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Abstract In this work we are particularly interested in analyzing some conse-
quences of the additional assumption that the domain has a Lipschitz boundary, in
the investigation of the properties of the divergence-measure fields, especially those
which are vector-valued (Radon) measures whose divergence is a signed (Radon)
measure.
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1 Introduction

The purpose of this paper is to establish further properties of the (extended)
divergence-measure fields introduced by Chen and Frid [2–4], whose theory was
further developed by Silhavý [10, 11], under the additional assumption that the
underlying domain has a Lipschitz boundary. We begin by briefly reviewing the
basic theory, and then we make the assumption that the domain possesses a Lipchitz
deformable boundary, analyzing some consequences of this assumption. We refer
to [9] for a more detailed review of the theory of the divergence-measure fields
up to this date. We also refer to [6] and the papers already mentioned for a more
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complete bibliography on the theory of divergence-measure fields, as well as many
of its possible applications.

2 Divergence-Measure Fields

We begin by recalling the definition of the divergence-measure fields.

Definition 1. Let U � R
N be open. For F 2 Lp.U IRN /, 1 � p � 1, or F 2

M.U IRN /, set

jdivF j.U / WD supf
Z
U

r' � F W ' 2 C1
0 .U /; j'.x/j � 1; x 2 U g: (1)

For 1 � p � 1, we say that F is an Lp-divergence-measure field over U , i.e.,
F 2 DMp.U /, if F 2 Lp.U IRN / and

kF kDMp.U / WD kF kLp.U IRN / C jdivF j.U / < 1: (2)

We say that F is an extended divergence-measure field over D, i.e., F 2
DMext.U /, if F 2 M.U IRN / and

kF kDMext.U / WD jF j.U /C jdivF j.U / < 1: (3)

If F 2 DM�.U / for any open set U b R
N , then we say F 2 DM�

loc.R
N /.

In order to introduce notation and go directly to the heart of the matter, we recall
the following product rule proved in [2], whose proof is almost entirely transposed
to prove the main product rule that we will state subsequently, which is the key to
establishing the Gauss-Green formula (see Theorem 3 below).

Theorem 1 (Chen and Frid [2]). Given F 2 DM1.U / and g 2 BV.U / \
L1.U /, then gF 2 DM1.U / and

div .gF / D NgdivF C F � rg; (4)

in the sense of Radon measures in U , where Ng (equal to g a.e.) is the limit of
a mollified sequence for g through a symmetric mollifier, and F � rg is a Radon
measure absolutely continuous with respect to jrgj, whose absolutely continuous
part with respect to the Lebesgue measure in U satisfies

.F � rg/ac D F � .rg/ac; a.e. in U : (5)

Moreover, jF � rgj.U / � kF k1jrgj.U /.
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Proof. Let gı D !ı � g, where !ı.x/ D ı�N �.x
ı
/ with a positive symmetric

mollifier !. One easily deduces that

div .gıF / D gıdivF C F � rgı: (6)

Now, it is well known that gı converges to a Borel function Ng, HN�1-a.e. in U (this
function equals g a.e. in U ).

We claim that, for a Borel set A � U , HN�1.A/ D 0 implies j divF j.A/ D 0.
Indeed, since jdivF j is a Radon measure, we may assume that A is compact. Also,
we may assume that divF.A/ D jdivF j.A/. Hence, given " > 0, we may cover A
with a finite number of balls Bi D B.xi I ri /, i D 1; : : : ; J ,

A � A" WD [J
iD1Bi ; such that

JX
iD1

rN�1
i � ": (7)

We may also assume that jdivF j.@Bi / D 0, i D 1; : : : ; J , since otherwise we can
modify ri slightly to satisfy this property and (7). By using an approximation of the
identity sequence, we obtain a sequence Fı 2 C1.U IRN / such that Fı ! F a.e.
in U , and jdivFıj * jdivF j in M.U /. Again, we may assume that Fı ! F a.e. in
@Bi , i D 1; : : : ; J . Now, by the usual Gauss-Green formula for smooth vector fields
and domains with Lipschitz boundaries, we have

Z
A"

divFı dx D
Z
@A"

Fı � � dHN�1;

so that, passing to the limit when ı ! 0, we obtain

Z
A"

divF D
Z
@A"

F � � dHN�1 � ckF k1
JX
iD1

rN�1
i � ckF k1":

Since A is compact, �A" ! �A everywhere in U , and by dominated convergence
applied to the measure jdivF j, we get jdivF j.A/ D divF.A/ D 0, which proves
the claim.

Then, using the claim we just proved, we get

gıdivF * NgdivF; in M.U /;

as a consequence of dominated convergence applied to the measure divF .
On the other hand, we claim that fdiv .gıF /g is uniformly bounded in M.U /.

Indeed, this follows from

hdiv .gıF /; �i D �
Z
U

gıF � r� dx D �
Z
U

F � r.gı�/ dx C
Z
U

�F � rgı dx

� kgk1jdivF j.U /C kF k1jrgj.U /;
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for all � 2 C1
c .U /, with k�k1 D 1.

