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Abstract The Ostrovsky-Hunter equation provides a model for small-amplitude
long waves in a rotating fluid of finite depth. It is a nonlinear evolution equation.
In this paper the welposedness of the Cauchy problem and of an initial boundary
value problem associated to this equation is studied.
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1 Introduction

The non-linear evolution equation

@x.@t u C @xf .u/ � ˇ@3
xxxu/ D �u; (1)

with ˇ; � 2 R and f .u/ D u2

2
was derived by Ostrovsky [20] to model small-

amplitude long waves in a rotating fluid of finite depth. This equation generalizes the
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Korteweg-deVries equation (corresponding to � D 0) by an additional term induced
by the Coriolis force. It is deduced by considering two asymptotic expansions of the
shallow water equations, first with respect to the rotation frequency and then with
respect to the amplitude of the waves [8].

Mathematical properties of the Ostrovsky equation (1) have been studied recently
in great depth, including the local and global well-posedness in energy space [7,12,
14, 25], stability of solitary waves [10, 13, 15], and convergence of solutions in the
limit of the Korteweg-deVries equation [11, 15]. We shall consider the limit of the
no high-frequency dispersion ˇ D 0, therefore (1) reads

@x.@t u C @xf .u// D �u: (2)

In this form, Eq. (2) is known under various different names such as the reduced
Ostrovsky equation [21, 23], the Ostrovsky-Hunter equation [3], the short-wave
equation [8], and the Vakhnenko equation [18, 22].

Integrating (2) with respect to x we obtain the integro-differential formulation of
(2) (see [16])

@t u C @xf .u/ D �

Z x

u.t; y/dy;

which is equivalent to

@t u C @xf .u/ D �P; @xP D u:

Due to the regularizing effect of the P equation we have that

u 2 L1
loc H) P 2 L1..0; T /I W 1;1

loc /; T > 0:

The flux f is assumed to be smooth, Lipschitz continuous, and genuinely
nonlinear, i.e.:

f 2 C 2.R/; jfu 2 RI f 00.u/ D 0gj D 0; f 0.0/ D 0; jf 0.�/j � L;

(3)

and the constant � is assumed to be real
Since the solutions are merely locally bounded, the Lipschitz continuity of the

flux f assumed in (3) guarantees the finite speed of propagation of the solutions
of (2).

This paper is devoted to the wellposedness of the initial-boundary value problem
(see Sect. 2) and the Cauchy problem (see Sect. 3) for (2). Our existence argument
is based on a passage to the limit using a compensated compactness argument [24]
in a vanishing viscosity approximation of (8):

@t u" C @xf .u"/ D �P" C "@2
xxu"; @xP" D u":
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On the other hand we use the method of [9] for the uniqueness and stability of the
solutions of (2).

2 The Initial Boundary Value Problem

In this section, we augment (2) with the boundary condition

u.t; 0/ D 0; t > 0; (4)

and the initial datum

u.0; x/ D u0.x/; x > 0: (5)

We assume that

u0 2 L2.0; 1/ \ L1
loc.0; 1/;

Z 1

0

u0.x/dx D 0: (6)

The zero mean assumption on the initial condition is motivated by (2). Indeed,
integrating both sides of (2) we have that u.t; �/ has zero mean for every t > 0,
therefore it is natural to assume the same on the initial condition.

Integrating (2) on .0; x/ we obtain the integro-differential formulation of the
initial-boundary value problem (2), (4), (5) (see [16])

8̂
<̂
ˆ̂:

@t u C @xf .u/ D �
R x

0
u.t; y/dy; t > 0; x > 0;

u.t; 0/ D 0; t > 0;

u.0; x/ D u0.x/; x > 0:

(7)

This is equivalent to

8̂
ˆ̂̂<
ˆ̂̂̂
:

@t u C @xf .u/ D �P; t > 0; x > 0;

@xP D u; t > 0; x > 0;

u.t; 0/ D P.t; 0/ D 0; t > 0;

u.0; x/ D u0.x/; x > 0:

(8)

Due to the regularizing effect of the P equation in (8) we have that

u 2 L1
loc..0; 1/2/ H) P 2 L1

loc..0; 1/I W
1;1

loc .0; 1//: (9)
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Therefore, if a map u 2 L1
loc..0; 1/2/ satisfies, for every convex map � 2 C 2.R/,

@t �.u/ C @xq.u/ � ��0.u/P � 0; q.u/ D
Z u

f 0.�/�0.�/ d�; (10)

in the sense of distributions, then [5, Theorem 1.1] provides the existence of a strong
trace u�

0 on the boundary x D 0.

