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Abstract. This paper starts from the observation that existing model
query facilities are not easy to use, and are thus not suitable for users
without substantial IT/Computer Science background. In an attempt to
highlight this issue and explore alternatives, we have created the Model
Constraint and Query Language (MOCQL), an experimental declarative
textual language to express queries (and constraints) on models. We in-
troduce MOCQL by examples and its grammar, evaluate its usability by
means of controlled experiments, and find that modelers perform bet-
ter and experience less cognitive load when working with MOCQL than
when working with OCL. While MOCQL is currently only implemented
and validated for the different notations defined by UML, its concepts
should be universally applicable.

Keywords: OCL, UML, model querying, empirical software engineer-
ing, Prolog.

1 Introduction

1.1 Motivation

Many software development approaches today use models instead of or alongside
with code for different purposes, e. g., model based andmodel driven development,
Domain-Specific Languages (DSLs), and Business process management. As a con-
sequence, tasks such as version and configurationmanagement, consistency check-
ing, transformations, and querying of models are much more common today than
they used to be. Unfortunately, these and other tasks are not well covered in cur-
rent CASE tools. But from practical experience we have learned that modelers
dearly need, among others, an ad-hoc query facility covering more than just full
text search and a fixed set of predefined queries. The natural choice of language
when it comes to selecting a powerful general-purpose model querying language
is the Object Constraint Language (OCL [10]), at least for UML and similar lan-
guages. However, OCL is often perceived as too complex for many modelers, let
alone domain experts without formal training in Computer Science. So, the goal
of this paper is to try and come up with better solutions to this problem. In order
to achieve high levels of accessibility, we are prepared to even sacrifice a certain
degree of theoretical expressiveness, as long as the practically relevant cases are
covered. Aspects other than usability are beyond the scope of this paper.
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1.2 Approach

Our first approach to improving the usability of model query languages was based
on the commonly held assumption that visual languages are generally easier to
understand than textual languages. Since OCL is a purely textual language, a
visual language might perform better. Following this assumption, we defined a
predominantly visual alternative to OCL, the Visual Model Query Language
(VMQL [15]). We could indeed demonstrate that VMQL is easier to use than
OCL [17], while being applicable to the same kinds of tasks OCL is targeted at
(i.e., both for querying and expressing constraints, see [7] for the latter).

During these research projects, however, we also found evidence that the visual
nature of VMQL is only one of several factors contributing to its usability, and
quite possibly not the largest one. In order to pursue this lead, and building on
the lessons learned in the design of VMQL, we invented a new textual language
on the fly. To our surprise, this improvised language was even more effective
than VMQL, and was preferred by users when given a choice. Thus, we refined
and elaborated this language which has now evolved into the Model Constraint
and Query Language (abbreviated to MOCQL, pronounce as “mockle”).

The design of MOCQL is informed by the lessons learned during the design of
VMQL, and they share conceptual and implementation element, yet MOCQL is
a genuinely new language. Our working hypothesis is that MOCQL offers better
usability than both OCL and VMQL. MOCQL is not conceptually restricted to
UML, but the current implementation and validation have so far only covered
this notation. Thus, while we believe that MOCQL is suitable as a universal
model query language, no such claim will be raised here. Also, we envision using
MOCQL on model repositories such as CDO, EMFStore, Morsa, and ModelBus.1

However, this has not yet been attempted.
In the remainder of this paper, we will first introduce MOCQL by example,

showing how it may be used to query models in a concise and modeler-friendly
way. We provide a (simplified) grammar for MOCQL, informally describe its
semantics, and briefly report on its implementation. Then, we report on two
controlled experiments to assess the relative effectiveness of OCL, VMQL, and
MOCQL from a user’s point of view. We conclude by comparing MOCQL with
existing approaches, highlighting the contributions, and outlining ongoing re-
search.

2 Introducing MOCQL

We will now show some examples of MOCQL queries. In order to explain their
meaning, we also present OCL queries with the same effect. Note that no for-
mal relationship between MOCQL and OCL exists, in particular, there is no
automatic translation between these languages. All queries are assumed to be
executed on the models shown in Fig. 1. For simplicity, we shall assume that

1 See www.eclipse.org/cdo, www.emfstore.org, www.modelum.es/morsa, and
www.modelbus.org, respectively.

www.eclipse.org/cdo
www.emfstore.org
www.modelum.es/morsa
www.modelbus.org
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Fig. 1 shows two models M1 and M2, the former of which is completely covered
by diagram M1, and the latter is completely covered by the diagrams M2a and
M2b.

