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Preface

The 2013 European Conference on Modelling Foundations and Applications
(ECMFA 2013) was organized by the Laboratoire d’Informatique de Robotique
et de Microélectronique de Montpellier (LIRMM), CNRS, University Montpellier
2, France, and held during July 1–5, 2013.

ECMFA is the key European conference aiming at advancing the techniques
and furthering the underlying knowledge related to model-driven engineering.
MDE is a software development approach based on the use of models for the
specification, design, analysis, synthesis, deployment, testing, and maintenance
of complex software systems, aiming to produce high-quality systems at lower
costs. In the past 8 years, ECMFA has provided an ideal venue for interaction
among researchers interested in MDE both from academia and industry. The
ninth edition of the conference covered major advances in foundational research
and industrial applications of MDE.

In 2013, the Program Committee received 76 abstracts and 51 full paper
submissions. From these, 9 Foundations Track papers and 6 Applications Track
papers were accepted for presentation at the conference and publication in these
proceedings, resulting in an acceptance rate of 23% for the Foundations Track,
and an overall acceptance rate of 29.4%. Papers on all aspects of MDE were
received, including topics such as model querying, consistency checking, model
transformation, model-based systems engineering, and domain-specific modeling.
The breadth of topics and the high quality of the results presented in these
accepted papers demonstrate the maturity and vibrancy of the field.

The ECMFA 2013 keynote speakers were Martin Gogolla (University of Bre-
men) and Dierk Steinbach (Cassidian, EADS Deutschland GmbH). We thank
them very much for accepting our invitation and for their enlightening talks. We
are grateful to our Program Committee members for providing their expertise
and quality and timely reviews. Their helpful and constructive feedback to all
authors is most appreciated. We thank the ECMFA Conference Steering Com-
mittee for their advice and help. We also thank our sponsors and all authors
who submitted papers to ECMFA 2013.

July 2013 Pieter Van Gorp
Tom Ritter

Louis M. Rose
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Employing the Object Constraint Language

in Model-Based Engineering

Martin Gogolla

Database Systems Group, University of Bremen, Germany
gogolla@informatik.uni-bremen.de

Abstract. MBE (Model-Based Engineering) proposes to develop soft-
ware by taking advantage of models, in contrast to traditional code-centric
development approaches. If models play a central role in development,
model properties must be formulated and checked early on the modeling
level, not late on the implementation level. We discuss how to validate
and verify model properties in the context of modeling languages like the
UML (Unified Modeling Language) combined with textual restrictions
formulated in the OCL (Object Constraint Language).

Typical modeling and transformation languages like UML (Unified Modeling
Language), EMF (Eclipse Modeling Framework), QVT (Queries, Views, and
Transformations) or ATL (Atlan Transformation Language) are complemented
by the textual OCL (Object Constraint Language) enriching graphical or textual
models with necessary details. Models allow the developer to formulate essential
system properties in an implementation- and platform-independent way.

Precise object-oriented development must take into account system structure
and system behavior. The system structure is often captured by class diagrams
and can be instantiated in terms of prototypical exemplars by object diagrams.
The system behavior can be determined by statechart diagrams, and system exe-
cution traces can be demonstrated by sequence diagrams. OCL restricts the pos-
sible system states and transitions through the use of class invariants, operation
pre- and postconditions, state invariants, and transition pre- and postconditions.
OCL can also be used during model development as a query language.

Modeling features and their analysis through validation and verification must
be supported by tools like, for example, the tool USE (UML-based Specification
Environment) [1]. Within USE, UML class, object, statechart, and sequence
diagrams extended with OCL are available [2]. OCL has been extended with
programming language features in SOIL (Simple Ocl-like Imperative Language)
which allows the developer to build operation realizations on the modeling level
without having to dig into implementation level details [3]. Thus models in USE
are executable, but a prescriptive SOIL model for operations can be checked
against descriptive plain OCL pre- and postconditions.

Tools like USE assist the developer in order to validate and to verify model
characteristics. Validation and verification can be realized, in USE for example,
by employing a so-called model validator based on relational logic and SMT

P. Van Gorp, T. Ritter, and L.M. Rose (Eds.): ECMFA 2013, LNCS 7949, pp. 1–2, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 M. Gogolla

solvers [4]. Model properties to be inspected include consistency, redundancy
freeness, checking consequences from stated constraints, and reachability [5].
These properties are handled on the conceptual modeling level, not on an im-
plementation level. Employing these instruments, central and crucial model and
transformation model characteristics can be successfully analyzed and checked.

Transformation models [6] provide an approach that formulates model trans-
formations in a descriptive, not prescriptive way by stating desired properties
of transformations in terms of input and output models and their relationship.
From transformation models, tests [7] can be derived that are independent from
the employed transformation language. Modeling and model transformations
with USE have been successfully applied in a number of projects, for example,
in the context of public authority data interchange [8].

Acknowledgement. The force and energy of Mark Richters, Jörn Bohling,
Fabian Büttner, Mirco Kuhlmann and Lars Hamann formed USE as it stands
today. Thanks!

References
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MOCQL: A Declarative Language

for Ad-Hoc Model Querying

Harald Störrle

Institute of Applied Mathematics and Computer Science
Technical University of Denmark

hsto@dtu.dk

Abstract. This paper starts from the observation that existing model
query facilities are not easy to use, and are thus not suitable for users
without substantial IT/Computer Science background. In an attempt to
highlight this issue and explore alternatives, we have created the Model
Constraint and Query Language (MOCQL), an experimental declarative
textual language to express queries (and constraints) on models. We in-
troduce MOCQL by examples and its grammar, evaluate its usability by
means of controlled experiments, and find that modelers perform bet-
ter and experience less cognitive load when working with MOCQL than
when working with OCL. While MOCQL is currently only implemented
and validated for the different notations defined by UML, its concepts
should be universally applicable.

Keywords: OCL, UML, model querying, empirical software engineer-
ing, Prolog.

1 Introduction

1.1 Motivation

Many software development approaches today use models instead of or alongside
with code for different purposes, e. g., model based andmodel driven development,
Domain-Specific Languages (DSLs), and Business process management. As a con-
sequence, tasks such as version and configurationmanagement, consistency check-
ing, transformations, and querying of models are much more common today than
they used to be. Unfortunately, these and other tasks are not well covered in cur-
rent CASE tools. But from practical experience we have learned that modelers
dearly need, among others, an ad-hoc query facility covering more than just full
text search and a fixed set of predefined queries. The natural choice of language
when it comes to selecting a powerful general-purpose model querying language
is the Object Constraint Language (OCL [10]), at least for UML and similar lan-
guages. However, OCL is often perceived as too complex for many modelers, let
alone domain experts without formal training in Computer Science. So, the goal
of this paper is to try and come up with better solutions to this problem. In order
to achieve high levels of accessibility, we are prepared to even sacrifice a certain
degree of theoretical expressiveness, as long as the practically relevant cases are
covered. Aspects other than usability are beyond the scope of this paper.

P. Van Gorp, T. Ritter, and L.M. Rose (Eds.): ECMFA 2013, LNCS 7949, pp. 3–19, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



4 H. Störrle

1.2 Approach

Our first approach to improving the usability of model query languages was based
on the commonly held assumption that visual languages are generally easier to
understand than textual languages. Since OCL is a purely textual language, a
visual language might perform better. Following this assumption, we defined a
predominantly visual alternative to OCL, the Visual Model Query Language
(VMQL [15]). We could indeed demonstrate that VMQL is easier to use than
OCL [17], while being applicable to the same kinds of tasks OCL is targeted at
(i.e., both for querying and expressing constraints, see [7] for the latter).

During these research projects, however, we also found evidence that the visual
nature of VMQL is only one of several factors contributing to its usability, and
quite possibly not the largest one. In order to pursue this lead, and building on
the lessons learned in the design of VMQL, we invented a new textual language
on the fly. To our surprise, this improvised language was even more effective
than VMQL, and was preferred by users when given a choice. Thus, we refined
and elaborated this language which has now evolved into the Model Constraint
and Query Language (abbreviated to MOCQL, pronounce as “mockle”).

The design of MOCQL is informed by the lessons learned during the design of
VMQL, and they share conceptual and implementation element, yet MOCQL is
a genuinely new language. Our working hypothesis is that MOCQL offers better
usability than both OCL and VMQL. MOCQL is not conceptually restricted to
UML, but the current implementation and validation have so far only covered
this notation. Thus, while we believe that MOCQL is suitable as a universal
model query language, no such claim will be raised here. Also, we envision using
MOCQL on model repositories such as CDO, EMFStore, Morsa, and ModelBus.1

However, this has not yet been attempted.
In the remainder of this paper, we will first introduce MOCQL by example,

showing how it may be used to query models in a concise and modeler-friendly
way. We provide a (simplified) grammar for MOCQL, informally describe its
semantics, and briefly report on its implementation. Then, we report on two
controlled experiments to assess the relative effectiveness of OCL, VMQL, and
MOCQL from a user’s point of view. We conclude by comparing MOCQL with
existing approaches, highlighting the contributions, and outlining ongoing re-
search.

2 Introducing MOCQL

We will now show some examples of MOCQL queries. In order to explain their
meaning, we also present OCL queries with the same effect. Note that no for-
mal relationship between MOCQL and OCL exists, in particular, there is no
automatic translation between these languages. All queries are assumed to be
executed on the models shown in Fig. 1. For simplicity, we shall assume that

1 See www.eclipse.org/cdo, www.emfstore.org, www.modelum.es/morsa, and
www.modelbus.org, respectively.

www.eclipse.org/cdo
www.emfstore.org
www.modelum.es/morsa
www.modelbus.org
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Fig. 1 shows two models M1 and M2, the former of which is completely covered
by diagram M1, and the latter is completely covered by the diagrams M2a and
M2b.

CD M1

author: stoerrle
qa:  approved
level:  analysis

1 1 Person

name: string
age: int

Address

UCD M2a

UCD M2b

create contact

Manager

Fig. 1. The sample models used as the base model for all queries described in this
paper

Suppose, a modeler is looking for all classes whose name ends with “Address”
in model M1. On the given sample model, the result would be the set of the
two classes named “Address” and “MailAddress”. Such a simple query would
probably be best answered by using whatever search facility any given modeling
tool provides; most tools allow specifying the meta-class of the search target and
pattern matching for names. Using OCL, the query might look something like
the following.

(1a) Class.allInstances()

-> select(c | c.name.contains_substring("Address")).

Here, we assume an OCL-function contains substring. Such a function is not
part of the OCL or UML standards [10,9], but it could probably be programmed
and thus be available in some hypothetical OCL Query Library. In MOCQL,
this query can be expressed in a very natural way:

(1b) find all classes $X named like "*Address" in M1.

Understanding this query requires much less knowledge about the UML meta
model than the corresponding OCL expression, which makes it more readily
understood by modelers (as we shall show below). Also, this expression is easy
to modify and extend, e.g., we want to add the constraint that the classes we
look for are abstract. In OCL, this could be expressed by query (2a).

(2a) Class.allInstances()

-> select(c | c.name.contains_substring("Address")

&& c.isAbstract = true).
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Compare this with the corresponding MOCQL query (2b), which we believe is
significantly clearer, and easier to understand.

(2b) find all abstract classes $X named like "*Address" in M1.

Suppose we were to look for abstract classes that do not have subclasses. The
typical built-in search facilities of most modeling tools would not support such
a query. In OCL, we would have to write something like the following.

(3a) Class.allInstances()

->select(c | c.isAbstract=true).

intersection(c | c.general->isEmpty())

Even more understanding of fine details of the UML meta model are required
here (e.g., the property “general”), and knowledge of the different navigational
operators in OCL (i.e., the dot vs. the arrow), which at least many students
struggle with. In MOCQL, we can instead write

(3b) find all abstract classes $X in M1 where

there are no classes $Y such that $X generalizes $Y

which was created from the first MOCQL query. This expression just requires
to know the name “Generalization” for the relevant UML relationship. Thus,
less knowledge about the UML meta model is required when using MOCQL as
compared to when using OCL. Together with its user friendly syntax, MOCQL
also allows domain experts to query models in a straightforward way.

Let us now turn to model M2. Assume, a modeler wants to find out all the
actors involved in a given use case named “edit address data”. In MOCQL, the
following query would achieve this goal, returning the actors “Customer” and
“Account Manager”.

(4) find all actors $X where $X is associated to $Y and

there is a useCase $Y named "edit address data".

The way associations are represented in the UML meta-model would make this
a rather complex query were we to express it in OCL. Observe, that elements
of the UML meta model (i.e., meta classes and meta attributes) are not part of
the MOCQL syntax. They are treated as strings and passed on “as is” to the
query execution procedures.

MOCQL offers capabilities for all kinds of models occurring in UML, including
use case models, state machine models, and activities. Suppose, for instance, we
are looking for activities that contain Actions unconnected to the initial node.
In MOCQL, this could be expressed by query (5).

(5) find all actions $Unconnected in M3 such that

there is no initialNode $Initial such that

$Initial precedes $Unconnected transitively.
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Finally, suppose we want to query two models simultaneously, to find elements
that have the same name. In MOCQL, this can easily be achieved by query (6).

(6) find all $X1 named $NAME in M1 such that

there is $X2 named $NAME in M2.

Relaxing the query to check for similar names rather than exact matches only
requires to add like before the second occurrence of $NAME. An EBNF grammar
of MOCQL is shown in Fig. 2. This grammar has been simplified for purposes
of presentation.

3 Semantics

The semantics of MOCQL consists of two parts. On the one hand, there is a
particular model representation that facilitates the operations involved in the
query execution, storing models as Prolog knowledge bases. On the other hand,
there is a mechanical translation of MOCQL queries into Prolog programs that
are then executed on the knowledge base, utilizing a set of predefined Prolog
predicates.

3.1 Model Representation

The model representation we use for MOCQL has been used for implementing
VMLQ [17], and a set of other advanced operations on models such as clone
detection [16], or difference computation [18]. In this representation, models are
looked at as knowledge bases, and individual model elements are considered
facts that are stored in a Prolog data base. Queries and other operations on
models are implemented as Prolog predicates over this knowledge base, i.e.,
queries are translated into Prolog predicates by a definite clause grammar (DCG,
a kind of Prolog program). Those query predicates are then simply executed,
calling a small library of predefined search functions. This greatly simplifies the
implementation, while making it easy to extend and experiment with, which is
the main design objective at this stage of the development of MOCQL.

First, the user creates source models, exports them to an XMI file, and trans-
forms it into a Prolog database. Each model element is transformed to one
Prolog clause of the predicate me, see Fig. 3 for an example (edited for improved
readability). The first argument of each me-fact is a pair of type and internal
identifier (usually an integer). The second argument is a property list of tags for
meta-attributes and their values. References to identifiers are marked with an
id or ids-term.

This conversion has several advantages over XMI. On the one hand, it is
much more compact than XMI, which also speeds up processing of models. In
particular, with the given representation, we are able to keep even very large
models in-memory all the time, which is not always the case for the typical data
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COMMAND      ::= find SET_SPEC 
               | count SET
               | save  SET as NAME 
               | load NAME
               | assign SET (u | n) SET to VARIABLE
               | clear VARIABLE

SET          ::= SET_SPEC | VAR
VAR          ::= $A | $B | $C | ...
SET_SPEC     ::= (A_QUANTIFIER | E_QUANTIFIER) ELEMENT_SPEC

A_QUANTIFIER ::= forall | each | every | all
E_QUANTIFIER ::= [there (is | are)] [ARTICLE]
ARTICLE      ::= a | an | the | those | some | no

ELEMENT_SPEC ::= [abstract | concrete] TYPE [VAR] [NPROP] [MPROP]
                 (where | such that) PROPS

TYPE         ::= activity | activities | class | classes | useCase | ... 
               | element
               | element VAR
               | element VAR with id STRING
ATTR         ::= name 
               | isAbstract 
               | ownedMember 
               | ...

PROPS        ::= PROP
               | not PROP
               | PROP LOG_OP PROPS
PROP         ::= ATTR CMP_OP VAL
               | VAR REL_OP VAR [directly | transitively]
               | SET_SPEC

VAL          ::= defined | bool | int | float | string | ...
MPROP        ::= in MODELNAMES
MODELNAMES   ::= MODELNAME
               | MODELNAME & MODELNAMES

NPROP        ::= named STRING
               | named like PATTERN

LOG_OP       ::= and | or
CMP_OP       ::= is | are | = | has | have | is like | < | > | is not | ...

REL_OP       ::= REL_OP_AKT ARTICLE | (is | are) (ASSOC_REL | REL_OP_PAS by)
REL_OP_AKT   ::= generalizes | specializes | includes   | extends   
               | follows     | precedes    | succeeds   | owns      | ...

ASSOC_REL    ::= associated to | part of

REL_OP_PAS   ::= generalized | specialized | included   | extended
               | followed    | preceeded   | succeedes  |   ...

Fig. 2. Simplified EBNF grammar of MOCQL
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:-module(m1, [me/2, view/2, model/2]).
   model(m1,             [level-analysis, author-stoerrle, qa-approved]).
   view(cd-1,            [type-class_diagram, name-'Sample model',language-'UML 2',
                          version-'2.1.1',elements-ids([0,1,2,4,5])]).
   me(class-0,           [name-'Person',attributes-ids([1,2,3,14]),
                          operations-id(4)]).
   me(feature-1,         [name-name, type-string]).
   me(feature-2,         [name-age, type-int]).
   me(operation-4,       [name-'get_job', parameters-ids([5]), result-void]).
   me(parameter-5,       [type-id(6)]).
   me(class-10,          [name-'Address', attributes-ids([13])]).
   me(class-11,          [name-'MailAddress']).
   me(feature-13,        [multiplicity-1, type-id(0)]).
   me(feature-14,        [multiplicity-1, type-id(10)]).
   me(generalization-15, [from-id(11), to-id(10)]).
   me(association-17,    [ends-ids([13, 14])]).

CD M1

author: stoerrle
qa:  approved
level:  analysis

10

11

0

14

17

13

15 1
2

4
5

1 1 Person

name: string
age: int

Address

Fig. 3. Example for the Prolog representation of sample model M1

structures for processing XML-files. On the other hand, it is very easy to access
models represented in this way by using the Prolog command line interface, or
to exchange code operating on models while keeping the model loaded, which
is a tremendous help during development. Finally, the representation is generic
enough to allow for all kinds of models, including those that do not have a
MOF-like meta meta model.

Moreover, observe that the conversion takes only a few milliseconds, and is
fully reversible: It neither adds nor removes anything, it merely changes the
model representation. The conversion is triggered automatically when trying to
access an XMI file in a MOCQL query, so it is completely transparent to the
user.

3.2 Query Translation

The second part of the semantics is the translation of queries into executable
Prolog code. Executing the queries amounts to executing this code. Let us again
consider the introductory examples from Section 2 in order to see how these are
interpreted. In the first step, the query is parsed, creating an abstract syntax
tree. This step reduces the syntactic sugar, i.e., it reduces plural expressions
to singular, and converts syntactic alternatives into a single expression. For in-
stance, the expression

(1b) find all classes $X named like "*Address" in M1.
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results in the parse tree shown in Fig. 4. This expression is then translated into
the following sequence of Prolog predicates.

all( ’M1’, [X], [type(class), is_like(name, ’*Address’)]),

show(’M1’, [X]).

all

‘M1’

var

X

Legend
‘X’

X

x

[x,...]

Fig. 4. The abstract syntax tree resulting from parsing and simplifying query (1b)

The predicates all and show are defined accordingly, so that executing this
Prolog program actually executes the query. The atomic value M1 refers to the
name of the model to be queried, the list [X] is the list of all variables occurring
in the expression.

Similarly, the third query example from Section 2 is translated, so that

(3b) find all abstract classes $X in M1 such that

there are no classes $Y where $X generalizes $Y

becomes

all( ’M1’, [X], [type(class), is(isAbstract,true) ]),

none(’M1’, [X, Y], [type(class), generalizes(X,Y) ]),

show(’M1’, [X]).

As before, none is a predicate defined as part of MOCQL, so that executing
this program simply executes the query. Observe that Prolog variables (i.e., X
and Y) are logical variables, that is, they are unified rather than containers with
assigned values. Thus, the sequence of the first two clauses of this program
does not change the result. It does change the execution behavior, though, in
particular the required computational resources.
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4 Implementation

Fig. 5 shows the overall architecture of MOCQL. Processing queries is done in
three steps. First, the base model is transformed from an XMI file to the Prolog
transformation described in in Section 3.1 above. Observe that this transfor-
mation is purely syntactical and typically too fast for the user to notice. Then,
query expressions are transformed into Prolog predicates as shown in Section 3.2,
which refer to the predicates defined in the Model Querying Library. Finally, this
predicate is then executed.

MOCQL shares the Model Querying Library with previous research including
VMQL, but is otherwise independent. Future extensions of MOCQL to allow
querying of other modeling languages such as BPMN would require some changes
to this implementation. In particular, a new translator from the source model
format into the Prolog format would be required, and some amendments the
MOCQL grammar to cover new language concepts, i.e., the non-terminals TYPE,
ATTR, and REL OP AKT. Whether amendments to the Model Querying Library
would be necessary, is unclear. Thus, extending the scope of MOCQL to other
modeling languages beyond UML is closer to porting a programming language
to a new processor architecture than creating a new programming language.

linklex parse/gen run show
QUERY

MODEL
(PL)

ANSWER

Model
Querying

Library

MOCQL Interpreter

MODEL
(XMI)

transform

Fig. 5. Architecture of MOCQL: the Model Querying Library is shared with previous
research, including VMQL

5 Usability Evaluation

In this section we evaluate MOCQL. We focus on usability, reporting two con-
trolled experiments that study and compare the usability of VMQL, OCL,
and MOCQL, respectively. At the end of this section, we briefly discuss other
qualities.
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5.1 Experiment Design

Both experiments used the same randomized block design, but tested different
sets of languages: OCL vs. MOCQL, and VMQL vs. MOCQL, respectively. The
experimental setup consisted of four parts asking for (A) demographic data,
(B) finding query expressions matching an English description, (C) checking
the match between a given query expression and its English description, and
(D) asking for subjective judgments regarding the languages tested. Task B
contained 28 subtasks while Task C contained 12 subtasks.

In each of the experiments, 17 subjects participated, most of them being grad-
uate students, but also including six IT professionals and a researcher. Different
sequences of tasks were randomly assigned to them in order to control learning
effects and bias. Our study was blinded by naming the languages A, B, and C,
respectively. Going by the self-assessment in the demographic part of the ques-
tionnaire (Task A), the participants had little knowledge of either of the tested
languages. The participants of the second experiment were recruited from the
“Elite SE study line”, an educational program that admits only students of very
high aptitude.

We controlled the variables language (OCL, VMQL, MOCQL), query expres-
sion, and task, and recorded the correctness of the answers, the time taken, and
the subjective assessment. The latter was divided into three different measures
asking for preference, effort, and confidence in the result. The experiment was
run as a pen-and-paper exercise. Participants were offered to talk about the
experience or comment on the questionnaire, an opportunity some of them took.

5.2 Observations

We first discuss the objective measure of the number of correct answers given
by the subjects. We have normalized the absolute numbers to percentages. A
perfect score would reveal the same frequency for each language. Table 1 shows
the observations, Fig. 6 visualizes them.

Clearly, subjects perform better on both tasks under the treatment MOCQL
than under the treatment OCL. In fact, several subjects complained about OCL
in follow-up interviews or comments on the questionnaire margins. In the second
experiment, we see that subjects perform better using MOCQL than VMQL with
what appears to be a smaller margin. Observe that there is a variation in the
scores for MOCQL between the two experiments, which we explain by variations
in the subject populations, i.e., participants of Experiment 2 can be expected to
have a far beyond average general intelligence. The relative difficulty between the
two tasks is consistent across both experiments, further confirming the validity
of our findings.

Let us now turn to the subjective assessments. Participants were asked to
record their subjective assessment on a 5-point Likert scale which we normed
to the interval 0..10 for easier presentation. Since these are subjective measures
anyway, we combined the results from both experiments in this presentation.
Table 2 shows the observations, Fig. 7 visualizes them.
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Table 1. Performance of subjects in tasks B and C

Experiment 1 Experiment 2
Language Task B Task C Task B Task C

MOCQL 82.1% 58.7% 83.9% 62.7%

VMQL - - 74.2% 49.0%

OCL 54.8% 38.1% - -

OCLSc
or

e 
[%

]

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Task B Task C

MOCQL

VMQL

Task B Task C
Experiment 1 Experiment 2

Fig. 6. Performance of subjects in tasks B and C: visualization of the data in Table 1

All three measures consistently show the same trend of OCL scoring lower
than VMQL, which in turn scores lower than MOCQL. As before, there is a
larger difference between OCL and VMQL, than there is between MOCQL and
VMQL. We see that the ratings for “Understandability” and “Confidence” are
particularly low for OCL, which is consistent with the post-experimental remarks
by participants.

5.3 Validity

With 34 participants, three different tasks, and 28/12/3 different measurements
within each task, we have a fairly large sample size. Due to the study design,
we can safely exclude bias through learning effects or variations in the subject
population. All results are consistent with each other, with only the minor fluc-
tuations between experiments that are to be expected in any kind of human
factor study.

Obviously, the task presentation would influence the outcome: since MOCQL
tries to imitate a natural language in its concrete syntax, there is high degree
of proximity to the task description, that is provided in written English, biasing
the result in favor of MOCQL. However, we stipulate that describing a query
in plain English is exactly what a modeler does when faced with a search task.
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Table 2. Subjective assessment of cognitive load

Understandability Effort Confidence
Language μ σ μ σ μ σ

MOCQL 8.0 1.88 6.2 3.38 8.5 2.20

VMQL 7.0 2.28 7.5 3.30 7.7 2.90

OCL 3.8 1.80 8.8 1.78 3.3 1.55

1

5

10
highest

U e sta ability

OCL

MOCQL

VMQL

0

Fig. 7. Subjective assessment of cognitive load (averages across all subjects, normalized
to the interval 0 (lowest) to 10 (highest)

Allowing him or her to express queries that way is, thus, not an undue influence
on the experiment. Quite contrary, that is exactly the point of MOCQL.

A potential threat to validity is the fact that we did not test the respective
whole languages, that is, there are parts of OCL, VMQL, and MOCQL that have
not been subjected to experimental validation of their usability. In that sense,
the validity of inferences regarding the languages as such is limited. Due to the
conceptual differences between the languages, however, it would be difficult to
completely compare them.

One might also object that the subjects—students—are not representative for
the audience MOCQL is targeted at, i.e., people with little or no UML knowledge.
In fact, the participants of Experiment 2 have been tested after they had just
completed a one-term intensive course on UML, MDA, and OCL. However, even
that degree of UML/OCL knowledge and additional cues and auxiliary high-level
functions did not lead to an improved performance on the OCL tasks.

Finally, we have used different measurements to capture aspects of cognitive
load (cf. [11]), yielding consistent results. Subjective assessments of cognitive
load have been found to be very reliable indicators of the objective difficulty of
a task (cf. [8]).
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Table 3. Testing Hypothesis with the Binomial test

Hypothesis Task Significance

Experiment 1: B p < 10−7 ***
Subjects perform better using OCL than MOCQL C p < 10−5 ***

Experiment 2 B p = 0.0033 *
Subjects perform better using VMQL than MOCQL C p = 0.059 ·

5.4 Inferences

We tested the hypothesis that subjects performed better using OCL than
MOCQL in Experiment 1. Using a binomial test in the R environment [12],
we can reject this hypothesis with high certainty (p < 10−7 for task B, and
p < 10−5 for task C). Similarly, we can reject the hypothesis that subjects per-
formed better using VMQL than MOCQL in Experiment 2, though there is not
necessarily a significant result for task C (p = 0.0033 for task B, and p = 0.059
for task C).

5.5 Interpretation and Conclusions

It is obvious that OCL offers little to modelers when it comes to querying models,
and our investigation establishes the consequences as a fact. In previous research
[17], we have shown how users performs better using VMQL than OCL, over a
range of tasks. The current results show that user perform better using MOCQL
than both OCL and VMQL. Both in our previous research and the current
results, users also show a much higher acceptance (and thus, motivation), for
MOCQL and VMQL than they exhibit for OCL, consistently across different task
types, many different queries, and different measurements, which all consistently
point in the same direction. Our results are mostly significant, some of them to
the extreme. Our study exhibits a high degree of validity.

We have thus provided substantial evidence in support of our initial working
hypothesis that MOCQL offers better usability than both OCL and VMQL, as
outlined in Section 1.2. We believe it is safe to assume, that these results are
generalizable to other contexts, such as different subject populations or different
queries. Also, we expect these findings to carry over to extensions of MOCQL
that have not yet been tested.

6 Related Work

There are essentially three kinds of query facilities. First, there are basic tools
like full text search and sets of predefined queries. These sacrifice expressive-
ness for usability, leaving modelers with little leverage. On the other end of the
spectrum, there are application programming interfaces of modeling tools, which
offer maximum expressiveness to the modeler, but require substantial expertise
which only few modelers possess. Certainly, domain experts, which are in the
focal point of our work, lack this capability.
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Between these two extremes, there are model query languages varying along
different dimensions. On the one hand, there is of course OCL [10] as the most
widely used model query language. OCL also seems to be the only generically
applicable textual model query language (disregarding non-semantic facilities
such SQL, XPath, and similar). As our studies clearly show, OCL is not suited
for ad-hoc querying by domain experts. In fact, even highly trained professionals
and top-notch students with substantial training in OCL have serious trouble
using it.

On the other hand, there are the visual model query languages like QM [14,13],
BP-QL [3], BPMQ [2,1], Visual OCL [4,5], and VMQL [15,17,7] (see [17] for a
detailed comparison). These come with the explicit or implicit promise of higher
usability, exploiting the fact that most modeling notations are also visual, and it
is intuitively appealing to express queries the same way as base models. However,
little evidence has been published to support this intuition; only VMQL seems
to have been evaluated from this angle. From the results presented above and in
previous studies, respectively, it is clear that OCL performs poorly, and that both
MOCQL and VMQL perform better than OCL. Surprisingly, though, MOCQL
even surpasses VMQL with respect to usability. This contradicts the common
intuition about textual vs. visual notations and demands further inquiry.

We expect Visual OCL to perform similar to OCL since it is just a visualiza-
tion of OCL; the other visual model query languages should yield results similar
to those of VMQL since they are based on a similar paradigm and in some cases
offer similar solutions (e.g., the treatment of transitive edges in BP-QL and QM,
or negation in BP-QL).

Most model query languages are restricted to express queries on a single nota-
tion or a small set of related notations. For instance BPMN-Q addresses BPMN
and (to some degree) EPCs, QM address a subset of UML class and sequence
diagrams, and CM address only elementary class diagrams. On the other hand,
OCL and Visual OCL apply to all MOF-based notations; VMQL and MOCQL
even go beyond that requirement.

There are large differences with respect to the tool support a modeler might
obtain for the model query languages mentioned. Only for OCL is there a choice
of quality tools from different sources. Most of the other tools have been imple-
mented as academic prototypes only, or not even that (e.g., CD and QM).

OCL (and, potentially, Visual OCL) offer maximum expressiveness through
defining recursive functions. Most other model query languages mentioned above
seem to have been analyzed from this perspective. VMQL does do not offer user-
defined recursive functions, and is thus less expressive than OCL, though the
exact degree of expressiveness is currently unknown. Similarly, MOCQL does not
allow the definition of recursive functions, but it should be not too difficult to add
such a feature. Observe also, that MOCQL provides features that are relevant for
practical model querying, but currently missing in OCL, such as using wild-card
expressions, executing queries across several models, type variables, or access to
model element identifiers.
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7 Discussion

7.1 Summary

In this paper we have introduced the Model Query and Constraint Language
(MOCQL), by means of example and a (simplified) grammar. We report on
user studies comparing OCL, VMQL, and MOCQL, and find strong evidence
that MOCQL offers higher usability than both OCL and VMQL in a number of
ways. This is particularly true when comparing MOCQL and OCL. At the same
time, MOCQL offers a high degree of expressiveness. MOCQL can be applied to
the whole range of modeling notations present in the UML, not just structural
models or meta-models. In fact, MOCQL is not conceptually restricted to UML:
we believe it is applicable to any modeling language that has a meta-model or
where a meta-model can be constructed, including BPMN, EPCs, and DSLs.

7.2 Contributions

The contribution of this paper is to provide evidence for two observations. Firstly,
we maintain that usability is an important concern when it comes to model query
languages, but has been largely ignored in existing languages, most notably OCL.
Thus, it is relatively easy at this point to achieve substantial improvements over
the state of the art. Secondly, it is not so much the concrete syntax that con-
tributes to usability, but the abstract syntax, that is, the conceptual constructs
of the query language. In this paper, we show that a textual concrete syntax
can actually perform better than a visual concrete syntax, which is somewhat in
contradiction with the commonly held belief of visual notations generally being
“better” than textual ones.

7.3 Limitations

In its current state, MOCQL has several shortcomings. Firstly, it lacks a formal
semantics. Given the time and difficulty it took to arrive at a formal semantics
for OCL, we consider this more of a challenge and future work than a lasting
deficit.

Secondly, MOCQL currently lacks the capability to define recursive functions,
and thus complete expressiveness. MOCQL was designed with the practical mod-
eler in mind, thus, many of the functions that modelers have to define themselves
in OCL are built into MOCQL, thus reducing the need for such a feature.

Thirdly, MOCQL allows many expressions that are either hard to process, or
may be confusing. For instance, MOCQL allows to express queries with double
negation. Clearly, this is computationally inefficient, and since we use the regular
negation-as-failure semantics of Prolog, the result might not be what the user
expects. Moreover, since double negation is inherently cognitively difficult, using
it will be a challenge. We currently lack empirical evidence on the actual usage
of MOCQL in the field.
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7.4 Future Work

Clearly, the current limitations of MOCQL are some threads of our ongoing and
future work. In particular, it would be interesting to apply MOCQL to other
modeling languages, such as BPMN and EPCs and see whether the current
MOCQL is up to this task, or requires extensions and amendments. Also, parts
of the implementation would have to be adapted to accommodate for different
model representations.

Then, performance is obviously an issue for practical model querying, in par-
ticular for using MOCQL for interactive operations on large models. We generally
have very good experience with the performance of the technology underlying
our approach in comparison with current OCL implementations (see also [6]),
and experience so far indicate that MOCQL might in fact be dramatically faster
than existing OCL tools. Still, we will have study and document the run-time
performance of MOCQL.

Moreover, our initial research hypothesis is based on the intuition, that the
major improvement in usability would derive from using a visual rather than
a textual concrete syntax for querying. Thus, one would expect a similar effect
for, say, the Visual OCL [4,5]. Doing pairwise comparisons of OCL, Visual OCL,
VMQL, and MOCQL, respectively, and studying the factors impacting modeler
understanding with qualitative methods such as think aloud protocols might
allow us to develop a theory about how queries are being processed by modelers.
This, in turn, could be valuable in informing future language design practice.
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Abstract. Different stakeholders in the Business Process Management (BPM)
life cycle benefit from having different views onto a particular process model.
Each view can show, and offer to change, the details relevant to the particular
stakeholder, leaving out the irrelevant ones. However, introducing different views
on a process model entails the problem to synchronize changes in case that one
view evolves. This problem is especially relevant and challenging for views at
different abstraction levels. In this paper, we propose a Shared Process Model
that provides different stakeholder views at different abstraction levels and that
synchronizes changes made to any view. We present detailed requirements and
a solution design for the Shared Process Model in this paper. Moreover, we also
present an overview of our prototypical implementation to demonstrate the feasi-
bility of the approach.

1 Introduction

A central point in the value proposition of BPM suites is that a business process model
can be used by different stakeholders for different purposes in the BPM life cycle. It can
be used by a business analyst to document, analyze or communicate a process. Technical
architects and developers can use a process model to implement the business process
on a particular process engine. These are perhaps the two most prominent uses of a
process model, but a process model can also be used by a business analyst to visualize
monitoring data from the live system, or by an end user of the system, i.e., a process
participant, to understand the context of his or her participation in the process.

These different stakeholders would ideally share a single process model to collabo-
rate and to communicate to each other their interests regarding a particular business pro-
cess. For example, a business analyst and a technical architect could negotiate process
changes through the shared model. The business analyst could initiate process changes
motivated by new business requirements, which can then be immediately seen by the
technical architect and forms the basis for him to evaluate and implement the necessary
changes to the IT system. The technical architect may revise the change because it is not
implementable in the proposed form on the existing architecture. Vice versa, a technical
architect can also initiate and communicate process changes motivated from technical
requirements, e.g., new security regulations, revised performance requirements, etc. In
this way, a truly shared process model can increase the agility of the enterprise.

P. Van Gorp, T. Ritter, and L.M. Rose (Eds.): ECMFA 2013, LNCS 7949, pp. 20–36, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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This appealing vision of a single process model that is shared between stakeholders
is difficult to achieve in practice. One practical problem is that, in some enterprises,
different stakeholders use different metamodels and/or different tools to maintain their
version of the process model. This problem makes it technically difficult to conceptually
share ‘the’ process model between the stakeholders (the BPMN -BPEL roundtripping
problem is a known example). This technical problem disappears with modern BPM
suites and the introduction of BPMN 2, as this single notation now supports modeling
both business and IT-level concerns.

However, there is also an essential conceptual problem. We argue that different stake-
holders intrinsically want different views onto the same process because of their differ-
ent concerns and their different levels of abstraction. This is even true for parts that all
stakeholders are interested in, e.g., the main behavior of the process. Therefore we argue
that we need separate, stakeholder-specific views of the process that are kept consistent
with respect to each other. Current tools do not address this problem. Either different
stakeholders use different models of the same process, which then quickly become in-
consistent, or they use the same process model, which then cannot reflect the needs of
all stakeholders.

This problem is a variation of the coupled evolution problem [11] and the model
synchronization problem [10]. Coupled evolution has been studied between metamod-
els and models but not for process models at different abstraction levels and in the area
of model synchronization various techniques have been proposed. Put into this context,
our research question is how process views at different abstraction levels can be kept
consistent and changes can be propagated in both directions automatically in a way that
is aligned with existing studies of requirements from practice. In this paper, we address
this problem, present detailed requirements and a design to synchronize process views
on different abstraction levels. The challenge for a solution arises from an interplay of a
variety of possible interdependent process model changes and their translation between
the abstraction levels. We also report on an implementation to substantiate that a solu-
tion is indeed technically feasible. An extended version of this paper is available as a
technical report [14].

2 The Business-IT Gap Problem

In this section, we motivate our Shared Process Model concept. First we argue why we
think that a single process model view is often not adequate for different stakeholders
and we discuss how different views differ. We illustrate this issue by example of two
prominent stakeholder views of a process: the business analysts view used for documen-
tation, analysis and communicating requirements to IT and the IT view of a process that
is used directly for execution. Then, we briefly argue that, with multiple views, we need
a dedicated effort to keep them consistent.

2.1 Why We Want Different Views

Since BPMN 2 can be used for both documentation and execution, why can’t we use a
single BPMN 2 model that is shared between business and IT? To study this question, we
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Fig. 1. Illustration of some refinements often made going from the business to the IT model

analyzed the range of differences between a process model created by a business analyst
and the corresponding process model that was finally used to drive the execution on a
BPM execution engine. We built on our earlier study et al.[2], which analyzed more than
70 model pairs from the financial domain, and we also investigated additional model
pairs from other domains. Additionally we talked to BPM architects from companies
using process models to collect further differences. We summarize our findings here.

We identified the following categories of changes that were applied in producing an
execution model from a business model. Fig. 1 illustrates some of these changes in a
simplified claim handling process. We refer to our earlier study by Branco et al.[2] for a
larger, more realistic example. Note that the following categorization of changes, based
on a larger study, is a new contribution of this paper.

• Complementary implementation detail. Detail that is needed for execution is merely added
to the business model, i.e., the part of the model that was specified by the business analyst
does not change. Such details include data flow and -transformation, service interfaces and
communication detail. For example, to specify the data input for an activity in BPMN 2,
one sets a specific attribute of the activity that was previously undefined. The activity itself,
its containment in a subprocess hierarchy and its connection with sequence flow does not
change.

• Formalization and renaming. Some parts of the model need to be formalized further to be
interpreted by an execution engine, including routing conditions, specialization of tasks (into
service task, human task etc., see Fig. 1) and typing subprocesses (transaction, call) and
typing events. Furthermore, activities are sometimes renamed by IT to better reflect some
technical aspects of the activity. These are local, non-structural changes to existing model
elements that do not alter the flow.

• Behavioral refinement and refactoring. The flow of the process is changed in a way that does
not essentially change the behavior. This includes

- Hierarchical refinement/subsumption. A high-level activity is refined into a sequence
of low-level activities or more generally, into a subprocess with the same input/output
behavior. For example, ‘Settle Claim’ in Fig. 1 is refined into ‘Create Response Letter’
and ‘Send Response’. The refining subprocess may or may not be explicitly enclosed in
a separate scope (subprocess or call activity). If it is not enclosed in a separate scope, it
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is represented as a subgraph which has, in most cases, a single entry and a single exit of
sequence flow. We call such a subgraph a fragment in this paper.
On the other hand, multiple tasks on the business level may be subsumed in a single
service call or a single human task to map the required business steps to the existing
services and sub-engines (human task, business rules). For example, in Fig. 1, ‘Get Per-
sonal Details’ and ‘Get Insurance Details’ got subsumed into a single call ‘Get Request
Details’ of the human task engine.

- Hierarchical refactoring. Existing process parts are separated into a subprocess or call
activity or they may be outsourced into a separate process that is called by a message
or event. Besides better readability and reuse, there are several other IT-architectural
reasons motivating such changes. For example, performance, dependability and security
requirements may require executing certain process parts in a separate environment. In
particular, long-running processes are often significantly refactored under performance
constraints. A long-running process creates more load on the engine than a short running
process because each change need to be persisted. Therefore, short-running parts of
long-running process are extracted to make the long-running process leaner.

- Task removal and addition. Sometimes, a business task is not implemented on the BPM
engine. It may be not subject to the automation or it may already be partly automated
outside the BPM system. On the other hand, some tasks are added on the IT level, that
are not considered to be a part of an implementation of a specific business task. For
example, a script task retrieving, transforming or persisting data or a task that is merely
used for debugging purposes (e.g. ‘Log Session Data’ in Fig. 1).

• Additional behavior. Business-level process models are often incomplete in the sense that
they do not specify all possible behavior. Apart from exceptions on the business-level that
may have been forgotten, there are usually many technical exceptions that may occur that
require error handling or compensation. This error handling creates additional behavior on
the process execution level. In Fig. 1, some fault handling has been added to the IT model to
catch failing service calls.

• Correction and revision of the flow. Some business-level process models would not pass syn-
tactical and semantical validation checks on the engine. They may contain modeling errors
in the control- or data flow that need to be corrected before execution. Sometimes activties
also need to be reordered to take previously unconsidered data and service dependencies
into account. These changes generally alter the behavior of the process. A special case is
the possible parallelization of activities through IT, which may or may not be considered a
behavioral change.

Different changes that occur in the IT implementation phase relate differently to the
shared process model idea. Complementary detail could be easily handled by a single
model through a progressive disclosure of the process model, i.e., showing one graphi-
cal layer to business and two layers to IT stakeholders.

However, the decision which model elements are ‘business relevant’ depends on the
project and should not be statically fixed (as in the BPMN 2 conformance classes). There-
fore, an implementation of progressive disclosure requires extensions that specify which
element belongs to which layer. Additional behavior can be handled through progressive
disclosure in a similar way as long as there are no dependencies to the business layer.
For example, according to the BPMN 2 metamodel, if we add an error boundary event
to a task with subsequent sequence flow specifying the error handling, then this creates
no syntactical dependencies from the business elements to this addition. However, if
we merge the error handling back to the normal flow through a new gateway or if we
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Fig. 2. Process view synchronization via a Shared Process Model

branch off the additional behavior by a new gateway in the first place, then the business
elements need to be changed, which would substantially complicate any implementa-
tion of a progressive disclosure. In this case, it would be easier to maintain two separate
views. Also the changes in the categories behavioral refinement and refactoring as well
as formalization and renaming clearly suggest to maintain two separate views.

Why different views need to be synchronized. In fact, many organizations today keep
multiple versions of a process model to reflect the different views of the stakeholder
(cf., e.g., [2,18,19]). However, because today’s tools do not have any support for syn-
chronizing them, they typically become inconsistent over time. That is, they disagree
about which business tasks are executed and in which order. This can lead to costly
business disruptions or to audit failures [2]. In the technical report version of this paper
[14], we elaborate this point in more detail.

3 Requirements for a Shared Process Model

3.1 The Shared Process Model Concept

The Shared Process Model, which we now present, has the capability to synchronize
process model views that reside on different abstraction levels. The concept is illustrated
by Fig. 2. The Shared Process Model provides two different views, a business view and
an IT view, and maintains the consistency between them. A current view can be obtained
at any time by the corresponding stakeholder by the ‘get’ operation. A view may also
be changed by the corresponding stakeholder. With a ‘put’ operation, the changed view
can be checked into the Shared Proess Model, which synchronizes the changed view
with the other view.

Each view change can be either designated as a public or a private change. A public
change is a change that needs to be reflected in the other view whereas a private change
is one that does not need to be reflected. For example, if an IT architect realizes, while
he is working on the refinement of the IT model, that the model is missing an important
business activity, he can insert that activity in the IT model. He can then check the
change into the Shared Process Model, designating it as a public change to express that
the activity should be inserted in the business view as well. The Shared Process Model
then inserts the new activity in the business view automatically at the right position,
i.e., every new business view henceforth obtained from the Shared Process Model will
contain the new activity. If the IT architect designated the activity insertion as a private
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change, then the business view will not be updated and the new activity will henceforth
be treated by the Shared Process Model as an ‘IT-only’ activity.

Fig. 2 also illustrates the main three status conditions of a Shared Process Model:
business conformance, IT conformance and Business-IT consistency. The business view
is business conformant if it is approved by the business analyst, i.e., if it reflects the
business requirements. This should include that the business view passes basic validity
checks of the business modeling tool. The IT view is IT conformant if it is approved
by the IT architect, i.e., if it meets the IT requirements. This should include that the
IT view passes all validity checks of the IT modeling tool and the execution engine.
Business-IT consistency means that the business view faithfully reflects the IT view, or
equivalently, that the IT model faithfully implements the business view.

In the remainder of this section, we discuss the requirements and capabilities of the
Shared Process Model in more detail.

3.2 Usage Scenarios and Requirements

We distinguish the following usage scenarios for the Shared Process Model. In the
presentation scenario, either the business or IT stakeholder can, at any time, obtain a
current state of his view with the ‘get’ operation. The view must reflect all previous
updates, which may have been caused by either stakeholder.

The Shared Process Model is initialized with a single process model (the initial busi-
ness view), i.e., business and IT views are initially identical. Henceforth, both views
may evolve differently through view change scenarios, which are discussed below. For
simplicity, we assume here that changes to different views do not happen concurrently.
Concurrent updates can be handled on top of the Shared Process Model using known
concurrency control techniques. That is, either a pessimistic approach is chosen and
a locking mechanism prevents concurrent updates, which, we believe, is sufficient in
most situations. Or an optimistic approach is chosen and different updates to the Shared
Model may occur concurrently—but atomically, i.e., each update creates a separate
new consistent version of the Shared Model. Parallel versions of the Shared Model
must then be reconciled through a horizontal compare/merge technique on the Shared
Model. Such a horizontal technique would be orthogonal to the vertical synchronization
we consider here and out of scope of this paper.

In the view change scenario, one view is changed by a stakeholder and checked into
the Shared Process Model with the ‘put’ operation to update the other view. A view
change may contain many separate individual changes such as insertions, deletions,
mutations or rearrangement of modeling elements. Each individual change must be
designated as either private or public. We envision that often a new view is checked into
the Shared Process Model which contains either only private or only public individual
changes. These special cases simplify the designation of the changes. For example,
during the initial IT implementation phase, most changes are private IT changes.

A private change only takes effect in one view while the other remains unchanged.
Any public change on one view must be propagated to the other view in an automated
way. We describe in more detail in Sect. 4, in what way a particular public change in
one view is supposed to affect the other view. An appropriate translation of the change
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is needed in general. User intervention should only be requested when absolutely neces-
sary for disambiguation in the translation process. We will present an example of such
a case in Sect. 4.

The designation of whether a change is private or public is in principle a deliberate
choice of the stakeholder that changes his view. However, we imagine that governance
rules are implemented that disallow certain changes to be private. For example, private
changes should not introduce inconsistencies between the views, e.g., IT should not
change the order of two tasks and hide that as a private change. Therefore, the business-
IT consistency status need to be checked upon such changes.

The key function of the Shared Process Model is to maintain the consistency between
business and IT view. Business-IT consistency can be thought of as a Boolean condi-
tion (consistent or inconsistent) or a measure representing a degree of inconsistency.
According to our earlier study [2], the most important aspect is coverage, which means
that (i) every element (e.g. activities and events) in the business view should be imple-
mented by the IT view, and (ii) only the elements in the business view are implemented
by the IT view.

The second important aspect of business-IT consistency is preservation of behavior.
The activities and events should be executed in the order specified by the business view.
The concrete selection of a consistency notion and its enforcement policy should be
configurable on a per-project basis. A concrete notion should be defined in a way that
users can easily understand, to make it as easy as possible for them to fix consistency
violations. Common IT refinements as discussed in Sect. 2.1 should be compatible with
the consistency notion, i.e., should not introduce inconsistencies, wheras changes that
cannot be considered refinements should create consistency violations. Checking con-
sistency should be efficient in order to be able to detect violations immediately after a
change.

On top of the previous scenarios, support for change management is desirable to fa-
cilitate collaboration between different stakeholders through the Shared Process Model.
The change management should support approving or rejecting public changes. In par-
ticular, public changes made by IT should be subject to approval by business. Only a
subset of the proposed public changes may be approved. The tool supporting the ap-
proval of individual changes should make sure that the set of approved changes that is
finally applied to the Shared Process Model leads to a valid model. The Shared Pro-
cess Model should be updated automatically to reflect only the approved changes. The
change management requires that one party can see all the changes done by the other
party in a consumable way. In particular, it should be possible for an IT stakeholder to
understand the necessary implementation steps that arise from a business view change.

If a process is in production, all three conditions, business conformance, IT confor-
mance and business-IT consistency, should be met. Upon a public change of the IT
view, the business view changes and hence the Shared Process Model must show that
the current business view is not approved. Conversely, a public change on the business
view changes the IT view and the Shared Process Model must indicate that the current
IT view is not approved by IT. Note that a change of the IT view that was induced by
a public change of the business view is likely to affect the validity of the IT view with
respect to executability on a BPM engine.
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4 A Technical Realization of the Shared Process Model

Fig. 3. The Shared Process Model as a combina-
tion of two individual models, coupled by corre-
spondences

In this section, we present parts of a
technical realization of the concepts
and requirements from Sect. 3 as we
have designed and implemented them.

4.1 Basic Solution Design

We represent the Shared Process
Model by maintaining two process
models, one for each view, together
with correspondences between their
model elements, as illustrated by
Fig. 3. In the upper part, the process
model for business is shown, in the
lower part the process model for IT. A correspondence, shown by red dashed lines,
is a bidirectional relation between one or more elements of one model and one or more
elements of the other model.

For example, in Fig. 3, task B of the business layer corresponds to task B’ of the
IT layer which is an example for a one-to-one correspondence. Similarly, task D of
the business layer corresponds to subprocess D’ of the IT layer and tasks A1 and A2

correspond to the (human) task A of the IT layer which is an example for a many-to-
one correspondence. Many-to-many correspondences are technically possible but we
haven’t found a need for them so far. We only relate the main flow elements of the
model, i.e., activities, events and gateways, but sequence flow is not linked. Each el-
ement is contained in at most one correspondence. An element that is contained in a
correspondence is called a shared element, otherwise it is a private element.

Alternatively, we could have chosen to represent the Shared Process Model differ-
ently by merging the business and IT views into one common model with overlapping
parts being represented only once. This ultimately results in an equivalent representa-
tion, but we felt that we stay more flexible with our decision above in order to be able
to easily adapt the precise relationship between business and IT views during further
development.

Furthermore, with our realization of the Shared Process Model we can easily support
the following:

• Import/export to/from the Shared Process Model: From the Shared Process Model,
a process model must be created (e.g. business view) that can be shown by an
editor. This is straight-forward in our representation. We use BPMN 2 internally
in the Shared Process Model, which can be easily consumed outside by existing
editors. Likewise, other tools working on BPMN 2 can be leveraged for the Shared
Process Model prototype easily.
• Generalization to a Shared Process Model with more than two process models is

easier to realize with correspondences rather than with a merged metamodel. This
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includes generalization to three or more stakeholder views, but also when one busi-
ness model is implemented by a composition of multiple models (see Sect. 2.1) or
when a business model should be traced to multiple alternative implementations.

The technical challenges occur in our realization if one of the process models evolves
under changes because then the other process model and the correspondences have to
be updated in an appropriate way.

4.2 Establishing and Maintaining Correspondences

A possible initialization of the Shared Process Model is with a single process model,
which can be thought of the initial business view. This model is then internally du-
plicated to serve as initially identical business and IT models. This creates one-to-one
correspondences between all main elements of the process models for business and IT.
The creation of such correspondences is completely automatic because in this case a
correspondence is created between elements with the same universal identifier during
the duplication process. Another possible initialization is with a pair of initial business
and IT views where the two views are not identical, e.g. they might be taken from an ex-
isting project situation where the processes at different abstraction levels already exist.
In such a case, the user would need to specify the correspondences manually or process
matching techniques can be applied to achieve a higher degree of automation [1].

A one-to-many or many-to-one correspondence can be introduced through an editing
wizard. For example, if an IT architect decides that one business activity is implemented
by a series of IT activities, he uses a dedicated wizard to specify this refinement. The
wizard forces the user to specify which activity is replaced with which set of activities,
hence the wizard can establish the one-to-many correspondence.

The Shared Model evolves either through such wizards, in which case the wizard
takes care of the correspondences, or through free-hand editing operations, such as
deletion and insertion of tasks. When such changes are checked into the Shared Model
as public changes, the correspondences need to be updated accordingly. For example, if
an IT architect introduces several new activities that are business-relevant and therefore
designated as public changes, the propagation to the business level must also include the
introduction of new one-to-one correspondences. Similarly, if an IT architect deletes a
shared element on the IT level, a correspondence connected to this shared element must
be removed when propagating this change.

4.3 Business-IT Consistency

As described in Sect. 3.2, we distinguish coverage and preservation of behavior. Cover-
age can be easily checked by help of the correspondences. Every private element, i.e.,
every element that is not contained in a correspondence must be accounted for. For ex-
ample, all private business tasks, if any, could be marked once by the business analyst
and all private IT tasks by the IT architect. The Shared Process Model then remembers
these designations. A governance rule implemented on top may restrict who can do
these designations. All private tasks that are not accounted for violate coverage.
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For preservation of behavior, we distinguish strong and weak consistency according
to the IT refinement patterns discussed in Sect. 2.1. If business and IT views are strongly
consistent, then they generate the same behavior. If they are weakly consistent, then
every behavior of the IT view is a behavior of the business view, but the IT view may
have additional behavior, for example, to capture additional exceptional behavior. As
with coverage, additional behavior in the IT view should be explicitly reviewed to check
that it is indeed considered technical exception behavior and not-considered ‘business-
relevant’.

