Proceedings of the Workshop on the What, Who, Where, When and How of Context-
Awareness. ACM Press, New York (2000)

2. Nguyen, T.V., Lim, W., Choi, D.: Context Awareness Framework based on Contextual
Graph. In: IEEE 8th International Conference on Computer and Information Technology
Workshops, CIT 2008 Workshops, pp. 488–493 (2008)

3. Milner, R.: The Space and Motion of Communicating Agents. Cambridge University Press,
Cambridge (2009)

4. Pereira, E., Kirsch, C., Sengupta, R.: BiAgents – A Bigraphical Agent Model for Structure-
aware Computation. In: Cyber-Physical Cloud Computing Working Papers, CPCC Berkeley
(2012)

5. Birkedal, L., Debois, S., Elsborg, E., Hildebrandt, T., Niss, H.: Bigraphical Models of
Context-Aware Systems. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS,
vol. 3921, pp. 187–201. Springer, Heidelberg (2006)

6. Wang, J., Xu, D., Lei, Z.: Formalizing the Structure and Behaviour of Context-aware
Systems in Bigraphs. In: First ACIS International Symposium on Software and Network
Engineering (2011)

7. Xu, D.Z., Xu, D.: Bigraphical Model of Context-aware in Ubiquitous Computing
Environments. In: Pacific Services Computing Conference. IEEE, Asia (2011)

Characterising Software Platforms

from an Architectural Perspective

Ulrik Eklund1,2, Carl Magnus Olsson2, and Marcus Ljungblad2

1 Volvo Car Group, Sweden
ulrik.eklund@volvocars.com
2 Malmö University, Sweden

Abstract. With demands of speed in software development it is of in-
terest to build on available software platforms that incorporate the neces-
sary non-competitive functionalities and focus the development effort on
adding features to a competitive product. This paper proposes that we
move from an API-oriented focus and instead suggest four architectural
concerns for describing software platforms as more relevant.

1 Introduction: An Empirical Reflection

Using three empirical cases from the embedded domain, this paper reflects on
the challenge for future research for new product and feature development based
on existing platforms and the architectural concerns this brings. The need for
this is motivated by the current trend in software engineering towards extending
and integrating existing platforms to further the supported functionality [1].

1.1 Case 1: Platform Development in a Heterogeneous Domain

Home automation is attracting increasing attention from commercial actors such
as energy suppliers, infrastructure providers, construction companies, third party
software and hardware vendors. As there are no accepted reference architectures
or software platforms we see multiple vertical solutions where companies strive to
support the whole chain - from the sensors and devices to gateways and servers,
with whatever dedicated software that is of particular interest to the company.
This creates a situation where it is difficult to avoid lock-in for third party
service developers and customers, which subsequently may limit their willingness
to commit and develop services for each specific platform. One example of this
problem is in a major project with one of Europe’s largest energy suppliers
(henceforth referred to as EnergyCorp), where the desire is to overcome the
problem of heterogeneous technologies. In this case, three concerns stand out
from an architect’s and developer’s perspective:

– What assumptions can be made about the components supporting the API?
– What limitations regarding the data and communication paths can be in-

ferred from the API? I.e. what guarantees does a developer have when chang-
ing state on an actuator?

K. Drira (Ed.): ECSA 2013, LNCS 7957, pp. 344–347, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Characterising Software Platforms 345

– What are the run-time dependencies and functionalities not attached to a
device initially? This is not obvious since the exposed API is a composi-
tion of data from several sources within the platform, and the contextual
information about where a device is located is added by the user.

1.2 Case 2: Implementation Based on an Existing Platform

Volvo Car Corporation has a strategy to use the AUTOSAR [2] architecture and
platform as a basis for the software in new vehicle platforms. To use a platform-
based approach is not only deciding on the infrastructure configuration, but
also to maintain a selection of functionalities the platform shall support when
developing new innovations enabled by software. This caused a need for the
architects to:

– Define the scope of the platform that is easy to communicate to managers
and developers and roadmapping the platform to meet long term demands.

– Configure the selected subset of basic software in the AUTOSAR platform.
– Focus on platform definition and evolution rather than integration of sepa-

rately developed applications towards model year changes.
– Separate slow evolving platform development from fast application devel-

opment in general, and to allow differentiated lead-times for novel features.

1.3 Case 3: Adaptation of a Platform to a Different Context

The Open Infotainment Labs is a previously published case [3][4] of a prototype
development of an in-vehicle infotainment systems in cooperation between Volvo
Car Corporation and EIS by Semcon. The project had two goals: First, to es-
tablish whether it was possible to do feature development with extremely short
leadtimes from decision to implementation compared to present automotive in-
dustry standard, from a nominal leadtime of 1-3 years to 4-12 weeks. From an
architect’s perspective there was a need to:

– Analyse the Android platform to identify additional needed services and
behaviour when used in a car compared to a mobile phone.