CD M1

author: stoerrle
qa:  approved
level:  analysis

1 1 Person

name: string
age: int

Address

UCD M2a

UCD M2b

create contact

Manager

Fig. 1. The sample models used as the base model for all queries described in this
paper

Suppose, a modeler is looking for all classes whose name ends with “Address”
in model M1. On the given sample model, the result would be the set of the
two classes named “Address” and “MailAddress”. Such a simple query would
probably be best answered by using whatever search facility any given modeling
tool provides; most tools allow specifying the meta-class of the search target and
pattern matching for names. Using OCL, the query might look something like
the following.

(1a) Class.allInstances()

-> select(c | c.name.contains_substring("Address")).

Here, we assume an OCL-function contains substring. Such a function is not
part of the OCL or UML standards [10,9], but it could probably be programmed
and thus be available in some hypothetical OCL Query Library. In MOCQL,
this query can be expressed in a very natural way:

(1b) find all classes $X named like "*Address" in M1.

Understanding this query requires much less knowledge about the UML meta
model than the corresponding OCL expression, which makes it more readily
understood by modelers (as we shall show below). Also, this expression is easy
to modify and extend, e.g., we want to add the constraint that the classes we
look for are abstract. In OCL, this could be expressed by query (2a).

(2a) Class.allInstances()

-> select(c | c.name.contains_substring("Address")

&& c.isAbstract = true).
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Compare this with the corresponding MOCQL query (2b), which we believe is
significantly clearer, and easier to understand.

(2b) find all abstract classes $X named like "*Address" in M1.

Suppose we were to look for abstract classes that do not have subclasses. The
typical built-in search facilities of most modeling tools would not support such
a query. In OCL, we would have to write something like the following.

(3a) Class.allInstances()

->select(c | c.isAbstract=true).

intersection(c | c.general->isEmpty())

Even more understanding of fine details of the UML meta model are required
here (e.g., the property “general”), and knowledge of the different navigational
operators in OCL (i.e., the dot vs. the arrow), which at least many students
struggle with. In MOCQL, we can instead write

(3b) find all abstract classes $X in M1 where

there are no classes $Y such that $X generalizes $Y

which was created from the first MOCQL query. This expression just requires
to know the name “Generalization” for the relevant UML relationship. Thus,
less knowledge about the UML meta model is required when using MOCQL as
compared to when using OCL. Together with its user friendly syntax, MOCQL
also allows domain experts to query models in a straightforward way.

Let us now turn to model M2. Assume, a modeler wants to find out all the
actors involved in a given use case named “edit address data”. In MOCQL, the
following query would achieve this goal, returning the actors “Customer” and
“Account Manager”.

(4) find all actors $X where $X is associated to $Y and

there is a useCase $Y named "edit address data".

The way associations are represented in the UML meta-model would make this
a rather complex query were we to express it in OCL. Observe, that elements
of the UML meta model (i.e., meta classes and meta attributes) are not part of
the MOCQL syntax. They are treated as strings and passed on “as is” to the
query execution procedures.

MOCQL offers capabilities for all kinds of models occurring in UML, including
use case models, state machine models, and activities. Suppose, for instance, we
are looking for activities that contain Actions unconnected to the initial node.
In MOCQL, this could be expressed by query (5).

(5) find all actions $Unconnected in M3 such that

there is no initialNode $Initial such that

$Initial precedes $Unconnected transitively.
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Finally, suppose we want to query two models simultaneously, to find elements
that have the same name. In MOCQL, this can easily be achieved by query (6).

(6) find all $X1 named $NAME in M1 such that

there is $X2 named $NAME in M2.

Relaxing the query to check for similar names rather than exact matches only
requires to add like before the second occurrence of $NAME. An EBNF grammar
of MOCQL is shown in Fig. 2. This grammar has been simplified for purposes
of presentation.

3 Semantics

The semantics of MOCQL consists of two parts. On the one hand, there is a
particular model representation that facilitates the operations involved in the
query execution, storing models as Prolog knowledge bases. On the other hand,
there is a mechanical translation of MOCQL queries into Prolog programs that
are then executed on the knowledge base, utilizing a set of predefined Prolog
predicates.