Now, div .gıF / converges to div .gF /, in the sense of distributions overU . Then,
div .gıF / * div .gF / in M.U /. Hence,

F � rgı * F � rg WD div .gF / � NgdivF:

Now we prove that F � rg is absolutely continuous w.r.t. jrgj. Let A � D be
such that jrgj.A/ D 0. We are going to prove that jF � rgj.A/ D 0. It suffices to
consider any compact set A with jrgj.A/ D 0. Given " > 0, we can cover A by a
finite number, J , of balls so that

A � [J
iD1B.xi I ri /; ri < "I jrgj�[J

iD1B.xi I ri /
�
< ":

We may assume that jrgj.@B.xi I ri // D 0, i D 1; � � � ; J . Let � 2
C0.[J

iD1B.xi I ri //. Thus

hF � rg; �i D lim
ı!0

Z
�.x/ F.x/ � rgı.x/ dx

D k�k1kF k1jrgj�[J
iD1B.xi I ri /

� � "k�k1kF k1;

from the fact that jrgıj.B/ ! jrgj.B/, for all open sets B � D with jrgj.@B/ D
0. Hence, we obtain

jF � rgj.A/ � jF � rgj
�

[J
iD1B.xi I ri /

�
� "kF k1:

The proof of (5) is a little more technical and, for that, we simply refer to [2] since
it escapes our purposes here. ut

We now recall a result of Silhavý in [11] that is in some sense a dual formulation
for the previous result, in the sense that it compensates a relaxation on the regularity
of the vector field F , which now may be just a vector measure, by imposing more
regularity on the function g, which now is assumed to be in W 1;1.U /. As we will
see, its proof follows exactly the same lines as that of Theorem 1 just recalled.

Theorem 2 (Silhavý [11]). Given F 2 DMext.U / and g 2 W 1;1.U /, then gF 2
DMext.U / and

div .gF / D gdivF C rg � F ; (8)

in the sense of Radon measures in U , where rg � F is a Radon measure absolutely
continuous with respect to jF j. Moreover,

(i) jrg � F j.U / � krgk1jF j.U /.
(ii) If h 2 W 1;1.U /, r.gh/ � F D hrg � F C grh � F D rg � hF C rh � gF .

(iii) If V � U is an open set, then .rgjV � F bV /V D rg � FU bV .
(iv) .rg � F /ac D rg � .F /ac .
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Proof. We again define gı as above and obtain (6). We have that gı converges
locally uniformly to g so that the first term on the right-hand side of (6) converges
to g divF , in the sense of Radon measures. It is also easy to see that rgı � F is
uniformly bounded in M.U /. Therefore, the left-hand side of (6) is also compact
in M.U /, in the weak star topology, and since it converges to div .gF / in the sense
of distributions, it follows that div .gF / is indeed a Radon measure and the whole
sequence div .gıF / converges to div .gF /. Hence, the whole sequence rgı � F
converges to the Radon measure

rg � F WD div .gF / � g div F:

The assertions (i)–(ii) are proved in the standard way. Assertion (iii) is called the
localization property in [11]; it follows trivially from the definitions. Finally, the
proof of (iv) is entirely similar to that of the analogous assertion in Theorem 1. ut

We recall the Gauss-Green formula for general divergence-measure fields, first
proved in [3, 4] and extended by Silhavý in [11].

Theorem 3 (Chen and Frid [3, 4], Silhavý [11]). If F 2 DMext.U / then there
exists a linear functional F � � W Lip.@U / ! R such that

F � �.gj@U / D
Z
U

rg � F C
Z
U

g divF; (9)

for every g 2 Lip.RN /\ L1.RN /. Moreover,

jF � �.h/j � jF jDM.U /jhjLip.@U /; (10)

for all h 2 Lip.@U /, where we use the notation

jgjLip.C / WD sup
x2C

jg.x/j C LipC .g/:

Proof. A major step in the proof of this result is to prove that the right-hand side of
(9) depends only on the values of g restricted to @U , that is, that if g 2 Lip.RN /,
with g.x/ D 0, for x 2 @U , then

Z
U

rg � F C
Z
U

g divF D 0: (11)

Clearly, we may as well assume g.x/ D 0, for x 2 R
N nU (cf. Lemma 3.2 in [11]).