– Break down any change or addition to the platform to fit as a single user
story in the product backlog (an effect of the project using Scrum).

– Focus on platform development and deemphasize application development.

2 Research Challenge

The case of EnergyCorp suggests the difficulties to see, on an API level alone,
how combined heterogeneous hardware and software from several platforms
complement and contradict each other from an architectural perspective. For
AUTOSAR, both long and short term product management is concerned with
how the functionalities provided by a platform are combined and extended to
realise new customer-discernible features. In these situations, it is desirable to

346 U. Eklund et al.

scope the platform both in terms of what domain-specific services/functions it
provides and what commodity components it contains to build products and
product families. Finally, when developing on top of an Android platform it is
important to separate the concerns between what services/functions are avail-
able and how these services are used. It is impractical for an architect or product
manager to incorporate updates in platform backlog user stories in terms of API
changes, instead a higher abstraction of the platform capabilities is necessary.
Overall, this hints towards a working hypothesis that the API-level may not be
appropriate for discussing architectural concerns of software platforms.

Our challenge for future research therefore becomes how to characterise soft-
ware platforms from an architect’s perspective and what views or dimension
are important to capture. Found factors of relevance include building products
based on a combination of multiple platforms (case 1), long-term product plan-
ning (case 2), or addressing various non-functional properties (case 3). In the
four subsections below, we put this working hypothesis to initial scrutiny by
reviewing which architectural concerns stand out in our three empirical cases.

2.1 Infrastructure

According to [5] a platform infrastructure consists of the operating system and
commodity components, with database management and GUI being two exam-
ples. In case 1 and 2 this concern is present, as application developers often have
to make implicit assumptions about the available hardware and software services
available to be able to efficiently build applications on top of the platform. It is
thus important that the infrastructure is communicated properly. Based on our
three cases, this should from an infrastructure perspective include at least a list
and description of the available hardware devices and commodity components.

2.2 Run-Time Dependencies

Simply being aware of the platform infrastructure, however, does not enable
application developers to build efficient applications (case 1 and case 2). The
type of communication, asynchronous or synchronous, between application and
platform components is not easily discernible from the API as functionalities may
be physically separated with respect to dependencies on data. An API request
to modify a device’s state says little about consistency guarantees among the
platform components. Highlighting platform communication paths as well as
their respective guarantees is thus needed.

2.3 Functionalities

Functionalities are those domain-specific services, attributes, and operations that
are part of the platform which can be used for feature and application devel-
opment. In an embedded system they are usually an abstraction of available
hardware sensors and actuators. In a car in case 2, functionalities could be sta-
tus and control of the interior lights, which can be utilised in development of
various convenience features.

Characterising Software Platforms 347

2.4 Construction Principle

There are two fundamental approaches to platform construction: monolithic vs.
componentised platforms [6]. These affect the construction principle that guides
system design and architecture. The monolithic type of platform have a static
structure for every instantiation and variation is achieved by variation points
in the components. In the componentised platform, the platform instantiation
allows for a creative selection and configuration of components and most of
the tailoring towards specific products is achieved through different component
configurations.

3 Conclusion

This paper has presented three cases of typical platform usage; development
of a new platform for a domain, product family implementation based on an
existing platform, and adaptation of an existing platform to a different need.
In the discussion of our empirical cases, it becomes clear that none of the main
concerns are appropriate to discuss on an API level, which lends further support
to the working hypothesis we started from, i.e. that there is a need to establish a
suitable level of abstraction. To this end, we identified four suitable architectural
concerns to describe software platforms: infrastructure, run-time dependencies,
functionalities and construction principle.

Acknowledgements. We would like to thank the following supporting orga-
nizations: VINNOVA, Energimyndigheten, EnergyComp, ResearchGroup, Volvo
Car Group, and Semcon.

References

1. Evans, D.D.S., Hagiu, A., Schmalensee, R.L.: Invisible Engines. MIT Press (2006)
2. AUTOSAR: Technical overview v2.2.2 (August 2008)
3. Eklund, U., Bosch, J.: Introducing software ecosystems for mass-produced embedded

systems. In: Cusumano, M.A., Iyer, B., Venkatraman, N. (eds.) ICSOB 2012. LNBIP,
vol. 114, pp. 248–254. Springer, Heidelberg (2012)

4. Eklund, U., Bosch, J.: Using architecture for multiple levels of access to an ecosystem
platform. In: Proceedings of the ACM Sigsoft conference on Quality of Software
Architectures, pp. 143–148. ACM, Bertinoro (2012)