3.1 Model Representation

The model representation we use for MOCQL has been used for implementing
VMLQ [17], and a set of other advanced operations on models such as clone
detection [16], or difference computation [18]. In this representation, models are
looked at as knowledge bases, and individual model elements are considered
facts that are stored in a Prolog data base. Queries and other operations on
models are implemented as Prolog predicates over this knowledge base, i.e.,
queries are translated into Prolog predicates by a definite clause grammar (DCG,
a kind of Prolog program). Those query predicates are then simply executed,
calling a small library of predefined search functions. This greatly simplifies the
implementation, while making it easy to extend and experiment with, which is
the main design objective at this stage of the development of MOCQL.

First, the user creates source models, exports them to an XMI file, and trans-
forms it into a Prolog database. Each model element is transformed to one
Prolog clause of the predicate me, see Fig. 3 for an example (edited for improved
readability). The first argument of each me-fact is a pair of type and internal
identifier (usually an integer). The second argument is a property list of tags for
meta-attributes and their values. References to identifiers are marked with an
id or ids-term.

This conversion has several advantages over XMI. On the one hand, it is
much more compact than XMI, which also speeds up processing of models. In
particular, with the given representation, we are able to keep even very large
models in-memory all the time, which is not always the case for the typical data
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COMMAND      ::= find SET_SPEC 
               | count SET
               | save  SET as NAME 
               | load NAME
               | assign SET (u | n) SET to VARIABLE
               | clear VARIABLE

SET          ::= SET_SPEC | VAR
VAR          ::= $A | $B | $C | ...
SET_SPEC     ::= (A_QUANTIFIER | E_QUANTIFIER) ELEMENT_SPEC

A_QUANTIFIER ::= forall | each | every | all
E_QUANTIFIER ::= [there (is | are)] [ARTICLE]
ARTICLE      ::= a | an | the | those | some | no

ELEMENT_SPEC ::= [abstract | concrete] TYPE [VAR] [NPROP] [MPROP]
                 (where | such that) PROPS

TYPE         ::= activity | activities | class | classes | useCase | ... 
               | element
               | element VAR
               | element VAR with id STRING
ATTR         ::= name 
               | isAbstract 
               | ownedMember 
               | ...

PROPS        ::= PROP
               | not PROP
               | PROP LOG_OP PROPS
PROP         ::= ATTR CMP_OP VAL
               | VAR REL_OP VAR [directly | transitively]
               | SET_SPEC

VAL          ::= defined | bool | int | float | string | ...
MPROP        ::= in MODELNAMES
MODELNAMES   ::= MODELNAME
               | MODELNAME & MODELNAMES

NPROP        ::= named STRING
               | named like PATTERN

LOG_OP       ::= and | or
CMP_OP       ::= is | are | = | has | have | is like | < | > | is not | ...

REL_OP       ::= REL_OP_AKT ARTICLE | (is | are) (ASSOC_REL | REL_OP_PAS by)
REL_OP_AKT   ::= generalizes | specializes | includes   | extends   
               | follows     | precedes    | succeeds   | owns      | ...

ASSOC_REL    ::= associated to | part of

REL_OP_PAS   ::= generalized | specialized | included   | extended
               | followed    | preceeded   | succeedes  |   ...

Fig. 2. Simplified EBNF grammar of MOCQL
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:-module(m1, [me/2, view/2, model/2]).
   model(m1,             [level-analysis, author-stoerrle, qa-approved]).
   view(cd-1,            [type-class_diagram, name-'Sample model',language-'UML 2',
                          version-'2.1.1',elements-ids([0,1,2,4,5])]).
   me(class-0,           [name-'Person',attributes-ids([1,2,3,14]),
                          operations-id(4)]).
   me(feature-1,         [name-name, type-string]).
   me(feature-2,         [name-age, type-int]).
   me(operation-4,       [name-'get_job', parameters-ids([5]), result-void]).
   me(parameter-5,       [type-id(6)]).
   me(class-10,          [name-'Address', attributes-ids([13])]).
   me(class-11,          [name-'MailAddress']).
   me(feature-13,        [multiplicity-1, type-id(0)]).
   me(feature-14,        [multiplicity-1, type-id(10)]).
   me(generalization-15, [from-id(11), to-id(10)]).
   me(association-17,    [ends-ids([13, 14])]).