We use the following concretizations of strong and weak consistency here. At this
stage, we only consider behavior generated by the abstract control flow, i.e., we do not
yet take into account how data influences behavior.

• We define the Shared Process Model to be strongly consistent if the IT view can
be derived from the business view by applying only operations from the first three
categories in Sect. 2.1: complementary implementation detail, formalization and
renaming, and behavioral refinement and refactoring. Private tasks in either view
are compatible with consistency only if they are connected to shared elements by
a path of sequence flow. The operations from the first three categories all preserve
the behavior. The Shared Process Model in Fig. 3 is not strongly consistent because
the IT view contains private boundary events. Without the boundary events and
without activity Y, the model would be strongly consistent. Fig. 4 shows examples
for violating strong consistency.
An initial Shared Process Model with two identical views is strongly consistent.
To preserve strong consistency, all flow rearrangements on one view, i.e., moving
activities, rearranging sequence flow or gateways must be propagated to the other
view as public changes.
• For weak consistency, we currently additionally allow only IT-private error bound-

ary events leading to IT private exception handling. Technically we could also allow
additional IT-private gateways and additional branches on shared gateways here, but
we haven’t yet seen a strong need for them. The Shared Process Model in Fig. 3 is
weakly consistent. The examples in Fig. 4 also violate weak consistency.

We have used the simplest notion(s) of consistency such that all the refinement patterns
we have encountered so far can be dealt with. We haven’t yet seen, within our usage
scenarios, the need for more complex notions based on behavioral equivalences such as
trace equivalence or bisimulation.

Fig. 4. Examples of inconsistencies
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Strong and weak consistency can be efficiently checked but the necessary algorithms
and also the formalization of these consistency notions are beyond the scope of this
paper1. The automatic propagation of public changes, which we will describe in the
following sections, rests on the Shared Process Model being at least weakly consistent.

4.4 Computing Changes between Process Models

If the Shared Process Model evolves by changes on the business or IT view, then such
changes must be potentially propagated from one view to the other. As a basis for our
technical realization of the Shared Process Model, an approach for compare and merge
of process models is used [15]. We use these compound operations because they min-
imize the number of changes and represent changes on a higher level of abstraction.
This is in contrast to other approaches for comparing and merging models which focus
on computing changes on each model element.

Figure 5 shows the change operations that we use for computing changes. Inser-
tActivity, DeleteActivity and MoveActivity insert, delete and move activities or other
elements such as events and subprocesses. InsertFragment, DeleteFragment and Move-
Fragment is used for inserting, deleting and moving fragments which represent control
structures. The computation of a change script consisting of such compound operations
is based on comparing two process models and their Process Structure Trees. For more
details of the comparison algorithm, the reader is referred to [15].

Fig. 5. Change operations according to [15]

As an example for an evolution scenario of the Shared Process Model, consider Fig-
ure 6. The left hand side shows a part of the initial state of the Shared Process Model
in our scenario, which contains a 2-to-1 correspondence and a private IT task. So, some
IT refinements have been done already. Assume now, that during IT refinement, the IT

1 For strong consistency, one has to essentially check that the correspondences define a contin-
uous mapping between the graphs as known in graph theory.
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Fig. 6. Example of a change script on the IT level that is propagated to the business level

architect realizes that, in a similar process that he has implemented previously, there
was an additional activity that checks the provided customer details against existing
records. He is wondering why this is not done in this process and checks that with the
business analyst, who in turn confirms that this was just forgotten. Consequently, the IT
architect now adds this activity together with a new loop to the IT view, resulting in a
new IT view shown in the lower right quadrant of Fig. 6. Upon checking this into the
Shared Process Model as a public change, the business view should be automatically
updated to the model shown in the upper right quadrant of Fig. 6.

To propagate the changes, one key step is to compute change operations between
process models in order to obtain a change script as illustrated in Fig. 6. In the partic-
ular example, we compute three compound change operations: the insertion of a new
empty fragment containing the two XOR gateways and the loop (InsertFragment), the
insertion of a new activity (InsertActivity) and the move of an activity (MoveActivity),
illustrated by the change script in Figure 6. In the next section, we explain how we use
our approach to realize the evolution of the Shared Process Model.

4.5 Evolution of the Shared Process Model

For private changes, only the model in which the private changes occured is updated. In
the following, we explain how public changes are propagated from IT to business, the
case from business to IT is analogous.

When a new IT view is checked into the Shared Process Model, we first compute all
changes between the old model IT and the new model IT’, giving rise to a change script
DeltaIT , see Figure 7 (a). The change script is expressed in terms of the change opera-
tions introduced above, i.e., DeltaIT = 〈op1, ..., opn〉 where each opi is a change opera-
tion. In order to propagate the changes to the business level, DeltaIT is translated into a
change script DeltaB for the business-level. This is done by translating each individual
change operation opi into an operation opT

i and then applying it to the business-level.
Likewise, we also apply each change operation on the IT-level to produce intermediate
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Fig. 7. Delta computation for propagating changes

process models for the IT level. Overall, we thereby achieve a synchronous evolution
of the two process models, illustrated in Figure 7 (b).

Algorithm 1. Translation of a compound operation op from process model IT to Busi-
ness model B

Step 1: compute corresponding parameters of the operation op
Step 2: replace parameters of op with corresponding parameters to obtain opT

Step 3: apply opT to B, apply op to IT
Step 4: update correspondences between B and IT

Algorithm 1 describes in pseudo-code the algorithm for translating a compound op-
eration from IT to business. The algorithm for translation from business to IT can be
obtained by swapping business and IT. Overall, one key step is replacing parameters
of the operation from the IT model by parameters of the business model according to
the correspondences. For example, for translating a change InsertActivity(x, a, b), the
parameters a and b are replaced according to their corresponding ones, following the
correspondences in the Shared Process Model. In case that a and b are private elements,
this replacement of elements requires forward/backward search in the IT model until
one reaches the nearest shared element (Step 1 of the algorithm). Similarly, for trans-
lating an InsertFragment( f , a, b), the parameters a and b are replaced in the same way.
An operation DeleteActivity(x) is translated into DeleteActivity(x′) (assuming here that
x is related to x′ by a one-to-one correspondence). After each translation, in Step 3 the
change operation as well as the translated change operation are applied to produce new
models Bi and ITi, as illustrated in Figure 7 (b). Afterwards, Step 4 updates the corre-
spondences between the business and IT model. For example, If x is the source or target
of a one-to-many/many-to-one correspondence, then all elements connected to it must
be removed.

For the example in Figure 6, the change script DeltaIT is translated iteratively and
applied as follows:

• The operation InsertFragment(f, ‘Get Request Details’, ‘Log Session Data’) is translated into
InsertFragment(f, ‘Get Insurance Details’, ‘Validate Claim’). The operation as well as the
translated operation are applied to the IT and business model, respectively, to produce the
models IT1 and B1, and also the correspondences are updated. In this particular case, new
correspondences are created e.g. between the control structures of the inserted fragments.
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• The operation InsertActivity(‘Check Consistency with Records’, Merge, Decision) is trans-
lated into InsertActivity(‘Check Consistency with Records’, Merge, Decision), where the new
parameters now refer to elements of the business model. These operations are then also ap-
plied, in this case to IT1 and B1, and correspondences are updated.

• The operation MoveActivity(‘Get Request Details’, Merge, ‘Check Consistency with
Records’) is translated into MoveActivity(‘Get Request Details’, Merge, ‘Check Consistency
with Records’), where the new parameters now refer to elements of the business model.
Again, as in the previous steps, the operations are applied and produce the new Shared Pro-
cess Model consisting of B′ and IT ′.

In general, when propagating a change operation, it can occur that the insertion point in
the other model cannot be uniquely determined. For example, if a business user inserts
a new task between the activity ‘Get Insurance Details’ and ‘Validate Claim’ in Fig. 6,
then this activity cannot be propagated to the IT view automatically without user in-
tervention. In this particular case, the user needs to intervene to determine whether the
new activity should be inserted before or after the activity ‘Log Session Data’.

In addition to computing changes and propagating them automatically, in many sce-
narios it is required that before changes are propagated, they are approved from the
stakeholders. In order to support this, changes can first be shown to the stakeholders
and the stakeholders can approve/disapprove the changes. Only approved changes will
then be applied. Disapproved changes are handed back to the other stakeholder. They
will then have to be handled on an individual basis. Such a change management can be
realized on top of our change propagation.

4.6 Implementation

As proof of concept, we have implemented a prototype as an extension to the IBM Busi-
ness Process Manager and as an extension to an open source BPMN editor. A recorded
demo of our prototype is publically available [8]. Our current prototype implements ini-
tialization of a Shared Process Model from a BPMN process model, check-in of private
and public changes to either view and change propagation between both views. Fur-
thermore, we have implemented a check for strong consistency, which can be triggered
when checking in private changes. We currently assume that the changes between two
subsequent IT views (or business views respectively) are either all public or all private.

With an additional component, this assumption can be removed. Then, the change
script is presented to the user who can then mark the public changes individually. For
this scenario, the compare/merge component needs to meet the following two require-
ments: (i) the change script must be consumable by a human user and (ii) individual
change operations presented to the user must be as independent as possible. Note that
the change operations in a change script are in general interdependent, which restricts
the ability to apply only an arbitrary subset of operations to a model. Therefore, a com-
pare/merge component may not support to separate all public from all private changes.

In fact, we first experimented with a generic compare/merge component from the
EMF Compare Framework, which could be used to generate a change script for two
process model based on the process metamodel, i.e., BPMN 2. The change operations
were so fine-grained, e.g. ‘a sequence flow reference was deleted from the list of in-
coming sequence flows of a task’, such that the change script was very long and not
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meaningful to a human user without further postprocessing. Furthermore, the BPMN 2
metamodel generates very strong dependencies across the different parts of the model
so that separate changes were likely to be dependent in the EMF Compare change script.

For these reasons, we switched to a different approach with compound changes as
described above. Note that the change approval scenarios described in Sect. 3.2 generate
the same requirements for the compare/merge component: human consumability of the
change script and separability of approved changes from rejected changes.

5 Related Work

We used prior work [15] on comparing and merging process models on the same ab-
straction level. Our work deals with changes of models on different abstraction level
and distinguishes between public and private changes.

Synchronizing a pair of models connected by a correspondence relation is an in-
stance of a symmetric delta lens [6]. In a symmetric delta lens, both models share some
information, but also have some information private to them. Deltas are propagated by
translation, which has to take the original and the updated source including the relation
between them and original target model including the correspondence to the original
source as a parameter. Symmetric delta lenses generalize the state-based symmetric
lenses by Pierce et al. [12]. In recent years, various techniques have been developed
for synchronization of models. Popular approaches are based on graph grammars (e.g.
Giese et al. [10]). In contrast to these approaches, our idea of explicitly marking private
elements is novel.

In the area of model-driven engineering, the problem of a coupled evolution of a
meta-model and models is related to our problem. Coupled evolution has recently been
studied extensively (compare Herrmannsdoerfer et al. [11] and Cicchetti et al. [5,4]).
The problem of coupled evolution of a meta-model and models has similarities to our
problem where two or more models at a different abstraction level evolve. One key
difference is that in our application domain we hide private changes and that we al-
low changes on both levels to occur which then need to be propagated. In contrast to
Herrmannsdoerfer et al., we aim at complete automation of the evolution. Due to the
application domain, we focus on compound operations and also translate the parameters
according to the correspondences. Overall, one could say that our solution tries to solve
the problem in a concrete application domain whereas other work puts more emphasis
on generic solutions which can be applied to different application domains.

On an even more general level, (in)consistency management of different views has
been extensively studied in recent years by many different authors (e.g. Finkelstein et
al. [9], Egyed et al. [7]). The goal of these works is to define and manage consistency
of different views where views can be diverse software artefacts including models. As
indicated in the paper, our problem can be viewed as one instance of a consistency
problem. In contrast, we focus on providing a practical solution for a specific applica-
tion domain which puts specific requirements into place such as usability and hiding of
private changes.

In the area of process modeling, Weidlich et al. [20] have studied vertical alignment
of process models, which brings models to the same level of abstraction. They also
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discuss an approach for automatic identification of correspondences between process
models. Buchwald et al. [3] study the Business and IT Gap problem in the context of
process models and introduce the Business IT Mapping Model (BIMM), which is very
similar to our correspondences. However, they do not describe how this BIMM can
be automatically maintained during evolution. Tran et al. [18] focus on integration of
modeling languages at different abstraction levels in the context of SOA Models but
they do not focus on the closing the business IT gap as we do. Werth et al. [21] propose
a business service concept in order to bridge the gap between the process layer and
the technical layer, however, they do not introduce two abstraction layers of process
models. Thomas et al. [17] on the other hand distinguish between different abstraction
layers of process models and also recognize the need of synchronizing the layers but
they do not provide techniques for achieving the synchronization.

Various authors have proposed different forms of abstractions from a process model,
called a process view, e.g. [16]. A process view can be recomputed whenever the un-
derlying process model changes. Recently, Kolb et al. [13] have taken the idea fur-
ther to allow changes on the process view that can be propagated back to the original
process model, which can be considered as a model synchronization. They restrict to
hierarchical abstractions of control flow in well-formed process models.

6 Conclusion

Different process model views are important to reflect different concerns of differ-
ent process stakeholders. Because their concerns overlap, a change in one view must
be synchronized with all other overlapping views in order to facilitate stakeholder
collaboration.

In this paper, we have presented detailed requirements for process model view syn-
chronization between business and IT views that pose a significant technical chal-
lenge for its realization. These requirements were derived from a larger industrial case
study [2] and additional interviews with BPM practicioners. A central intermediate
step was the systematic categorization of changes from business to IT level given in
Sect. 2.1. We have also presented our solution design and reported first results of its
implementation to demonstrate the feasibility of our approach.

We are currently working on the further elaboration and implementation of the
change management scenarios described above, and we are preparing an experimental
validation with users in order to further demonstrate the value of our approach. Also,
not all elements of the BPMN metamodel are currently synchronized but only the main
ones. In particular, the synchronization of the layout information of the models was not
yet addressed and requires further study.
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cess workflows across abstraction levels. In: France, R.B., Kazmeier, J., Breu, R., Atkinson,
C. (eds.) MODELS 2012. LNCS, vol. 7590, pp. 626–641. Springer, Heidelberg (2012)

2. Castelo Branco, M., Xiong, Y., Czarnecki, K., Küster, J., Völzer, H.: A case study on consis-
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Abstract. One of the main goals of model-driven engineering (MDE)
is the manipulation of models as exclusive software artifacts. Model ex-
ecution is in particular a means to substitute models for code. More
precisely, as models of a dedicated domain-specific modeling language
(DSML) are interpreted through an execution engine, such a DSML is
called interpreted-DSML (i-DSML for short). On another way, MDE is a
promising discipline for building adaptable systems based on models at
runtime. When the model is directly executed, the system becomes the
model: This is the model that is adapted. In this paper, we propose a
characterization of adaptable i-DSML where a single model is executed
and directly adapted at runtime. If model execution only modifies the dy-
namical elements of the model, we show that the adaptation can modify
each part of the model and that the execution and adaptation semantics
can be changed at runtime.

Keywords: model execution, adaptation, i-DSML, models at runtime.

1 Problem of Interest

As programming languages, domain-specific modeling languages (DSML) can be
compiled or interpreted. This distinction was early noticed by Mernik et al. [14]
when comes the time to choose the most suitable implementation approach for
executable DSML:

– Compiled DSML: DSML constructs are translated to base language con-
structs and library calls. People are mostly talking about code generation
when pointing at this approach;

– Interpreted DSML: DSML constructs are recognized and interpreted using an
operational semantics processed by an execution engine. With this approach,
no transformation takes place, the model is directly executable.

With interpreted domain-specific modeling languages (the term i-DSML is coined
in [7]), the ability to run a model prior to its implementation is a time-saving and
henceforth cost-saving approach for at least two reasons: (a) It becomes possible
to detect and fix problems in the early stages of the software development cycle
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and (b) ultimately the implementation stage may be skipped. One slogan asso-
ciated to i-DSML should be “what you model is what you get” (WYMIWYG).
Meanwhile, software adaptation and self-adaptive software [16] have gained more
and more interest. Consequently, when building such software based on i-DSML,
the model has to be adaptable at runtime thus requiring to define adaptable
i-DSML.

Model

System=exec. model

Adaptation?

Modification
Representation

Model

System

Adaptation?

Modification
Representation

Modification

Adaptation?

System=exec. model

models@run.timeCommon
on executed model

(c)
Executed model

adaptation
(b)

Common

models@run.time
(a)

Fig. 1. Adaptation loops

The runtime adaptation problem is commonly tackled as a 2-stages adapta-
tion loop (analyze–modification). In the MDE (Model-Driven Engineering) field,
one of the most prominent way to implement this loop is models@run.time [2],
where models are embedded within the system during its execution and acting
primarily as a reasoning support (case (a) in figure 1). The main disadvantage of
models@run.time deals with maintaining a consistent and causal connection be-
tween the system and the model for the model being a valid representation of the
system at runtime. The i-DSML approach naturally circumvents this disadvan-
tage since it suppresses the gap between the system and the model: The system
is the model being executed. The reasoning is still made on the model but the
required modifications are then directly enacted on the model without needing a
representation of the system. Case (b) in figure 1 represents the adaptation loop
in this new context. However, one major requirement for adaptable i-DSML is
that the executed model contains all information necessary for both its execu-
tion and its adaptation. This can sometimes lead to an increasing complexity of
the model and to a difficulty for managing the adaptation when mixing together
adaptation and execution. In this case, one can abstract all the required informa-
tion into a dedicated model for applying common models@run.time techniques
on a model execution system. This solution is depicted by figure 1, case (c). The
only difference with the case (a) is simply that the system is of a special kind:
A model execution system. The problem of this solution is that it reintroduces
the causal link that we precisely try to avoid here. So, both approaches (case (b)
and (c)) are complementary and have pros and cons. Depending on the context,
one approach will be more suited than the other one.

In this paper, we focus on the direct adaptation of an executed model (case
(b) of figure 1). [5,6] are first investigations on this direct adaptation of executed
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models, that is, on adaptable i-DSML. They establish what model execution
adaptation is and how to express, through a contract-based approach, that a
model is consistent with an execution environment (if not, the model has to be
adapted). Based on the same example of basic state machines and a train exam-
ple, the contribution of this paper consists in proposing a conceptual character-
ization of adaptable i-DSML. The next section recalls what is model execution
and its well-known conceptual characterization. This characterization is then
extended in section 3 for describing what an adaptable i-DSML contains and is
based on. If model execution only modifies the dynamical elements of the model,
we show that the adaptation can modify each part of the model and that the
execution and adaptation semantics can be changed at runtime. Finally, related
work is discussed before concluding.

2 Characterization of i-DSML

Defining executable models is not really a novel idea. Several papers have already
studied model execution, such as [3,4,7,8,9,10,13,15]. All these works establish a
consensus about what the i-DSML approach assumes:

– Executing the model makes sense. This is much more empirical evidence that
shows us that some kinds of model are executable, others are not;

– An engine is responsible for the execution of the model, that is, its evolution
over time;

– The model comes with all the information necessary for its execution through
an engine: It is self-contained.

Before characterizing precisely what an i-DSML contains, we give a better un-
derstanding of these three assumptions.

2.1 Executable Nature of Models

It exists a general classification of models that may help us to identify mod-
els which have the ability to be executed or not: The product–process duality.
Indeed, models (and meta-models thereof) can either express products or pro-
cesses, regardless of the system studied. By essence, only process models enable
executability of their content since they embody concepts closely related to the
world of runtime: Startpoint, endpoint, time (past/current/future), evolution
step, etc.

Applied to the field of software development standards, we can cite SPEM
as a process modeling language and CMW as a product modeling language.
As another OMG’s prominent example, UML itself provides three categories of
diagrams, namely structure diagrams (Class, Package, . . . ), behavior diagrams
(State Machines, Activity, . . . ) and interaction diagrams (Communication, Se-
quence, . . . ). Logically, only behavior and interaction diagrams may be executed.
Beyond these specific examples, when designing a DSML, it is important to keep
in mind its potential executable nature.
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2.2 Execution Engines

An i-DSML is more than just a meta-model (abstract syntax and well-formedness
rules). A language definition also contains a concrete syntax and semantics. The
semantics of the language are captured in the transformation rules in the case of
compiled DSML or in the execution engines in the case of interpreted DSML. An
execution engine is dedicated to a single i-DSML (UML state machines, SPEM,
Petri nets, etc.) and can execute any model conforming to this i-DSML.

The purpose of any execution engine is to “play” or to “animate” the model,
making its state evolving, step by step. Execution operations, implemented by
the execution engine and potentially attached to an element of the meta-model,
manage each execution step of the model. The current state of the model can
be maintained locally within the engine or, differently, embedded into the model
itself. The i-DSML approach singles out having self-contained models embedding
their current state but the former solution can be useful in some cases. Typically,
this is when one requires to execute models conforming to a meta-model not
designed for managing the current state of the model, such as all the dynamic
diagrams of UML. Indeed, the UML standard does not define a current model
state for any of these diagrams that could be executable. In this case, the solution
is to store the current state of the model within the memory of the engine or
to extend the meta-model for managing a current model state. For instance, [4]
did it for UML state machines. However, the extended meta-model differs from
the UML standard.

2.3 Self-contained Executable Models

When self-contained, the current state of the model being executed is stored in
the model itself. Thus, each execution step changes this state. At first glance,
this strategy seems to pollute the meta-model with many details not relevant at
design-time and seems to defeat the abstraction offered by traditional modeling
principles (a model is the abstraction and a simplification of a given system).
However, there are two main reasons justifying to have self-contained models.

The first one is that it offers the major advantage that after each execution
step the current model state can be serialized into an output file1, thereby pro-
viding a complete traceability of the execution as a sequence of models. Some
works, such as [3], even consider that the model can embed its complete execu-
tion trace in addition to its current state. Based on this sequence of snapshots,
one can perform some useful operations like rollbacks, runtime verification (such
as the black-box execution verification of [4]), debugging, testing, and so forth.

The second and main reason is related to the essence of the executable models.
Such models aim at being substituted to the code, at the lowest level, far away
from abstract design models. Hence they have an increased level of details and
complexity required for their executability. Moreover, executability being part of

1 That is why some authors may consider an execution process just as a sequence of
endogenous model transformations, as explained in [4].
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their nature, it is unsurprising that they contain elements related to executability
such as the definition of their current state.

2.4 The Design of an i-DSML

All elements required for model execution are located at the meta-level. Indeed,
a language is a self-contained i-DSML if one can instantiate models that are
executable through an execution engine. One can identify a recurring pattern [9]
about the constituents of an i-DSML (figure 2):

Model

Executable Model

MetaModel
conforms to

i-DSML
conforms to

Static Part

<<structure>>

Dynamic Part

<<structure>>

Execution Semantics

<<behavior>>

Execution Engine

takes input defined for

applies on

<<implements>>

Fig. 2. Conceptual framework for an i-DSML

1. Meta-elements which express the organization of the process modeled,
2. Meta-elements which express the state of the model being executed,
3. Execution semantics which express how the model behaves when being

executed.

The item (1) is realized by traditional meta-modeling since the engineers concen-
trate onto the static structure and associated well-formedness rules of the models
to be built. This is called the Static Part. Item (2) introduces structural meta-
elements intended to store the state of the model at a given point of the time,
also associated with their well-formedness rules. This is called the Dynamic Part.
Last but not least, item (3) deals with defining how the the model is evolving
over time, modifying only the dynamic part (i.e. the static part never changes).
An execution semantics can be defined under several declinations. An axiomatic
semantics enables to complete the specification of the meta-model with well-
evolution rules defining the constraints on how the model evolves [4]. A trans-
lational semantics can be used to apply simulation or verification techniques of
another technological space, such as in [8]. Finally, an operational semantics is
the operationalization of the execution behavior in terms of actions through an
action language and is implemented by an execution engine. As depicted by the
figure 2, the Dynamic Part and the Execution Semantics are specific to i-DSML.
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2.5 Executable State Machines

UML state machines are typically one of the best examples of well-known exe-
cutable models. In this paper, we then link our examples to them but, for fluency,
we define concise state machines restricted to a limited number of features: Com-
posite states with deep history states and transitions associated with an event.
Moreover, UML state machines as defined by the OMG do not include a dynamic
part as required for a full-model execution (however [4] proposes an extension
of the UML meta-model for defining a dynamic part for state machines).

name : String

State

name : String
isActive : boolean

Transition

StateMachine CompositeState

elementKind : String

AdaptableElement

value : Integer

IntegerProperty

name : String

Property

0..*

Static and
dynamic parts

source 1

target 1
events

1 event

container   0..1

0..1
referencedState

initialState  1

0..1
historyState

properties

transitions

Adaptation part

0..* 0..*

HistoryState

InitialState

PseudoState

1..*states

Event

Fig. 3. Meta-model of adaptable and executable basic state machines

The meta-model of our basic state machines is represented on figure 3 (the
AdaptableElement and [Integer]Property elements are dedicated for manag-
ing the adaptation and will be introduced in the next section). The static part
of the meta-model is composed of the following elements:

– A state that is named and is contained in a composite state.
– Two kinds of pseudo states can be defined: An initial state and an history

state, each one referencing a state of the composite state to which they be-
long. Each composite state must have one and only one initial state. Having
an history state (but only one) is optional.

– A transition between a source and a target states, associated with an event
that is simply defined with a name.

– A state machine is a special kind of composite state. It owns all transitions
and events of the model and must be unique within the model.

The dynamic part of the meta-model is simply composed of two elements. The
first one is the isActive boolean attribute of the State element. It enables to
set that a state is currently active or not. The second is the referenced state of
an history state that references the last active state of the composite state to
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which it belongs. One can note that the referencedState relation of a pseudo
state is either playing a static role (for an initial state) or a dynamic one (for an
history state). This state machine meta-model has been implemented in Ecore
for the EMF platform.

Static and dynamic parts are complemented with OCL invariants defining the
well-formedness rules for fully specifying the meta-model. For the static part, it is
for instance required to express that a pseudo state references one of the states
of its composite state. For the dynamic part, the main invariant specifies the
active state hierarchy consistency: Either all the states are inactive (the model
is not being executed) or there is in the state machine one and only one active
state, and if this state is composite, it contains one and only one active state
and so on.

Concerning the execution semantics, both well-evolution rules, defined using
OCL, and an operational semantics, implemented by a Kermeta2 engine, have
been defined. For the sake of brevity, we will not present them. Just note that
their main goal is to define and to implement the main execution step ensuring
that, for an event occurrence, the right transition is triggered depending on the
current active states (that is, the active state hierarchy is accordingly modified).

2.6 A Train Example

The example of this paper is freely inspired of a railway system3. The behavior of
a train is specified through a state machine. The train is stopped or is running at
a given speed, depending on the light signals along the railway. The environment
of execution of the train is the signals that control its speed. Concretely, the
different speeds of the train are specified through the states of the state machine
whereas the signals are the events associated with the transitions between these
states. Within the same state machine, one can specify the behavior of the system
(the train) and its interaction with the execution environment (the light signals).

Execution Environment. The train is running on railways having signals
with 3 or 4 different color lights. There are two different kinds of railways: Normal
speed sections (up to 130 km/h) and high speed sections (up to 300 km/h). The
signal with 3 colors is for normal speed sections while the signal with 4 colors is
for high speed ones. The meanings of the colors are the following (only one light
is put on at the same time): red means that the train must stop immediately,
amber expresses that the train must not run at more that 40 km/h, green means
that the train can run at a normal speed (but not more) and purple that the
train can run at a high speed.

Basic Train Model. The figure 4 represents a state machine defining the
behavior of a non high-speed train and some steps of its execution. Concretely,

2 http://www.kermeta.org/
3 The state machines of train behaviors and their associated signals of this paper are
not at all intended to be considered as realistic specification of a railway system.
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Fig. 4. A train state machine execution

this train is not able to run at more than 130 km/h but is allowed to run at
this speed on high-speed sections. The states define the speeds of the train. For
simplifying, the name of a state is the train speed in km/h associated with this
state. 0 and 40 are then speeds of 0 km/h and 40 km/h, that is the stop state and
the low speed state. When running at a normal speed, the train driver can choose
between two speeds, either 100 or 130 km/h. These two states have been put into
a composite one representing the normal speeds. Transitions between states are
associated with the signal color lights: red, green and amber. The purple color
is not managed here, as the train cannot run at more than 130 km/h, but it
can run at 100 or 130 km/h on a high speed section. There are two particular
events: int SpeedUp and int SpeedDown. These events are internal actions of
the train, that is, correspond to direct train driver actions. For not confusing
them with the external events coming from the execution environment, their
names is prefixed by “int ”.

Execution of the Train State Machine. The figure 4 shows three steps of
execution of the state machine, through the run to completion operation taking
an event name as parameter. This operation processes an event occurrence. The
first step is the initial active configuration of the state machine: Its initial state
0 is active (an active state is graphically represented with a grey background).
Then, for the second step, the Amber event occurs and it makes changing the
current active state that is now the 40 one. Finally, the third step is the result
of the Green event occurrence which leads to activate the Normal state and in
consequence its initial state, the state 100.
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Processing a state machine execution consists only in modifying the isActive
attribute value for the states and, for composite states, in changing the referenced
state of its potential history state. As a conclusion, only the dynamical elements
of the model are modified during the execution.

3 Characterization of Adaptable i-DSML

We consider that an adaptable i-DSML is the logical extension of an i-DSML. In-
deed, adaptable models are executable models endowed with adaptation
capabilities.

3.1 The Design of an Adaptable i-DSML

Figure 5 depicts the design of an adaptable i-DSML. As an adaptable i-DSML is
an extension of an i-DSML, this figure extends the figure 2. The added elements
are:

1. Meta-elements which express properties on the model and that should help
its adaptation;

2. Adaptation semantics, leveraging from the aforesaid properties, which ex-
press the adaptation problem and its solution.

Item (1) makes reference to any structural elements and their well-formedness
rules that are added in the meta-model and whose role is to facilitate the sub-
sequent adaptations. This is called the Adaptation Part. Item (2) denotes the
adaptation semantics that is a specialization of an execution semantics. Indeed,
while execution semantics prescribes a nominal behavior, the adaptation se-
mantics expresses also a behavior but for extra-ordinary or abnormal situations
requiring an adaptation. Again, an adaptation semantics can be declined under
the specification form for complementing the meta-model definition [5], or under
the operational form. As a consequence, an adaptation engine implementing the
adaptation semantics is an extension of an execution engine: It processes both
the execution-related operational semantics and the adaptation-related opera-
tional semantics.

Without going into details of how an adaptation semantics is managed or
processed by the engine, we can say that it will mainly be composed of a set of
fine-grained adaptation operations combined by a set of rules. Some operations
are dedicated to checking the consistency of the model and others are actions
concretely realizing the adaptation. The rules are expressed under the form “if
<check> then <action>” and any more complex or recursive combination of
the same kind.

The major point is that the adaptation semantics applies on elements of all
constituents of the adaptable i-DSML: All the structural parts (static, dynamic
and adaptation) and the behavioral ones (execution semantics and adaptation
semantics) are concerned. Concretely, at runtime, the model’s entire content
can be changed including the executed semantics. This brings reflexivity to the
adaptable i-DSML since enabling the adaptation of the adaptation (i.e. meta-
adaptation).
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Fig. 5. Conceptual framework for adaptable i-DSML

Categories of Adaptation Actions. We identified two categories of adap-
tation actions: Create/Update/Delete (CUD) and Substitution. CUD actions
target instances of any structural parts (static, dynamic, and adaptation). Sub-
stitution is an action which targets the behavioral parts (execution and adap-
tation semantics). We consider only substitution for behavioral parts because it
is not feasible to define a new semantics from scratch (concretely, it will consist
in writing lines of code in the engine). Instead, having a set of existing seman-
tics (i.e. already implemented) and choosing at runtime which of them to pro-
cess is straightforward. CUD and substitution can be applied with the following
purposes:

– CUD on the dynamic part: The current state of execution is altered (e.g.
force to go back/go forward, restart such as activating a given state for a
state machine),

– CUD on the static part: The structure of the model itself is changed (e.g.
modification of the modelized process such as adding a state or changing the
initial state of a composite for a state machine),

– CUD on the adaptation part: An adaptation-related element is changed (e.g.
the value of a QoS property is modified accordingly to a changing execution
environment),

– Substitution on the execution semantics: Switch from a given interpretation
of the model to another one (e.g. managing execution variants such as the
Harel vs UML transition conflict semantics for state machines),
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– Substitution on the adaptation semantics: Switch from a given set of adap-
tation operations to other ones within the adaptation rules (e.g. checking
the consistency of the model with the execution environment in an exact or
fail-soft mode).

Table 1. Adaptation and execution characteristics

Elements of adaptable i-DSML Execution actions Adaptation actions

<<Structure>>
Static Part N/A Create/Update/Delete

Dynamic Part Create/Update/Delete Create/Update/Delete
Adaptation Part N/A Create/Update/Delete

<<Behavior>>
Execution Semantics N/A Substitution
Adaptation Semantics N/A Substitution

Table 1 sums up these categories of adaptation actions and contrasts with the
actions processed by a simple model execution. Indeed, in this case, only the
dynamic part of the model is modified whereas for model adaptation, all parts
and semantics can be changed.

3.2 Adaptation Part for the State Machine Meta-model

The meta-model of state machines of the figure 3 includes elements dedicated to
the adaptation management. The first one is the elementKind attribute available
for the Event, Transition and State elements through the specialization of
AdaptableElement. This attribute allows the definition of “kinds” for events,
transitions and states of a state machine. A kind has for goal to precise that
an element is playing a particular role. Conceptually, a kind is equivalent to a
stereotype of UML profiles. In addition, through the properties association,
events, transitions and states can be associated with properties. A property is
basically composed of a name and a value. For simplicity, only integer properties
are considered here, but of course, properties of any type could be added on
the meta-model (the definition of properties can of course be based on reusing
existing adaptation works, such as [11] which defines a generic meta-model for
specifying properties and associated rules depending on their values). Properties
can deal if required with QoS parameters and values. Conceptually, a property
is equivalent to a tagged value of UML profiles.

As shown in the following, kinds and properties can be used for managing the
adaptation of a state machine execution thanks to the additional information
they offer. Kinds can be used to define fail-soft mode of consistency against
an execution environment. Properties associated with events of the execution
environment enable the modification of the executed state machine for managing
unexpected events.
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3.3 Runtime Adaptation of the Train State Machine

The main adaptation rule consists in first checking if the behavior of the system
is consistent with the execution environment, that is concretely here, if any
signal is understandable and correctly processed by the train state machine.
Secondly, when the system is not consistent with the environment, to perform
an adaptation action such as switching in a fail-soft checking mode or modifying
the structure of the model.
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Fig. 6. Adaptation of the train state machine

As explained in [5,6], specific design constraints can be applied for verifying
the consistency of a model against an execution environment. The problem is
that it is necessary to be able to distinguish an unexpected interaction – requiring
to take an adaptation decision – from an expected and already managed one. For
state machines, it is required to be able to determine if an event is expected or
not. Several solutions are possible, such as parameterizing the execution engine
with the list of expected events and to verify for each event occurrence if it is
in the list. The solution applied here is self-contained in the model by adding
explicitly a transition starting from each state for each expected event. Figure 6,
part (a), shows the modification of the train state machine: For every expected
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color events (red, amber, green and purple), there is a transition starting from
each state. When a color event leads to remain in the same state, it is a self-
transition (leading to the historical state of a composite for composite states).
Now, excepting for internal events starting by “int ”, each event, corresponding
to a color of signal crossed by the train, triggers a transition. If no transition is
associated with an event according to the current active states, then this event
is unexpected and an adaptation action has to be performed.

Based on this new train state machine definition, as an illustration, we describe
here seven adaptation operations (two adaptation checking and five adaptation
actions including one modifying the adaptation semantics) and two execution
semantics variants for the state machine meta-model.

Adaptation Checking. The main verification is to determine if an event is
expected or not. This verification can be made in an exact mode or in a fail-
soft mode through the kinds of events. Let us consider the occurrence of the
purple signal event. The train is not able to run at a high speed level, so, when
crossing such a purple signal, the train will run at a normal speed. For this
reason, the train state machine of figure 6 part (a) leads to the state Normal for
each occurrence of the purple event.

The exact mode consists in verifying that there is a transition associated
with the exact event (through its name) and the fail-soft mode that there is a
transition for the kind of event and not necessary for the exact event. Figure 6,
part (b), shows a variant of the train state machine where kinds and properties
have be added onto states and events. There are three kinds of states (the kinds
are represented through the << .. >> UML stereotype notation): The 0 state is
a stop state, the 40 one is a low speed state and the composite state Normal is a
normal speed state. The events, depending of their associated target state4, are
also tagged with kinds: red is a stop event, amber is a low speed event, green and
purple are normal speed events. One can notice that transitions associated with
the purple color have disappeared. Indeed, in a fail-soft mode, the purple event
will be processed as the green one because there come from the same normal
kind. The purple color is for the train considered as a green one even if they do
not have the same role and meaning.

The verification mode can be changed at runtime: A checking adaptation op-
eration can be substituted by another one (changing in that way the adaptation
semantics). If the model of the figure 6, part (b), is executed and if the train is
running on normal speed sections, then the verification mode can be the exact
one because the red, amber and green signals that can be crossed are directly
and exactly processed for each state of the state machine. However, if the train
is now running on a high-speed section, it can cross a purple signal that is not
directly processed in the exact mode. An adaptation action can be to switch into

4 We rely on a dedicated restriction on the state machines: All transitions associated
with a given event are always leading to the same state. For instance for the train
state machine, independently of the source state, the amber event always leads to
the state 40.
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a fail-soft verification mode and to recheck the validity of the purple signal. In
this mode, as explained, this signal will be considered as a green one and will be
processed.

From an implementation point of view, our Kermeta execution engine has been
extended for managing the adaptation. Mainly, a pre-condition has been added
for the run to completion operation that processes each event occurrence. This
pre-condition performs the chosen adaptation checking and, if not respected, an
adaptation action is executed.

Adaptation Actions. In addition to substituting an adaptation checking op-
eration by another one, several adaptation actions can be taken in case of un-
expected events, that is, in case of a changing execution environment. A very
basic action is to stop the execution of the state machine if there is no way to
decide how to handle the event. A more relevant adaptation action is to load a
new state machine (a reference one as defined in [6]) that is able to manage the
new execution environment if such a state machine is available.

If the unexpected event is associated with properties, they can be used to
determine if this event can target an existing state of the state machine or, if
not, to add the associated state and transitions on the state machine. Figure 6,
part (b), defines a speed property for each event and state. Properties are rep-
resented similarly to tagged values of UML profiles (as the {speed=XXX} ones).
For instance, the amber event and the state 40 are both associated with a speed
property of the value 40, that is, 40 km/h. Let us suppose that, if this train state
machine is executed, a white signal, of a reduced kind and a speed property of
70 km/h, is crossed. In both exact and fail-soft verification modes, this white
event is an unexpected one. As no state has a speed property with a value of 70,
a new state called 70 is created with the same kind and speed property as the
white event. All required transitions, starting from or leading to this new state,
have also to be added: Each existing state must be the source of a transition
associated with the white event and leading to this new state and for each color
event (red, amber and green) there must be a transition starting from this new
state and leading to the required state. The figure 6, part (c), shows the resulted
runtime modification for managing the white signal. An important point to no-
tice about this model modification is that it is based on the comparison of the
properties without requiring to know what they are and what they are repre-
senting. The adaptation engine simply compares two sets of properties through
their names and values.

A last adaptation action could be to force the activation of the state that is
from a stop kind (the state 0 for the train state machine) in case of an unexpected
event (this action is different from stopping the execution of the state machine
as described above because here the state machine is still being executed). The
idea is that the train stops if it does not understand a signal.

Execution Semantics Variants. For state machines, a transition conflict ap-
pears when a transition is starting from a composite state and that there is also
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a transition associated with the same event starting from an internal state of this
composite. The way to choose which transition to fire when this event occurs is
a semantics variation point. According to the UML semantics5, it is the most
internal one that is fired while the original Harel statecharts semantics [12] leads
to fire the external one starting from the composite.

When loading a state machine model, including at runtime when changing
the current state machine by another one suited for a new context of execution,
it is required to know with which execution semantics it was designed. We can
imagine a property associated with the state machine and precising which kind of
transition processing variant must be used. Then, the execution engine embeds
the operational code for each semantics and the right one is processed depending
of this property value. In other words, when changing the executed model as
an adaptation action, the current operational semantics can be substituted by
another one if needed.

4 Related Work

As written, several papers such as [3,4,7,8,9,10,13,15] have already studied model
execution. Section 2 summarizes the consensual characterization of model exe-
cution based on these works.

Concerning the adaptation of model execution, as far as we know, there are
no other works except ours which have studied this subject. [5,6] have been used
as a base for defining the direct model execution characterization exposed in
this paper. The MOCAS platform [1] defines a UML agent state machine ob-
serving an executed business UML state machine and requiring changes on its
current state or structural content. The adaptation is then made following com-
mon models@run.time adaptation techniques (case (c) of figure 1). The problem
is that the adaptation and the execution operations are strongly mixed-up in the
implementation platform. This leads to the absence of separation of the adap-
tation logic from execution. Moreover, the platform does not enable to replace
at runtime the adaptation or execution semantics as we propose.

[13] offers a characterization of models at runtime and related adaptation
in the same spirit of this paper. But there are two main differences with our
characterization of direct adaptation of model execution: (a) It always considers
that the model, even when executable, is causally connected with a running
system whilst for us the executed model is by essence the system and (b) it does
not go as far as us about the elements that can be modified by the adaptation:
It does not consider that the execution semantics or the adaptation semantics
can be changed.

5 Conclusion

In this paper we propose a conceptual characterization of the direct adaptation
of model execution, through the concept of adaptable i-DSML. Albeit model

5 http://www.omg.org/spec/UML/2.2/
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execution and adaptation are closely related (as an adaptation semantics is a
specialized execution semantics), there are two sharp demarcation lines. The
first one, from a general point of view, is about the intention embodied in the
semantics. Indeed, an execution semantics deals with a nominal behavior whereas
an adaptation one concerns extra-ordinary or abnormal situations. The second
one, from a technical point of view, is that model execution only modifies the
dynamic elements of the model whereas model adaptation can modify each part
of the model and the execution and adaptation semantics.

The presented execution and adaptation engine is a first prototype showing
the interest of studying the adaptation of an executed model. We need to de-
velop more realistic and complex case studies and to consider the adaptation
of other kinds of adaptable i-DSML. Notably, we plan to extend our existing
tools dedicated to execute full standard UML state machines: SimUML6 is a
simulation tool at the design level and PauWare7 a Java library implementing
and executing UML state machines for any Java platform, including Android
devices. The goal is to define and implement adaptation operations and seman-
tics for UML state machines. We plan also to enhance our MOCAS platform for
making it clearly separating the adaptation from the execution. These platforms
and complex case studies will allow us to study the limits of directly adapting
a model execution versus applying common models@run.time techniques on it.
One of our perspective is to determine when one approach is more suited than
the other one. Finally, just as an action language is provided for expressing the
execution semantics, a mid-term perspective is to provide a full-fledged adapta-
tion language. This DSML will support the adaptation loop by offering language
constructs for both checking and actions. Concretely, it will enable to define sep-
arately the execution logic and the adaptation one, and then to express how the
adaptation checking and actions are orchestrated and weaved with the execution
operations.
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Abstract. In model-driven engineering, model transformations are con-
sidered a key element to generate and maintain consistency between re-
lated models. Rule-based approaches have become a mature technology
and are widely used in different application domains. However, in var-
ious scenarios, these solutions still suffer from a number of limitations
that stem from their injective and deterministic nature. This article pro-
poses an original approach, based on non-deterministic constraint-based
search engines, to define and execute bidirectional model transforma-
tions and synchronizations from single specifications. Since these solely
rely on basic existing modeling concepts, it does not require the intro-
duction of a dedicated language. We first describe and formally define
this model operation, called transformation as search, then describe a
proof-of-concept implementation and discuss experiments on a reference
use case in software engineering.

1 Introduction

In existing Model-driven Engineering (MDE) approaches, model transformations
are a key element for performing operations between different models. These
operations may be of different nature, such as migration, evolution, composition,
exchange, and others. Despite the existing solutions being very different on the
set of available capabilities (see [7] for a survey), most of them are rule-based
approaches.

These approaches have a simple and efficient principle: given a source meta-
model MMa and a target metamodel MMb, the developer defines a set of
pattern-matching rules to transform all the model elements from MMa into el-
ements of MMb. These transformation engines have a deterministic behavior,
i.e., one source model always produces the same target model. In addition, the
transformation rules are unidirectional and need to be fully-specified, i.e., it is
necessary to write rules that cover all the (relevant) elements of MMb.

These properties limit the scope of most transformation languages in various
scenarios [6]. For instance it may be hard to write rules that cover all the trans-
formation cases. Similarly, it is sometimes desirable to produce more than one
target model in order to study the alternatives. Bidirectional behavior requires
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to write or derive a reverse transformation. Finally, these approaches hardly
allow to maintain models consistency without additional mechanisms.

Some of these limitations are directly linked to the fact that most tools do not
allow for disjunctions (i.e., choice points in the sense of combinatorial problems)
and take decisions solely on the basis of the source model. Indeed searching
for multiple target models requires non-deterministic properties: a given source
model may produce zero, one or multiple target models that satisfy a set of
constraints.

In this paper, we present a novel approach that uses constraint-based search
for executing model transformations and synchronizations. At this stage, our
challenge is to present this approach to the community and to integrate it at
its best in current MDE practices. To this aim, we reuse and extend a model
search operation proposed in previous work[21] as well as its notion of partial
model: a model whose known constituents actually conform to their correspond-
ing metamodel, but that should be interpreted with a weaker conformance than
the classical closed-world interpretation used in the MDE community.

The core idea is to create a unified metamodel containing source, transfor-
mation and target constraints. Different scenarios (creation of target model(s),
synchronization of existing models, and others) then mainly resolve to search-
ing for conforming model(s). First, we define a (potentially partial) set of cor-
respondences (i.e., transformation constraints) between the source and target
metamodels using basic modeling concepts. Second, we transform the input ar-
tifacts into a solver which executes the scenario through a generic model search
operation. As a result the engine produces none, one or several output models
that contain the solution(s) and its generation traces. The specifications are bi-
directional and flexible: they can be used to produce either the source or the
target model, or even propagate changes from one model to the other depending
on the chosen scenario. Another interesting property is that one could introduce
an optimization criterion that will be used by the search process to produce one
specific solution (the “best” one).

Plan of the article. Section 2 briefly introduces the context of model-driven
engineering, constraint programming main principles, and recalls necessary defi-
nitions from previous work on model search. Section 3 formally defines the trans-
formation as search operation, and describes a generic process for its realization
along with a running example. Section 4 proposes a prototype implementation
and discusses preliminary experiments on a reference use case. Finally, Section
5 discusses related work and Section 6 concludes.

2 Context

2.1 Introduction to MDE and Model Transformation

Model Driven Engineering considers models, through multiple abstract repre-
sentation levels, as a unifying concept. The central concepts that have been
introduced are terminal model, metamodel, and metametamodel. A terminal
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model is a representation of a system. It captures some characteristics of the
system and provides knowledge about it. MDE tools act on models expressed in
precise modeling languages. The abstract syntax of a modeling language, when
expressed as a model, is called a metamodel. The relation between a model and
the metamodel of its language is called conformsTo. Metamodels are in turn
expressed in a modeling language for which conceptual foundations are captured
in an auto-descriptive model called metametamodel. The main way to automate
MDE is by executing operations on models. For instance, the production of a
model Mb from a model Ma by a transformation Mt is called a model transfor-
mation. The OMG’s Query View Transform (QVT) [24] defines a set of useful
model operations languages. In particular, it defines a language called QVT-
operational which is restricted to unidirectional transformations scenarios, and
a language called QVT-relational which can be used for bidirectional and syn-
chronization scenarios. There are multiple model definitions in the literature (see
[22] for a deep study), we refine in this article the ones introduced in [18]1.

Definition 1 (model). A model M is a triple < G,ω, μ > where:

– G is a directed labelled multigraph,
– ω (called the reference model of M) is either another model or M itself (i.e.,

self-reference)
– μ is a function associating nodes and edges of G to nodes of Gω (the graph

associated to its reference model ω)

Definition 2 (conformance). The relation between a model and its reference
model is called conformance and noted conformsTo.

Definition 3 (metametamodel). A metametamodel is a model that is its own
reference model (i.e., it conformsTo itself).

Definition 4 (metamodel). A metamodel is a model such that its reference
model is a metametamodel.

Definition 5 (terminal model). A terminal model is a model such that its
reference model is a metamodel.

2.2 Constrained Metamodels

The notion of constraints is closely coupled to MDE. Engineers have been us-
ing constraints to complete the definition of metamodels for a long time, as
illustrated by the popular combination UML/OCL [25]. Constraints can be, for
instance, checked against one given model in order to validate it. In our ap-
proach we will always consider metamodels with potential constraints attached.
We refine in this article definitions from [21] to formally define the combination:

1 Though these may not be the most precise on object-oriented concepts and different
model relationships, simple graph-based definition will prove useful in our context.
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Definition 6 (constrained metamodel). A constrained metamodel CMM is
a pair < MM,C > where MM is a metamodel and C is a set (a conjunction) of
predicates over elements of the graph G associated to MM . We will consider an
oracle that, given a model M , returns true (noted M ∈ C(MM) where C(MM)
is the set of all valid models) iff M satisfies all predicates from C.

The conformance relation between a model and its reference is then naturally
extended to constrained metamodels.

Definition 7 (constrained conformance). A model M conformsTo a con-
strained metamodel CMM iff it conformsTo MM and M ∈ C(MM).

Many languages can be used to define predicates (i.e., constraints) with different
levels of expressiveness. OCL supports operators on sets and relations as well as
quantifiers (universal and existential) and iterators. To ease the specification of
metamodel static constraints, we use in this article an OCL-compatible extension
(OCL+ [15]) that extends it with multi-context constraints.

2.3 Introduction to Constraint Programming

Constraint programming (CP) is a declarative programming technique to solve
combinatorial (usually NP-hard) problems. A constraint, in its wider sense, is a
predicate on elements (represented by variables). A CP problem is thus defined
by a set of elements and a set of constraints. The objective of a CP solver is
to find an assignment (i.e, a set of values for the variables) that satisfy all the
constraints. There are several CP formalisms and techniques [17] which differ by
their expressiveness, the abstractness of the language and the solving algorithms.

2.4 Introduction to Model Search

A solver-independent integration of constraint programming, calledmodel search,
for the automatic generation (or completion) of constrained models has been de-
scribed in [21]. This article builds on those foundations to propose a generic
model transformation method based on constrained search. Therefore we need
to briefly recall here the main principles and definitions of the model search
operation.

Definition 8 (relaxed metamodel). Let CMM =< MM,C > (with
MM =< G,ω, μ >) be a constrained metamodel. CMMr =< MMr, Cr >
(with MMr =< Gr, ω, μ >) is a relaxed metamodel of CMM (noted CMMr ∈
Rx(CMM)) if and only if GMMr ⊆ GMM and Cr ⊆ C.

In other words, a relaxed metamodel is a less constrained (and/or smaller) meta-
model. A simple one can be obtained by the removal of all constraints. Comput-
ing such a relaxed metamodel, a simple operation which can obviously be done
easily with existing techniques, is called relaxation in the following.
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Definition 9 (partial model, p-conformsTo). Let CMM =< MM,C >
be a constrained metamodel and Mr a model. Mr p-conformsTo CMM iff it
conforms to a metamodel CMMr such that CMMr is a relaxed metamodel of
CMM (CMMr ∈ Rx(CMM)). Mr is called a partial model of CMM .

Informally, a partial model is simply understood as being an incomplete model.

Definition 10 (model search). Let CMM =< MM,C > be a constrained
metamodel, and Mr =< Gr,MMr, μr > a partial model of CMM . Model search
is the operation of finding a (finite) model M =< G,MM,μ > such that Gr ⊆ G,
μr ⊆ μ (embedding i.e, ∀x ∈ Gr, μ(x) = μr(x)), and M conformsTo CMM .

In other words, model search extends a partial model into a “full” model con-
forming to its constrained metamodel (or generates one when an empty request
Mr is given). An example process to achieve this operation in a MDE framework
is illustrated in Figure 1. Briefly, the request Mr and the metamodel CMM are
transformed into the search engine input format where search takes place. The
solutions, if any, are then transformed back into the modelling paradigm.

We may thus consider model search as a model transformation where the
source (metamodel and model) is an instance of a non-deterministic (combi-
natorial) problem and the target model is a solution (if any exists). From the
CP point of view, the target metamodel acts as the constraint model whereas
the source model (the request) is a given partial assignment that needs to be
extended.

For deeper information on how this operation is formalized, achieved and
integrated as a first-class MDE operation, the reader is kindly referred to [21].

r

rM

(request)

Fig. 1. Model search: example process
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3 Transformation as Search

The following proposes to generalize model search to constraint-based model
transformation/synchronization by considering different source and target meta-
models. The main idea is to define the transformation/synchronization as a set
of relations and constraints between elements of the metamodels that are to be
related (these may be called weaving links). All these artifacts are then uni-
fied into a transformation metamodel. By applying model search on this unified
metamodel, a model which contains valid solution model(s) is created.

In the following, we first introduce a running example of a classic transfor-
mation scenario (creation of a single target model out of a single source model)
which is then used to illustrate the generic process. Its adaptation to other sce-
narios is then briefly discussed.

3.1 Running Example

The chosen use case is a transformation of a class schema model (MMA) into
a relational schema model (MMB), known as the Class2Relational transforma-
tion. This use case is well-known due to its large applicability and it has been
studied in other works to demonstrate different aspects about transformation
languages, such as [24], [23], and others. The initial metamodels are extracted
from the public transformation repository at [3] and illustrated at both sides of
Figure 2 (some elements have been omitted to improve readability).

The main scenario, which process is described in the following is the creation
of a target model (a relational schema) from a source model (a class schema).

Fig. 2. Extract of the running example transformation metamodel (V1) as an ecore
diagram. Initial metamodels are on the sides, weaving metamodel is in the middle.