5. van der Linden, F.J., Dannenberg, R.B., Kamsties, E., Känsälä, K., Obbink, H.: Soft-
ware product family evaluation. In: Nord, R.L. (ed.) SPLC 2004. LNCS, vol. 3154,
pp. 110–129. Springer, Heidelberg (2004)

6. van Ommering, R.: Roadmapping a product population architecture. In: van der
Linden, F.J. (ed.) PFE 2002. LNCS, vol. 2290, pp. 51–63. Springer, Heidelberg
(2002)

Specifying System Architecture from SysML
Requirements and Component Interfaces

Samir Chouali, Oscar Carrillo, and Hassan Mountassir

Femto-ST Institute, University of Franche-Comté, Besançon, France
{schouali,ocarrill,hmountas}@femto-st.fr

Abstract. We propose to map functional system requirements, specified
with SysML, directly into system architecture, by exploiting the compo-
sition relation between component interfaces. Our research challenge is to
guarantee formally that the final system fulfill the set of all requirements.
Our approach is based on component-based systems (CBS) specified with
SysML models and Interface Automata (IA) to capture their behaviors.
From a SysML Requirement Diagram (RD), we build a Block Definition
Diagram (BDD) to specify system architecture, by taking, one by one,
the lowest level of requirements. At each new added requirement, we
add a new component satisfying this requirement, by the composition,
in the partial architecture obtained in a precedent step. Then we verify
whether the new component is compatible with the components in the
partial architecture, and if the requirements are preserved.

Keywords: System architecture, Composition, Requirements, SysML,
Interface Automata.

1 Introduction

CBS are built by assembling various reusable components (third party compo-
nents), which reduces their development cost. However, the development CBS is
a hard task, because the compatibility must hold between the components that
compose the system, and all the requirements related to these components must
be preserved in the final system. To construct systems from requirements, several
approaches have been proposed. In [1], the authors takes into account all the re-
quirements at once, and in [2], the authors propose an incremental approach by
adding properties to system architecture. Others approaches like [3,4], are based
on the translation of atomic requirements into a behavior tree,which allows to
specify the system structure. In [5], the authors construct CBS incrementally
starting from raw requirements described in a natural language. Nevertheless,
these models are restrictive compared to our model, because they do not deal
with component interfaces specifying component behaviors, and the compatibil-
ity verification between components is not clearly discussed. Our paper discusses
the relationship between system requirements and CBS architecture specifica-
tion. Our goal is to guide, by the requirements, the CBS specifier to build the
system architecture that fulfills all requirements. We propose to exploit SysML
[6], by specifying functional system requirements with SysML RD, and BDD

K. Drira (Ed.): ECSA 2013, LNCS 7957, pp. 348–352, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Specifying System Architecture from SysML Requirements 349

and Internal Block Diagram (IBD) to specify system architecture 1. We exploit
the IA approach [7] to specify component interfaces and to verify the compat-
ibility between components and also the preservation of the requirements. In
our previous works [8],[9], we exploited BDD, IBD, and sequences diagrams to
verify compatibility between SysML blocks and to analyze the relation between
composite blocks and atomic blocks. The originality of this new contribution is
the exploitation of the SysML RD with BDD and IBD, in the context of the
development of CBS.

2 Incremental Specification of System Architecture from
SysML Requirements

In this work, we propose to specify incrementally CBS architecture directly from
functional SysML requirements, in order to guarantee the architecture consis-
tency. This consistency is guaranteed when the compatibility between the com-
ponents holds, and when the requirements are preserved in the final system.
Thus, we propose to analyze a SysML RD, that specifies CBS requirements, in
order to extract its atomic requirements, because they are more precise, and it
is easier to find components that satisfy them. We specify components inter-
faces with IA and we exploit the composition of IA to verify the preservation of
the requirements. The composition of two interfaces is achieved by synchroniz-
ing their shared output and input actions. An interesting verification approach
(called optimistic) was also proposed in [7], to detect interface incompatibilities
that may occur when, from some states in the synchronized product, one au-
tomaton issues a shared action as output which is not accepted as input in the
other. These states are called illegal.

The main steps of our approach are described in the following:
(1) Start by analyzing SysML RD to obtain the atomic requirements. (2) Re-
peat until all the requirements are treated . (2-a) Let Ri be an atomic
requirement, let Ci be a component satisfying Ri, and Ai is the interface au-
tomaton describing the component protocol. Identify the set of input and output
actions in Ai related to Ri. (2-b) Let Ri+1 be the next atomic requirement, let
Ci+1 be a component satisfying Ri+1, and Ai+1 is the interface automaton de-
scribing the component protocol. Identify the set of input and output actions
in Ai+1 related to Ri+1. (2-c) Verify that Ci and Ci+1 are compatible thanks
to their interface automata, so verify that Ai ‖ Ai+1 �= ∅. (2-d) Verify that the
requirements Ri and Ri+1 are preserved by the composition, so they are satisfied
by the composite C = Ci ‖ Ci+1. We verify that the input and the output actions
related to the requirements are preserved by the composition. (2-e) Define the
partial architecture of the system by the composite C = Ci ‖ Ci+1: we specify
the BDD diagram in order to relate C with Ci and Ci+1, and we specify also
the IBD diagram which identifies the interaction between Ci and Ci+1 through
ports. (3) End repeat .

