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Preface

This book collects together a selection of refereed expository articles and original
research papers which stem from the Workshop on Hyperbolic Conservation Laws
and Related Analysis with Applications hosted at the International Centre for
Mathematical Sciences (ICMS), Edinburgh, UK, on September 19–23, 2011. There
were 28 plenary lectures given by 24 distinguished mathematicians, including three
introductory crash courses which surveyed and summarized the state of the art in
the area of hyperbolic conservation laws and its important applications/connections
to other areas, 18 research lectures which presented some recent important results,
and 1 public lecture entitled What Can Mathematics Say about Liquid Crystals?
delivered by Prof. Sir John Ball (Oxford). Most of the papers appearing in this book
are authored by the leading mathematicians who spoke at the workshop.

Thirteen papers comprise this work, representing a cross section of the most
significant recent advances and current directions in nonlinear hyperbolic conser-
vation laws and related analysis with applications. The general theory of hyperbolic
conservation laws emerged just 50 years ago, even though the seeds of the field
were originally planted in the eighteenth and nineteenth centuries, especially by the
leading scientists of the times: Euler, Cauchy, Poisson, Challis, Stokes, Rayleigh,
Kelvin, Riemann, Clausius, Rankine, Hugoniot, and Mach, among many others.
In recent years, the field has experienced a vigorous growth, and the research is
marching on at a brisk pace.

This book presents a survey of recent analytical and numerical advances, as
well as phenomena and theories likely to be important for future developments
in the field, through discussing fundamental mathematical problems in nonlinear
hyperbolic conservation laws arising in fluid mechanics, elasticity, solid mechanics,
and differential geometry, including questions of existence, uniqueness, regularity,
formation of singularities, and asymptotic behaviour of solutions. It contains two
introductory papers:

• Multi-dimensional Systems of Conservation Laws: an Introductory Lecture
by Denis Serre

v



vi Preface

• The Nash-Moser Iteration Technique with Application to Characteristic
Free-Boundary Problems

by Ben Stevens

In addition, the book’s contributions offer two other perspectives:

Papers on the general analytical treatment of the theory and related analysis.
These include:

• The Semigroup Approach to Conservation Laws with Discontinuous Flux
by Boris Andreianov

• SBV Regularity Results for Solutions to 1D Conservation Laws
by Laura Caravenna

• Existence and Stability of Global Solutions of Shock Diffraction by Wedges for
Potential Flow

by Gui-Qiang G. Chen & Wei Xiang

• Some Well-Posedness Results for the Ostrovsky-Hunter Equation
by Giuseppe Maria Coclite, Lorenzo di Ruvo & Kenneth Karlsen

• Divergence-Measure Fields on Domains with Lipschitz Boundary
by Hermano Frid

Papers on applications originating from significant realistic mathematical models
of natural phenomena. These include:

• On Numerical Methods for Hyperbolic Conservation Laws and Related Equa-
tions Modelling Sedimentation of Solid-Liquid Suspensions

by Fernando Betancourt, Raimund Büger, Ricardo Ruiz-Baier, Héctor Torres
& Carlos A. Vega

• A Generalized Buckley-Leverett System
by Nikolai Chemetov & Wladimir Neves

• The Quasineutral Limit for the Navier-Stokes-Fourier-Poisson System
by Donatella & Pierangelo Marcati

• On Strong Local Alignment in the Kinetic Cucker-Smale Model
by Trygve K. Karper, Antoine Mellet & Konstantina Trivisa

Also included are articles that bridge the gap between these two perspectives,
seeking synergetic links between theory, analysis, and applications:

• Entropy, Elasticity, and the Isometric Embedding Problem: M3! R
6

by Gui-Qiang G. Chen, Marshall Slemrod & Dehua Wang

• An Overview of Piston Problems in Fluid Dynamics
by Min Ding & Yachun Li

These papers cover a wide range of topics, including shock reflection-
diffraction, stability of nonlinear viscous/inviscid waves, free boundary problems,
transonic flow, isometric embedding, formation and dynamics of singularities, well-
posedness and regularity of entropy solutions, piston problems, kinetic models,
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weak convergence methods, singular limits, divergence-measure fields, semigroup
approach, approximations, and numerical methods. They are at the forefront of
current exciting developments.

The editors express their gratitude to the authors and the invited speakers for
their invaluable contribution, to all of the participants and attendees for making
the workshop successful, and to the referees for their constructive criticisms and
suggestions. As the organisers, it is our great pleasure to acknowledge the ICMS
leadership, the support in part from the Oxford Centre for Nonlinear PDE (OxPDE)
through the UK EPSRC Science and Innovation award (EP/E035027/1), as well
as effective assistance of the ICMS/OxPDE staff members including Somthawin
Carter, Helene Frossing, Jane Waler, Dawn Wasley, and Jonathan Whyman. Our
thanks go especially to the former and current ICMS Scientific Directors Professors
John Toland and Keith Ball, as well as to the OxPDE Director Professor Sir
John Ball. Finally, the editors are indebted to Springer-Verlag GmbH, Heidelberg,
especially Catriona M. Byrne (Editorial Director, Mathematics), Marina Reizakis
(Associate Editor, Mathematics), and Rainer Justke (Editorial Rights) for their
professional assistance.

Oxford, UK Gui-Qiang G. Chen
Trondheim, Norway Helge Holden
Oslo, Norway Kenneth H. Karlsen
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The Semigroup Approach to Conservation Laws
with Discontinuous Flux

Boris Andreianov

Abstract The model one-dimensional conservation law with discontinuous
spatially heterogeneous flux is

ut C f.x; u/x D 0; f.x; �/ D f l.x; �/1x<0C f r.x; �/1x>0: .EvPb/

We prove well-posedness for the Cauchy problem for (EvPb) in the framework of
solutions satisfying the so-called adapted entropy inequalities.

Exploiting the notion of integral solution that comes from nonlinear semigroup
theory, we propose a way to circumvent the use of strong interface traces for the
evolution problem .EvPb/ (in fact, proving the existence of such traces for the
case of x-dependent f l;r would be a delicate technical issue). The difficulty is
shifted to the study of the associated one-dimensional stationary problem u C
f.x; u/x D g, where the existence of strong interface traces of entropy solutions
is an easy fact. We give a direct proof of this, avoiding the subtle arguments of
the kinetic formulation (Kwon YS, Vasseur A (2007) Arch Ration Mech Anal
185(3):495–513) and of the H -measure approach (Panov EY (2007) J Hyperbolic
Differ Equ 4(4):729–770).
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2 B. Andreianov

1 Introduction

Scalar conservation laws with space-discontinuous flux have been the a subject of
intense study for 20 years. The goal of this note is to highlight the results that can
be inferred from the nonlinear semigroup approach to such problems (see [13, 17]),
specifically for the case of space dimension one.

We stick to the unifying framework for proving the existence, uniqueness,
stability and convergence of numerical approximations that was proposed in the
paper [9] of K.H. Karlsen, N.H. Risebro and the author. In [9], we studied the model
problem

ut C f.x; u/x D 0; f.x; �/ D f l.x; �/1x<0C f r.x; �/1x>0 (EvPb)

under the space homogeneity assumption f l;r .x; �/ � f l;r .�/. This assumption
appears as a technical one, nevertheless it was a cornerstone of the entropy
formulation because of the explicit use of strong interface traces within the
uniqueness technique of [9]. Presently, to the authors’ knowledge there is no proof
of existence of strong traces for the non-homogeneous case. And even though such
a result is expected to be true under some weak assumptions on the dependence of
f l;r on u and x, the proof (following well-established kinetic techniques [24, 30]
or H -measure techniques [27, 28]) would be rather lengthy and highly technical.
The semigroup approach exploited in the present note permits us to circumvent the
difficulty, for the one-dimensional case. Actually, we will justify the existence of
strong interface traces in a particularly simple setting, using the least technical ideas
from [28]. Then we will conduct a brief study of the operator governing (EvPb) and
apply general principles of nonlinear semigroup theory.

Let us recall the main features of the entropy formulation of Karlsen, Riesbro
and the author [9] for the case f l;r .x; u/ � f l;r .u/. We postulated that a function
u 2 L1..0; T / � R/ is a G-entropy solution of (EvPb) if:

(i) It is an entropy solution in the classical sense of Kruzhkov [23] away from
the interface fx D 0g, i.e., in the subdomains �l WD .0; T / � R

� and �r WD
.0; T / � RC; and moreover

(ii) The two solutions are coupled across the interface fx D 0g by the relation
�
�lu; �ru

�
.t/ 2 G for a.e. t 2 .0; T /: (1)

Here �lu; �ru are strong (in the L1 sense) traces of local entropy solutions uj�l and
uj�r , respectively: see [28] (and also [24]) for the proof of existence of these traces
in the homogeneous case.1 Further, G � R

2 is an L1-dissipative germ, that is, a set
of pairs .ul ; ur / encoding the Rankine-Hugoniot (conservativity) condition

1Actually, a non-degeneracy of f l;r on intervals is needed for existence of such traces, see
assumption (H3). But if the degeneracy happens, one can reformulate (1) in terms of the traces
of some “singular mapping functions” Vf l;r .u/, see [9].
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8.ul ; ur / 2 G f l.ul / D f r.ur / (2)

and the interface dissipation condition

8.ul ; ur /; .cl ; cr / 2 G ql.ul ; cl / � qr.ur ; cr / (3)

with ql;r the Kruzhkov entropy fluxes given by

ql;r .�; c/ D sign.� � c/
�
f l;r .�/� f l;r .c/

�
: (4)

Further, [9] provides a global entropy formulation (see Definition 3 below) which
is shown to be equivalent to (ii) whenever the one-sided traces �l;ru on fx D 0g do
exist. Yet the global entropy formulation avoids the explicit use of interface traces
(such as (1) above); for this reason, it is especially useful for proving the existence
of solutions and convergence of various approximation procedures. Our goal is to
provide a uniqueness proof that relies on this global entropy formulation. To this
end, we combine two ideas.

Firstly, we observe that one can use the technique of the “comparison” proof of
[9, Theorem 3.28] in the case where one works with solutions u and Ou such that only
one of them (say, Ou) has strong interface traces. In this paper, we will say that Ou is
trace-regular if �l Ou and �r Ou exist in the sense of Definition 1 below.

Thus, we are able to “compare” a general solution and a trace-regular solution.
Here the second ingredient comes into play. Indeed, the trace-regularity issue is
particularly simple in the one-dimensional case for the so-called stationary problem:

uC f.x; u/x D g (StPb)

where g 2 L1.R/ \ L1.R/ and a G-entropy solution of (StPb) is sought.
In Lemma 1 we give a trace-regularity result based on elementary arguments. Now,
problem (StPb) can be seen as the resolvent equation

uC AGu 3 g (AbSt)

associated with the abstract evolution equation

d

dt
uC AGu 3 h; u.0/ D u0: (AbEv)

Here AG is the operator u 7! f.x; u/x defined on the appropriate domain D.AG/ �
L1.R/ by its graph: AG D f.u; z/ 2 .L1.R//2 j z 2 AGug. As a matter of fact, we
will require that u 2 D.AG/ be trace-regular functions. Then the notion of integral
solution can be exploited, following [13, 17], as it was done in [4, 6, 15] in various
contexts. Indeed, u is an integral solution of (AbEv) if the comparison inequality in
D0.0; T / holds:
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8.Ou; z/ 2 AG
d

dt
ku.t/ � OukL1 	

h
u.t/ � Ou; h � z

i
L1

(5)

where the right-hand side is the so-called L1 bracket (see Definition 5 below).
Notice that within the semigroup approach, we limit our attention to L1 \ L1 data
(see Corollary 1 and Sect. 5 for a generalization to L1 data, which is not trivial).

Here is our point:

property (5) (with z D g � u) can be established
whenever u is a G-entropy solution of (EvPb)

and Ou is a trace-regular G-entropy solution of (StPb).

This observation closes the loop, because we deduce uniqueness of a G-entropy
solution to the evolution problem from the uniqueness of the integral solution. The
latter uniqueness comes for free from the general principles of nonlinear semigroup
theory as soon as we prove that AG is a densely defined accretive operator on L1.R/
with m-accretive closure.

The paper is organized as follows. In Sect. 2 we state the assumptions, definitions
and the main result. In Sect. 3 we study the stationary problem (StPb) and establish
the main properties of the operator AG on L1.R/ associated with the formal
expression u 7! f.x; u/x . In particular, we show that the domain of AG can be
restricted to trace-regular functions. Then in Sect. 4 we deduce the uniqueness in
the setting of G-entropy solutions for problem (EvPb) with L1 \ L1 data. Finally,
in Sect. 5 we discuss the application of the idea of this paper for the one-dimensional
Dirichlet boundary-value problem for the conservation law; we also treat the case of
merelyL1 data for problem (EvPb). The Appendix of the paper contains a technical
result on entropy solutions of a spatially non-homogeneous conservation law; this
result has some interest on its own.

2 Assumptions, Definitions and Results

Let Rl WD .�1; 0/ and R
r WD .0;C1/, so that �l;r D .0; T / � R

l;r . For the sake
of simplicity of presentation, let us assume

8x 2 R
l;r the functions u 7! f l;r .x; u/ are supported in Œ0; 1�: (H1)

This assumption is only used to ensure a uniform L1 bound on solutions and
on approximate solutions.2 For the sake of generality we will consider R-valued
bounded functions u0 and g, although (H1) naturally appears in the case where
solutions are Œ0; 1�-valued (such solutions represent saturations in porous media,
sedimentation or road traffic models; see, e.g., [1, 5, 18]).

2See [9] for more general assumptions that ensure L1 bounds, which have to be adapted to the
inhomogeneous case.
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Throughout this paper, we assume that f l;r satisfy the following:

f l;r are Lipschitz continuous in .x; u/ 2 R
l;r � Œ0; 1�

and f l;r .0; �/ have a finite number of extrema on Œ0; 1�:
(H2)

We will also require the genuine nonlinearity property:

8x 2 R
l;r the functions u 7! .f l;r /u.x; u/ do not vanish on subintervals of Œ0; 1�:

(H3)

Notice that these assumptions can be relaxed but we stick to the above hypotheses
for the sake of simplicity.

Let us give the main definitions. Firstly, we recall the notion of strong boundary
trace in the case of the domain .0; T / � R

l (the case of .0; T / � R
r is analogous).3

What is needed for our case is:

Definition 1. Let u 2 L1..0; T / � .�1; 0//. Then �lu 2 L1.0; T / is the strong
trace of u on the boundary fx D 0g WD f.t; 0/ j t 2 .0; T /g if u.�; x/ converges to
.� lu/.�/ essentially in L1.0; T / as x " 0.

Next, we define germs in terms of fluxes f l;r corresponding to the “frozen” value
x D 0. Prescribing a complete, maximal L1D-germ is a way to prescribe the
interface coupling at fx D 0g (see [9]).

Definition 2 (L1-dissipative germs). A subset G of R
2 is called an L1D-germ

(germ, for short) if it satisfies (2) and (3) with the fluxes f l;r evaluated at x D 0.
Such a germ is called maximal if it possesses no non-trivial extension; it is called

definite if it possesses only one maximal extension, in which case the extension
is denoted by G�. Finally, it is called complete if any Riemann problem for the
auxiliary conservation law

ut C
�
f l .0; u/1x<0 C f r.0; u/1x>0

�
x
D 0 (6)

admits a solution satisfying (i) and (ii) in the Introduction.

Completeness means that for any .u�; uC/ 2 R
2 there exists a pair .cl ; cr / 2 G such

that u� can be joined to cl by a Kruzhkov-admissible wave fan with negative speed
for the flux f l .0; �/ and cr can be joined to uC by a Kruzhkov-admissible wave fan
with positive speed for the flux f r.0; �/. Notice that in this case, the so constructed
function u is self-similar, therefore it possesses interface traces (in the strong sense
of L1.0; T / convergence of u.r; �/ ! .�ru/.�/ and of u.�r; �/ ! .� lu/.�/ as
r ! 0C) that satisfy �l;ru D cl;r .

The following definition (cf. [9–11, 18]), however, avoids explicit reference to
point (ii) of the introduction.

3For the multi-dimensional domains treated in the Appendix, one uses an analogous definition
based upon a parametrizaton of a neighbourhood of @� by .�; h/ 2 @� � .0; 1/.



6 B. Andreianov

Definition 3 (G-entropy solution of the evolution problem). Assume we are
given anL1D-germ G. A function u 2 L1..0; T /�R/ is called a G-entropy solution
of (EvPb) with an initial datum u.0; �/ D u0 2 L1.R/ if it satisfies the Kruzhkov
entropy inequalities away from the interface fx D 0g:

8c 2 R ju � cjt C sign.u � c/fx.x; c/Cq.xI u; c/x � 0; ju � cj
ˇ̌
ˇ
tD0

D ju0 � cj in D0

�
Œ0; T /� .R n f0g/

�

(7)

and if, in addition, it satisfies the global adapted entropy inequalities

ju � c.x/jt C sign.u � c.x//fx.x; c.x//C q.xI u; c.x//x 	 0 in D0..0; T / � R/

(8)

for every function c.�/ of the form

c.x/ D cl1x<0 C cr1x>0 with .cl ; cr / 2 G�: (9)

In the inequalities (7) and (8) the Kruzhkov entropy flux q D ql1x<0 C qr1x>0
is computed with the help of (4), with the tacit x-dependency in f l;r . Notice that
with respect to the case of spatially homogeneous f l;r , there is the additional term
fx.x; c.x//; the notation fx.x; c.x// ignores the discontinuity at zero, i.e.,

fx.x; c.x// WD f l
x .x; c

l /1x<0 C f r
x .x; c

r /1x>0:

Remark 1. Note that it can be assumed, without loss of restriction, that a G-entropy
solution u belongs to C.Œ0; T �IL1loc.R//. This is a consequence of the Kruzhkov
inequalities in domains �l;r ; see, e.g., [8, 19, 27] and references therein. In the
sequel, we will always select the time-continuous representative of u; in particular,
the initial condition can be taken in the sense u.0; �/ D u0.

The definition for the stationary problem (StPb) is analogous, cf. [14].

Definition 4 (G-entropy solution of the stationary problem). Assume we are
given an L1D-germ G. A function u 2 L1.R/ is called a G-entropy solution of
(StPb) if it satisfies the Kruzhkov entropy inequalities

8c 2 R sign.u � c/.uC fx.x; c/ � g/C q.xI u; c/x 	 0 in D0
�
R n f0g

�
(10)

and if for every function c.�/ of the form (9) it satisfies the global adapted entropy
inequalities:

sign.u � c.x//.uC fx.x; c.x// � g/C q.xI u; c.x//x 	 0 in D0.R/: (11)

Remark 2. In the homogeneous case (see [9]) one can replace G� by G in (9) for
the evolution problem (EvPb). This weaker assumption leads to a smaller number
of global adapted entropy inequalities to be checked. E.g., in the situation where the
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fluxes f l;r are “bell-shaped”, only one global adapted entropy inequality is needed
in (8), see [5, 8, 18].

In the present paper, one can replace G� by G in the above definition for the
stationary problem (StPb) but not for the evolution problem. At the present stage,
this drawback appears to be the price to pay for the approach which does not
rely upon the existence of strong interface traces for solutions of (EvPb) (see also
[9, Sect. 3.4]).

Here is the main result of this paper.

Theorem 1 (Well-posedness for (EvPb)). Assume f l;r satisfy (H1)–(H3). Let G
be a definite maximal L1D germ. Then for all u0 2 L1.R/ \ L1.R/ there
exists a unique G-entropy solution of (EvPb) with the initial datum u0. It depends
continuously on u0, namely, if u; Ou are the G-entropy solutions corresponding to
L1.R/ \ L1.R/ data u0; Ou0, respectively, then ku.t; �/ � Ou.t; �/kL1 	 ku0 � Ou0kL1
for all t 2 Œ0; T �.
As stated in the introduction, the uniqueness claim is shown in an indirect way,
with the help of abstract tools from nonlinear semigroup theory. The existence can
also be obtained in an abstract way, as in [17]. However, here we prefer to justify
the existence by constructing solutions with a well-chosen finite volume scheme.
Alternatively, in the cases where G is compatible with some vanishing viscosity
approach, the adapted viscosity approximation can be used.

Exploiting the property of finite speed of propagation and a continuation
argument for entropy solutions in which we solve auxiliary Dirichlet problems, we
can extend the result to general L1 data. Namely, we get the following:

Corollary 1. Under the assumptions of Theorem 1, the existence and uniqueness
of a G-entropy solution still holds if u0 2 L1.R/. If u is the G-entropy solution with
u.t; 0/ D u0, then for all t 2 Œ0; T � the function u.t; �/ depends continuously on u0
in the L1loc.R/ topology.

In the opposite direction, starting from Theorems 2 and 1 we can drop the L1
assumption on the data. Indeed, Theorem 2 permits the definition of solutions
of the abstract evolution problem (AbEv) for merely L1 data. In the context
of conservation laws of the form ut C divx f .u/ D 0, such solutions can be
characterized intrinsically as its renormalized solutions (see [16]). We expect that
for general L1 data, the integral solutions of (AbEv) are renormalized solutions of
(EvPb); but this issue is beyond the scope of this paper.

3 The Stationary Problem (StPb) and the Underlying
m-Accretive Operator

Let us define the operator AG on L1.R/ by its graph:

.u; z/ 2 AG iff u is a G-entropy solution of (StPb) with g D zC u: (12)
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Thus, the domain D.AG/ is defined implicitly. Let us show that it consists of
trace-regular functions.

Lemma 1 (Trace-regularity). If u 2 L1.R/ satisfies the away-from-the-boundary
Kruzhkov entropy inequalities (10) and f l;r satisfies (H2) and (H3), then
�lu WD limx"0 u.x/ and �ru WD limx#0 u.x/ exist.

Proof. Consider, for instance, ujRl . From the entropy inequalities (10) it follows
that for all c 2 R there exist non-negative Borel measures �C

c on R
l D .�1; 0/

such that

signC.u � c/.uC fx.x; c/ � g/CQc.x/x D ��C
c (13)

where Qc.x/ WD signC.u.x/ � c/.f l .x; u.x// � f l.x; c//. Because Qc.x/ 2
L1.Rl /, it is easy to see that the variation of �C

c is finite up to the boundary. Indeed,
taking (by approximation) the test function

�h.x/ D .1 �minf1;�x=hg/minf1; .1C x/Cg
in the entropy formulation, we find

j�C
c j.Œ�1; 0// D lim

h!0

Z

Œ�1;0/
�h d�

C
c

Z 0

�1
ju � gj C

Z 0

�1

ˇ̌
Qc.x/

ˇ̌ j.�h/x j dx:

The right-hand side is finite, since k.�h/xk1 	 2 uniformly in h 2 .0; 1/.
Now, let M D kuk1 and c0; : : : ; cN be a partition of Œ�M;M� such that f 0

keeps constant sign on each interval .ci�1; ci /, i D 1; : : : ; N (this is possible due
to (H2)). For instance, assume that this sign is “�” if i is odd and “C” if i is even.
Then the variation function .Vf l / on Œ�M;M� can be represented as

.Vf l /.x; u/ WD
Z u

�M
j.f l /u.x; z/j dz D

Z u

�M
�0.z/.f l

u /.x; z/ dz

where �0j.ci�1;ci / D .�1/i . Then .Vf l/ is the entropy-flux corresponding to the
(non-convex) entropy � with

�0.z/ D signC.z� c0/C 2
N�1X
iD1

.�1/i signC.z � ci /;

hence a linear combination of equalities (13) yields

.Vf l /.x; u.x//x D �C
c0
� 2

N�1X
iD1

.�1/i�C
ci
� �0.u/.u� gC fx.x; c// in D0.�1; 0/:

From the facts that .u � g/ C fx.u; x/ 2 L1.Rl / C L1.Rl / and that �ci are finite
up to the boundary, it follows that .Vf l /.x; u.x// 2 C..�1; 0�/. Now, notice that
the map W.�/ WD .Vf l /.0; �/ is non-decreasing, by construction; moreover, due to
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assumption (H3) the map W is strictly increasing (and furthermore, we can assume
that it is bijective, upon modifying the definition ofW outside Œ�M;M�). Therefore
the map x 7! W �1ı.Vf l /.x; u.x// is continuous on .�1; 0�. Hence its limit at zero
exists; let us denote it by �lu.

It remains to notice that �lu D limx"0 u.x/. Indeed, because f l is continuous
in .x; u/ 2 R

l � R, this is also the case for Vf l . Moreover,W �1 ı .Vf l /.0; �/ is the
identity map. Hence

ju.x/ �W �1 ı .Vf l /.x; u.x//j D jW �1 ı .Vf l /.0; u.x//�W �1 ı .Vf l /.x; u.x//j

vanishes as x ! 0 (notice that u.x/ stays in a compact set on which W �1 is
uniformly continuous). This concludes the proof. ut

Now, we can reformulate Definition 4 as follows.

Lemma 2 (Interface coupling for (StPb)). Assume .H2/ and .H3/. A function
u 2 L1.R/ is a G-entropy solution of (StPb) if and only if it satisfies (10) and, in
addition, .� lu; �ru/ 2 G�.

Note that by Lemma 1 the existence of �l;ru is automatic in the above statement.

Proof. Let us prove that an entropy solution of (StPb) satisfies .� lu; �ru/ 2 G�. It
is enough to take �h D 1 � minfjxj=h; 1g as a test function in (11) and let h ! 0;
one finds

8.cl ; cr / 2 G� ql .0; � lu; cl / � qr.0; �ru; cr / � 0: (14)

Because G� is a maximal L1D germ associated with the fluxes f l;r .0; �/, the claim
follows.

Conversely, by the definition of an L1D germ, the property .� lu; �ru/ 2 G�
implies (14). It remains to take .1� �h/� as a test function in (10), where � 2 D.R/.
One deduces (11). ut

Now, let us study the operator AG . We refer to [13, 15, 17] for the definitions.

Proposition 1 (Accretivity). Let G be a definite L1D germ. Assume f l;r satisfy
.H2/ and .H3/. Then the operator AG is accretive on L1.R/.

Proof. One has to prove that for all .u; z/; .Ou; Oz/ 2 AG the following holds

8� > 0 ku � OukL1 	 k.uC �z/� .OuC �Oz/kL1: (15)

It is easily seen that u and Ou are G-entropy solutions of the stationary problem (StPb)
with the flux �f in place of f and with the source terms h D u C �z, Oh D OuC �Oz,
respectively. For instance, the entropy inequality (10) with g D u C z can be
rewritten as

sign.u � c/
�

u � .uC �z � �fx.x; c//
�
C �q.x; u; c/x 	 0: (16)
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Based on (16) and its analogue written for Ou, we can use the Kruzhkov doubling of
variables to deduce the so-called Kato inequality:

ju � Ouj C �q.x; u; Ou/x 	 jh� Ohj in D0.R n f0g/: (17)

The argument we use to derive this inequality is essentially based on the fundamen-
tal work of Kruzhkov [23], but it is not entirely classical. Indeed, notice that we have
the dependency of f on x but we are able to drop the “fx.x; c/” term that appears
in [23]. Roughly speaking, we justify that a Kruzhkov entropy solution (even a local
one!) is a vanishing viscosity limit; and we observe that the solution operator for
u C f .x; u/x � "uxx D h leads to a Kato inequality the limit of which, as " ! 0,
yields (17). The details of the justification of (17) are postponed to the Appendix
(see in particular Remark 5).

It then remains to take the test function �s.x/ D exp.�sjxj/minf1; jxj=sg
in (17); this can be done by approximation. Taking into account the fact that
jq.x; u; Ou/j 	 Lju � Ouj where L is a uniform in x Lipschitz constant of f.x; �/
(here we use (H2)), at the limit s ! 0C we infer

ku � OukL1 	 kh � OhkL1 �
�
ql.0; � lu; � l Ou/� qr.0; �ru; �r Ou/

�
	 kh � OhkL1 I

the latter inequality follows by Lemma 2 and the L1-dissipativity of G�. In view of
the definition of h and Oh, this proves (15). ut
Proposition 2 (m-accretivity of the closure of AG). Let G be a complete maximal
L1D germ. Assume f l;r satisfy (H1)–(H3).

(i) We have L1.R/ \L1.R/\ BV.R/ � Im.I C �AG/, for all � > 0.
(ii) The domainD.AG/ is dense in L1.R/.

Proof. For the proof of (i), we construct solutions of uC�AGu D g for g 2 L1.R/\
L1.R/\ BV.R/ using a monotone two-point finite volume scheme, in the vein of
[9, Theorem 6.4]. See Remark 3 for an alternative construction. For the proof of (ii),
we denote by u� the solution of the problem treated in the first part; letting �! 0,
we will prove the convergence of u� to g for an L1-dense set of source terms g.
Now, let us give the details.

Let us approximate problem uC f.x; u/x D g (indeed, it is enough to consider
� D 1) by piecewise constant functions uh WD PC1

nD�1 un1..n�1/h;nh/ using a finite
volume scheme. To this end, discretize x 7! f.x; �/ by

fn.z/ D f l .nh; z/ if n < 0 and fn.z/ D f r.nh; z/ if n > 0:

For every n ¤ 0, we take a monotone two-point flux Fn (see, e.g., [22]) consistent
with fn. Since G is a complete germ, for i D 0 we can take the Godunov flux F0
associated with the Riemann solver for the auxiliary discontinuous-flux problem (6)
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associated with the fluxes f l;r .0; �/ (cf. [9, Sect. 6.3]). Now, the finite volume
scheme to be solved reads

8n 2 Z un C h
�
Fn.unC1; un/ � Fn�1.un; un�1/

�
D gn (18)

where gh WD PC1
nD�1 gn1..n�1/h;nh/ is an approximation of g in L1.R/ such that

kghkL1 	 kgkL1 , kghkL1 	 kgkL1 and kghkBV 	 kgkBV .
Due to (H1) and (H2) we can choose Fn to be Lipshitz continuous in both

variables, uniformly in n. Therefore, for h small enough, the scheme can be
rewritten in the form

8n 2 Z Hn.un�1; un; unC1/ D gn with Hn monotone in each variable:

From this property and assumption (H1) we get the uniform L1 a priori bound
minf0;mg 	 uh 	 maxf1;M g where m and M are such that m 	 gh 	 M a.e.
on R.

The existence of a solution to the scheme can be inferred from the topological
degree theorem as follows. One first truncates the system at ranks ˙N , setting
u�N D 0 D uN and considering only the equations for jnj < N with Fn,
gn substituted by 	Fn, 	gn, respectively, where 	 2 Œ0; 1�. For 	 D 0 the
problem has the trivial zero solution. The a priori L1 estimate still holds for the
truncated problem, and the topological degree theorem ensures the existence of a
solution UN 2 R

2N�1 (for 	 D 1) to the finite-dimensional system. We consider
UN as an element of R

Z, setting to zero the components with jnj � N . Then
compactness (component per component) and diagonal extraction are used to obtain
an accumulation point U WD limNk!1 UNk in the topology of component-wise
convergence in R

Z. Then by passage to the limit in the truncated problem, it is
easily seen that U D .un/n2Z solves problem (18).

Now we have to prove that, first, there exists a convergent subsequence .uh/h
(not labelled); and second, that u WD limh#0 uh is a G-entropy solution of (StPb).

Let us assess the BVloc.R n f0g/ compactness of .uh/h. We can restrict our
attention to h 2 f2�j j j 2 Ng. Let us normalize uh so that it is left-continuous for
x < 0 and right-continuous for x > 0. Using the diagonal extraction argument we
can ensure that uh.˙2�`/ converge to some limits u˙̀ as h ! 0, for all ` 2 N.
Similarly, we can assume that uh.˙2` 
 0/ ! U ˙̀ as h ! 0. Then we can
consider that uh approximate the Dirichlet boundary-value problems in .�2`;�2�`/
(with the boundary values U �̀ and u�̀ at the extremities) and in .2�`; 2`/ (with the
boundary values uC

` and UC
` ). By standard arguments (see in particular [22] and

[9, 18]) using the monotonicity of Hn and the fact that supa;b;c2Œm;M� jHn.a; b; c/ �
Hn�1.a; b; c/j 	 const h (this comes from (H1) and (H2)) we deduce a uniform
BV bound on .uh/h in fx 2 R j 2�` < jxj < 2`g. Another application of the
diagonal extraction argument proves the BVloc compactness in R n f0g.

It remains to pass to the limit in the scheme, as h ! 0. Thanks to the local
variation bound, this is a standard issue (see [22] and the arguments of [9] for
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the discontinuous-flux context). One first gets approximate entropy inequalities and
approximate adapted entropy inequalities for uh; here, it is important that we use the
Godunov flux at the interface. Then one sends h to zero using the L1loc compactness
of .uh/h. In particular, consistency of the numerical fluxes and the continuity of f l;r

in x permit to passage to the limit in the nonlinear terms. This concludes the proof
of (i).

Now, we turn to the proof of (ii). Indeed, let g be a compactly supported,
piecewise constant function. We will use �-dependent test functions  � on each
interval where g is constant. Namely, let g D ci on a finite or semi-infinite
interval .ai�1; ai /; without loss of generality we may assume that 0 … .ai�1; ai /.
From the Kruzhkov entropy inequalities for u�, which is a G-entropy solution of
uC �f.x; u/x D g, we have

sign.u� � ci /
�

u� � ci C �fx.x; u�; ci /
�
C �f.x; u�/x 	 0 in D0..ai�1; ai //:

Taking test functions  � in this inequality such that  � ! 1.ai�1;ai / with k 0
�k1 	

��1=2, we find

lim
�#0

Z ai

ai�1

ju� � gj D lim
�#0

Z ai

ai�1

ju� � ci j 	 0:

Summing in i , we deduce that u� ! g in L1.R/ as �! 0. This ends the proof. ut
Remark 3. Notice that in many cases, the existence of a G-entropy solution can be
shown using an adapted vanishing viscosity approximation.

For instance, in the case of bell-shaped fluxes, one looks at the definite germs
of the form G.A;B/ D f.A;B/g where .A;B/ are the so-called connections
(see [2, 5, 18]). For each of these germs, there exists a choice of adapted viscosity
approximations that take the form

u" C f.x; u"/x D gC ".a.x; u"//xx;

and for which u D A1x<0 C B1x>0 is an obvious solution with g D u C
f l
x .x; A/1x<0Cf r

x .x; B/1x>0, for every " > 0. As in [9, Theorem 6.3], one deduces
the convergence of u" to a G-entropy solution u of (StPb). Moreover, one can use
viscosity approximations having the physical meaning of vanishing capillarity, see
[5].

Recall the definition of an integral solution for an evolution equation governed by
an accretive operator on L1.

Definition 5 (Integral solution). A function u 2 C.Œ0; T �; L1.R// is an integral
solution of d

dt u C Au 3 h with A defined on L1.R/ if u.0/ D u0 and (5) holds in

D0.0; T /, with the notation
h
u; f

i
L1
WD R sign u f C R jf j1uD0:

Now we can apply the key result of nonlinear semigroup theory.



The Semigroup Approach to Conservation Laws with Discontinuous Flux 13

Theorem 2 (Uniqueness of an integral solution). Assume (H1)–(H3). For all
u0 2 L1 there exists one and only one integral solution to the problem d

dt uCAGu 3 0
with the initial datum u0. If Ou is the integral solution corresponding to Ou0, then
ku.t/ � Ou.t/kL1 	 ku0 � Ou0kL1 .
Proof. It is enough to apply [17, Theorem 6.6] to the closure of AG . Indeed,
according to Propositions 1 and 2, AG is a densely defined m-accretive operator.
Therefore there exists a mild solution to the abstract evolution problem governed by
AG ; hence the mild solution is the unique integral solution of this problem. ut

4 G-Entropy Solutions of the Evolution Problem

In this section, the main issue is the uniqueness of a solution to (EvPb) in the sense of
Definition 3. We first derive an equivalent form of this definition (note the difference
with the stationary case: we do not ensure nor exploit the trace-regularity of the
solution u of (EvPb)).

Lemma 3 (Interface coupling for (EvPb)). Assume (H2) and (H3). A function u 2
L1.R/ is a G-entropy solution of (EvPb) iff it satisfies (7) and, in addition,

8.cl ; cr / 2 G� .� lwq
l.�; u.�/; cl //.t/ � .�rwqr.�; u.�/; cr//.t/ for a.e. t 2 .0; T /:

(19)

Here �l;rw ql;r .u; cl;r / denote the weak interface traces of the respective fluxes.

Note that the existence of �l;rw ql;r .�; u.�/; cl;r / comes from the Kruzhkov entropy
inequalities (7), the Schwartz lemma on non-negative distributions and the general
result of [21]. At this point, it should be stressed that the left-hand side of (7) is a
non-positive Radon measure that is, in addition, finite up to the interface fx D 0g
(cf. the corresponding argument of the proof of Lemma 1).

Proof. As in the proof of Lemma 2, we use �h D 1 � minfjxj=h; 1g. Taking
�h.x/	.t/ (with 	 2 D.0; T /, 	 � 0) as test function in (8), using the existence of
weak traces �l;rw ql;r .u; cl;r / we find the D0 formulation of (19). Since 	 is arbitrary,
we get (19) by localization at every point of .0; T / that is a Lebesgue point of
the weak trace functions t 7! .� l;rql;r .u; cl;r //.t/. Conversely, in a similar way to
Lemma 2, it can also be shown that (19) and (7) imply (8). ut
As was the case for Lemmas 2 and 3 provides an equivalent definition of a G-entropy
solution.

Now, note the following elementary property.

Lemma 4. Let u and Ou be two bounded functions for which we assume that

the weak interface traces �l;rw ql;r .�; u.�/; Ou.�// exist:
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If Ou is a trace-regular function (i.e., there exist strong interface traces .� l;r Ou/.t/ for
a.e. t 2 .0; T /), then

�l;rw ql;r .�; u.�/; Ou.�// D �l;rw ql;r .�; u.�/; cl;r / with cl;r .t/ D .� l;r Ou/.t/, for a.e. t :
(20)

Proof. Property (20) stems from the definition of a weak trace in the L1 sense
(actually, this is in the weak-* sense) and the fact that due to the continuity of f l;r

and the existence of strong traces, one has for instance

ess lim
x"0
jql.x; u.t; x/; Ou.t; x// � ql.x; u.t; x/; cl .t//j D 0 for a.e. t

while ql.x; u; Ou/ remains uniformly bounded. ut
We are now in a position to deliver the key observation of our method:

Proposition 3. Assume (H2). Let u be a G-entropy solution u of (EvPb) with
u.0; �/ 2 L1.R/ \ L1.R/. Then the map t 7! u.t; �/ is an integral solution of
the associated abstract evolution problem governed by the operatorAG (with h D 0
and the initial datum u.0; �/, cf. Remark 1).

Proof. By a density argument and the upper semi-continuity inL1.R/ of the bracketh
�; �
i
L1

, it is enough to prove (5) (i.e., we need only consider .u; z/ 2 AG in place of

.u; z/ 2 AG). Recall that we have h D 0.
By the definition (12) of AG , we take Ou, a G-entropy solution of the stationary

problem (StPb). Then we “compare” u and Ou using the Kruzhkov doubling of
variables: more precisely, we use it away from the interface. Using the version of
the Kruzhkov argument presented in Appendix, we deduce the local (in R n f0g)
Kato inequality

ju�OujtCq.x; u; Ou/x 	 sign.u�Ou/.u�g/C1ŒuDOujg� Ogj D
h
u.t/�Ou; u�g

i
L1

in D0.R n f0g/:
(21)

Letting the test function in (21) converge to 1 in the same way as in the proof of
Proposition 1, we generate the weak interface traces:

d

dt
ku.t/ � OukL1 	

h
u.t/ � Ou; u � g

i
L1
�
;

with 
 WD
Z T

0

�
.� lwq

l .�; u.�/; Ou.�///.t/ � .�rwqr.�; u.�/; Ou.�///.t/
�

dt:
(22)

It remains to combine Lemma 4 (note that Ou is trace-regular, by Lemma 1),
Lemmas 2 and 3. One finds that the term 
 in (22) is non-negative, which leads
to inequalities (5). Indeed, we have cl;r D �l;r Ou that satisfy .cl ; cr / 2 G�; then 

can be re-written using (20); finally, (19) guarantees that the integrand in 
 is non-
negative. This ends the proof. ut
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Proof of Theorem 1. The uniqueness claim and the L1-contraction property are
straightforward from Proposition 3 and Theorem 2. In order to conclude the proof
of Theorem 1, it remains to ensure the existence of an entropy solution. We refer
to the existence arguments used for the stationary problem (see Proposition 2(i)
and Remark 3). For the evolution problem, analogous approximation arguments
apply: either approximation by a finite volume scheme or, in the case of bell-shaped
fluxes, the use of adapted viscosity approximations. One should pay attention to
heterogeneity, as in the proof of Proposition 2(i) and in Remark 3. The delicate
point is the BVloc estimate, the proof of which is more involved than the arguments
used to justify Proposition 2(i); one has to argue in the same way as in [9, 18]. ut

5 On the Dirichlet Problem for the One-Dimensional
Conservation Law

5.1 Application of the Semigroup Method to the Dirichlet
Problem

The fundamental reference for the Dirichlet problem

8<
:

ut C f .x; u/x D 0 in .0; T / � .0;C1/
ujxD0 D uD

ujtD0 D u0

(23)

is the Bardos, LeRoux and Nédélec paper [12]. The setting of [12] is the space
L1.0; T IBV..0;C1//, thus u0 2 BV.0;C1/ and uD 2 BV.0; T /; moreover,
f should be BV in x. These restrictions are due to the fact that the formulation
of [12] uses the strong boundary trace �u of u on fx D 0g. More recently,
Vasseur [30] (see also [28] for the most general argument) proved the existence
of such traces for the spatially homogeneous case and thus dropped the BV
assumptions of [12]. Notice that the result of [12] is used4 in our proof of Theorem 1
through the justification of Lemma 6 in the Appendix; thus we have kept the BV
assumption on f .

For the non-homogeneous case f D f .x; u/, with the same method as in the
present paper we can treat the particular case where uD is a constant in t function
(this restriction is inherent to the semigroup approach). To do so, we can exploit the
notion of a solution for (23) based upon the up-to-the-boundary entropy inequalities
introduced in [7]. The arguments of the well-posedness proof (see [3]) are almost

4To be specific, the Bardos-LeRoux-Nédélec formulation with a strong boundary trace (cf. [30]) is
used not in � but in specially selected subdomains of �, so that the existence of strong boundary
traces comes “for free”
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identical to those developed for problem (EvPb); the use of a germ is replaced by
the use of some maximal monotone graph which encodes a boundary dissipation
property analogous to (3).

Yet let us stress that the method of weak boundary trace formulation (Otto [26]
and Málek et al. [25]; see also the slightly different definition in [31]) gives the
general well-posedness result for the Dirichlet problem (23); indeed, the case of a
non-homogeneous flux function f D f .t; x; u/ has been treated in the work of
Vallet [29]. In an opposite direction, we refer to [7] for a thorough treatment of
conservation laws with different nonlinear boundary conditions, in the case of a
homogeneous flux f D f .u/ and in the strong trace setting. Our argument can be
used in the setting of [7] with f D f .x; u/, for various boundary conditions.

5.2 Continuation of Local Entropy Solutions and Justification
of Corollary 1

Let us justify the extension to L1 data of the results obtained for L1 \ L1 data.
To this end, we exploit the Dirichlet problem (in its strong-trace formulation) for
conservation laws with .x; u/-continuous flux.

Proof of Corollary 1 (sketched). The existence arguments for Theorem 1 do not
require the L1 assumption on the data, hence there is nothing to be generalized
at this point.

In order to deduce the uniqueness and the continuous dependence on the
data for (EvPb) with L1 data, we use the property of finite speed of propa-
gation. Indeed, let u be a G-entropy solution of (EvPb) with some L1 datum.
Firstly, applying the result of [23] (for conservation laws in �l and �r ) we
readily see that the solution is uniquely defined by the datum outside the triangle
T WD f.t; x/ j t 2 .0; T �; jxj 	 Ltg where L D L0 C 1 and L0 is the uniform in x
Lipschitz constant of the flux f.x; �/. To prove the uniqueness of the solution in T ,
we construct another G-entropy solution Qu that coincides with u in T but which
corresponds to an L1 \ L1 initial datum. Let us give the idea of the construction
and sketch the details, which require some careful analysis of the Dirichlet problem
for non-homogeneous conservation laws with a “space-like” boundary.5

For h > 2LT , consider the segments Sḣ WD fx D ˙.h � Lt/; t 2 Œ0; T �g. A.e.
h > 0 is a Lebesgue point of the maps h 7! uj

S˙

h
with values in L1. Thus, we

5Consider a conservation law of the form div.t;x/ �.t; x; u/ D h.t; x/ set up in a space-time
domain Q. We say that the boundary @Q is space-like if the map u 7! �.t; x; u/ � n.t; x/ is
strictly decreasing for all points .t; x/ of the boundary. In this case, the local change of variables
w.t; x/ WD �.t; x; u/ � n.t; x/ (the field of exterior unit normal vectors n.�/ on @Q should be lifted
in a neighbourhood of @Q) reduces the situation to a standard conservation law with the time
direction given by the vector field n.�/.
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can pick h0 > 2LT such that strong traces of u on both SC
h0

and S�
h0

exist. Then
we set Qu � u for t 2 Œ0; T � and jxj 	 h0 � Lt (note that this domain contains T ,
by the choice of h0). We extend Qu to the remaining part of the strip Œ0; T � � R by
solving two Cauchy-Dirichlet problems with fluxes f l.x; �/ (for x < 0) and f r.x; �/
(for, x > 0). For instance, in the domain where x < �.h0 C Lt/ we take the flux
f l.x; �/, use the zero initial datum and the boundary datum which is the strong
trace �u on S�

h0
. To construct the solution in the domain with slanted boundary, it is

enough to change the variables. Setting y D x � Lt C h0, in variables .t; y/ we
obtain a new conservation law in the domain ‚ D .0; T / � .�1; 0/, moreover,
its characteristics are outgoing on the boundary (this is due to the choice of L and to
the change of variable we make). For instance, the result of [29] ensures that there
exists a solution to such Cauchy-Dirichlet problem in the domain ‚. Moreover,
because the boundary is space-like it can be shown that the solution assumes, in the
strong sense, the Dirichlet datum that was prescribed on the boundary.6 Consider
the domain �l ; now Quj�l is the juxtaposition of two Kruzhkov entropy solutions
on the two sides from the segment S�

h0
. It is a Kruzhkov entropy solution, due to

the continuity of Qu that we enforced across the segment S�
h0

. In the same way, we
see that Qu is a Kruzhkov entropy solution in the domain �r . Moreover, the trace
property (19) for u is inherited by Qu. Thus, using the characterization of Lemma 3
we see that Qu is indeed a G-entropy solution of (EvPb) corresponding to the truncated
initial datum Qu0 D u01Œ�h0;h0�. Further, by assumption (H1) it is easy to deduce that,
whatever the L1D germ G is, the pairs .r; r/ with r … .0; 1/ belong to G. Then from
the entropy formulation one readily gets the L1.0; T IL1.R// bound on Qu.

Now we are in a position to apply the result of Theorem 1. Given two solutions
u and Ou with the same initial datum, we obtain Qu and QOu to which the result of the
theorem applies (notice that a common value of h0 can be taken while constructing
Qu and QOu). This ensures that u and Ou coincide between the segments S�

h0
and SC

h0
, thus

they coincide in the triangle T . This ends the proof of uniqueness. Repeating back
to the same arguments but using different initial data, we readily deduce an L1loc
estimate of u.t; �/� Ou.t; �/ in terms of the L1loc distance between u0 and Ou0. ut

Appendix

Throughout the Appendix, we assume that

f is a Lipschitz continuous function of .t; x; u/ 2 .0; T / �� � R; (HA)

6To justify this claim, the arguments are the same as for the time-continuity of entropy solutions.
Indeed, we have ensured that the normal component of the flux is a strictly increasing function: this
makes the normal direction to the boundary time-like. Let us stress that the existence of a strong
trace for this case is considerably easier to justify than in the general case: as a matter of fact, it
follows from a local application of entropy inequalities. We refer to [19] and to [8, Lemma A4] for
the arguments that can be used in this context.
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where � is an open domain of RN . Our objective is to prove the following “sharp
Kato inequality”:

Theorem 3. Assume (HA). Let u be a Kruzhkov entropy solution of a conservation
law

ut C divx f .t; x; u/ D g.t; x/ (24)

in .0; T /��. Let Ou be another Kruzhkov entropy solution corresponding to a source
term Og. Then one has in D0..0; T / ��/ the inequality

ju�OujtCdivx sign.u�Ou/
�
f .t; x; u/�f .t; x; Ou/

�
	 sign.u�Ou/.g� Og/C1ŒuDOu�jg� Ogj:

(25)

Remark 4. Notice that the “rough Kato inequality” with the additional term
Const ju � Ouj on the right-hand side of (25) can be deduced directly from the
doubling of variables approach of Kruzhkov [23]. This additional term originates

from a bound on
ˇ̌
ˇ.divx f /.t; x; u/ � .divx f /.t; x; Ou/

ˇ̌
ˇ; although this latter term is

absent from the formal computation, it appears in the proof whenever the regularity
of u is not sufficient to write

divx sign.u�k/
�
f .x; u/�f .x; k/

�
D sign.u�k/fu.x; u/�ruCsign.u�k/

�
.divx f /.x; u/�.divx f /.x; k/

�
:

Therefore, we argue at the level of the more regular vanishing viscosity approxima-
tions, and then observe that locally, every entropy solution of (24) can be seen as a
vanishing viscosity limit.

Remark 5. Notice that, considering solutions of the stationary problem u C
divx f .x; u/ D g as time-independent solutions of the corresponding conservation
law with the source term h D g � u, one deduces (17) from (25).

The proof of Theorem 3 is a straightforward combination of the two following
lemmas.

Lemma 5. Assume (HA). Assume that u 2 L1..0; T / � �/ is the L1loc limit, as
" ! 0, of functions u" that are solutions (in the variational sense: namely, u 2
V WD L2.0; T IH1

loc.�// with the equation satisfied in the dual space of V ) of the
viscosity approximated equation (24):

u"t C divx f .t; x; u"/� "
u" D g.t; x/: (26)

Similarly, assume Ou 2 L1..0; T / � �/ is the L1loc limit of functions Ou" that are
the viscosity approximations of the corresponding equation with the source term Og.
Then (25) holds in D0..0; T / ��/.
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Lemma 6. Assume (HA). Let u be a Kruzhkov entropy solution of a conservation
law (24) in .0; T / � �. Then there exists a sequence .!n/n of open subdomains of
� such that� D [1

nD1!n and in each domain .0; T /�!n, the function u is the a.e.
limit, as "! 0, of some solutions u"n of equations (26) in the domain .0; T / � !n.

Proof of Lemma 5. The argument is a classical one. One takes H˛ W z 7!R z
0
1
˛
1Œ�˛;˛�/.s/ ds (this is a Lipschitz approximation of the sign function). Set I˛ W

z 7! R z
0
H˛.s/ ds; we have I˛.�/! j � j uniformly on R.

Fix � 2 D..0; T / ��/. Take the difference of equations (26) written for u" and
Ou" and take the test functionH˛.u"� Ou"/� 2 L2.0; T IH1.�// in the corresponding
variational formulation. We get

Z T

0

Z

�

n
�I˛.u"� Ou"/ �t �H˛.u

"� Ou"/
�
f .x; u"/�f .x; Ou"/�".ru"�rOu"// �r�

o

	
Z T

0

Z

�

H˛.u
"�Ou"/.g� Og/ �C 1

˛

Z Z

Œ0<ju"�Ou"j<˛�
.f .x; u"/�f .x; Ou"//�r.u"�Ou"/�:

Here, we have used two chain rules (see in particular [20]) and the fact that for
a.e. t , the gradient of theH1.�/ function .u"� Ou"/.t; �/ is zero a.e. on the set where
u".t; �/� Ou".t; �/ D const. Due to the Lipschitz assumption (HA) the last term of the
above inequality vanishes, as ˛ ! 0. Indeed, it is bounded by the integral of the

L1 function Constjru" � rOu"j� over the set Œ0 < ju" � Ou"j < ˛� WD
n
.t; x/ j 0 <

ju".t; x/ � Ou".t; x/j < ˛
o

the measure of which vanishes as ˛ ! 0. Thus letting

˛ ! 0 then "! 0, we deduce (25) in D0..0; T / ��/. ut
Proof of Lemma 6. We will select !n in such a way that u.0;T /�@!n admit a strong
trace uD WD �!nu in the L1 sense, and construct u" as solutions to the Cauchy-
Dirichlet problem with a smooth boundary datum uD;ı converging to uD as ı ! 0.

Indeed, one can represent any open domain � in R
N as a countable union of

bounded subdomains �k with C2 boundary. In each of these subdomains, one
considers the parametrization of a neighbourhood of @�k by parameters � 2 @�k

and h 2 .0; hmax/, where h D dist.x; @�k/. A.e. h is a Lebesgue point of the map
h 7! uj.0;T /�†hk where †hk WD fx 2 �k j dist.x; @�k/ D hg. Thus for every k, one
can pick a countable sequence .!k;m/m of Lipschitz subdomains of �k such that
�k D [m!k;m and u has a strong trace (in the L1 sense) on .0; T /� @!k;m. We can
re-label !k;m by a subscript n 2 N. From now on, we fix n and write ! for !n.

To conclude the proof, combining classical techniques we will construct a
vanishing viscosity limit Qu which is a Kruzhkov entropy solution of the problem (24)
in .0; T / � ! with the initial condition Qu.0; �/ D u.0; �/ (cf. Remark 1 for the issue
of time-continuity of local entropy solutions) and the formal boundary condition
Quj.0;T /�@! D uD , where uD is the strong trace of u on .0; T / � @!. Then we will
justify the fact that u and Qu coincide; notice that at this level, the “rough version”
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of the Kato inequality (25) (see Remark 4) is enough to “compare” u and Qu. Let us
provide the details of these arguments.

First, one approximates uD and u0 WD u.0; �/ a.e. on their respective domains by
BV functions uD;ı and uı0. Then one constructs the solutions Qu";ı of (26) in .0; T /�!
with the corresponding initial and boundary data uı0 and uD;ı using the results of
the classical work [12]. As shown in [12], Qu";ı converge, as " ! 0, to an entropy
solution Quı of the conservation law (24) with the same initial datum uı0 and with
the same Dirichlet datum uD;ı understood in the Bardos-LeRoux-Nédélec sense. It
remains to obtain Qu D limı!0 Quı and to prove that Qu and u coincide. To this end, we
exploit the “rough Kato inequality” of [23] (see Remark 4) with test functions of the
form �s.x/�.t/, where � 2 D.0; T /, � � 0, and .�s/s>0 is the sequence in W 1;1

0 .!/

given by �s D minf1; dist.x; @!/=sg. By a straightforward calculation, at the limit
s ! 0 we find the inequality

�
Z T

0

Z
!

ju � Quı j �t � Const

Z T

0

Z
!

ju � Quıj��
Z T

0

Z
@!

�
sign.uD � � Quı/

�
f .t; x; uD/� f .t; x; � Quı // � n@!

�
�;

(27)

where n@! is the exterior unit normal vector to @! and � Quı is the strong trace
of the L1.0; T IBV.!// function Quı. By the result of [12], one has for a.e. .t; x/
(with respect to the Hausdorff measure on .0; T / � @!) the property .� Quı/.t; x/ 2
I.t; x; uD;ı.t; x// where

I.t; x; v/ D fu 2 R j 8k 2 Œminfv; ug;maxfv; ug� sign.k � v/
�
f .t; x; k/� f .t; x; v/

�
� n@! � 0g:

From the definition of I.t; x; uD;ı/ and assumption (HA) it is easily seen that the last
term in (27) is bounded from above by ConstjuD � uD;ıj, which vanishes as ı ! 0.
Letting ı ! 0, using the Gronwall inequality one sees that Quı ! u as ı ! 0. Hence
one can extract a family Qu".ı/;ı of local solutions on (26) that converges to u, as
ı ! 0. This concludes the proof of the lemma. ut
Remark 6. For the one-dimensional stationary problem (i.e., in the context of
Proposition 1) a simpler construction can be used in place of the one exploited
in the proof of Lemma 6. Indeed, it is enough to take, for example, the function
uj

Rl and extend it to R by setting Qu.x/ � �lu D const for x > 0. Then it is
clear that the extension Qu of u is an entropy solution on R of the stationary problem
Qu C Qf l .x; Qu/ D Qh with the flux f l .x; �/ extended by f l.0; �/ for x � 0; also
the source term h has to be extended by Qh.x/ D �lu D const for x > 0. Then
one can use the classical result of Kruzhkov [23] which guarantees uniqueness of
entropy solutions and convergence of vanishing viscosity approximations for the
conservation law in the whole space.
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Suspensions
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Abstract A classical kinematical model of sedimentation of small equal-sized
particles dispersed in a viscous fluid leads to a scalar conservation law with a
nonlinear flux. Several extensions of this model are reviewed, with a strong focus on
recently developed numerical methods. These extensions include a one-dimensional
clarifier-thickener model giving rise to a conservation law with discontinuous flux,
a conservation law with nonlocal flux, systems of nonlinear conservation modelling
the sedimentation of polydisperse suspensions, and sedimentation-flow models
consisting of a conservation law coupled with the Stokes or Navier-Stokes system
in two space dimensions. Numerical examples are presented.
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1 Introduction

1.1 Scope

The sedimentation of small particles dispersed in a viscous fluid under the influence
of a (mostly gravitational) body force is a process of theoretical and practical
interest that appears as a controlled unit operation in mineral processing, wastewater
treatment, the pulp-and-paper and chemical industry, medicine, volcanology, and
other areas where a suspension must be separated into a clarified liquid and
concentrated sediment. The particles are small compared with typical length scales
(diameter and depth) of the settling vessel. Moreover, sedimentation models for
these applications should be able to predict the behaviour of a given unit on rela-
tively large temporal and spatial scales, while microscopical information such as,
for instance, the position of a given particle is of little interest. These considerations
justify representing the liquid and the solid particles as superimposed continuous
phases, namely a liquid phase and one or several solid phases.

The most widely used sedimentation model goes back to Kynch [64], who
postulated that (under idealizing circumstances) the settling velocity vs of a single
particle in a batch column is a given function of the local solids volume fraction u
only, vs D vs.u/. Inserting this assumption into the one-dimensional solids
continuity equation, written in differential form as

ut C .uvs/x D 0; (1)

where t is time and x is depth, yields the first-order scalar conservation law

ut C b.u/x D 0; b.u/ WD uvs.u/; (2)

which is supplied with suitable initial and boundary conditions.
If we assume (for simplicity, but without loss of generality) that u varies between

u D 0, the clear-liquid limit, and u D umax with umax D 1 for a packed bed, then a
common approach is

vs.u/ D vStV.u/; (3)

where vSt is the Stokes velocity, that is, the settling velocity of a single particle in
an unbounded fluid, and the so-called hindered settling factor V D V.u/ can, for
instance, be the one given by Richardson and Zaki [75]

V.u/ D .1 � u/nRZ ; nRZ � 1; (4)
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so that b.u/ D u.1 � u/nRZ . For nRZ > 1, this function has an inflection point
uinfl D 2=.1 C nRZ/ 2 .0; 1/. Thus, the basic mathematical model is a nonlinear,
scalar conservation law with non-convex flux. The precise algebraic form of the
batch flux density function b D b.u/ is a specific property of the material under
consideration.

As it stands, (2) only applies to batch settling of a suspension of small equal-
sized (monodisperse) spherical particles. Extensions of (2) have been made, for
instance, to include continuously operated so-called clarifier-thickener units, to
handle suspensions of particles forming compressible sediments, and to describe
polydisperse suspensions with particles having different sizes and densities. More-
over, the dependence of vs on the spot value u D u.x; t/ has been replaced
by a non-local one, and multi-dimensional versions of (2) have been formulated,
which require the solution of additional equations for the motion of the mixture.
These extensions give rise to conservation laws with a flux that depends discon-
tinuously on x, strongly degenerate parabolic equations, strongly coupled systems
of nonlinear, first-order conservation laws, conservation laws with non-local flux,
and multi-dimensional conservation laws coupled with the Stokes or Navier-Stokes
system. Thus, the mathematical framework for many sedimentation models relevant
to applications includes the well-posedness and numerical analysis of nonlinear
hyperbolic conservation laws and related equations. The resulting models have
some intriguing non-standard properties that make them interesting objects of study
for the well-posedness and numerical analysis of conservation laws and related
equations. On the other hand, a thorough understanding of the properties of these
models is necessary for the design of reliable numerical simulation tools. This is a
particular challenge for clarifier-thickener units. It is the purpose of this contribution
to review recent advances in this area.

1.2 Some Historical Remarks and Motivation

To put the original research problem into the proper historical perspective of the
engineering application, we first mention that extensive historical accounts are
provided in [17, 33]. The exploitation of the difference in density between solid
particles and fluid for operations of washing ores can be traced back at least
to the ancient Egyptians [94]. The use of settling tanks, operated in a batch or
semi-continuous manner, for processes that can now be identified as classification,
clarification and thickening, was described in detail in Georgius Agricola’s book
De Re Metallica, first published in 1556 [17,33]. The most important technological
invention that would rationalize the settling process is the continuous thickener,
introduced by J.V.N. Dorr, a chemist, cyanide mill owner, consulting engineer
and plant designer, in the early twentieth century [44]. A continuous thickener is
essentially a cylindrical settling tank into which the feed suspension to be separated
is fed continuously, the sediment forming by settling of particles is removed
continuously, and the clear liquid produced is removed by a circumferential launder,
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continuous inflow of feed suspension (QF, uF)

continuous discharge of sediment (QR)

 continuous overflow
of clarified liquid (QL)

xL

0

xR

Fig. 1 Schematic view of a clarifier-thickener (CT). Technical details are omitted

see Fig. 1. This design is widely used today in mineral processing and in secondary
settling tanks in wastewater treatment.

The invention of the clarifier-thickener was soon followed by efforts to math-
ematically model its operation. It was recognized early [35] that understanding
the dynamics of the batch settling process of a suspension at different solids
concentrations is fundamental for effective thickener design and control.

The starting point of the mathematical modelling of sedimentation is the
well-known Stokes formula, which states that the settling velocity of a sphere of
size (diameter) d and density �s in an unbounded fluid of density �f and viscosity
f is given by

vSt D gd2.�s � �f/

18f
; (5)

where g denotes acceleration of gravity. The settling velocity of a particle in a
concentrated suspension is, however, smaller than (5) due to the hindrance exerted
by the presence of other particles. This effect can be expressed as an increase
in viscosity of the suspension. Explicit formulas describing the phenomenon of
hindered settling of the type (3), where the hindered settling factor V D V.u/
should satisfy V.0/ D 1, V.u2/ < V.u1/ for u1 < u2 and V.umax/ D 0,
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were derived in the dilute limit u=umax � 1 more than a century ago by A.
Einstein [45], and in the 1940s for both dilute and concentrated suspensions
(see, e.g., [55,84,89]). It was in Kynch’s specific contribution [64] that he explicitly
solved the governing equation (1) under the assumption vs D vStV.u/, for initially
constant concentrations. In mathematical terms, if the function b has support on
the interval .0; umax/, then the settling of an initially homogeneous suspension of
concentration u0 2 .0; umax/ in a column of depth L can be described by the initial-
value problem for (2) defined by the piecewise constant initial datum

u.x; 0/ D

8
ˆ̂<
ˆ̂:

0 for x < 0,

u0 for 0 < x < L,

umax for x > L

(6)

corresponding to two adjacent Riemann problems. Kynch [64] applied the method
of characteristics and resolving cases of intersection by discontinuities based on
physical principles that agree with theoretically motivated entropy conditions to be
introduced much later. One piece of insight these constructions could provide is
the explanation why fairly dilute and concentrated suspensions would settle with a
sharp interface and a zone of continuous transition of concentration separating the
growing sediment from the bulk suspension; namely, the former situation gives rise
to a kinematic shock (in u) and the latter to a rarefaction.

Kynch’s efforts were followed by systematic classifications of qualitatively
different solutions to (2) and (6) [51, 90]. Based on work by Ballou [3],
K.S. Cheng [34] and Liu [67] (see [33]), Bustos and Concha [32] and Diehl [40]
appropiately embedded these constructions into the theory of entropy solutions
of a scalar conservation law with non-convex flux. The interest Kynch’s theory
immediately caused in mineral processing, wastewater treatment (where it has
become known as the solids flux theory) and other applicative areas has been widely
discussed in some reviews (e.g., [17, 42]). Clearly, to make this theory applicable
to the settling of a given suspension one must assume that the factor V D V.u/
is known. The reliable identification of this factor or equivalently, of the function
b D b.u/, from experimental data is a current research problem in itself [37,41,50].

The model is very similar to the well-known Lighthill-Whitham-Richards (LWR)
model for traffic flow. In fact, in textbooks on hyperbolic conservations, the LWR
model forms the preferred example, since the typical flux b.u/ D u.1 � u/ arising
in that model is convex and allows for simpler construction of solutions, and the
initial value problem (Riemann problem) for such an equation is easier to handle,
than for the problem (2) and (6) with b non-convex. The construction of solutions
for the direct problem of (2) with piecewise constant initial data and constant u0 (6)
is in any case well understood and for decades has formed standard material for
engineering textbooks including [74, 91]. The extensions mentioned in Sect. 1.1
do, however, give rise to research problems centering around the well-posedness
and numerical analysis and efficient numerical simulation of the corresponding
model.
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1.3 Outline of This Contribution

The model for continuous sedimentation was later improved to the configuration
of a so-called clarifier-thickener. The basic idea is to replace boundary conditions
that would describe feed and discharge operations in a continuously operated unit
by changes of the definition of the convective flux. This results in a flux with
discontinuities with respect to spatial position, which reflect the injection of feed
suspension at a certain level of height into an idealized unit, and the split of the feed
flow into upward- and downward-directed bulk flows of the mixture. If sediment
compressibility is ignored for the moment, then the resulting model can be expressed
as a conservation law with a discontinuous flux:

ut C f
�
�.x/; u

�
x
D 0; .x; t/ 2 …T WD R;�.0; T �; (7)

u.x; 0/ D u0.x/; x 2 R; (8)

where �.x/ is a given vector of discontinuous parameters. The basic associated
difficulty is that well-posedness for (7) is ensured [62] for smooth functions � D
�.x/, but the theory for discontinuous � D �.x/ does not emerge as a “limit case”
for smooth parameter vectors that approximate a discontinuous one. It turns out that
one has to explicitly specify which discontinuities of the solution u are considered
to be admissible across the jumps in � .

The model was later extended to include the effect of sediment compressibility;
the governing equation can then be expressed as

ut C f
�
�.x/; u

�
x
D ��2.x/A.u/x

�
x
; (9)

where � D .�1; �2/ and �2 are now discontinuous vectorial and scalar functions,
respectively, of x, and A.�/ typically has the behaviour

A.u/ WD
Z u

0

a.s/ ds; a.u/

(
D 0 for u 	 uc,

> 0 for u > uc,
uc > 0; (10)

where uc is a critical concentration above which the solid particles touch each other.
The well-posedness analysis of the model (7) or (9), together with (8), has

been a small part of the tremendous interest and activity conservation laws and
related equations with dicontinuous flux have seen in recent years. Partial overviews
are given in [16, 23], while a comprehensive and unifying treatment is provided
by Andreianov, Karlsen, and Risebro [2]. While some of the previous existence
results are based on the convergence of suitable monotone, and therefore first-
order, finite difference schemes (cf., e.g., [19–21, 23, 25, 59, 88] and [60] for the
underlying L1 stability theory), it is desirable for practical purposes to construct
higher order schemes, for examples analogues to second-order TVD schemes for
standard conservation laws, for which one would be able to prove convergence



On Numerical Methods for Hyperbolic Conservation Laws and Related . . . 29

at least to a weak solution. In Sect. 2, which summarizes results of [25], two
different methodologies to construct a simple TVD scheme and a flux-TVD scheme,
respectively, are illustrated, along with an outline of the convergence analysis for the
flux-TVD scheme that is based on a nonlocal flux limiter algorithm.

In Sect. 3 we study the family of conservation laws with nonlocal flux

ut C
�
u.1� u/˛V .Ka � u/

�
x
D 0; x 2 R; t 2 .0; T �; (11)

together with the initial datum

u.0; x/ D u0.x/; 0 	 u0.x/ 	 1; x 2 R; (12)

where either ˛ D 0 or ˛ � 1. Usually, one defines a kernelK D K.x/ with support
on Œ�2; 2� and sets Ka.x/ WD a�1K.a�1x/ with support on Œ�2a; 2a�. The basic
motivation of the nonlocal dependence (34) lies in the observation that Kynch’s
theory, despite being a useful approximation, sharply contrasts with the theoretical
result that the velocity of each particle is determined by the size and position of all
spheres and the nature of possible boundaries. The convolution of u with a weighting
function, an assumption that eventually leads to (34) (see [12]), is a compromise.

In [12] the well-posedness of (11) and (12) is studied. The main results are the
uniqueness and existence of entropy solutions. This is done by proving convergence
of a difference-quadrature scheme based on the standard Lax-Friedrichs scheme.
It turns out that for ˛ D 0, solutions are bounded by a constant that depends on the
final time T , and are Lipschitz continuous if u0 is Lipschitz continuous. In contrast,
for ˛ � 1 solutions are in general discontinuous even if u0 is smooth, but assume
values within the interval Œ0; 1� for all times. Some numerical examples illustrate
the solution behaviour, in particular the so-called effect of layering in sedimenting
suspensions and the differences between the cases ˛ D 0 and ˛ � 1. These results
are summarized in Sect. 3.

Next, in Sect. 4, we will consider models of sedimentation of polydisperse
suspensions. These mixtures consist of small solid particles that belong to a
number N of species that may differ in size or density, and which are dispersed
in a viscous fluid. Here we only consider particles of the same density. If �i denotes
the volume fraction of particle species i having diameterDi , where we assume that
D1 > D2 > � � � > DN , and vi is the phase velocity of species i , then the continuity
equations of the N species are @t�i C @x.�ivi / D 0, where t is time and x is
depth. (In this section any statement involving a free index i is supposed to hold for
i D 1; : : : ; N .) The velocities vi are assumed to be given functions of the vector
ˆ WD ˆ.x; t/ WD .�1.x; t/; : : : ; �N .x; t//

T of local concentrations. This yields
nonlinear, strongly coupled systems of conservation laws of the type

@tˆC @xf .ˆ/ D 0; f .ˆ/ WD �f1.ˆ/; : : : ; fN .ˆ/
�T
; fi .ˆ/ WD �ivi .ˆ/:

(13)



30 F. Betancourt et al.

We seek solutions ˆ D ˆ.x; t/ that take values in the closure of the set

D�max WD
˚
ˆ 2 R

N W �1 > 0; : : : ; �N > 0; � WD �1 C � � � C �N < �max
�
:

The parameter 0 < �max 	 1 is a given maximum solids concentration. For batch
settling in a column of height L, (13) is defined on �T WD f.x; t/ 2 R

2 j 0 	 x 	
L; 0 	 t 	 T g for a given final time T > 0 along with the initial condition

ˆ.x; 0/ D ˆ0.x/ D ��01.x/; : : : ; �0N .x/
�T
; ˆ0.x/ 2 ND�max ; x 2 Œ0; L�

and the zero-flux boundary conditions

f jxD0 D f jxDL D 0: (14)

Several choices of vi (“models”) as functions of ˆ, and depending on the vector
of normalized particle sizes d WD .d1; : : : ; dN /T, where di WD Di=D1, have been
proposed [96]. We here discuss the models due to Masliyah [68] and Lockett and
Bassoon [65] (the “MLB model”) and Höfler and Schwarzer [56] (the “HS model”),
respectively. Both models are strictly hyperbolic for all ˆ 2 D�max , for arbitrary N ,
and under certain restrictions on model parameters and dN [24]. We mention here
that hyperbolicity for a large range of parameter values is a desirable property for
polydisperse sedimentation models with equal-density particles, since such mixtures
have been observed to always settle stably, i.e., under the formation of horizontal
layers and interfaces. Instabilities, such as the formation of blobs and columns, have
been observed with particles having different densities only [93], and their ocurrence
is predicted by a criterion equivalent to loss of hyperbolicity [6, 18].

In Sect. 4 the main results of [26] are summarized. Specifically, the results in [24]
provide a good estimate of the viscosity coefficient in a Lax-Friedrichs-type flux
splitting. This allows one to construct high-resolution component-wise weighted
essentially non-oscillatory (WENO) schemes (cf. [79] and its references) for
the numerical solution of (13)–(14). In addition, the full spectral decomposition
of Jf .ˆ/, which can now be computed numerically, can be used to obtain
characteristic-based WENO schemes, for which the WENO reconstruction proce-
dure is applied to the local characteristic variables and fluxes at each cell-interface.
When combined with a strong stability preserving (SSP) Runge-Kutta-type time
discretization (see [49]), the resulting SSP-WENO-SPEC schemes turn out to be
extremely robust. Here we summarize results related to the hyperbolicity analysis
and the construction of the aforementioned schemes, and present some numerical
examples.

In Sect. 5 we are concerned with the simulation of sedimentation of monodis-
perse suspensions in several space dimensions. In fact, for the realistic description of
the sedimentation of suspensions in two- or three-dimensional (2D, 3D) domains the
governing system of PDEs is a (possibly degenerate) convection-diffusion equation
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coupled with a version of the Stokes or Navier-Stokes system, supplied with suitable
initial and boundary conditions.

A prototype model of this kind is given by the following system, where the local
solids concentration u, the mixture velocity v and the pressure p are sought:

ut Cr � .uvC f .u/k/ D 
A.u/; x 2 � � R
d ; t 2 .0; T �; (15)

�.�suC �f.1 � u//.vt C v � rv/� r � �.u/rv
�C �rp D �uk;

r � v D 0; (16)

where d D 2 or 3, f .u/ D uV.u/, k is the upwards-pointing unit vector, the
term 
A.u/ accounts for sediment compressibility where the integrated diffusion
coefficientA.�/ has the behaviour (10), .u/ is a viscosity function, and � � 0, � >
0 and � > 0 are constants. Note that the convection-diffusion equation (15) involves
the linear transport term uv, while v (and p) are determined by the Navier-Stokes
or Stokes (for � > 0 and � D 0, respectively) system (16). This strong coupling
of (15) and (16) is the main challenge for solving this sedimentation-flow model.
The equations (16) do not have to be solved in a 1D setting, since then vx D 0, so in
absence of sources or sinks, v D v.t/ becomes controllable. We present numerical
results for two-dimensional subcases of (15) and (16) discretized either by finite
volume schemes combinded with an adaptive multiresolution technique or by a
finite volume element scheme.

Some open research problems and alternate treatments are discussed in Sect. 6.

2 TVD and Flux-TVD Schemes for Clarifier-Thickener
Models

2.1 Clarifier-Thickener Models

The basic principle of operation of a clarifier-thickener can be inferred from Fig. 1.
The feed suspension, which is to be separated into a concentrated sediment and a
clarified liquid, is fed into a cylindrical vessel at depth level x D 0, at a volume rate
QF � 0 and with a feed solids volume fraction uF � 0. The feed flow immediately
spreads over the whole cross section, and is separated into upward- and downward-
directed bulk flows forming the so-called clarification and thickening zones xL <

x < 0 and 0 < x < xR, respectively. The solid particles settle downward, forming a
concentrated sediment at the bottom which is continuously removed at a controllable
discharge volume rateQR � 0, while the overflowing supernatant liquid is collected
in a circumferential launder. The (signed) liquid overflow rate is QL 	 0, such that
QF D QR �QL. We assume that solid-liquid separation takes place within the unit
only, but not in the overflow and discharge flows, where both phases move with the
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xR

0

xL

x

QL = S· qL

QR = S· qR

uF

QF = QR− QL

clarification zone

thickening zone

sediment
level

Fig. 2 One-dimensional
idealized clarifier-thickener
model

same speed. In applications, real-world units usually have a gently sloped bottom;
however in this review we assume that the cross-sectional area S is constant.

If we assume that all flow variables are horizontally constant and wall effects are
negligible, then the conceptual model reduces to the setup shown in Fig. 2. To derive
the final mathematical model, we replace the solids and fluid phase velocities vs

and vf by the volume average velocity of the mixture, q WD uvs C .1 � u/vf and
the solid-fluid relative velocity vr D vs � vf. One then always has qx D 0, i.e.
q D q.t/ in the absence of sources and sinks, and vs D q C .1� u/vr. In particular,
q D 0 for settling in a closed column. For the clarifier-thickener model of Fig. 2, the
velocities qR, qL and qF are related to the signed volume bulk flows by qR D QR=S ,
qL D QL=S and qF D QF=S . Moreover, stating the constitutive assumption as

vr.u/ D b.u/

u.1� u/
;

we obtain the governing equation (7), where

f
�
�.x/; u

� D �1.x/b.u/C �2.x/.u � uF/:

The parameters �1 and �2 are defined as follows, and discriminate between the
interior and exterior of the unit and the directions of the bulk flows, respectively:

�1.x/ WD
(
1 for x 2 .xL; xR/,

0 for x 62 .xL; xR/ ,
�2.x/ WD

(
qL for x < 0,

qR for x > 0.
(17)
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If we include the effect of sediment compressibility, then the governing equation is
given by (9), where �1 and �2 are still given by (17).

By a solution to the hyperbolic problem (7) and (8) we understand the following,
where BV t denotes the space of locally integrable functions on…T for which ut (but
not ux) is a locally bounded measure, which is a superset of BV .

Definition 1 (BV t weak solution). A measurable function u W …T ! R is a BV t

weak solution of (7) and (8) if u 2 .L1 \ BV t / .…T /, and if for all test functions
� 2 D.R � Œ0; T //,

“

…T

�
u�t C f

�
�.x/; u

�
�x

�
dx dtC

Z

R

u0�.x; 0/ dx D 0:

2.2 TVD and Flux-TVD (FTVD) Schemes

We start with a description of the scheme under study in general form, and identify
terms that ensure that the resulting scheme has second order accuracy. To this end
we consider the case A � 0 and select 
x > 0 and set xj WD j
x, �jC1=2 WD
�.xjC1=2C/ and U 0

j WD u0.xjC/ for j 2 Z. Here xjC1=2 WD xj C
x=2. Let tn WD
n
t and let �n denote the characteristic function of Œtn; tnC1/, �j the characteristic
function of Œxj�1=2; xjC1=2/, and �jC1=2 the characteristic function of the interval
Œxj ; xjC1/. Our difference algorithm will produce an approximation Un

j associated
with .xj ; tn/. We then define

u
.x; t/ WD
X
n�0

X
j2Z

Un
j �j .x/�

n.t/; �
.x/ WD
X
j2Z

�jC1=2�jC1=2.x/: (18)

We recall the definition of the standard difference operators 
�Vj WD Vj � Vj�1
and
CVj WD VjC1 � Vj . Then our algorithm is defined by

UnC1
j D Un

j � �
�
�
hnjC1=2 C OF n

jC1=2
�
; � D 
t


x
; j 2 Z; n D 0; 1; 2; : : : :

(19)

Here hnjC1=2 WD h.�jC1=2; U n
jC1; U n

j /, where h is the Engquist-Osher (EO)
flux [46]:

h.�; v; u/ WD 1

2

�
f .�; u/C f .� ; v/� � 1

2

Z v

u

ˇ̌
fu.�;w/

ˇ̌
dw; (20)

and OF n
jC1=2 is a correction term that is required in order to achieve second-order

accuracy. Without those terms, (19) is the first-order scheme analyzed in [20].
Finally, we keep � constant as we refine the mesh.
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Focusing on the difference scheme (19) for (7), we now define second-order
correction terms dnjC1=2, enjC1=2 that are appropriate if � is piecewise constant. We
are seeking formal second-order accuracy at points .x; t/ where the solution u is
smooth. At jumps in � , u will generally be discontinuous, so for the purpose of
defining correction terms, we concentrate on points located away from the jumps
in � . In light of our (temporary) assumption that � is piecewise constant we obtain
the following Lax-Wendroff type correction terms that are well known to provide
for formal second-order accuracy in both space and time (see e.g. [86]):

dnjC1=2 D
˛C
jC1=2
2

�
1 � �˛C

jC1=2
�

CUn

j ; enjC1=2 D
˛�
jC1=2
2

�
1C �˛�

jC1=2
�

CUn

j :

(21)

Here the quantities ˛j̇C1=2 are the positive and negative wave speeds associated with
the cell boundary located at xjC1=2:

˛C
jC1=2 WD

1


CUnj

Z Un
jC1

U nj

max
�
0; fu.�jC1=2;w/

�
dw D

f .�jC1=2; U njC1/� hnjC1=2

CUnj

� 0;

˛�
jC1=2 WD

1


CUnj

Z UnjC1

U nj

min
�
0; fu.�jC1=2;w/

�
dw D

hn
jC1=2 � f .�jC1=2; U nj /


CUnj
	 0:

The scheme defined by (19) and (20), and with the flux correction terms not in
effect, i.e., OF n

jC1=2 D 0 for all j and n, is only first-order accurate. We now set out
to find second-order correction terms that are required when x 7! �.x/ is piecewise
C2, and start by identifying the truncation error of the first-order scheme. For the
case fu.�; u/ � 0 the first-order version of the scheme (19) simplifies to

UnC1
j � Un

j C �
�f
�
�jC1=2; U n

j

� D 0:

Inserting a smooth solution u.x; t/ into this scheme, using unj to denote u.xj ; tn/,
substituting ut D �f .� ; u/x into the resulting expression (as well as differentiated
versions of this identity) and applying Taylor expansions, we get (see [25] for
details)

TEC D �
x2�
�
1

2
fu.1 � �fu/ux � 1

2
�fuf��x

�

x

CO.
3/:

Similarly, when fu 	 0, we arrive at the following formula for the truncation error:

TE� D 
x2�
�
1

2
fu.1C �fu/ux C 1

2
�fuf��x

�

x

CO.
3/:
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So, when � is piecewise smooth (not piecewise constant), we see from these
expressions that appropriate second-order correction terms are given by the follow-
ing modified versions of (21):

F n
jC1=2 WD Dn

jC1=2 � En
jC1=2;

Dn
jC1=2 WD dnjC1=2 �

1

2
�˛C

jC1=2f�

�
�jC1=2; U n

jC1=2
�

C�j ;

En
jC1=2 WD enjC1=2 C

1

2
�˛�

jC1=2f�

�
�jC1=2; U n

jC1=2
�

C�j :

(22)

For the values f�.�jC1=2; U n
jC1=2/ appearing in (22), we use the approximation

f�.�jC1=2; U n
jC1=2/ 

1

2

�
f�.�jC1=2; U n

j /C f�.�jC1=2; U n
jC1/

�
: (23)

Even without the jumps in � , the solution will generally develop discontinuities.
If we use the correction terms above without further processing, the solution
will develop spurious oscillations near these discontinuities. To damp out the
oscillations, we apply so-called flux limiters, resulting in the flux-limited quantities
OFjC1=2.

A simple limiter that enforces the TVD property when � is constant is

OF n
jC1=2 D ODn

jC1=2 � OEn
jC1=2;

ODn
jC1=2 D minmod

�
Dn
jC1=2; 2Dn

j�1=2
�
;

OEn
jC1=2 D minmod

�
En
jC1=2; 2En

jC3=2
�
;

(24)

where we recall that the m-variable minmod function is defined by

minmod.p1; : : : ; pm/ D

8
ˆ̂<
ˆ̂:

minfp1; : : : ; pmg if p1 � 0; : : : ; pm � 0;
maxfp1; : : : ; pmg if p1 	 0; : : : ; pm 	 0;
0 otherwise:

When � is not constant, the actual solution u is not TVD, but numerical experi-
ments [25] indicate that (24) is an effective method of damping oscillations even in
the variable-� context considered here. The only negative practical aspect that we
have observed is a small amount of overshoot in certain cases when a shock collides
with a stationary discontinuity at a jump in � , see Fig. 4.

Next, we wish to eliminate the non-physical overshoot observed with the simple
TVD limiter (24), and also put the resulting difference scheme on a firm theoretical
basis. For a conservation law having a flux with a discontinuous spatial dependency,
it is natural to expect not the conserved variable, but the flux, to be TVD [88].
Consequently, we require that
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X
j2Z

ˇ̌

ChnC1

j�1=2
ˇ̌ 	

X
j2Z

ˇ̌

Chnj�1=2

ˇ̌
; n D 0; 1; : : : :

We call this property flux-TVD, or FTVD. We will see that under an appropriate
CFL condition, the FTVD property (along with a bound on the solution) holds if

ˇ̌

C OF n

jC1=2
ˇ̌ 	 ˇ̌
ChnjC1=2

ˇ̌
; j 2 Z; n D 0; 1; 2; : : : : (25)

It is reasonable to also impose the condition

0 	 OF n
jC1=2=F n

jC1=2 	 1; j 2 Z; n D 0; 1; 2; : : : : (26)

in addition to (25), so that after we have applied the correction terms, the numerical
flux lies somewhere between the first-order flux and the pre-limiter version of the
second-order flux.

We can view (25) and (26) as a system of inequalities, and ask if it is possible to
find a solution that keeps the ratio OF n

jC1=2=F n
jC1=2 appearing in (26) close enough to

unity that we still have formal second-order accuracy. This leads us to propose the
nonlocal limiter algorithm that we describe in Algorithm 1.

For the case of piecewise constant � , the results produced by the two algorithms
(namely the “simple TVD scheme” (STVD) and the “flux-TVD scheme” (FTVD))
usually differ by only a small amount. However, we have observed one situation
where there is a discernable difference—the case of a shock impinging on a
discontinuity in � . As mentioned above, the STVD limiter sometimes allows
overshoots by a small amount in this situation. We have not observed any such
overshoot with the FTVD limiter, see Example 2 in Sect. 2.3.

Finally, we mention that at a steady sonic rarefaction, both the Engquist-Osher
(EO) scheme and the Godunov scheme are slightly overcompressive, leading to a
so-called dogleg feature in the solution. This feature vanishes as the mesh size tends
to zero, but it is distracting. This dogleg artifact is present in certain situations with
both the STVD and the FTVD versions of our second-order schemes. It turns out
that if the corrections (21) are replaced by

dnjC1=2 D
1

2
˛C
jC1=2

 
˛C
jC1=2

˛C
jC1=2 � ˛�

jC1=2
� �˛C

jC1=2

!

CUn

j ;

enjC1=2 D
1

2
˛�
jC1=2

 
� ˛�

jC1=2
˛C
jC1=2 � ˛�

jC1=2
C �˛�

jC1=2

!

CUn

j ;

the scheme only changes near sonic points, but the dogleg feature diminishes
noticeably. We have implemented this refinement in Examples 1–3.

Next, we describe a method for solving the system of inequalities (25) and (26)
while trying to maximize OF n

jC1=2=F n
jC1=2 to maintain formal second-order accuracy

wherever possible. We set zi WD F n
iC1=2, 	i WD j
ChniC1=2j and Ozi WD OF n

iC1=2, and
then restate the system of inequalities (25) and (26) in the form
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jOziC1 � Ozi j 	 	i ; 0 	 Ozi =zi 	 1: (27)

The unknowns are Ozi , and the data are zi , 	i � 0. Moreover, there are indices i�, i�
such that zi D 0 for i 	 i� and i � i� since u0 has compact support. Thus we may
always assume that Un

j and F n
jC1=2 vanish for sufficiently; large j .

Algorithm 1 (Nonlocal limiter algorithm).
Input: data zi � 0, 	i � 0, i D i�; : : : ; i�.
Output: a vector OZ D fOzi� ; : : : ; Ozi�g such that (27) is satisfied, where zi denotes the
data before application of the algorithm.
Initialization: The sequence �i � 0, 	i � 0, i D i�; : : : ; i� is initialized to the input
data zi � 0, 	i � 0, i D i�; : : : ; i�.

1. Preprocessor step:

do i D i�; i� C 1; : : : ; i� � 1
if �iC1�i < 0 and j�iC1 � �i j > 	i then

�i  sgn.�i /minfj�i j; 	i =2g
�iC1  sgn.�iC1/minfj�iC1j; 	i=2g

endif

enddo

2. Forward sweep:

do i D i�; i� C 1; : : : ; i� � 1
if j�iC1j > j�i j then

�iC1  �i C sgn.�iC1 � �i /minfj�iC1 � �i j; 	ig
endif

enddo

3. Backward sweep:

do i D i�; i� � 1; : : : ; i� C 1
if j�i�1j > j�i j then

�i�1  �i C sgn.�i�1 � �i /minfj�i�1 � �i j; 	i�1g
endif

enddo

Generate output:

do i D i�; i� C 1; : : : ; i�
Ozi  �i

enddo



38 F. Betancourt et al.

Here the left arrow  is the replacement operator. Algorithm 1 can be
written compactly as OZ D ˆ.Z;‚/ D ˆ�.ˆC. QZ;‚/;‚/, where QZ D Pre.Z;‚/.
Here ˆC and ˆ� represent the forward and backward sweeps, Pre represents the
preprocessor step, and OZ D fOzi g, QZ D fQzig, Z D fzig and ‚ D f	ig. In [25] it is
shown that the output of Algorithm 1 solves the system of inequalities (27), and
that the limiter ˆ is consistent with formal second-order accuracy in the following
sense.

Lemma 1. Let u and � be C2 in a neighborhood of the point Nx where

f
�
�. Nx/; u. Nx/�

x
¤ 0: (28)

Assume that u.˙x/ D u˙1 for x sufficiently large, so that the limiter ˆ is well-
defined on the flux corrections F


jC1=2 D FjC1=2. Let

OF
 D ˆ
�˚
F

jC1=2

�
j2Z;

˚ˇ̌

ChjC1=2

ˇ̌�
j2Z

�
: (29)

Then there is a mesh size 
0 D 
0. Nx/ > 0 and a ı. Nx/ > 0 such that for 
 	 
0,
we have

OF

jC1=2 D F


jC1=2 for all xj 2 fx W jx � Nxj < ıg:

Consequently, the scheme defined by (18)–(23), including the flux corrections
OF n
jC1=2 produced by (29) will have formal second-order accuracy at any point

where u and� are smooth, and where (28) is satisfied. Thus, the resulting FTVD
scheme is given by UnC1

j D Un
j � �
�.hnjC1=2 C OF n

jC1=2/. In [20] the first-order
version of this scheme, UnC1

j D Un
j � �
�hnjC1=2, was analyzed. Clearly, this

scheme results by setting OF n
jC1=2 D 0 for all j and n. Moreover in [20] we assumed

that � is piecewise constant, while in [19] we dealt with a piecewise smooth
coefficient function � . The convergence analysis for the FTVD scheme strongly
relies on results from [19] and [20]. We assume that the following CFL condition is
satisfied:

�
�

maxf�qL; qRg C k�1b0k
�
	 1

4
; (30)

where k�1b0k WD maxfj�1.x/b0.u/j W x 2 ŒxL; xR�; u 2 Œ0; umax�g.
Our theorem concerning convergence is the following.