60 M. Kleiner, M. Didonet Del Fabro, and D. De Queiroz Santos

3.2 Process

Obtaining the Transformation Metamodel by Unification. Figure 3
shows how to obtain a transformation metamodel, called CMMT , by unification
of the source (CMMA), target (CMMB) and weaving (CMMW ) metamodels.
In our example these inputs are respectively the class schema structure (left part
of Figure 2), the relational schema structure (right part), and a set of weaving
elements and constraints (middle part, constraints are not shown in the Figure).
This operation, consisting merely in copying and combining the sources, can
be done with existing transformation techniques. Formal definitions of CMMW

and CMMT are given below:

ECore

C2

M3

Eclipse Modeling Framework (EMF)

CMMM2
T

CMM
A

CMM
B

CMM
W

appliesTo

appliesTo

weaving 

   links

describedBy

C2

C2

union

Fig. 3. Obtaining the transformation metamodel by unification (application on the
running example shown in italics)

Definition 11 (weaving metamodel). We call weaving metamodel between
metamodels CMMA and CMMB, a constrained metamodel CMMW defined
by CMMW =< MMW , CW >, where MMW and CW are respectively a set
of metamodel elements and constraints that define the weaving relationships be-
tween the elements of CMMA and CMMB (it requires the use of inter-model
references).

Definition 12 (transformation metamodel). We call transformation meta-
model between metamodels CMMA =< MMA, CA > and CMMB =< MMB,
CB >, using a weaving metamodel CMMW , a constrained metamodel CMMT

defined by CMMT =< MMT , CT >, where MMT = MMA ∪MMB ∪MMW

and CT = CA ∪ CB ∪ CW .

Obviously, unification turns inter-model references in the weaving metamodel
into intra-model references in the transformation metamodel.
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ECore
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M3

Eclipse Modeling Framework (EMF)

CMM CMM
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    M
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(solution)

cutcopy
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Fig. 4. Transformation as search operation (application on the running example shown
in italics)

Searching for a Target Model. Figure 4 shows how a target model can
be created by applying model search to the transformation metamodel. In this
scenario we have an exogenous unidirectional transformation from one source
model (MA) to a target model (MB).
The first step is to define the model search request. In this scenario it is simply a
copy of the source model. In our running example, it corresponds to the “Family”
class schema at the top of Figure 5. From definition 10, a valid request must be
a partial model of the transformation metamodel (CMMT ). This property is
ensured by the following proposition:

Proposition 1. For all model MA that conformsTo CMMA, MA is a partial
model of (or p-conformsTo) CMMT .

Proof. From definition 9 of p-conformsTo, it resolves to finding a relaxed meta-
model CMMT

r =< MMT
r , CT

r >∈ Rx(CMMT ) such that MA conformsTo
CMMT

r . From definition 7 of conformance, this requires that (1) MA

conformsTo MMT
r and (2) MA ∈ C(MMT

r ).
Let CMMT

r be the relaxed metamodel of CMMT such that MMT
r = MMT

and CT
r = ∅ (i.e., the one obtained by removing all constraints). (2) is obvi-

ously true as there are no predicates to satisfy. (1) requires that MMT
r can be

a reference model of MA, i.e., its graph GT
r contains all nodes (meta-elements)

targeted by the graph GA of MA. This is clearly true since by definition 12 of
CMMT we have MMA ⊂ MMT (in particular GA ∈ GT ), and on the other
hand MMT

r = MMT (in particular GT
r = GT ).

The second step is to perform the model search. This operation extends any
model MA that conforms to CMMA into a model MT that conforms to CMMT

(when there are solutions). By extending the source model, search produces a
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Fig. 5. Input and ouput from the running example (scenario 1) as instance diagrams

model MT which contains both the target elements and the weaving elements
(these can be understood as the transformation traces). Additionally, model
search ensures that the target elements satisfy their metamodel constraints, and
optimization or preferences may be applied to discriminate between different
solutions. To avoid adding source elements to the produced model, as usually
expected in classical target creation scenarios, a set of model-level constraints
can be added to CMMT in order to “freeze” the source model.
The final step is to isolate the target model MB that conforms to CMMB. This
can easily be obtained by removing from MT any element that is not associated
to CMMB. In our example, a sample result is the “Family” relational schema
illustrated at the bottom of Figure 5.

3.3 Other Scenarios

The described scenario is a unidirectional one-to-one operation, but the approach
is naturally bidirectional and can be used for different scenarios by varying the
search request. Indeed, it suffices to use MB as the request to obtain the reverse
transformation (production of a model MA). Additionally, the synchronization
scenario (propagating source or target model modifications to the other one)
can also be achieved with the same specifications: by using the union of the
two models (MA and MB) as the request, model search will extend them to
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satisfy the transformation constraints, and thus update source, target or both
models (depending on the desired behaviour). Note that many CP solvers are
restricted to constructive modifications since allowing for removal of elements
from the request may yield tractability issues. However the approach itself does
not prevent it and is only limited in this sense by the capabilities of the chosen
underlying solver. All these scenarios are described and experimented on the
running example in the next Section.
Finally, though these are not studied nor experimented in this paper, multi-
source and/or multi-target transformations could also be achieved: it suffices
to add the corresponding metamodels and weaving constraints to CMMT , and
corresponding models to the request. Indeed, constraints may have any arity
(i.e., a single constraint may weave multiple metamodels elements).
In all these scenarios, the preceding propositions naturally hold as long as re-
quests are partial models of CMMT .

4 Implementation and Experiments

In this section we first present the components used for implementing a prototype
software chain. Second, we further describe the chosen use case and its realization
on different scenarios. Finally, we summarize the experimentation results.

4.1 Implementation

The transformation as search (TAS) components were implemented using:

– the Eclipse Modeling Framework (EMF) [8] for defining, viewing and ma-
nipulating the various (meta)models presented in the preceding Section.

– the ATL engine [19] for writing/executing the rule-based transformations
of the process (unifying into CMMT , projecting Ecore-OCL+ to/from the
solver language, isolating the target model from the solution model).

– Alloy/SAT [16] as the constraint language/solver.

The software chain is freely available from a single package at [28].

4.2 Use Case

We have defined 3 scenarios:

1. (1) the forward transformation presented in the running example (from class
to relational)

2. (2) the reverse transformation (from relational to class)
3. (3) a synchronization scenario (propagation of changes from one model to

another after adding new elements to the class schema).

The first goal was to experiment whether one single specification could handle
different scenarios. The specification consists of a weaving metamodel, shown
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in the middle of Figure 2, which provides the basic correspondences between
left and right metamodels. The figure shows correspondences between first-class
elements (e.g., classes ”Class” and ”Table”, classes ”Attribute” and ”Column”,
etc.). We defined a set of additional constraints, written in OCL+ (as illustrated
in the code listing below), to further specify the weaving. Similarly to other
transformation techniques, these specifications may be written in different ways.
We provide results with two versions of the specifications, each of them used
throughout all scenarios, to test the capabilities and behavior of the search. The
first version (V1) mimics the behavior of the original (ATL) use case, in partic-
ular it creates simple integer columns for foreign keys. The second version (V2)
has a more explicit (and better) handling of table primary/foreign keys. It also
defines different weaving tables for each connected elements, allowing to write
more specific constraints. Both versions can be found in package [28].

As an example, the (V1) OCL+ excerpt below depicts 4 different kind of con-
straints attached to the weaving metamodel from Figure 2.

Constraint (1) specifies equality between the “name” attribute of weaved
“Datatype” and “Type” (similar constraints are given for “Attribute”, “Class”,
“Table” and “Column”).
Constraint (2) maps mono-valued attributes to columns (a similar constraint is
given for multi-valued attributes/tables and classes/tables).
Constraint (3) ensures that weaved attributes/columns have a weaved datatype/
type (a similar constraint handles classes and integer key columns).
Constraint (4) ensures that attributes cannot have both a weaved table and a
weaved column (a similar constraint handles tables with classes and attributes).

1- context dtt : DataTypeAndType inv:

dtt.wdatatype.name = dtt.wtype.name;

2- context att : Attribute inv:

not att.multiValued implies att.caac.size() = 1;

3- context ac : AttributeAndColumn inv:

ac.wattribute.ctype.oclIsTypeOf(DataType)

and not ac.wattribute.multiValued

implies ac.wcolumn.ttype = ac.wattribute.ctype.cdtat.wtype;

4- context att : Attribute inv:

att.caac.size() + att.caat.size() = 1;

4.3 Experiments

We experimented on the Family use case [3], which class schema is illustrated
on the top of Figure 5. This application is used as a proof-of-concept of our
approach.The Alloy solver needs a specified pool of available elements: we set
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a maximum of 25 instances. We executed the model operations on an Intel
Core Duo machine with 2.4GHz and 4GB of RAM. We used the Alloy Analyzer
4.2 with the MiniSat solver for generating search solutions. We summarize the
results in Table 1. The given execution times correspond to the search of the
first satisfying instance. They do not include the problem generation (projections
from/to Ecore/Alloy, Alloy’s compilation into SAT) since these are negligible in
all our experiments and the metamodel projection only has to be done once for
a given specification.

Table 1. Summary of the experiments (Family model)

scenario-version #variables #constraints execution
(primary) (unfolded) time (ms)

(1) - V1 9956 845357 3432
(1) - V2 7179 866894 2483

(2) - V1 10114 791167 5529
(2) - V2 5725 866894 1655

(3) - V1 6496 505227 324
(3) - V2 5448 1231787 666

Alloy does not natively support strings as datatypes, we thus used predefined
atoms and scalar equality (i.e., “nameS” is the string “name”). Both versions
of the specifications generate the relational schema illustrated on the bottom of
Figure 5. However, if we cycle through the solutions, V1 also proposes solutions
with additional “orphan” tables. This can be prevented with a constraint that
forbids creation of elements without a weaving association.

In the reverse transformation scenario (2), we used the exact generated target
model (the Family table schema) as input request, freezing again the initial
model through the pool of 25 available instances. Both versions generate the
original class schema. However in V1, it is not the first found solution. Indeed, the
first proposition is a class schema with an “EmailAdresses” class (referenced by
“Person”) and a “Members” class (referenced by “Family” and with an outgoing
reference to “Person”). This is a valid but nevertheless surprising solution at first.
If desired, it is possible to prevent such behaviour with a weaving constraint that
forces tables to become attributes whenever possible. This is done in V2 using
the (explicit) table keys as conditions.

In the synchronization scenario (3), we used the whole transformation result
from scenario 1 to create the input request: the class and relational schemas (as
shown in Figure 5), plus the generated weaving elements between them (trans-
formation traces, not shown in the Figure). We then added to the class schema
an “Animal” class and its outgoing “owner” reference to the “Person” class. The
goal was to test the propagation of changes to the table schema. Both versions
update accordingly the relational schema, adding an “Animal” table with an
“owner” (foreign) key column. The lower execution times are easily explained:
search space is reduced since most of the model is given as input (only a limited
number of SAT variables have to be assigned).
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4.4 Analysis and Future Work

Experiments on these examples show that valid models can be created in different
scenarios using single specifications, and that different solutions can be proposed
to the designer. Although it is only a first step to assess the potential and
flexibility of the approach, this prototype implementation can serve as a proof
of feasibility. It is obvious that the produced models could already be obtained
using existing transformation techniques, though this may require to write (or
derive) additional specifications to handle all scenarios. Also, these experiments
raise a number of modeling and operational challenges that will be considered
in future work.

From the modeling point of view, defining specifications as weaving elements
and constraints can be confusing for a designer used to traditional rule-based en-
gines. For a given set of constraints, cycling through solutions or testing different
scenarios may reveal a need to incrementally narrow some constraints, but also
exhibit unexpected valid solutions. To ease the writing of specifications, a set of
weaving templates can be provided as guidelines. Similarly, a mapping from a
more specific language (such as QVT-relations [24]) to an equivalent set of weav-
ing templates can be studied. Also, additional scenarios can be considered. For
instance, two independently-obtained models can be given to test (and exhibit)
whether a valid mapping is able to relate them. The optimization/preferences
capabilities of the approach are also to be experimented more deeply. Overall,
an extensive evaluation on different sets of examples is necessary to confirm and
exhibit the benefits that can be envisioned compared to existing techniques.

From the operational point of view, this prototype implementation will be ex-
tended and experiments conducted to assess tractability on larger models. Early
experiments on a larger application, a graduate course management system ex-
tracted from a real-world system, show that the current Alloy-based implemen-
tation does not easily scale to medium-size models. The size of the instance
pool is a major factor, and SAT compilation rapidly induces a combinatorial
explosion in transformation scenarios (about 30000 variables and 10 minutes ex-
ecution time). The propagation scenario seems more tractable (about 1 minute).
Source and details of these experiments are also included in the package for
reference. It is obvious that constraint solving is more (time) expensive than
rule-based approaches (both theoretically and practically). However the con-
straint programming community has developped a large set of techniques to
counter combinatorial explosion (structure-based symmetry breaking, decompo-
sition, heuristics, etc.). The current implementation uses none of these.

Clearly, our aim is not to replace techniques that have proven suitable in
many applications, but to show that the properties inherent to this approach are
relevant for various problems, and how to integrate it in current MDE practices.

5 Related Work

There are several approaches studying model transformations. A classification
can be found at [7]. In particular, the OMG standard QVT [24] has defined
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specifications for different type of model operations. Its QVT-operational part
has been implemented by various tools such as the popular ATL [19], TEFKAT
[23], VIATRA [9], and others. These approaches allow for fast and efficient uni-
directional transformations. QVT-relations defines a broader set of capabilities,
such as incremental transformations, but has fewer (and only partial) implemen-
tations such as [1].

Further studies have tackled bidirectional model transformations or synchro-
nizations (see [6] for a survey), often through mechanisms which require addi-
tional specifications to an existing rule-based transformation. For instance, [14]
proposes, based on abductive reasoning, to reverse an unidirectional transfor-
mation in order to provide synchronization of the source model with the pre-
viously obtained target model. In particular, it shares our ability to compute
different alternative solutions through combinatorial logic inference. A number
of so-called incremental approaches [13,29,4] allow to update a target model
by taking into account incremental changes to the source model. Triple Graph
Grammars (TGGs) [27] are an approach for defining correspondences between
two graphs. The TGG definition is similar to our model unification (i.e., a unique
graph created from one left, one right and one correspondence graph) though
not grounded in usual metamodelling principles. TGGs are also used for gener-
ating transformations (e.g., the [11] tool), but without search capabilities. [2,10]
also expore the notion of weaving relationships but do not use them as direct
transformation specifications. However, the described patterns may be useful in
our context as specifications templates. Due to the high number of other ex-
isting transformation approaches and their spreading among different research
communities, this overview can hardly be exhaustive. Clearly, many of these
techniques have their own benefits over our approach, such as easier removal
of elements or faster execution times. However, non-deterministic constrained
search offers an original combination of properties: flexibility of having a single
specification for different scenarios, ability to provide various solutions, auto-
matic checking/optimizing capabilities, and in our case the sole use of existing
modeling concepts.

Finally, the MDE community has also been using constraint-based solvers for
various model operations such as model checking [12,5,30], finding optimized
transformations [20], or extending transformation capabilities [26]. Although
there are definitely similarities in the use of constraint tools, and in particu-
lar alternative mappings to solver languages, the pursued goals are different.

6 Conclusion

As model transformations have gained maturity in the past years, novel scenarios
have arised that cannot be handled using classical rule-based solutions, mainly
because of their non-deterministic nature. In this paper we described an original
approach in which the core idea is to search for a solution model by satisfying a
set of weaving relations and constraints. The approach is built on a previously
defined operation, called model search, for the automatic generation of complete



68 M. Kleiner, M. Didonet Del Fabro, and D. De Queiroz Santos

valid models conforming to a metamodel and its constraints. Both model search
and transformation as search operations are based on the concepts of partial
model and partial conformance.

The paper also describes how this model transformation technique is formal-
ized and automated as a first-class model operation, independently from the solv-
ing engine, in order to fit in current MDE practices. The nature of the operation
provides original properties: bidirectionality, ability to explore and discriminate
different target alternatives based on optimization criteria, synchronization of
existing models, etc. However a larger set of examples and an extensive evalu-
ation are required to assess practical benefits. Indeed, the provided prototype
implementation on a reference usecase is only a first step that raises a number
of modeling and operational challenges for future research.
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Abstract. Driven by technical innovation, embedded systems, espe-
cially in vehicles, are becoming increasingly interconnected and,
consequently, have to be secured against failures and threats from the
outside world. One approach to improve the fault tolerance and resilience
of a system is run-time monitoring. AUTOSAR, the emerging standard
for automotive software systems, specifies several run-time monitoring
mechanisms at the watchdog and OS level that are neither intended,
nor able to support complex run-time monitoring. This paper addresses
the general challenges involved in the development and integration of a
model-based generation process of complex run-time security and safety
monitors. A previously published model-based development process for
run-time monitors based on a special kind of Petri nets is enhanced
and tailored to fit seamlessly into the AUTOSAR development process.
In our evaluation, we show that efficient monitors for AUTOSAR can
be directly modeled and generated from the corresponding AUTOSAR
system model.

Keywords: AUTOSAR, extended live sequence charts, model-based,
monitor petri nets, run-time monitoring, signatures.

1 Introduction

Embedded systems are becoming increasingly interconnected and can no longer
be considered as being separated from the outside world. A prominent example
are multimedia systems in the automotive domain that are connected to the
internet without being totally separated from safety-critical components. Many
systems have been developed as closed systems and often little attention has been
paid to security mechanisms such as encryption and safe component design to
deal with errors and attacks. Even modern networks in the automotive domain
are vulnerable to passive and active attacks [7] and protocols such as the CAN
bus protocol have been identified as a major security drawback [9]. This makes
it necessary to secure safety-critical components and their communication, even
if they are not directly accessible. To secure these systems, Papadimitratos et
al. [13] propose a secured communication and demand a secure architecture.
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However, in the majority of cases, even such efforts cannot eliminate all security
vulnerabilities that can lead to safety threats as it is impossible to foresee all
attacks during development. Moreover, it is often economically or technically
infeasible to secure existing systems retroactively against external adversaries.
Hence, systems and especially electronic control units in cars cannot be consid-
ered as secure against attacks, either caused by unknown vulnerabilities or by
the required integration of legacy components. To cope with these security and
safety issues, run-time monitoring is a feasible approach to detect attacks that
exploit previously unknown errors and security vulnerabilities [11].

The AUTOSAR (AUTomotive Open System ARchitecture) platform1 is emer-
ging in the automotive domain as an open industry standard for the development
of in-vehicular systems. To cope with the growing complexity of modern ve-
hicular systems, it provides a modular software architecture with standardized
interfaces and a run-time environment (RTE) that separates application level
software components from the underlying basic software modules and the actual
hardware. AUTOSAR offers a clearly structured system specification, which is
stored in the standardized AUTOSAR XML (ARXML) format. The AUTOSAR
development process supports the monitoring of control flow and timing prop-
erties at a low abstraction level [1,2], but does not provide support for modeling
complex monitoring functionality at the software component level.

For this purpose, we have adopted our generic Model-based Security/Safety
Monitor (MBSecMon) development tool chain [15]. It is based on the Model-
Driven Development (MDD) concept that supports the generation of monitors
from signatures describing the interactions between the components of a sys-
tem. The MBSecMon specification language (MBSecMonSL) is based on Live
Sequence Charts (LSC) introduced by Damm and Harel [5], which have been
extended [15] for the modeling of behavioral signatures. A specification based
on these extended LSCs (eLSC) and a structural description of the system con-
stitutes the input set of the MBSecMon process. The signatures are divided
in intended system behavior (use cases) and known attack patterns and attack
classes (misuse cases). These signatures are automatically transformed to a for-
mally defined Petri net language, the Monitor Petri nets (MPNs) [14], which
serve as a more explicit, intermediate representation. With the provision of
platform-specific information, security/safety run-time monitors are automat-
ically generated for different target platforms.

The contribution of this paper is the development of a methodology for the
model-based development of complex run-time monitors for AUTOSAR that op-
erate directly on the AUTOSAR system model. We depict the challenges that
arise during the development and integration of a model-based monitor genera-
tion framework into the AUTOSAR development process and present solutions
to each. In summary, these challenges are as follows.

C1 Integrating existing AUTOSAR development fragments into the monitor
generation process.

1 AUTOSAR: http://www.autosar.org

http://www.autosar.org
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C2 Providing type safety during the whole modeling and generation process of
the monitors.

C3 Modeling monitor signatures on the same abstraction level as the AU-
TOSAR system models.

C4 Mapping of the abstract signature descriptions to platform specific moni-
toring code.

C5 Providing communication data of the generated AUTOSAR software com-
ponents (SW-C) to the monitors.

C6 Supporting the relocatability of software components by generating dis-
tributed monitors from global signatures.

C7 Generating monitors with a minimal overhead for the control units.

The remainder of the paper is structured as follows: Section 2 gives an overview of
existing approaches for monitoring and instrumentation and describes how they
can be applied in the AUTOSAR process. In Sect. 3, the challenges are described
in detail, and solutions are presented based on the adaptation of the MBSecMon
process for the AUTOSAR development process. The generated monitors that
are connected to the example system are evaluated in Sect. 4. In Sect. 5, a
conclusion is drawn, and possible future work is discussed.

2 Related Work

The AUTOSAR standard specifies several run-time monitoring mechanisms that
are provided by the Operating System (OS) and the Watchdog Manager (WdM).
In the Specification of Operating System [1], three monitoring mechanisms for the
detection of timing faults at run-time, i.e., tasks or interrupts missing their dead-
line, are considered. Execution time protection monitors the execution budget of
tasks and category 2 Interrupt Service Routines (ISRs), in order to guarantee
that the execution time does not exceed a statically configured upper bound.
Locking time protection supervises the time that a task or category 2 ISR can
hold a resource, including the suspension time of OS interrupts or all interrupts
of the system. This is done to prevent priority inversions and to recover from
potential deadlocks. The third monitoring mechanism is inter-arrival time pro-
tection, which controls the time between successive activations of tasks and the
arrival of category 2 ISRs. These mechanisms monitor the system at the task
level and are not suited to implement control flow or data flow monitoring. The
configuration is done at the OS level and does not factor the system view of the
model.

The Specification of Watchdog Manager [2] provides three monitoring mech-
anisms that are complementary to those offered by the AUTOSAR OS. All of
the implemented mechanisms are based on checkpoints that report to the watch-
dog manager (WdM) when they are reached. Supervised functions have to be
instrumented with calls to the watchdog, which verifies at run-time the correct
transition between two checkpoints as well as the timing of the checkpoint tran-
sitions. For alive supervision, the WdM periodically checks if the checkpoints of
a supervised entity have been reached within the given limits, in order to detect
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if a supervised entity is run too frequently or too rarely. For the supervision
of aperiodic or episodical events that have individual constraints on the timing
between checkpoints, the WdM offers deadline supervision. In this approach, the
WdM checks if the execution time of a given block of a supervised entity is within
the configured minimum and maximum bound. The third mechanism that the
WdM provides is logical monitoring, which focuses on the detection of control
flow errors, which occur if one or more program instructions are processed either
in an incorrect sequence or are not processed at all. This approach resembles
the work of Oh et al. [12], in which a graph representation of a function is con-
structed by dividing the function into basic blocks at each (conditional) branch.
Basic blocks are represented by nodes, whereas legal branches are represented by
arcs that connect the nodes. Whenever a new basic block is entered, the monitor
verifies that the taken branch was legal, according to the graph representation.

Except for control flow monitoring, the monitoring mechanisms that AU-
TOSAR currently specifies are only suitable for monitoring timing properties at
a low level of abstraction. None of the approaches is configured on the level of the
AUTOSAR system model, which offers the developer an intuitive and integrated
view on the system. Apart from the monitoring services offered by AUTOSAR,
few research has covered this area so far. One exception are two articles by Co-
tard et al. [3,4], in which the authors describe a monitoring approach for the
synchronization of tasks on multi-core hardware platforms. In their approach,
dependencies between tasks are first modeled as a finite state machine (FSM).
The FSM is then translated into a linear temporal logic (LTL) specification, from
which Moore machines and, subsequently, C code is generated. Their primary
focus is on synchronization and not on control or data flow monitoring.

In our MBSecMon process, an extended version of the expressive and compact
Live Sequence Charts is used as signature specification language. Kumar et al.
[10] specifies protocols with LSCs and transforms them for verification to tempo-
ral logic formulas. Thereby, complex LSC specifications lead to an explosion of
the formula and are, therefore, with LSCs as specification language not suitable
as intermediate language for the code generation for embedded systems.

Besides these transformations to LTL, there are some approaches that use
Petri nets directly for the specification of monitors. Frankowiak et al. [6] uses
Petri nets to specify low cost process monitors on a micro controller. He enhances
regular Petri nets by token generators and special end places (bins). Addition-
ally, subnets are linked by a control net. For complex monitor specifications,
these nets get relatively large compared to MPNs, whose semantics include an
implicit evaluation logic when an event does not match to the specified sequence.
The MPNs are tailored to describe monitor specifications in an explicit but nev-
ertheless compact form.

3 The MBSecMon Framework

The Model-based Security/Safety Monitor (MBSecMon) Framework [15] has
been developed as a generic approach to build tool chains for monitor generation.
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Fig. 1. AUTOSAR example model of an automatic transmission

In this section, we show how this framework has been tailored to fit seamlessly
in a model-based AUTOSAR development process and solve the challenges that
are raised in Sect. 1. This overcomes the current lack of model-based monitoring
support in AUTOSAR tool chains that we attested in Sect. 2.

3.1 Example: Automatic Transmission Controller

The example used throughout this paper focuses on monitoring the commu-
nication between AUTOSAR software components (SW-Cs). The AUTOSAR
system is modeled with the tool OptXware Embedded Architect2 and the im-
plementation of the subsystems is generated by the AUTOSAR code generation
of MathWork’s Embedded Coder plugin for Simulink.

The implementation of the example system is based on the Automatic Tran-
sition Controller demo project [18], shipped with Matlab/Simulink. As depicted
in the system model in Fig. 1, this model describes the internal behavior of
three application-level software components, ShiftLogic, Transmission, and En-
gine, based on the input values Throttle and BrakeTorque and the interaction
between these components. Influences such as aerodynamics and drag friction of
the wheels are represented by the Vehicle block. To comply with the needs of the
AUTOSAR code generation provided by Embedded Coder, the behavioral model
has been adapted by replacing all continuous with discrete blocks. The generated
code serves as the behavioral implementation of the skeleton generated by the
AUTOSAR tool OptXware Embedded Architect. For the asynchronous commu-
nication between the components, the sender-receiver communication pattern is
used.

3.2 The Tailored Monitor Generation Process for AUTOSAR

The generic MBSecMon development tool chain has been extended to enable a
seamless integration into the AUTOSAR development process. Figure 2 depicts
on the left side the original simplified AUTOSAR development process, starting

2 OptXware: http://www.optxware.com

http://www.optxware.com
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Fig. 2. MBSecMon framework embedded in AUTOSAR development process

with the system structure description persisted in the AUTOSAR XML format
(ARXML). This file is used by the AUTOSAR tool chain to generate the RTE
and a code skeleton for the implementation of the SW-Cs, which is supplied by
the Simulink code generator. The final code is usable in an AUTOSAR simulation
environment or directly on the Electronic Control Unit (ECU) of a vehicle.

On the right-hand side of Fig. 2, the framework is depicted that embeds the
monitor generation tool chain in the AUTOSAR development process. The speci-
fication of monitor signatures is achieved with the help of a tailored version of the
UML2 modeling tool Enterprise Architect3 (EA). This tool has been extended
by an add-in that allows the modeling of eLSCs (Signatures) depending on the
imported component diagram view (Structure) of the AUTOSAR system.The
modeled signatures are then exported together with additional platform specific
information (PSI) extracted from the imported AUTOSAR model. Additionally,
the MBSecMon add-in analyses the modeled signatures for needed instrumenta-
tion points in the AUTOSAR application code and persists this information in
an XML file. Through a graph-based model-to-model transformation [16], the ex-
ported representations of the signatures are transformed in the formally defined
Monitor Petri nets (MPNs) [14] that serve as an intermediate language used for a
straight-forward code generation. The code generator translates the signatures,
represented as MPNs, incorporating the additional information (PSI), to moni-
toring code. This monitor is stimulated by calls of its interfaces. Therefore, the
instrumenting device uses the AUTOSAR system specification, together with
the instrumentation points file, to instrument the application code. The instru-
mentation is realized via interface wrappers, which intercept the communication
between two components. A detailed description of the instrumentation of the
interfaces of AUTOSAR components with wrappers is given in [17].

3 SparxSystems Enterprise Architect: http://www.sparxsystems.com

http://www.sparxsystems.com
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This process allows for specifying and automatically generating monitors on
an abstract level based on the system information provided by the AUTOSAR
development process. Only the specification for the monitors has to be mod-
eled using the MBSecMon add-in and the platform specific information has to
be extended by the system engineer. In the following, based on the example
in Sect. 3.1, this process and the necessary adaptation based on the identified
challenges are described in detail.

Challenge 1: Integrating Existing Development Fragments. In the
AUTOSAR development process, the system structure is modeled at a high
abstraction level, describing the software components (SW-C), their ports with
specified data types, and the connections between the ports. The generated mon-
itors should observe the communication between these SW-Cs. Therefore, a com-
ponent view of the AUTOSAR system should be used to support the modeling
of signatures.

MBSecMon process: The MBSecMon EA add-in incorporates an ARXML
parser that imports the AUTOSAR software component structure, which has
been modeled in an AUTOSAR system-level editing tool, such as OptXware
Embedded Architect. Derived from this data, the add-in creates an UML com-
ponent diagram as shown in Fig. 3 that includes the components, the ports and
a connector representation based on the AUTOSAR naming scheme. Additional
system information such as the names of the connectors and ports are stored as
tagged values in the model elements and are abbreviated in the diagram view
for a clear presentation.

Example: The software components in Fig. 3 comply to the blocks of the
Simulink model used to generate the implementation of the application code.
This model is used in the MBSecMon development process to describe the al-
lowed and forbidden communication sequences between the components as sig-
natures.

Challenge 2: Providing Type Safety. In the AUTOSAR development pro-
cess and in the automotive domain, specialized data types are used. This allows
for limiting the value range of these data types and prevents wrong assignments
such as storing a speed value in a variable intended for the impeller torque. Gen-
erated monitors have to obey this implicit safety mechanism that is inherent in
the AUTOSAR standard.

MBSecMon process: The special data types provided by the AUTOSAR sys-
tem specification are imported along with the component diagrams and stored
in its ports. While modeling the signatures, the developer’s choice is constrained
to these data types. These are further used in the monitor generation process
and result in type safe monitoring code.

Example: In the ARXML file the data type for the vehicle speed, shown in
Listing 1.1, is defined as VehicleSpeedDataType with a base type Double and is
limited to a range of possible values.
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Fig. 3. UML component diagram of the system imported to EA

Listing 1.1. Type safety in AUTOSAR (ARXML file)

<REAL−TYPE >
<SHORT−NAME>VehicleSpeedDataType</SHORT−NAME>
<LOWER−LIMIT INTERVAL−TYPE=”CLOSED” >−1000.0</LOWER−LIMIT>
<UPPER−LIMIT INTERVAL−TYPE=”CLOSED” >1000.0</UPPER−LIMIT>
<ALLOW−NAN> f a l s e</ALLOW−NAN>
<ENCODING>DOUBLE</ENCODING>

</REAL−TYPE>

Challenge 3: Modeling at the Same Abstraction Level. AUTOSAR sys-
tem specifications are modeled at a high abstraction level as presented in Chal-
lenge 1. The ports describe which type of communication is used to interact
with other SW-Cs over the Virtual Function Bus (VFB). Thus, it makes sense
to monitor the communication between the SW-Cs. A widespread approach to
describe interactions between components are various kinds of sequence charts
that are on the same abstraction level as the AUTOSAR specification. These de-
scriptions of the interaction between SW-Cs (signatures) can be used to generate
monitors.

MBSecMon process: For this purpose, the MBSecMon specification language
(MBSecMonSL), which consists of extended Live Sequence Charts (eLSC) that
are structured by use/misuse cases (UC/MUC), is used in the MBSecMon frame-
work. In addition to the concepts of the wide-spreadMessage Sequence Charts [8],
eLSCs distinguish between hot (solid red border) and cold (dashed blue border)
elements, where hot elements are mandatory and cold elements are optional.
Furthermore, two forms of eLSCs exist, an universal eLSC with a prechart (pre-
condition) (blue dashed hexagon) before the mainchart (solid black rectangle)
and an existential eLSC without a precondition. In the prechart, every element
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is interpreted as mandatory. This is based on the interpretation of the prechart
as a precondition. When the prechart is fulfilled, the part of the signature in the
mainchart is evaluated.

The import of the component view from an AUTOSAR tool to EA forms the
basis for the signature modeling. The MBSecMon EA add-in (Fig. 4) provides
a context sensitive choice of messages between components and their parameter
types. This ensures the compliance to the modeled AUTOSAR system.

Example: Figure 5 shows a simple example of a concurrent signature that uses
only the basic elements of the eLSC language. This signature monitors the com-
munication between the Vehicle and the ShiftLogic components by initializing
the monitor for every message, consisting of a sending and a receiving event,
transmitted over the port VehicleSpeed. The message contains the value cur-
rentSpeed that is stored by the assignment to an eLSC specific variable lastSpeed.
The first processed sending event triggers the initialization of a new instance of
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Listing 1.2. LSC specific information in the PSI file

<entry key=”AllowedSpeedChanges BasicPath . context method . absVal”>f abs
</ entry>

the signature that concurrently monitors the next messages. The next Vehicle-
Speed message is processed by the mainchart of the first instance and evaluated
by the condition to the previous value stored in lastSpeed. This monitoring in-
stance is then terminated based on the result of the condition. Subsequently, the
same message is evaluated by the prechart of the second instance of the signature
and overwrites the variable lastSpeed with the new value.

Challenge 4: Mapping to Platform Specific Monitoring Code. By mod-
eling signatures on a much more abstract level than the code of the target plat-
form and using an annotation language in the signatures, the code generator
needs additional information about the mapping to the target platform.

MBSecMon process: To support type safe, AUTOSAR-compliant interfaces
for the monitor, additional mappings are generated to the platform specific in-
formation (PSI) file. It contains mappings between AUTOSAR instrumentation
interface and the internal events of the monitor, data types for transferred val-
ues, a code mapping of signature annotations to the target domain, and con-
figuration details for the code generation. Most information for the file can be
automatically derived from the imported system specification and the modeled
signatures. Only mappings exported by the EA add-in from annotated pseudo
code in the signatures have to be adapted manually to the target language. For
more convenient usage, a mapping library for these annotations could automate
this manual step.

Example: The generated PSI file provides the mapping of pseudo code used
in the signatures to platform-conform code fragments, as depicted in Listing 1.2
for a method absVal in the condition of the signature in Fig. 5.

Challenge 5: Providing Communication Data to the Monitors. The
system model of the AUTOSAR specification uses the concept of the Virtual
Function Bus (VFB) and only describes the communication pattern (e.g. sender/
receiver). This communication is realized on the target platform depending on
the RTE and the allocation of the SW-Cs to the different ECUs. This hampers
the monitoring of the communication between the SW-Cs.

MBSecMon process: Based on the signatures, the instrumenting device needs
a clear naming convention for the monitor interfaces to allow for the wrapping
of write and read methods in the AUTOSAR system code. Additionally, the
instrumenting device uses the exported information that specifies, based on the
signatures, which ports in the AUTOSAR system have to be instrumented to
minimize the footprint of the instrumentation by only adding method calls for
the required events.
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Listing 1.3. Monitor interfaces for the running example

void dispatchEvent TransmissionModelCompos it ionType Vehic le
Vehic leSpeed ( VehicleSpeedDataType∗ ) ;

void d i spatchEvent Transmiss ionModelCompos it ionType Sh i f tLog ic
Vehic leSpeed ( VehicleSpeedDataType∗ ) ;

Example: The interfaces of the monitor are named based on the naming con-
ventions of the AUTOSAR standard. Thus, the instrumenting device can auto-
matically generate calls to the interfaces into the system code. Listing 1.3 shows
the interfaces of the generated example monitor. The method name is derived
by concatenation of the string dispatchEvent and the full name of the port of
the AUTOSAR component and the data type of the parameter origins from the
AUTOSAR model.

Challenge 6: Supporting the Relocatability of Software Components.
One of the important concepts of the AUTOSAR standard is the relocatability
of SW-Cs that allows for distributing them to different ECUs without changing
the specification. Due to modeling the monitors on the same abstraction level
as the AUTOSAR system specification, the developer of the signatures cannot
incorporate information about the final distribution of the SW-Cs. The code
generation process must support the generation of distributed monitors based
on the actual distribution of the SW-Cs. This reduces the run-time overhead for
single ECUs and the communication overhead over the buses between the ECUs
in contrast to a central monitor.

MBSecMon process: In the MBSecMon generation process, the signatures
modeled as eLSCs already contain an affiliation of the events (sending and re-
ceiving) to the SW-Cs. This affiliation is obtained when the exported signatures
are transformed to the intermediate Monitor Petri nets (MPN), and allow for
generating distributed monitors based on the SW-C located on the same ECU.
To preserve dependencies between the part monitors (e.g. sending before receiv-
ing event of a message), an additional communication between the monitors has
to be established. Therefore, the code generator has been prepared to create
identifiers that can be replaced by macro definitions to system communication
methods.

Example: In the example, we use the sender-receiver pattern that directly
supports transferability and exchange of AUTOSAR software components. The
two components, ShiftLogic and Vehicle, in the signature in Fig. 5 can be dis-
tributed to different ECUs by defining “ShiftLogic ;{Vehicle}” in the PSI file the
instance that is on the same ECU (ShiftLogic) and the instances (Vehicle) that
is located on another ECU and should be synchronized with it.

Challenge 7: Generating Monitors with a Minimal Overhead. The gen-
erated run-time monitors are deployed on the ECUs and run alongside the SW-
Cs. Hence, their induced run-time and memory overhead on the ECUs have
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to be sufficiently small. The reasonable overhead depends on the required level
of safety and security that has to be reached by monitoring. For the runtime-
overhead, a worst case upper bound can be calculated by a static analysis of the
signatures in the MPN format.

Example: In the presented example in Figure 5 the monitor has to evaluate
two transitions per monitor instance (sending or receiving events) in one event
processing step. Additionally, to this computation the annotated assignment or
condition has to be taken into account.

The evaluation in Sect. 4 shows the overhead that the resulting monitors
introduce to the system.

4 Evaluation

For the evaluation of the MBSecMon specification and generation process for
AUTOSAR, an adaptation of the Simulink example model Automatic Trans-
mission Controller [18], as presented in Sect. 3.1, is used. In order to provide
compatibility with Simulink’s AUTOSAR code generator, which does not sup-
port the continuous blocks (such as integrators) that were used in the original
example, we decomposed the example model into separate software components
and replaced the incompatible blocks with their corresponding discrete versions.
The generated code contains the runnables (executable entities) of each soft-
ware component (SW-C), which have to be integrated into the implementation
code skeleton that was generated by the system level design and simulation tool
OptXware Embedded Architect (OXEA). In OXEA, we have also designed the
system model that corresponds to the Simulink example, and which is stored in
the standardized ARXML format.

We instrumented the evaluation system with two different monitors (cf. Fig. 1).
The first one is AllowedSpeedChanges, as presented in Sect. 3, which monitors
the communication between the components Vehicle and ShiftLogic in order to
detect a communication error between these components. The monitor signals an
error in case that it detects a difference between two consecutive speed readings
that is larger than 10mph within a 20ms timeframe (the period of the tasks).
The second one is InvalidGearChanges, which, in contrast to the first signature,
monitors the misuse case of a gear shifting by more than one step within a
20ms timeframe. Therefore, the communication between the components Shift-
Logic and Transmission is monitored. Based on these two signatures, a monitor
that consists of a controller and a monitor representation for each signature is
generated by the MBSecMon process.

The evaluation covers the run-time overhead that the monitoring induces per
instrumented port (Gear for ShiftLogic and Transmission, and VehicleSpeed for
Vehicle and ShiftLogic), and per instrumented runnable (Vehicle, ShiftLogic,
Transmission). Furthermore, we analyze the memory overhead of the monitors,
for both, code and data segments. Finally, a scalability analysis on an embedded
system is performed.



82 L. Patzina et al.

0 20 40 60 80 100
0

50

100

Time in s

T
h
ro
tt
le

in
%

0 20 40 60 80 100
0

50

100

Time in s

B
ra
k
e
to
rq
u
e
in

%

Fig. 6. Input data set for the passing maneuver

Table 1. Execution time comparison of original and monitored calls to the RTE

Average
Component RTE Call Original (ticks) Instr. (ticks) Diff. (%)

ShiftLogic() Rte Read VehicleSpeed . . . 24,76 38,87 57
ShiftLogic() Rte Write Gear . . . 18,00 23,60 31
Transmission() Rte Read Gear . . . 25,28 37,63 49
Vehicle() Rte Write VehicleSpeed . . . 21,56 27,62 28

Run-Time Analysis. The evaluation was conducted using OptXware EA’s
simulation environment on a AMD Phenom II X4 955 processor, running at
3.20GHz. The timing measurements were taken using the Win32 API functions
MyQueryPerformanceCounter and MyQueryPerformanceFrequency, which are
Window’s high resolution timing functions, providing CPU tick granularity. This
is a best effort solution, as there is no commonly agreed on reference architecture
for such evaluation. Therefore, we also provide relative measurements of the
execution time overhead as comparison.

Figure 6 shows the input data (readings of the throttle and brake torque
sensor) for the test run of the automatic transmission model. It represents a
passing maneuver, where the vehicle approaches a slower car and then abruptly
accelerates to pass the car.

Table 1 shows the run-time for performing calls to the RTE in the simulation
environment without (Original) and with instrumentation (Instr.). The mea-
sured time for the instrumented RTE calls includes the wrapper around the call
method, the invocation of the monitor, and the evaluation of the event by the
monitor. The overhead is between 28 and 31% for write calls and between 49
and 57% for read calls. This difference results from the structure of the signa-
tures that include an additional assignment or condition in the monitor for the
transmitted value at the receiving side (read call).

Table 2 shows the influence of the monitor on the total run-time of the SW-C’s
runnables. For the ShiftLogic component, two ports have been wrapped and,
therefore, the instrumented runnable calls the monitor twice as often as for the
other components. The components Transmission and Vehicle, which contain
only one instrumented port, therefore, have a smaller run-time overhead.

Memory Overhead. We conducted our analysis of the memory overhead using
the tool objdump of the GNU binutils toolsuite on the compiled object files.
Objdump provides a detailed overview of the memory consumption of the text
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Table 2. Execution time comparison of original and monitored runnables

Average
Component Original (ticks) Instr. (ticks) Diff. (ticks) Diff. (%)

ShiftLogic() 56,03 70,97 14,94 28
Transmission() 57,28 63,77 6,49 11
Vehicle() 48,63 58,39 9,76 20

Table 3. Memory overhead caused by the monitors in byte

Wrapper Monitor
Type Read VS Write VS Read G Write G Contr. ASC IGC

Code 48 48 48 48 1632 2512 2160
Data 0 0 0 0 88 40 32

(aka. code) section, and the three data sections data, bss (uninitialized data) and
rdata (read-only data). The analysis of the memory overhead of the integrated
monitors is depicted in Tab. 3. The first four columns show the memory that
is consumed by the RTE call wrappers that pass the signals to the monitor. As
the functionality of each wrapper is similar, their overhead is constant.

The monitor component consists of a controller (Contr.) that manages the
monitors and the signatures AllowedSpeedChanges (ASC ) and InvalidGearChan-
ges (IGC ). The controller caches the transmitted values, triggers the signature
representations, and evaluates their results. The memory overhead of the data
section is very small and grows very slowly with the complexity of the signa-
tures because only the state of the monitor and the monitor specific variables,
as shown in Sect. 3.1, are stored there.

Scalability Analysis. The previous results have shown that the generated
monitors can be used in an AUTOSAR environment with reasonable overhead.
For the evaluation of the scalability of the monitors, various models of different
complexity are generated and the run-time behaviour of the generated C code
is measured on a Fujitsu SK-16FX-100PMC evaluation board equipped with an
F2MC-16FX MB96340 series microcontroller (16 bit, 56MHz). Table 4 shows
the different models, the run-time of the generated monitors for processing one
event in the signature, where a message consists of a sending and receiving event,
and the needed memory on the micro controller. The values for the needed data
memory (RAM) include approximately 800 bytes of data that do not origin from
the generated monitor. For the measurement of the run-time, 1000 complete runs
of the signatures have been performed. Complex conditions and actions in the
signature are dismissed and only the monitor itself is measured.

Model 1 to 6 demonstrate how the monitors scale if the number of messages
increases in the signature. Model 1 and 7 to 11 show the overhead when all
messages have the same message type. In Model 4 and 12 to 14, the number
of signatures of constant size (M4) is increased. With an increasing number
of processing steps to reach the final state of the signature the initialization
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Table 4. Results of the scalability evaluation

Model #Messages Different events Run-time/Event in μs Code in byte Data in byte

M1 1 2 28,384 896 1038
M2 2 4 25,360 1078 1044
M3 3 6 24,277 1230 1044
M4 4 8 23,728 1382 1044
M5 50 100 22,636 8898 1154
M6 100 200 22,660 17026 1268
M7 2 2 25,936 1043 1044
M8 3 2 25,099 1158 1044
M9 4 2 25,176 1562 1044
M10 50 2 46,239 7260 1156
M11 100 2 67,973 13605 1270
M12 2 * M4 8 46,424 2696 1056
M13 3 * M4 8 67,992 4000 1068
M14 4 * M4 8 89,744 5304 1080

overhead gets less important. The code memory consumption increases linearly
with the number of messages located in a signature. In all cases, the RAM needed
to store the state of the signature increases very slowly, because the state of
the signature is binary coded. This is an important factor for use on resource
constrained embedded systems. The evaluation shows that the monitors have
a constant computing time per processed event (M1 to M6) and only a linear
increase for processing an event that is annotated at multiple transitions (M1,
M7 to M11).

5 Conclusion and Future Work

In this paper, we have identified and addressed the challenges that emerge from
integrating run-time monitoring of complex signatures into the AUTOSAR de-
velopment process. The presented continuous model-based development process
for security and safety monitors (MBSecMon) is integrated into the AUTOSAR
process and incorporates data of the AUTOSAR models. As shown, it allows the
modeling of monitor signatures in a well comprehensible graphical modeling lan-
guage and the automatic generation of monitors with a low overhead that fulfill
the AUTOSAR conventions. This framework and the generated monitors have
been evaluated utilizing an example model provided with the MATLAB suite, for
which AUTOSAR code was generated and integrated into an AUTOSAR envi-
ronment. With the presented approach, we have overcome the lack of support for
complex monitoring in the AUTOSAR tool chains. It is applicable to white-box
(source code) and black-box (binary) components, as communication between
components is intercepted directly at their port interface by instrumentation
techniques shown in [17].

In the future, an evaluation in a larger AUTOSAR project with more complex
interactions is planned. It has to be evaluated if the MBSecMon process can be
used for Logical Program Flow Monitoring [2], eventually with another source
specification language such as UML2 activity diagrams or MPNs directly.
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Abstract. Model Transformation By Demonstration (MTBD) has been 
developed as an approach that supports model transformation by end-users and 
domain experts. MTBD infers and generates executable transformation patterns 
from user demonstrations and refinement from a higher level of abstraction than 
traditional model transformation languages. However, not every transformation 
pattern is demonstrated and specified correctly. Similar to writing programs, 
bugs can also occur during a user demonstration and refinement process, which 
may transform models into undesired states if left unresolved. This paper 
presents MTBD Debugger, which is a model transformation debugger based on 
the MTBD execution engine, enabling users to step through the transformation 
execution process and track the model’s state during a transformation. Sharing 
the same goal of MTBD, the MTBD Debugger also focuses on end-user 
participation, so the low-level execution information is hidden during the 
debugging process. 

Keywords: Model Transformation By Demonstration (MTBD), Model 
Transformation Debug, End-User Programming. 

1 Introduction 

Model transformation plays an essential role in many applications of Model-Driven 
Engineering (MDE) [2]. Although a number of model transformation languages 
(MTLs) have been developed to support various types of model transformation tasks 
[1], some innovative model transformation approaches and tools have also been 
introduced to address the complexity of learning and using MTLs, and the challenges 
of understanding metamodels [16]. Our earlier work on Model Transformation By 
Demonstration (MTBD) [5], which was influenced by the idea of Model 
Transformation By Example (MTBE) [3][4][7], enables users to demonstrate how a 
model transformation should be performed by editing the model instance directly to 
simulate the model transformation process step-by-step. A recording and inference 
engine has been developed to capture all user operations and infer a user’s intention in 
a model transformation task. A transformation pattern is generated from the inference, 
specifying the precondition of the transformation and the sequence of operations 
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needed to realize the transformation. This pattern can be further refined by users and 
then executed by automatically matching the precondition in a new model instance 
and replaying the necessary operations to simulate the model transformation process. 
This was the focus of our earlier MODELS paper [5]. 

Using MTBD, users are enabled to specify model transformations without the need 
to use a MTL. Furthermore, an end-user can describe a desired transformation task 
without detailed understanding of a specific metamodel. We have applied MTBD to 
ease the specification of different model transformation activities – model refactoring, 
model scalability, aspect-oriented modeling, model management and model layout 
[17][18]. 

Although the main goal of MTBD is to avoid the steep learning curve and make it 
end-user centric, there is not a mechanism to check or verify the correctness of the 
generated transformation patterns. In other words, the correctness of the final 
transformation pattern totally depends on the demonstration and refinement 
operations given by the user, and it is impossible to check automatically whether the 
transformation pattern accurately reflects the user’s intention. In practice, this is 
similar to producing bugs when writing programs. It is also possible that errors will be 
introduced in the transformation patterns due to the incorrect operations in the 
demonstration or user refinement step when using MTBD. Incorrect patterns can lead 
to errors and transform the model into undesired states. For instance, users may 
perform a demonstration by editing an attribute using the value of a wrong model 
element; they may give preconditions that are either too restrictive or too weak; or 
they may forget to mark certain operations as generic (which forces the inferred 
transformation to be tied to a specific binding). 

Obviously, an incorrect transformation pattern can cause the model to be 
transformed into an incorrect and undesired state or configuration, which may be 
observed and caught by users. However, knowing the existence of errors and bugs 
cannot guarantee the correct identification and their location, because MTBD hides all 
the low-level and metamodel information from users. Also, the final generated pattern 
is invisible to the end-users, which makes it challenging to map the errors in the target 
model to the errors in the demonstration or refinement step. This issue becomes even 
more apparent when reusing an existing transformation pattern generated by a 
different user, such that the current users who did not create the original pattern have 
no idea how to locate the source of an error. 

In order to enable users to track and ascertain errors in transformation patterns 
when using MTBD, a transformation pattern execution debugger is needed that can 
work together with the pattern execution engine. In fact, a number of model 
transformation debuggers have already been developed for different MTLs [9]. 
However, the main problem with these debuggers is that they work by tracking the 
MTL rules or codes, which is at the same level of abstraction as the MTL and 
therefore not appropriate for some types of end-users and domain experts. Because 
MTBD has already raised the level of abstraction above the general level of MTLs, 
the associated MTBD Debugger should be built at the same level of abstraction. Thus, 
the goal of the MTBD Debugger presented in this paper is to provide users with the 
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necessary debugging functionality without exposing them to low-level execution 
details or metamodels. 

A brief overview of MTBD will be given in Section 2, followed by an introduction 
to the MTBD Debugger in Section 3. Section 4 illustrates the usage of the MTBD 
Debugger for different debugging purposes through several examples. Section 5 
summarizes the related work and Section 6 offers concluding remarks. 

2 Overview of MTBD 

Figure 1 (adapted from [6]) shows the high-level overview of MTBD, which is a 
complete model transformation framework that allows users to specify a model 
transformation, as well as to execute the generated transformation pattern in any 
desired model instances.  

The specification of a model transformation using MTBD starts with a 
demonstration by locating one of the correct places in the model where a 
transformation is to be made, and directly editing a model instance (e.g., add a new 
model element or connection, modify the attribute of a model element) to simulate the 
maintenance task (User Demonstration). During the demonstration, users are 
expected to perform operations not only on model elements and connections, but also 
on their attributes, so that the attribute composition can be supported. At the same 
time, an event listener has been developed to monitor all the operations occurring in 
the model editor and collect the information for each operation in sequence 
(Operation Recording). The list of recorded operations indicates how a non-functional 
property should be composed in the base model. After the demonstration, the engine 
optimizes the recorded operations to eliminate any duplicated or meaningless actions 
(Operation Optimization). With an optimized list of recorded operations, the 
transformation can be inferred by generalizing the behavior in the demonstration 
(Pattern Inference). Because the MTBD approach does not rely on any MTLs, we 
generate a transformation pattern, which summarizes the precondition of a 
transformation (i.e., where to perform a transformation) and the actions needed in a 
transformation (i.e., how to perform a transformation in this location). Users may also 
refine the generated transformation pattern by providing more feedback for the 
precondition of the desired transformation scenario from two perspectives – structure 
and attributes, or identifying generic operations to be executed repeatedly according 
to the available model elements and connections. 

After the user refinement, the transformation pattern will be finalized and stored in 
the pattern repository for future use (Pattern Repository). The final patterns in the 
repository can be executed on any model instances. Because a pattern consists of the 
precondition and the transformation actions, the execution starts with matching the 
precondition in the new model instance and then carrying out the transformation 
actions on the matched locations of the model (Pattern Execution). The MTBD 
engine also validates the correctness of the models after each execution process 
(Correctness Checking). Users can choose where to execute the pattern, a sequence of 
patterns to execute, and the execution times (Execution Control). More details about 
MTBD beyond this summary are in [5]. 
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Fig. 1. High-level overview of MTBD (adapted from [6]) 

3 MTBD Debugger 

MTBD Debugger is designed and implemented over the MTBD execution engine. 
The specific debugging sequence is based on the structure of a transformation pattern. 
As mentioned in Section 2, a transformation pattern contains the precondition of a 
transformation (i.e., including the structural precondition and attribute precondition) 
and the sequence of transformation actions. During the execution of a transformation 
pattern, any error that is discovered can be traced back to errors in either the 
precondition or the transformation actions. From the technical perspective as shown 
in Figure 2, the goal of MTBD Debugger is to help users correctly map the effect of a 
transformation exerted on the target model instance to the precondition and actions 
specified in the transformation pattern, so that users can track the cause of an 
undesired transformation result.  

MTBD Pattern Execution Engine

Transformation Pattern

Source Model

MTBD Debugger

Pattern Matching View

Pattern Execution View

Target Model

 

Fig. 2. Overview of MTBD Debugger 

The main functionality of the MTBD Debugger is supported by enabling the step 
through execution of a transformation pattern and displaying the related information 
with each step in two views – Pattern Execution View and Pattern Matching View. 
Users can directly observe what action is about to be executed, what are the matched 
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model elements for the operation, and more importantly, how the matched elements 
are determined based on the types of preconditions. This allows the end-users to 
follow each step and check if it is the desired execution process. In addition, keeping 
the debugging process at the proper level of abstraction is an essential design decision 
of MTBD Debugger to assist end-users who are not computer scientists. Similar to 
MTBD, the MTBD Debugger separates users from knowing any MTLs and hides the 
low-level execution or metamodel details, so that the same group of users who 
implement model transformations using MTBD are enabled to debug the same model 
transformations using the language that represents their domain. 