1 We note that the term used in SysML for components is blocks.

350 S. Chouali, O. Carrillo, and H. Mountassir

Fig. 1. Matching atomic requirements to components

To illustrate our approach, we propose to build the SysML structure that spec-
ifies the implementation of a vehicle safety system. Figure 1 shows the first two
iterations of our approach. First, we analyze the RD to obtain the atomic require-
ments. The initial requirement R1 indicates that the airbag system must be de-
ployedwhenever the car is in a collision.R1 is decomposed intoR1.1.1,R1.1.2, and
R1.1.3 which are atomic. The requirement R1.1.1 indicates that the sensors must
capture and send the sensors values to theAirbagControlUnit (ACU).Andaccord-
ing toR1.1.2, the ACU componentmust decide whether or not to deploy the airbag
and lock the seat belts as soon as the sensors report new values. Finally,R1.1.3 in-
dicates the airbag device component must deploy the airbag, once the signal from
the ACU is received. Our approach consists to take one by one these requirements
to match them to reusable components. We start the first iteration (i = 1) with
R1.1.1 which is matched to a sensors component and with its associated inter-
face automaton shown in figure 1 (see iteration i = 1). The sensor component gets
information from sensors at each call of get sensors values service, and sends
them through a sensors values service. These services are respectively the in-
put {get sensors values} and output actions {sensors values} related toR1.1.1.
In the next iteration (i = 2) we match the requirementR1.1.2 to the ACU compo-
nent and to its associated interface automaton (see figure 1 on i = 2), that responds
to the request of the requirement with the input action {sensors values} and the
output actions {act sb, act ab} to lock seat belts and deploy an airbag respectively.
Then, to link the components that satisfy requirementsR1.1.1 andR1.1.2, we ver-
ify that they are compatible by composing their IA, so we obtain their composite
automaton with Ptolemy tool [10]. The result is the composite automaton shown
in figure 2, this automaton is not empty, so the components Sensors and ACU are
compatible.

Specifying System Architecture from SysML Requirements 351

Fig. 2. IA for the composition of Sensors and ACU blocks

Despite the compatibility of these two components, this composition had ille-
gal states that were eliminated automatically by Ptolemy tool by applying the
steps of the IA approach, therefore transitions are also eliminated. So, to guaran-
tee preservation of the requirements over the composition, we have to verify that
the actions related to the requirements are still present on the transitions of the
composite automaton. Following the transitions in the composite automaton, we
find that the set of input/output actions, related to the requirements, are still
present, so the the requirements are preserved over the composition. After that,
we can proceed to define a partial architecture of the system by specifying the
BDD with the refinement of a composite block into the blocks Sensors and ACU.
This diagram is presented in figure 3 with its corresponding IBD which describes
the connections between the composed blocks through the ports representing the
shared actions between the IA of ACU and Sensors. For the lack of space we will
not show the next iteration (i = 3) concerning the requirement R1.1.3.

Fig. 3. SysML BDD and IBD for the second iteration

3 Conclusion

In this paper we proposed an approach to specify system architecture directly
from functional requirements. System requirements were specified with SysML
RD, which was analyzed to extract atomic requirements. These requirements
were then associated, one by one, to reusable components, which satisfy them.
These components were then added to a partial architecture by the compo-
sition of their component interfaces described through interface automata. The

352 S. Chouali, O. Carrillo, and H. Mountassir

preservation of the requirements over the composition was guaranteed by the
compatibility between the interface automata, and the preservation of the actions
related to the requirements in the composite automaton. For future research, we
plan to extend our approach to deal with the non-functional requirements in
CBS.

References

1. Van Lamsweerde, A.: From system goals to software architecture. Formal Methods
for Software Architectures, 25–43 (2003)

2. Barais, O., Duchien, L., Le Meur, A.F.: A framework to specify incremental soft-
ware architecture transformations. In: EUROMICRO Conference SEAA, pp. 62–69
(2005)

3. Dromey, R.G.: From requirements to design: Formalizing the key steps. In: Software
Engineering and Formal Methods, pp. 2–11 (2003)

4. Dromey, R.G.: Architecture as an emergent property of requirements integra-
tion. In: Second International SofTware Requirements to Architectures Workshop,
pp. 77–84 (2003)