CD M1

author: stoerrle
qa:  approved
level:  analysis

10

11

0

14

17

13

15 1
2

4
5

1 1 Person

name: string
age: int

Address

Fig. 3. Example for the Prolog representation of sample model M1

structures for processing XML-files. On the other hand, it is very easy to access
models represented in this way by using the Prolog command line interface, or
to exchange code operating on models while keeping the model loaded, which
is a tremendous help during development. Finally, the representation is generic
enough to allow for all kinds of models, including those that do not have a
MOF-like meta meta model.

Moreover, observe that the conversion takes only a few milliseconds, and is
fully reversible: It neither adds nor removes anything, it merely changes the
model representation. The conversion is triggered automatically when trying to
access an XMI file in a MOCQL query, so it is completely transparent to the
user.

3.2 Query Translation

The second part of the semantics is the translation of queries into executable
Prolog code. Executing the queries amounts to executing this code. Let us again
consider the introductory examples from Section 2 in order to see how these are
interpreted. In the first step, the query is parsed, creating an abstract syntax
tree. This step reduces the syntactic sugar, i.e., it reduces plural expressions
to singular, and converts syntactic alternatives into a single expression. For in-
stance, the expression

(1b) find all classes $X named like "*Address" in M1.
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results in the parse tree shown in Fig. 4. This expression is then translated into
the following sequence of Prolog predicates.

all( ’M1’, [X], [type(class), is_like(name, ’*Address’)]),

show(’M1’, [X]).

all

‘M1’

var

X

Legend
‘X’

X

x

[x,...]

Fig. 4. The abstract syntax tree resulting from parsing and simplifying query (1b)

The predicates all and show are defined accordingly, so that executing this
Prolog program actually executes the query. The atomic value M1 refers to the
name of the model to be queried, the list [X] is the list of all variables occurring
in the expression.

Similarly, the third query example from Section 2 is translated, so that

(3b) find all abstract classes $X in M1 such that

there are no classes $Y where $X generalizes $Y

becomes

all( ’M1’, [X], [type(class), is(isAbstract,true) ]),

none(’M1’, [X, Y], [type(class), generalizes(X,Y) ]),

show(’M1’, [X]).

As before, none is a predicate defined as part of MOCQL, so that executing
this program simply executes the query. Observe that Prolog variables (i.e., X
and Y) are logical variables, that is, they are unified rather than containers with
assigned values. Thus, the sequence of the first two clauses of this program
does not change the result. It does change the execution behavior, though, in
particular the required computational resources.
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4 Implementation

Fig. 5 shows the overall architecture of MOCQL. Processing queries is done in
three steps. First, the base model is transformed from an XMI file to the Prolog
transformation described in in Section 3.1 above. Observe that this transfor-
mation is purely syntactical and typically too fast for the user to notice. Then,
query expressions are transformed into Prolog predicates as shown in Section 3.2,
which refer to the predicates defined in the Model Querying Library. Finally, this
predicate is then executed.

MOCQL shares the Model Querying Library with previous research including
VMQL, but is otherwise independent. Future extensions of MOCQL to allow
querying of other modeling languages such as BPMN would require some changes
to this implementation. In particular, a new translator from the source model
format into the Prolog format would be required, and some amendments the
MOCQL grammar to cover new language concepts, i.e., the non-terminals TYPE,
ATTR, and REL OP AKT. Whether amendments to the Model Querying Library
would be necessary, is unclear. Thus, extending the scope of MOCQL to other
modeling languages beyond UML is closer to porting a programming language
to a new processor architecture than creating a new programming language.

linklex parse/gen run show
QUERY

MODEL
(PL)

ANSWER

Model
Querying

Library

MOCQL Interpreter

MODEL
(XMI)

transform

Fig. 5. Architecture of MOCQL: the Model Querying Library is shared with previous
research, including VMQL

5 Usability Evaluation

In this section we evaluate MOCQL. We focus on usability, reporting two con-
trolled experiments that study and compare the usability of VMQL, OCL,
and MOCQL, respectively. At the end of this section, we briefly discuss other
qualities.
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5.1 Experiment Design

Both experiments used the same randomized block design, but tested different
sets of languages: OCL vs. MOCQL, and VMQL vs. MOCQL, respectively. The
experimental setup consisted of four parts asking for (A) demographic data,
(B) finding query expressions matching an English description, (C) checking
the match between a given query expression and its English description, and
(D) asking for subjective judgments regarding the languages tested. Task B
contained 28 subtasks while Task C contained 12 subtasks.