Theorem 1 (Convergence of the FTVD scheme). Let u
 be defined by (18)–(23).
Assume that the flux corrections OF n

jC1=2 are produced by applying Algorithm 1
to the non-limited flux corrections F n

jC1=2. Let 
! 0 with � constant and the
CFL condition (30) be satisfied. Then u
 converges along a subsequence in
L1loc.…T / and boundedly a.e. in …T to a BV t weak solution of the CT model (7)
and (8).

The proof of Theorem 1 amounts to checking that Lemmas 1–7, along with the
relevant portion of Theorem 1, of [19] remain valid in the present context. See [25]
for details. We resume the essential steps of the proof.
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One first shows that under the CFL condition (30) we get a uniform bound on
Un
j , specifically Un

j 2 Œ0; 1�, and that the flux-TVD property is satisfied, i.e.,
X
j2Z

ˇ̌
hnC1
jC1=2 � hnC1

j�1=2
ˇ̌ 	

X
j2Z

ˇ̌
hnjC1=2 � hnj�1=2

ˇ̌
; n D 0; 1; 2; : : : :

The proof of these properties follows that of [19, Lemma 1].
The flux-TVD property is the ingredient that allows us to maintain time

continuity even though the present scheme, as a second-order scheme, is no longer
monotone. Thus, there exists a constant C , independent of 
 and n, such that


x
X
j2Z

ˇ̌
UnC1
j � Un

j

ˇ̌ 	 
x
X
j2Z

ˇ̌
U 1
j � U 0

j

ˇ̌ 	 C
t:

As in [19], to prove that the difference scheme converges, one needs to establish
compactness for the transformed quantity z
 that emerges from the numerical
solution by a singular mapping ‰ also known as the Temple functional [87]. The
critical ingredient is a bound on its total variation. We then derive compactness for
u
 by appealing to the monotonicity and continuity of the mapping u 7! ‰.�; u/. To
show that z
 has bounded variation it then suffices to invoke Lemmas 2–7 of [19],
making modifications where necessary to account for the addition of the second-
order correction terms. See [25].

We now use the notation O.
�j / to denote terms which sum (over j ) to
O.j�jBV/, and employ the Kružkov entropy-entropy flux pair indexed by c, i.e.
q.u/ WD ju � cj and �.�; u/ WD sgn.u � c/.f .� ; u/ � f .� ; c//. One then obtains
that for each c 2 R, the following inequality holds:

q
�
UnC1
j

� 	 q�Un
j

� � �
h
H
�
�jC1=h; U n

jC1; U n
j

� �H ��jC1=h; U n
j ; U

n
j�1
�	

C �ˇ̌
Chnj�1=2
ˇ̌C �O.
�j /; j 2 Z; n D 0; 1; 2 : : : ;

(31)

where the EO numerical entropy flux is given by

H.�; v; u/ D 1

2

�
�.�; u/C �.�; v/� � 1

2

Z v

u
sgn.w � c/ˇ̌fu.� ;w/

ˇ̌
dw:

It is now possible to repeat the proofs of Lemmas 3–7 of [19], the only change being
the contribution of the term �j
�hnjC1=2j appearing in (31).

2.3 Numerical Examples (Examples 1 and 2)

Consider a suspension characterized by b.u/ D vStuV.u/, where vSt D 10�4 m=s
and V.u/ is given by (4) with nRZ D 5 and umax D 1. We assume that A � 0

and consider a cylindrical CT with xL D �1m and xR D 1m with (nominal)
interior cross-sectional area S D 1m2. The CT is assumed to initially contain no
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Fig. 3 Example 1: numerical solution at (a, b) t D 150;000 s with (a) J D 40, (b) J D 200

(enlarged view around x D 0:6), at (c) t D 250;000 s with J D 40, and at (d–f) t D 500;000 s
with (d) J D 40, (e) J D 200, (f) J D 400 ((e, f): enlarged view around x D �0:61). The solid
line is the reference solution

solids (u0 � 0), is operated with a feed concentration uF D 0:3 in Example 1 and
uF D 0:5 in Example 2, and the flow velocities are qL D �1:0 � 10�5 m=s and
qR D 2:5 � 10�6 m=s. In these examples, the solution is clearly not TVD, since
TV.u0/ D 0. Figure 3 shows the numerical solution for Example 1 calculated by
the first-order scheme of [21] (BKT), the scheme described herein that uses the
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Fig. 4 Example 2: numerical solution at t D 272;760 s with (a, b) J D 100, (c) J D 200 and (d)
J D 400 ((b–d): enlarged views around x D �1). The solid line is the reference solution

simple TVD (STVD) limiter (in short, STVD scheme), and the FTVD scheme. All
calculations were performed with � D 2;000 s=m, and results are compared against
a reference solution calculated by the first-order scheme of [22] with J D 100;00,
where J D 1=
x (in meters). Example 2 illustrates the overshoot mentioned
in Sect. 2.2, see Fig. 4. We observe that Fig. 4 illustrates how the “overshoot”
phenomenon diminishes as 
x ! 0.

The numerical solutions of Examples 1 and 2 indicate that the STVD and FTVD
schemes are significantly more accurate than their first-order counterpart. It seems
that both schemes STVD and FTVD, have comparable accuracy. A significant
difference in solution behaviour between both schemes becomes visible in Fig. 4.

2.4 A Note on Second-Order Degenerate Parabolic Equations
(Example 3)

The model (9) with a degenerate diffusion term can be handled by a Strang-
type operator splitting scheme [85]. To describe it, let Un denote the approximate



42 F. Betancourt et al.

solution at time level n, and write the scheme (19) in operator notation via
UnC1 D H.
t/U n. Then the proposed operator splitting scheme for (9) is

UnC1 D 
H.
t=2/ ı P.
t/ ıH.
t=2/
	
Un; n D 0; 1; 2; : : : : (32)

Here P.
t/ represents a second-order scheme for ut D .�1.x/A.u/x/x written
as UnC1 D P.
t/U n. If we employ the Crank-Nicolson (CN) scheme, which has
second-order accuracy in space and time, then P.
t/ is defined by

UnC1
j D Un

j C

t

2
x2

h

C

�
sj�1=2
�Anj

�
C
C

�
sj�1=2
�AnC1

j

�i
: (33)

Here sj�1=2 denotes our discretization of the parameter �1.x/. The CN scheme is
stable with linear stability analysis. For our nonlinear problem, we generally need a
very strong type of stability, both from a practical and theoretical point of view. It
seems that it is impossible to get this type of strong stability for implicit schemes of
accuracy greater than one [49]. On the other hand, the solution u is continuous in
the regions where the parabolic operator is in effect (cf., e.g., [21]), which seems to
stabilize the numerical approximation. The CN scheme leads to a nonlinear system
of equations, which are solved here iteratively; each step of iteration requires solving
a tridiagonal linear system (see [25]). These iterations have turned out to converge
rather quickly.

Since each of the parabolic and hyperbolic operators has formal second-order
accuracy in both space and time, we will maintain overall second order accuracy
with the Strang splitting [85]. This is a well-known result, see, e.g., [48].

Next, we include the strongly degenerate diffusion term (10) with

a.u/ D b.u/� 0
e .u/

.�s � �f/gu
;

where the so-called effective solid stress function �e.u/ is given by

�e.u/ D
(
0 for u 	 uc,

�0
�
.u=uc/

k � 1� for u > uc;

where we use �0 D 1 Pa, uc D 0:1 and k D 6 along with 
� D 1;500 kg=m3 and
g D 9:81m=s2 [21]. The vessel and control variables are the same as in Example 1,
and we again set u0 � 0. Figure 5 shows the numerical solution calculated by
the semi-implicit scheme described in [21] (BKT-SI), the operator splitting scheme
described herein (BKT-OS), the operator splitting scheme (32) and (33) including
the simple TVD limiter (STVD-OS), and the analogue scheme involving the non-
local limiter (FTVD-OS). All calculations were performed with � D 2;000 s=m.
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Fig. 5 Example 3: numerical solution at t D 25;000 s with (a) J D 50, (b) J D 100,
(c) at t D 25;000 s with J D 50, (d) at t D 100;000 s with J D 50

3 A Conservation Law with Nonlocal Flux Modeling
Sedimentation

When diffusion is negligible, the one-dimensional continuity equation is (1), and
the solids phase velocity vs is given by (3) and (5). Assume now that V is given by
(4) but depends on u in the nonlocal form

V D V.Ka � u/; .Ka � u/.x; t/ D
Z 2a

�2a
Ka.y/u.x C y; t/ dy; (34)

where Ka is a symmetric, non-negative piecewise smooth kernel with support on
Œ�2a; 2a� for a parameter a > 0 and

R
R
Ka.x/ dx D 1. Then (1) takes the form

ut C vSt
�
u.1 �Ka � u/nRZ

�
x
D 0: (35)

On the other hand, starting from the relation vs D .1 � u/vr valid for batch
settling, we obtain the alternative governing equation ut C .u.1 � u/vr/x D 0:
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If vr (instead of vs) has a nonlocal behaviour and the local versions based on
specifying either vs or vr should coincide, then the constitutive assumption for vr

becomes vr D V.Ka � u/=.1� u/. For instance, (4) leads to the conservation law

ut C vSt
�
u.1 � u/.1 �K � u/nRZ�1�

x
D 0: (36)

Both (35) and (36) are special cases of (11).

3.1 Properties of the Nonlocal Equation

Insight into properties of (11) can be gained by analyzing an approximate local PDE
(the “effective” local PDE [99]) obtained from the Taylor expansion of Ka � u. If
2M2 denotes the second moment of Ka, then we obtain the approximate diffusive-
dispersive local PDE

ut C
�
u.1� u/˛V .u/

�
x
D �a2M2

�
V 0.u/u.1� u/˛uxx

�
x

(37)

(see [12] for details). For ˛ � 1 the factor u.1 � u/ in the right-hand side and in
the flux has a “saturating” effect; it prevents solution values from leaving Œ0; 1�.
Thus, we should expect that the nonlocal PDE (11) also satisfies an invariant region
principle for ˛ � 1. This is indeed the case, as will be shown below.

We mention that Zumbrun [99] studied an equation equivalent to (11) in the case
˛ D 0 and V.w/ D vSt.1 � ˇw/, namely

ut C
�
uKa � u

�
x
D 0; (38)

whereKa.x/ WD a�1K.a�1x/ and K is the truncated parabola given by

K.x/ D 3

8

�
1 � x

2

4

�
for jxj < 2; K.x/ D 0 otherwise. (39)

He showed global existence of weak solutions for (12) and (38) in L1 and
uniqueness in the class BV , and derived the effective local, dispersive, KdV-
like PDE

ut C .u2/x D �M2a
2.uuxx/x: (40)

He showed by analyzing (40) that (38) supports travelling waves, but not viscous
shocks. This result is based on the symmetry of K , which makes (38) completely
dispersive. Moreover, an L2 stability argument is invoked to conclude that smooth
solutions of the Burgers-like first-order conservation law ut C .u2/x D 0 arise from
smooth solutions of (38) as a! 0. Zumbrun [99] also studied the effect of artificial
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diffusion added to (38), and showed that for the corresponding effective local PDE,
solutions of shock initial data converge to a stable, oscillatory travelling wave.

For ˛ D 0, the notion of weak solution is sufficient for uniqueness and stability
(at least in the Wasserstein distance, see [11, 66]), since the convolution introduces
sufficient regularization to ensure that the advective velocity is Lipschitz continuous.
This is true even with discontinuous data. For the case ˛ D 0, the analysis of
[12] based on a quadrature-difference scheme comes to a corresponding Lipschitz
continuity result for Lipschitz continuous initial data, as will be discussed below.

3.2 Numerical Scheme and Well-Posedness Analysis

We discretize (11) on a fixed grid given by xj D j
x for j 2 Z and
tn D n
t for n 	 N WD T=
t , where T is the finite final time. As usual,
unj approximates the cell average of u.�; tn/ on .xj�1=2; xjC1=2/, and we define
Un WD .: : : ; unj�1; unj ; unjC1; : : :/T. The initial datum u0 is discretized accordingly.
We define the second spatial difference operator
2unj WD 
C
�unj .

We assume that Ka is a positive symmetric kernel, has compact support on
Œ�2a; 2a�, Ka 2 C0;1 .R/ \ C2 .Œ�2a; 2a�/ and

R 2a
�2a Ka.y/ dy D 1: (The same

analysis remains valid for more general kernels [12].) The integral in (34) is
approximated by the quadrature formula

.Ka � u/nj  Quna;j WD
lX

iD�l
�iu

n
j�i ; where �i D

Z xiC1=2

xi�1=2

Ka.y/ dy, l D

2a


x

�
C 1.

Due to the properties ofKa, ��lC� � �C�l D 1. Furthermore, we require that u0 has
compact support, u0.x/ � 0 for x 2 R and u0 2 BV.R/. The function u 7! V.u/
and its derivatives are locally Lipschitz continuous for u � 0 (which occurs, for
example, if V.�/ is a polynomial). When we send 
x;
t # 0 then it is understood
that � WD 
t=
x is kept constant. Moreover, for the case ˛ � 1 we suppose that
u0.x/ 	 1 for all x 2 R.

From now on we let the function u
 be defined by

u
.x; t/ D Un
j for .x; t/ 2 Œj
x; .j C 1/
x/ � Œn
t; .nC 1/
t/.

Definition 2. A measurable, non-negative function u is an entropy solution of the
initial value problem (11) and (12) if it satisfies the following conditions:

1. We have u 2 L1.…T /\ L1.…T / \ BV.…T /.
2. The initial condition (12) is satisfied in the following sense:

lim
t#0

Z

R

ˇ̌
u.x; t/ � u0.x/

ˇ̌
dx D 0:
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3. For all non-negative test functions ' 2 C1
0 .…T /, the following Kružkov-type

[62] entropy inequality is satisfied, where we define f .u/ WD u.1 � u/˛:

8k 2 R W
“

…T

n
ju � kj't C sgn.u � k/�f .u/� f .k/�V.Ka � u/'x

� sgn.u� k/f .k/V 0.Ka � u/.@xKa � u/'
o

dx dt � 0:
(41)

An entropy solution is, in particular, a weak solution of (11) and (12), which is
defined by (1) and (2) of Definition 2, and the following equality, which must hold
for all ' 2 C1

0 .…T /:

“

…T

n
u 't C f .u/V .Ka � u/'x � f .u/V 0.Ka � u/.@xKa � u/'

o
dx dt D 0:

Suitable Rankine-Hugoniot and entropy jump conditions can be derived from (41).
The uniqueness of entropy solutions follows from a result proved in [58]

regarding continuous dependence of entropy solutions with respect to the flux
function:

Theorem 2. If u and v are entropy solutions of (11) and (12) with initial data u0
and v0, respectively, then for T > 0 there exists a constant C1 such that

��u.�; t/� v.�; t/��
L1.R/

	 C1 ku0 � v0kL1.R/ 8t 2 .0; T �:

In particular, an entropy solution of (11) and (12) is unique.

Finally, let us briefly address the convergence analysis and the related result of
existence of entropy solutions. To this end, let V n

j WD V.Quna;j /. Then the marching
formula for the approximation of solutions of (11) and (12) reads

unC1
j D unj�1 C unjC1

2
� �
2

unjC1
�
1 � unjC1

�˛
V n
jC1 C

�

2
unj�1

�
1 � unj�1

�˛
V n
j�1:

(42)

We assume that � D 
t=
x satisfies the following CFL condition:

�max
u�u�

ˇ̌
V.u/

ˇ̌
< 1 for ˛ D 0; u� WD kKak1ku0k1I

� max
0�u�1

ˇ̌
V.u/

ˇ̌
< 1 for ˛ � 1:

The convergence proof of the numerical scheme is based on the usual L1, BV
and L1 Lipschitz continuity in time bounds, where the latter two depend on T and
adversely on a. The L1 bound is as follows:
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0 	 unj 	
(
C3 if ˛ D 0,

1 if ˛ � 1,
for j 2 Z and 0 	 n 	 N; (43)

where the constant C3 is independent of 
x and 
t but depends on T . This bound
represents the most important estimate of the convergence analysis [12, Lemma 5.3].
In view of (37), one should expect an “invariant region” principle to hold for (11),
(12) with ˛ � 1. The estimate (43) shows that this property indeed holds.

Invoking the bounds established so far and applying a Lax-Wendroff-type
argument to the discrete entropy inequality

ˇ̌
unC1
j � kˇ̌� ˇ̌unj � k

ˇ̌C GnjC � Gnj� C sgn
�
unC1
j � k��

2
f .k/

�
V n
jC1 � V n

j�1
� 	 0

satisfied by the scheme, where we define

Gnj˙ WD
�

2

��
f
�
unj˙1 _ k

� � f �unj˙1 ^ k
��
V n
j˙1 �

1

�

˙

�ˇ̌
ˇunj � k

ˇ̌
ˇ
��
;

we can conclude by Helly’s theorem that u
 converges to a function u 2 L1.…T /\
L1.…T / \ BV.…T / as 
x; 
t ! 0, and prove the following theorem.

Theorem 3. The numerical solution generated by (42) converges to the unique
entropy solution of (11) and (12).

As an additional regularity result for ˛ D 0, it can be shown that for T > 0,
u
 converges to a Lipschitz continuous function u provided u0 is also Lipschitz
continuous. This result is as expected since in the simplest case, V constant, (11)
becomes a linear advection equation, whose solution has a regularity that is the same
as that of u0. Moreover, as a Lipschitz continuous weak solution of (11) and (12),
u will automatically be an entropy solution.

3.3 Numerical Examples

We illustrate in Example 4 how the value of a affects the numerical solution of
(11) and (12) for ˛ D 0 and ˛ D 1. We use (4) with nRZ D 5 for ˛ D 0 and,
correspondingly, (4) with nRZ D 4 for ˛ D 1. In both cases,K is given by (39) with
a D 0:4, 0:2, 0:1, and 0:01. The initial datum is

u0.x/ D
(
0:0 for x 	 0:2,

0:6 for x > 0:2,
and u0.x/ D

(
0:0 for x 	 0:2,

0:01 for x > 0:2,

for the two cases of a concentrated and a dilute suspension with 
x D 0:0005 and
� D 0:2. Figure 6 shows the numerical results. The case a D 0:01 was calculated
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Fig. 6 Example 4: numerical solutions of (11) and (12) (top) for an initially concentrated
suspension at t D 10 and (bottom) for an initially dilute suspension at t D 7

Fig. 7 Example 5: numerical solution of (11) and (12) with ˛ D 1 and initial data (44)

with
x D 0:0002 since otherwise the stencil of the convolution includes just a few
points. We observe a more strongly oscillatory behaviour with a D 0:4, 0:2 and 0:1
than with a D 0:01, and that the period of the oscillation is proportional to a.

In Example 5 we attempt to reproduce the layering phenomenon observed by
Siano [81] for batch settling. In Fig. 7 we show the numerical results for ˛ D 1,
with V.u/ D .1 � u/4, K as in (39), a D 0:025, 
x D 0:00025, � D 0:5 and the
initial datum for the respective concentrated and dilute case
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u0.x/ D

8
ˆ̂<
ˆ̂:

0 for x < 0,

0:5 for 0 	 x < 1,

1 for x � 1
and u0.x/ D

8
ˆ̂<
ˆ̂:

0 for x < 0,

0:05 for 0 	 x < 1,

1 for x � 1.

(44)

We observe layers of concentrations smaller or larger than the initial value u0.
These “stripes” are initially close to parallel to the supernate-suspension inter-
face. However, stripes are obliterated as soon as interaction with concentration
information travelling upwards from the vessel bottom takes place.

4 Kinematic Models of Polydisperse Sedimentation

Polydisperse sedimentation models belong to the wider class of multi-species
kinematic flow models given by (13) with explicit velocity functions vi , including
the multi-class Lighthill-Whitham-Richards (MCLWR) kinematic traffic model
[8,95]. The basic phenomenon of interest in these models, the segregation of species,
is usually associated with the formation of discontinuities in ˆ, so-called kinematic
shocks. Other multi-species kinematic flow models also include the settling of
oil-in-water dispersions [76] and of emulsions (cf., e.g., [22, 47]).

For many multi-species kinematic flow models, the velocities vi do not depend on
each of the N components of ˆ in an individual way, but are functions of m� N

(m 	 4 for all models of interest) scalar functions of ˆ, i.e.,

vi D vi .p1; : : : ; pm/; pl D pl.ˆ/; l D 1; : : : ; m: (45)

Thus, Jf .ˆ/ is a rank-m perturbation of D WD diag.v1; : : : ; vN / of the form

Jf D D CBAT;

(
B WD .Bil/ D .�i@vi =@pl/;

A WD .Ajl/ D .@pl=@�j /;
1 	 i; j 	 N; 1 	 l 	 m:

(46)

The analysis in [24] also provides sharp bounds of the eigenvalues of Jf .ˆ/.
This information permits to numerically calculate the eigenvalues and correspond-
ing eigenvectors of Jf .ˆ/ with acceptable effort. This characteristic (or spectral)
information can be exploited for the implementation of high-resolution schemes.

High-resolution shock capturing schemes can be applied to systems of conserva-
tion laws either in a component-wise or in a characteristic-wise (spectral) fashion.
The latter requires a detailed knowledge of the spectral decomposition of the
Jacobian matrix of the system. For multi-species kinematic flow models, however,
eigenvalues are not available in closed form. Nevertheless, it has been possible to
prove strict hyperbolicity of some of these models by an explicit representation of
the characteristic polynomial [10,76,97], as well as to obtain an interlacing property
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of the (unknown) eigenvalues �i of the Jacobian with the (known) velocities vi ,
which provide excellent starting values for a root finder. For the MCLWR model,
these results can be found in [97, 98] and in references cited in these papers.

Donat and Mulet [43] showed that the hyperbolicity calculus of multi-species
kinematic flow models satisfying (45) can be greatly simplified by using the so-
called secular equation [1], which provides a systematic algebraic framework to
determine the eigenvalues, and eventually the eigenvectors, but avoids the explicit
representation of the characteristic polynomial. The hyperbolicity analysis for the
MCLWR model becomes very simple. Via the secular approach, hyperbolicity of
the MLB model for equal-density spheres (a case of m D 2) can be proved in
a few lines [43], which contrasts with several pages of computation necessary to
exhibit the characteristic polynomial in [10]. In [24] the secular approach was used
to estimate the region of hyperbolicity of the HS model, for whichm D 3 orm D 4.
In [26] the results of [24] are employed to implement characteristic-wise WENO
schemes for the polydisperse sedimentation model. On the other hand, there are
also other polydisperse sedimentation models (besides the MLB and HS models)
for which the flux Jacobian is a rank-m perturbation of a diagonal, and to which a
version of the present numerical technique can be applied [27, 38, 72].

4.1 Hyperbolicity Analysis

The hyperbolicity analysis of (13) under the assumption (45) is then based on the
following theorem.

Theorem 4 (The secular equation, [1, 43]). Assume that vi > vj for i < j , and
that A and B have the formats specified in (46). We denote by Spr the set of all
(ordered) subsets of r elements taken from a set of p elements. If X is an m � N
matrix, I WD fi1 < � � � < ikg 2 SNk and J WD fj1 < � � � < jlg 2 Sml , then we
denote by X I;J the k � l submatrix of X given by .X I;J /p;q D Xip;jq . Let � ¤ vi
for i D 1; : : : ; N . Then � is an eigenvalue of D CBAT if and only if

R.�/ WD det
�
I CAT.D � �I/�1B

� D 1C
NX
iD1

�i

vi � � D 0; (47)

where �i WD
minfN;mgX
rD1

X

i2I2SNr ;J2Smr

det AI;J det BI;J

Q
l2I;l¤i .vl � vi /

:

The relation R.�/ D 0, (47), is known as the secular equation [1].

Assuming that m < N , with A and B defined in (46) we can write
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�i D �i
mX
rD1

�r;i ; �r;i D
X

i2I2SNr

Y
l2I;l¤i

�l

vl � vi

X
J2Smr

det

�
@vI
@pJ

�
det

�
@pJ

@�I

�
:

When m 	 2, these quantities can be easily computed and the hyperbolicity
analysis via Theorem 4 is much less involved than explicitly deriving and discussing
det.Jf .ˆ/��I/. Form D 3 orm D 4, the computations are more involved [24,27],
but provide at least partial results concerning hyperbolicity, where the theoretical
analysis of det.Jf .ˆ/ � �I/ is essentially out of reach.

The following corollary follows from Theorem 4 by a discussion of the poles of
R.�/ and its asymptotic behaviour as �! ˙1.

Corollary 1 ([24]). If �i � �j > 0 for i; j D 1; : : : ; N , then D CBAT is
diagonalizable with real eigenvalues �i . If �1; : : : ; �N < 0, then the interlacing
property

M1 WD vN C �1 C � � � C �N < �N < vN < �N�1 < � � � < �1 < v1

holds, while for �1; : : : ; �N > 0, the following analogous property holds:

vN < �N < vN�1 < �N�1 < � � � < v1 < �1 < M2 WD v1 C �1 C � � � C �N :

The analysis of (47) also leads to an explicit spectral decomposition of Jf

required for spectral schemes. Assume � is an eigenvalue of Jf that satisfies � ¤ vi
for all i D 1; : : : ; N . Then � D ATx is a solution of M�� D 0, where the
m�m matrix M� WD I CAT.D � �I/�1B can easily be computed. In fact, given
g;h 2 R

N , if we use the notation

Œg;h� WD Œg;h�� WD gT.D � �I/�1h D
NX
kD1

gkhk

vk � �;

then M� D I C .Œai ;bj �/1�i;j�m, where ai and bj are the columns of A

and B, respectively. If � ¤ 0 solves M�� D 0, then we can use
x C .D � �I/�1B.ATx/ D 0 to compute a right eigenvector of Jf as
x D �.D � �I/�1B�. The same procedure may be employed to calculate the
left eigenvectors of Jf .

The MLB model arises from the mass and linear momentum balance equations
for the solid species and the fluid [10]. For equal-density particles, its final form is

vi .ˆ/ D vMLB
i .ˆ/ WD .�s � �f/gD

2
1

18f
.1 � �/V.�/

 
d2i �

NX
mD1

�md
2
m

!
;

where f is the fluid viscosity, and � D �1 C � � � C �N is the total solids volume
fraction. Here V.�/ is assumed to satisfy V.0/ D 1, V.�max/ D 0 and V 0.�/ 	 0
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for � 2 Œ0; �max�, where the maximum total solids concentration is assumed to be
given by the constant �max. A standard choice for V.�/ is the equation

V.�/ D
(
.1 � �/nRZ�2 if ˆ 2 D�max

0 otherwise,
nRZ > 2: (48)

(This formula is consistent with (4) for N D 1, i.e., V.�/ D .1 � �/2V.�/.)
We may write the components of the flux vector f .ˆ/ of the MLB model as

fi .ˆ/ D f MLB
i .ˆ/ WD vMLB

1 .0/�i .1� �/V.�/
 
d2i �

NX
mD1

�md
2
m

!
: (49)

The present version of the MLB model corresponds to m D 2, where p1 D � and
p2 D V.�/.d21 �1 C � � � C d2N�N /. For this model, we have:

Lemma 2 ([24]). The MLB model (13) and (49) is strictly hyperbolic on D�max . The
eigenvalues �i D �i.ˆ/ of Jf .ˆ/ D Jf MLB.ˆ/ satisfy the interlacing property

M1.ˆ/ < �N .ˆ/ < vN .ˆ/ < �N�1.ˆ/ < vN�1.ˆ/ < � � � < �1.ˆ/ < v1.ˆ/;
(50)

M1.ˆ/ WD vMLB
1 .0/

 
d2NV.ˆ/C

�
.1 � �/V 0.�/� 2V.�/�

NX
mD1

�md
2
m

!
:

Furthermore, if � 62 fv1; : : : ; vN g is an eigenvalue of Jf .ˆ/, then the discussion
following Corollary 1 allows us to express the corresponding eigenvector in closed
algebraic form (not detailed here).

The Höfler and Schwarzer (HS) model is motivated by the following expression
for vi by Batchelor and Wen [5, 7], valid for a dilute suspension (i.e., � � �max):

vi .ˆ/ D .�s � �f/gD
2
1

18f
d2i .1C sT

i ˆ/: (51)

Here, sT
i WD .Si1; : : : ; SiN / is the i -th row of the matrix S D .Sij/1�i;j�N

of dimensionless sedimentation coefficients Sij, which are negative functions of
�ij WD dj =di and depend on certain other parameters. They can be reasonably
approximated by

Sij D
3X
lD0

ˇl

�
dj

di

�l
; 1 	 i; j 	 N with coefficients ˇ0; : : : ; ˇ3 	 0. (52)

Some authors set ˇ3 D 0 a priori; for example, Höfler and Schwarzer [56] obtained
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ˇT D .ˇ0; : : : ; ˇ3/ D .�3:52;�1:04;�1:03; 0/ (53)

by fitting data from [7] to a second-order polynomial. For simplicity, we also
consider ˇ3 D 0 in this work.

To overcome the limitation of (51) to dilute suspensions, Höfler and Schwarzer
[56] extended (51) to the whole range of concentrations by the formula

vi .ˆ/ D vHS
i .ˆ/ WD

.�s � �f/gD
2
1

18f
d2i exp.sT

i ˆC n�/.1 � �/n; n � 0:

The corresponding flux vector of the HS model is given by

fi .ˆ/ D f HS
i .ˆ/ WD vHS

1 .0/�id
2
i exp.sT

i ˆC n�/.1 � �/n:

For the HS model it is straightforward to verify strict hyperbolicity on D1 for
N D 2, arbitrary non-positive Batchelor matrices S and arbitrarily small values
of d2. The analysis of [24] ensures hyperbolicity for arbitrary N and in the case
of the coefficients (53) under the fairly mild restriction dN > 0:0078595.

For the hyperbolicity analysis of the HS model, we define

a� WD dT
��1 WD

�
d��1
1 ; d ��1

2 ; : : : ; d ��1
N

�
; p� WD aT

�ˆ; � D 1; : : : ; 4;

and taking into account that ˇ3 D 0, we obtain from (51) and (52)

vi .ˆ/ D vHS
1 .0/d

2
i exp

�
.ˇ0 C n/p1 C ˇ1

di
p2 C ˇ2

d2i
p3

�
.1� p1/n:

Thus, the hyperbolicity of the HS model can be analyzed by Theorem 4, where
m D 3 if ˇ3 D 0 and m D 4 if ˇ3 ¤ 0. The calculations become involved, but still
lead to estimates of the hyperbolicity region. A typical result is the following.

Lemma 3. Assume that ˇ, �max, and the width of the particle size distribution
characterized by the value of dN 2 .0; 1� satisfy

H.�;ˇ; dN / WD � Q̌0
�
ˇ1dN C ˇ2.1C dN /2

� � ˇ2ˇ1dN � �.1� dN /2 Q̌0ˇ1ˇ2 < 0

for all � 2 .0; �max/. Then the HS model is strictly hyperbolic for ˆ 2 D�max .
The eigenvalues satisfy the interlacing property (50). (The fairly involved algebraic
expression for �i for this model is not written out here for brevity. We refer to [24]
and [27] for the respective cases ˇ3 D 0 and ˇ3 < 0.)

For ˇ given by (53) the region of hyperbolicity for the HS model ensured
by Lemma 3 is illustrated in Fig. 8. The spectral decomposition of Jf .ˆ/, i.e.,
the eigenvectors corresponding to the eigenvalues �i .ˆ/, is easy to obtain from
Theorem 4, see [26] for details. Similar estimates of the hyperbolicity region for
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the original model by Batchelor and Wen [5, 7], which is not discussed in this
contribution, and for the HS model can be obtained by the same method for the
case ˇ3 < 0, which gives rise to a perturbation rank of m D 4 [27].

4.2 Spectral and Component-Wise Numerical Schemes

For grid points xj D j
x, tn D n
t , a conservative scheme for ˆni  ˆ.xj ; tn/ is
given by

ˆnC1
j D ˆnj �


t


x

� Of jC1=2 � Of j�1=2
�
; Of jC1=2 D Of

�
ˆnj�sC1; : : : ; ˆnjCs

�
; j 2 Z:

The resulting scheme should be (at least second-order) accurate and stable. The most
common design of numerical fluxes Of jC1=2 is to solve Riemann problems, either
exactly (as in the original Godunov scheme, which is very costly), or approximately
(e.g., as in the Roe scheme). For polydisperse sedimentation, exact Riemann solvers
are out of reach, since the eigenstructure of Jf is hard to compute.

In [26] Shu-Osher’s technique [80] is used along with the information provided
by the secular equation to get efficient schemes for the MLB and HS models. This
scheme is based on the method of lines, that is, on applying an ODE solver to spa-
tially semi-discretized equations. For the discretization of the flux derivative we use
local characteristic projections. Local characteristic information to compute Of jC1=2
is provided by the eigenstructure of Jf .ˆjC1=2/, whereˆjC1=2 D 1

2
.ˆj CˆjC1/,

given by the right and left eigenvectors that form the respective matrices

RjC1=2 D


rjC1=2;1 : : : rjC1=2;N

	
;

�
R�1
jC1=2

�T D 
l jC1=2;1 : : : l jC1=2;N
	
:



On Numerical Methods for Hyperbolic Conservation Laws and Related . . . 55

From a local flux-splitting f ˙;k (we omit its dependency on j C 1=2) given by
f �;k C f C;k D f , where ˙�k.Jf ˙;k .ˆ// � 0, ˆ  ˆiC1=2 and �k is the k-th
eigenvalue, k D 1; : : : ; N , we can define the k-th characteristic flux as

g
˙;k
j D lT

jC1=2;k � f ˙;k.ˆj /:

If RC and R� denote upwind-based reconstructions, then

OgjC1=2;k D RC�gC;k
j�sC1; : : : ; g

C;k
jCs�1I xjC1=2

�CR��g�;k
j�sC2; : : : ; g

�;k
jCsI xjC1=2

�
;

Of jC1=2 D RjC1=2 OgjC1=2 D
nX

kD1
OgjC1=2;krjC1=2;k:

If we do not want to use local characteristic information, we can use the pre-
vious formula with RjC1=2 D IN , where IN denotes the N � N identity
matrix, and a global flux splitting f � C f C D f , where ˙�k.Jf ˙.ˆ/

0/ � 0
for all k. With this choice, and denoting by ek the kth unit vector, we get
g

˙;k
j D eT

kf ˙.ˆj / D fk̇ .ˆj /, i.e., g˙;k
j are the components of the split fluxes,

and the numerical flux is computed component by component by reconstructing the
split fluxes component by component, i.e., Of jC1=2 D . OfjC1=2;1; : : : ; OfjC1=2;N /T,
where

OfjC1=2;k D RC�gC;k
j�sC1; : : : ; g

C;k
jCs�1I xjC1=2

�

CR��g�;k
j�sC2; : : : ; g

�;k
jCsI xjC1=2

�
; k D 1; : : : ; N:

This scheme will be referred to as COMP-GLF and it is a high-order extension of
the Lax-Friedrichs scheme.

We now explain the SPEC-INT scheme. If �k.Jf .ˆ// > 0 (respectively, < 0)
for all ˆ 2 Œˆj ;ˆjC1�, where Œˆj ;ˆjC1� � R

N denotes the segment joining both
states, then we upwind (since then there is no need for flux splitting):

f C;k D f ; f �;k D 0 if �k.Jf .ˆ// > 0, f C;k D 0; f �;k Df if �k.Jf .ˆ// < 0.

On the other hand, if �k.Jf .ˆ// changes sign on Œˆj ;ˆjC1�, then we use a
Local Lax-Friedrichs flux splitting given by f ˙;k.ˆ/ D f .ˆ/˙ ˛kˆ, where the
numerical viscosity parameter ˛k should satisfy

˛k � max
ˆ2Œˆj ;ˆjC1�

ˇ̌
�k
�
Jf .ˆ/

�ˇ̌
: (54)

The following usual choice of ˛k produces oscillations in the numerical solution
indicating that the amount of numerical viscosity is insufficient:

˛k D max
˚ˇ̌
�k
�
Jf .ˆj /

�ˇ̌
;
ˇ̌
�k
�
Jf .ˆjC1/

�ˇ̌�
:
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The right-hand side of (54) can usually cannot be evaluated exactly in closed form.
However, for the present class of models, Corollary 1 generates a fairly sharp bound
for that expression. In the case of the MLB model, we have �k < 0 and the
interlacing property leads to the efficiently computable bounds [26]

max
ˆ2Œˆj ;ˆjC1�

j�k.ˆ/j 	 ˛k WD max

�
max

ˆ2Œˆj ;ˆjC1�

ˇ̌
vk.ˆ/

ˇ̌
; max
ˆ2Œˆj ;ˆjC1�

ˇ̌
vkC1.ˆ/

ˇ̌�
;

k D 1; : : : ; N:
(55)

(This property also holds for other models, under appropriate circumstances [24,
27].) “SPEC-INT” denotes the scheme for which ˛1; : : : ; ˛N are defined by (55).

4.3 Numerical Examples

The zero-flux boundary conditions (14) are implemented by setting
Of �1=2 D Of M�1=2 D 0. We recall that a WENO5 scheme requires the consideration

of two additional ghost cells on each boundary of the computational domain. To
guarantee that all the interpolatory stencils remain inside the computational domain
we set large values for the concentrations in the ghost cells, which produce large
variations, so that the WENO procedure avoids the use of any stencil involving
the ghost cells. The time discretization employs the well-known optimal third-
order, three-stage Runge-Kutta method named SSPRK(3,3). SSP time discretization
methods are widely used for hyperbolic PDE because they preserve the nonlinear
stability properties which are necessary for problems with non-smooth solutions.
To satisfy the CFL condition, the value of 
t is computed adaptively for each step
�. More precisely, the solution ˆ�C1 at t�C1 D t� C 
t is calculated from ˆ� by
using the time step
t D CFL�
x=��max, where ��max is an estimate of the maximal
characteristic velocity for ˆ� .

From [26] we select the case N D 4 for the MLB and HS models (Examples 6
and 7, respectively). We consider d1 D 1, d2 D 0:8, d3 D 0:6 and d4 D 0:4,
�max D 0:6; and �0i D 0:05 for i D 1; : : : ; 4. We furthermore choose D1 D 4:96 �
10�4 m, a settling vessel of (unnormalized) depth L D 0:3m and �max D 0:68. We
employ (48) with nRZ D 4:7. The remaining parameters are g D 9:81m=s2, f D
0:02416 Pa s and �f D 1;208 kg=m3. Moreover, the spatial coordinate x 2 Œ0; 1�
refers to normalized depth. In this section, we take CFL D 0:5 throughout.

Figures 9a and 10a display the reference solution obtained with SPEC-INT and
Mref D 6;400 for t D 50 s and t D 300 s respectively, while plots (b–d) of both
figures are enlarged views of the corresponding numerical solutions obtained with
SPEC-INT and COMP-GLF with M D 400. Figure 11 shows the corresponding
results for Example 7. Both series of plots show that at M D 400 the quality of
approximation of piecewise constant portions of the solution and the resolution of
kinematic shocks by SPEC-INT is superior to that of COMP-GLF. For the times
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Fig. 9 Example 6: reference solution for �1; : : : ; �4 computed by SPEC-INT with Mref D 6;400

(a), and details of numerical solutions withM D 400 (b–d) at t D 50 s

considered the average convergence rate using SPEC-INT is close to one. On the
other hand, as time increases, the errors increase considerably. Of course, for a
given value ofM , COMP-GLF is faster than SPEC-INT. Nevertheless, if we seek a
fixed level of resolution in the numerical simulation, then SPEC-INT turns out to be
computationally more efficient, see [26].

As in the case of the MCLWR kinematic traffic models, the characteristic-based
schemes, which use the full spectral decomposition of Jf at each cell-interface, are
more robust and lead to numerical solutions which are essentially oscillation free.
This situation is similar to what is observed for the Euler equations for gas dynamics,
where the superiority of characteristic-based schemes is well known. For gas
dynamics, the spectral decomposition of the Jacobian matrix is given in closed form,
hence characteristic-based schemes pose no special difficulties. For polydisperse
models, the spectral decomposition can only be computed numerically. In addition,
the characteristic fields are neither genuinely nonlinear nor linearly degenerate,
hence the determination of the viscosity coefficients in flux-vector splitting schemes
becomes a non-trivial task. In any case we have shown that SPEC-INT gives a
good resolution on the numerical approximation with a relative small number of
mesh points, hence it is competitive with respect to the simpler component-wise
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Fig. 10 Example 6: reference solution for �1; : : : ; �4 and � computed by SPEC-INT withMref D
6;400 (a, b), and details of numerical solutions withM D 400 (c–f), at t D 300 s.

schemes. In recent work [30] it is shown that SPEC-INT is even more competitive
than cheaper component-wise schemes, such as COMP-GLF, in an Adaptive Mesh
Refinement (AMR) framework, since its non-oscillatory properties will help to
avoid unnecessary refinement in regions of constant concentration.

5 Multidimensional Models

5.1 Adaptive Multiresolution (MR) Techniques

Adaptive multiresolution (MR) techniques are naturally fitted for FV schemes
[13, 54, 69, 77]. They are based on representing the numerical solution on a fine
grid by values on a much coarser grid plus a series of differences at different
levels of nested dyadic grids. These differences are small in regions where the
solution is smooth. Therefore, by discarding small details (the so-called “thresh-
olding” operation), data compression can be achieved [13]. This automatic grid
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Fig. 11 Example 7: numerical solution for �1; : : : ; �4 with M D 400: at t D 250 s (a) and
enlarged views (b–d), where the reference solution is computed using SPEC-INT with Mref D
6;400

refinement allows for memory and CPU time reductions while the approximation
error remains controlled. The governing equations, in the present case (15) and
(16), are discretized with a classical FV discretization. This approach has been
implemented in [28] for (15) and (16) with A � 0 and � D 0 to simulate the
settling of a monodisperse suspension in a tilted narrow channel, which gives rise
to the so-called “Boycott effect” [14], namely an increase of settling rates compared
with a vertical channel. This effect is related to the formation of discontinuities in u
and a boundary layer beneath a downward-facing inclined wall, occurs in vessels
of simple geometry, and is therefore suitable for testing the capability of adaptive
methods to concentrate computational effort on zones of strong variation such as
discontinuities in u and boundary layers. In [28] the MR technique indeed produced
a significant gain in efficiency.

Figure 12 (Example 8) shows an example from [28] with L D 8 resolution levels
in total, corresponding to a finest grid of 256�256 cells on which (16) (with � D 0,
� D 1, k D .cos 	; sin 	/, � D 0:67 and .u/ D .1�u/�2 and pressure stabilization
[15]) is solved by a finite volume scheme, while (16) (with f .u/ D u.1 � u/2 and
A � 0) is solved on an adaptive grid by the first-order Godunov scheme.
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Fig. 12 Example 8: simulation of the settling of a suspension of constant initial concentration
u0 D 0:2 in a channel inclined by 	 D 45ı [28]. Top: concentration u, middle: leaves of the
adaptive tree, bottom: velocity v, at times t D 1:5 (left), t D 3:75 (middle), and t D 11:25 (right).
We have kv.1:5/k D 11:84, kv.3:75/k D 3:72 and kv.11:25/k D 2:7� 10�2
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5.2 Finite Volume Element (FVE) Methods

If A 6� 0 and A.�/ has the behaviour (10), then (15) becomes strongly degen-
erate parabolic. Usually the type-change interface u D uc is associated with
a discontinuity in the solution. An open problem of interest in applications is
the development of numerical methods for (15) and (16) under the assumption
of strong degeneracy. While FV methods are the best choice to discretize (15)
(due to its convection-dominated nature along with the strong gradients in the
solution), they are outperformed by finite element (FE) methods for what concerns
the discretizations of the momentum and continuity equations forming the Stokes
equations [31]. This observation motivated the FVE method (cf. [73] and the
references cited in that paper) as a “hybrid” methodology, which is intermediate
between FV and FE methods: the method is locally conservative (like a classical
FV method) while it allows for L2 estimates in a rather natural way (as in classical
FE methods). The basic idea is to reformulate the FE scheme as a FV scheme on a
dual mesh (see [4, 73] for details). The FVE methodology permits treating the full
system (15) and (16) by a unified approach.

This method is implemented in [29] for a 2D section of an axisymmetric vessel
(which requires cylindrical coordinates, cf., e.g., [9,52]), � D 0 (the Stokes system),
and pointwise degeneracy (a.u/ D 0 at u D 0 and u D umax only). The last
restriction was found necessary since the particular Galerkin discretization used in
[29] relies on formulas like 
A.u/ D r � .a.u/ru/ which are not valid in general
in the strongly degenerate case. However, numerical solutions behave reasonably in
both the pointwise and strongly degenerate cases.

As a numerical example, we consider the fill-up of a cylindrical set-
tling tank with a so-called skirt baffle and circumferential suction lifts
introduced in [61, 92]. The essential parameters are �s � �f D 1;562 kg=m3,
f .u/ D 2:2 � 10�3u.1� u=0:9/2 m=s, uin D 0:1, g D 9:81m=s2, vz;out D �vz;in,
vr;ofl D 9��

52
vz;in, vr;in D 0:019m=s and 
t D 5 s. The primal mesh T is composed

of 7,410 elements and 4,206 interior nodes. The boundary conditions for velocity at
the suction lifts are given by v D .0;�uz;out=4/, where vz;out D �vr;in. See Figs. 13
and 14 for numerical results.

6 Alternate Treatments and Some Open Problems

Concerning the analysis of TVD and FTVD schemes of Sect. 2, we mention that
in [20] an entropy inequality similar to (31) was used to prove that the first-order
version of our scheme converges to a unique entropy solution of the conservation
law. Although our numerical experiments indicate that the second-order schemes
STVD and FTVD also converge to the unique entropy solution, the entropy
inequality (31) is not quite in a form that allows us to repeat the uniqueness argument
in [20]. We leave this as an open problem.
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Fig. 13 Numerical simulation of the fill-up of a settling basin with skirt baffle (top) showing the
solids concentration u at t D 500 s (middle) and 1,000 s (bottom)

Let us mention some of the works that analyze problems related to the con-
servation law with discontinuous flux (11) analyzed in Sect. 3. Another spatially
one-dimensional, nonlocal sedimentation model was studied by Sjögreen et al.
[82], who consider a hyperbolic-elliptic model problem given by (1) coupled with
��.vs/xx C vs D u, where � > 0 is a viscosity parameter. Clearly, at any fixed
position x0, vs.x0; t/ will depend on u.�; t/ as a whole; the nonlocal dependence
is not limited to a neighborhood, as in [99] and herein. They prove that their
model has a smooth solution, and present numerical solutions obtained by a high-
order difference scheme. Furthermore, the (local) kinematic model of sedimentation
(2) is similar to the well-known Lighthill-Whitham-Richards (LWR) model of



On Numerical Methods for Hyperbolic Conservation Laws and Related . . . 63

Fig. 14 Continuation of Fig. 13 showing the solids concentration u at t D 2;000 s (top) and
7;500 s (bottom)

vehicular traffic. Sopasakis and Katsoulakis [83] extended the LWR model to a
nonlocal version by a “look-ahead” rule, i.e. drivers choose their velocity taking
account the density on a stretch of road ahead of them. Kurganov and Polizzi
[63] showed that an extension of the well-known Nesshayu-Tadmor (NT) central
nonoscillatory scheme [71] is suitable for the nonlocal model of [83], which can
be written as (11) for ˛ D 1 and V.w/ D exp.�w/, and if we replace Ka by
a particular non-symmetric kernel function with compact support. Related models
with a nonlocal convective flux that have been analyzed within an entropy solution
framework (as done herein and in [12]) include the continuum model for the flow of
pedestrians by Hughes [57], which gives rise to a multi-dimensional conservation
law with a nonlocal flux; see also [36, 39]. See [12] for further applications.

As another open research problem, a systematic travelling wave analysis of (11),
which would extend the results of [99], is still lacking. Such an analysis could
explain whether new phenomena, e.g. nonclassical shocks, should be expected when
one considers the formal limit a ! 0 of entropy solutions of (11), especially in the
case ˛ � 1. Unfortunately, most of the constants appearing in the compactness
estimates of [12] are not uniform, i.e. they blow up when a ! 0. It is therefore not
clear whether a sequence of entropy solutions converges to a meaningful limit as
a! 0. This problem should at first be explored numerically.
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Related to the multiresolution (MR) method for tackling the multi-dimensional
system (15) and (16) outlined in Sect. 5, we mention that in [28] MR was applied
to the solution of (15) (with A � 0) only, but the more involved Stokes system
was always solved on the finest grid. The MR approach of [28] should be extended
to a method that solves both (15) and (16) (first, for the Stokes system (� D 0),
and then for the Navier-Stokes case) on an adaptively refined grid. Further speed-
up of adaptive methods is achieved using local time stepping strategies [70]. The
central tasks are the implementation and numerical analysis of pressure stabilization
techniques and of projection schemes to take into account the incompressibility
of v (cf., e.g., [53, 78]). Further research will concern the polydisperse case, for
which (15) will be replaced by a system of conservation laws. Finally, concerning
the FVE method described in Sect. 5.2, besides incorporating the full Navier-Stokes
terms, one should modify the FVE scheme so that its formulation from the onset
also covers the strongly degenerate case. Thus, discretizations alternative to the
Discontinuous Galerkin (DG) formulation employed in [29] should be tested by
adequately choosing the numerical flux associated with (15), and we intend to
investigate whether the choice of a diamond mesh (one of the dual meshes) made in
[29] will in general capture the hyperbolic-parabolic transition.
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SBV Regularity Results for Solutions to 1D
Conservation Laws

Laura Caravenna

Abstract A well-posedness theory has been established for entropy solutions to
strictly hyperbolic systems of conservation laws, in one space variable, with small
total variation. We give in this note an introduction to SBV-regularity results: when
the characteristic fields are genuinely nonlinear, the derivative of an entropy solution
consists only of the absolutely continuous part and of the jump part, while a fractal
behavior (the Cantor part) is ruled out. We first review the scalar uniformly convex
case, related to the Hopf-Lax formula. We then turn to the case of systems: one
has a decay estimate for both positive and negative waves, obtained considering
the interaction-cancellation measures and balance measures for the jump part of the
waves. When the Cantor part of the time restriction of the entropy solution does not
vanish, either the Glimm functional has a downward jump, or there is a cancellation
of waves or this wave balance measure is positive, and this can occur at most at
countably many times. We then remove the assumption of genuine nonlinearity. The
Cantor part is in general present. There are however interesting nonlinear functions
of the entropy solution which still enjoy this regularity.
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1 Introduction

We give an informal introduction to an issue of regularity for entropy solutions to
strictly hyperbolic systems of conservation laws, mainly based on [1,5,9,11,16,21]
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Fig. 1 The Cantor-Vitali
function (or Devil’s Staircase)

In the first section we present the case of a prototype equation, Burgers’ equation

Dt u.t; x/C Dx
u2.t; x/

2
D 0; u W RC �R! R: (1)

As an effect of nonlinearity, entropy solutions corresponding to bounded initial
data satisfy the Oleinik decay estimate, and they have bounded variation at any
positive time. Although BV-functions have a fine structure, a fractal behavior of the
derivative as in the Cantor-Vitali function is still allowed (Fig. 1). It was proved by
Ambrosio-De Lellis that this indeed is not the case for this conservation law.

Theorem 1 ([1]). Let u be an L1.�/-entropy solution to (1), for an open � �
R

C � R. Except at most at countably many times Nt , the derivative Dx u.t D Nt ; x/
is the sum of an absolutely continuous measure and of a purely atomic measure,
corresponding to the jumps of u at time t D Nt .
We first sketch the construction given by Ambrosio-De Lellis. It relies, by the Hopf-
Lax formula, on a decomposition of the domain into jump points of u and into
backward characteristics through continuity points, which allows the analysis of the
push forward of the Lebesgue measure along characteristics. The Cantor part may
be created when a positive set of characteristics cannot be extended beyond that
time. We then conclude the first section motivating the same result with a different
argument, with the aim of introducing in a simpler setting the strategy employed for
systems. The presence of the Cantor part is quantitatively related to the formation
of jumps.

In Sect. 3 we review the generalization to strictly hyperbolic, genuinely nonlinear
systems

Dt uC Dx f .u/ D 0 f 2 C2.RN IRN /: (2)

We recall that the assumption of strict hyperbolicity means that Jf .z/ has real
eigenvalues �1.z/ < � � � < �n.z/, while genuine nonlinearity can be expressed as
r�i .z/ � ri .z/ � k > 0, where r1.z/; : : : ; rn.z/ are corresponding right eigenvectors.
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In the context of the well-posedness theory for entropy solutions with bounded
variation (see [16]), the same regularity holds as for the scalar uniformly convex
case.

Theorem 2 ([6]). Let u W � ! R
n be an entropy solution to (2) with sufficiently

small total variation. Except at most at countably many times Nt , the derivative
Dx u.t D Nt ; x/ is the sum of an absolutely continuous measure and of a purely
atomic measure, corresponding to the jumps of u at time t D Nt .
The first step is to reduce the problem from the vector measure Dx u to scalar
quantities, by a decomposition of Dx u along ri . The strategy we then adopt differs
from the scalar case: computations are not performed directly on the entropy
solution but on the wave front-tracking approximations. For these, we manage to
give bounds for the wave balance measure and for the jump wave balance measures,
first defined as distributions. As Oleinik’s estimate was first generalized for this
class of systems in [12], with these new measures it is possible to extend it to
a complementary decay estimate for negative waves [6]. The full decay estimate
yields the answer to the question that we reformulated for the scalar quantities.

Section 4 treats the optimality and extensions of this regularity. The genuine
nonlinearity assumption is crucial for ruling out the Cantor part of the derivative of
the entropy solution, even for one equation. There are however interesting nonlinear
functions, reducing to f 0.u/ for the scalar case Dt u C Dx f .u/ D 0, that always
enjoy this regularity. They are called i -th components of the space derivative of
�i [9]. In particular SBV-regularity holds also for fluxes whose second derivative
vanishes on a Lebesgue negligible set [9, 21]. An SBV regularity result has been
obtained in [16] out of the context of entropy solutions, still under the assumption
of genuine nonlinearity, but restricted to BV-solutions which are self-similar.

Although it may have been a natural and interesting addition to the article, we
have not included a review of the literature on the decay estimates of waves.

2 The Scalar Case for Burgers’ Equation

We firstly outline the idea behind two proofs of the SBV regularity result in the
scalar case: first the one originally given in [1], then the approach by front-tracking
that we followed for the case of systems.

2.1 Statement and Notation

The Cauchy problem for Burgers’ equation Dt u C Dx
u2

2
D 0 on the half-plane

.t; x/ 2 R
C � R, starting from a ‘generic’ smooth data u.t D 0; x/, develops

at most finitely many discontinuity curves, and it remains smooth elsewhere [22].
It may however happen that some particular smooth data develop infinitely many
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t = 0

t = 1

u(t= 1; x)

t=1

t=0

Fig. 2 The solution to Burges’ equation with a smooth data developing a singular part. In the left
figure one has the profile of the solution at a given time t D 1, and below some of the characteristics
arriving at that time. Before time t D 1 the solution is absolutely continuous, and may be assumed
smooth. On the right one has a sketch of the shock set that develops immediately after t D 1,
with a fractal behavior. This example is taken from Remark 3.3 of [1], emphasizing the presence
of the Cantor part at t D 1. Li Bang-He also gives examples where the origin points of jumps have
positive measure

discontinuities (Fig. 2) and, as well as for initial data which are bounded, the solution
is found in general in the space of functions of locally bounded variation [18, 20].
The space of functions of bounded variation (BV) also contains functions which
are continuous but whose derivative has a fractal behavior, like the Cantor-Vitali
function, which is monotone, almost everywhere differentiable with vanishing
derivative, but runs continuously from 0 to 1 (Fig. 1). The special functions of
bounded variation (SBV functions) better generalize the concept of piecewise
Sobolev functions and rule out this fractal behavior of the derivative.

The central regularity result of this note states that this fractal behavior of the
derivative is essentially not present for entropy solutions of strictly hyperbolic
systems of conservation laws whose fields are genuinely nonlinear [1, 6]. In
particular, in the scalar case this means for uniformly convex fluxes.

Definition 1. An integrable function v W R! R
N is a special function of bounded

variation if its distributional derivative is the sum of a finite, absolutely continuous
Borel measure and of a purely atomic finite measure.

Theorem 3 (Ambrosio–De Lellis). Consider an entropy solution u W RC�R! R

with bounded variation of the scalar conservation law Dt u C Dx
u2

2
D 0: Then

there exists an at most countable set of times N such that for Nt … N the restriction
u.t D Nt ; x/ is a special function of bounded variation.

2.1.1 The Statement for Two Variables

Instead of looking at the time sections u.t D Nt ; �/ of u, one can state the consequent
result for the function of two variables u.t; x/. We give now a rough (hopefully
intuitive) presentation and we refer to [2] and [15] for precise notations and proofs.
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We recall that u W RC�R! R has locally bounded variation if the distributional
derivatives @tu, @xu are (locally) finite Borel measures. This implies a particular
structure (see Sects. 3.8 and 3.9 in [2]). One of the features is that the set of
approximate discontinuity points can be covered by finitely or countably many
Lipschitz curves, plus a Lebesgue negligible subset of the plane, while elsewhere
the function u is approximatively continuous.

When u is an entropy solution of Burgers’ equation this structure improves
further. Due to the finite speed of propagation and to a fine analysis of u (see
Theorem 10.4 in [11] for a stronger result), the set of jump points can be written
as the union of countably many Lipschitz graphs f.t; �i .t//gi2I;t2Œai ;bi �, I � N,
except for at most countably many points. We mention however that in choosing
f.t; �i .t//gi2I;t2Œai ;bi � which only cover the jump set, and possibly also include
some points where u is continuous, we would not encounter a contradiction in
the constructions below: in writing the jump part of u below we would simply
have at those points the coefficients uC � u�, f .uC/ � f .u�/ which would
vanish.

Remark 1. This countable covering does not contradict the uncountability of
‘discontinuity lines’ underlined by Li Bang-He [19]; our notations differ. Focusing
on a non-increasing initial data, Li Bang-He counts the set of maximal Lipschitz
curves f.t; �.t// W .t� ;C1/ ! R

C � Rg which have image discontinuity points
of u, maximal in the sense that he rules out the restrictions to subintervals. These
curves are in bijective correspondence with the ‘origin points’ of discontinuities
f.t� ; �.t�//g.

In order to better visualize the difference, we focus on a ramified discontinuity
pattern like the one in Fig. 2, even though it is not accurate. The number of
discontinuities at a fixed time decreases in time. Counting them from the future,
there are 1, 2, 4 . . . , 2k . In particular, it is clear that 1C 2C � � � C 2k D 2kC1 � 1
curves, each living on different time intervals, cover the jump set from1 up to a
certain time greater than 1, and countably many curves cover the entire jump set.
Each maximal Lipschitz curve � defined by Li Bang-He can instead be associated
to a sequence :1011001 : : : , where the k-th digit is 0 if at the k-th bifurcation, from
the future, the curve � proceeds on the left side, and is equal to 1 if it proceeds on
the right. In particular, as he claims they are uncountable, as well as the origin points
of discontinuities at time t D 1.

If a continuity point .t; x/ of u is an origin point of a shock, then the backward
characteristic from .t; x/ lives precisely up to time t .

If u˙.t; x/ denote the approximate left and right limits at approximate jump
points, the distributional derivative D u is a locally finite vector Borel measure on
R

C � R of the form

D u D � Dt u
Dx u

� D Da uC Dj uC DC u;
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with the absolutely continuous part Da, the jump part Dj and the Cantor part DC

defined by:

Da u D ruL n, with ru denoting the approximate differential;

Dj u.B/ DPi2N
R ��Œf .uC/�f .u�/�

uC�u�

�
.t; �i .t// dt ;

DC u the remaining part, which in particular vanishes on sets which are finite
w.r.t. H 1.

Notice that the Cantor part DC is the only part not recoverable by a blow-up
procedure. One also calls D D DaCDC the diffuse part of the derivative.

Definition 2. The function of (locally) bounded variation u W RC � R ! R is a
special function of (locally) bounded variation if its distributional derivative has a
null Cantor part.

Corollary 1 (Ambrosio–De Lellis). Let � � R
C � R be an open set. Entropy

solutions u 2 L1.�/ of the scalar conservation law Dt uC Dx
u2

2
D 0 are special

functions of locally bounded variation on �.

The fact that here u is assumed to be bounded instead of requiring bounded
variation is mainly due to a local argument and to the well-known regularizing
effect of the uniformly convex fluxes, where bounded data to the Cauchy problem
instantaneously acquire locally bounded variation. The fact that Dx u does not have
a Cantor part derives from the slicing theory of BV functions and by the above
stated regularity result for slices at fixed time. By the PDE Dt u D �Dx

u2

2
together

with the Vol’pert chain rule this implies in turn that Dt u is also free of a Cantor
part, details can be found in [1]. There is no loss of generality in focusing below on
� D R

C �R, by the finite speed of propagation.

2.2 A Sketch of the Proof

In order to prove that the time sections of u.t; x/ are special functions of bounded
variation, the most important point is understanding what happens at those times Nt
when a Cantor part is present in the space derivative of the restriction u.Nt; x/. In this
section we first outline the original argument given by Ambrosio and De Lellis in
the case of a single equation, and then we introduce a different approach which will
be used for the case of systems.

2.2.1 The Original Argument

In the proof given by Ambrosio and De Lellis, the authors exploit a natural partition
of the domain into different lines depending upon the entropy solution u that now
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we describe. Being in the scalar, uniformly convex case, they can solve the Cauchy
problem for the conservation law

(
Dt u.t; x/C Dx

u2.t;x/
2
D 0 in R

C � R

u.0; x/ D u0.x/ with u0.x/ 2 L1.R/ \L1.R/

by the Hopf-Lax formula. As well known, positive waves decay according to the
Oleinik E-condition

u.t; x C y/� u.t; x/ 	 y

t
:

Notice that the Oleinik E-condition implies the absolute continuity of the positive
part of the measure D u.t; �/, therefore in the following the focus will be on the
negative part in order to show that, apart from the atoms resulting from the jumps, it
is absolutely continuous. At each time t the suitable representative of u is continuous
except at most countably many jump points, where one has left and right limits.
Excluding the jump points of u, one can define, here by the Hopf-Lax formula,
backward characteristic curves through each continuity point .t; x/: they are straight
lines with slope u.t; x/ which do not intersect each other and which go back to
the line ft D 0g. At jump points, characteristic lines which originated at time 0
from different points intersect each other. At jump points it is therefore no longer
possible to define a unique backward characteristic. Nevertheless, one can define
the minimal and maximal characteristics, which have slope respectively u.t; x�/,
u.t; xC/ and which delimitate a backward cone with vertex .t; x/ and basis on
ft D 0g. If one moves points forward in time following characteristics, and follows
the jump curve whenever they collapse, then the basis of each cone is mapped
into a discontinuity point. More formally, one can move points along generalized
characteristics, which here are the unique Filippov solution to the differential
inclusion Px 2 Œu.t; xC/; u.t; x�/� (Fig. 3).

The main ingredient of the proof by Ambrosio and De Lellis consists in
estimating the measure F.t/ of the set of initial points f.x; 0/ W x 2 Rg which
in the way described above are mapped at time t into a discontinuity point of u.t; �/.
This is the measure of the union of the bases of backward cones emanating from the
discontinuity points of u.t; �/, cones whose sides have slope u.x�; �/ and u.xC; �/.
Therefore F.t/ is precisely t times the variation of Dj

x u.t; �/. By the non-crossing
property of characteristics, moreover, one can see that F.t/ is nondecreasing, as
intersecting cones are included one into the other.

One can then conclude observing that the monotone function F.t/ has a jump
precisely at those times t where a Cantor part is present in u.t; �/, a situation which
can therefore occur at most countably many times. The estimate which could be
derived collecting the computations in [1] is the lower decay estimate

F.tC/� F.t�/ � �t � DC u.t; �/;
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t=0

t

Fig. 3 A simple generalized characteristic consists, in the picture, of a classical characteristic
until it merges into a shock curve, at which point it follows the shock curve. While at continuity
points there is a unique backward classical characteristic, at jump points one considers minimal
and maximal characteristics, drawing a backward cone

which is strictly positive when the Cantor part of u.t; �/ does not vanish. Notice
that F.tC/ � F.t�/ gives precisely the measure of the set of initial points of
characteristics which arrive at time t , but which cannot be prolonged beyond that
time because between time t and time t C " they would cross other characteristics,
for every " > 0 (Fig. 2).

In view of the generalization to the case systems, we adopt in [1] another
viewpoint for observing this phenomenon. Here we present it in a simplified setting
where it simply provides an alternative description, and we outline the extension to
the case of systems in the next section.

2.2.2 The Jump Wave Balance Measure for Burgers’ Equation

In the previous argument one estimates the formation of the Cantor part in Dx u.t; �/
associating it to the initial points of characteristics which live precisely up to time t :
times where the Cantor part is present correspond to disjoint non-negligible subsets
of R, the starting point of characteristics living precisely up to time t , therefore by
�-additivity there can be at most countably many such sets, and consequently at
most countably many such times. Here instead we try to give a more local argument
introducing a new measure, the wave balance measure. Here instead we try to give
a more local argument introducing a new measure, the wave balance measure.

Given an entropy solution u with bounded variation, one can consider the wave
measure � D Dx u. Denoting by @x , @t distributional derivatives, � D Dx u satisfies
the transport equation

0 D @t � C @x .Qu�/ D @x
�

Dt uC Dx
u2

2

�

where Qu.t; x/ is defined as u.t; x/ at continuity points of u.t; �/ and as u.t;xC/Cu.t;x�/

2

at jump points.
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One can distinguish the jump wave measure �jump D Dj
x u. Define, for the case of

Burgers’ equation, the jump wave balance measure as the source term in a transport
equation for the jump wave measure:

jump D @t �jump C @x
�Qu�jump

�
:

By the BV-structure mentioned in Sect. 2.1.1, one can easily compute that

�
Z
'.t; x/jump D

X
i2N

Z
Œ't .t; �i .t//C �.t; �i .t//'x.t; �i .t//�

� 
u.t; �i .t/C/ � u.t; �i .t/
�/
	

dt

D
X
i2N

Z
d

dt
'.t; �i .t// �



u.t; �i .t/

C/� u.t; �i .t/
�/
	

dt:

This gives a precise idea of what is meant by this measure. Notice however that
it is not a priori clear that the distribution defined above is actually a measure,
as presently we do not know the BV-regularity in time of the left/right values
on the jumps u.t; �i .t/C/ � u.t; �i .t/�/. Indeed, part of our proof is devoted to
estimating the bound for jump. In particular, notice that the measure vanishes for
nondecreasing initial data, as such data do not develop jumps. The measure is non-
positive for nonincreasing initial data, as there are no cancellations and the size of
jumps may only increase in time. In general, jump is a signed measure.

Example 1. It is clear that jump (here) measures the variation in time of the jump

part of Dj
x u. When a single jump is formed at a point .Nt ; Nx/ and later remains

constant, we have that jump D
�
uC � u�� ı.Nt ; Nx/, where uC 	 u� are the right and

left values of u at the jump (Fig. 3).

Example 2. The measure jump of a horizontal strip delimitated by times t1 < t2 is

jump.Œt1; t2� � R/ D Dj
x u.t2; �/� Dj

x u.t1; �/:

We introduced the measure above in order to obtain the following lower estimate
for the diffuse part of Dx u.t; �/. Denote by



jump

	�
the negative part ofjump. While

Oleinik’s estimate gives the upper bound

ŒDx u.t; �/� .B/ 	 L 1.B/

t
for all Borel sets B ,

one can obtain the following complementary lower estimate for D u.t; �/ D
Da u.t; �/C DC u.t; �/:


D u.t; �/	 .B/ � �L 1.B/

� � t �


jump

	�
.Œt; �� �R/ � > t > 0; B Borel set:

(3)
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The new measure gives the same quantitative lower bound as that given by the
strategy of Ambrosio-De Lellis. This alternative point of view will be useful for
the generalization.

We now give an heuristic idea for the above estimate. Consider a space interval
B D Œa; b� where at time t there is no jump of u. The first case which may happen
is that the characteristics starting from a, b reach time � . If so, since u.t; a/ and
u.t; b/ are the constant speeds of the characteristics starting from the points a and b
respectively, clearly one has

u.t; b/� u.t; a/ D 
D u.t; �/	 .Œa; b�/ � �b � a
� � t :

In particular, the estimate (3) holds with the first addend. If this does not occur,
consider the simplified situation where the characteristics cross each other before
� developing a jump at that moment (Fig. 3): at that point jump.Nt ; Nx/ D u.t; b/ �
u.t; a/ and the estimate (3) holds with the second addend. The general situation is
more complex, but the two cases give a good idea of what happens.

3 The Case of Genuinely Nonlinear Systems

In this section we outline how the argument introduced in the scalar uniformly
convex case works for a genuinely nonlinear strictly hyperbolic system

Dt uC Dx f .u/ D 0 f 2 C2.RN IRN /:

We try to describe qualitatively the new behaviors that one faces, and why the
argument of the scalar case is still applicable, skipping all the technical details
which can be found in [6] and [11]. We just recall that, if �1.z/ < � � � < �N .z/
are the eigenvalues of the Jacobian matrix of f .z/, then the assumption of genuine
nonlinearity is a uniform convexity assumption of the primitives of each �i.zi .t//,
where zi .t/ is an integral curve of the vector field given by the (right) eigenvectors
of the Jacobian matrix of f .

This is a different approach than that taken by Ancona-Nguyen, exploiting
Riemann invariants, used for genuinely nonlinear Temple systems of balance
laws [4].

3.1 Dimensional Reduction

If we had N uncoupled equations, each one would have his own characteristics and
we would study them independently, repeating for each the scalar argument. This is
clearly not the case, but since we are studying solutions with small total variation
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we can get information from the linearization of the system. If �1 < � � � < �N are
the eigenvalues of the Jacobian matrix of f , one can define i -characteristics by the
differential inclusion

Pxi .t/ 2 Œ�i .u.t; xC//; �i .u.t; x�//�:

As one decomposes a vector into its components, one can also decompose the vector
measure Dx u along a basis of (right) eigenvectors of the Jacobian matrix of f , into
N -scalar measures �i , each of which is called the i -th wave measure. In the case
of Burgers’ equation, these measures reduce to the previous definition, while for a
single equation with a different uniformly convex flux function f they reduce to
� D Dx f

0.u/, which by a normalization choice is not equal to Dx u (Example 5.2
in [6]).

This projection reduces the regularity problem for D u to a regularity problem
for these scalar measures: if one can show that each of them comprises only an
absolutely continuous part and a jump part, then the conditions of our thesis are
satisfied. One can now see the analogy with the scalar case, because we will exclude
the presence of the Cantor part by the decay estimates: for � > t > 	 > 0 and B a
Borel set

�C
�

L 1.B/

� � t C 
ICJ..t; �/ �R/

�
	 Œ N�i .t/�.B/ 	 C

�
L 1.B/

t � 	 CQ.	/�Q.t/
�
;

where N�i .t/ is the non-atomic (also called diffuse) part of �i .t/, the Glimm
functional Q is a nonincreasing functional and the interaction-cancellation-jump
measure ICJ is a positive, finite measure.

The upper bound, due to Bressan and Colombo [11,12,14], generalizes Oleinik’s
estimate, while we derived instead the lower bound [6]. Notice that this estimate
yields the thesis for �i : if there is a Lebesgue negligible set B where we have a
positive Cantor part, then the monotone functional Q has a jump. If we have a
negative Cantor part, then there is an atom of the time marginal of the interaction-
cancellation-jump measure. Each of the two situation can occur at most countably
many times.

We give below an idea of the derivation of the above decay estimates, sufficient
for the thesis.

3.2 A Proof by Approximation

For the case of systems, i -characteristics are no longer straight lines, even in the
absence of the complication of jumps. Clearly u is non-constant on them. While in
the scalar case the thesis is derived by a direct approach, here it is more difficult. On
one hand there are new behaviors arising from the presence of more characteristic
fields which interact. On the other hand, there is the technical difficulty that the
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restriction of u to i -characteristics is much more difficult to analyze, and a direct
approach would pass through this. The technical difficulty is presently overcome
by proving the estimate with a limiting procedure by front-tracking approximations.
As well known, these are piecewise constant approximations of the solution to the
Cauchy problem which are obtained by piecing together (approximate) solutions to
Riemann problems. We refer to the monograph [11] for more details.

An essential intermediate step toward the estimate is the global structure of
solution established by Bressan and LeFloch [13]. They give an algorithm for
distinguishing in the front-tracking approximations a jump part—roughly made by
jumps of size over a threshold—and the remaining continuous part, and they prove
a fine convergence for the two parts.

In particular, for each characteristic field i , we would like to study, as for the
scalar case, the wave balance measure and the jump wave balance measure

i WD @t �i C @x

� Q�i�i
�

i;jump D @t �i;jump C @x
�Qu�i;jump

�
;

where �i is the i -th wave measure introduced in Sect. 3.1 and �i;jump is its jump part.
However, it is much easier to define and study the same quantity in the front tracking
approximations because in each approximation the measures will consist of finitely
many atoms at interaction points. The proof that the above defined distributions
are actually measures, as we claimed, relies on uniform estimates given for the
corresponding measures in the front-tracking approximations. These estimates
rely on the known interaction-cancellation measures [11]. However, to control
the negative part of i;jump we need a nonlocal argument. Indeed, i;jump is not
absolutely continuous w.r.t. the interaction-cancellation measure. After providing
uniform estimates for the front tracking approximations, due to the above mentioned
theorem on the global structure of the solution, passing to non-sharp bounds for the
limit is just a technicality.

3.3 Estimates for Wave Balance Measures and Jump Wave
Balance Measures

In the following, we assume without mention that we are working with the wave
front-tracking approximations and not directly on the solution. Furthermore, we will
focus throughout on a single fixed characteristic field.

Suppose two fronts interact at one pointP , which is the unique interaction at that
time. The first estimate is natural: by the definition of the wave balance measure one
can see that

i.P / D �i .ftg � R/� lim
"#0
�i .ft � "g � R/:
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By the classical interaction estimates (see for example Lemma 7.2 in [11]), this
quantity is controlled by the measure of interaction I , in this case equal to a delta
measure in P with size the product of the strengths of the incoming waves.

Similarly, one can estimate

i;jump.P / D �i;jump.ftg � R/� lim
"#0
�i;jump.ft � "g � R/:

Estimating this quantity is considerably more challenging. If two i -jumps merge,
then one can still apply the classical interaction estimate at the point of interaction,
obtaining that i;j ump.P / is controlled by the interaction-cancellation measure.
If instead, for example, a shock gets cancelled, then the estimate is no longer
at a single point but one should look backward at the value of the interaction-
cancellation measure along the shock front � , before it was cancelled. The result
is that i;jump is no longer absolutely continuous w.r.t. the interaction-cancellation
measure, otherwise it would not be capable of capturing the formation of the Cantor
part. It is indeed a new measure, and only the value of its total variation on the half-
plane, ji;jumpj.RC �R/, not i;jump itself, can be controlled by the total interaction
cancellation of RC � R (see Lemma 5.4 in [6]).

Very roughly, the interaction cancellation measures were meant to give balances
for the total amount of i -th waves entering/exiting a region of the plane and,
separately, also for their positive and negative parts. The jump wave balance
measure permits instead balances regarding only the jump part of the waves,
and consequently balances also for only the continuous part. In particular, if one
considers a trapezoidal region T with basis J.tt0/, J.t/ at times t0 < t and
sides minimal i -th characteristics without interaction points, the front-tracking
approximations satisfy a balance of the kind

�i .t/.J.t// � �i .t0/.Jt0/ 	 i;jump.T /:

3.4 The Decay Estimate

As mentioned, there is a wide literature on the decay of positive waves, with
different important contributions, not reported. We try to justify here the decay
estimate for the negative part of the wave measures i relative to an interval
B D Œa; b�, as made for the scalar case. It follows the guideline of the proof which
has been given for the positive part, but it clearly needs the new estimates mentioned
above involving the wave jump balance measure.

We want to prove that the diffuse part N�i of �i satisfies

Œ N�i .t/�.Œa; b�/ � �C
�
b � a
t
C ICJ .f.x; s/ W a.s/ 	 x 	 b.s/; t 	 s 	 �g/

�

(4)
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where a.t/, b.t/ are i -characteristics starting from a, b at time t and the interaction-
cancellation-jump measure is the sum of the variations of the measures above i ,
i:jump for i D 1; : : : ; N .

We focus our attention only on the i -th fronts, because the further interference of
the others that we hide can be controlled. Suppose moreover that they are negative,
since we are considering the lower estimate. The genuine nonlinearity implies

d

ds
.b.s/ � a.s// 	 �i .s/;

corresponding to approaching i -characteristics. Two cases can occur.
In the first case two characteristics may keep on approaching at a uniform positive
rate, namely

d

ds
.b.s/ � a.s// 	 Œ N�i .t/�.Œa; b�/

4
8s 2 Œt; � �:

In this case integrating in s one has immediately (4) with the first addend.
If this is not the case, then at some time Ns we will have the reverse inequality

Œ N�i .t/�.Œa; b�/
4

<
d

ds
.b.Ns/� a.Ns// 	 Œ N�i .s/�.Œa.s/; b.s/�/;

where the last inequality follows by genuine nonlinearity. By the balances for
the jump part mentioned above, however, the waves exiting the region at time s
are controlled by the ones entering the region at time t and by those interaction-
cancellation-jump measure of the region:

ŒN�i .s/�.Œa.s/; b.s/�/ 	 ŒN�i .t/�.Œa; b�/C CICJ .f.x; r/ W a.r/ 	 x 	 b.r/; t 	 r 	g/ :

The last two inequalities give the estimate (4) with the second addend.

4 Optimality, Extensions Without Nonlinearity
and Counterexamples

It is worth mentioning that the issue of SBV-regularity presented for Burgers’ equa-
tion reads also as a regularity result for the associated Hamilton-Jacobi equation. In
that direction, the result has been extended first in the work of Bianchini-De Lellis-
Robyr to the case of multidi-D uniformly convex Hamiltonians depending only
on the gradient of the viscosity solution [10], then by Bianchini-Tonon in the case
firstly of a uniformly convex Hamiltonian also dependent on .t; x/ [7], and secondly
relaxing the assumption of uniform convexity [8].

We mention here instead the extensions still related to 1D-conservation laws.
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4.1 A Counterexample Concerning Convex Fluxes

We illustrated above the regularity result for Burgers’ equation as a prototype of the
scalar conservation law with uniformly convex flux. It is sharp in the sense that it is
possible to have a Cantor part at countably many times (variation of Fig. 2), but not
more than countably many. We first want to mention that even in the scalar case the
hypothesis of uniform convexity cannot be relaxed to strict convexity, the regularity
present is really an effect of the nonlinearity, as is Olenik’s estimate.

Example 3. Consider a flux f 2 C2.R/ with f 00 � 0 vanishing on a set which has
positive Lebesgue measure. A particular flux is constructed as follows. Let w.x/ D
v.x/ C x, where v W Œ0; 1� ! Œ0; 1� is the (non-decreasing) Cantor-Vitali function
(Fig. 1). The function w is continuous, strictly increasing from 0 (at 0) to 2 (at 1). Let
f 0 D w�1 be its inverse, which is then a monotone Lipschitz function. The primitive
function f .z/ is therefore continuously differentiable (W 2;1

loc .R/)—it could also be
assumed to be twice continuously differentiable by minor modifications of v—and it
has a strictly convex epigraph. However, if one considers the Riemann problem with
left value 0 and right value 2, the self-similar solution is fixed by u.t; x/ D w.x=t/
(see e.g. Theorem 4 in [17]). It therefore has a Cantorian part at all positive times.

It is important to observe in this example that the nonlinear function of u defined
by f 0.u.t; x// D x=t belongs to SBVloc.R/, and that this quantity is particularly
interesting because it is the slope of the characteristics. Indeed, f 00 vanishes on
the image, by u.t; �/, of the Cantor set where the Cantor part of Dx u.t; x/ is
concentrated, and this yields a null Cantor part for the composition:

DC f 0.u.t; �// D f 00.u.t; �//DC u.t; �/ D 0:

4.2 Extensions Without Convexity

The first extension of the SBV-regularity result, by Robyr, was for a single balance
law, where the second derivative of the function may vanish on at most countably
many points and the source term, depending on space, time and on the solution,
must be continuously differentiable. The lack of convexity is overcome by using
an appropriate covering of the domain and working locally in order to reduce the
problem to the convex or concave case. The presence of a source term, which
is treated basically for the convex flux case, implies that characteristics are no
longer straight lines, but in general Lipschitz curves. However, the author is able
to overcome this difficulty by using the non-crossing property between genuine
characteristics, which reduces the problem to that where the source term is absent.

A generalization for the single conservation law has now been given by
Bianchini-Yu [9]. They show that the SBV-regularity result holds for f 0.u.t; x//.
In particular, if f 00.z/ vanishes on a Lebesgue-negligible set, the SBV-regularity
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also holds for u.t; x/. The result for f 0.u.t; x// is clearly of independent interest
because it is a physically relevant quantity.

The proof still relies on a local argument where one applies the result in the
convex or concave case, by a more careful partition of the space-time domain.
Roughly, in the domain of influence of small intervals where one has a uniform
bound on the second derivative of the flux, the SBV-regularity is known for u,
and therefore, by the Vol’per chain rule, also for f 0.u/. The thesis then amounts
to showing that there is a countable covering by such domains of influence, and in
the residual part of the domain, excluding at most countably many time (coordinate)
lines, is made by points where either f 00 vanishes, or one has jumps.

An extension holds for strictly hyperbolic systems [9]. When allowing linear
degeneracy the SBV-regularity does not in general hold for u. It does not hold even
for the eigenvalue maps t 7! �i .u.t; x//, i D 1; : : : ; N , as one might suspect at first
glance. The objects which gain regularity are what are called i -th components of the
space derivative of these eigenvalues: the i -th component of the space derivative is
defined as the derivative of �i in the direction of the i -th vector which is obtained
in the decomposition of Dx u along a basis of (right) eigenvectors of the Jacobian
matrix of f , suitably specified at jump points. If Dx u D .�cont

i C � jump
i /Qri , then the

i -th component is

.r�i � Qri / �cont
i C ��i .uC/� �i .u�/

� j� jump
i jP

k j� jump
k j :

When suitably specified at jump points, one can insert this decomposition into
Dx.�i ı u/ D r�i � .Da

x uC DC
x u/C, and the i -th component in this decomposition

is what gains SBV regularity [9]. Technically, as the proof for the genuinely
nonlinear case relies on the classical version of the front-tracking algorithm [11],
this extension relies on the extension of the front-tracking algorithm given by
Ancona-Marson [3], which is much more complicated but with similar interaction
estimates. Although it does not differ substantially from the genuinely nonlinear
case, the proof shows that the quantities above are really the ones which come into
play.

We conclude by drawing attention to an earlier interesting extension by Dafer-
mos [16], who establishes the SBV-regularity for self-similar solutions of genuinely
nonlinear strictly hyperbolic systems of conservation laws. This is achieved regard-
less of the entropy condition, but the analysis is different, reducing, by the self-
similarity assumption u.t; x/ D v

�
x
t

�
, the problem to ODEs along the straight rays

exiting the origin. As mentioned in Sect. 4.1, the genuine nonlinearity assumption
cannot be substantially weakened, even in the self-similar case.
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A Generalized Buckley-Leverett System

Nikolai Chemetov and Wladimir Neves

Abstract We show the existence of a solution to a new mathematical model of the
Buckley-Leverett system, describing two-phase flows in porous media. To prove
the solvability result, we consider an approximate parabolic-elliptic system, the
approximate solutions of which do not have any type of standard BV estimates.
Therefore, we justify the limit transition using a kinetic method. More precisely,
we use the transport property of the derived linear (kinetic) transport equation, and
the strong trace results proved for the kinetic function.

2010 Mathematics Subject Classification 35D30, 35L65, 35L60

1 Introduction

The simultaneous motion of two immiscible incompressible liquids (e.g. water
and oil) in a porous medium can be described by the famous Buckley-Leverett
system

@tuC div
�
v g.u/

� D 0; div.v/ D 0; (1)

h.u/v D �rp; (2)
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where u; p and v are the saturation, the pressure and the total velocity of the
two-phase flow respectively. The saturation dependent functions h.u/ and g.u/
describe physical properties of the porous media. Equation (2) is Darcy’s Law,
being an empirical equation. The study of system (1)–(2) has practical interest
in connection with the planning and operation of oil wells, but also brings some
challenging mathematical questions.

The solvability of this system has only recently been established. In order to
pass this difficulty, the Buckley-Leverett system has been significantly simplified
in many works, for instance see Cordoba, Gancedo and Orive [8] and Perepelitsa
and Shelukhin [13]. Many authors have proposed interesting ideas, but most of
them have focused on the saturation equation (1), reducing the Buckley-Leverett
system to an elliptic-parabolic partial differential system. Some of the important
works on this subject include Antontsev, Kazikhov and Monakhov [1], Chen [5]
and Lenzinger and Schweizer [11] and further references cited therein.

In the present work we instead focus our attention on the equation of velocity.
So we propose a generalized Darcy’s law equation, which is physically no longer
than the standard equation. One observes that, for very short time scales or high
frequency oscillations, a time derivative of flux may be added to Darcy’s law, which
results in valid solutions at very small times

� @tvC h.u/v D �rp; (3)

where � > 0 is a very small time constant. Another extension to the traditional form
of Darcy’s law is Brinkman’s term, which is used to account for transitional flow
between boundaries

� � 
vC h.u/v D �rp; (4)

where � > 0 is an effective viscosity. This correction term accounts for flow through
a medium where the grains of the media are porous themselves. In the porous media
literature [15] the combination of (3) and (4) is known as Brinkman-Forchheimer’s
law

� @tv � � 
vC h.u/v D �rp: (5)

It is important to observe that generalized Darcy’s laws such as (3)–(5) have also
been deduced via homogenization theory [10].

2 A Generalized Buckley-Leverett Model

Let � � R
d (with d D 1; 2 or 3) be a bounded domain having a C2-smooth

boundary �: In this section we will study the generalized Buckley-Leverett
model (1), (5) for given �; � > 0 W
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@tuC div
�
v g.u/

� D 0 div.v/ D 0; (6)

� @tv � �
vC h.u/v D �rp; in �T WD � � .0; T /; (7)

satisfying the boundary-initial conditions

.u; v/ D .ub;b/ on �T WD ��.0; T / and .u; v/jtD0 D .u0; v0/ in �: (8)

Before the formulation of the main result let us introduce the following spaces

Vs.�/ W D fu 2 Hs.�/ W div .u/ D 0 in D
0

.�/;

Z

�

u � n dx D 0g;

Vs.�/ W D fu 2 Hs.�/ W
Z

�

u � n dx D 0g; V�s.�/ WD .Vs.�//
0
;

G.�T / W D
˚
u 2 L2.0; T IV1=2.�// W @tu 2 L2.0; T IV�1=2.�/

�
;

where n D n.x/ is the outside normal to� at x 2� . We assume that our data satisfy
the following regularity properties

g; h 2 W 1;1
loc .R/ with 0 < h0 	 h.u/;

0 6 ub 6 1 on �T ; 0 6 u0 6 1 on �; (9)

v0 2 V0.�/; b 2 G.�T / and

b.0/ � n D v0 � n in H�1=2.�/: (10)

Now, since the former equation in (6) is a hyperbolic scalar conservation law,
the saturation function u may admit shocks. Therefore, in order to select a correct
physical solution, we need the entropy concept of solution, as given in the following.

Definition 1. A pair of functions u 2 L1.�T /; v 2L2.0; T IV1.�// is called a
weak solution of system (6)–(8) if this pair satisfies:

(1) The integral inequality
“

�T

�ju � vj �t C sgn.u � v/
�
g.u/� g.v/� v � r�� dx dt

C K
Z

�T

jb � nj jub � vj� dx dtC
Z

�

ju0 � vj�.0; x/ dx > 0 (11)

for all x 2 R and for any positive � 2 C1
0 ..�1; T / � R

d /: Here
K:=jjg0jjL1.R/:

(2) Equation (7) in the usual distributional sense where vj�T D b:

Theorem 1. If the data g; h; ub; u0; v0; b have the regularity properties (9)–(10),
then system (6)–(8) has a weak solution such that v 2 H1.0; T IV�1.�//;
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0 6 u 6 1 a .e. in �T

kp�vkC.Œ0;T �IV0.�// CkvkL2.0;T IV1.�// C �kvkH1.0;T IV�1.�// 6 C; (12)

where C is a positive constant independent of �:

The generalized Buckley-Leverett model (6)–(8) poses specific difficulties
compared to the usual theory of quasilinear scalar conservation laws:

(1) It is not possible to obtain standard a priori compactness for approximate
solutions (no BV -bounds or L1-Kruzkov continuous compactness).

(2) Since we are dealing with the initial-boundary problem in the class of
L1-bounded solutions, such solutions do not have trace values in the sense
of Sobolev functions.

We stress that, to overcome these two difficulties, we use the kinetic theory [14]
and the concept of trace values for non-regular functions developed for divergence
type equations [6], see also [12].

2.1 An Approximate System

In order to show the solvability of system (6)–(8), we first study the following
approximate parabolic system. For a fixed " > 0, we consider

@tu
" C div

�
v" g.u"/

� D " 
u" in �T ; (13)

� @tv" � �
v" C h.u"/v" D �rp"; div .v"/ D 0 in �T (14)

jointly with the boundary-initial conditions

"
@u"

@n
CM.u" � u"b/ D 0 and v" D b on �T

.u"; v"/jtD0 D .u"0; v0/ in �; (15)

where u"b; u"0 are regularized boundary-initial data satisfying suitable compatibility
conditions. Using the results of parabolic-elliptic theory, we obtain the solvability
of system (13)–(15).