5. Lau, K.-K., Nordin, A., Rana, T., Taweel, F.: Constructing component-based sys-
tems directly from requirements using incremental composition. In: Proc. 36th
EUROMICRO Conference SEAA, pp. 85–93. IEEE (2010)

6. The Object Mangagement Group (OMG): OMG Systems Modeling Language Spec-
ification Version 1.2. (2010), http://www.omg.org/spec/SysML/1.2/

7. de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC/SIGSOFT FSE,
pp. 109–120 (2001)

8. Carrillo, O., Chouali, S., Mountassir, H.: Formalizing and verifying compatibility
and consistency of sysml blocks. SIGSOFT Softw. Eng. Notes 37(4), 1–8 (2012)

9. Chouali, S., Hammad, A.: Formal verification of components assembly based on
sysml and interface automata. ISSE 7(4), 265–274 (2011)

10. Lee, E.A., Xiong, Y.: A behavioral type system and its application in ptolemy II.
Formal Aspects of Computing 16(3), 210–237 (2004)

 http://www.omg.org/spec/SysML/1.2/

Author Index

Ahmad, Tanvir 249
Ameller, David 200
Angelov, Samuil 17
Anvaari, Mohsen 162
Avgeriou, Paris 192, 200
Ayala, Claudia P. 307

Balasubramaniam, Dharini 208, 240
Batista, Thais 106, 114, 320
Baumgarten, Uwe 266
Belala, Fäıza 340
Borne, Isabelle 1
Bosch, Jan 176
Bouassida Rodriguez, Ismael 122, 336
Buchgeher, Georg 332

Carrillo, Oscar 348
Cavalcante, Everton 114, 320
Cherfia, Taha Abdelmoutaleb 340
Chouali, Samir 348
Christensen, Henrik Bærbak 316
Conradi, Reidar 162
Cuesta, Carlos E. 45

de Silva, Lakshitha 240
Dimech, Claire 208

Eklund, Ulrik 344

Fernández, Javier D. 45
Franch, Xavier 200, 307
Frénot, Stéphane 311
Fuentes, Lidia 282

Galster, Matthias 192, 200
Gassara, Amal 122
Goichon, François 311
Goknil, Arda 89
Gomaa, Hassan 25
Gruhn, Volker 324

Hadj Kacem, Ahmed 33
Hadj Kacem, Mohamed 33
Haitzer, Thomas 54
Hansen, Klaus Marius 316

Herold, Sebastian 299
Hesenius, Marc 324

Jaccheri, Letizia 162
Jmaiel, Mohamed 122

Küster, Martin 184
Kusters, Rob 17

Leite, Jair 106
Li, Zhao 328
Lima, Crescencio 72
Ljungblad, Marcus 344
Lytra, Ioanna 224

Mair, Matthias 299
Mallet, Frédéric 89
Mart́ınez-Fernández, Silverio 307
Mart́ınez-Prieto, Miguel A. 45
Martins Marques, Helena 307
Medeiros, Ana Luisa 114, 320
Miesbauer, Cornelia 130
Morandi, Benjamin 25
Mountassir, Hassan 348

Naab, Matthias 72
Nanz, Sebastian 25
Nowak, Marcin 146

Olsson, Carl Magnus 344
Oquendo, Flávio 1, 106

Pascual, Gustavo G. 282
Pautasso, Cesare 146
Peraldi-Frati, Marie-Agnès 89
Pinto, Mónica 282
Pramsohler, Thomas 266

Rost, Dominik 72

Sadou, Salah 1
Salagnac, Guillaume 311
Schenk, Simon 266
Silva, Eduardo 114
Suryadevara, Jagadish 89

Tofan, Dan 192
Ton That, Minh Tu 1

354 Author Index

Tounsi, Imen 33

Tran, Huy 224

Trienekens, Jos 17

van der Ven, Jan Salvador 176

von Flach Garcia Chavez, Christina 72

Weinreich, Rainer 130, 332
West, Scott 25
Weyns, Danny 249

Zdun, Uwe 54, 224
Zheng, Jiang 328
Zouari, Mohamed 336

	Preface
	Organization
	Table of Contents
	Architectural and Design Patterns and Models
	Composition-Centered Architectural Pattern Description Language
	1 Introduction
	2 Problem Statement
	2.1 Blend of Patterns
	2.2 Connection of Patterns
	2.3 Inclusion of Patterns
	2.4 Discussion

	3 General Approach
	4 A Pattern Description Language for Hierarchical Pattern and Composition
	4.1 The COMLAN Meta-Model
	4.2 Pattern Definition through an Example

	5 Pattern Refinement
	5.1 Stringing Operator Transformation
	5.2 Overlapping Operator Transformation
	5.3 Nested Pattern Transformation

	6 Implementation Information
	7 RelatedWork
	7.1 Architectural Pattern Description Language
	7.2 Pattern Composition
	7.3 Hierarchical Pattern Composition