In each of the experiments, 17 subjects participated, most of them being grad-
uate students, but also including six IT professionals and a researcher. Different
sequences of tasks were randomly assigned to them in order to control learning
effects and bias. Our study was blinded by naming the languages A, B, and C,
respectively. Going by the self-assessment in the demographic part of the ques-
tionnaire (Task A), the participants had little knowledge of either of the tested
languages. The participants of the second experiment were recruited from the
“Elite SE study line”, an educational program that admits only students of very
high aptitude.

We controlled the variables language (OCL, VMQL, MOCQL), query expres-
sion, and task, and recorded the correctness of the answers, the time taken, and
the subjective assessment. The latter was divided into three different measures
asking for preference, effort, and confidence in the result. The experiment was
run as a pen-and-paper exercise. Participants were offered to talk about the
experience or comment on the questionnaire, an opportunity some of them took.

5.2 Observations

We first discuss the objective measure of the number of correct answers given
by the subjects. We have normalized the absolute numbers to percentages. A
perfect score would reveal the same frequency for each language. Table 1 shows
the observations, Fig. 6 visualizes them.

Clearly, subjects perform better on both tasks under the treatment MOCQL
than under the treatment OCL. In fact, several subjects complained about OCL
in follow-up interviews or comments on the questionnaire margins. In the second
experiment, we see that subjects perform better using MOCQL than VMQL with
what appears to be a smaller margin. Observe that there is a variation in the
scores for MOCQL between the two experiments, which we explain by variations
in the subject populations, i.e., participants of Experiment 2 can be expected to
have a far beyond average general intelligence. The relative difficulty between the
two tasks is consistent across both experiments, further confirming the validity
of our findings.

Let us now turn to the subjective assessments. Participants were asked to
record their subjective assessment on a 5-point Likert scale which we normed
to the interval 0..10 for easier presentation. Since these are subjective measures
anyway, we combined the results from both experiments in this presentation.
Table 2 shows the observations, Fig. 7 visualizes them.
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Table 1. Performance of subjects in tasks B and C

Experiment 1 Experiment 2
Language Task B Task C Task B Task C

MOCQL 82.1% 58.7% 83.9% 62.7%

VMQL - - 74.2% 49.0%

OCL 54.8% 38.1% - -

OCLSc
or

e 
[%

]

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Task B Task C

MOCQL

VMQL

Task B Task C
Experiment 1 Experiment 2

Fig. 6. Performance of subjects in tasks B and C: visualization of the data in Table 1

All three measures consistently show the same trend of OCL scoring lower
than VMQL, which in turn scores lower than MOCQL. As before, there is a
larger difference between OCL and VMQL, than there is between MOCQL and
VMQL. We see that the ratings for “Understandability” and “Confidence” are
particularly low for OCL, which is consistent with the post-experimental remarks
by participants.

5.3 Validity

With 34 participants, three different tasks, and 28/12/3 different measurements
within each task, we have a fairly large sample size. Due to the study design,
we can safely exclude bias through learning effects or variations in the subject
population. All results are consistent with each other, with only the minor fluc-
tuations between experiments that are to be expected in any kind of human
factor study.

Obviously, the task presentation would influence the outcome: since MOCQL
tries to imitate a natural language in its concrete syntax, there is high degree
of proximity to the task description, that is provided in written English, biasing
the result in favor of MOCQL. However, we stipulate that describing a query
in plain English is exactly what a modeler does when faced with a search task.
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Table 2. Subjective assessment of cognitive load

Understandability Effort Confidence
Language μ σ μ σ μ σ

MOCQL 8.0 1.88 6.2 3.38 8.5 2.20

VMQL 7.0 2.28 7.5 3.30 7.7 2.90

OCL 3.8 1.80 8.8 1.78 3.3 1.55

1

5

10
highest

U e sta ability

OCL

MOCQL

VMQL

0

Fig. 7. Subjective assessment of cognitive load (averages across all subjects, normalized
to the interval 0 (lowest) to 10 (highest)

Allowing him or her to express queries that way is, thus, not an undue influence
on the experiment. Quite contrary, that is exactly the point of MOCQL.

A potential threat to validity is the fact that we did not test the respective
whole languages, that is, there are parts of OCL, VMQL, and MOCQL that have
not been subjected to experimental validation of their usability. In that sense,
the validity of inferences regarding the languages as such is limited. Due to the
conceptual differences between the languages, however, it would be difficult to
completely compare them.