Proposition 1. For each " > 0, there exists a unique solution .u"; v"/ of system
(13)–(15), which has the following regularity properties: u" 2 L1.0; T IH1.�// \
L2.0; T IH2.�// and v" 2 L2.0; T IV1.�// \ H1.0; T IV�1.�// satisfying

"kru"k2
L2.�T /

6 C and 0 6 u" 6 1 a.e. on �T ; and (16)

kp�v"kC.Œ0;T �IV0.�// C kv"kL2.0;T IV1.�// C k�v"kH1.0;T IV�1.�// 6 C; (17)

where C is a positive constant independent of " (and �/:
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2.2 Sketch of the Proof (of Theorem 1)

Let .�.u/; q.u// be an entropy pair for equation (6), i.e. � D �.u/ is a Lipschitz
continuous convex function and q0.u/ D �0.u/g0.u/ for u 2 R: Then from (13),
we have in the distributional sense

@t�.u
"/C div.v"q.u"//� " 
�.u"/ D �" �00.u/ jr�.u/j2 6 0: (18)

For instance, we can take the entropy pair defined by

�.u/ WD ju� vjC; q.u/ WD sgnC .u � v/ .g.u/� g.v// for each v 2 R:

Then, we have in the distributional sense

@t ju"�vjCCdiv


v" sgnC .u" � v/ .g.u"/ � g.v//	�" 
ju"�vjC D �m": (19)

Here jvjC WD max fv; 0g ; sgnC .v/ is equal to1 if v > 0 and 0 if v 	 0, andm" is a
real nonnegative Radon measure. Differentiation of (19) with respect to the variable
v gives that the function f ".t; x; v/ WD sgnC .u".t; x/� v/ satisfies

@tf
" C g0.v/ v" � rf " � " 
f " D @vm

" in D 0.�T � R/: (20)

Let us point out that 0 6 f ".t; x; v/ 6 1 in �T � R: It is possible to show that
m" is uniformly bounded with respect to ": Hence, due to Proposition 1, there exist
subsequences of f ", v", m" and the functions

f 2 L1.�T �R/; v 2 L2.0; T IV1.�// (21)

and a real nonnegative Radon measure m D m.t; x; v/, such that

f " ! f �-weakly in L1.�T � R/;

v" ! v; "ru"! 0 strongly in L2.�T /;

m" ! m weakly in M C
loc.�T �R/:

Since (20) is linear, it follows that

@tf C g0.v/ v � rf D @vm in D 0.�T �R/: (22)

The L1.�T � R/-boundedness of f does not guarantee the existence of trace
values, e.g. f at t D 0 and on � , which raises one of the major difficulties for the
studied problem. Nevertheless, the divergence form of equation (22)

divt;x;v.F/ D 0 with F D .f; g0.v/vf;�m/
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permits the introduction of a concept of trace values for f (for a theoretical
discussion of this see the article [6]). Hence, taking into account the initial-boundary
conditions for f "; we can show that the trace values of f exist, which is to say

f D sgnC .u0 � v/ for t D 0;
f D sgnC .ub � v/ on �T � R; where g0.v/b � n < 0: (23)

Since v 2 L2.0; T IV1.�//, we can apply DiPerna-Lions’s theory for transport
equations [9], and deduce that the solution f of (22)–(23) takes values equal only
to 0 and 1 in �T � R. Since f .�; �; v/ is a monotone function on v; as a limit of
monotone functions f ".�; �; v/; there exists a function z D z.t; x/ such that:

f D sgnC .z.t; x/� v/ :

Therefore we derive the *-weak convergence in L1.�T /

G .u"/ D
1Z

0

G0.v/f ".�; �;v/ dv *

1Z

0

G0.v/f .�; �;v/ dv D G.z/

for any G 2 C1.Œ0; 1�/; G.0/ D 0: This implies z D u and

u" ! u strongly in Lp.�T / for all p <1:

Hence the function v satisfies equality (7). Moreover, if we take Kruz̆kov’s entropy
pair

�.u/ WD ju � vj; q.u/ WD sgn .u � v/ .g.u/� g.v// for all v 2 R (24)

in inequality (18) and pass to the limit as " ! 0; we deduce that u satisfies (11),
which concludes the proof of Theorem 1.

3 A Quasi-stationary Buckley-Leverett Model

In this section we formulate a solvability result for the quasi-stationary Buckley-
Leverett model (1), (5) with � D 0 and a given viscous parameter � > 0 W

@tuC div
�
v g.u/

� D 0 div .v/ D 0;
��
vC h.u/v D �rp; in �T (25)

satisfying the boundary-initial conditions

.u; v/ D .ub;b/ on �T and u D u0 in �: (26)
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Theorem 2. Let the data g; h; ub; u0; b satisfy the regularity properties (9) and
b 2 G.�T /: Then system (25)–(26) has a weak solution .u; v/; which is understood
in the sense of Definition (1) for � D 0; such that

0 6 u 6 1 a .e. in �T ;

v; @tv 2 L2.0; T IV1.�//:

To prove the above theorem, we can use Theorem 1. By the last mentioned
theorem, system (6)–(8) admits a solution .u� ; v� / satisfying (12) for a fixed � > 0.
Now the issue is to pass to the limit as � ! 0: Of course, the estimates (12) are
not sufficient for the limit transition as � ! 0 in system (6)–(8), since we need the
strong convergence of a subsequence for fu�g�>0. To get this strong convergence,
we can apply the kinetic approach developed in Sect. 2.2, proving Theorem 2.

For complete details of the present exposition, we refer to our article [4],
see also [2, 3]. Moreover, we wish to thank the anonymous referee, who brought
our attention to the recent article related to the Buckley-Leverett System: Coclite,
Karlsen, Mishra and Risebro [7].

References

1. S.N. Antontsev, A.V. Kazikhov, V.N. Monakhov, Boundary-Value Problems in Mechanics
of Non-homogeneous Fluids. Studies in Mathematics and its Applications, vol. 22
(North-Holland, Amsterdam, 1990)

2. N.V. Chemetov, Nonlinear Hyperbolic-Elliptic systems in the bounded domain. Commun. Pure
Appl. Anal. 10(4), 1079–1096 (2011)

3. N.V. Chemetov, L. Arruda, Lp -Solvability of a full superconductive model. Nonlinear Anal.
Real World Appl. 12(4), 2118–2129 (2011)

4. N.V. Chemetov, W. Neves, The generalized Buckley-Leverett system. Solvability. To be
published in: Arch. Ration. Mech. Anal. 208, 1–24 (2013). http://arxiv.org/abs/1011.5461

5. Z. Chen, Degenerate two-phase incompressible flow: I. existence, uniqueness and regularity of
a weak solution. J. Differ. Equ. 171(2), 203–232 (2001)

6. G.-Q. Chen, H. Frid, Divergence measure fields and hyperbolic conservation laws. Arch.
Ration. Mech. Anal. 147, 89–118 (1999)

7. G.M. Coclite, K.H. Karlsen, S. Mishra, N.H. Risebro, A hyperbolic-elliptic model of two-
phase flow in porous media—existence of entropy solutions. Int. J. Numer. Anal. Model. 9(3),
562-583 (2012)

8. D. Cordoba, F. Gancedo, R. Orive, Analytical behavior of two-dimensional incompressible
flow in porous media. J. Math. Phys. 48(6), 1–19 (2007)

9. R.J. DiPerna, P.L. Lions, Ordinary differential equations, transport theory and Sobolev spaces.
Invent. Math. 98, 511–547 (1989)

10. U. Hornung, Homogenization and Porous Media. Interdisciplinary Applied Mathematics, vol. 6
(Springer, New York, 1996)

11. M. Lenzinger, B. Schweizer, Two-phase flow equations with outflow boundary conditions in
the hydrophobic hydrophilic case. Nonlinear Anal. Theory Methods Appl. 73(4), 840–853
(2010)

http://arxiv.org/abs/1011.5461


94 N. Chemetov and W. Neves

12. W. Neves, Scalar multidimensional conservation laws IBVP in noncylindrical Lipschitz
domains. J. Differ. Equ. 192, 360–395 (2003)

13. I. Perepetlitsa, V. Shelukhin, On Global solutions of a boundary-value problem for the
one-dimensional Buckley-Leverett equations. Appl. Anal. 73(3–4), 325–343 (1999)

14. B. Perthame, Kinetic Formulation of Conservation Laws (Oxford University Press, New York,
2002)

15. B. Straughan, Stability and Wave Motion in Porous Media. Applied Mathematical Sciences,
vol. 165 (Springer, New York, 2008)



Entropy, Elasticity, and the Isometric
Embedding Problem: M3 ! R

6

Gui-Qiang G. Chen, Marshall Slemrod, and Dehua Wang

Abstract The balance laws for isometric embedding of a 3-dimensional
Riemannian manifold into the 6-dimensional Euclidean space are exposited. It
is shown that a necessary and sufficient condition for solving the equations of these
balance laws is a system reminiscent of the equations of elastostatics. In turn, this
elastostatic system possesses an elementary entropy equation in the sense of Lax.
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1 Introduction

The purpose of this paper is to continue our investigation initiated in
Chen-Slemrod-Wang [6] on the formulation of the balance laws describing the
classical problem of isometric embedding of Riemann manifolds into the Euclidean
spaces within the usual framework of continuum mechanics. In [6], we considered
the problem of embedding a 2-dimensional Riemannian manifold M

2 into the
3-dimensional Euclidean space R

3 and showed that a natural analogy can be given
by the equations of 2-dimensional, irrotational, inviscid gas dynamics, with an
appropriate Bernoulli equation. These equations in turn imply additional balance
laws or “entropy” equations. Here we continue this program now for embedding
M
3 ! R

6 (cf. [1, 5, 7, 13–15]). In this case, we show that a natural continuum
mechanical analogy is given by the equations of elastostatics with a special
prescribed stress-energy functional. Once again, an “entropy” equality for smooth
solutions is derived.

The rest of the paper is organized as follows. Section 2 provides a self-contained
discussion of the isometric embedding problem and the Gauss-Codazzi-Ricci
equations, while Sect. 3 provides the continuum mechanical analogy. Section 4
illustrates the issues for the linearized equations (linearized about a given smooth
embedding). In Sect. 5, we show how a basic “entropy” equality will yield L2

estimates for the perturbed dependent variables which are crucial for the existence
theory (cf. [8, 9, 11, 12]).

2 The Gauss-Codazzi-Ricci Equations

In this section, we present a self-contained discussion of the isometric embedding
problem and the Gauss-Codazzi-Ricci equations. We start with some basic lemmas.

2.1 Lemmas

The standard existence and uniqueness theorem of ordinary differential equations
implies

Lemma 1. Let X D X 0 � I � R
n, where X 0 � R

n�1 is an open domain and
I is a connected open interval. Given smooth functions f W X � R

m ! R
m and

A0 W X 0 ! R
m, and t 2 I , there exists a unique solution A W X ! R

m to

@nA D f .x0; xn; A/; AjxnDt D A0.x0/ for x0 2 X 0;

where @n WD @xn .
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The following is a nonlinear Poincaré lemma, which has the same proof as
the standard Poincaré lemma, except that the existence and uniqueness theorem
of ordinary differential equations is used instead of the fundamental theorem of
calculus.

Lemma 2. LetX � R
n be an open contractible domain and let fi W X�Rm ! R

m

satisfy

@f a
i

@xj
C @f a

i

@Ab
f b
j D

@f a
j

@xi
C @f a

j

@Ab
f b
i for each .x; A/ 2 X � R

m;

here and hereafter we always use the Einstein summation convection unless
specified. Then, given x0 2 X and A0 2 R

m, there exists a unique solution
A W X ! R

m to

@iA D fi .x; A/; A.x0/ D A0;

where @i WD @xi and x WD .x1; � � � ; xn/.

2.2 Riemannian Structure in Local Coordinates

Let .X; g/ be an n-dimensional connected Riemannian manifold. The Riemannian
metric g uniquely determines a torsion free and metric-compatible connection,
called the Levi-Civita or Riemannian connection r. In a local coordinate patch
.x1; : : : ; xn/, its connection symbols � k

ij , the Christoffel symbols, are calculated as

� k
ij D

1

2
gkl
�
@iglj C @j gil � @lgij

�
;

where gij D g.@i ; @j / and .gpq/ is the inverse matrix of .gij/, and the Riemann
curvature tensor of the connection is calculated as

Rlijk D @j � l
ki � @k� l

ji C � l
jp�

p
ki � � l

kp�
p

ji :

As usual, we have

� k
ij D � k

ji ;

@kgij D gip�
p

kj C gjp�
p

ik ;

ri @j D � l
ij @l ;

Rl ijk@l D �rjrk@i Crkrj @i ;
where the Levi-Civita connection is denoted by r D .r1; � � � ;rn/ with ri D r@i .
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2.3 Isometric Immersion

We use � to denote the canonical metric in a coordinate patch .y1; � � � ; ym/ in R
m.

An R
m-valued function y W .X; g/ ! .Rm; �/ is called an isometric immersion of

X into R
m if the induced metric is the same as the original, that is, written locally

using the coordinates .x1; � � � ; xn/,

@iy � @j y D gij for each 1 	 i; j 	 n: (1)

Consider y.X/, the image ofX under the map y. If y is injective and the quotient
topology induced from X through y and the subset topology from R

m coincides on
y.X/, then y is called a Riemannian embedding. At every point y.x/ of the image
y.X/,

f@1y.x/; : : : ; @ny.x/g

span a linear subspace of Ty.x/Rm which is identical to R
m. Let TxX denote

this subspace and NxX denote the .m � n/-dimensional subspace orthogonal and
complementary to TxX . Fix an orthogonal basis fNnC1.x/; : : : ; Nm.x/g ofNxX for
each x, and assume further that they depend smoothly on x.

2.4 Second Derivative of Immersion

For each x, the vectors f@1y.x/; : : : ; @ny.x/, NnC1.x/; : : : ; Nm.x/g comprise a
basis of Rm. Therefore, for each pair of indices 1 	 i; j 	 n, the vector @2ijy.x/
can be written as a linear combination of these vectors. In other words, there exist
unique coefficients � k

ij , 1 	 k 	 n, and H
ij , nC 1 	  	 m, such that

@2ijy.x/ D � k
ij .x/@ky.x/CH

ij N.x/: (2)

It can be checked that the functions � k
ij , 1 	 i; j; k 	 n, are the Christoffel symbols

for the metric g with respect to the coordinates .x1; : : : ; xn/. On the other hand, the
coefficientsH

ij comprise what is called the second fundamental form.

2.5 First and Second Derivatives of Normal Vectors

Lemma 3. There exist functions A�i D �A�i such that

@iN D �gjkH


ik @j y C A�iN�: (3)
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Proof. First we know that there exist functions A�i and Bj
i such that

@iN D Bj
i@j y CA�iN�: (4)

Since

0 D @i .N� �N/ D N� � @iN CN � @iN�;

it follows from (4) that

A�i D �A�i :

On the other hand, we have

0 D gjk@i .N � @ky/ D gjk.@ky � @iN CN � @2iky/ D gjk.@ky � @iN CH

ik /

D gjk.@ky � @pyBp
i CH

ik / D gjk.gkpB
p
i CH

ik /

D Bj
i C gjkH


ik :

Therefore, Bj
i D �gjkH


ik , which, together with (4), yields (3). This completes the

proof.
Differentiating (3) one more time, we obtain

@2ijN D �@j .gpqH

ip /@qy � gpqH


ip .�

k
jq@ky CH�

jqN�/C @jA�iN�
C A�i .�gpqH�

pj@qy C Al�jNl/
D ��@j .gpqH


ip /C gpk�

q
jkH


ip C gpqA�iH

�
pj

�
@qy

C �@jA�i � gpqH

ipH

�
jq C AliA�lj

�
N�:

The commutation of the partials implies two sets of equations: one using the
tangential components of the right side, and the other using the normal components.
The tangential component can be shown to be equivalent to the Codazzi equations
(6). The normal components are given by the Ricci equations (7) below.

2.6 Gauss and Codazzi Equations

Now we return to equation (2). Differentiation of (2) and commutation of the
partials give
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0 D @k.@2ijy/� @j .@2iky/
D �@k� lij � @j � lik

�
@ly C � lij @2kly � � lik@2ljy

C �@kH
ij � @jH

ik

�
N CH

ij @kN �H
ik @jN

D �@k� lij � @j � lik C � pij � lkp � � pik � lpj C glp.�Hij �Hkp CHik �Hjp/
�
@ly

C �@kH
ij CH�

ijA


�k
� � pik H

jp � @jH
ik �H�

ikA

�j C � pij H

kp

�
N

D gpl �Rpijk CHij �Hpk �Hik �Hjp
�
@ly

C �@kH
ij CH�

ijA


�k
� � pik H

pj � @jH
ik �H�

ikA

�j C � pij H

kp

�
N

D gpl �Rpijk CHij �Hpk �Hik �Hjp
�
@ly

C �@kH
ij CH�

ijA


�k
� � pik H

pj � � pjk H
ip � @jH

ik �H�
ikA


�j C� pij H

pk C � pjk H
ip

�
N:

Since f@1y; : : : ; @ny;NnC1; : : : ; Nmg form a basis of R
m, this implies the Gauss

equations (5) and Codazzi equation (6) below.

2.7 Reconstructing an Isometric Embedding

Theorem 1. Given a connected and simply connected Riemannian manifoldX with
coordinates .x1; : : : ; xn/ and Riemannian metric g D .gij/, if there exist functions
H

ij D H

ji and A�i D �A�i , 1 	 i; j 	 n, nC 1 	 ; � 	 m, and such that

mX
DnC1

H

ikH


jl �H

il H

jk D Rijkl; (5)

@kH

ij C A�kH�

ij � � p
ki H


pj � � p

kjH

ip D @jH

ik C A�jH�
ik � � p

ji H

pk � � p

jk H

ip ;

(6)

@iA
�
j � @jA�i C A��iA�j � A��jA�j D gpqH


ipH

�
jq � gpqH


jpH

�
iq; (7)

then there exist functions NnC1; : : : ; Nm W X ! R
m and a function y W X ! R

m

such that the following hold:

N �N� D ı�; (8)

N � @iy D 0; (9)

@iy � @j y D gij; (10)

and

@2ijy D � k
ij @ky CH

ij N; (11)

@iN D �gjkH

ik @j y C A�iN�: (12)
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Sketch of the proof. Let fe1; : : : ; emg denote the standard basis of R
m. Fix a

point x0 2 X . Set f@1y.x0/; : : : ; @ny.x0/; NnC1.x0/; : : : ; Nm.x0/g so that equations
(8)–(10) hold. One possibility is to set N.x0/ D e and y.x0/ D 0, and choose
f@1y.x0/; : : : ; @ny.x0/g to be linear combinations of fe1; : : : ; eng such that (10)
holds at x0.

If we let 'i D @iy, then (11)–(12) form a total differential system for the
unknown R

m-valued functions f'1; : : : ; 'n;NnC1; : : : ; Nmg. We check by differ-
entiating these equations that the compatibility conditions obtained by commuting
partial derivatives are a consequence of the Gauss equations (5), Codazzi equations
(6), Ricci equations (7), as well as the original equations (11)–(12). Therefore, by
Lemma 2, there exists a unique solution extending the initial data specified at x0.

Also, the differentials of equations (8)–(10) are consequences of (11)–(12).
Therefore, they hold not only at x0 but also on all of X .

Finally, (11) implies that @i'j D @j 'i , because the right side is symmetric in i
and j . Therefore, by Lemma 2, there exists a unique R

m-valued function y on X
such that y.x0/ D 0 and @iy D 'i , 1 	 i 	 n:

3 The Elasticity Formulation

Theorem 1 provides a possible but inconvenient method for proving the existence
of a local embedding. In this section, we provide a new approach.

First we set

'
p
j D @j yp; (13)

for i; j D 1; 2; 3 and p D 1; � � � ; 6. Then (11) becomes

rj 'pi WD @j 'pi � � k
ij '

p

k D H
ij N

p
 ; (14)

where rj denotes the covariant derivative. In order to avoid dealing with the Ricci
system (12), we define

h
p
ij D H

ij N
p
 : (15)

Lemma 4. The Gauss relations (5) and (15) imply the Gauss relations for hpij :

h
p

ikh
p

jl � hpilhpjk D Rijkl: (16)
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This can be seen by the following direct calculation:

h
p
ikh

p
jl � hpilhpjk D

�
H

ikH

�
jl �H

il H
�
jk

�
Np
N

p
�

D �H
ikH

�
jl �H

il H
�
jk

�
ı�

D Rijkl:

From (15), we now see that (14) is simply

rj 'pi D hpij : (17)

Furthermore, by definition of the curvature tensor: Rlijk glq D Rqijk, we have

�rjrk � rkrj
�
'
p
i D �Rlijk'pl ; (18)

and substitution of (17) into (18) yields the following system:

rkhpji � rj hpki D Rlijk'pl : (19)

Finally, since 'k and N are orthogonal, we see that hij and 'k must be
orthogonal:

h
p
ij'

p

k D H
ij N

p
 '

p

k D 0;

since Np
 '

p

k D 0. We write this as

Lemma 5. A necessary condition for an isometric embedding is

h
p
ij'

p

k D 0: (20)

Furthermore, we have

Lemma 6. A necessary condition for an isometric embedding is that the Gauss
equations (16) are satisfied.

Proof. From the previously derived necessary conditions (19) (the Codazzi equa-
tions) and (20) (orthogonality), we see

'pq

�
rkhpji � rj hpki � Rlijk'pl

�
D 0;

which, by (20), implies

�rk'pq hpji Crj 'pq hpki D Rlijk'pl 'pq :
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By (17) and the embedding assumption ('pl '
p
q D glq), we have

�hpqkhpji C hpqj hpki D Rlijk glq D Rqijk:

Lemma 7. A necessary condition for an isometric embedding is hij D hji.

This lemma follows from Theorem 1.

Lemma 8. Relation (17) implies

rlcofhpil � "ijk"mnl'
p
q R

q
knlh

p
jm D 0; (no sum on p) (21)

where "ijk is the Levi-Civita symbol (also called the permutation symbol, antisym-
metric symbol, or alternating symbol).

Proof. Recall

cofhpil D "ijk"lmnh
p
knh

p
jm; (no sum on p)

and hence we see

rlcofhpil D "ijk"lmn.rlhpkn/h
p
jm C "ijk"lmnh

p
kn.rl hpjm/: (no sum on p) (22)

Next note

"lmnrlhpkn D "mnlrlhpkn D
1

2
"mnlR

q
knl'

p
q ;

where we recall that (19) is equivalent to

"ljkrkhpij D
1

2
"ljkR

q
ijk'

p
q :

Similarly, we note

"lmnrl hpjm D "mnlrl hpjm D �"nmlrlhpjm D �
1

2
"nmlR

q
jml'

p
q :

Inserting the above two relations into (22), we recover (21).

In summary, any isometric embedding y of M3 ! R
6 must satisfy

@iy
p D 'pi ; (23)

'i � 'j D gij; (24)
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rj 'pi D hpij ; (25)

rkhpij � rj hpik D Rlijk'pl ; (26)

rl
�@W
@h

p
il

�� "ijk"mnl'
p
q R

q

knlh
p
jm D 0; (no sum on p) (27)

h
p
ikh

p
jl � hpilhpjk D Rijkl; (28)

h
p
ij D hpji ; (29)

where

W D
6X

pD1
det hp;

and we have used

cofhpil D
@W

@h
p
il

:

Equations (25)–(27) are reminiscent of the equations of elastostatics with W
representing the strain energy. In elasticity, @W

@h
p
il

would represent the Piola-Kirchoff

stress tensor and the nature of the equations as a system would be determined via
the standard computation

rl @W
@h

p
il

D @2W

@h
p
il@h

p
jk

rlhpjk D Cp

iljkrlrj 'k:

Of course, Cp
ijkl is linear in hpjk in the case of M3 ! R

6. Equations (28)–(29) may be
regarded as “constitutive” relations for (25)–(27).

Equation (24) comes from the definition of isometric embedding, and the
existence of yp in (23) may be regarded as a corollary of (25) and (29).

For the linearized theory in Sect. 4, we replace (23)–(24) by the orthogonality
relation from Lemma 5:

'k � hij D hpij'pk D 0; (30)

which may be regarded as another “constitutive” relation, in addition to (28)–(29),
for (25)–(27).

In the next section we continue our discussion in terms of linearized theory which
is analogous to linear elasticity.
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4 The Linearized System

We linearize (25)–(30) as follows: allow the system to depend on an artificial
parameter t and then differentiate with respect to the parameter t . Denote the
derivative with respect to t by an upper imposed dot “�”. We then find the linearized
equation about the un-dotted base embedding:

rj P'pi � Phpij CQp
ij D 0; (31)

rk Phpij � rj Phpik D Rlijk P'pl C PRlijk'pl C Pp
ijk; (32)

rl
� @2W

@h
p
il@h

p
jk

Phpjk
�
� "ijk"mnl

�
P'pq Rqknlh

p
jm C 'pq PRqknlh

p
jm C 'pq Rqknl

Phpjm
�

C Spi D 0; (no sum on p) (33)

Phpikhpjl C hpik Phpjl � Phpilhpjk � hpil Phpjk D PRijkl; (34)

Phpij D Phpji ; (35)

Phpij'pk C hpij P'pk D 0: (36)

where the terms Qp
ij D Qp

ji , P
p
ijk, and Spi are linear in P� q

ij .
Just as in classical linear elasticity, the nature of the equations is determined by

Legendre-Hadamard quadratic form

@2W

@h
p
il@h

p
jk

Phpjk Phpil ; (37)

where Phpij must satisfy the linear closure (constitutive) relations (34) provided by the
Gauss relations.

An elementary example is seen from the classical case of surface theory, where
we wish to embed M

2 ! R
3. There we have

W D deth; h D
�
h11 h12

h12 h22

�
; (38)

and (34) is just

P.deth/ D P�; (39)

where � D det h is the Gauss curvature of the base embedding and P� is its first
variation. Substitution of (38)–(39) into the Legendre-Hadamard quadratic form
yields
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1

2h212


 Ph11 Ph22
	 � h222 h11h22 � 2h212
h11h22 � 2h212 h211

� � Ph11Ph22
�
:

The positive definiteness will be achieved when the determinant is positive, i.e. when

h222h
2
11 � .h11h22 � 2h212/2 D 4�h212 > 0:

Then � > 0 yields ellipticity of linear elasticity system, while � < 0 yields
hyperbolicity.

For the case M
3 ! R

6, a result of Chern-Lewy (see [1]) says that there are no
points of ellipticity and hence the Legendre-Hadamard quadratic form can never be
positive definite.

5 The “Entropy” Equality and L2 Estimates

In this section, we illustrate how the L2 estimates for the dependent variables may
be developed from the entropy equality for the linearized system.

Rewrite (33) as

rl
� @2W

@h
p

il@h
p

jk

Phpjk
�
C Lpi D 0; (40)

where

L
p
i D �"ijk"mnl

�
P'pq Rqknlh

p
jm C 'pq PRqknl C 'pq Rqknl

Phpjm
�
C Spi :

A subset of the Codazzi relations (32) is given by

r1 Phpil � rl Phpi1 D Rqil1 P'pq C PRqil1'pq C Pp
il1: (41)

Multiply (41) by � @2W

@h
p
il @h

p
jk

to obtain

� @2W

@h
p
il@h

p
jk

r1 PhpilC
@2W

@h
p
il@h

p
jk

rl Phpi1 D �
@2W

@h
p
il@h

p
jk

�
R
q
il1 P'pq C PRqil1'pq C Pp

il1

�
: (42)

Now (40) and (42) form a symmetrized system. For p D 4; 5; 6, (40) possesses 9
equations, (41) only has the cases i D 1; 2; 3 and l D 2; 3 (since, for l D 1, it just
yields 0 D 0) which are 18 equations. Thus, (40) and (41) together encompass
all 27 Codazzi equations for p D 4; 5; 6. Furthermore, by incorporation of the
linearized Gauss equations, they will provide the necessary and sufficient conditions
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to solve the linearized isometric embedding problem. This follows by a theorem of
Blum [2–4] and also presented in Goenner [10]. In terms of our earlier Theorem 1,
it just means that the Ricci equations will be automatically satisfied. This should
come as no surprise since Lemma 11 will show that the additional Phpij terms can
be eliminated. In mechanical terms, Lemma 11 will provide another “constitutive
relation”.

Multiply (40) by Phpi1 and (42) by Phpjk and then add them to obtain

Lemma 9. The following equality holds:

� 1
2
r1
� @2W

@h
p

il@h
p

jk

Phpjk Phpil
�
C 1

2
r1
� @2W

@h
p

il@h
p

jk

� Phpjk Phpil Crl
� @2W

@h
p

il@h
p

jk

Phpjk Phpi1
�

C Phpi1Lpi C
@2W

@h
p

il@h
p

jk

Phpjk
�
R
q
il1 P'pq C PRqil1'pq C Pp

il1

�
D 0:

(43)

Equation (43) might appear to be able to provide the L2 estimates if

r1
 

@2W

@h
p

il@h
p

jk

!
Phpjk Phpil

was a positive (or negative) definite quadratic form in Phpjk. However, this is
impossible: Since

r1
 

@2W

@h
p
il@h

p
jk

!
D "ijm"nlkr1hpmn;

we cannot produce terms of the form . Php11/2; . Php22/2; and . Php33/2. Hence we must find
a way to eliminate the diagonal terms from our quadratic form.

A direct way to eliminate the diagonal terms will now be given. The first step is to
introduce the differentiated (or prolonged) system. Simply differentiate the existing
linearized system (31)–(35) with respect to xr . Hence, (40) and (41) become

rl
 

@2W

@h
p
il@h

p
jk

@r Phpjk
!
C OLpir D 0; (44)

r1
�
@r Phpil

�
� rl

�
@r Phpi1

�
D @r.Rqil1 P'pq C PRqil1'pq /C OPp

il1r D 0; (45)

where OLpir and ORil1r are the lower order terms of the prolonged system. Hence, the
same computation as used to provide Lemma 9 now gives us a new lemma.
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Lemma 10. The following equality holds:

� 1
2
r1
 

@2W

@h
p
il@h

p
jk

@r Phpjk@r Phpil
!
C 1

2
r1
 

@2W

@h
p
il@h

p
jk

!
@r Phpjk@r Phpil

Crl
 

@2W

@h
p
il@h

p
jk

@r Phpjk@r Phpi1
!
C @r Phpi1 OLpir

C @2W

@h
p
il@h

p
jk

@r Phpjk @r
�
R
q

il1 P'pq C PRqil1 C OPp

il1r

�
D 0: (no sum on p)

(46)

To keep matters simple, let us focus on our critical term in (46):

1

2
r1
 

@2W

@h
p

il@h
p

jk

!
@r Phpjk@r Phpil : (47)

We break this term into two pieces: a piece containing the diagonal terms and a
piece with no diagonal terms, i.e.

1

2
r1
 

@2W

@h
p

il@h
p

jk

!
@r Phpjk@r Phpil D

1

2
r1
 

@2W

@h
p

il@h
p

jk

!
@r Phpjk@r Phpil

ˇ̌
ˇ̌
ˇj¤k

i¤l

C 1

2
r1
 

@2W

@h
p

il@h
p

jk

!
@r Phpjk@r Phpil

ˇ̌
ˇ̌
ˇjDk

i¤l

C 1

2
r1
 

@2W

@h
p

il@h
p

jk

!
@r Phpjk@r Phpil

ˇ̌
ˇ̌
ˇj¤k

iDl
:

(48)

Of course, by symmetry, the second and third terms on the right-hand side of (48)
are identical, so we now examine just the second term. Break this second term into
two pieces:

1

2
r1
 

@2W

@h
p
il@h

p
jk

!
@r Phpjk@r Phpil

ˇ̌
ˇ̌
ˇjDk

i¤l

D 1

2
r1
 

@2W

@h
p

il@h
p

jk

!
@r Phpjk@r Phpil

ˇ̌
ˇ̌
ˇ jDk
i¤l
r¤j

C 1

2
r1
 

@2W

@h
p

il@h
p

jk

!
@r Phpjk@r Phpil

ˇ̌
ˇ̌
ˇ jDk
i¤l
rDj

D 1

2
r1
 

@2W

@h
p

il@h
p

jk

!
@k Phprj @r Phpil

ˇ̌
ˇ̌
ˇ jDk
i¤l
r¤j

C 1

2
r1
 

@2W

@h
p

il@h
p

jk

!
@r Phpjk@r Phpil

ˇ̌
ˇ̌
ˇ jDk
i¤l
rDj

C l:o:t:

(49)
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Notice that all we have done is to use the Codazzi relation (32) to write

@r Phpjk D @k Phprj C l:o:t:

Let us summarize what we have done so far:

(i) We started with our Codazzi relations (32)–(33).
(ii) We differentiated with respect to xr and obtained the “entropy” equality given

in Lemma 10.
(iii) We examined the crucial term (47) which will provide the L2 estimates.

As written in (47), this quadratic form still has no terms of the form
.@r Php11/2; .@r Php22/2, and .@r Php33/2.

(iv) We again used the linearized Codazzi relations to write (47) as (49), where the
only diagonal terms that appear are given by the last term in (49), i.e. the terms
@1 Php11; @2 Php22, and @3 Php33.

Thus, the Codazzi relations on their own have yielded our relevant quadratic form
(49). However, the consistency of the fundamental theorem of isometric embedding
now presents itself: We know (cf. Goenner [10] and Blum [2–4]) that a necessary
and sufficient condition for isometric embedding is that the Codazzi equations (p D
4; 5; 6) and the Gauss equations are satisfied. In terms of our computations, this
means that the fact we have as of yet not written the terms @1 Php11; @2 Php22; and @3 Php33 as
the derivatives of the off-diagonal terms Phpij ; i ¤ j , is no surprise: We must use the
linearized Gauss equation (34). The derivation is given in a sequence of elementary
lemmas.

To keep things simple, as usual we assume that x D .x1; x2; x3/ D 0 is the origin
of a system of the normal coordinates and, at x D 0, 'pk D ı

p

k for p; k D 1; 2; 3,
'
p

k D 0 for p D 4; 5; 6, and hpij D 0 for p; i; j D 1; 2; 3.

Lemma 11. The following identities hold:

6X
pD1

�
.rr Phpij /'pk C hpijrr P'pq C .rrhpij / P'pk C hpijrr P'pk

�
D 0:

Hence, locally near x D 0, we can solve for rr Phpij ; i; j; p D 1; 2; 3, in terms

of rr Phpij ; p D 4; 5; 6; i; j D 1; 2; 3; Phpij ; p D 1; : : : ; 6; and P'pk ; p D 1; : : : ; 6.

Furthermore, the dependence on rr Phpij ; p D 4; 5; 6, vanishes as x ! 0.

Proof. Differentiate (36) with respect to xr :

6X
pD1

�
.@r Phpij /'pk C Phpij@r'pk C .@rhpij / P'pk C hpij@r P'pk

�
D 0:
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At x D 0, this equation reads

@r Phkij C
6X

pD4
Phpijhpkr C

6X
pD1

.@rh
p
ij / P'pk C

6X
pD4

h
p
ij
Phprk D 0:

Hence, by the inverse function theorem, we can solve for @r Phkij; i; j; k D 1; 2; 3. ut
Finally, as noted earlier, we must use the Gauss equation (34) with respect to xr :

6X
pD1

�
.@r Phpik/hpjl C Phpik.@rhpjl /C .@rhpik/ Phpjl C hpik.@r Phpjk/

� .@r Phpil /hpjk � Phpik.@rhpjk/ � .@rhpil / Phpjk � hpil .@r Phpjk/
�
D @r PRijkl:

(50)

In particular, enumerating the case i D k D r D 1; 2; 3, we have

6X
pD4

.@1 Php11/hpjl D�
3X

pD1
.@1 Php11/hpjl C

6X
pD1

h
p
11.@1

Phpjl / �
6X

pD1
h
p

1l
.@1 Phpj1/C l:o:t:C @1 PR1j1l ;

6X
pD4

.@2 Php22/hpjl D�
3X

pD1
.@2 Php22/hpjl C

6X
pD1

h
p
22.@2

Phpjl / �
6X

pD1
h
p
2l
.@2 Phpj 2/C l:o:t:C @2 PR2j2l ;

6X
pD4

.@3 Php33/hpjl D�
3X

pD1
.@3 Php33/hpjl C

6X
pD1

h
p
33.@3

Phpjl / �
6X

pD1
h
p

3l
.@3 Phpj 3/C l:o:t:C @3 PR3j3l :

(51)

In the first equation of (51), by the properties of the Riemann curvature tensor,
we must have l ¤ 1; j ¤ 1. Thus, we have j D 2; l D 3I j D 2; l D 2I
j D 3; l D 3, that is, three equations. Similarly, each of the other two equations in
(51) provides three equations. Therefore, we may solve them under the assumption
that hp23; h

p
22; h

p
33, p D 4; 5; 6, are linearly independent at x D 0 for @1 Php11; p D

4; 5; 6. Linear independence of hp11; h
p
32; h

p
13 at x D 0 allows us to solve for @2 Php22,

p D 4; 5; 6, and linear independence of hp11; h
p
22; h

p
12, p D 4; 5; 6, allows us to solve

for @3 Php33, p D 4; 5; 6. Notice from (51) that these solutions may depend on the
terms of the form @r Phpii ; r ¤ i , but we know these terms can be changed into the
derivatives of the off-diagonal terms @i Phpir by the Codazzi equations. Finally, the
dependence on @rh

p
ij ; p D 1; 2; 3, is removed by Lemma 11. We summarize as

follows.

Lemma 12. Linear independence of fhp11; hp33; hp13g, fhp11; hp22; hp12g, fhp22; hp33; hp23g,
p D 4; 5; 6, at x D 0 allows the solvability of @i Phpii ; p D 4; 5; 6, in terms of
the derivatives of the off-diagonal terms and the lower order terms, i.e. in terms of
@r Phpij ; i ¤ j; p D 4; 5; 6, and the lower order terms.
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We have thus eliminated all the derivatives of the diagonal terms @r Phpii (no sum
on i ), p D 4; 5; 6, in favor of the derivatives of the off-diagonal terms, @r Phpij ;
i ¤ j; p D 4; 5; 6. Hence, it appears at first glance that there are three off-diagonal
Phpij for each p and r D 1; 2; 3, we have 3�3�3 D 27 terms. However, the derivatives
of the off-diagonal terms must satisfy the Codazzi relations (32). In particular,
we have

r2 Php13 � r3 Php12 D Rl132 P'pl C PRl132'pl C Pp
132;

r3 Php12 � r1 Php23 D Rl123 P'pl C PRl123'pl C Pp
123;

r2 Php31 � r1 Php32 D Rl312 P'pl C PRl322'pl C Pp
312;

(52)

p D 4; 5; 6. As the second equation of (52) is implied by the other two equations of
(52), we see that the Codazzi equation allows us to lower the number of derivatives
of the off-diagonal terms by 2 for each p D 4; 5; 6, i.e. by 2 � 3 D 6, and we have
27� 6 D 21 derivatives of the off-diagonal terms in our quadratic form.

Now we once more exploit the differentiated Gauss relation (50) which has
3 � 6 D 18 equations and, in solving (51), we have used 9 of them. An additional
6 may be used to eliminate a further 6 derivatives of the off-diagonal terms and
21 � 6 D 15 derivatives of the off-diagonal terms in our “state” vector that enters
the quadratic form (47), p D 4; 5; 6. Of course, linear independence of sets of these
3 vectors in R

3 similar to those given in Lemma 12 will be needed. Also, since
the set of equations has a non-trivial null space for the homogeneous equations,
a solvability condition must be satisfied, which is guaranteed by the second Bianchi
identity. Thus, only 6 terms can be eliminated.

We have seen that the quadratic form (47) can be written in terms of 15 terms.
Incorporation of the quadratic form obtained from the terms @r Phpil OLpir in (46) will
have the same feature. Finally, the original energy estimate was done for fixed p.
If we take a linear combination for p D 4; 5; 6, we have the final coefficient
matrix which we wish to be positive (or negative) definite (and repeat when we
take r2;r3 as well). Of course, this remains to be checked in examples. Finally, let
us make the standard assumption of Bryant-Griffiths-Yang [5] and Poole [15] that
the perturbations Pgij are compactly supported in a neighborhood of the origin. Then
P'pi and Phpij are also compactly supported. Integrate the entropy equality (43) over
the domain �. We see that our assumed definite quadratic form yields the L2.�/
estimates.
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Existence and Stability of Global Solutions
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Abstract We present our recent results on the mathematical analysis of shock
diffraction by two-dimensional convex cornered wedges in compressible fluid flow
governed by the potential flow equation. The shock diffraction problem can be
formulated as an initial-boundary value problem, which is invariant under self-
similar scaling. Then, by employing its self-similar invariance, the problem is
reduced to a boundary value problem for a first-order nonlinear system of partial
differential equations of mixed elliptic-hyperbolic type in an unbounded domain.
It is further reformulated as a free boundary problem for a nonlinear degenerate
elliptic system of first-order in a bounded domain with a boundary corner whose
angle is bigger than � . A first global theory of existence and regularity has been
established for this shock diffraction problem for the potential flow equation.
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1 Introduction

We are concerned with shock diffraction by a two-dimensional convex cornered
wedge, which is not only a longstanding open problem in fluid mechanics, but
also fundamental in the mathematical theory of multidimensional conservation
laws. When a vertical shock propagates to the right along the convex cornered
wedge, the incident shock interacts with the wedge, and the shock diffraction
occurs. The study of the shock diffraction problem dates back to the 1950s,
in the work of Bargman [3], Lighthill [18, 19], Fletcher-Weimer-Bleakney [12],
and Fletcher-Taub-Bleakney [13] via asymptotic or experimental analysis. See also
Courant-Friedrichs [10] and Whitham [20].

One of the main challenges of this problem is that the expected elliptic domain of
the solution is concave, since the angle exterior to the wedge at the origin is bigger
than � , besides the other mathematical difficulties including free boundary problems
without unform oblique derivative conditions and optimal regularity estimates along
the degenerate elliptic curves that meets the free boundary. In general, the expected
regularity of solutions at the corner in this domain, even for Laplace’s equation, is
only C˛ with ˛ 2 .0; 1/; however, the coefficients in (6) depend on the derivatives
of , due to the Bernoulli law (7). To overcome the difficulty, the physical boundary
conditions must be exploited to force a finer regularity of solutions at the corner.

To date, all efforts to mathematically analyze the shock diffraction problem
have focused on simplified models. For one of these models, the nonlinear wave
system, Kim [15] studied this problem for the right-angle wedge with an additional
physical assumption that the transonic shock will not collide with the sonic circle
of the right-state. Recently, in Chen-Deng-Xiang [9], this assumption was removed,
and the existence and optimal regularity of shock diffraction configurations were
established for all angles of the convex wedge via a different approach, which has
been further developed in Chen-Xiang [8] to deal with the problem for the potential
flow equation.

The purpose of this paper is to present the recent results we have obtained in [8]
on the mathematical analysis of this shock diffraction problem for the potential
flow equation, which can be formulated as an initial-boundary value problem.
By employing its self-similar invariance, this initial-boundary value problem is
reduced to a boundary value problem for a first-order nonlinear system of partial
differential equations of mixed elliptic-hyperbolic type in an unbounded domain.
It is further reformulated as a free boundary problem for nonlinear degenerate
elliptic systems of first-order in a bounded domain with a boundary corner whose
angle is bigger than � . A first global theory of existence and regularity has been
established for this shock diffraction problem for the potential flow equation.
To achieve this, we develop several mathematical ideas and techniques, which are
also useful for other related problems involving similar analytical difficulties.

The organization of this paper is as follows. In Sect. 2, we first formulate the
shock diffraction problem as an initial-boundary value problem for the potential
flow equation, and then reduce it into the boundary value problem (Problem 1)
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for a first-order nonlinear system of partial differential equations of mixed
elliptic-hyperbolic type, and finally present the main theorem (Theorem 1). In
Sect. 3, we first introduce some notions of admissible solutions and weighted
Hölder norms and then present some a priori estimates of admissible solutions
in the Hölder norms. In Sect. 4, based on the a priori estimates in Sect. 2, we then
prove the existence of the shock diffraction configuration by a topological argument
and establish Theorem 1.

Finally, we remark in passing that a closely related problem, shock reflection-
diffraction by a concave cornered wedges for potential flow, has been analyzed in
Chen-Feldman [6, 7] and Bae-Chen-Feldman [1], where the existence of regular
shock reflection-diffraction configurations has been established up to the detached
wedge-angle. The Prandtl-Meyer reflection for supersonic potential flow impinging
onto a solid wedge has also been analyzed first in Elling-Liu [11] and recently in
Bae-Chen-Feldman [2]. For other related references, we refer the reader to Canic-
Keyfitz-Kim [4, 5] for the unsteady transonic small disturbance equation and the
nonlinear wave system and Zheng [21] for the pressure-gradient system, and the
references cited therein.

2 The Potential Flow Equation and the Shock Diffraction
Problem

In this section, we first formulate the shock diffraction problem as an initial-
boundary value problem for the potential flow equation, then reduce it to the
boundary value problem (Problem 1) for a first-order nonlinear system of partial
differential equations of mixed elliptic-hyperbolic type, and finally present the main
theorem (Theorem 1).

2.1 The Potential Flow Equation and the Rankine-Hugoniot
Conditions

The Euler equations for potential flow consist of the conservation law of mass
and the Bernoulli law for the density � and velocity potential ˚ with the velocity
.u; v/ D rx˚ :

@t�Crx � .�r˚/ D 0; (1)

@t˚ C 1

2
jrx˚ j2 C i.�/ D B0; (2)

where i.�/ D ���1�1
��1 for � > 1 and i.�/ D ln� for � D 1, and B0 is the Bernoulli

constant determined by the incoming flow and/or boundary conditions.
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Fig. 1 Initial-boundary value problem

The shock diffraction can be formulated as an initial-boundary value problem:
We seek a solution of system (1) and (2) with the initial condition at t D 0:

.�; ˚/jtD0 D
(
.�0; u0x1/ in fx1 < 0; x2 > 0g;
.�1; 0/ in f�� C 	w 	 arctan

�
x2
x1

� 	 �
2
g; (3)

and the slip boundary condition along the wedge boundary @W :

rx˚ � �j@W �RC
D 0; (4)

where � is the exterior unit normal to @W (see Fig. 1).
Notice that the initial-boundary value problem is invariant under the self-similar

scaling:

.x; t/! .˛x; ˛t/; .�; ˚/! .�;
˚

˛
/ for ˛ ¤ 0:

Thus we seek self-similar solutions with the form:

.�; ˚/.x; t/ D .�.�; �/; t. .�; �/ C 1

2
.�2 C �2/// for .�; �/ D x

t
; (5)

where  is the pseudo-velocity potential, that is,

. � ;  �/ D .u � �; v � �/ DW .U; V /;

which is called a pseudo-velocity. Then the pseudo–potential function is governed
by the following Euler equations:

div.�D /C 2� D 0; (6)
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1

2
jD j2 C  C ���1

� � 1 D 0; (7)

where the divergence div and gradient D are with respect to the self-similar variables

.�; �/. Here we have replaced by � �
��1
1

��1 to make the right-hand side of (7) zero.
Then (6) and (7) can be reduced to the following potential flow equation of

second-order for the potential function  :

div
�
�.jD j2;  /D �C 2�.jD j2;  / D 0; (8)

with

�.jD j2;  / D
�
� .� � 1/. C 1

2
jD j2/

� 1
��1
: (9)

Equation (8) is a second-order equation of mixed hyperbolic-elliptic type: It is

elliptic if and only if jD j < c.jD j2;  / WD
q
�.� � 1/. C 1

2
jD j2/, which

is equivalent to

jD j < c?. ; �/ WD
s
�2.� � 1/

� C 1  : (10)

Since one of the corners on the boundary of the pseudo-elliptic domain, i.e. the
origin, is bigger than � , it is not clear in general whether we could obtain
the C1-regularity of  to ensure the ellipticity of (8) and (9) near the point,
in comparison with [6]. In fact, there is a counterexample even for Laplace’s
equation for the general case so that the solution is only in C˛; ˛ 2 .0; 1/, at the
corner. One of the key new ingredients here is to exploit the physical boundary
conditions to ensure an additional regularity for the ellipticity. To achieve this,
instead of studying (8) and (9) for directly as in [6], we consider the corresponding
system for .�; U; V / D .�; u � �; v � �/ to obtain the C˛-estimates of the solutions
by exploiting the boundary conditions:

8
ˆ̂̂̂
<̂
ˆ̂̂
ˆ̂:

�
�.U; V;  /U

�
�
C ��.U; V;  /V �

�
C 2�.U; V;  / D 0;

U� D V�;
���1.U;V; /

��1 C U2CV 2
2
D � ;

. �;  �/ D .U; V /:

(11)

Since our global solutions involve shock waves in the problem, the solutions
of (11) have to be considered as weak solutions in the distributional sense.

Definition 1. The vector function .U; V / is called a weak solution of (11) if there
exists a function  2 W 1;1

loc .˝/ in a self-similar domain˝ such that:
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(i)  � D U ,  � D V a.e. in ˝;
(ii) � � 1

2
.U 2 C V 2/ � 0 a.e. in ˝;

(iii) .�.U; V;  /; �.U; V;  /U; �.U; V;  /V / 2 .L1loc.˝//
3;

(iv) For every � 2 C1
c .˝/,

Z

˝

�.U; V;  /
�
.U; V / �D� � 2�� d�d� D 0;

and
Z

˝

.V;�U / �D� d�d� D 0:

A piecewise smooth solution separated by a shock wave satisfies the conditions in
Definition 1 if and only if it is a classical solution of (11) in each smooth subregion
and satisfies the following Rankine-Hugoniot conditions across the shock wave:



.�.U; V;  /U; �.U; V;  /V / � �	

S
D 0; (12)

Œ �S D 0; (13)

where the bracket Œw� denotes the jump of the quantity w across the shock wave S ,
that is,

Œw� D lim
.�; �/ ! SC

.�; �/ � � > 0

w.�; �/ � lim
.�; �/ ! S�

.�; �/ � � < 0

w.�; �/:

Condition (12) follows from the conservation of mass, while (13) follows from
irrotationality.

2.2 The Shock Diffraction Problem

If the initial left-state .�0; u0; 0/ is subsonic, i.e. u0 < c0 WD c.�0/, the degenerate
boundary is the sonic circle centered at .u0; 0/ with radius c0, and the center
rarefaction wave does not occur near the origin. In this paper, our focus is on this
case where we consider system (11) in the pseudo-subsonic region.

A discontinuity ofD satisfying the Rankine-Hugoniot conditions (12) and (13)
is called a shock if it satisfies the following physical entropy condition: The density
� increases across a shock in the pseudo-flow direction. From (12), the entropy
condition indicates that the normal derivative function  � on a shock always
decreases across the shock in the pseudo-flow direction, which implies that �0 > �1
and u0 > u1 D 0.

On the other hand, (13) implies

Œv � ��d� D �Œu � ��d�: (14)



Global Solutions of Shock Diffraction by Wedges for Potential Flow 119

Then, as a direct corollary of (14), the Rankine-Hugoniot conditions are
equivalent to:

u
�
�.u � �/C �1�

�C v
�
�.v � �/C �1�

� D 0; (15)

and

 D  1 (16)

along the incident shock. Let � D �1 be the location of the incident shock. By a
straightforward calculation, the incident shock position is

�1 D
s

2�20.c
2
0 � c21/

.� � 1/.�20 � �21/
> 0 (17)

with the property:

0 < u0 D �0 � �1
�0

�1 < �1: (18)

Furthermore, we can show that the incident shock hits the sonic circle of the
left-state, i.e. state .0/, by the following relation:

0 < �1 � u0 < c0: (19)

In the self-similar plane, the domain outside the wedge is

� WD f.�; �/ W �� C 	w 	 arctan
��
�

� 	 �g:

Then the shock diffraction problem can be formulated as the following boundary
value problem in the self-similar coordinates .�; �/.

Problem 1 (Boundary Value Problem). (See Fig. 2). We seek a solution .U; V /
of Eqs. (11) in the self-similar domain � with the slip boundary condition on the
wedge boundary @�:

.U; V / � �j@� D 0

and the asymptotic boundary condition at infinity:

.�; U; V /! . N�; NU ; NV / when �2 C �2 !1;

in the sense that

lim
R!1 k.�; U; V / � . N�; NU ; NV /kC.�nBR.0// D 0;
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Fig. 2 Boundary value problem

where

. N�; NU ; NV / D
8
<
:
.�0; u0 � �;��/ for f� < �1; �>0g;
.�1;��;��/ for f� > �1; �>0g [ f��C 	w	 arctan

�
�

�

�	 0g:

Since .u0 � �;��/ does not satisfy the slip boundary condition for � � 0,
the solution must differ from state .0/ in f� < �1g \ � near the wedge corner,
which forces the shock to be diffracted by the wedge. In the domain ˝ bounded
by the pseudo-sonic circle of the left-state, i.e. state .0/ with center .u0; 0/ and
radius c0 > 0, and the shock wave, the solution is expected to be pseudo-subsonic
and smooth, to satisfy the slip boundary condition along the wedge, and to be at
least continuous across the pseudo-sonic circle to be pseudo-supersonic. The main
theorem we have established is

Theorem 1 (Main Theorem). Let 	c be the critical angle of the given data such
that the corresponding wedge boundary � 2

wedge passes the intersection point of
the two sonic circles of the given Riemann data. Then there exists an ˛ D
˛.�0; �1; u0; �/ 2 .0; 12 / such that, when 	w 2 .	c; �/, there exists a pair of global
self-similar solutions:

�.x; t/ D
�
� .� � 1/.@t˚.x; t/C 1

2
jrx˚.x; t/j2/

� 1
��1
;

.u; v/.x; t/ D rx˚.x; t/ for
x
t
2 �; t > 0

for the shock diffraction by the wedge, with  .x; t/ defined by (5) which satisfies

˚.x; t/ D t 
�x
t

�
C jxj

2

t
for

x
t
2 �; t > 0:
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Equivalently, .U; V / with the pseudo-potential velocity  solving Problem 1
satisfies that, for .�; �/ D x

t
,

.U; V / 2 C1.˝/\ C˛.˝/;

.�; U; V / D
(
.�0; u0 � �;��/ for � < �1 and above the sonic circle 1P1P2;

.�1;��;��/ on the right of or below the diffracted shock.
(20)

In addition, the corresponding pseudo-potential velocity  is C1;1 across the part
1P0P1 including the endpoints P0 and P1, the C1;1-regularity is optimal, and the
limit of D2 at P1 does not exist. The transonic shock 1P1P2 is C2 at P1 and C1
except at P1. Furthermore, the solution pair .U; V / is stable with respect to the
wedge-angle 	w, i.e.  , as well as .U; V /, converges to the unique incident plane
shock solution at � D �1 as 	w ! � .

We remark here that, when the wedge-angle 	w 	 �
2

, it needs a transformation
and other technical arguments in order to prove the existence of the solutions.
To illustrate the key ideas more directly, we will restrict our sketch of the proof
to the case when 	w >

�
2

, for which such a transformation is not needed.

3 Admissible Solutions and A Priori Estimates

In this section, we introduce some notions of admissible solutions and weighted
Hölder norms, and present some a priori estimates of admissible solutions in the
Hölder norms.

3.1 Weighted HRolder Spaces and Norms

Let P denote the corner points of @˝ , and let Bı.P/ be the union of the balls of
radius ı centered at the corner points in P . We then define the following weighted
HRolder norms and HRolder spaces:

Œu�.��/;Pk;˝ D Œu�.��/;Pk;0;˝ D supı>0 sup x 2 ˝nBı .P/

jˇj D k

�
ık�� jDˇu.x/j�I

Œu�.��/;PkC˛;˝ D supı>0 sup x; y 2 ˝nBı .P/

jˇj D k

�
ıkC˛�� jDˇu.x/�Dˇu.y/j

jx�yj˛
�
I

kuk.��/;Pk;˝ DPk
jD0Œu�

.��/;P
j;˝ I

kuk.��/;PkC˛;˝ D kuk.��/;Pk;˝ C Œu�.��/;PkC˛;˝ I
C
.��/;P
kC˛;˝ WD fu W u 2 Ck;˛.˝/ and kuk.��/;PkC˛;˝ <1g;

(21)
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where k is an integer and 0 < ˛ < 1. We remark that the weight near the wedge
cornerO will be dealt with separately from the others since the angle is bigger than
� here. It is easy to verify that

kfgk.�1C�2/;P0C˛;˝ 	 kf k.�1/;P0C˛;˝kgk.�2/;P0C˛;˝ for �1 C �2 � 0: (22)

As in [16], there are two important properties of these norms:

(A) kuk.��/;P˛;˝ 	 Ckuk.��/;P�;˝ D Ckuk�;˝ for 0 < ˛ 	 � , where kuk�;˝ is the
non-weighted HRolder norm for u.

(B) If a � b > 0 and if fumg is a bounded sequence in C .�b/;P
a , then there is

a subsequence fumj g which converges in any C .�b0/;P
a0 , with 0 < b0 < b,

0 < a0 < a, and a0 � b0.

Before introducing the parabolic norm near the sonic circle, first we define ˝ 0
and˝ 00 for any domain˝ as

˝ 0 WD ˝ \ f.�; �/ W distf.�; �/; �sonicg < 2�0g;
˝ 00 WD ˝ \ f.�; �/ W distf.�; �/; �sonicg > �0g

(23)

with a small constant �0 > 0. Obviously,˝ D ˝ 0[˝ 00, and it will be seen later that
the equation studied is uniformly elliptic in˝ 00 and elliptic in˝ 0, in fact degenerate
on �sonic WD ˝ \ f.�; �/ W

p
.� � u0/2 C �2 D c0g.

In ˝ 0, the equation has elliptic degeneracy, for which the HRolder norms with
parabolic scaling are natural. We define the norm jj jjpar

2;˛;˝0 as follows: First
introduce new coordinates .x; y/ in ˝ 0 as

x D c0 �
p
.� � u0/2 C �2; y D arctan

� �

� � u0

�
:

With z D .x; y/ and Nz D . Nx; Ny/ where x; Nx 2 .0; 2�0/ and

ıpar
˛ .z; Nz/ WD

�jx � Nxj2 Cminfx; Nxgjy � Nyj2� ˛2 ;

and for  2 C2.˝ 0/ in the .x; y/-coordinates, we define

k kpar
2;0;˝0 WDP0�mCl�2 supz2˝0

�
xmC l

2�2j@mx @lyu.z/j�;

Œ �
par
2;˛;˝0 WDPmClD2 supz;Nz2˝0;z¤Nz

��
minfx; Nxg�˛� l

2
j@mx @lyu.z/�@mx @lyu.Nz/j

ı
par
˛ .z;Nz/

�
;

k kpar
2;˛;˝0 WD kukpar

2;0;˝0 C Œu�par
2;˛;˝0 :

(24)

We refer to [6] for more details and for the motivation of this definition.
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3.2 Notion of Admissible Solutions

The proof of Theorem 1 is based on the local existence and the uniform a priori
estimates of admissible solutions. More precisely, we define the set

I � Œ0; �� (25)

so that, for any 	w 2 I , there exists an admissible solution .�.	w/; U .	w/; V .	w// for
the shock diffraction problem. Here, the admissible solutions are defined as follows:

Definition 2. Let � > 1, �0 > �1 > 0, and u0 < c0, and let .�0; �1; u0/ satisfy (17)
and (18). For any wedge-angle 	w 2 .	c; �/ and functionW D .U; V / 2 .C ˛.�//2,
	w 2 I if and only if:

(i) The function W is a weak solution to the shock diffraction problem, i.e. W
satisfies Definition 1 and the Rankine-Hugoniot conditions (12) and (13).

(ii) The free boundary �shock, with endpoints P1 D .�1; �1/ and P2 D .�2; �2/, lies
between the two sonic circles of state .0/ and state .1/, i.e., .�0; u0 � �;��/
and .�1;��;��/ respectively, and meets the wedge at P2 perpendicularly.
In addition, �shock is C1 everywhere except at the point P1.

(iii) .U; V / satisfies (20) outside of ˝ , and

.U; V / 2
�
C˛.˝/\ C1.˝nOP0P1/\ C1.˝n�sonic [ fOg/

�2
;

where ˛ 2 .0; 1/ depends only on 	w and the given data.
(iv) Equation (8) is strictly elliptic in ˝n�sonic, that is,

jr j < c?. ; �/ WD
s
�2.� � 1/

� C 1  :

(v) u D U C � > 0 and v D V C � < 0 in ˝ .

In fact, admissible solutions have the following additional properties. Some of
these properties require technical proofs, which can be found in Chen-Xiang [8].

Remark 1 (Extension of the background solutions to a smaller wedge-angle). The
property that �shock meets the wedge at P2 perpendicularly in (ii) of Definition 2
and the slip boundary condition yield that, for any 	w 2 I and any �w < 	w, there
are functions QW D . QU ; QV / such that they satisfy Eqs. (11) in ˝.�w/ and QW D W

in ˝.	w/, where ˝.	w/ is the domain corresponding to the wedge-angle 	w. We call
QW the extension of the admissible solution W , which will be used as a background

solution in our proof of Theorem 1.

Remark 2 (Existence of the shock up to the wedge). The property that v < 0 in (v)
of Definition 2 and the fact that v D 0 on the right-hand side mean that �shock exists
up to the wedge boundary due to the jump of the velocity v.
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Remark 3 (Positivity of the horizontal speed u along �shock). Property (v) of
Definition 2 imply that, along �shock, the horizontal velocity u is positive.

Remark 4 (Uniform estimates of the size of the domain ˝). The property that the
shock lies between two sonic circles in (ii) and the fact that �shock exists up to the
wedge boundary mean that the size of the domain˝ is bounded.

Remark 5 (The entropy condition). Properties (i), (iv), and (v) of Definition 2 imply
that

@�'1 > @�' > 0 on �shock;

where � is the unit normal to �shock interior to ˝ .

Remark 6 (The shape of �shock). Properties (i) and (v) imply that, if �shock D
f.�; �/ W � D �.�/g D f.r; 	/ W r D r.	/g, then

� 0.�/ � 0; r 0.	/ � 0:

Remark 7 (I is non-empty). Based on the proof of the existence of the solutions to
the wedge-angle near � , we have 	w 2 I when � � 	w is small. Thus, I ¤ ;. Then
Theorem 1 is established if we can prove that the subset I is both open and closed.

3.3 A Second-Order Equation for v and the Boundary
Conditions

It is important to deduce first an equation for v from the potential flow equation
for our study. To do so, we first introduce an elliptic cut-off function which will be
given in detail later, take the derivative on the equation of the conservation of mass
with respect to �, and then use the irrotationality to obtain a second-order equation
for v in ˝ as

Q.vI u/ D Na11v�� C 2 Na12v�� C Na22v�� C b11v2� C b12v�v� C b22v2� C c1v� C c2v�
D 0; (26)

where

jb11j C jb12j C jb22j 	 C

a11

with C depending on theC1-bounds of O and the cut-off functions �i and �M , while

d˛O.jc1j C jc2j/ 	
C

a11

with C depending on jj O jj.�1�˛/;fO;P0g2;˛;˝00 , where dO.X/ D distfX;Og.
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Modify the Rankine-Hugoniot condition F.u; v; '; �/ D 0 to be

G WD �sF C .1 � �s/.L1.u � Ou/CL2.v � Ov//;

where �s is a special cut-off function such that .�s/u.u � Ou/ C .�s/v.v � Ov/ is a
small term, and L2 is chosen to be close to Fv.Ou; Ov; O'; O�/ and L1 is appropriately
determined by Fv.Ou; Ov; O'; O�/ and Fu.Ou;Ov; O'; O�/

Fv.Ou;Ov; O'; O�/ . Then, differentiating it along the shock,
we have the following boundary condition on �shock:

M.2/v WD ˇs1v� C ˇs2v� D Na11As;1vC gs.u; v; '/ on �shock: (27)

Note that �s , L1, and L2 are defined in this way to ensure that Na11As;1 � 0, and
kgsk1 	 C , independent of s.

On the other hand, taking the derivative on the slip boundary condition along the
boundary, we have the following boundary condition on � 2

wedge:

M.1/v D ˇ.1/1 v� C ˇ.1/2 v� D 0 on � 2
wedge: (28)

Moreover, v satisfies the Dirichlet boundary condition:

v D 0 on �sonic [ � 1
wedge; (29)

and the one point boundary condition:

v D �g.�w; 	w/ tan.� � 	w/ (30)

to guarantee the equivalence of the deduced equations and the original equations.
The one point boundary condition is obtained from the slip boundary condition and
the Rankine-Hugoniot condition.

3.4 Uniform Estimates of the Obliqueness Along �shock

The crucial result guaranteeing the obliqueness of the operator M.2/ is that, if
.Ou; Ov; O'/ is the solution in the sense of Definition 2, then

Fu.Ou; Ov; O'; �/ > 0 along �shock:

With this result, after careful calculation, we can prove that the operators M.i/ are
oblique along � 2

wedge and �shock respectively. Here the fact that Ou > 0 and Ov < 0

along �shock plays a fundamental role. At the same time, �Na11As;1 	 0 is important
for the maximum principle.
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3.5 Uniform Estimates of the Approximate Solutions Near
the Origin

Consider the approximate solutions v� governed by

Q.v�I u�/C �4v� D 0;

and the boundary conditions (27) and (30), where Q is defined in (26). We prove
that there exist �� > 0 and ˛0 > 0 such that, for each � 	 �� and ˛ 	 ˛0, and for
any approximate solution v� , near the wedge cornerO , we have

kv�k.��/2C˛;˝ 	 C.�; 	w; �;˝/
�kg.�w; 	w/k C kgsk1

�
: (31)

Furthermore, if the solution .u�; v�; '�/ is sufficiently close to the background
solution .Ou; Ov; O'/, then the boundary condition on �shock will not be involved in the
inhomogeneous term:

M.2/v� D ˇ.2/1 v�� C ˇ.2/2 v�� D 0I

thus the solution v� has a better estimate:

� g.�w; 	w/ tan.� � 	w/ 	 v� 	 0: (32)

3.6 Impossibility of �shock Meeting the Sonic Circle of State .1/

and the Sonic Circle of State .0/ Except at P1

We prove that r 0.	/ � 0 along �shock, which means that �shock will not meet the
sonic circle of state .0/ again away from P1. Next, we prove that there exists a
constant C > 0 such that

distf�shock; Bc1.O/g >
1

C
;

for any solution in the sense of Definition 2, where c1 is the sonic speed of state .1/,
i.e. the right-state. These estimates are crucial to guarantee the ellipticity in the
domain˝ .



Global Solutions of Shock Diffraction by Wedges for Potential Flow 127

3.7 Uniform Hölder Estimates of .u�; v�/ Near �sonic,
and Uniform Upper and Lower Estimates of Density ��

In order to pass to the limit as �! 0, we need uniform estimates of the approximate
solutions near �sonic, where the ellipticity may degenerate. In fact, we prove the
uniform estimates near �sonic by scaling,

jv�j 	 A.c0 � r/1=4; (33)

ju� � u0j C j�� � �0j 	 A.c0 � r/ 16 for 0 	 c0 � r 	 m: (34)

As in Sect. 3.5, if the solution .u�; v�; '�/ is sufficiently close to the background
solution .Ou; Ov; O'/, we have

� A.c0 � r/ 14 	 v� 	 0 for 0 	 c0 � r 	 m: (35)

From the uniform estimates away from �sonic, ku�k0 and kv�k0 are uniformly
bounded, hence k'�kC0;1 is also uniformly bounded, and

�
2

� C 1
� 1

��1

�1 	 �� 	 C in ˝:

3.8 Monotonicity of the Solution v Along �shock

From now on, we consider the solutions without the viscosity term �4v, i.e. after
passing to the limit as � ! 0. What we can actually prove for the monotonicity
of v is that, if the solution .u; v; '/ is sufficiently close to the background solution
.Ou; Ov; O'/, then the solution v is monotonically increasing along �shock.

3.9 Uniform Estimates of the Ellipticity in ˝ Up to �shock

Note that the Mach number

M2 D .u � �/2 C .v � �/2
c2

2 C˛.˝/ \ C1.˝n.�sonic [ fP1g//:

Then we can show that there exists a constant  > 0 such that, for any 	w 2 .	c; �/,
we have

M2.�; �/ 	 1 � d for all .�; �/ 2 ˝;
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where d D distf.�; �/; �sonicg. This means that, for all � D .�1; �2/ 2 R
2, we have

C�1d j�j2 	
2X

i;jD1
aij�i �j 	 C j�j2:

3.10 Regularity Away from and Near �sonic

For the regularity away from �sonic, we employ the weighted Hölder norms and a
transformation to control the behaviour of the quadratic nonlinear terms to estimate
the solution v near the corners and other points. Next we use the irrotationality to
obtain the regularity of u and then the regularity of �.

For the regularity near �sonic, we use the parabolic norms and a scaling to make
the equation non-degenerate. We introduce new coordinates

.x; y/ D .c0 � r; 	 � 	1/

to flatten �sonic, where .r; 	/ are the polar coordinates, c0 is the sonic speed of
state .0/, and .r1; 	1/ is P1. Then, following the procedures in [1] exactly, we can
derive the following property:

Theorem 2 (Optimal regularity). Let  be a solution obtained as before. Then
we have

(i)  cannot be C2 across the pseudo-sonic circle �sonic;
(ii) ' D  �  0 is C2C˛ in ˝ up to �sonic away from the point P1 for any ˛ 2

.0; 1/;
(iii) For any .�0; �0/ 2 �sonicnfP1g,

lim
.�; �/ ! .�0; �0/

.�; �/ 2 ˝

Drr' D 1

� C 1 ; lim
.�; �/ ! .�0; �0/

.�; �/ 2 ˝

D		' D 0; lim
.�; �/ ! .�0; �0/

.�; �/ 2 ˝

Dr	' D 0I

(iv) D2' has a jump across �sonic: for any .�0; �0/ 2 �sonicnfP1g,

lim
.�; �/ ! .�0; �0/

.�; �/ 2 ˝

Drr' � lim
.�; �/ ! .�0; �0/

.�; �/ 2 �n˝

Drr' D 1

� C 1 I

(v) The limit lim .�; �/ ! P1
.�; �/ 2 ˝

D2' does not exist.
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4 Existence of the Shock Diffraction Configuration

Once the a priori estimates are proved, the existence of the shock diffraction
configuration can be established by a topological argument. Thanks to the uniform
estimates in Sect. 3, the set I is obviously closed. Then the remaining task is to
prove that the set I is open.

The main idea of the existence proof is that, instead of studying the potential
flow equation of ', we study a system for .�; u; v/ directly. In order to do that,
we first introduce the degenerate elliptic cut-off, the higher order cut-off near the
pseudo-sonic circle, and the uniform elliptic cut-off away from the pseudo-sonic
circle, and introduce the modified Rankine-Hugoniot condition along �shock. Then
differentiate them to obtain a second-order equation for v with the oblique boundary
conditions on �shock and � 2

wedge. Once the existence of v is obtained, we use the
irrotational equation to recover u by v. Next, we pass to the limit to obtain a
solution .u; v; '/ which is actually equivalent to the original potential flow equation
of '. Using this scalar equation, we can obtain a better regularity to remove the
introduced cut-off functions and prove that the solution we have obtained is actually
sufficiently close to the background solution, if the wedge-angle is sufficiently close
to the background wedge-angle. For the main part, the existence of the modified free
boundary problem for v, we in fact have the following theorem.

Theorem 3 (Modified free boundary problem). Assume that�w 2 I . Then there
exist ı0 D ı.�0; �1; u0; �;�w/ > 0 small enough, �� > 0, ˛0 > 0, and �� > 0 such
that, for each 	w 2 Œ�w � ı0;�w/, � < ��, ˛ < ˛0, and � 2 .0; ��/, there exists
a solution .u�; v�; ��.�// 2 �C2C˛

.��/.˝�/
�2 � C2C˛ to the regularized free boundary

problem:
8
<
:
Q�.vI u/ WD Q.vI u/C �4v D 0;
u� D v� ;

(36)

with the free boundary position:

� 0 D ��s v

u
� .1 � �s/ OvOu (37)

and the following boundary conditions:

.u; v;  / D .u0; 0;  0/ on �sonic; (38)

v D 0 on � 1
wedge; (39)

M.1/v D 0 on � 2
wedge; (40)

M.2/v � Na11As;1v D gs.u; v; '/ on �shock; (41)

v D �g.�w; 	w/ tan.� � 	w/ at P2: (42)
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In addition, the solution satisfies the following estimates:

j�.�/ � O�.�/j 	 ı1; 0 	 � 0.�/ 	 K2; (43)

a�11u
�
� C 2a�12v�� C a�22v�� D C1.�/! 0 when � ! 0; (44)

jv�j 	 A.c0 � r/ 14 for 0 	 c0 � r 	 m; (45)

ju� � u0j C j�� � �0j 	 A.c0 � r/ 16 for 0 	 c0 � r 	 m; (46)

k.u�; v�/k.��/2C˛;˝ C k.u�; v�/k.���1/
2C˛;˝nBd0 .O/ 	 C2.�/; (47)

kv�k.��/
2C˛;˝\fc0�r�sg C kv�k

.���1/
2C˛;˝\fc0�r�sgnBd0 .O/ 	 C.s/; (48)

and

ku�k.��/
1C˛;˝\fc0�r�sg C ku�k

.���1/
1C˛;˝\fc0�r�sgnBd0 .O/ 	 C.s/ (49)

for some small positive constants ı1 and K2, while C1.�/, C2.�/ and C.s/ depend
only on the data, the background solution, as well as � and s, respectively.
Meanwhile, A and m are independent of 	 , and �0 is chosen such that �0 < m.

The proof of this theorem is long and technical. Thus, instead of proving it here, we
would like to illustrate the ideas by proving a simpler case when the wedge-angle is
near � . In this case, the background solution is constant, namely, .Ou; Ov/ D .u0; 0/.
Then the inhomogeneous terms vanish, and the uniform estimate of the smallness
between the solution and the background solution can easily be obtained. In fact,
the constants on the right-hand side of inequalities (47)–(49) are all multiplied by a
small term � � 	w. We now illustrate the proof below.

4.1 The Degenerate Elliptic Cut-off Near the Pseudo-sonic
Circle

First define the regions˝ 0 and ˝ 00 for any domain˝ as

˝ 0 WD ˝ \ f.�; �/ W distf.�; �/; �sonicg < 2�0g;
˝ 00 WD ˝ \ f.�; �/ W distf.�; �/; �sonicg > �0g

(50)

with a small constant �0 > 0. Obviously,˝ D ˝ 0 [˝ 00. In this subsection, we will
introduce a degenerate elliptic cut-off function �1 and also a cut-off function �M of
higher order smallness in ˝ 0. Since the equation we study requires more precise
estimates near �sonic, the elliptic cut-off function introduced in this subsection is
more accurate in comparison with that given in [6]. In addition, the elliptic cut-off
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function does not take its values simply on 'x , but on 'x � a in order to remove the
elliptic cut-off function, where a is some constant which is defined in the following
statement.

The leading term of the second-order elliptic equation for v is of the following
form:

�
c2 � .u � �/2�v�� � 2.u� �/.v � �/v�� C

�
c2 � .v � �/2�v��: (51)

Thus, in polar coordinates, we introduce the cut-off function �M for small quantities
of higher order as

�M D
8
<
:
s for jsj 	M;
M C 1 for jsj �M C 2;

so that

�M .�s/ D ��M .s/; 0 	 � 0
M.s/ 	 1 on R;

for some constant M to be determined later. We then rewrite the above form
by plugging the cut-off function into the terms involving higher order small
quantities as

�
.c0 � r/c0 C .� C 1/

�
.u � u0/ cos 	 C v sin 	 C c0�r

�C1
�
r CO1

�
vrr

C 2
r
O3vr	 C 1

r2
.c20 CO2/v		 C 1

r
.c20 CO2/vr � 2

r2
O3v	 ;

with

O1 D .c0 � r/2�M . O
'
1

.c0�r/2 /;

O2 D .c0 � r/�M . Oc2�c20�.O'
2 /
2

.c0�r/ /;

O3 D .c0 � r/ 32 �M .�O'
2 rCO'

3

.c0�r/3=2 /:

Therefore, the ellipticity of this form is equivalent to

.c0 � r/c0 C .� C 1/
�
.u � u0/ cos 	 C v sin 	 C c0 � r

� C 1
�
r > 0 and c2 > 0:

Next, for the degenerate elliptic cut-off, let �1 2 C1.R/ satisfy

�1.s/ D

8
ˆ̂̂<
ˆ̂̂
:

s if � 1
3.�C1/ < s <

7
6.�C1/ ;

� 2
3.�C1/ if s < � 1

.�C1/ ;
5

4.�C1/ if s > 4
3.�C1/ ;

(52)
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so that

� 0
1.s/ � 0 on R; (53)

˙� 00
1 .s/ � 0 on f˙s 	 0g: (54)

The value s that the cut-off function �1 takes on is

.u � u0/ cos 	 C v sin 	

c0 � r C 1

� C 1:

Then (51) becomes the following modified form:

A11v�� C 2A12v�� C A22v��;

where

A11 D c20 � .� � u0/2 C .� � 1/.c0 � r/r
�
�1
�
.u�u0/ cos 	Cv sin 	

c0�r C 1
�C1

� � 1
�C1

�

C 2.c0�r/.��u0/2

r

�
�1
�
.u�u0/ cos 	Cv sin 	

c0�r C 1
�C1

� � 1
�C1

�

C 1
r2

�
O1.� � u0/2 � 2O3.� � u0/�CO2�2

�
;

A12 D �.� � u0/�C 2.c0�r/.��u0/�
r

�
�1
�
.u�u0/ cos 	Cv sin 	

c0�r C 1
�C1

� � 1
�C1

�

C 1
r2

�
.O1 �O2/.� � u0/�CO3.� � u0/2 �O3�2

�
;

A22 D c20 � �2 C .� � 1/.c0 � r/r
�
�1
�
.u�u0/ cos 	Cv sin 	

c0�r C 1
�C1

� � 1
�C1

�

C 2.c0�r/�2
r

�
�1
�
.u�u0/ cos 	Cv sin 	

c0�r C 1
�C1

� � 1
�C1

�

C 1
r2

�
O1�

2 C 2O3.� � u0/�CO2.� � u0/2
�
:

4.2 The Uniform Elliptic Cut-off Away from the Pseudo-sonic
Circle

Let �2 2 C1 be a smooth increasing function such that

�2.s/ D
8<
:
s if s � �1;
1
2
�1 if s < 0;

(55)
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and j� 0
2.s/j 	 1. Let �2 be evaluated at c2 � U 2 � V 2. In ˝ 0, consider the following

modified system:

8
ˆ̂̂
<
ˆ̂̂
:

U2�2CV 2c2
U 2CV 2 u� C 2UV

U2CV 2 .�2 � c2/u� C V 2�2CU2c2
U 2CV 2 v� D 0;

v� D u�;

c2 D � ��1
2
.U 2 C V 2/ � .� � 1/ :

(56)

Finally, we combine the coefficients introduced above in D as follows. Let �3 2
C1.R/ satisfy

�3.s/ D
8
<
:
0 if s 	 2�0;
1 if s � 4�0;

0 	 � 0
3.s/ 	

10

�0
on R:

Then we define, for .�; u; v/ 2 R
3 and .�; �/ 2 D ,

Na11 D �3.c0 � r/U2�2CV 2c2U 2CV 2 C
�
1 � �3.c0 � r/

�
A11;

Na12 D �3.c0 � r/ UV
U2CV 2 .�2 � c2/C

�
1 � �3.c0 � r/

�
A12;

Na22 D �3.c0 � r/ V 2�2CU2c2U 2CV 2 C
�
1 � �3.c0 � r/

�
A22:

(57)

This transforms system (11) into the following modified system:

8̂
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
:̂

Na11u� C 2 Na12u� C Na22v� D 0;
v� D u�;

D. �  0/ D .u � u0; v/;

� D �� ��1
2
.U 2 C V 2/� .� � 1/ � 1

��1 :

(58)

4.3 A Second-Order Equation for v

In order to study the existence of solutions to system (58), we introduce a second-
order equation from this system for v, Q.vI u/, by taking the derivative of the first
equation with respect to � and then using the other equations to replace the unknown
terms. We have

Q.vI u/ WD Na11v�� C 2 Na12v�� C Na22v�� C b11v2� C b12v�v� C b22v2� C c1v� C c2v�
D 0; (59)
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where

jb11j C jb12j C jb22j < C

a11

with C depending on theC1-bounds of O and the cut-off functions �i and �M , while

d˛O.jc1j C jc2j/ <
C

a11

with C depending on k O k.�1�˛/;fO;P0g
2;˛;˝00 and dO.X/ D distfX;Og.

Near �sonic, in the .r; 	/-coordinates, this equation reads

.c0 � r/
�
1C .� C 1/�1

�
vrr C 1

c0
v		 C brvr

C .�C1/c20 sin 	�0

1

a11

�
v2r C cos 	

c0
.�.u � u0/ sin 	 C v cos 	/vr C .u�u0/ cos2 	Cv sin 	 cos 	

c0�r vr
�

� .2c20C.��1/r2/ cos 	�0

1

a11r
vrv	 CO1vr CO2vrv	 CO3v	 D 0;

(60)

where

br WD 1

a11

�
.sin2 	 C 1/�a11 cos2 	 C 2a12 sin 	 cos 	 C a22 sin2 	

�

�.� C 1/�c0 CO.1/.c0 � r/
�
r sin2 	�1

�
: (61)

Lemma 1. If

�1 � � 2

3.� C 1/ ;

then there exists an �0 > 0 such that, for any 0 	 c0 � r 	 �0, we have

� 9
8
.� C 1/maxf�1; 0g 	 br 	 C; (62)

where C is a uniform constant independent of 	 , u, and v.

This lemma is crucial for the proof of the uniform Hölder estimate of v near�sonic.
Finally, Eq. (60) can be rewritten in the divergent form by scaling as follows:

�
.c0 � r/

�
1C .� C 1/�1

�
vr
�
r
C
�
1

c0
v	

�

	

CO1vr CO2.c0 � r/.vr /2

CO3.c0 � r/vrv	 CO4v	 D 0; (63)

with jOi j 	 C , provided that sin 	 > 0.
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On the other hand, away from �sonic, we notice that the equation is strictly and
uniformly elliptic with the bounded coefficients depending only on ı0 and C .

4.4 The Different Boundary Conditions from Those Stated
in Theorem 3

The difference comes out at the free boundary. First, the condition for the free
boundary position can simply be proposed as

� 0 D � v

u
: (64)

Then take the derivative on the Rankine-Hugoniot condition along �shock and
use (64) to yield the oblique boundary condition on �shock:

M.2/v D ˇ.2/1 v� C ˇ.2/2 v� D 0 on �shock; (65)

with

ˇ
.2/
1 D .�Na11 C 2 Na12� 0/Fu � Na11Fv�

0;

ˇ
.2/
2 D �Na11Fv C Na22Fu�

0;

where, along �shock, F.u; v; '; �/ D 0.

4.5 Existence of Solutions for the Linearized Viscous Fixed
Boundary Problem for v

We now linearize the modified problem for v, and first show the local existence of
solutions near the wedge cornerO (where � 1

wedge and � 2
wedge meet) by the method of

continuity. Next we show the local existence near P2, where �shock and � 2
wedge meet.

With this local solvability, we focus on the proof of the global existence of solutions
by the Perron method, as used in [14, 16, 17].

Before proving the existence of solutions, we introduce some notations which are
important in the Perron method. The linearized problem is called locally solvable
if, for each y 2 N̋ , there is a neighborhood N D O.y/ \ ˝ such that, for any
h 2 C. NN/, there is a solution v 2 C2.N / \ C. NN/ of the problem:
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8
ˆ̂̂̂
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂̂
ˆ̂̂
:̂

Lv D 0 in N;

N .1/v
ˇ̌

NN\� 2wedge
D 0;

N .2/v
ˇ̌

NN\�shock
D 0;

v
ˇ̌
@N 0
D h;

v
ˇ̌
P2
D �g.�w; 	w/ tan.� � 	w/;

where @N 0 D @N \ ˝ . For brevity, as in [16], denote this function v by .h/y to
emphasize its dependence on h and y. Denote by S�.SC/ the set of all subsolutions
(supersolutions) of the problem. A subsolution or supersolution w 2 S˙ of the
linearized problem is a function w 2 C. N̋ / satisfying

˙�g.�w; 	w/ tan.� � 	w/C w
� 	 0 at P2

and

˙w 	 0 on NN \ .�sonic [ � 1
wedge/;

such that, for any y 2 N̋ , if ˙.h � w/ � 0 on @N 0, then

˙�.h/y � w
� � 0 in N.y/:

Then we show properties (i)–(vii) listed below to prove the global existence for
the linearized problem:

(i) If u1, u2 2 S�, then maxfu1; u2g 2 S�.
(ii) If u1 2 S� and y 2 N̋ , and if Nu1 is given by Nu1 D u1 in N̋ nN.y/ and
Nu1 D .u1/y in N.y/, then Nu1 2 S�.

(iii) If w˙ 2 S˙, then wC � w� in ˝ .
(iv) If w˙ 2 C2.N / \ C. NN/ satisfy LwC D Lw� in N \ ˝ , QMwC D QMw�

on N \ �wedge, and wC � w� in N \ ˝ , then either wC D w� in N or else
wC > w� in N .

(v) S˙ are non-empty.
(vi) Let fumg be a bounded sequence of C2.N / \ C. NN/-solutions of Lum D 0 in

N \˝ and QMum D 0 onN \�wedge. Then there is a convergent subsequence
fumg such that u D lim umi is a C2.N /-solution of Lu D 0 in N \ ˝ and
QM u D 0 on N \ �wedge.

(vii) For each x0 2 � 1
wedge[�sonic[fP2g, there are sequences fwṁg of subsolutions

and supersolutions such that lim wṁ .x0/ D u.x0/.
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4.6 Existence of Solutions for the Modified Nonlinear Fixed
Boundary Problem for v

Once the linearized problem is solved, the existence for the modified nonlinear
problem can be proved by the Leray-Schauder fixed point theorem (cf. Theorem
11.3 in [14]).

To achieve this, we first introduce the sets H � defined in a bounded domain ˝
and K � in a bounded domain .��1 tan.� � 	w/; �1�, depending on the given values
	w, �0, �1 and u0, as follows:

Definition 3. The elements of H � 2 C2C˛
.��/ satisfy:

(H1) u D u0 on �sonic;
(H2) ju � u0j 	 A0.c0 � r/1=6 when jc0 � r j is small, independent of 	 ;
(H3) kuk.��/2C˛ 	 A1.�/;
(H4) kuk.���1/

2C˛ 	 A2.�/ away from the wedge-angleO .

Definition 4. The elements of K � 2 C2C˛ satisfy:

(K1) �.�1/ D �1;
(K2) � 0.�1/ D 0;
(K3) j�.�/ � O�.�/j 	 ı�;
(K4) 0 	 � 0.�/ 	 K2.

The weighted HRolder space is defined in (21). The values of ˛, � 2 .0; 1/,
as well asKi , ı1, and Ai , will be specified later. Obviously, H � and K � are closed,
bounded, and convex.

The crucial step to apply the fixed point theorem is then to prove the following
uniform estimates which are also stated in Sect. 3:

Lemma 2. For given Ki , ı1, and Ai for K � and H � , there exist ��, ˛0 2 .0; 1/,
and d0 > 0 such that any solution v 2 C2C˛

.��/.˝/ \ C2C˛
.���1/.˝nBd0.O// to the

nonlinear problem v D �Tv with ˛ 	 ˛0, � 	 ��, and � 2 Œ0; 1� satisfies

kvk.��/2C˛;˝ 	 C tan.� � 	w/; (66)

kvk.�1��/
2C˛;f˝nBd0 .P0/g 	 C tan.� � 	w/; (67)

and

� g.�w; 	w/ tan.� � 	w/ 	 v 	 0; (68)

where C is independent of v.
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Finally, we can show that the solution obtained in this subsection is unique by the
maximum principle, which will be used to demonstrate that the mapping introduced
in Sect. 4.7 is well-defined.

4.7 Existence of Solutions for the Modified Nonlinear Fixed
Boundary Problem for .�; u; v/

Thanks to the uniform estimates of v and then u near �sonic stated in Sect. 3, we
can prove the existence for the modified nonlinear fixed boundary problem (36) and
(38)–(42) by the Leray-Schauder fixed point theorem.

From Sect. 4.6, for every u 2 H � , there exists a unique v 2 C .��/
2C˛ satisfying

kvk.��/2C˛ < C tan.� � 	w/. Thus, we can define a mapping for u as

S W u ! Nu;

in the following:

Nu.�; �/ D Su WD u0 C
Z �

�.�/

v�.�; s/ds; (69)

where .�; �.�// denotes the point on the sonic circle �sonic. For the other quantities
� and  , we can obtain them once the nonlinear problem for u and v is established
as follows:

 � D U D u � �;  � D V D v � �;
� D � � .� � 1/ � ��1

2
.U 2 C V 2/

� 1
��1 :

(70)

Furthermore, for the solutions to the nonlinear equations, we can prove v and then
' is monotone along �shock by a contradiction argument.

4.8 The Free Boundary Problem

We can now prove the existence of solutions to the free boundary value problem.
As indicated above, for any given boundary � D �.�/ 2 K � , which is a small
perturbation of the background solution � D �1, we solve the fixed boundary
problem and then give an updated boundary by

J.�/.�/

d�
D � v�

u�
with J.�/.�1/ D �1: (71)
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The fixed point theorem which will be used here is the standard Schauder theorem
(cf. Corollary 11.2, [14]). Then Theorem 3 is proved.

4.9 The Limiting Solution and the Equivalence to the Original
System

We now study the limiting solution, as the elliptic regularization parameter � tends
to zero, to obtain a solution to system (58) and then to the original system, i.e. the
potential flow equation, which we will study next to remove the elliptic cut-off.
In fact, we can establish the following existence result.

Proposition 1. There exist constants �� > 0, ˛0 > 0, and ı0 > 0 small enough
such that, for any � < ��, ˛ < ˛0, and � � ı0 	 	w < � , there exists a solution

.u; v/ 2 .C ˛.˝/ \ : : :/2

with .u � �; v � �/ D . � ;  �/ to problem (58), (38)–(40), (42), (64), and (65), i.e.

8
ˆ̂̂
<
ˆ̂̂
:

Na11u� C 2 Na12u� C Na22v� D 0;
v� D u�;

D. �  0/ D .u � u0; v/;

(72)

so that the velocity potential  satisfies (8) in ˝ , i.e.,

div
�
�.jr j2;  /D �C 2�.jr j2;  / D 0; (73)

the slip boundary condition on �wedge with ' D  �  0:

'� D 0 (74)

with � the normal direction and the following boundary conditions on �shock:

' D '1; (75)

F.'�; '�; '; �/ D 0; (76)

where F.p; z; �/ D 0 comes from the Rankine-Hugoniot condition satisfying
F.0; 0; �/ D 0, DpF � � ¤ 0, and DzF ¤ 0. Moreover, on �sonic, the velocity
potential  satisfies the Dirichlet boundary condition:

 D  0: (77)
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4.10 Removal of the Cut-off Function �M for the Higher Order
Smallness

It is convenient to study this problem in the new coordinates introduced by .x; y/ D
.c0 � r; 	 � 	1/ near �sonic. Then the equation reads

�
c0x C .� C 1/c0x�

�
1

�C1 � 'x
x

�CO1
�
'xx CO2'xy C .1CO3/'yy

�.c0 CO3/'x �O2'y D 0;
(78)

with

O1 	 .M C 1/jxj2; O2 	 .M C 1/jxj 32 ; jO3j 	 .M C 1/jxj;

due to the cut-off function �M . By a scaling argument, we have the following
estimates to remove the cut-off function �M for the higher order smallness:

0 	 ' 	 3

5.� C 1/x
2 in ˝ \ fc0 � r 	 2�0g (79)

and

k'k.�1�˛/
2C˛;˝\fc0�r�sg 	 C.s/.� � 	w/ (80)

for all s 2 .0; 8�0/ with C.s/ depending only on the data and s.