We first prove (11) in the case where suppg is a compact subset of U . In this case,
for ı > 0 sufficiently small we have suppgı � U , where, as above, gı D g � !ı .
Then, by the definition of the divergence of the (vector-valued) distribution F , we
have
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Z
U

rgı � F C
Z
U

gı divF D 0: (12)

Hence, taking the limit when ı ! 0 in (12), using the definition of rg � F , we
obtain (11) in this case. We now consider the case where g 2 Lip.RN / and g.x/ D
0, for x 2 R

N n U . Let � W R ! R be given by

�.t/ WD

8̂
<̂
ˆ̂:
0; if t < 1=2,

2.t � 1=2/; if 1=2 � t � 1,

1; if t > 1;

and for each " > 0 let h" W RN ! R be defined by

h".x/ WD
(
�."�1dist .x; @U //; x 2 U;
0; x 2 R

N n U:
Observe that h" is a Lipschitz function satisfying h".x/ D 1, if x 2 U" WD fx 2 U W
dist .x; @U / � "g. Then the function h"g is a Lipschitz function which coincides
with g on U" and

r.h"g/ � F D h"rg � F C grh" � F :
By what we have already proved, we have

Z
U

h"rg � F C
Z
U

grh" � F C
Z
U

h"g divF D 0: (13)

Now, we have
Z
U

grh" � F D
Z
UnU2"

grh" � F ;

since rh" � 0 in U". Also, jrh"j � 2"�1, and jg.x/j � 2Lip.g/", for x 2 U nU2".
Therefore,

lim
"!0

Z
U

grh" � F D lim
"!0

Z
UnU2"

grh" � F D 0;

by dominated convergence. Hence, letting " ! 0 in (13), since h" ! 1, as " ! 0,
everywhere in U , we finally get (11).

The assertion just proved shows that the right-hand side of (9) depends only on
gj@U . Also, the inequality (10) is clear from (9), in the case where h D H j@U ,
whereH 2 Lip.RN /, and

jH jLip.RN / D jhjLip.@U /:



Divergence-Measure Fields on Domains with Lipschitz Boundary 213

Now, Kirszbraun’s Theorem (see, e.g., [7, 8]) guarantees, for any h 2 Lip.@U /,
the existence of H 2 Lip.RN / such that H j@U D h and Lip

RN .H/ D Lip@U .h/.
Moreover, a trivial cut-off procedure ensures that kHkL1.RN / D khkL1.@U /; this
completes the proof. ut

We now discuss a direct way of defining the normal trace functional
F � � W Lip.@U / ! R. The formula was first obtained in [3, 4], under regularity
restrictions on the boundary, and in [11], for general boundaries. Before stating the
corresponding result, we recall the following lemma, which is a slight modification
of Lemma 3.3 of [11].

Lemma 1 (Silhavý [11]). If F 2 DMext.U /, m 2 Lip.U /, t 2 R and if T �
m�1.t/ is a compact subset of U , then the restriction rm � F bT of rm � F to T
satisfies

rm � F bT D 0: (14)

Proof. Clearly, we can take t D 0. Also, multiplying m by a suitable function in
C1
0 .U /, if necessary, we can assume that m has compact support in U . Therefore,

we can assume thatm is a Lipshitz function vanishing on R
N nW , withW D U nT ,

and, in particular, also on R
N n U . Therefore, for any � 2 C1

0 .U /, we have

Z
W

r.�m/ � F C
Z
W

�m divF D 0; (15)

Z
U

r.�m/ � F C
Z
U

�m divF D 0: (16)

Subtracting (15) from (16), since �m vanishes on T , we get

0 D
Z
T

r.�m/ � F D
Z
T

�rm � F C
Z
T

mr� � F D
Z
T

�rm � F ;

and so, since � is arbitrary, we arrive at (14). ut
The following result gives a simple formula to compute the normal trace of

DM-fields. This formula, displayed in (i) of the statement below, was first obtained
in [3,4] under some regularity restrictions on the boundary, and later was extended to
general domains in [11]. Item (ii) gives a useful necessary condition for the normal
trace to be a measure over @U established by Silhavý [11].

Theorem 4. Let F 2 DMext.U / and m W R
N ! R be a nonnegative Lipschitz

function with suppm � NU which is strictly positive on U , and for each " > 0 let
L" D fx 2 U W 0 < m.x/ < "g. Then:

(i) (cf. [3, 4] and [11]) If g 2 Lip.RN /\ L1.RN /, we have

F � �.gj@U / D � lim
"!0

"�1
Z
L"

g d .rm � F /: (17)
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(ii) (cf. [11]) If

lim inf
"!0

"�1jrm � F j.L"/ < 1; (18)

then F � � is a measure over @U .

Proof. We repeat the proof given in [11].

(i) For each " > 0 we define m".x/ D "�1 minfm.x/; "g. We see that m" is a
Lipschitz function vanishing on @U . We have that gm" 2 Lip.RN / and

r.gm"/ � F D m"rg � F C grm" � F ;

by the properties of the pairing rg � F . Since gm" vanishes on @U , we have

Z
U

m" d.rg � F /C
Z
U

g d.rm" � F /C
Z
U

gm" divF D 0: (19)

Now,m".x/ ! 1 everywhere in U , so that dominated convergence implies

Z
U

m" d.rg � F / !
Z
U

d.rg � F /

and
R
U
gm" divF ! R

U
g divF . On the other hand, we have m" D "�1m in

L", so rm" D "�1rm, a.e. in L", which gives rm" � F D "�1rm � F , over
L". Moreover, since U n L" D m�1

" .1/, by Lemma 1, we have rm" � F D 0

on U n L". Hence, we obtain (17) from (19) when " ! 0, by the definition of
F � �.gj@U / in (9).