3.1 Pattern Execution View 

The Pattern Execution View lists all the actions to be executed in a transformation 
pattern in sequence. As shown in a future example in Figure 5 (which is used later in 
a specific debugging context), the view displays the type of the action, the main target 
element used for this action, whether the action is generic or not, and the related 
details based on the type of the action. In the debugging mode, users can step through 
each action one-by-one. Before the execution of the action, all the matched elements 
that will be used for the action are highlighted in the Pattern Matching View, so that 
users can determine which elements will be used for the execution of the action. If the 
required target element cannot be matched, “null” will be displayed. After the action 
is executed, the Pattern Execution View highlights the next action. At the same time, 
the model in the editor is updated with the execution of the previous action. Users can 
check the properties and structure of the latest model instance and determine if it is 
transformed into the desired state. 

3.2 Pattern Matching View 

The Pattern Matching View works together with the Pattern Execution View to 
provide relevant information about the matched model elements. From Figure 5, it 
can be seen that it shows the model element type, the precondition associated with it, 
and the specific model element that is matched in the current model. The list includes 
all the model elements needed in the transformation pattern. The execution of each 
action will trigger the highlight of all needed model elements in this view. 

4 MTBD Debugger in Action 

This section presents a case study that illustrates the use of MTBD Debugger to 
support tracking and debugging errors in several practical model transformation tasks 
in a textual game application domain (for the Debugger, we use the same case study 
from [5] for consistent discussion for those who may refer back to the original MTBD 
paper). 
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4.1 Background: MazeGame Case Study 

The case study is based on a simple modeling language called MazeGame. A model 
instance is shown in Figure 3. A Maze consists of Rooms, which can be connected to 
each other. Each Room can contain either pieces of Gold, or a power item such as 
Weapon or Monster with an attribute (strength) to indicate the power. The goal of the 
game is to let players move in the rooms, collect all pieces of gold, and use weapons 
to kill monsters. The full Java implementation of the game can be generated 
automatically from the game configuration specified in the model. We constructed 
this modeling environment in the GEMS [8] Eclipse modeling tool. 

 

Fig. 3. An excerpt of a MazeGame model instance 

Building various game configurations using the MazeGame modeling language 
often involves performing different model transformation tasks for maintenance 
purposes. For instance, if there are rooms that contain both gold and a weapon (the 
two unfolded rooms in Figure 3, Room2 and Room6), we can implement a model 
transformation to remove the gold, and replace the weapon with a monster, with the 
strength of the new monster set to half of the strength of the replaced weapon. Game 
designers can apply this transformation when they discover that the number of 
monsters is far less than that of weapons, making the game too easy (we presented 
this scenario in [5], but used here for explanation of the MTDB Debugger). 

4.2 Debugging in Action 

In order to illustrate the usage of MTBD Debugger, we consider transformation errors 
that end-users may make in this case study when using MTBD, and show how MTBD 
Debugger can track and locate these errors. 

Debugging Example 1. This first example is based on the following transformation 
task: if a Monster is contained in a Room, whose strength is greater than 100, replace 
this Monster with a Weapon having the same strength, and add a Gold piece in the 
same Room. Figure 4 shows a concrete example for this transformation task. 
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Monster1.stength = 120 Weapon1.strength = 120 

Fig. 4. The excerpt of a MazeGame model before and after replacing the monster 

Based on this scenario, a user starts the demonstration by first locating a Room 
with a Monster in it, and deleting the Monster, followed by adding a Weapon plus a 
Gold piece. The strength of the new Weapon can be configured using the attribute 
refactoring editor. Finally, a precondition on Monster is needed to restrict the 
transformation (Monster1.strength > 100). As shown in List 1, the user performed all 
the correct operations except the incorrect precondition was provided 
(Monster1.strength > 10). 

List 1 – Operations for demonstrating replacement of a Monster 

Sequence Operation Performed 
1 Remove Monster1 in Root.TextGameFolder.Room2 
2 Add a Weapon in Root.TextGameFolder.Room2 
3 Add a Gold in Root.TextGameFolder.Room2 
4 Set Root.TextGameFolder.Room2.Weapon.strength  

      = Monster1.strength = 120 
5 Set precondition on Monster1: Monster1.strength > 10 

 
When applying this generated pattern to the model, it may be found that the 

transformation takes place in every Room with a Monster in it even the strength of the 
Monster is less than 100, which is not the desired result. Obviously, if the strength of 
every Monster is greater than 10, the incorrect precondition can be satisfied with all 
Monsters in the model instance. To debug the error, we execute the transformation 
pattern again using MTBD Debugger. As shown in Figure 5, the Pattern Execution 
view lists all the operations to be performed, while the Pattern Matching view 
provides the currently matched elements for the transformation pattern. Users can step 
through each of the operations, and the corresponding model elements needed for 
each operation will be highlighted. For instance, the very first operation in this 
scenario is to remove the Monster in the Room. Before executing this operation and 
stepping to the next one, we can determine which Monster is currently matched as the 
target to be removed. In this case, the Monster1 in Room12 is about to be removed. If 
we check the strength attribute of Monster1 (e.g., 30), we can observe that there is 
something wrong with the precondition we specified in the demonstration, because 
the strength of this Monster is not greater than 100. At this point, we can focus on the 
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precondition in the Pattern Matching view, which shows the actual precondition is 
“Strength > 10”, not “Strength > 100” as desired (the highlighted red box is added to 
the screenshot to draw attention to the location of the error for readers; this does not 
appear in the actual tool). The bug is therefore identified and located. 

 

Fig. 5. Debugging the transformation pattern of Example 1 

The error in the first example comes from a mistakenly specified precondition that 
over-matched the model elements. In the second example, we present how to debug a 
transformation pattern that contains preconditions that are under-matched. 

Debugging Example 2. The second example is based on the same transformation 
scenario as the first one to replace the Monster with a Weapon. However, in this second 
demonstration, instead of giving the correct precondition “Strength > 100”, the user 
specified “Strength > 1000” by mistake. As we can imagine, the result of executing this 
transformation pattern will probably not replace any of the Monsters in the model 
instance, because there are seldom Monsters whose strength is greater than 1000. 

Similar to the first example, when using the MTBD Debugger to step through the 
execution process, we can find out the currently matched model elements for each 
operation. As shown in Figure 6, the first operation to remove the Monster contains a 
null operation element as the target, which means that there is not a Monster in the 
current model instance that can be matched as an operand for this operation. We may 
think that there is again something wrong with the precondition, so we take a look at 
the precondition in the Pattern Matching view, and find the precondition set 
incorrectly as “Strength > 1000”. 
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Fig. 6. Debugging the transformation pattern of Example 2 

Debugging Example 3. Using MTBD, one of the scenarios that may cause an error is 
the refinement on the transformation actions in order to identify generic repeatable 
operations. The third example is based on the scenario that we want to remove all the 
pieces of Gold in all the Rooms, no matter how many pieces there are in the Room 
(see Figure 7). 

 

 

 

Fig. 7. The excerpt of a MazeGame model before and after removing all Gold 

To specify the transformation pattern, a user performs a demonstration on a Room 
that contains two pieces of Gold (two operations performed - see List 2). 

List 2 – Operations for demonstrating removing all pieces of Gold 

Sequence Operation Performed 
1 Remove Gold1 in Root.TextGameFolder.Room3 
2 Remove Gold2 in Root.TextGameFolder.Room3 
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Fig. 8. Debugging the transformation pattern of Example 3 

Without giving further refinement on the transformation actions, the user may 
complete the demonstration. When executing the generated transformation pattern on 
the model, however, it is found that the Rooms that contain only one piece of Gold 
were not transformed as expected. To track the error, the pattern can be re-executed 
step-by-step using MTBD Debugger. As listed in the Pattern Execution view, we can 
see that there are two operations in this pattern, and each operation requires a different 
target element (i.e., the Gold to remove). When the Room contains only one piece of 
Gold, the second operation cannot be provided with a correct operand as shown in 
Figure 8. Thus, the problem of this bug comes from the fact that the transformation 
actions are not generic so that it always requires a fixed number of model elements to 
enable the correct transformation. The correct way to use MTBD is to make the 
demonstration concise, such that users should only demonstrate a single case followed 
by identifying the necessary generic operations. Thus, the correct demonstration 
should be done by removing only one piece of Gold and then marking it as generic. 

Debugging Example 4. Following Example 3, the user may re-demonstrate the 
removal of Gold pieces by only performing a single removal operation. However, the 
wrong transformation pattern will be generated again due to the user forgetting to 
mark the operation as generic. This time, when the pattern is executed, only one piece 
of Gold can be removed in each Room. To track the error, the MTBD Debugger can 
reveal whether each operation is generic. When stepping through the execution in 
Room3 (Figure 9, which contains two pieces of Gold), the user finds that another 
Room is matched after removing only one piece of Gold. The user may think that the 
problem is caused by the generic operations, so by double-checking the generic status, 
it can be seen from the Pattern Execution view that the removal operation is not 
generic (the highlighted box marked as false in the middle of the figure). 
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Fig. 9. Debugging the transformation pattern of Example 4 

Debugging Example 5. Another common error that occurs when using MTBD is 
choosing the wrong element in the demonstration process, particularly in the attribute 
editing demonstration. For example, the user may want to replace all the Monsters 
with Weapons, as well as doubling the strength of the new Weapons, as shown in 
Figure 10.  
 

 
Monster1.Strength = 76 NewWeapon.Strength = 152 

Fig. 10. The excerpt of a MazeGame model before and after doubling the new weapon 

The recorded operations are in List 3. An attribute transformation is demonstrated 
using the attribute refactoring editor. The expected computation of the strength is to 
use the removed Monster and double its strength value. However, operation 3 in the 
list mistakenly selects the wrong Monster (i.e., Monster1 in Room1) which is not the 
Monster that has just been removed (i.e., Monster1 in Room2). The wrong execution 
result triggered by this bug is that the new Weapon being added in the Room uses the 
strength value of the Monster in a different Room, which is not what user expects to 
double. 
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Fig. 11. Debugging the transformation pattern of Example 5 

 List 3 – Operations for demonstrating replacing a Monster and doubling the strength 

Sequence Operation Performed 
1 Remove Monster1 in Root.TextGameFolder.Room2 
2 Add a Weapon in Root.TextGameFolder.Room2 
3 Set Root.TextGameFolder.Room2.Weapon.strength  

       = Root.TextGameFolder.Room1.Monster1.strength * 2 = 152 
 

This type of bug can be located easily using MTBD Debugger, as shown in Figure 
11. When we step through each operation, the used elements in the Pattern Matching 
view cab be observed. In this case, the remove element operation is done on Monster1 
in Room2, while the change attribute operation uses Monster1 in Room7, which 
means that we probably selected the wrong element in the demonstration of the 
attribute change process.  

5 Related Works 

As one of the most popular MTLs, ATL has an associated debugger [9] to provide the 
basic debugging options similar to general-purpose programming languages, such as 
step-by-step execution, setting up breakpoints, and watching current variables. 
Additionally, simple navigation in source and target models is supported. However, 
all these debugging options are closely related with the language constructs, so it is 
inappropriate for general end-users who do not have the knowledge of ATL. 
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Similarly, in the Fujaba modeling environment, Triple Graphical Grammar (TGG) 
rules [10] can be compiled into Fujaba diagrams implemented in Java, which allows 
debugging TGG rules directly [11]. 

Schoenboeck et al. applied a model transformation debugging approach [12] using 
Transformation Nets (TNs), which is a type of colored Petri Net. The original source 
and target metamodels are used as the input to derive places in TNs, while model 
instances are represented as tokens with the places. The actual transformation logic is 
reflected by the transitions. The derived transformation provides a formalism to 
describe the runtime semantics and enable the execution of model transformations. 
An interactive OCL console has been provided to enable users to debug the execution 
process. TNs are at a higher level of abstraction than MTLs (e.g., QVT is used as the 
base in this approach), so this approach helps to isolate users from knowing the low-
level execution details. Although TNs can be considered as a domain-specific 
modeling language (DSML) to assist debugging model transformations, it is a 
different formalism from the specific model transformation area and can be used as a 
general-purpose specification in many domains, which inevitably limits its end-user 
friendliness. Most users may find it challenging to switch their model transformation 
tasks to colored Petri Net transition processes. TNs also aim at defining the 
underlying operational semantics that are hidden in the model transformation rules, 
and this exerts an extra burden in its understandability to general end-users and 
domain experts. 

A similar work has been done by Hillberd [13] which presents forensic debugging 
techniques to model transformation by using the trace information between source 
and target model instances. The trace information can be used to answer debugging 
questions in the form of queries that help localize the bugs. In addition, a technique 
using program slicing to further narrow the area of a potential bug is also shown. 
Compared with MTBD Debugger, which is a live debugging tool, this work of 
Hillberd et al. focuses on a different context – forensic debugging. Similar to the ATL 
debugger, their work aims at providing debugging support to general MTLs used in 
MDE. 

Another related work is focused on debugging a different type of model 
transformation – Model-to-text (M2T). Dhoolia et al. present an approach for 
assisting with fault localization in M2T transformations [14]. The basic idea is to 
create marks in the input-model elements, followed by propagating the marks to the 
output text during the whole transformation, so that a dynamic process to trace the 
flow of data from the transform input to the transform output can be realized. Using 
the generated mark logs and a location where a missing or incorrect string occurs in 
the output, the user can examine the fault space incrementally. 

6 Conclusions and Future Work 

Our recent work has focused on tools and concepts that allow end-users to participate 
in the model transformation process by allowing them to record a desired 
transformation directly on instance models, rather than applying transformation 
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languages that may be unfamiliar to them. This paper extends end-user participation 
in model transformation by presenting a technique that supports end-user debugging 
of model transformation patterns that were initially recorded through user 
demonstration. The MTBD Debugger allows users to step through each action in the 
transformation pattern and check all the relevant information through two views. The 
MTBD Debugger has been implemented as an extension to the MTBD execution 
engine and integrated with the MTBD framework.  

The MTBD debugger can be applied to the core elements specified in a model 
transformation pattern. However, one drawback of the current views used in the 
debugger is that they are textual and not visual. For instance, the Pattern Matching 
View shows all the needed elements for each action. However, the containment 
relationship among these elements cannot be seen clearly. It would be very helpful to 
have another view that shows all the currently involved model elements and their 
relationships visually. Future work will provide a view that can capture the specific 
part of the current model that is used for the next transformation action. This can 
enable users to catch and check the matched elements more easily. 

Another option that is useful in the general debugging process, but missing in the 
MTBD debugger, is the concept of setting a breakpoint. In some large model 
transformation scenarios (e.g., scaling up a base model to a large and complex state), 
it is not necessary to watch all the actions being executed one-by-one, so setting a 
breakpoint would make debugging more useful in this case. Thus, in the Pattern 
Execution View, it would be helpful to enable the breakpoint setup in the action 
execution list. 
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Abstract. In a model-driven development context, the refinement of the
architectural model of a real-time application to a Real Time Operating
System (RTOS) specific model is a challenging task. Indeed, the different
design choices made to guarantee the application timing properties are
not always implementable on the target RTOS. In particular, when the
number of distinct priority levels used at the design level exceeds the
number allowed by the RTOS for the considered application, this refine-
ment becomes not possible. In this paper, we propose a software pat-
tern called Distinct Priority Merge Pattern (DPMP) that automatically
perform the re-factoring of the architectural model when this problem
occurs. First, we give an heuristic algorithm describing this pattern and
we show that this method is not always effective. Then, to address the
limitations of the first method, we propose a MILP formulation of the
DPMP pattern that allows to check whether a solution exists and gives
the optimal one. The evaluation of the second method, allows to estimate
a cost in terms of processor utilization increase during the deployment
of an application on a given RTOS family characterized by the number
of distinct priority levels that it offers.

Keywords: Real-Time Validation, Architectural Model, RTOS-Specific
Model, Software Pattern, Re-factoring, MILP Formulation.

1 Introduction

In order to increase productivity and reduce the time-to-market during the
development of Real-Time Embedded Systems (RTES), Model-Driven Devel-
opment(MDD) proposes solutions by introducing intermediate models, from re-
quirements specification to the binary code, that allows verification activities at
each level of abstraction. In a software development context of such systems, the
designer makes different architectural choices, at the design level, to describe
the realization of the application. Then, a verification of timing properties is
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performed to assess these choices. This verification step requires an abstrac-
tion of some information related to the underlying Real-Time Operating System
(RTOS) such as scheduling policy, communication mechanisms, etc. In fact, the
design model is a Platform-Independent Model (PIM), thus most of the verifica-
tion tools [1][2] used to validate this model make assumptions about the target
RTOS and consider that is an ideal one offering thus unlimited (software) re-
sources without any limitation. In that case, the refinement of the design model
to an RTOS-specific model, which corresponds to a deployment phase, is a non
trivial transformation because the assumptions made may be not verified for the
selected RTOS.

In previous works [3][4], we have proposed a model-driven approach to guide
the transition from real-time design model to an RTOS-specific model and to
verify the correctness of the resulting model in terms of timing properties. This
approach integrates two steps; a deployment feasibility tests step and a mapping
step. The approach is based on explicit description of the abstract platform used
to verify the design model and the concrete one corresponding to the RTOS.
The different platform models are created using UML enriched with the Software
Resource Modelling (SRM) sub-profile of MARTE [5]. Indeed, the deployment
feasibility tests step defines a set of tests to verify whether the real-time design
model is implementable on the target RTOS. When a problem is detected an
error is generated to inform the designer about the source and the rationale of
the problem.

In the present paper, we extend the proposed approach by introducing an
automatic pattern-based re-factoring of the design model when a deployment
problem is detected. Indeed, in this paper, we are interested in a particular
one that occurs when the number of distinct priority levels used to validate
the real-time application is greater than the number authorized by the RTOS.
Indeed, at the design level, this number is supposed to be unbounded which is
not the case for the majority of RTOSs that offer a limited number of distinct
priority levels or when for extensibility concerns this number is bounded for a
particular application in order to conserve spare priorities for additional future
functionalities.

To address this issue, we propose a software pattern that we call Distinct Pri-
ority Merge Pattern (DPMP). For a particular application, this pattern looks at
reducing the number of used priority levels by merging harmonic tasks having
distinct priorities while ensuring the respect of timing properties. In this paper,
we show that using a heuristic method to formulate this problem is not always
effective and we propose a Mixed Integer Linear Programming (MILP) formula-
tion of this pattern. Given a design model as input and a RTOS as target, our
linear program checks whether a solution exists and finds the optimized one in
terms of processor utilization. An evaluation of this pattern allows to estimate
the performance loss when deploying a real-time application on a given RTOS
family characterized by the number of distinct priority levels that it offers.

This paper is organized as follows. The first section briefly describes a design
refinement (toward implementation) method and specifies the assumptions that
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must be fulfilled by the considered design models. In section 2 we describe the
context, the problem and the solution of the proposed pattern. In section 3,
two formulations of the DPMP pattern are given; algorithmic description and
MILP formulation. Some experimental results are given in section 4 to evaluate
our proposal. Section 5 presents some related work and section 6 concludes the
paper.

2 A Method for Design Refinement

The objective of the proposed method is to reduce the gap between the design
and the implementation models during real-time application development pro-
cess. In this section we briefly describe the proposed method. Then, we give a
formal description of the design model.

2.1 Method Overview

Fig.1 gives an overview of the proposed refinement method. The entry point
is a design model that is generated following the methodology given in [1]. In
fact, this methodology introduces timing verification from the functional level
in order to ensure that the constructed design model satisfies the application
timing requirements.

Fig. 1. Design Refinement Method Overview

Our objective is to ensure a correct transition from a correct design model, to
the implementation model while preserving its timing properties. Indeed, we are
interested in the semantics of the software platform resources involved during
the refinement. To this end, in previous work [3], we have proposed to integrate
two steps; deployment feasibility tests (1) step and mapping step (2). The first
step defines a set of feasibility tests to verify whether the design choices are



104 R. Mzid et al.

implementable on the target RTOS. When no feasibility concerns are raised, the
mapping step generates the appropriate RTOS-specific model. These two steps
are based on an explicit description of an abstract platform used for validation
[3] and a concrete platform which corresponds to the RTOS. The mapping ver-
ification step (3) previously introduced in [4], defines the set of properties that
must be verified to confirm the correctness of the refinement.

In this paper, we are addressing the case where the design model is not imple-
mentable on the target RTOS. In that situation, the deployment feasibility tests
step generates a warning to highlight that the input model is not implementable
for a particular reason. One objective of our work is to guide the designer by
proposing solutions whenever the refinement is not feasible. To this end, we
create a pattern base which collects a set of predefined patterns. Each pattern
aims at solving a particular deployment problem in the case where some partic-
ular assumptions are fulfilled by the considered design model. Therefore, when a
problem is detected, we verify if a pattern corresponding to this problem exists
in the pattern base. If it is not the case, our framework generates an error to
inform the designer that the design model is not implementable on the selected
RTOS and that no solution is available to solve the problem. Otherwise, when a
pattern is available (4), we perform the re-factoring of the design model by apply-
ing this pattern. This re-factoring must guarantee two points: (1) the portability
and (2) the preservation of timing properties. Regarding the first point, even
if the re-factoring of the design model is performed to handle the deployment
problems related to the target RTOS, it must still independent from the latter:
the resulting design model (denoted new design model in Fig.1) is also a PIM.
In order to ensure the second point, the new design model must be revalidated
(5). After performing the revalidation, if the timing properties are not verified,
an error is generated to mention that the model is not implementable and no
solution is available (6).

2.2 Design Model Formalization

We assume that the considered real-time design model consists of m periodic
tasks that we denote by M = {T1, T2, . . . , Tm} running in a single-processor sys-
tem. Each task Ti is defined by a set of parameters deducted from the high-level
model (functional model) and the architectural choices enabling thus the timing
validation. Indeed, a task Ti is characterized by its priority pi, its execution time
ci which is considered as input in our case, its activation period Pi supposed to
be an integer in this paper and its deadline Di that represents the time limit
in which a task must complete its execution. We assume that 0 is the highest
priority level and that tasks may share the same priority level. Let us denotes
as n the number of distinct priority levels used in the architectural model for
validation (n ≤ m) and with N the number of distinct priority levels allowed by
the platform for the considered application.

The architectural model consists also of a set of software resources R =
{R1, R2, . . . , R�} that can be shared between one or several tasks (e.g. a mutex
to access a critical section). We denote cRi,Tj the worst-case time for the task
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Tj to acquire and release the lock of the resource Ri in case of no contention.
Let us remark that cRi,Tj is considered as an input and that cRi,Tj ≤ cj . Due to
the presence of shared resources, a task is also characterized by a blocking time
Bi. The blocking time accounts for the time a higher-priority task has to wait,
before acquiring the lock, since a lower-priority task owns this lock. The compu-
tation of this term depends on the synchronization protocol used to implement
the access to the shared resource. In this paper, we suppose that Priority Ceil-
ing protocol(PCP) [6] is used as a synchronization protocol to avoid unbounded
priority inversion and mutual deadlock due to wrong nesting of critical sections.
In this protocol each resource Ri is assigned a priority ceiling πi, which is a
priority equal to the highest priority of any task which may lock the resource.
The expression used to compute the blocking time for the PCP protocol is given
just below:

Bi = max
Tj∈HP,Rk∈R

{cRk,Tj : pj < pi and πk ≥ pi} (1)

We perform Rate-Monotonic (RM) response time analysis [7]. The analysis re-
sults correspond to the computation of the processor utilization U and the re-
sponse time Repi of the different tasks in the model. The model satisfies its
timing constraints if and only if U ≤ 1 and ∀i ∈ {1..m} Repi ≤ Di. The expres-
sions used to compute U and Repi are given just below, where HPj represents
the set of tasks with priority higher than Tj.

U =
∑

Ti∈M

ci
Pi

(2)

Repi = ci +Bi +
∑

Tj∈HPj

⌈
Repi
Pj

⌉
∗ cj (3)

Fig. 2. Real-Time Concepts

Fig.2 shows an example of execution of two periodic tasks (Ti and Tj) sharing
the resource R. The priority ceiling of R is equal to the priority of Ti as it is
the highest.Up-raising arrows represent the instants of tasks activation, for their
part, down-raising arrows determine the deadline for each task activation. The
response time to an activation is defined as the time between the activation
and the completion instants. We also show the blocking time Bi of the task Ti

resulting from the utilization of R by Tj.
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In addition, each task implements a set of functions that we denote by f ⊂
F/card(f) ≥ 1 such as F is the set of functions defined by the application (from
the functional model).

3 Problem Statement and Solution

In this section, we identify the case where the Distinct Priority Merge Pattern
(DPMP) must be applied. Then the proposed solution is detailed.

3.1 Problem Statement

This pattern is automatically applied on the design model when the Deployment
Feasibility Tests step detects that the number of distinct priority levels used in
the architectural model exceeds the number allowed by the RTOS for the con-
sidered application (i.e. n > N). The resulting design model after applying this
pattern must still verifying the timing requirements as specified in section 2.2.

3.2 Solution Description

In order to solve the problem (i.e. n > N), we propose to reduce n to be equal
to N by merging tasks having distinct priority levels. This operation is repeated
until the number of distinct priority levels becomes equal to N. However, the
proposed solution must preserve:

1. The high level specification i.e. the activation rate of the different functions
defined in the specification must be preserved.

2. The real-time constraints i.e. the response time of the all considered tasks is
lower than their deadline.

Let us consider an initial model M = {T1, T2, ., Tm} defining m tasks and n
distinct priority levels (n ≤ m). Let us consider also two tasks Ti and Tj ∈
M , each task is defined by a set of parameters; Ti = (pi, Ci, Pi, Di, Bi, fi) and
Tj = (pj , Cj , Pj , Dj , Bj , fj) such as pi 
= pj, Pj ≥ Pi and fi, fj corresponds
to the functions implemented respectively by Ti and Tj. We denote by T ′

i the
task resulting from merging these two tasks such as T ′

i = (p′i, C
′
i, P

′
i , D

′
i, B

′
i, f

′
i).

Consequently, the resulting model M ′ consists of m-1 tasks and n-1 distinct
priority levels.The obtained task T ′

i is described in Fig.3(a).
The problem with the resulting model described in Fig.3(a) where one of the

two merged tasks will be executed with a rate different from the one defined in
the high level specification and thus the first constraint (1) previously defined
will be violated. In order to avoid this problem, we consider also in the solution
that only harmonic tasks may be merged (i.e. two tasks Ti and Tj are harmonic
if and only if (Pj mod Pi = 0). By considering this additional assumption

(
Pj

Pi
= q with q in an integer), the period of the resulting task which corresponds

to minimum of the two periods will be equal to Pi and the implementation of
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(a) Solution without considering harmonic
tasks

(b) Solution with harmonic tasks considera-
tion

Fig. 3. Solution Description

f ′
i will be modified in such a way that the execution rate of the two functions is
preserved. The new solution is presented in Fig. 3(b).

In order to guarantee the second constraint (2), we have to re-validate the
model after merging the tasks in order to verify whether the new design model
still satisfy the timing constraints.

4 DPMP Formulation

This section presents an algorithmic description of the previously proposed so-
lution. Then, we show the limitations of this method and we propose a MILP
formulation of the DPMP pattern.

4.1 Heuristic Method

Algorithm 1 just below corresponds to an algorithmic description of the DPMP
pattern. This algorithm merges recursively tasks in pairs. After each merge, this
algorithm performs a re-validation to verify the timing properties. The algorithm
ends, when the number of distinct priority levels used in the resulting model is
equal to the number authorized by the target RTOS or when there is no harmonic
tasks in the model. The complexity of this algorithm is linear and it depends on
the number of tasks in the initial model.

Heuristic Method Limitations. The problem of merging tasks with the ob-
jective to reduce the number of distinct applicative priority levels is a combina-
torial problem. In fact, the solution depends on the application (i.e. n and the
period of the different tasks) and the target RTOS. Consequently, the heuristic
method presented in previous section is not always able to find the solution.

Let’s consider an initial modelM = {T1, T2, T3, T4}. Each task is characterized
by a set of parameters such as T1 = (1, 4, 10, 10, 0, f1), T2 = (2, 5, 20, 20, 0, f2),
T3 = (3, 2, 30, 30, 0, f3) and T4 = (4, 1, 60, 60, 0, f4).The initial processor utiliza-
tion is evaluated to 73,33 %. All the tasks in this model are independent and
have distinct priority levels (n=4). We can notice that task T1 is harmonic with
all the other tasks and also T2, T3 are harmonic with T4. In addition, we sup-
pose that the target RTOS authorizes only two priority levels for this application
(N=2).
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Algorithm 1. DistinctPriorityMergePattern
Input:
Ma: Design Model describing the application
N : The number of distinct priority levels allowed by the RTOS for the considered
application
Ref-Period : A reference period used to detect harmonic tasks
Output:
MRes: New design model after reducing the number of priority levels
Notations:
Ref-Task : The reference task with the lowest value of period
H-Tasks: The set of tasks which are harmonic with Ref-Task
n: The number of distinct priority levels used in the design model
begin

MRes ←− Ma

n ←− getPriorityLevelsNumber(Ma)
Ref-Task ←− getMinPeriod(Ma, Ref-Period)
if (Ref-Task �= null) then

for (is ∈ Ma / is is a periodic task) do
if (IsInteger(period(is), period(Ref-Task)) then

if (priority(is)�= priority(Ref-Task)) then
add(is, H-Tasks)

if (SizeOf(H-Tasks) ≤ 1) then
Ref-Period ←− period(Ref-Task)
DistinctPriorityMergePattern(Ma,N ,Ref-Period)

else
if (n � N) then

M ′
a ←− Merge(H-Tasks[1],H-Tasks[2])

OK ←− Re-Validate (M ′
a)

if (Ok = true) then
MRes ←− M ′

a
DistinctPriorityMergePattern(MRes,N ,Ref-Period)

return MRes

Table 1. Example: Possible Solutions and Utilization Estimation

Possible Solutions Utilization

M1 = ({T1, T2}, {T3, T4}) 100%

M2 = ({T1, T3}, {T2, T4}) 90%

M3 = ({T1, T2, T3}, T4) 111,67%

M4 = (T2, {T1, T3, T4}) 95%

M5 = (T3, {T1, T2, T4}) 106,66%

As a result, for this particular example, 5 solutions are possible. These solu-
tions are presented in Table 1. For the first solution for example, we choose to
merge T1 and T2 from one side and T3 and T4 from the other side in order to
obtain the model M1 consisting of just two tasks and thus two distinct priority
levels. For this particular example, the heuristic method didn’t find a feasible
solution as it found M3 which is not feasible due to analysis issues (utilization
111,67%� 100%). Therefore, this method is not always effective. From these
considerations, an appropriate method must be considered to solve this prob-
lem. This method must be able to confirm whether a solution for each particular
problem (application and RTOS) exists. In addition, when many solutions are
available, this method should find one which costs less performance degradation.
In next section, we propose a MILP formulation of this problem.
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4.2 MILP Formulation

In order to ensure a reliable implementation of the problem taking into consid-
eration the different constraints already mentioned (timing requirements, appli-
cation), we propose in this section a MILP formulation of our problem. MILP
techniques define an objective function which corresponds to a formulation of
the considered problem. This formulation is interpretable by a solver that seeks
to find a solution for this problem under a set of defined constraints.

Objective Function. Expression (4) defines the objective function for our
problem. We denote by m the number of tasks in the initial model. Merge is a
boolean variable used to mention whether two tasks are merged. More in detail,
if Mergei,j is equal to 1, the merge corresponds to the situtation in which Ti

absorbs Tj, then Ti augments its worst-case execution time by adding the worst-
case execution time of Tj , while Tj is deleted from the model. Let us note that
more than one task can be absorbed by another task. The objective function aims
at maximizing the number of merge while minimizing the processor utilization.

maximize :
∑

i,j∈{1..m}
Mergei,j − Utilization (4)

Merging Situations Constraints. The objective function aims at maximizing
the number of merge, however this function should be aware of some constraints
that limit the exploration space and eliminate non meaningful merging situa-
tions. These constraints are presented just below:

n−
∑

i,j∈{1..m}
Mergei,j = N (5)

∀i, j ∈ {1..m},Mergei,j = 0 if (isHarmonici,j = 0) or (pi = pj) (6)

∀j ∈ {1..m},
∑

i∈{1..m}∧i �=j

Mergei,j ≤ 1 ; ∀i, j, k ∈ {1..m} ∧ j, k �= i,Mergei,j +Mergek,i ≤ 1

(7)

In constraint (5), n and N represent two input parameters defined previously
in section 2.2. This constraint means that we have to maximize the number of
merged tasks and thus minimize the number of distinct priority levels used in the
design model until the number authorized by the RTOS. Indeed, this Equation
serves as a bound for the objective function (i.e. the number of merge). Con-
straint (6) defines a new input parameter which is isHarmonic, this parameter is
used to mention if two tasks are harmonic. Thus if the value of isHarmonici,j is
equal to 1, then the corresponding tasks Ti and Tj have harmonic rates. Conse-
quently, this constraint avoids the merge of non-harmonic tasks and avoids also
the merge of tasks having equal priority levels(pi = pj). Finally, the constraints
in (7) are used to avoid a non-meaningful situations which corresponds to the
merge of a task already merged. In particular, the first contraint assures that a



110 R. Mzid et al.

task Tj can be absorbed by at most one other task, and the second constraint
states that either a task absorbs another task or it is absorded by another task.
We define also a new boolean variable that we denote by TASKS and which
refers to the resulting task model after merging the different tasks. Therefore,
constraint (8) is defined to create the new obtained model. In fact, whenMergei,j
is equal to 1, TASKSj will be equal to 0 and TASKSi will be equal to 1 (thanks
to constraints 7). This constraint is defined as follows:

∀j ∈ {1..m},TASKSj = 1−
∑

i∈{1..m}
Mergei,j (8)

Real-Time Constraints. The constraints defined in this section are related
to real-time requirements. Indeed, the model obtained after applying the merge
pattern should satisfy the timing constraints which are expressed in constraints
(9) and (10).

∀i ∈ {1..m},Repi ≤ Di (9)

utilization ≤ Max Utilization (10)

Constraint (9) ensures that the response times Repi of the different tasks in the
resulting model are lower or equal than their deadlines. Constraint (10) verifies
whether the processor utilization is lower or equal than the maximum authorized
utilization. Constraint (11) gives the computation formula of Ti response time
while taking into consideration the different decisions of merge.

∀i ∈ {1..m},Repi = δi + θi + βi (11)

The first term of the expression (11) is δi which corresponds to the worst case
execution time of the task Ti. This term is computed as follows:

∀i ∈ {1..m}, δi = TASKSi ∗ Ci +
∑

j∈{1..m}
Mergei,j ∗ Cj (12)

The execution time of a deleted task will be equal to 0 since the term TASKSi

is equal to 0 and ∀j ∈ {1..m},Mergei,j = 0. However, the execution time of a
task resulting from the merge of different tasks will be equal to the sum of the
execution times of these tasks.

The second term in the expression is θi representing the overhead induced
by the interferences of the task Ti with the different tasks in the model having
higher priorities. This variable is defined ∀i ∈ {1..m} as the sum of two terms
ζi, γi and it is defined just below:

θi = ζi + γi (13)

ζi = TASKSi ∗
∑

j∈HPi
j∈{1..m}

TASKSj ∗ (	Repi

Pj

 ∗ Cj) (14)

γi = TASKSi ∗ [
∑

j∈HPi
j∈{1..m}

TASKSj ∗ (
∑

k∈{1..m}
Mergej,k ∗ 	Repi

Pj

 ∗ Ck)] (15)
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The interference term is equal to 0 if the corresponding task is a deleted one
(TASKSi). Otherwise, this term computes the overhead resulting from the in-
terferences of tasks Tj/j ∈ HPi. This expression takes into consideration the dif-
ferent situations when higher priority tasks correspond to deleted ones (TASKSj

in the expression) or tasks resulting from merging decision (Mergej,k in the ex-
pression). We notice that the expressions (14) and (15) are not linear and thus
in order to be interpretable by the solver these expression must be linearized.
For instance, the linearization of the expression (14) is given by the following
constraints:

∀i, j ∈ {1..m}, 0 ≤ Xi,j − (
Repi

Pj
) < 1 (16)

∀i, j ∈ {1..m},Yi,j ≤ Xi,j ; Yi,j ≤ M ∗ TASKSj ; Xi,j −M ∗ (1− TASKSj) ≤ Yi,j (17)

In order to linearize the expression (14), we define new constraints (16) (17) and
2 additional variables X and Y . The constraint (16) permits to compute the
term �Repi

Pj
, however the constraints in (17) are defined to determine the value

of (TASKSj) ∗ �Repi

Pj
. Eventually, the constraints in (18) and (19) are used to

compute the final value of ζi, ∀i ∈ {1..m}.
∀i ∈ {1..m}, ζi ≤

∑

j∈HPi
j∈{1..m}

Yi,j ∗ Cj ; ζi ≤ M ∗ TASKSi (18)

∀i ∈ {1..m}, [
∑

j∈HPi
j∈{1..m}

Yi,j ∗ Cj]−M ∗ (1− TASKSi) ≤ ζi (19)

Finally the third term in the expression of the response time βi represents the
blocking time. This variable is computed as follows:

∀i ∈ {1..m}, βi = TASKSi ∗ BTi (20)

This term is equal to 0 if the task corresponds to a deleted task. Otherwise, the
blocking time of the considered task is equal to BT which is defined as follows:

∀i ∈ {1..m}, BTi =

{
Bi if

∑
i,j∈{1..m} Mergei,j = 0

maxj∈{1..m} Mergei,j ∗ Bi Otherwise
(21)

The term Bi in expression (21) is an input parameter representing the blocking
time of the task Ti. Consequently, if the considered task is not merged with
other tasks in model (

∑
j∈{1..m} Mergei,j = 0), the blocking time is kept the

same. Otherwise, the blocking term corresponds to the maximum of the merged
task blocking times. The processor utilization represents an important term in
scheduling analysis. In fact, in order to confirm that the design model meets the
timing constraints the following constraint must be verified:

Utilization ≤ 1 (22)

We define the Utilization term by the constraints just below:

Utilization = μ1 + μ2 (23)
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μ1 =
∑

i∈{1..m}
TASKSi ∗ (Ci

Pi
) ; μ2 =

∑

i∈{1..m}
TASKSi ∗

∑

j∈{1..m}
Mergei,j ∗ (Cj

Pi
) (24)

Under these constraints, the objective function will seek for the best way to merge
tasks (i.e. the optimized solution in terms of utilization) in order to reduce the
number of used priority levels while ensuring the respect of timing properties.

Let’s consider the same example previously introduced in section 4.1. Con-
sidering this problem, our linear program confirms that a solution exists and
generates the following Merge matrix:

Merge =

⎛

⎜
⎜
⎝

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠

This matrix shows that the solution considered by the solver is the merge of T1

and T3 and the merge of T2 and T4. The processor utilization of the resulting
model is 90%. Now if we compare this solution with the different possible solu-
tions given in Table 1, we can conclude that the latter corresponds to M2 which
is the best one in terms of processor utilization.

The solution generated by the linear program will be interpreted by our frame-
work in order to provide the information to the designer on how the design model
must be re-factored.

5 Experimental Results

In this section, we present a set of experiments to test the effectiveness of the
proposed pattern in terms of applicability and scalability. The experiments are
carried-out on Intel Core i5-3360M processor running at 2.8 GHz with 4GB of
cache memory. CPLEX is used as a MILP solver for the whole set of experiments.

We define also a new parameter that we denote Cost. This parameter refer-
ences the performance loss and is defined as the difference between the uti-
lization evaluated on the initial model and the utilization evaluated on the
model resulting from the application of the merge pattern in order to avoid
non-implementable design models. Expression 25 given just below defines this
parameter:

Cost = Currentutilization − Initialutilization (25)

Extensibility at the Implementation Level

We define the extensibility as the capacity to integrate additional applications
(or functions) on the same platform. In this section, we suppose that the first
focus of the designer is to maximize extensibility at the implementation level
even at the expense of some performance loss. For that achievement, the de-
signer should determine the processor utilization authorised for his application
that we denote by Max-Utilization and the number of distinct priority levels
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denoted by N. This task is not trivial because it strongly depends on the ap-
plication. The previously described linear program provides a sort of guidance
for the designer to help him determining one of these parameters by fixing the
second. Therefore, two scenarios are considered: (1) the designer defines the max-
imum number of priority levels (N) that he wants to reserve for his application
and asks the linear program to determine the minimum processor utilization
necessary for this achievement.(2) the designer defines the maximum processor
utilization (Max-Utilization) authorized for his application and asks the linear
program to determine the minimum number of priority levels that are necessary
to achieve such utilization. For scheduling issues, we suppose that the considered
application is the first to be implemented on the platform and that the reserved
priority levels are the higher ones.

In order to illustrate this idea, we consider an example of an architectural
model describing an application; this model is given in table 2. The design model
consists of 6 tasks; each task is characterized by a set of parameters. Besides, the
model defines also two shared resources R1 and R2; the resource R1 is shared
between the two tasks T1 and T3, however R2 is shared between T2 and T5.
After, the different design choices, the designer performs validation to verify the
timing constraints. Validation results are also presented in table 2; all the tasks
meet their deadlines since their response times are lower than their deadlines.
The processor utilization for this model is evaluated to 39, 69%.

Table 2. Example of an Architectural Model

Task Period Deadline Wcet Priority Blocking Time Response Time

T1 10 10 2 0 2 4

T2 20 20 2 1 2 6

T3 40 40 2 2 1 7

T4 80 80 3 3 1 10

T5 160 160 1 4 0 10

T6 320 320 1 5 0 13

Now let’s consider the first scenario. For extensibility issues the designer wants
to reserve just 3 priority levels for this application at the implementation level.
To this end, he fixes the number N to 3 and asks the pattern to determine
minimum processor utilization that should be reserved in that case. Then, the
pattern generates the corresponding value which is equal to 46, 25%. For the
second scenario, if the designer fixes the Max-Utilization to 45%, the pattern
determines that the minimum number of priority levels that should be reserved
for such utilization is 4 (N=4). Fig.4 illustrates the variation of the Cost with
regard to the extensibility for the considered application.

We have already mentioned that the extensibility is inversely proportional to
the number of priority levels reserved at the implementation level. Hence, in the
graph we evaluate the extensibility to be equal to 1

N . We can conclude that the
performance loss increases when the extensibility increases.
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Fig. 4. Cost Variation Versus Extensibility

Insufficient Priority Levels for Large Scale Applications

In this section, we are interested on the evaluation of the merge pattern on large
scale systems. In that case, during the deployment phase, the problem of insuf-
ficient number of priority levels authorized by the target RTOS will more likely
occur. To this end, we consider different design models. Each model M consists
of {T1, T2, , Tn} ; n defines the number of distinct priority levels used in the
model. We suppose also that each task Ti ∈ M is defined by a set of parameters
(pi, Ci, Pi, Di, Bi). In addition, we assume that for each model ∀i, j ∈ {1..n}, Ti

and Tj are harmonic (i.e. Pj mod Pi =0) and ∀i, j ∈ {1..n} pi 
= pj . This brings
us to identify different categories of RTOS depending on their number of distinct
priority levels. In this paper, we consider two examples of RTOSs; MicroC/OS-
II [8] and Ecos [9]. Indeed, MicroC/OS-II offers 56 applicative distinct priority
levels, however, Ecos provides the possibility to configure the number of dis-
tinct priority levels from 1 to 32 (we consider two cases where N=16 and N=8).
For each considered model, we evaluate the deployment cost when a particular
RTOS is targeted. Fig.4 (a) shows the variation of the cost (in %) for the already
mentioned RTOSs in function of the application (by increasing the priority levels
number).

(a) Cost Evaluation For MicroC-
OS/II and Ecos

(b) Evaluation of the Resolution
Time in Seconds

Fig. 5. Evaluation of The Merge Pattern for Large Scale Applications
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This evaluation shows that, in some cases, the deployment of a real time
application requires some performance degradation, due the implementation
constraints, to generate valid implementation models. This deployment cost is
strongly influenced by the application and the target operating system. The
merge pattern that we have proposed offers to the designer the possibility to
estimate the performance loss for a particular application and a RTOS and
thus provides a source of guidance for the selection of the appropriate operating
system.

Fig.4 (b) illustrates the variation of the resolution time in seconds. In fact, in
this graph we evaluate the execution time of the linear program using CPLEX for
different applications and for the Ecos Operating system configured respectively
with 8 and 16 authorized applicative priority levels. From these graphics (Fig.4
(b)) we can conclude that the time required by the linear program to make
decision is bounded even for large scale applications. The second conclusion is
that this time depends strongly on the application and the target RTOS. In fact,
it increases when the number of distinct priority levels in the architectural model
increases and the number of priority levels authorized by the RTOS decreases.

6 Related Work

Several approaches have been proposed to provide guidelines for the software de-
velopment of RTES in a MDD context. In [10], the authors propose a generative
process to transform an application deployed on one RTOS to another based on
an explicit description of the involved RTOSs using SRM. This approach focuses
especially on the portability requirement by proposing generic transformations
enabling the deployment of the same application on several RTOSs. This work
focuses on the structural aspect but makes the assumption that the deployment
is always possible without any consideration of the potential difference between
the semantics of RTOSs resources. The authors in [11] extend the previous work
by introducing behavioural information in platforms description. This approach
focuses on the separation of concerns and portability while ensuring an auto-
matic full code generation. To achieve that, the authors introduce behavioural
patterns in platform models for a detailed description of the different services
offered by the target platform. Indeed, these previously mentioned works do not
consider real-time validation.

In order to address real-time concerns, several works focus a specific standard
and do not address the portability issue. In [13], the author extends the RT-
UML profile to support the creation and validation of OSEK-compliant models.
In [14], the authors use an OSEK-compliant abstract platform called Smar-
tOSEK [15] and define a set of transformation rules to create OSEK-compliant
models from UML models. In addition, this approach enables the simulation of
the resulting OSEK-compliant models and provides the designer with the re-
sults to optimize this model at design level. In [16], the authors use RT-UML to
annotate UML models describing real-time applications with timing properties.
Then they identify the mapping rules between the resulting model and RT-Java



116 R. Mzid et al.

as a target platform. The objective of this work is to properly propagate the
real-time constraints into the RT-java specific model in order to validate them.
From the other side, many existing works define MDD approaches to guide the
design choices and generate architectural models satisfying timing properties.
In [12] authors provides an approach to automatically generate the architec-
tural model from the functional blocks. The focus of this work is to automate
this generation and ensure optimized architectural models in terms of timing
properties. In [1] authors propose a MARTE-based methodology by introducing
analysis from the functional level to guide the generation of a valid design model
in terms of timing requirements. These works still keeping portability by ensur-
ing platform-independent architectural models. However they in general end at
the design level and do not focus on deployment issues. Hence, our approach
aims at extending the latter methodology [1] by focusing on the refinement to-
ward implementation of the resulting design model. This work is a step toward
providing portability and separation of concerns from one side and early verifi-
cation of timing properties from the other side during the deployment process
of a real-time application on a several RTOSs.

7 Conclusion and Perspectives

In this paper we have proposed a model-driven approach to guide the transition
from the design to the implementation model during the development of real-
time applications. We have especially addressed the problem where the number
of distinct priority levels used to validate the design model exceeds the number
authorized by the RTOS. In that case, we have proposed a software pattern
that we have called Distinct Priority Merge Pattern(DPMP) that automatically
perform the re-factoring of the architectural model with the objective of solving
the problem. The application of this pattern preserves the high level specification
and the timing requirements while reducing the number of used distinct priority
levels. Due to the complexity of this treatment, a MILP formulation of this
pattern have been proposed. This formulation permits to confirm whether a
solution exists for the problem and finds the better one in terms of processor
utilization.

As perspective of this work, we aim at considering other problems such as
timer granularity, equal priority levels, etc and proposing for each particular
problem a software pattern to enrich our pattern base. In addition, we can extend
this work by considering the behavioural aspect and thus other problems must
be considered and consequently additional software pattern must be defined.
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Abstract. Model typing brings the benefit associated with well-defined type sys-
tems to model-driven development (MDD) through the assignment of specific
types to models. In particular, model type systems enable reuse of model ma-
nipulation operations (e.g., model transformations), where manipulations defined
for models typed by a supertype can be used to manipulate models typed by sub-
types. Existing model typing approaches are limited to structural typing defined
in terms of object-oriented metamodels (e.g., MOF), in which the only structural
(well-formedness) constraints are those that can be expressed directly in meta-
modeling notations (e.g., multiplicity and element containment constraints). In
this paper we describe an extension to model typing that takes into consideration
structural invariants, other than those that can be expressed directly in a metamod-
eling notation, and specifications of behaviors associated with model types. The
approach supports contract-aware substitutability, where contracts are defined in
terms of invariants and pre-/post-conditions expressed using OCL. Support for
behavioral typing paves the way for behavioral substitutability. We also describe
a technique to rigorously reason about model type substitutability as supported
by contracts, and apply the technique in a usage scenario from the optimizing
compiler community.

Keywords: SLE, Modeling Languages, Model Typing, Contract Matching,
Model Substitutability.

1 Introduction

In Model Driven Engineering (MDE), developers of complex software systems create
and transform models using model authoring and transformation technologies. The rise
in the number of new modeling languages, however, presents a challenge because it
requires software engineers to create complex transformations that manipulate models
expressed in the new languages. Building these transformations from scratch requires
significant effort. To address this problem, various approaches [1][2][3][4][5] have re-
cently been proposed to facilitate the reuse of model transformation across different
languages.

Model substitutability rules that are based on model typing [1] can be used to sup-
port model transformation reuse. For example, a subtyping relation that supports model
substitutability allows a model typed by A to be safely used where a model typed by B
is expected, where B is the supertype of A. The transformation used for models typed
by B can thus be reused on models typed by A.
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Current approaches to model type definition and implementation, however, only con-
sider MOF-based metamodels as model types. In MOF, contracts (e.g., pre-conditio-ns,
post-conditions and invariants) are externally defined, that is, they are defined in another
language, for example, the Object Constraint Language (OCL) [6]. Neither the original
paper on model typing [1] nor the follow-up paper [7] considers externally defined con-
tracts in subtyping relations. This limits the utility of model subtyping in model-based
software development approaches that are contract based (e.g., design by contract [8]).
There is thus a need for model typing that provides support for typing models with
contracts.

In this paper we propose a form of model typing that supports contract-aware sub-
stitutability, where contracts are defined in terms of invariants and pre-/post-conditions
expressed using OCL. We add invariants to model types that specify additional struc-
tural properties, and use operation pre-/post-conditions to specify the transformation
rules on model types. We also describe a technique for rigorously reasoning about the
substitutability of models with contracts.

The rest of the paper is organized as follows. Section 2 illustrates the need for
contract-aware substitutability using motivating examples from the high-performance
embedded system design domain. Section 3 presents background material needed to
understand the work described in this paper. Section 4 presents a formal definition of
the subtyping relation between two model types that include contracts, and describes
tool support for reasoning about substitutability on model types. Section 5 describes
limitations of the approach. Section 6 discusses related work, and Section 7 concludes
the paper with a discussion of planned future work.

2 Motivating Examples

In this section we describe two motivating examples from the high-performance em-
bedded system design domain. Modern heterogeneous embedded hardware platforms
are notoriously difficult to design and to program. In this context, tool-supported model
based approaches (e.g., Simulink, Ptolemy) are now widely acknowledged as some of
the most effective approaches to designing embedded systems.

Typically, these model-based approaches use tool chains that manipulate many dif-
ferent types of models. For example, structural platform description models range from
system level models that abstract over processing and storage resource with their inter-
connections, to very low level Register-to-Logic level circuit models that are used to
describe the structure of hardware accelerators within the platforms.

Similarly, behavioral description models range from application level modeling of
the application using Models of Computation such as Synchronous Data Flow Graphs
or Kahn Process Networks, to fine grain scalar operation level representations such
as the basic-block level instruction dependence graph used in an optimizing compiler
back-end.

Most of these tool chains share a common goal: They aim to produce highly opti-
mized implementations. This requires the use of advanced algorithms that implement
very complex model manipulations. It is also the case that these manipulations often
have similar algorithmic patterns. These patterns can be used as the basis for develop-
ing reusable model transformations.
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2.1 Example 1: Using Model Types to Support Structural Substitutability

In the optimizing compiler domain, a variety of models describing different aspects of
languages are manipulated (i.e., analyzed and transformed) at different stages of the
compilation process. While the analyses and transformations are different, they also
share many common characteristics. For example, consider algorithms for schedule
optimization. Obtaining an optimized implementation of an application on a target plat-
form involves performing several static scheduling optimizations. Many of these algo-
rithms have common characteristics, for example, they are often expressed as an acyclic
graph resource constrained scheduling problem, for which many techniques (heuristics
or MILP-Mixed Integer Linear Programming-solver based) have been proposed. Be-
cause these scheduling algorithms involve very sophisticated algorithms, reusable algo-
rithms that can be tailored to the different types of representations (models) are highly
desirable. For example, it would be useful to have a reusable scheduling algorithm that
can be used to derive a schedule for an Application level Synchronous Data-flow graph
on a multi-processor based implementation, as well as for generating efficient code for
a customized VLIW (Very Long Instruction Word) embedded processor.

However in this case, structural substitutability based only on constraints that can be
expressed directly in a metamodel (e.g., multiplicity or element containment constraint)
is not sufficient; other structural constraints need to be specified. For example, a clas-
sical static scheduling toolset can only operate on acyclic dependence graphs and the
acyclicity property cannot be expressed directly in a metamodel. A language such as the
Object Constraint Language (OCL) is needed to specify properties of acyclic graphs. In
this case, model substitutability requires that a substitute model enforces the acyclicity
constraint expressed in OCL. Model typing based on metamodels with OCL constraints
can be used to enable such structural substitutability.

2.2 Example 2: Using Model Types to Support Contract-Based Behavioral
Substitutability

Behavioral Substitutability for Model Transformations: A consistent scheduling
tran-sformation must ensure that every node in the dependence graph is scheduled at
least once. This property can be expressed as a post-condition on the scheduling trans-
formation and thus any scheduler implementation should enforce this post-condition.
The effective post-condition could even be stricter; in our case we could consider a
post-condition that restricts a node to be scheduled exactly once.

The same holds for the pre-condition. For example, most schedulers operate on
acyclic graphs and this can be translated as a pre-condition for the transformation. How-
ever, there also exists a class of pipelined schedulers that operate on cyclic graphs, in
which cycles implement delays to preserve causality. For such pipelined schedulers, the
pre-condition would not forbid cycles in the dependence graph. That would, however,
prevent a pipelined scheduler from being used to schedule acyclic graphs in a design
flow.

Contract Based Tool Chain Validation: An optimizing compiler custom tool chain
consists of a sequence of analyses and transformations (called compiler passes)
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Fig. 1. A Model based compiler tool chain for embedded multiprocessors

executed in a very carefully chosen order. They can hence be seen as a model trans-
formation chain. Compiler passes cannot be combined arbitrarily, as each pass usually
assumes that the program representation at hand has very specific properties.