Definition 1. We say that u 2 L1
loc..0; 1/2/ is an entropy solution of the initial-

boundary value problem (2), (4), and (5) if:

(i) u is a distributional solution of (7) or equivalently of (8);
(ii) for every convex function � 2 C 2.R/ the entropy inequality (10) holds in the

sense of distributions in .0; 1/ � .0; 1/;
(iii) for every convex function � 2 C 2.R/ with corresponding q defined by q0 D

f 0�0, the boundary entropy condition

q.u�
0.t// � q.0/ � �0.0/

.u�
0.t//2

2
� 0 (11)

holds for a.e. t 2 .0; 1/, where u�
0.t/ is the trace of u on the boundary x D 0.

We observe that the previous definition is equivalent to the following inequality
(see [2]):

Z 1

0

Z 1

0

.ju � cj@t � C sign .u � c/ .f .u/ � f .c//@x�/dt dx

C �

Z 1

0

Z 1

0

sign .u � c/ P dt dx

�
Z 1

0

sign .c/ .f .u�
0.t// � f .c//dt

C
Z 1

0

ju0.x/ � cj�.0; x/dx � 0;

for every non-negative � 2 C 1.R2/ with compact support, and for every c 2 R.
The main result of this section is the following theorem.

Theorem 1. Assume (3), (5), and (6). The initial-boundary value problem (2), (4),
and (5) possesses a unique entropy solution u in the sense of Definition 1. Moreover,
if u and v are two entropy solutions (2), (4), (5) in the sense of Definition 1 the
following inequality holds

ku.t; �/ � v.t; �/kL1.0;R/ � eC t ku.0; �/ � v.0; �/kL1.0;RCLt/ ; (12)

for almost every t > 0, R; T > 0, and a suitable constant C > 0.
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Our existence argument is based on a passage to the limit in a vanishing viscosity
approximation of (8). Fix a small number " > 0, and let u" D u".t; x/ be the unique
classical solution of the following mixed problem

8̂
ˆ̂̂<
ˆ̂̂̂
:

@t u" C @xf .u"/ D �P" C "@2
xxu"; t > 0; x > 0;

@xP" D u"; t > 0; x > 0;

u".t; 0/ D P".t; 0/ D 0; t > 0;

u".0; x/ D u";0.x/; x > 0;

(13)

where u";0 is a C 1.0; 1/ approximation of u0 such that

ku";0kL2.0;1/ � ku0kL2.0;1/ ;

Z 1

0

u";0.x/dx D 0: (14)

Clearly, (13) is equivalent to the integro-differential problem

8̂
<̂
ˆ̂:

@t u" C @xf .u"/ D �
R x

0
u".t; y/dy C "@2

xxu"; t > 0; x > 0;

u".t; 0/ D 0; t > 0;

u".0; x/ D u";0.x/; x > 0:

(15)

The existence of such solutions can be obtained by fixing a small number ı > 0

and considering the further approximation of (13) (see [4])

8̂
ˆ̂̂<
ˆ̂̂̂
:

@t u";ı C @xf .u";ı/ D �P";ı C "@2
xxu";ı; t > 0; x > 0;

�ı@2
xxP";ı C @xP";ı D u";ı; t > 0; x > 0;

u";ı.t; 0/ D P";ı.t; 0/ D @xP";ı.t; 0/ D 0; t > 0;

u";ı.0; x/ D u";0.x/; x > 0;

and then sending ı ! 0.
Let us prove some a priori estimates on u".