(ii) By (18), we have jrm � F j.L"/ � C", for some C > 0 independent of ", at
least for a subsequence of " ! 0, so that

ˇ̌
ˇ̌"�1

Z
L"

g d.rm � F /
ˇ̌
ˇ̌ � CkgkL1.RN /;

for each g 2 Lip.RN / \ L1.RN /. Therefore, given g 2 Lip.@U /, we may
extend g to a Lipschitz function on R

N so that kgj@U kL1.@U / D kgkL1.RN /,
and so, by (17), we deduce that jF � �.g/j � CkgkL1.@U /, which implies, by
the Riesz representation theorem, that F �� is a measure on @U , as asserted. ut

Remark 1. A typical example of m in the statement of Theorem 4 is provided by
m.x/ D dist .x; @U /, for x 2 U , and m.x/ D 0, for x 2 R

N n U .

Remark 2. The following interesting example from [11] shows cases where F � �
is a measure over @U and cases where F � � fails to be a measure. Namely, for
1 � ˛ < 3, let F W R2 n f0g ! R

2 be defined by
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F.x/ D 1

jxj˛ .x2;�x1/;

and let U D fx D .x1; x2/ 2 R
2 W jxj < 1; x2 < 0g. Clearly, divF D 0, in

R
2 n f0g, and we easily verify that

F 2 DMp.U IR2/ with 1�p<2=.˛ � 1/, for 1<˛ <3, and pD 1, for ˛D 1:

Now, if g 2 Lip.@U / and suppg � f.x1; x2/ 2 R
2 W x2 D 0; jx1j < 1g, we may

use (18) with m satisfyingm.x/ D �x2, for �"0 < x2 � 0, and jx1j < 1� "0, with
"0 > 0 small enough so that g.x/ D 0, if jx1j � 1 � "0. Also, we may consider an
extension of g to R

2 such that g.x1; x2/ D g.x1; 0/, for jx2j < "0. Applying (18)
with m and the extension of g so defined, we get

F � �.g/ D lim
"!0

1

"

Z "

0

Z 1

�1
g.t; s/

t

.t2 C s2/
˛
2

dt ds;

which gives

F � �.g/ D
Z 1

�1
g.t; 0/sgn.t/jt j1�˛ dt; for 1 � ˛ < 2;

and

F � �.g/ D lim
"!0

Z
jt j>"

g.t; 0/sgn.t/jt j1�˛ dt; for 2 � ˛ < 3:

This shows that, for 1 � ˛ < 2, F � � is a measure, while, for 2 � ˛ < 3, F � � is
not a measure on @U .

Remark 3. For "0 > 0 sufficiently small and 0 < s < "0, we may consider the open
set Us WD fx 2 U W m.x/ > sg, for m as in Theorem 4. By Theorem 4, for the
normal trace F � �j@Us, we have the following formula similar to (17),

F � �.gj@Us/ D � lim
"!0

"�1
Z

fs<m.x/<sC"g
g d .rm � F /; (20)

and, again, we have that the condition

lim inf
"!0

"�1jrm � F j.fs < m.x/ < s C "g/ < 1; (21)

implies that F � �j@Us is a measure on @Us . If we consider the monotone function
V.s/ D jrm � F j.f0 < m.x/ < sg/, for s 2 .0; "0/, we see that the left-hand side
of (21) is the right-derivative of V at s, except possibly for a countable subset of
.0; "0/, and we know that it exists for a.e. s 2 .0; "0/. Therefore, F � �j@Us is a
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measure for a.e. s 2 .0; "0/, and in this sense we may assert that “for almost all
boundaries” @U the normal trace F � �j@U is a measure.

3 Domains with a Lipschitz Deformable Boundary

We now enter into the main subject of the present paper, beginning with the
definition of a deformable Lipschitz boundary.

Definition 2. Let� � R
N be an open set. We say that @� is a deformable Lipschitz

boundary if the following hold:

(i) For each x 2 @�, there exist an r > 0 and a Lipschitz mapping � W RN�1 ! R

such that, upon rotating and relabeling the coordinate axis if necessary,

� \Q.x; r/ D f y 2 R
N W �.y1; � � � ; yN�1/ < yN g \Q.x; r/;

where Q.x; r/ D f y 2 R
N W jyi � xi j � r; i D 1; � � � ; N g. We denote by Q�

the map Qy 7! . Qy; �. Qy//, Qy D .y1; � � � ; yN�1/.
(ii) There exists a map ‰ W @� 	 Œ0; 1	 ! N� such that ‰ is a bi-Lipschitz

homeomorphism over its image and‰.x; 0/ D x, for all x 2 @�. For s 2 Œ0; 1	,
we denote by ‰s the mapping from @� to N� given by ‰s.x/ D ‰.x; s/, and
set @�s WD ‰s.@�/.