4.11 Removal of the Degenerate Elliptic Cut-off

Now we remove the degenerate elliptic cut-off �1 in the .x; y/-coordinates with

.x; y/ D .c0 � r; 	 � 	1/ in ˝ \ fc0 � r < 4�0g:

In this subsection, we let j� � 	wj be sufficiently small, depending only on the data,
so that ' is a solution of the shock diffraction problem. Since the elliptic cut-off
introduced here is more precise than that given in [6] and since sin 	 may be 0
at P0, the argument cannot be applied directly; we need a more careful argument to
re-control it.

First we bound 'x near P1 by the following lemma:

Lemma 3. For j� � 	wj sufficiently small, we have

� x

6.� C 1/ 	 'x 	
4x

3.� C 1/ in ˝ \ fx 	 4�0g \ fy 	 4�2g: (81)
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Next, away from P1, we bound 'x with an additional assumption, by the
following lemma:

Lemma 4. Assume that

j' � x2

2.� C 1/ j 	 C1x
2C˛ in ˝ \ fx 	 2�0g \ fy � 2�2g: (82)

Then, for j� � 	wj sufficiently small, we have

� x

3.� C 1/ 	 'x�
x

� C 1 	
x

3.� C 1/ in ˝\fx 	 4�0g\fx � 2�2g: (83)

For this lemma, we first prove that the cut-off function can be removed when x is
small enough, which may depend on y. Then, in this domain, rewrite this equation
in a more convenient form and scale it to obtain a uniform estimate to guarantee that
the removal can be extended to x D 2�0 independent of y.

With this proposition in hand, the remaining task is to show that (82) holds for
some ˛ < 1

2
, which is proved in the following lemma.

Lemma 5. For j� � 	wj sufficiently small, we have

j' � x2

2.� C 1/ j 	 C1x
2C˛ in ˝ \ fx 	 �0g \ fy � 2�2g; (84)

where C1 and �0 depend only on the data.

This completes the proof of the existence theory of the shock diffraction
configuration with the required properties stated in Definition 2 when � � 	w is
small. If it is large, using the same idea but with more technicalities, we can
obtain that, for any �w 2 I , there exists a constant ı0 > 0 such that, for any
�w � ı0 < 	w 	 �w, there is a solution W .	w/ D .U .	w/; V .	w// close to W .�w/.
Then, from the estimates stated above, we obtain that .	w;W

.	w// belongs to the
solution set defined in Definition 2. This means that the set I is open. Thus, from
the fact that I is closed and nonempty, we then finally have .	c ; �/ � I . For further
details, see Chen-Xiang [8].
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Some Wellposedness Results
for the Ostrovsky–Hunter Equation

G.M. Coclite, L. di Ruvo, and K.H. Karlsen

Abstract The Ostrovsky-Hunter equation provides a model for small-amplitude
long waves in a rotating fluid of finite depth. It is a nonlinear evolution equation.
In this paper the welposedness of the Cauchy problem and of an initial boundary
value problem associated to this equation is studied.

Keywords Existence • Uniqueness • Stability • Entropy solutions • Conserva-
tion laws • Ostrovsky-Hunter equation • Boundary value problems • Cauchy
problems
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1 Introduction

The non-linear evolution equation

@x.@tuC @xf .u/� ˇ@3xxxu/ D �u; (1)

with ˇ; � 2 R and f .u/ D u2

2
was derived by Ostrovsky [20] to model small-

amplitude long waves in a rotating fluid of finite depth. This equation generalizes the
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Korteweg-deVries equation (corresponding to � D 0) by an additional term induced
by the Coriolis force. It is deduced by considering two asymptotic expansions of the
shallow water equations, first with respect to the rotation frequency and then with
respect to the amplitude of the waves [8].

Mathematical properties of the Ostrovsky equation (1) have been studied recently
in great depth, including the local and global well-posedness in energy space [7,12,
14, 25], stability of solitary waves [10, 13, 15], and convergence of solutions in the
limit of the Korteweg-deVries equation [11, 15]. We shall consider the limit of the
no high-frequency dispersion ˇ D 0, therefore (1) reads

@x.@tuC @xf .u// D �u: (2)

In this form, Eq. (2) is known under various different names such as the reduced
Ostrovsky equation [21, 23], the Ostrovsky-Hunter equation [3], the short-wave
equation [8], and the Vakhnenko equation [18, 22].

Integrating (2) with respect to x we obtain the integro-differential formulation of
(2) (see [16])

@tuC @xf .u/ D �
Z x

u.t; y/dy;

which is equivalent to

@tuC @xf .u/ D �P; @xP D u:

Due to the regularizing effect of the P equation we have that

u 2 L1
loc H) P 2 L1..0; T /IW 1;1

loc /; T > 0:

The flux f is assumed to be smooth, Lipschitz continuous, and genuinely
nonlinear, i.e.:

f 2 C2.R/; jfu 2 RIf 00.u/ D 0gj D 0; f 0.0/ D 0; jf 0.�/j 	 L;
(3)

and the constant � is assumed to be real
Since the solutions are merely locally bounded, the Lipschitz continuity of the

flux f assumed in (3) guarantees the finite speed of propagation of the solutions
of (2).

This paper is devoted to the wellposedness of the initial-boundary value problem
(see Sect. 2) and the Cauchy problem (see Sect. 3) for (2). Our existence argument
is based on a passage to the limit using a compensated compactness argument [24]
in a vanishing viscosity approximation of (8):

@tu" C @xf .u"/ D �P" C "@2xxu"; @xP" D u":



Some Wellposedness Results for the Ostrovsky–Hunter Equation 145

On the other hand we use the method of [9] for the uniqueness and stability of the
solutions of (2).

2 The Initial Boundary Value Problem

In this section, we augment (2) with the boundary condition

u.t; 0/ D 0; t > 0; (4)

and the initial datum

u.0; x/ D u0.x/; x > 0: (5)

We assume that

u0 2 L2.0;1/\ L1
loc.0;1/;

Z 1

0

u0.x/dx D 0: (6)

The zero mean assumption on the initial condition is motivated by (2). Indeed,
integrating both sides of (2) we have that u.t; �/ has zero mean for every t > 0,
therefore it is natural to assume the same on the initial condition.

Integrating (2) on .0; x/ we obtain the integro-differential formulation of the
initial-boundary value problem (2), (4), (5) (see [16])

8
ˆ̂<
ˆ̂:

@tuC @xf .u/ D �
R x
0

u.t; y/dy; t > 0; x > 0;

u.t; 0/ D 0; t > 0;

u.0; x/ D u0.x/; x > 0:

(7)

This is equivalent to

8̂
ˆ̂̂
<
ˆ̂̂
:̂

@tuC @xf .u/ D �P; t > 0; x > 0;

@xP D u; t > 0; x > 0;

u.t; 0/ D P.t; 0/ D 0; t > 0;

u.0; x/ D u0.x/; x > 0:

(8)

Due to the regularizing effect of the P equation in (8) we have that

u 2 L1
loc..0;1/2/ H) P 2 L1

loc..0;1/IW 1;1
loc .0;1//: (9)
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Therefore, if a map u 2 L1
loc..0;1/2/ satisfies, for every convex map � 2 C2.R/,

@t�.u/C @xq.u/� ��0.u/P 	 0; q.u/ D
Z u

f 0.�/�0.�/ d�; (10)

in the sense of distributions, then [5, Theorem 1.1] provides the existence of a strong
trace u�0 on the boundary x D 0.

Definition 1. We say that u 2 L1
loc..0;1/2/ is an entropy solution of the initial-

boundary value problem (2), (4), and (5) if:

(i) u is a distributional solution of (7) or equivalently of (8);
(ii) for every convex function � 2 C2.R/ the entropy inequality (10) holds in the

sense of distributions in .0;1/ � .0;1/;
(iii) for every convex function � 2 C2.R/ with corresponding q defined by q0 D

f 0�0, the boundary entropy condition

q.u�0.t// � q.0/ � �0.0/
.u�0.t//

2

2
	 0 (11)

holds for a.e. t 2 .0;1/, where u�0.t/ is the trace of u on the boundary x D 0.

We observe that the previous definition is equivalent to the following inequality
(see [2]):

Z 1

0

Z 1

0

.ju � cj@t� C sign .u � c/ .f .u/� f .c//@x�/dt dx

C �
Z 1

0

Z 1

0

sign .u � c/P dt dx

�
Z 1

0

sign .c/ .f .u�0.t// � f .c//dt

C
Z 1

0

ju0.x/ � cj�.0; x/dx � 0;

for every non-negative � 2 C1.R2/ with compact support, and for every c 2 R.
The main result of this section is the following theorem.

Theorem 1. Assume (3), (5), and (6). The initial-boundary value problem (2), (4),
and (5) possesses a unique entropy solution u in the sense of Definition 1. Moreover,
if u and v are two entropy solutions (2), (4), (5) in the sense of Definition 1 the
following inequality holds

ku.t; �/� v.t; �/kL1.0;R/ 	 eC t ku.0; �/� v.0; �/kL1.0;RCLt/ ; (12)

for almost every t > 0, R; T > 0, and a suitable constant C > 0.
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Our existence argument is based on a passage to the limit in a vanishing viscosity
approximation of (8). Fix a small number " > 0, and let u" D u".t; x/ be the unique
classical solution of the following mixed problem

8̂
ˆ̂̂
<
ˆ̂̂̂
:

@tu" C @xf .u"/ D �P" C "@2xxu"; t > 0; x > 0;

@xP" D u"; t > 0; x > 0;

u".t; 0/ D P".t; 0/ D 0; t > 0;

u".0; x/ D u";0.x/; x > 0;

(13)

where u";0 is a C1.0;1/ approximation of u0 such that

ku";0kL2.0;1/ 	 ku0kL2.0;1/ ;

Z 1

0

u";0.x/dx D 0: (14)

Clearly, (13) is equivalent to the integro-differential problem

8
ˆ̂<
ˆ̂:

@tu" C @xf .u"/ D �
R x
0

u".t; y/dyC "@2xxu"; t > 0; x > 0;

u".t; 0/ D 0; t > 0;

u".0; x/ D u";0.x/; x > 0:

(15)

The existence of such solutions can be obtained by fixing a small number ı > 0

and considering the further approximation of (13) (see [4])

8
ˆ̂̂̂
<
ˆ̂̂̂
:

@tu";ı C @xf .u";ı/ D �P";ı C "@2xxu";ı; t > 0; x > 0;

�ı@2xxP";ı C @xP";ı D u";ı; t > 0; x > 0;

u";ı.t; 0/ D P";ı.t; 0/ D @xP";ı.t; 0/ D 0; t > 0;

u";ı.0; x/ D u";0.x/; x > 0;

and then sending ı ! 0.
Let us prove some a priori estimates on u".

Lemma 1. The following statements are equivalent

Z 1

0

u".t; x/dx D 0; t � 0; (16)

d

dt

Z 1

0

u2"dxC 2"
Z 1

0

.@xu"/
2dx D 0; t > 0: (17)

Proof. Let t > 0. We begin by proving that (16) implies (17). Multiplying (15)
by u" and integrating over .0;1/ gives
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1

2

d

dt

Z
1

0

u2"dx D
Z

1

0

u"@tu"dx

D "
Z

1

0

u"@
2
xxu"dx �

Z
1

0

u"f
0.u"/@xu"dxC �

Z
1

0

u"
� Z x

0

u"dy
�

dx

D �"
Z

1

0

.@xu"/
2dxC �

Z
1

0

u"
� Z x

0

u"dy
�

dx:

For (13),

Z 1

0

u"
� Z x

0

u"dy
�

dx D
Z 1

0

P".t; x/@xP".t; x/dx D 1

2
P 2
" .t;1/:

Then,

d

dt

Z 1

0

u2"dxC 2"
Z 1

0

.@xu"/
2dx D �P 2

" .t;1/: (18)

Thanks to (16),

lim
x!1P2

" .t; x/ D
� Z 1

0

u".t; x/dx
�2 D 0: (19)

Now (18) and (19) give (17).
Let us show that (17) implies (16). We assume by contraddiction that (16) does

not hold, namely:

Z 1

0

u".t; x/dx ¤ 0:

For (13),

P2
" .t;1/ D

� Z 1

0

u".t; x/dx
�2 ¤ 0:

Therefore, (18) gives

d

dt

Z 1

0

u2"dxC 2"
Z 1

0

.@xu"/
2dx ¤ 0;

which contradicts (17). ut
Lemma 2. For each t � 0, (16) holds true. In particular, we have that

ku".t; �/k2L2.0;1/ C 2"
Z t

0

k@xu".s; �/k2L2.0;1/ ds 	 ku0k2L2.0;1/ : (20)
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Proof. We begin by observing that u".t; 0/ D 0 implies @tu".t; 0/ D 0. Thus, thanks
to (3),

"@2xxu".t; 0/ D @tu".t; 0/C f 0.u".t; 0//@xu".t; 0/� �
Z 0

0

u".t; x/dx D 0: (21)

Differentiating (15) with respect to x, we have

@x.@tu" C @xf .u"/� "@2xxu"/ D �u":

For (21) and the smoothness of u", an integration over .0;1/ gives (16). Lemma 1
says that (17) also holds true. Therefore, integrating (17) on .0; t/, for (14), we
have (20). ut
Lemma 3. We have that

fu"g">0 is bounded in L1
loc..0;1/2/: (22)

Consequently,

fP"g">0 is bounded in L1
loc..0;1/2/: (23)

Proof. Thanks to (15), (20), and the Hölder inequality,

@tu" C @xf .u"/� "@2xxu" D �
Z x

0

u".t; y/dy 	 �
ˇ̌
ˇ
Z x

0

u".t; y/dy
ˇ̌
ˇ

	 �
Z x

0

ju".t; y/jdy 	 �px ku".t; �/kL2.0;1/

	 �px ku0kL2.0;1/ :

Let v, w, v", and w" be the solutions of the following equations:

8
ˆ̂<
ˆ̂:

@tvC @xf .v/ D � ku0kL2.0;1/

p
x; t > 0; x > 0;

v.t; 0/ D 0; t > 0;

v.0; x/ D u0.x/; x > 0;

8̂
<̂
ˆ̂:

@twC @xf .w/ D �� ku0kL2.0;1/

p
x; t > 0; x > 0;

w.t; 0/ D 0; t > 0;

w.0; x/ D u0.x/; x > 0;
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8
ˆ̂<
ˆ̂:

@tv" C @xf .v"/ D � ku0kL2.0;1/

p
x C "@2xxv"; t > 0; x > 0;

v".t; 0/ D 0; t > 0;

v".0; x/ D u";0.x/; x > 0;

8̂
<̂
ˆ̂:

@tw" C @xf .w"/ D �� ku0kL2.0;1/

p
x C "@2xxw"; t > 0; x > 0;

w".t; 0/ D 0; t > 0;

w".0; x/ D u";0.x/; x > 0;

respectively. Then u", v", and w" are respectively a solution, a supersolution, and a
subsolution of the parabolic problem

8
ˆ̂<
ˆ̂:

@t q C @xf .q/ D �
R x
0 u".t; y/dyC "@2xxq; t > 0; x > 0;

q.t; 0/ D 0; t > 0;

q.0; x/ D u";0.x/; x > 0:

Thus, see [6, Chap. 2, Theorem 9],

w" 	 u" 	 v":

Moreover, fw"g">0 and fv"g">0 are uniformly bounded in L1
loc..0;1/2/ and con-

verge to w and v respectively, see [1, 17]. Therefore the two functions

W D inf
">0

w"; V D sup
">0

v"

belong to L1
loc..0;1/2/ and satisfy

W 	 w" 	 u" 	 v" 	 V: (24)

This gives (22). Since

jP".t; x/j D
ˇ̌
ˇ
Z x

0

u".t; y/dy
ˇ̌
ˇ 	

Z x

0

ju".t; y/jdy;

(23) follows from (22). ut
Let us continue by proving the existence of a distributional solution to (2), (4),

and (5) satisfying (10).

Lemma 4. There exists a function u 2 L1
loc..0;1/2/ that is a distributional

solution of (8) and satisfies (10) for every convex entropy � 2 C2.R/.

We construct a solution by passing to the limit in a sequence fu"g">0 of viscosity
approximations (13). We use the compensated compactness method [24].



Some Wellposedness Results for the Ostrovsky–Hunter Equation 151

Lemma 5. There exist a subsequence fu"kgk2N of fu"g">0 and a limit function u 2
L1

loc..0;1/2/ such that

u"k ! u a:e: and in Lploc..0;1/2/; 1 	 p <1: (25)

Moreover, we have

P"k ! P a:e: and in Lploc.0;1IW 1;p
loc .0;1//; 1 	 p <1; (26)

where

P.t; x/ D
Z x

0

u.t; y/dy; t � 0; x � 0:

Proof. Let � W R ! R be any convex C2 entropy function, and q W R ! R be the
corresponding entropy flux defined by q0 D f 0�0. By multiplying the first equation
in (13) by �0.u"/ and using the chain rule, we get

@t�.u"/C @xq.u"/ D "@2xx�.u"/„ ƒ‚ …
DWL1;"

�"�00.u"/ .@xu"/
2

„ ƒ‚ …
DWL2;"

C��0.u"/P"„ ƒ‚ …
DWL3;"

;

where L1;", L2;", L3;" are distributions.
Thanks to Lemma 2

L1;" ! 0 in H�1
loc ..0;1/2/;

fL2;"g">0 is uniformly bounded in L1loc..0;1/2/:
We prove that

fL3;"g">0 is uniformly bounded in L1loc..0;1/2/:

Let K be a compact subset of .0;1/2. For Lemma 3,

����0.u"/P"
��
L1.K/

D �
ZZ

K

j�0.u"/jjP"jdt dx

	 � ���0.u"/
��
L1.K/

kP"kL1.K/ jKj:

Therefore, Murat’s lemma [19] implies that

f@t�.u"/C @xq.u"/g">0 lies in a compact subset of H�1
loc ..0;1/2/. (27)

The L1
loc bound stated in Lemma 3, (27), and Tartar’s compensated compactness

method [24] give the existence of a subsequence fu"kgk2N and a limit function u 2
L1

loc..0;1/2/ such that (25) holds.
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Finally, (26) follows from (25), the Hölder inequality, and the identities

P"k .t; x/ D
Z x

0

u"k .t; y/dy; @xP"k D u"k :

Moreover, [5, Theorem 1.1] tells us that the limit u admits a strong boundary
trace u�0 at .0;1/ � fx D 0g. Since, arguing as in [5, Sect. 3.1] (indeed our
solution is obtained as the vanishing viscosity limit of (8)), [5, Lemma 3.2] and
the boundedness of the source term P (cf. (9)) imply (11). ut
We are now ready for the proof of Theorem 1.

Proof (Proof of Theorem 1). Lemma (5) gives the existence of an entropy solution
u.t; x/ of (7), or equivalently (8).

Let us show that u.t; x/ is unique, and that (12) holds true. Since our solutions
is only locally bounded we use the doubling of variables method and get local
estimates based on the finite speed of propagation of the waves generated by (2).
Let u; v be two entropy solutions of (7), or equivalently of (8), and 0 < t < T .
By arguing as in [2,9], using the fact that the two solutions satisfy the same boundary
conditions, we can prove that

@t .ju� vj/C @x..f .u/� f .v//sign .u � v//� �sign .u � v/ .Pu � Pv/ 	 0

holds in the sense of distributions in .0;1/ � .0;1/, and

ku.t; �/� v.t; �/kI.t/ 	 ku0 � v0kI.0/

C�
Z t

0

Z

I.s/

sign .u � v/ .Pu � Pv/ds dx;
0 < t < T; (28)

where

Pu.t; x/ D
Z x

0

u.t; y/dy; Pv D
Z x

0

v.t; y/dy; I.s/ D .0;RC L.t � s//;

and L is the Lipschitz constant of the flux f .
Since

�

Z t

0

Z

I.s/

sign .u � v/ .Pu � Pv/ds dx 	 �
Z t

0

Z

I.s/

jPu � Pvjds dx

	 �
Z t

0

Z

I.s/

�ˇ̌
ˇ
Z x

0

ju � vjdy
ˇ̌
ˇ
�

ds dx
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	 �
Z t

0

Z

I.s/

�ˇ̌
ˇ
Z

I.s/

ju � vjdy
ˇ̌
ˇ
�

ds dx

D �
Z t

0

jI.s/j ku.s; �/� v.s; �/kL1.I.s// ds;

(29)

and

jI.s/j D R CL.t � s/ 	 RC Lt 	 RC LT; (30)

we can consider the following continuous function:

G.t/ D ku.t; �/� v.t; �/kL1.I.t// ; t � 0: (31)

Using this notation, it follows from (28)–(30) that

G.t/ 	 G.0/C C
Z t

0

G.s/ds;

where C D �.RC LT /. Gronwall’s inequality and (31) give

ku.t; �/� v.t; �/kL1.0;R/ 	 eC t ku0 � v0kL1.0;RCLt/ ;

that is (12). ut

3 The Cauchy Problem

Let us consider now the Cauchy problem associated to (2). Since the arguments are
similar to those of the previous section we simply sketch them, highlighting only
the differences between the two problems.

In this section we augment (2) with the initial datum

u.0; x/ D u0.x/; x 2 R: (32)

We assume that

u0 2 L2.R/\ L1
loc.R/;

Z

R

u0.x/dx D 0: (33)

Indeed, integrating both sides of (2) we have that u.t; �/ has zero mean for every
t > 0, therefore it is natural to assume the same on the initial condition. We rewrite
the Cauchy problem (2), (32) in the following way
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(
@tuC @xf .u/ D �

R x
0

u.t; y/dy; t > 0; x 2 R;

u.0; x/ D u0.x/; x 2 R;
(34)

or equivalently
8̂
ˆ̂̂
<
ˆ̂̂
:̂

@tuC @xf .u/ D �P; t > 0; x 2 R;

@xP D u; t > 0; x 2 R;

P.t; 0/ D 0; t > 0;

u.0; x/ D u0.x/; x 2 R:

(35)

Due to the regularizing effect of the P equation in (35) we have that

u 2 L1
loc..0;1/ � R/ H) P 2 L1

loc..0;1/IW 1;1
loc .R//:

Definition 2. We say that u 2 L1
loc..0;1/�R/ is an entropy solution of the initial

value problem (2), and (32) if:

(i) u is a distributional solution of (34) or equivalently of (35);
(ii) For every convex function � 2 C2.R/ the entropy inequality

@t �.u/C @xq.u/� ��0.u/P 	 0; q.u/ D
Z u

f 0.�/�0.�/ d�; (36)

holds in the sense of distributions in .0;1/ � R.

The main result of this section is the following theorem.

Theorem 2. Assume (32) and (33). The initial value problem (2) and (32) possesses
a unique entropy solution u in the sense of Definition 2. Moreover, if u and v are two
entropy solutions (2) and (32), in the sense of Definition 2 the following inequality
holds

ku.t; �/� v.t; �/kL1.�R;R/ 	 eC t ku.0; �/� v.0; �/kL1.�R�Lt;RCLt/ ; (37)

for almost every t > 0, R; T > 0, and a suitable constant C > 0.

Our existence argument is based on a passage to the limit in a vanishing viscosity
approximation of (35).

Fix a small number " > 0, and let u" D u".t; x/ be the unique classical solution
of the following mixed problem

8̂
ˆ̂̂
<
ˆ̂̂̂
:

@tu" C @xf .u"/ D �P" C "@2xxu"; t > 0; x 2 R;

@xP" D u"; t > 0; x 2 R;

P".t; 0/ D 0; t > 0;

u".0; x/ D u";0.x/; x 2 R;

(38)
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where u";0 is a C1.R/ approximation of u0 such that

ku";0kL2.R/ 	 ku0kL2.R/ ;
Z

R

u";0.x/dx D 0: (39)

Clearly, (38) is equivalent to the integro-differential problem

(
@tu" C @xf .u"/ D �

R x
0

u".t; y/dyC "@2xxu"; t > 0; x 2 R;

u".0; x/ D u";0.x/; x 2 R:
(40)

The existence of such solutions can be obtained by fixing a small number ı > 0 and
considering the further approximation of (38) (see [4])

8
ˆ̂̂
<̂
ˆ̂̂
:̂

@tu";ı C @xf .u";ı/ D �P";ı C "@2xxu";ı; t > 0; x 2 R;

�ı@2xxP";ı C @xP";ı D u";ı; t > 0; x 2 R;

P";ı.t; 0/ D 0; t > 0;

u";ı.0; x/ D u";0.x/; x 2 R;

and then sending ı ! 0.
Let us prove some a priori estimates on u". Arguing as in Lemma 1 we have the

following.

Lemma 6. Let us suppose that

P".t;�1/ D 0; t � 0; .or P".t;1/ D 0/; (41)

where P".t; x/ is defined in (38). Then the following statements are equivalent

Z

R

u".t; x/dx D 0; t � 0; (42)

d

dt

Z

R

u2"dxC 2"
Z

R

.@xu"/
2dx D 0; t > 0: (43)

Lemma 7. For each t � 0, (42) holds true, and

P".t;1/ D P".t;�1/ D 0: (44)

In particular, we have that

ku".t; �/k2L2.R/ C 2"
Z t

0

k@xu".s; �/k2L2.R/ ds 	 ku0k2L2.R/ : (45)
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Proof. Differentiating (40) with respect to x, we have

@x.@tu" C @xf .u"/� "@2xxu"/ D u":

Since u" is a smooth solution of (40), an integration over R gives (42).
Again for the regularity of u", from (38), we get

lim
x!�1.@tu" C @xf .u"/ � "@

2
xxu"/ D �

Z �1

0

u".t; x/dx D �P".t;�1/ D 0;

lim
x!1.@t su" C @xf .u"/ � "@

2
xxu"/ D �

Z 1

0

u".t; x/dx D �P".t;1/ D 0;

that is (44).
Lemma 6 says that (43) also holds true. Therefore, integrating (43) on .0; t/, for

(39), we have (45). ut
Arguing as in Lemma 3 we obtain the following lemma:

Lemma 8. We have that

fu"g">0 is bounded in L1
loc..0;1/ � R/: (46)

Consequently,

fP"g">0 is bounded in L1
loc..0;1/ �R/: (47)

Let us continue by proving the existence of a distributional solution to (2) and
(5) satisfying (36).

Lemma 9. There exists a function u 2 L1
loc..0;1/ � R/ that is a distributional

solution of (35) and satisfies (36) for every convex entropy � 2 C2.R/.

We construct a solution by passing to the limit in a sequence fu"g">0 of viscosity
approximations (38). We use the compensated compactness method [24].

Lemma 10. There exists a subsequence fu"kgk2N of fu"g">0 and a limit function
u 2 L1

loc..0;1/ � R/ such that

u"k ! u a:e: and in Lploc..0;1/� R/; 1 	 p <1: (48)

Moreover, we have

P"k ! P a:e: and in Lploc..0;1/IW 1;p

loc .R//; 1 	 p <1; (49)

where

P.t; x/ D
Z x

0

u.t; y/dy; t � 0; x 2 R:
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Proof. Let � W R ! R be any convex C2 entropy function, and q W R ! R be the
corresponding entropy flux defined by q0 D f 0�0. By multiplying the first equation
in (38) by �0.u"/ and using the chain rule, we get

@t�.u"/C @xq.u"/ D "@2xx�.u"/„ ƒ‚ …
DWL1;"

�"�00.u"/ .@xu"/
2

„ ƒ‚ …
DWL2;"

C��0.u"/P"„ ƒ‚ …
DWL3;"

;

where L1;", L2;", L3;" are distributions.
Arguing as in Lemma 5, we have that

L1;" ! 0 in H�1
loc ..0;1/ �R/;

fL2;"g">0 and fL3;"g">0 are uniformly bounded in L1loc..0;1/� R/:

Therefore, Murat’s lemma [19] implies that

f@t�.u"/C @xq.u"/g">0 lies in a compact subset of H�1
loc ..0;1/� R/. (50)

The L1
loc bound stated in Lemma 8, (50), and Tartar’s compensated compactness

method [24] imply the existence of a subsequence fu"kgk2N and a limit function
u 2 L1

loc..0;1/ � R/ such that (48) holds.
Finally, (49) follows from (48), the Hölder inequality, and the identities

P"k .t; x/ D
Z x

0

u"k .t; y/dy; @xP"k D u"k : ut

We are now ready for the proof of Theorem 2.

Proof (Proof of Theorem 2). Lemma (10) gives the existence of an entropy solution
u of (7), or equivalently (35).

Let us show that u is unique, and that (37) holds true. Let u; v be two entropy
solutions of (7) or equivalently of (35) and 0 < t < T . Arguing as in [9] we can
prove that

ku.t; �/� v.t; �/kI.t/ 	 ku0 � v0kI.0/

C�
Z t

0

Z

I.s/

sign .u � v/ .Pu � Pv/ds dx
0 < t < T; (51)

where

Pu.t; x/ D
Z x

0

u.t; y/dy; Pv D
Z x

0

v.t; y/dy; I.s/ D .�R�L.t�s/; RCL.t�s//;

and L is the Lipschitz constant of the flux f.
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Since

�

Z t

0

Z

I.s/

sign .u � v/ .Pu � Pv/ds dx 	 �
Z t

0

Z

I.s/

jPu � Pvjds dx

	 �
Z t

0

Z

I.s/

�ˇ̌
ˇ
Z x

0

ju � vjdy
ˇ̌
ˇ
�

ds dx

	 �
Z t

0

Z

I.s/

�ˇ̌
ˇ
Z

I.s/

ju � vjdy
ˇ̌
ˇ
�

ds dx

D �

Z t

0

jI.s/j ku.s; �/� v.s; �/kL1.I.s// ds;

(52)

and

jI.s/j D 2RC 2L.t � s/ 	 2RC 2Lt 	 2RC 2LT; (53)

we can consider the following continuous function:

G.t/ D ku.t; �/� v.t; �/kL1.I.t// ; t � 0: (54)

It follows from (51) to (53) that

G.t/ 	 G.0/C C
Z t

0

G.s/ds;

where C D �.2RC 2LT /.
Gronwall’s inequality and (54) give

ku.t; �/� v.t; �/kL1.�R;R/ 	 eC t ku0 � v0kL1.�R�Lt;RCLt/ ;

that is (37). ut
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An Overview of Piston Problems in Fluid
Dynamics

Min Ding and Yachun Li

Abstract The piston problem is analyzed from the mathematical point of view.
Some features and phenomena caused by the motion of the piston are revealed.
Some developments for piston problems are reviewed. We discuss some piston
problems for both classical Euler equations and relativistic Euler equations of
compressible fluids. In particular, we focus on shock front solutions.

Keywords Piston problem • Euler equations • Relativistic Euler equations •
Shock front solution • Shock waves • Rarefaction waves • Glimm scheme •
Interaction of waves • Newton iteration scheme
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1 Mathematical Models and Physical Phenomena

The piston problem is a special initial-boundary value problem in fluid dynamics
(see [13, 42, 46]), which can be described as follows. In a thin long tube closed at
one end by a piston and open at the other end, any motion of the piston causes the
corresponding motion of the gas in the tube. More precisely, if the piston is pushed
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Fig. 1 (a) One shock overtakes another. (b) Rarefaction wave overtakes shock wave. (c) Shock
overtakes rarefaction wave. (d) Forward rarefaction waves never meet. The dash line: the piston
boundary. ES : a forward shock wave. ER: a forward rarefaction wave

forward relative to the gas, a shock appears and moves forward faster than the piston.
Otherwise, a rarefaction wave appears.

We describe these phenomena in detail for the classical compressible flow. If the
piston is initially located at x D 0 and moves forward with the velocity up into
the initial static gas in the tube, then after a time t0, the velocity of the piston is
changed into Nup in an infinitely small time interval, i.e., instantaneously. Now we
consider the motion of the gas caused by the piston in four cases. (All the velocities
are observed relative to the gas in the region (1) between the two waves.)

Case 1. up > 0, Nup > up. Since up > 0, the piston is pushed forward, a forward
shock appears. Nup > up leads to the occurrence of another forward shock.
The former forward shock travels with subsonic speed and the latter one
travels with supersonic speed. Therefore, the latter forward shock will
overtake the former one (see Fig. 1a).

Case 2. up > 0, Nup < up. Since Nup < up, a rarefaction wave appears. The head of
the rarefaction wave travels with sonic speed, and the shock front travels
with subsonic speed. Therefore, the rarefaction wave overtakes the forward
shock (see Fig. 1b).

Case 3. up < 0, Nup > up. Since up < 0, the piston is pulled back, a forward
rarefaction wave appears. Nup > up leads to the occurrence of a forward
shock. The tail of the rarefaction wave travels with sonic speed while the
shock front travels with supersonic speed. So the shock front overtakes
the rarefaction wave (see Fig. 1c).
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Case 4. up < 0, Nup < up. Since up < 0, a rarefaction wave appears. Nup < up
leads to the occurrence of another forward rarefaction wave. Since the tail
of one travels at the same speed as the head of the other, these two forward
rarefaction waves never meet (see Fig. 1d).

1.1 Mathematical Models

Some partial differential equations in fluid dynamics come from conservation laws
of some physical quantities, such as, mass, momentum and energy, etc. The general
conservation laws can be written in divergence form

@tuCr � f .u/ D 0; u 2 R
m; (1)

where .x; t/ 2 R
dC1 D R

d � R
C, r D .@x1 ; : : : ; @xd /, and f D .f1; : : : ; fd / W

R
m ! .Rm/d is a nonlinear mapping with fi W Rm ! R

m for i D 1; : : : ; d .
The hyperbolicity for (1) means that, for any ! 2 Sd�1 and any u belonging to

the state domain D,

.ruf .u/ � !/m�m hasm real eigenvalues �i .u; !/; 1 	 i 	 m: (2)

The j th-characteristic family of (1) in D is called genuinely nonlinear if, for any
! 2 Sd�1, the j th-eigenvalue �j .uI!/ and the corresponding eigenvector rj .u; !/
satisfy

ru�j .u; !/ � rj .u; !/ ¤ 0 for any u 2 D; ! 2 Sd�1:

The j th-characteristic family of (1) in D is called linearly degenerate if

ru�j .u; !/ � rj .u; !/ D 0 for any u 2 D; ! 2 Sd�1:

An entropy-entropy flux pair .�; q/ is a pair of C1 functions satisfying

r�.u/rF.u/ D rq.u/;
where � W D ! R is called an entropy of (1), and q D .q1; : : : ; qd / W D ! R

d is
called the corresponding entropy flux.

As we know, no matter how smooth the initial data are, the nonlinearity of (1)
leads to the appearance of the singularities in a finite time. In consideration of
weak solutions, the uniqueness is lost. In order to single out the physical unique
discontinuous solution, we need the following Lax entropy inequality

@t�.u/C @xq.u/ 	 0: (3)

The weak solution satisfying (3) in the sense of distributions is called the entropy
solution.
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A basic prototype of nonlinear conservation laws is the system of Euler equations
for compressible fluids, which is described as

8
ˆ̂<
ˆ̂:

@t�Cr � .�Eu/ D 0;
@t .�Eu/Cr � .�Eu˝ Eu/Crp D 0;
@t .�E/Cr �

�
�Eu
�
E C p

�

��
D 0;

(4)

where � is the density, Eu D .u1; : : : ; ud / is the velocity, p is the pressure and E D
1
2
jEuj2 C e is the total energy with e the internal energy. System (4) is closed by the

state equation p D p.�; e/.
When the flow is isentropic, the Euler system takes a simpler form

(
@t �Cr � .�Eu/ D 0;
@t .�Eu/Cr � .�Eu˝ Eu/Crp D 0;

(5)

where the state equation is p D p.�/ satisfying

p0.�/ > 0 (hyperbolicity); (6)

�p00.�/C 2p0.�/ > 0 (genuine nonlinearity): (7)

The mechanical entropy-entropy flux pair of system (5) is

�� D �
�
1

2
jEuj2 C

Z � p.s/

s2
ds

�
; q� D

�
1

2
jEuj2 C

Z � p.s/

s2
ds C p.�/

�

�
�Eu:

(8)

For our use, we represent the eigenvalues of isentropic compressible Euler equations
(5) in the one-dimensional case as

�1 D u � cs; �2 D uC cs; (9)

where cs D
p
p0.�/ is the local sonic speed, and the corresponding Riemann

invariants as

W D uC l.�/; Z D u � l.�/; where l.�/ WD
Z � cs

�
d�: (10)

Comparing with the classical Euler equations, we consider the relativistic Euler
equations. When the macroscopic velocity of the fluid or the velocity of the
microscopic particles of the fluid is very close to the speed of light, the relativistic
effect has to be taken into account. In this regime, the classical Euler equations are
no longer valid and have to be replaced by the relativistic Euler equations. Many
efforts have been made to understand the following two sub-systems of relativistic
Euler equations (see [1, 5, 20, 21, 24, 30, 33–35, 38, 39] etc.).
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Model I. Conservation system of momentum and energy:

8
ˆ̂<
ˆ̂:

@t

�
.�C p=c2/Eu
1 � jEuj2=c2

�
Cr �

�
.�C p=c2/Eu˝ Eu
1 � jEuj2=c2

�
Crp D 0;

@t

�
.�C p=c2/jEuj2
c2 � jEuj2 C �

�
Cr �

�
.�C p=c2/Eu
1 � jEuj2=c2

�
D 0;

(11)

where � and Eu D .u1; u2; : : : ; ud / are the mass-energy density and the velocity,
respectively. p is the pressure and c is the speed of light.

Model II. Isentropic conservation system of baryon numbers and momentum,
which is more physically significant:

8
ˆ̂̂<
ˆ̂̂
:

@t

 
np

1 � jEuj2=c2

!
Cr �

 
nEup

1 � jEuj2=c2

!
D 0;

@t

�
.�C p=c2/Eu
1 � jEuj2=c2

�
Cr �

�
.�C p=c2/Eu˝ Eu
1 � jEuj2=c2

�
Crp D 0;

(12)

where n is the proper number density of baryons. p D p.�/ satisfies

p.�/ > 0; p0.�/ > 0 .hyperbolicity/; (13)

�p00.�/C 2p0.�/C .pp00.�/ � 2p02.�//=c2 > 0 .genuine nonlinearity/:
(14)

System (12) is strictly hyperbolic and genuinely nonlinear on the physical regionP D f.�; u/ W 0 < � < �max; juj < cg, where �max D sup f� W 0 < p0.�/ 	 c2g.
The proper number density of baryons is determined by the first law of

thermodynamics:

	dS D d�

n
� �C p=c

2

n2
dn;

where 	 is the temperature and S is the entropy per baryon. In particular, for
isentropic fluids (S D const.), we have

dn

n
D d�

�C p=c2 ;

that is,

n.�/ D n�e
R �
1

ds
sCp.s/=c2 :

One of the motivations to study system (12) is that the Newtonian limit of system
(12) is the classical system of isentropic Euler equations (5).
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The physical entropy-entropy flux pair of system (12) is given by

��D �C pjEuj
2=c4

1 � jEuj2=c2 �
n

n�
p
1 � jEuj2=c2 ; q�D

 
.�C p=c2/
1 � jEuj2=c2 �

n

n�
p
1 � jEuj2=c2

!
Eu:

It is easy to check that, as c ! C1, (c2��; c2q�/ converges to the physical entropy-
entropy flux pair (8) of the corresponding classical system (5).

For the one-dimensional case, the two eigenvalues of (12) are

�1 D u �pp0.�/
1 � u

p
p0.�/=c2

; �2 D uCpp0.�/
1C u

p
p0.�/=c2

; (15)

which converge to the eigenvalues (9) of the classical non-relativistic system (5),
respectively, as c ! C1.

The Riemann invariants of (12) in the one-dimensional case are

W D c

2
ln
c C u

c � u
C
Z �

p
p0.s/

s C p.s/=c2 ds; Z D c

2
ln
c C u

c � u
�
Z �

p
p0.s/

s C p.s/=c2 ds;

which converge to the Riemann invariants (10) of system (5) as c ! C1.

1.2 Some Physical Phenomena Caused by the Motion
of the Piston

No matter how slow the piston recedes from or advances into the gas, a wave
proceeds from the piston into the gas and only the particles which have been reached
by the wave front are disturbed. We take the one-dimensional compressible Euler
equations (5) as an example to demonstrate the physical phenomena mathematically.

1.2.1 Rarefaction Waves

First, we consider the continuous wave motion when the piston recedes from the
piston. Assume that the gas in the tube is initially static with constant density �0.
Suppose that the piston which is located at the origin, and initially static, is pulled
back with decreasing speed until the velocity reaches a constant u�. Let the path of
the piston be denoted by x D b.t/. Along the piston the velocity of the gas is the
same as the piston velocity b0.t/.

Since the CC-characteristic velocity uC cs is greater than the particle velocity u,
the gas enters each characteristic from the right, i.e., comes from the side with
greater values of x, a forward-facing simple wave appears, and in the wave region,
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Fig. 2 u� > �l0

the Riemann invariant Z remains unchanged, i.e., u � l D u0 � l.�0/, then
l.�/ D l.�0/ C b0.t/. Since dl

d� > 0 and p0.�/ > 0, �, p and cs are determined

by l , and thus along each characteristic line dx
dt D u C cs issuing from the piston,

u and � are constants. So this simple wave is determined as a whole. Now we verify
that this simple wave is a rarefaction wave. Due to (6) and (7), we have

d�2
du
D d.uC cs/

du
D d.l C cs/

dl
D �p00.�/C 2p0.�/

2c2s
> 0; (16)

which implies that u C cs is increasing with respect to u, and the characteristics
diverge. In addition, � and p decrease across this wave, since the piston is pulled
back with the velocity b0.t/ decreasing. Therefore, this wave is a forward rarefaction
wave.

From u D l C u0 � l.�0/ and l > 0, we have juj < l0. l.�0/ is called the escape
speed of the originally static gas.

When u� does not reach the escape speed, i.e., u� > �l.�0/, the .x; t/-space is
divided into three regions (see Fig. 2). Region (I): � D �0, u D 0, p D p0. Region
(II) is covered by the simple wave consisting of the straight CC-characteristics
through every point on the piston from O and B . The characteristic lines in (II)
fan out. The rarefaction wave ends at the C �C-characteristic through the point B of
the piston with u D u�. It is followed by the region (III) of constant state, � D ��,
u D u� and p D p�.

When �u� reaches the escape speed, i.e., u� 	 �l0, the rarefaction wave rarefies
the gas to density zero; then the pressure and the sonic speed are decreased to zero.
If the rarefaction wave extends to this stage, it is called a complete rarefaction wave
as it then ends in a vacuum.

If u� D �l0, the C �C-characteristic through the point B is tangent to the curve
of the piston, since at the point B , the slope of the piston is u�, while that of the
C �C-characteristic is dx

dt D u� C c� D u�. The rarefaction wave is just completed at
the piston (see Fig. 3).

If u� < �l0, there exists a point B� on the piston curve between O and B on
which the CB�C -characteristic is tangent to the piston curve. Beyond it, region (III)
of cavitation forms a vacuum between the tail of the wave and the piston (see Fig. 4).
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In particular, if the acceleration of the piston from rest to a constant terminal
velocity u� happens instantaneously, the family of the simple wave degenerates into
a centered rarefaction wave from the origin O : x D 0, t D 0. The justification is
similar.

1.2.2 Compression Waves

Now we consider a more complicated case when the piston is not pulled back, but
moves into the gas, or when a receding piston is slowed down or stopped, and a
compression wave is produced. The formulas pertaining to rarefaction waves still
apply to the compression waves, except that the density and pressure at the piston
increase and that the CC-characteristics would converge and form an envelope on
which the values of u would conflict, thus the simple wave does not exist for all time.
At the earliest time t D tc , an envelope occurs and it forms a cusp at some point
t D tc . Continuity of the flow through the simple wave beyond time tc is impossible.

The development of discontinuities is formed by a piston moving into the static
gas with a speed ultimately exceeding the sonic speed relative to the static gas on the
right. If the flow remains continuous, the gas would be static in the zone x � cs.�0/t ,
which cannot be reached from the original position of the piston with a speed less
than that of sound. Since the piston moves with a speed greater than that of sound,
it enters this zone. Consequently, the motion cannot remain continuous.
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The forward-facing simple wave is written in the form

x D �.ˇ/C !.ˇ/t; !.ˇ/ D u.ˇ/C cs.ˇ/:

Differentiating with respect to the parameter ˇ, we have

t D � d�

d!
; x D � � ! d�

d!
; (17)

which is the parametric representation of the envelope, which is admissible if
!0.ˇ/ ¤ 0 in the region.

Now we determine the earliest time tc when the envelope forms. Assume that

�.ˇ/ 2 C2. If d�
d! has an extremum for some ˇ0, then d2�

d!2
D � dt

d! changes sign at

ˇ D ˇ0 while dx
d! D �! d2�

d!2 also changes sign at such point if !0.ˇ/ ¤ 0. Such an
extremum of t occurs at a cusp of the envelope and at the cusp we have

d2�

d!2
D 0:

The formation of the envelope in the compression wave is caused by the motion of
the piston described by x D b.t/.

In the sequel, we show that an envelope will form if the piston moves into the
gas with positive acceleration and that this envelope always forms a cusp inside the
wave region if the piston begins with acceleration zero (see Fig. 5a).

Assume that b.0/ D 0, b0.0/ D 0, and the state of the static gas is denoted by
u D 0, � D �0. The simple wave through the point of the piston is described as

x D b.ˇ/C .u.ˇ/C cs.ˇ//.t � ˇ/;

where u.ˇ/C cs.ˇ/ D l.ˇ/ � l.�0/C cs.ˇ/ D !.ˇ/. Due to (6) and (7), we have



170 M. Ding and Y. Li

d!

du
D d.l C cs/

dl
D d.�cs/

csd�
D �p00.�/C 2p0.�/

2c2s
WD h.ˇ/ > 0:

Thus,

!0.ˇ/ D h.ˇ/b00.ˇ/:

Then the envelope can be represented by

tE.ˇ/ D ˇ C cs.ˇ/

h.ˇ/b00.ˇ/
; xE.ˇ/ D b.ˇ/C !.ˇ/.tE.ˇ/ � ˇ/: (18)

Since cs.ˇ/ > 0, for ˇ > 0 with b00.ˇ/ > 0, we have

tE.ˇ/ > ˇ; xE.ˇ/ > b.ˇ/:

Therefore, an envelope is formed in the flow region.
When the initial acceleration of the piston is zero, i.e., b00.0/ D 0, then

tE.0/ D 1. Meanwhile, either of the following two cases holds:

(i) If b00.ˇ/ > 0 for any ˇ > 0, then tE.ˇ/!C1 as ˇ !C1.
(ii) If b00.t1/ D 0 for some time t1 > 0, then tE.ˇ/! C1 as ˇ! t1.

Thus, we obtain that tE.ˇ/ first decreases and then increases. Consequently, tE.ˇ/
has a minimum tc for some ˇ, and the envelope forms a cusp at the time tc .

When the initial acceleration of the piston is positive, i.e., b00.0/ > 0, the cusp
of the envelope is on the straight CC-characteristic: x D cs.�0/t (see Fig. 5b),
satisfying

tc D cs.0/

h0b00.0/
;

where h0 WD h.0/ D d.lCcs/
dl > 0.

In other words, the CC-characteristics form an envelope if the piston is acceler-
ated in forward motion or decelerated in backward motion. For a decelerated piston,
b00.ˇ/ < 0, there is no point of the envelope in the domain x > b.ˇ/.

2 One-Dimensional Piston Problems

For one-dimensional fluid dynamics, some well-posed or inverse piston problems
have been solved. In this section, we mainly focus on the piston problems in
compressible Euler equations and relativistic Euler equations.
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2.1 Euler Equations

Consider the full Euler equations (4) in Lagrangian coordinates in the one-
dimensional case:

8
ˆ̂<
ˆ̂:

@t � � @xu D 0;
@tuC @xp D 0;
@tE C @x.pu/ D 0;

(19)

where u, � , p and e are the velocity, specific volume, pressure and internal energy
of the gas, respectively, and E D e C 1

2
u2 is the total energy.

In Liu [27], the initial data are given as

.u.x; 0/; �.x; 0/; E.x; 0// D .u0.x/; �0.x/; E0.x//; u0.0C/ D u0.0�/: (20)

Although the position of the piston is unknown, in Lagrangian coordinates the
piston is fixed at x D 0. The piston is accelerated by the difference between the
pressure on each side of the piston, the boundary conditions are described by

8
<
:

du.0; t/

dt
D Mp.p.0�; t/ � p.0C; t//; t > 0;

u.0C; t/ D u.0�; t/ D u.0; t/;
(21)

where constantMp is the mass of the piston.

Theorem 1 ([27]). Suppose that the total variation ˙T of the initial data (20) is
sufficiently small. Then the free piston problem (19)–(21) has a global solution
U.x; t/ D .u.x; t/; �.x; t/; E.x; t// satisfying

TVfU.x; t/ W �1 < x <1g 	 C ˙T ;

TVfu.0; t/ W t � 0g 	 C ˙T ;

TVfp.0˙; t/ W t � 0g 	 C ˙T ;

for constant C depending only on the system, where

˙T DTVf.u0.x/; �0.x/; E0.x// W x > 0g
C TVf.u0.x/; �0.x/; E0.x// W x < 0g C jp0.0C/ � p0.0�/j:

Furthermore, Liu studied the asymptotic behavior of the solution, which converges
pointwise to the linear superposition of the traveling waves, shock waves and
rarefaction waves as time tends to infinity. In particular, the asymptotic behavior of
the velocity and pressure of the gas depends only on the value of the initial data at far
field. Consequently, the difference between the pressure on each side of the piston
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and the acceleration of the piston tend to zero. To deal with the boundary condition
(21), Liu modified the Glimm scheme [18] at x D 0 to establish the global existence
of the solution. The asymptotic behavior was studied based on Liu [26], in which
Liu studied the asymptotic behavior of solutions of the Cauchy problem for general
conservation laws.

Li-Wang [22] considered system (19) with different conditions on the piston
which is originally located at the origin and moves with speed �.t/. They solved
an inverse piston problem for one-dimensional gas dynamics: under the assumption
that the original state of the gas on the right of the piston and the position of the
forward shock are known, they obtained the global existence and uniqueness of
the C1 solution on the corresponding maximum determinate domain, i.e., the piston
speed can be globally and uniquely determined. Li-Wang [23] also solved an inverse
problem for one-dimensional isentropic flow (5).

Takeno [36] studied the following piston problems for one-dimensional isen-
tropic gas dynamics (5) with the polytropic gas p.�/ D ��=� , 1 < � 	 5=3:

Problem 1. Piston problem in D1 D f.x; t/ W x > b1.t/; t > 0g with conditions:

(
.�; u/.x; 0/ D .�0.x/; u0.x//; x > 0;

�.b1.t/; t/ .u.b1.t/ � u1.t// D 0; t > 0:
(22)

Problem 2. Piston problem in D2 D f.x; t/ W b1.t/ < x < b2.t/; t > 0g with
conditions:

(
.�; u/.x; 0/ D .�0.x/; u0.x//; 0 < x < L;

�.bi .t/; t/ .u.bi .t/ � ui .t// D 0; t > 0; i D 1; 2; (23)

where b1.t/ D
R t
0

u1.s/ds and b2.t/ D L C R t
0

u2.s/ds are moving boundaries.
The boundary speeds u1.t/ and u2.t/ are bounded and measurable. �0.x/ and u0.x/
are bounded and measurable. For Problem 2, assume that

b2.t/ � b1.t/ � ı.t/; t > 0; (24)

where ı.t/ is some positive continuous function.

Theorem 2 ([36]). Each of the initial boundary value Problems 1 and 2 has a
global generalized solution .�;m/.x; t/, which is a locally bounded measurable
function pair and satisfies

(
0 	 �.x; t/ 	 B1
jm.x; t/j 	 B2�.x; t/

a:e: on f.x; t/ W 0 < t < T g;

where Bi > 0 are constants. For Problem 1, B1 and B2 do not depend on T . For
Problem 2, if A1 	 A2, B1 and B2 do not depend on T ; otherwise, B1 and B2
depend on T and satisfy
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B	
1 ; B2 	 B3 exp

�
2.A1 � A2/

Z T

0

dt

ı.t/

�
;

where B3 is a constant, 	 D ��1
2

, A1 D ess sup
t>0

u1.t/, and A2 D ess inf
t>0

u2.t/.

The proof of this theorem mainly follows Diperna [17] and Ding-Chen-Luo [2, 4],
and was carried out using a Godunov scheme and compensated compactness.

Following the method in [36], Takeno [37] also considered a free piston problem
for one-dimensional isentropic gas dynamics with the state equation

p.�/ D
(
p1.�/; x < b.t/; t > 0;

p2.�/; x > b.t/; t > 0;
pi .�/ D ai��i ; ai > 0;

where �i is the adiabatic exponent, 1 	 �i 	 5=3, i D 1; 2. b.t/ is the position of
the free piston boundary. The corresponding boundary conditions are

8̂
<̂
ˆ̂:

b00.t/ D �k�p2.�.b.t/C 0; t// � p1.�.b.t/ � 0; t//
�
;

�.b.t/C 0; t/ .u.b.t/C 0; t/� b0.t// D 0;
b.0/ D 0; b0.0/ D Nu0;

(25)

where Nu0 is a constant and k D As=Mp is a positive constant, hereAs is the sectional
area of the piston andMp is the mass of the piston.

Theorem 3 ([37]). For the one-dimensional free piston problems (5) and (25) with
bounded measurable functions .�0.x/; u0.x// as the initial state, there exists a
generalized solution .�; u/.x; t/, which is bounded and measurable, satisfying

(
0 	 �.x; t/ 	 C1;
ju.x; t/j 	 C2;

a:e: on f.x; t/ W t > 0g;

where C1 and C2 are constants. The piston path x.t/ is continuously differentiable
with respect to t and the derivative of x.t/ is Lipschitz continuous and bounded.
.�; u/.x; t/ satisfies an entropy inequality in each side of the piston in the sense of
distributions.

In [41], Wang established the existence of strong shock front solutions to the one-
dimensional piston problem of the compressible Euler equations (5) for a polytropic
gas p.�/ D �� . Suppose that the path of the piston is x D b.t/, the velocity of the
gas next to the piston is the same as that of the piston, i.e.,

u D b0.t/ on x D b.t/; (26)
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and the corresponding curve of the shock is x D s.t/. A shock appears when
the piston moves into the initial static gas .�; u/.x; 0/ D .�0; 0/. This physical
phenomenon is demonstrated in the following theorem:

Theorem 4 ([41]). Assume that b.t/ 2 C2, b.0/ D 0, b0.0/ D b0. Then whenR1
0
jb00.t/jdt is sufficiently small, problems (5) and (26) admits a global weak

solution, which includes a strong shock, which is a small perturbation of x D s0t .
The gas between the piston and the shock is also a perturbation of the solution when
the piston moves with constant velocity b0.

A modified Glimm scheme is employed to solve such a piston problem (26).

2.2 Relativistic Euler Equations

For system (11) of Model I, [43] studied the one-dimensional piston problem with
static constant initial state and the speed of piston a small perturbation of a constant,
and established global existence of weak solutions.

In [15], we established the global existence of the shock front solutions of the 1-D
piston problem for system (12) of Model II. Differing from [41, 43], we considered
not only a small perturbation of the piston speed, but also a small perturbation of a
constant initial state. On this occasion, the position of the strong shock is no longer
fixed on the rightmost but varies, so the interactions between the strong 2-shocks
and weak waves from the left and from the right become more complicated, and
the Glimm functional in [41, 43] is no longer applicable. So we had to redefine
the approaching waves, including not only the approach between weak waves, but
also the approach between weak waves and strong 2-shocks as well as the approach
between weak waves and the piston boundary. Then we constructed a new Glimm
functional, containing some additional terms regarding weak waves approaching
both the strong shocks and the piston boundary. In this functional, we employed a
weighed strength for weak waves in order to remove the restrictions on reflection
coefficients of weak waves on the strong 2-shock from the right.

Suppose that the initial gas satisfies �.x; 0/ D �0.x/, u.x; 0/ D u0.x/, and the
piston moves with a speed depending only on time t . Let the movement curve of
the piston be x D b.t/ and the shock be x D s.t/ with speed b0.t/ and s0.t/,
respectively. We study the state of the gas in domain˝ D f.x; t/ W x > b.t/; t > 0g
with � D f.x; t/ W x D b.t/; t > 0g (as shown in Fig. 6). Then the initial-boundary
conditions for the piston problem can be described as

(
.�; u/.x; 0/ D .�0.x/; u0.x//;
u D b0.t/ on x D b.t/: (27)
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O

t

x

n

Ω

Γ : x = b(t)

Fig. 6 Definition domain

Theorem 5 ([15]). Assume that b.0/ D 0 and b0.0C/ D b0: If the total variations
TVfb0.�/g and TVf�0; u0g are sufficiently small, there exists anL1 entropy solution
.�; u/ of problems (12) and (27), satisfying

TV .�; u/ .�; t/ 	 N

for all t � 0, containing a strong shock, which is a small perturbation of x D s0t ,
where N is a constant depending on the initial data, the background solution and
TVfb0.�/g.
The proof of this main conclusion is based on Sects. 2.2.1–2.2.4.

Remark 1. In addition to the global existence of shock fronts, we also consider the
non-relativistic global limits of entropy solutions as the light speed c ! C1. So
we make every effort to establish uniform (independent of large c) estimates on the
interactions of perturbation waves and their reflections on the strong shock and the
piston. Based on these estimates, we prove the convergence of entropy solutions to
the corresponding entropy solutions of the classical non-relativistic Euler equations
(5) as c ! C1.

2.2.1 The Background Solution and Piston Riemann Problem

When the piston moves with a constant speed b0 and the initial data are given by
constant values . N�0; Nu0/, the piston problem can be described as

.I/

8
ˆ̂<
ˆ̂:

(12);

.�; u/.x; 0/ D . N�0; Nu0/;
u D b0 on x D b0t; where b0 > Nu0:

We call the solution of (I) the background solution. The solvability of (I) is given by
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O

Ū0

B : x = b0t

S : x = s0t
Ū1

t

x

Fig. 7 Background solution

Lemma 1 ([15]). There exists a unique solution of problem .I/, which consists of
two constant states NU0 D . N�0; Nu0/ and NU1 D . N�1; Nu1/ connected by a strong 2-shock
wave with velocity s0, and Nu1 D b0 (see Fig. 7).

For given initial data

U jtDt0 WD .�; u/jtDt0 D
(
UL; x < x0;

UR; x > x0;
(28)

whereUL D .�L; uL/ andUR D .�R; uR/ represent the left and right constant states,
respectively. The solvability of the piston Riemann problems (12) and (28) is given
in the following lemma:

Lemma 2 ([15]). For any right state UR 2 O�. NU0/, there exists a constant ı > 0

such that, forUL 2 Oı.S�1
2 .UR//\O�. NU1/, problems (12) and (28) admits a unique

solution containing a weak 1-wave ˛1 and a strong 2-shock s, where S�1
2 .UR/

denotes the inverse shock curves based on the given state UR, and O� stands for
a small neighborhood.

2.2.2 Construction of the Approximate Solutions

We constructed approximate solutions of problems (12) and (27) by a modified
Glimm scheme, where the mesh grids are chosen to follow the slope of the piston
so that the piston problem contains only a 2-wave issuing from the mesh points on
the boundary. Let �x denote a mesh length in x and �t a mesh length in t . We

introduce the notation tk D k�t , xh.k/ D x0.k/Ch�x, pk D x0.k C 1/� x0.k/
�t

,

k; h D 0; 1; 2; � � � , and define .xh.k/; tk/ as the grids of the scheme. �t and �x
satisfy the C-F-L condition:

�x

�t
� sup

k�0
pk C js0j C max

iD1;2

�
sup
U

j�i.U /j
�
:
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The movement curve of the piston is approximated by a piecewise linear function
denoted as:

x D b�.t/ D x0.k/C pk.t � tk/; tk 	 t < tkC1; k D 0; 1; � � � :

In addition, denote by !k the angle between the straight line x D x0.k/Cpk.t � tk/
and t-axis and by 	k D !k � !k�1 the angle between the straight line x D x0.k/C
pk.t � tk/ and x D x0.k � 1/C pk�1.t � tk�1/. Let

˝� D f.x; t/ W x > b�.t/; t > 0g; �� D f.x; t/ W x D b�.t/; t > 0g:

By induction, we construct the approximate solutions U�.x; t/ in the region˝�.
For k D 1, U�.x; t/ on f0 	 t < �tg \˝� can be constructed by solving a series
of (piston) Riemann problems, which can be carried out in the same way as the
construction of U� in ftk 	 t < tkC1g by taking the given data U0 D .�0.x/; u0.x//
instead of the approximate solutionU�.x; tk/ as the initial data (see below). Suppose
that the approximate solutions U� have already been defined in f0 < t < tkg \
˝�.k � 1/ and define

U�.x; tk/ D U�.ak;h; tk�/; x2h.k/ < x < x2hC2.k/; h D 0; 1; � � � ; (29)

where ak;h D x0.k/C.2hC1Cak/�x is a random point in .x2h.k/; x2hC2.k//, and
fakgk�0 is an equi-distributed sequence in .�1; 1/. Then we define the approximate
solutions in ftk 	 t < tkC1g \˝� in two cases.

Case 1. Near the corner point .x0.k/; tk/ of the approximate curve of the piston, we
solve (12) with the following initial-boundary conditions:

(
U�.x; t/ D U�.x0.k/C; tk/ for t D tk; x0.k/ < x < x1.k/;
u.x; t/ D pk on x D x0.k/C pk.t � tk/;

(30)

where the value of U�.x0.k/C; tk/ is given by (29). By the choice of the random
points, the 2-wave of the solution of problem (12) and (30) may be a strong 2-shock,
or a weak 2-rarefaction or shock wave, determined by the relation between pk and
pk�1, and the reflection of the 1-wave from the grid .x2.k � 1/; tk�1/ on the piston
or on the strong 2-shock from .x0.k � 1/; tk�1/. Hereinafter, the state on the left
of the piston is defined to be the same as the state next to the piston on the right
whenever needed.

Case 2. At each grid point .x2h.k/; tk/; h D 1; 2; � � � ;we solve a series of Riemann
problems of (12) in the region ftk 	 t < tkC1g with the initial data:

U D
(
U�.x2h.k/�; tk/; x2h�1.k/ < x < x2h.k/;
U�.x2h.k/C; tk/; x2h.k/ < x < x2hC1.k/:

(31)
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The solution can be given in two cases:

(i) U�.x2h.k/˙; tk/2O�. NU1/.O�. NU0//, and U�.x2h.k/�; tk/¤U�.x2h.k/C; tk/,
the solution contains two weak waves (shock or rarefaction waves);

(ii) U�.x2h.k/�; tk/ 2 O�. NU1/ and U�.x2h.k/C; tk/ 2 O�. NU0/, the solution
contains a weak 1-wave (shock or rarefaction wave) and a strong 2-shock
denoted by skC1 which also denotes the speed of the 2-shock provided that
no confusion occurs. We approximate the strong 2-shock curves in tk 	 t <

tkC1; k D 0; 1; � � � , as

x D s�.t/ D xh.k/C skC1.t � tk/; tk 	 t < tkC1:

Thus, we obtain the approximate solutions in the region ftk 	 t < tkC1g \˝�.
Then we extend to the whole region˝� by induction.

2.2.3 Estimates on Local Interactions

We use the velocity s to parameterize the strong 2-shock. We denote by ˛i ; ˇi ; �i ,
and ıi the parameters of the corresponding i -waves .i D 1; 2/, and by their
absolute values the corresponding strengths of the waves. Sometimes we also use
the parameters to represent the corresponding waves provided that no confusion
occurs.

Let .Ul ; Ur/ denote the nonlinear waves solving the Riemann problem with the
left state Ul and the right state Ur .

Based on the construction of approximate solutions, we can obtain some space-
like curves, composed of the segments connecting the mesh points ak;h and
akC1;hC1(or ak�1;hC1/. These space-like curves divide the region˝� into two parts:
I� and IC, where I� denotes the part containing the x-axis. Suppose that I and
J are two space-like curves, and J > I if every mesh point of J is either on I or
contained in IC. In particular, J is called an immediate successor to I if J > I and
every mesh point of J except one is on I .

Suppose that I and J are two space-like mesh curves and J > I . In order to
obtain the estimates of the local interactions, it suffices to discuss the case that J
is an immediate successor to I . Suppose that there exists a diamond denoted by �
between I and J . According to the different positions of the diamond, we divide
the discussion into five cases.

Case 1: � covers neither x D b�.t/ nor x D s�.t/;
Let ˛ and ˇ be the waves entering � from .xh�1.k � 1/; tk�1/ and

.xhC1.k � 1/; tk�1/, respectively, and � the wave generated from .xh�1.k/; tk/.
Let ˛1 D .U6; U5/, ˛2 D .U5; U4/, ˇ1 D .U4; U3/, ˇ2 D .U3; U2/, �1 D .U6; U7/,
and �2 D .U7; U2/ (see Fig. 8).
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Fig. 8 
 covers neither x D b
.t/ nor x D s
.t/

Fig. 9 
 covers part of x D b
.t/ but none of x D s
.t/

Case 2: � covers part of x D b�.t/ but none of x D s�.t/;
Let ˛1 andˇ2 be the waves entering� from .x2.k�1/; tk�1/ and .x0.k�1/; tk�1/,

respectively. Let ı2 be the 2-wave generated from .x0.k/; tk/ (see Fig. 9). LetU3 and
U4 denote, respectively, the states next to the segments x D x0.k � 1/C pk�1.t �
tk�1/ and x D x0.k/ C pk.t � tk/, tk�1 < t < tkC1. Let ˛1 D .U2; U5/, ˇ2 D
.U3; U2/, ı2 D .U4; U5/; and U4; U3; U2; U5 2 O�. NU1/.
Case 3: � covers part of both x D b�.t/ and x D s�.t/;

Let sk be the strong 2-shock issuing from the point .x0.k�1/; tk�1/ and entering
�, and skC1 be the strong 2-shock generated from .x0.k/; tk/. Let ˛1 and ˛2 be the
1-wave and 2-wave issuing from the point .x2.k � 1/; tk�1/ and entering �, and
˛1 D .U2; U3/ and ˛2 D .U3; U4/ (see Fig. 10). Assume that U.sk/; U.skC1/ 2
O�. NU1/, and U2; U3; U4 2 O�. NU0/.
Case 4: � covers part of x D s�.t/ but none of x D b�.t/ (I): weak waves interact

with the strong shock from the left;
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Fig. 10 
 covers part of both x D b
.t/ and x D s
.t/

Fig. 11 
 covers part of x D s
.t/ but none of x D b
.t/: (I)

Let sk and skC1 be the strong 2-shocks issuing, respectively, from .xhC1.k � 1/;
tk�1/ and .xhC1.k/; tk/, ˇ1 and ˛2 the waves entering� from .xhC1.k�1/; tk�1/ and
.xh�1.k�1/; tk�1/, respectively, and ı1 the 1-wave generated from .xhC1.k/; tk/. Let
˛2 D .U3; U2/, ˇ1 D .U2; U.sk// and ı1 D .U3; U.skC1// (see Fig. 11). Suppose
that U3; U2; U.sk/, U.skC1/ 2 O�. NU1/, and U5 2 O�. NU0/.
Case 5: � covers part of x D s�.t/ but none of x D b�.t/ (II): weak waves

interact with the strong shock from the right.

Let sk and skC1 be the strong 2-shocks issuing, respectively, from .xh�1.k � 1/;
tk�1/ and .xh�1.k/; tk/, ˇ1 be the 1-wave from .xh�1.k � 1/; tk�1/, ˛1 and ˛2 the
1- and 2-waves from .xhC1.k � 1/; tk�1/ entering �, and ı1 the 1-wave generated
from .xh�1.k/; tk/. Let ˇ1 D .U3; U.sk//, ˛1 D .U4; U2/, ˛2 D .U2; U5/ and
ı1 D .U3; U.skC1// (see Fig. 12). Suppose that U3; U.sk/ and U.skC1/ 2 O�. NU1/,
and U4; U2; U5 2 O�. NU0/.
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Fig. 12 
 covers part of x D s
.t/ but none of x D b
.t/: (II)

Lemma 3 ([15]). For cases 1–5, the following estimates hold respectively,

.i/ �i D ˛i C ˇi CO.1/Q0.˛; ˇ/; i D 1; 2;

.ii/ ı2 D Kb1˛1 CKb0	k C ˇ2;

.iii/ skC1 D sk CKbs1
˛1 CKbs2

˛2 CKbs0
	k;

.iv/ ı1 D ˇ1 C C�˛2; skC1 D sk CKs2˛2; k D 1; 2; � � � ;

.v/ ı1 D ˇ1 C QKs3˛1 C QKs4˛2; skC1 D sk C QKs1˛1 C QKs2˛2; k D 1; 2; � � � ;

whereQ0.˛; ˇ/ D f˙ j˛i jjˇj j W ˛i and ˇj are approaching, i; j D 1; 2g; andO.1/
is bounded.Kb1 andKb0 are C2-function of .˛1; ˇ2; 	k/,Kb1 ,Kb0 ,Kbs0

,Kbs1
,Kbs2

,

Ks2 , C� and QKsi , i D 1; 2; 3; 4 are bounded. Furthermore, Kb1C� 2 .�1; 1/.
Remark 2. In addition, we have also proved that the coefficients O.1/, Kb1 , Kb0 ,
Kbs0

, Kbs1
, Kbs2

, Ks2 , C� and QKsi , i D 1; 2; 3; 4 are uniformly bounded and
independent of large c � c0 in [15, 17].

Remark 3. In (ii), the coefficient Kb1 of ˛1 can be regarded as the reflection
coefficient of ˛1 on the piston. (ii) indicates that the 1-wave turns into a 2-wave
after being reflected by the piston. Moreover, the existence of the term Kb0	k is
caused by the change of the speed of the piston. Controlling this term is one of the
main differences in the Glimm scheme between the boundary value problem and the
Cauchy problem.

Remark 4. The coefficient C� in (iv) can be regarded as the reflection coefficient of
˛2 on the strong shock. The first equality of (iv) indicates that, after being reflected
by the strong shock, the 2-wave turns into a 1-wave.

Remark 5. Condition Kb1C� 2 .�1; 1/ is important for the monotonicity of the
Glimm functional.
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2.2.4 Monotonicity of the Glimm Functional and Convergence
of Approximate Solutions

Since the initial state is not constant, the interactions between the strong 2-shocks
and weak waves from the left and from the right should be taken into consideration
in the Glimm functional, in particular, in the approaching waves, which are redefined
as follows.

Definition 1. (Approaching waves)

• .˛i ; ˇj / 2 A1: two weak waves ˛i and ˇj (i; j 2 f1; 2g) located at points x˛ and
xˇ respectively, with x˛ < xˇ , satisfy the following condition:
Either i > j or i D j and at least one of them is a shock.

• ˛ 2 As: a weak i -wave ˛ is approaching a strong 2-shock if ˛ 2 ˝�, i D 2 or
˛ 2 ˝C, i D f1; 2g, where

˝� D f.x; t/ W b.t/ < x < s.t/; t > 0g; ˝C D f.x; t/ W x > s.t/; t > 0g:

• ˛ 2 Ab : a weak i -wave ˛ is approaching the boundary if ˛ 2 ˝� and i D 1.

Remark 6. The approaching wave in A1 is in fact the original approaching wave
between weak waves.

Denote the set of the corner points Ak lying in JC by

�J D fAk W Ak 2 JC; Ak D .x0.k/; tk/g:

We define the Glimm functional F.J / on the mesh curve J as

F.J / D L.J /CKQ.J /;

where

L.J / D L0.J /C L1.J /C L2.J /;
L0.J / D fjsJ � s0j W sJ denotes the speed of the strong shock passing J g;
L1.J / D ˙fjb˛j W ˛ is the 1-wave passing J g;
L2.J / D ˙fjb˛j W ˛ is the 2-wave (not including the strong shock) passing J g;
Q.J / D

X
.˛i ;ˇj /2A1

jb˛i jjbˇj j CK�
1

X
˛2As

jb˛j C
X
ˇ2Ab

jbˇj CK�
2

X
Ak2�J

j	kj;

and 	k D !k � !k�1, K is sufficiently large,K�
1 and K�

2 are constants satisfying
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K�
1 jKb1 j � 1 < 0; K�

1 jKb0 j �K�
2 < 0; (32)

jC�j < K�
1 ; (33)

K0K
�
1 > j QKs3 j; K0K

�
1 > j QKs4 j; (34)

b˛ D
(
˛ if x 2 ˝�;
K0˛ if x 2 ˝C;

K0 D 2maxfjKb1 jj QKs3 j; jKb1 jj QKs4 jg:

Remark 7. In fact, K�
1 and K�

2 can be determined from (32) to (34) at the
background solution. Since Kb1 , Kb0 , C�, QKs3 and QKs4 are continuous with respect
to U , uniformly for large c, i.e., under some small perturbations (independent of
large c) of the background solution, (32)–(34) are still valid.

Remark 8. A weighted strength b˛ for a weak wave ˛ on the right of the strong
2-shock is introduced to remove the restriction on the reflection coefficient of ˛ on
the strong 2-shock from the right.

Let O denote the space-like mesh curve in 0 	 t 	 �t . Under the assumption
of the smallness of L.O/ and TVfb0.�/g, we obtain the monotonicity of the
Glimm functional and the equivalence between the Glimm functional and the total
variation of U .

Lemma 4 ([15]). Assume that TVfU0g and TVfb0.�/g are small, then for any mesh
curves J > I , we have

1

C
TVJ fU g 	 F.J / 	 F.I / 	 F.O/ 	 C

�
TVfU0g C TVfb0.�/g� ; (35)

where C is a positive constant depending on the initial data and background
solution.

From Lemma 4, the convergence of the approximate solutions can be proved by
a standard procedure (see [11, 17, 18, 32, 44, 45]).

As for other applications of the Glimm scheme to the Cauchy problem as well as
to the initial-boundary value problems, we refer to [6, 11, 17–19, 31, 41, 43–45] and
the references cited therein.

3 Multidimensional Piston Problems

For multidimensional piston problems, the piston is replaced by a cylinder body.
Assume that there is uniform static gas filling up the whole space outside a given
body with moving boundary. Starting from t D 0, the piston expands and its
boundary moves into the air as in the one-dimensional case. Then there is a shock
front moving into the air. Not all parts of the gas are affected. Ahead of the shock
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front the state of the air is kept unchanged, the location of the shock and the flow
between the shock and the piston is to be determined. In addition, we have many
multidimensional piston models, for example, the surface layer of an inflatable
balloon behaves as a spherically symmetric piston. The gas outside is compressed by
the expansion of the balloon, then a shock appears. When the location of the piston
initially degenerates into a single point, this phenomenon is related to explosive
waves in Physics.

The multidimensional piston problem is challenging and remains open. However,
some special multidimensional cases have been studied. For instance, the spheri-
cally symmetric piston problem. Let r D jExj, then a spherically symmetric solution
is denoted by

�.Ex; t/ D �.r; t/; Eu.Ex; t/ D u.r; t/
Ex
r
:

Assume that the initial state of the gas is denoted by � D ��; u D 0. Starting
from t D 0, the piston is located at the origin, and expands into the static gas.
Suppose that the velocity of the piston depends only on t and the path of the piston
is described as r D b.t/, and the velocity of the gas next to the piston is the same as
that of the piston. Then the initial-boundary conditions for the spherically symmetric
piston problem are formulated as

(
u D b0.t/ on r D b.t/;
.�; u/ D .��; 0/ on t D 0: (36)

3.1 Non-relativistic Fluids

The spherically symmetric isentropic Euler equations read as

(
@t .�u/C @r.�u2 C p/C .d�1/�u2

r
D 0;

@t�C @r .�u/C .d�1/�u
r
D 0: (37)

For d D 2, under the assumption that the velocity of the piston and the density
of the gas outside at initial time, and TVb0.�/ are small, Chen-Wang-Zhang [11]
established the global existence of a BV solution to the axially symmetric piston
problem (36) and (37) by a modified Glimm scheme with the state equation p.�/ D
�� , 1 < � < 3.

Theorem 6 ([11]). Suppose that b.t/ 2 C1, b.0/ D 0, b0.0/ D b0 > 0, b.k/.0/ D
0 for 2 	 k 	 M where M is a large integer. If �� C b0 C jjb.t/ � b0t jjCK.Œ0;1�/ CR1
T jb00.t/jdt is sufficiently small for some positive constants T and K , then there

exists a global BV solution to problem (36) and (37).
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Remark 9. Moreover, this shock front is next to the uniform flow and is a small
perturbation of r D s0t , and the solution between the shock front and the piston is a
small perturbation of the self similar solution of problem (36) and (37) with constant
piston velocity b0.

Remark 10. Based on [11], Chen-Wang-Zhang [12] removed the restriction on the
strength of the leading shock, but required that the velocity of the piston is rather
fast or the density at the initial time is small. Some more precise estimates near
the leading shock were presented, which is essential for establishing the global
existence of shock front solution.

In [3], the global L1 entropy solution for the spherically symmetric piston
problem to the Euler equations (5) was established. A local shock front solution was
approximated by using a finite expansion. The convergence of the approximate solu-
tion was shown by a Newton iteration scheme for a polytropic gas p.�/ D ��=� ,
� � 1. Based on the local existence, it was extended to a global entropy solution
by a shock capturing approach and the method of compensated compactness for
isothermal gas p D �.

For the full Euler equations (4), Wang [40] obtained the local existence of a
shock front solution to the axi-symmetrical piston problem for a polytropic gas p D
.� � 1/�e by energy estimates and the Newton iteration scheme.

Chen [10] studied a special piston problem for the unsteady potential flow
equations in two space dimensions under the assumption that the piston expands
with a velocity depending on 	 D arctany=x and independent of time t . In
order to fix the free boundary, by the partial hodograph transformation � D x=t ,
� D y=t and coordinate transformation r D .�2 C �2/

1
2 , 	 D arctan �=�, the

annular domain was decomposed into a set of overlapping domains, on which a
set of auxiliary boundary value problems were solved by employing the nonlinear
alternating iteration. The existence and stability of shock front solutions for the
original problem were established under small perturbation.

Some related wedge problems are referred to in [7–9, 28, 29].

3.2 Relativistic Fluids

A multidimensional piston problem for (11) with the state equation p.�/ D a2�,
where a is a positive constant, has been studied in Ding-Li [14], where the local
existence and non-relativistic limits of shock front solutions were established for
the spherically symmetric piston problem. For convenience, let � WD 1=c2. The
spherically symmetric solution .�.r; t/; u.r; t// satisfies

8
ˆ̂<
ˆ̂:

@t

�
.�C p�/u
1 � u2�

�
C @r

�
.�C p�/u2
1� u2�

C p
�
C .d � 1/.�C p�/u2

.1 � u2�/r
D 0;

@t

�
.�C p�/u2�
1� u2�

C �
�
C @r

�
.�C p�/u
1 � u2�

�
C .d � 1/.�C p�/u

.1 � u2�/r
D 0:

(38)
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Theorem 7 ([14]). Assume that b.t/ 2 C1; b.0/D 0; b0.0/D b0; and b.k/.0/D 0
for 2 	 k 	 K , whereK is a given large integer depending only on the background
solution. There exists a constant T0 > 0 such that there exists a shock front solution
.�c; uc/ to problem (36) and (38) for t 	 T0. Moreover, there exists a subsequence
fcng, cn ! C1, as n!C1, such that

.�cn ; ucn/! .�; u/; a:e:;

and the limit .�; u/ is the corresponding solution for the classical non-relativistic
system (37).

The proof of this main conclusion is based on Sects. 3.2.1–3.2.3.

3.2.1 Background Solution

When the piston velocity is a constant denoted by b0, the velocity of the shock front
is also a constant denoted by s0. Since problem (36) and (38) keeps invariant under
the scaling r ! �r , t ! �t , it admits a self-similar solution. By the self-similar
transformation � D r=t , problem (36) and (38) reduces to

(I)

8
ˆ̂̂
<̂
ˆ̂̂
:̂

a2Cu2�u�.1Ca2�/
1�u2�

�� C .�Cp�/.2u����u2�/
.1�u2�/2

u� C .d�1/.�Cp�/u2
.1�u2�/�

D 0;
.1Ca2�/u��.1Ca2u2�2/

1�u2�
�� C .�Cp�/.1Cu2��2�u�/

.1�u2�/2
u� C .d�1/.�Cp�/u

.1�u2�/�
D 0;

u D b0; on r D b0t;
.�; u/ D .��; 0/; on t D 0:

The solution of problem (I) is called the background solution. From the first two
equations, we have

u� D a2u.1 � u��/.1 � u2�/

� ..1 � au�/� � uC a/ ..1C au�/� � u � a/ ; (39)

�� D .�C p�/u.� � u/

� ..1 � au�/� � uC a/ ..1C au�/� � u � a/ : (40)

The curve satisfying (39) and (40) which describes the state of the gas between the
piston and the shock is referred to as the solution curve in the .�; u/-plane.

From the Rankine-Hugoniot conditions of (38), we obtain that

u2 D a2.� � �a/2
.1C a2�/2��a C a2.� � �a/2� ; s20 D

a2.�C a2�a�/
�a C a2�� : (41)
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Fig. 13 Shock polar

Hence, s0 � a. When s varies in Œa;C1/, we obtain a curve � W u D u.s/,

u D s2 � a2
s.1 � a2�/ ; (42)

which is called the shock polar. We construct the solution of problem (I) as follows.

Step 1. Solve ODE (39) with the initial data uj�Db0 D b0;
Step 2. Consider the solution of (39) intersecting with the shock polar, which is

described by (42);
Step 3. From (41) and (42), we obtain the speed of the shock wave and the left state

U1 D .�1; u1/ which is connected to the given right state U0;
Step 4. Solve ODE (40) with the initial data �j�Ds0 D �1 where u is given by Step 1.

Thus, we obtain the existence of background solution of problem (I):

Lemma 5 ([14]). There exists a solution curve of problem (I) starting from point
Ps: � D s0 on the shock polar � , monotonically decreasing with respect to � and
intersecting with the diagonal at the point Pb: u D � (see Fig. 13).

3.2.2 Approximate Solutions and Energy Estimates

By introducing a new coordinate transformation x D t , ˛ D r=t , we construct
an N -th order approximate solution .�; u; s/ to problem (36) and (38) in .x; ˛/-
coordinates by the following finite expansions with errorO.xNC1/:

u.˛; x/ D
NX
nD0

un.˛/x
n; �.˛; x/ D

NX
nD0

�n.˛/x
n; (43)

s.x/ D
NX
nD0

snx
nC1; b.x/ D

NX
nD0

bnx
nC1: (44)
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We establish the existence and uniqueness of the approximate solution using some
properties of symmetric hyperbolic systems.

For convenience, we rewrite s.x/ D x�.x/ and b.x/ D xˇ.x/. We introduce a
transformation

y D x; 	 D ˛ � ˇ.x/
�.x/ � ˇ.x/

to fix the boundaries of the piston and the shock as 	 D 0 and 	 D 1. Meanwhile,
we take another transformation y D e� to remove the singularity of the system at
y D 0. Then problem (36) and (38) reduces to

�� C A�	 CW.�/ D 0; (45)

u D ˇ C ˇ0 on 	 D 0; (46)

where

A D
�
a11 a12
a21 a22

�
; W D

�
�u.1C a2�/
˛.1 � a2u2�2/ ;�

a2u2.1 � u2�/�

˛.1 � a2u2�2/
�>

;

a11 D a22 D e�D C u � ˛ � a2u� C ˛a2u2�2
.� � ˇ/.1 � a2u2�2/ ;

a12 D �.1C a2�/
.� � ˇ/.1 � a2u2�2/ ; a21 D a2.1 � u2�/2

�.1C a2�/.� � ˇ/.1 � a2u2�2/ ;

D WD �ˇ
0.� � ˇ/ � .˛ � ˇ/.� 0 � ˇ0/

.� � ˇ/2 :

Linearizing problem (45) and (46) at the approximate solution . Q�; Q�/, we define
an �-weighted norm in the domain Œ0; 1� � .�1; T � as follows:

jjf jj2k;�;T �
X

jCi1Ci2Dk

Z T

�1

Z 1

0

e�2���2j
ˇ̌
ˇ̌ @i1Ci2f
@�i1@	i2

ˇ̌
ˇ̌
2

d	d�: (47)

We define the norms on the boundaries 	 D 0; 1:

< f >2k;�;T;	D0;1�
X

jCiDk

Z T

�1
e�2�� �2j

ˇ̌
ˇ̌@if
@�i

ˇ̌
ˇ̌
2

	D0;1
d�; (48)

in which only the normal derivatives are involved. We also define

� f �2
k;�;T�

kX
jD0

< @
j

	 f >2k�j;�;T;	D0 C
kX

jD0
< @

j

	 f >2k�j;�;T;	D1 : (49)
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Energy estimates for the error terms were established for the linearized problem
in the following theorem.

Theorem 8 ([14]). For any fixed T < C1 and integer k > 0, there exists an
�0 > 0 such that for any � > �0, the solution . P�; P�/ to the linearized problem at
. Q�; Q�/ satisfies

jjj P�jjj2k;�;T � � k P� k2k;�;T C� P� �2
k;�;T C < P� >2kC1;�;T (50)

	 Ck
�
1

�
jj Pf jj2k;�;TC < Pg >2k;�;T;	D0 C < Ph1 >2k;�;T;	D1 C < Ph2 >2k;�;T;	D1

�
:

In addition, for k � 2, the constant Ck depends only on k � kk;�;T of the coefficients,
which in turn depends only on k Q� kk;�;T ,� Q� �k;�;T , and < Q� >kC1;�;T , where

jjj Q� � �0jjjk;�;T < ı;

for some small positive constant ı, and Pf , Pg, Ph1 and Ph2 are the higher order terms
resulting from the linearization of the equation and the boundaries at . Q�; Q�/.

3.2.3 Local Existence by Iteration and Non-relativistic Limits

The proof of Theorem 7 was carried out by the Newton iteration scheme, involving
the boundness of the higher order norm and the contraction of the lower order norm.
In addition, we established the convergence of shock front solutions as c !C1.

By the Newton iteration scheme, we constructed a shock front solution depending
on the light speed c, denoted by .�c; uc/. From the expressions of Pf , Pg, Ph1 and Ph2
represented in [14], which are uniformly bounded and independent of large c, and
from the energy estimates (50), there exists a subsequence fcng, cn ! C1, as
n! C1, such that

.�cn ; ucn/! .�; u/; a:e:;

and the limit .�; u/ is the corresponding solution for the classical non-relativistic
system (37).

Remark 11. In the sequel, we will extend local existence of the spherically sym-
metric piston problem to global existence by a modified Glimm scheme, which
originates from Lien-Liu [25] where the nonlinear stability of a self-similar three-
dimensional gas flow past an infinite cone with a small vertex angle for the full Euler
equations (4) has been established. See also [11, 12].

Meanwhile, we will study mathematically the physical phenomena that a big
rarefaction wave exists when the piston recedes away from the gas. However, we
may need to employ wave front tracking methods instead of the Glimm scheme and
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give the estimates on the interactions between the big rarefaction wave and other
waves.
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The Quasineutral Limit
for the Navier-Stokes-Fourier-Poisson System

Donatella Donatelli and Pierangelo Marcati

Abstract This paper is a first attempt to describe the quasineutral limit for a Navier-
Stokes-Poisson system where the thermal effects are taken into consideration. In
the framework of weak solutions and ill-prepared data, we show that as � ! 0

the velocity field u� strongly converges towards an incompressible velocity vector
field u, the density fluctuation n� � 1 weakly converges to zero and the temperature
equation converges towards the so called Fourier equation. We shall provide a
detailed mathematical description of the convergence process by analyzing the
acoustic equations, by using microlocal defect measures and by developing an
explicit correctors analysis.
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1 Introduction

This paper deals with the analysis of the quasineutral limit for a hydrodynam-
ical model for plasma dynamics. In numerical simulations the hydrodynamical
models represent an acceptable compromise between accuracy and computational
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efficiency. Their common feature is the fact that the number of independent variables
is reduced, then the hydrodynamical models are obtained from the infinite hierarchy
of moment equations of the Boltzmann transport equation by suitable truncation
procedures. One of the most general models reads as follows (see for example [2]
and [16]):

@tnC div.nu/ D 0; (1)

@t .nu/C div.nu˝ u/Crp D 
uC .� C /r div uC nrV; (2)

@t .ne/ � div.nu.e C kB	�// � nurV D �
	 C p div uC njuj2; (3)

�2
V D n � C.x/; (4)

where

e D jnuj2
.n/2

C 3

2
kB	

� p D p.n; 	/

and x 2 R
3, t � 0, denote the space and time variables, n.x; t/ the negative

charge density, m.x; t/ D n.x; t/u.x; t/ the current density, u.x; t/ the velocity
field, V.x; t/ the electrostatic potential, 	� the temperature,  and � the shear
viscosity and bulk viscosity respectively, kB the Boltzmann constant and C.x/ is
a charged ion background density. The parameter � is the so called Debye length
(up to a constant factor), which in terms of physical variables can be expressed as

� D �D=L �D D
s
"0kBT

e2n0
; (5)

where L is the macroscopic length scale, "0 is the vacuum permittivity, T the
average plasma temperature, e the absolute electron charge and n0 the average
plasma density. In many cases the Debye length is very small compared to the
macroscopic length �D � L and so it makes sense to consider the quasineutral
limit �! 0 of the system (6)–(8). In this setting the particle density is constrained
to be close to the background density (we will consider C.x/ D 1) of the oppositely
charged particle. The limit � ! 0 is called the quasineutral limit since the charge
density almost vanishes identically. The velocity of the fluid then evolves according
to an incompressible flow dynamics. This type of limit has attracted the attention of
many people. See in the case of the Euler-Poisson system the results of Cordier
and Grenier [3], Grenier [12], Cordier, Degond, Markowich and Schmeiser [4],
Loeper [18], Peng, Wang and Yong [19]. Concerning the viscous case the system
was analyzed without the energy balance equation (3), namely the first two Eqs. (1)
and (2) coupled with the Poisson equation (4) and with the following structural
hypothesis on the pressure law: p.n; 	/ D n� , � � 3=2. See for instance Wang
[23] and Jiang and Wang [13]. In fact Wang [23] studied the quasineutral limit for
the smooth solution with well-prepared initial data. Wang and Jiang [13] studied the
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combined quasineutral and inviscid limit of the compressible Navier-Stokes-Poisson
system for the weak solution and obtained the convergence of the Navier-Stokes-
Poisson system to the incompressible Euler equations with general initial data.
Moreover in [13] the vanishing of the viscosity coefficient was required in order to
take the quasineutral limit and no convergence rate was derived therein. The authors
in [7] investigated the quasineutral limit of the isentropic Navier-Stokes-Poisson
system in the whole space and obtained the convergence of the weak solution of the
Navier-Stokes-Poisson system to the weak solution of the incompressible Navier-
Stokes equations by means of dispersive estimates of Strichartz’s type under the
assumption that the Mach number is related to the Debye length. Ju, Li and Wang
[14] studied the quasineutral limit of the isentropic Navier-Stokes-Poisson system
both in the whole space and in the torus without the restriction on the viscous
coefficient with well prepared initial data. In the framework of weak solutions and
general ill-prepared data there is the authors’ paper [8]. A common feature of these
kinds of limits in the ill-prepared data framework is the high plasma oscillations,
namely the presence of high frequency time oscillations along the acoustic waves
(see [6]). In these phenomena the various vector fields in the model exhibit different
behaviors, and it is particularly important to understand the relationship between
high frequency interacting waves, dispersive behavior and the different roles of time
and space oscillations. In [8] the authors provide a detailed mathematical description
of the convergence process. Since the velocity fields both disperse and oscillate and
the dispersion behavior dominates on the high frequency time oscillations, Strichartz
estimates are sufficient to pass to the limit of the convective term, however the
presence of quadratic terms on the electric field (e.g. nrV ) cannot be analyzed in
the same way since the dispersive behavior no longer dominates on high frequency
time wave packets, so by using microlocal defect measures, and by developing
an explicit correctors analysis, an explicit pseudo parabolic pde satisfied by the
leading correctors terms is identified. Concerning the quasineutral limit for the
full Navier-Stokes system (1)–(4), there are very few results. For example in [15]
the limit is analyzed in the framework of smooth solutions and by providing an
asymptotic expansion. At the moment there are no known results for weak solutions
and ill-prepared data for the full system (1)–(4). This paper is a first attempt in that
direction. In particular we study a simplified version of the Eqs. (1)–(4), namely the
so called Navier-Stokes-Fourier-Poisson system

@tn
� C div.n�u�/ D 0; (6)

@t .n
�u�/C div.n�u� ˝ u� C .n�/� I/ D 
u� C .� C /r div u� C n�rV �;

(7)

@t .n
�	�/C div.n�u�	�/ D �
	�; (8)

�2
V � D n� � 1: (9)

with the following initial data
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n�tD0 D n�0 � 0; 	�jtD0 D 	�0 ; V �jtD0 D V �
0 ; (ID)

n�u�jtD0 D m�
0; m�

0 D 0 on fx 2 R
3 j n�0 .x/ D 0g;

Z

R3

�
��jtD0 C jm

�
0 j2

2n�0
C n�0	�0 C n�0 .	�0 /2 C �2jV �

0 j
�

dx 	 C0:

To simplify our notation from now on we will set

�� D .n�/� � 1 � �.n� � 1/
.� � 1/ �� D n� � 1  D � D � D 1:

Also in this case the main difficulties in approaching this problem will be the fast
oscillation of the acoustic waves and the presence of quadratic terms in the electric
field, �rV � ˝ �rV �. The latter problem will be analyzed by observing that the
density fluctuation �� D n� � 1 satisfies a Klein-Gordon equation, so the acoustic
waves analysis follows by treating the system as a dispersive equation and we
will obtain uniform estimates, while the latter will be overcome by noticing that
�rV � is bounded in L1

t L
2
x and so we can define the microlocal defect measure �E

introduced by P. Gérard in [11] and by L. Tartar (H-measure) in [22] with correctors
EC and E� to handle time oscillations at frequency 1=�.