Lemma 1. The following statements are equivalent

Z 1

0

u".t; x/dx D 0; t � 0; (16)

d

dt

Z 1

0

u2
"dx C 2"

Z 1

0

.@xu"/
2dx D 0; t > 0: (17)

Proof. Let t > 0. We begin by proving that (16) implies (17). Multiplying (15)
by u" and integrating over .0; 1/ gives
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1

2

d

dt

Z
1

0

u2
"dx D

Z
1

0

u"@t u"dx

D "

Z
1

0

u"@
2
xxu"dx �

Z
1

0

u"f
0.u"/@xu"dx C �

Z
1

0

u"

� Z x

0

u"dy
�

dx

D �"

Z
1

0

.@xu"/
2dx C �

Z
1

0

u"

� Z x

0

u"dy
�

dx:

For (13),

Z 1

0

u"

� Z x

0

u"dy
�

dx D
Z 1

0

P".t; x/@xP".t; x/dx D 1

2
P 2

" .t; 1/:

Then,

d

dt

Z 1

0

u2
"dx C 2"

Z 1

0

.@xu"/
2dx D �P 2

" .t; 1/: (18)

Thanks to (16),

lim
x!1 P 2

" .t; x/ D
� Z 1

0

u".t; x/dx
�2 D 0: (19)

Now (18) and (19) give (17).
Let us show that (17) implies (16). We assume by contraddiction that (16) does

not hold, namely:

Z 1

0

u".t; x/dx ¤ 0:

For (13),

P 2
" .t; 1/ D

� Z 1

0

u".t; x/dx
�2 ¤ 0:

Therefore, (18) gives

d

dt

Z 1

0

u2
"dx C 2"

Z 1

0

.@xu"/
2dx ¤ 0;

which contradicts (17). ut
Lemma 2. For each t � 0, (16) holds true. In particular, we have that

ku".t; �/k2
L2.0;1/ C 2"

Z t

0

k@xu".s; �/k2
L2.0;1/ ds � ku0k2

L2.0;1/ : (20)
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Proof. We begin by observing that u".t; 0/ D 0 implies @t u".t; 0/ D 0. Thus, thanks
to (3),

"@2
xxu".t; 0/ D @t u".t; 0/ C f 0.u".t; 0//@xu".t; 0/ � �

Z 0

0

u".t; x/dx D 0: (21)

Differentiating (15) with respect to x, we have

@x.@t u" C @xf .u"/ � "@2
xxu"/ D �u":

For (21) and the smoothness of u", an integration over .0; 1/ gives (16). Lemma 1
says that (17) also holds true. Therefore, integrating (17) on .0; t/, for (14), we
have (20). ut
Lemma 3. We have that

fu"g">0 is bounded in L1
loc..0; 1/2/: (22)

Consequently,

fP"g">0 is bounded in L1
loc..0; 1/2/: (23)

Proof. Thanks to (15), (20), and the Hölder inequality,

@t u" C @xf .u"/ � "@2
xxu" D �

Z x

0

u".t; y/dy � �
ˇ̌
ˇ
Z x

0

u".t; y/dy
ˇ̌
ˇ

� �

Z x

0

ju".t; y/jdy � �
p

x ku".t; �/kL2.0;1/

� �
p

x ku0kL2.0;1/ :

Let v, w, v", and w" be the solutions of the following equations:

8̂
<̂
ˆ̂:

@t v C @xf .v/ D � ku0kL2.0;1/

p
x; t > 0; x > 0;

v.t; 0/ D 0; t > 0;

v.0; x/ D u0.x/; x > 0;

8̂
<̂
ˆ̂:

@t w C @xf .w/ D �� ku0kL2.0;1/

p
x; t > 0; x > 0;

w.t; 0/ D 0; t > 0;

w.0; x/ D u0.x/; x > 0;
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8̂
<̂
ˆ̂:

@t v" C @xf .v"/ D � ku0kL2.0;1/

p
x C "@2

xxv"; t > 0; x > 0;

v".t; 0/ D 0; t > 0;

v".0; x/ D u";0.x/; x > 0;

8̂
<̂
ˆ̂:

@t w" C @xf .w"/ D �� ku0kL2.0;1/

p
x C "@2

xxw"; t > 0; x > 0;

w".t; 0/ D 0; t > 0;

w".0; x/ D u";0.x/; x > 0;

respectively. Then u", v", and w" are respectively a solution, a supersolution, and a
subsolution of the parabolic problem

8̂
<̂
ˆ̂:

@t q C @xf .q/ D �
R x

0 u".t; y/dy C "@2
xxq; t > 0; x > 0;

q.t; 0/ D 0; t > 0;

q.0; x/ D u";0.x/; x > 0:

Thus, see [6, Chap. 2, Theorem 9],

w" � u" � v":

Moreover, fw"g">0 and fv"g">0 are uniformly bounded in L1
loc..0; 1/2/ and con-

verge to w and v respectively, see [1, 17]. Therefore the two functions

W D inf
">0

w"; V D sup
">0

v"

belong to L1
loc..0; 1/2/ and satisfy

W � w" � u" � v" � V: (24)

This gives (22). Since

jP".t; x/j D
ˇ̌
ˇ
Z x

0

u".t; y/dy
ˇ̌
ˇ �

Z x

0

ju".t; y/jdy;

(23) follows from (22). ut
Let us continue by proving the existence of a distributional solution to (2), (4),

and (5) satisfying (10).

Lemma 4. There exists a function u 2 L1
loc..0; 1/2/ that is a distributional

solution of (8) and satisfies (10) for every convex entropy � 2 C 2.R/.

We construct a solution by passing to the limit in a sequence fu"g">0 of viscosity
approximations (13). We use the compensated compactness method [24].
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Lemma 5. There exist a subsequence fu"k
gk2N of fu"g">0 and a limit function u 2

L1
loc..0; 1/2/ such that

u"k
! u a:e: and in L

p
loc..0; 1/2/; 1 � p < 1: (25)

Moreover, we have

P"k
! P a:e: and in L

p
loc.0; 1I W

1;p
loc .0; 1//; 1 � p < 1; (26)

where

P.t; x/ D
Z x

0

u.t; y/dy; t � 0; x � 0:

Proof. Let � W R ! R be any convex C 2 entropy function, and q W R ! R be the
corresponding entropy flux defined by q0 D f 0�0. By multiplying the first equation
in (13) by �0.u"/ and using the chain rule, we get

@t �.u"/ C @xq.u"/ D "@2
xx�.u"/„ ƒ‚ …
DWL1;"

�"�00.u"/ .@xu"/
2„ ƒ‚ …

DWL2;"

C��0.u"/P"„ ƒ‚ …
DWL3;"

;

where L1;", L2;", L3;" are distributions.
Thanks to Lemma 2

L1;" ! 0 in H �1
loc ..0; 1/2/;

fL2;"g">0 is uniformly bounded in L1
loc..0; 1/2/:

We prove that

fL3;"g">0 is uniformly bounded in L1
loc..0; 1/2/:

Let K be a compact subset of .0; 1/2. For Lemma 3,

����0.u"/P"

��
L1.K/

D �

ZZ
K

j�0.u"/jjP"jdt dx

� �
���0.u"/

��
L1.K/

kP"kL1.K/ jKj:

Therefore, Murat’s lemma [19] implies that

f@t �.u"/ C @xq.u"/g">0 lies in a compact subset of H �1
loc ..0; 1/2/. (27)

The L1
loc bound stated in Lemma 3, (27), and Tartar’s compensated compactness

method [24] give the existence of a subsequence fu"k
gk2N and a limit function u 2

L1
loc..0; 1/2/ such that (25) holds.
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Finally, (26) follows from (25), the Hölder inequality, and the identities

P"k
.t; x/ D

Z x

0

u"k
.t; y/dy; @xP"k

D u"k
:

Moreover, [5, Theorem 1.1] tells us that the limit u admits a strong boundary
trace u�

0 at .0; 1/ � fx D 0g. Since, arguing as in [5, Sect. 3.1] (indeed our
solution is obtained as the vanishing viscosity limit of (8)), [5, Lemma 3.2] and
the boundedness of the source term P (cf. (9)) imply (11). ut
We are now ready for the proof of Theorem 1.