We say that the Lipschitz deformation ‰ W @� 	 Œ0; 1	 ! N� is regular, and that �
has a regular Lipschitz deformable boundary, if, besides (i) and (ii), we have

(iii) J Œr‰s ı Q�	 * J Œr Q�	, as s ! 0, in the weak star topology of L1.B/ for any
bounded open set B � R

N�1 such that Q�.B/ � @�, with Q� as in (i), where
J Œrg	 denotes the Jacobian of rg (see, e.g., [7]).

Remark 4. In [2] the additional condition (iii) for defining a regular Lipschitz
deformation was stated in a slightly stronger way, asking that r‰s ı Q� ! r Q� ,
as s ! 0, in L1.B/. Nevertheless, the weak convergence of the Jacobian is already
enough to guarantee the validity of the formula

F � � ˇ̌
@�

D ess: lim.F � �s/ ı‰s; in the weak star topology of L1.@�;HN�1/;
(22)

which holds for DM1-fields, as established in [2].
Actually, condition (iii) is equivalent to J Œd‰s	 WD det.d‰�

s d‰s/
1=2 * 1 in the

weak star topology ofL1.@�/, where, for each ! 2 @�, d‰s.!/ W T!.@�/ ! R
N

is the differential mapping of ‰s at ! 2 @� and d‰�
s .!/ W RN ! T!.@�/ denotes

the adjoint mapping. This follows from the Cauchy-Binet formula for the Jacobian
(see, e.g., [7]).

We start our discussion by introducing the level set function h W RN ! R,
defined by
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h.x/ D

8̂
<̂
ˆ̂:
0; for x 2 R

N n N�;
s; for x 2 @�s;

1; for x 2 � n‰.@� 	 Œ0; 1	/:

By formula (17) we have

F � �.gj@U / D � lim
"!0

"�1
Z
L"

g d .rh � F /; (23)

for any F 2 DMext.�/, and any g 2 Lip.RN / \ L1.RN /, with L" D fx 2 � W
0 < h.x/ < "g.

Remark 5. The following standard example of a domain with a regular deformable
Lipschitz boundary shows that, for the sake of studying local properties of the
normal trace operator, any domain with a Lipschitz boundary may be viewed as
a domain with a regular deformable Lipschitz boundary. So, let

U WD f x 2 R
N W �.x1; � � � ; xN�1/ < xN g; (24)

where � W RN�1 ! R is a Lipschitz function. U is then an unbounded open set,
@U is the graph of � , @U D f. Qx; xN / 2 R

N W Qx 2 R
N�1; xN D �. Qx/g, and

it is very easy to define a regular Lipschitz deformation for @U by simply setting
‰.. Qx; �. Qx//; s/ D . Qx; �. Qx/ C sı/, Qx 2 R

N�1, s 2 Œ0; 1	, where ı > 0 is arbitrary.
It turns out that, by property (i) in Definition 2, for test functions g, as in (9),
with support contained in a sufficiently small neighborhood, say, a neighborhood
like those appearing in Definition 2(i), the normal trace operator given by (9) may
be defined using (23) where h is the level set function associated to this trivial
standard deformation. More specifically, in this case, the level set function is simply
defined by

h.x/ D

8̂
<̂
ˆ̂:
0; if xN < �. Qx/;
s; if xN D �. Qx/C sı, for s 2 Œ0; 1	;
1; if xN � �. Qx/C ı:

Therefore, considered as distributions in R
N with support contained in @�, the

normal trace operators associated to DMext-fields can always be split in a countable
sum of distributions, whose supports possess the finite intersection property, each of
which may be defined like the normal trace operator for a standard domain as just
described. Indeed, it suffices to employ a partition of unity subordinate to a suitable
covering of @�.

The above remark is important in connection, for instance, with the theory of
hyperbolic systems of conservation laws (see, e.g., [6]). Namely, if R

N is the
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space-time space R
nC1, so N D n C 1, with points denoted .x; t/, suppose

F.x; t/ D .�.u.x; t//; q.u.x; t/// where � W R
m ! R and q W R

m ! R
n form

an entropy-entropy flux pair for a hyperbolic system of conservation laws, and
u W Rn	.0;1/ ! R

m is a weak entropy solution for this system, and let� � R
nC1

be an open set. It is an important question to determine whether there is a measurable
function u
 W @� ! R

m such that the normal trace operator may be represented by
.�.u
 .!//; q.u
 .!/// � �.!/, where �.!/ is the outer unit normal vector at ! 2 @�.
Through the splitting of the normal trace operator mentioned in the above remark,
this question, for a general domain with Lipschitz boundary, may be reduced to the
corresponding one for a hyper-graph domain as U in (24).

