
Chapter 5
Carbonylative Sonogashira Reactions

The Sonogashira reaction is generally known as a coupling reaction of terminal
alkynes with aryl or vinyl halides. This reaction was first reported by Sonogashira
and Hagihara in 1975 (Scheme 5.1) [1]. Today the Sonogashira coupling reaction
is one of most powerful processes for C–C bond formation, especially for the
synthesis of substituted alkynes [2–4]. From the reaction mechanism aspect, a
transmetalation step was included between the palladium center and the in situ-
formed organocopper intermediate.

If the Sonogashira reaction is carried out in a CO atmosphere, the reactions are
called Carbonylative Sonogashira Reactions, which will give alkynone as an
interesting structural motif found in numerous biologically active molecules [5–7].
Notably, this class of compounds plays a crucial role in the synthesis of natural
products [8–12] and as key intermediates for the efficient formation of several
heterocycles [13–15]. Traditionally, alkynones have been synthesized by transition
metal catalyzed cross-coupling reactions of acid chlorides and terminal alkynes
(Scheme 5.2) [16–24]. However, the stability of the respective acid chlorides is
limited and a lack of functional tolerance is another problem of this methodology.
Without a doubt, carbonylative Sonogashira coupling of corresponding terminal
alkynes and aryl halides represents the most straightforward way to set up
alkynones.

The first palladium-catalyzed carbonylative Sonogashira coupling was reported
in 1981 by Kobayashi and Tanaka [25]. Aryl, heterocyclic, and vinylic halides
reacted with CO and terminal acetylenes at 120 �C and 80 bar in the presence of
NEt3 and a catalytic amount of a palladium(II) complex to form alkynones in a
46–93 % yield (Scheme 5.3). Remarkably, aryl bromides and aliphatic alkynes
were also included in the range of substrates. But NEt3 was used as a solvent for
this transformation and a relatively high pressure of CO was needed.

Interestingly, in 1991 Alper and Huang described another type of palladium-
catalyzed carbonylative Sonogashira coupling of aryl iodides with benzyl acety-
lenes. Here, furanones were isolated as the terminal products and not the predicted
alkynones [26]. In the presence of Pd(OAc)2/PPh3, aryl iodides and benzyl acet-
ylenes were transformed into furanones in 33–88 % yields (Scheme 5.4). Palla-
dium-catalyzed carbonylative Sonogashira coupling reactions of iodobenzene and
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2-methyl-3-butyn-2-ol under biphasic conditions to furanones were also described
by Kiji and colleagues [27].

In 1991 Ortar and colleagues published a general procedure for the carbony-
lative Sonogashira couplings of vinyl triflates with terminal acetylenes [28].
Various alkynyl ketones were produced in moderate to good yields (Scheme 5.5).
However, this methodology failed in the case of activated alkynes or aryl triflates.

The catalytic ability of dimeric palladium hydroxide in carbonylative Sono-
gashira coupling was demonstrated by Alper and his team in 1994 [29]. In this
report, terminal alkynes and alkynols were coupled with aryl iodides in the
presence of carbon monoxide in moderate to good yields (Scheme 5.6). In 1995
Cacchi and colleagues presented a general methodology for 5-(2-acylethynyl)-
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30,50-di-O-acetyl-20-deoxyuridines synthesis [30]. In the presence of a palladium-
catalyst, the corresponding alkynones were synthesized from aryl iodides and
alkynes (Scheme 5.7).
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The carbonylative Sonogashira reaction of iodonium salts with terminal alkynes
was described by Kang and colleagues [31]. Both palladium/copper and palla-
dium-catalyst systems alone could be used and various alkynones were synthe-
sized in moderate to good yield in aqueous media (Scheme 5.8). Interestingly, a
catalytic amount of CuI could also catalyze the reaction, and gave the corre-
sponding alkynones in good yields.