Proof (Proof of Theorem 1). Lemma (5) gives the existence of an entropy solution
u.t; x/ of (7), or equivalently (8).

Let us show that u.t; x/ is unique, and that (12) holds true. Since our solutions
is only locally bounded we use the doubling of variables method and get local
estimates based on the finite speed of propagation of the waves generated by (2).
Let u; v be two entropy solutions of (7), or equivalently of (8), and 0 < t < T .
By arguing as in [2,9], using the fact that the two solutions satisfy the same boundary
conditions, we can prove that

@t .ju � vj/ C @x..f .u/ � f .v//sign .u � v// � �sign .u � v/ .Pu � Pv/ � 0

holds in the sense of distributions in .0; 1/ � .0; 1/, and

ku.t; �/ � v.t; �/kI.t/ � ku0 � v0kI.0/

C�

Z t

0

Z
I.s/

sign .u � v/ .Pu � Pv/ds dx;
0 < t < T; (28)

where

Pu.t; x/ D
Z x

0

u.t; y/dy; Pv D
Z x

0

v.t; y/dy; I.s/ D .0; R C L.t � s//;

and L is the Lipschitz constant of the flux f .
Since

�

Z t

0

Z
I.s/

sign .u � v/ .Pu � Pv/ds dx � �

Z t

0

Z
I.s/

jPu � Pvjds dx

� �

Z t

0

Z
I.s/

�ˇ̌
ˇ
Z x

0

ju � vjdy
ˇ̌
ˇ
�

ds dx
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� �

Z t

0

Z
I.s/

�ˇ̌
ˇ
Z

I.s/

ju � vjdy
ˇ̌
ˇ
�

ds dx

D �

Z t

0

jI.s/j ku.s; �/ � v.s; �/kL1.I.s// ds;

(29)

and

jI.s/j D R C L.t � s/ � R C Lt � R C LT; (30)

we can consider the following continuous function:

G.t/ D ku.t; �/ � v.t; �/kL1.I.t// ; t � 0: (31)

Using this notation, it follows from (28)–(30) that

G.t/ � G.0/ C C

Z t

0

G.s/ds;

where C D �.R C LT /. Gronwall’s inequality and (31) give

ku.t; �/ � v.t; �/kL1.0;R/ � eC t ku0 � v0kL1.0;RCLt/ ;

that is (12). ut

3 The Cauchy Problem

Let us consider now the Cauchy problem associated to (2). Since the arguments are
similar to those of the previous section we simply sketch them, highlighting only
the differences between the two problems.

In this section we augment (2) with the initial datum

u.0; x/ D u0.x/; x 2 R: (32)

We assume that

u0 2 L2.R/ \ L1
loc.R/;

Z
R

u0.x/dx D 0: (33)

Indeed, integrating both sides of (2) we have that u.t; �/ has zero mean for every
t > 0, therefore it is natural to assume the same on the initial condition. We rewrite
the Cauchy problem (2), (32) in the following way
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(
@t u C @xf .u/ D �

R x

0
u.t; y/dy; t > 0; x 2 R;

u.0; x/ D u0.x/; x 2 R;
(34)

or equivalently
8̂
ˆ̂̂<
ˆ̂̂̂
:

@t u C @xf .u/ D �P; t > 0; x 2 R;

@xP D u; t > 0; x 2 R;

P.t; 0/ D 0; t > 0;

u.0; x/ D u0.x/; x 2 R:

(35)

Due to the regularizing effect of the P equation in (35) we have that

u 2 L1
loc..0; 1/ � R/ H) P 2 L1

loc..0; 1/I W
1;1

loc .R//:

Definition 2. We say that u 2 L1
loc..0; 1/ � R/ is an entropy solution of the initial

value problem (2), and (32) if:

(i) u is a distributional solution of (34) or equivalently of (35);
(ii) For every convex function � 2 C 2.R/ the entropy inequality

@t �.u/ C @xq.u/ � ��0.u/P � 0; q.u/ D
Z u

f 0.�/�0.�/ d�; (36)

holds in the sense of distributions in .0; 1/ � R.