	8 Conclusion
	References

	Software Reference Architectures - Exploring Their Usage and Design in Practice
	1 Introduction
	2 Survey Methodology, Setup, and Execution
	2.1 Data Collection, Target Population, and Sampling
	2.2 Survey Design and Execution

	3 Results from the Introductory Questions (Groups 1 and 2)
	4 Results from the Questions on Usage of SRA (Group 3)
	5 Results from the Questions on Design of SRA (Group 4)
	6 Results from Questions on Status and Future (Group 5)
	7 Concluding Remarks
	References

	Concurrent Object-Oriented Development with Behavioral Design Patterns
	1 Introduction
	2 Behavioral Design Patterns
	3 Implementation of Design Patterns
	4 Case Study
	5 Related Work
	6 Conclusion
	References

	Towards an Architecture for Managing Big Semantic Data in Real-Time
	1 Introduction
	2 Motivation
	2.1 The RDFWorld
	2.2 Running Example

	3 TheSOLID Architecture
	4 SOLID in Practice
	4.1 Data-Centric Layers
	4.2 Processing-Centric Layers

	5 Conclusions and Future Work
	References

	Controlled Experiment on the Supportive Effect of Architectural Component Diagrams for Design Understanding of Novice Architects
	1 Introduction
	2 Related Work
	3 Experiment Description
	3.1 Goal and Hypotheses
	3.2 Parameters and Variables
	3.3 Experiment Design
	3.4 Execution

	4 Analysis
	4.1 Descriptive Statistics
	4.2 Data Set Reduction
	4.3 Hypotheses Testing

	5 Validity Evaluation
	6 Conclusions
	References

	ADLs and Architectural MetaModels
	Software Architecture Documentation for Developers: A Survey
	1 Introduction
	1.1 The Practical Problem
	1.2 This Study
	1.3 Related Studies

	2 Architecture Documentation
	3 Research Methodology
	3.1 Planning the Survey
	3.2 Designing and Conducting the Survey
	3.3 Analyzing the Data

	4 Results
	4.1 Overview of Survey Participants and Their Context
	4.2 Main Findings
	4.3 Architectural Information: The as-is Situation
	4.4 Representation of Architectural Information: The as-is Situation
	4.5 Architectural Information: The to-be Situation
	4.6 Representation of Architectural Information: The to-be Situation

	5 Discussion
	5.1 Survey Results
	5.2 Validity
	5.3 Conclusions

	References

	Analysis Support for TADL2 Timing Constraints on EAST-ADL Models
	1 Introduction
	2 Running Example: Brake-By-Wire Application
	3 TADL2: Timing Augmented Description Language
	3.1 TADL2 Timing Constraints
	3.2 TimeBase, Dimension and Unit in TADL2
	3.3 BBW Example in TADL2

	4 TADL2 to MARTE/CCSL: Simulation Approach
	4.1 The Clock Constraint Specification Language (CCSL)
	4.2 Modelling Constraints in CCSL
	4.3 Executing Specification with TimeSquare

	5 TADL2 to Timed Automata/UPPAAL: Verification Approach
	5.1 UPPAALModel-Checker: An Overview
	5.2 Modeling TADL2 in UPPAAL
	5.3 Verification Results

	6 Discussion of the Approach
	7 Related Work
	8 Conclusions
	References

	SysADL: A SysML Profile for Software Architecture Description
	1 Introduction
	2 Background
	3 SysADL
	4 Case Study
	5 Related Work
	6 Final Remarks
	References

	A Lightweight Language for Software Product Lines Architecture Description
	1 Introduction
	2 Background
	2.1 Software Product Lines
	2.2 ACME/Armani

	3 LightPL-ACME
	3.1 ProductLine, Feature, and Product Elements
	3.2 Referenced Architectures

	4 LightPL-ACME Studio
	5 Related Work
	6 FinalRemarks
	References

	Towards a Multi-scale Modeling for Architectural Deployment Based on Bigraphs
	1 Introduction
	2 The Proposed Approach
	2.1 Overview of Bigraphs
	2.2 Multi-scale Modeling

	3 Case Study: Smart Home
	3.1 Step 1: Modeling
	3.2 Step 2: Enriching

	4 Related Work
	5 Conclusion and Future Work
	References

	Architectural Design Decision-Making
	Classification of Design Decisions – An Expert Survey in Practice
	1 Introduction
	2 Previous and Related Work
	3 Objectives and Research Questions
	4 Research Approach
	5 Survey Results
	5.1 Classification of Design Decisions
	5.2 Capturing Design Decisions
	5.3 Influence Factors for Decision Making

	6 Summary and Discussion of Results
	6.1 On Making and Documenting Decisions
	6.2 On Design Decision Classification
	6.3 On Influence Factors