Another example of carbonylative Sonogashira coupling reactions with iodi-
nium iodide and 1-alkynes was published by Ma and colleagues in 2001 [32].
Under mild conditions, iodine-substituted alkynones were produced in good yields
(Scheme 5.9). Both aromatic, aliphatic and heterocyclic terminal acetylenes can be
applied as their substrates.
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An interesting room temperature carbonylation using a palladium/copper-cat-
alyst system was published by Mori and Ahmed in 2003 [33–35]. As shown in
Scheme 5.10, various aromatic alkynones were produced in moderate to good
yields using aqueous ammonia as a base. Surprisingly, no competitive amination
reaction occurred. This methodology was further exploited by Bishop’s group to
generate pyrazoles [35].

Water as a green solvent has been successfully applied as a reaction medium for
palladium-catalyzed carbonylative Sonogashira reactions (Scheme 5.11) [36].
Instead of using alkynes, activated acetylenes stibanes can also be applied as
coupling partners in carbonylations. An example is the palladium-catalyzed car-
bonylative Sonogashira coupling of alkynyl stibanes with aryl iodides that was
published by Kakusawa and Kurita in 2006 [37]. The reaction was carried out
under 1 bar of CO in DMAc using 5 mol% of Pd(OAc)2 and 20 mol% of PPh3.
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Alkynones were obtained in good yields along with a small amount of non-car-
bonylative coupling products (Scheme 5.12). However, this side reaction can be
completely suppressed by increasing the CO pressure to 20 bar.
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The use of ionic liquids and flow chemistry technologies attract increasing
attention. Consequently, these novel tools have also been successfully used in
carbonylative Sonogashira reactions by Ryu and colleagues [38, 39]. Various al-
kynones were synthesized in moderate to good yields at a low pressure of CO in n-
butyl methyl imidazolium hexafluorophosphate. The microreactor-based flow
system was compared with typical batch conditions, and higher yields could be
achieved with flow system (Scheme 5.13).

In 2006 Chen and his colleagues described a convenient, effective method for
the carbonylative Sonogashira coupling of aryl iodides with ethynyl ferrocene
under one atmosphere of CO [40]. Various aryl ferrocenylethynyl ketones have
been synthesized in a 62–88 % yield (Scheme 5.14). Unexpectedly, strongly
activated aryl iodides (4-Ac, 4-NO2) and iodopyridine gave no desired carbonyl-
ation product. However, this methodology was also applied to a two-step synthesis
of ferrocenyl pyrazole and pyrimidine derivatives by Skoda–Foldes and co-worker
[41]. In 2009, this group reported on another protocol for the synthesis of ferro-
cenylethynyl ketones in water [42].
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The use of phosphites, e.g., P(OPh)3 as a ligand in palladium-catalyzed car-
bonylative Sonogashira coupling, was first reported by Trzeciak and colleagues
[43]. Using the defined complex PdCl2[P(OPh)3]2 as a catalyst, alkynones were
produced in low to moderate yields at 1 bar of CO (Scheme 5.15). When the
reaction was conducted in an ionic liquid, the catalyst could be reused in four
consecutive catalytic runs with high activity. Notably, benzyl bromide was
reported as a substrate for the first time, but 2 equivalents of acetylenes were
required for this system.

Kondo and Iizuka presented a palladium-catalyzed ‘‘CO-free’’ method for alky-
none synthesis, which applies stoichiometric amounts of Mo(CO)6 as a CO source
[44]. The reaction was carried out at room temperature, and PtBu3 was found to be an
essential ligand under these conditions. When strong electron-withdrawing substi-
tuted aryl iodides were used as substrates in this protocol, the corresponding alky-
nones were produced in good to excellent yields (Scheme 5.16). Again, a one-pot
synthesis of pyrazoles via condensation of corresponding alkynones with hydrazine
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was also conducted and the corresponding products were obtained in good yields at
room temperature.

In 2008, Xia and Chen described a recyclable phosphine-free catalyst system
for alkynone synthesis [45]. Using palladium on charcoal (Pd/C) and NEt3, the
carbonylative Sonogashira coupling of aryl iodides with alkynes was smoothly
carried out and the desired products were isolated in moderate to excellent yields
(Scheme 5.17).