The existence of weak solutions for the system (6)–(9) may be proved as in [5,
9, 10]. By following the same line of argument as in [8] we are able to prove the
following theorem.

Theorem 1. Let .n�; u�; 	�; V �/ be a sequence of weak solutions in R
3 of the

system (6)–(9) and assume that the initial data satisfy (ID). Then

.i/ n� �! 1 weakly in L1.Œ0; T �I Lk2.R3//.
.ii/ There exists a u 2 L1.Œ0; T �IL2.R3//\ L2.Œ0; T �I PH1.R3// such that

u� * u weakly in L2.Œ0; T �I PH1.R3//:

.iii/ The gradient componentQu� of the vector field u� satisfies

Qu� �! 0 strongly in L2.Œ0; T �ILp.R3//, for any p 2 Œ4; 6/:

.iv/ The divergence free component P u� of the vector field u� satisfies

P u� �! P u D u strongly in L2.Œ0; T �IL2loc.R
3//:

.v/ There exists a 	 2 L1.Œ0; T �IL2.R3// \L2.Œ0; T �I PH.R3// such that

	� �! 	 strongly in L2.Œ0; T �IL2loc.R
3//;

r	� * r	 weakly in L2.Œ0; T � �R
3/:
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.vi/ There exist correctorsEC,E� inL1..0; T /; L2.R3// and a positive microlo-
cal defect measure �E on R

3 � S2 depending measurably on t , associated to
the electric field E� D rV �, such that for all pseudodifferential operators
A 2  0comp.R

3;K.R3// of symbol a.x; �/ and for all � 2 D.0; t/ one has

lim
�!0

Z
dt�.t/�2.AE�; E�/ D

Z
dt�.t/.AEC; EC/C

Z
dt�.t/.AE�; E�/

C
Z

dt�.t/
Z

R3�S2
tr

�
a.x; �/

� ˝ �
j�j2

�
d�E:

(10)

.vii/ u D P u and 	 satisfy the following equations respectively

P
�
@tu �
uC .u � r/u�

div.EC ˝ EC C E� ˝E�/ � div
D
�E;

� ˝ �
j�j2

E�
D 0; (11)

@t	 C u � r	 �
	 D 0 (12)

in D0.Œ0; T � � R
3/.

The paper is organized as follows. In Sect. 2 we present all the definitions and
technical tools which will be used later in the paper, then the rest of the paper is
devoted to the proof of Theorem 1. In Sects. 3 and 4 we recover all the a priori
bounds, in Sects. 5 and 6 we provide the convergence analysis of the velocity field
and of the temperature. Finally in Sect. 7 we give a formal proof of the equation
satisfied by the correctorsE˙.

2 Notations

For convenience we record here the basic notations that we shall be using later. We
will denote by D.� � RC/ the space of test function C1

0 .� � RC/, by D0.� �
RC/ the space of Schwartz distributions and h�; �i the duality bracket between D0
and D. Moreover W k;p.�/ D .I � 
/� k

2 Lp.�/ and Hk.�/ D W k;2.�/ denote
the nonhomogeneous Sobolev spaces for any 1 	 p 	 1 and k 2 R. The notations
L
p
t L

q
x and Lpt W

k;q
x will abbreviate respectively the spaces Lp.Œ0; T �ILq.�// and

Lp.Œ0; T �IW k;q.�//. We denote by Lp2 .R
d / the Orlicz space defined as follows

L
p
2 .R

d / D ff 2 L1loc.R
d / j jf j�jf j� 1

2
2 L2.Rd /; jf j�jf j> 1

2
2 Lp.Rd /g: (13)

See [1, 17] for more details. We denote by L.R3/ the space of bounded operators,
K.R3/ the space of compact operators and if X , Y are Banach spaces, L.X; Y /
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is the space of bounded operators. If � is an open set in R
3, we denote by

 mcomp.�;L.H//, respectively,  comp.�;K.H// the space of polyhomogeneous
pseudo-differential operators of order m on �, with values in L.H/, respectively
K.H/, whose kernel is compactly supported in � � �, moreover we recall that
if A 2  mcomp.�;L.H//, then its symbol a.x; �/ (A D OP.a.x; �//) is a linear
application from  mcomp.�;L.H// to C1

0 .S
��;L.H//, where S�� D Sd�1 ��.

Following P. Gérard we say that  is the microlocal defect measure (or following
L. Tartar the H-measure) for a bounded sequence wk in L2 if for any A 2
 0comp.!;K.H// one has (up to subsequences)

lim
k!1.A.wk � w/; .wk � w// D

Z

S��

tr.a.x; �/.dxd�//;

where A D OP.a.x; �//.
We define the Leray’s projector P on the space of divergence-free vector fields

andQ on the space of gradient vector fields by

Q D r
�1 div P D I �Q: (14)

Let us describe the dispersive estimate we are going to use later on. We recall that
if w is a solution of the following Klein-Gordon equation in the space Œ0; T � � R

d

�
�@

2

@t
C
 �m2

�
w.t; x/ D F.t; x/

with Cauchy data

w.0; �/ D f; @tw.0; �/ D g;
where m > 0 is the mass and 0 < T < 1, then for any s > 0, w satisfies the
following Strichartz estimates, (see [21]),

kwk
L4t W

�s;4
x
C k@twkL4t W�1�s;4

x
. kf k

H
1=2�s
x
C kgk

H
�1=2�s
x

C kF kL1t H�s
x
: (15)

Here we state the following elementary lemma which will be used later on.

Lemma 1. Let us consider a smoothing kernel j 2 C1
0 .R

d /, such that j � 0,R
Rd
jdx D 1, and let us define

j˛.x/ D ˛�d j
�x
˛

�
:

Then for any f 2 PH1.Rd /, one has

kf � f � j˛kLp.Rd / 	 Cp˛1�d
�
1
2� 1

p

�
krf kL2.Rd /; (16)

where

p 2 Œ2;1/ if d D 2; p 2 Œ2; 6� if d D 3:
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Moreover the following Young type inequality holds

kf � j˛kLp.Rd / 	 C˛s�d
�
1
q � 1

p

�
kf kW �s;q .Rd /; (17)

for any p; q 2 Œ1;1�, q 	 p, s � 0, ˛ 2 .0; 1/.

3 A Priori Estimate

By a standard method we can prove the following energy inequalities hold for almost
every t � 0:

Z

R3

�
n�
ju�j2
2
C �� C n�	� C �2jrV �j2

�
dx

C
Z t

0

Z

R3

�
jru�j2 C .� C /j div u�j2� dx ds 	 C0: (18)

1

2

Z

R3

n�
j	�j2
2

dxC
Z t

0

Z

R3

.jr	�.x; s/j2/dx ds D 1

2

Z

R3

n�0 .	
�
0 /
2dx: (19)

As a consequence we get the following bounds:

�� is bounded in L1.Œ0; T �ILk2.R3//, k D min.�; 2/; (20)

ru� is bounded in L2t;x; u� is bounded in L2t;x \ L2t L6x; (21)

r	� is bounded in L2t;x; 	� is bounded in L2t;x \L2t L6x; (22)

��u�; ��	� are bounded in L2t H
�1
x : (23)

4 Density Fluctuation Acoustic Equation

From the estimates of Sect. 3 we get only the weak convergence of the velocity field
and unfortunately this will not be sufficient to pass to the limit in the nonlinear terms
(such as the convective term div.n�u� ˝ u�/). In particular this weak convergence
is induced by the rapid time oscillation of the acoustic waves or by the so called
plasma oscillations. In order to overcome this problem we will estimate the density
fluctuation �� uniformly with respect to �. So we derive the so called acoustic
equation which governs the time evolution of ��. First of all we rewrite the
continuity equation (6) and the momentum equation (7) in the following way
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@t�
� C div.n�u�/ D 0; (24)

@t .n
�u�/Cr�� D 
u� C .� C /r div u� � div.n�u� ˝ u�/

� .� � 1/r�� C ��rV � CrV �; (25)

�2
V � D ��: (26)

Then, by differentiating Eq. (24) with respect to time, taking the divergence of (25)
and by using (26) we get that �� satisfies the following equation

@t t�
� �
�� C ��

�2
D� div.
u� C .� C /r div u�/ (27)

C div
�
div.n�u� ˝ u�/C .� � 1/r�� C ��rV �

�
:

It turns out that (27) is a nonhomogeneous Klein-Gordon equation with mass 1=�.
In order to get some more uniform estimates on �� we apply to (27) the Strichartz
estimates (15) and we are able to prove the following estimate for any s0 � 3=2:

�� 1
2 k��k

L4t W
�s0�2;4
x

C �� 1
2 k@t ��kL4t W�s0�3;4

x

. �s0�
1
2 k��0 kH�3=2

x
C �s0� 1

2 km�
0kH�5=2

x

C T k div.div.n�u� ˝ u�/� .� � 1/r��/k
L1

t H
�s0�2
x

C �s0k div
u� Cr div u�kL2t H�2
x
C T k div.��V �/k

L1

t H
�s0�2
x

: (28)

For the details of the proof see [8].

5 Strong Convergence of Qu	 and Pu	

To prove the strong convergence of Qu� and P u� one follows the same line of
argument as Sect. 5 of [8]. The main tool is that Qu� can be written in terms of the
density fluctuation, namely Q.n�u�/ D r
�1@t��, and by using the estimate (28)
we are able to prove that

Qu� �! 0 strongly in L2t L
p
x for any p 2 Œ4; 6/.

By proving equicontinuity in time properties for P u� we get the following
convergence result

Pu� �! Pu strongly in L2t L
2
loc;x :
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6 Strong Convergence of 
	

It remains to prove the strong compactness of the temperature 	�. To achieve this
goal, as for P u� we need to look for some time regularity properties of 	�. This will
be done in the next lemma.

Lemma 2. Let us consider the solution .n�; u�; 	�; V �/ of the Cauchy problem for
the system (6)–(9). Assume that the hypotheses (ID) hold. Then for all h 2 .0; 1/,
we have

k	�.t C h/� 	�.t/kL2.Œ0;T ��R3/ 	 CT h2=5: (29)

Proof. Let us set ‚� D 	�.t C h/� 	�.t/. We have

k	�.t C h/ � 	�.t/k2
L2t;x
D
Z T

0

Z

R3

dt dx.‚�/ � .‚� �‚� � j˛/

C
Z T

0

Z

R3

dt dx.‚�/ � .‚� � j˛/ D I1 C I2: (30)

By using (16) together with (22) we can estimate I1 in the following way

I1 	 k‚�kL2t;xk‚�.t/ � .‚� � j˛/.t/kL2 . ˛ku�kL2t;xkru�kL2t;x : (31)

In order to estimate I2 we split it as follows

I2 D
Z T

0

Z

R3

dt dx.n�‚�/ � .‚� � j˛/C
Z T

0

Z

R3

dt dx.��‚�/ � .‚� � j˛/

D I2;1 C I2;2: (32)

I2;2 can be estimated by taking into account (18), (22) and (17) so we have

I2;2 D�2
Z T

0

Z

R3

dt dx.
V �‚�.‚� � j˛/

D �2
Z T

0

Z

R3

dt dx


.rV �‚�/.r‚� � j˛/CrV �r‚�.‚� � j˛/

	

	 �˛�3=2kru�kL2t;xk�rV �	� C �rV �r	�kL2t L1x : (33)
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Now we estimate I2;1. Let us reformulate n�‚� in integral form by using Eq. (9),

I2;1 	
ˇ̌
ˇ̌
ˇ
Z T

0

dt
Z

R3

dx
Z tCh

t

ds.div.n�u�	�/C
	�/.s; x/ � .‚� � j˛/.t; x/
ˇ̌
ˇ̌
ˇ

D
ˇ̌
ˇ̌
ˇ
Z T

0

dt
Z

R3

dx
Z tCh

t

ds.div.n�u� ˝ u�/C
u�/ � .Pz� � j˛/.t; x/
ˇ̌
ˇ̌
ˇ

	 hkr	�k2
L2t;x
C C˛�3=2T 1=2hkr	�kL2t;xkn�ju�j2kL1

t L1x
: (34)

Summing up I1, I2;1, I2;2 and by taking into account the bounds in Sect. 3 we
have

k	�.t C h/� 	�.t/k2
L2.Œ0;T ��R3/

	 C.˛ C hC h˛�3=2T 1=2/;

and by choosing ˛ D h2=5, we end up with (29). ut
By using Lemma 2 and standard compactness arguments (see [20]) we get (6).

	� �! 	 strongly in L2.0; T IL2loc.R
3//. (35)

7 Convergence of the Electric Field

This section is addressed to the study of the convergence of the electric field E� D
rV �. By the a priori estimate (18) we only know that �E� is bounded in L1

t L
2
x ,

which does not give enough information to pass to the limit in the quadratic term
n�rV � D div.�E� ˝ �E�/ � 1=2rj�E�j2 appearing in the right-hand side of
(7). Hence the problem is how to recover the weak continuity of quadratic forms in
L2. Since �E� is bounded in L1

t L
2
x we can define the so called microlocal defect

measure introduced by P. Gérard in [11] and by L. Tartar in [22] (H-measures), but
in order to handle time oscillations we need to introduce correctors. In this section
we will be able to prove the following theorem.

Theorem 2. Let .n�; u�; 	�; E�/ be a sequence of solutions of the Navier-Stokes-
Fourier-Poisson system (6)–(9), then

(i) There exists EC, E� in L1..0; T /; L2.R3//,
(ii) There exists a positive measure �E on R

3 � S2 depending measurably on t

such that for all pseudodifferential operators A 2  0comp.R
3;K.R3// of symbol

a.x; �/ and for all � 2 D.0; t/ one has
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lim
�!0

Z
dt�.t/�2.AE�; E�/ D

Z
dt�.t/.AEC; EC/C

Z
dt�.t/.AE�; E�/

C
Z

dt�.t/
Z

R3�S2
tr

�
a.x; �/

� ˝ �
j�j2

�
d�E: (36)

Proof. First we rewrite (7) in terms of E�, namely

�2@t tE
� CE� D div
�1r div

�
n�u� ˝ u� C .n�/� I � �2E� ˝ E�

�

C �2

2
div

�jE�j2I� � 2r div u� D F �; (37)

then we observe that by using (28) and the uniqueness of the weak limit we have

�rV � * 0 weakly in L2.0; T IL2.R3//. (38)

By (38) we see that we are in precisely the framework described by P. Gérard, but we
have to pay attention to one fact. In our case, in the quadratic form �2hAE�; E�i,A is
a pseudodifferential operator homogeneous only with respect to the x variable and in
the general case we cannot extend it to a pseudodifferential operator homogeneous
in .x; t/. Hence we have to work on �E� in order to isolate the components that
oscillate fast in time. For this reason we introduce what we call the correctors of
the electric field. In order to understand how to isolate the oscillating terms let us
consider Eq. (37) in the case when F � does not depend on x. Then, if we take the
Fourier transform with respect to time we have ( OE denotes the Fourier transform
with respect to time)

� OE� D �

1 � �2j� j2
OF �;

and we can see that all the L2-mass of �E� is concentrated in � D ˙1=� as �! 0.
This simple fact leads us to introduce correctors in time of order 1=�. So we define

E�C D �e�it=�E� E�� D �eit=�E�: (39)

In particular they take into account theL2-mass of �E� around 1=�. By construction
it easily follows that E�C and E�� are bounded in L2t;x and converge weakly to EC
and E� respectively. So, if we look at the limit of �E� � eit=�EC � e�it=�E� as
� ! 0, we expect to take away the L2-mass of �E� which concentrates around
1=�. Now we can define

fE� D E� � eit=�E
C

�
� e�it=� E

�

�
; (40)

and we can prove the following lemma.
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Lemma 3. Let .n�; u�; 	�; E�/ be a sequence of solutions of the Navier-Stokes-
Poisson system (6) and (7) which satisfy (ID), then

�fE� * 0 weakly in L2.0; T;L2.R3//:

Proof. The proof follows by taking into account (38) and the fact that �fE� is
bounded in L2t;x . ut
At this point we can hope that the weak convergence of �fE� is caused only by
spatial oscillations, which allows us to introduce the microlocal defect measure in
space. In order to do this, since the solutions are defined only in .0; T /, we need to
extendE� and F � to 0 and to cut-off the frequencies greater than a certain quantity.
Now, by using the same strategy as in [8] we can finish the proof of the Theorem.

ut

8 The Equation for the Correctors

We conclude this paper with a short remark concerning the equation satisfied by the
correctors. If we assume that the solutions of the system (6)–(9) are smooth enough
then we are able to prove the following result.

Theorem 3. Let .n�; u�; 	�; V �/ be a sequence of solutions of the Navier-Stokes-
Fourier-Poisson system (6)–(9) satisfying for s � 4

kn� � 1kL1.0;T IHs.R3// 	 C k�E�kL1.0;T IHs.R3// 	 C (41)

then, for all s0 < s � 2

u� � 1
i
e�it=�EC � 1

i
eit=�E� �! v strongly in C0.0; T;Hs0�1

loc .R3//, (42)

�.E� � e�it=�EC � eit=�E�/ �! 0 strongly in C0.0; T;Hs0�1
loc .R3//, (43)

and E˙ satisfy

@tE
˙ �
E˙ CQ div.v˝E˙/ D 0; PE˙ D 0; (44)

where v is defined by (42).

Here we will only sketch a formal proof. For rigorous details we refer to [8].

Proof. By the previous section we know that we can decompose the electric field
and the velocity in the following way:

E� � EC

�
eit=� C E�

�
e�it=� u� � v � ieit=�EC � ie�it=�E�;
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where v is a divergence-free vector field. Now if we substitute this decomposition
into Eq. (37) we get

2i@tE
Ceit=� � 2i@tE�e�it=� C �@ttE

Ceit=� C �@ttE
�e�it=� D

div
h

�1r div

�
n�.v � ieit=�EC � ie�it=�E�/˝ .v � ieit=�EC � ie�it=�E�/

C.n�/� I � �2E� ˝ E�
�
C �2

2
jE�j2I

i
� 2r div.v � ieit=�EC � ie�it=�E�/:

If we consider only the oscillatory part of the electric field we get

@tE
˙ C div.v˝ E˙/ � r divE˙ D 0; PE˙ D 0;

or equivalently

@tE
˙ �
E˙ CQ div.v˝ E˙/ D 0: ut

9 Proof of Theorem 1

The proof of Theorem 1 is obtained by combining the results of Sects. 5, 6 and
Theorem 2.
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Divergence-Measure Fields on Domains with
Lipschitz Boundary

Hermano Frid

Abstract In this work we are particularly interested in analyzing some conse-
quences of the additional assumption that the domain has a Lipschitz boundary, in
the investigation of the properties of the divergence-measure fields, especially those
which are vector-valued (Radon) measures whose divergence is a signed (Radon)
measure.

Keywords Divergence-measure fields • Normal traces • Gauss-Green theorem •
Product rule
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1 Introduction

The purpose of this paper is to establish further properties of the (extended)
divergence-measure fields introduced by Chen and Frid [2–4], whose theory was
further developed by Silhavý [10, 11], under the additional assumption that the
underlying domain has a Lipschitz boundary. We begin by briefly reviewing the
basic theory, and then we make the assumption that the domain possesses a Lipchitz
deformable boundary, analyzing some consequences of this assumption. We refer
to [9] for a more detailed review of the theory of the divergence-measure fields
up to this date. We also refer to [6] and the papers already mentioned for a more
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complete bibliography on the theory of divergence-measure fields, as well as many
of its possible applications.

2 Divergence-Measure Fields

We begin by recalling the definition of the divergence-measure fields.

Definition 1. Let U � R
N be open. For F 2 Lp.U IRN /, 1 	 p 	 1, or F 2

M.U IRN /, set

jdivF j.U / WD supf
Z

U

r' � F W ' 2 C1
0 .U /; j'.x/j 	 1; x 2 U g: (1)

For 1 	 p 	 1, we say that F is an Lp-divergence-measure field over U , i.e.,
F 2 DMp.U /, if F 2 Lp.U IRN / and

kF kDMp.U / WD kF kLp.U IRN / C jdivF j.U / <1: (2)

We say that F is an extended divergence-measure field over D, i.e., F 2
DMext.U /, if F 2M.U IRN / and

kF kDMext.U / WD jF j.U /C jdivF j.U / <1: (3)

If F 2 DM�.U / for any open set U b R
N , then we say F 2 DM�

loc.R
N /.

In order to introduce notation and go directly to the heart of the matter, we recall
the following product rule proved in [2], whose proof is almost entirely transposed
to prove the main product rule that we will state subsequently, which is the key to
establishing the Gauss-Green formula (see Theorem 3 below).

Theorem 1 (Chen and Frid [2]). Given F 2 DM1.U / and g 2 BV.U / \
L1.U /, then gF 2 DM1.U / and

div .gF / D NgdivF C F � rg; (4)

in the sense of Radon measures in U , where Ng (equal to g a.e.) is the limit of
a mollified sequence for g through a symmetric mollifier, and F � rg is a Radon
measure absolutely continuous with respect to jrgj, whose absolutely continuous
part with respect to the Lebesgue measure in U satisfies

.F � rg/ac D F � .rg/ac; a.e. in U : (5)

Moreover, jF � rgj.U / 	 kF k1jrgj.U /.
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Proof. Let gı D !ı � g, where !ı.x/ D ı�N �.x
ı
/ with a positive symmetric

mollifier !. One easily deduces that

div .gıF / D gıdivF C F � rgı: (6)

Now, it is well known that gı converges to a Borel function Ng, HN�1-a.e. in U (this
function equals g a.e. in U ).

We claim that, for a Borel set A � U , HN�1.A/ D 0 implies j divF j.A/ D 0.
Indeed, since jdivF j is a Radon measure, we may assume that A is compact. Also,
we may assume that divF.A/ D jdivF j.A/. Hence, given " > 0, we may cover A
with a finite number of balls Bi D B.xi I ri /, i D 1; : : : ; J ,

A � A" WD [JiD1Bi ; such that
JX
iD1

rN�1
i 	 ": (7)

We may also assume that jdivF j.@Bi / D 0, i D 1; : : : ; J , since otherwise we can
modify ri slightly to satisfy this property and (7). By using an approximation of the
identity sequence, we obtain a sequence Fı 2 C1.U IRN / such that Fı ! F a.e.
in U , and jdivFıj* jdivF j in M.U /. Again, we may assume that Fı ! F a.e. in
@Bi , i D 1; : : : ; J . Now, by the usual Gauss-Green formula for smooth vector fields
and domains with Lipschitz boundaries, we have

Z

A"

divFı dx D
Z

@A"

Fı � � dHN�1;

so that, passing to the limit when ı ! 0, we obtain

Z

A"

divF D
Z

@A"

F � � dHN�1 	 ckF k1
JX
iD1

rN�1
i 	 ckF k1":

Since A is compact, �A" ! �A everywhere in U , and by dominated convergence
applied to the measure jdivF j, we get jdivF j.A/ D divF.A/ D 0, which proves
the claim.

Then, using the claim we just proved, we get

gıdivF * NgdivF; in M.U /;

as a consequence of dominated convergence applied to the measure divF .
On the other hand, we claim that fdiv .gıF /g is uniformly bounded in M.U /.

Indeed, this follows from

hdiv .gıF /; �i D �
Z

U

gıF � r� dx D �
Z

U

F � r.gı�/ dxC
Z

U

�F � rgı dx

	 kgk1jdivF j.U /C kF k1jrgj.U /;
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for all � 2 C1
c .U /, with k�k1 D 1.

Now, div .gıF / converges to div .gF /, in the sense of distributions overU . Then,
div .gıF / * div .gF / in M.U /. Hence,

F � rgı * F � rg WD div .gF / � NgdivF:

Now we prove that F � rg is absolutely continuous w.r.t. jrgj. Let A � D be
such that jrgj.A/ D 0. We are going to prove that jF � rgj.A/ D 0. It suffices to
consider any compact set A with jrgj.A/ D 0. Given " > 0, we can cover A by a
finite number, J , of balls so that

A � [JiD1B.xi I ri /; ri < "I jrgj�[JiD1B.xi I ri /
�
< ":

We may assume that jrgj.@B.xi I ri // D 0, i D 1; � � � ; J . Let � 2
C0.[JiD1B.xi I ri //. Thus

hF � rg; �i D lim
ı!0

Z
�.x/ F.x/ � rgı.x/ dx

D k�k1kF k1jrgj
�[JiD1B.xi I ri /

� 	 "k�k1kF k1;

from the fact that jrgıj.B/! jrgj.B/, for all open sets B � D with jrgj.@B/ D
0. Hence, we obtain

jF � rgj.A/ 	 jF � rgj
�
[JiD1B.xi I ri /

�
	 "kF k1:

The proof of (5) is a little more technical and, for that, we simply refer to [2] since
it escapes our purposes here. ut

We now recall a result of Silhavý in [11] that is in some sense a dual formulation
for the previous result, in the sense that it compensates a relaxation on the regularity
of the vector field F , which now may be just a vector measure, by imposing more
regularity on the function g, which now is assumed to be in W 1;1.U /. As we will
see, its proof follows exactly the same lines as that of Theorem 1 just recalled.

Theorem 2 (Silhavý [11]). Given F 2 DMext.U / and g 2 W 1;1.U /, then gF 2
DMext.U / and

div .gF / D gdivF Crg � F ; (8)

in the sense of Radon measures in U , where rg � F is a Radon measure absolutely
continuous with respect to jF j. Moreover,

(i) jrg � F j.U / 	 krgk1jF j.U /.
(ii) If h 2 W 1;1.U /, r.gh/ � F D hrg � F C grh � F D rg � hF Crh � gF .

(iii) If V � U is an open set, then .rgjV � F bV /V D rg � FU bV .
(iv) .rg � F /ac D rg � .F /ac .
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Proof. We again define gı as above and obtain (6). We have that gı converges
locally uniformly to g so that the first term on the right-hand side of (6) converges
to g divF , in the sense of Radon measures. It is also easy to see that rgı � F is
uniformly bounded in M.U /. Therefore, the left-hand side of (6) is also compact
in M.U /, in the weak star topology, and since it converges to div .gF / in the sense
of distributions, it follows that div .gF / is indeed a Radon measure and the whole
sequence div .gıF / converges to div .gF /. Hence, the whole sequence rgı � F
converges to the Radon measure

rg � F WD div .gF / � g div F:

The assertions (i)–(ii) are proved in the standard way. Assertion (iii) is called the
localization property in [11]; it follows trivially from the definitions. Finally, the
proof of (iv) is entirely similar to that of the analogous assertion in Theorem 1. ut

We recall the Gauss-Green formula for general divergence-measure fields, first
proved in [3, 4] and extended by Silhavý in [11].

Theorem 3 (Chen and Frid [3, 4], Silhavý [11]). If F 2 DMext.U / then there
exists a linear functional F � � W Lip.@U /! R such that

F � �.gj@U / D
Z

U

rg � F C
Z

U

g divF; (9)

for every g 2 Lip.RN /\ L1.RN /. Moreover,

jF � �.h/j 	 jF jDM.U /jhjLip.@U /; (10)

for all h 2 Lip.@U /, where we use the notation

jgjLip.C / WD sup
x2C
jg.x/j C LipC .g/:

Proof. A major step in the proof of this result is to prove that the right-hand side of
(9) depends only on the values of g restricted to @U , that is, that if g 2 Lip.RN /,
with g.x/ D 0, for x 2 @U , then

Z

U

rg � F C
Z

U

g divF D 0: (11)

Clearly, we may as well assume g.x/ D 0, for x 2 R
N nU (cf. Lemma 3.2 in [11]).

We first prove (11) in the case where suppg is a compact subset of U . In this case,
for ı > 0 sufficiently small we have suppgı � U , where, as above, gı D g � !ı .
Then, by the definition of the divergence of the (vector-valued) distribution F , we
have
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Z

U

rgı � F C
Z

U

gı divF D 0: (12)

Hence, taking the limit when ı ! 0 in (12), using the definition of rg � F , we
obtain (11) in this case. We now consider the case where g 2 Lip.RN / and g.x/ D
0, for x 2 R

N n U . Let � W R! R be given by

�.t/ WD

8̂
<̂
ˆ̂:

0; if t < 1=2,

2.t � 1=2/; if 1=2 	 t 	 1,

1; if t > 1;

and for each " > 0 let h" W RN ! R be defined by

h".x/ WD
(
�."�1dist .x; @U //; x 2 U;
0; x 2 R

N n U:
Observe that h" is a Lipschitz function satisfying h".x/ D 1, if x 2 U" WD fx 2 U W
dist .x; @U / � "g. Then the function h"g is a Lipschitz function which coincides
with g on U" and

r.h"g/ � F D h"rg � F C grh" � F :
By what we have already proved, we have

Z

U

h"rg � F C
Z

U

grh" � F C
Z

U

h"g divF D 0: (13)

Now, we have
Z

U

grh" � F D
Z

UnU2"
grh" � F ;

since rh" � 0 in U". Also, jrh"j 	 2"�1, and jg.x/j 	 2Lip.g/", for x 2 U nU2".
Therefore,

lim
"!0

Z

U

grh" � F D lim
"!0

Z

UnU2"
grh" � F D 0;

by dominated convergence. Hence, letting " ! 0 in (13), since h" ! 1, as " ! 0,
everywhere in U , we finally get (11).

The assertion just proved shows that the right-hand side of (9) depends only on
gj@U . Also, the inequality (10) is clear from (9), in the case where h D H j@U ,
whereH 2 Lip.RN /, and

jH jLip.RN / D jhjLip.@U /:
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Now, Kirszbraun’s Theorem (see, e.g., [7, 8]) guarantees, for any h 2 Lip.@U /,
the existence of H 2 Lip.RN / such that H j@U D h and Lip

RN .H/ D Lip@U .h/.
Moreover, a trivial cut-off procedure ensures that kHkL1.RN / D khkL1.@U /; this
completes the proof. ut

We now discuss a direct way of defining the normal trace functional
F � � W Lip.@U / ! R. The formula was first obtained in [3, 4], under regularity
restrictions on the boundary, and in [11], for general boundaries. Before stating the
corresponding result, we recall the following lemma, which is a slight modification
of Lemma 3.3 of [11].

Lemma 1 (Silhavý [11]). If F 2 DMext.U /, m 2 Lip.U /, t 2 R and if T �
m�1.t/ is a compact subset of U , then the restriction rm � F bT of rm � F to T
satisfies

rm � F bT D 0: (14)

Proof. Clearly, we can take t D 0. Also, multiplying m by a suitable function in
C1
0 .U /, if necessary, we can assume that m has compact support in U . Therefore,

we can assume thatm is a Lipshitz function vanishing on R
N nW , withW D U nT ,

and, in particular, also on R
N n U . Therefore, for any � 2 C1

0 .U /, we have

Z

W

r.�m/ � F C
Z

W

�m divF D 0; (15)

Z

U

r.�m/ � F C
Z

U

�m divF D 0: (16)

Subtracting (15) from (16), since �m vanishes on T , we get

0 D
Z

T

r.�m/ � F D
Z

T

�rm � F C
Z

T

mr� � F D
Z

T

�rm � F ;

and so, since � is arbitrary, we arrive at (14). ut
The following result gives a simple formula to compute the normal trace of

DM-fields. This formula, displayed in (i) of the statement below, was first obtained
in [3,4] under some regularity restrictions on the boundary, and later was extended to
general domains in [11]. Item (ii) gives a useful necessary condition for the normal
trace to be a measure over @U established by Silhavý [11].

Theorem 4. Let F 2 DMext.U / and m W RN ! R be a nonnegative Lipschitz
function with suppm � NU which is strictly positive on U , and for each " > 0 let
L" D fx 2 U W 0 < m.x/ < "g. Then:

(i) (cf. [3, 4] and [11]) If g 2 Lip.RN /\ L1.RN /, we have

F � �.gj@U / D � lim
"!0

"�1
Z

L"

g d .rm � F /: (17)
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(ii) (cf. [11]) If

lim inf
"!0

"�1jrm � F j.L"/ <1; (18)

then F � � is a measure over @U .

Proof. We repeat the proof given in [11].

(i) For each " > 0 we define m".x/ D "�1 minfm.x/; "g. We see that m" is a
Lipschitz function vanishing on @U . We have that gm" 2 Lip.RN / and

r.gm"/ � F D m"rg � F C grm" � F ;

by the properties of the pairing rg � F . Since gm" vanishes on @U , we have

Z

U

m" d.rg � F /C
Z

U

g d.rm" � F /C
Z

U

gm" divF D 0: (19)

Now,m".x/! 1 everywhere in U , so that dominated convergence implies

Z

U

m" d.rg � F /!
Z

U

d.rg � F /

and
R
U
gm" divF ! R

U
g divF . On the other hand, we have m" D "�1m in

L", so rm" D "�1rm, a.e. in L", which gives rm" � F D "�1rm � F , over
L". Moreover, since U n L" D m�1

" .1/, by Lemma 1, we have rm" � F D 0

on U n L". Hence, we obtain (17) from (19) when " ! 0, by the definition of
F � �.gj@U / in (9).

(ii) By (18), we have jrm � F j.L"/ 	 C", for some C > 0 independent of ", at
least for a subsequence of "! 0, so that

ˇ̌
ˇ̌"�1

Z

L"

g d.rm � F /
ˇ̌
ˇ̌ 	 CkgkL1.RN /;

for each g 2 Lip.RN / \ L1.RN /. Therefore, given g 2 Lip.@U /, we may
extend g to a Lipschitz function on R

N so that kgj@U kL1.@U / D kgkL1.RN /,
and so, by (17), we deduce that jF � �.g/j 	 CkgkL1.@U /, which implies, by
the Riesz representation theorem, that F �� is a measure on @U , as asserted. ut

Remark 1. A typical example of m in the statement of Theorem 4 is provided by
m.x/ D dist .x; @U /, for x 2 U , and m.x/ D 0, for x 2 R

N n U .

Remark 2. The following interesting example from [11] shows cases where F � �
is a measure over @U and cases where F � � fails to be a measure. Namely, for
1 	 ˛ < 3, let F W R2 n f0g ! R

2 be defined by
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F.x/ D 1

jxj˛ .x2;�x1/;

and let U D fx D .x1; x2/ 2 R
2 W jxj < 1; x2 < 0g. Clearly, divF D 0, in

R
2 n f0g, and we easily verify that

F 2 DMp.U IR2/ with 1	p<2=.˛ � 1/, for 1<˛ <3, and pD1, for ˛D 1:

Now, if g 2 Lip.@U / and suppg � f.x1; x2/ 2 R
2 W x2 D 0; jx1j < 1g, we may

use (18) with m satisfyingm.x/ D �x2, for �"0 < x2 	 0, and jx1j < 1� "0, with
"0 > 0 small enough so that g.x/ D 0, if jx1j � 1 � "0. Also, we may consider an
extension of g to R

2 such that g.x1; x2/ D g.x1; 0/, for jx2j < "0. Applying (18)
with m and the extension of g so defined, we get

F � �.g/ D lim
"!0

1

"

Z "

0

Z 1

�1
g.t; s/

t

.t2 C s2/ ˛2 dt ds;

which gives

F � �.g/ D
Z 1

�1
g.t; 0/sgn.t/jt j1�˛ dt; for 1 	 ˛ < 2;

and

F � �.g/ D lim
"!0

Z

jt j>"
g.t; 0/sgn.t/jt j1�˛ dt; for 2 	 ˛ < 3:

This shows that, for 1 	 ˛ < 2, F � � is a measure, while, for 2 	 ˛ < 3, F � � is
not a measure on @U .

Remark 3. For "0 > 0 sufficiently small and 0 < s < "0, we may consider the open
set Us WD fx 2 U W m.x/ > sg, for m as in Theorem 4. By Theorem 4, for the
normal trace F � �j@Us, we have the following formula similar to (17),

F � �.gj@Us/ D � lim
"!0

"�1
Z

fs<m.x/<sC"g
g d .rm � F /; (20)

and, again, we have that the condition

lim inf
"!0

"�1jrm � F j.fs < m.x/ < s C "g/ <1; (21)

implies that F � �j@Us is a measure on @Us . If we consider the monotone function
V.s/ D jrm � F j.f0 < m.x/ < sg/, for s 2 .0; "0/, we see that the left-hand side
of (21) is the right-derivative of V at s, except possibly for a countable subset of
.0; "0/, and we know that it exists for a.e. s 2 .0; "0/. Therefore, F � �j@Us is a
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measure for a.e. s 2 .0; "0/, and in this sense we may assert that “for almost all
boundaries” @U the normal trace F � �j@U is a measure.

3 Domains with a Lipschitz Deformable Boundary

We now enter into the main subject of the present paper, beginning with the
definition of a deformable Lipschitz boundary.

Definition 2. Let� � R
N be an open set. We say that @� is a deformable Lipschitz

boundary if the following hold:

(i) For each x 2 @�, there exist an r > 0 and a Lipschitz mapping � W RN�1 ! R

such that, upon rotating and relabeling the coordinate axis if necessary,

� \Q.x; r/ D f y 2 R
N W �.y1; � � � ; yN�1/ < yN g \Q.x; r/;

where Q.x; r/ D f y 2 R
N W jyi � xi j 	 r; i D 1; � � � ; N g. We denote by Q�

the map Qy 7! . Qy; �. Qy//, Qy D .y1; � � � ; yN�1/.
(ii) There exists a map ‰ W @� � Œ0; 1� ! N� such that ‰ is a bi-Lipschitz

homeomorphism over its image and‰.x; 0/ D x, for all x 2 @�. For s 2 Œ0; 1�,
we denote by ‰s the mapping from @� to N� given by ‰s.x/ D ‰.x; s/, and
set @�s WD ‰s.@�/.

We say that the Lipschitz deformation ‰ W @� � Œ0; 1� ! N� is regular, and that �
has a regular Lipschitz deformable boundary, if, besides (i) and (ii), we have

(iii) J Œr‰s ı Q�� * J Œr Q��, as s ! 0, in the weak star topology of L1.B/ for any
bounded open set B � R

N�1 such that Q�.B/ � @�, with Q� as in (i), where
J Œrg� denotes the Jacobian of rg (see, e.g., [7]).

Remark 4. In [2] the additional condition (iii) for defining a regular Lipschitz
deformation was stated in a slightly stronger way, asking that r‰s ı Q� ! r Q� ,
as s ! 0, in L1.B/. Nevertheless, the weak convergence of the Jacobian is already
enough to guarantee the validity of the formula

F � � ˇ̌
@�
D ess: lim.F � �s/ ı‰s; in the weak star topology of L1.@�;HN�1/;

(22)

which holds for DM1-fields, as established in [2].
Actually, condition (iii) is equivalent to J Œd‰s� WD det.d‰�

s d‰s/
1=2 * 1 in the

weak star topology ofL1.@�/, where, for each ! 2 @�, d‰s.!/ W T!.@�/! R
N

is the differential mapping of ‰s at ! 2 @� and d‰�
s .!/ W RN ! T!.@�/ denotes

the adjoint mapping. This follows from the Cauchy-Binet formula for the Jacobian
(see, e.g., [7]).

We start our discussion by introducing the level set function h W RN ! R,
defined by
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h.x/ D

8
ˆ̂<
ˆ̂:

0; for x 2 R
N n N�;

s; for x 2 @�s;

1; for x 2 � n‰.@� � Œ0; 1�/:

By formula (17) we have

F � �.gj@U / D � lim
"!0

"�1
Z

L"

g d .rh � F /; (23)

for any F 2 DMext.�/, and any g 2 Lip.RN / \ L1.RN /, with L" D fx 2 � W
0 < h.x/ < "g.
Remark 5. The following standard example of a domain with a regular deformable
Lipschitz boundary shows that, for the sake of studying local properties of the
normal trace operator, any domain with a Lipschitz boundary may be viewed as
a domain with a regular deformable Lipschitz boundary. So, let

U WD f x 2 R
N W �.x1; � � � ; xN�1/ < xN g; (24)

where � W RN�1 ! R is a Lipschitz function. U is then an unbounded open set,
@U is the graph of � , @U D f. Qx; xN / 2 R

N W Qx 2 R
N�1; xN D �. Qx/g, and

it is very easy to define a regular Lipschitz deformation for @U by simply setting
‰.. Qx; �. Qx//; s/ D . Qx; �. Qx/ C sı/, Qx 2 R

N�1, s 2 Œ0; 1�, where ı > 0 is arbitrary.
It turns out that, by property (i) in Definition 2, for test functions g, as in (9),
with support contained in a sufficiently small neighborhood, say, a neighborhood
like those appearing in Definition 2(i), the normal trace operator given by (9) may
be defined using (23) where h is the level set function associated to this trivial
standard deformation. More specifically, in this case, the level set function is simply
defined by

h.x/ D

8
ˆ̂<
ˆ̂:

0; if xN < �. Qx/;
s; if xN D �. Qx/C sı, for s 2 Œ0; 1�;
1; if xN � �. Qx/C ı:

Therefore, considered as distributions in R
N with support contained in @�, the

normal trace operators associated to DMext-fields can always be split in a countable
sum of distributions, whose supports possess the finite intersection property, each of
which may be defined like the normal trace operator for a standard domain as just
described. Indeed, it suffices to employ a partition of unity subordinate to a suitable
covering of @�.

The above remark is important in connection, for instance, with the theory of
hyperbolic systems of conservation laws (see, e.g., [6]). Namely, if R

N is the
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space-time space R
nC1, so N D n C 1, with points denoted .x; t/, suppose

F.x; t/ D .�.u.x; t//; q.u.x; t/// where � W Rm ! R and q W Rm ! R
n form

an entropy-entropy flux pair for a hyperbolic system of conservation laws, and
u W Rn�.0;1/! R

m is a weak entropy solution for this system, and let� � R
nC1

be an open set. It is an important question to determine whether there is a measurable
function u� W @�! R

m such that the normal trace operator may be represented by
.�.u� .!//; q.u� .!/// � �.!/, where �.!/ is the outer unit normal vector at ! 2 @�.
Through the splitting of the normal trace operator mentioned in the above remark,
this question, for a general domain with Lipschitz boundary, may be reduced to the
corresponding one for a hyper-graph domain as U in (24).

For simplicity, in what follows, we will always assume that � is a bounded
open set with a regular deformable Lipschitz boundary. We emphasize that, for the
purpose of getting local information about the normal trace operator, as has been
already mentioned, this assumption does not represent any additional restriction
beyond that of possessing a Lipschitz boundary. The fact that � is bounded allows
us to restrict our discussion to just two cases, namely, that for fields in DM1.�/

and that for fields in DMext.�/, since the boundedess of � implies DMp.�/ �
DM1.�/, for all 1 < p 	 1. Let us then focus our attention in these two cases.

Theorem 5. Let � be a bounded open set with a deformable Lipschitz boundary
and F 2 DM1.�/. Let ‰ W @� � Œ0; 1� ! N� be a Lipschitz deformation of @�.
Then, for almost all s 2 Œ0; 1�, and all � 2 C1

0 .R
N /,

Z

�s

� divF D
Z

@�s

�.!/F.!/ � �s.!/ dHN�1.!/�
Z

�s

F.x/ � r�.x/ dx; (25)

where �s is the unit outward normal field defined HN�1-almost everywhere in @�s ,
and�s is the open subset of � bounded by @�s .

Proof. For � 2 C1
0 .R

N /, let

��.s/ D
Z

@�s

�.!/F.!/ � �s.!/ dHN�1.!/; s 2 Œ0; 1�;

where �s is as in the statement. Let s0 2 Œ0; 1� be a Lebesgue point for �� , for � in
a countable dense set in C1

0 .R
N /. For ı > 0 sufficiently small, let gı W R ! R be

defined as

gı.s/ D

8
ˆ̂<
ˆ̂:

0; s < s0 � ı;
s�s0Cı
2ı

; s0 � ı 	 s 	 s0 C ı;
1; s > s0 C ı:

Set  ı D gı ı h�, where h is the level set function associated to the Lipschitz
deformation‰. By the Gauss-Green formula, we have
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0 D
Z

�

F � r ı dxC
Z

�

 ı divF

D
Z

�

�g0
ı.h.x//F � rh dxC

Z

�

gı.h.x//F � r� dxC
Z

�

 ı divF;

which gives, by the coarea formula,

0 D � 1
2ı

Z s0Cı

s0�ı

Z

@�s

�F � �s dHN�1.!/ dsC
Z

�

gı.h.x//F � r� dxC
Z

�

 ı divF:

Letting ı ! 0, we obtain (25) for s D s0, where s0 is an arbitrary Lebesgue point
of �� , for � in a countable dense subset of C1

0 .R
N /, and, so, (25) holds for almost

all s 2 Œ0; 1� as was to be proved. ut
From Theorem 5 and the Gauss-Green formula (9), when F 2 DM1.�/, it

follows that, for any g 2 Lip.RN / \ L1.RN /, we have the following formula for
the normal trace functional F � � W Lip.@�/! R,

hF � �; gj@�i D ess: lim
s!0

Z

@�s

gF.!/ � �.!/ dHN�1.!/; (26)

where the limit on the right-hand side exists by applying dominated convergence to
the other two terms in (25). Therefore, for any � 2 Lip.@�/, we have

hF � �; �i D ess: lim
s!0

Z

@�s

� ı‰�1
s .!/F.!/ � �s.!/ dHN�1.!/;

or, by using the area formula,

hF � �; �i D ess: lim
s!0

Z

@�

�.!/F ı‰s.!/ � �s.‰s.!//J Œ‰s� dHN�1.!/

D ess: lim
s!0

Z

@�

�.!/F ı‰s.!/ � �.‰s.!// dHN�1.!/;

where we have used the fact that‰ is a regular Lipschitz deformation. Therefore we
have proved the following formula for the normal trace for a DM1-field.

Theorem 6. Let F 2 DM1.�/, where � is a bounded open set with a Lipschitz
boundary admitting a regular deformation ‰ W @� � Œ0; 1� ! N�. Denoting by
F � �j@� the continuous linear functional Lip.@�/ ! R given by the normal trace
of F at @�, we have the formula

F � �j@� D ess: lim
s!0

F ı‰s.�/ � �s.‰s.�//; (27)
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with equality in the sense of .Lip.@�//�, where on the right-hand side the
functionals are given by ordinary functions in L1.@�/.

We now turn to the case where F 2 DMext.�/. Let us again consider the level
set function h associated to the regular Lipschitz deformation‰ W @�� Œ0; 1�! N�.
Let us consider the measure  over‰.@� � Œ0; 1�/ given by

 WD jrh � F j b‰.@�� Œ0; 1�/:

We consider the pull back of  by ‰, ‰], which is the measure on @� � Œ0; 1�
defined by

h‰]; 'i D h; ' ı‰�1i; 8' 2 C.@� � Œ0; 1�/:

We may apply the disintegration process to ‰] (see, e.g., Theorem 2.28, p. 57
in [1]) to write ‰] D � ˝ Qs , for the Radon measure � on Œ0; 1� given by the
projection of ‰] onto Œ0; 1�, and so �.E/ D ‰].@��E/ for any Borel set E �
Œ0; 1�, and Radon measures Qs such that s 7! Qs is �-measurable, Qs.@�/ D 1,
�-a.e. in Œ0; 1�, so that we have
Z

@��Œ0;1�
'.!; s/ d‰] D

Z

Œ0;1�

�Z

@�

'.!; s/ d Qs.!/
�
d�.s/; 8' 2 C.@��Œ0; 1�/:

(28)

Therefore, by pushing forward the equation ‰] D � ˝ Qs by ‰, we obtain

 D � ˝ s; s WD .‰s/] Qs;

where, for any � 2 C.@�s/,

h.‰s/] Qs; �i D h Qs; � ı‰si:

In particular, for any � 2 C1
0 .R

N /, with supp� \� � ‰.@� � Œ0; 1�/, we have

Z

�

�.x/ d.rh � F / D
Z

Œ0;1�

�Z

@�s

�.x/	.x/ ds

�
d�.s/; (29)

where 	 is the -measurable function, with j	 j D 1, -a.e., such that

	 D rh � F b‰.@� � Œ0; 1�/:

Now, we have the decomposition � D H.s/ ds C �sing, for some non-negative
H 2 L1.Œ0; 1�/, and �sing D �bN , for some Borel set N � Œ0; 1� of one-
dimensional Lebesgue measure zero, by the Lebesgue decomposition theorem (see,
e.g., [7], p. 42). We then define
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.rh � F /s WD 	 H.s/ s: (30)

We have the following analogue of Theorem 5 when F 2 DMext.�/.

Theorem 7. Let � be a bounded open set with a deformable Lipschitz boundary
and F 2 DMext.�/. Let ‰ W @� � Œ0; 1� ! N� be a Lipschitz deformation of @�.
Then, for almost all s 2 Œ0; 1�, and all � 2 C1

0 .R
N /,

Z

�s

� divF D
Z

@�s

�.!/ d.rh � F /s �
Z

�s

r�.x/ � F: (31)

Proof. The proof is nearly identical to that of Theorem 5, the only difference being
that now we must choose s0 2 Œ0; 1�nN , with N as above, such that s0 is a Lebesgue
point of

��.s/ WD
Z

@�s

� d.rh � F /s

for � in a countable dense set in C1
0 .R

N /, and we take gı only for small ı > 0 such
that j.rh � F /j.@�s0˙ı/ D 0. ut

Similarly to what was done for DM1-fields, from Theorem 7 we get the
following result.

Theorem 8. Let F 2 DMext.�/, where � is a bounded open set with a Lipschitz
boundary admitting a regular deformation ‰ W @� � Œ0; 1� ! N�. Denoting by
F � �j@� the continuous linear functional Lip.@�/ ! R given by the normal trace
of F at @�, we have the formula

F � �j@� D ess: lim
s!0

‰]
s d.rh � F /s; (32)

with equality in the sense of .Lip.@�//�, where on the right-hand side the
functionals are given by the pull back by ‰s of the measures d.rh � F /s , resulting
from the disintegration of d.rh � F /.

4 Application to Time-Regularity of Entropy Solutions to
Hyperbolic Conservation Laws

Let n; d 2 N, RdC1
C D R

d � .0;1/, and U � R
n be an open and convex set. We

consider the N -dimensional system of n conservation laws

@tU C
dX
˛D1

@˛F
˛.U / D 0; in R

NC1
C ; (33)
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with U.x; t/ 2 U and F ˛ W U ! R
n, where @˛ denotes the partial derivative with

respect to x˛ .
Together with (33), we consider the initial data

U.x; 0/ D U0.x/: (34)

The following result provides time-regularity information about entropy
solutions of the problem (33) and (34). It extends a result established in [6]
(Theorem 4.5.1), which follows from the theory for L1 divergence-measure fields.

Theorem 9. Let U0 2 L1loc.R
d /, and let U 2 L1loc.R

d � Œ0;1// be a weak solution
of (33) and (34), in the sense that, for any � 2 C1

c .R
dC1/, we have

Z

R
dC1
C

U.x; t/@t� C
dX
˛D1

F ˛.U /@˛� dx dtC
Z

Rd

U0.x/�.x; 0/ dx D 0: (35)

Let � W U ! Œ0;1/ be a strictly convex function, with �.U / � c1jU j C c2, for
some c1 > 0, c2 2 R, such that �.U.x; t// 2 Lp.K \ R

dC1
C /, for any compact

set K � R
dC1, for some p > 1. Suppose that there exists a vector measure Q 2

M.K \ R
dC1
C IRd /, for any compact set K � R

dC1, such that �.U.x; t// satisfies

@t�.U /C div xQ 	 0; in R
dC1
C ; (36)

in the sense of distributions, where M.�IRd / denotes the R
d -valued Radon

measures with finite total variation on �. Then,

U 2 C..0;1/ n S IL1loc.R
d //; (37)

for some at most countable set S � .0;1/. Moreover, if we have, for all
nonnegative 2 C1

c .R
dC1/,

Z

R
dC1
C

f�.U.x; t// @t dx dtCrx � dQg C
Z

Rd

�.U0.x// .x; 0/ dx � 0;
(38)

then the above strong continuity holds on the right for t D 0.

Proof. The result follows by applying Theorem 8 to the domains �Œt0C� WD
f.x; t/ W t > t0g, t0 > 0, with regular Lipschitz deformation �Œt0C�s D
�Œ.t0 C s/C�, s 2 Œ0; 1�, and �Œt0�� WD f.x; t/ W �1 < t < t0g, t0 > 0,
with regular Lipschitz deformation �Œt0��s D �Œ.t0 � s/��, s 2 Œ0; 1�. Here, for
simplicity, we may view U.x; t/ as extended to t < 0 as 0, as well as �.U.x; t//, as
�.0/, andQ as the null measure, for t < 0. We then obtain that, for a.e. t0 > 0,

( R
Rd
U.x; t0/ �.x/ dx D ess: limt!t0

R
Rd
U.x; t/�.x/ dx;R

Rd
�.U.x; t0//�.x/ dx D ess: limt!t0

R
Rd
�.U.x; t//�.x/ dx;

(39)
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for all � 2 C1
0 .R

d /. Now, using (37), for almost all 0 < ı < s < t < T , and
R > 0, there exists an A.R; ı; T / > 0 such that

Z

jxj<R
�.U.x; t// dx 	

Z

jxj<R
�.U.x; s// dxC A.R; ı; T /: (40)

This gives that, for any ı > 0,
R

jxj<R �.U.x; t// dx is uniformly bounded for
ı < t < T , for almost all R > 0. Using the assumptions on �, we conclude thatR

jxj<R jU.x; t/j dx is also uniformly bounded for t > ı, for almost allR > 0. Hence,

we may take � 2 Lp0

.Rd /, with compact support, in (41), with p0 D p=.p � 1/.
Now, since � is strictly convex, we conclude the proof in a standard way. ut

As an example, in [5], Chen and Perepelitsa prove the convergence of the
solutions .�"; �"u"/ to the Cauchy problem for the Navier-Stokes equations

(
�t C .�u/x D 0;
.�u/t C .�u2 C ���/x D "uxx;

(41)

with initial data

�.x; 0/ D �0.x/; u.x; 0/ D u0.x/; (42)

where � > 1 and � > 0, by a scaling defined by � D .� � 1/2=4� . Using energy
estimates and compensated compactness with Young measures with unbounded
support, they prove the convergence in L1.K \ R

2C/ of .�";m"/, with m" D �"u",
to some .�.x; t/;m.x; t// 2 L1loc.R

2C/, and also the convergence in L1.K \R
2C/ of

��.�".x; t/;m".x; t// to ��.�.x; t/;m.x; t//, where

��.�;m/ D 1

2

m2

�
C �e.�/; e.�/ D �

� � 1�
��1;

for any compactK . Nevertheless, passing to the limit in the inequality

@t�
�.�";m"/C @xq�.�";m"/ 	 "

2
@2x.u

"/2; (43)

which holds for each " > 0, with

q�.�;m/ D 1

2

m3

�2
Cme.�/C �me0.�/;

we obtain an inequality of the form

@t�
�.�.x; t/;m.x; t//C @xQ.x; t/ 	 0; in R

2C; (44)
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in the sense of distributions, for someQ 2M.K \R
2C/, for any compactK � R

2.
Because of the presence of the term �".u"/3 in q�.�";m"/, whose estimates obtained
in [5] only guarantee the uniform boundedness in L1.K \ R

2C/, for any compact
K � R

2, we can only deduce that

hq�.�";m"/; @x i ! hQ; @x i;

for any  2 C1
c .R

2C/, for some (signed) Radon measureQ in R
2C, with finite total

variation in K \R
2C, for any compactK � R

2.
Actually, from the results in [5] we obtain

Z

R
2
C

f t��.�;m/ dx dtC  x dQg C
Z

R

 .x; 0/��.�0.x/;m0.x// dx � 0; (45)

for all nonnegative 2 C1
c .R

2/, under suitable conditions on the initial data.
We can then apply Theorem 9 to conclude that the weak solution of the

compressible isentropic Euler equations, .�.x; t/;m.x; t//, obtained in [5] as the
limit of the vanishing viscosity solutions of the corresponding Navier-Stokes
equations, satisfies

.�;m/ 2 C..0;1/ n S IL1loc.R//;

for some at most countable subset S � .0;1/, and, moreover, .�.�; t/;m.�; t// !
.�0.�/;m.�//, as t # 0, in L1loc.R/.

Acknowledgements The author gratefully acknowledges the support from CNPq, through grant
proc. 303950/2009-9, and FAPERJ, through grant E-26/103.019/2011.

References

1. L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity
Problems. Oxford Mathematical Monographs (Oxford University Press, Oxford, 2000)

2. G.-Q. Chen, H. Frid, Divergence-measure fields and hyperbolic conservation laws. Arch.
Ration. Mech. Anal. 147(2), 89–118 (1999)

3. G.-Q. Chen, H. Frid, On the theory of divergence-measure fields and its applications. Bol. Soc.
Brasil. Mat. (N.S.) 32(3), 401–433 (2001)

4. G.-Q. Chen, H. Frid, Extended divergence-measure fields and the Euler equations for gas
dynamics. Commun. Math. Phys. 236(2), 251–280 (2003)

5. G.-Q. Chen, M. Perepelitsa, Vanishing viscosity limit of the Navier-Stokes equations to the
Euler equations for compressible fluid flow. Commun. Pure Appl. Math. 63(11), 1469–1504
(2010)

6. C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 3rd edn. (Springer,
Berlin/Heidelberg, 1999/2005/2010)

7. L.C. Evans, R.F. Gariepy, Lecture Notes on Measure Theory and Fine Properties of Functions
(CRC, Boca Raton, 1992)



Divergence-Measure Fields on Domains with Lipschitz Boundary 225

8. H. Federer, Geometric Measure Theory (Springer, Berlin/Heidelberg/New York, 1969)
9. H. Frid, Remarks on the theory of the (extended) divergence-measure fields. Q. Appl. Math.

70(3), 579–596 (2012)
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On Strong Local Alignment in the Kinetic
Cucker-Smale Model

Trygve K. Karper, Antoine Mellet, and Konstantina Trivisa

Abstract In this paper, we rigorously derive a kinetic Cucker-Smale model with
strong local alignment. The local alignment term is obtained by considering the limit
of a non-local alignment term recently proposed by Motsch and Tadmor. The main
difficulty in the analysis is presented by the non-symmetry of the Motsch-Tadmor
term as well as the behavior of the velocity when the density vanishes (vacuum).
Tools involved are the averaging lemma and several Lp estimates.

Keywords Flocking • Kinetic equations • Existence • Velocity averaging •
Cucker-Smale • Self-organized dynamics
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1 Introduction

In [7] Motsch and Tadmor identify an undesirable feature of the widely studied
Cucker-Smale flocking model (cf. [2–4]): In the Cucker-Smale model, the alignment
of each individual is scaled with the total mass so that the effect of alignment is
almost negligible in sparsely populated regions. To avoid this effect, they propose
a new model in which the alignment term is normalized with a local average
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density instead of the total mass. Motivated by this work, the authors of the
present paper proposed in [5] to combine the Cucker-Smale and Motsch-Tadmor
models, letting the usual Cucker-Smale alignment term dominate the large scale
dynamics and the Motsch-Tadmor term dominate the small scale dynamics. This
remedies the aforementioned deficiency while maintaining the large scale dynamics
of the Cucker-Smale model. At the mesoscopic level, the proposed model takes the
following form

ft C divx.vf /C divv.fF Œf �/C divv.fL
r Œf �/ D 0: (1)

Here, the unknown is the distribution function f WD f .t; x; v/.
The first alignment term F Œ�� is the standard Cucker-Smale alignment term

given by

F Œf .x; v/� D
Z

R2d

ˆ.x � y/f .y;w/.w � v/ dw dy; (2)

whereˆ.x/ is an influence function satisfying

0 	 ˆ 2 L1.R/; ˆ.x/ D ˆ.�x/;
Z

Rd
ˆ.x/ dx D 1:

A typical example is ˆ.x/ � 1=.1C jxj2/� for some � > 0 (cf. [1]). The second
alignment term LrŒ�� in (1) is the Motsch-Tadmor alignment term given by (see [7]):

Lr Œf .x; v/� D
R
R2d

Kr.x � y/f .y;w/.w � v/ dw dyR
R2d

Kr.x � y/f .y;w/ dw dy
; (3)

where the index r denotes the radius of influence of Kr (see (4) below for the
definition of Kr ).

The only fundamental difference between (2) and (3) is the renormalization by
the local average density

R
R2d

Kr.x � y/f .y;w/ dw dy. We can also write Lr as
follows:

Lr.f / D Qur � v

where

Qur .x/ D
R
R2d

Kr.x � y/wf .y;w/ dw dyR
R2d

Kr.x � y/f .y;w/ dw dy
:

In this form, it is obvious that the strength of the alignment force is now independent
of the total mass, which was the original intention of [7]. Another effect of this
renormalization is to break the symmetry of the alignment. As a consequence, (1)
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does not conserve momentum nor energy, and the derivation of an energy bound
will be one of the main difficulties in the analysis of (1).

The purpose of this paper is to study the limit as r ! 0 in Eq. (1) when the
function Kr converges to the Dirac distribution ı0. In other words, we study the
limit of (1) when the Motsch-Tadmor term divv.fL

r Œf �/ becomes a local (in space)
alignment term. For the sake of simplicity, we assume that Kr is derived from a
given functionK through the scaling

Kr.x/ D r�dK
�x
r

�
; (4)

whereK is required to satisfy

0 	 K 2 Cc.Rd /; K.0/ > 0;

Z

Rd

K.x/ dx D 1: (5)

When r ! 0, we then formally expect to have

Qur .t; x/ r!0�! u.t; x/ WD
R
Rd

wf .t; x;w/ dwR
Rd
f .t; x;w/ dw

and so

LrŒf �.t; x; v/
r!0�!

R
Rd
f .t; x;w/.w � v/ dwR
Rd
f .t; x;w/ dw

WD u.t; x/ � v: (6)

Passing to the limit in (1), we thus obtain the equation

ft C divx.vf /C divv.fF Œf �/C divv.f .u � v// D 0: (7)

Note that u is not well defined when
R
Rd
f .t; x; v/ dv D 0. We thus set u.t; x/ DR

Rd
vf .t;x;v/ dvR

Rd
f .t;x;v/ dv

if
R
Rd
f .t; x; v/ dv ¤ 0 and u.t; x/ D 0 otherwise. Equation (7) is

studied in [5, 6]: In [5] we prove the existence of weak solutions and establish
various entropy inequalities. In [6], we investigate a singular limit corresponding
to strong local alignment and (rigorously) derive an Euler-Flocking type model.
The purpose of the present paper is to rigorously justify the convergence of (1)–(7)
when r ! 0.

More precisely, we will prove the following theorem:

Theorem 1. Let 0 	 f0 2 L1.R2d / \ L1.R2d / be given and T be a finite final
time. For each r > 0, let f r.t; x; v/ be a weak solution of (1) in the sense that

Z

R2dC1
�f r�t � vf rrx� � f rF Œf r �rv� dv dx dt (8)

�
Z

R2dC1
f rLr Œf r �rv� dv dx dt D

Z

R2d
f0�.0; �/ dv dx; 8� 2 C1

c .Œ0; T / � R
2d /;
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where Lr is given by (3) andKr is given by (4). Then, as r ! 0,

f r ?
* f in L1.0; T ILp.R2d // for any p 2 .1;1/;

f rLr Œf r � * f .u � v/ in Lq..0; T / �R
2d /; q <

d C 2
d C 1 ;

with u.t; x/ defined by

u.t; x/ D
8
<
:

R
Rd

v f .t; x; v/ dvR
Rd
f .t; x; v/ dv

if
Z

Rd

f .t; x; v/ dv ¤ 0
0 otherwise.

Furthermore, the limit f .t; x; v/ is a weak solution of (7) in the sense that

Z

R2dC1
�f �t � vf rx� � fF Œf �rv� dv dx dt (9)

�
Z

R2dC1
f .u � v/rv� dv dx dt D

Z

R2d
f 0�.0; �/ dv dx; 8� 2 C1

c .Œ0; T / � R
2d /:

2 Preliminary Material

In this section we have gathered some results that will be needed to prove
Theorem 1. We begin by introducing some convenient notations. We denote the
moments of f , and their Kr weighted counterparts, as follows:

�.t; x/ D
Z

Rd

f .t; x; v/ dv; Q�r.t; x/ D
Z

R2d

Kr.x � y/f .t; y; v/ dv dy;

j.t; x/ D
Z

Rd

v f .t; x; v/ dv; Qj r .t; x/ D
Z

R2d

Kr.x � y/ v f .t; y; v/ dv dy

(note that Q�r D Kr ? � and Qj r D Kr ? j ). With these notations, we can rewrite the
definition of the velocity as

u.t; x/ D
8
<
:
j.t; x/

�.t; x/
if �.t; x/ ¤ 0

0 if �.t; x/ D 0
(10)

(and similarly for Qur .t; x/). Since we have

j.t; x/ 	
�Z
jvj2f .t; x; v/ dv

�1=2
�.t; x/1=2;
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a bound on the kinetic energy of f (see (13) below) will imply that j D 0whenever
� D 0 and so (10) implies in particular j D �u.

With the above notation, we have Lr Œf � D Qur � v, and (1) can be written as

ft C divx.f v/C divv.fF Œf �/C divv.f .Qur � v// D 0: (11)

The following proposition states that (11) is well-posed in the sense of weak
solutions (see [5] for the proof).

Proposition 1. Assume that 0 	 f0 2 L1\L1.R2d / with .x2Cv2/f0 2 L1.R2d /.
For a given T < C1 and for any r > 0, (11) admits a weak solution 0 	 f 2
C.0; T IL1.R2d //. Moreover, for all p 2 Œ1;1�, f satisfies

kf kL1.0;T ILp.R2d // 	 kf0kLp.R2d /e
p�1
p CT

; (12)

E.t/ WD
Z

R2d

�jvj2 C jxj2�f .t; x; v/ dv dx 	 CeCTE.0/; (13)

where the constant C might depend on r .

To conclude this section, we recall the following classical lemma, which will be
used to derive the Lp integrability of � and j (see [5] for the proof):

Lemma 1. Assume that f .t; x; v/, t 2 .0; T /, .x; v/ 2 R
2d satisfies

kf kL1.Œ0;T ��R2d / 	M; and sup
t2Œ0;T �

Z

R2d

jvj2f .t; x; v/ dvdx 	M:

Then there exists a constant C D C.M/ such that

k�kL1.0;T ILp.Rd // 	 C; for every p 2 Œ1; dC2
d
/;

kjkL1.0;T ILp.Rd // 	 C; for every p 2 Œ1; dC2
dC1 /;

(14)

where � D R f dv and j D R vf dv.

2.1 The Velocity Averaging Lemma

When passing to the limit in (11), the main obstacle is to obtain compactness of
the product f Qur . To achieve this, we will make use of the following version of the
velocity averaging lemma due to Perthame and Souganidis [8]:
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Proposition 2. Let ff ngn be bounded in Lploc.R
2dC1/ with 1 < p <1, and fGngn

be bounded in Lploc.R
2dC1/. If f n and Gn satisfy

f n
t C v � rxf n D rkvGn; f njtD0 D f 0 2 Lp.R2d /;

for some multi-index k, then for any ' 2 C jkj
c .R2d /, the sequence

�Z

Rd

f n'.v/ dv

�

n

(15)

is relatively compact in Lploc.R
dC1/.

The previous proposition cannot be directly applied to obtain the needed
compactness. In fact, we will rely on the following lemma which can be seen as
a corollary of the previous proposition. The proof can be found in [5].

Lemma 2. Let ff ngn and fGngn be as in Proposition 2 and assume that

f n is bounded in L1.R2dC1/;

.jvj2 C jxj2/f n is bounded in L1.0; T IL1.R2dC1//:

Then, for any '.v/ 2 C1.Rd / such that j'.v/j 	 cjvj and for any q < dC2
dC1 , the

sequence

�Z

Rd

f n'.v/ dv

�

n

(16)

is relatively compact in Lq..0; T / � R
d /.

2.2 An Important Technical Lemma

In view of Lemmas 1 and 2, it is clear that in order to get convergence results for f r

and its moments, we will need to obtain some estimate on f r that are uniform with
respect to r . The main difficulty will be to show that the energy estimate (13) holds
with constants independent of r (which does not obviously follow from the result
of [5]). For this we will make use of the following technical lemma, which can be
found in [5] (the proof is given below for completeness):

Lemma 3. Let K satisfy (5) and assume there exist 0 < R1 < R2 <1 such that

K.x/ > 0 for jxj 	 R1 ; K.x/ D 0 for jxj � R2: (17)

There exists a constant C depending only on
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supBR2 K

infBR1 K

�
R2

R1

�d
(18)

such that
Z

Rd

K.x � y/ �.x/R
Rd
K.x � z/�.z/ dz

dx 	 C; 8y 2 R
d ;

for all nonnegative functions � 2 L1.Rd /.
The most important part of this lemma is the formula (18), which implies that if we
replace the function K.x/ with ˛K.ˇx/, for any ˛ > 0 and ˇ > 0, then the same
estimate holds with the same constant.

We deduce:

Corollary 1. Assume that Kr is given by (4) where K satisfies (5). Then, there
exists a constant C independent of r such that

Z

Rd

Kr.x � y/ �.x/R
Rd
Kr.jx � zj/�.z/ dz

dx 	 C; 8y 2 R
d

for all nonnegative functions � 2 L1.Rd /.
Proof of Lemma 3. We denote Q�.x/ D R

Rd
K.x � z/�.z/ dz and we observe that

Z

Rd

K.x � y/�.x/Q�.x/ dx 	 .supK/
Z

BR2 .y/

�.x/

Q�.x/ dx:

Next, we cover BR2.y/ with balls of radius R1=2: We can choose .xi /NiD1 in such a
way that

BR2.y/ �
N[
iD1

BR1=2.xi /

with N � .R2=R1/d . We can thus write

Z

Rd

K.x � y/�.x/Q�.x/ dx 	 .supK/
NX
iD1

Z

BR1=2.xi /

�.x/

Q�.x/ dx:

Moreover, clearly,

Q�.x/ D
Z

Rd

K.x � z/�.z/ dz �
Z

BR1=2.xi /

K.x � z/�.z/ dz:

By combining the two previous inequalities, we see that
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Z

Rd

K.x � y/�.x/Q�.x/ dx 	 .supK/
NX
iD1

Z

BR1=2.xi /

�.x/R
BR1=2.xi /

K.x � z/�.z/ dz
dx:

Now, using the fact that when x; z 2 BR1=2.xi / we have jx � zj 	 R1, we deduce

Z

Rd

K.x � y/�.x/Q�.x/ dx 	 supK

infBR1 .0/ K

NX
iD1

Z

BR1=2.xi /

�.x/R
BR1=2.xi /

�.z/ dz
dx

	 supK

infBR1 .0/ K
N 	 C supK

infBR1 .0/ K

�
R2

R1

�d

and the proof is complete. ut

2.3 A Priori Estimate

We can now conclude this preliminary section by proving that f r satisfies some a
priori estimates uniformly with respect to r . We recall that the energy functional is
defined as

E.t/ D
Z

R2d

� jvj2
2
C jxj

2

2

�
f .t; x; v/ dv dx: (19)

We then prove:

Proposition 3 (Energy bound). Let 0 	 f0 2 L1.R2d / \ L1.R2d / be given, let
T be a finite final time, and let f be the corresponding weak solution of (1). There
is a constant C > 0 independent of r > 0 such that for any p 2 Œ1;1�, f satisfies

kf kL1.0;T ILp.R2d // 	 kf0kLp.R2d /e
p�1
p CT

; (20)

and

sup
t2.0;T /

E.t/C 1

2

Z

R2d

f jQur � vj2 dv dx

C 1

2

Z

R4d

ˆ.x � y/f .x; v/f .y;w/jw � vj2 dw dy dv dx 	 C.T /E.0/:
(21)

The proof of Proposition 3 relies on two auxiliary results (Lemmas 4 and 5
below) that we prove first. We begin with the Lp estimate (20):
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Lemma 4. Let f be a weak solution of (1). There is a constant C , independent of
r , such that for any p 2 Œ1;1�, f satisfies

sup
t2.0;T /

kf kLp.R2d / 	 kf0kLp.R2d /e
p�1
p CT

: (22)

Proof. Let us first assume that f has sufficient regularity in x to make the following
argument rigorous: Let B be a continuously differentiable function and define
b.f / D fB 0.f / � B.f /. By multiplying (1) by B 0.f / and integrating, we obtain

d

dt

Z

R2d

B.f / dv dx D
Z

R2d

vrxb.f / dv dx

C
Z

R2d

.F .f /C Lr.f //rvb.f / dv dx

D �
Z

R2d

b.f / .divv F.f /C divv L
r.f // dv dx:

(23)

Next, using the definition of the alignment terms, we see that

divv F Œf � D �d
Z

R2d

ˆ.x � y/f .y;w/ dw i tdy;

divvL
r Œf � D �d

R
R2d

Kr.x � y/f .y;w/ dw dyR
R2d

Kr.x � y/f .y;w/ dw dy
D �d:

Substituting these identities into (23), we find that

d

dt

Z

R2d

B.f / dv dx D
Z

R2d

b.f /

�
d C d

Z

R2d

ˆ.x � y/f .y;w/ dw dy

�
dv dx

	
Z

R2d

b.f /.d C dM kˆkL1.R2d // dv dx;

where M is the total mass. Next, we let B.f / D f p , so that b.f / D .p � 1/f p .
An application of the Gronwall inequality then provides the bound

sup
t2.0;T /

kf kLp.R2d / 	 kf0kLp.R2d/e
p�1
p CT

;

which is the desired inequality.
To make the previous calculation rigorous when f does not have sufficient

regularity in x, one can convolve (1) with a standard mollifier �� in x to obtain an
equation similar to (1) but with an additional commutator term. The corresponding
calculation can then be carried out as above to obtain the desired inequality with an
additional term on the right-hand side that converges to zero with �. ut
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The main difficulty in proving the energy estimate (21) (even for r > 0) is to
control the non-symmetric Motsch-Tadmor alignment term. This is the goal of the
following Lemma, which relies on Lemma 3 and its Corollary 1:

Lemma 5. There is a constant C , independent of r , such that

Z

R2d

f vLrŒf � dv dx 	 CE.t/ � 1
2

Z

R2d

f jQur � vj2 dv dx: (24)

Proof. By definition of Lr , we have that

Lr Œf � D 1

Q�r.x/
Z

R2d

Kr.x � y/f .y;w/.w � v/ dw dy

D 1

Q�r.x/
Z

Rd

Kr.x � y/.j.y/ � �.y/v/ dy D
Qj r
Q�r � v WD Qur � v:

(25)

By adding and subtracting, we obtain

Z

R2d

f vLrŒf � dv dx D
Z

R2d

f .Qur � v/v dv dx

D �1
2

Z

R2d

f .Qur � v/2 dv dxC 1

2

Z

R2d

f .Qur /2 � f v2 dv dx

	 �1
2

Z

R2d

f .Qur � v/2 dv dxC 1

2

Z

Rd

�.Qur /2 dx:

(26)

From the Hölder inequality, we have that

Q�r Qur WD
Z

R2d
Kr .x � y/f .y; v/v dv dy 	 . Q�r / 12

�Z

R2d
Kr .x � y/f .y; v/v2 dv dy

� 1
2

:

Hence, the following inequality holds

Q�r.Qur /2 	
Z

R2d

Kr.x � y/f .y; v/v2 dv dy;

from which we deduce

Z

Rd
�.Qur /2 dx D

Z

Rd

�

Q�r Q�
r .Qur /2 dx 	

Z

R3d
Kr .x � y/ �.x/Q�r .x/f .y; v/v

2 dy dv dx

	 sup
y

�Z

R

Kr.x � y/ �.x/Q�r .x/ dx

�
2E.t/ 	 CE.t/;

(27)
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where the last inequality follows from Corollary 1. Inserting (27) into (26) concludes
the proof. ut

We have now gathered all the ingredients we need to prove Proposition 3.

Proof of Proposition 3. Only (21) remains to be proved. By direct calculation,

d

dt

Z

R2d

f

� jvj2
2
C jxj

2

2

�
dv dx D

Z

R2d

ft
jxj2
2
C ft jvj

2

2
dv dx (28)

D
Z

R2d

vf x C f vF Œf �C f vLrŒf � dv dx

	 E.t/C
Z

R2d

f vF Œf �C f vLrŒf � dv dx;

where the last inequality follows from the Cauchy-Schwarz inequality and Young’s
inequality with � D 1=2. Now, using the fact that ˆ.�x/ D ˆ.x/, we write

Z

R2d

f vF Œf � dv dx D
Z

R4d

ˆ.x � y/f .x; v/f .y;w/.w � v/v dw dy dv dx

D
Z

R4d

ˆ.x � y/f .x; v/f .y;w/.v � w/w dw dy dv dx

D �1
2

Z

R4d

ˆ.x � y/f .x; v/f .y;w/jw � vj2 dw dy dv dx:

Then, we conclude the proof by applying this identity and Lemma 5 to (28) together
with the Gronwall inequality. ut

3 Convergence and Proof of Theorem 1

Equipped with the bounds of the previous section, we are ready to send r to 0
in (1) and thereby prove Theorem 1. For this purpose, we let frngn be a sequence
of positive numbers such that rn ! 0 as n ! 1 and consider corresponding
solutions f n of

f n
t C divx.vf n/C divv.f

nF Œf n�/C divv.f
n.Qun � v// D 0; (29)

where we recall the notation

Qun D Qj
n

Q�n WD
R
R2d

Krn.x � y/f n.y;w/w dw dyR
R2d

Krn.x � y/f n.y;w/ dw dy
:



238 T.K. Karper et al.

Our starting point is the fact that Lemma 4, Proposition 3, together with
Lemma 1, assert the existence of a function 0 	 f 2 C.0; T IL1.R2d // \
L1.0; T IL1.R2d //, such that, as n!1,

f n ?
* f in L1..0; T /ILp.R2d ///; for any p 2 .1;1/;

�n
?
* � in L1..0; T /ILp.Rd //, for every p 2

�
1;
d C 2
d

�
;

j n
?
* j in L1..0; T /ILp.Rd //, for every p 2

�
1;
d C 2
d C 1

�
:

(30)

Moreover, the velocity averaging Lemma 2 is applicable. By setting '.v/ D 1 and
'.v/ D v in Lemma 2 we obtain respectively

�n ! � a.e. and Lp..0; T / �R
d /�strong, for every p 2

�
1;
d C 2
d C 1

�
;

j n ! j a.e. and Lp..0; T / �R
d /�strong, for every p 2

�
1;
d C 2
d C 1

�
;

(31)

along some subsequence as n!1. Furthermore, we can prove:

Lemma 6. Up to another subsequence, we can also assume that

Qj n ! j; Q�n ! �; a.e and Lp..0; T / � R
d /�strong (32)

for all p 2 �1; dC2
dC1

�
.

Proof. We begin by recalling the following classical result concerning mollifiers
like Kn D Krn : For any � > 0, there is an m such that

kKn ? � � �kLp.Rd / < �; 8 n � m:

Now, consider a subsequence nk , where nk � m, along which �n ! �. By adding
and subtracting, we obtain

k Q�n � �kLp.Rd / 	 k Q�n �Kn ? �kLp.Rd / C kKn ? � � �kLp.Rd /
D kKn ? .�n � �/kLp.Rd / C kKn ? � � �kLp.Rd /
	 k�n � �kLp.Rd / C � D 2�;

for any p 2 �
1; dC2

dC1
�
. The same argument can be applied to prove the conver-

gence of Qj n. ut



On Strong Local Alignment in the Kinetic Cucker-Smale Model 239

Lemma 7. From the convergences (30) to (31), it follows that

f n Qun ?
* fu in L1..0; T /ILp.R2d // for every p 2

�
1;
d C 2
d C 1

�
:

Proof. For a given test function '.v/, we let

�n' D
Z

Rd

f n'.v/ dv; Qmn
' D Qun�n':

Consider now a test function  .t; x; v/ WD �.t; x/'.v/, with � 2 C1
c ..0; T /�R

d /

and ' 2 C1
c .R

d /. We write

Z T

0

Z

R2d
f n Qun dv dx dt D

Z T

0

Z

Rd
Qun.t; x/�.t; x/

�Z

Rd
f n.t; x; v/'.v/ dv

�
dx dt

D
Z T

0

Z

Rd
Qun.t; x/�n'.t; x/�.t; x/ dx dt

D
Z T

0

Z

Rd
Qmn'.t; x/�.t; x/ dx dt:

(33)

Now, Hölder’s inequality yields

k Qmn
'kLp.Rd / 	 k'kL1.Rd /k�nk

1
2

L
p

2�p .Rd /

k.�n/ 12 QunkL2.Rd /: (34)

Using Proposition 3, (27), and Lemma 1, it is readily seen that the right-hand side
of (34) is bounded provided

p

2 � p 2
�
1;
d C 2
d

�

which is equivalent to

p 2
�
1;
d C 2
d C 1

�
:

Hence, there exists a function m 2 L1..0; T /ILp.Rd // and a subsequence such
that

Qmn
'

?
* m in L1..0; T /ILp.Rd //, for every p 2

�
1;
d C 2
d C 1

�
;

and we have to prove that

m D u�'; where u is such that j D �u:
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Let us first verify the existence of such a function u. Consider the set

AR D f.t; x/ 2 BR.0/ � .0; T /I �.t; x/ D 0g ;

where BR.0/ is the ball of radius R centered at 0. By direct calculation,

Z

AR

jjnj dx dt 	
�Z

AR

�njunj2 dx dt

� 1
2
�Z

AR
�n dx dt

�

	 CT

�Z

AR

�n dx dt

�
n!1�! 0;

and hence we have that j D 0 a.e in AR. If we define the function u as

u.t; x/ D
(
j.t;x/

�.t;x/
; if �.t; x/ ¤ 0;

0; if �.t; x/ D 0;
(35)

we have that j D �u and it remains to prove thatm D �'u. We first observe that we
can show as in (34) that

kmn
'kLp.AR/ 	 Ck�nk

1
2

Lp.AR/

n!1�! 0;

and hence it suffices to check that

m.t; x/ D u.t; x/�'.t; x/; whenever �.t; x/ ¤ 0:

For this purpose, we consider the set

B�
R D f.t; x/ 2 BR.0/ � .0; T /I �.t; x/ > �g :

From Egorov’s theorem and the compactness of �n and Q�n (Lemma 6), we have
the existence of a set C� � B�

R with measure jB�
R n C�j < � on which Q�n and �n

converge uniformly to �. Then, for n sufficiently large,

Q�n � �=2 in C�;

and since

mn
' D Qun�n' D

Qj n
Q�n �

n
';

we can pass to the a.e limit on C� to deduce

m D j

�
�' D u�' in C�:
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Since this holds for all � > 0, we can conclude

m D u�' in B�
R;

for every R and �. We conclude that,

m D u�' on f� > 0g :
We have thus shown that

Z T

0

Z

R2d

f n Qun dv dx dt �!
Z T

0

Z

Rd

u�'� dx dt D
Z T

0

Z

R2d

f u dv dx dt

for all test functions of the form  .t; x; v/ WD �.t; x/'.v/. Finally, the density of
the vector space generated by C1

c ..0; T /�Rd /�C1
c .R

d / in L1..0; T /ILp0

.R2d //

yields the result. ut
Proof of Theorem 1:. The weak formulation of (29) reads

Z T

0

Z

R2d

f n. t C v � rx / dv dx dt

D I n1 C I n2 �
Z

R2d

f n
0  .0; �/ dv dx; 8 2 C1

c ..0; T / � R
2d /;

(36)

where we have introduced the quantities

I n1 WD �
Z T

0

Z

R4d

ˆ.x � y/f n.x; v/f n.y;w/.w � v/rv .x; v/ dw dy dv dx dt;

I n2 WD �
Z T

0

Z

R2d

f n.Qun � v/rv dv dx dt:

Since I n1 contains only integrated quantities, we can apply (30) to pass to the limit
in (36) and conclude

Z T

0

Z

R2d

f . t C v � rx / dv dx dt

D I1 C lim
n!1 I n2 �

Z

R2d

f0 .0; �/ dv dx;

(37)

where I1 WD �
R T
0

R
R4d

ˆ.x � y/f .x; v/f .y;w/.w � v/rv .x; v/ dw dy dv dx dt.

From Lemma 7, we have that f n Qun ?
* f u in L1..0; T /ILp.R2d //, for any

p 2 �1; dC2
dC1

�
. Hence, we can pass to the limit in I n2 and conclude

lim
n!1

I n2 D � lim
n!1

Z T

0

Z

R2d

f n.Qun � v/rv dv dx dt D �
Z T

0

Z

R2d

f .u � v/rv dv dx dt:
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In view of (37), we can then conclude that the limit f is a weak solution to

ft C divx.vf /C divv.fF Œf �/C divv.f .u � v// D 0:

This concludes the proof of Theorem 1. ut
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Multi-dimensional Systems of Conservation
Laws: An Introductory Lecture

Denis Serre

Abstract These notes are written after the crash course given at the ICMS
conference on Hyperbolic conservation laws. We intend to review several aspects of
the theory of the Cauchy problem and the Initial-boundary value problem (IBVP).
On the one hand, we give a thorough account of the theory for linear, constant
coefficient operators, following Gårding, Hersch, Kreiss and others. Hyperbolicity
raises interesting questions in real algebraic geometry, a topic to which Petrowski’s
school (in particular Oleı̆nik) contributed. Next, we turn towards quasilinear systems
and recall the interplay between entropies and symmetrizability. This leads us to
the local existence of a classical solution. The global-in-time Cauchy problem
necessitates weak solutions; these must be selected by admissibility criteria. We
give a review of the various criteria that have been elaborated so far. Some of
them lead us to the ‘viscous’ approximation of hyperbolic systems. We review the
structural properties of these models, whose paradigm is the Navier-Stokes-Fourier
(NSF) system of gas dynamics. This is more or less Kawashima’s theory, in the
simplified description that we have given in recent papers. We end with results
about singular limits, such as the convergence of NSF towards Euler-Fourier when
Newtonian viscosity tends to zero, and the analysis of the principal sub-systems
introduced by Boillat and Ruggeri.

Despite the length of these notes, they contain only very few proofs. We focus
instead on the concepts and the theorems of the theory.
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Notations

The most general form of a first-order system of conservation laws is

@ui
@t
C

dX
˛D1

@f ˛
i .u/

@x˛
D 0; 8i D 1; : : : ; n; (1)

where u.x; t/ 2 R
n is the unkown and x 2 R

d is the space variable. The unknown
takes values in some phase space U , an open subset of Rn. The vector fields f ˛ W
U ! R

n are given smooth functions that describe the underlying physics; we call
them the constitutive fluxes.

In general, an initial data is given at time t D 0:

u.x; 0/ D a.x/: (2)

In the Cauchy problem, the physical domain is the whole space R
d , whereas in an

IBVP, it is an open subset � � R
d . Then boundary conditions have to be imposed;

the number and the nature of the boundary conditions is a difficult topic, which is
discussed in Sect. 2.

Instead of the fully developed form (1), we may opt for a more compact
expression, either by using operators @:

@tui C
dX
˛D1

@˛f
˛
i .u/ D 0; 8i D 1; : : : ; n;

or a vector form

@tuC
X
˛

@˛f
˛.u/ D 0;

or a component-wise form

@tui C divfi .u/ D 0; i D 1; : : : ; n:

The more compact form is of course

@tuC DivF.u/ D 0;

where the capital in the divergence operator indicates that the argument is a tensor
(an n � d one), and the divergence has to be taken row-wise.

If A 2 Mn.C/, the ambient space C
n splits in a unique manner as U.A/ ˚

C.A/˚S.A/, where each factor is an invariant subpace (that isA.E/ � E), and the
spectrum of the restriction of A to U.A/ (resp. C.A/, resp. S.A/) has positive (resp.
null, resp. negative) real part. These spaces are respectively called the unstable,
central and stable invariant subspaces.
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1 Hyperbolicity

When studying the stability of a classical solution of an evolution PDE under some
initial disturbance, we are led to the analysis of the linearized PDE. Linearizing (1)
about u yields a system

@tvC Div.A.x; t/v/ D 0;
where A WD dF.u/. Now a rescaling .x; t/ 7! ..x�x0/; .t�t0//with !C1
a constant suggests to begin the analysis by freezing .x; t/ to any value .x0; t0/
and retaining only the principal part, which consists of the derivatives of order
one. These are the reasons why we are interested in linear operators with constant
coefficients.