The main result of this section is the following theorem.

Theorem 2. Assume (32) and (33). The initial value problem (2) and (32) possesses
a unique entropy solution u in the sense of Definition 2. Moreover, if u and v are two
entropy solutions (2) and (32), in the sense of Definition 2 the following inequality
holds

ku.t; �/ � v.t; �/kL1.�R;R/ � eC t ku.0; �/ � v.0; �/kL1.�R�Lt;RCLt/ ; (37)

for almost every t > 0, R; T > 0, and a suitable constant C > 0.

Our existence argument is based on a passage to the limit in a vanishing viscosity
approximation of (35).

Fix a small number " > 0, and let u" D u".t; x/ be the unique classical solution
of the following mixed problem

8̂
ˆ̂̂<
ˆ̂̂̂
:

@t u" C @xf .u"/ D �P" C "@2
xxu"; t > 0; x 2 R;

@xP" D u"; t > 0; x 2 R;

P".t; 0/ D 0; t > 0;

u".0; x/ D u";0.x/; x 2 R;

(38)
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where u";0 is a C 1.R/ approximation of u0 such that

ku";0kL2.R/ � ku0kL2.R/ ;

Z
R

u";0.x/dx D 0: (39)

Clearly, (38) is equivalent to the integro-differential problem

(
@t u" C @xf .u"/ D �

R x

0
u".t; y/dy C "@2

xxu"; t > 0; x 2 R;

u".0; x/ D u";0.x/; x 2 R:
(40)

The existence of such solutions can be obtained by fixing a small number ı > 0 and
considering the further approximation of (38) (see [4])

8̂
ˆ̂̂<
ˆ̂̂̂
:

@t u";ı C @xf .u";ı/ D �P";ı C "@2
xxu";ı; t > 0; x 2 R;

�ı@2
xxP";ı C @xP";ı D u";ı; t > 0; x 2 R;

P";ı.t; 0/ D 0; t > 0;

u";ı.0; x/ D u";0.x/; x 2 R;

and then sending ı ! 0.
Let us prove some a priori estimates on u". Arguing as in Lemma 1 we have the

following.

Lemma 6. Let us suppose that

P".t; �1/ D 0; t � 0; .or P".t; 1/ D 0/; (41)

where P".t; x/ is defined in (38). Then the following statements are equivalent

Z
R

u".t; x/dx D 0; t � 0; (42)

d

dt

Z
R

u2
"dx C 2"

Z
R

.@xu"/
2dx D 0; t > 0: (43)

Lemma 7. For each t � 0, (42) holds true, and

P".t; 1/ D P".t; �1/ D 0: (44)

In particular, we have that

ku".t; �/k2
L2.R/ C 2"

Z t

0

k@xu".s; �/k2
L2.R/ ds � ku0k2

L2.R/ : (45)
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Proof. Differentiating (40) with respect to x, we have

@x.@t u" C @xf .u"/ � "@2
xxu"/ D u":

Since u" is a smooth solution of (40), an integration over R gives (42).
Again for the regularity of u", from (38), we get

lim
x!�1.@t u" C @xf .u"/ � "@2

xxu"/ D �

Z �1

0

u".t; x/dx D �P".t; �1/ D 0;

lim
x!1.@t su" C @xf .u"/ � "@2

xxu"/ D �

Z 1

0

u".t; x/dx D �P".t; 1/ D 0;

that is (44).
Lemma 6 says that (43) also holds true. Therefore, integrating (43) on .0; t/, for

(39), we have (45). ut
Arguing as in Lemma 3 we obtain the following lemma:

Lemma 8. We have that

fu"g">0 is bounded in L1
loc..0; 1/ � R/: (46)

Consequently,

fP"g">0 is bounded in L1
loc..0; 1/ � R/: (47)

Let us continue by proving the existence of a distributional solution to (2) and
(5) satisfying (36).

Lemma 9. There exists a function u 2 L1
loc..0; 1/ � R/ that is a distributional

solution of (35) and satisfies (36) for every convex entropy � 2 C 2.R/.