	7 Validity
	8 Conclusion
	References

	Team Situational Awareness and Architectural Decision Making with the Software Architecture Warehouse
	1 Introduction
	2 Related Work and Background
	2.1 The Problem of Collaborative Design
	2.2 From Situational Awareness to Good Decisions

	3 Decision Model and Argumentation Viewpoint
	3.1 The Life Cycle of Positions within Alternatives
	3.2 The Life Cycle of a Design Decision

	4 Shared Situational Awareness of the Design Space
	4.1 Open Mode, Divergent Discussion
	4.2 Closed Mode, Convergent Discussion

	5 The Software Architecture Warehouse
	5.1 Shared Design Space Awareness
	5.2 System Architecture

	6 Formative Evaluation
	7 Conclusion
	References

	Architectural Decision-Making in Enterprises: Preliminary Findings from an Exploratory Study in Norwegian Electricity Industry
	1 Introduction
	2 Related Work
	2.1 Making Architectural Decisions
	2.2 Empirical Studies
	2.3 Software Ecosystem

	3 Research Design
	3.1 Goal
	3.2 Context
	3.3 Data Collection and Analysis Methods

	4 Results
	4.1 Making Architectural Decisions for Enterprise Application Development
	4.2 Using Standards for Making Architectural Decisions
	4.3 Documenting and Reusing the Architectural Decisions
	4.4 Effect of Software Ecosystem Relationships on the Architectural Decisions

	5 Discussion
	5.1 Architectural Decision-Making for Enterprise Application Development
	5.2 Reusing Architectural Decisions
	5.3 Effect of Software Ecosystem Relationships on the Architectural Decisions
	5.4 Threats to Validity

	6 Conclusions and Future Work
	References

	Making the Right Decision: Supporting Architects with Design Decision Data
	1 Introduction
	2 Architectural Design Decisions
	Medium Level Decisions.
	Realization Level Decisions.

	3 Hypotheses
	4 Mining Git Repositories
	4.1 Analyses Tool: Gitminer

	5 Results
	6 Analysis
	7 Discussion and Future Work
	8 Related Work
	9 Conclusions
	References

	Architecture-Centric Modeling of Design Decisions for Validation and Traceability
	1 Introduction
	2 Motivating Example
	3 Modeling of Architectural Design Decisions
	3.1 Constraint Checking with OCL
	3.2 Decision Types

	4 Case Study
	4.1 Initial Architecture and Design Decisions
	4.2 Change Scenarios for Validation
	4.3 Change Scenarios for Understanding and Traceability

	5 Related Work
	References

	Difficulty of Architectural Decisions – A Survey with Professional Architects
	1 Introduction
	2 Survey Design and Results
	2.1 Survey Design
	2.2 Results for RQ1 - Characteristics of Architectural Decisions
	2.3 Results for RQ2 - Difficulty of Decisions
	2.4 Results for RQ3 - Differences between Junior and Senior Architects
	2.5 Results for RQ4 - Differences between Good and Bad Decisions

	3 Discussion
	4 Conclusion and Future Work
	References

	Software Architecture Conformance and Quality
	The Role of Quality Attributes in Service-Based Systems Architecting: A Survey
	1 Introduction
	2 Research Method
	3 Results
	3.1 RQ1: How Important Are QA Compared to Functionality When Architecting SBS?
	3.2 RQ2: To What Extent Are QA Specific to Application Domains of SBS?
	3.3 RQ3: What Kind of Architectural Decisions Are Used to Address QA in SBS?

	4 Discussions of Results
	5 Conclusions and Future Work
	References

	Maintaining Architectural Conformance during Software Development: A Practical Approach
	1 Introduction
	2 Example
	3 Architecture Conformance for Software Development
	3.1 Conformance Model
	3.2 Some Structural Rules
	3.3 Some Interaction Rules

	4 Card: An Eclipse Plug-in to Support Conformance Checking
	4.1 The Design of Card
	4.2 Representation of Architectural Properties
	4.3 Some Highlights of Card Implementation
	4.4 Example: Violations Detected

	5 Evaluation
	5.1 Soundness and Completeness
	5.2 Usability
	5.3 Performance

	6 Related Work
	7 Conclusions and Future Work
	References

	Supporting Consistency between Architectural Design Decisions and Component Models through Reusable Architectural Knowledge Transformations
	1 Introduction
	2 Background
	2.1 Architectural Design Decision Support Framework
	2.2 View-Based Modeling Framework

	3 Reusable AK Transformations and Consistency Checking Rules
	3.1 Architectural Knowledge Transformation Language
	3.2 Recurring Pattern Primitives as Reusable AK Transformations
	3.3 Generation of Consistency Checking Rules