For example, consider a compiler tool chain for generating software code from Syn-
chronous Data Flow Graph (SDF) model specifications on an embedded platform. Such
a tool chain is illustrated in Figure 1. Before any code can be produced, the SDF first
needs to be scheduled on this platform. Depending on whether the target system con-
sists of a single or several processors, it is likely that different scheduling algorithms
will be used. Similarly, different code generators (i.e. pretty printers) will have to be
used depending on whether we target a mono-processor or multiprocessor. Two back-
end code generators are shown in Figure 1. The mono-processor code generator can
only be used after a mono-processor scheduling stage, whereas the second back-end is
more general and can be used for both types of scheduling.

These constraints – that is targeting one or several processing resources – apply to
the result of the scheduling stage and to the input on the code generation stage. They can
hence be modeled as pre-conditions (resp. post-conditions) expressed using OCL. When
chaining a given scheduling and code generation pass, we can ensure the consistency
of the flow by checking if the pre-/post-conditions of two chained transformation are
satisfiable.

3 Background

In this section, we describe the concepts underlying our use of model types to support
model substitutability. We first present the MOF (Meta-Object Facility) meta-language,
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the basis for metamodels, and thus model manipulation operators. We then give an
overview of model types as currently defined and implemented [1,7], and describe the
limitations addressed by the approach presented in this paper.

3.1 Metamodeling

The Meta-Object Facility (MOF) [9] is the OMG’s standardized meta-language, i.e.,
a language to define metamodels. As such, it is a common basis for a vast majority
of modeling languages and tools. A metamodel defines a set of models on which it is
possible to apply common operators. The model substitutability approach presented in
this paper is applicable to models expressed in languages with MOF metamodels.

MOF supports the definition of metamodels using Classes and Properties.
Classes can be abstract (i.e., they cannot be instantiated) and have Properties and
Operations, which respectively declare attributes and references, and the signatures
of methods available to the modeled concept. A Property can be composite (an object
can only be referenced through one composite Property at a given instant), derived
(i.e., calculated from other Properties) and read-only (i.e., cannot be modified). A
Property can also have an opposite Property with which it forms a bidirectional
association.

Metamodels can be viewed as class diagrams in which each metamodel element can
be instantiated to obtain objects representing model elements. However, metamodel
elements are themeslves instances of MOF elements and thus a metamodel can be drawn
as an object diagram where each concept is an instance of one of the MOF elements
(e.g., Class or Property classes).

3.2 Model Typing

Model Types were introduced by Steel et al. [1], as an extension of object typing to
provide abstractions about the object type level and enable the reuse of model manipu-
lation operators. Informally, a model type is a substructure (referred to as a type group)
of the metamodel’s class diagram. It is important to distinguish the usage of the term
metamodel from model type. We use the term metamodel to refer to the class diagram
used to define a language, and when the same class diagram is used to define the type
of a model it is called an exact type. It is also important to note that a model has one
and only one metamodel to which it must conform, but the same model can have sev-
eral model types, where each model type is a substructure of the metamodel. Because
model types and metamodels share the same structure, it is possible to extract the exact
type of a model from its metamodel. Figure 2 represents a model m1 that conforms to
a metamodel MM1 and is typed by model types MTA and MTB, where MTB is the exact
type of m1 that is extracted from MM1. Both metamodels and model types conform to
MOF. Given the above, a model type can be defined as follows:

Definition 1. (Model type) A model type is a substructure of a metamodel’s class
structure. A model does not have to include instantiations of each class in an asso-
ciated model type, that is, the set of classes of elements in a model can be smaller than
the classes in its model type.
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Fig. 2. Conformance, model typing and model subtyping relations

Substitutability is the ability to safely use an object of type A where an object of type B is
expected. Substitutability is supported through subtyping in object-oriented languages.
However, object subtyping does not handle specializations of model substructures (or
type groups)1. One way to safely reuse a model manipulation operation created for a
model typed by MTA on a model typed by MTB is to ensure that MTA contains elements
that can be substituted by elements defined by MTB. However, it is not possible to
achieve model type substitutability through object subtyping. Thus, model typing uses
an extended definition of object type matching introduced by Bruce et al. [11], namely
MOF Class Matching.

Definition 2. (MOF class matching) MOF class T ′ matches T (written T ′ <# T ) iff
their names are equal, and for each property (respectively method) in T there is a
corresponding property (respectively method) in T ′.

The MOF class matching relation can be seen as a kind of object type matching relation
that is tailored to MOF concepts. Based on the MOF class matching relation, we can
achieve model type substitutability by defining a subtyping relation as follows:

Definition 3. (Subtyping relationship for model types) The model type subtyping
relation is a binary relation � on ModelType, the set of all model types, such that
(MTB,MTA) ∈� (also written MTB � MTA) iff ∀ TA ∈ MTA, ∃ TB ∈ MTB such that TB

<# TA.

We recently introduced four extended subtyping relations between model types that
take into account two additional criteria: The presence of heterogeneities between two
model types (using adaptation) and the considered subset of the model types (using
model type pruning) [7].

The subtyping relation as currently defined has shortcomings. In particular, the
current model typing definition and implementation only considers MOF-based meta-
models as model types (through the MOF class matching relation). Unfortunately, MOF
delegates the definitions of contracts (e.g., pre and post-conditions or invariants) to other

1 For further information on type groups see Ernst’s paper [10].
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languages (e.g., OCL, the Object Constraint Language [6]). This limits the applicabil-
ity of model typing for safely reusing model manipulations where OCL contracts are
needed to precisely specify the applicability of the model transformation or the structure
on which the model transformation can be applied (see motivating examples in Section
2). The approach described in this paper addresses this limitation.

4 Contribution

In this paper we extend the subtyping relation described in [7] by taking into account
OCL contracts for a safe substitutability of models conforming to metamodels including
contracts. This provides a safe reuse of model transformations expressed on metamodels
that include contracts. Specifically, we extend the MOF class matching (cf. Def. 2 of
Section 3) by considering contracts matching (Section 4.1) and provide a technique for
analyzing the matching of OCL contracts associated with two classes with different
model types (Section 4.2). In this section we describe the contract matching technique
we developed to support contract-aware model substitutability. We also describe an
Alloy-based prototype tool that supports contract matching (Section 4.3), and illustrate
the use of contract-aware substitutability using the motivating examples (Section 4.4).

4.1 Contract-Aware MOF Class Matching

We consider the use of OCL invariants added to MOF classes to specify additional struc-
tural properties, and OCL pre-/post-conditions defined in the context of MOF class op-
erations to specify the model manipulation rules (e.g., transformation) associated with
model types. The MOF class matching relation is thus determined by two aspects: the
structural features specified using MOF (e.g., classes, properties, operation signatures,
etc.) and the contracts expressed using OCL (e.g., invariants and pre-/post-conditions).

The substitutability through model subtyping is a specialization of the Liskov Sub-
stitution Principle [12] on the model type system. Specifically the contract matching
relation that enables contract-aware model substitutability must abide by the following
rules: (1) invariants of the supermodel type cannot be weakened in a sub model type,
(2) pre-conditions cannot be strengthened in a sub model type, and (3) post-conditions
cannot be weakened in a sub model type. The extended MOF class matching relation is
formalized as follows:

Definition 4 (Contract-aware MOF Class Matching). Class T ′ matches T (written
T ′ <# T) iff their structures match (cf. Def. 3 of [7]), their invariants match and their
operation pre-/post-conditions match, where

1 Invariants Match is defined as follows:
let T.ownedInvariant = {invT1, invT2, ..., invTk } be the invariants defined for T ;
let resultT = invT1 ∧ invT2 ∧ ... ∧ invTk;
let SuperClass(T) = {cls1, cls2, ..., clsn} where clsi is a superclass of T;
let clsi.ownedInvariant = { invi1, invi2, ..., invik } be the invariants defined for clsi,
for i = 1, .., n;
let resulti = invi1 ∧ invi2 ∧ ... ∧ invik, for i = 1, .., n;
let invs = result1 ∧ result2 ∧ ... ∧ resultn ∧ resultT ;
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let T′.ownedInvariant = {inv′T1, inv′T2, ..., inv′Tk } be the invariants defined for T ′;
let result ′T = inv′T1 ∧ inv′T2 ∧ ... ∧ inv′Tk;
let SuperClass(T′) = {cls′1, cls′2, ..., cls′n} where cls′i is a superclass of T′;
let cls′i.ownedInvariant = { inv′i1, inv′i2, ... , inv′ik } be the invariants defined for cls′i,
for i = 1, .., n;
let result ′i = inv′i1 ∧ inv′i2 ∧ ... ∧ inv′ik, for i = 1, .., n;
let invs′ = result ′1 ∧ result ′2 ∧ ... ∧ result ′n ∧ result ′T ;

The invariants of T and T′ match if Models(invs) ⊇ Models(invs′), where
Models(invs) returns all models that satisfy invs and Models(invs′) returns all
models that satisfy invs′.

2 Pre-/post-conditions Match is defined as follows:
∀ op ∈ T.ownedOperation, ∃ S′ ∈ SuperClasses(T ′) such that ∃ op′ ∈ S′.
ownedOperation and:

2.1 let op.ownedPrecondition = {pre1, pre2, ..., prek } be the pre-conditions de-
fined for op;
let pres = pre1 ∧ pre2 ∧ ... ∧ prek;
let op′.ownedPrecondition = {pre′1, pre′2, ..., pre′k } be the pre-conditions de-
fined for op′;
let pres′ = pre′1 ∧ pre′2 ∧ ... ∧ pre′k;

2.2 let op.ownedPostcondition = {post1, post2, ..., postk } be the post-conditions
defined for op;
let posts = post1 ∧ post2 ∧ ... ∧ postk;
let op′.ownedPostcondition = {post ′1, post ′2, ..., post ′k } be the post-conditions
defined for op′;
let posts′ = post ′1 ∧ post ′2 ∧ ... ∧ post ′k;

The operation specifications of T and T′ match if Models(pres′) ⊇ Models(pres)
and Models(posts) ⊇ Models(posts′)

4.2 Analyzing the Matching of Contracts

Definition 4 can be used to formally reason about the matching relation between two
MOF classes with contracts. The MOF class matching relation in Definition 4 includes
the matching of the contracts from classes of two model types. Consequently, analyzing
such relations requires one to formally analyze the relation between contracts (e.g., to
check if the models satisfying one contract includes the models satisfying the other).
To do this, a query function Models(MT , C) is used to compute all models that both
conform to a model type MT and satisfy an OCL contract C defined in MT . Thus given
contract C1 in a candidate supermodel type MT1 and contract C2 in a candidate sub
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model type MT2, C1 matches C2 iff (1) C1, C2 are invariants, and Models(MT1, C1) ⊇
Models(MT2, C2), (2) C1, C2 are pre-conditions, and Models(MT2, C2) ⊇ Models(MT1,
C1), and (3) C1, C2 are post-conditions, and Models(MT1, C1) ⊇ Models(MT2, C2).

Checking the contract matching requires a tool to implement the functionality of the
query function Models(MT , C). We use the Alloy Analyzer [13] for this purpose. The
Alloy Analyzer is used to analyze Alloy specifications. It is supported by a SAT-based
model finder. The Alloy Analyzer can generate models that conform to a model type
expressed in Alloy in terms of signatures and fields that specify the model type structure
and a predicate that expresses the contracts. In this paper we use the Alloy Analyzer at
the back-end to check whether two contracts match.

For example, given a candidate supermodel type MT1 and a candidate sub model
type MT2, with two OCL invariants respectively, C1 and C2, the procedure below can be
used to check if C1 matches C2.

1. (preprocess) Since model subtyping requires each element in the supermodel type
to be matched by an element in the sub model type (see Definition 4), the contract
defined in the supermodel type refers to elements that also exist in the sub model
type. Thus we can move C1 to MT2, and use only the sub model type (i.e., MT2) to
check whether C1 and C2 match.

2. Transform MT2 to an Alloy model using the technique described in [14]. Convert
C1 and C2 into two Alloy predicates, P1 and P2, respectively.

3. Run an empty predicate in the Alloy Analyzer to search for a model conforming to
the model type MT2. If the Analyzer returns no model satisfying the empty predi-
cate (i.e., Models(MT2, /0) = /0), Models(MT2, C1) = /0 and Models(MT2, C2) = /0.
In this case C1 matches C2 since /0 is a subset of /0; otherwise, continue to the next
step.

4. Run P1 and P2 respectively. If the Alloy Analyzer returns no model for each predi-
cate (i.e., Models(MT2, C1) = /0 and Models(MT2, C2) = /0), then C1 matches C2; if
the Alloy Analyzer returns a model (or models) for only P1, then C1 matches C2; if
the Alloy Analyzer returns a model (or models) for only P2, then C1 does not match
C2; otherwise, continue to the next step.

5. Run a predicate to search for a model satisfying both P1 and P2. If the Alloy Ana-
lyzer returns a model satisfying the predicate, continue to the next step; otherwise,
C1 does not match C2.

6. Run a predicate P3 to search for a model satisfying both P1 and ¬P2 (i.e., the nega-
tion of P2), and another predicate P4 to search for a model satisfying both P2 and
¬P1. If the Alloy Analyzer returns no model for both P3 and P4 (i.e., Models(MT2,
C1) = Models(MT2, C2)), C1 matches C2; if the Alloy Analyzer returns a model (or
models) satisfying only P3, Models(MT2, C1) ⊃ Models(MT2, C2) and C1 matches
C2; otherwise, C1 does not match C2.

The approach uses the Alloy Analyzer at the back-end to analyze the relation between
two contracts, and it thus requires a translation from OCL expressions to Alloy specifi-
cations. The OCL to Alloy translation used in the prototype tool we developed is based
on translation rules described in work by Bordbar et al. [15].
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Fig. 3. Contract Matching Checking Tool Overview

4.3 Contract Matching Checking Tool

The contract matching approach described in the previous subsection has been imple-
mented in a prototype tool. Figure 3 shows an overview of the prototype tool. It consists
of an OCL parser, an Ecore2/OCL transformer and the use of the Alloy Analyzer. The
Ecore/OCL transformer is developed using Kermeta [17], an aspect-oriented metamod-
eling tool. The inputs of the prototype are (1) an Ecore file that specifies two model
types, and (2) a textual OCL file that specifies the contracts from each model type. The
model types and contracts are automatically transformed to an Alloy model consisting
of signatures and predicates.

The prototype provides several interfaces to check contract matching. For example,
matchInv(inv1: Constraint, inv2: Constraint) is used to check whether inv1 matches
inv2. In addition, matchInvs(cls1: Class, cls2: Class) can be used to check whether the
invariants defined in cls1 and the invariants defined in cls2 match.

4.4 Case Study

In this section we illustrate how to use our approach to define model types and subtyping
relations between them to ensure a safe reuse of model transformations.

A Simple Case Study of Structural Substitutability. Let us reconsider the scheduling
example described in Section 2.1. A model transformation performs a static schedul-
ing on an acyclic dependence graph. The model transformation needs a metamodel for
“Acyclic Graph” (due to space limitation, the metamodel is not shown in the paper).
The model type AcyclicGraph (see Figure 4) shows a simple example of model type
definition for the dependency graph used in the example. Its definition consists of meta-
classes that specify a graph structure, an invariant that specifies the acyclicity property,
and a model transformation that takes as input an acyclic graph.

Suppose that in another context a colored graph is used as an intermediate repre-
sentation and it extends the concept of nodes by introducing additional information. To
reuse the transformation defined in AcyclicGraph, a colored graph must be a subtype of
AcyclicGraph. The model type ColoredAcyclicGraph ensues the subtyping relation by
adding an acyclicity invariant in its definition. However, the model type ColoredGraph
does not specify any invariants. A compilation error will thus show that the trans f o
operation cannot take as input an instance of ColoredGraph because ColoredGraph is
not a subtype of AcyclicGraph.

2 Ecore is an implementation aligned with MOF included in the Eclipse Modeling Framework
[16].
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Fig. 4. A Simple Example of Structural Substitutability in Kermeta

Fig. 5. A Simple Example of Behavioral Substitutability in Kermeta

A Simple Case Study of Behavioral Substitutability. In the optimizing compiler com-
munity, the daily task for software engineers is to design compilation chains in the right
partial order, that is, scheduling the various passes (i.e., optimization, translation, code
generation, analysis, etc.). Designing compilation chains would benefit from behavioral
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substitutability by opening the way to describe “abstract” compilation chains, capitaliz-
ing a given knowledge in terms of constraints (pre-/post-conditions) to schedule a set of
passes for a given purpose, where each pass would be then implemented in various ways,
but conforming to the pre-/post-conditions defined in the abstract compilation chain.

Figure 5 shows a simple example of model types used for the compilation chain.
Suppose that the abstract model transformation transfo defined in MT is used for opti-
mization purpose and define a post condition stating that the model must conform to the
Static Single Assignment (SSA) form. MT also contains transfo2 as the next pass of the
compilation chain and states as precondition that the model must conform to the SSA
form. The two model types subMT 1 and subMT 2 implement the model transformation
transfo but only subMT 1 ensures as postcondition the SSA form. While subMT 2 is not
in this case a sub model type to MT , a compilation error for m2.transfo().transfo2()
will be returned. This shows that the model returned by transfo in subMT 2 (typed by
subMT2) is not of type MT , and can not reuse transfo2.

5 Discussion

In this section we discuss limitations of our work, and its scope of application. We first
discuss the supported contracts in the subtyping relation of model typing (Section 5.1),
and the corresponding model substitutability provided by our approach (Section 5.2).

5.1 On the Support of Contracts in Model Typing

In this paper we consider contracts in addition to the object oriented structure described
in a metamodel. The object-oriented structure is usually defined using Ecore, an im-
plementation aligned with OMG MOF. Contracts can then be invariants expressed in
the context of the concepts (i.e., classes) defined in the MOF metamodel, and pre-/post-
conditions expressed in the context of operations specified in concepts. While invariants
restrict the structure of conforming models and their possible structural substitutability,
pre- and post-conditions specify the behavior of the conforming models (i.e. manipula-
tion by model operations) and their possible behavioral substitutability.

In our approach, we assume that the first order logic is used to express contracts in
metamodels, and we have chosen OCL to express them. We rely on the provided binding
between MOF and OCL as defined by OMG to link OCL expressions to a given MOF
metamodel.

To test the feasibility of our approach, we implemented a prototype tool that is in-
tegrated into the Kermeta workbench. The tool checks OCL-based contract-aware sub-
typing relations between model types. While the substitutability related to the MOF
structure is computed directly using Kermeta, the one related to the contracts is com-
puted using Alloy through a translation from OCL expressions to Alloy specifications,
and then an analysis of the output provided by the Alloy Analyzer. The tool only pro-
vides support for translating a subset of OCL to Alloy.

Most of the OCL operators have corresponding Alloy constructs. For example, OCL
operator f orAll corresponds to Alloy construct all, exists corresponds to some, includes
corresponds to in, excludes corresponds to !in, sum corresponds to sum, and closure
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corresponds to ∗. OCL contracts that involves such operators can be directly trans-
formed into Alloy specifications.

However, as pointed out by Anastasakis et al. [15], the translation from OCL to Al-
loy is not seamless. There are some OCL operators that do not have corresponding
Alloy constructs, and thus OCL contracts including such operators cannot be easily
transformed into Alloy specifications. Some of them can be partially supported by the
tool using the Alloy libraries. For instance, OCL operators like select and collect are
translated by the tool described in the paper using Alloy functions that implement their
semantics. Consequently, the operator iterate is partially supported by the transforma-
tion tool. The tool provides support for OCL contracts including iterate expressions that
can be rewritten as f orall with select/collect operators. However, the tool cannot be
used to deal with iterate expressions that involve arithmetic accumulation since Alloy
is a purely declarative language that does not provide support for imperative accumu-
lators. Finally, the translation cannot deal with OCL casting operators like oclAsType
since Alloy has a very simple type system that has little support for type casting.

5.2 On the Support of Modeling Language Substitutability

The research work described in the paper builds upon our previous work in [7], and
paves the way for reasoning about the subtyping relation between two model types that
include contracts. Specifically it can be used to reason about the contract-aware subtyp-
ing relation that involves structural subtyping (including not only MOF-based Object-
Oriented structure but also OCL-based first order invariants) and behavioral subtyping
(including a behavioral semantics in an axiomatic way using pre-/post-conditions on
operations).

We implement our approach in a (Kermeta-based) tool included in the Kermeta lan-
guage workbench to check advanced (i.e., including contracts) subtyping relations be-
tween modeling languages based on Ecore and OCL. These two meta-languages are
supported by the Kermeta language workbench and are used for describing the abstract
syntax and the static semantics respectively.

This approach and its corresponding implementation addresses the need illustrated
by the motivating examples from the high-performance embedded system commu-
nity used throughout the paper. The scope of the structural substitutability we offer
is bounded by OCL and its translation to Alloy, and its applicability is well founded,
e.g., in model transformation reuse in model-driven development [7].

The actual scope of behavioral substitutability is more difficult to define. The dif-
ficulty is twofold: while we support the motivating examples described in the paper,
complex situations of OCL based typing could be considered, such as type propaga-
tion in model transformation chains. Such challenges will be addressed in future work.
Moreover, the scope itself of behavioral substitutability is more difficult to delimit.

6 Related Work

The technical contribution of this paper is the integration of contract matching in the
subtyping relation of model typing to enhance the substitutability supported between
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modeling languages. As discuss in the previous section, we rely for that on the most
established translation to Alloy. Then, the work related to our contribution discussed
in this paper is the applicability of the substitutability as illustrated in the motivating
examples, namely on model transformation reuse.

Substitutability is supported through subtyping in object-oriented languages, includ-
ing the support of contracts (e.g., Eiffel [18]). However, object subtyping does not han-
dle type group specialization (i.e., the possibility to specialize relations between several
objects and thus groups of types)3. Such type group specialization have been explored
by Kühne in the context of MDE [19]. Kühne defines three model specialization rela-
tions (specification import, conceptual containment and subtyping) implying different
level of compatibility. We are only interested here in the third one, subtyping, which re-
quires an uncompromised mutator forward-compatibility, e.g., substitutability, between
instances of model types.

Several approaches have been proposed during the last decade for model transfor-
mation reuse. Strict substitutability relation, such as the first version of model type
matching presented in [1], offers the possibility to reuse model transformation through
isomorphic metamodels, i.e., metamodels with MOF-based equivalent structures. Such
possibility was first proposed in [2] where the authors introduce variable entities in
patterns for declarative transformation rules. These entities express only the needed
concepts (e.g., types, attributes, etc.) to apply the rule, allowing any tokens with these
concepts to match the pattern and thus to be processed by the rule. Latter, Cuccuru et al.
introduced the notion of semantic variation points in metamodels [3]. Variation points
are specified through abstract classes, defining a template, and metamodels can fix these
variation points by binding them to classes extending the abstract classes. Patterns con-
taining variable entities and templates can be seen as kinds of model types where the
variability has to be explicitly expressed and thus anticipated. Sanchez Cuadrado et al.
propose in [4] a notion of substitutability based on model typing and model type match-
ing, but rather to use an automatic algorithm to check the matching between two model
types, they propose a DSL that allows users to declare the matching by hand. Finally,
De Lara et al. present in [5] the concept mechanism, along with model templates and
mixin layers leveraged from generic programming to MDE. Concepts are really close to
model types as they define the requirements that a metamodel must fulfill for its models
to be processed by a transformation, under the form of a set of classes. The authors
also propose a DSL to bind a metamodel to a concept and a mechanism to generate a
specific transformation from the binding and the generic transformation defined on the
concept.

In the context of model transformation chains, existing approaches deal with explicit
relationships between model transformations. Vanhooff et al. [20] proposed a domain
specific language to model and execute a transformation chain. Aranega et al. [21] used
feature models to classify model transformations involved a transformation chain and
specified the constraints between them. The user thus can design a new transforma-
tion chain by reusing the classified transformations. Yie et al. [22] advocated the use
of several independently developed model transformation chains to convert a high-level
model into a low-level model. The interoperability among model transformation chains

3 We refer the reader interested in the type group specialization problem to the Ernst’s paper [10].
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is achieved by deriving correspondence relationships between the final models gener-
ated by each model transformation chain.

Unlike the above approaches, contract-aware model subtyping offers a unified and
formal type theory to facilitate the safe reuse of model transformations involved in a
transformation chain. It follows a declarative fashion to specify a model transformation
chain in an abstract way using pre-/post-conditions on abstract model types. This pro-
motes then the reuse of various implementations that match the conditions for a safe
execution of the model transformation chain.

7 Conclusion and Perspective

We propose in this paper a model typing theory where model types include contracts.
This includes a formally defined subtyping relation between model types, and a tool-
supported approach supporting a safe contract-aware substitutability of models con-
forming to metamodels including contracts. This ensures a safe reuse of model
transformations expressed on metamodels including contracts.

Contracts are defined in terms of invariants and pre-/post-conditions expressed us-
ing OCL on MOF-based metamodels. The invariants are added on the classes of a
metamodel to specify additional structural properties of the metamodel, and pre-/post-
conditions are added on the operations of classes to specify model transformations.
Consequently, the support of invariants in the subtyping relation ensures a safe reuse
of model transformations where OCL contracts are needed to precisely specify the
structure on which the model transformation can be applied. The support of pre-/post-
conditions paves the way for behavioral substitutability to safely reuse model transfor-
mations where OCL contracts are needed to precisely specify the applicability of the
model transformation.

The subtyping relation is based on a matching relation between two MOF classes
that include OCL contracts, and is checked thanks to a technique based on Alloy. The
actual scope of the provided contract-aware substitutability is mainly determined by the
OCL-to-Alloy translation.

We are currently extending the prototype by providing support for model types and
contracts expressed using the Kermeta language workbench. We also explore how we
can extend the approach by using SMT solvers at back-end to analyze the OCL contracts
that include more complex arithmetic calculation.
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Abstract. Model-Based Testing (MBT) uses a model of the System Un-
der Test as reference to automatically derive test cases. Since it is often
not reasonable to cover all the behaviours formalized in the model, cove-
rage criteria are applied to select a relevant subset of model behaviours.
In this paper, we propose a dedicated test coverage criterion, based on
Def-Use criteria on signal exchange, to implement MBT approach from
Systems Modeling Language (SysML) test models to validate mecha-
tronic systems. This novel criterion is introduced and the relevance of
the approach from SysML models is discussed regarding results obtained
with a dedicated MBT toolchain implementing this criterion.

Keywords: Model-Based Testing, UML/SysML notations, coverage cri-
teria, mechatronic systems, toolchain experimentation.

1 Introduction

Model-Based Testing (MBT) refers to the processes and techniques dealing with
the automatic derivation of abstract test cases (including stimuli and expected
outputs) from an abstract formal model, and the generation of executable tests
from these abstract test cases [1]. MBT is usually performed to automate and ra-
tionalize functional black-box testing activities. The abstract model, called test
model, formalizes the behavioural aspects of the System Under Test (SUT) in
the context of its environment and at a given level of abstraction. It thus cap-
tures the control and observation points, the expected dynamic behaviour, the
data associated with the tests, and finally the initial state of the SUT. The test
model must be precise and formal enough to enable unambiguous interpretations
to automate the derivation of test cases. UML4MBT approach [2] enables auto-
mated functional test generation from a UML test model written with a subset
of UML language [3] and OCL constraints [4]. These UML and OCL fragments
are respectively called UML4MBT and OCL4MBT [5]. Basically, class diagrams
define the points of control and observation of the SUT, instance diagrams define
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Fig. 1. UML4MBT existing toolchain

the initial state of the SUT and give the set of the test data, while Statemachines
with OCL constraints define the expected behaviours in a formal way.

This MBT solution is implemented by the toolchain depicted in Fig. 1. It takes
as input a test model specified by the UML4MBT/OCL4MBT language, which
has a precise and unambiguous meaning. OCL4MBT expressions indeed provide
the expected level of formalization necessary for model-based testing modeling.
This precise meaning makes it possible to simulate the execution of the models
and to automatically generate test cases. Such a test case takes the form of an
abstract sequence (abstract because it is defined at the abstraction level of the
test model) of the high-level actions modeled in the test model. These generated
test cases contain the stimuli to be executed on the SUT, but also the expected
results, obtained by resolving the associated OCL constraints. Finally, the test
cases are concretized into executable scripts to be automatically executed on the
targeted testing platform.

Since there is usually an infinite number of possible test cases that can be ge-
nerated from a test model, some test selection criteria have to be applied to select
a subset of appropriate test cases regarding the global purpose of the test cam-
paign, and/or to ensure a given coverage of the system behaviours. Test selection
criteria are usually based either on control-flow coverage [6] (such as all-states,
all-transitions, all-k-paths, etc.), or data-flow coverage [7] (such as All-Defs, All-
Uses, All-DU-Paths, etc.). Moreover, condition coverage criteria [8] (such as CC,
DC, D/CC, MC/DC, etc.) may additionally be applied to enforce the structural
coverage of the decisions of the test model. The test coverage strategy applied by
the UML4MBT approach relies both on control-flow and condition coverage cri-
teria: UML4MBT applies All transitions coverage, which ensures to cover each
transition of the UML4MBT Statemachines, and Decision/Condition Coverage
(D/CC) criterion, which ensures the coverage of all the conditions and all the
decisions of the UML4OCL annotations.

In this paper, we propose to extend the UML4MBT solution to specifically
address embedded mechatronic system domain. We thus propose to adapt this
existing approach by taking Systems Modeling Language [9] (SysML) as input
test models, and by introducing a dedicated coverage criterion, called ComCover,
to select relevant test cases from such models. A fully automated toolchain,
supporting this MBT process, is also introduced and experimentation results are
provided. The paper is organized as follows. Section 2 introduces the motivation
and the context of this research. Section 3 defines the subset of SysML notation
supported to express the test model. Section 4 and 5 respectively describe and
formalize the original ComCover criterion dedicated to such test models. Section 6
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briefly presents the toolchain supporting this approach and discusses case study
results. Section 7 finally concludes the paper.

2 Related Works

Mechatronic systems refer to systems that combine software, electronical systems
and additional mechanical parts to perform a dedicated function. In this context,
embedded softwares define a part of a larger system or product. Then, we can
deduce that the embedded system exists because the larger system needs it. That
is why testing an embedded system, without considering the system containing
it, is often not efficient. In order to completely analyze and validate this kind of
system, it appears necessary to take into account all parts which influences it.

Since 1990, the well-know simulation program PELOPS1 is developed on the
idea that, to specify a vehicle embedded systems in order to analyze it, it is
necessary to represent three specific parts: the vehicle, the driver and the envi-
ronment [10]. This realistic kind of modeling can then be validated by simulation:
theoretical results calculated using such model framework are indeed compared
with concrete results given by the physical corresponding system [11]. These
three parts have to contain all elements that can influence the behaviour of the
embedded system. This framework is nowadays still used in several works, and
defines the preamble of the work presented in this paper. However, taking into
account each environment part usually introduces combinatorial explosion prob-
lems, especially when each system part is tested independently. Moreover, in
order to detect undesired behaviour, it is necessary to study interaction network
between all the system components [12]. Consequently, our approach does not
consist in verifying properties by proving local properties of each component, but
in considering the global system components by focusing on their interactions.

A major challenge of such approaches concerns the heterogeneity of the dif-
ferent components and technology domains. To address this issue, it is needed
to make uniform the representation of components at a given and adequate ab-
stract level. [13] shows that using UML/SysML based models is an efficient way
for automation engineering to handle the complexity of embedded systems. In
this way, to avoid combinatorial problems, it is necessary to capture in the con-
text model only the information required to simulate the behaviour of the system
with regards to the evolution of its environment.

Several testing approaches for embedded systems are based on a model of
the SUT environment. Typically, as proposed in [14], a test case is defined as a
sequence of stimuli that are sent from the environment to the embedded system
under test. In order to generate test cases, the authors apply Adaptive Random
Testing and Search-Based Testing. These techniques allow to reduce combinato-
rial explosion during calculation, but gives poor information about the coverage
of the test model and make difficult to assess a certain coverage.

Concerning the choice of the modelling language, two main strategies have
been explored. As shown in [15], the first approach promotes the use of formal

1 See http://www.pelops.de/UK/index.html

http://www.pelops.de/UK/index.html
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and mathematical languages such as Petri nets and VHDL-AMS codes. This
kind of languages is powerful to specify mathematical and physical expressions,
but they are not easy to acquire and does not often correspond to software
engineer knowledge. Indeed, to be admitted by the software engineers, such ap-
proaches need to use a language widely used by software engineers. This point
of view notably motivates the second approach that considers less formal, and
often graphical, models. Moreover, in practice, starting the analysis of complex
system using too concrete models is not convenient: it is usually necessary to
begin the study using a more abstract notation in order to master the complexity
of such systems. In this way, in [16], the authors propose to develop a domain
model with UML class Diagram to represent the global structure of the environ-
ment (relationships, properties and constraints). Several behavioral models for
each environment parts are also designed using UML Statemachines to model
the dynamic part of the system. Other UML-based approaches use sequence di-
agrams, as [17], to model behavioural aspects or to represent test classification
trees. In [18], the authors propose to use SysML to initially specify the system
in a graphical manner. This language, where the object-oriented features are not
visible, makes it possible to capture the mechatronic aspects of the SUT, and
ease the interaction between different teams of multi-domain engineers.

In this paper, we also propose to use the Unified Modeling Language paradigm.
This notation gives the advantage to be widely supported in terms of tools and
training material. More precisely, we adopt SysML as specification language.
Even if SysML is a recent modeling language, it is indeed on the rise in embed-
ded system domain and some studies already use it to develop new industrial
validation approaches (e.g. Model Checking and testing of on-board space ap-
plications [19]). Moreover, SysML, being defined as an OMG standard profile of
UML, makes it possible to reuse existing testing approaches and tooling based
on UML test models. In this way, it allows to adapt the existing UML4MBT
approaches by focusing on the specific needs of testing mechatronic systems.

3 SysML4MBT Modeling

This section describes the subset of SysML notation supported to express the
test model. This description is based on a simplified version of a realistic case
study that will be used in the next sections to illustrate our approach.

3.1 Emergency-Stop Case Study

The emergency-stop case study describes a train emergency-stop system. This
example will be used in the next sections to illustrate the proposed MBT ap-
proach. This system is defined by the following functionalities and rules:
– The train can either be stationing or moving on rail track.
– It is possible to set off the emergency− stop by pulling the button button1.
– It is possible to set off the emergency− stop by pushing the button button2.
– When one of these two buttons is activated, a signal is sent to the emergency-

stop manager system, which automatically stops the train and sets off the
alarm if the train is moving, or only advises the driver if the train is stopped.
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To model this system, it is necessary to represent mechanical parts (buttons
for example) and communications between subsystems (buttons and emergency-
stop manager system) using signal. Mechatronic systems are indeed typically
composed of some logical and some physical parts that communicate using me-
chanical or physical signals. But UML4MBT is not adapted to cover such aspects:
a UML4MBT class diagram represents a logical entity of the system, and not at
all a physical system; classes contain operations and attributes but signals are
not allowed; only one Statemachine annotated by OCL expressions is allowed;
neither parallel structures (parallel states, fork and join states) nor historic states
are supported in the Statemachine; etc. That is why we decided to extend the
expressiveness of UML4MBT to model parallel Statemachines and structures,
and communication network between the subsystems of the SUT by taking into
account the communication ports and links. Moreover, we also decided to use a
subset of the SysML profile notation to capture the semantics of such embedded
systems. It should be noted that the representation of time constraints, which
is an other major aspect of embedded systems, will not be considered in the
current approach, but will be studied in future work by using a dedicated UML
extension such as MARTE profile [20].

3.2 SysML4MBT Expressiveness

The test model, specified by SysML diagrams, defines the expected behavior
of the SUT: it formalizes the control and observation points of the SUT, and
its expected behaviour. However, SysML contains a large set of diagrams that
defines a flexible notation and presents some freedom that can offer different
semantical interpretations. For practical MBT, it is necessary to select a subset
of SysML, and to clarify its semantics so that MBT tools can interpret the
models in a unambiguous way. We thus define a precise subset of SysML for test
generation purpose called SysML4MBT. A SysML4MBT model is composed of
the following entities:

– A Block Definition Diagram (BDD) represents the static view of the system.
It is defined as a stereotype of the UML class diagram. It can contain blocks,
associations, compositions, signals, flow specifications and enumerations.

– An Internal Block Diagram (IBD) represents the internal view of the system,
providing interconnections between its physical parts. The SysML IBD is
defined as a stereotype of the UML Composite Structure Diagram.

– One or more Statemachines specify the dynamical view of the system. SysML
Statemachines are directly inherited from UML Statemachines. Addition-
ally to UML4MBT, SysML4MBT enables parallel structures (parallel states,
fork/join states and multiple Statemachines) and historic states.

– In order to represent in a formal way the dynamical aspect of the system,
OCL4MBT constraints are used to define the pre and post-conditions of the
operations, and the guards and effects of the transitions in the Statemachine.
The circumflex operator, which represents a sent signal in OCL, has been
added to the OCL4MBT initial expressiveness.
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3.3 SysML4MBT Modeling

To model the emergency-stop system, the train can be divided into three parts:
the first part defines the general state of the train, the second one defines the
button system, and the third one specifies the emergency-stop manager. It should
be noted that, due to their simplicity and to simplify the presentation, only
Statemachines are presented and depicted in Fig. 2 (BDD and IBD are not shown
in this paper), and actions are all abstracted in the Statemachines. Finally, each
transition is identified by a label trX to ease the explanation understanding.

(a) Train (b) Button

(c) Emergency

Fig. 2. Statemachines of the emergency-stop case study

The Statemachine defining the behaviour of the train, contains two states:
STOP (the train is stationing) and MOV E (the train is moving). The expres-
sion callStart (resp. callStop) represents a call of start (resp. stop) operation
that is a request to move (resp. stop) the train. At the initial state, the button
system is waiting for an activation of one of the buttons. When one of them is
activated (action pullButton1 if the button1 is pulled, and action pushButton2
if the button2 is pushed), a signal is sent to the emergency manager system.
The sending of this signal is modeled by the action SendStop. Finally, the
emergency-stop manager is initially positioned in the state WAIT . When it
receives the emergency-stop signal sent by the button system (transition trig-
gered by ReceiveStop), the train will stop and the alarm will be set off if the
train is moving (guard of the transition); else, it only prevents the driver. This
example will be used in the rest of the paper to illustrate the SysML4MBT
testing approach.

4 Test Model Coverage Strategies

Some well-known criteria are usually used in Model-Based Testing techniques.
A hierarchy of structural coverage criteria is notably defined in [21] as depicted
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in Fig. 3(a). Criteria in the box are control-flow criteria and the others are data-
flow criteria, while the (inheritance) arrows define that if the criterion at the
start of the arrow is covered, the criterion pointed by this arrow is also covered.

The criterion All states consists in the coverage of each state of the model,
while All transitions ensures that each transition is covered. It means that for
each state (resp. transition), at least one test case executes it (if it is feasible).
The criterion All DU (shortcut for All Definition/Use) deals with the coverage
of each couple of definition (update) and use (reading) of each variable. It means
that each time a variable is modified in the model, for each time it is read, a test,
executing the definition before executing the use of the variable (without execut-
ing an other definition meantime) has to be generated. The criterion All DU is
defined as an extension of the All transitions criterion: it ensures the coverage
of all transitions and all definition/use pairs. The criterion All DU − paths sug-
gests the same level of coverage as All DU , but apply the approach to cover, for
each variable, all the possible paths linking a definition and a use. Finally, the
most constrained criterion of this hierarchy is the criterion All paths: it guaran-
tees the coverage of all the possible paths in the system. The All DU − paths
and All paths criteria are infeasible in practice due to combinatorial explosion
of reachable states, and can be usually applied only on very small models since
it generates a large number (potentially infinite) of test cases.

4.1 Strategy Implemented within UML4MBT

The test coverage strategy implemented within UML4MBT relies on control-flow
and condition coverage criteria. UML4MBT applies All transitions that ensures
to cover each transition, and also implements Decision/Condition Coverage cri-
terion (D/CC) for each decision branch of the model. The D/CC criterion deals
with the coverage of all the conditions and all the decision of the model. It means
that for each effect of each transition, the condition of decision structure and
the decision itself have to be true and false in at least one test case.

These criteria do not take into account particularities of SysML models. In-
deed, a major issue of SysML4MBT models in comparison with UML4MBT
models concern the representation of communication links and exchanges (send
and receive of signals) between components of the system. The next subsection
underlines this lack of the UML4MBT approach on the emergency-stop example.

4.2 Illustration of the UML4MBT Strategy

The three Statemachines of the case study model contain six transitions. Each
one contains only one behaviour without condition. Then, the application of the
All T ransitions criterion is sufficient and the D/CC criterion is of no interest
in this case. By performing UML4MBT approach to this model, the test cases
represented in Table 1 are generated (in the representation of test cases, ele-
ments in parenthesis represent automatically fired transitions, while elements
into brackets gives the name of the corresponding transition).
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Table 1. Tests generated using UML4MBT strategy

Targets Id Tests

Train state Statemachine

trA
Start the train.

S1 callStart[trA]

trB
Stop the train.

S2
callStart[trA]
→ callStop[trB]

Button system Statemachine

trC
Pull the button 1.

S3
pullButton1[trC]
→ (ReceiveStop[trE])

trD
Push the button 2.

S4
pushButton2[trD]
→ (ReceiveStop[trE])

Emergency manager Statemachine

trE
Emergency stop called
(train already stopped).

Already covered by S3
and S4.

trF
Emergency stop called
(train moving).

S5
callStart[trA]
→ pullButton1[trC]
→ (ReceiveStop[trF ])

Since the sequence S1 is included in S2, S1 is not required. Thus, to satisfy
the coverage criterion All T ransitions, the four test cases represented by the
sequences S2, S3, S4 and S5 are generated by the UML4MBT approach.

This example shows that there is a deficiency on the case study coverage be-
cause the scenario, consisting to push the button2 when the train is moving, is
not required to satisfy the criterion. In critical system context, it appears to be
necessary to test such case. Then, to avoid this lack, a more precise strategy
should be applied: for this purpose, a dedicated data-flow test selection strat-
egy, called ComCover, has been defined to cover all the configurations of signal
exchange. The next subsection introduces this dedicated criterion and defines it
with regards to the previously presented criteria.

4.3 ComCover Strategy

Within SysML4MBT test generation strategy, we are interested in the coverage
of each signal received from each signal sending. In this way, we propose to
adapt the DU approach, which concerns variables of the system, to address the
exchange of signals in order to create a sensible test metric for reactive parallel
Statemachines. This original criterion is called All DUsig, and the corresponding
strategy to select test cases, that satisfy this criterion, is called ComCover.

The All DUsig criterion, based on All DU , deals with the coverage of send
and receive events. The criterion All DUsig guarantees the coverage of the suc-
cession of the sending event and the receive event: For each transition pair that is
synchronized on the same event (one sender and one receiver), a test is required
to show that the sender triggers the receiver. In analogy with the All DU crite-
rion, the All DUsig criterion can be seen as an extension of the All transitions
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(a) Traditional hierarchy (b) Updated hierarchy

Fig. 3. Hierarchy of test coverage criteria

criterion. Thus, the All DUsig criterion ensures the coverage of all transitions
and all send/receive couples. Finally, we also define the All DUsig − paths crite-
rion, which guarantees, for each send/receive couple, the coverage of all possible
paths containing them. The criteria hierarchy is updated as shown in Fig. 3.

The strategy, which consists in generating test cases in order to guarantee
the All DUsig criterion, is called ComCover. The use of All DUsig − paths as
selection criterion has not been implemented, and not be experimented, due to
scalability issues. Indeed, All DU − paths criteria is known to be infeasible in
practice since it results in an infinite number of tests when the Statemachine
contains loops [22].

The ComCover strategy is thus based on communications between parts: its
purpose is to extract all send/receive couples of SysML4MBT Statemachines and
to cover them by at least one test case that fires the concerned signal receiving
behaviour after having fired its sending. Concretely, each behaviour BhvA (of
a transition in a Statemachine) that sends a signal to a specific port, and each
behaviour BhvB that can receive the signal sent by BhvA, are extracted from
the model. Each couple BhvA/BhvB then constitutes a test target to be covered
by at least one test case to ensure All DUsig.

4.4 Illustration of the ComCover Strategy

This section presents the results of the ComCover strategy using the SysML4MBT
emergency-stop example. This model contains two signal sendings: SendStop on
the transition trC and SendStop on trD. The receive of the signal can activate
two transitions: trE and trF . Then, four test targets can be derived: the couples
C1 (by firing trC before trE), C2 (by firing trC before trF ), C3 (by firing trD
before trE)and C4 (by firing trD before trF ). The test cases of Table 2 are then
generated using a classical breadth-search algorithm to cover each couple.

In comparison with the results obtained using UML4MBT approach, S6 and
S3 are equals, like S8 and S4, S7 and S5, and S2 and S10. On this simple
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Table 2. Test cases generated using ComCover

Targets Id Tests

C1 (trC/trE)
Pull the button 1
(train already stopped).

S6
pullButton1[trC]
→ (ReceiveStop[trE])

C2 (trC/trF)
Pull the button 1
(train moving).

S7
callStart[trA]
→ pullButton1[trC]
→ (ReceiveStop[trF ])

C3 (trD/trE)
Push the button 2
(train already stopped).

S8
pushButton2[trD]
→ (ReceiveStop[trE])

C4 (trD/trF)
Push the button 2
(train moving).

S9
callStart[trA]
→ pushButton2[trD]
→ (ReceiveStop[trF ])

Complement to guarantee All transitions

trB
Stop the train.

S10
callStart[trA]
→ callStop[trB]

example, all tests generated by the strategy of the UML4MBT approach are also
generated with the ComCover strategy. Besides, the sequence that was missing
using UML4MBT approach (activation of the emergency-stop using the button2
when the train is moving), is generated by ComCover with the sequence S9.

5 Formalization

This section introduces the formalization of the criteria D/CC and All DUsig

on the basis of SysML4MBT expressiveness.

5.1 Formalization of a SysML4MBT Model

In this subsection, we introduce the subset of SysML4MBT notation that is
required to formalize the coverage criteria. All elements annotated with ∗ are
not detailed here, but can be found in [23], where the SysML4MBT modeling
notation is completely formalized. A SysML4MBT model is composed of a Block
Definition Diagram (BDD), Internal Block Diagram (IBD) and one or more
Statemachines (SM). Internal Block Diagram, not required to formalize criteria,
will be ignored in the rest of this section. We adopt the same restrictions for
BDD in which only blocks and signals are relevant to define the criteria.

Definition 1 (Model). A SysML4MBT model can be defined by the 2-tuple
〈BDD,SMS〉, where BDD represents the Block Definition Diagram and SMS
is a set of Statemachine Diagrams (SM).

Definition 2 (BDD). A BDD is defined by the 2-tuple 〈SIGS,BLOCKS〉,
where SIGS is the set of all signals and BLOCKS is the set of all blocks.
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Definition 3 (Block). A Block BLOCK is defined by the 3-tuple 〈OPS∗,
PROPS∗, PORTS∗〉, where OPS is a set of all operations, PROPS the set
of all properties, and PORTS the set of all ports contained in the block.

To directly access to block elements of a model M, we define the accessors
M.allProps, M.allOps and M.allPorts that respectively represent the set of
all properties, operations and ports of the model M . We can now formalize the
SysML4MBT Statemachine and its transitions. A transition starts from a state
and reaches an other (which can be the same), and can be guarded and triggered
by an event. When this event appends, if the guard of the transition holds, the
transition is fired and one of its behaviours is executed.

Definition 4 (SM). A Statemachine is represented by a 2-tuple 〈STATES∗,
TRANS〉, where STATES denotes all states of the Statemachine Diagram, and
TRANS is a set of all transitions of the Statemachine Diagram.

Definition 5 (Transition). A transition is defined by 〈TRstart∗, TRend∗,
TRtrig, TRguard∗, TRbhvs〉 where:
– TRstart is the initial state of the transition.
– TRend is the final state of the transition.
– TRtrig corresponds to the trigger of the transition

TRtrig ∈ ((BDD.SIGS ∗ allPorts) ∪ allOps).
– TRguard defines the guard of the transition.
– TRbhvs contains all behaviours of the transition.

The behaviours of the transition are defined by an effect and a guard, which
is a boolean expression on states that must hold to execute the action. It is
formalized in the following way.

Definition 6 (Behaviour). A behaviour is defined by a 2-tuple 〈BHV
decision∗, BHV action〉, where:
– BHV decision defines the guard.
– BHV action is the set of all effects that can be executed when the behaviour

is activated. An effect takes the form of a signal sending on a specific port
or an update of a property value:
(BDD.SIGS ∗ allPorts) ∪ (allProps ∗ newV alue)
(newV alue represents the new value to be associated to the property).

5.2 Formalization of a Test Case

Within test generation from SysML4MBT models, we define a test case as a
trace (sequence) of steps (operation calls).

Definition 7 (Trace). TRACES defines the set of all possible traces of the
SysML4MBT model. A trace tr, such that tr ∈ TRACES, contains an ordered
set of steps 〈StepOP ∗, StepBhv∗, AllBhvs∗〉, where:
– StepOP defines the operation triggering the behaviour.
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– StepBhv is the executed behaviour if the trigger holds.
– AllBhvs is an ordered set containing all the behaviours (including StepBhv)

triggered by StepOP .

The set of generated test cases TESTS is thus a subset of TRACES that
contains all the traces selected by the test generation strategy: TESTS ⊆
TRACES. All the elements, needed to formalize the coverage criteria D/CC
and All DUsig have been introduced.

5.3 Formalization of the Criteria

Using the definitions introduced in the previous subsection, we firstly propose in
Fig. 4, the formalization of the criterion all transitions applied on UML4MBT
model, which is refined using SysML4MBT model by All DUsig criterion.

∀ trans.(trans ∈ {t|∃ sm.(sm ∈ M.SMS ∧
t ∈ sm.TRANS)} ⇒

∃ bhvTest.(bhvTest ∈ {b|∃ (step, t).(t ∈ TESTS ∧ step ∈ t ∧
b ∈ step.AllBhvs)} ∧

bhvTest ∈ trans.TRbhvs))

Fig. 4. Formalization of All transitions criterion

The All DUsig criterion, applied to SysML4MBT model to improve its cove-
rage regarding communication exchange, is defined in Fig. 5 (in this formaliza-
tion, the formula bhvSend <step.AllBhvs bhvRec means that bhvSend is before
bhvRec in the step.AllBhvs ordered set). Informally, this formalization estab-
lishes that a test set satisfies this criterion if all pairs signal send/receive are
covered by at least one test case. The criterion All DUsig − paths enforces this
criterion by ensuring the coverage of all paths that can be used to provide the
All DUsig criterion (this criterion has not been experimented due to scalability
issues and is thus not formalized in this paper).

∀ (sig, port, bhvSend, trRec).
((sig ∈ M.BDD.SIGS ∧ port ∈ M.allPorts() ∧
bhvSend ∈ {b|∃ (sm, t).(sm ∈ M.SMS ∧

t ∈ sm.TRANS ∧ b ∈ t.TRbhvs)} ∧
trRec ∈ {t|∃ sm.(sm ∈ M.SMS ∧

t ∈ sm.TRANS)} ∧
〈sig, port〉 ∈ bhvSend.BHV action ∧
trRec.TRtrig = 〈sig, port〉)
⇒ ∃ (step, bhvRec).

(step ∈ {s|∃ t.(t ∈ TESTS ∧ s ∈ t)} ∧
bhvSend ∈ step.AllBhvs ∧
bhvRec ∈ step.AllBhvs ∧
bhvRec ∈ trRec.TRbhvs ∧
bhvSend <step.AllBhvs bhvRec))

Fig. 5. Formalization of All DUsig criterion
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Finally, we can use the formalization of a SysML4MBT model to formalize
the D/CC criterion, which is applied in our approach to complete the previous
data-flow strategies. This formalization is expressed in Fig. 6.

∀ bhv.(bhv ∈ {b|∃ (sm, t).(sm ∈ M.SMS ∧
t ∈ sm.TRANS ∧ b ∈ t.TRbhvs)}

⇒ ∃ bhvTest.(bhvTest ∈ {b|∃ (step, t).(t ∈ TESTS ∧
step ∈ t ∧ b ∈ step.AllBhvs)} ∧ bhvTest = bhv))

Fig. 6. Formalization of D/CC criterion

6 Toolchain and Experimentation Results

The ComCover approach consists to automatically derive, from a SysML4MBT
model, test cases that satisfy All DUsig. Moreover, we decide to ensure the D/CC
criterion to cover the conditional branches specified in the model. The toolchain
implementing this approach from SysML4MBT models is an extension of the
existing UML4MBT toolchain (Fig. 1 in the introduction of this paper), which
derives test cases from UML4MBT model by computing both All transitions
and D/CC test selection strategies.

The obtained toolchain, depicted in Fig. 7, translates the entities of the
SysML4MBT model into an equivalent UML4MBT model, and allows to re-
use the test generation algorithms initially developed for UML4MBT models.

Fig. 7. SysML4MBT toolchain

The implementation of the ComCover approach is then performed during the
translation of the SysML4MBTmodel into the corresponding UML4MBTmodel,
as suggested in other Model-Based approaches such as [22]. More precisely, it con-
sists to specialize the translation rules of SysML4MBT into UML4MBT model
such that applying All transitions and D/CC strategies on UML4MBT resulting
model implies the coverage of the initial SysML4MBT model by All DUsig and
D/CC criteria. The next sections give details about this implemented approach.
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6.1 Model Transformation

SysML being a profile of UML, the majority of the rewriting rules to trans-
late SysML4MBT into UML4MBT models can be automatically performed by
deleting the stereotype layer of SysML (blocks become classes, block proper-
ties become class attributes, block operations become class operation. . . ). For
specific SysML entities, the following dedicated translation rules are defined:

– Each SysML4MBT signal is translated into a dedicated UML4MBT class.
– Each receive port is translated into a link between the class representing the

block hosting the port and each class representing each signal that can be
received on this port.

– The OCL operator circumflex is translated into an OCL expression that
manipulates the link resulting from the translation of the receive ports

– Historic states are rewriting using a class attribute that simulates a memory
state and related OCL constraints are added on transitions.

– parallel structures (fork/join, parallel states and multiple Statemachines) are
translated into sequential structures by applying a synchronized product.

The SysML4MBT model is thus automatically translated into an equivalent
UML4MBT model that can be used as input of the existing test generation
tool. The rules to translate SysML4MBT models into an equivalent UML4MBT
models are detailed and formalized in [23].

6.2 ComCover Implementation

To apply the ComCover strategy, specific transitions have to be introduced dur-
ing the translation from SysML4MBT into UML4MBT model. These artificial
behaviours concern each signal send/receive couple, which defines the goal of the
All DUsig coverage criterion: each pair signal send/receive of the SysML4MBT
model is thus represented by one specific transition behaviour in the result-
ing UML4MBT model. Since UML4MBT applies a selection strategy based on
the criteria All transitions and D/CC, we can ensure that each pair signal
send/receive is covered by the generated test cases. The implementation of this
dedicated translation requires three steps. Firstly, at each generated UML4MBT
class that denotes a SysML signal, an attribute is added. This attribute is an
integer initialized to 0. Secondly, OCL expression are added to all behaviours
sending a signal to update this attribute with a specific number: in this way,
from each receive behaviour, it is possible to know from which send behaviour
the pending signal has been sent. Finally, a nested OCL conditional expression
(each condition tests a particular value of the attribute) is added to each tran-
sition triggered by a signal receive. It artificially creates behaviours that are
covered by the D/CC strategy. Covering these behaviours thus allows to ensure
the All DUsig coverage of the SysML4MBT model.
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6.3 Case Study Results

The ComCover selection strategy has been evaluated with four case studies:

– Lightings deals with the front lightings system of a car. This system allows to
independently light on and light off headlights and highlights of the car using
a control lever. The SysML4MBT model only contains simple one-to-one
communications: the test cases generated using ComCover implementation
are thus equivalent to those obtained by applying All transitions strategy.