Let us point out that rescaling at points interior to a domain � leads us to the
Cauchy problem:� 3 0 rescales as �, which tends to R

d as  ! C1. Instead,
at boundary points the limit domain is a half-space and we face an IBVP. The latter
situation will be studied in Sect. 2. We concentrate for the moment of the pure
Cauchy problem. Most of the topics listed below may be found in the first chapter
of the monograph [1].

We therefore consider a linear equation Lu D f in R
d � .0; T /, where

L WD @t C
X
˛

A˛@˛; A˛ 2Mn.R/: (3)

Because we intend to employ the Duhamel’s principle in order to treat the right-hand
side, we may reduce our analysis to the problem

Lu D 0 in R
d � .0; T /; u.�; 0/ D a: (4)

The operator L is said to be hyperbolic if the problem (4) is well-posed in the
space1 L2.Rd /n. This means that for every initial data a 2 L2, there exists a unique
solution u 2 C.0; T IL2/, and the linear map St W a 7! u.t/ is L2-bounded:

ku.t/kL2 	 c.t/kakL2 :

Then .St /t�0 forms a continuous semi-group over L2. Of course, the solution is
understood in the distributional sense. Because the Fourier transform is an isometry
over L2, this is equivalent to saying that the Cauchy problem for the operator

L WD FLF�1 D @t C i
X
˛

�˛A
˛

1Gårding’s original definition involves well-posedness in C1, a weaker notion than the one
used here. In particular it is not tailored to apply Duhamel’s principle. Our stronger version of
hyperbolicity used to be called strong hyperbolicity. It is more practical, at least when we have
quasi-linear Cauchy problems in mind.
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is well-posed over L2. Here � is the independent variable in Fourier space and the
new unknown is a function v.�; t/. If the initial data is b.�/, the solution is given
explicitly by the formula

v.�; t/ D exp.�itA.�//b.�/;

where

A.�/ WD
X
˛

�˛A
˛

is the symbol of the spatial derivatives. Because the map b 7! v.t/ is a pointwise
multiplication (by a matrix depending upon the variable), its L2-norm is

sup
�2Rd
k exp.�itA.�//k:

Thanks to the linearity �tA.�/ D A.�t�/, this expression does not depend upon
t ¤ 0. We therefore have

Proposition 1. The operator L is hyperbolic if and only if the family of matrices

fexp.iA.�// j � 2 R
d g

is bounded in Mn.C/.

In particular, this notion does not depend upon the time interval, or upon the time
arrow: if the Cauchy problem is well-posed forward, it is well-posed backward.
This property will be lost either in quasi-linear problems or in IBVPs. We notice
that because Mn.C/ is a finite-dimensional vector space, there is no need to specify
the norm when speaking of boundedness.

If .�; r/ is an eigenpair of A.�/, that is r ¤ 0 and A.�/r D �r , we have
exp.iA.�//r D ei�r . Hence the supremum above is at least jei�j, and even
sups2R jeis�j if we consider A.s�/ instead. Hence the necessary condition

Proposition 2. If L is hyperbolic, the eigenvalues of the symbol A.�/ are real, for
every � 2 R

d .
They actually are semi-simple.

The second part of the propotion makes use of the fact that if Ar D �r and Av D
�vC r (� being non semi-simple), then exp.isA/v D eis�.vC isr/.

The condition of Proposition 2 is however not sufficient to guarantee hyperbol-
icity. A necessary and sufficient condition is

Theorem 1 (Kreiss). The operator L is hyperbolic if and only if the symbol A.�/
is diagonalizable with real eigenvalues, uniformly in �:

A.�/ D P.�/ƒ.�/P.�/�1; 8� ¤ 0;
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where ƒ.�/ is real diagonal and P.�/ is well-conditioned:

sup
�¤0
kP.�/k � kP.�/�1k < C1:

One part of the proof is easy because if ƒ.�/ is real diagonal, then

k exp.iA.�//k 	 kP.�/k � k exp.iƒ.�//k � kP.�/�1k D kP.�/k � kP.�/�1k:

The converse is more involved, even if we already know the diagonalizability within
the reals (Proposition 2). The necessity of the well-conditioning is really a delicate
issue.

Kreiss’ theorem is actually more general and deals with arbitrary evolution
operators with constant coefficients. It is not always practical, because it necessitates
the calculation of the eigenvalues and an eigenbasis of the symbolA.�/. For a rather
general operator, this cannot be done, or it could simply be too complicated to
carry out. However, most of the interesting hyperbolic operators fall in either of
two classes: strictly hyperbolic (in a generalized sense) or Friedrichs symmetric.

Strict hyperbolicity: The operator L is strictly hyperbolic if A.�/ is diagonaliz-
able with real and simple eigenvalues. Then the eigen-elements can be chosen
continuously on every hemisphere of Sd�1. Whence the well-conditioning.

Constant rank hyperbolicity: Same as above, but the eigenvalues have multi-
plicities that do not depend upon � ¤ 0. Not all eigenvalues have the same
multiplicity, but the list of multiplicities (for instance .1; d; 1/ in linearized gas
dynamics) don’t depend on �. Strict hyperbolicity is the special case where this
list is .1; : : : ; 1/.

Symmetric hyperbolicity: Here, one assumes that there exists a positive definite
symmetric matrix S0 such that every S˛ WD S0A˛ is symmetric. Then P.�/ D
.S0/�1=2U.�/whereU.�/ 2 SOn. Hence the well-conditioning, because kP.�/k�
kP.�/�1k does not depend on � at all. Symmetric hyperbolicity is associated with
a supplementary conservation law

@t .S
0u; u/C

X
˛

@˛.S
˛u; u/ D 0;

which yields the a priori estimate

Z

Rd

.S0u.x; t/; u.x; t// dx D
Z

Rd

.S0a.x/; a.x// dx; 8t 2 R:

It comes naturally in the linearization of a system endowed with a convex entropy
(entropies are studied in Sect. 3).

All these classes are subclasses of the set of hyperbolic operators, as suggested by
the terminology.
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1.1 Wave Velocities

Eigenvalues of A.�/ are associated with planar waves, which are special solutions
of Lu D 0, of the form

u.x; t/ D �.x � � � �t/r:

Hereabove, r is an eigenvector associated with �. Such a solution moves in the
direction �, at velocity �=j�j. Because the eigenvalues are homogeneous of degree
one in �, we may say that �.�/ is a wave velocity in direction � whenever � 2 Sd�1.
Traditionally, one lists the eigenvalues of A.�/ in increasing order:

�1.�/ 	 � � � 	 �n.�/:

If � 7! �.�/ is a smoothly varying eigenvalue,2 one may construct L2-solutions of
Lu D 0 by modulation in �:

u.x; t/ D
Z

Rdnf0g
�.x � � � �t I �/r.�/ d�;

where � 7! �.�I �/ is smooth with compact support. This construction provides
waves moving at group velocity grad��. The notion of wave velocity is altogether
one of the most natural, although impossible to define in closed form.

1.2 Inequalities Involving the Eigenvalues

The symbol of the full operator L is the matrix-valued �In C A.�/. When L is
hyperbolic, the determinant PL.�; �/ WD det.�In C A.�// is said to be a hyperbolic
polynomial. More generally, a homogeneous polynomial P is hyperbolic (Gårding)
in a direction V ¤ 0 if on the one hand P.V / ¤ 0, and on the other hand, the
roots of the univariate polynomial s 7! P.� C sV/ are real, for every � 2 R

d .
In our case, we may take V D .1; 0/. The characteristic cone of P is the set
f� 2 R

d jP.�/ D 0g.
We shall not develop the theory of hyperbolic polynomials here, because it is

reminiscent of the Gårding’s weaker notion of hyperbolic operators. However, the
following results have a counterpart in this generality.

Proposition 3 (Gårding). The eigenvalue �n is a convex function of �.

2This is always true in the constant rank hyperbolic case.
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Likewise, �1.�/ D ��n.��/ is a concave function. Therefore, the connected
component of .1; 0/ in the complement of the characteristic cone is an open convex
cone

� WD f.�; �/ j � > ��1.�/g:

It is called the cone of hyperbolicity for the following reason. If we take a non-zero
vector V 2 R

dC1, we may perform a change of variables .x; t/ 7! .x0; t 0/, such that
the hyperplane t 0 D 0 has equation V � .x; t/ D 0. The choice of the variables x0 is
irrelevant, provided that .x; t/ 7! .x0; t 0/ is a change of variables. After the change
of variables, the operator L becomes L0 D @t 0 CP

˛ B
˛@x0

˛
. It is natural to ask

whether L0 is still hyperbolic. This amounts to asking whether the Cauchy problem
for L, with data on the hyperplane V � .x; t/ D 0, is well-posed in L2. It happens
that if V 2 � , then L0 is hyperbolic (Gårding). This phenomenon is reminiscent
to the theory of special relativity: unless human constraints impose you a reference
frame (often called the laboratory frame), there is no prefered time variable. A time
variable has only to be such that its level sets are space-like, meaning that their
normals belong to � .

The convexity of �n is not the end of the story. It turns out that the eigenvalues
satisfy a lot of other inequalities, for instance

Weyl inequalities: �k.� C �/ 	 �i .�/C �j .�/, if kC n D i C j and �; � 2 R
d .

Of course this is true if k C n 	 i C j as well.
Lidskiı̆–Wielandt inequalities: If 1 	 r 	 n, i1 < � � � < ir 	 n � r and
kj D ij C j , then

�k1.� C �/C � � � C �kr .� C �/ � �i1.�/C � � � C �ir .�/C �1.�/C � � � C �r.�/:

For instance, � 7! �1.�/C � � � C �r.�/ is a concave function (Ky Fan).

More generally, the eigenvalues satisfy all the inequalities that the eigenvalues of
Hermitian matrices satisfy (A. Horn’s conjecture, eventually proved by Knutson and
Tao [18]). This is due to the proof by Helton and Vinnikov [14] of Lax’s conjecture
[21] that every homogeneous hyperbolic polynomial in three variables is a PL for
some symmetric hyperbolic operator L. See [33] for a review of this topic.

Finally, let us mention an inequality of a different type,

Proposition 4 (Gårding). Let the homogeneous polynomial P of degree n be
hyperbolic in the direction .1; 0/. Let � be its cone of hyperbolicity (the connected
component of .1; 0/ in fP ¤ 0g).

Then the map � 7! P.�/1=n, which is positive and homogeneous of degree one,
is concave over � .

A typical example is the concavity of H 7! det1=n H over the cone of positive
definite Hermitian matrices (H 7! detH is hyperbolic in the direction of In).
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This well-know fact is reminiscent of the Brunn–Minkowski theorem that the
function A 7! L.A/1=n (L the Lebesgue measure on R

n) is concave, in the sense
that

.L.AC B//1=n � .L.A//1=n C .L.B//1=n

for every measurable subsets A and B .
Gårding also proved the following related result.

Proposition 5. Let ˆ be the symmetric n-linear form such that ˆ.�; : : : ; �/ �
P.�/. For every �1; : : : ; �n 2 � , one has

P.�1/1=n � � �P.�n/1=n 	 ˆ.�1; : : : ; �n/:

The case n D 2 is a reverse Cauchy–Schwarz inequality: if Q is a hyperbolic
quadratic form, then for every �; � 2 �Q, one has

p
Q.�/Q.�/ 	 ˆ.�; �/:

There is a wide literature on hyperbolic polynomials, which has connections with
geometric inequalities (as above), combinatorics (van der Warden conjecture for
the permanent of bistochastic matrices, now a theorem), optimization (quadratic
programing) and many other topics.

1.3 Lp-Theory of the Cauchy Problem

When p ¤ 2, the situation becomes completely different. Although the Cauchy
problem may be well-posed in Lp.Rd /n in very special situations, namely

• Scalar equations (n D 1), because it is pure transport (.St /t�0 is a translation
semi-group),

• One-dimensional systems (d D 1), because they decouple into independent
transport equations,

it is not well-posed for general systems when p ¤ 2. The precise statement reads
as follows.

Theorem 2 (Brenner). Suppose that L is a hyperbolic operator. Then the follow-
ing properties are equivalent to each other.

1. The Cauchy problem for Lu D 0 is well-posed for some p ¤ 2.
2. The Cauchy problem for Lu D 0 is well-posed for every 1 	 p 	 1.
3. The matrices A˛ pairwise commute, that is A˛Aˇ D AˇA˛ for every ˛ ¤ ˇ.
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Now, we understand why the particular cases above are well-posed: – if n D 1,
the matrices are scalar, thus commute, – if d D 1, there is only one matrix, which
commutes with itself, of course. But problem (4) for an operator as simple as

@t C
�
1 0

0 �1
�
@1 C

�
0 1

1 0

�
@2 (5)

is ill-posed for p ¤ 2.
To resolve this obstruction, we might be tempted to relax the notion of well-

posedness, by asking for inequalities kuk 	 ckak0 in different norms. This is the
strategy used in Strichartz estimates. We point out that here the solution is evaluated
globally in space and time, instead of simply evaluating the trace of u at a given
time t . Let us provide an example with the wave equation

@2t � D 
x�:

When d D 2, this second-order equation can be recast as a first-order system with
operator given by (5). More generally, it is related to Dirac operators, for which
.A˛/2 D In and A˛Aˇ C AˇA˛ D 0n instead. If the exponents p and q satisfy the
constraints

1

p
C d

q
D d

2
� 1; 2

p
C d � 1

p
	 d � 1

2
; 2 	 p; q 	 1;

and if d � 2, then there exists a finite constant c.p; q; d/ such that every solution
with rx;t�jtD0 2 L2 satisfies

k�kLpt .Lqx/ 	 ckrx;t �jtD0kL2 : (6)

Strichartz estimates are inequalities for distributions whose Fourier transforms
are supported by hypersurfaces. This theory is therefore ubiquitous in linear,
constant coefficient PDEs: if P.@/u D 0, then Ou is supported by the characteristic
set of P . However, it is not always efficient; for instance the PDE @tu D 0 does not
yield any interesting inequalities. The reason is the crucial assumption in Strichartz
theory that fP D 0g has a non-vanishing curvature (except along rays when P
is homogeneous). In particular, in order that a hyperbolic system Lu D 0 obey a
Strichartz estimate, it is necessary that the component � > ��1.�/ not only be
convex as stated in Proposition 3, but be strictly convex in the direction not passing
through the origin. This is precisely saying that the matrices A˛ do not commute!

We thus envision a deep relation between Brenner’s theorem and Strichartz
estimates. It turns out that one can prove that if a hyperbolic system Lu D 0 satisfies
a Strichartz estimate, then the Cauchy problem is ill-posed in Lp for every p ¤ 2.

The importance of Brenner’s result appears when we ask ourselves which func-
tional space could be adapted to the analysis of quasi-linear systems of conservation
laws in several space dimensions. When d D 1, the only functional framework
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that has been succesful so far is that of BV-functions (Glimm’s theory, uniqueness
and well-posedness by Bressan and coll.) But the BV-space is closely related to
L1, and the fact that the linearized systems yield ill-posed Cauchy problems in L1

lead Rauch to claim that BV is likely a bad space in several space dimensions. So
far, nobody has suggested a promising functional space for systems in dimension
d � 2. As long as this holy grail remains hidden, the theory of the multi-dimensional
Cauchy problem for quasi-linear systems will necessarily be restricted to special
cases: – decoupling systems, – piecewise smooth solutions, – the Riemann problem,
and so on.

2 The Initial-Boundary Value Problem

Continuing our analysis of ‘simple’ problems, we keep a linear operator L with
constant coefficients and we focus on the problem in a half-space domain:

Lu D 0 in xd ; t > 0; u.�; 0/ D a in xd > 0; Bu D g on xd D 0; t > 0:
(7)

We denote byH D R
d�1 � .0;C1/ the physical domain. The boundary condition

involves a matrix B 2 Mp�n.R/ with p 	 n. Because Bu D g can be rewritten as
B 0u D g0, with B 0 D PB and g0 D Pg, whenever P 2 GLp.R/, we see that only
the right coset GLn � B matters; in other words, only kerB matters.

2.1 The Number of Boundary Conditions

Let us observe that p is often strictly smaller than n. The number of boundary
conditions must be, roughly speaking, equal to the number of waves that are
incoming at the boundary. To see this, let us begin with the scalar case

L D @t C Ev � rx:
Any solution has the form u.x; t/ D �.x � tEv/. In order to determine � from the
data, there are two cases:

• Either vd 	 0, then � � a determines u completely, because for every x 2 H
and t > 0, we have x � tEv 2 H .

• Or vd > 0. Then if 0 < xd < tvd , the determination of u.x; t/ requires boundary
data at the point .x � xd

vd
Ev; xdvd

/. Here, the well-posedness requires a Dirichlet
boundary condition u D g on @H � .0; T /.
If instead d D 1 and n � 1, the domain is H D .0;C1/ and L D @t C A@x .

Because of hyperbolicity, we may assume that A is diagonal, with eigenvalues a1 	
� � � 	 an; say that aq 	 0 < aqC1. We therefore have a list of transport equations
.@t C aj @x/uj D 0. The analysis above tells us that the boundary values uj .0; t/
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must not be imposed if j 	 q, but those with j � qC 1 must be prescribed. Hence
the number p D n � q of boundary data. But now that we have several unknowns,
we may introduce a coupling by means of the boundary condition: we may prescribe
the entering modes (j > q) in terms of the outgoing ones (j 	 q). Denoting by
u� (resp. uC) the list of outgoing (resp. incoming) modes, an appropriate boundary
condition has the form

uC.0; t/ D Mu�.0; t/C h.t/;

whereM is some p � q-matrix. This is equivalent to Bu D g, where

B D
�
M

Ip

�
:

Thus the IBVP (7) is well-posed if and only if

R
n D kerB ˚ U.A/;

where U.A/ is the unstable invariant subspace of A.
We now consider the general situation where d; n � 1. Because the multi-

dimensional IBVP contains the particular case of data and solutions depending only
upon .xd ; t/, we see that p must be equal to the number of positive eigenvalues of
Ad , and a necessary condition for well-posedness is

R
n D kerB ˚ U.Ad /: (8)

We shall see however that (8) does not imply well-posedness when d � 2.

2.2 The Symmetric Dissipative Case

Let us assume for the moment that L is symmetric hyperbolic: the matrices A˛ are
symmetric. Then we have the identity

@t juj2 C
X
˛

@˛.A
˛u; u/ D 0;

from which we derive formally

d

dt

Z

H

juj2dx D
Z

@H

.Adu; u/ dy:

Hereabove y D .x1; : : : ; xd�1/. If it happens that the restriction of Ad to kerB
is negative semi-definite, then the homogeneous (by this, we mean g � 0, thus a
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boundary condition Bu D 0) IBVP satisfies

Z

@H

.Adu; u/ dy 	 0

and we have an estimate ku.t/kL2 	 kakL2 , which implies well-posedness. In the
present dissipative case, the homogeneous IBVP generates a contraction semi-group
in L2.

We point out that the non-homogeneous IBVP, unlike the non-homogeneous
Cauchy problem, cannot be treated by semi-group tools. As a matter of fact, the
trick above fails by a little amount in the non-homogeneous case. But if we assume
that the restriction of Ad to kerB is negative definite, then there exist constants
� > 0 and C <1 such that .Adv; v/ 	 C jBvj2� �jvj2 for all v 2 R

n, and therefore
we have an estimate

d

dt

Z

H

juj2dxC �
Z

@H

juj2dy 	 C
Z

@H

jgj2dy:

We then say that the boundary condition is strongly dissipative. We point out that
because kerB is of dimension n � p, it is maximal for this dissipative property.

In order to achieve explicit bounds on the solution, we may integrate the
inequality above from 0 to T , but in view of the relevance of the Laplace transform
in the general theory, it is even better to pre-multiply by the exponential weight
exp.�2� t/, where � > 0 is a parameter. We obtain easily

e�2�T ku.T /k2
L2
C �

Z

H�.0;T /
e�2�t juj2dx dt

C�
Z

@H�.0;T /
e�2�t juj2dy dt 	 kak2

L2
C C

Z

@H�.0;T /
e�2�t jgj2dy dt:

(9)

What is appealing in (9) is that the unknown is estimated in the same spaces as those
where the data are given:

• The initial data a and the final (as well as intermediate) state u.T / in L2.H/.
• The boundary data g and the trace of u in L2.@H � .0; T //.
• The interior data f (not present in our calculation for the sake of simplicity) and

the solution in L2.H � .0; T //.
We point out that in a strongly dissipative IBVP, the matrix Ad has a negative

subspace kerB of dimension n � p and a positive subspace U.Ad/ of dimension
p. Therefore there is no room for a null eigenvalue: Ad is non-singular. It turns out
that the general IBVP is significantly more involved when the matrix Ad is singular.
More generally, if the physical domain� has a smooth boundary, then it is important
to know whetherA.�/ is singular or not, where � is the normal to the boundary. One



Multi-dimensional Systems of Conservation Laws: An Introductory Lecture 255

says that the boundary is characteristic if A.�/ is singular at some boundary point,
and non-characteristic otherwise. In these notes, we shall restrict our attention to
the non-characteristic case. An (incomplete) analysis of characteristic IBVPs can be
found in [1].

2.3 Maximal Estimates

There are two reasons why the above theory is not completely satisfactory. On the
one hand, not all linear hyperbolic operators can be symmetrized. And on the other
hand, even if L is symmetric, strong dissipativity is only a sufficient condition for
well-posedness. Thus the theory of dissipative symmetric IBVPs does not cover
all the interesting problems. For instance, the analysis of multi-dimensional shock
waves by Majda requires a more complete treatment of the linear IBVP. This linear
theory was developed by Kreiss [19] in the case of first-order systems, and by
Sakamoto [29] for scalar higher-order operators.

As in the Cauchy problem, we will not be content with a C1-well-posedness,
in which a priori estimates suffer a loss of derivatives. It is hard to exploit such
estimates when dealing with quasi-linear systems, even though this has been done
succesfully in some instances by Coulombel and Secchi. Also, the present notes
have a finite length and we may only focus on the nicest situation.

The best framework is that of maximal estimates. They mimic those already
obtained in the symmetric, strongly dissipative case. We say that our IBVP satisfies
a maximal estimate whenever there exists a finite constant C such that, for every
smooth u, the following inequality holds true for every �; T > 0:

e�2�T ku.T /k2
L2.H/

C �
Z

H�.0;T /
e�2�t juj2dx dt

C
Z

@H�.0;T /
e�2�t juj2dy dt 	 C

�
ku.0/k2

L2.H/
C 1

�

Z

H�.0;T /
e�2�t jLuj2dx dt

C
Z

@H�.0;T /
e�2�t jBuj2dy dt

�
: (10)

Traces. Because we presented the maximal estimates in the context of smooth
fields, we did not worry about the existence of the trace of u at the boundary xd D 0.
However, the theory will culminate with existence results in spaces of limited
regularity (see Theorems 4 and 5). When the system is linear, we are interested in
fields that are only square-integrable inH � .0; T /. In such a case, we have to prove
that the trace is well-defined. To this end, we use a classical lemma, which says that
if Eq and divEq are square integrable in �, then the normal trace of Eq at the boundary
exists inH�1=2.@�/. With both u and Lu square integrable, this tells us thatAdu has
a well-defined trace at xd D 0. Recalling that Ad is non-singular, we obtain that the
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restriction of u to xd D 0makes sense, at least inH�1=2.@H�.0; T //. Therefore the
maximal estimate, plus a density argument, tells us that this restriction is actually in
L2.@H � .0; T //.

We point out that in the characteristic case, u may not have a well-defined trace.
Only Adu is well-defined. A maximal estimate in the spirit of (10) will involve
instead a boundary term

Z

@H�.0;T /
e�2�t jAduj2dy dt

in the left-hand side. Likewise, the boundary data Bu has to be defined in terms of
Adu only; in other words, we must have kerAd � kerB .

2.4 Necessary Condition: The Kreiss–Lopatinskiı̆ Condition

When looking for a condition that is necessary for a maximal estimate, we begin by
restricting to fields u that satisfy Lu � 0 in H � R. Then we discard the final and
interior norms of u. Thus it remains to treat the inequality

Z

@H�.0;T /
e�2�t juj2dy dt 	 C

�
ku.0/k2

L2
C
Z

@H�.0;T /
e�2�t jBuj2dy dt

�
;

whenever Lu D 0. On the other hand, the translational invariance in the spatial
directions tangential to the boundary suggests to apply the Fourier transform F D
Fy with respect to the tangential variable. Because F is an isometry ofL2, the above
estimate amounts to

Z

@H�.0;T /
e�2�t jvj2d� dt 	

�
Ckv.0/k2

L2
C
Z

@H�.0;T /
e�2�t jBvj2d� dt

�
; (11)

whenever @tvCiA.�/vCAd@d v D 0. Hereabove, � denotes the frequency associated
with the tangential variables y.

The inequality (11) decouples into

Z T

0

e�2� t jv.�; 0; t /j2dt � C

�Z
1

0

jv.�; xd ; 0/j2dxd C
Z T

0

e�2� t jBv.�; 0; t /j2dt

�
; 8� 2 R

d�1:

(12)

We test this criterion on ‘normal modes’. These are fields of the form v D e� tw.xd /,
with <� > 0 and w 2 L2.0;C1/. Such growing modes are those that could cause
a Hadamard instability. Their treatment explains why the Laplace transform in the
time variable is so important in the analysis of the linear evolution equation.

The differential constraint tells us that w is a solution of the ODE
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Adw0 C .�In C iA.�//w D 0: (13)

This is where the assumption that the boundary is non-characteristic becomes
crucial: (13) can be recast as

w0 D A.�; �/w; A.�; �/ WD �.Ad /�1.�In C iA.�//:

The fact that w 2 L2.0;C1/ when w solves a linear ODE w0 D Aw is equivalent
to w having an exponential decay. It amounts to saying that w.0/ belongs to the
stable invariant subspace of the matrix A. The following statement tells us that the
dimension of this subspace does not depend upon the parameters .�; �/.

Lemma 1 (Hersch [15]). Let us assume that L is hyperbolic and that Ad is non-
singular (non-characteristic boundary). Then for every .�; �/ with <� > 0 and
� 2 R

d�1, the eigenvalues of the matrix A.�; �/ have a non-vanishing real part
(we say that these matrices are hyperbolic in the terminology of dynamical systems
theory). Its stable invariant subspace S.�; �/ has dimension p, that of the unstable
subspace of Ad . Finally, the map .�; �/ 7! S.�; �/ is analytic in � and holomorphic
in � .

For such modes, (12) becomes

jw.0/j2 	 C
�

1

I.�/
kwk2

L2
C jBw.0/j2

�
; I.�/ WD

Z T

0

e2.<���/tdt:

By letting � tend to <� by above, we obtain the necessary condition that

jW j 	 C � jBW j; 8W 2 S.�; �/: (14)

This tells us two important things:

• For every .�; �/ with <� > 0 and � 2 R
d�1, the map B W S.�; �/ ! C

p is an
isomorphism. This is called the Kreiss–Lopatinskiı̆ condition (KL).

• The norm of its reciprocal B�1 W Cp ! S.�; �/ is bounded independently of
.�; �/. This is the uniform KL condition. We write it as (UKL).

When (KL) fails, the IBVP experiences a Hadamard instability. To see this, choose
a pair .�0; �0/ with <�0 > 0, at which B is not one-to-one over S.�0; �0/. If � is
close to �0, then because of Rouché’s theorem and the �-holomorphy, there exists a
� close to �0 such that B is still not one-to-one over S.�; �/. Up to a small change of
�0, we may assume that this � depends analytically on �. Likewise, we can choose
analytically a non-zero vector r.�/ 2 kerB \ S.�.�/; �/. Choosing now any non-
trivial test function �.�/, we form a solution of Lu D 0 by the formula

u.x; t/ WD
Z
�.�/e�.�/tCi��y .exp.xdA.�.�/; �/// r.�/ d�:
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Letting the support of � shrink to �0, we obtain that the constant C in (10) must
be larger than or equal to exp.2.<�0 � �/T /. Replacing now the pair .�0; �0/ by
.N�0;N�0/ (this does not change the stable subspace, thus (KL) still fails at such
points), we see that C cannot be finite. Hence a maximal estimate does not hold. As
a matter of fact, this construction shows also that even a non-maximal estimate, in
which we allow a loss of finitely many derivatives, does not hold either.

When (KL) is satisfied but (UKL) fails, the situation is far more tricky. We do
not have a maximal estimate, but there is an estimate with loss of finitely many
derivatives. We might think that this is a borderline case, occuring at the interface
between (UKL) and (nonKL); this was claimed by Kreiss in [19], but the situation
is more subtle. It has been shown that within the class of IBVPs satisfying (KL) in
a non-uniform way, there is a subclass which is structurally stable in the sense that
every IBVP in a small neighbourhood (L andB being slightly perturbed) retains the
same property. See [3] or Sect. 8.3 in [1].

2.5 The Estimate Under (UKL)

It remains to see whether (UKL) is sufficient to imply the maximal estimates. There
are two difficulties here. On the one hand, we discarded several important terms to
derive our necessary condition. Would these other terms add new conditions? On
the other hand, an IBVP does not belong to the category of semi-group problems;
therefore the boundary condition, the initial data and the inner data f play different
but coupled roles. The strategy consisting in decoupling a full IBVP into three sub-
problems in which only one of the three data is non-zero, is not really efficient.

The strategy adopted by Kreiss was to mimic the symmetric dissipative case by
looking for a dissipative symmetrizer K. But instead of having K � id, we must
search for a pseudo-differential symmetrizer, with symbol K.�; �/. The properties
that are required are the following:

1. .�; �/ 7! K.�; �/ is bounded and homogeneous of degree zero.
2. †.�; �/ WD K.�; �/Ad is Hermitian.
3. There exists a c0 > 0 such that, for every .�; �/, we have

w�†.�; �/w 	 �c0jwj2; 8w 2 kerB:

4. There exists a c0 > 0 such that, for every .�; �/, we have

<.v�M.�; �/v/ � c0.<�/jvj2; 8v 2 C
n;

where we have used

M.�; �/ WD K.�; �/.�In C iA.�//:
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In practice, .�; �/ 7! K is positively homogenenous of degree zero. Note the
uniformity of the third and fourth conditions, in terms of .�; �/. In the symmetric,
strongly dissipative case, we may choose K � In; then the third property is
dissipativeness while the others follow from the symmetry. Note also that because
<.†A/ D �<M is negative definite, † is non-singular, with inertia3 .n � p; p/.
Therefore B is maximal for the third property.

If the IBVP (7) admits a Kreiss symmetrizer, it is straightforward to establish a
maximal estimate for the pure BVP (the time runs over R instead of .0; T /)

Lu D f in H � .�1;C1/; Bu D g in @H � .�1;C1/;

provided u has a compact support. The estimate is then

�

Z

H�R

e�2�t juj2dx dtC
Z

@H�R

e�2�t juj2dy dt 	 C
�
1

�

Z

H�R

e�2�t jLuj2dx dt

C
Z

@H�R

e�2�t jBuj2dy dt

�
:

(15)

This estimate, thanks to its dependence upon the parameters, implies that the
restriction of a solution to times t < T depends only upon the restriction of the data
to .�1; T /. In other words, the fact that Lu � 0 in H � .�1; T / and Bu � 0 on
@H � .�1; T / implies that u � 0 in H � .�1; T /. Therefore an IBVP satisfying
(UKL) yields a genuine evolution problem.

Weighted norms. The form of the estimate (15) suggests working in weighted
L2-spaces e�tL2, which we denote by L2� . The norm in this space is

khk� WD ke��t hkL2 :

This notation applies either to the domainH �R, or to @H �R. Estimate (15) thus
reads as

�kuk2� C k�0uk2� 	 C
�
1

�
kLuk2� C k�0Buk2�

�
;

where �0 denotes the restriction to the boundary @H � R and is called a trace
operator. This notation is slightly incorrect, because the ambient space is not
contained in H1.H �R/, but we have seen above how the control of Lu helps us.

3A classical result for Lyapunov equations †X CX�† D S where S 2 Hn is given and † 2 Hn

is the unknown.
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2.6 The Boundary of the Frequency Domain

The construction of a Kreiss symmetrizer is a technical process. Because of
homogeneity, it is enough to restrict to the open half-sphere SC:

<� > 0; j� j2 C j�j2 D 1:

The construction of K at a given point .�; �/ is not too difficult under (KL). By
a covering argument, everything is fine so long as .�; �/ remains in a compact
domain of SC. The difficulty comes when one approaches from the boundary of
the frequency space, that is when <� ! 0C. A general solution has not been
provided so far, and it is suspected that a Kreiss symmetrizer does not always exist
under (UKL) only. This is why Kreiss and Majda introduced the so-called block
structure condition, which concerns only the operator L. Instead of describing it,
let us say that this condition is satisfied whenever L has characteristics of constant
multiplicities; Kreiss proved this fact in the strictly hyperbolic case, and Métivier
[24] extended it to the case of multiple characteristics. We thus have

Theorem 3 (Kreiss, Métivier). Assume that L is a hyperbolic operator whose
characteristic fields have constant multiplicities. If the pair .L;B/ satisfies (UKL),
then there exists a Kreiss symmetrizer.

Later on, Métivier and Zumbrun [25] extended this result by showing that if L is
symmetric and if at most two of the eigenvalues of the symbol A.�/ cross at some
points, then the block structure is still satisfied and therefore the symmetrizer exists.
They applied this to the linearized MHD.

In the course of the proof, Kreiss and Métivier prove actually that if .�0; �0/ 2
Sd�1, then even if A.i�0; �0/ is not a hyperbolic matrix (Hersch’s lemma tells us
nothing at such points), the stable subspace of A.�; �/ has a limit when <� > 0,
as .�; �/ ! .i�0; �0/. We still denote this limit by S.i�0; �0/, even though it is
no longer a stable subspace. Note however that it is included in the center-stable
subspace of A.i�0; �0/, by continuity.

The existence of this limit is particularly interesting because it yields a charac-
terization of property (UKL). We are now in the situation where the map .�; �/ 7!
S.�; �/ is continuous over the closed half-sphere

<� � 0; j� j2 C j�j2 D 1; (16)

a compact space. Therefore (UKL) is equivalent to the fact that (KL) be satisfied at
every point, including those at the boundary.

Proposition 6. Assume that L is a hyperbolic operator whose characteristic fields
have constant multiplicities. Then the pair .L;B/ satisfies (UKL) if and only if the
maps B W S.�; �/ ! C

n are one-to-one for every .�; �/ in the closed half-sphere
defined by (16).
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We warn the reader that it may be cumbersome to verify (KL) pointwise at every
such point; but there is no better way to proceed, unless the system is obviously
symmetric dissipative. It is particularly delicate to work at boundary points, where
a careless calculation may lead to a wrong description of S.i�0; �0/. People who are
fond of complex analysis may prefer to find a basis bundle .�; �/ 7! .V 1; : : : ; V p/

and form a Lopatinskiı̆ determinant


.�; �/ WD det.BV1.�; �/; : : : ;BVp.�; �//:

This object is not canonical (because there is no prefered choice of the bundle),
but it may be chosen holomorphically in � , analytically in �, and continuous
up to the boundary <� D 0 under the assumption of constant multiplicities. It
vanishes precisely at points where (KL) fails. Therefore the characterization given in
Proposition 6 can be written as
.�; �/ ¤ 0 for every pair in the closed half-sphere.

2.7 How the A Priori Estimate Implies Well-Posedness
of the BVP

We now assume that L is hyperbolic and that the pair .L;B/ admits a Kreiss
symmetrizer. So far we have been able to derive an estimate (15) for smooth
functions u. Let us show that it remains true for the class of fields u such that e��tu,
e��tLu and e��tBu are square integrable.

Thus let u 2 L2� be such that Lu 2 L2� . We first observe that the j -th line of
Lu is a divergence of some vector field Eqj . By assumption, Eqj and its divergence
are in L2, and therefore the normal component qjd has a well-defined trace in

H
�1=2
� .@H � R/. This amounts to saying that Adu has such a trace, but since Ad

is non-singular, we find that u has a trace in H�1=2
� . Therefore it makes sense to

assume that Buj@H�.0;T / 2 L2� ; this simply means that the trace, which is known to

be H�1=2
� , actually belongs to the subspace L2� .

We next convolve u with a test function

��.y; t/ WD 1

�
�

�
y

�
;
t

�

�

(note that the convolution does not act on the last variable xd ). We find that the
sequence u� WD u �y;t �� is bounded in L2� , as well as Lu� and the trace of Bu� . In
addition u� is smooth in .y; t/, in particular the derivatives ry;tu� are in L2� . This,
together with Lu� 2 L2� and the fact that Ad is non-singular, imply that @du� is in
L2� . Then it is not difficult to validate the estimate (15) for u� . Finally, we pass to the
limit as � ! 0. The right-hand side being bounded, we find that the limit u satisfies
(15) too. In particular, this forces the trace of Bu to be in L2� .
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We now turn towards existence, for which we use duality arguments. We
therefore introduce the adjoint IBVP, characterized by a pair .L�; C / where

L� D �@t �
X
˛

.A˛/T @˛

and C 2M.n�p/�n.R/ is such that kerC D .Ad kerB/?. It has the property that an
identity holds for smooth fields:

Z

H�R

..Lu; v/� .u; L�v//dx dtC
Z

@H�R

..Nu; C v/C .Bu;Mv//dy dt D 0; (17)

for some matricesN 2M.n�p/�n.R/ andM 2 Mp�n.R/. The latter are determined
by the equation Ad D CTN CMTB .

Let us point out that in the duality method, we are interested in a priori estimates
for the backward adjoint BVP. In particular, the relevant time frequencies will now
have negative real part.

It is not too difficult to verify that if K is a Kreiss symmetrizer for the forward
problem attached to .L;B/, then

K 0.�; �/ WD K.�N�; �/�1

is a Kreiss symmetrizer attached to the backward adjoint problem.4 This requires
only linear algebra, the most involved point being that if a non-singular Hermitian
matrix S is negative definite over a subspace E , and if E is maximal for this
property, then S�1 is positive definite over E?. We warn the reader that, because
the adjoint BVP is backward, the dissipative inequality is that †0.�; �/ is positive
definite over kerC .

All this allows us to establish a similar estimate for the adjoint BVP, namely that
if � > 0 and v 2 L2�� is such that L�v 2 L2�� and C v 2 L2�� on the boundary, then

�kvk2��;H�.0;T / C kvk2��;@H�.0;T / 	 C
�
1

�
kL�vk2��;H�.0;T / C kC vk2��;@H�.0;T /

�
:

(18)

Thanks to (18), we know that the adjoint BVP has the uniqueness property. If
f and g are L2� , we may therefore define a linear form ` by

`.L�v/ WD
Z

H�R

.v; f / dx dtC
Z

@H�R

.g;Mv/ dy dt:

4In [1], we missed this easy argument.
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The domain of ` consists of those f 0 2 L2�� for which there exists a v 2 L2�� such
that L�v D f 0 and C v � 0 on the boundary; this forms a subspace X in L2�� . The
adjoint estimate guarantees that ` is bounded over X for the L2�� -norm. By Hahn–
Banach, it admits a bounded extension to L2�� . Because the dual of L2�� is L2� we
deduce that there exists a u 2 L2� such that

`.f 0/ D
Z

H�R

.f 0; u/ dx dt; 8f 0 2 X:

We thus obtain
Z

H�R

.u; L�v/ dx dt D
Z

H�R

.v; f / dx dtC
Z

@H�R

.g;Mv/ dy dt;

for every smooth v such that C v vanishes on @H �R. One easily verifies that this is
the variational formulation of our BVP.

2.8 From the BVP to the IBVP

So far, we have treated only the BVP: given f 2 L2�.H �R/ and g 2 L2�.@H �R/,
find a solution u 2 L2� .H � R/ such that uj@H�.0;T / 2 L2�.@H � R/. We
explained above that the existence and uniqueness follow from the existence of a
Kreiss symmetrizer, the latter being ensured if L has characteristics of constant
multiplicities and .L;B/ satisfies (UKL). We also know that if f; g � 0 for t < T ,
then u � 0 as well for t < T . In other words, we know how to solve the IBVP
whenever the initial data is a � 0. It remains to treat the case of a general data
a 2 L2.H/.

Toward this goal, we first establish an additional estimate, namely

e�2�T
Z

H

ju.T /j2dx 	 C
�
1

�

Z

H�R

e�2�t jLuj2dx dtC
Z

@H�R

e�2�t jBuj2dx dt

�
:

(19)

In his article, Rauch [28] showed that (19) follows, in a non trivial way, directly from
(15). Before that, he had described his PhD thesis a clever and much simpler proof
in the symmetric (not necessarily dissipative) case. We present below the latter.

We may always assume that Lu;Bu � 0 for t > T , because the data for t > T

do not influence the values of u at time T . Therefore the integrals may be restricted
to .@/H � .�1; T /. Then the energy identity

@t .e
�2�t juj2/C

X
˛

@˛.e
�2�tu�A˛u/ D 2e�2�t ..Lu; u/� � juj2/

yields (19) after integrating overH � .�1; T /, using Cauchy–Schwarz and finally
using (15).
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Thanks to (19), we establish that the solution of the BVP is in C.RIL2.H//.
Of course, the same property holds true for the adjoint BVP. Then we may prove
the existence of the general IBVP by the same duality argument as above, using the
linear formm defined by

m.L�v/ WD
Z

H

.a; v.0// dxC
Z

H�R

.v; f / dx dtC
Z

@H�R

.g;Mv/ dy dt:

We find again that if f; g 2 L2� and a 2 L2, then m can be extended as a bounded
linear form over L2�� , and therefore there exists a u 2 L2� such that m.f 0/ �R
H�R

.u; f 0/ dx dt. This tells us that u solves the variational formulation of the full
IBVP. Hence the fundamental statement:

Theorem 4. Let L, given by (3), be a hyperbolic operator. We assume that the
boundary xd D 0 is not characteristic, and that the pair .L;B/ admits a Kreiss
symmetrizer.

Then the IBVP (7) is well-posed in L2� : for every f 2 L2�.H � .0; T //, g 2
L2�.@H � .0; T // and a 2 L2.H/, there exists a unique solution u 2 L2�.H �
.0; T // \ C.Œ0; T �IL2.H//, such that (7) holds true in the sense of distributions.
In addition, u satisfies the maximal estimates (10), where the constant C neither
depends upon the data, nor upon � > 0 and T > 0.

From this and Theorem 3, we conclude:

Theorem 5. Let L, given by (3), be a hyperbolic operator with characteristic fields
of constant multiplicities. If the pair .L;B/ satisfies (UKL), then the IBVP (7) is
well-posed in the sense described in Theorem 4.

2.9 An Example: The Wave Equation

Higher-order hyperbolic equations or systems can be treated in the same way as we
described in the first-order case. It is enlighting to consider the wave equation

@2t u D c2
xu; (20)

where u is a scalar unknown. Because the equation is second-order, we look for a
solution such that rx;tu is square integrable. The initial data is

u.x; 0/ D a0.x/; @tu.x; 0/ D a1.x/;

with ra0 2 L2.H/ and a1 2 L2.H/.
The wave operator is strictly hyperbolic, with velocities ˙c in every direction

� 2 Sd�1. The boundary is non-characteristic (equivalently, when � is normal to
the boundary, the velocities don’t vanish) and there is one incoming characteristic.
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Therefore we have to impose one boundary condition. We choose a condition of
order one, because it would be of the form BU D G when we rewrite the equation
as a first-order system in U D rx;tu:

@u

@�
D � @u

@t
C g; (21)

where g 2 L2.@H � .0; T // is a data. Hereabove, � is the unit outward normal and
� 2 R is a parameter. Equivalently, we have

@u

@xd
C � @u

@t
C g D 0:

When � D 0, this is the (non-homogeneous) Neumann condition, whereas the
Dirichlet boundary condition is obtained formally in the limit � !1.

If d D 1, the IBVP is very simple. It is well-posed if and only if � ¤ 1
c
;

the forbidden case corresponds as expected to the situation where kerB is not
transversal to U.Ad/, in the terminology of Sect. 2.1. The situation is totally
different when d � 2:

If � < 0, then the IBVP is well-posed. Actually, this is a symmetric, strongly
dissipative situation.

If 0 	 � < 1
c
, the IBVP satisfies (KL) in a non-uniform way. Hence the IBVP is

well-posed in C1, but the estimates are not the maximal ones.
If 1

c
	 �, the IBVP does not satisfy (KL). It is ill-posed in the Hadamard sense.

The reader may be surprised that the pure Neumann boundary condition

@u

@�
D g

does not yield a strongly well-posed IBVP. This seems to be in contradiction to what
we learn throughout our graduate studies. It turns out that the Neumann IBVP, with
homogenenous boundary condition (that is g � 0), has maximal estimates provided
we do not ask for a trace estimate. If

@u

@�
D 0;

then the solution satisfies

�

Z

H�.0;T /
e�2�t jrx;tuj2dx dtC e�2�T

Z

H

jrx;tu.x; T /j2dx

	 C
�
1

�

Z

H�.0;T /
e�2�t jLuj2dx dtC

Z

H

.jra0j2 C ja1j2/ dx

�
:

However, when g is arbitrary, the fact that g 2 L2� does not ensure that there exists
a solution u 2 L2� . We need a more regular g in order to derive this conclusion.
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Calculations. This is quite a simple situation because the space of modes at
frequency .�; �/ is a line. We have to test whether the boundary operator is one-
to-one on this line, uniformly in .�; �/.

The modes solve the ODE

�2w D c2
�
d2w

dx2d
� j�j2w

�
;

with w.C1/ D 0. The solutions of the ODE are linear combinations of the
exponentials e˙!.�;�/xd , where ! is the square root of �2

c2
C j�j2 whose real part

is positive (note that �2 C j�j2 is not a negative real; this is the essence of Hersch’s
lemma). The decay at C1 tells us that

w.xd / D w.0/e�!.�;�/xd :

This yields the relations

@u

@xd
D �!.�; �/w.0/; @u

@t
D �w.0/:

The Lopatinskiı̆ condition is thus satisfied at .�; �/ if and only if


.�; �/ WD �� � !.�; �/ ¤ 0:

This 
 is our Lopatinskiı̆ determinant.
Let us look at the zeroes of 
 within <� > 0. If 
 D 0, then �� D !. If � 	 0,

this is impossible because <�;<! > 0. Thus let us assume that � > 0. We must
have .��/2 D �2

c2
C j�j2, that is

.�2 � c�2/�2 D j�j2:

If 0 < � < 1
c
, this is again impossible, because �2 is not a negative real number.

Now, if instead � � 1
c
, then 
 vanishes at � D 1 and j�j D p�2 � c�2. Therefore

(KL) is satisfied if and only if � < 1
c
.

We now turn to (UKL). As (KL) fails if � � 1
c
, we may restrict to the case

� < 1
c
. Because L is strictly hyperbolic, we know from the general version of

Kreiss’ theorem that ! admits a continuous extension to boundary frequencies
.i�; �/, where � is real (we could prove this directly of course). Then (KL) will
be uniformly satisfied if in addition 
 does not vanish at boundary points (except
at .0; 0/, which is irrelevant). So, let .i�; �/ be a zero of 
. We have i�� D !.
Therefore ! must be pure imaginary, that is

j�j 	 j�j
c
:
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We then have

! D �i
r
�2

c2
� j�j2

where � D ˙1 must be determined so that <! increases when <� does. With

@!

@�
D �

c!
;

we find that � is the sign of �, hence

!.i�; �/ D i�
s
1

c2
� j�j

2

�2
:

Thus the equation
 D 0 at the boundary amounts to

� D
s
1

c2
� j�j

2

�2
;

which has a root � if and only if � 2 Œ0; 1
c
/.

3 The Quasi-linear Cauchy Problem

We now turn to quasi-linear systems, which are of the form

@tuC
X
˛

A˛.u/@˛u D 0: (22)

Hereabove, u 7! A˛.u/ is a field of n � n matrices with real entries. The latter are
sufficiently smooth functions over a phase space U . The symbol now also depends
on the unknown:

A.uI �/ WD
X
˛

�˛A
˛.u/:

We say that (22) is hyperbolic if every linear system of the form

@tuC
X
˛

A˛.Nu/@˛u D 0

is hyperbolic. In addition, we have the notions of strict (resp. constant rank)
hyperbolicity and symmetric hyperbolicity. We denote the eigenvalues of A.uI �/
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by

�1.uI �/ 	 � � � 	 �n.uI �/:

A particular, extremely important case is that of systems of conservation laws

@tuC
X
˛

@˛f
˛.u/ D 0; (23)

where the matricesA˛ are the Jacobians of the f ˛’s. We say then that u1; : : : ; un are
the conserved quantities.

3.1 Entropies

Definition 1. For a system (23), an entropy-flux pair is a smooth map

u 7! .�.u/; Eq.u// 2 R �R
d ;

such that (23) implies formally the additional conservation law

@t�.u/C divEq.u/ D 0: (24)

In other words, an entropy-flux pair is a solution of the linear system of PDEs

dq˛ D d�df ˛; ˛ D 1; : : : ; d; u 2 U ; (25)

or in full detail

@q˛

@ui
D

nX
jD1

@�

@uj

@f ˛
j

@ui
; 8i D 1; : : : ; n; 8˛ D 1; : : : ; d; 8u 2 U :

We warn the reader that this system comprises dn equations in d C 1 unknowns. It
is overdetermined whenever dn � d C 2. Therefore, we do not expect non-trivial
entropy-flux pairs for general systems unless either n D 1 (scalar equations) or
.n; d/ D .2; 1/ (so-called 2 � 2 systems). Trivial entropies are affine: to an entropy
�.u/ D ` � u C c, there corresponds the flux q˛.u/ D ` � f ˛.u/, and then (24)
is nothing but a linear combination of the rows of (23). In the scalar case, every
function u 7! � is an entropy. The 2�2 case is in between; not all functions of u are
entropies, but the vector space of entropies is infinite-dimensional, parametrized by
two arbitrary functions of one variable; see [31] or Chap. 9 of [32].

It is worth mentioning that most of the physically relevant systems do admit
a non-trivial (D non-affine) entropy; this is because they have an underlying
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thermodynamical formalism. We shall give some examples soon. The fact that �
is not affine can be translated in terms of properties of the Hessian D2�.u/. It will
be non-degenerate, and often have some positivity properties. In the most favorable
case, we shall have D2�.u/ > 0n. We say in this case that � is strongly convex.

If we eliminate Eq from (25), we obtain the property that the matrix D2� df ˛

is symmetric. More generally, .D2�/A.uI �/ is symmetric for every � 2 R
d . This

implies that D2� is diagonal in the eigenbasis of A:

Proposition 7. Suppose that the eigenvalues of A.uI �/ are simple (strict hyperbol-
icity). Then its eigenbasis is orthogonal with respect to the scalar product induced
by D2�.u/. If `.u/, r.u/ denote left- and right-eigenvectors, then

D2�.r; X/ D ˛` �X; 8X 2 R
n; (26)

with ˛ WD D2�.r; r/=` � r .

Euclidian vs. Riemannian structure. Even if one reads now and then that Rn is
endowed with the natural, or even canonical scalar product, and the eigenvectors are
chosen of unit length, this is nonsense. The only structure (over Rn) associated with
hyperbolic systems of conservation laws is the affine geometry, because a system
like (23) can be transformed into another one, without changing the notion of weak
solution, by applying an affine transformation u 7! v D MuC b withM 2 GLn.R/
and b 2 R

n. Then f ˛ is replaced by g W v 7!Mf ˛.M�1.v� b//. When our system
admits a strongly convex entropy �, we may superimpose a Riemannian structure
over the phase space U , where D2� plays the role of the metric. Then it makes sense
to normalize the eigenvectors by D2�.r; r/ D 1. So far, this geometrical aspect has
not been exploited in the analysis of the Cauchy problem. For instance, it is an open
question whether or not the sign of the curvature plays a role in the dynamics.

3.2 An Example: Gas Dynamics

Gas dynamics is governed by the Euler system

@t�C div.�v/ D 0;
@t .�v/C Div.�v˝ v/Crp D 0;

@t

�
1

2
�jvj2 C �e

�
C div.

�
1

2
�jvj2 C �e C p

�
v/ D 0;

where � is the density, p the pressure, e the specific internal energy and v the
velocity. The second line above is itself a system and v ˝ v stands for the matrix
with entries vivj . An equation of state relates �, e and p. The conserved quantities
are u WD .�; �v; 1

2
�jvj2 C �e/. The system is compatible with
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@t .��s/C div.��sv/ D 0;

where s D s.�; e/ is the entropy of physicists. Thus � D ��s and Eq D �v. The fact
that � is an entropy is equivalent to the fact that the differential ds is proportional
to de C pd 1

�
. In other words, we have the Gibbs’ relation for fluids in classical

thermostatics

	ds D de C pd
1

�
; (27)

for some function 	.�; e/. The latter, which turns out to be positive, is known as the
absolute temperature.

3.3 The Strongly Convex Case

We now assume that � is strongly convex: D2� > 0n. The main consequence is

Theorem 6 (Godunov [13], Las–Friedrichs [11], and Boillat [4]). If (23) admits
a strongly convex entropy, then it is symmetrizable, hence hyperbolic.

There are several proofs of this result, because there are several symmetric forms
of the system. Actually, it can be symmetrized for any choice of primary variables
v D �.u/ (� a diffeomorphism). Say that (23) is formally equivalent to S0.v/@tvCP

˛ S
˛.v/@˛v D 0, where S0 and S˛ symmetric, and S0 is positive definite. Then, if

v D  .w/, this system can be transformed into the are symmetric form†0.w/@twCP
˛ †

˛.w/@˛w D 0, with

†0 D .r /T S0r ; †˛ D .r /T S˛r :

Godunov first symmetrized (23) in terms of v WD r�.u/, which Boillat later called
the main field. Their symmetrizer is S0 D .D2�/�1, the Hessian of the Legendre
transform ��. Instead, Friedrichs and Lax symmetrized directly in terms of u, with
S0 D D2�.

The importance of symmetrization is given by the following existence result for
the Cauchy problem. We give it in Dafermos’ formulation [6].

Theorem 7. Assume that the system (23) is endowed with a C3 entropy �, which
is strongly convex. Suppose that the initial data a 2 C1.Rd / takes values in some
compact set of U and ra 2 H`.Rd / for some ` > d

2
. Then there exists a T1 2

.0;C1�, and a unique continuously differentiable function u W Rd � Œ0; T1/! U ,
which is a classical solution of the Cauchy problem (23, 2). Furthermore,

ru 2
\̀
kD0

C k.Œ0; T1/IH`�k.Rd //:



Multi-dimensional Systems of Conservation Laws: An Introductory Lecture 271

The time interval is maximal in that if T1 <1, then

Z T1

0

kru.�; t/kL1 dt D 1

and/or the range of u.�; t/ escapes from every compact subset of U as t ! T1.

We emphasize that because H`.Rd / is included in C0.Rd /, such solutions are
continuously differentiable over Œ0; T /�Rd . They are therefore classical solutions.

3.4 Limitations of the Classical Theory

The local well-posedness stated in Theorem 7 is accurate in many directions. On
the one hand, it promisses solutions whose regularity is that of the initial data,
but not more. This cannot be improved in general, because the class of systems
of conservation laws with a convex entropy is reversible in time, as long as classical
solutions are concerned. Therefore, because we may write a D S�t ıSt.a/ in terms
of the local semi-group, there cannot be any kind of regularization effect.

On the other hand, the solution is not global in general, because of the non-
linearity. The derivatives v˛ WD @˛u satisfy a system

@tv
˛ C

X
ˇ

Aˇ.u/@ˇv˛ C
X
ˇ

.dAˇ.u/ � v˛/vˇ D 0; ˛ D 1; : : : ; d;

which looks like a Ricatti equation. Thus we anticipate a blow-up of the first deriva-
tives in finite time, for rather general and smooth initial data. This phenomenon is
particurlarly easy to analyze in the scalar case, say for the Burgers equation

@tuC @x 1
2

u2 D 0: (28)

Then v WD ux satisfies .@t Cu@x/vC v2 D 0, which is a Ricatti equation v0C v2 D 0
along the characteristic lines defined by

dX

dt
D u.X; t/:

If a 2 C1.R/ is not an increasing function, we may choose a point x0 at which ax
is negative. Then, along the characteristic line originated at x0 (X.0/ D x0 above),
ux has to blow up in finite time T D �1=ax.x0/, unless the solution ceases to exist
sooner for some other reason.
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3.5 Weak Solutions

We therefore don’t expect global classical solutions for general, even smooth, initial
data. This suggests that the actual solutions, which have to represent some physical
process, would be less regular. This view is supported by physical experiments in gas
dynamics, which provide evidence that shock waves develop in finite time. Shock
waves are discontinuities of the state (density, temperature, velocity).

In mathematical analysis, we have known for decades that the physical relevance
of PDEs can be expressed in terms of distributions. If we think that the conservation
laws in a system (23) have a physical meaning and must be satisfied accurately, then
it is natural to consider the following notion of solutions. A full justification in the
case of continuum thermomechanics is given in Dafermos’ book [6].

Definition 2. Let a 2 L1.Rd /n be given. A field u 2 L1..0; T /�Rd /n is a weak
solution of the Cauchy problem (23) with initial data u.�; 0/ D a if, for every test
function � 2 D.RdC1/n, we have

Z

.0;T /�Rd

.�t � uCrx� W f .u//dx dtC
Z

Rd

�.x; 0/ � a.x/ dx D 0: (29)

In (29), the first integral affords for the PDEs in .0; T / � R
d , whereas the second

takes into account the initial data. As usual, the notion of weak solution is an
extension of the classical notion, in the sense that if u is a classical solution, then it
is a weak solution. The converse is of course false. For instance, u.x; t/ D a.x�ct/
is a weak solution of the transport equation @tuC c@xu D 0, regardless of whether
a is smooth or not. As a matter of fact, the notion of weak solutions allows us to
consider non-smooth initial data a that are only bounded measurable.

It is instructive to characterize those weak solutions that are piecewise smooth,
because this gives a description of the physical discontinuities mentioned above. To
this end, we ignore the initial data and just say that u is a weak solution of (23) in
some open set ! � R

dC1 if, for every test function � 2 D.!/n, we have

Z

.0;T /�!
.�t � uCrx� W f .u//dx dt D 0:

Proposition 8. Let u be piecewise smooth in !, in the following sense: There exists
a smooth hypersurface† that separates! into two pieces!˙ in which u 2 C1.!�[
!C/, and u has limit u˙ along †, from each side.

Then u is a weak solution of (23) in ! if and only if, on the one hand it is a
classical solution in !� [ !C, and on the other hand, it satisfies the Rankine–
Hugoniot relation across †:

�t .uC � u�/C
X
˛

�˛.f
˛.uC/ � f ˛.u�// D 0: (30)
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Hereabove, � is the normal to †.

Observe that because f is smooth, and thus Lipschitz on bounded sets, we have

ˇ̌
ˇ̌
ˇ
X
˛

�˛.f
˛.uC/� f ˛.u�//

ˇ̌
ˇ̌
ˇ 	M juC � u�jmax

˛
j�˛j;

which implies j�t j 	 M max˛ j�˛j. This shows that .�1; : : : ; �d / may not vanish.
In other words, † is time-like: it does not have a horizontal tangent space. Then,
normalizing � by � D .�;�V / with j�j D 1, we call � the direction of propagation
and V the normal velocity of the discontinuity. We warn the reader that there remains
an ambiguity in that we may always choose �� instead of �.

In one space dimension, the ambiguity is removed by adopting the convention
that � D 1. Then V > 0 (resp. V < 0) amounts to saying that the discontinuityX.t/
propagates to the right (resp. left); the velocity is nothing but X 0.t/. The Rankine–
Hugoniot condition then reads

f .uC/� f .u�/ D V.uC � u�/: (31)

For instance, the velocity of a discontinuity in the Burgers equation (28) is given by

V D 1

2
.uC C u�/:

Notations. The jump hC � h� of a quantity h from !� to !C is denoted by Œh�.
Its arithmetic mean 1

2
.h�ChC/ is written as hhi. The Rankine–Hugoniot condition

can thus be condensed to

�t Œu�C
X
˛

�˛Œf
˛.u/� D 0:

The Hugoniot locus. The analysis of equation (31) was first made by Lax [20], by
means of bifurcation analysis. If we impose u� and search for solutions .uC; V /, we
first have the trivial solution uC D u�, with V 2 R arbitrary. This solution is useless
because it does not describe a genuine discontinuity. The non-trivial solutions form
the Hugoniot locus H.u�/. To determine this set, we may bifurcate from points
.u�; V / at which the differential of u 7! f .u/�f .u�/�V.u�u�/ is singular. This
happens precisely when V D �k.u�/ for some index k. Lax proved the following
result.

Theorem 8 (Lax [20]). We assume that the system

@tuC @xf .u/ D 0 (32)

is strictly hyperbolic at u�. Let us choose an index 1 	 k 	 n. Then, in a
neighbourhood of .u�; �k.u�//, the equation (31) defines the union of the line
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fu�g � R and of a non-trivial curve s 7! .uC.s/; V .s// (say that uC.0/ D u�).
The derivative

r WD duC
ds

ˇ̌
ˇ̌
sD0

is an eigenvector:

df .u�/r D �k.u�/r:

Actually, the curve s 7! uC.s/ is tangent at u� to the integral curve of the eigenfield
rk.u/, to the order two. In addition, we have

V.s/ D 1

2
.�k.u�/C �k.uC.s///CO.s2/:

For a proof, see for instance Chap. 4 of [32]. We denote by Hk.u�/ the curve s 7!
uC.s/ described above. A discontinuity .u�; uCIV / with uC 2 Hk.u�/ is called a
k-discontinuity.

3.6 Entropy Admissible Solutions

In thermodynamics, the second fundamental principle tells us that not all mathemat-
ically possible discontinuities can be observed. More precisely, many discontinuities
are irreversible, in the sense that if U.x; t/ is a flow (hence, a weak solution of the
Euler system) with a shock wave, then QU .x; t/ D U.�x;�t/ is not a flow. This is
surprising at a first glance, because the Euler system, as well as every system of the
form (23), is formally reversible; therefore QU is a weak solution. Thus not all weak
solutions are physically relevant.

There are several mathematical motivations to the second fundamental principle.
At the beginning, there is the observation that a Cauchy problem for a nonlinear
system (23) has far too many weak solutions. Thus passing from classical solutions
to weak ones, we left Scylla (lack of global solutions) for Charybdis (high non-
uniqueness). There is therefore a need to select what will be called admissible
solutions.

Evidence of non-uniqueness is provided again by the Burgers equation (28). In
the best of the worlds, the initial data a � 0 should yield the trivial solution u � 0

and only this one. But we do have at least a continuum of solutions, parametrized
by p > 0:

up.x; t/ D

8̂
<̂
ˆ̂:

0; x < �pt;
�2p; �pt < x < 0;
2p; 0 < x < pt;

0; x > pt:
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To verify that up is a weak solution, one remarks that constants are classical
solutions, and that (30) is satisfied across discontinuities.

The selection of an admissible solution is the second place where a convex
entropy may play a role. Firstly, we remark that a weak solution does not necessarily
solve (24) in the distributional sense, because we cannot use the chain rule to
calculate @t�.u/ or @˛q˛.u/. Secondly, the jump relation for (24) does not follow
from the Rankine–Hugoniot relations.

Definition 3. We assume that the system (23) admits a strongly convex entropy �,
associated with an entropy flux Eq.

Let a 2 L1.Rd /n be given. A weak solution of the Cauchy problem u 2
L1..0; T / � R

d /n is entropy admissible if, for every non-negative test function
� 2 D..�1; T / � R

d /, we have

Z

.0;T /�Rd

.�t�.u/Crx� � Eq.u//dx dtC
Z

Rd

�.x; 0/�.a.x// dx � 0: (33)

We emphasize that the definition above involves two inequalities: � � 0 and the
integrals sum up to a non-negative number. This is where our notion of solution
becomes irreversible: if u is an admissible solution, then Qu.x; t/ WD u.�x;�t/ need
not be. Yet, Qu was a weak solution.

When restricting to test functions with compact support in .0; T / � R
d , the

admissibility amounts to the Lax entropy inequality

@t�.u/C divEq.u/ 	 0; (34)

in the distributional sense.
When u is a piecewise smooth flow, entropy admissibility can be interpreted in

the following way.

Proposition 9. Let u be piecewise smooth in !, as described in Proposition 8.
Then u is an entropy admissible solution if and only if on the one hand it is a

weak solution of (23) in !, and on the other hand, it satisfies the following inequality
across †:

�t .�.uC/� �.u�//C
X
˛

�˛.q
˛.uC/ � q˛.u�// 	 0: (35)

Hereabove, � is oriented from !� to !C.

Notice that the inequality does not depend on which side is labelled with a C or a
�: if we switch the labels, the signs of the jumps Œ�� or Œq˛� are changed, but the
normal � is flipped and therefore the products remain the same.

Example. Let us consider the Burgers equation. If a discontinuity propagates at
velocity V , we have
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�V Œ��C Œq� D q.uC/ � q.u�/ � huiŒ�� D 1

2

Z uC

u�

.b � s/.s � a/�00.s/ ds:

Therefore the discontinuity is admissible if and only if uC 	 u�. We point out
that in this favorable case, the admissibility does not depend on the choice of the
strongly convex entropy. This remains true for every scalar conservation law in one
space dimension, provided the flux f is itself a convex function (or if it is concave).
When f is arbitrary, it becomes important to strengthen the admissible criterion by
imposing (33) for every strongly convex �. We then obtain the celebrated Oleinik’s
criterion:

A scalar discontinuity .u�; uCIV / in one space dimension is admissible if and only if

• either u� � uC and the graph of f over .u�; uC/ lies above the chord between the
points .u

˙
; f .u

˙
//,

• or uC � u� and the graph of f over .uC; u�/ lies below the chord.

3.7 Weak-Strong Uniqueness

It happens frequently in the theory of nonlinear PDEs that we are not able to
prove the regularity and the uniqueness of the solutions that have been proven to
exist. This is for instance the case for the 3-dimensional Navier-Stokes equations
for an incompressible fluid, where this open problem is worth one million dollars.
However, we often are able to prove that if a solution is smooth enough, then it is
unique among the weak solutions. This is the case here. We borrow the following
statement from Chap. 5 of Dafermos’ book. It states a slightly stronger stability
result.

Theorem 9. Assume that the system (23) is endowed with an entropy-flux pair
.�; Eq/, where � is a strongly convex entropy over U . Suppose that NU is a classical
solution of (23) in R

d �.0; T /, taking values in a compact subset K of U , with initial
data NU0. Let U be any entropy admissible solution of the Cauchy problem for (23),
taking values in K, with initial data U0. Then

Z

jxj<r
jU.x; t/ � NU .x; t/j2dx 	 aebt

Z

jxj<rCvt
jU0.x/ � NU0.x/j2dx (36)

holds true for any r > 0 and t 2 Œ0; T /, with positive constant a; v depending solely
on K, and b depending also on the Lipschitz constant of NU .

In particular, NU is the unique entropy admissible solution with initial data NU0.
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4 Improved Admissibility Criteria

Propositions 8 and 9 suggest that, even if admissibility is stated in terms of
differential inequalities, it concerns only the triplets .u�; uCI �/ that solve the
Rankine–Hugoniot relation. This is certainly true if we deal with piecewise smooth
solutions, even if discontinuities meet, provided their intersection is a codimension-
2 subset. This is because of the following obvious fact:

Proposition 10. Let EQ be a bounded measurable vector field in �, an open subset
of RD . Let � be a closed subset contained in the denumerable union of codimension-
2 submanifolds of class C1. If the inequality div EQ 	 0 is satisfied in � n � in the
distributional sense, then it is satisfied in �.

Of course, multi-dimensional flows are not that smooth in general, and the evidence
of turbulence tells us that there must be wilder flows,5 for which the chain rule does
not apply and therefore the entropy inequality might tell us something non-trivial.
Nevertheless, researchers are convinced that classifying the triples and selecting
among them the admissible ones is a sensible goal, and they faint to believe that
there is nothing more subtle regarding admissibility. Whether this attitude is right
or not will be known only after the theory has developed far enough, perhaps only
within decades. We therefore adopt this simplistic point of view. We warn the reader
however that this approach is useless when the solutions are so wild that we are
unable to distinguish well-drawn discontinuities.

There are two approaches in the search for admissibility criteria for discontinu-
ities. On the one hand, we may view a discontinuity as a free boundary problem
(FBP), because the hypersurface of discontinuity is not known a priori. By this,
we mean that in general we cannot identify a discontinuity before constructing
the solution. Say that we have only one such surface, which we may parametrize
by some coordinate xd D  .y; t/, with y D .x1; : : : ; xd�1/. Then the strategy
is to make the change of independent variables .x; t/ 7! .y; z; t/ where z WD
xd �  .y; t/. This fixes the discontinuity to the hyperplane z D 0. The price to
pay is the introduction of an additional unknown function  . If we fold the left
half-plane z < 0 onto the right half-plane z > 0 by flipping z 7! �z, then we
obtain an IBVP coupling a field Qu.y; z; t/ 2 U2 � R

2n with  .y; t/ 2 R. This
strategy was developed by Majda in his celebrated memoirs [22]. For a modern and
more complete analysis, the reader may refer to [1]. Of course, a physically relevant
discontinuity must be somehow stable under small disturbances.

The second approach follows from the following claim: a first-order system of
conservation laws (1) is usually not physically correct at small scales. For instance,
the description of fluid flows should involve the effects of Newtonian viscosity

5But it does not tell us whether these flows solve the Euler equation, that is if the Euler system is a
good physical model.



278 D. Serre

and heat conduction.6 These phenomena are represented by additional terms in the
PDEs; these terms are of higher order (two or more) and they contain small factors
which let them act significantly at short scales, while being innocuous at large scales.
If a discontinuity of (23) is to be physically relevant, it must correspond to an actual
wave of the higher-order system, a travelling wave. The existence of this wave, and
its stability properties, thus provides meaningful information.

4.1 The FBP Approach: Number of Boundary Conditions

Let us follow the approach of the FBP. It comprises 2n equations in the domain
z > 0, plus a scalar equation along z D 0. Let us choose a point NP 2 † where the
normal is .�V; �/ with j�j D 1 and V 2 R is the normal velocity of † at NP . The
state at both sides˙z > 0 of NP are denoted u˙. We know that .u�; uCIV / satisfies
the Rankine–Hugoniot condition in the direction �. We shall denote by �j .vI �/ the
eigenvalues of the Jacobian

df .vI �/ WD
X
˛

�˛df ˛.v/:

It is not difficult to see that the boundary z D 0 is characteristic if and only if one of
the eigenvalues �j .u˙I �/ equals V . We suppose here that this is not the case: the
discontinuity is not characteristic. Then there are two indices 1 	 j; k 	 n such that

�j .u�I �/ < V < �jC1.u�I �/; �k.uCI �/ < V < �kC1.uCI �/: (37)

Related to the previous observation, we can see that there are n � k C j incoming
characteristics. Thus a necessary condition for the well-posedness of the IBVP is
that we are given n�kCj boundary conditions. These are provided by the Rankine–
Hugoniot relation, which is vectorial and comprises n equations relating u˙ and  .
Because we need precisely one evolution equation for  , we really have only n� 1
boundary conditions for u˙. Thus we must have n�kCj D n�1, that is j D k�1.
This gives us an admissibility condition, necessary but not sufficient,

9k such that �k�1.u�I �/ < V < �k.u�I �/; �k.uCI �/ < V < �kC1.uCI �/:
(38)

This is called the Lax shock condition. A discontinuity satisfying it is called a Lax
k-shock. If k D 1, we discard �k�1.u�I �/, and likewise �kC1.uCI �/ if k D n.

For a scalar equation in one space dimension, the condition (38) reduces to
f 0.uC/ < V < f 0.u�/, that is

6Such perturbative effects are treated in Sect. 5.
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f 0.uC/ <
f .uC/ � f .u�/

uC � u�
< f 0.u�/:

We point out that this does not ensure the entropy inequality

Œq.u/� 	 V Œ�.u/�; (39)

and it is not implied by it either. Observe however that a weak Lax shock inequality

f 0.uC/ 	 f .uC/� f .u�/
uC � u�

	 f 0.u�/

is implied by the Oleinik condition. Notice that the derivation of the latter uses the
fact that all functions �.u/ are entropies. Because this property is false for systems,
one does not see a clear counterpart of the Oleinik condition if n � 2. It is even less
clear when n � 3, because then the space of entropies is usually finite dimensional,
of dimension nC 2 or nC 3, including the worthless subspace of affine functions.
This leaves us with only a few independent inequalities of the form (39), instead of
an infinity. Thus the entropy admissibility is unlikely, in many cases, to ensure the
Lax shock inequality, even in a weak form.

We may now give a complement to Theorem 8. The derivative of s 7! �k.uC.s//
at s D 0 equals

d�k.u�/ � rk.u�/; rk.u�/ WD duC
ds

ˇ̌
ˇ̌
sD0

:

Let us assume that d�k.u�/ � rk.u�/ ¤ 0; we say that the k-th characteristic field is
genuinely nonlinear at u�. Then s 7! �k.u.s// is strictly monotonous near s D 0.
We may always normalize rk.u�/ by

d�k.u�/ � rk.u�/ D 1;

so that �k.uC/ D �k.u�/ C s C O.s2/. Lax [20] made the important observation
that we also have

V D �k.u�/C s

2
CO.s2/;

from which it follows that the triple .u�; uC.s/IV / is a Lax shock if and only if
s < 0. Therefore the Lax shock condition eliminates locally half of the Hugoniot
curve Hk.u�/.

For a scalar equation, genuine nonlinearity amounts to saying that the second
derivative of the flux f does not vanish.
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4.2 The Role of Lax Shocks in the Riemann Problem

An interesting case for our uniqueness/stability problem is the Riemann Problem.
In one space dimension, it consists of searching for self-similar solutions:

u.x; t/ D U
�x
t

�
:

The data of the Riemann problem is given in terms of a pair .u`; ur / 2 U2,

a.x/ D
�

u`; if x < 0;
ur ; if x > 0:

For a self-similar function, (32) becomes

f .U /0 D yU 0; (40)

where y stands for the variable x=t .
When ju`�ur j is small, we search for a solutionU of (40) that remains in a small

neighbourhood of u`. The general analysis was begun by Lax [20], who observed
that the solution mimics that in the linear case: if the system is strictly hyperbolic,
U is made of nC 1 constant states u0 D u`; u1; : : : ; un D ur , separated by simple
waves. The wave between uk�1 and uk travels at a velocity that remains close to
�k.u`/.

It turns out that in this picture, the discontinuities associated with the Hugoniot
locus Hk.uk/ come into competition with the so-called rarefaction waves. The latter
are smooth self-similar solutions; they therefore satisfy .df .U /�y/U 0 D 0, which
tells us that there exists an index k D 1; : : : ; n such that

y D �k.U.y//; U 0.y/ k rk.U.y//: (41)

We then speak of a k-rarefaction. If we ignore the rarefaction waves, it is always
possible to go from u` to ur by a succession of k-discontinuities from k D 1 to
k D n. This is a simple consequence of the Implicit Function Theorem, plus the
fact that the tangent space of Hk.u`/ at u` is the k-th eigenspace of df .u`/, and
R
n is the direct sum of these eigenspaces. This construction has two flaws. On the

one hand, if a rarefaction wave R.x=t/ between two states v`;r is given, we find an
alternate piecewise constant solution U.x=t/ with the same initial data v` = vr , thus
yielding to non-uniqueness. On the other hand, some of the discontinuities involved
in the construction might not satisfy the Lax shock condition.

It is a general principle in thermodynamics that smooth flows (often called quasi-
reversible) are physically relevant. In the example above, this means that R is
acceptable, and thus U must not be, if we believe to uniqueness. This implies
again that we have to get rid of discontinuities, at least of some of them. The
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reason why we need to accept some discontinuities is that rarefaction waves are not
reversible in the following sense: if we can join a left state u� to a right state uC by a
k-rarefaction, then we have �k.uC/ > �k.u�/ because of (41).

In the rather simple situation of a genuinely nonlinear characteristic field, where
we have d�k.u/ � rk.u/ � 1 after normalization, we see that �k is strictly monotone
along the integral curve of rk. If a; b belong to some integral curve of rk , we may
join a to b by a k-rarefaction if and only if �k.a/ 	 �k.b/, but the converse is
impossible. For this reason, it is not always possible to solve a Riemann problem by
gluing only rarefaction waves. But the global picture leaves us optimistic, because
k-rarefactions can be used when �k.uC/ > �k.u�/, whereas k-shocks can be used
when instead �k.uC/ < �k.u�/.

Linearly degenerate fields. Before giving Lax’ result concerning the Riemann
problem for small data, we need to mention the type that stands at the tip opposite
to genuine nonlinearity: the k-th characteristic field is linearly degenerate (LD) if
d�k � rk � 0. Linear degeneracy means that �k is constant along the integral curves
of rk . For a linearly degenerate field, (41) implies U 0 D 0 and therefore there are no
k-rarefactions. Instead, we have

Proposition 11. If the k-th characteristic field is linearly degenerate, then for any
two points a and b on the same integral curve of rk , the triple .a; bIV D �k.a/ D
�k.b// satisfies the Rankine–Hugoniot relation, and the entropy equality Œq.u/� D
V Œ�.u/�.

Such triplets are called contact discontinuities. They are generally accepted as
physically relevant, at least in the one-dimensional case. We point out that such dis-
continuities are reversible, and that they satisfy the equalities instead of inequalities
in (38).

According to Proposition 11, the integral curve of rk and the Hugoniot locus
Hk.u�/ coincide when the field is linearly degenerate. This is false in general for
other characteristic fields. This coincidence was studied in 2� 2 systems by Temple
[38], where he found another particular case, which is now known as that of the
“Temple field”. This notion has been extended to n � n systems and appears to be
a natural extension of the scalar situation. See volume II of [32] for a complete
presentation. The k-th characteristic field is Temple if the left eigenfield u 7! `k.u/
is normal to a foliation of U into hyperplanes. In other words, classical solutions u
obey to a transport equation .@t C �k.u/@x/w.u/ D 0 where w is a function whose
level sets are affine hyperplanes.

When a characteristic field has constant multiplicity m � 2, it is always linearly
degenerate, and even more:

Theorem 10 (Boillat). Let us assume that the system (32) is hyperbolic in a
neighbourhood V of u�, and has a characteristic field of constant multiplicity
m � 2, associated with the eigenvalue �.u/. Then the field of affine subspaces

u 7! uC ker.df .u/� �.u/In/



282 D. Serre

is integrable in the sense of Liouville: it is the tangent bundle to a foliation of V by
smooth manifolds of dimension m. In addition, � is constant on each leaf (linear
degeneracy, see above).

It is not too hard to deduce from Theorem 10 the following description of the
Hugoniot locus: H.u�/ is locally the union of the line fu�g � R and of F.u�/ �
f�.u˙/g, where F is the leaf passing through u�.

A kind of converse to Theorem 10 turns out to be true: if a characteristic field
of (32) is linearly degenerate, it is possible to embed the system into a larger
one (n C 1 unknowns and equations) in which the corresponding eigenvalue has
multiplicity � 2.

Lax’s treatment of the Riemann Problem. The first general theorem on the
Riemann problem is due to Lax. It concerns the case where every characteristic
field is either genuinely nonlinear or linearly degenerate.

Theorem 11 (Lax [20]). We assume that (32) is strictly hyperbolic. Let Nu be
a state at which all the characteristic fields are either genuinely nonlinear or
linearly degenerate. Then for a small enough neighbourhood O1 of Nu, there exists a
neighbourhood O0 of Nu such that if u`; ur 2 O0, then the Riemann problem from u`
to ur admits a unique solution with the following properties:

• U takes values in O1,
• U is made of nC 1 constant states u0 D u`; u1; : : : ; un D ur separated by simple

waves,
• If the k-field is genuinely nonlinear (GNL), the wave from uk�1 to uk is either a
k-rarefaction or a k-shock,

• If the k-field is linearly degenerate (LD), the wave from uk�1 to uk is a contact
discontinuity.

Lax’s Theorem is subtle. When the Hugoniot curves are not integral curves of rk ,
the Riemann problem cannot be resolved by first applying a non-linear change of
coordinates and then following lines parallel to the coordinate axes.

4.3 The FBP Approach (II)

In [22], Majda consider the linearized stability of a discontinuous wave. As
explained above, the linearization, carried out after † has been sent to a fixed
boundary xd D 0, looks very much like a linear IBVP, with variable coefficients.
Its stability amounts to that of each IBVP with constant coefficients, obtained by
freezing the background state at some point NP 2 †. Thus it is encoded into a
uniform Kreiss–Lopatinskiı̆ condition; because the latter involves an extra term
which accounts for the disturbances of the front, it bears the name of the uniform
Majda–Kreiss–Lopatinskiı̆ condition (MKL). It is parametrized by frequency pairs
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.�; �/, where � 2 �? (� is the direction in which the shock propagates),<� � 0 and
j�j2 C j� j2 D 1. Without loss of generality, we identify �? with R

d�1.
Following Sect. 4.1, we assume that the discontinuity is a Lax shock. In

particular, the linearized FBP is non-characteristic. Because n � 1 characteristics
enter the domain (they leave the shock), we should expect that the Lopatinskiı̆
condition expresses as the non-vanishing of a determinant of size n�1. But because
the FBP involves also a scalar unknown  along the boundary, we actually get an
n � n determinant, the Lopatinskiı̆ determinant.

As in the analysis of a linear IBVP, the Lopatinskiı̆ determinant is a function

.�; �/ that can be taken analytic in � and holomorphic in � . When our system
(23) is strictly hyperbolic, or more generally has characteristic fields of constant
multiplicity, the Kreiss block structure allows us to extend 
 by continuity to the
boundary of the half-sphere.

4.3.1 The Liu–Majda Condition

The case .�; �/ D .0; 1/ gives the Liu–Majda condition


.0; 1/ D det.r1.uCI �/; : : : ; rk�1.uCI �/; uC�u�; rkC1.u�I �/; : : : ; rn.u�I �// ¤ 0:
(42)

When u˙ are close to some state Nu, then rj .u˙I �/ � rj .NuI �/, whereas uC � u�
is approximately colinear to rk.NuI �/. Thus (42) is satisfied, because of the linear
independence of the eigenvectors of df .NuI �/.

In one space dimension, the Liu–Majda condition is nothing but the transver-
sality criterion (8). Therefore a one-dimensional, non-characteristic discontinuity
is linearly strongly stable whenever it satisfies the Lax shock condition for some
k D 1; : : : ; n, plus (42). In particular, every Lax shock of moderate amplitude is
linearly strongly stable. Strong linear stability turns out to imply nonlinear stability
in spaces of differentiable functions, but we shall not address this question in these
notes; the interested reader is refered to [22] or to [1].

We remark that (42) is not an admissibility criterion by itself. It comes only as a
complement of the Lax shock inequalities (38). An admissibility condition usually
rejects ‘half’ of the discontinuities satisfying the Rankine–Hugoniot condition,
even small ones, whereas (42) rejects only exceptional ones; in addition, if the
characteristic fields are genuinely non-linear, only large shocks may be thrown out
by (42).

4.3.2 The Majda–Kreiss–Lopatinskiı̆ Condition

In several space dimensions, the MKL condition is again a complement to (38). We
have now non-zero frequencies � 2 R

d�1. The non-uniform version of MKL is that
for every pair .�; �/ with j�j2 C j� j2 D 1 and <� > 0,
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.�; �/ ¤ 0: (43)

Assuming strict hyperbolicity, or more generally that characteristic fields have
constant multiplicities, we know that 
 extends by continuity to the boundary of
the half-sphere. Then uniform MKL is equivalent to the validity of (43) up to this
boundary.

The Majda–Kreiss–Lopatinskiı̆ condition is always satisfied for scalar shocks
(n D 1), but only in a non-uniform way if d � 2. This weak stability is consistent
with the fact that a scalar equation generates an L1-contraction semi-group. Of
course, these two facts are difficult to relate rigourously, because on the one hand
the MKL condition refers to the L2-stability instead of that in L1, and on the other
hand, we do not expect fast decay rates for the disturbance.

The MKL condition has been studied in detail for gas dynamics, and a wide range
of shock data have been found to be strongly stable. For real equations of state, Lax
shocks of large amplitude may be unstable in the Hadamard sense (MKL is violated
at some pair .�; �/ with <� > 0); shocks of intermediate strength may be non-
uniformly stable (MKL is violated at some boundary frequency .�; �/). Majda’s
calculations of [22] have been simplified by Jenssen and Lyng [16]. A complete
treatment can be found in Sect. 15.2 of [1].

4.3.3 How Non-characteristic Are Small Shocks?

Let us come back to the fact that a discontinuity is non-characteristic if and only if
V ¤ �j .u˙I �/ for every j D 1; : : : ; n. We have seen above that this turns out to
be true under the conditions that u˙ are close to each other, uC being on the k-th
branch of the Hugoniot locus H.u�/, and the k-th characteristic field is genuinely
nonlinear. However, the difference between V and �k.u˙/ is very small, typically

V � �k
�

u� C uC
2

�
D O �juC � u�j2

�
:

A small shock is therefore almost characteristic. This raises a technical difficulty, as
well as an important question. If the shock satisfies MKL, the maximal estimates for
the linearized FBP are likely to involve large constants when V � �k.u˙/ is small.
Thus it may be difficult to handle the nonlinear terms in a fixed point argument
where one uses a kind of Duhamel formula. For this reason, the existence time found
by Majda shrank to zero with the shock strength. This is a bit puzzling, because the
zero shock strength corresponds to the so-called weak shock, which is a Lipschitz
solution with a discontinuity of the gradient, a situation in which we are able to
establish an existence result on a positive time interval. Majda raised therefore the
problem to prove a uniform lower bound for the existence time as the shock strength
tends to zero. This was eventually achieved by Francheteau and Métivier in [7].
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4.4 Liu’s E-Condition

The accurate theory for scalar conservation laws includes the Oleinik condition.
The latter suggests that when a characteristic field is neither GNL nor LD (for
instance f W R ! R has an inflexion point), the Lax shock condition (38) is not
sufficient to make a good selection. Oleinik’s condition has been generalized for
strictly hyperbolic systems by T.-P. Liu in the following way, called the E-condition.

A discontinuity .u�; uCIV / satisfies the E-condition if

• on the one hand, the Hugoniot locus H.u�/ contains an arc � from u� to uC; if u 2 �

we denote by v�.u/ the velocity of the discontinuity from u� to u,
• on the other hand, for every u 2 � , we have V � v�.u/.

The definition above looks odd as first glance: we could as well ask for the dual
condition that H.uC/ contains an arc ı from u� to uC, on which vC.u/ 	 V . It
is not immediate that both conditions are equivalent, and it could be that they are
not when u˙ are far apart. It is easy to see that they always are in the scalar case.
For systems, Liu found that when juC � u�j is not too large, then each of them is
equivalent to the existence of a viscous profile, a notion that we consider below. In
this case, they are therefore equivalent to each other.

Liu’s E-condition turns out to contain the Lax shock condition (38). This is shown
by considering the limit of the inequalities above as u tends to the base point of the
Hugoniot locus. For instance, v�.u/ � V gives �k.u�/ � V when u! u� along � .
The index k is given by the point .u�; �k.u�// at which the arc � bifurcates from
the line u � u�.

One sometimes says that a triple satisfying Liu’s E-condition is a Liu shock.

4.5 Existence of a Viscous Profile

We now turn to the second side of the admissibility theory, that given by the study
of travelling waves for systems that are higher-order completions of (23).

Let us consider first what is called “artificial viscosity”: we consider the slightly
modified system

@tuC @xf .u/ D �@2xu; (44)

where 0 < � << 1. This is a parabolic system, for which the Cauchy problem is well-
posed in classes of smooth functions under very general assumptions. Contrary to
(32), this system is not scaling invariant. On the contrary, the effect of a space-time
dilation is to change the parameter �, because the latter has dimension L2T �1. This
suggests that we look for travelling waves of the form
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u�.x; t/ D U
�
x � V t
�

�
: (45)

We ask the viscous profile U to have limits u˙ at˙1. This amounts to saying that

u0.x; t/ WD lim
�!0C u�.x; t/

exists almost everywhere; this limit is then equal to u� for x < V t and uC for
x > V t . The profile satisfies an ODE

U 00 D .f .U //0 � V U 0; (46)

which can be integrated as

U 0 D f .U / � V U � z; (47)

where z 2 R
n is a constant, to be determined. If the limits u˙ exist, they must satisfy

f .u˙/� V u˙ D z, and it follows that the triplet .u�; uCIV / satisfies the Rankine–
Hugoniot condition. In other words, u0 is a weak solution of (32). We remark in
passing that V is uniquely determined by the pair .u�; uC/, and therefore there was
no need to put V D V� in (45).

Going beyond that, we have for every entropy � with flux q

.d�.U /U 0 � q.U /C V�.U //0 D D2�.U 0; U 0/:

If � is convex, then y 7! d�.U /U 0� q.U /CV�.U / is non-decreasing. By looking
at its limits as y ! ˙1, we deduce that our triplet also satisfies (39).

Of course, the existence of a viscous profile is a much more complex statement
than just an algebraic equality plus an inequality. Therefore, we expect that the
converse does not hold in general: (31, 39) do not imply that such a profile
exist. For instance, it is a simple exercise to verify that for a scalar equation, the
existence of a viscous profile is equivalent to the Oleinik condition, written in a
strict sense (“above/below” have to be understood as “strictly above/below”). For
strictly hyperbolic systems, one does not know a simple necessary and sufficient
criterion for this existence, unless juC � u�j is small enough:

Theorem 12 (Majda–Pego [23]). Let us assume that (32) is strictly hyperbolic.
Let Nu 2 U and 1 	 k 	 n be given. Then there is a neighbourhood O 3 Nu such that,
for every u˙ 2 O, a viscous profile from u� to uC, taking values in O, exists if and
only if uC 2 Hk.u�/ and Liu’s E-condition is satisfied in the strict sense: for every
u 2 � n uC, we have V < v�.u/.

This theorem shows that Liu’s E-condition is the appropriate generalization of
Oleinik’s admissibility criterion to systems. Majda and Pego actually proved
their theorem in the much more general context of general viscous systems of
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conservation laws

@tuC @xf .u/ D @x.B.u/@xu/;

under the condition that the matrix B satisfies

`k.Nu/B.Nu/rk.Nu/ > 0; (48)

where `k.u/ and rk.u/ are the left- and right-eigenvectors of df .u/, normalized by
`k � rk D 1. A viscous profile is a heteroclinic solution of the differential equation

B.u/u0 D f .u/� f .u�/� V.u � u�/; (49)

called the profile equation. The proof proceeds by adding to the system (49) the
trivial ODE V 0 D 0. The resulting system is autonomous and one reduces its flow
to that on the center manifold at .u�; �k.u�//.