	4 Case Study and Evaluation
	4.1 Case Study
	4.2 Generalizability
	4.3 Reusability
	4.4 Modeling Effort and Scalability

	5 Related Work
	6 Conclusions
	References

	PANDArch: A Pluggable Automated Non-intrusive Dynamic Architecture Conformance Checker
	1 Introduction
	2 Architecture Conformance Checking
	2.1 Static and Dynamic Checking
	2.2 Mapping between Architecture and Implementation

	3 Design Principles
	4 Implementation
	5 Evaluation
	5.1 Detecting Architecture Violations
	5.2 Performance Impact

	6 Related Work
	7 Conclusions and Future Work
	References

	Architectural Repair and Adaptation
	Claims and Evidence for Architecture-Based Self-adaptation: A Systematic Literature Review
	1 Introduction
	2 A Brief Introduction to Architecture-Based Self-adaptation
	3 Research Method
	3.1 Research Questions
	3.2 Searched Sources
	3.3 Search Strategy
	3.4 Inclusion and Exclusion Criteria
	3.5 Data Items
	3.6 Approach for Analysis

	4 Results Analysis
	4.1 Selected Primary Studies
	4.2 RQ1:What Is the Focus of Research in Self-adaptation?
	4.3 RQ2: What Are the Claims Made for Self-adaptation and What Are the Tradeoffs Implied by Self-adaptation?
	4.4 RQ3: How Much Evidence Is Available for the Claims and What Are the Types of Evidence?

	5 Limitations of Study
	6 Conclusion
	References

	Towards an Optimized Software Architecture for Component Adaptation at Middleware Level
	1 Introduction
	2 Case Study
	3 Interface and Adapter Model
	3.1 Interface Model
	3.2 Adapter Model
	3.3 Execution Semantics

	4 Runtime Architecture
	4.1 Static Adapter
	4.2 Dynamic Adapter

	5 Practical Realization
	6 Related Work
	7 Conclusion and Future Work
	References

	Run-Time Support to Manage Architectural Variability Specified with CVL
	1 Introduction
	2 Motivation and Approach Overview
	2.1 Common Variability Language (CVL)
	2.2 Challenges
	2.3 Our Approach
	2.4 Case Study

	3 Dynamic Reconfiguration Service
	4 Evaluation
	5 Related Work
	6 Conclusions
	References

	Towards Extensive Software Architecture Erosion Repairs
	1 Introduction
	2 Problem Analysis
	3 State of the Art of Complex Refactoring
	4 Solution Outline
	5 Conclusion
	References

	Short Papers
	Benefits and Drawbacks of Reference Architectures
	1 Introduction
	2 Benefits and Drawbacks of RAs from the Literature
	3 Benefits and Drawbacks of RAs from Our Study
	4 Discussion of Main Findings and Conclusions
	References

	Architectural Slicing: Towards Automatic Harvesting of Architectural Prototypes
	1 Motivation
	2 Background
	3 Approach
	3.1 Initial Experiments

	References

	Describing Cloud Applications Architectures
	1 Introduction
	2 Cloud-ADL: An Overview
	3 FinalRemarks
	References

	MVIC – An MVC Extension for Interactive, Multimodal Applications
	1 Introduction
	2 Model-View-Interaction-Controller
	3 Related Work
	4 Conclusion
	References

	Toward Industry Friendly Software Architecture Evaluation
	1 Introduction
	2 Essentials of Software Architecture Evaluation
	3 Research Challenges
	3.1 Architecture Evaluation in State of the Practice
	3.2 Developing an Industry Friendly Software Architecture Evaluation Method

	4 Conclusion
	References

	Towards Continuous Reference Architecture Conformance Analysis
	1 Introduction
	2 Approach
	3 Related Work
	4 Conclusion
	References

	Towards Automated Deployment of Distributed Adaptation Systems
	1 Introduction
	2 Method to Build Self-adaptive Applications
	3 Conclusion
	References

	Towards a Bigraph-Based Model for Context-Aware Adaptive Systems
	1 Introduction
	2 Bigraphs and Context-Aware Adaptive Systems
	3 Conclusion
	References

	Characterising Software Platforms from an Architectural Perspective
	1 Introduction: An Empirical Reflection
	1.1 Case 1: Platform Development in a Heterogeneous Domain
	1.2 Case 2: Implementation Based on an Existing Platform
	1.3 Case 3: Adaptation of a Platform to a Different Context

	2 Research Challenge
	2.1 Infrastructure
	2.2 Run-Time Dependencies
	2.3 Functionalities
	2.4 Construction Principle

	3 Conclusion
	References

	Specifying System Architecture from SysML Requirements and Component Interfaces
	1 Introduction
	2 Incremental Specification of System Architecture from SysML Requirements
	3 Conclusion
	References

	Author Index