– Lightings Extended also concerns the study of a front lighting system of a
car, but it considers the ignition subsystem and the control stick is replaced
by a tactile panel. Thus, communications are more complex than Lightings
case study. The SysML4MBT model looks like smaller but contains, in fact,
more functionalities. For instance, in this case study, an historic state adds
complexity in the model, and the model manages much more signals. That
is why the use of ComCover becomes relevant and more tests are generated
and improves the coverage of the SysML4MBT test model.

– Wiper specifies a wiper system of a car. Modeled functionalities are speed of
drying up (low, high and intermittently) and windows cleaning with drying
up. A lot of mechatronic parts being considered and communications being
complex, a lot of relevant test cases are generated by the ComCover algorithm.

– Steering aims to examine behaviours of the steering column of a car, by ob-
serving reactions of the system contingent on road plots. In the SysML4MBT
model, road characteristics are represented using blocks. Those blocks are
linked to the steering column that defines the SUT. Test cases generated by
ComCover are more relevant regarding mechatronic validation purpose, i.e.
interactions between components and its environment.

Table 3 summarizes the global metrics of the experimentation results. From the
second to the sixth line, the amount of the different entities specified in the
SysML4MBT test model is given: Blocks, Connectors/Sending signal/Receive
signal (c/s/r), parallel Statemachines (SM), States, Transitions. States (resp.

Table 3. Case study results

Emergency Lightings Lightings Wiper Steering
Stop Extended

S
y
sM

L
4
M

B
T
m
o
d
e
l Blocks 4 6 4 15 9

c/s/r 1/2/2 4/8/4 8/14/10 26/58/65 10/25/20
SM 3 5 3 12 6

States (2,2,2) (2,2,2,2,4) (2,5,5) (1,1,1,1,1,2, (2,4,3,6,3,4)
17,10,2,2,2,2)

Transitions (3,3,3) (3,3,3,3,9) (2,8,8) (2,3,2,4,1,3, (3,8,4,5,9,8)
52,16,2,2,2,2)

All transitions 4 8 17 85 35

ComCover (new tests) 1 0 8 19 26

Total 5 8 25 104 61
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Transitions) line details the number of states (resp. transitions) of each Sta-
temachine of the model. The lines All transitions contain the number of tests
generated using this strategy, while ComCover line introduces the number of new
test cases produced by this coverage criterion. Finally, the line Total indicates
how many test cases are generated by applying both strategies.

These case studies, presenting a growing complexity in terms of model expres-
siveness and behavioral aspects, show that ComCover can be successfully applied
to embedded system domain. In the one hand, it ensures a better coverage of
communication issues specified in the test model, as shown previously with the
Emergency Stop case study. In the other hand, the number of new generated
tests is manageable. In [24], we prove that, given c, s and r being respectively
the number of Connectors, Sending signal and Receive signal of a SysML4MBT
specification, the maximum number of new tests generated by ComCover is the-
oretically equal to (s − c + 1) ∗ (r − c + 1) + (2c − r − s + 1). But in practice,
this maximum, which defines the worst case (all the signals can be sent to and
received from all the connectors) is never reached.

While Lightings, LightingsExtended and Wiper case studies have been re-
alized in an experimental way (the generated test cases have been executed
and studied using only a simulated version of the concrete mechatronic sys-
tem), Steering case study gave rise to a complete use of the toolchain (from the
SysML4MBT test model to the execution of the generated test cases on a phys-
ical test bench. More concretely, the generated test cases have been executed to
validate a concrete physical Steering Column against a Matlab/Simulink simu-
lation model. The Matlab/Simulink simulation model has been used as reference
to calculate the expected value on the concrete system. In this way, the generated
test cases have been executed on the physical test bench and values calculated
by the simulator were compared with the values observed on the Test Bench.

This realistic experimentation enables the detection of some errors both in the
simulation model and in the concrete system configuration. More details about
this end-to-end toolchain and the experimentation results on this case study
have been respectively published in [25] and [26]. A short videotape, exemplify-
ing it, is also available2. This experimentation, as well as the other case studies
in a less realistic manner, enabled to validate our approach. They show its rel-
evance for embedded mechatronic systems, which strongly rely on subsystem
communication, by focusing the test objectives on signal exchanges.

7 Conclusion and Future Work

This paper proposes original coverage criteria (All DUsig and All DUsig−paths)
to increase the model coverage, within MBT approach from Systems Modeling
Language, to validate mechatronic systems. These criteria are based on a Def-
Use approach focused on the communication features of the SysML test model.
A dedicated test selection strategy, called ComCover, has been defined and im-
plemented to automatically generate test cases covering the All DUsig criterion.

2 VETESS project web site - http://lifc.univ-fcomte.fr/vetess/

http://lifc.univ-fcomte.fr/vetess/
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This strategy aims to improve an existing MBT process by considering commu-
nicating embedded systems modeled using SysML. However, this result is not
restricted to this process and can be applied in all approaches that consider sys-
tems defined by material and logical subparts that communicates to each other.
Finally, this automated toolchain has been experimented with industrial case
studies, which allow to highlight the relevance of the ComCover strategy to gen-
erate test cases for communicating system. We are now investigating the use of
real-time constraints to complete the SysML4MBT test model and improve the
relevance of test cases for real-time systems. This model feature, major aspect
of embedded system domain, will be addressed using UML MARTE profile.
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13. Bonfé, M., Fantuzzi, C.: Object-oriented modeling of logic control systems for
industrial applications. Journal on Automation Technology in Practice 2 (2005)

14. Iqbal, M., Arcuri, A., Briand, L.: Automated system testing of real-time embedded
systems based on environment models. Technical Report 2011-19, Simula (2011)



Applying a Def-Use Approach on Signal Exchange 151

15. Thacker, R., Myers, C., Jones, K., Little, S.: A new verification method for em-
bedded systems. In: Proceedings of the 2009 IEEE Int. Conference on Computer
design, ICCD 2009, Piscataway, NJ, USA, pp. 193–200. IEEE Press (2009)

16. Iqbal, M.Z., Arcuri, A., Briand, L.: Environment modeling with UML/MARTE to
support black-box system testing for real-time embedded systems: Methodology
and industrial case studies. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.)
MODELS 2010, Part I. LNCS, vol. 6394, pp. 286–300. Springer, Heidelberg (2010)

17. Mueller, W., Bol, A., Krupp, A., Lundkvist, O.: Generation of executable test-
benches from natural language requirement specifications for embedded real-time
systems. In: Hinchey, M., Kleinjohann, B., Kleinjohann, L., Lindsay, P.A., Ram-
mig, F.J., Timmis, J., Wolf, M. (eds.) DIPES 2010. IFIP AICT, vol. 329, pp. 78–89.
Springer, Heidelberg (2010)

18. Evrot, D., Pétin, J.F., Morel, G., Lamy, P.: Using SysML for identification and
refinement of machinery safety properties. In: Proceedings of IFAC Workshop on
Dependable Control of Discretes Systems, Cachan, France (June 2007)

19. Faria, J., Mahomad, S., Silva, N.: Tactical results from the application of model
checking and test generation from UML/SysML model of on-board space appli-
cations. In: Proceedings of the Int. Conference on DAta Systems In Aerospace
(DASIA 2009), Istanbul, Turkey, ESA Press (May 2009) ESA SP-669

20. OMG: UML Profile for MARTE. Revised draft 07-03-03L4.1, OMG (April 2007)
21. Frankl, P., Weyuker, E.: An Applicable Family of Data Flow Testing Criteria. The

Journal of IEEE Transaction on Software Engineering 14(10), 1483–1498 (1988)
22. Weißleder, S.: Simulated satisfaction of coverage criteria on UML state machines.

In: Proceedings of the 3rd Int. Conference on Software Testing, Verification and
Validation (ICST 2010), Paris, France, pp. 117–126. IEEE Computer Society (April
2010)

23. Lasalle, J., Bouquet, F., Legeard, B., Peureux, F.: SysML to UML model trans-
formation for test generation purpose. In: 3rd Int. Workshop on UML and Formal
Methods (UML&FM 2010), Shanghai, China, pp. 1–8. ACM SIGSOFT (November
2010)

24. Lasalle, J.: Automatic Test Generation from SysML Models to Validate Embedded
Systems. PhD thesis, DISC/FEMTO-ST - University of Franche-Comté (2012)
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Abstract. Business Network Management (BNM) helps enterprises
managing their trading partner networks by making technical integra-
tion, business and social aspects visible within a common Business Net-
work (BN) model that sets them into context to each other. This allows
various roles, from the business specialist to the integration expert, to
monitor, enrich and setup business processes by collaborating across its
contexts.

In this paper we propose a common network model for BNM, which
features inter-connected business and technical perspectives capturing
the complete BN. Since the Business Process Modeling Notation (BPMN)
is a well-established standard for describing business process and inte-
gration semantics, we define a network-centric BPMN model as graph-
ical notation on UI and as basis for our BN by extending a subset of
BPMN to cover both business and integration aspects. We present a
novel approach on applying BPMN to BNM and discuss its application
to real-world BNs.

Keywords: Business Network, Business Network Management,
Network-centric BPMN.

1 Introduction

Enterprises are part of value chains consisting of business processes connecting
intra- and inter-enterprise participants. We call the network that connects these
participants with their technical, social and business relations Business Network
(BN). Even though the BN is very important for enterprises, there are few - if
any - people in the organisation who understand this network as the relevant
data is hidden in heterogeneous enterprise system landscapes. To change that,
Business Network Management (BNM) [9] allows enterprises to get insight into
their technical, social and business relations. It identifies relevant data hidden
within heterogeneous and distributed systems in complex enterprise landscapes
to computationally link it into business process and (technical) integration net-
works [10]. In addition, BNM computes semantic correlation between entities of
both perspectives.

For instance, Figure 1 shows participants in a sample business process net-
work, conceptually showing linked data within a business perspective of a (cross-)
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enterprise partner network. The participants represent business artefacts within
an enterprise, that are related to participants within the partner or customer
network. The participants as well as their relationships are considered complex
and contain the underlying business processes which specify, e.g., a business
document or goods exchange between related participants.

Fig. 1. Sample (cross-) enterprise BN showing participants and business document
exchange as edges. Enterprises are characterised by their roles they play within a
process.

For that, we present a novel and comprehensive approach on how to develop a
model for network-centric business data. Based on a sound definition of BNs, we
define the network-centric model suitable for BNM from basic to more complex
structural, integration and business specific entities. The model is able to bridge
from BNM to related areas like BPM. In this paper we describe the use of BPMN
version 2.01 for our BN model and discuss specialisations needed for the specific
domain. The approach leads to a network model which challenges BPMN in
areas of nodes and edges, integration and business artefacts, semantic links, and
mass network data management. The BN covers these areas and proposes new
entities relevant for networks. For the evaluation of our approach we implemented
a BNM prototype [11] and applied it to real-world enterprise landscapes.

We introduce BNs in Section 2 and discuss their design principles in Section
3. The BN is defined in Section 4. In Section 5 we show its application in a BNM
system and share our experiences. We conclude with related work in Section 6,
summarize and outline future work in Section 7.

2 Business Networks

The BN shown in Figure 1 is a conceptual view on how business-related par-
ticipants exchange business documents and thus interrelate within and across

1 http://www.omg.org/spec/BPMN/2.0/
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Fig. 2. Sample (technical) Integration Network showing logical systems as participants
with embedded integration capabilities and standalone middleware

enterprises. The underlying business processes are actually implemented within
the applications and integration capabilities of the enterprises denoting a more
technical perspective, called integration network. Hence, the definition of the
network for enterprises contains applications and middleware systems for inter-
nal business processes related to external processes interacting with business
partners like suppliers, transport carriers, dealers. Figure 2 sketches a gener-
alized view of such a network. When looking at an enterprise landscape, the
systems within the integration network can be classified into different categories
based on the integration content and the role they play. The classification pro-
vides insight into the capabilities and complexity of the network and allows to
manage business processes, contextualized visualization and operations on the
network. These categories span from applications with embedded connectivity or
even integration capabilities, like proxies, enterprise services, composite applica-
tions or applications with service adaptation (Categories I+II), over standalone
middleware instances with flexible pipeline processing (e.g., mapping, routing)
and connectivity to legacy systems (Categories III+IV), to Business to Business
(B2B) gateways for cross-enterprise document exchange (Categories V+VI) and
system management solutions, which allow to operate these systems, their soft-
ware and lifecycle (Category VII). The linked business processes define the roles
applications play and their business document exchange. The knowledge about
the business process as well as the integration domain, leads to a definition of
a network where participants represent nodes and relationships between partic-
ipants denote edges. Examples for participants are applications based on inte-
gration or business information. Relationships stand for integration or business
documents as well as semantic relations between participants. Participants play
roles within the network, which are defined by their relationships. Roles can be
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retailer, mediator or contact person. Content of different kind, like social media
models, process logs, is defined by participants. When the content is shared via
relationships, it is protected by access control mechanisms, as references are by
privacy control. The sample networks hint on a conceptual model that covers
the definition of a BN and sketches its foundation.

3 Network Model Design Principles and Decisions

The BNs consist of different complementing perspectives like business process,
integration, social/ orgranizational, whose real-world entities like hosts, business
systems, applications and (semantic) relations shall be covered by the model
(REQ-1 : ”one model” approach, different perspectives with domain-specific en-
tities; REQ-2 : semantic relations, cross-perspective contexts, e.g., from process
to host). In our approach, the model serves as visual represenation (REQ-3 :
visualization, for (non-)technical persona/ roles) and standardized exchange for-
mat (REQ-4 : computer readable, exchange format is well-standardized), e.g., for
data exchange with related fields like BPM (see Section 6). The notation shall
cover the requirements for defining entities, their relationships and properties
representing the business network (REQ-5 : network model). More precisely, the
integration perspective shall cover the common integration patterns [7], called
Enterprise Integration Pattern (EIP), as well as the integration artefacts dis-
cussed in Section 2 (REQ-6 : cover integration domain), and the business process
perspective shall model business aspects like business entities and the business
document exchange (REQ-7 : cover business domain).

Alternatives considered were notations like the Service Component Architec-
ture (SCA) [16] and SoaML [17], which focus on the technical communication
(e.g., within Service oriented Architectures), business related approaches like
ARIS [1] or Supply-chain operations reference-model (SCOR) [18], and general
modeling languages like UML [20]. In a nutshell, these approaches miss either
real-world integration or business and social artefacts like services, contact per-
son or business partner, thus contradicting the defined requirements. The SCA
and SoaML notations support the technical side very well (REQ-6 ) and have
standardized, computer-readable formats for data exchange, however not for
BNM related areas (partially contradicts REQ-4 and REQ-1 ). The modeling
of semantic relationships for contextualization is only possible when extending
the notations out of their domains (partially contradicts REQ-2 ), and support
for the business domain does not exist (contradicts REQ-7 ). The latter require-
ment is fulfilled by more business related languages like ARIS or supply chains,
which do not cover the integration aspects (contradicts REQ-6 ). With the gen-
eral modeling approaches like UML, the domain specificities can be modeled
(REQ-6, REQ-7 ). However for the same reasons they do not offer an business
process near exchange format (partially contradicts REQ-4 ).

The Business Process Modeling Notation (BPMN) is a standard for defin-
ing, visualizing (REQ-3 ) and exchanging business procedures within (A2A) and
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across (B2B) enterprises and is widely used within disciplines related to BNM
like BPM [9] (REQ-4 ). The business aspects are well covered through the busi-
ness process near notation (REQ-7 ) and the integration aspects, including the
EIP and different categories of integration, have been proven to be expressable
in BPMN [19] (REQ-6 ). With the BPMN conversation diagram, which was pub-
lished in the standard in version 2.0, the different perspectives can be represented
(REQ-1 ) and semantic relationships exisit between some of the model entities
(REQ-2 ). A part of the contribution of this work is to define a network model
suitable for BNM (REQ-5 ) and map the business and integration domain to the
network. Hence this matches the defined requirements, we decided to base our
BN on BPMN.

4 The Business Network Model

4.1 Basic Business Network Entities

The BN Model defines a subset of BPMN. Figure 3 shows the mapping to the
BN’s basic entities.

Fig. 3. Basic Business Network Model entities derived from BPMN

The Network itself is represented by the BPMN Conversation Diagram, as a
special type of Collaboration Diagram, and defines a superset of the computed
network and all manual extensions. BPMN Pools, referred to as Participant, and
BPMN Conversation within the conversation diagram represent the process, doc-
ument and control flow between business partners, applications and systems. For
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(a) Business Perspective (b) Integration Perspective

Fig. 4. Sample BN representation in network-centric BPMN

instance, Figures 1 and 2 show a conceptualized BN representation of an out-
bound delivery process of an enterprise from different perspectives according to
[13]. The BN model differentiates between a business perspective (Figure 4(a))
and an integration perspective (Figure 4(b)) to show the same network with
different focus and for different roles. The central logistics department (HQ Lo-
gistics) interacts via application system HQP with the distribution centers (DC
Hamburg/ DC Berlin) that use application system WMP. They both work with
external transport agencies (Carrier 1/ Carrier 2 ) that communicate via inter-
face standards FRADOK/ IFTMIN. Since participants of external carriers are
typically not known, they are annotated with the employed interface standards.
At the end the finance department (HQ Finance) generates an invoice via appli-
cation system HQP. The interaction between business partners, applications and
systems is depicted as top-level connections, e.g., between HQ Logistics and DC
Hamburg in Figure 4(a), and it can expand to BPMN (sub-) conversations (e.g.
OutboundDeliveryProc. and GoodMovementProc. in the corresponding technical
perspective Figure 4(b)).

Nodes and edges are the basic entities of a network. A participant represents a
node denoting a real-world entity, which communicates with other participants.
The participant has two specializations: a BusinessParticipant (e.g., HQ Logis-
tics) represents organizational units within the enterprise and external business
partners while a CommunicationParticipant (e.g., HQP) has an IT perspective
like system landscape, middleware configuration. To contextualise the two per-
spectives, a ParticipantLink is derived from the BPMN ParticipantAssociation
(not shown). For example, HQ Logistics is related to HQP by a participant link
of type ”is-implemented-by”.
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A Top-Level Connection (single, straight line) is an extension to BPMN to
visually represent the interaction/ edges between participants and group their
(sub-) conversations and message flows. The Conversation links two or more
participants and aggregates the MessageFlows. The MessageFlow represents the
flow of messages between separate participants and is specialized as Business-
Flow for business documents and CommunicationFlow for technical messages.
Conversation and message flow can be grouped by SubConversation. This no-
tion is based on the specification of BPMN, where B2B is supported by pools
(i.e., participants as black box) and message flows. The BN is defined as inter-
related participants by (sub-) conversations or message flows. Hence a network
is defined as collection of all participants and conversations inferred from NM
raw data. The network entity is used as entry point for visualizing and operat-
ing on the network. BPMN (sub-) conversations are the aggregation entities for
inter-participant communication while message flows represent a single message
exchange. A conversation can be visually expanded to several message flows.

4.2 Structural Elements of the Network

For the structural and data privacy network support the BPMN Group is used
to define Domain and NetworkSpace. A domain is a subset of the network and is
built to assign access rights to network entities with an access control list notion.
Following the idea of directory services (e.g., ActiveDirectory or LDAP) domains
can be hierarchically structured by associating multiple CategoryValues of the
BPMN Group and particularly useful for multi-tenant contexts. The network
space represents a subset of the network entities a user works with. The user
can assign arbitrary BN entities to its network space limited by the domains the
user is allowed to access. The user can propagate access rights to other users
(according to the network space) in order to share it, while the domain-based
access rights have higher priority.

For instance, Figure 5 shows a network, which is structured into three domains
namely Domain A with a sub-Domain B and a disjunctive Domain C. A user
with access rights to domains A and C has defined a network space from both
to work with. A second user with access rights for domain B only, could not
create this space nor could collaborate on it with the first user, even if the first
user shares the space. Network spaces are comparable to work spaces in common
development environments. They represent a subset of the network. Changes in
the network space are also visible in the overall network view once they are
”released” from a local copy.

4.3 Additional Integration Aspects

BPMN Messages are used to transfer data. They can be mapped to synchronous
service calls (e.g., in a SOA domain) an event or any kind of asynchronous mes-
sages used for A2A/ B2B processes. For that, BN leverages the BPMN ser-
vice extension point package to describe service interface (structure), operation
(method) and endpoint (binding) configuration (see Figure 6). This allows an
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Fig. 5. Domain and NetworkSpace

integration of SCA-like artefacts [16] into BN (e.g., by mapping WSDL or SCDL
to that triple). A participant can be associated to a ServiceInterface directly or
via ServiceOperation, which is linked to the message and describes the action
executed on the data. The ServiceBinding defines a technical communication
channel configuration used for the message exchange.

4.4 Further Business Aspects

To contextualize the basic BN with business information, a business application
related artefact called BusinessTerm is introduced (see Figure 7). A term is a
scalar value or a tuple of values, which are relevant to a business user. During
the discovery of the network, the terms are extracted from a concrete data entity
(e.g., a business object or a message). In a nutshell a business term is an an-
notation to any part of a message like header, body, or meta-data. In addition,
terms can have different values for different data representations, even if they
refer to the same real-world object. That means, that business terms do not have
canonical values, but map to specific values in different systems. For that, a term
comprises locators to identify the value in different design time artefacts (e.g.,
data types, schemas, message types) and runtime artefacts (e.g., application ob-
jects, messages). Since a term can also refer to a tuple of values, thus referencing
several locators. Moreover, when different systems use the same message type in
different ways, the concrete locator can also be interface-dependent. However,
it is assumed that this is an exceptional case. Each Locator refers to a value
domain, which is the domain of all legal values that can be identified by the
locator at runtime. The value domain for each locator is the domains for the
values that a) are the basis for a value mapping between the between different
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Fig. 6. Message, ServiceInterface, -Operation, and -Binding

representations of a business term and that b) can be returned by a BPMN
DataService. In other words, the locators are the link between the semantically
rich business terms and the data that is exchanged between systems. This link
can be used in many ways, among them the translation of business related SLAs
to operational SLAs that can then be monitored.

Fig. 7. BusinessTerm and BusinessEntity in the context of Participant, MessageFlow
and Message

A BusinessEntity is a set of views on a collection of real-world objects (see
Figure 7). Each view is based on the representation of the same object in a
different system and should provide comparable (ideally the same) information
about it. There is a 1-1 relationship between business entities and collections of
these objects in a specific role (e.g., a customer entity and a partner entity can
relate to collections that contain the same company), while the company could
act in different roles. Technically, the views are a collection of business terms.
The business entity data is accessed via locators associated to the corresponding
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business terms. Business entities can also be related to each other. As terms can
be shared between entities, a shared term is one way to indicate and potentially
represent a relationship between business entities. Business SLAs that relate to
a subset of a business term as part of a business entity can also be associated to
that entity. Business entities can be associated to participants in a Network.

To describe the access to data managed by a participant, data services are
introduced as enrichment entities, which can be associated to participants. They
act as consumers of business terms and integration activities. For instance, a
database table with application specific identifiers, needed for value mapping in
a complex message flow, could be exposed and used by a middleware system.

4.5 Relationship to Business Process Models

The BN model approach defines an abstraction of the business and integration
processes to show a BN instead. For that, a network model only contains BPMN
participants and their connections (i.e., as conversations and message flows),
where participants are used as black-box hiding internal details as depicted in
Figure 8(a).

(a) System-centric process showing the
outbound delivery conversation

(b) Extended outbound delivery pro-
cessing conversation

Fig. 8. Process entities in BN shown for the outbound delivery processing conversation

By choosing BPMN as foundation for our model, the network model can be
extend towards e.g. process steps, which denote the internal processing within
a participant. Figure 8(b) shows the extended conversation for OutboundDeliv-
eryProcessing, which now gives insight into the business process model for this
conversation. The process model helps to better understand the business context
of message flows and simplifies the communication between business and tech-
nical personas. Since the BPMN standard has no support for one participant
participating in several collaborations, process steps are currently limited to sin-
gle conversations and cannot be done simultaneously for multiple collaborations
in our extended conversation.



162 D. Ritter

5 Experiences with Real-World Business Networks

We developed a prototype BNM system that auto-discovers and graphically rep-
resents a integration network represented as BN model. The prototype works on
top of an existing integration middleware (i.e., SAP Process Integration (SAP
PI) [14]), together with system landscape data from SAP System Landscape
Directory (SAP SLD) [15]. From that, it reads out standalone middleware in-
stances with flexible pipline processing (e.g., mapping, routing and connectivity)
for legacy systems, and operations data, which includes business systems, busi-
ness components from SAP PI and enriches it with system information from SAP
SLD. For the computation of message flows, it reads all communication chan-
nel related information like interfaces and combines it with logs of all executed
message exchanges.

The novelty of this prototype is that the complete integration network is au-
tomatically discovered and does not require manual “modeling” of the network.
Besides studies on internal enterprise network testbeds, we used the prototype to
represent real-world enterprise landscapes like various internal and selected SAP
customer landscapes, from which the integration networks were auto-discovered
and we collected feedback both on discovery quality as well as on usefulness of
such a solution. This real-world validation was very successful on both counts.
Firstly, it proved that the auto-discovery is indeed feasible and resulted in highly
reliable results. Secondly, such an integration network tool would be quite help-
ful in the everyday work of an integration architect, consultant or integration
developer, since it gives an overview of the complete integration network which
is currently not possible within the middleware integration tools. The prototype
reduces the effort to document integration scenarios substantially, in particularly
by a foreseen export of network details into PDF or office format. Furthermore
helps to answer specific questions about the network which are currently still
not (or only difficult) to achieve. For example, when combing configuration and
runtime data it is possible to find connections that are not used any longer or
were seldomly used in a given period of time. Hence, one of the customers was
planning an upgrade project and with such a system a substantial migration
time and effort will be saved.

The BN is expressed as network-centric BPMN (REQ-1 entities that are made
accessible to applications for visualisation (REQ-3 ) and further processing like
network analytics, artefact and data migration, and network enrichment (REQ-
4 ). The decision for BPMN is based on the expectation to benefit from using
a widely adopted standard (REQ-4 ) (i.e., faster model design, lower learning
curve, a standardized exchange format, etc). The prototypical implementation
shows, that the network-centric BPMN allows to model (REQ-6, REQ-7 ) and
contextualize integration and business process perspectives (REQ-2 ). Partici-
pants can be expanded to show activities and assign them to flows. This com-
bines the domain with BPM, to e.g. start from the BN and drill-in to the activity
level.
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6 Related Work

Related work is conducted in the area of Process Mining (PM) [2], which is a
relatively young research discipline that sits between computational intelligence
and data mining. It has similar requirements to data discovery, conformance
and enhancement. However, its approaches and goals are different. PM strives
to derive BPM models from process logs. From that, models are automatically
generated and checked. PM as well as BNM complement BPM by making it
visible through automated discovery and in case of BNM to set the business
processes in a broader context to each other.

Gaining insight into the network of physical and logical nodes within com-
panies could be a future extension of BNM, but is not primarily relevant for
visualizing and operating business networks. This domain is mainly addressed
by the IT service management [8] and virtualization community [5].

The linked (web) data research [3,4] shares similar approaches and method-
ologies, which have so far neglected linked data within enterprises. However, our
approach for a BN model could be enhanced to cover web data artefacts like
social media or governmental entities.

7 Discussion and Future Work

In this paper we present a novel and comprehensive approach to use BPMN
in a business network domain, namely the Business Network Management. We
showed how a network model can be derived from BPMN (i.e. network-centric
BPMN) and stated on our experience when using it in a BNM system prototype,
which we applied to real-world customer landscapes.

Future work will be conducted for the BPMN especially in the areas of (1)
re-fining the termininology (e.g., naming of conversation vs. sub-conversation),
and adding views, (2) support for large networks containing hundreds or even
thousands of participants (e.g., entry-points to the network, grouping, since cur-
rently BPMN groups are only specified for flow elements but not participants),
and (3) nesting concepts (i.e., a concept of nesting for participants as for BPMN
Lanes is missing). The application to new domains like social media and other
linked (web) and public domain data will lead to the integration of new infor-
mation models relevant for enterprises. Based on the static business process and
integration networks computed by the BNM system, runtime data correlation
for real-time monitoring of messages and business and technical exceptions have
to be studied from a network model point of view.
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Abstract. Design is more important than ever as software systems continue to 
increase in complexity, become more distributed, expose multiple interfaces 
and have more integration points. Design process has also become more 
complex, involving dispersed teams, third-party components, outsourcing 
providers and business partners. Nevertheless, design tools have not sufficiently 
been coping with these growing challenges. In this paper, we discuss design 
challenges and highlight features of design tools that should help address them. 
We also describe a new application; Rational Design Management (DM) 
developed to boost the quality of design and streamline the design process. DM 
enables a collaborative approach that broadens the understanding of design, 
improves design quality and shrinks design time. DM leverages semantic web 
technologies and implements the Open Services for Lifecycle Collaboration 
(OSLC) specification to deliver a linked data approach for managing design. 
Such an approach facilitates design extensibility, reuse and integration across 
the development lifecycle. 

Keywords: Design, Architecture, Linked Data, Design Management, UML. 

1 Introduction 

Software design is a process of problem solving and planning for a software solution. 
Design has evolved from an ad-hoc, and sometimes overlooked phase, to an essential 
phase of any serious software development process [1]. Furthermore, the increasing 
complexity of today’s systems has created a set of particular challenges that makes it 
hard for software engineers to meet the continuous customer demand for higher 
quality software [2]. These challenges have prompted software engineers to pay 
closer attention to the design process to better understand, apply, and promulgate well 
known design principles, processes, and professional practices to overcome these 
challenges. Some of the challenges include design complexity, requirements 
volatility, quality aspects (e.g., performance, usability, security), distributed teams, 
efficient allocation of resources, limited budgets, unreasonable schedules, fast-
changing technology, use of third-party or open source components, and accurate 
transformation from software requirement to a software product. 
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The outcome of a design process is a software design. The impact of this design on 
other related software development activities cannot be underestimated. For example, 
good design provides an abstraction that helps determine the best possible solution. It 
also reduces development time through better reuse of services and less rework. In 
addition, it reduces integration problems through communication of and agreement on 
interfaces and deployment topologies. It also reduces the cost of maintenance by 
providing developers, who might not have been involved in the initial construction, 
with a blueprint of the application [3]. 

Furthermore, designers today vary with respect to the formality and rigor of their 
designs [ 4]. Some use informal approaches that capture design with sketches, others 
use more standard modeling notations (e.g., UML [ 5]), yet others employ full model-
driven architecture (MDA) [6], which uses transformations to automate downstream 
activities (e.g., code generation). Also, designers differ in the nature of their 
development process (agile, waterfall or hybrid). Regardless of the formality or nature 
of the design process, designers face more or less a similar set of challenges. A lot of 
these challenges are a result of design tools focusing on the designer and lacking 
support for team aspects of software design. 

Unfortunately, this lack of support for team aspects leads software designers to 
work in silos and be disconnected from the rest of the team [ 4]. Examples of this 
disconnection include: a) stakeholders unable to find designs related to their work and 
unsure if they have the latest version of the design; b) designers spending time 
creating static design documents to send to stakeholders; c) too much time being spent 
on manual design reviews late in the project or iteration only to discover changes that 
result in rework; d) failure to use the best people as efficiently or as broadly, as they 
could be; e) manually building and maintaining of spreadsheets or documents to track 
the impacts of requirements and design changes. We believe that a collaborative 
approach to design can go a long way in eliminating such scenarios. Such a 
collaborative approach has in fact become a necessity rather than a luxury.  

In this paper, we highlight what we believe to be the most pressing software design 
challenges today. We also outline some of the features that software design tools must 
have in order to cope with those challenges. Such features are identified based on our 
experience developing such tools over the years and on feedback from industry 
practitioners. We also describe our new application in this space, called Rational 
Design Management (DM) [ 7]. DM is a server-based application that is built on the 
IBM Jazz platform [ 8]. It provides a central repository for designs and capabilities that 
can be accessed from either a web client or rich clients. These capabilities allow project 
stakeholders to easily find, access and collaborate on designs. DM also implements the 
emerging Open Services for Lifecycle Collaboration (OSLC) [ 9] specification, which 
is based on the principles of linked data and semantic web. This provides DM with a 
solid architectural foundation that facilitates design reuse, extensibility and 
integration with other resources across the software development lifecycle. 

The rest of this paper is organized as follows: section  2 discusses the main software 
design challenges today and outlines a list of features that design tools should provide 
to address them; an overview of DM’s architecture and its main features is given in 
section  3; section  4 elaborates on some of DM’s technical design decisions that allow 
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it to provide these features; a brief review of related tools is given in section  5; and 
finally section  6 provides the conclusions and highlights future works. 

2 Software Design Challenges and Required Tool Features 

Software designers are facing increasing business pressures to deliver faster, reduce 
costs and meet regulatory requirements. In trying to do so, they are confronted with 
challenges ([ 2] and [3]). We discuss here some challenges that we believe matter most 
to designers based on our experience helping them over the years. For each challenge, 
we highlight features that a modern software design tool should have to deal with it. 

2.1 Expression Challenges 

These challenges stem from the need to express software design using a technology 
that best meets the nature and goals of the design and broadens its understanding by 
team members. There is no doubt that the technological landscape for software design 
is continuously evolving and includes a myriad of formalisms; some are structured 
like UML and BPMN [ 10]; while others are less structured, like free-form sketches 
and rich text documents. Some of these formalisms may also need to be customized to 
fit the needs of a particular domains or projects. A modern software design tool 
should be able to not only support these formalisms, but also ensure they integrate 
well together to deliver synergetic value and reduce the learning curve for designers. 

2.2 Access Challenges 

These challenges come from the need for team members to easily find, access and 
collaborate on designs. When designs are hard to find or access, they tend to be built 
in silos, which increases the chance of discovering errors that result in rework and 
project cost and/or schedule overruns. They also tend to be more static and go out of 
sync with other related or derived resources. Moreover, they either do not get reused 
at all or wrong versions get used instead, resulting in a waste of design resources. 
They also become less comprehensible to other stakeholders like project managers, 
developers, testers and technical writers who have not been following them. A modern 
software design tool should make it easier to search for a design, access specific versions 
of a design, facilitate collaboration on a design and reuse of previous design components. 

2.3 Lifecycle Integration Challenges 

These challenges come from the need of design teams to have visibility into and 
coordinate activities on other interrelated lifecycle resources (e.g., requirements, work 
items, code, builds, test cases and test results). Faced with difficulties tracing to and 
assessing impact of change on those resources, designers tend to work in silos and 
defer coordination to the end, when rework is least possible and most expensive. This 
challenge occurs due to missing or poor integration between lifecycle resources that 
are likely to be managed by different applications. A modern software design tool 
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should allow designs to be linked to, and have rich data-integrations with, other 
lifecycle resources. It should also bring transparency to the development process by 
enabling designers to report on, trace to and analyze how their designs relate to those 
resources. This would allow them to answer questions like: are all requirements 
covered by the design? Has the design been completely implemented? What is the 
status of design testing? Are quality goals being met? What needs to be changed 
based on changes for the design? 

2.4 Awareness Challenges 

These challenges relate to the need of designers to stay aware of what is going on in 
the project, while they are busy getting their work done, because it might impact their 
work or they might be able to provide valuable input. Manually searching for this 
information (e.g., by sending emails or attending meetings) is time consuming and is 
usually abandoned after project schedules start to get tight, resulting in designers 
becoming unaware and slipping back into their silos. A modern software design tool 
should allow team members to stay on top of project activities, follow project progress, 
see project statistics and promptly get notified of other members’ requests. 

2.5 Configuration Management Challenges 

These challenges result from having to cope with software design variability and 
change. Software design may vary to cater for the needs of different users or 
computing environments. It also continuously changes over time to provide different 
or new functionality or to address problems. This motivates designers to anticipate 
variability and plan for it. This is also why a modern software design tool should give 
designers the ability to setup different but related configurations for design to reflect 
the varied needs of the project (e.g., different design details for different product lines, 
markets or computing environments). It should also allow each configuration to 
evolve independently over time to produce newer versions and propagate its changes 
to dependent configurations. 

2.6 Parallel Development Challenges 

These challenges appear when members of a design team work in parallel on the same 
design. Design teams vary in the development process they follow. One process may 
involve each designer working independently on a branched stream of the design and 
periodically merging it into an integrated stream. Such process provides the least 
interruption to an individual designer but makes integration between members of the 
design team harder. Alternatively, a process can be more agile where several 
designers work directly on the same copy of design. Such process leads to occasional 
interruption (when design components need to concurrently be changed by several 
designers) but provides spontaneous integration. A modern software design tool 
should cater to both kinds of processes. Specifically, it should ease the integration of 
design branches with compare and merge features. It should also improve concurrent 
editing experience by allowing finer componentization of design. Furthermore, it 
should offer design review and approval features to ease collaboration. 
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2.7 Summary 

Software design tools must evolve to address a number of important challenges. 
Among them, we believe the expression challenge is the most pressing as it makes it 
hard to use different but related formalisms together. The next pressing challenge is 
lifecycle integration as it prevents linking related lifecycle artifacts making it harder 
to understand the complete development solution. Parallel development challenges 
come next, since they make a design team less productive. They are followed by 
configuration challenges that complicate the management of design variability. 
Finally, access and awareness challenges make it harder to find and reuse designs and 
be informed of activities on the design project. 

3 Design Management: Architecture and Features 

In section  2, we outlined important challenges that face software designers today. We 
also highlighted features that should be provided in a modern software design tool to 
address them. In this section, we describe the architecture of a new software design 
application, called Rational Design Management (DM), which we developed to boost 
the productivity of the design process with collaborative features. We structure the 
description of DM’s features based on the challenges we highlighted earlier. 

3.1 Architectural Overview 

DM is a server-based application that adds new capabilities (e.g., a central design 
repository, role-based access permissions, contextual collaboration, configuration 
management, parallel development and lifecycle integration) to traditional software 
design tools, specifically Rational Software Architect (RSA) [ 11] and Rational 
Rhapsody (RHP) [ 12]. DM exposes these capabilities as a set of RESTful web 
services that are used by these tools’ rich clients, as well as a web client (Figure 1). 

DM allows designs to be managed in one of two modes: externally managed or 
actively managed. In externally managed mode, a design is managed externally to 
DM by another file-based software configuration management (SCM) system and 
periodically (e.g., daily) gets published to DM to enable other collaborative features 
on it (e.g., reviews, comments and links). On the other hand, in actively managed 
mode, a design is managed directly and exclusively by DM. One advantage of 
externally managed mode is the ability to access a design offline, while in actively 
managed mode a live connection to DM is required. Another advantage is the ability 
to manage both design and non-design resources, while in actively managed mode 
only designs are managed by DM. On the other hand, an advantage of actively 
managed mode is dealing with one SCM system only (i.e., DM), versus dealing with 
two in externally managed mode. Another advantage is an enhanced design editing 
experience as DM automatically manages design componentization at a more granular 
level than is typically done in external SCM systems, reducing the possibility of 
collisions or lock-outs when multiple designers work collaborative on the design. 
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Fig. 1. Design Management Architecture 

3.2 Expression Features 

DM supports the expression of design in various domains (formalisms). DM supports 
a number of structured domains (e.g., UML, BPMN and SysML [ 13]). It also supports 
less structured domains (e.g., free-form sketches and rich text documents). A design 
domain is defined declaratively in DM with a set of OWL [ 14] ontologies specifying 
the abstract syntax of the formalism. Designs in a given domain are represented in 
RDF [ 15] using the ontologies of the domain. In addition to the predefined domains, 
DM supports user-defined domains that extend predefined domains, integrate them, or 
define completely new ones. DM also allows the customization of domain tooling by 
annotating the domain’s OWL ontologies with DM-specific tooling annotations. 

3.3 Access Features 

DM stores designs in a central repository (a RDF store) and allows role-based access 
(with read/write permissions) to them using a web client or rich clients. This makes it 
easier for designers, and other stakeholders, to find, access and browse designs. DM 
allows designs to be searched using keywords or queried with SPARQL [ 16] queries, 
allowing stakeholders to easily find the information they look for. It also allows them 
to collaborate on designs by contributing to them directly or by reviewing them with 
threaded comments and mark-ups (Figure 2). DM also supports design configuration 
management (section  3.6), which allows stakeholders to choose to access a particular 
version (e.g., the latest) of the design. 

 

Fig. 2. DM screenshot showing design comments and mark-ups on a design 
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3.4 Lifecycle Integration Features 

DM is one of several applications in an application suite called Collaborative 
Lifecycle Management (CLM) [ 17]. Other applications in the suite manage different 
lifecycle resources (e.g., requirements, tests, work items and builds). DM supports 
integration with those applications using a specification called Open Services for 
Lifecycle Collaboration (OSLC) [ 9]. By implementing OSLC, DM allows designs to 
have links to other lifecycle resources. A link allows navigation to the linked 
resource. It also allows retrieving important information (e.g., last time modified) 
about the linked resource that the defining application chooses to expose. DM 
leverages those OSLC links to generate cross-lifecycle reports. DM and other CLM 
applications also support the periodic publishing of parts of their resources, including 
OSLC links, to a common index. This allows multi-level cross-lifecycle traceability 
analysis with queries to this index (Figure 3). This analysis can answer specific 
questions on the relationship between designs and other linked resources. 

 

Fig. 3. DM screenshot showing impact of a change in Dividend Allocation 

3.5 Awareness Features 

DM provides a web-based dashboard (e.g., Figure 4) that integrates relevant project 
info into a single location. The dashboard includes widgets for showing collaboration 
details, lifecycle traceability links and design queries. For example, dashboard 
widgets can show users which design resources have the most comments over the past 
week. A dashboard is not just limited to designs; it can be a mashup that combines 
information from the entire lifecycle using OSLC links. It is also customizable for 
teams and individuals with widgets that provide news feeds, bookmarks, etc. 

 

Fig. 4. Web-based dashboard screenshot showing relevant project info 
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3.6 Configuration Management Features 

DM provides its own configuration management features. Designs in DM are 
organized into project areas based on the product components they belong to (e.g., for 
a car product, there could be project areas for engine, radiator and steering). Designs 
can have multiple versions, all of which are stored in the same project area. However, 
a project area has a specific version active at a time. This version belongs to the active 
configuration, which is one of many related configurations in an n-dimensional 
configuration space. These dimensions represent product line variability parameters 
(e.g., for a car product, they can be model, trim and year), but the last dimension 
always represents time (e.g., for a car product, it can be the milestones within a year). 
Related project areas (e.g., those belonging to the same product) can be associated 
with the same configuration space allowing them to have synchronized versions. 

A configuration in DM (e.g., Figure 5 shows a web-based configuration browser) 
can be one of two kinds: a workspace (e.g., ChildWS) or a snapshot (e.g., SomeSS). 
A workspace is a mutable configuration that allows designs to be changed. This is 
used for active work on designs. A snapshot, on the other hand, is an immutable 
configuration that has frozen at a point in time. This is used for releasing milestones. 
A new configuration can be branched off an ancestor configuration, from which it 
inherits its initial content. A new workspace can be branched off an ancestor snapshot, 
while a new snapshot can be branched off an ancestor workspace (it is not useful to 
branch a snapshot from another since it cannot change). 

 

Fig. 5. Configuration browser screenshot showing configuration hierarichy 

3.7 Parallel Development Features 

DM allows two styles of parallel development on designs. The first style is typically 
used in a traditional development process where each designer has a private 
workspace that is branched off an integration workspace (e.g., Figure 6 shows a 
branch workspace of project JKE Banking being edited in RSA). The designer makes 
changes in this branch workspace, periodically rebases by accepting latest changes 
from the integration workspace, and when ready delivers the branch changes to the 
integration workspace. This rebase and delivery operations might involve resolving 
conflicts when the same design components have changed. DM eases conflict 
resolution with a design compare and merge feature. The other style of parallel 
development, supported by DM, suits a more agile development process, where more 
than one designer works on the same active workspace in the same time. This may 
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potentially lead to lock-outs if several designers happen to edit the same design 
components concurrently. To minimize this chance, DM componentizes (fragments) 
its designs at a more granular level. This level is configurable for each domain and is 
applied automatically by DM. 

Furthermore, changes made by designers can be grouped into change sets (shown 
in Design Changes view in Figure 6). These change sets can be reverted or delivered. 
They can also be shared between designers for the purpose of collaboration, including 
commenting, reviewing and approving. 

 

Fig. 6. Parallel development screenshot in RSA with DM capabilities 

4 Design Management: Design Decisions 

In section  3, we briefly overviewed the architecture of DM and described its main 
features that allow it to address the design challenges outlined in section  2. In this 
section, we highlight some of the technical design decisions of DM that allow it to 
provide these features. In particular, we choose to discuss three main design 
decisions: 1) representing designs using RDF, 2) defining design domains using 
OWL, and 3) linking designs with other lifecycle resources using OSLC. 

4.1 Representing Designs Using RDF 

Traditional software design tools, like RSA or RHP, use XSD [ 18] or MOF [ 19] 
based architecture to represent their designs. These architectures adopt the closed 
world assumption that states that what is not currently known to be true is false. This 
makes extending these designs, for example to add domain or project-specific 
extensions, quite hard. It also makes linking different designs, say a UML detailed 
design with a BPMN process design, a daunting task. On the other hand, the open 
world assumption states that the truth value of a statement is independent of whether 
it is known to be true by a single entity. This assumption is adopted by the semantic 
web [ 20] architecture, which represents resources in RDF as a set of RDF triples that 
are grouped into graphs. These graphs describe knowledge about resources, identified 
by their URIs, which can be extended by adding extra triples to those same graphs or 
to other ones. 
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DM chooses to represent its designs as RDF graphs. This allows designs to be 
easily extensible by adding extra triples. For example, one can add triples about UML 
notation to a UML design even though the UML ontology do not describe notation. 
Furthermore, this approach makes designs easily linkable to each other by adding 
triples representing links (cross-references). For example, one can make an activity in 
a UML design reference a corresponding activity in a BPMN design. Finally, a big 
advantage of using RDF is allowing a modular approach to design, where different 
aspects of a design can be specified in different RDF graphs. This also allows parallel 
development on designs with a reduced risk of conflicting edits. In addition, 
processing (e.g., querying and transforming) designs can be parallelized. 

4.2 Defining Design Domains Using OWL 

In the semantic web architecture, knowledge about a given domain is defined as a set 
of ontologies. An ontology specifies, for a given domain, concepts (classes), 
relationships between pairs of concepts (properties), and/or individuals typed by those 
concepts (instances). However, an ontology is not a schema language for RDF in the 
traditional closed world sense. Rather, it defines the semantics of RDF data in a way 
that allows a reasoner to deduce new derived information. For example, knowing that 
John is a friend-of Bop and Bop is a friend-of Jim, and knowing that friend-of is a 
transitive property; a reasoner can deduce that John is also a friend-of Jim. Moreover, 
there is no notion of RDF graph validation in the semantic web philosophy. Rather, a 
reasoner can evaluate whether a set of RDF graphs are consistent, meaning they 
contain no contradicting statements (either directly or through inference). 

The semantic web architecture defines two ontology languages: RDFS and OWL 
(OWL has richer semantics). DM chooses to represent the abstract syntax of its 
standard and proprietary design domains in OWL. However, since those standard 
domains are originally defined in other languages like MOF (e.g., UML), UML 
profile (e.g., SysML) or XSD (e.g., BPMN), DM provides mappings from those 
languages to OWL. For example, a MOF class, a UML stereotype or a XSD 
composed type maps to an OWL class. Similarly, a MOF property, a UML property 
or an XSD attribute/element maps to an OWL property. DM also provides reverse 
mappings from OWL to those languages. These mappings are used when DM designs 
are manipulated by rich clients of supported design tools (i.e., RSA and RHP).  

Although the full details of these forward and reverse mappings are beyond the 
scope of this paper, we would like to elaborate on the way UML stereotypes are 
mapped to OWL in DM. Both a UML stereotype and its base classes in UML map to 
OWL classes. However, when mapping a UML element with a stereotype applied to 
OWL, DM represents it differently from UML. Specifically, instead of a stereotype 
application referencing a UML element, DM leverages RDF’s multi-classification 
feature (the ability of a resource to have several types) to make a UML element 
additionally classified by the stereotype class thus has access to its properties directly. 

Furthermore, DM’s web-based tooling is mostly driven declaratively by domain 
definitions. For example, a property sheet for a design resource would list all possible 
properties for the resource by querying the domain’s ontologies for all properties 
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whose domain match the resource’s types or one of their super types. However, DM 
allows customization of its web tooling through annotations to the domain’s 
ontologies that get stored in separate graphs. For example, an annotation can override 
which widget to use when displaying the value of a given property in a property sheet. 
Such annotations are themselves defined by DM-specific tooling ontologies. 

One other configuration that DM allows in a domain is design componentization. 
DM allows a domain to configure how to componentize a design by splitting it into 
different graphs. DM allows a design resource to be defined in one main graph but 
can be extended from other graphs. Also, DM distinguishes between a type of 
resource that is defined in its own graph and a type that is defined in another 
resource’s graph. A domain can flag a class in an ontology as a graph class, which 
forces DM to define resources typed by this class in their own graphs. A domain can 
also specify for each graph class, which non-graph classes can also be defined within 
the same graph. For example, the UML domain in DM only flags packages, 
classifiers, attributes and operations as graph classes. This allows only resources of 
these types to have their own graphs. This automatic componentization configuration 
can be setup to optimize collaboration (by minimizing conflicts and concurrent edits) 
and linking (since only graph resources can be linked to using OSLC). 

4.3 Linking Designs with Other Lifecycle Resources Using OSLC 

As previously mentioned in section  3.4, DM is part of the CLM suite of collaborative 
lifecycle applications. Lifecycle resources (e.g., requirements, designs, tests, work 
items) that are managed by these applications are often interrelated. These 
interrelationships can be specified as links between these resources. Such links allow 
easy navigation between the linked resources, but more importantly allow running 
queries, inspecting dependencies and generating reports across the lifecycle. 

In order for DM (and other CLM applications) to enable this kind of linking, it 
implements the OSLC specification, in particular the Architectural Management 
(AM) sub-specification. This specification enables a linked data approach to 
integrating lifecycle resources. Linked data describes a method of representing 
resources such that they can be interlinked and be more useful. This data is often 
represented in RDF. In addition to the requirement that an RDF resource is identified 
with a web URI, a linked data approach requires such URI to be deferenceable to 
useful machine readable data that includes links to other related resources. 

In order to implement the OSLC AM specification, DM exposes its design 
resources as OSLC AM resources. Specifically, it adds the oslc_am:Resource type as 
another type of design resources (using multi-classification). It also adds a number of 
expected OSLC AM properties to its resources, including a title property 
(dcterms:title) and a description property (dcterms:description). Since 
equivalent properties may already exist in a domain, DM allows a domain definition 
to specify those equivalent properties (e.g., a domain may specify that its 
domain:name property is equivalent to dcterms:title). Also, by default, DM 
exposes all triples of a resource to OSLC except those triples whose predicates (used 
properties) are flagged as private in the domain. DM uses the set of exposed  
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(non-private) properties of a given class to construct that class’s OSLC resource 
shape. This shape can be retrieved for every resource and informs a linking OSLC 
application of what properties to expect when dealing with that resource. 

5 Related Tools 

While there is no disagreement on the nature of design being a collaborative effort, 
not all design tools today support collaborative features. This section highlights three 
notable design tools that boast collaborative features and compares them to DM. 

Collaborative Protégé [ 21] is an ontology and instance editor that allows 
concurrent user access. It enables comments on ontologies and their changes. Users 
can create discussion threads, create proposals for changes, and vote on them. There 
is also live chat support within the editor. However, unlike DM, the tool does not 
have lifecycle integration capabilities, has limited SCM support, and no web access. 

TopBriad Enterprise Vocabulary Net [ 22] is a web-based tool for the collaborative 
development and management of semantic web vocabulary. It supports role-based 
access control, vocabulary publishing, review and approval, audit-trails and parallel 
development. However, unlike DM, the tool has no traceability across the lifecycle 
and has limited SCM support. 

Objecteering Teamwork [ 23] is a collaborative modeling tool. It supports a central 
shared repository, parallel development, compare/merge and integration with SCM 
tools.  However, Unlike DM, the tool has no web-based access and no role-based user 
access. It also does not support user-defined domains. Finally, it does not leverage the 
semantic web architecture. 

6 Conclusion and Future Work 

The software design process has become more challenging than ever. Some of the 
main challenges have been outlined and discussed in this paper, including: the need to 
express designs in a proper formalism, the need to find, access and collaborate on 
designs by different stakeholders, the need to link designs to other resources in the life 
cycle in order to ease navigation and perform traceability analysis, the need to 
increase awareness of project activities that relate to design, the need to plan for 
design variability and change through configuration management, and the need to 
boost the development process by supporting parallel development. 

Design Management (DM) is a new collaborative design application that we 
developed to address the outlined design challenges. Some of the features provided by 
DM include: the support of several structured and non-structured design domains with 
the ability to define new domains, the storage of design in a central repository with 
web access to ease collaboration, the ability to link designs to other lifecycle 
resources with the benefits of allowing traceability, analysis and report generation 
cross the lifecycle, the ability to have a customizable dashboard that makes designers 
aware of project activities, the ability for designers to create different configurations 
for their designs to capture their variability and perform changes in a orderly manner, 
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the ability to comment on, review and approve designs, and finally the enablement of 
parallel development on designs using a traditional or an agile development process. 
DM is able to provide many of these features by adopting the semantic web 
architecture. DM can also integrate with other lifecycle applications, using a linked 
data approach, by implementing the OSLC specification. 

Furthermore, as a new application, DM has some current limitations that we plan 
to overcome in future revisions. For example, it currently lacks a declarative way to 
define the concrete (graphical or textual) syntax of a design domain. This capability is 
important especially for user-defined domains. DM also lacks a way to declaratively 
specify a migration plan for designs when their domains evolve in a non-compatible 
way. Moreover, DM currently lacks a way to define inference rules in a domain to 
automatically compute derived information in designs to facilitate reasoning about 
them and checking their consistency. It also lacks a way to define and run design 
transformations on the server directly. We also plan to conduct case studies to 
evaluate DM’s use in industrial settings and report on its impact on productivity. 