Later on, the same group presented an unusual variation of the palladium-
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separable palladium-catalyst was synthesized by combining palladium nanoparti-
cles and superparamagnetic Fe3O4 nanoparticles in a KBH4 solution. This catalyst
proved to be effective for the carbonylation reaction of aryl iodides with alkynes
under phosphine-free conditions. Because of the magnetic behavior of Fe3O4, the
catalyst could be reused with sustained selectivity and activity. Various alkynones
have been synthesized in good to excellent yields (Scheme 5.18).

Another approach applying a heterogeneous palladium-catalyst was recently
published by Cai and colleagues. They disclosed the MCM-41-supported bidentate
phosphine palladium complex [MCM-41-2p-Pd(0)] as a polymer-supported pal-
ladium-catalyst [47]. Terminal alkynes were converted with aryl iodides under
1 bar CO to give alkynones in good to high yields (Scheme 5.19). Noteworthy is
the fact that the use of a polymer as support in a Sonogashira coupling reaction
was already reported by Takahashi and colleagues in 2008. The products can be
released from the polymer by adding acid [48].

So far, basically all methodology developments in this area have focused on the
use of expensive and easy-to-activate aryl iodides. Thus it was interesting that in
2010 Beller’s group discovered a general and convenient palladium-catalyzed
carbonylative Sonogashira coupling of aryl bromides [49]. The key to the success
was the application of BuPAd2 as a ligand in the presence of K2CO3. Alkynones
have been generated in moderate to good yields from the corresponding aryl
bromides and terminal alkynes (Scheme 5.20). The one-pot synthesis of isoxaz-
olines and pyrazoles was also successful.
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Since aryl triflates can easily be generated from corresponding phenols, Beller
also developed a palladium-catalyzed carbonylative Sonogashira coupling of aryl
triflates in 2010 [50]. This is the first carbonylative Sonogashira protocol that can
apply aryl triflates as substrates. Various alkynones were produced in moderate to
good yields under low pressure of CO (Scheme 5.21). A one-pot synthesis of
enaminones was also achieved by running the reaction in the presence of primary
amines.

Taking the advantages of anilines, Beller and his colleagues developed the first
general and efficient methodology for carbonylative Sonogashira reaction of ani-
lines [51]. This transformation proceeded under mild reaction conditions, and no
base was needed. Both aromatic and aliphatic alkynes are suitable starting mate-
rials, and 30 different kinds of alkynones were produced in moderate to excellent
yields (Scheme 5.22).

They also extended their methodologies to benzyl chlorides [52]. Applying an
unusual Pd(PPh3)2Cl2/P(OPh)3 catalyst system, eight different alkynones are
produced in moderate to good yields (45–80 %) by the carbonylation of benzyl
chlorides and alkynes. Benzyl acetylene gave the corresponding furanones in
moderate a yield (45–68 %) via palladium-catalyzed domino double carbonylation
reactions. Based on this work, the carbonylative synthesis of furanones from aryl
bromides and aryl triflates were developed as well [53]. The generality of this
methodology was proved by more than 30 examples that proceeded good yields
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(Scheme 5.23). Notably, the straightforward synthesis of permethylated BE-
23372M, a kinase inhibitor, was achieved. Later on, they found that the carbon-
ylation of aryl iodides with benzylacetylenes could even be carried out at room
temperature under 1 bar of CO [54].

Ryu and colleagues described the synthesis of alkyl alkynyl ketones via the Pd/
light-induced carbonylative Sonogashira coupling of iodoalkanes with terminal
alkynes [55]. Using xenon light, in the presence of a catalytic amount of PdCl2(PPh3)2

and NEt3, alkynones were produced in good yields (Scheme 5.24). This represents the
first examples for Sonogashira carbonylations of alkyl iodides [56].

Despite all the synthetic developments, relatively little detailed mechanistic
work has been performed on Sonogashira carbonylations until the present. The
generally accepted mechanism is shown in Scheme 5.25. The typical reaction
begins with the oxidative addition of ArX to a palladium(0) complex to form an
aryl palladium(II) intermediate. The subsequent insertion of CO leads to the
respective palladium acyl complex. Transmetallation, and finally reductive elim-
ination, releases the product and a new catalytic cycle can be started. Notably, all
species passing through the cycle are believed to be in a reversible equilibrium.