We do not even need that B.u/ be non-singular; the equation (49) might be a
differential-algebraic system. We only need (48). This situation was investigated by
Pego [27]. Remarkably enough, Theorem 12 tells us that the existence of a viscous
profile does not really depend on which ‘reasonable’ tensor B we deal with, as long
as the strength of the discontinuity is small enough. We warn the reader that this
is no longer true for large discontinuities; it is possible to construct examples for
which this existence does depend on the choice of B .

It is not surprising that the existence of a viscous profile has something to do with
other admissibility criteria, for instance with the Lax shock condition. A viscous
profile is a heteroclinic orbit of (49) between two equilibria u˙. In the case of
artificial viscosity, the number of positive numbers �j .u�/�V equals the dimension
of the unstable manifold W u.u�/ of (49), and the number of negative numbers
�j .uC/ � V equals the dimension of the stable manifold W s.uC/. Thus the Lax
shock condition tells us that the sum of these dimensions equals nC1; this amounts
to saying that the profile is structurally stable, which roughly means that it persists
under small disturbances of either the data .u�; uCIV /within the Hogoniot locus, or
the profile equation itself. This confirms the comment made above, that the existence
of a viscous profile does not depend much upon the tensor B .

4.6 Stable Viscous Profile

Even if the existence of a viscous profile is a significant improvement of the entropy
inequality or of the Lax shock inequalities, it is not the end of the story. A shock
profile is associated with explicit solutions u� through (45). These are travelling
waves which, up to the choice of a moving frame, may be assumed stationary
(V D 0). Their dynamical stability is encoded at the leading order into a second-
order linearized operator L� . In the case of artificial viscosity, we have
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L�z WD d

dx

�
dz

dx
� df .u�.x//z

�
D d

dx

�
dz

dx
� df ı U

�x
�

�
z

�
:

It is not hard to see that L� is conjugated, through the rescaling x 7! �x, to 1
�
L1.

Its spectrum is therefore ��1 times that of L1. It is possible to show, under very
reasonable assumptions, that the continuous part of the L2-spectrum of L1 belongs
to the left half-plane<z 	 0. Besides, � D 0 is an eigenvalue of L1, because of the
identity

L1
dU

dx
D 0:

But if L1 admits an eigenvalue � of positive real part, then L� has the eigenvalue
�=�; this yields an amplification of small initial disturbances by a factor

exp
t<�
�
;

which becomes enormous at fixed time t > 0 when � ! 0C. In practice,
the travelling wave cannot be observed because the disturbance is so big that it
overcomes the profile itself in time t of order �.

For this reason, we declare that a viscous profile is admissible only when the
spectrum of L1 is contained in the left half <z 	 0 of the complex plane. For
technical reasons, we even prefer to say that a profile is strongly stable if this
spectrum is contained to the left of some parabola P whose tip is at the origin,
and the zero eigenvalue is simple. When dealing with moving shocks (V ¤ 0), the
tip is shifted to �iV , which is an eigenvalue. With Fredholm theory, one can show
that .z�L1/�1 is a bounded operator overL2 for every z to the right of the parabola
P , and the map z 7! .z � L1/�1 is holomorphic. This is at the basis of the stability
analysis, initiated by Sattinger [30] and culminating in a list of papers by Zumbrun
and coll., see for instance [40] and the references herein.

It turns out that small amplitude viscous profiles found in Theorem 12 (see [10])
are strongly stable. The same is true for profiles of scalar equations, because of the
following simple arguments (wlog, we assume that V D 0):

• L1 is a Sturm–Liouville operator, hence its eigenvalues are real, and the largest
one is associated with the unique positive eigenfunction,

• As mentioned above, one has L1U 0 D 0 and U 0.˙1/ D 0, thus 0 is an
eigenvalue of L1,

• The eigenfunction U 0 has a constant sign, because the solutions of a scalar
equation (47) are monotonous,

• Hence � D 0 is the largest eigenvalue of L1.

In conclusion, instability happens only for systems (n � 2), and only if the
amplitude of the profile is large enough. We point out that � D 0 is a generalized
eigenvalue of the adjoint operator L�

1 , and the constants form an n-dimensional
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generalized eigenspace.7 But there is nothing analogous to the Sturm–Liouville
theory for systems of second-order differential operators. Therefore we cannot draw
a general conclusion about the spectrum of L1.

In a celebrated paper [12], Gardner and Zumbrun showed that the simplicity of
the eigenvalue � D 0 (D �iV in the general case) implies the Liu–Majda condition
(42). Therefore the latter is a necessary condition for strong stability. When the
shock is extreme, that is when it is a 1-shock or an n-shock, they actually proved a
stronger result, which we describe now. By symmetry, we may consider an n-shock.
Let us assume (48). Then the unstable manifold of equation (49) at u� has dimension
one, and the normalized derivative jU 0.s/j�1U 0.s/ admits a limit s�

n as s ! �1.
The main result of [12] when n D 2, extended to general values of n in [2], is that
the parity of the number of unstable eigenvalues (those of L1 with positive real part)
is given by the sign of the “stability index”

{ WD .`n.u�/.uC � u�// �
�
`n.u�/s�

n

�
:

More precisely, the number of unstable eigenvalues is odd if and only if { < 0.
We point out that the first factor `n.u�/.uC � u�/ equals Liu–Majda’s determinant

.0; 1/. Therefore, a necessary condition for strong stability is that 
.0; 1/ has
the same sign as `n.u�/s�

n . In geometric terms, this condition is that the profile U
crosses the affine hyperplane

u� C Spanfr1.u�/; : : : ; rn�1.u�/g
in an even number of points. For small shocks, the profile given by Theorem 12 does
not cross this hyperplane at all.

4.7 Multi-dimensional Stability of Viscous Profiles

Let us now consider a viscous shock profile U..x � � � V t/=�/ of a system (23)
in d space variables. The physically relevant viscosity tensors will be described in
Sect. 5, and there is a rather general stability theory to treat them. But for the sake
of clarity, we content ourselves with the simplest situation of artificial viscosity

@tuC DivF.u/ D �
U: (50)

Up to the choice of a Galilean frame, we may assume that � D Ee1 and V D 0.
Therefore u�.x; t/ D U.��1x1/ is a steady solution of (50). The linearized operator
L� at u� is again conjugated to 1

�
L1 and therefore the stability of u� requires that the

spectrum of L1 be contained in the left half of the complex plane. We have

7This is associated with the conservation of mass.
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L1z D 
z �Div.dF ı U.x1/z/:

Because the coefficients of this differential operator depend only on x1, a partial
decoupling is obtained by conjugating L1 by the Fourier transform in y D
.x2; : : : ; xd /. If � 2 R

d�1 is the frequency variable, we obtain a family of operators
L1;�, which operate over functions of x1 by

L1;�h D h00 � j�j2h� ..df 1 ı U /h/0 � i
 

dX
˛D2

�˛df ˛ ı U
!
h:

The spectrum of L1 is the union of the spectra of L1;� as � varies. We point out that
L1;0 is nothing but the linearized operator about U of the one-dimensional system
@tu C @1f 1.u/ D @21u; therefore the multi-dimensional stability of U necessitates
its one-dimensional stability, and a little (a lot?) more.

We lack time and space to develop this stability theory here. But let us mention
that it is tied to the FBP approach:

Theorem 13 (Zumbrun and Serre [41]). Under rather natural assumptions on
the structure of the system (54), let us consider a viscous profile U for a Lax shock.
Then the Lopatinskiı̆ condition is the small frequency asymptotics of the spectral
stability of U , in the following sense:

If 
.�; �/ vanishes for some pair � 2 R
d�1 and <� > 0, then for 0 < s << 1, the operator

L1;s� admits an eigenvalue �.s�/ 	 s� . In particular, <�.s�/ is positive and the profile is
linearly unstable.

Corollary 1. As an admissibility condition, the multi-dimensional stability of the
viscous profile is stronger than or equal to the Lopatinskiı̆ condition.

4.8 Conclusion

An overview of the various admissibility condition for shocks is given in Fig. 1.
Points represent pairs (system, shock). When a set A is contained in B , the
corresponding criterion CA implies CB .

Our presentation above might lead the reader to think that there is no room for
those shocks that do not satisfy the Lax inequalities (38). This is a drawback of our
choice to present the FBP side of the theory. But there are circumstances where some
non-Lax shocks must be accepted in order to have a well-posed Cauchy Problem.
This happens in systems whose strict hyperbolicity is lost somewhere; that could be
because hyperbolicity is lost, or just two or more eigenvalues cross at some states.
We may distinguish under-compressive discontinuities (j � k in (37)) or over-
compressive ones (j 	 k � 2).

Under-compressive shocks may be treated with the same tools as Lax shocks,
by studying the well-posedness of some Free-Boundary value problem, but where
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Fig. 1 How the admissibility conditions interact; the shock strength is arbitrary

j � k C 1 algebraic jump conditions are added to the Rankine–Hugoniot relations.
This method was developed by Freistühler [8]. The additional jump condition
might well express the existence of a viscous profile; as a matter of fact, such
profiles are not structurally stable and therefore exist only for triples .u�; uCI s/
in a submanifold of codimension j � k C 1 of the Hugoniot locus. We warn the
reader that in contrast with the case of Lax shocks, the existence of a profile for an
under-compressive shock depends crucially upon the viscosity tensor. The profile
may or may not be spectrally stable; the calculation of the Evans function in the
case of a 2 � 2 system was carried out by Gardner and Zumbrun [12].

Over-compressive shocks are subtle in another way. When they admit a viscous
profile, it is far from being unique up to a space shift. Typically, the union of the
trajectories from u� to uC forms a manifold of dimension k � j . They may or may
not be spectrally stable (again, see [12]) but a strange phenomenon may happen:
Freistühler and Liu [9] observed that if the viscosity tensor is B� D �B , then their
nonlinear stability vanishes as � ! 0.

Small shocks. When the shock amplitude juC � u�j is small, we know that Liu’s
E condition is equivalent to the existence of a viscous profile. We cannot say more,
unless we assume that the characteristic field to which the discontinuity is associated
is genuinely non-linear. When it is so, it is expected that all the admissibility
conditions will be equivalent to each other. When B � Id ˝ In (artificial viscosity:
the diffusion is induced by
u), Freistühler and Szmolyan [10] proved that extreme
shocks (1-shocks or n-shocks) satisfy the uniform (MKL). On the other hand, it
is classical that for a genuinely non-linear field, (38) is equivalent to the entropy
inequality in the small.
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5 Viscosity and Dissipativity

As mentionned above, many among the first-order systems of conservation laws are
not accurate,8 because they are only approximations of higher-order models which
take into account dissipative physical processes. For instance, the Euler system (see
Sect. 3.2) is a simplification of the Navier-Stokes–Fourier system

@t�C div.�v/ D 0; (51)

@t .�v/C Div.�v˝ v/Crp D DivT; (52)

@t

�
1

2
�jvj2 C �e

�
C div.

�
1

2
�jvj2 C �e C p

�
v/ D div.T vC �r	/: (53)

The equations above involve two additional objects: a symmetric tensor accounting
for Newtonian viscosity, given by

T WD .rvCrvT /C �.divv/Id

and the temperature 	 D 	.�; e/. The dissipation coefficients; � and � are positive
and may depend upon � and 	 . Although we do not assume their smallness, we may
derive the Euler system as an approximation, by rescaling (51–53) via .x; t/ 7!
.x=�; t=�/ and letting � ! 0. In other words, we expect that the Euler system will
be accurate on large scales.

More generally, given a general first-order system (23) in conservation form, we
consider systems that are obtained by introducing first-order terms in the spatial
flux, that is by replacing f ˛.u/ by

f ˛.u/�
X
ˇ

B˛ˇ.u/@ˇu; B˛ˇ W U !Mn.R/:

Such systems can be written in the abstract form

@tuC DivF.u/ D Div.B.u/ru/; (54)

where B.u/ must be seen as a linear operator within the space Mn�d .R/, acting by

G 7! H D B.u/G; hi˛ WD
X
ˇ;j

B
˛ˇ
ij .u/gjˇ:

8There is at least one notable exception, namely the Maxwell system governing the electro-
magnetic field in the vacuum. If it was dissipative, our world would be completely dark after
billions of years. There are also the Einstein equations of the gravitational field and more generally
all models dealing with fundamental forces.
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Again, a space-time dilation followed by a limit towards the small frequencies gives
back (23).

When dealing with the class of models (54), we face a few natural questions:

Q.1. Suppose that (23) is endowed with an entropy-flux pair with a strongly convex
entropy. What can be the most general form of the dissipation tensor B so that

R
�.u/ dx

is a Lyapunov function? Here, we assume that u tends to a constant state u1 at infinity,
and � is normalized by �.u1/ D 0 and � � 0.

Q.2. If the system admits many independent entropies, is there a canonical entropy from
the point of view of (54)? For instance, is there a canonical entropy-temperature pair in
gas dynamics?

Q.3. Is there a symmetrization similar to that of Godunov, or that of Lax–Friedrichs? Can
it be used to treat the Cauchy problem?

Q.4. When the Cauchy problem is well-posed, but the dissipative tensor depends on
parameters, how does the solution depend on them, especially when the rank of B drops
in the limit? Such situations are called singular limits.

Q.5. Can dissipation ensure global existence and regularity, at least when the initial data
is small and smooth?

We point out that there is absolutely no reason why B.u/ would be a symmetric
operator with respect to the scalar product

hG;H i D Tr.GTH/ D
X
˛;i

g˛ih˛i :

We shall see instead that a natural symmetry occurs when rewriting the system in a
different set of variables. This is reminiscent of Onsager’s reciprocity relations, and
contributes to a positive answer to Q.4.

Another important remark is that the action of the viscous tensor concerns only
certain equations of the system, not all of them. For instance, it is absent from the
conservation of mass (51). Therefore the resulting system (54) is not fully parabolic.
Because it is obviously not hyperbolic, we anticipate that it mixes both hyperbolic
and parabolic features. This composite aspect is involved in the answer to Q.2.

5.1 Strong Versus Weak Dissipativeness

We assume from now on that the first-order part (the left-hand side) of the ‘viscous’
system (54) admits a strongly convex entropy �, whose flux is Eq. We may always
assume that � � 0 everywhere, with �.u1/ D 0 at some point. Then we are
interested in solutions that tend towards u1 as jxj ! 1.

For a classical solution, the multiplication of (54) by d�.u/, and the chain rule
yield

@t�.u/C divEq.u/C
X
˛;ˇ

D2
u�.B

˛ˇ.u/@ˇu; @˛u/ D
X
˛;ˇ

@˛.d�.u/ � B˛ˇ.u/@ˇu/:
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Roughly speaking, the system dissipates the entropy if

DŒu� WD
Z

Rd

X
˛;ˇ

D2
u�.B

˛ˇ.u/@ˇu; @˛u/ dx

is non-negative; this quantity is called the dissipation rate. Then, assuming that
�.u/; Eq.u/ as well as ru decay fast enough at infinity, we obtain the property that

t 7!
Z

Rd

�.u.x; t// dx

is non-increasing, and therefore

Z

Rd

�.u.x; t// dx 	
Z

Rd

�.u.x; 0//dx:

This is the first a priori estimate on the way of the well-posedness theory. For a
reason that will become clear in a moment, it is far from sufficient, and we also
want to estimate the flux B.u/ru. This can be done only by using the dissipation
rate in order. Hence the definition:

Definition 4. The entropy � of (SCL) is strongly dissipated by the viscous tensor
B if, for every constant state Nu, there exists an !.Nu/ > 0 such that

X
˛;ˇ

D2Nu�.B˛ˇ.Nu/Xˇ;X˛/ � !.Nu/
X
˛

j
X
ˇ

B˛ˇ.Nu/Xˇj2; 8X1; : : : ; Xd 2 R
n:

(55)

The sum on the right-hand side can be written as jB.Nu/Xj2, where X D
.X1; : : : ; Xd / 2Mn�d .R/.

Example: If �.u/ D 1
2
juj2 , this precisely means that B.u/ satisfies hB.u/G;Gi �

!.u/jB.u/Gj2 for every G 2 Mn�d .R/. This is certainly true if B.u/ is symmetric and
semi-definite positive, but the symmetry is not absolutely necessary.

Strong dissipation gives immediately the inequality

@t �.u/C divEq.u/C !.u/jB.u/ruj2 	
X
˛;ˇ

@˛.d�.u/ � B˛ˇ.u/@ˇu/; (56)

which gives a little more than the decay of the total entropy:

d

dt

Z

Rd

�.u/dxC
Z

Rd

!.u/jB.u/ruj2dx 	 0: (57)

From this, we deduce a second a priori estimate
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Z T

0

Z

Rd

!.u/jB.u/ruj2dx dt 	
Z

Rd

�.u.x; 0//dx: (58)

We emphasize that strong dissipation, or even its weakest form

X
˛;ˇ

D2Nu�.B˛ˇ.Nu/Xˇ;X˛/ � 0; 8X1; : : : ; Xd 2 R
n

is only a sufficient condition for having DŒu� � 0, but it is not necessary.
Cancellations may occur because of integration, even when the left-hand side of
(55) is not positive semi-definite over Mn�d .R/. Again, because we wish to control
the additional flux B.u/ru, we actually ask that

DŒu� �
Z

Rd

!.u/jB.u/ruj2dx (59)

for some positive !. It is not easy to characterize the latter property in general,
because of the dependence of D2� and B upon u. But if �.u/ D 1

2
uT Su is quadratic

and B is constant, then D is just a quadratic form

u 7!
Z

Rd

X
˛;ˇ

.SB˛ˇ@ˇu; @˛u/ dx:

Its non-negativity is equivalent to the Legendre–Hadamard condition that
.SB.�/X;X/ � 0 for every X 2 R

n and � 2 R
d , where the symbol B.�/ is

defined by

B.�/ D
X
˛;ˇ

�˛�ˇB
˛ˇ:

The slightly stronger condition (59) is instead .SB.�/X;X/ � !
P

˛ jB˛.�/X j2,
where

B˛.�/ D
X
ˇ

�ˇB
˛ˇ.Nu/:

This yields our next definition, which is now a necessary condition for (59):

Definition 5. The entropy � of (SCL) is weakly dissipated by the viscous tensor B
if, for every constant state Nu, there exists an !.Nu/ > 0 such that

D2Nu�.B.NuI �/X;X/ � !.Nu/
X
˛

jB˛.NuI �/X j2; 8X 2 R
n; 8� 2 R

d :
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In this inequality, the symbols B.uI �/ and B˛.uI �/ are defined as above, with B D
B.u/.

In one space dimension, both strong and weak dissipativeness coincide, and mean

D2Nu�.B.Nu/X;X/ � !.Nu/jB.Nu/X j2; 8X 2 R
n: (60)

Because of Proposition 7, the case X D rk.Nu/ in (60) gives

`k.Nu/B.Nu/rk.Nu/ � 0:

If moreover

Brk.Nu/ ¤ 0; (61)

we even have the strict inequality, which is nothing but the assumption (48) under
which the existence of viscous profiles was proved for shocks of small amplitude.
The generic condition (61) is the so-called Kawashima condition, which says that
the kernel of B.u/ does not contain the eigenvectors of A.u/. It can be seen as a
property of genuine coupling between the hyperbolic and the parabolic part of the
system (54), at least in one space dimension. It has deep consequences, for instance
in terms of decay to equilibrium, but we shall not develop these aspects here.

In several space dimensions, strong dissipativeness implies weak dissipativeness;
we only need to chooseX˛ D �˛X , that is to restrict to rank-one tensors X D X˝�.

When (59) is true, we obtain the a priori estimates

Z

Rd

�.u.t; x//dx 	
Z

Rd

�.a.x//dx;

Z T

0

Z

Rd

!.u/jB.u/ruj2dx dt 	
Z

Rd

�.a.x//dx:

We point out that because B.NuI �/ may be singular, ru is not controlled in L2x;t .
Only B.u/ru is controlled.

Vanishing viscosity limit. We now assume that the dissipation process is of small
intensity � (0 < � << 1):

@tu
� C DivF.u�/ D �

X
˛;ˇ

@˛.B
˛ˇ.u�/@ˇu�/:

With a fixed initial data a.x/, we consider the limit �! 0C. One has

�

Z T

0

Z

Rd

!.u�/jB.u�/ru�j2dx dt 	
Z

Rd

�.a.x//dx;
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whence

�Div.B.u�/ru�/ D �1=2Div. �1=2B.u�/ru�„ ƒ‚ …
bounded in L2x;t

/! 0 in H�1
x;t :

If u�.t; x/! u.t; x/ boundedly a.e.,9 we may pass to the limit in (54) and obtain

@tuC DivF.u/ D 0:

This tells us that u is a weak solution. In addition strong dissipativeness tells us that

@t�.u
�/C divEq.u�/ 	 �

X
˛;ˇ

@˛.d�.u�/B˛ˇ.u�/@ˇu�/! 0 in H�1
x;t ;

whence in the limit

@t�.u/C divEq.u/ 	 0:

5.2 Algebraic Facts

We now make a natural assumption, which is met by all the physical examples we
have at hand:

(H1) The range of B.NuI �/ is independent of .Nu; � ¤ 0/.

For instance, in the Navier-Stokes–Fourier system (51–53), we have R.B.NuI �// �
f0g � R

dC1, while in the Euler–Fourier system (no Newtonian viscosity, that is
T D 0, but with heat diffusion, that is � > 0), we haveR.B.NuI �// � f0gdC1�R. Up
to a linear change of the unknowns, we may always assume that the above mentioned
range is of the form f0gp � R

n�p .

Theorem 14 ([34]). Let us assume either strong or weak dissipativeness and the
block structure (H1). Without loss of generality, assume that R.B.uI �// � f0gp �
R
n�p for every u 2 U and � ¤ 0:

B.NuI �/ D
�
0n�p
b.NuI �/

�
.hence b.NuI �/ 2Mp�.n�p/.R/ is onto/:

Set zj WD @�

@uj
for j D p C 1; : : : ; n. Then

1. u 7! .u1; : : : ; up; zpC1; : : : ; zn/ is a change of variables.

9The big open problem!



298 D. Serre

2. The tensor b.u/ru can be rewritten as R.u/rz.
3. Weak dissipation is that R satisfies the Legendre–Hadamard condition:

hR.uI �/Y; Y i � !.u/j�j2jY j2; 8 � 2 R
d ; Y 2 R

n�p;

where we define as usual

R.uI �/ D
X
˛;ˇ

�˛�ˇR
˛ˇ.u/:

4. Strong dissipation is that R satisfies

hR.u/F; F i � !.u/jR.u/F j2; 8F 2 M.n�p/�d .R/:

Vanishing viscosity limit under weak dissipation: Suppose that the dissipation
tensor has the form �B.u/, with � > 0 tending to zero. Suppose in addition that
the corresponding solution u� of the Cauchy problem with initial data a converges
boundedly almost everywhere to a limit u.x; t/. We know that u is a weak solution
of the inviscid Cauchy problem for (23). If the system is strongly dissipative, we
have seen that u satisfies the entropy inequality (34). Is it also true if the system is
only weakly dissipative? To our knowledge, this is an open question.

Let us see where the difficulty lies. A straightforward calculation gives us the
formula

D2�.Bru;ru/ D hRrz;rzi;

which yields the integral identity

d

dt

Z

Rd

�.u/ dxC �
Z

Rd

hR.u/rz;rzi dx D 0:

If the system is weakly dissipative, the last integral may not be positive. Of course,
it must be greater than krzkL2 ifR has constant coefficients. In the general case, we
expect that it will be positive, up to a correction that can be controlled by the entropy
itself. What we have in mind is a kind of Gårding inequality; a simple version would
be

Z

Rd

hR.u/rz;rzi dx � !krzkL2 � �
�Z

Rd

�.u/ dx

�

for some increasing function �. If such an inequality holds true, then a Gronwall
argument gives us a uniform estimate of

Z

Rd

�.u�/ dx; �

Z 1

0

Z

Rd

hR.u�/rz�;rz�i dx dt:
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Because of the ellipticity ofR, we have that �1=2rz� is bounded inL2x;t and therefore
converges weakly towards zero. Let us decompose

�hR.u�/rz�;rz�i D �h.R.u�/� R.u//rz�;rz�i C �hR.u/rz�;rz�i:

Up to a subsequence, the last product has a non-negative limit in D0 because of
compensated compactness (see [26,37]). But even if u� converges boundedly almost
everywhere to u.x; t/, we cannot infer that �h.R.u�/�R.u//rz�;rz�i converges to
zero; this was pointed out to me by L. Tartar. This convergence would hold true if
u� ! u uniformly, but this is not an interesting case, since u would be continuous
and therefore we should not need an admissibility condition.

5.2.1 Application to Gas Dynamics

Theorem 14 gives an answer to Q.2, which can be reformulated as follows.

QUESTION. Why is it the same quantity (the temperature) that occurs in Gibbs’ relation

	ds D de C pd
1

�

and in Fourier law

heat flux D ��r	 ‹

Answer. In full gas dynamics (n D d C 2), the conserved variables are

u0 D �; uj D �vj ; udC1 D 1

2
�jvj2 C �e:

The mathematical entropy is � D ��s (s the physical entropy). It is an interesting
exercise to check that, if 	 is given by Gibb’s relation, then

zj D @�

@uj
D vj

	
.j D 1; : : : ; d / and zdC1 D @�

@udC1
D � 1

	
:

Therefore, Theorem 14 tells us that in NSF, the dissipation tensor B.u/ru must
be a linear combination of the gradients of v

	
and 1

	
, or equivalently of rv and

r	 . Newton’s law of viscosity and Fourier’s law of heat conduction agree with this
conclusion.

For the Euler–Fourier system, the theorem implies instead an identity of the form

b.u/ru D r.u/rzdC1 D �.u/r	;

as predicted by the Fourier law.
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We remark that the Euler system admits other entropies, of the form �h WD
��h.s/ where h is any numerical function. However, the ‘temperature’ associated
with �h is 	=h.s/. Its gradient is not colinear to that of 	 , unless10 h is affine. Hence
Theorem 14 implies that �h is not dissipated. Only � can be dissipated.

Now that we know what the variables z are, we may calculate the tensor R.
Tedious calculations yield

R
˛ˇ
NSF.u/ D 	2

0
BB@

1
	

h
.ı

ˇ
˛ Id C eˇeT˛ /C �e˛eTˇ

i
.z˛eˇ C ıˇ˛ z/C �zˇe˛

.zˇeT˛ C ıˇ˛ zT /C �z˛eT
ˇ

�ı
ˇ
˛ C 	

h
jzj2ıˇ˛ C .C �/z˛zˇ

i

1
CCA ;

where the ej ’s denote the vectors of the canonical basis of Rd . We remark that these
matrices satisfy

.R˛ˇ/T D Rˇ˛; 81 	 ˛; ˇ 	 d: (62)

This amounts to saying that R.u/ is symmetric, as a linear operator over
M.dC1/�d .R/, endowed with the scalar product hF;Gi WD Tr.F TG/; we have

hRF;Gi D hRG;F i:

Decomposing the standard matrix F 2 M.dC1/�d .R/ into an upper block M 2
Md .R/ and a lower row `, and formingH WD M C v`, we have

hRF;F i D 	

2
kH CHT k2 C 	�.TrH/2 C 	2�k`k2;

where the norms are Euclidean. The NSF system is weakly dissipative if and only
if �;  and 2C � are non-negative. It is strongly dissipative if �;  and 2C d�
are non-negative. If in addition � > 0 and 2 C d� > 0, the kernel of R equals
Skewd � f0g; thereforeR is never positive definite.

Isentropic Navier-Stokes. This is the system formed by (51, 52) where p is a
function of the density only. There is no temperature. The dissipation tensor is
just T . The “entropy” is played by the energy density

� WD 1

2
�jvj2 C �e.�/; e.�/ D �

Z �

p0.s/
ds

s2
:

The variable z is played by v, thus R is given by T in the most direct way. Again R
is symmetric and we have

10With the exception of the unphysical case s D s.	/, which means that p D p.�/ only.
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hRF;F i D 

2
kF C F T k2 C �.TrF 2/:

Again, weak dissipation is that ; 2C � � 0, and strong dissipation occurs when
 � 0 and 2C d� � 0.

5.3 Onsager’s Reciprocity Relations

Point 3 in Theorem 14 suggests that a symmetry property, which was irrelevant
forB , could be relevant for the tensorR. This symmetry is the content of Onsager’s
reciprocity relations. At the origin, these relations concerned ordinary differential
systems, such as those encountered in chemical kinetics, but they can be extended
to every dissipative system endowed with a Lyapunov function. The calculations
above give us a striking example, namely the Navier-Stokes–Fourier system.

When R is non-negative over M.n�p/�d .R/, its symmetry implies the estimate

jR.u/F j2 	 kR.u/khR.u/F; F i; 8F 2M.n�p/�d .R/:

The non-negativity of R is thus related to the strong dissipation. However it does
not imply thatR.u/ is positive definite. For instance, we have seen that the kernel of
RNSF.u/ is equal to Skewd .R/�f0g. It will be important in the sequel that this kernel
does not depend on u 2 U . We remark in passing that this forbids the (unphysical)
case in NSF where � D 0 but 2 C d� > 0 (Newtonian viscosity but no heat
conduction), because then the kernel ofR does depend upon the state. But it permits
the Euler–Fourier case where  D � D 0 and � > 0 (heat conduction but no
newtonian viscosity).

When the system is weakly dissipative only,R does not have a constant sign. We
may only say that its isotropy cone intersects trivially the cone of rank-one matrices.

5.4 Normal Form and Local Well-Posedness

The normal form of (54) that is appropriate for the study of the Cauchy problem
was identified by Kawashima in his PhD thesis [17], who derived it from the
dissipativeness and block structure (H1) in [35].

Let us split our unkown u into two blocks v and w of respective sizes p and n�p.
Theorem 14 tells us that the dissipative flux is linear in the gradient of z WD dw�.
This suggests to work with the new unknown

U WD
�

v
z

�
:



302 D. Serre

As pointed out in Theorem 14, the map u 7! U is a change of variable. This
follows from the strictly convexity11 of �. We now introduce the symmetric positive
definite12 matrix

S0.U / WD
 

D2
vv�� D2

vw�
�
D2

ww�
��1

D2
wv� 0

0
�
D2

ww�
��1
!
:

The system (54) is equivalent to

S0.U /@tU C
X
˛

S˛.U /@˛U D
 

0P
˛;ˇ @˛.R

˛ˇ@ˇz/

!
; (63)

where S˛ is symmetric. This symmetrization is discussed in detail in [35]. It is at
the core of the local well-posedness theory.

Local existence. The main result of [35] is

Theorem 15. Consider a viscous system of conservation laws (54)

@tuC
X
˛

@˛f
˛.u/ D

X
˛;ˇ

@˛.B
˛ˇ.u/@ˇu/:

Assume the following:

• The maps u 7! f ˛.u/ and u 7! B˛ˇ.u/ are smooth over a convex open set U
containing the origin.

• System (54) is strongly entropy-dissipative for some smooth strongly convex
entropy �.

• (H1) the range of the symbol matrix B.�I u/ neither depends on � ¤ 0 in R
d , nor

on the state u.
• (H2) the kernel of R.u/ is independent of u andR.u/ dominates its u-derivatives

up to the order Œs�C 1.

Then, given an initial data u0 in Hs.Rd / with s > 1 C d=2, there exists a T > 0

and a unique solution in the class

u 2 C.0; T IHs/; @tu 2 L2.0; T IHs�1/:

In addition, the component v belongs to C1.0; T IHs�1/ and R.u/rz is in
L2.0; T IHs/.

11Actually, only strict convexity with respect to w is needed here.
12The upper-left block is the Schur complement of D2

ww� in D2�.
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Comments:

– The local existence is actually proved for the more general class of systems of
the form (63).

– In the latter context, this theorem is due to Kawashima [17], except for two
aspects: we do not assume the symmetry of R.u/ and we are able to treat
H1Cd=2C�-initial data, instead of H2Cd=2C� in [17].

– The solution is not fully classical, because @tw might not be better than
L2.0; T IHs�1/; only @t v is C.0; T IHs�1/.

5.5 Singular Limits

Even if the symmetry of R.u/ was not necessary to establish the local well-
posedness of the Cauchy problem, it is particularly useful for the study of singular
limits. Such limits occur when the tensor B depends on one or several parameters,
one of which being small (say �), and when the rank of the limit

B0 D lim
�!0

B�

is strictly smaller than the rank of B� . The simplest example happens when B� D
�B1 (then B0 � 0), which is the vanishing viscosity limit. Other examples happen
in continuum mechanics when some dissipation processes are negligible and some
others are not; the limit of NS–Fourier towards Euler–Fourier is such an example.

A fundamental question in the study of singular limits is whether the local
existence of semi-classical solutions given in Theorem 15 is uniform with respect
to �. More precisely:

QUESTION. For a given initial data, let T� be the existence time and u� the solution. Is T�
bounded away from zero as � ! 0? Does u� admit a strong limit u, which will then be a
solution of the limit Cauchy problem?

This question has a positive answer under natural assumptions, which are listed now.

Definition 6. Let us assume the symmetry (62) of R�.u/, for every � 2 .0; 1/. We
say that the family .B�/�2Œ0;1� is stable if

• The range of B�.�I u/ does not depend upon � > 0 (however it may be, and in
general is, different when � D 0),

• The kernel of R�.u/ does not depend upon � > 0 either,
• The partial derivatives of R� are uniformly bounded in terms of R� itself:

For every multi-index ` of length less than s (s the regularity considered in
Theorem 15)

k@`uR�.u/F k 	 c`.u/kR�.u/F k; (64)

with c` independent of � and bounded over compact sets of U .
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Discussion

• In other words, we ask that the dissipativeness be satisfied uniformly in � > 0, as
much as it could be.

• It should not be meaningful to compare the (fixed) kernel of R�.u/ with that of
R0.u/. Because the range of B0.u/ is strictly smaller than that of B�.u/, R0.u/
operates on a smaller matrix space than R�.u/.

• Condition (64) amounts to saying that @`uR�.u/R�.u/
# remains bounded, where

R# denotes the Moore-Penrose inverse. Because R.u/ is symmetric and positive
semi-definite, R.u/# coincides with the usual inverse on the range of R.u/, and
vanishes over kerR.u/. Because of the symmetry of R# and of @`uR�.u/, and the
fact that the norm of operators is unchanged under transposition, this is equivalent
to saying that

kR�.u/#@`uR�.u/k 	 c`.u/: (65)

This notion yields the following stability result.

Theorem 16 ([36]). Let us consider a system as in Theorem 15 with a viscous
tensor B D B�.u/ and a flux f independent of �. We assume in addition that R.u/
is a symmetric tensor and that the family .B�/�2Œ0;1� is stable in the above mentioned
sense.

Let u0 in Hs.Rd / with s > 1Cd=2 be a given initial data, independent of �. Let
u� denote the solution obtained in Theorem 15. Then there exists a T > 0 such that
u� is defined over .0; T / and the following sequences are bounded:

u� in C.0; T IHs/; @tu
� in L2.0; T IHs�1/

and

v� in C1.0; T IHs�1/; R�rz� in L2.0; T IHs/:

If in addition B� converges uniformly towards B as � ! 0, then u� converges
towards the unique strong solution of the Cauchy problem associated to the viscous
tensor B .

Comments.

• Because R� may behave badly as � ! 0, we do not expect the components z� to
remain bounded in L2.0; T IHsC1/.

• The time T > 0 mentionned in the theorem might be strictly smaller than
lim infT�. For instance, if B� D �
, one often has T� D C1 for every � > 0,
but the classical solution of the inviscid Cauchy problem blows up in finite time.
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5.6 Principal Sub-systems and Hyperbolic Modes

We consider here a different kind of singular limit, where

B�.u/ D 1

�
B.u/; � ! 0C:

This situation happens in the large-scale asymptotics. It is interesting in that it
reveals that the full system (54) contains a smaller inviscid system of p equations
in p unknowns (we recall that p is the dimension of kerB.�/ when � ¤ 0). In this
way, one explains how the structure of the isothermal Euler system derives from the
non-isothermal one.

The a priori estimate is now

Z T

0

Z

Rd

!.u�/jB.u�/ru�j2dx dt 	 �
Z

Rd

�.a.x//dx:

Together with Bru D Rrz and the ellipticity of R, this suggests that the
z-component tends to a constant Nz as � ! 0 (Nz is nothing but the value of z at
infinity). If v� converges boundedly a.e., then passing to the limit in the non-viscous
part of (54)

@tv
� C Divf.1;:::;p/.u�/ D 0

yields a principal sub-system

@tvC Divg.v/ D 0; (66)

where g is defined implicitly by

f.1;:::;p/.v;w/ D g.v/; Nz D dw�.v;w/:

In other words, g is obtained from f.1;:::;p/ by applying the inverse of the change of
variable u 7! U D .v; z/ and then letting z D Nz.

It is remarkable that the sub-system (66) is still symmetrizable hyperbolic:

Theorem 17 (Boillat–Ruggeri [5]). The system (66) admits a convex entropy E ,
and is therefore symmetrizable hyperbolic.

The Legendre transforms of E and � are related by

dE�./ D d�
�.; Nz/:

In other words,

E.v/ D  � d��.; Nz/� ��.; Nz/; where v WD d��.; Nz/:
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Equivalently, E.v/ D �.u/ � dw�.u/ � w, where u D .v;w/ is determined by
dw�.u/ D Nz.

The Hessian of the new entropy E is given by the formula

D2E D D2
vv� �D2

vw�.D
2
ww�/

�1D2
wv�;

which is the Schur complement of the block D2
ww� in D2

uu�.

Example. The Euler–Fourier system with thermal diffusivity �
�

tends to the isothermal
Euler system. Remember that � D ��s and z D 1

	
. Then

E D 1

N	
�
1

2
�jvj2 C �.e � 	s/

�
:

The quantity e0 WD e � 	s is known as the Helmholtz free energy.

Interlacing property. Now that we have two inviscid systems (23) and (66), we
therefore have two sets of wave velocities:

• Those of (23), denoted �1.uI �/ 	 � � � 	 �n.uI �/,
• Those of (66), denoted a1.vI �/ 	 � � � 	 ap.vI �/.

In a symmetrization S0@tu CP˛ S
˛@˛u D 0 with S0 D D2�, the �j ’s are the

eigenvalues of the pair .S0.u/; S.uI �//:

det.S.uI �/� �j .uI �/S0.u// D 0:

It turns out that the ak’s are the eigenvalues of the pair .T0.v/; T .vI �//, where
T0.v/ (respectively T .vI �/) is the upper-left p�p block of S0.u/ (resp. of S.uI �/).
Because of the characterization of eigenvalues as max min or min max, this yields
the following fact.

Proposition 12. For every j D 1; : : : ; p and whenever z.u/ D Nz, one has

�j 	 aj 	 �jCn�p: (67)

The particular cases � 	 a1 and ap 	 �n are also known as the subcharacteristic
property.

Example (continued). For full Euler (n D d C 2) and isothermal Euler (p D d C 1)
systems, one has

�1 D v � � � cfulj�j; �2 D � � � D �dC1 D v � �; �dC2 D v � � C cfulj�j
and

a1 D v � � � cisoj�j; a2 D � � � D ad D v � �; adC1 D v � � C cisoj�j:
The interlacing property tells us that ciso � cful, and actually the inequality is strict: the
sound velocity is smaller in the isothermal gas than in the non-isothermal one.
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To understand this amazing statement, we point out that the aj ’s are the veloc-
ities of the hyperbolic modes in the hyperbolic/parabolic system (54), whenever
z.u/ D Nz. The ak’s are therefore velocities of hyperbolic waves (for instance,
discontinuities in the gradient of u) that propagate in the viscous system, while the
�j ’s are the velocities of so-called diffusion waves; the latter are smooth and are
Gaussian, up to a twist due to the genuine non-linearity, their support spreads as

p
t

while their amplitude decays as t�1=2. Finally, they carry a fixed total mass.

5.7 Principal Sub-systems Without Entropy Structure:
The Linear Case

Even if the original system does not admit a convex entropy, something can be said
about the relation between the well-posedness of the viscous and of the inviscid
systems. The interpretation is the same as above. However, it is unclear whether we
have an interlacing property such as (67).

Theorem 18 (Benzoni-Gavage and Serre [1]). Assume that the forward Cauchy
problem for the linear system with constant coefficients

@tvC
X
˛

A˛@˛vC
X
˛

C ˛@˛w D 0;

@twC
X
˛

D˛@˛vC
X
˛

E˛@˛w D
X
˛;ˇ

B˛ˇ@˛@ˇw;

is well-posed in L2.Rd /n. Assume also that the symbol B.�/ is non-singular for
� ¤ 0.

Then the sub-system @tvCP˛ A
˛@˛v D 0 is hyperbolic.

Likewise, for relaxation models, the well-posedness of the non-damped part (the
principal sub-system) is related to the asymptotic stability of the relaxed system.

Theorem 19 (Benzoni-Gavage and Serre [1]). Let B 2 GLn�p.R/ be given.
Assume that the Cauchy problem for the linear system with constant coefficients

@t vC
X
˛

A˛@˛vC
X
˛

C ˛@˛w D 0;

@twC
X
˛

D˛@˛vC
X
˛

E˛@˛w D Bw;

is well-posed in L2.Rd /n, uniformly in forward time: the semi-group .St /t>0 is
uniformly bounded.

Then the sub-system @tvCP˛ A
˛@˛v D 0 is hyperbolic.
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We remark that the well-posedness of the relaxed system is nothing but the
hyperbolicity of its left-hand side. But the uniform boundedness for t > 0 depends
on the choice of B .
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The Nash-Moser Iteration Technique with
Application to Characteristic Free-Boundary
Problems

Ben Stevens

Abstract These notes are an overview of the Nash-Moser iteration technique for
solving PDEs (or other non-linear problems) via linearisation, where the linearised
equations admit estimates with a loss of regularity with respect to the source term,
coefficients and/or boundary/initial data. We first introduce the abstract setting
along with a version of the iteration scheme due to Hörmander (Arch Ration Mech
Anal 62(1):1–52, 1976). We then introduce some modifications which allow the
scheme to be applied to some characteristic free-boundary problems for hyperbolic
conservation laws. We focus on the case of supersonic vortex sheets in 2D as
considered by Coulombel and Secchi in Ann Sci Éc Norm Supér (4) 41(1):85–139,
2008.
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1 Introduction

1.1 Summary

These notes are an overview of the Nash-Moser iteration technique for solving PDEs
(or other non-linear problems) via linearisation, where the linearised equations
admit estimates with a loss of regularity with respect to the source term, coefficients
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and/or boundary/initial data. In these situations, Picard iteration (or the contraction
mapping principle) fails, but a modified form of Newton-Raphson iteration, involv-
ing the application of smoothing operators to overcome the loss of regularity, may
succeed in finding a solution for given data close to some special data for which a
solution is known to exist. This technique is known as Nash-Moser iteration, or in
some contexts as the Nash-Moser inverse function theorem. It was originally used
by Nash in [21] for solving the isometric embedding problem. Moser in [20] and
Schwartz in [23] simplified the method at the expense of a loss of regularity and
showed how it could be applied in a more general setting. Hörmander, in his paper
[15] on the boundary problems of physical geodesy, improved on Moser’s scheme
by reducing the loss of regularity, using a scheme more similar to Nash’s original.
More recently, Alinhac in [2] used a modified version of Hörmander’s scheme to
prove the short-time existence of rarefaction waves for a class of conservation laws
and Coulombel and Secchi in [8] introduced an additional modification to prove
the short-time existence of vortex sheets for the two dimensional isentropic Euler
equations provided the Mach number is sufficiently large. A scheme similar to the
one used by Coulombel and Secchi is also developed by Chen and Wang in [5] and
[6] to prove the short-time existence of current-vortex sheets for three-dimensional
MHD under certain stability assumptions.

We aim to provide an abstract setting for the technique, whilst keeping in mind
that we want to apply it to PDE problems. Hopefully in an abstract setting it will
be easier to see the key hypotheses needed on the equations to be solved than
in specific situations, which may involve other complications. We first introduce
the scheme used by Hörmander in [15], and detailed by Alinhac and Gérard in
[3], which is closer than Moser’s scheme to Nash’s original technique except
that Hörmander uses a discrete approximation scheme rather than one based on a
continuous parameter t . Whilst Hörmander works in Hölder spaces, we work in
more general Banach spaces, at the price of losing a small degree of regularity. We
have in mind that the linearised equations are most likely to be estimated in Sobolev
spaces (or weighted Sobolev spaces), probably with exponent two. This technique
has the advantage over Moser’s technique of obtaining a solution which is closer in
regularity to the given data, but although Nash used his method to obtain optimal
regularity, we are unlikely to obtain an optimal regularity result using this method
in more complicated situations.

We then introduce a more complicated scheme which allows us to deal with
difficulties in solving the linearised equations, inspired by the paper on 2D
compressible vortex sheets by Coulombel and Secchi [8].

Following this, we give the construction of the smoothing operators used in
Nash-Moser iteration on some Sobolev spaces which are used in practice, and some
inequalities useful for obtaining the tame estimates used in the iteration scheme.

Finally, we show how the generalised scheme can be applied to the case
considered by Coulombel and Secchi in [8], in a slightly simplified manner but
at the expense of some loss of regularity.
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1.2 Newton-Raphson Iteration, Picard Iteration,
and Nash-Moser Iteration

Suppose we wish to solve the nonlinear equation T .u/ D f for the unknown u 2 X ,
given f 2 Y , where T W X ! Y . So as not to ask too much, let us look for a
solution u close to u0 of the equation T .u/ D T .u0/C f , where f is small. One of
the most classical methods for solving such a nonlinear equation via linearisation is
Newton-Raphson iteration. For n � 1, we set

unC1 D un � L.un/.T .un/� T .u0/ � f /

where L.u/ is a right inverse of DT.u/. One can check by applying T to both
sides and using Taylor’s theorem that T .unC1/ D T .u0/ C f plus terms involving
unC1 � un which one would hope to converge to zero. However, for this scheme
to even make sense, we need an operator L.u/ W Y ! X which is a right inverse
of DT.u/. The linearised equations DT.u/v D g themselves may be difficult or
impossible to solve for v 2 X , hence we may not be able to find such an operatorL.

As a possible remedy to this problem, we consider the contraction mapping
theorem, or Picard iteration, which uses a slightly different kind of linearisation
and may be able to solve equations where the operator L as above does not exist.
For example, suppose we can write our equation in the form

S.u/u D 0

where, for fixed u, S.u/ is a linear operator. We seek the unknown u 2 X , where
X is a complete metric space, and we assume the initial/boundary conditions have
been absorbed into the definition of X . We now define the map F W X ! X by
F.u/ D v, where v is the solution to the linear equation

S.u/v D 0:

If we can prove that F is well-defined, and that F is a contraction, i.e.
dX.F.u1/; F .u2// 	 �dX.u1; u2/, where � < 1, for all u1, u2 in X , then the
contraction mapping theorem implies that F has a fixed point, w. By construction,
w satisfies the original nonlinear equation we wished to solve.

Note that in order to apply this method, we require that the solution v of the linear
equation be in the same space as u, on which v depends through the coefficients of
the equation. This is a better situation than for Newton-Raphson iteration, which
requires that the operatorL.u/ regains the regularity lost by applying the operatorT .

We can also write this method as an explicit iteration scheme (effectively
re-proving the contraction mapping theorem). We pick u0 2 X and for n � 0 we
define unC1 as the solution of the linear equation

S.un/unC1 D 0:



314 B. Stevens

We then aim to show that, for n � 1, dX.unC1; un/ 	 �dX.un; un�1/. This will
ensure un is a Cauchy sequence which converges to a solution of the nonlinear
equation. Using the explicit iteration scheme (known as Picard iteration) allows
more scope for slight modification in specific cases. For example, Majda in [16],
uses this iteration scheme, modified to include a smoothing of the initial data, to
prove the short-time existence of classical solutions to multidimensional systems of
conservation laws with a convex entropy.

However, it is possible that we cannot solve the linearised problem above for v
in the same space as u, as required by Picard iteration. It may happen that we can
solve the linear equation, but only for v 2 Z, where X � Z. For example, perhaps,
given u 2 Ck , we can only prove that a solution v to the linearised equation exists
in Ck�1. We refer to this as a loss of regularity in solving the linearised problem.

To overcome this, the key idea of Nash was to return to Newton-Raphson
iteration, but to modify the scheme to include a smoothing operation at each step to
compensate for the loss of regularity. Returning to the equation T .u/ D T .u0/Cf ,
standard Newton-Raphson iteration may be written as follows. For n � 0, we set

unC1 D un C Pun:

The difference Pun is given by

Pun D L.un/gn
for

gn D f C T .u0/� T .un/

where L.u/ is a right-inverse of DT.u/.
Now let us suppose we have a family of smoothing operators Sn that regain the

regularity lost by T and L, and such that Sn ! id as n ! 1. Then there are two
obvious ways we can modify the scheme.

The simplest is to set unC1 D un C Sn Pun, i.e. we smooth Pun after applying the
operators T and L to un. Since Sn ! id as n!1, this scheme looks like Newton-
Raphson iteration for large n, so we might expect it to converge under certain
conditions. This method is used by Moser in [20] and Schwartz in [23]. Whilst
this is a very simple modification, it has the drawback that a solution u obtained by
this method has a much lower degree of regularity than the given data f .

The other obvious modification is to smooth un before we apply the operators T
and L. Thus we set

Pun D L.Snun/gn:

We also adjust our choice of gn (which should be smoothed) given this modification.
This method is used by Hörmander in [15] and a continuous-parameter version was
used by Nash in his original paper [21]. We motivate how to choose gn in Sect. 3.1,
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which is based on the motivation given by Alinhac and Gérard in [3]. Again, the fact
that Sn ! id as n ! 1 means the scheme looks like Newton-Raphson iteration
for large n. The advantage of this method is that the solution u obtained can be
quite close in regularity to the given data f , but generally the regularity obtained
will not be optimal. In modifying Hörmander’s method to deal with more general
Banach spaces instead of just Hölder spaces, we lose an arbitrarily small degree of
regularity if we can use fractional index spaces, or one degree of regularity if we
are using integer index spaces. Other modifications to the scheme used in practice
further reduce the degree of regularity obtained. Nevertheless, we may consider this
an improvement over Moser’s technique, which we can informally attribute to the
fact that we have carefully constructed gn to compensate for the introduction of the
smoothing operators, whereas Moser’s method involves no such modification.

1.3 Nash-Moser Iteration as an Inverse Function Theorem

It is instructive to consider a slightly different viewpoint, that is to consider Nash-
Moser iteration as an inverse function theorem for a certain class of Fréchet spaces,
which are a natural generalisation of Banach spaces.

Indeed, the standard version of the Inverse Function Theorem, which can be
proved (under slightly stronger hypotheses than usual to make things simpler) by
an application of the contraction mapping theorem with parameter, carries over
analogously to an operator T W X ! Y between Banach spaces. By this we mean
that if the Fréchet derivative DT.u/ of T is invertible at a point u 2 X , then T
itself is invertible in a neighbourhood of u. Hence, if we wish to solve the equation
T .u/ D T .u0/Cf for u near u0, where f is small, we can simply apply the inverse
function theorem.

However, it is possible in applications that we can only find an ‘unbounded’
inverse forDT.u/. For example, if we work with differential operators in the spaces
Ck of k-times differentiable functions, then we might have T W Ck ! Ck�1, but we
might only be able to find a right inverse L.u/ of DT.u/ on some subset of Ck�1,
for example onCk , so thatL.u/ W Ck ! Ck, or, even worse, on CkC1 so thatL.u/ W
CkC1! Ck . This is solved if we work in the spaceX D C1, since thenL.u/maps
X to itself. However, this is no longer a Banach space, but a Fréchet space. Thus we
are led to ask whether there is an inverse function theorem for Fréchet spaces. The
answer is that if we assume the existence of a certain family of smoothing operators
on our Fréchet space (which by no means exist in general, but do for most spaces
of differentiable functions commonly used), then there is a sort of inverse function
theorem. This requires that DT.u/ be invertible on a neighbourhood of u, not just
at u itself.

This point of view is elegantly considered by Hamilton in [14], who refers to
this special class of Fréchet spaces as ‘tame’ Fréchet spaces and the necessary
estimates involved on the operator T as ‘tame’ estimates. The proof of this result
uses Nash-Moser iteration, and Hamilton’s proof in particular is quite close to
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Nash’s original method. The similarity with the usual inverse function theorem
is why Nash-Moser iteration is sometimes referred to as the Nash-Moser inverse
function theorem or the Nash-Moser implicit function theorem. See also the chapter
‘Generalized Implicit Function Theorems’ written by E. Zehnder in Nirenberg [22]
for an introduction to Nash-Moser type theorems as generalisations of the standard
inverse/implicit function theorem. Another implicit function theorem in the setting
of Fréchet spaces is given by Ekeland in [10], whose approach does not rely on
Newton-Raphson iteration but on Lebesgue’s dominated convergence theorem and
Ekeland’s variational principle.

Whilst this viewpoint is conceptually simple, for actual applications to PDEs,
working in Fréchet spaces is not necessary and complicates matters, and it is easier
to consider a family of Banach spaces in which one has estimates for the linearised
equations, for example .C k/k2N or .Hs/s2R�0 .

1.4 Tame Estimates

The key estimates involved in Nash-Moser iteration are known as tame estimates.
These are estimates of the following form. (Here we use the spaces Ck for
definiteness.)

Let T W C1 ! C1.
Then T satisfies a tame estimate if

jjT .u/jjCk 	 Ck.1C jjujjCkCk1 /

for some fixed integer k1 and all u in some fixed bounded set U � Ck0 , for some
k0, where the constant Ck > 0 is independent of u.

The key point about this estimate is that it is affine in the norm of u on the right
hand side with the variable index k.

Similarly, the second derivative of T , D2T , is said to satisfy a tame estimate if

ˇ̌
ˇ
ˇ̌
ˇD2T .u/.v1; v2/

ˇ̌
ˇ
ˇ̌
ˇ
Ck

	 Ck.jjv1jjCk1Ck jjv2jjCk2 C jjv1jjCk1 jjv2jjCk2Ck C jjv1jjCk1 jjv2jjCk2 .1C jjujjCkCk3 //

for some fixed integers k1; k2; k3 and all u in some fixed bounded set U � Ck0 , for
some k0, where the constant Ck > 0 is independent of u, v1 and v2.

Note that this estimate is also affine in the norms on the right hand side with the
variable index k, and in addition it is quadratic (with no affine terms) in .v1; v2/,
which will be a key point in the iteration. The smoothing operators will control the
large k norms in terms of lower ones at the price of poorer estimates and we require
DT to be a good approximation for T to compensate.

Note that the framework of tame estimates fits differential operators well because
of product estimates of the form
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jjfgjjHs 	 Cs.jjf jjHr jjgjjHs C jjf jjHs jjgjjHr /

for r > d
2

, where d is the dimension.
Similarly, we have estimates for compositions G.x/ D F.u.x// (sometimes

called Moser-type inequalities) of the form

jj@˛GjjL2 	 Cs jjujjH j˛j

for u in an Hr -bounded set.
These estimates can be derived from the Sobolev embedding theorem for large

index s, and details of these estimates for certain classes of Sobolev Spaces are given
in Sect. 5.2.

2 The Abstract Setting

In order to describe Nash-Moser iteration in an abstract setting we will need to
introduce some notation, as well as the idea of a derivative in this setting. We
will simply use the notion of a directional derivative, since all we need is a linear
approximation to an operator which satisfies Taylor’s theorem.

2.1 Families of Banach Spaces and Differentiation

Definition 1. Let I be an interval in R or Z of the form Œ0; a/, Œ0; a�, or Œ0;1/,
where a > 0.

We will say fXsgs2I is a decreasing family of Banach spaces if, for each s 2 I ,
Xs is a Banach space with norm jj�jjXs , and, for s1; s2 2 I with s1 	 s2, we have

Xs2 � Xs1 with jj�jjXs2 � jj�jjXs1 on Xs2 :

We will write

X1 D \s2IXs

and

X1�m D \s2I;s�mXs�m

form 2 I .

Remark 1. Note that it is convenient to use the notation X1 for the intersection of
all the Banach Spaces Xs with s 2 I , even if I is a finite interval. In the case that
I D Œ0;1/, X1�m as defined above is the same as X1, but if I is a finite interval
then they are not the same.
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Definition 2. Let fXsgs2I be a decreasing family of Banach spaces. Let ˛ W U !
X1 where U � R is open, and let t 2 U . We say ˛ is differentiable at t if there
exists a w 2 X1 such that

ˇ̌
ˇ̌
ˇ̌
ˇ̌˛.t C h/� ˛.t/

h
� w

ˇ̌
ˇ̌
ˇ̌
ˇ̌
Xs
! 0 as h! 0 (h ¤ 0)

for all s 2 I .
If such a w exists, we say w is the derivative of ˛ at t , and write ˛0.t/ D w or

d˛
dt .t/ D w.

We say ˛ is differentiable if it is differentiable at t for all t 2 U .

Definition 3. Let fXsgs2I and fY sgs2I be two decreasing families of Banach
spaces. Let T W U ! Y1�m for some m 2 I , where U � X1 is jj�jjXr -open
for some r 2 I , and let u 2 U . We say T is differentiable at u if, for each v 2 X1,
the map ˛v W .��; �/! Y1�m defined on a small neighbourhood of 0 in R by

˛v.t/ D T .uC tv/
is differentiable at 0 in the sense of Definition 2, and

˛0
v.0/ D DT.u/v

where DT.u/ W X1 ! Y1�m is a linear map. We call DT.u/ the derivative of T
at u.

We say T is differentiable if it is differentiable at u for all u 2 U and call DT
the derivative of T .

For an integer k � 2, we say T is k-times differentiable with k-th derivative
DkT if the following inductive definition holds.
T is k�1 times differentiable with .k�1/-th derivative at u given byDk�1T .u/ W

.X1/k�1 ! Y1�m for each u 2 U .
For each ordered set .v1; : : : ; vk�1/ 2 .X1/k�1, the map S W U ! Y1�m

defined by

S.u/ D Dk�1.u/.v1; : : : ; vk�1/

is differentiable in the above sense.
Define the k-th derivative of T at u 2 U as DkT .u/ W .X1/k ! Y1�m where

DkT .u/.v1; : : : ; vk/ D DS.u/vk:

Remark 2. We will not need all the properties of standard derivatives. We merely
require a linear approximation to within quadratic error of a nonlinear operator.
Hence we give the above fairly weak definition of differentiability and don’t worry
about questions such as whether the partial derivatives commute.

Proposition 1. Let fXsgs2I and fY sgs2I be two decreasing families of Banach
spaces. Let T W U ! Y1�m for some m 2 I , where U � X1 is jj�jjXr -open
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for some r 2 I . Then Taylor’s theorem holds for T . More precisely, suppose T is
k-times differentiable (in the sense of Definition 3) for some k � 1, let u 2 U ,
v 2 X1, and suppose the line segment Œu; uC v� is contained in U . Then

T .uC v/ D T .u/C DT.u/vC : : :C 1

.k � 1/ŠD
k�1T .u/.v; : : : ; v/CRk;u.v/

where

jjRk;u.v/jjY s 	
1

kŠ
sup
t2Œ0;1�

ˇ̌ˇ̌
DkT .uC tv/.v; : : : ; v/ˇ̌ˇ̌

Y s

for all s 2 I such that s Cm 2 I .

Proof. Fix s 2 I such that s C m 2 I . Let � 2 .Y s/� be a continuous linear
functional on Y s .

Define g W J ! R by

g.t/ D � ı T .uC tv/

where J is an open interval in R containing Œ0; 1�.
Since � is a continuous linear functional on Y s , from the definition of differen-

tiability we have that g is k-times differentiable with

g.k/.t/ D � ıDkT .uC tv/.v; : : : ; v/:
Applying the one-dimensional Taylor’s theorem to obtain an expansion for g.1/
about g.0/, we have

g.1/ D g.0/C g0.0/C : : :C 1

.k � 1/Šg
k�1.0/C 1

kŠ
gk.h/hk

for some h 2 Œ0; 1� (which may depend on �). Hence

� ı T .uC v/ D

�.T .u/C DT.u/vC : : :C 1

.k � 1/ŠD
k�1T .u/.v; : : : ; v/C 1

kŠ
hkDkT .uC hv/.v; : : : ; v//

Rearranging, we have

ˇ̌
ˇ̌�.T .uC v/� .T .u/C DT.u/vC : : :C 1

.k � 1/ŠD
k�1T .u/.v; : : : ; v///

ˇ̌
ˇ̌

	 jj�jj.Y s /�
ˇ̌
ˇ̌
ˇ̌
ˇ̌ 1
kŠ
hkDkT .uC hv/.v; : : : ; v/

ˇ̌
ˇ̌
ˇ̌
ˇ̌
Y s

	 jj�jj.Y s /�
1

kŠ
sup
t2Œ0;1�

ˇ̌ˇ̌
DkT .uC tv/.v; : : : ; v/ˇ̌ˇ̌

Y s
:
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Now use the Hahn-Banach theorem to pick � 2 .Y s/� with jj�jj.Y s /� D 1 such that

�.T .uC v/ � .T .u/CDT.u/vC : : :C 1

.k � 1/ŠD
k�1T .u/.v; : : : ; v///

D
ˇ̌
ˇ̌
ˇ̌
ˇ̌T .uC v/ � .T .u/CDT.u/vC : : :C 1

.k � 1/ŠD
k�1T .u/.v; : : : ; v//

ˇ̌
ˇ̌
ˇ̌
ˇ̌
Y s
:

We then obtain
ˇ̌
ˇ̌
ˇ̌
ˇ̌T .uC v/� .T .u/C DT.u/vC : : :C 1

.k � 1/ŠD
k�1T .u/.v; : : : ; v//

ˇ̌
ˇ̌
ˇ̌
ˇ̌
Y s

	 1

kŠ
sup
t2Œ0;1�

ˇ̌ˇ̌
DkT .uC tv/.v; : : : ; v/ˇ̌ˇ̌

Y s
:

This completes the proof.

Remark 3. Note that we can apply the above proposition when fXsgs2I is just
fRgs2I to obtain Taylor’s theorem for paths in Y1.

2.2 Definition of the Smoothing Operators

Definition 4. We will say a decreasing family of Banach spaces fXsgs2I satisfies
the smoothing hypothesis if there exists a family of linear operators fS	g	2R�1 such
that

S	 W X0 ! X1

and, for u 2 Xs , we have

jjS	ujjXr 	 Cr;s	.r�s/C jjujjXs for all r; s 2 I (1)

jju � S	ujjXr 	 Cr;s	�.s�r/ jjujjXs for all r; s 2 I with r 	 s (2)
ˇ̌
ˇ̌
ˇ̌
ˇ̌ d

d	
S	u

ˇ̌
ˇ̌
ˇ̌
ˇ̌
Xr
	 Cr;s	r�s�1 jjujjXs for all r; s 2 I (3)

where the constant Cr;s > 0 remains bounded if r and s remain bounded.
Here .a/C denotes maxfa; 0g for a 2 R or a 2 Z.
Note d

d	 S	u is the derivative of the map 	 7! S	u in the sense of Definition 2,
which we require to exist for each u 2 X0.
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3 Hörmander’s Version of Nash-Moser Iteration

3.1 Motivation for the Iteration Scheme

Here we provide some motivation for the iteration scheme used by Hörmander in
[15] by comparing it to Newton-Raphson iteration. This is unnecessary for the proof
of the theorem, but the iteration scheme seems a little unmotivated without it. This
motivation is partly based on the motivation given in Alinhac and Gérard [3].

3.1.1 Newton-Raphson Iteration

In order to solve the equation

T .u/ D T .u0/C f
the Newton-Raphson method uses the following iteration scheme.

unC1 D un �L.un/.T .un/ � .T .u0/C f //
for L a right inverse of DT.

One way of justifying this is as follows.
We set

unC1 D un C Pun
where the increment Pun is to be determined. We then have

T .unC1/ D T .un/C DT.un/Pun C en
which defines the error en incurred by using the derivative of T to obtain a linear
approximation to T . By Taylor’s theorem, we expect this to be small when Pun is
small.

Let us choose Pun such that

DT.un/Pun D gn
i.e.

Pun D L.un/gn
where gn is to be determined so that un converges to a solution u of T .u/ D
T .u0/C f .

From the equation

T .unC1/ D T .un/C gn C en
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we obtain

T .unC1/ D T .u0/C
nX

mD0
gm C

nX
mD0

em

D T .u0/C
nX

mD0
gm C En C en

where

En D
n�1X
mD0

em:

Thus if we define gn by

nX
mD0

gm C En D f

we obtain

T .unC1/ D T .u0/C f C en
which we hope converges to T .u0/C f as n!1 since en ! 0.

The formula for gn implies g0 D f and

gnC1 D �en
D T .un/C gn � T .unC1/:

Hence

gnC1 D T .u0/C f � T .unC1/:

Thus we obtain the iteration scheme

unC1 D un �L.un/.T .un/ � .T .u0/C f //

3.1.2 Nash-Moser Iteration

We still wish to use an iteration scheme of the form

unC1 D un C Pun
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but we are now concerned with the case when the application of the operatorL.un/
to gn causes a loss of regularity with respect to un and gn. By this we mean that if
un and gn lie in Xs , then L.un/gn will lie in a larger space Xs0 for s0 < s so that
for any fixed s the norm jjunjjXs will blow up as n! 1. This loss of regularity is
stated precisely in (5).

To overcome this, we apply smoothing operators Sn which allow us to control
jjSnunjjXs for large s in terms of jjunjjXs for small s. By choosing Sn to vary with n
so that Sn ! id in some sense as n!1, we hope to be able to overcome the error
introduced by these smoothing operators. In this particular version of Nash-Moser
iteration, we follow Hörmander in [15] and Alinhac and Gérard in [2] by choosing
to apply smoothing operators before the application of the operator L. Hence we
define

vn D Snun
and set

T .unC1/ D T .un/C DT.vn/Pun C en
which defines the error en incurred by using the derivative of T , evaluated at vn, to
obtain a linear approximation to T . By Taylor’s theorem, and the fact that Sn ! id,
we expect this to be small when Pun is small and n is large.

Following the same process as before, we define

Pun D L.vn/gn
where gn is to be determined so that un converges to a solution u of T .u/ D T .u0/C
f , and gn should be smoothed.

From the equation

T .unC1/ D T .un/C gn C en
we obtain

T .unC1/ D T .u0/C
nX

mD0
gm C

nX
mD0

em

D T .u0/C
nX

mD0
gm C En C en

where

En D
n�1X
mD0

em:
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Before we defined gn by

nX
mD0

gm C En D f

but since we would like gn to be smoothed, we define gn by

nX
mD0

gm D Sn.f �En/:

From this, we obtain

T .unC1/ D T .u0/C Snf CEn � SnEn C en
which we hope converges to T .u0/C f as n!1 since en ! 0 and Sn ! id.

The formula for gn implies g0 D S0f and

gnC1 D SnC1.f � EnC1/� Sn.f �En/
D .SnC1 � Sn/.f � En/ � SnC1en:

Note that we may split the error en up into two parts,

en D e0
n C e00

n

where

e0
n D .DT.un/ �DT.vn//Pun

is the error caused by replacing un by vn and

e00
n D T .unC1/� T .un/� DT.un/Pun

is the standard quadratic error in the Newton-Raphson scheme.

3.2 Statement and Proof of the Theorem

Theorem 1. Let fXsgs2I and fY sgs2I be two decreasing families of Banach
spaces, each satisfying the smoothing hypothesis. Let u0 2 X1 and let T W Um0 !
Y 0 be continuous, where Um0 � Xm0 is a bounded open neighbourhood of u0 in
Xm0 , for some m0 2 I . Suppose also T W U ! Y1�m1 for some fixed m1 2 I ,
where U WD Um0 \ X1, and T satisfies the following conditions.
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1. T is twice differentiable in the sense of Definition 3 and

ˇ̌ˇ̌
D2T .u/.v1; v2/

ˇ̌ˇ̌
Y s

� C1s .jjv1jjXsCm1 jjv2jjXm2 C jjv1jjXm2 jjv2jjXsCm1 C jjv1jjXm2 jjv2jjXm2 .1C jjujjXsCm3 //

(4)

for all u 2 U , v1; v2 2 X1 and s 2 I such that s C m1; s Cm3 2 I , for some
fixed numbers m1;m2;m3 2 I , where the constant C1

s > 0 is bounded for s
bounded.

2. For each u 2 U , there exists a linear map L.u/ W Y1 ! X1�maxfl1;m4g such
that

DT.u/L.u/ D id

and

jjL.u/gjjXs 	 C2
s .jjgjjY sCl1 C jjgjjY l1 jjujjXsCm4 / (5)

for all u 2 U , g 2 Y1 and s 2 I such that s C l1; s Cm4 2 I , for some fixed
numbers l1;m4 2 I , where the constant C2

s > 0 is bounded for s bounded.

Let r0 2 I with r0 > maxfm0;m4; l1Cm1Cm2; 2m2;
l1Cm3
2
Cm2g and let r0C1 <

s1 2 I such that s1 C maxfl1;m4g 2 I be sufficiently large depending on the
constantsmi .

Then there exists a constant 0 < � 	 1 such that if f 2 Y r0Cl1 with

jjf jjY r0Cl1 	 �

we can find u 2 Um0 which solves the equation

T .u/ D T .u0/C f:

Moreover, let J D fr 2 I W f 2 Y rCl1 ; r � r0g. Then for each r 2 J and s 2 I
with s < r , assuming that s1 C r � r0 C maxfl1;m4g 2 I , we have u 2 Xs , and
there exists a constantKr;s independent of f such that

jju � u0jjXs 	 Kr;s jjf jjY rCl1 :

Proof.
Step 1 – Setup of the iteration scheme
Let f 2 Y r0Cl1 be such that jjf jjY r0Cl1 	 �, where 0 < � 	 1 will be chosen later.

Denote the smoothing operators on .Xs/s2I by fSX	 g	�1 and the smoothing
operators on .Y s/s2I by fSY	 g	�1.

We use an iteration scheme to construct a sequence .un/n�0 inX1 which we aim
to show converges to a solution u 2 Um0 of T .u/ D T .u0/C f .
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For n � 0, define

	n D 	0 C n

where 	0 > 1 will be chosen later depending only on r0, the constants mi ; l1, and
the constants in the smoothing hypothesis and in the inequalities satisfied by D2T

and L.
Note that

	nC1 	 	n C 1 	 2	n:

We have dropped the parameter � from the definition of 	n in Hörmander’s version
since he introduced it to make e00

n as small as e0
n, but this will turn out to be

automatically true under our hypotheses.
For n � 0, define

vn D SX	nun

Pun D L.vn/gn
unC1 D un C Pun

where gn is defined below.
Note that the overdotPis simply notation indicating a sort of difference and does

not denote differentiation.
For n � 0, define

g0 D SY	0f
gnC1 D .SY	nC1

� SY	n/.f � En/ � SY	nC1
en

where

En D
n�1X
mD0

em

(so E0 D 0), and the error en is defined below, for n � 0.

e0
n D .DT.un/ �DT.vn//Pun
e00
n D T .un C Pun/ � T .un/� DT.un/Pun
en D e0

n C e00
n :

Note that since g0 is defined in terms of f only, and we are given u0, from which
v0 is obtained immediately, the iteration scheme can be determined for n � 0 in the
order Pun, unC1, vnC1, e0

n, e
00
n , en, En, gnC1.
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Note that en is defined so that it measures how well T .unC1/ � T .un/ is
approximated by DT.vn/Pun, by which we mean

T .unC1/� T .un/ D DT.vn/Pun C en
D gn C en:

Also note that the formula for gnC1 can be rearranged to give

gnC1 D .SY	nC1
f � SY	nf /� .SY	nC1

EnC1 � SY	nEn/:

We thus obtain

T .unC1/ � T .u0/ D
nX

mD0
.T .umC1/� T .um//

D
nX

mD0
gm C

nX
mD0

em

D SY	nf � SY	nEn C EnC1

D SY	nf C .En � SY	nEn/C en

which we hope converges to f as n ! 1, since, roughly speaking, SY	n ! id and
en ! 0.
Step 2 – Obtaining estimates for the iterates via induction
We will show the following inductive hypothesis holds.

jjPunjjXs 	 K jjf jjY r0Cl1 	
s�r0�1
n for all s 2 Œ0; s1� ŒHn�

where the constant K > 0 will be chosen later, with K independent of n, f and �,
but depending on 	0. We will choose � sufficiently small such that K jjf jjY r0Cl1 	
K� 	 1.

In what follows, Cs > 0 represents a constant, which is independent of n, f and
�, and is bounded for s bounded. It will also be independent of 	0, which will allow
us to choose 	0 so that 	n is large compared to Cs for s in a certain range. We will
write C > 0 for a constant which is also independent of s.

Assume now that ŒHm� is true for all 0 	 m 	 n and let us show that ŒHnC1�
follows. (We will leave the proof of ŒH0� until later.)

Pick a real number 0 < � < 1 such that r0 > maxfm0;m4; l1 C m1 C
m2; 2m2;

l1Cm3
2
Cm2g C 2�.

For s 2 I , define

P.s/ D
(
.s � r0/C for js � r0j � �;
� for js � r0j < �:
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We claim that the following estimates for 0 	 m 	 nC 1 follow directly from ŒHm�

for 0 	 m 	 n.

jjum � u0jjXs 	 CsK jjf jjY r0Cl1 	
P.s/
m for s 2 Œ0; s1�; (6)

ˇ̌ˇ̌
SX	m.um � u0/

ˇ̌ˇ̌
Xs
	 CsK jjf jjY r0Cl1 	

P.s/
m for s 2 I; (7)

ˇ̌ˇ̌
.um � u0/� SX	m.um � u0/

ˇ̌ˇ̌
Xs
	 CsK jjf jjY r0Cl1 	

.s�r0/
m for s 2 Œ0; s1�; (8)

jjum � vmjjXs 	 Cs	s�r0m for s 2 Œ0; s1�; (9)

jjvmjjXs 	 Cs	P.s/m for s 2 I;
(10)

jjumjjXs 	 Cs	P.s/m for s 2 Œ0; s1�:
(11)

Indeed, for 0 	 m 	 n, we have

jjumC1 � u0jjXs D
ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
mX
lD0
Pul
ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
Xs

	
mX
lD0
jjPul jjXs

	 K jjf jjY r0Cl1

mX
lD0

	
s�r0�1
l

D K jjf jjY r0Cl1

mX
lD0
.	0 C l/s�r0�1

	 K jjf jjY r0Cl1

mX
lD0
.	0 C l/Q.s/�1

where

Q.s/ D
(
s � r0 for js � r0j � �;
� for js � r0j < �:

Set h.x/ D .	0 C x/Q.s/�1 for x 2 Œ0;1/. Then

mX
lD0
.	0 C l/Q.s/�1 	

Z mC1

0

h.x/dx

D
(

1
s�r0 ..	0 CmC 1/s�r0 � 	

s�r0
0 / for js � r0j � �

1
�
..	0 CmC 1/� � 	�0 / for js � r0j < �



The Nash-Moser Iteration Technique with Application to Characteristic. . . 329

D
(

1
s�r0 .	

s�r0
mC1 � 	s�r00 / for js � r0j � �

1
�
.	
�
mC1 � 	�0 / for js � r0j < �

	

8
ˆ̂<
ˆ̂:

1
s�r0 	

s�r0
mC1 for s � r0 � �

1
r0�s 	

�.r0�s/
0 for s � r0 	 ��

1
�
	
�
mC1 for js � r0j < �

This implies (6), noting that the constant Cs remains bounded for s bounded. (We
introduced � to avoid a constant involving 1

s�r0 which blows up as s ! r0.)
For s � r0 C �, use (1) from the smoothing hypothesis and (6) to obtain

ˇ̌ˇ̌
SX	m.um � u0/

ˇ̌ˇ̌
Xs
	 Cs	s�r0��m jjum � u0jjXr0C�

	 CsK jjf jjY r0Cl1 	
s�r0��
m 	�m

	 CsK jjf jjY r0Cl1 	
s�r0
m :

For s < r0 C �, using (1) from the smoothing hypothesis and (6), we have
ˇ̌ˇ̌
SX	m.um � u0/

ˇ̌ˇ̌
Xs
	 CsK jjf jjY r0Cl1 	

P.s/
m :

This proves (7).
For s 	 r0 C �, use (2) from the smoothing hypothesis and (6) to obtain

ˇ̌ˇ̌
.um � u0/� SX	m.um � u0/

ˇ̌ˇ̌
Xs
	 Cs	s�r0��m jjum � u0jjXr0C�

	 CsK jjf jjY r0Cl1 	
s�r0��
m 	�m

	 CsK jjf jjY r0Cl1 	
s�r0
m :

For r0 C � < s 	 s1, using (6) and (7), we have

ˇ̌ˇ̌
.um � u0/� SX	m.um � u0/

ˇ̌ˇ̌
Xs
	 CsK jjf jjY r0Cl1 	

s�r0
m

as required. This proves (8).
Now

jjum � vmjjXs D
ˇ̌ˇ̌

um � SX	mum
ˇ̌ˇ̌
Xs

D ˇ̌ˇ̌.um � u0/ � SX	m.um � u0/C u0 � SX	mu0
ˇ̌ˇ̌
Xs

	 ˇ̌ˇ̌.um � u0/� SX	m.um � u0/
ˇ̌ˇ̌
Xs
C ˇ̌ˇ̌u0 � SX	mu0

ˇ̌ˇ̌
Xs

	 CsK jjf jjY r0Cl1 	
s�r0
m C Cs	s�r0m jju0jjXmaxfr0;sg

by applying (8) to the first term and (1) or (2) from the smoothing hypothesis to the
second term. This proves (9). (Note K jjf jjY r0Cl1 	 K� 	 1.)
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Similarly,

jjvmjjXs D
ˇ̌ˇ̌
SX	mum

ˇ̌ˇ̌
Xs

D ˇ̌ˇ̌SX	m.um � u0/C SX	mu0
ˇ̌ˇ̌
Xs

	 ˇ̌ˇ̌SX	m.um � u0/
ˇ̌ˇ̌
Xs
C ˇ̌ˇ̌SX	mu0

ˇ̌ˇ̌
Xs

	 ˇ̌ˇ̌SX	m.um � u0/
ˇ̌ˇ̌
Xs
C Cs jju0jjXs

by (1) from the smoothing hypothesis. Now use (7) to obtain (10).
We have

jjumjjXs 	 jjum � u0jjXs C jju0jjXs :
Now apply (6) to obtain (11).

This completes the proof of the claim.
Note that, using (6) and (9), we have

jjvm � u0jjXm0 	 jjvm � umjjXm0 C jjum � u0jjXm0
	 C	m0�r0m C CK�	P.m0/m

	 C	m0�r0m C CK�:
Thus by taking � sufficiently small depending onK and C , and 	0 sufficiently large
depending on C , we have vn, vnC1 2 U . Also note that (6) in the case s D m0

implies un 2 U for � sufficiently small, and ŒHn� implies that un C Pun 2 U for �
sufficiently small. This guarantees that en and PunC1 are well-defined. Note that the
same argument also shows that the line segments Œun; un C Pun� and Œun; vn� are in U
for � sufficiently small.

Estimate of e0
n. We claim that for all s 2 Œ0; s1 �maxfm1;m3g�,

ˇ̌ˇ̌
e0
n

ˇ̌ˇ̌
Y s
	 CsK jjf jjY r0Cl1 	

M.s/�1C�
n

where

M.s/ D maxfs Cm1 Cm2 � 2r0; .s Cm3 � r0/C C 2m2 � 2r0g:

Indeed, we have

e0
n D .DT.un/� DT.vn//Pun
D .DT..un � vn/C vn/ �DT.vn//Pun:

Note that, since T is twice differentiable in the sense of Definition 3, the map

u 7! DT.u/Pun
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is differentiable in the sense of Definition 3 with derivative acting on v given by

D2T .u/.Pun; v/:

Hence, applying Taylor’s theorem, (4), ŒHn� and the estimates (9) and (10), we have,
for s 2 Œ0; s1 �maxfm1;m3g�,
ˇ̌ˇ̌
e0
n

ˇ̌ˇ̌
Y s
D jj.DT..un � vn/C vn/� DT.vn//PunjjY s
	 sup

t2Œ0;1�

ˇ̌ˇ̌
D2T .t.un � vn/C vn/.Pun; un � vn/

ˇ̌ˇ̌
Y s

	 Cs.jjPunjjXsCm1 jjun � vnjjXm2 C jjPunjjXm2 jjun � vnjjXsCm1

C jjPunjjXm2 jjun � vnjjXm2 .1C sup
t2Œ0;1�

jjvn C t.un � vn/jjXsCm3 //

	 Cs.K jjf jjY r0Cl1 	
sCm1�r0�1
n 	m2�r0n CK jjf jjY r0Cl1 	

m2�r0�1
n 	sCm1�r0n

CK jjf jjY r0Cl1 	
m2�r0�1
n 	m2�r0n .1C 	P.sCm3/n C 	sCm3�r0n //

	 CsK jjf jjY r0Cl1 	
M.s/�1C�
n :

Estimate of e00
n . We claim that for all s 2 Œ0; s1 �maxfm1;m3g�,

ˇ̌ˇ̌
e00
n

ˇ̌ˇ̌
Y s
	 CsK jjf jjY r0Cl1 	

M.s/�1C�
n :

Indeed, we have

e00
n D T .un C Pun/� T .un/� DT.un/Pun:

Hence, applying Taylor’s theorem, (4), ŒHn� and the estimate (11), we have, for
s 2 Œ0; s1 �maxfm1;m3g�,
ˇ̌ˇ̌
e00
n

ˇ̌ˇ̌
Y s
	 sup

t2Œ0;1�

ˇ̌ˇ̌
D2T .un C t Pun/.Pun; Pun/

ˇ̌ˇ̌
Y s

	 Cs.jjPunjjXsCm1 jjPunjjXm2 C jjPunjj2Xm2 .1C sup
t2Œ0;1�

jjun C t PunjjXsCm3 //

	 Cs.K jjf jjY r0Cl1 	
sCm1�r0�1
n K jjf jjY r0Cl1 	

m2�r0�1
n

CK2 jjf jj2
Y r0Cl1

	2m2�2r0�2n .1C 	P.sCm3/n CK jjf jjY r0Cl1 	
sCm3�r0�1
n //

	 	�1
n CsK jjf jjY r0Cl1 	

M.s/�1C�
n

	 CsK jjf jjY r0Cl1 	
M.s/�1C�
n

where we have usedK jjf jjY r0Cl1 	 K� 	 1.
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Estimate of en. Adding the estimates for e0
n and e00

n , we obtain

jjenjjY s 	 CsK jjf jjY r0Cl1 	
M.s/�1C�
n

for all s 2 Œ0; s1 �maxfm1;m3g�.
Estimate of gnC1. We claim that for all s 2 I ,

jjgnC1jjY s 	 Cs.K jjf jjY r0Cl1 	
M.s/�1C�
n C jjf jjY r0Cl1 	

s�r0�l1�1
n /:

Indeed, we have

gnC1 D .SY	nC1
� SY	n/.f � En/� SY	nC1

en:

Note that for any w 2 Y s0 ,
ˇ̌
ˇ
ˇ̌
ˇ.SY	nC1

� SY	n/w
ˇ̌
ˇ
ˇ̌
ˇ
Y s
	 Cs0;s	 s�s0�1n jjwjjY s0

by the smoothing hypothesis (3) and Taylor’s theorem.
Setting s0 D r0 C l1, we have

ˇ̌
ˇ
ˇ̌
ˇ.SY	nC1

� SY	n/f
ˇ̌
ˇ
ˇ̌
ˇ
Y s
	 Cs	s�r0�l1�1n jjf jjY r0Cl1 :

We also have
ˇ̌
ˇ
ˇ̌
ˇ.SY	nC1

� SY	n/En
ˇ̌
ˇ
ˇ̌
ˇ
Y s
	 Cs0;s	 s�s0�1n jjEnjjY s0 :

Now, for s0 2 Œ0; s1 �maxfm1;m3g�, we have, from the estimate for en,

jjEnjjY s0 D
ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
n�1X
mD0

em

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
Y s

0

	 Cs0K jjf jjY r0Cl1

n�1X
mD0

	M.s
0/�1C�

m

	 Cs0K jjf jjY r0Cl1 	
M.s0/C�
n

if M.s0/ � 0, by the integral comparison used before. Note that M.s0/ has slope 1
for large enough s0 depending on r0 and the constants mi , so to achieve M.s0/ � 0
it suffices to take s0 large in relation to r0 and the constantsmi . To do this we require
s1 sufficiently large in relation to r0 and the constantsmi .
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Hence
ˇ̌
ˇ
ˇ̌
ˇ.SY	nC1

� SY	n/En
ˇ̌
ˇ
ˇ̌
ˇ
Y s
	 Cs0Cs0;sK jjf jjY r0Cl1 	

M.s0/Cs�s0�1C�
n

	 CsK jjf jjY r0Cl1 	
M.s/�1C�
n

by choosing s0 sufficiently large compared to r0 and the constants mi so that M.s/
has slope 1 for s � s0. (Hence M.s0/ � s0 	 M.s/ � s for all s since M.s/ � s
is decreasing for s 	 s0 and constant for s � s0.) Again, to do this we require s1
sufficiently large in relation to r0 and the constantsmi . This fixes s1.

Similarly, for s0 sufficiently large, we have

ˇ̌
ˇ
ˇ̌
ˇSY	nC1

en

ˇ̌
ˇ
ˇ̌
ˇ
Y s
	 Cs0;s	 s�s0n jjenjjY s0

	 Cs0;sCs0K jjf jjY r0Cl1 	
M.s0/Cs�s0�1C�
n

	 CsK jjf jjY r0Cl1 	
M.s/�1C�
n :

Hence the estimate for gnC1 holds.

Estimate of PunC1. We have

PunC1 D L.vnC1/gnC1:

Hence, for all s 2 I such that s C l1; s C m4 2 I , using (5), the estimate (10) and
the estimate for gnC1, we have

jjPunC1jjXs 	 Cs.jjgnC1jjY sCl1 C jjgnC1jjY l1 .1C jjvnC1jjXsCm4 //

	 Cs.K jjf jjY r0Cl1 	
M.sCl1/�1C�
nC1 C jjf jjY r0Cl1 	

s�r0�1
nC1

C .K jjf jjY r0Cl1 	
M.l1/�1C�
nC1 C jjf jjY r0Cl1 	

�r0�1
nC1 /.1C 	P.sCm4/nC1 //

	 Cs.K jjf jjY r0Cl1 	
M.l1/Cs�1C�
nC1 C jjf jjY r0Cl1 	

s�r0�1
nC1 / (12)

since 	P.sCm4/nC1 	 	snC1 because r0 > m4C 2�, andM.l1C s/ 	M.l1/C s because
M has slope at most 1.

We want to obtain

jjPunC1jjXs 	 K jjf jjY r0Cl1 	
s�r0�1
nC1

for s 2 Œ0; s1�.
To make the first term sufficiently small, we require

�� WD M.l1/C r0 C � < 0:
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Then we can choose 	0 large enough so that

Cs	
M.l1/Cs�1C�
nC1 D Cs	s�r0�1nC1 	

��
nC1 	 Cs	s�r0�1nC1 	

��
0 	

1

2
	
s�r0�1
nC1

for all s 2 Œ0; s1�.
We note thatM.l1/Cr0C� < 0 if and only if r0�� > l1Cm1Cm2, r0�� > 2m2

and r0 � � > m2 C l1Cm3
2

, which indeed hold by the choice of �.
To make the second term sufficiently small, we take K � 2Cs for all s 2 Œ0; s1�.
This gives ŒHnC1�.

Proof of ŒH0� We have

g0 D SY	0f
and

v0 D SX	0u0:

Hence

jjPu0jjXs D
ˇ̌ˇ̌
L.SX	0u0/S

Y
	0
f
ˇ̌ˇ̌
Xs

	 Cs.
ˇ̌ˇ̌
SY	0f

ˇ̌ˇ̌
Y sCl1

C ˇ̌ˇ̌SY	0f
ˇ̌ˇ̌
Y l1
.1C ˇ̌ˇ̌SX	0u0

ˇ̌ˇ̌
XsCm4

//

	 Cs
ˇ̌ˇ̌
SY	0f

ˇ̌ˇ̌
Y sCl1

	 Cs jjf jjY r0Cl1 	
.s�r0/C
0 by (1) and (2) from the smoothing hypothesis

	 K jjf jjY r0Cl1 	
s�r0�1
0

for all s 2 Œ0; s1�, assuming that K is sufficiently large compared to 	0 and Cs for
s 2 Œ0; s1�.

This is ŒH0�.
Step 3 – Better estimates if f 2 Y rCl1 for r > r0
Let r 2 J , so that f 2 Y rCl1 , where r � r0.

We will show that, for all n � 0 and for all s 2 I such that s Cmaxfm1;m3g C
maxfl1;m4g 2 I , we have

jjPunjjXs 	 Cr;s jjf jjY rCl1 	
s�r�1
n (13)

where the constant Cr;s > 0 is independent of n and f .
Firstly, note that we have proved ŒHn� for n � 0, and hence all the estimates

from step 2 which were conditional on the inductive hypothesis are now valid, and
we may use them as we wish.

We are going to prove the above statement by an induction argument, but not an
induction on n. We are going to use the estimates from step 2 for each n separately
to obtain the above inequality, and the constant will be independent of n because the
constants from step 2 are independent of n.
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We claim by induction on k � 0 that for all s 2 I such that sCmaxfl1;m4g 2 I ,
we have

jjPunjjXs 	 Ck;r;s jjf jjY rCl1 	
s�r0��k�1
n ŒGk�

where the constant Ck;r;s > 0 is independent of n and f , and

�k D minfk�; r � r0g:
Indeed, the estimate (12) for PunC1 in step 2 implies that

jjPunjjXs 	 Cs jjf jjY r0Cl1 	
s�r0�1
n (14)

for all s 2 I such that sCmaxfl1;m4g 2 I (not just s 2 Œ0; s1� which would follow
directly from ŒHn�).

Using this, we can obtain the following new versions of the estimates (9)–(11)
for all s 2 I such that sCmaxfl1;m4g 2 I (not just s 2 Œ0; s1�) via exactly the same
calculations

jjum � vmjjXs 	 Cs	s�r0m ; (15)

jjvmjjXs 	 Cs	P.s/m ; (16)

jjumjjXs 	 Cs	P.s/m : (17)

Using the fact that jjf jjY r0Cl1 	 jjf jjY rCl1 , (14) immediately implies ŒG0�.
Now we assume ŒGk� holds and aim to show ŒGkC1� holds.
Now we want to obtain new estimates for e0

n and e00
n . Note that in the estimates for

both of these there was at least one factor involving Pun in each term. If we estimate
this one factor using the new estimate given by ŒGk� and the other quantities using
(14) and the slightly modified estimates (15)–(17), we obtain

jjenjjY s 	 Ck;r;s jjf jjY rCl1 	
M.s/�1C���k
n

for all s 2 I such that s C maxfm1;m3g C maxfl1;m4g 2 I . The constant Ck;r;s is
independent of f since we have only used the new estimate given by ŒGk� in one
factor, and the other estimates we have used involve jjf jjY r0Cl1 , which is bounded
by � 	 1.