One might also object that the subjects—students—are not representative for
the audience MOCQL is targeted at, i.e., people with little or no UML knowledge.
In fact, the participants of Experiment 2 have been tested after they had just
completed a one-term intensive course on UML, MDA, and OCL. However, even
that degree of UML/OCL knowledge and additional cues and auxiliary high-level
functions did not lead to an improved performance on the OCL tasks.

Finally, we have used different measurements to capture aspects of cognitive
load (cf. [11]), yielding consistent results. Subjective assessments of cognitive
load have been found to be very reliable indicators of the objective difficulty of
a task (cf. [8]).
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Table 3. Testing Hypothesis with the Binomial test

Hypothesis Task Significance

Experiment 1: B p < 10−7 ***
Subjects perform better using OCL than MOCQL C p < 10−5 ***

Experiment 2 B p = 0.0033 *
Subjects perform better using VMQL than MOCQL C p = 0.059 ·

5.4 Inferences

We tested the hypothesis that subjects performed better using OCL than
MOCQL in Experiment 1. Using a binomial test in the R environment [12],
we can reject this hypothesis with high certainty (p < 10−7 for task B, and
p < 10−5 for task C). Similarly, we can reject the hypothesis that subjects per-
formed better using VMQL than MOCQL in Experiment 2, though there is not
necessarily a significant result for task C (p = 0.0033 for task B, and p = 0.059
for task C).

5.5 Interpretation and Conclusions

It is obvious that OCL offers little to modelers when it comes to querying models,
and our investigation establishes the consequences as a fact. In previous research
[17], we have shown how users performs better using VMQL than OCL, over a
range of tasks. The current results show that user perform better using MOCQL
than both OCL and VMQL. Both in our previous research and the current
results, users also show a much higher acceptance (and thus, motivation), for
MOCQL and VMQL than they exhibit for OCL, consistently across different task
types, many different queries, and different measurements, which all consistently
point in the same direction. Our results are mostly significant, some of them to
the extreme. Our study exhibits a high degree of validity.

We have thus provided substantial evidence in support of our initial working
hypothesis that MOCQL offers better usability than both OCL and VMQL, as
outlined in Section 1.2. We believe it is safe to assume, that these results are
generalizable to other contexts, such as different subject populations or different
queries. Also, we expect these findings to carry over to extensions of MOCQL
that have not yet been tested.

6 Related Work

There are essentially three kinds of query facilities. First, there are basic tools
like full text search and sets of predefined queries. These sacrifice expressive-
ness for usability, leaving modelers with little leverage. On the other end of the
spectrum, there are application programming interfaces of modeling tools, which
offer maximum expressiveness to the modeler, but require substantial expertise
which only few modelers possess. Certainly, domain experts, which are in the
focal point of our work, lack this capability.
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Between these two extremes, there are model query languages varying along
different dimensions. On the one hand, there is of course OCL [10] as the most
widely used model query language. OCL also seems to be the only generically
applicable textual model query language (disregarding non-semantic facilities
such SQL, XPath, and similar). As our studies clearly show, OCL is not suited
for ad-hoc querying by domain experts. In fact, even highly trained professionals
and top-notch students with substantial training in OCL have serious trouble
using it.

On the other hand, there are the visual model query languages like QM [14,13],
BP-QL [3], BPMQ [2,1], Visual OCL [4,5], and VMQL [15,17,7] (see [17] for a
detailed comparison). These come with the explicit or implicit promise of higher
usability, exploiting the fact that most modeling notations are also visual, and it
is intuitively appealing to express queries the same way as base models. However,
little evidence has been published to support this intuition; only VMQL seems
to have been evaluated from this angle. From the results presented above and in
previous studies, respectively, it is clear that OCL performs poorly, and that both
MOCQL and VMQL perform better than OCL. Surprisingly, though, MOCQL
even surpasses VMQL with respect to usability. This contradicts the common
intuition about textual vs. visual notations and demands further inquiry.

We expect Visual OCL to perform similar to OCL since it is just a visualiza-
tion of OCL; the other visual model query languages should yield results similar
to those of VMQL since they are based on a similar paradigm and in some cases
offer similar solutions (e.g., the treatment of transitive edges in BP-QL and QM,
or negation in BP-QL).

Most model query languages are restricted to express queries on a single nota-
tion or a small set of related notations. For instance BPMN-Q addresses BPMN
and (to some degree) EPCs, QM address a subset of UML class and sequence
diagrams, and CM address only elementary class diagrams. On the other hand,
OCL and Visual OCL apply to all MOF-based notations; VMQL and MOCQL
even go beyond that requirement.