We construct a solution by passing to the limit in a sequence fu"g">0 of viscosity
approximations (38). We use the compensated compactness method [24].

Lemma 10. There exists a subsequence fu"k
gk2N of fu"g">0 and a limit function

u 2 L1
loc..0; 1/ � R/ such that

u"k
! u a:e: and in L

p

loc..0; 1/ � R/; 1 � p < 1: (48)

Moreover, we have

P"k
! P a:e: and in L

p

loc..0; 1/I W
1;p

loc .R//; 1 � p < 1; (49)

where

P.t; x/ D
Z x

0

u.t; y/dy; t � 0; x 2 R:
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Proof. Let � W R ! R be any convex C 2 entropy function, and q W R ! R be the
corresponding entropy flux defined by q0 D f 0�0. By multiplying the first equation
in (38) by �0.u"/ and using the chain rule, we get

@t �.u"/ C @xq.u"/ D "@2
xx�.u"/„ ƒ‚ …
DWL1;"

�"�00.u"/ .@xu"/
2„ ƒ‚ …

DWL2;"

C��0.u"/P"„ ƒ‚ …
DWL3;"

;

where L1;", L2;", L3;" are distributions.
Arguing as in Lemma 5, we have that

L1;" ! 0 in H �1
loc ..0; 1/ � R/;

fL2;"g">0 and fL3;"g">0 are uniformly bounded in L1
loc..0; 1/ � R/:

Therefore, Murat’s lemma [19] implies that

f@t �.u"/ C @xq.u"/g">0 lies in a compact subset of H �1
loc ..0; 1/ � R/. (50)

The L1
loc bound stated in Lemma 8, (50), and Tartar’s compensated compactness

method [24] imply the existence of a subsequence fu"k
gk2N and a limit function

u 2 L1
loc..0; 1/ � R/ such that (48) holds.

Finally, (49) follows from (48), the Hölder inequality, and the identities

P"k
.t; x/ D

Z x

0

u"k
.t; y/dy; @xP"k

D u"k
: ut

We are now ready for the proof of Theorem 2.

Proof (Proof of Theorem 2). Lemma (10) gives the existence of an entropy solution
u of (7), or equivalently (35).

Let us show that u is unique, and that (37) holds true. Let u; v be two entropy
solutions of (7) or equivalently of (35) and 0 < t < T . Arguing as in [9] we can
prove that

ku.t; �/ � v.t; �/kI.t/ � ku0 � v0kI.0/

C�

Z t

0

Z
I.s/

sign .u � v/ .Pu � Pv/ds dx
0 < t < T; (51)

where

Pu.t; x/ D
Z x

0

u.t; y/dy; Pv D
Z x

0

v.t; y/dy; I.s/ D .�R�L.t�s/; RCL.t�s//;

and L is the Lipschitz constant of the flux f.
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Since

�

Z t

0

Z
I.s/

sign .u � v/ .Pu � Pv/ds dx � �

Z t

0

Z
I.s/

jPu � Pvjds dx

� �

Z t

0

Z
I.s/

�ˇ̌
ˇ
Z x

0

ju � vjdy
ˇ̌
ˇ
�

ds dx

� �

Z t

0

Z
I.s/

�ˇ̌
ˇ
Z

I.s/

ju � vjdy
ˇ̌
ˇ
�

ds dx

D �

Z t

0

jI.s/j ku.s; �/ � v.s; �/kL1.I.s// ds;

(52)

and

jI.s/j D 2R C 2L.t � s/ � 2R C 2Lt � 2R C 2LT; (53)

we can consider the following continuous function:

G.t/ D ku.t; �/ � v.t; �/kL1.I.t// ; t � 0: (54)

It follows from (51) to (53) that

G.t/ � G.0/ C C

Z t

0

G.s/ds;

where C D �.2R C 2LT /.
Gronwall’s inequality and (54) give

ku.t; �/ � v.t; �/kL1.�R;R/ � eC t ku0 � v0kL1.�R�Lt;RCLt/ ;

that is (37). ut
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