Besides the intermolecular Sonogashira carbonylation reactions, intramolecular
Sonogashira carbonylations offer various possibilities for the preparation of
interesting heterocycles. Typically, in these reactions 2-halophenols and
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2-haloanilines or their derivatives are used with terminal alkynes. As early as
1990, Chiusoli and colleagues reported on the palladium-catalyzed synthesis of
indoxyl derivatives (Scheme 5.26) [57].

Shortly afterwards, Torii and co-worker reported a novel methodology for the
synthesis of quinolines [58, 59]. Here, quinolines were produced in good yields via
palladium-catalyzed carbonylation of 2-haloaniline with terminal alkynes in the
presence of CO (Scheme 5.27).

When the amino group of the 2-haloaniline substrate is primary, the cyclization
proceeded without problem. But using alkylated anilines under the same conditions,
the yield of the corresponding cyclization product decreased dramatically. A similar
methodology was reported by Kalinin and colleagues in 1992, using PdCl2(dppf) as a
palladium precursor [60]. This cyclization was applied to synthesize the quinolone
substructure of BILN 2061, a serin protease inhibitor [61, 62]. That same year,
Chiusoli and colleagues published an interesting methodology for indenone syn-
thesis [63]. The sequential oxidative addition of ortho-alkoxycarbonylmethylene or
alkylamido-methylene-substituted aryl iodides, CO insertion, reductive coupling
with terminal alkynes, nucleophilic attack by the activated methylene group, and
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protonation with metal elimination, afford the indenones high yields in a one-pot
process (Scheme 5.28).

In 2000 Yang and Miao reported a novel method for the preparation of flavones
[64]. Various flavones are easily synthesized via palladium-catalyzed carbonyla-
tive annulation of iodophenol acetates with terminal acetylenes in high yields
(Scheme 5.29). This novel reaction provides the possibility of a combinatorial
synthesis of flavones on solid supports.

More recently, Capretta and Awuah described a microwave-assisted, one-pot
palladium-catalyzed carbonylative Sonogashira annulation reaction [65]. Various
flavones have been produced in moderate to good yields (Scheme 5.30). Alper and
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Yang reported another example of carbonylations of o-iodophenols with terminal
acetylenes to obtain flavones. Their reaction proceeded under 1 bar of CO in ionic
liquids based on phosphonium salt (PSIL102, C14H29(C6H13)3)P+Br-) [66]. It
should be noted that by using PSIL102 as an ionic liquid, no phosphine ligand was
required (Scheme 5.31).

Elegant synthetic applications of carbonylative Sonogashira reactions were
described by Müller and his group. For example, in 2005 they succeeded in pro-
ducing palladium-catalyzed one-pot, four-component carbonylations for the
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synthesis of meridianins [67], which are natural and biologically activated com-
pounds (Scheme 5.32).

In 2008 Bhanage’s team reported on a copper-catalyzed carbonylative Sono-
gashira reaction of aryl iodides [68]. In this procedure, copper bis(2,2,6,6-tetra-
methyl-3,5-heptanedionate) [Cu(TMHD)2] was used as the catalyst for this
transformation and using NEt3 as a base. Alkynones were produced in good yields
(Scheme 5.33). A nickel-catalyzed carbonylation of allyl halides and acetylenes
was reported on by Moretó and colleagues [69]. Cyclopentane skeletons were
produced in high yields and with controlled stereochemistry.

In this chapter, we have discussed the carbonylative Sonogashira reaction of
organohalides and their synthetic applications. Palladium-catalysts are still the
main catalysts in this area. From the mechanism point of view, the same as the
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contents of Chap. 4, transmetalation is involved in the case of in situ formation of
alkynylcopper intermediate. But the mechanism is different if a palladium-catalyst
is the sole catalyst, which should be similar to the contents that will be discussed in
the next chapter.
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