References 

1. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. Addison-
Wesley (2003) 

2. Otero, C.: Software Engineering Design: Theory and Practice. Auerbach Publications 
(June 2012) 

3. Rozanski, N., Woods, E.: Software Systems Architecture: Working with Stakeholders 
Using Viewpoints and Perspectives, 2nd edn. (2011) 

4. Leroux, D., Ramaswany, V., Yantzi, D.: Design matters: Collaborate, automate, innovate 
and be agile, IBM Software Technical White paper (2012) 

5. Unified Modeling Language, Superstructure v2.2, 
http://www.omg.org/spec/UML/2.2/ 

6. Model Driven Architecture,  
http://en.wikipedia.org/wiki/Model-driven_architecture 

7. Rational Software Architect Design Manager,  
http://www-01.ibm.com/software/rational/products/ 
swarchitect/designmanager/ 

8. IBM Rational Jazz Platform,  
http://www-01.ibm.com/software/rational/jazz/ 

9. Open Services for Lifecycle Collaboration (OSLC) specification,  
http://open-services.net/ 

10. Business Process Model and Notation v2.0, 
http://www.omg.org/spec/BPMN/2.0/ 

11. Rational Software Architect, 
http://www.ibm.com/software/rational/products/swarchitect/ 

12. Rational Rhapsody,  
http://www-142.ibm.com/software/products/us/ 
en/ratirhaparchforsoft 

13. Systems Modeling Language v1.3, http://www.omg.org/spec/SysML/1.3/ 
14. OWL Web Ontology Language, http://www.w3.org/TR/owl-features/ 
15. RDF Primer, http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ 



178 M. Elaasar and J. Conallen 

 

16. SPARQL 1.1 Query Language, http://www.w3.org/TR/sparql11-query/ 
17. Collaborative Lifecycle Management, https://jazz.net/products/clm/ 
18. XML Schema, http://www.w3.org/XML/Schema.html  
19. Meta Object Facility v2.0, http://www.omg.org/spec/MOF/2.0/ 
20. Semantic Web, http://www.w3.org/standards/semanticweb/ 
21. The Protégé project, http://protege.stanford.edu 
22. TopBriad Enterprise Vocabulary Net, 

http://topquadrant.com/solutions/ent_vocab_net.html 
23. Objecteering Teamwork, 

http://www.objecteering.com/products_teamwork.php 



Umbra Designer: Graphical Modelling

for Telephony Services

Nicolás Buezas1, Esther Guerra1, Juan de Lara1, Javier Mart́ın2,
Miguel Monforte2, Fiorella Mori1, Eva Ogallar2, Oscar Pérez2,
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Abstract. Almira Labs is a software company that develops value-
added services for the telecommunications industry. It is focused on inno-
vative technologies that enable enterprise business and mobile and land-
line operators to offer next-generation voice-driven applications for all
types of phones. Telephony services are built atop the proprietary Um-
bra framework, which is a Java API relying on the JAIN SLEE standard
for event-based communication applications.

This paper describes Umbra Designer, a novel graphical modelling
tool for the visual development of telephony services, from which Java
code for the Umbra framework is synthesized. In this way, it is easy to
develop ready-to-use services, even by users not familiar with the Java
API or the JAIN SLEE standard. We also report on some experiments
aimed at measuring the efficiency gain derived from using the graphical
tool, compared with coding directly using the Java API.

Keywords: Model-Driven Engineering, Telephony Services, Jain SLEE,
Domain Specific Visual Languages, Code Generation.

1 Introduction

We are witnessing an exponential grow in the capabilities of mobile phones and in
the functionality demanded by their users. The usual approach to deliver mobile
services nowadays is the development of apps for a particular technology (iOS,
Android, BlackBerry), running in the device of the client. This business model
is supported by small software firms that need to develop innovative solutions in
short times, in order to cope with an increasingly competing environment. This
model has the drawback of the fragmentation of the mobile platforms, which
implies different developments for each platform. Moreover, the functionality
offered by different phones varies, from traditional landline phones to smart-
phones of the latest technology. Thus, companies may lose clients if they target
particular platforms or assume some functionality for running their app [4].

P. Van Gorp, T. Ritter, and L.M. Rose (Eds.): ECMFA 2013, LNCS 7949, pp. 179–191, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.almiralabs.com


180 N. Buezas et al.

Instead, a different alternative is to build services that do not run on the
phone, but on the provider infrastructure through dedicated servers or the cloud,
and which are accessed through phone calls [8]. This model has the advantage
that is independent of the mobile phone platform used, and to a certain extent, of
the phone capacities. While these “server-side” services cannot replace all types
of phone apps, they are useful for many scenarios. They are normally driven by
voice and DTMF key strokes. Examples include voice notes and voice-to-email
services; services to inject customized background sounds in phone calls; the
customization of the telephone keys to inject “voice smileys” in a conversation; as
well as the typical Interactive Voice Response (IVR) applications of call centers,
telebanking, credit card services, and so on. These services tend to require a
reduced customer learning curve compared to those offered by mobile apps.

JAIN SLEE [1] is a standard of the Java Community Process for developing
event-based telecommunication applications, which can be used to build server-
side telephony services. Applications developed with JAIN SLEE can be deployed
on any server implementing it. A Service Logic Execution Environment (SLEE)
is an efficient event processing application environment with high throughput
and low latency. A service is built by the construction and interconnection of
components, and their subsequent deployment in SLEE servers.

Almira Labs has developed the Umbra framework, a Java API that leverages
on the JAIN SLEE standard. The framework simplifies the development of JAIN
SLEE applications by providing a higher-level view of the event flows and proto-
cols involved in a telecommunications application, and provides true portability
across different SLEE implementations. Still, using this framework requires spe-
cialized knowledge in JAIN SLEE and Java. In order to make service construction
possible for non-experts – namely, people from customer companies – Almira and
some researchers of the Universidad Autónoma have developed Umbra Designer,
a tool for the graphical development of telephony services. The tool abstracts
services in the form of hierarchical state machines using the events and actions
available in the Umbra framework. The tool integrates a code generator that
produces a Maven [9] Java project, which can be deployed as-is in JAIN SLEE
servers for execution. The aim of the tool is to facilitate service modelling to
non-experts in the API, and speed-up the development for programmers. This is
demonstrated by a series of experiments where we have measured the efficiency
of manual service development using the Java API with respect to using the
tool, reporting an increase of productivity of more than 40% in the average case.

Paper organization. Section 2 provides some background on JAIN SLEE and the
Umbra framework. Section 3 introduces the graphical modelling tool. Section 4
presents the evaluation results. Section 5 compares with related work, and finally,
Section 6 ends with the conclusions and plans for future work.

2 Programming Voice-Driven Telephony Services

Our work targets at voice and key-strokes driven telephony services. These ser-
vices normally run on the infrastructure of the service provider. Subsection 2.1
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reviews a standard (JAIN SLEE) that can be used for building this kind of ap-
plications, while subsection 2.2 introduces a Java framework built atop JAIN
SLEE which provides higher-level abstractions and true portability across SLEE
implementations.

2.1 JAIN SLEE

JAIN SLEE is a standard by the Java Community Process that describes a
Service Logic and Execution Environment (SLEE) architecture [1]. This archi-
tecture defines a component model for structuring the logic of communications
applications as a collection of object-oriented components (called Service Build-
ing Blocks, SBBs), which can be composed into services. The SLEE architecture
also defines the contract between these components and the container that will
host them at runtime. JAIN SLEE applications are event-driven, which means
that methods of the application are invoked when suitable events arrive. In this
way, each SBB to be deployed in the SLEE identifies the event types that accepts,
and defines event handler methods with code to process such event types.

The framework provides an API for handling events, resources and connec-
tions, facilities like timers and alarms, and standard interfaces to be implemented
by SBBs. Still, the API is low-level, and service developers would benefit from
higher-level abstractions, tailored to voice-driven telephony services, as explained
in the next subsection.

2.2 The Umbra Framework

The Umbra framework hides the low-level details of JAIN SLEE to enhance per-
formance and simplify the development of telephony services. It masks the JAIN
SLEE components behind a simpler Java API that offers enhanced, scalable,
carrier-grade performance. Another benefit is portability. As different providers
offer different implementations of the standard, there may be JAIN SLEE com-
pliant applications that do not run on every SLEE container. Moreover, when
migrating an application from one vendor to another, parts of its code may need
to be re-written to ensure smooth porting and compatibility. With the Umbra
framework, the code works across JAIN SLEE platforms from the main vendors
without any recoding.

The framework enables building applications mixing both web and telephony
services. While JAIN SLEE can deal with low-level protocol issues at the back-
end, a J2EE environment can provide a front-end for Internet services. Hence,
Umbra enables the SLEE to offer web services the J2EE world can interact with.

Fig. 1 shows the typical structure of a service built with the Umbra framework.
The upper part shows only the most relevant interfaces provided by the frame-
work. The lower part (package application) presents a schema of the classes and
interfaces that programmers have to develop. As we will see, Umbra is based on
the definition of suitable event types and listeners for such events. The listeners
contain call-back methods, invoked upon the reception of the events, which need
to be programmed by the service developers.
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Fig. 1. Structure of an application using the Umbra framework (simplified)

A service is started upon the reception of the onBootstrap event. Hence, the de-
veloper needs to implement code to react to this event in the BootStrapEventLis-
tener. Normally, this code includes loading the needed resources and register
event listeners through a ServiceLocator, especially SessionRequest events, which
are events triggered by the SLEE container when the network requests a new
session. Then, the service waits for incoming events, which may trigger specific
actions like playing a message, recording a message, soliciting the user to press a
key, and so on. These actions are supported by an IVRServer (a media server),
which is a resource that needs to be identified upon bootstrap. The service will
receive an event notification upon completion of the actions, as declared in the
IvrServerEventListener. For example, the onPlayed method will be called upon
completion of a play action, which plays a voice message.

Practice has shown that a suitable organization for event-driven applications
is through state machines. Hence, a typical programming idiom for services built
with the Umbra framework is the State pattern [2] in order to describe the dif-
ferent execution states of the service, the possible incoming events, the actions
to be performed upon the arrival of events, and the state changes. This way,
services normally define an interface State declaring all possible events, while
the abstract class AbstractState defines default empty implementations for the
event handlers. Therefore, developers have to create a subclass of AbstractState
per application state (State1 in Fig. 1), and override the methods for the events
accepted by the state.

This organization is a Java implementation of a natural way of designing ser-
vices as state machines. However, this style of programming is not enforced by
the Umbra framework even though it is common practice. Hence, we decided
to provide developers with a higher level representation of this pattern, closer
to the abstractions of state machines. This way, the gap from design to imple-
mentation would be smaller. Moreover, this representation would facilitate the
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Fig. 2. Schema of Umbra Designer

communication with customers, most frequently non-technical people. The next
section introduces a Domain-Specific Visual Language that helps in describing
services at a higher level of abstraction.

3 Modelling Telephony Services with Umbra Designer

Fig. 2 shows the architecture of our solution. The developer or designer graph-
ically defines the services using Umbra Designer. We have built this tool as an
Eclipse plugin, using Graphiti [3] for the visual part, EMF [14] as modelling
technology, and the Epsilon Generation Language (EGL) [13] for code genera-
tion. After validating the service, the tool generates a Maven project with code
synthesized from the service. The code makes use of the Umbra framework, as
explained in the previous section. Once compiled, the project can be deployed
as-is on SLEE servers, like the open cloud’s Rhino application server [11].

Next, we introduce the main elements of the tool. Fig. 3 shows a screenshot
with an example service. The tool abstracts services in the form of state ma-
chines, accommodating the State design pattern, as explained above.

The main canvas contains the description of a simple service. The service
initial state is Init, where the service waits for incoming calls once a new session
has been established. Hence, at the top level, the event from the initial state is
SessionRequest (see arrow coming into state Init). The service designer does not
have to take care of handling the Bootstrap event, as the tool itself will generate
code to register the listeners for the events and actions used by the service (in
the example all are IVR events), and identifying the needed resources. Events
are depicted in blue (bold) over the arrows, while actions are shown in red
below the events. The service plays a welcome message to each incoming call.
This is modelled by a Connected event and the associated PlayCollect action.
This action has the additional effect to demand pressing some key on the phone
keypad. Thus, the service waits in state KeyRequest until the reception of some
key stroke (event Collected). If the key pressed was “1” or “2”, the service plays a
different message in each case, as indicated by the Play action. Once the message



184 N. Buezas et al.

Fig. 3. Defining a simple service with Umbra Designer

associated to “1” or “2” is played (event Played in the transition going out from
Bye), the service ends the call through the Hangup action.

The palette to the right contains the different types of states, transitions
(i.e. events) and actions that can appear in services. The Properties view at
the bottom allows configuring any item selected in the model; in the figure, it
shows the configuration properties of the service and its resources. The tool has
a contextual menu to validate the service (the detected warnings and errors are
listed in the Problems view at the bottom), to generate Java code from the
service, and to manage the generated Maven project (the project is shown in the
Project Explorer tab to the left).

Altogether, the tool promotes an agile way to work, providing support for
short cycles of modelling – code (re-)generation – deployment in an integrated
environment. For instance, once code is generated for a service, developers can
provide additional Java classes for further functionality (e.g. database persis-
tence, which is not currently supported by our tool). We believe that this ap-
proach to agile modelling will be better accepted in development processes as
it provides immediate value by code generation and service validation, and it is
seamlessly integrated in the developer Java environment.

The abstract syntax of the services built with our tool is defined through a
meta-model, of which Fig. 4 shows an excerpt. A state machine is configured
through a number of properties (class Properties), like the addresses of the ap-
plication and server, and the protocols used, among others. It is also possible
to declare variables that will be available in Java actions. Two different types
of variables are supported: shared variables (object attributes), used to pass
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Fig. 4. Excerpt of the Umbra Designer meta-model

information between different service states, and static variables (class attributes),
which retain their value between different service invocations.

We consider five types of states: initial, final, simple, composite and choice.
Each state machine has one initial and one final states. Composite states enable
hierarchical structuring of the machine, and contain a reference to a state ma-
chine which can be defined within the same model or externally in a separate
file. Choice states have multiple output branches with a boolean condition each.

Transitions can be of different types that correspond to event types of the Um-
bra framework. They are organized in six categories: Interactive Voice Response
(IVR) events, Call Control events, HTTP (reception of HTTP requests), SMS,
Text-to-Speech (TTS) and Speech recognitions events (for clarity, Fig. 4 only
shows IVR events). There are also general facilities, like timers. The initial event
in a state machine is always of type SessionRequest. IVR events are concerned
with playing and recording media streams or with key pressing in the phone
keypad. Examples of supported IVR events include Played (fired when a me-
dia stream finishes playing), Recorded (when a recording finishes) and Collected
(when the user presses some key). Call control events include those related to
the connection, disconnection and transfer of call legs. SMS events are concerned
with the reception of text messages. Finally, TTS events are those generated by
a TTS engine, like the start, finish, pause and resume of a speech.

A transition may have associated a sequence of actions, to be executed when
the transition is triggered. Actions rely on the Umbra API, and are organized in
similar categories to those for events. A special action JavaCode permits adding
Java code for more general actions not directly supported by the framework,
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Fig. 5. Hierarchical modelling, and report of errors/warnings, in Umbra Designer

where it is possible to use the declared shared and static variables. The param-
eters of each action can be configured through a properties panel, as shown to
the bottom of Fig. 6 for the case of the PlayRecord action.

Umbra Designer supports hierarchical modelling by means of composite states
(see MembersMenu in Fig. 5), and through references to state machines defined
in other diagrams (see state Registration in the same figure). In the last case, a
contextual menu allows opening the referenced machine in a different tab, as well
as expanding or occluding the diagram inside the state. This feature enables the
construction of repositories of services, which then can be used to build other
more complex services.

The tool enables simple validations of services prior to code generation, and
displays the detected errors and warnings in the Eclipse Problems view (see bot-
tom panel in Fig. 5, which contains the detected list of errors for an information
and registration service for a gym). For example, the tool reports as an error
any unreachable state, any state (different from the final state) without outgo-
ing transitions, as well as non-existing paths between the initial and final states.
Warnings concern the order in which some events and actions should occur, as
some actions trigger the future occurrence of events. For example, the tool gives
a warning if a Played event is declared, but there is no previous Play action.
Notice that all these errors and warnings would be difficult to detect statically,
if a direct encoding of the service in Java is used. However, we do not currently
analyse JavaCode actions in transitions.

Once the model of the service is validated, it is possible to synthesize Java
code from it. The tool creates a Maven Eclipse project, which can be deployed
in an SLEE server. The generated Java code follows the State pattern [2], and



Umbra Designer: Graphical Modelling for Telephony Services 187

reflects the hierarchical constructs introduced in the model. Moreover, the code
includes protected regions, so that if the developer modifies the code manually,
this is not overwritten when code is regenerated again from the model.

4 Evaluation

In order to asses to what extent using Umbra Designer improves the productiv-
ity of service development, we have performed an experiment consisting in the
construction of ten services of varying complexity using the graphical tool, and
the comparison with the effort to develop the same services using directly the
framework API (i.e. programming directly in Java).

We had two participants in our experiment, both last year undergraduates in
Computer Science. The first participant had some knowledge of telecommunica-
tions services, but no deep knowledge of the Umbra framework’s API. The second
participant had some 5 months of experience using the API. Each participant
built 5 services using the tool and 5 different ones using the API. Each service
was built in a different session, on a different day. The participants were given
enough time to read each service description and think a solution. When they
were ready, we measured the time they employed to implement the solution, one
using the graphical tool and the other using directly the Java API. This way,
we leave out effects related to problem understanding and solution design, and
strictly measure service production efficiency by two different means.

The services used in the experiment varied in complexity, ranging from simple
ones (five states and few transitions) to medium size (more than 15 states and
35 transitions). In each session, the participants were given textual definitions
of the service to be developed in the session. As an example, the description
of one of the services was the following: “Build a voice service for a computer
repair shop. The service will play a message, and then, it will solicit the year
in which the computer was bought. The user should type the solicited year using
the telephone keyboard. Then, if the computer is still in the guarantee period (2
years), the service will solicit the serial number and the address, which will get
recorded”. Fig. 6 shows the service finally built for the previous service definition,
using the graphical tool. The Properties view contains the configuration of the
actions in the transition entering state SolicitarDireccion (Solicit Address). The
transition has two actions, one for recording the address (whose configuration is
shown), and the other one is just one line of Java code to transform the different
key strokes into a String service variable (not shown).

Other services built include a game for guessing a number, a time service which
informs of the current time, a taxi call service, a simplified airport information
service and a service for pizza ordering (see Table 1).

Table 1 summarizes the experiment results. The columns show: (1) the name
of the service; (2–5) the size of its model-based solution (number of states and
transitions, cyclomatic complexity and lines of extra Java code in JavaCode
actions); (6–7) the number of source lines of code (SLOC, not counting blank
lines or comments) of the service that are generated by the tool or hand-coded
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Fig. 6. Service #7: a simple service for a computer shop

using the API; (8–9) the minutes taken to build the service using the tool and
the API; and (10) the efficiency gain when using the tool compared to using the
API (minutes and percentage). In the case of using the API, the measurements
also include the creation time of additional artefacts, like property files, needed
to deploy the service (but automatically generated by the tool).

The experiments show good correlation between the number of SLOC of the
hand-coded solution and of the code generated by the tool. Regarding produc-
tivity, by using the tool we observe an increase of around 45% in the average
case. In all cases, the time to develop a service with the tool was less than using
the API directly. Fig. 7(a) shows a graphic showing the net gain with respect to
service size (SLOC of the hand-coded solution), while the right shows the per-
centage gain with respect to size. The graphic shows higher percentual gains for
smaller services; however, the highest net gain was with the largest service. We
noted higher gains in cases were the service accommodated well the abstractions
of state machines: few cycles, few decision nodes, and few extra lines of code.

Altogether, the experiment shows benefits in efficiency when using the graph-
ical tool. Moreover, we believe that it provides further benefits concerning: built-
in validation checks, maintainability, understandability and reutilization of ser-
vices. Experiments to assess these properties are subject to future work. As a
preliminary result, we experienced in measuring the effort gain in maintainabil-
ity, where a modification to service #1 consisting in the introduction of an error
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Table 1. Evaluation of the construction of several services

Model Size SLOC Time (min.)
States Trans. Cycles Java

Extra
Tool API Tool API Gain

(min./%)
#1 : Message + Key 5 6 3 0 383 395 7 30 23 (76%)
#2 : Taxi Call 8 10 4 2 441 403 9 21 12 (57%)
#3 : Guessing Game 8 13 6 3 448 415 23 42 19 (45%)
#4 : Postal Code/

Time Warning
6 12 8 12 439 453 30 53 23 (43%)

#5 : Traffic 9 12 5 4 450 453 20 35 15 (42%)
#6 : Survey 10 14 6 0 529 477 15 33 18 (54%)
#7 : Computer Shop 9 13 6 4 493 501 20 40 20 (50%)
#8 : Airport 11 23 14 8 542 514 60 90 30 (33%)
#9 : Time Service 5 4 1 269 640 749 24 36 12 (33%)
#10 : Pizza Orders 17 52 37 60 963 925 150 200 50 (25%)

Fig. 7. Development effort comparison (left). Efficiency gain (right).

message on certain events was introduced. In this case, using the graphical tool
led to shorter times (6 minutes vs 15 minutes). A finding related to this issue
was that both participants found useful to draw state machine-like diagrams on
paper, as a design sketch, before starting coding using the API. This means that
the graphical model was deemed a good abstraction to describe services.

5 Related Work

The need for developing and making available telecommunication APIs, is dis-
cussed in [4]. Similar to our rationale, the author foresees the possibility of
telecommunication application stores – similar to those of Apple and Android –
based on the availability of service creation environments.

There are several implementations of the JAIN SLEE, like Mobicents [10]
and OpenCloud [11]. The latter includes a visual builder for services, the Visual
Service Architect (VSA) [15]. In this environment, a service is described by an
application-scenario diagram (to configure properties, protocols and resources),
state machine diagrams (to describe service states) and flowchart diagrams (to
describe actions). VSA targets general JAIN SLEE services, not necessary for
telephony, and hence lacks high-level constructs (both events and actions) for
voice-driven telephony services, as we provide in Umbra Designer. VSA state
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machines and flowcharts tend to be of lower level of abstraction due to the lack
of constructs like hierarchical states, choice states and key strokes branches,
among others.

In [5], the authors present an environment for service composition using
MetaEdit+. SBBs are programmed in Java, which become reusable and can
be composed graphically. Our approach is different as the blocks themselves are
modelled using state machines, from which Java code is generated. Also in the
context of MetaEdit+, in [7], the authors describe a graphical language to de-
fine simple call processing services. This language allows defining the flow for
handling incoming calls like rerouting them, or sending a message upon their
reception. The services can be serialized in XML. In our case, state machines
are a better abstraction for the event-driven nature of voice-driven telephony
services, while we need to generate more complex Java code. Another language
for telephony service creation is SPL [12], a scripting textual language with for-
mal semantics. It differs from our approach in that it is targeted to experienced
programmers, and its formal semantics enables critical properties of services to
be guaranteed. We plan to address exhaustive testing of service models against
user actions in future work.

VoiceXML [16] is a W3C standard to describe interactive voice dialogues be-
tween a human and a computer. VoiceXML files are played by voice browsers,
and contain tags that instruct the browser to provide speech synthesis, auto-
matic speech recognition, dialog management, and audio playback. VoiceXML
applications are accessed via HTTP, while we use phone protocols.

On a final comment, there are not many published results of efficiency of
MDE in practice [6,7]. Our work also contributes in this direction, by describing
a specific successful scenario for the applicability of MDE.

6 Conclusions and Future Work

In this paper, we have presented Umbra Designer, a tool for the graphical devel-
opment of “server-side” telephony services. The tool facilitates the construction
of services by non-experts. It includes a code generator that relies on the Umbra
framework, a Java API that is used to build services based on the JAIN SLEE
standard. Some initial experiments show promising results regarding efficiency
gain for the construction of services, with respect to a direct use of the API. We
believe this will be especially interesting for customer companies and users with
no deep knowledge of JAIN SLEE or telecommunication applications.

In the future, we plan to improve the tool with further functionality to con-
sider more advanced services. In some cases, we think it is possible to generate
automatically a graphical user interface for a mobile app (iOS, Android) start-
ing from the state machine description of the voice dialogue. We also plan to
investigate exhaustive testing of service models against user actions and to make
the tool publicly available in the immediate future.
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Abstract. Model based testing or the generation of tests from machine readable 
models has been widely deployed in industry for testing embedded systems and 
devices. Attempts are being made to extend its use to business systems. How-
ever, in spite of its potential for process improvement, its large-scale adoption 
for testing business systems is not yet seen, mainly due to little data being 
available on such use. This paper presents the findings from industrial deploy-
ment of a business process model based testing approach for User Acceptance 
Testing of large banking and insurance systems. The approach met with easier 
acceptance from the user community due to use of business process models and 
has proved to scale to very large models. It resulted in an overall productivity 
benefit of 20-30% in test design and planning, in addition to digitization of do-
main and process knowledge and has been successfully adopted organization-
wide. Benefits as well as issues faced in large-scale adoption are discussed 
along with solutions found and open problems.  

1 Introduction 

Model based testing (MBT) has been extensively researched over the last few decades 
[2][4][6][7][10-12]. Its industrial adoption is common for safety-critical systems, 
however, only recently it is being applied for testing of business applications [4]. 
Large-scale adoption in this area is not seen, an important reason being lack of availa-
ble data on such deployments. Other factors are few off-the-shelf implementations of 
MBT, difficulty of switching to the modeling paradigm, cost and complexity of creat-
ing models, large size of generated test suites and scalability [7]. 

Traditionally MBT methods have used state machines or formal specifications as 
input [5][6], both of which are hard notations for non-technical teams that test busi-
ness applications. It is only recently, with the advent of business process models 
(BPM) that are easily understood by business and test teams that this community 
could be considered a target user set for MBT. BPM has grown in popularity to be-
come the de-facto method for documenting business processes. Standards such as 
OMG’s Business Process Modeling Notation (BPMN) have brought uniformity in 
modeling formats across the available BPM tools [3]. Scalability becomes an issue 
with increase in size of state models [6]. 
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Most available MBT tools focus on automated generation of tests without test data 
generation [3][4]. Conformiq generates test data as well [5]. Validation of model con-
tent is not addressed in available tools. We developed a toolset for BPM based MBT 
in-house since at the time there was no available work using BPM for test generation 
and also to apply constraint solving techniques for process model validation and test 
data generation. 

This paper reports on the experience of applying our MBT approach [1] in an or-
ganization that conducts User Acceptance Testing (UAT) for major financial corpora-
tions. A number of pilot case studies were conducted on large real-world financial 
applications. The paper documents the findings from this experience including the 
preparatory work necessary to apply the approach on a large scale across the organi-
zation, results from the pilot case studies, problems encountered and open issues. 
Results indicate an overall productivity gain of 20-30% in test planning and more 
accurate estimation of testing effort due to digitization of process and domain know-
ledge. Performance of our method on other measures, viz. cost and complexity, scala-
bility and test suite size is also discussed.  

2 The UAT Context 

User Acceptance Testing of business applications involves validation for important/ 
critical user stories. The UAT process in industry is predominantly manual with con-
sequently low productivity and has heavy domain knowledge dependency.  

The organizational unit that applied our approach is a 1200+ member team respon-
sible for the UAT for major multinational banks and insurance corporations, on finan-
cial applications in areas of Corporate Banking, Consumer Banking, Capital Markets 
and Insurance. UAT is done on each software release before it is rolled out into  
production.  

 

 

Fig. 1. Effort distribution in UAT 

Critical activities performed for each release and their average effort distribution in 
the manual UAT process are depicted in Fig.1. This data was obtained from effort 
logs maintained by the team as part of their operational process. As seen from the 
figure, most effort is spent in Requirement Analysis, Test Case Creation and Execu-
tion. The first two of these constitute the Test Planning phase which also includes 
Test Scoping.  
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Table 1. Problems faced by UAT team 

1. Produc-
tivity 

• Improve productivity in Requirement Analysis, Test Creation and Ex-
ecution, Test Maintenance  

2. Quality • Dependence on Test lead for coverage of test scope. Errors in scoping 
lead to rework and potential post production defects 

• Lack of standardization in test processes and formats 
• Unavailability of end-to-end process knowledge since teams work in 

silos. Lack of awareness of impact of change on upstream and down-
stream systems results in post-production defects 

3. Planning • Inaccuracy of testing estimates leading to schedule slippage 
• Need for accurate change impact estimation 

 
The unit was faced with multiple challenges such as showing year-on-year produc-

tivity, safeguarding domain knowledge of the team when faced with attrition and 
accurate test cycle estimation to avoid production release delays. Specific problems to 
be tackled in order to address these were identified by the UAT team as in Table 1.  

Although taken from the UAT context, the activity break-up as well as challenges 
are true of the Testing activity in general and form a set of goals and metrics for mea-
suring effectiveness of an MBT approach.  

3 The MBT Approach 

Our MBT approach [1] and toolset for it named Assurance Workbench (AWB) is 
depicted in Fig.2. The approach comprises capturing a model of the application and 
automated test generation from the model in two stages – Scenario and Test case gen-
eration and is described here using one of the pilot case studies viz. Insurance New 
Business as a running example. 
 

 

Fig. 2. Our MBT approach 
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3.1 Modeling 

Business Analysts capture the important workflows of the system in the form of busi-
ness process maps. Fig. 3 shows the top level New Business process flow drawn in 
BPMN, which depicts issuance of a new Insurance policy for a customer, made up of 
Activities (lowest level atomic tasks) such as Select Product, Sub-Processes (complex 
tasks) such as Generate Illustration and Gateways (decision or branch points). Each 
sub-process is detailed in a separate process diagram. The New Business process hie-
rarchy consisted of this main process and 12 sub-processes, containing a total of 12 
gateways, 28 branches and 75 activities.  

The domain data model is captured as a Unified Modeling Language (UML) class 
diagram, shown on the right in Fig. 3. Business Rules are specified as Object Con-
straint Language (OCL) constraints on the data. The New Business pilot data model 
had 6 classes, 20 attributes and 4 business rules. A sample Business Rule is SexType-
SelectionRule which states that when StateCode is NY, Sex can be specified as Un-
isex only, else as Male/ Female. The OCL expression for this rule is  

((self.StateCode = Insurance::Enum_State_Code::NY) and self.Sex = Insurance:: 
EnumSex::Unisex)) or not(self.StateCode = Insurance::Enum_State_Code::NY) 
where self denotes the class InsuredDetails to which this rule is attached, of which 
Sex and StateCode are attributes. 
 

 

Fig. 3. Process and Data model: Insurance New Business 

Input and output parameters of process steps form the link between the process and 
data models as shown in Fig.2. E.g. an instance p of class Product is attached as input 
parameter to the task Select Product of Fig. 3. Processes can be annotated with rules 
in the form of pre/ post conditions for tasks e.g. Colony Term UL in Fig. 3. These are 
expressed as OCL constraints on parameters of the process. The OCL expression for 
pre-condition ColonyTermUL is  

p.ColonyTermULType = Insurance::Enum_ColonyTermULType:: ColonyTermUL 
where p:Product is a parameter. 
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3.2 Scenario Generation 

The process model graph is traversed using standard Breadth-first traversal to gener-
ate an exhaustive set of paths. Each generated end-to-end path consisting of sequence 
of branches, conditions and tasks forms a business/ test scenario. Branches are suffi-
cient to uniquely identify a scenario. Table 2 shows the business scenario matrix 
(BSM) for the New Business process generated by our tool, in which each row is a 
scenario defined by the branches in the column values. Each column denotes a gate-
way. e.g. Row #1 is the scenario defined by branches SelectProduct=Colony Term 
UL, CustomOption=Y, Projection= LGS and so on. Only 10 of the 12 gateway col-
umns are shown here due to space constraint.  

The set of scenarios generated is usually very large and can be reduced using the 
following Test Selection strategies 

• Minimal selection: Selects a minimal test set from the exhaustive set, covering 
every element of the process graph at least once, i.e. gives standard node-edge cov-
erage. Useful to get the most efficient test-suite covering all system functionality. 
The minimal test set for New Business contained 7 scenarios out of 290, shown in 
the BSM in Table 2. 

• All Combinations/ Pairwise selection: Selects the minimal test set covering all 
combinations/ pairwise [9] combinations of branches from selected gateways. Used 
when maximum coverage of combinations needs to be ensured for critical branches 
of the workflow.  

• Selective generation: Selects a reduced test set containing paths passing through 
selected Gateways/ Activities/ Pre/ Post Conditions only. Used when test cases for 
only specific parts of the system are required. Useful for getting the impacted test 
cases by specifying elements of the model which have changed. 

Table 2. Scenario Matrix for New Business 

# 
Select 
Product 

Cus-

tom 

Op-

tion 

Projec-

tion  

Face 

Amt 

Cat-

chup 

Provi-

sion 

Cat-

chup

Tier1

Projec-

tion 

Option

Rider Waiver 

of speci-

fied 

premium

Form  

Generation 

1 CT- UL Y LGS N Y N Y Y Y Welcome Letter 

2 CT- UL N - - - - - N - PA Disclosure 

3 CT- UL Y LGS Y Y N N Y Y Policy summary 

4 CT- UL Y LGS Y Y Y N Y N Demo of CPB 

5 CT- UL Y LGS Y N - N N - - 

6 CT- UL Y LGNS - - - - - - - 

7 CT- OUL - - - - - - - - - 

3.3 Test Case Generation 

For each scenario selected, pre- and post-condition and business rule constraints are 
automatically translated by the toolset to a specification for the model checker Sym-
bolic Analysis Laboratory (SAL) [8]. Sal-atg is used to solve these constraints to find 
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a solution state that represents appropriate data values for testing the scenario. Con-
flicting constraints result in no solution and constitute infeasible paths that are filtered 
out as depicted in Fig.2.  

A test case is defined as the scenario plus data. Multiple test cases can be ob-
tained for a scenario using any of several data-driven strategies, viz. 

• Boundary Value Analysis (BVA): Generates 5 values per integer attribute, on and 
either side of each bound of value range.  

• All Value Coverage: Covers all valid values of an attribute.  
• Positive/ Negative tests: User-defined combinations of data values 

Each data condition is translated to a test purpose for SAL, as shown in Fig.2. SAL 
tries to satisfy multiple test purposes in each solution, generating an optimized solu-
tion set. A second level of infeasible test filtering takes place here since conflicting 
combinations of test purposes, workflow paths and business rules are eliminated  
by the solver. E.g. when attribute StateCode (values: CA, NY, VT, NJ, MT) and  
Sex (values: Female, Male, Unisex) selected for All Value coverage, test purposes 
created are 

TestPurpose01= (StateCode = CA), TestPuropose02 = (StateCode =  NJ)… 
TestPurpose11= (Sex= Female), TestPurpose12 = (Sex= Male)... 

Exhaustive set would be 5*3 = 15 combinations. SAL combines multiple independent 
test purposes and generates an optimized set of 6 solutions that conform to the busi-
ness rules, in this case SexTypeSelectionRule explained above.  

Automated validation for conflicts and generation of test data sets in accordance 
with rules enforces semantic correctness.  

A sample generated test case from the New Business test suite is shown in Table 3 
and is defined by the test (pre-) conditions, sequence of SubProcesses and Tasks and 
their parameters with generated data values.  

Table 3. Test case sample from New Business 

Test 
Case # 

Test Con-
dition 

Sub 
Process 

Task Parameter field Value 

1 Colony 
Term UL 

 Customer Need 
Analysis 

  

   Select Product   
 Insured 

Details 
Select Insured 
Details Tab 

InsuredAge 27 

 Branch 16 
State_Code NY 
Sex Unisex 

                                    ………….. 

Rider = Y Rider 
Details 

Select Policy 
Rider Tab 

PolicyOwnersAge 64 

 Child Rider Units 0 
Waive_premium Y 
Face Amount 50,000 
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4 Application of MBT 

The UAT organization selected key processes from various application areas for car-
rying out the pilot case studies. A total of 20 pilots were carried out, of which results 
from 9 are presented here. The processes chosen for the case studies were all large 
and complex to check scalability for real-life models. Three preparatory stages were 
needed before actual application of MBT could commence 

1. Modifications to existing UAT process to accommodate BPM 
2. Arriving at a strategy for modeling and  
3. Training the workforce on modeling.  

This was the additional investment for effecting the process change, which the organ-
ization decided to make, expecting the knowledge captured in BPM would help man-
age the problem of knowledge loss due to attrition and facilitate reuse.  

4.1 Changes to the UAT Process 

The manual UAT process relies completely on the domain knowledge of Business 
Analysts and Test Leads for test design. Business Analysts create Business Require-
ment and Functional Requirement Documents (BRD and FRD) for each feature. 
These are used by Test Leads as the basis for deciding testing scope and designing 
tests. Execution of Test cases is manual.  

The new BPM based process required analysts to create process maps and specify 
business rules instead of BRD/ FRD. Impacted test cases, UAT scenarios and test 
cases were to be generated automatically from the model. Fig. 4 depicts the existing 
and changed UAT process. 

4.2 Adoption of BPM 

A modeling scheme was required in order to ensure uniformity across models created 
by different users, so that results across teams could be compared.  

 

Fig. 4. Comparison of existing and MBT approaches for UAT 
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The UAT organization devised an architecture clearly defining the levels of abstrac-
tion at which the process model would be captured. Levels 1-4 in the process hie-
rarchy capture generic information pertaining to the domain while Levels 5 and 6 
contained system specific details. These are logical levels that may map to several 
physical levels. 

• Level 1 gives the product level information  
• Level 2 maps contain core processes that fall under that product 
• Level 3 maps list down the sub-processes for the corresponding processes 
• Level 4 maps have activities performed for a sub-process.  
• Level 5 maps have the specific tasks that a user will perform to execute an 

activity. Data parameters and business rules are tagged here 
• Level 6 maps have the key strokes that a user performs to execute the tasks.  

This standardization enables automated processing of the information during test 
generation. Level 5 of the model is used to output the detailed test case sheet in  
Table 3. Level 6 is used to generate test cases at user interface action level, i.e. test 
scripts that can directly be used by testers for manual execution.  

Separation of domain and system-specific aspects into separate layers was ex-
tremely interesting. The former could now be modeled by domain experts who did not 
need to know operational details of systems. Secondly, domain-specific or applica-
tion-specific test cases could be generated by traversing down to the appropriate level 
in the model.  

Training given to users included this architecture, the modeling notation, data 
modeling and specification of business rules through a simplified user interface. To 
ensure consistency of modeling, a maker-checker process is followed where a checker 
reviews content, levels, notation and standards for each process created by a maker. 

4.3 Pilot Case Studies 

The nine pilot case studies discussed in this paper along with the problem areas/ key 
features they represent are listed below.  

• Credit Cards: Inaccurate testing estimates, non-standard test case formats and 
dynamic test cycles. 

• Payments process 1: Immediate need from the end-user organization to show 
productivity benefits. Important module impacting 9 upstream and downstream 
sub-systems 

• Securities Trading: Improper test planning, post production defects, high attrition 
problem. Complex functionality with lot of variations.  

• New Business: Wide range of reusable functionalities. 
• Trade Processing: Most mature process with good information of requirements, 

Planning, execution and Operations. Critical module impacting 45 upstream and 
downstream sub-systems 

• Wealth Management (WM), Payments processes 2 and 3, Check Processing: 
Very large and complex processes with loops and multiple entry points. WM im-
pacted 30 upstream and downstream sub-systems.  
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Table 4. gives the size of each process in terms of the number of sub-processes, gate-
ways, gateway branches and leaf-level activities. The number of branches impact 
number of paths, adding complexity to scenario generation. Number of pre-
conditions, classes and attributes signify complexity for the constraint solver. Number 
of Activities adds complexity to test execution. NA indicates data modeling was not 
done for the last four; being very large models, it was decided to focus only on their 
scenario generation, described in the next section. 

Table 4. Complexity Of Case Study Models 

Model Sub 
Proces

ses 

Gate
ways

Branche
s     

Pre-
Condition 
constraints

Activities/ 
Test Steps

No of 
classes 

No of 
attribu

tes 
Credit Cards 5 4 14 26 31 3 6 

Payments process 1 15 7 53 55 73 5 39 

Securities Trade 67 17 100 56 147 8 71 

New Business 12 12 28 26 75 6 20 

Trade Processing 33 14 55 50 22 9 49 

Wealth  
Management 

103 142 401 622 573 NA NA 

Payments process 2 52 36 193 269 322 NA NA 

Check Processing 53 26 99 83 225 NA NA 

Payments process 3 112 71 637 775 849 NA NA 

For each pilot case study, models were captured, test generation and impact analy-
sis done for a set of identified changes to the initial model. Generated tests were re-
viewed by the UAT team. Results are discussed in the section below.  

5 Results 

Results of test generation from the pilot case studies are listed in Table 5 in chrono-
logical order. Column 3 shows the size of the generated test set, being quite large, test 
selection was employed to get a reduced test set. Column 4 shows the selection strate-
gies chosen in each case by the UAT team. Column 5 gives the size of the reduced 
test set and Column 6 the percentage of tests selected in it.  

5.1 Coverage 

Exhaustive coverage of the specification was achieved using automated generation, 
from which desired coverage could be achieved using selection. Minimal selection 
gave a very efficient test set covering all tasks and branch conditions in the process at 
least once. Payments and SFS needed combination coverage of critical branch  
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conditions, which was easily possible using All combinations selection. Column 6 
shows that in every case, a very small percentage of tests was sufficient to satisfy the 
selection criteria. Any other paths in the workflow that are not part of this selection 
but are of interest could be included by additionally using Selective generation de-
scribed in Section 3.2. In cases where particular data values needed to be tested for, 
tests were obtained using Positive/ Negative selection. 

Table 5. Test case generation results 

 

*Total count of test cases not available since being very large model, processed in parts as 
described in section on Scalability below. NA: Effort data not available yet; data collection 
still underway.  

5.2 Productivity 

The last three columns in Table 5 show the efforts for manual test creation, automated 
generation using MBT and the percentage reduction or overall productivity gain 
achieved, which ranges from 22-27%. The effort figures have been taken from a 
tracker in which the time spent on each activity by each person per release is manual-
ly captured.  

The MBT effort includes time taken for initial creation and validation of the model, 
auto-generation and validation of tests. Average time for complete scenario genera-
tion is under 4 minutes. Average time taken by the constraint solver for data genera-
tion per test case (single data set) is between 1-2 minutes. 

Change Management. Effort comparison between change impact analysis in the 
manual process and MBT approach for one of the projects is shown in Table 6.  

Effort for understanding the change is the same in both cases. Impact computation 
in MBT is done using Selective generation (3.2) for the changed items in the model 
and takes 40% less time than in the manual case, as seen in Table 6. The overall prod-
uctivity gain in total effort is 30%, as seen from the table. 

 
 
 

  
Application 
process 

#of Sub-
Processes 

Exhaustive 
Test Cases 
(paths) 

Selection Type Reduced 
Test 
Cases       
Selection 

% Test 
cases 
selected   

Manual Test 
Planning 
Effort (ph) 

Automated 
Test 
Planning 
Effort (ph) 

Effort 
Reduction 
% 

Credit Cards  5 150 Minimal 5 3.33% 108 84 22 
Payments process 1 15 8076 AllCombinations 12 0.15% 672 491 27 
Securities Trade 67 17 million AllCombinations 33 0.01% 1632 1224 25 
 New Business  12 290 Minimal 7 2.42% 163 120 24 
Trade Processing 33 1741 Minimal 12 0.69% 192 146 24 
Wealth Management 103 > 4 million Minimal 47 0.01% 1200 900 25 
Payments process 2* 52 > 300 million Minimal 128 NA NA NA NA 
Check Processing* 53 > 30 million Minimal 226 NA NA NA NA 
Payments process 3* 112 > 1 billion Minimal 190 NA NA NA NA 
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Table 6. Effort comparison for Change Impact Analysis 

Manual process (Effort in hrs) MBT  (Effort in hrs) 

Understand CR 16 Understand CR 16 

Gap/ Impact analysis 40 Process flow creation/ modification in model 24 

Discussion with stakeholders / SMEs 18 Discussion with stake holders/ SMEs 18 

Update BRD 8 BRD/ FRD generation  Neglig-

ible 

Total effort 82 Total effort 58 

 
Effort needed to make modifications in the test suite in manual and MBT ap-

proaches is shown in Table 7. Effort for scenario and test case modification is shown 
separately. Whether the change is an addition or update of functionality, the effort to 
modify/ re-write tests impacted by changes is very high in the manual case. In the 
MBT approach, change is made centrally in the model and automated re-generation of 
scenarios and tests resulted in 20-30% savings.  

Table 7. Effort comparison for Test suite maintenance for a Change Request 

Type of Change 
 

Team 
Size 

Scenarios Test Cases 

  # of Scena-
rios to  
create/ 
update 

Manual 
effort 

(Person 
hrs) 

MBT 
Effort 
(Per-
son 
hrs) 

# of Test 
Cases to 
create/ 
update 

Manual 
effort 

(Person 
hrs) 

MBT 
effort 
(Per-
son 
hrs) 

Addition of New 
Functionality 

30 10 40  32 45 200 156 

Update Existing 
Functionality 

6  30 23 120 360 260 

 
It is interesting to note that for scenarios, effort needed was more for update of ex-

isting functionality than for addition, in both manual as well as MBT, since one needs 
to understand existing functionality before making the change. Conversely for test 
cases, effort was more for addition of new functionality in both approaches, since a 
lot of detail has to be added, while update takes less time due to availability of detail. 

Activity-Wise Productivity.  The graph in Fig. 5 gives an activity wise comparison 
of the approaches.  

It shows that MBT gives a productivity advantage of about 30-40% over the ma-
nual approach for each activity. Having knowledge captured in BPM brings down the 
time taken to train new members of the team. The time taken for requirement analysis 
is reduced due to structured models and automated impact computation. Productivity 
in scenario/ test case creation has been discussed above, where the overall productivi-
ty was found to be 20-30% as opposed to activity-wise 30-40% shown here, as a  
result of factoring in modeling effort.  
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Fig. 5. Activity wise productivity comparison of Manual vs. MBT approach 

The resultant test cases being detailed to keystroke level enables quick execution. 
Creation and maintenance of such detailed tests manually would be extremely ineffi-
cient. Breaking down maps into multiple levels has helped in gaining detailed tests 
and better test coverage. 

5.3 Scalability 

Securities Trading was a large and complex process with 67 sub-processes. The total 
number of possible paths was 17 million as seen in the table. The toolset encountered 
a scalability issue and ran out of memory in trying to apply selection on the entire 
path set.  

To address this problem, the graph was divided into sub-graphs and selection ap-
plied on sub-graphs. Selected paths from the first sub-graph were connected to paths 
from the next sub-graph to form a bigger sub-graph on which selection was applied. 
This was iteratively done until all sub-graphs covered, yielding the minimal set of 33 
paths. 

5.4 Quality 

The quality problems stated in Section 2 are addressed by MBT as discussed here.  

Lack of Optimized Test Coverage. In the existing UAT process, Test scope had to 
be determined by the Test Lead who had to ensure coverage as well as efficiency. 
Achieving this balance and designing tests keeping business rules in mind was an 
effort-intensive process. This effort had to be put in for every change to the test suite 
as well. Automated test selection allowed the Test lead to focus on just specifying test 
scope, while the actual test creation and optimization is automated, giving productivi-
ty and accuracy at no extra cost once models were in place. Simple Minimal selection 
provided a basic test set with guarantee of element coverage, which could be built 
upon. 

Standardization in Test Design. The approach defines a process for test design that 
is systematic and repeatable since it uses machine-manipulable models. Validation 
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against end-user requirements is the goal of testing, which is achieved through gen-
eration from end-user models. All teams can now follow the same process and gener-
ated test formats as opposed to differing processes and formats earlier.  

Unavailability of End-to-End Process Knowledge. Standardization in the modeling 
approach has enabled digitization of domain as well as process knowledge and made 
it available to test teams. Impact on upstream and downstream processes can be ascer-
tained by querying the model. 

5.5 Planning 

Accuracy in Test Planning and Estimation. Test generation from the requirement 
model for the specified scope gives the exact number of tests to be run, enabling accu-
rate planning as opposed to the Test lead having to estimate manually using his know-
ledge and experience. Automated assessment of change impact helps estimate the 
testing effort for changes and plan more accurately.  

6 Discussion and Conclusion 

Here we discuss our experience in the context of the problems cited in Section 1 that 
make adoption of MBT difficult. [2] gives a number of evaluation criteria for MBT. 
We have covered a majority of these in our evaluation. 

6.1 Qualitative Findings, Lessons Learnt and Open Issues 

Changing to the Modeling Paradigm. Modeling needed test teams to begin visualiz-
ing requirements in the form of process maps. Business Analysts were doing this 
earlier, now entire test teams had to be trained on modeling.  

Modeling guidelines had to be formulated to avoid modeling errors that lead to 
problems in test generation. Model validations were programmed into the toolset to 
automate them to the extent possible. Training test teams to write business rules in 
OCL would not have been viable. A user interface had to be developed to simplify 
specification, however, specifying complex rules is still hard. 

Cost of Deployment. Adoption of MBT needs significant lead time before the new 
testing process can be rolled out. As discussed in Section 4, transition to the new 
process and a modeling strategy need to be worked out. Procuring a BPM tool, train-
ing personnel, creation of the as-is-models, evaluation against existing tests all contri-
bute to initial cost of deployment although the investment is later expected to pay 
back through productivity gain and easier maintenance.  

The UAT organization spent 2 elapsed months to come up with model architecture. 
For the initial roll-out, 300 people were trained on modeling and spent 6 months 
creating as-is process maps and generating tests, covering 60% of the total processes 
in various core areas. They later trained the remaining team. Area-wise summary of 
MBT deployment is detailed in table below.  
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Table 8. Area wise MBT pilot statistics 

Business Area Process maps Scenarios (Post selection) 
Corporate Banking 212 1650 
Consumer Banking 140 2800 
Capital Markets 260 1800 
Insurance 180 900 

Limitations of Existing Tools and Technologies. There is a need for standardization 
of model interchange formats across BPM tools. Currently every modeler exports in 
different format and does not export all of the information in the model, making it 
difficult for generative tools like ours to support models from multiple tools. 

Limitations of Our Approach. Our data generation approach has limitations - it 
generates data from the valid values provided to it. These need to be populated with 
real data from project databases for effective testing. It is a hard problem since data 
integrity between elements will need to be preserved. In the current approach,  
users had to manually replace some data in the tool generated output before executing 
the tests. 

Scalability of Constraint Solving. Scalability problems in scenario generation were 
resolved. The extremely large models like Wealth Management, Payments process 3 
etc. confirmed the approach scales for very large process models. However, scalabili-
ty issues crop up in constraint solving when the size of the data model, particularly 
number of attributes and their value ranges increases substantially. Currently upto 100 
attributes and integer ranges of upto 1000 values are handled by our toolset. Number 
of entities, associations or constraints do not pose a problem. Easier scripting inter-
face, capability to handle complex data types and higher value ranges are needed in 
model checkers so that they can be more widely used with business applications. 

6.2 Conclusion 

Although there is an associated cost of deploying MBT, the modeling formalism 
enables automation of the test design and change impact assessment, bringing accura-
cy and efficiency to the process. This has the potential to pay back in the long term 
not only through productivity gain but through improved quality of testing due to a 
qualitative improvement in the process and a systematic, repeatable process. The user 
organization in our case, apart from using models to obtain productivity in Test plan-
ning, leveraged their investment by using the models for analysis, training, process 
optimization and transition.  

Extending test generation to include creation of scripts for automated execution 
would give much greater productivity benefit since as discussed in Section 2, test 
execution is time-consuming. We have implemented this in our approach but its ap-
plication poses problems due to large variation in user interface controls, platforms 
and coding styles.  
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The main difficulty in proliferation of MBT is high learning curve, cost of deploy-
ment, lack of data and process knowledge regarding its use e.g. modeling and optimi-
zation strategies. Reuse of models would lower the cost of MBT deployment.  
Emergence of supporting tools and methods and interoperability between tools as 
described above would make MBT adoption easier. The advantages of MBT make it 
worthwhile to work on reducing costs through improved methods and putting models 
to better use so as to make its application in industry viable. 
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Abstract. Domain-specific languages (DSLs) can significantly increase produc-
tivity and quality in software construction. However, even DSL programs need
to evolve to accomodate changing requirements and circumstances. How can we
know if the design of a DSL supports the relevant evolution scenarios on its pro-
grams? We present an experimental approach to evaluate the evolutionary capa-
bilities of a DSL and apply it on a DSL for digital forensics, called DERRIC. Our
results indicate that the majority of required changes to DERRIC programs are
easily expressed. However, some scenarios suggest that the DSL design can be
improved to prevent future maintenance problems. Our experimental approach
can be considered first steps towards evidence-based DSL evolution.

1 Introduction

Domain-specific languages (DSLs) can increase productivity by trading generality for
expressive power [17,5]. Furthermore, DSLs have the potential to improve the practice of
software maintenance: routine changes are easily expressed. More substantial changes,
however, might require the DSL itself to be changed [4]. How can we find out whether
the relevant maintenance scenarios will require routine changes or not?

In this paper we present a test-based experimental approach to answer this question
and apply it to a domain-specific language for describing file formats: DERRIC [2].
DERRIC is used in the domain of digital forensics to generate software to analyze,
reconstruct, and recover file-based evidence from storage devices. In digital forensics
it is common that such file format descriptions need to be changed regularly, either to
accomodate new file format versions, or to deal with vendor idiosyncrasies.

As a starting point, we have assembled a large corpus of image files to trigger fail-
ing executions of the file recognition code that is generated from DERRIC descriptions.
Each failing execution is attempted to be corrected through a modification of the DER-
RIC code, until all image files are correctly recognized. The required changes are accu-
rately tracked, categorized and rated in terms of complexity. This set of changes pro-
vides an empirical baseline to assess whether the design of DERRIC sufficiently facili-
tates necessary maintenance.

The results show that all of the required changes were expressible in DERRIC; the
DSL did not have to be changed to resolve all failures. The majority of harvested changes
consists of multiple, inter-dependent modifications. The second most common change
consists of a single, simple, local modification. Finally, a minority of changes is more
complex. We discuss how the DERRIC DSL may be changed to make these changes

P. Van Gorp, T. Ritter, and L.M. Rose (Eds.): ECMFA 2013, LNCS 7949, pp. 207–219, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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1format PNG

2extension png

3strings ascii

4sequence Signature IHDR Chunk* IEND

5

6structures

7Signature {

8 marker: 137,80,78,71,13,10,26,10;

9}

10

11Chunk {

12 length: lengthOf(chunkdata) size 4;

13 chunktype: type string size 4;

14 chunkdata: size length;

15 crc: checksum(

16 algorithm="crc32-ieee",

17 init="allone",start="lsb",

18 end="invert",store="msbfirst",

19 fields=chunktype+chunkdata)

20 size 4;

21}

22

23IHDR = Chunk {

24 chunktype: "IHDR";

25 chunkdata: {

26 width: !0 size 4;

27 height: !0 size 4;

28 bitdepth: 1|2|4|8|16;

29 colourtype: 0|2|3|4|6;

30 compression: 0;

31 filter: 0;

32 interlace: 0|1;

33 }

34}

35

36IEND {

37 length: 0 size 4;

38 chunktype: "IEND";

39 crc: 0xAE,0x42,0x60,0x82;

40}

Fig. 1. Simplified PNG in DERRIC

expressed more easily. Thus, the experiment has provided us with empirical data to
improve the design of DERRIC.