There are large differences with respect to the tool support a modeler might
obtain for the model query languages mentioned. Only for OCL is there a choice
of quality tools from different sources. Most of the other tools have been imple-
mented as academic prototypes only, or not even that (e.g., CD and QM).

OCL (and, potentially, Visual OCL) offer maximum expressiveness through
defining recursive functions. Most other model query languages mentioned above
seem to have been analyzed from this perspective. VMQL does do not offer user-
defined recursive functions, and is thus less expressive than OCL, though the
exact degree of expressiveness is currently unknown. Similarly, MOCQL does not
allow the definition of recursive functions, but it should be not too difficult to add
such a feature. Observe also, that MOCQL provides features that are relevant for
practical model querying, but currently missing in OCL, such as using wild-card
expressions, executing queries across several models, type variables, or access to
model element identifiers.
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7 Discussion

7.1 Summary

In this paper we have introduced the Model Query and Constraint Language
(MOCQL), by means of example and a (simplified) grammar. We report on
user studies comparing OCL, VMQL, and MOCQL, and find strong evidence
that MOCQL offers higher usability than both OCL and VMQL in a number of
ways. This is particularly true when comparing MOCQL and OCL. At the same
time, MOCQL offers a high degree of expressiveness. MOCQL can be applied to
the whole range of modeling notations present in the UML, not just structural
models or meta-models. In fact, MOCQL is not conceptually restricted to UML:
we believe it is applicable to any modeling language that has a meta-model or
where a meta-model can be constructed, including BPMN, EPCs, and DSLs.

7.2 Contributions

The contribution of this paper is to provide evidence for two observations. Firstly,
we maintain that usability is an important concern when it comes to model query
languages, but has been largely ignored in existing languages, most notably OCL.
Thus, it is relatively easy at this point to achieve substantial improvements over
the state of the art. Secondly, it is not so much the concrete syntax that con-
tributes to usability, but the abstract syntax, that is, the conceptual constructs
of the query language. In this paper, we show that a textual concrete syntax
can actually perform better than a visual concrete syntax, which is somewhat in
contradiction with the commonly held belief of visual notations generally being
“better” than textual ones.

7.3 Limitations

In its current state, MOCQL has several shortcomings. Firstly, it lacks a formal
semantics. Given the time and difficulty it took to arrive at a formal semantics
for OCL, we consider this more of a challenge and future work than a lasting
deficit.

Secondly, MOCQL currently lacks the capability to define recursive functions,
and thus complete expressiveness. MOCQL was designed with the practical mod-
eler in mind, thus, many of the functions that modelers have to define themselves
in OCL are built into MOCQL, thus reducing the need for such a feature.

Thirdly, MOCQL allows many expressions that are either hard to process, or
may be confusing. For instance, MOCQL allows to express queries with double
negation. Clearly, this is computationally inefficient, and since we use the regular
negation-as-failure semantics of Prolog, the result might not be what the user
expects. Moreover, since double negation is inherently cognitively difficult, using
it will be a challenge. We currently lack empirical evidence on the actual usage
of MOCQL in the field.
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7.4 Future Work

Clearly, the current limitations of MOCQL are some threads of our ongoing and
future work. In particular, it would be interesting to apply MOCQL to other
modeling languages, such as BPMN and EPCs and see whether the current
MOCQL is up to this task, or requires extensions and amendments. Also, parts
of the implementation would have to be adapted to accommodate for different
model representations.

Then, performance is obviously an issue for practical model querying, in par-
ticular for using MOCQL for interactive operations on large models. We generally
have very good experience with the performance of the technology underlying
our approach in comparison with current OCL implementations (see also [6]),
and experience so far indicate that MOCQL might in fact be dramatically faster
than existing OCL tools. Still, we will have study and document the run-time
performance of MOCQL.

Moreover, our initial research hypothesis is based on the intuition, that the
major improvement in usability would derive from using a visual rather than
a textual concrete syntax for querying. Thus, one would expect a similar effect
for, say, the Visual OCL [4,5]. Doing pairwise comparisons of OCL, Visual OCL,
VMQL, and MOCQL, respectively, and studying the factors impacting modeler
understanding with qualitative methods such as think aloud protocols might
allow us to develop a theory about how queries are being processed by modelers.
This, in turn, could be valuable in informing future language design practice.
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