For simplicity, in what follows, we will always assume that � is a bounded
open set with a regular deformable Lipschitz boundary. We emphasize that, for the
purpose of getting local information about the normal trace operator, as has been
already mentioned, this assumption does not represent any additional restriction
beyond that of possessing a Lipschitz boundary. The fact that � is bounded allows
us to restrict our discussion to just two cases, namely, that for fields in DM1.�/

and that for fields in DMext.�/, since the boundedess of � implies DMp.�/ �
DM1.�/, for all 1 < p � 1. Let us then focus our attention in these two cases.

Theorem 5. Let � be a bounded open set with a deformable Lipschitz boundary
and F 2 DM1.�/. Let ‰ W @� 	 Œ0; 1	 ! N� be a Lipschitz deformation of @�.
Then, for almost all s 2 Œ0; 1	, and all � 2 C1

0 .R
N /,

Z
�s

� divF D
Z
@�s

�.!/F.!/ � �s.!/ dHN�1.!/�
Z
�s

F.x/ � r�.x/ dx; (25)

where �s is the unit outward normal field defined HN�1-almost everywhere in @�s ,
and�s is the open subset of � bounded by @�s .

Proof. For � 2 C1
0 .R

N /, let

��.s/ D
Z
@�s

�.!/F.!/ � �s.!/ dHN�1.!/; s 2 Œ0; 1	;

where �s is as in the statement. Let s0 2 Œ0; 1	 be a Lebesgue point for �� , for � in
a countable dense set in C1

0 .R
N /. For ı > 0 sufficiently small, let gı W R ! R be

defined as

gı.s/ D

8̂
<̂
ˆ̂:
0; s < s0 � ı;
s�s0Cı
2ı

; s0 � ı � s � s0 C ı;

1; s > s0 C ı:

Set  ı D gı ı h�, where h is the level set function associated to the Lipschitz
deformation‰. By the Gauss-Green formula, we have
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0 D
Z
�

F � r ı dx C
Z
�

 ı divF

D
Z
�

�g0
ı.h.x//F � rh dx C

Z
�

gı.h.x//F � r� dx C
Z
�

 ı divF;

which gives, by the coarea formula,

0 D � 1

2ı

Z s0Cı

s0�ı

Z
@�s

�F � �s dHN�1.!/ dsC
Z
�

gı.h.x//F � r� dx C
Z
�

 ı divF:

Letting ı ! 0, we obtain (25) for s D s0, where s0 is an arbitrary Lebesgue point
of �� , for � in a countable dense subset of C1

0 .R
N /, and, so, (25) holds for almost

all s 2 Œ0; 1	 as was to be proved. ut
From Theorem 5 and the Gauss-Green formula (9), when F 2 DM1.�/, it

follows that, for any g 2 Lip.RN / \ L1.RN /, we have the following formula for
the normal trace functional F � � W Lip.@�/ ! R,

hF � �; gj@�i D ess: lim
s!0

Z
@�s

gF.!/ � �.!/ dHN�1.!/; (26)

where the limit on the right-hand side exists by applying dominated convergence to
the other two terms in (25). Therefore, for any � 2 Lip.@�/, we have

hF � �; �i D ess: lim
s!0

Z
@�s

� ı‰�1
s .!/F.!/ � �s.!/ dHN�1.!/;

or, by using the area formula,

hF � �; �i D ess: lim
s!0

Z
@�

�.!/F ı‰s.!/ � �s.‰s.!//J Œ‰s	 dHN�1.!/

D ess: lim
s!0

Z
@�

�.!/F ı‰s.!/ � �.‰s.!// dHN�1.!/;

where we have used the fact that‰ is a regular Lipschitz deformation. Therefore we
have proved the following formula for the normal trace for a DM1-field.

Theorem 6. Let F 2 DM1.�/, where � is a bounded open set with a Lipschitz
boundary admitting a regular deformation ‰ W @� 	 Œ0; 1	 ! N�. Denoting by
F � �j@� the continuous linear functional Lip.@�/ ! R given by the normal trace
of F at @�, we have the formula

F � �j@� D ess: lim
s!0

F ı‰s.�/ � �s.‰s.�//; (27)
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with equality in the sense of .Lip.@�//�, where on the right-hand side the
functionals are given by ordinary functions in L1.@�/.