The contributions of this paper can be summarized as follows:

– We describe and apply an experiment in DSL-based maintenance in the context of
DERRIC, and provide a detailed description including its parameters.

– We present empirical results on how the DERRIC DSL supports the maintenance
process in the domain of digital forensics.

– We discuss the usefulness of this approach and how it has helped us to both evaluate
and improve the design of DERRIC.

These contributions can be considered first steps towards evidence-based DSL evolution.

2 Background

DERRIC is a DSL to describe binary file formats [2]. It is used in digital forensics inves-
tigations to construct highly flexible and high performance analysis tools. One example
is the construction of file carvers [1], which are used to recover possibly damaged evi-
dence from confiscated storage devices (e.g., hard disks, cameras, mobile phones etc.).
DERRIC descriptions are used to generate some of the software components, called
validators, that check whether a recovered piece of data is a valid file of a certain type.

An example DERRIC description for a simplified version of the PNG file format is
shown in Fig. 1. The structure of a file format is declared using the sequence keyword.
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The sequence consists of a regular expression that specifies the syntax of a file format in
terms of basic blocks, called structures. In this case, a PNG file starts with a Signature

block, an IHDR block, zero-or-more Chunks and finally an IEND block.
The contents of each structure is defined in the following structures section. A

structure consists of one or more fields. The contents and size of each field are con-
strained by expressions. The simplest expression is a constant, that directly specifies
the content, and hence length, of a field. This is the case for the marker field of the
Signature structure. Another common type of constraint only restricts the type and/or
length of a field. For instance, the chunktype field of structure Chunk is constrained
to be of type string and size 4. Constraints may involve arbitrary content analyses.
For example, consider the crc field. To recognize this field a full checksum analysis
following the crc32-ieee algorithm should be performed.

3 Observing Corrective Maintenance

To study the maintainability characteristics of DERRIC, we need a way to inspect and
evaluate actual maintenance scenarios. In other words: we need to observe how DSL

programs are changed. For the purpose of this paper, we focus on corrective mainte-
nance [10], which is maintenance in response to observed failures (“bug fixing”).

To realize this, a large corpus of representative and relevant inputs to a DSL program
is needed, which allows us to automatically generate failures, which in turn trigger cor-
rective maintenance actions. The approach is similar to fuzzing where a program is run
on large quantities of invalid, unexpected or even random input data [19]. For mainte-
nance evaluation, however, it is of paramount importance that the data is representative
of what would be encountered in practice.

In the case of DERRIC we have assembled a large, representative corpus of image
files (JPEG, GIF and PNG) for which DERRIC descriptions are available. The exact nature
of these descriptions and the corpus is described in detail in Section 4.

For each file format f , the initial DERRIC Di
f description is compiled to a validator

and subsequently run on the corpus files of type f . This results in an initial set of files
for which validation fails1. The set of failures is then divided over equivalence classes
which are sorted by their size. This allows us to focus on the most urgent problems
first. Next, Di

f is edited to obtain a new version Di+1
f which resolves at least one of

the failures in the largest equivalence class. As soon as the set of failures is observed
to decrease, Di+1

f is committed to the version control system. Before committing we
ensure that the set of correctly validated files (the true positives) strictly increases, as a
form of regression test. The process then repeats, now using Di+1

f as a starting point.
After all failures have been resolved, the changes, as stored in the version control, are

categorized in change complexity classes. A change may thus be interpreted as being
more complex than another change. This provides an empirical base line to qualitatively
assess to what extent DERRIC supports maintenance of format descriptions.

1 Technically, both false positives and false negatives are failures. However, since the corpus
only contains real files, we cannot detect when a validator would incorrectly validate a file.
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4 Experiment

4.1 DSL Programs and Corpus

The three DSL programs that have been used are DERRIC descriptions of JPEG, GIF

and PNG. These file formats are well-known, very common and highly relevant to the
practice of digital forensics. An impression of the sizes of these descriptions is given in
Table 1. From the table it can be inferred that the descriptions are significantly different.
Both GIF and PNG have a richer syntactic structure than JPEG. Structure inheritance is
heavily used in JPEG and PNG but only once in GIF. Finally, GIF has a lot more fields
per structure (58 per 12). Summarizing, we claim that the three file format descriptions
cover a wide range of DERRIC’s language features, in different ways.

Table 1. Initial DERRIC descriptions

JPEG GIF PNG

Sequence tokens 14 29 30
Structures 15 12 20
Uses of inheritance 10 1 17
Field definitions 32 58 27

Table 2. Initial validator results

Data Set Failures
Format # size # %

JPEG 930,386 327GB 5,485 0.6%
GIF 36,524 3GB 389 1.1%
PNG 236,398 27GB 5,789 2.4%

Total 1,203,308 357GB 11,663 1.0%

The second important component of the experiment, is a representative corpus. We
have developed such a corpus for the evaluation of our earlier work on model-
transformation of DERRIC descriptions [3]. This data set contains JPEG, GIF and PNG

images found on Wikipedia, downloaded using the latest available static dump list,
which dates from 20082. Around 50% of the files on that list were still available and
included in the set. An overview of the data set is shown in Table 2. The corpus contains
a total of 1,203,410 images, leading to a total size of 357 GB. As the last two columns
show, not all images in the data set are recognized by the validators generated from the
respective JPEG, GIF and PNG descriptions: between 0.6% and 2.4% of the files in the
data set are not recognized using the base descriptions of the respective file formats.

The Wikipedia data set can be considered representative, since the files uploaded to
it originate from many different sources (e.g., cameras, editing software, etc.). We have
verified this diversity by inspecting the metadata of the files and aggregating the results.

This shows that the set contains files from a large number of different cameras (e.g.,
Canon, Nikon, etc.) Furthermore, many images have been modified using a multiplicity
of tools (e.g., Photoshop, Gimp, etc.) Original computer images such as diagrams and
logos have been created using many different tools (e.g., Dot, Paintshop Pro, etc.)

The diversity is depicted graphically in Fig. 2, showing the distribution of files over
values of the EXIF Software tag present in 28.4% of the images. The most common tool
is Photoshop 7.0, used on 3.4% of the corpus; Photoshop CS2 and CS (Windows) are
used on 2.3% and 1.8% respectively. ImageReady covers 1.6%. After that the percent-
ages rapidly decrease: no specific version of any application was used in more than 1%
of the files. The number of different values is 4,024.

2 Available at https://github.com/jvdb/derric-eval

https://github.com/jvdb/derric-eval


A Case Study in Evidence-Based DSL Evolution 211

0 1,000 2,000 3,000 4,000
100

101

102

103

104

EXIF Software tag values

#
F

il
es

(l
og

)

Fig. 2. Distribution of EXIF Software tag values over 28.4% of the corpus

4.2 Classifying and Ordering Failures

To improve productivity and handle the most relevant issues first, the set of failures
is divided over equivalence classes, according to their longest normalized recognized
prefix: this is the sequence of DERRIC structures that has been successfully recognized
before recognition failed. Classification is repeated after each iteration, because after
each change to a description, files might now fail with another prefix.

The prefix is normalized to eliminate the common effect of repeating structures. For
instance, if the recognized prefix consists of the structures A B B C, then the normalized
prefix is A B+ C. The plus-sign indicates one-or-more occurrences. As a result, files that
failed recognition with prefixes A B C, A B B C, A B B B C, etc. all end up in the same
bucket. The equivalence classes thus obtained are then sorted according to size in order
to first improve those parts of the description that generate the most failures.

4.3 Evolving the Descriptions

The next step in the experiment is to manually fix the descriptions until all failures have
been resolved. After each change, we recorded how many edits—additions, modifica-
tions and deletions—were needed to reduce the number of failures. An edit captures an
atomic delta to a description. Edits can be applied to either the sequence or the list of
structures. The semantics of edits is summarized in Table 3.

The simplest edits are addition/removal of a structure to/from the structures sec-
tion of a DERRIC description, and adding/removing a referenced structure from the
sequence expression (cf. Fig. 1). Furthermore, a structure itself can be modified by
adding, modifying or removing fields. The sequence can be modified by changing the
regular expression without adding or removing a structure reference.

Each change has been tracked in the Git version control system3 to allow full trace-
ability and reproducability of the results of this paper. In fact, a single change corre-
sponds to a single commit. After each change the DERRIC compiler was rerun with the
modified descriptions. The process was repeated until all failures were resolved.

3 Available at https://github.com/jvdb/derric-eval

https://github.com/jvdb/derric-eval
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Table 3. Edit semantics: a DERRIC description’s two main sections can be edited in three ways

Structures Sequence

Add Add new structure Insert structure symbol

Modify Add, modify, or delete field Change regular grammar

Delete Remove structure definition Remove structure symbol

4.4 Change Complexity Classes

After all failures have been resolved, the resulting set of changes is divided over equiv-
alence classes according to their change complexity. Change complexity is intuitively
defined in terms of the number of edits in a change, their interrelatedness and how
much they are scattered across a source file: more edits, more interrelatedness and more
scattering, means higher complexity.

A change consisting of a single edit has very low change complexity. On the other
hand, a change involving many logically related edits, scattered over the whole program,
has a high change complexity. Simple, low complexity changes leave the structure of
the original program mostly intact. At the opposite end, high complexity changes might
well create future maintenance problems.

Just like code smells [7] might be indicators of software design problems, in the case
of DERRIC, we conjecture, high complexity changes might indicate language design
problems. For the purpose of our experiment we have identified 3 change complexity
classes. Below we briefly describe each class, rated as Low, Medium or High.

– Single, localized edit (Low) The ideal situation is where a change requires a single
modification of the program. By implication, such a change is always localized.
Example: a single edit of the sequence, or the change of a single field in a structure.

– Multiple, but dependent edits (Medium) In this case, a change requires multiple,
inter-dependent edits. For instance, defining a new structure, then adding a refer-
ence to it in the sequence section.

– Cross-cutting changes (High) Cross-cutting changes require many (more than two)
similar edits scattered across the program. Such changes always involve some form
of duplication. This kind of changes is very bad, since they affect the program in a
way that is dependent on the size of the program.

The changes, categorized in the change complexity classes, provide an empirical base
line to start discussing to what extent DERRIC supports maintenance.

5 Results

The results of the experiment are summarized in Table 4, 5 and 6 for the file formats
JPEG, GIF and PNG respectively. The first column of each table identifies the change (i.e.
set of edits). In the following, we will identify changes by using a combination of file
format name and Id, like so: PNG 11 denotes the eleventh change of the PNG description
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in Table 6. Columns 2-5 display how many edits of that particular type were required in
order to decrease the number of failures. For instance, change JPEG 1 involved two edits:
a structure definition was added, and a reference was added to the sequence expression.
Note that deletions are omitted from these tables since they never occurred.

The actual decrease in failures is shown in the “Errors Resolved” column. Finally, the
last column shows how a change was categorized with respect to change complexity.
Revisiting change JPEG 1 we see that it is ranked as Medium, which means that the
change contains multiple, dependent edits. Hence we can conclude that the reference
inserted into the sequence expression has to be a reference to the newly added structure.

Table 4. Modifications to the JPEG description

Structure Sequence Errors
Id Add Mod Add Mod Resolved CC

1 1 1 520 Medium
2 1 284 Low
3 1 1 245 Medium
4 1 1 821 Medium
5 1 3395 Low
6 1 138 Low
7 1 2 46 High
8 1 4 21 26 High
9 1 4 5 High

10 1 19 3 High
11 1 2 2 High

Table 5. Modifications to the GIF description

Structure Sequence Errors
Id Add Mod Add Mod Resolved CC

1 1 9 Low
2 1 115 Low
3 1 137 Low
4 3 36 Medium
5 1 39 Low
6 1 48 Low
7 1 3 Low
8 2 2 Medium

Table 6. Modifications to the PNG description

Structure Sequence Errors
Id Add Mod Add Mod Resolved CC

1 5 5 3136 Medium
2 1 1 1819 Medium
3 1 1 332 Medium
4 1 1 63 Medium
5 1 1 73 Medium
6 2 2 112 Medium
7 1 1 144 Medium
8 1 1 24 Medium
9 1 20 Low

10 1 18 Low
11 1 20 Low
12 1 1 10 Medium
13 1 1 2 Medium
14 1 1 9 Medium
15 2 2 2 Medium
16 1 3 Low
17 1 1 1 Medium
18 3 1 Medium

Table 7. Changes per change complexity class

Level Name #

Low Single localized 13
Medium Multiple dependent 19

High Cross-cutting 5

Total 37
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6 Analysis

To summarize the results of our experiment, Table 7 shows the total number of changes
per complexity level. The table shows that the majority of changes are easily supported
by DERRIC: 13 are simple, localized edits (Low), and 19 changes require multiple,
dependent edits. The dependency between edits in these changes is a direct consequence
of separating sequence from structure definition. In other words: this dependency is
anticipated by the design, and hence unavoidable.

Only 5 changes are categorized as cross-cutting (High). While in the experiment
these changes did not occur very frequently, they still might indicate there is room for
improving the design of DERRIC. Moreover, looking at the results for JPEG, we seem
to observe a pattern of deterioration. Investigating the actual changes reveals that, in-
deed, duplication introduced by earlier changes, has a detrimental effect on the required
subsequent changes. The fact that cross-cutting changes may amplify each other, is ex-
actly the evolutionary effect we would like to avoid. Three language features could be
introduced to DERRIC to eliminate such cross-cutting changes completely:

– Abstraction: a language construct to declare subsequences so that duplicate subse-
quences can be referred to by name.

– Padding: a construct to automatically interleave certain bytes inbetween structure
references in the sequence declaration.

– Precedence: declaring that a particular structure has priority over another one.

Below we motivate these language features based on the results of the experiment.

Abstraction. In JPEG 7, a newly discovered data structure SOF1 is added to the descrip-
tion. It was discovered that it is part of a sub-sequence of structures that may occur both
before and after a mandatory SOS structure. As a result, a reference to SOF1 had to be
inserted in two places. The relevant part of the original sequence reads as follows:

sequence ...

(DQT DHT DRI SOF0 SOF2 APPX COM)*
SOS

(SOS DQT DHT DRI SOF0 SOF2 APPX COM)*

Note that the sequence DQT DHT DRI SOF0 SOF2 APPX COM is duplicated. An abstraction
construct would allow the description to be refactored as follows:

def Seq = DQT DHT DRI SOF0 SOF2 APPX COM;

sequence ... Seq* SOS (SOS Seq)*

To accomodate the new SOF1 structure, only the definition of Seq would have to be
adapted. Such an abstraction mechanism feature would not only reduce the severity of
such changes, it would also clearly communicate to readers of the description that the
sequences before and after the SOS reference are always the same.
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Padding. The JPEG 8 change clearly signals a problem: padding bytes are allowed ev-
erywhere in between structures. Every change that modifies the sequence will explicitly
make sure that padding is maintained. The duplication introduced by JPEG 7 makes the
way this change is expressed even less desirable. A (domain-specific) padding construct
allows padding to be expressed in a single place in the configuration section:

padding 0xFF

The compiler would then weave the generic padding element into the sequence.

Precedence. The cross-cutting change JPEG 10 signals another language feature that
could be added to DERRIC. A new structure COMElanGmk was identified, which functions
as an alternative to the standard COM structure. The only difference from COM is that
COMElanGmk redefines the contents of a single field using DERRIC’s support for structure
inheritance. We would, however, like to also express that COMElanGmk has precedence
over COM: if it is there, consume it, otherwise attempt to match COM.

The current resolution involves duplicating large parts of the sequence to move the
choice between either structure to a higher level. A proper solution would be to extend
the set of sequence operators (?, *, etc.) with a new binary operator <. The precedence
ordering could then be expressed simply as COMElanGmk < COM.

7 Discussion

7.1 Lessons Learned

Based on this case study, we can draw a number of conclusions that are generally appli-
cable to the area of DSL development and model-driven development at large. First of
all, in order to do evidence-based DSL evolution, the existence of a large, representative
corpus is of paramount importance. Given such a corpus, it becomes possible to apply
our test-based experimental approach. Our results show that such an experiment indeed
provides useful feedback on the design of a DSL.

The corpus of files used in our experiment in essence represents a very large and
comprehensive test suite. In other domains, such a test suite has to be designed up front.
Nevertheless, the existence of test suites for (legacy) code, could thus be instrumental
in deciding whether to adopt a model-driven approach. For instance, in [14] the authors
perform a study whether the Mod4J framework is suitable to build web applications
following a reference architecture. In this case, the organization had ample experience
building such web applications. If (evolving) test suites for a representative sample
of non-Mod4J applications exist, they can be run against Mod4J replicas to find out
whether Mod4J supports the necessary evolution facilities to fix the failing tests.

Second, to our surprise, the experiment showed that even a simple DSL such as DER-
RIC requires abstraction facilities in order to mitigate future maintenance. Maybe DSLs
and modeling languages are much more like programming languages than we might
think. As such, our results provide a cautionary tale, which may be taken into consider-
ation when designing a DSL or modeling language. Furthermore, it might suggest that,
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if such a feature is to be avoided, that graph-like, visual concrete syntax is preferrable,
since it would allow the direct representation of sharing of sub-structures.

Finally, since our experiment requires the accurate tracking and classification of
changes to source models, textual syntax seems to be an advantage. The textual syntax
of DERRIC allowed us to use standard diff tools to get insight into what was changed
inbetween revisions. A visual modeling language would most certainly require custom,
domain-specific difference algorithms [20]. Generic difference algorithms (on trees or
graphs) would likely contain irrelevant noise, and hence would be hard to interpret.

7.2 Threats to Validity

Even though our classification of changes is informal, we contend that it is sufficiently
intuitive. Proficient users of computer languages (domain-specific or general purpose)
use similar reasoning to distinguish “good” changes from “bad” changes. Most pro-
grammers are familiar with the principles of Don’t-Repeat-Yourself (DRY) and Once-
and-Only-Once (OAOO). These are precisely the principles that were violated in the
cross-cutting changes.

The changes were performed by the first author (the designer of DERRIC) who has
ample experience in digital forensics. As such, he could have tended towards the small-
est and simplest changes. However, in order to evaluate the way a language supports
maintenance it is essential to analyze optimal changes; only then can the language as-
pect be isolated. A subject who is less versed in the domain of digital forensics or
DERRIC, would probably have added noise to the results (i.e. unneeded complexity in
the changes), and consequently, the results would have been harder to interpret.

As shown in Section 4, we consider the set of image files from Wikipedia a suitable
test set for generating failures and harvesting changes. First, the set of images is con-
structed by thousands of users of Wikipedia, so there is no selection bias. Second, there
is a high variability in the origin of the images and how the images were processed in
user programs (Fig. 2). Finally, the data set is large enough to generate realistic failures;
any of the observed failures could have occurred in practice.

It could be argued that neither JPEG, GIF nor PNG are rich enough to cover the full
expressivity or expose the lack thereof of DERRIC. This might be true, however, the
DERRIC language is designed precisely for this kind of file formats. In Section 4 we
have argued that the DERRIC descriptions of these file formats are sufficiently different
to cover the whole language.

7.3 Related Work

Mens et al. [16] define evolution complexity as the computational complexity of a
metaprogram that performs a maintenance task, given a “shift” in requirements. Our
classification of changes is comparable since we consider small and local edits (fewer
“steps”) to be easier than multiple, dependent and scattered edits (requiring more steps).
Making this relation more precise, however, is an interesting direction for further re-
search. This would involve formalizing each change as a small metaprogram, and then
using its computational complexity to rank the changes.
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Hills et al. [9] do a similar experiment but use an imaginary virtual machine for “run-
ning” maintenance scenarios encoded as simple process expressions. Since the changes
and programs investigated in this paper are relatively small, writing them as actual
metaprograms might be practically feasible. Even more so since DERRIC is imple-
mented using the metaprogramming language RASCAL [11], which is highly suitable
for expressing the changes as source-to-source transformations.

The work presented in this paper can be positioned as an experiment in language
evaluation. Empirical language evaluation is relatively new since, as pointed out by
Markstrum [15], most language features are introduced without evidence to back up its
effectiveness or usefulness. In the area of DSL engineering, however, there is work on
evaluating the effectiveness of DSLs with respect to program understanding [17], key
success factors [8], and maintainability [12]. Our experiment can be seen in this line of
work, but focusing on how a DSL as a language supports evolution.

Corpus-based language analysis dates at least from the ’70s, but is getting more
attention recently; see [6] for a comprehensive list of references. A recent study is
performed by Lämmel and Pek. [13]. The authors have collected over 3,000 privacy
policies expressed in the P3P language in order to discover how the language is used
and which features are used most. Morandat et al. [18] gather a corpus of over 1,000
programs written in R to evaluate some of the design choices in its implementation. A
difference with respect to our work, however, is that corpus-based language analysis
focuses on a corpus of source files. Instead, in this paper we used a corpus of input files
to trigger realistic failures, not to analyze the usage of language features, but to analyze
how these features fare in the face of evolution.

8 Conclusion

DSLs can greatly increase productivity and quality in software construction. They are
designed so that the common maintenance scenarios are easy to execute. Nevertheless,
there might be changes that are impossible or hard to express. In this paper we have
presented an empirical experiment to discover whether DERRIC, a DSL for describing
file formats, supports the relevant corrective maintenance scenarios.

We have run three DERRIC descriptions of image formats on a large and represen-
tative set of image files. When file recognition failed, the descriptions were fixed. This
process was repeated until no more failures were observed. The required changes, as
recorded in version control, were categorized and rated according to their complexity.

Based on the results we have identified to what extent DERRIC supports mainte-
nance of file format descriptions. The results show that most of the changes are easily
expressed. However, the results also show there is room for improvement: three fea-
tures should be added to the language. The most important of those is a mechanism for
abstraction to factor out commonality in DERRIC syntax definitions.

Our experimental approach can be applied in the context of other DSLs. The only
requirement is a representative corpus of inputs that will trigger realistic failures in
the execution of DSL programs and a way to classify and rank the changes required
to resolve the failures. By fixing the DSL programs, tracking and ranking the required
changes, it becomes possible to observe how seamless (or painful) actual maintenance
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would be. We consider the experiment presented in this paper as a first step towards
evidence-based DSL evolution.
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Abstract. We discuss our experience in use of models and model-driven tech-
niques for developing large business applications. Benefits accrued and limita-
tions observed are highlighted. We describe possible means of overcoming 
some of the limitations and experience thereof. A case for shift in focus of 
model driven engineering (MDE) community in the context of large enterprises 
is argued. Though emerging from a specific context, we think, the takeaways 
from this experience may have a more general appeal for MDE practitioners, 
tool vendors and researchers. 

Keywords: Modeling, meta modeling, separation of concerns, model transfor-
mation, software product lines, model driven engineering workbench, model 
driven enterprise.  

1 Introduction 

We are in the business of delivering custom business applications for various verticals 
such as banking, financial services, insurance, retail etc. This paper describes our 
journey in use of models and model-driven software development techniques since 
their emergence till date. Chronological sequence of the narration, we think, might 
help bring out progression of our understanding of the problem and also evolution of 
home-grown MDE technology. We then discuss capabilities of minimal tooling infra-
structure for easy adoption of MDE by industry practice leading to effective use. Then 
we take a sneak peek at possible future uses of models in the context of large enter-
prises. The paper concludes with a summary. 

2 Model Driven Software Development 

Way back in ’94, our organization decided to come up with a focused offering in 
banking and financial services space. As system requirements for the same functional 
intent such as retail banking, payments, securities trading etc., vary from one financial 
institution to another, it was felt that developing a shrink-wrapped product wouldn’t 
do. Instead, it was felt that developing a set of functionality components having high 
internal cohesion and low external coupling would be more pragmatic [1]. A relevant 
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subset of predefined components would be suitably modified to deliver the desired 
business application. The jump start courtesy of components would shorten time to 
market, it was felt. The offering was to have object-oriented nature in line with mar-
ket expectations. It was also felt that the offering should be so designed and archi-
tected as to keep pace with technology advance. 

2.1 Ground Reality 

Experience in delivering business-critical software systems had led to a small team of 
technical architects having expertise in distributed architecture and relational data-
bases. Though C++ had emerged as dominant object oriented programming language, 
programmers found its complexity daunting. Also, there was no proven method avail-
able for developing industry-strength OO applications back in early ‘90s. As a result, 
the immediate principal challenge facing management was how to quickly make the 
large team of fresh developers productive? 

2.2 Eliminating Accidental Complexity 

Business applications typically conform to a layered architecture wherein each layer 
encapsulates a set of concerns and interfaces with adjoining architectural layers using a 
well-defined protocol. For instance, Graphical user interface layer deals with which 
widget to use for displaying which data and what the layout of the screen should be; 
Business process layer deals with ordering of profess steps/tasks and who should be 
performing which task and when; Application services layer deals with which func-
tionality to be exposed to the external world; and Database access layer deals with 
concerns such as how to construct an hierarchical object from flat tables and vice 
versa. Typically, the architectural layers are wired together by middleware infrastruc-
ture that support message passing in a variety of architectures such as synchronous, 
asynchronous, publish-subscribe etc. As a result, developing a distributed application 
demands wide-ranging expertise in distributed architectures and technology platforms 
which is typically in short supply. Large size of application further exacerbates the 
problem.  

We addressed this problem through specification-driven code generation [2]. Keep-
ing the layered nature of application in mind, we came up with domain specific lan-
guages (DSL), one for each layer, for specifying the application at a higher level of 
abstraction. Each DSL was a view over a Unified DSL which enabled specification of 
constraints spanning across two DSLs. For instance, a button on a screen must map to 
a service in the application services layer; a screen must have necessary data widgets 
so that input parameters of the service being invoked can be populated etc. By keeping 
the DSLs free from all technology related concerns, we helped developers focus on 
specifying just the business functionality. A DSL processor encoded appropriate tech-
nology related details while transforming a concern specification to the desired imple-
mentation [3]. We implemented these DSL transformers using standard compiler-
compiler techniques [4]. Fig 1 describes the model-driven code generation approach 
pictorially. 
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Fig. 2. A subset of the unified metamodel 

 

We used UML [5] class diagrams to capture business entities and their relationships, 
UML use-case diagrams to describe business scenarios, and UML activity diagrams to 
describe process flows. We extended UML class models with additional properties and 
associations in order to capture architectural information, such as classes that make up 
a message, classes that need to be persisted in a database, classes that need to be dis-
played on a GUI screen, methods that need to be deployed as services having transac-
tional behavior, class attributes that are mandatory etc. We designed a model-aware 
high-level language (Q++) to specify the business logic. Q++ treats the extended UML 
class models as its type system, provides constructs for navigating model associations, 
and allows for declarative specification of errors and exceptions. Also, the language 
abstracts out details such as memory management and exception handling strategy. 
Model-aware nature of Q++ guarantees that business logic specifications will always 
be consistent with the models. 

We extended UML to specify the presentation layer in terms of special abstractions, 
namely windows and windowtypes. A windowtype specifies a pattern such as a form 
screen, a list screen, and so on. A window is an instance of a windowtype. It specifies 
which data elements of which business entity to display using which controls and 
which buttons should invoke which business services and/or open which windows. Our 
presentation layer model was independent of the implementation platform except for 
the event code. 

We extended UML to specify relational database schemas and complex database 
accesses. Object-relational mapping was realized by associating object model elements 
to the schema model elements, i.e. class to table, attribute to column, association to 
foreign key etc. We defined a Query abstraction to provide an object façade over SQL 
queries with an interface to provide inputs to, and retrieve results from the query. We 
used a slightly modified SQL syntax in order to bind input/output parameters. 

We came up with a unified meta model to specify the above mentioned models and 
their relationships. Fig. 2 highlights the associations spanning these models. These 
associations help keep the three specifications consistent with respect to each other and 
thus ensure that the generated platform-specific implementations are also consistent 
[2]. For example, the association Button.call.Operation can be used to check if a  
window is capable of supplying all the input parameters required by an operation being 
called from the window. 



 Model Driven Software Development 223 

 

MSP 

Workspace M_Workspace C_Workspace 

Configuration Directory 

Partition Component 

own 
1 

1 
refer
0..* 

0..* 
has 

1 

1 
CSP 

1..* 

1..* 

1 

1 

keptInSync 

keptInSync 

0..* 

0..* 
depends  

Fig. 3. Metamodel for workspaces 

Modeling 
workspace of 

Modeling 
workspace of 

Workspace for 
sharing models 

Release 
13

Fetch 

Coding workspace of 
consumer 

Coding workspace of 
supplier component 

Workspace for 
sharing code (CSP) 

Release 
2Release 5

Check for well-formedness constraints 
and consumer-supplier dependencies 4

kept in sync kept in sync 

 

Fig. 4. Synchronizing components 

 

Similarly, we were also able to model other facets such as batch functionality, re-
ports etc. From these various models and high level specifications, we were able to 
generate a complete application implementation. 

Shifting the focus of software development from code to higher level of abstraction 
led to many advantages: 

• Effective separation of concerns in specification provided a good handle on re-
ducing the inherent complexity. DSLs being closer to the problem domain en-
abled functional experts to play a more significant and operational role in 
software development life cycle (SDLC). Higher level of abstraction also 
meant reduced size of the specification and hence reduced time for creating it.  

• Greater structure courtesy of models led to application specifications being 
more amenable for rigorous analysis. As a result, certain kind of errors got 
caught early in SDLC and certain kind of errors were eliminated altogether. 
For instance, error of not mapping a screen button to an application service 
would otherwise get caught at the time of integrating independently developed 
screens with independently developed application services. In model-driven 
approach, this error gets caught at model validation stage itself before either 
the screen or the service is implemented.  

• Model-driven development also helped in uniform application-wide imple-
mentation of policies such as date data type should always be displayed using, 
say, dateWidget control and for computation purposes be treated as a string 
conforming to “mmddyyyy:hh:mm:ss” format. In code-centric development, 
one has to rely on manual code inspection for enforcing such policies – an er-
ror prone and time- and effort-intensive endeavour. On the other hand, in 
model-driven approach such policies can be enforced either at model valida-
tion time or at model creation time itself. 

• Code generators helped application-wide uniform implementation of key de-
sign decisions. For instance, query-intensive nature (as opposed to update-
intensive) of application demands object-relational mapping strategy whereby 
the table corresponding to the derived class must have columns corresponding 
to the attributes of its base class all the way up to the root of the class  
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hierarchy. This schema definition then dictates implementation of create(), 
get(), modify() and delete() methods which can be automatically generated 
from the class model. A change in design decision, say, switching over to up-
date-intensive behaviour only needs transformation of the same database layer 
model using a different model transformer. On the other hand, correct and con-
sistent implementation of this change would be a huge challenge for code-
centric approach. 

• We extended class and process models to capture testcase and testdata specifi-
cations for unit and system testing [6]. This helped us generate testdata with 
assurance of path coverage. Automation of test execution speeded up applica-
tion testing process.  

• Keeping application specification totally devoid of technology concerns, we 
could deliver the same specification into multiple technology platforms. This 
was possible largely because the target technology platforms had more or less 
similar capabilities. For instance, we could easily switch across databases 
(Oracle, DB2, Sqlserver), programming languages (C++, Java, C#), middle-
ware (Tuxedo, CICS, Encina, Websphere), presentation managers (ASP, JSP, 
winforms) and operating system (Unix, Open MVS, Windows). 

However, the shift to model driven development also raised some unique problems. 

• Though application was specified at a higher level of abstraction, debugging 
remains at code level. As a result, one needs to carry in mind a map from 
specification to implementation for effective debugging. Higher the level of 
abstraction and the number of concerns abstracted, the more complex is the 
map and hence more difficult is the debugging.  

• As modelling is not covered by majority of academic institutes as a part of 
their curricula, model-driven development had a steep learning curve for fresh 
developers who constituted a large portion of the project team. 

• Modelling and model-based code generation tools needed to follow certain us-
age discipline. For instance, different concerns of the application being mod-
elled independently needed to be validated for well-formedness and consis-
tency – both within a concern and across the concerns – as only valid models 
lead to generation of correct implementation in code. To cope with the large 
size, different concerns had to be modelled separately and synchronized on a 
need basis as concerns can be interrelated. This was a new way of software de-
velopment for the project team. Just the availability of tools was not enough. 
Lack of a method for developing large applications using model-driven tech-
niques proved to be the most significant hurdle in executing project in a coor-
dinated manner. 

• Onsite-offshore development model added a new dimension to the problem of 
coordinated project execution. Application specifications developed at differ-
ent geographical locations needed to be synchronized from time to time. 

With models and high level languages being the primary SDLC artefact, they needed 
to be amenable for versioning, configuration management, diff-n-merge etc. 
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2.3 Achieving Scale-Up 

Component Abstraction: Large business applications needed large development 
teams. Ensuring coordinated development with large teams became a big issue. Parti-
tioning development effort along functional modules having high internal cohesion and 
low external coupling seemed intuitive. There was a need to make dependencies be-
tween these modules explicit so that independent development was possible.  

We introduced a component abstraction as a unit of development to manage these 
dependencies at both model and code level. A component specifies its interface in 
terms of model elements such as Classes, Operations and Queries. The consumer-
supplier relationship between components is explicitly modelled through depends as-
sociation between the components. A component can only use the model elements 
specified in the interface of the components it depends upon. As Q++ is model-aware, 
these model-level dependencies can be honoured automatically in code as well. A 
component has two associated workspaces, a model workspace and a code workspace 
as shown in Fig. 3. The model workspace is a configuration comprising of own Parti-
tion and the Partitions of the components it depends on. In a component workspace, 
one is only allowed to change the contents of own Partition. As workspaces provide 
change isolation, a consumer component is not immediately affected by the changes 
introduced in its supplier components. A special workspace, configuration MSP (i.e. 
pool for sharing of models between components) of Fig. 3, is provided for exchanging 
models between components. A (supplier) component releases its model to this special 
workspace for sharing, from where its consumer components pick it up as shown in 
Fig. 4. Model well-formedness constraints and consumer-supplier dependencies are 
then automatically checked in the consumer component workspace. A similar work-
space, directory CSP (i.e. pool for sharing of code between components) of Fig. 3, is 
provided for sharing code between components. Components are allowed to share code 
only after they share their models. Model-awareness of Q++ ensures consistency 
across consumer-supplier components at code-level as well. The process is realized 
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through a set of roles, each responsible for performing a set of well-defined tasks on a 
component in a workspace. A role essentially identifies a set of logically coherent 
process steps. For instance, all modelling related tasks are grouped into the modeller 
role, all coding related tasks are grouped in the programmer role, all workspace syn-
chronization related tasks are grouped in the manager role, all setup related tasks are 
grouped in the administrator role etc.  

Explicit modelling of interfaces and dependencies provided better control over inte-
gration of components being developed independently and in parallel. This enhanced 
structure was used to compute change impact leading to significantly reduced testing 
effort. An extension of synchronization protocol of Fig 4 sufficed for multi-site devel-
opment also. 

Change-Driven Development: The performance of various model processing opera-
tions such as model validation, diff/merge, model transformation and code generation 
would deteriorate with increasing model sizes. This in turn would affect turn-around 
times for change management. Ideally, these operations should only consume time 
that is proportional to the size of the change and remain unaffected by the total size of 
the model. We devised a pattern-based approach for implementing incremental execu-
tion of common model-driven development process tasks such as model comparison 
and merging, model validation, and model transformation. We also developed a me-
tamodel for recording changes and integrated it into the model repository for efficient 
change processing. 

Models are well-structured graphs, and many model processing operations can be 
formulated in terms of graphs. Also, most models are processed in clusters of related 
elements; for instance, a class, its attributes and operations are usually processed to-
gether. Each such cluster has a primary element that identifies the cluster; for instance 
‘Class’ in the above example. We used metamodel patterns to specify such clusters 
with the root identifying the primary element of the cluster. We then specified the 
model processing operations in terms of these patterns. For example, when we want to 
compare class models of two UML models, we want the comparison to be conducted 
on clusters of model elements centred around class objects; in pattern model terms we 
want to treat class as the primary object, with its attributes, operations and associations 
making up the rest of the connected elements of the cluster. In execution terms, a diff 
operation can be seen as being invoked repeatedly for each matching root element of 
the pattern from both the source and target models. Fig. 5 shows the metamodel for 
recording model changes that occur in a model repository.  

A Delta is a record of a single change; it has a timestamp property that records the 
time of the change and an opCode property that records the operation causing the 
change, namely, one of ADD/MODIFY/DELETE. We developed a separate meta 
model, as shown in Fig. 5, so that changes to application models can also be captured 
in a model form. ObjectDelta records changes to objects; PropDelta records changes to 
properties; and AssocDelta records changes to associations. ObjectDelta has an asso-
ciation to Object to identify the object that has changed; it also stores the ID of the 
object (ID is required because that is the only way to identify an object that has been  
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deleted from the repository). PropDelta has an association to Property to identify the 
property that has changed, and records two values – new and old (if any). Associa-
tionDelta has an association to Association to identify the association that has changed, 
and two links to ObjectDelta corresponding to the two end objects. The associations 
between ObjectDelta, PropDelta and AssocDelta mirror the associations between 
Class, Property and Association in the meta meta model, and thus record the same 
structure. We devised an algorithm that, given a model pattern, computes the impacted 
root objects from a given model and its delta model for the set of changes recorded in a 
given time period. 

Thus, we could identify which root objects in the model have changed in a given 
change cycle and apply the necessary model processing operations only on these root 
objects. This resulted in minimal code generation for the model changes. We used 
‘make’ utility, which is time-stamp sensitive, to make the subsequent compilation  
build  test  deploy steps also incremental. 

2.4 Towards Product-Lines 

In our experience, no two solutions even for the same business intent such as straight-
through-processing of trade orders, back-office automation of a bank, automation of 
insurance policies administration etc., were identical. Though there existed a signifi-
cant overlap across functional requirements for a given business intent, the variations 
were manifold too. Moreover, management expected delivery of subsequent solutions 
for the same business intent to be significantly faster, better and cheaper. We witnessed 
that business applications tend to vary along three dimensions: 

• Functionality dimension which can be further divided into Business rules and 
Business logic sub-dimensions 

• Business process dimension which can be further divided into Process tasks, 
Organizational policies, and Organizational structure sub-dimensions 

• Solution architecture dimension which can be further divided into Design deci-
sions, Technology platform, and Implementation architecture sub-dimensions 

With code generators encoding the choices corresponding to the Solution architecture 
in transforming application specification into an implementation, we were forced to 
implement the code generators afresh for every project as no two projects had the same 
solution architecture even for the same business intent. We observed an interplay be-
tween the set of choices wherein a choice along a dimension eliminates (or forces) a set 
of choices along other dimensions. For instance, choice of 'rural India' geography for a 
banking system forced 'hosted services platform' choice of Implementation architec-
ture; Choice of Java programming language and Oracle database as persistent store 
forced 'Object relational mapping' choice for design strategy etc. We witnessed that a 
choice along a dimension can impact multiple program locations (i.e. scattering) and 
choices along a set of dimensions can impact the same program location (i.e. tangling). 
For instance, choices for a set of strategies such as concurrency of a database table row  
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Fig. 7. Architecting for ease of configuration and extension 

(corresponding to a persistent object), object-relational mapping, and preserving audit 
trail in a database table all impact the create() method implementation for a persistent 
class. And object-relational mapping strategy impacts definitions of all persistent 
classes in the hierarchy. 

These observations led us to visualize model-based code generation system as a set 
of composable Variable Units each having a set of well-defined Variation Points (VPs) 
as shown in Fig. 6. The variation points of a variable unit denote the places where 
changes are expected to occur thus reflecting current level of understanding of the 
domain. A Variation (V) denotes what can change at a variation point so as to cater to 
a specific Situation. A situation helps to describe the context, i.e. when a specific 
change can occur. Addition of a new variation enriches system configurability i.e. abil-
ity to address more situations [7]. Also, the variation being added can have variation 
points of its own thus introducing new paths for extension and configuration. Thus, the 
system begins to take the shape of a product line wherein a member corresponds to a 
set of variable units and variations such that no variation point is left unbound, and the 
variations are consistent among themselves. 

We came up with a modelling abstraction (building block) for specifying the archi-
tecture patterns of Fig 6 [8]. A building block encapsulates contribution of a given 
choice along Design strategy / Architecture / Technology platform sub-dimension to 
the eventual implementation. Thus, supporting new solution architecture is either novel 
composition of existing building blocks or addition of a new building block. This step 
towards model-based code generators product line led to several advantages: 

• Model-based generation of model-based code generators reduced the time and 
effort required for maintaining the code generators. 

• Building block abstraction facilitated reuse thus resulting in reduction in size 
of model-based code generator team. 
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• Separation of technology platform and MDE concerns led to specialization 
within code generator development team. 

• Boot-strapping gave us confidence about functional completeness of our 
home-grown MDE infrastructure. 

We are in the final stage of moving towards business application product line [10]. The 
core MDE infrastructure comprising of metamodels, model processors and a method 
for operationalizing a product line is in place. The central idea is vetted by implement-
ing a model-based code generators product line. The product line idea has been proven 
in laboratory setting by implementing a near real-life example from Banking domain. 
We are about to start with a real-life product-line implementation through the restruc-
turing and refactoring of a related set of existing purpose-specific solutions. We will be 
able to comment on robustness and usability of our MDE infrastructure only after 
completion of this exercise. 

Early experience shows that models, through better separation of multi-dimensional 
concerns, seem to provide a better handle for implementing business application product 
lines. Separation of solution architecture from business functionality concerns enables 
business domain experts to focus solely on specifying the variations in business func-
tionality and technology architects to focus solely on specifying the variations in tech-
nology platform, design strategies and implementation architecture. Ability to resolve 
the specified variations either at code generation time or at application run time leads to 
increased flexibility. Model-based generation of model-based generators leads to agile 
product line evolution process. The Variation Points also double up as extension points 
for introduction of as-yet-unforeseen changes – a reality for industry practice. Though 
early signs are encouraging, several significant issues remain to be addressed: 

• Multi-level resolution of variability i.e. at class level, component level, appli-
cation level etc., seems to suffice but is posing usability challenge even for the 
small laboratory case-study we implemented. In the least, more intuitive GUI 
seems a must for resolving variability. 

• Business-critical applications need to evolve through extension and mutation. 
Our variability metamodel is adequate for addressing extension only i.e. add 
as-yet-unseen variant part or add as-yet-uncalled-for common part. But, a mu-
tation may lead to fusion of existing variation points and commensurate fusion 
of a set of variant parts etc. Intuitive refactoring support is essential. 

• Maintenance / evolution effort far exceeds the development effort for a suc-
cessful business application [10]. Precise computation of impact of a change 
and optimal testing (i.e. what to test when) is a must.  

• Effective management of a product line demands coordination of multiple 
stakeholders such as Domain experts, Solution architects, Developers, Testers, 
Product line managers etc., across the various SDLC phases. Should there be a 
feature model for every stakeholder? But a stakeholder might be interested in a 
set of [sub] dimensions leading to overlap of feature models and feature de-
pendency. It calls for a method (and the relevant tooling) to help what to do 
when and by whom. There is a need to build further on the proposed multi-
level resolution model and the staged resolution approach described in [11]. 
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Definition of a new mutual fund offering or an insurance policy or a financial product 
varies from the existing ones in a well-defined manner even though the variations need 
to be introduced at many places. A declarative mechanism aided by suitable 
[de]composition architecture is missing. 

2.5 Code Is the Model 

Though the model-driven software development approach has delivered on the prom-
ises of improved productivity, better quality and platform independence, especially in 
development of large enterprise applications, majority of the small to medium sized 
projects found it difficult to adopt for several reasons. Steep learning curve for model-
ling meant a considerable chunk of project execution time was spent in creating appli-
cation specifications. Insistence on models being the primary SDLC artefacts further 
exacerbated this problem. Project teams wanted bi-directional synchronization between 
model and the generated code for quick turnaround of changes introduced. An applica-
tion generated from models is best maintained using the generators. This didn’t augur 
well with many customers who were sensitive to technology and vendor lock-in related 
risks. Also any change in the solution architecture of the application to be delivered 
necessitated modifying the code generators which demanded expertise in MDE tech-
nology – a skill in excessive short supply. As a result, small and medium sized devel-
opment projects found model-driven software development approach too heavy and the 
associated development process too restrictive. 

To overcome these limitations, we came up with a metadata-driven aspect-oriented 
approach for developing J2EE applications (and later extended it for .Net applications). 
The key idea is to implement just the business logic (i.e. Functionality dimension men-
tioned earlier) using a reflexive and extensible programming language like Java / C# 
and annotate it with tags [12].  A tag encapsulates choice along one of the many di-
mensions of Solution architecture such that the desired solution architecture can be 
viewed as a hierarchical composition of tags. Annotated business logic is parsed to 
create an internal representation in the form of class model and its metadata annota-
tions. The class model is transformed to generate skeleton or partial class definition. 
The tag hierarchy is transformed to generate a set of code fragments, each correspond-
ing to the choice along one of the many solution architecture dimensions, and a speci-
fication for composing these code fragments. We used AspectJ [13] like syntax for 
specifying code composition and implemented a tree-transformation based composer 
which turned out to be sufficient for our needs. Fig 7 gives a pictorial description of 
this approach. 

The approach was supported through an open extensible Eclipse-based toolset re-
sulting in a development process that turned out to be flexible and lightweight as com-
pared to model-driven development process. Separation of architect role (to specify 
tags) from developer role (to specify business logic and use pre-defined tags) led to 
effective utilization of expertise. The composable nature of building blocks enabled 
reuse even across projects. Template based code generation strategy enabled easy ad-
herence to customer-specific standards, guidelines, best practices etc. The composable 
nature of building blocks, the ability to define purpose-specific metamodels and  
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plug-in architecture due to Eclipse resulted in easy customizability, extensibility and 
improved maintainability of the toolset. The approach facilitated creation of a reposi-
tory of reusable artefacts. A library of reusable, easy-to-adapt solution accelerators 
enabled even inexperienced teams to deliver high quality code on schedule. Low or no 
learning curve, adherence to industry standards and dependence on freeware further 
accelerated acceptance of the approach within developer community. 

Class model centricity turned out to be a severe limitation of this approach. Other 
concerns such as business process, graphical user interface etc could not be addressed 
easily. In effect, it amounted to coming up with new join point models and developing 
suitable implementation machinery for every join point model which is a significant 
effort. Model-driven approach turned out better when multiple DSLs were needed for 
implementing the required solution. Therefore, we developed a mechanism that en-
abled interoperation between model-driven and metadata-driven approaches. The most 
observed use of this interoperability bridge was to graduate from metadata-driven ap-
proach to model-driven approach. Although possible, we didn’t observe reverting back 
to metadata-driven approach after having settled into model-driven approach. 

3 Tools for Model Driven Development 

Model-driven software development has been around since mid-90s. Launch of OMG's 
MDA [14] in 2000 generated widespread interest in model-driven development. Today 
it can justifiably be said that model-driven development has proved beneficial in cer-
tain niche domains if not all. There is ample evidence of models being used in many 
ways viz., as pictures, as documentation aids, as jump-start SDLC artefacts, as primary 
SDLC artefacts etc [15, 16]. Many tools exist that provide automation support at vari-
ous levels of sophistication for model-driven development. The majority of these tools 
are highly effective when used in a shrink-wrapped manner but tend to lose effective-
ness rapidly whenever the tool needs to be customized or extended. This is a serious 
drawback. 

The demand for intuitiveness on models dictate they be domain-specific. Since there 
can be infinitely many domains with each domain possibly ever-expanding,  it is im-
possible to think of a universal modelling language that can effectively cater to them 
all. Furthermore, models are purposive and hence it is impossible to conceive a single 
modelling language that can cater to all possible purposes. Therefore, multiplicity of 
modelling languages is a reality. Separation of concerns principle makes the need for a 
cluster of related modelling languages (one for each concern in a domain) and a 
mechanism to relate the separately modelled concerns (say to compose a unified 
model) apparent. The need to relate otherwise separate models demands an ability to 
express one model in terms of the other. Thus emerges the need for a common lan-
guage capable of defining all possible modelling languages of interest. There are mul-
tiple stakeholders for a model each possibly having a limited view being presented in 
the form a suitable diagramming notation. From the above discussion, it follows there 
could be as many diagramming notations as there are modelling languages. And thus 
emerges the need for a language to define all possible visualizations of a model.  
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For models to be used as primary SDLC artefacts, there needs to be an execution en-
gine for the models – say an interpreter or a transformer to (say) text format that is 
executable e.g. a programming language. Plus, separation of concerns leading to a 
cluster of relatable models indicates the need for transforming one model into another 
and another and so on. Therefore, to comprehensively address the needs of model-
driven software development the MDD tool needs to support: 

• A language to define all possible modelling languages 
• A language to define all possible visualizations of a model 
• A language to specify transformation of one model into another 
• A language to specify transformation of a model into text artefacts  

As a result, software development gets transformed into a language engineering en-
deavour wherein the focus is on defining the most intuitive and expressive modelling 
language[s] for a given purpose and the necessary execution machinery. Since there 
cannot be a bound on the desired purposes, a configurable extensible modelling lan-
guage engineering workbench seems required for greater adoption of model-driven 
software development. In a sense, something on the lines of Eclipse but for language 
engineering is called for [17]. 

4 What Next 

Economic and geo-political uncertainties are putting increasingly greater stress on 
frugality and agility for enterprises. Large size and increasing connectedness of enter-
prises is fast leading them to a system of systems which is characterized by high dy-
namics and absence of a know-all-oracle. Multiple change drivers are resulting in in-
creasingly dynamic operational environment for enterprise IT systems, for instance, 
along Business dimensions the change drivers are dynamic supply chains, mergers and 
acquisitions, globalization pressures etc., along Regulatory compliance dimension the 
change drivers are Sarbanes oxley, HiPAA, Carbon footprint etc., and along Technol-
ogy dimension the change drivers are Cloud, smartphones, Internet of things etc. At the 
same time windows of opportunity for introducing a new service/product/offering 
and/or for adapting to a change are continuously shrinking. Furthermore, business-
critical nature of IT systems means the cost of incorrect decision is becoming prohibi-
tively high and there is very little room for later course-correction. Therefore it is im-
portant that we look beyond the traditional model-based generative/SPLE based tech-
niques that we have been using in the past and put more emphasis on understanding of 
the target organizational environment including its business, IT systems, and stake-
holder perspectives. In other words, model the whole enterprise. Towards formal  
and precise enterprise architecture modelling is an important step towards realizing  
this goal.  

Enterprise Architecture (EA) is a technique used in the process of translating busi-
ness vision and strategy into effective enterprise change by creating, communicating 
and improving the key requirements, principles and models centred on business and IT 
that describe the enterprise’s future state and enable its evolution [18]. A number of 
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EA techniques are used by companies looking for business-IT alignment and transfor-
mation with desired properties, for instance, Zachman Framework, TOGAF (Open 
Group Architecture Framework), FEA (Federal Enterprise Architecture), Gartner, and 
ArchiMate, etc [19].  

Applying these EA techniques to an enterprise is a highly person dependent activity 
with complete reliance on the enterprise architect’s knowledge and experience. Fur-
thermore, validation of goals, such as business-IT alignment, is carried out in a blue-
print way in current EA techniques [20]. It means that if the enterprise architect feels, 
based on his knowledge and experience, that an enterprise has been architected accord-
ing to principles laid out by these EA techniques; then goals such as business-IT 
alignment have been accomplished by definition. An enterprise may also strive for 
other goals such as adaptability or cost optimality, for which no mechanism is provided 
by current EA techniques to prove that a property is satisfied across the enterprise. We 
believe the ability to specify enterprises in terms of high-level machine-manipulable 
models that are amenable to analysis and simulation is critical.  

The more closely enterprise models reflect reality, the more applicable the infer-
ences from simulation and analysis will be. Today, data describing structural and be-
havioural aspects of an enterprise is available – typically from multiple and possibly 
overlapping perspectives. We believe it should be possible to make use of this data to 
automatically arrive at first-cut purpose-specific models. Results from the well-studied 
field of log analysis seem readily applicable here [21]. These models will typically be 
further refined (and glued together into a unified model) by the experts. Results of 
what-if / if-what analysis and simulation of a purpose-specific model can help arrive at 
appropriate response to the problem under consideration. A model-centric approach 
will enable problems to be addressed in a pro-active manner long before they manifest. 
A mapping or a faithful representation from the models-for-analysis (“simulated” en-
terprise) to enterprise system models (“real” enterprise) is required to translate infer-
ences from analysis and simulation into an action plan for the underlying enterprise 
systems. The action plan will typically describe a partially ordered list of changes to be 
introduced in the operating environment, or in software intensive systems, or in the 
manner the software intensive systems interact with each other and environment, or 
any combination of these. 

5 Summary 

We discussed our experience of delivering large business applications using model 
driven development approach supported by home-grown standards compliant MDD 
toolset. In our experience, large application development projects benefitted from this 
approach in terms of technology independence, enhanced productivity and uniformly 
high code quality. We observed that without a method imparting discipline to their use, 
the modelling tools and model-based code generators create more problems for the 
development team. As a consequence, model-driven development approach leads  
to less agile if not inflexible development process. We have tried incorporating  
agile manifesto in model-driven development but it is too early to say anything  
concrete [22]. 
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Steep learning curve and high upfront investment in the form of creating high level 
specifications were principal deterrents for small and medium sized software develop-
ment projects adopting model-driven approach. A metadata-driven code-centric gen-
erative approach turned out more appropriate. But, this approach turned out to be too 
limited to be considered for complex software development endeavours. To overcome 
this limitation, we came up with a lightweight model interpretation based approach 
[23]. This worked very well as long as non-functional requirements such as through-
put, transaction time were not stringent. As these concerns were effectively addressed 
in model-driven code generative approach, we developed a migration bridge from 
interpretive to code generative approach. But this bridge was sporadically used and 
with mixed response which we haven’t fully analysed yet. 

Managers agreed to the qualitative benefits of model-driven development but inabil-
ity to translate them in quantitative terms tended to be the biggest stumbling block for 
adoption of model-driven approach. We have taken a baby step in this regard but lot 
needs to be done [24]. 

We think the basic technological pieces for supporting model-driven development 
are in place. Many tools with a varying degree of sophistication exist. Other important 
aspects such as usability, learnability, performance need to be improved which in es-
sence is a continuous process. However, full potential of model-driven development 
cannot be realized in absence of ready-to-use models supported by domain ontologies 
providing the semantic and reasoning basis. This aspect is poorly addressed at present. 

Focus of MDE community has been on developing technologies that address how to 
model. Barring the domain of safety-critical systems, these models are used only for 
generating a system implementation. Rather, modelling language design/definition is 
influenced very heavily by its ability to be transformed into an implementation that can 
be executed on some platform. Modern enterprises face wicked problems most of 
which are addressed in ad hoc manner. Use of modelling can provide a more scientific 
and tractable alternative. For which, modelling community needs to shift the focus on 
analysis and simulation of models. Results from random graphs, probabilistic graphical 
models, belief propagation and statistics seem applicable here. We believe, it is possi-
ble to model at least a small subset of modern complex enterprises so as to demonstrate 
that model is the organization [25]. 
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