We now turn to the case where F 2 DMext.�/. Let us again consider the level
set function h associated to the regular Lipschitz deformation‰ W @�	 Œ0; 1	 ! N�.
Let us consider the measure � over‰.@� 	 Œ0; 1	/ given by

� WD jrh � F j b‰.@�	 Œ0; 1	/:

We consider the pull back of � by ‰, ‰]�, which is the measure on @� 	 Œ0; 1	

defined by

h‰]�; 'i D h�; ' ı‰�1i; 8' 2 C.@� 	 Œ0; 1	/:

We may apply the disintegration process to ‰]� (see, e.g., Theorem 2.28, p. 57
in [1]) to write ‰]� D � ˝ Q�s , for the Radon measure � on Œ0; 1	 given by the
projection of ‰]� onto Œ0; 1	, and so �.E/ D ‰]�.@�	E/ for any Borel set E �
Œ0; 1	, and Radon measures Q�s such that s 7! Q�s is �-measurable, Q�s.@�/ D 1,
�-a.e. in Œ0; 1	, so that we have

Z

@��Œ0;1	
'.!; s/ d‰]� D

Z
Œ0;1	

�Z
@�

'.!; s/ d Q�s.!/
�
d�.s/; 8' 2 C.@�	Œ0; 1	/:

(28)

Therefore, by pushing forward the equation ‰]� D � ˝ Q�s by ‰, we obtain

� D � ˝ �s; �s WD .‰s/] Q�s;

where, for any � 2 C.@�s/,

h.‰s/] Q�s; �i D h Q�s; � ı‰si:

In particular, for any � 2 C1
0 .R

N /, with supp� \� � ‰.@� 	 Œ0; 1	/, we have

Z
�

�.x/ d.rh � F / D
Z
Œ0;1	

�Z
@�s

�.x/.x/ d�s

�
d�.s/; (29)

where  is the �-measurable function, with j j D 1, �-a.e., such that

� D rh � F b‰.@� 	 Œ0; 1	/:

Now, we have the decomposition � D H.s/ ds C �sing, for some non-negative
H 2 L1.Œ0; 1	/, and �sing D �bN , for some Borel set N � Œ0; 1	 of one-
dimensional Lebesgue measure zero, by the Lebesgue decomposition theorem (see,
e.g., [7], p. 42). We then define
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.rh � F /s WD  H.s/ �s: (30)

We have the following analogue of Theorem 5 when F 2 DMext.�/.

Theorem 7. Let � be a bounded open set with a deformable Lipschitz boundary
and F 2 DMext.�/. Let ‰ W @� 	 Œ0; 1	 ! N� be a Lipschitz deformation of @�.
Then, for almost all s 2 Œ0; 1	, and all � 2 C1

0 .R
N /,

Z
�s

� divF D
Z
@�s

�.!/ d.rh � F /s �
Z
�s

r�.x/ � F: (31)

Proof. The proof is nearly identical to that of Theorem 5, the only difference being
that now we must choose s0 2 Œ0; 1	nN , with N as above, such that s0 is a Lebesgue
point of

��.s/ WD
Z
@�s

� d.rh � F /s

for � in a countable dense set in C1
0 .R

N /, and we take gı only for small ı > 0 such
that j.rh � F /j.@�s0˙ı/ D 0. ut

Similarly to what was done for DM1-fields, from Theorem 7 we get the
following result.

Theorem 8. Let F 2 DMext.�/, where � is a bounded open set with a Lipschitz
boundary admitting a regular deformation ‰ W @� 	 Œ0; 1	 ! N�. Denoting by
F � �j@� the continuous linear functional Lip.@�/ ! R given by the normal trace
of F at @�, we have the formula

F � �j@� D ess: lim
s!0

‰]
s d.rh � F /s; (32)

with equality in the sense of .Lip.@�//�, where on the right-hand side the
functionals are given by the pull back by ‰s of the measures d.rh � F /s , resulting
from the disintegration of d.rh � F /.

4 Application to Time-Regularity of Entropy Solutions to
Hyperbolic Conservation Laws

Let n; d 2 N, RdC1
C D R

d 	 .0;1/, and U � R
n be an open and convex set. We

consider the N -dimensional system of n conservation laws

@tU C
dX
˛D1

@˛F
˛.U / D 0; in R

NC1
C ; (33)
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with U.x; t/ 2 U and F ˛ W U ! R
n, where @˛ denotes the partial derivative with

respect to x˛ .
Together with (33), we consider the initial data

U.x; 0/ D U0.x/: (34)

The following result provides time-regularity information about entropy
solutions of the problem (33) and (34). It extends a result established in [6]
(Theorem 4.5.1), which follows from the theory for L1 divergence-measure fields.

Theorem 9. Let U0 2 L1loc.R
d /, and let U 2 L1loc.R

d 	 Œ0;1// be a weak solution
of (33) and (34), in the sense that, for any � 2 C1

c .R
dC1/, we have

Z
R
dC1
C

U.x; t/@t� C
dX
˛D1

F ˛.U /@˛� dx dt C
Z
Rd

U0.x/�.x; 0/ dx D 0: (35)

Let � W U ! Œ0;1/ be a strictly convex function, with �.U / � c1jU j C c2, for
some c1 > 0, c2 2 R, such that �.U.x; t// 2 Lp.K \ R

dC1
C /, for any compact

set K � R
dC1, for some p > 1. Suppose that there exists a vector measure Q 2

M.K \ R
dC1
C IRd /, for any compact set K � R

dC1, such that �.U.x; t// satisfies

@t�.U /C div xQ � 0; in R
dC1
C ; (36)

in the sense of distributions, where M.�IRd / denotes the R
d -valued Radon

measures with finite total variation on �. Then,

U 2 C..0;1/ n S IL1loc.R
d //; (37)

for some at most countable set S � .0;1/. Moreover, if we have, for all
nonnegative 2 C1

c .R
dC1/,

Z
R
dC1
C

f�.U.x; t// @t dx dt C rx � dQg C
Z
Rd

�.U0.x// .x; 0/ dx � 0;

(38)

then the above strong continuity holds on the right for t D 0.

Proof. The result follows by applying Theorem 8 to the domains �Œt0C	 WD
f.x; t/ W t > t0g, t0 > 0, with regular Lipschitz deformation �Œt0C	s D
�Œ.t0 C s/C	, s 2 Œ0; 1	, and �Œt0�	 WD f.x; t/ W �1 < t < t0g, t0 > 0,
with regular Lipschitz deformation �Œt0�	s D �Œ.t0 � s/�	, s 2 Œ0; 1	. Here, for
simplicity, we may view U.x; t/ as extended to t < 0 as 0, as well as �.U.x; t//, as
�.0/, andQ as the null measure, for t < 0. We then obtain that, for a.e. t0 > 0,

( R
Rd
U.x; t0/ �.x/ dx D ess: limt!t0

R
Rd
U.x; t/�.x/ dx;R

Rd
�.U.x; t0//�.x/ dx D ess: limt!t0

R
Rd
�.U.x; t//�.x/ dx;

(39)
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for all � 2 C1
0 .R

d /. Now, using (37), for almost all 0 < ı < s < t < T , and
R > 0, there exists an A.R; ı; T / > 0 such that

Z
jxj<R

�.U.x; t// dx �
Z

jxj<R
�.U.x; s// dx C A.R; ı; T /: (40)

This gives that, for any ı > 0,
R

jxj<R �.U.x; t// dx is uniformly bounded for
ı < t < T , for almost all R > 0. Using the assumptions on �, we conclude thatR

jxj<R jU.x; t/j dx is also uniformly bounded for t > ı, for almost allR > 0. Hence,

we may take � 2 Lp
0

.Rd /, with compact support, in (41), with p0 D p=.p � 1/.
Now, since � is strictly convex, we conclude the proof in a standard way. ut

As an example, in [5], Chen and Perepelitsa prove the convergence of the
solutions .�"; �"u"/ to the Cauchy problem for the Navier-Stokes equations

(
�t C .�u/x D 0;

.�u/t C .�u2 C ���/x D "uxx;
(41)

with initial data

�.x; 0/ D �0.x/; u.x; 0/ D u0.x/; (42)

where � > 1 and � > 0, by a scaling defined by � D .� � 1/2=4� . Using energy
estimates and compensated compactness with Young measures with unbounded
support, they prove the convergence in L1.K \ R

2C/ of .�";m"/, with m" D �"u",
to some .�.x; t/;m.x; t// 2 L1loc.R

2C/, and also the convergence in L1.K \R
2C/ of

��.�".x; t/;m".x; t// to ��.�.x; t/;m.x; t//, where

��.�;m/ D 1

2

m2

�
C �e.�/; e.�/ D �

� � 1�
��1;

for any compactK . Nevertheless, passing to the limit in the inequality

@t�
�.�";m"/C @xq

�.�";m"/ � "

2
@2x.u

"/2; (43)

which holds for each " > 0, with

q�.�;m/ D 1

2

m3

�2
Cme.�/C �me0.�/;

we obtain an inequality of the form

@t�
�.�.x; t/;m.x; t//C @xQ.x; t/ � 0; in R

2C; (44)
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in the sense of distributions, for someQ 2 M.K \R
2C/, for any compactK � R

2.
Because of the presence of the term �".u"/3 in q�.�";m"/, whose estimates obtained
in [5] only guarantee the uniform boundedness in L1.K \ R

2C/, for any compact
K � R

2, we can only deduce that

hq�.�";m"/; @x i ! hQ; @x i;

for any  2 C1
c .R

2C/, for some (signed) Radon measureQ in R
2C, with finite total

variation in K \ R
2C, for any compactK � R

2.
Actually, from the results in [5] we obtain

Z
R
2
C

f t��.�;m/ dx dt C  x dQg C
Z
R

 .x; 0/��.�0.x/;m0.x// dx � 0; (45)

for all nonnegative 2 C1
c .R

2/, under suitable conditions on the initial data.
We can then apply Theorem 9 to conclude that the weak solution of the

compressible isentropic Euler equations, .�.x; t/;m.x; t//, obtained in [5] as the
limit of the vanishing viscosity solutions of the corresponding Navier-Stokes
equations, satisfies

.�;m/ 2 C..0;1/ n S IL1loc.R//;

for some at most countable subset S � .0;1/, and, moreover, .�.�; t/;m.�; t// !
.�0.�/;m.�//, as t # 0, in L1loc.R/.
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