This implies that for s0 2 I such that s0 Cmaxfm1;m3g Cmaxfl1;m4g 2 I , we
have

jjEnjjY s0 D
ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
n�1X
mD0

em

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
Y s

0

	 Ck;r;s0 jjf jjY rCl1

n�1X
mD0

	M.s
0/�1C���k

m

	 Ck;r;s0 jjf jjY rCl1 	
M.s0/C���k
n (18)
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as long asM.s0/ � �k . It is possible to pick such an s0 if s1Cr�r0Cmaxfl1;m4g 2 I
given the fact that M.s1 � maxfm1;m3g/ � 0 and M.s/ has slope 1 for s � s1 �
maxfm1;m3g.

Hence
ˇ̌
ˇ
ˇ̌
ˇ.SY	nC1

� SY	n/En
ˇ̌
ˇ
ˇ̌
ˇ
Y s
	 Cs0;kCk;r;s	M.s0/Cs�s0�1C���kn

	 Ck;r;s jjf jjY rCl1 	
M.s/�1C���k
n

as long as M.s0/ � �k and s0 is sufficiently large compared to r0 and the constants
mi so that M.s/ has slope 1 for s � s0.

We also have the estimate
ˇ̌
ˇ
ˇ̌
ˇSY	nC1

en

ˇ̌
ˇ
ˇ̌
ˇ
Y s
	 Ck;r;s jjf jjY rCl1 	

M.s/�1C���k
n :

In addition we can use the new estimate
ˇ̌
ˇ
ˇ̌
ˇ.SY	nC1

� SY	n/f
ˇ̌
ˇ
ˇ̌
ˇ
Y s
	 Cr;s	s�r�l1�1n jjf jjY rCl1 :

This gives us the following new estimate for gnC1, for all s 2 I ,

jjgnC1jjY s 	 Ck;r;s jjf jjY rCl1 .	
M.s/�1C���k
n C 	s�r�l1�1n /:

From this we obtain, for all s 2 I such that s Cmaxfl1;m4g 2 I ,

jjPunjjXs 	 Cr;s jjf jjY rCl1 .	
M.l1/Cs�1C���k
n C 	s�r�1n /

	 Cr;s jjf jjY rCl1 .	
s�r0�1��k��
n C 	s�r�1n /

	 Cr;s jjf jjY rCl1 	
s�r0��kC1�1
n

where we have used the fact that M.l1/C r0 C � D �� .
This is ŒGkC1�.
For large enough k, we have k� � r � r0, so �k D r � r0 and this gives (13).

Step 4 – Convergence to a solution
Let r 2 J , so that f 2 Y rCl1 , where r � r0.

Using (13), we have

nX
mD0
jjumC1 � umjjXs D

nX
mD0
jjPumjjXs

	 Cr;s jjf jjY rCl1 	
.s�r/C
nC1

for r ¤ s.



The Nash-Moser Iteration Technique with Application to Characteristic. . . 337

Thus

nX
mD0
jjumC1 � umjjXs

converges as n!1 for s < r . Hence, by completeness, un ! u in Xs as n!1,
for all s < r , for some u 2 \0�s<rXs .

Note the above calculation also implies that

jjun � u0jjXs 	 Cr;s jjf jjY rCl1

for s < r , so we have

jju � u0jjXs 	 Cr;s jjf jjY rCl1 :

Next we claim that

T .unC1/ � T .u0/! f

in Xs as n!1, for all s < r .
Indeed,

T .unC1/ � T .u0/ D SY	nf C .En � SY	nEn/C en
so

T .unC1/� T .u0/ � f D .SY	nf � f /C .En � SY	nEn/C en:

By (2) from the smoothing hypothesis, we have

ˇ̌ˇ̌
SY	nf � f

ˇ̌ˇ̌
Y sCl1

	 Cr;s	s�rn jjf jjY rCl1 ! 0 as n!1:

Also,

ˇ̌ˇ̌
En � SY	nEn

ˇ̌ˇ̌
Y sCl1

	 Cs;s0	s�s0n jjEnjjY s0Cl1 for s0 � s
	 Cs;s0	s�s0n Cr;s	

M.s0Cl1/C��.r�r0/
n jjf jjY rCl1

using (18), for s0 large enough such that M.s0 C l1/ � r � r0
	 Cr;s	M.s0Cl1/Cs�s0C��.r�r0/n jjf jjY rCl1

	 Cr;s	s�rn jjf jjY rCl1 ! 0 as n!1

since M.s0 C l1/C �C r0 	M.l1/C �C r0 C s0 < s0.
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Finally,

jjenjjY sCl1 	 Cr;s	M.sCl1/C��.r�r0/�1n jjf jjY rCl1 ! 0 as n!1

since M.s C l1/C �C r0 	M.l1/C �C r0 C s < s.
This proves the claim.
Now since T W U ! Y 0 is continuous as a map from Xm0 to Y 0, and r0 > m0,

so un ! u in Xm0 , we have that T .un/! T .u/ in Y 0, hence T .u/ D T .u0/C f as
required.

This completes the proof.

Remark 4. We make a remark here on the rate of convergence of the above scheme
as compared to the Newton-Raphson scheme. Since we have in mind applying
the result in existence proofs in PDE problems, we have made no effort to optimise
the rate of convergence in the above scheme in any way. One of the key features
of the Newton-Raphson scheme is that the rate of convergence is quadratic, i.e. the
error at step nC1 is proportional to the square of the error at step n. However, we can
see in the above scheme that the error jjT .unC1/� T .u0/ � f jjXs is proportional to
	s�rn where r > s is such that f 2 Y rCl1 , and 	n increases like n. Thus according
to the crude bounds we have in the above proof, the ratio of the errors at steps n and
nC 1 may tend to 1 as n!1, although it may be possible to better by being more
careful.

4 Modified Version of Nash-Moser Iteration

4.1 Changes from Hörmander’s Iteration Scheme

Here, we introduce two modifications to Hörmander’s scheme which will allow it
to be applied as in Coulombel and Secchi [8]. The basic principle is that the error
T .un/�T .u0/�f in the above scheme tends to zero, so we may introduce additional
approximations into the scheme that can be controlled in terms of this error. One
disadvantage is that we lose regularity with respect to f since we need this error to
be controlled to high order.

Firstly, we note that it may be inconvenient to solve the linearised system

DT.u/v D g:
It may in fact be more convenient to solve the system

A.u/v D g
where the operator A.u/ is approximately equal to DT.u/, such that A.u/ � DT.u/
can be controlled in terms of the error T .u/ � T .u0/ � f . This modification was
made by Alinhac in [2] when he introduced the ‘good unknown’.
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Secondly, it may only be possible to solve the linearised system

A.u/v D g
under certain constraints on u which are not preserved by the iteration scheme,
which was the problem encountered by Coulombel and Secchi in [8]. Abstractly, we
suppose that the linear system can only be solved for u 2 V , whereas the iteration
scheme only preserves u 2 U . In fact under the iteration scheme we are trying to
solve the problem

A.vn/Pun D gn
where

vn D Snun:
Therefore we denote by R an operator that maps U to V and set wn D R.vn/ and
solve the system

A.wn/Pun D gn:
This will require that R.u/� u is controlled in terms of the error T .u/� T .u0/� f
and also that R and the smoothing operators satisfy some commutation estimates.

4.2 Statement and Proof of the Theorem

Theorem 2. Let fXsgs2I and fY sgs2I be two decreasing families of Banach
spaces, each satisfying the smoothing hypothesis. Let u0 2 X1 and let T W Um0 !
Y 0 be continuous, where Um0 � Xm0 is a bounded open neighbourhood of u0 in
Xm0 , for some m0 2 I . Suppose also T W U ! Y1�m1 for some fixed m1 2 I ,
where U WD Um0 \ X1. Let f 2 Y s1�maxfm1;m3g with jjf jjY s1�maxfm1;m3g 	 C0,
where s1;m3 2 I are defined below and C0 is a constant. Assume the following
conditions are satisfied, where the constants are independent of f (at least for
jjf jjY s1�maxfm1;m3g 	 C0).

1. T is twice differentiable in the sense of Definition 3 and
ˇ̌ˇ̌
D2T .u/.v1; v2/

ˇ̌ˇ̌
Y s

� C1
s .jjv1jjXsCm1 jjv2jjXm2 C jjv1jjXm2 jjv2jjXsCm1 C jjv1jjXm2 jjv2jjXm2 .1C jjujjXsCm3 //

(19)

for all u 2 U , v1; v2 2 X1 and s 2 I such that s C m1; s Cm3 2 I , for some
fixed numbers m1;m2;m3 2 I , where we assume maxfm1;m3g > 0, and the
constant C1

s > 0 is bounded for s bounded. Also,

jjDT.u/vjjY s 	 C2
s .jjvjjXsCm1 C jjvjjXm2 .1C jjujjXsCm3 // (20)
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for all u 2 U , v 2 X1 and s 2 I such that s C m1; s C m3 2 I , where the
constant C2

s > 0 is bounded for s bounded.
2. For each u 2 U , there exists an operator A.u/ W X1 ! Y1�m1 such that

jj.A.u/� DT.u//vjjY s
	 C3

s .jjvjjXsCm5 jjT .u/� T .u0/ � f jjY l3 C jjvjjXm6 jjT .u/� T .u0/ � f jjY sCl4

C jjvjjXm6 jjT .u/� T .u0/ � f jjY l3 .1C jjujjXsCm9 / (21)

for all v 2 X1 and s 2 I such that sCm5; sCm9 2 I , sC l4Cmaxfm1;m3g 	
s1, for some fixed numbers m5;m6;m9; l3; l4 2 I , where the constant C3

s > 0 is
bounded for s bounded.

Also, for each v 2 X1 that map defined on U by Av W u 7! A.u/v is
differentiable with

jjDAv.u/hjjY s
	 C4

s .jjhjjXsCm1 jjvjjXm2 C jjhjjXm2 jjvjjXsCm1 C jjhjjXm2 jjvjjXm2 .1C jjujjXsCm3 //

(22)

for all h 2 X1 and s 2 I such that s C m1; s C m3 2 I , where the constant
C4
s > 0 is bounded for s bounded.

3. For each u 2 V , where u0 2 V � X1�m7 , there exists a linear map B.u/ W
Y1 ! X1�maxfl1;m4Cm7g such that

A.u/B.u/ D id

and

jjB.u/gjjXs 	 C5
s .jjgjjY sCl1 C jjgjjY l1 jjujjXsCm4 / (23)

for all u 2 V , g 2 Y1 and s 2 I such that s C l1; s C m4 C m7 2 I , for
some fixed numbers l1;m4;m7 2 I , where the constant C5

s > 0 is bounded for s
bounded.

4. There exists an operator R W U ! V such that

jjR.u/� ujjX0 	 C jjT .u/� T .u0/ � f jjY l2 (24)

for some fixed number l2 2 I , where we assume l2 	 l1 (else increase l1), and
some constant C > 0. In addition

jjR.u/jjXs 	 C6
s .1C jjujjXm8 /.1C jjujjXsCm7 / (25)

for all u 2 U and s 2 I such that s Cm7 2 I , for some fixed number m8 2 I ,
where fSX	 g	�1 are the smoothing operators on .Xs/s2I , and the constant C6

s >

0 is bounded for s bounded.
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We also assume the commutator estimate

ˇ̌ˇ̌
R.SX	 u/� SX	 R.u/

ˇ̌ˇ̌
Xs

� Cr0 ;r;s.	
s�r .1C jjujjXm8 /.1C jjujjXrCm7 /C 	�r0

.1C jjujjXsCm7 /.1C jjujjXr0Cm8 //

(26)

for all u 2 U and r 0; r; s 2 I such that r C m7; s C m7; r
0 C m8 2 I , where

fSX	 g	�1 are the smoothing operators on .Xs/s2I , and the constant Cr 0;r;s > 0 is
bounded for r 0; r; s bounded.

Let r0 2 I with r0 > maxfm0Cmaxfm7;m8g; m4;m9; l1Cm1Cm2Cmaxfm7;m8g;
2m2C2maxfm7;m8g; l1Cm32

Cm2Cmaxfm7;m8g; l1Cmaxfm5;m6gC .l3� l1/C;
l1Cm6Cmaxfm1;m3gCl4g and let s1 2 I with r0C1 < s1, r0Cmaxfm1;m3gCl1 	
s1 and s1 Cmaxfl1;m4 Cm7g 2 I be sufficiently large depending on the constants
mi; li .

Then there exists a constant 0 < � 	 1 such that if

jjf jjY r0Cl1 	 �
we can find u 2 Um0 which solves the equation

T .u/ D T .u0/C f:
Moreover, suppose that f 2 Y s2�maxfm1;m3g where s2 2 I with s2 � s1 and s2 C
maxfl1;m4 C m7g 2 I , and suppose jjf jjY s2�maxfm1;m3g 	 Cs2 . Assume also that
the estimate (21) holds for all s 2 Œ0; s2 � l4 � maxfm1;m3g�. Then for each r 2
Œr0; s2 � maxfm1;m3g � l1� and s 2 I with s < r , assuming that s1 C r � r0 C
maxfl1;m4 Cm7g 2 I , we have u 2 Xs , and there exists a constant Kr;s , possibly
increasing with Cs2 , but otherwise independent of f , such that

jju � u0jjXs 	 Kr;s jjf jjY rCl1

Proof.
Step 1 – Setup of the iteration scheme
Assume that jjf jjY r0Cl1 	 �, where 0 < � 	 1 will be chosen later.

Denote the smoothing operators on .Xs/s2I by fSX	 g	�1 and the smoothing
operators on .Y s/s2I by fSY	 g	�1.

We use an iteration scheme to construct a sequence .un/n�0 inX1 which we aim
to show converges to a solution u 2 Um0 of T .u/ D T .u0/C f .

For n � 0, define

	n D 	0 C n

where 	0 > 1 will be chosen later depending only on r0, the constantsmi ,li and the
constants in the smoothing hypothesis and in the inequalities satisfied by DT,D2T ,
A, B and R.
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Note that

	nC1 	 	n C 1 	 2	n:
For n � 0, define

vn D SX	nun

wn D R.vn/
Pun D B.wn/gn

unC1 D un C Pun
where gn is defined below.

Note that the overdotPis simply notation indicating a sort of difference and does
not denote differentiation.

For n � 0, define

g0 D SY	0f
gnC1 D .SY	nC1

� SY	n/.f � En/ � SY	nC1
en

where

En D
n�1X
mD0

em

(so E0 D 0), and the error en is defined below, for n � 0,

e0
n D .A.un/� A.wn//Pun;
e00
n D T .un C Pun/� T .un/ �A.un/Pun;
en D e0

n C e00
n :

Note that since g0 is defined in terms of f only, and we are given u0, from which
v0 is obtained immediately, the iteration scheme can be determined for n � 0 in the
order Pun, unC1, vnC1, wnC1, e0

n, e00
n , en, En, gnC1.

Note that en is defined so that it measures how well T .unC1/ � T .un/ is
approximated by A.wn/Pun, by which we mean

T .unC1/� T .un/ D A.wn/Pun C en
D gn C en:

Also note that the formula for gnC1 can be rearranged to give

gnC1 D .SY	nC1
f � SY	nf /� .SY	nC1

EnC1 � SY	nEn/:
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We thus obtain

T .unC1/ � T .u0/ D
nX

mD0
.T .umC1/� T .um//

D
nX

mD0
gm C

nX
mD0

em

D SY	nf � SY	nEn C EnC1

D SY	nf C .En � SY	nEn/C en

which we hope converges to f as n ! 1, since, roughly speaking, SY	n ! id and
en ! 0.
Step 2 – Obtaining estimates for the iterates via induction
We will show the following inductive hypothesis, ŒHn�, holds.

jjPunjjXs 	 K1 jjf jjY r0Cl1 	
s�r0�1
n for all s 2 Œ0; s1�

jjT .un/� T .u0/� f jjY sCl1 	 K2 jjf jjY r0Cl1 	
s�r0
n for s 2 Œ0; r0�

where the constants K1;K2 > 0 will be chosen later, with K1;K2 independent of
n, f and �, but depending on 	0, and with K2 depending on K1. We will choose
� sufficiently small such that K1 jjf jjY r0Cl1 	 K1� 	 1 and K2 jjf jjY r0Cl1 	
K2�	 1.

In what follows, Cs > 0 represents a constant, which is independent of n, f and
�, and is bounded for s bounded. It will also be independent of 	0, which will allow
us to choose 	0 so that 	n is large compared to Cs for s in a certain range. We will
write C > 0 for a constant which is also independent of s.

Assume now that ŒHm� is true for all 0 	 m 	 n and let us show that ŒHnC1�
follows. (We will leave the proof of ŒH0� until later.)

Pick a real number 0 < � < 1 such that r0 > maxfm0 C maxfm7;m8g; m4;m9;

l1Cm1Cm2Cmaxfm7;m8g; 2m2C2maxfm7;m8g; l1Cm32
Cm2Cmaxfm7;m8g;

l1 Cmaxfm5;m6g C .l3 � l1/C; l1 Cm6 Cmaxfm1;m3g C l4g C 2� and
� < maxfm1;m3g.

For s 2 I , define

P.s/ D
(
.s � r0/C for js � r0j � �;
� for js � r0j < �:

We claim that the following estimates for 0 	 m 	 nC 1 follow directly from ŒHm�

for 0 	 m 	 n.
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jjum � u0jjXs 	 CsK1 jjf jjY r0Cl1 	
P.s/
m for s 2 Œ0; s1�;

(27)
ˇ̌ˇ̌
SX	m.um � u0/

ˇ̌ˇ̌
Xs
	 CsK1 jjf jjY r0Cl1 	

P.s/
m for s 2 I;

(28)
ˇ̌ˇ̌
.um � u0/� SX	m.um � u0/

ˇ̌ˇ̌
Xs
	 CsK1 jjf jjY r0Cl1 	

.s�r0/
m for s 2 Œ0; s1�;

(29)

jjum � vmjjXs 	 Cs	s�r0m for s 2 Œ0; s1�;
(30)

jjvmjjXs 	 Cs	P.s/m for s 2 I;
(31)

jjumjjXs 	 Cs	P.s/m for s 2 Œ0; s1�:
(32)

Indeed, the proofs of (27)–(32) are exactly the same as the proofs of (6)–(11).
We also claim that, for 0 	 m 	 n, we have

jjvm � wmjjXs 	 Cs	sCmaxfm7;m8g�r0
m for s 2 I such that s Cm7 2 I;

(33)

jjum � wmjjXs 	 Cs	sCmaxfm7;m8g�r0
m for s 2 Œ0; s1�;

(34)

jjwmjjXs 	 Cs	maxfP.s/;sCmaxfm7;m8g�r0g
m for s 2 I such that s Cm7 2 I:

(35)

Indeed, first we assume s 	 r0 C �. We have

jjvm � wmjjXs
D ˇ̌ˇ̌SX	mum �R.SX	mum/

ˇ̌ˇ̌
Xs

	 ˇ̌ˇ̌SX	m.um � R.um//
ˇ̌ˇ̌
Xs
C ˇ̌ˇ̌SX	mR.um/ �R.SX	mum/

ˇ̌ˇ̌
Xs
:

Now, using the smoothing hypothesis, estimate (24) and ŒHn�, we obtain

ˇ̌ˇ̌
SX	m.um � R.um//

ˇ̌ˇ̌
Xs
	 Cs	sm jjum �R.um/jjX0
	 Cs	sm jjT .um/� T .u0/ � f jjY l2
	 Cs	s�r0m K2 jjf jjY r0Cl1

	 Cs	s�r0m

(where we have used K2 jjf jjY r0Cl1 	 K2� 	 1).
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For the second term, using the estimates (26) and (32), we obtain, choosing
r; r 0 � r0 C �,

ˇ̌ˇ̌
SX	mR.um/ �R.SX	mum/

ˇ̌ˇ̌
Xs

	 Cs.	s�rm .1C jjumjjXm8 /.1C jjumjjXrCm7 /

C 	�r 0

m .1C jjumjjXsCm7 /.1C jjumjjXr0Cm8 //

	 Cs.	s�rm .1C 	rCm7�r0m /C 	�r 0

m 	P.sCm7/m .1C 	r 0Cm8�r0
m //

	 Cs	sCmaxfm7;m8g�r0
m :

If s � r0 C �, then we can directly estimate, using (32) and (25),

jjvm � wmjjXs
D ˇ̌ˇ̌SX	mum � R.SX	mum/

ˇ̌ˇ̌
Xs

	 ˇ̌ˇ̌SX	mum
ˇ̌ˇ̌
Xs
C ˇ̌ˇ̌R.SX	mum/

ˇ̌ˇ̌
Xs

	 Cs jjumjjXs C Cs.1C jjumjjXm8 /.1C jjumjjXsCm7 /

	 Cs	s�r0m C Cs	sCm7�r0m

	 Cs	sCm7�r0m :

This proves (33). Now, using (33) and (30), for s 2 Œ0; s1�, we have

jjum � wmjjXs 	 jjwm � vmjjXs C jjvm � umjjXs
	 Cs	sCmaxfm7;m8g�r0

m :

This proves (34).
Using (33) and (31), for s 2 I , we have

jjwmjjXs 	 jjwm � vmjjXs C jjvmjjXs
	 Cs	maxfP.s/;sCmaxfm7;m8g�r0g

m :

This proves (35).
This completes the proof of the claim.
Note that, using (27) and (30), we have

jjvm � u0jjXm0 	 jjvm � umjjXm0 C jjum � u0jjXm0
	 C	m0�r0m C CK1�	

P.m0/
m

	 C	m0�r0m C CK1�:
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Thus by taking � sufficiently small depending onK1 and C , and 	0 sufficiently large
depending onC , we have vn, vnC1 2 U . Similarly we can ensure wn 2 U using (34).
Also note that (6) in the case s D m0 implies un 2 U for � sufficiently small, and
ŒHn� implies that unC Pun 2 U for � sufficiently small. Note that the same argument
also shows that the line segments Œun; unCPun� and Œun;wn� are in U for � sufficiently
small.

We claim that the following estimate holds.

jjT .un/� T .u0/ � f jjY s 	 Cs	sCmaxfm1;m3g�r0
n for s 2 Œ0; s1 �maxfm1;m3g�:

(36)

Indeed, for s 2 Œr0; s1 � maxfm1;m3g�, using Taylor’s theorem, (20) and (27), we
have

jjT .un/� T .u0/ � f jjY s
	 jjT .un/� T .u0/jjY s C jjf jjY s

	
ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ sup
t2Œ0;1�

DT.u0 C t.un � u0//.un � u0/

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
Y s

C C0

	 Cs.jjun � u0jjXsCm1 C jjun � u0jjXm2 .1C jjun � u0jjXsCm3 //C C0

	 Cs	sCmaxfm1;m3g�r0
n

(assuming that maxfm1;m3g � �). We combine this with ŒHn� for s 2 Œ0; r0� to get

jjT .un/ � T .u0/� f jjY s 	 Cs	sCmaxfm1;m3g�r0
n

for all s 2 Œ0; s1 �maxfm1;m3g�.
Estimate of e0

n. We claim that for all s 2 Œ0; s1 �maxfm1;m3g�,
ˇ̌ˇ̌
e0
n

ˇ̌ˇ̌
Y s
	 CsK1 jjf jjY r0Cl1 	

M 0.s/�1C�
n

where

M 0.s/ D maxfs Cm1 Cm2 Cmaxfm7;m8g � 2r0;
.s Cm3 � r0/C C 2maxfm7;m8g C 2m2 � 2r0g:

Applying the estimate (22) together with Taylor’s theorem, ŒHn� and the estimates
(34) and (35), we have, for s 2 Œ0; s1 �maxfm1;m3g�,

ˇ̌ˇ̌
e0
n

ˇ̌ˇ̌
Y s

D jj.A..un � wn/C wn/� A.wn//PunjjY s
	 Cs.jjPunjjXsCm1 jjun � wnjjXm2 C jjPunjjXm2 jjun � wnjjXsCm1
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C jjPunjjXm2 jjun � wnjjXm2 .1C jjwnjjXsCm3 C jjun � wnjjXsCm3 //

	 CsK1 jjf jjY r0Cl1 .	
sCm1�r0�1
n 	m2�r0Cmaxfm7;m8g

n C 	m2�r0�1n 	sCmaxfm7;m8gCm1�r0
n

C 	m2�r0�1n 	m2Cmaxfm7;m8g�r0
n .1C 	P.sCm3/Cmaxfm7;m8g

n C 	sCmaxfm7;m8gCm3�r0
n //

	 CsK1 jjf jjY r0Cl1 	
M 0.s/�1C�
n :

Estimate of e00
n . We claim that for all s 2 Œ0; s1 �maxfm1C l4;m3 C l4;m5;m9g�,

ˇ̌ˇ̌
e00
n

ˇ̌ˇ̌
Y s
	 CsK1 jjf jjY r0Cl1 	

M.s/�1C�
n

where

M.s/ D maxfs Cm1 Cm2 Cmaxfm7;m8g � 2r0;
.s Cm3 � r0/C C 2maxfm7;m8g C 2m2 � 2r0;
s Cmaxfm5;m6g C .l3 � l1/C � 2r0; s Cm6 Cmaxfm1;m3g C l4 � 2r0g:

Indeed, we have

e00
n D T .un C Pun/� T .un/�A.un/Pun
D T .un C Pun/� T .un/�DT.un/Pun C .A.un/� DT.un//Pun:

Applying Taylor’s theorem, (19), ŒHn� and the estimate (32), we have,
for s 2 Œ0; s1 �maxfm1;m3g�,

jjT .un C Pun/� T .un/� DT.un/PunjjY s
	 sup

t2Œ0;1�

ˇ̌ˇ̌
D2T .un C t Pun/.Pun; Pun/

ˇ̌ˇ̌
Y s

	 Cs.jjPunjjXsCm1 jjPunjjXm2 C jjPunjj2Xm2 .1C sup
t2Œ0;1�

jjun C t PunjjXsCm3 //

	 Cs.K1 jjf jjY r0Cl1 	
sCm1�r0�1
n K1 jjf jjY r0Cl1 	

m2�r0�1
n

CK2
1 jjf jj2Y r0Cl1

	2m2�2r0�2n .1C 	P.sCm3/n CK1 jjf jjY r0Cl1 	
sCm3�r0�1
n //

	 	�1
n CsK1 jjf jjY r0Cl1 	

M 0.s/�1C�
n

	 CsK1 jjf jjY r0Cl1 	
M 0.s/�1C�
n

where we have usedK1 jjf jjY r0Cl1 	 K1� 	 1.
For s 2 Œ0; s1 �maxfm5;m9;m1 C l4;m3 C l4g�, we have, using (21), ŒHn�, and

(36),
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jj.A.un/ �DT.un//PunjjY s
	 Cs.jjPunjjXsCm5 jjT .un/ � T .u0/� f jjY l3 C jjPunjjXm6 jjT .un/� T .u0/� f jjY sCl4

C jjPunjjXm6 jjT .un/� T .u0/� f jjY l3 .1C jjujjXsCm9 //

	 CsK1 jjf jjY r0Cl1 .	
sCm5�r0�1
n 	

.l3�l1/C�r0
n C 	m6�r0�1n 	

sCmaxfm1;m3gCl4�r0
n

C 	m6�r0�1n 	
.l3�l1/C�r0
n 	

.sCm9�r0/CC�
n /

	 CsK1 jjf jjY r0Cl1 	
M 00.s/�1C�
n

where

M 00.s/ D maxfs Cm5 C .l3 � l1/C � 2r0; s Cm6 Cmaxfm1;m3g C l4 � 2r0;
s Cm6 C .l3 � l1/C � 2r0g

where we have used r0 � m9.
Adding the two above estimates yields the estimate for e00

n .

Estimate of en. Adding the estimates for e0
n and e00

n , we obtain

jjenjjY s 	 CsK1 jjf jjY r0Cl1 	
M.s/�1C�
n

for all s 2 Œ0; s1 �maxfm1 C l4;m3 C l4;m5;m9g�.
Estimate of gnC1. We claim that for all s 2 I ,

jjgnC1jjY s 	 Cs.K1 jjf jjY r0Cl1 	
M.s/�1C�
n C jjf jjY r0Cl1 	

s�r0�l1�1
n /:

Indeed, we have

gnC1 D .SY	nC1
� SY	n/.f � En/� SY	nC1

en:

Note that for any z 2 Y s0 ,
ˇ̌
ˇ
ˇ̌
ˇ.SY	nC1

� SY	n/z
ˇ̌
ˇ
ˇ̌
ˇ
Y s
	 Cs0;s	 s�s0�1n jjzjjY s0

by the smoothing hypothesis (3) and Taylor’s theorem.
Setting s0 D r0 C l1, we have

ˇ̌
ˇ
ˇ̌
ˇ.SY	nC1

� SY	n/f
ˇ̌
ˇ
ˇ̌
ˇ
Y s
	 Cs	s�r0�l1�1n jjf jjY r0Cl1 :
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We also have
ˇ̌
ˇ
ˇ̌
ˇ.SY	nC1

� SY	n/En
ˇ̌
ˇ
ˇ̌
ˇ
Y s
	 Cs0;s	 s�s0�1n jjEnjjY s0 :

Now, for s0 2 Œ0; s1 �maxfm1 C l4;m3 C l4;m5;m9g�, we have, from the estimate
for en,

jjEnjjY s0 D
ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
n�1X
mD0

em

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
Y s

0

	 Cs0K1 jjf jjY r0Cl1

n�1X
mD0

	M.s
0/�1C�

m

	 Cs0K1 jjf jjY r0Cl1 	
M.s0/C�
n (37)

if M.s0/ � 0, by the integral comparison used before. Note that M.s0/ has slope 1
for large enough s0 depending on r0 and the constantsmi; li , so to achieveM.s0/ � 0
it suffices to take s0 large in relation to r0 and the constants mi; li . To do this we
require s1 sufficiently large in relation to r0 and the constantsmi; li .

Hence
ˇ̌
ˇ
ˇ̌
ˇ.SY	nC1

� SY	n/En
ˇ̌
ˇ
ˇ̌
ˇ
Y s
	 Cs0Cs0;sK1 jjf jjY r0Cl1 	

M.s0/Cs�s0�1C�
n

	 CsK1 jjf jjY r0Cl1 	
M.s/�1C�
n

by choosing s0 sufficiently large compared to r0 and the constants mi so that M.s/
has slope 1 for s � s0. (Hence M.s0/ � s0 	 M.s/ � s for all s since M.s/ � s
is decreasing for s 	 s0 and constant for s � s0.) Again, to do this we require s1
sufficiently large in relation to r0 and the constantsmi; li . This fixes s1.

Similarly, for s0 sufficiently large, we have

ˇ̌
ˇ
ˇ̌
ˇSY	nC1

en

ˇ̌
ˇ
ˇ̌
ˇ
Y s
	 Cs0;s	 s�s0n jjenjjY s0

	 Cs0;sCs0K1 jjf jjY r0Cl1 	
M.s0/Cs�s0�1C�
n

	 CsK1 jjf jjY r0Cl1 	
M.s/�1C�
n :

Hence the estimate for gnC1 holds.

Estimate of T.unC1/ � T.u0/ � f We have

T .unC1/� T .u0/ � f D .SY	nf � f /C .En � SY	nEn/C en:

Let s 2 Œ0; r0�.
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By (2) from the smoothing hypothesis, we have

ˇ̌ˇ̌
SY	nf � f

ˇ̌ˇ̌
Y sCl1

	 Cs	s�r0n jjf jjY r0Cl1 :

Also,

ˇ̌ˇ̌
En � SY	nEn

ˇ̌ˇ̌
Y sCl1

	 Cs;s0	s�s0n jjEnjjY s0Cl1 for s0 � s
	 Cs;s0	s�s0n Cs	

M.s0Cl1/C�
n K1 jjf jjY r0Cl1

using (37), for s0 large enough such that M.s0 C l1/ � 0
	 Cs	M.s0Cl1/Cs�s0C�n K1 jjf jjY r0Cl1

	 Cs	s�r0n K1 jjf jjY r0Cl1

since M.s0 C l1/C � 	M.l1/C �C s0 < s0 � r0.
Finally,

jjenjjY sCl1 	 Cs	M.sCl1/C��1n K1 jjf jjY r0Cl1

	 Cs	s�r0�1n K1 jjf jjY r0Cl1

since M.s C l1/C � 	M.l1/C �C s < s � r0.
Hence we have

jjT .unC1/ � T .u0/ � f jjY sCl1 	 Cs	s�r0n K1 jjf jjY r0Cl1

for s 2 Œ0; r0�. Thus, by choosingK2 sufficiently large depending on K1 and Cs for
s 2 Œ0; r0�, we have

jjT .unC1/� T .u0/� f jjY sCl1 	 K2 jjf jjY r0Cl1 	
s�r0
nC1 (38)

for s 2 Œ0; r0�.
The estimates

jjvnC1 � wnC1jjXs 	 Cs	s�r0Cmaxfm7;m8g
nC1 for s 2 I such that s Cm7 2 I

(39)

jjunC1 � wnC1jjXs 	 Cs	s�r0Cmaxfm7;m8g
nC1 for s 2 Œ0; s1�

(40)

jjwnC1jjXs 	 Cs	maxfP.s/;sCmaxfm7;m8g�r0g
nC1 for s 2 I such that s Cm7 2 I

(41)

now hold, and are proved exactly as for the estimates (33)–(35) using the estimate
(38) to go from n to nC 1.
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Estimate of PunC1. We have

PunC1 D B.wnC1/gnC1:

Hence, for all s 2 I such that sC l1; sCm4Cm7 2 I , using (23), the estimate (35)
and the estimate for gnC1, we have

jjPunC1jjXs
	 Cs.jjgnC1jjY sCl1 C jjgnC1jjY l1 .1C jjwnC1jjXsCm4 //

	 Cs.K1 jjf jjY r0Cl1 	
M.sCl1/�1C�
nC1 C jjf jjY r0Cl1 	

s�r0�1
nC1 C

.K1 jjf jjY r0Cl1 	
M.l1/�1C�
nC1 C jjf jjY r0Cl1 	

�r0�1
nC1 /.1C 	maxfP.sCm4/;sCmaxfm7;m8g�r0g

nC1 //

	 Cs.K1 jjf jjY r0Cl1 	
M.l1/Cs�1C�
nC1 C jjf jjY r0Cl1 	

s�r0�1
nC1 / (42)

since P.sCm4/ 	 s because r0 > m4C2� and sCmaxfm7;m8g� r0 	 s because
r0 > maxfm7;m8g, and M.l1 C s/ 	M.l1/C s because M has slope at most 1.

We want to obtain

jjPunC1jjXs 	 K1 jjf jjY r0Cl1 	
s�r0�1
nC1

for s 2 Œ0; s1�.
To make the first term sufficiently small, we require

�� WD M.l1/C r0 C � < 0:

Then we can choose 	0 large enough so that

Cs	
M.l1/Cs�1C�
nC1 D Cs	s�r0�1nC1 	

��
nC1 	 Cs	s�r0�1nC1 	

��
0 	

1

2
	
s�r0�1
nC1

for all s 2 Œ0; s1�.
We note that M.l1/ C r0 C � < 0 if and only if r0 � � > l1 C m1 C m2 C

maxfm7;m8g, r0�� > 2m2C2maxfm7;m8g, r0�� > m2Cmaxfm7;m8gC l1Cm3
2

,
r0�� > l1Cmaxfm5;m6gC .l3� l1/C and r0�� > l1Cm6Cmaxfm1;m3gC l4,
which indeed hold by the choice of r0 and �.

To make the second term sufficiently small, we take K1 � 2Cs for all s 2 Œ0; s1�.
This gives ŒHnC1�.

Proof of ŒH0� We have

g0 D SY	0f
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and

v0 D SX	0u0

and

w0 D R.v0/:
Hence

jjPu0jjXs D
ˇ̌ˇ̌
B.R.SX	0u0//S

Y
	0
f
ˇ̌ˇ̌
Xs

	 Cs.
ˇ̌ˇ̌
SY	0f

ˇ̌ˇ̌
Y sCl1

C ˇ̌ˇ̌SY	0f
ˇ̌ˇ̌
Y l1
.1C ˇ̌ˇ̌R.SX	0u0/

ˇ̌ˇ̌
XsCm4

//

	 Cs
ˇ̌ˇ̌
SY	0f

ˇ̌ˇ̌
Y sCl1

	 Cs jjf jjY r0Cl1 	
.s�r0/C
0 by (1) and (2) from the smoothing hypothesis

	 K1 jjf jjY r0Cl1 	
s�r0�1
0

for all s 2 Œ0; s1�, assuming that K1 is sufficiently large compared to 	0 and Cs for
s 2 Œ0; s1�.

Now for s 2 Œ0; r0�,

jjT .u0/� T .u0/ � f jjY sCl1 D jjf jjY sCl1

	 K2 jjf jjY r0Cl1 	
s�r0
0

for all s 2 Œ0; r0�, assuming that K2 is sufficiently large compared to 	0.
This proves ŒH0�.

Step 3 – Better estimates if f 2 Y s2�maxfm1;m3g for s2 � s1
Assume f 2 Y s2�maxfm1;m3g where s2 2 I with s2 � s1 and s2 C maxfl1;m4 C
m7g 2 I , and suppose jjf jjY s2�maxfm1;m3g 	 Cs2 . Let r 2 I with r � r0 be such that
s1 C r � r0 C maxfl1;m4 Cm7g 2 I . We will show that, for all n � 0 and for all
s 2 Œ0; s2�, we have

jjPunjjXs 	 Cr;s jjf jjY rCl1 	
s�r�1
n (43)

where the constant Cr;s > 0 is independent of n and f , except that it may increase
with jjf jjY s2�maxfm1;m3g .

Firstly, note that we have proved ŒHn� for n � 0, and hence all the estimates
from step 2 which were conditional on the inductive hypothesis are now valid, and
we may use them as we wish.

We are going to prove the above statement by an induction argument, but not an
induction on n. We are going to use the estimates from step 2 for each n separately
to obtain the above inequality, and the constant will be independent of n because the
constants from step 2 are independent of n.



The Nash-Moser Iteration Technique with Application to Characteristic. . . 353

We claim by induction on k � 0 that for all s 2 Œ0; s2�, we have

jjPunjjXs 	 Ck;r;s jjf jjY rCl1 	
s�r0��k�1
n ŒGk�

where the constant Ck;r;s > 0 is independent of n and f , and

�k D minfk�; r � r0g:

Indeed, the estimate (42) for PunC1 in step 2 implies that

jjPunjjXs 	 Cs jjf jjY r0Cl1 	
s�r0�1
n (44)

for all s 2 I such that s Cmaxfl1;m4 Cm7g 2 I (not just s 2 Œ0; s1� which would
follow directly from ŒHn�).

Using this, we can obtain the following new versions of the estimates (27),
(30)–(32) for all s 2 Œ0; s2� (not just s 2 Œ0; s1�) via exactly the same calculations

jjum � u0jjXs 	 Cs	s�r0m ; (45)

jjum � vmjjXs 	 Cs	s�r0m ; (46)

jjvmjjXs 	 Cs	P.s/m ; (47)

jjumjjXs 	 Cs	P.s/m : (48)

We then obtain, for all s 2 Œ0; s2�, the estimates

jjwm � vmjjXs 	 Cs	sCmaxfm7;m8g�r0
m ; (49)

jjwm � umjjXs 	 Cs	sCmaxfm7;m8g�r0
m ; (50)

jjwmjjXs 	 Cs	maxfP.s/;sCmaxfm7;m8g�r0g
m : (51)

Using the fact that jjf jjY r0Cl1 	 jjf jjY rCl1 , (44) immediately implies ŒG0�.
Now we assume ŒGk� holds and aim to show ŒGkC1� holds.
Now we want to obtain new estimates for e0

n and e00
n .

First we estimate e0
n. Note that in the estimate for e0

n there was at least one factor
involving Pun in each term. If we estimate this one factor using the new estimate
given by ŒGk� and the other quantities using (44) and the slightly modified estimates
(45)–(48), we obtain

ˇ̌ˇ̌
e0
n

ˇ̌ˇ̌
Y s
	 Ck;r;s jjf jjY rCl1 	

M 0.s/�1C���k
n

for all s 2 Œ0; s2 �maxfm1;m3g�. The constant Ck;r;s is independent of f since we
have only used the new estimate given by ŒGk� in one factor, and the other estimates
we have used involve jjf jjY r0Cl1 , which is bounded by � 	 1.
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Now we estimate e00
n . The first part of the estimate can be modified in exactly the

same way as above, to obtain

jjT .un C Pun/� T .un/� DT.un/PunjjY s 	 Ck;r;s jjf jjY rCl1 	
M 0.s/�1C���k
n

for all s 2 Œ0; s2 �maxfm1;m3g�.
We proceed similarly for the second part of the estimate of e00

n to obtain

jj.A.un/ �DT.un//PunjjY s 	 Ck;r;s jjf jjY rCl1 	
M 00.s/�1C���k
n

for all s 2 Œ0; s2 �maxfm5;m9;m1 C l4;m3 C l4g�.
Here, the constant depends on jjf jjY s2�maxfm1;m3g , and we need to assume that the

estimate (21) holds for all s 2 Œ0; s2 � l4 �maxfm1;m3g�.
Thus we obtain the estimate

jjenjjY s 	 Ck;r;s jjf jjY rCl1 	
M.s/�1C���k
n

for all s 2 Œ0; s2 �maxfm5;m9;m1 C l4;m3 C l4g�.
This implies that for s0 2 Œ0; s2 �maxfm5;m1 C l4;m3 C l4g�, we have

jjEnjjY s0 D
ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
n�1X
mD0

em

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
Y s

0

	 Ck;r;s0 jjf jjY rCl1

n�1X
mD0

	M.s
0/�1C���k

m

	 Ck;r;s0 jjf jjY rCl1 	
M.s0/C���k
n (52)

as long asM.s0/ � �k . It is possible to pick such an s0 if s1Cr�r0Cmaxfl1;m4g 2 I
given the fact thatM.s1 �maxfm5;m9;m1C l4;m3C l4g/ � 0 andM.s/ has slope
1 for s � s1 �maxfm5;m9;m1 C l4;m3 C l4g.

Hence
ˇ̌
ˇ
ˇ̌
ˇ.SY	nC1

� SY	n/En
ˇ̌
ˇ
ˇ̌
ˇ
Y s
	 Cs0;kCk;r;s	M.s0/Cs�s0�1C���kn

	 Ck;r;s jjf jjY rCl1 	
M.s/�1C���k
n

as long as M.s0/ � �k and s0 is sufficiently large compared to r0 and the constants
mi; li so that M.s/ has slope 1 for s � s0.

We also have the estimate
ˇ̌
ˇ
ˇ̌
ˇSY	nC1

en

ˇ̌
ˇ
ˇ̌
ˇ
Y s
	 Ck;r;s jjf jjY rCl1 	

M.s/�1C���k
n :
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In addition we can use the new estimate
ˇ̌
ˇ
ˇ̌
ˇ.SY	nC1

� SY	n/f
ˇ̌
ˇ
ˇ̌
ˇ
Y s
	 Cr;s	s�r�l1�1n jjf jjY rCl1 :

This gives us the following new estimate for gnC1, for all s 2 I ,

jjgnC1jjY s 	 Ck;r;s jjf jjY rCl1 .	
M.s/�1C���k
n C 	s�r�l1�1n /:

From this we obtain,for all s 2 Œ0; s2�,

jjPunjjXs 	 Cr;s jjf jjY rCl1 .	
M.l1/Cs�1C���k
n C 	s�r�1n /

	 Cr;s jjf jjY rCl1 .	
s�r0�1��k��
n C 	s�r�1n /

	 Cr;s jjf jjY rCl1 	
s�r0��kC1�1
n

where we have used the fact that M.l1/C r0 C � D �� .
This is ŒGkC1�.
For large enough k, we have k� � r � r0, so �k D r � r0 and this gives (43).

Step 4 – Convergence to a solution
Assume as above that f 2 Y s2�maxfm1;m3g where s2 2 I with s2 � s1 and s2 C
maxfl1;m4;m7g 2 I , and suppose jjf jjY s2�maxfm1;m3g 	 Cs2 . Let r � r0.

Using (13), we have

nX
mD0
jjumC1 � umjjXs D

nX
mD0
jjPumjjXs

	 Cr;s jjf jjY rCl1 	
.s�r/C
nC1

for r ¤ s, with r; s 2 Œ0; s2�.
Thus

nX
mD0
jjumC1 � umjjXs

converges as n!1 for s < r . Hence, by completeness, un ! u in Xs as n!1,
for all s < r , for some u 2 \0�s<rXs .

Note the above calculation also implies that

jjun � u0jjXs 	 Cr;s jjf jjY rCl1

for s < r , so we have

jju � u0jjXs 	 Cr;s jjf jjY rCl1 :
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Next we claim that

T .unC1/ � T .u0/! f

in Xs as n!1, for all s < r .
Indeed,

T .unC1/ � T .u0/ D SY	nf C .En � SY	nEn/C en
so

T .unC1/� T .u0/ � f D .SY	nf � f /C .En � SY	nEn/C en:
By (2) from the smoothing hypothesis, we have

ˇ̌ˇ̌
SY	nf � f

ˇ̌ˇ̌
Y sCl1

	 Cr;s	s�rn jjf jjY rCl1 ! 0 as n!1:

Also,

ˇ̌ˇ̌
En � SY	nEn

ˇ̌ˇ̌
Y sCl1

	 Cs;s0	s�s0n jjEnjjY s0Cl1 for s0 � s
	 Cs;s0	s�s0n Cr;s	

M.s0Cl1/C��.r�r0/
n jjf jjY rCl1

using (18), for s0 large enough such that M.s0 C l1/ � r � r0
	 Cr;s	M.s0Cl1/Cs�s0C��.r�r0/n jjf jjY rCl1

	 Cr;s	s�rn jjf jjY rCl1 ! 0 as n!1

since M.s0 C l1/C �C r0 	M.l1/C �C r0 C s0 < s0.
Finally,

jjenjjY sCl1 	 Cr;s	M.sCl1/C��.r�r0/�1n jjf jjY rCl1 ! 0 as n!1

since M.s C l1/C �C r0 	M.l1/C �C r0 C s < s.
This proves the claim.
Now since T W U ! Y 0 is continuous as a map from Xm0 to Y 0, and r0 > m0,

so un ! u in Xm0 , we have that T .un/! T .u/ in Y 0, hence T .u/ D T .u0/C f as
required.

This completes the proof.

5 Applying the Theorem in Sobolev Spaces

This section assumes familiarity with the standard Sobolev spaces W k;p.˝/ of
functions on the domain ˝ with weak derivatives up to order k in Lp.˝/, and
Sobolev embedding theorems – see for example the chapter of Evans [11] entitled
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‘Sobolev Spaces’, or see Adams and Fournier [1] for a more complete reference.
We do however give the definition of fractional Sobolev spaces below, since these
are slightly less standard. See, for example, Adams and Fournier [1] for much more
detail.

5.1 The Smoothing Operators in H s

Definition 5. For d 2 N and 0 	 s 2 R we define the Sobolev space of order s,
Hs.Rd /, by

Hs.Rd / D fu 2 L2.Rd / W .1C j�j2/ s2 Ou.�/ 2 L2.Rd /g

where Ou denotes the Fourier transform of u, which we also denote by F Œu�. We
endowHs with norm jj�jjHs given by

jjujjHs D
ˇ̌
ˇ
ˇ̌
ˇ.1C j�j2/ s2 Ou.�/

ˇ̌
ˇ
ˇ̌
ˇ
L2
:

ThenHs.Rd / is a Banach space for each s and .Hs.Rd /; jj�jjHs/s�0 is a decreasing
family of Banach spaces, in the sense of Definition 1.

Notation. For � 2 C1.Rd / (with values in R), write �� D ��d�.x
�
/.

Notation. We write S .Rd / for the Schwartz space of smooth functions which
decay faster than the reciprocal of any polynomial, and use the well-known fact
that the Fourier transform is an automorphism of S .Rd /.

Proposition 2. The decreasing family of Banach spaces .Hs.Rd /; jj�jjHs /s�0 sat-
isfies the smoothing hypothesis 4. Moreover, the smoothing operators can be taken
as S	u D � 1

	
� u for 	 � 1, where � 2 S .Rd / is a specially constructed mollifier.

Proof. Let O� 2 C1
c .R

d / with 0 	 O� 	 1 be an even function such that O� D 1 on
B1

2
.0/ and O� D 0 outside B1.0/, where Br.x/ denotes the closed ball of radius r

about x.
Define � to be the inverse Fourier transform of O�, which is real since O� is even,

and � 2 S .Rd /, since O� 2 S .Rd /.
For u 2 H0.Rd / D L2.Rd /, we define

S	u D � 1
	
� u:

Let 0 	 r; s 2 R and u 2 Hs.Rd /.
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Note that, by properties of the Fourier transform,

bS	u.�/ Dc� 1
	
.�/Ou.�/

D O�. �
	
/Ou.�/:

Hence
Z

Rd

.1C j�j2/r
ˇ̌
ˇbS	u.�/

ˇ̌
ˇ
2

d� D
Z

Rd

.1C j�j2/r O�. �
	
/2 Ou.�/2d�

D
Z

Rd

.1C j�j2/r�s O�. �
	
/2.1C j�j2/s Ou.�/2d�

	 jjujj2Hs sup
�2Rd

.1C j�j2/r�s O�. �
	
/2

	 jjujj2Hs .1C 	2/.r�s/C
	 Cr;s jjujj2Hs 	

2.r�s/C

since 0 	 O� 	 1 and O�. �
	
/ D 0 for � � 	 .

This proves (1), and also that S	 W H0.Rd /! \s�0Hs.Rd /.
Now

Z

Rd

.1C j�j2/r
ˇ̌
ˇ2u � S	u.�/

ˇ̌
ˇ
2

d� D
Z

Rd

.1C j�j2/r .1 � O�. �
	
//2 Ou.�/2d�

D
Z

Rd

.1C j�j2/r�s.1 � O�. �
	
//2.1C j�j2/s Ou.�/2d�

	 jjujj2Hs sup
�2Rd

.1C j�j2/r�s.1 � O�. �
	
//2

	 jjujj2Hs .1C .	
2
/2/.r�s/

	 Cr;s jjujj2Hs 	
2.r�s/

assuming r 	 s, since 0 	 O� 	 1 and 1 � O�. �
	
/ D 0 for � 	 	

2
.

This proves (2).
Finally, for small h 2 R, we have

F

�
S	Chu � S	u

h

�
.�/ D O�.

�

	Ch/ � O�. �	 /
h

Ou.�/

D
 
� 1
	2

dX
iD1

�i @i O�. �
	
/CR.h; 	; �/

!
Ou.�/
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by Taylor’s theorem, where

jR.h; 	; �/j 	 h sup
	���	Ch

d2

d�2
O�. �
�
/:

This implies

Z

Rd

.1C j�j2/r jR.h; 	; �/j2 jOu.�/j2 ! 0 as h! 0

so that S	u is differentiable with respect to 	 with derivative the inverse Fourier
transform of

� 1
	2

dX
iD1

�i @i O�. �
	
/Ou.�/:

We also see that

ˇ̌
ˇ̌
ˇ̌
ˇ̌ d

d	
S	u

ˇ̌
ˇ̌
ˇ̌
ˇ̌
2

Hr

D
Z

Rd

.1C j�j2/r . 1
	2

dX
iD1

�i @i O�. �
	
//2 jOu.�/j2

	 jjujj2Hs sup
�2Rd

.1C j�j2/r�s. 1
	2

dX
iD1

�i @i O�. �
	
//2

	 Cr;s jjujj2Hs 	
2.r�s�1/

since @i O�. �	 / is zero for � 	 	
2

and � � 	 .
This proves (3).

5.2 Tame Estimates in Sobolev Spaces

The results in this section are fairly standard, and are based on standard Sobolev
embeddings. Results of this type can be found in classical references on Sobolev
spaces, for example Adams and Fournier [1]. However, we try and formulate them
in a form which is most useful for obtaining tame estimates in the applications we
have in mind.

The following lemma is very useful for proving chain and product rules in
Sobolev spaces.

Lemma 1. Let p 2 Œ1;1�, ˝ � R
d , for d � 1, be a domain where the standard

Sobolev embedding holds and let m > d
p

be an integer. Let 0 	 mi 	 m be integers

for 1 	 i 	 n with
Pn

iD1 mi � .n � 1/m and let ui 2 W mi ;p.˝/. Then
Qn
iD1 ui 2

Lp.˝/ and
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ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
nY
iD1

ui

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
Lp.˝/

	 C
nY
iD1
jjui jjW mi ;p.˝/ :

Proof. For p D1 the result is obvious and in fact only requiresm � 0, so we will
assume p <1.

We will use the following Sobolev embeddings. Let k � 1 be an integer and
u 2 W k;p.˝/. Then for q � p,

jjujjLq.˝/ 	 C jjujjW k;p.˝/

provided

1

q
>
1

p
� k
d

and kp 	 d . (Note it is the case kp D d that requires the inequality to be strict.) If
kp > d then

jjujjL1.˝/ 	 C jjujjW k;p.˝/ :

Suppose mip > d for some i . By renumbering if necessary, we may assume
mnp > d . Then

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
nY
iD1

ui

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
Lp.˝/

	
ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
n�1Y
iD1

ui

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
Lp.˝/

jjunjjL1.˝/

	 C
ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
n�1Y
iD1

ui

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
Lp.˝/

jjunjjW mn;p.˝/ :

Also note that sincemn 	 m, we have
Pn�1

iD1 mi � .n�2/m. Hence we are reduced
to proving the result with n replaced by n � 1. Thus we may assume mip 	 d for
all i .

Suppose mi D 0 for some i . By renumbering if necessary, we may assume
mn D 0. Then

Pn�1
iD1 mi � .n � 1/m and 0 	 mi 	 m implies mi D m > d

p
for all

i < n, hence

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
nY
iD1

ui

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
Lp.˝/

	
n�1Y
iD1
jjui jjL1.˝/ jjunjjLp.˝/

	 C
n�1Y
iD1
jjui jjW mi ;p.˝/ jjunjjW mn;p.˝/ :

Thus we may assume mi > 0 for all i .
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Now, using Hölder’s inequality,

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
nY
iD1

ui

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
Lp.˝/

	
nY
iD1
jjui jj

L
p
�i .˝/

where
Pn

iD1 �i D 1 and 0 	 �i 	 1 for all i . Hence, using Sobolev embedding, we
have

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
nY
iD1

ui

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
Lp.˝/

	 C
nY
iD1
jjui jjW mi ;p.˝/

provided

�i

p
>
1

p
� mi

d

for all i . But, summing the above inequalities, it is possible, assuming 0 < mi 	 d
p

,

to choose such 0 	 �i 	 1 with
Pn

iD1 �i D 1 if and only if

n

p
�
Pn

iD1 mi

d
<
1

p
”

nX
iD1

mi > .n � 1/d
p
:

But this does indeed hold since
Pn

iD1 mi � .n � 1/m andm > d
p

.

Corollary 1 (Leibniz’s Rule or The Product Rule). Let p 2 Œ1;1�, ˝ � R
d , for

d � 1, be a domain where the standard Sobolev embedding holds and letm > d
p

be
an integer. Let 0 	 mi 	 m be integers for 1 	 i 	 n and 0 	 k 	 m be an integer,
with

Pn
iD1 mi � .n�1/mCk. Let ui 2 W mi ;p.˝/. Then

Qn
iD1 ui 2 W k;p.˝/ with

weak derivatives given by the classical Leibniz rule and

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
nY
iD1

ui

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
W k;p.˝/

	 C
nY
iD1
jjui jjWmi ;p.˝/ :

Proof. Let �i be multi-indices with
Pn

iD1 �i D ˛, where j˛j 	 k. Note thatPn
iD1.mi � j�i j/ � .n � 1/m, hence we may apply the above result to obtain

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
nY
iD1

@�
i

ui

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
Lp.˝/

	 C
nY
iD1
jjui jjW mi ;p.˝/ :
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Assuming ui are smooth, we immediately obtain the result, since @˛
Qn
iD1 ui is a

sum of terms of the form
Qn
iD1 @�

i
ui by the classical chain rule. For non-smooth ui

we use approximation by smooth functions together with this inequality.

Corollary 2 (The Chain Rule). Let p 2 Œ1;1�, ˝ � R
d , for d � 1, be a domain

where the standard Sobolev embedding holds and let m > d
p

be an integer. Let

F 2 Cm
b .R

d 0

/ and u W ˝ ! R
d 0

with u 2 W m;p.˝/. Let ˛ be a multi-index with
1 	 j˛j 	 m. Let 0 < ˇ 	 ˛; 0 < �j 	 ˛ .1 	 j 	 jˇj/, be multi-indices withPjˇj

jD1
ˇ̌
�j
ˇ̌ D j˛j. Then

ˇ̌
ˇ̌
ˇ̌

ˇ̌
ˇ̌
ˇ̌.@ˇF /.u/

jˇjY
jD1

@�
j

uij

ˇ̌
ˇ̌
ˇ̌

ˇ̌
ˇ̌
ˇ̌
Lp.˝/

	 C jjujjjˇj
W m;p.˝/

where uij denotes a component of u depending on j . Moreover, the function F.u/ 2
L1.˝/ has a weak ˛-derivative in Lp.˝/ given as in the classical chain rule by
sums of terms of the above form which satisfies the inequality

jj@˛.F.u//jjLp.˝/ 	 C jjujjW m;p.˝/ .1C jjujjW m;p.˝//
m�1:

In addition, if F.0/ D 0, then F.u/ 2 W m;p.˝/ with

jjF.u/jjW m;p.˝/ 	 C jjujjW m;p.˝/ .1C jjujjW m;p.˝//
m�1:

Proof. Note that
Pˇ

jD1.m �
ˇ̌
�j
ˇ̌
/ D jˇjm� j˛j � .jˇj � 1/m, hence we may use

the above result and the fact that @ˇF is bounded to obtain
ˇ̌
ˇ̌
ˇ̌

ˇ̌
ˇ̌
ˇ̌.@ˇF /.u/

jˇjY
jD1

@�
j

uij

ˇ̌
ˇ̌
ˇ̌

ˇ̌
ˇ̌
ˇ̌
Lp.˝/

	 C
jˇjY
jD1

ˇ̌
ˇ
ˇ̌
ˇ@�j uij

ˇ̌
ˇ
ˇ̌
ˇ
W
m�j�j j;p.˝/

	 C jjujjjˇj
Wm;p.˝/ :

Assuming ui are smooth, we immediately obtain the required inequalities, since
@˛.F.u// is a sum of terms of the form .@ˇF /.u/

Qjˇj
jD1 @�

j
uij by the classical

product and chain rules. For non-smooth ui we use approximation by smooth
functions together with this inequality.

Finally, if F.0/ D 0, then we have

jF.u/j D
ˇ̌
ˇ̌
Z 1

0

DF.tu/u dt

ˇ̌
ˇ̌

	 C juj
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since DF is bounded. Thus F.u/ 2 Lp.˝/ with jjF.u/jjLp.˝/ 	 C jjujjLp.˝/.
Together with the previous part, this implies the final statement of the result.

Corollary 3. Let D;D0 � R
d 0

be open with D0 �� D. Let F 2 Cm.D/ and
u W ˝ ! D0 with u 2 W m;p.˝/. Then the above chain rule holds with these new F
and u.

Proof. Since u takes values in D0, we may modify F outside D0 by multiplying by
a smooth cut-off function which is identically 1 on D0 and 0 outside D00 for some
D00 �� D, so we may assume F 2 Cm

b .R
d 0

/, and then we can apply the above
result.

Proposition 3 (The Derivative of a Differential Operator on Sobolev Spaces).
Let p 2 Œ1;1�, ˝ � R

d , for d � 1, be a domain where the standard Sobolev
embedding holds and let m � 0 be an integer. Let I be a subinterval of N0

containing 0 and l Cm, where l > d
p

is an integer, and set Xs D W s;p.˝;Rd
0

/ for

s 2 I and Y s D W s;p.˝;Rd
00

/. Let U � X1 be jj�jjXr -open for some r 2 I with
r � l Cm and assume 0 2 U . Define

T W U ! Y1�m

by

T .u/.x/ D F.f@˛u.x/ W 0 	 j˛j 	 mg/
where F W Rd 0 � � � � �Rd 0 ! R

d 00

is smooth and bounded with bounded derivatives
on the range of f@˛u W 0 	 j˛j 	 mg for u 2 U (so we may assume F is smooth and
bounded with bounded derivatives), and F.0/ D 0. The above rather complicated
notation is merely a convenient way of expressing that F.f@˛u W 0 	 j˛j 	 mg/
is a smooth function of u and its partial derivatives up to order m, which can be
evaluated at x to give a function of x.

Write vi˛ for the argument of F which is evaluated at @˛ui .x/ in the above
formula.

Then T is twice differentiable with derivatives given by

.DT.u/h/.x/ D
X

0�i�d 0

X
0�ˇ�m

@ˇhi .x/
@F

@viˇ
.f@˛u.x/g/

D2T .u/.h; h0/.x/ D
X

0�i;j�d 0

X
0�ˇ;��m

@ˇhi .x/@�h0j .x/
@2F

@vj� @viˇ
.f@˛u.x/g/

and the following inequalities hold.

jjDT.u/hjjY s 	 Cs.jjhjjXsCm C jjhjjXl .1C jjujjXsCm//
ˇ̌ˇ̌
D2T .u/.h; h0/

ˇ̌ˇ̌
Y s

	 Cs.jjhjjXsCm

ˇ̌ˇ̌
h0 ˇ̌ˇ̌

Xl
C jjhjjXl

ˇ̌ˇ̌
h0 ˇ̌ˇ̌

XsCm C jjhjjXl
ˇ̌ˇ̌
h0ˇ̌ˇ̌

Xl
.1C jjujjXsCm//
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for all u 2 U , h; h0 2 X1 and s 2 I such that s C m 2 I , where the constant
Cs > 0 is bounded for s bounded.

Proof. First we assume all functions are smooth, or else we can use approximation
by smooth functions. Note that by the chain rule, jjF.f@˛u.x/ W 0 	 j˛j 	 mg/jjY s 	
Cs jjujjXsCm , since r > d

p
(and the constant depends onU ), hence T is well-defined.

Using Taylor’s Theorem, for u 2 U , t 2 .�1; 1/ and jjhjjXr small enough such that
the line segment Œu � h; uC h� lies in U , we have

1

t
.T .uC th/ � T .u//.x/

D 1

t
.F.f@˛u.x/C @˛h.x/g/ � F.f@˛u.x/g//

D
X

0�i�d 0

X
0�ˇ�m

@F

@viˇ
.f@˛u.x/g/@ˇhi .x/

C t
X

0�i;j�d 0

X
0�ˇ;��m

@ˇhi .x/@�hj .x/

Z 1

0

.1 � �/ @2F

@vj� @viˇ
.f@˛u.x/C �@˛h.x/g/d�:

Applying the chain rule to 1
t

times the last term, which may be thought of as a
function of .u; h/, we see that 1

t
times the last term is in Y s for s 2 I such that

s Cm 2 I hence the last term converges to zero in Y s as t ! 0. Similarly

1

t
.DT.uC th0/h �DT.u/h/.x/

D 1

t
.
X

0�i�d 0

X
0�ˇ�m

@ˇhi .x/
@F

@viˇ
.f@˛u.x/C t@˛h0.x/g/

�
X

0�i�d 0

X
0�ˇ�m

@ˇhi .x/
@F

@viˇ
.f@˛u.x/g//

D
X

0�i;j�d 0

X
0�ˇ;��m

@ˇhi .x/@�h0j .x/
@2F

@vj� @viˇ
.f@˛u.x/g/

C t
X

0�i;j;k�d 0

X
0�ˇ;�;ı�m

@ˇhi .x/@�h0j .x/@ıh0k.x/

�
Z 1

0

.1 � �/ @3F

@vkı @vj� @viˇ
.f@˛u.x/C �@˛h0.x/g/d�:

Applying the same argument we see the last term converges to zero as t ! 0.
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Now, using the chain rule we have

ˇ̌
ˇ̌
ˇ
@F

@viˇ
.f@˛u.x/g/

ˇ̌
ˇ̌
ˇ
W s;p.˝/

	 Cs jjujjW sCm;p.˝/

for integer s � 1 and u 2 U , where j�jW s;p.˝/ denotes the Sobolev semi-norm of
order s (the sum of the Lp norms of the weak derivatives of order s).

Define

H.x/ D @F

@viˇ
.f@˛u.x/g/:

For integer s � 0, using the product rule and the above, we have

ˇ̌
ˇ̌
ˇ
@F

@viˇ
.f@˛u.x/g/@ˇhi .x/

ˇ̌
ˇ̌
ˇ
W s;p.˝/

	 Cs.
X
1�ı�s

ˇ̌ˇ̌
@ıH@s�ı@ˇhi .x/

ˇ̌ˇ̌
Lp.˝/

C ˇ̌ˇ̌H@s@ˇhi .x/ˇ̌ˇ̌
Lp.˝/

/

	 Cs.jjDH jjW l�1;p.˝/ jjhjjW sCm;p.˝/ C jjDH jjW s�1;p.˝/ jjhjjW l;p.˝/

C jjH jjL1.˝/ jjhjjW sCm;p.˝//

	 Cs.jjhjjW sCm;p.˝/ C jjhjjW l;p.˝/ .1C jjujjW sCm;p.˝///

for any h 2 X1 and u 2 U , where we have used r � l Cm.
In a similar manner, we obtain the inequality for the second derivative of T .

6 Application to Compressible Vortex Sheets in 2D

Here we show how the paper [8] of Coulombel and Secchi fits into the above
framework. In fact the above framework is specifically devised to fit this case and
the original ideas are contained in the paper by Coulombel and Secchi and earlier
papers. For the sake of brevity, to follow this section it is necessary to refer to
their paper. Note though that a significant portion of the work of the full result
of Coulombel and Secchi is in solving the linearised equations with an appropriate
energy estimate, which can be found in [7]. We believe that the abstract framework
below should also fit the scheme used by Trakhinin in [25], since his scheme is very
similar to the one used by Coulombel and Secchi.

We make some simplifications to the scheme of Coulombel and Secchi – firstly
we take the boundary condition for the continuity of density (which is a linear
condition) as part of the definition of the function spaces. Secondly, we treat the
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Eikonal equations in a slightly simpler way which is less optimal with respect to
regularity. It appears that although we need more regularity on the approximate
solution, we only require it to be small in a lower-order Sobolev space.

The aim of their paper is to show short-time structural stability of plane vortex
sheets for the 2D isentropic Euler equations of gas dynamics. This means the
following. We start with two constant states NUC D . N�; NvC; 0/, NU� D . N�; Nv�; 0/ with
pressure given by Np D p. N�/ and sound speed given by Nc Dpp0. N�/. When patched
together either side of fx2 D 0g these form a weak solution of the 2D isentropic
Euler equations equal to NUC in fx2 > 0g and equal to NU� in fx2 < 0g, since the
Rankine-Hugoniot jump conditions are satisfied across fx2 D 0g. Since the normal
velocity is continuous whereas the tangential velocity jumps this is called a vortex-
sheet solution and it is characteristic in the sense that the boundary matrix for the
system evaluated at this state is singular. We then impose smooth initial data close
to this state (satisfying the Rankine-Hugoniot conditions with continuous normal
velocity) which includes perturbing the discontinuity slightly so it is the graph of a
function. The aim is to show the short-time existence of a solution with the same
structure – that is, smooth either side of a surface of discontinuity across which the
Rankine-Hugoniot conditions are satisfied with continuous normal velocity. This
requires a stability assumption on the background state,

ˇ̌NuC � Nu�ˇ̌ > 2
p
2 Nc, and

also a smallness assumption on the initial data. After some reductions the problem
is reduced to finding a local inverse of a nonlinear operator, so that Nash-Moser
iteration may be applied. The preliminary work includes changing coordinates to
fix the free surface, which involves adding the Eikonal equations to the system to be
solved, and introducing an approximate solution so that the initial data can be taken
as zero. The main work is then to obtain a tame estimate for the linearised equations,
after which a modified version of Nash-Moser iteration as above can be applied.

Notation. We will use the notation of [8], and to avoid conflict of notation with the
above we will write u; v;w; f; g used in the above in bold face as u; v;w; f; g. We
will also write U and V instead of U and V used above.

6.1 The Function Spaces

For T > 0, define

˝T D f.t; x1; x2/ 2 R
3 W t < T; x2 > 0g

!T D f.t; x1/ 2 R
2 W t < T g:

For integer s � 0 and real � � 1 define the weighted Sobolev space

Hs
� .˝T / D fexp.� t/v W v 2 Hm.˝T /g
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where Hs.˝T / is the usual Sobolev space of order s. We define Hs
� .!T / similarly.

The norm on u 2 Hs
� .˝T / is given by

jjujjHs
� .˝T /

D jjexp.�� t/ujjHs.˝T /
:

Next, we define, for integer s � 0,

F s
� .˝T / D fu 2 Hs

� .˝T / W u D 0 for t < 0g
and we define F s

� .!T / similarly. Now, adapting the notation of [8] to our frame-
work, we define

Xs D fu 2 .F sC3
� .˝T //

3 � .F sC3
� .˝T //

3 �F sC3
� .˝T / �F sC3

� .˝T /

W $Cjx2D0 D $�jx2D0; �Cjx2D0 D ��jx2D0g
where we write

u D .V C; V �; $C; $�/

and

V D .�; v; u/
and define

 WD $Cjx2D0 D $�jx2D0:
Note that we omit the superscripts C and � in formulae which apply to both. We
have chosen X0 to consist of products of Sobolev spaces of order 3 because of the
embeddingHs.Rd / � W 1;1.Rd / for s > d

2
C 1, and in this case the dimension d

is 3 (two space and one time).
We define the norm jj�jjXs onXs as the usual product norm (the sum of the norms

of the components). Then fXsgs2I is a decreasing family of Banach spaces, where
I D Œ0; s3� is an interval in N0, for integer s3 > 0 which we will fix later sufficiently
large.

Similarly, we define

Y s D fg 2 .F sC3
� .˝T //

3 � .F sC3
� .˝T //

3 �F sC3
� .˝T / �F sC3

� .˝T /g

where we write

g D .f C; f �; hC; h�/

and

f D .f1; f2; f3/:
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6.2 The Smoothing Operators

Note that in order to define the smoothing operators on fXsgs2I (which can then
be used on fY sgs2I as well), we must make some modifications from those on
Hs.Rd /. Firstly, we must replace R

d by a domain with a Lipschitz boundary with
finite covering, which is easily done via an extension operator. Next, we must ensure
that the property u D 0 for t < 0 is preserved under the action of the smoothing
operators, which was done by Alinhac in [2], and finally we must ensure that the
two properties $Cjx2D0 D $�jx2D0 D  and �Cjx2D0 D ��jx2D0 are preserved.
See [8] for the details of this construction using a lifting operator.

6.3 The Background Solution and the Approximate Solution

Although we will not introduce the original problem considered in [8] (since we
wish to show the use of Nash-Moser iteration only), we need to introduce the
background or stationary solution and approximate solution for reference.

The background solution is given in the form

.U
˙ D .�˙ D �;˙v; u˙ D 0/; ˚˙ D ˙x2/

where �; v are constants with � > 0.
We assume the existence of an ‘approximate solution’ .U aC; U a�; ˚aC; ˚a�/

with U a � U ;˚a � ˚ 2 Hs4C3.˝T / having compact support, which has the
following properties. Here, s4 is a sufficiently large integer with s4 � s3 C 2. In
fact s4 D s3 C 2 will do.

@
j
t L.U

a; ˚a/jtD0 D 0 for 0 	 j 	 s3 C 3
@t˚

a C va@x1˚
a � ua D 0

˚aCjx2D0 D ˚a�jx2D0 DW �a

�aC � �a� D 0

@x2˚
aC � 3

4

@x2˚
a� 	 �3

4

�a˙ � ı0
ˇ̌ˇ̌
U a � U ˇ̌ˇ̌

H7.˝T /
C ˇ̌ˇ̌˚a � ˚ ˇ̌ˇ̌

H7.˝T /
	 ı1

for some ı0 > 0, where we are allowed to choose constant ı1 > 0 as small as we
like (which restricts the size of the initial data in the original problem). The first
order differential operator L is defined in the next section.
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6.4 The Nonlinear Operator and Equations

6.4.1 The Operator T and the Set U

We set m0 D 4 and define

U 4 D fu 2 X4 W jjujjX4 	 ı2g

where ı2 > 0 is chosen sufficiently small. In particular, we need

ˇ̌ˇ̌
$˙ ˇ̌ˇ̌

W 1;1.˝T /
	 1

2

ˇ̌ˇ̌
�˙ ˇ̌ˇ̌

L1.˝T /
	 ı0

2

which is possible via Sobolev embedding. This ensures that @x2.˚
a˙ C $˙/ and

�a˙ C �˙ are bounded away from zero.
We define the operator T W U 4 ! Y 0 by

T .u/ D

0
BB@

L .V C; $C/
L .V �; $�/
E .V C; $C/
E .V �; $�/

1
CCA :

Here,

L .V; $/ D L.U a C V;˚a C $/� L.U a; ˚a/

and

L.U;˚/ D @tU C A1.U /@x1U C
1

@x2˚
.A2.U /� @t˚ � @x1˚A1.U //@x2U:

The matrices A1.U / and A2.U / are smooth functions of U for U1 > 0, where U1 is
the first component of U (the ‘�’ component). See [8] for the exact expressions of
these matrices. Also,

E .V; $/ D @t$ C .va C v/@x1$ � uC v@x1˚
a:

We note also that T W U ! Y1�1, where U D U 4 \X1.
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6.4.2 The Equations

Define

f a D
(
�L.U a; ˚a/ for t � 0;
0 for t < 0:

Then by the properties of the approximate solution, we have f a 2 F s3C3
� .˝T / and

together with the definition of L we obtain

jjf ajjY s3 	 Cı1 DW �:
Set

f D

0
BB@

f aC
f a�
0

0

1
CCA :

For � sufficiently small, we wish to solve the equation

T .u/ D f

which is equivalent to

T .u/ D T .u0/C f

if we set

u0 D 0
since T .0/ D 0.

6.5 The Linearised Operator, Modified Linearised Operator,
Modified State and Linearised Equations

6.5.1 The Operator DT

Notation. To make the notation easier, let us use Qu instead of v to represent a vector
to which we apply DT.u/, with the obvious notation

Qu D . QV C; QV �; Q$C; Q$�/

and Q$˙jx2D0 D Q .
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Then we have

DT.u/ Qu D

0
BB@

L 0.V C; $C/. QV C; Q$C/
L 0.V �; $�/. QV �; Q$�/
E 0.V C; $C/. QV C; Q$C/
E 0.V �; $�/. QV �; Q$�/

1
CCA

where L 0 is the derivative of L and E 0 is the derivative of E . Calculating these,
we obtain

L 0.V; $/. QV ; Q$/ D L
0.U a C V;˚a C $/. QV ; Q$/

where L0 is the derivative of L and is given by

L
0.U;˚/. QV ; Q$/ D @t QV C A1.U /@x1 QV C

1

@x2˚
.A2.U /� @t˚ � @x1˚A1.U //@x2 QV

C.DA1.U / QV /@x1U �
@x2
Q$

.@x2˚/
2
.A2.U /� @t˚ � @x1˚A1.U //@x2U

C 1

@x2˚
.DA2.U / QV � @t Q$ � @x1 Q$A1.U /� @x1˚DA1.U / QV /@x2U:

Also,

E 0.V; $/. QV ; Q$/ D @t Q$ C .va C v/@x1 Q$ � QuC Qv@x1˚a C Qv@x1$:

6.5.2 The Operator A

We define

A.u/ Qu D

0
BB@

L
0
e.U

aC C V C; ˚aC C $C/ LV C
L

0
e.U

a� C V �; ˚a� C $�/ LV �
E 0.V C; $C/. QV C; Q$C/
E 0.V �; $�/. QV �; Q$�/

1
CCA

where, as in [8], we have introduced the ‘good unknown’, which we denote by LV
instead of PV to avoid conflict of notation, as

LV D QV �
Q$

@x2.˚
a C $/@x2 .U

a C V /:
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The operator L0
e is defined as

L
0
e.U;˚/

LV D @t LV C A1.U /@x1 LV C
1

@x2˚
.A2.U / � @t˚ � @x1˚A1.U //@x2 LV

C.DA1.U / LV /@x1U C
1

@x2˚
.DA2.U / LV � @x1˚DA1.U / LV /@x2U:

Note that, with .U;˚/ D .U a C V;˚a C $/, we have

L
0.U;˚/. QV ; Q$/ � L

0
e.U;˚/

LV D
Q$

@x2˚
@x2.L.U;˚//

D
Q$

@x2˚
@x2.L .V; $/� f a/:

6.5.3 The Set V and the Operator R

We set m7 D 1 and define

V D fu 2 X1�1 W E .V C; $C/ D 0;E .V �; $�/ D 0; jjujjX3 	 ı5g

where 0 < ı5 is to be chosen sufficiently small.
We define the operatorR W U ! V by

R.u/ D

0
BBBBBBBBBBBBB@

�C
vC

@t$
C C .vaC C vC/@x1$C C vC@x1˚aC

��
v�

@t$
� C .va� C v�/@x1$� C v�@x1˚a�

$C
$�
 

1
CCCCCCCCCCCCCA

:

One can check that indeed R.u/ 2 V . In particular, one can see that jjR.u/jjX3 can
be controlled in terms of jjujjX4 	 ı2 for u 2 U .

We then calculate
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R.u/ � u D

0
BBBBBBBBBBBBB@

0

0

E .V C; $C/
0

0

E .V �; $�/
0

0

0

1
CCCCCCCCCCCCCA

:

6.5.4 The Linearised Equations

Given u 2 V and g 2 Y1, we wish to solve the equation

A.u/ Qu D g

for Qu 2 X1�maxfl1;m4Cm7g. Let us write

g D

0
BB@

f C
f �
hC
h�

1
CCA

where hCjx2D0 D h�
x2D0 D g. Then we want to solve the system

0
BBBB@

L
0
e.U

aC C V C; ˚aC C $C/ LV C
L

0
e.U

a� C V �; ˚a� C $�/ LV �

E 0.V C; $C/. LV C C Q$C

@x2 .˚
aCC$C/

@x2.U
aC C V C/; Q$C/

E 0.V �; $�/. LV � C Q$�

@x2 .˚
a�C$�/

@x2.U
a� C V �/; Q$�/

1
CCCCA
D

0
BB@

f C
f �
hC
h�

1
CCA

where in the last two equations we have written QV C in terms of the ‘good unknown’
LV and Q$ . The introduction of the ‘good unknown’ allows us to split the solution of

this system into two steps. First we solve the system

L
0
e.U

a˙ C V ˙; ˚a˙ C $˙/ LV ˙ D f ˙ (53)

with boundary conditions

L�Cjx2D0 C
Q 

@x2.˚
aC C $C/jx2D0

@x2.�
aC C �C/jx2D0

� L��jx2D0 �
Q 

@x2.˚
a� C $�/jx2D0

@x2.�
a� C ��/jx2D0 D 0 (54)
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@t Q C .va˙ C v˙/jx2D0@x1 Q 

�.Lu˙jx2D0 C
Q 

@x2.˚
a˙ C $˙/jx2D0

@x2 .u
a˙ C u˙/jx2D0/

C.Lv˙jx2D0 C
Q 

@x2.˚
a˙ C $˙/jx2D0

@x2.v
a˙ C v˙/jx2D0/@x1. a C  /

D h˙jx2D0 (55)

for the unknowns . LV ˙; Q /. Note the first boundary condition is Q�Cjx2D0 �
Q��jx2D0 D 0 written in terms of the ‘good unknown’, and the second boundary
condition is a rewriting of

E 0.V ˙; $˙/. QV ˙; Q$˙/
ˇ̌
x2D0 D h˙jx2D0 in terms of the ‘good unknown’, where

we replace Q$˙jx2D0 with Q .
Secondly, having solved the above system for . LV ˙; Q /, we solve the two separate

equations

E 0.V ˙; $˙/. LV ˙ C
Q$˙

@x2.˚
a˙ C $˙/

@x2.U
a˙ C V ˙/; Q$˙/ D h˙ (56)

for Q$˙. By restricting to fx2 D 0g, we see that Q$˙jx2D0 satisfy the same equations
as Q given in the boundary conditions above, hence by uniqueness of solutions we
have Q$˙jx2D0 D Q .

Finally, we can rearrange to obtain QV from LV and Q$ .

6.6 Solution of the Linearised Equations

Assume u 2 V and g 2 Y1. We wish to solve the equation

A.u/ Qu D g

for Qu, using the steps described above.
The key to the whole iteration scheme is the solution of the linearised problem

(53)–(55).
We have the following result, stated in [8]. Assume that the stationary solution

satisfies the supersonic condition

v >
p
2c.�/:
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Assume that U;˚ are such that U � U ;˚ � ˚ 2 HsC3
� .˝T / for integer s 2 Œ3; s3�

with

ˇ̌ˇ̌
.U � U ;r.˚ � ˚//ˇ̌ˇ̌

H5
� .˝T /

C ˇ̌ˇ̌.U � U ; @x2U;r.˚ �˚//jx2D0
ˇ̌ˇ̌
H4
� .!T /

	 ı4
(57)

for some ı4 > 0, where ˚Cjx2D0 D ˚�jx2D0 D �.
Assume also that .U;˚/ satisfy the eikonal equation

@t˚ C v@x1˚ � u D 0:

Assume in addition that the coefficients .U � U ;˚ � ˚/ have fixed compact
support – a technical condition which can be achieved by truncating the coefficients
without affecting the solution due to the finite speed of propagation of the Euler
equations.

Then if ı4 is sufficiently small, given

.f ˙; g˙/ 2 F sC1
� .˝T / �F sC1

� .!T /

we have a unique solution

. LV ˙; Q / 2 F s
� .˝T / �F sC1

� .!T /

of (53)–(55), replacing h˙jx2D0 with g˙, provided � � 1 is sufficiently large
depending on s3. Moreover, the following estimate holds, for some constant
Cs > 0,

ˇ̌
ˇ
ˇ̌
ˇ LV
ˇ̌
ˇ
ˇ̌
ˇ
Hs
� .˝T /

C ˇ̌ˇ̌ Q ˇ̌ˇ̌
H
sC1
� .!T /

	 Cs.jjf jjHsC1
� .˝T /

C jjgjj
H
sC1
� .!T /

C .jjf jjH4
� .˝T /

C jjgjjH4
� .!T /

/
ˇ̌ˇ̌
.U � U ;˚ � ˚/ˇ̌ˇ̌

H
sC3
� .˝T /

/:

Here, we set U D U a C V , ˚ D ˚a C $ , where .U; $/ 2 V . Note that
the smallness condition (57) holds provided ı5 and ı1 are sufficiently small. Also
note that the Eikonal equation holds since the approximate solution satisfies the
Eikonal equation and by the definition of V . We are given f and h and set g˙ D
h˙jx2D0. Unfortunately this method, which is slightly simpler than the one described
in [8], results in a further loss of regularity due to taking the trace of h. So in fact
given

.f ˙; h˙/ 2 F sC1
� .˝T / �F sC2

� .!T /
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we have a unique solution

. LV ˙; Q / 2 F s
� .˝T / �F sC1

� .!T /

satisfying the estimate

ˇ̌
ˇ
ˇ̌
ˇ LV
ˇ̌
ˇ
ˇ̌
ˇ
Hs
� .˝T /

C ˇ̌ˇ̌ Q ˇ̌ˇ̌
H
sC1
� .˝T /

	 Cs.jjf jjHsC1
� .˝T /

C jjhjj
H
sC2
� .!T /

C.jjf jjH4
� .˝T /

C jjhjjH5
� .˝T /

/.
ˇ̌ˇ̌
.U a � U ;˚a � ˚/ˇ̌ˇ̌

H
sC3
� .˝T /

C jj.V; $/jj
H
sC3
� .˝T /

//:

Having solved this system, it remains to solve the Eqs. (56) for Q$˙. Each of these
equations is a first order scalar linear equation, so has a unique solution (for smooth
enough coefficients and source term). More precisely, assuming that

jj.U a C V;˚a C $/jjH3
� .˝T /

is small enough (which is guaranteed by taking ı4 small enough), we have a unique
solution

Q$ 2 F s
� .˝T /

of (56). Moreover, the following estimate holds, for some constant Cs > 0 (which
may depend on the bound on jj.U a C V;˚a C $/jjH3

� .˝T /
),

ˇ̌ˇ̌ Q$ ˇ̌ˇ̌
Hs
� .˝T /

	

Cs.jjhjjHs
� .˝T /

C
ˇ̌
ˇ
ˇ̌
ˇ LV
ˇ̌
ˇ
ˇ̌
ˇ
Hs
� .˝T /

C
ˇ̌
ˇ
ˇ̌
ˇ LV
ˇ̌
ˇ
ˇ̌
ˇ
H3
� .˝T /

.
ˇ̌ˇ̌
˚a � ˚ ˇ̌ˇ̌

H
sC1
� .˝T /

C jj$ jj
H
sC1
� .˝T /

/

C ˇ̌ˇ̌ Q$ ˇ̌ˇ̌
H3
� .˝T /

.
ˇ̌ˇ̌
.U a � U ;˚a �˚/ˇ̌ˇ̌

H
sC1
� .˝T /

C jj.V; $/jj
H
sC1
� .˝T /

//:

Taking s D 3 and assuming ı4 is sufficiently small, we obtain

ˇ̌ˇ̌ Q$ ˇ̌ˇ̌
H3
� .˝T /

	 C.jjhjjH3
� .˝T /

C
ˇ̌
ˇ
ˇ̌
ˇ LV
ˇ̌
ˇ
ˇ̌
ˇ
H3
� .˝T /

/:

Thus

ˇ̌ˇ̌ Q$ ˇ̌ˇ̌
Hs
� .˝T /

	 Cs.jjhjjHs
� .˝T /

C
ˇ̌
ˇ
ˇ̌
ˇ LV
ˇ̌
ˇ
ˇ̌
ˇ
Hs
� .˝T /

C.jjhjjH3
� .˝T /

C
ˇ̌
ˇ
ˇ̌
ˇ LV
ˇ̌
ˇ
ˇ̌
ˇ
H3
� .˝T /

/.
ˇ̌ˇ̌
.U a � U ;˚a �˚/ˇ̌ˇ̌

H
sC1
� .˝T /

C jj.V; $/jj
H
sC1
� .˝T /

//:
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From the previous estimate for LV with s D 3, we obtain

ˇ̌
ˇ
ˇ̌
ˇ LV
ˇ̌
ˇ
ˇ̌
ˇ
H3
� .˝T /

	 Cs.jjf jjH4
� .˝T /

C jjhjjH5
� .!T /

/

(where the constant will depend on
ˇ̌ˇ̌
.U a � U ;˚a �˚/ˇ̌ˇ̌

H6
� .˝T /

Cjj.V; $/jjH6
� .˝T /

	 ı1). Thus we obtain

ˇ̌ˇ̌ Q$ ˇ̌ˇ̌
Hs
� .˝T /

�
Cs.jjf jj

H
sC1
� .˝T /

C jjhjj
H
sC2
� .˝T /

C .jjf jjH4
� .˝T /

C jjhjjH5
� .˝T /

/.1C jj.V; $/jj
H
sC3
� .˝T /

//

(where the constant will depend on
ˇ̌ˇ̌
.U a � U ;˚a � ˚/ˇ̌ˇ̌

H
sC3
� .˝T /

). Combining

and writing QV in terms of LV and Q$ , we obtain

ˇ̌ˇ̌ QV ˇ̌ˇ̌
Hs
� .˝T /

C ˇ̌ˇ̌ Q$ ˇ̌ˇ̌
Hs
� .˝T /

C ˇ̌ˇ̌ Q ˇ̌ˇ̌
H
sC1
� .!T /

�
Cs.jjf jj

H
sC1
� .˝T /

C jjhjj
H
sC2
� .˝T /

C .jjf jjH4
� .˝T /

C jjhjjH5
� .˝T /

/.1C jj.V; $/jj
H
sC3
� .˝T /

//:

Hence, for u 2 V , we have B.u/ W Y1 ! X1�4 and

jjB.u/gjjXs 	 Cs.jjgjjY sC2 C jjgjjY 2 .1C jjujjXsC3 //

for all s such that s C 4 2 I . Thus we have l1 D 2 and m4 D 3.

6.7 Estimates of the Operators

6.7.1 Estimate of R

Clearly from the definition of R and T , we have

jjR.u/� ujjX0 	 jjT .u/� T .u0/� fjjY 0 :

Thus l2 D 0.
Also, using Sobolev embedding and that R is a first order differential operator,

we have the tame estimate

jjR.u/jjXs 	 Cs.1C jjujjX0/.1C jjujjXsC1 /

for s 2 Œ0; s3 � 1�. Thusm8 D 0, and as we have already stated,m7 D 1.
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Now we estimate the commutator

ˇ̌ˇ̌
R.SX	 u/� SX	 R.u/

ˇ̌ˇ̌
Xs

for u 2 U .
We have

E .S	V; S	$/ � S	E .V; $/
D @t .S	$/C .va C S	v/@x1.S	$/C .S	v/@x1˚

a

� S	@t$ � S	.va@x1$/� S	.v@x1$/� S	.v@x1˚/
D @t .S	$ � $/C .@t$ � S	@t$/
C .va@x1$ � S	.va@x1$//C va@x1 .S	$ � $/
C .v@x1$ � S	.v@x1$//C v@x1.S	$ � $/C .S	v � v/@x1S	$

C .v@x1˚a � S	.v@x1˚a//C .S	v � v/@x1˚
a:

Hence, using the property (2) of the smoothing operators and product estimates for
Sobolev norms, we have, for r � 3; s � 3 2 Œ0; s3 � 1� with r � s and r 0 2 Œ3; s3�,

jjE .S	V; S	$/� S	E .V; $/jjHs
� .˝T /

	 Cr;s.	s�r jj$ jjHrC1
� .˝T /

C 	s�r ..jjva � vjjH2
� .˝T /

C 1/ jj$ jj
H
rC1
� .˝T /

C jjva � vjjHr
� .˝T /

jj$ jjH3
� .˝T /

/

C .jjva � vjjHs
� .˝T /

C 1/	3�r 0 jj$ jjHr0
� .˝T /

C 	s�r .jjvjjH2
� .˝T /

jj$ jj
H
rC1
� .˝T /

C jjvjjHr
� .˝T /

jj$ jjH3
� .˝T /

/

C jjvjjHs
� .˝T /

	3�r 0 jj$ jjHr0
� .˝T /

C 	s�r jjvjjHr
� .˝T /

jj$ jjH3
� .˝T /

C 	2�r 0 jjvjjHr0
� .˝T /

jj$ jj
H
sC1
� .˝T /

C 	s�r .jjvjjH2
� .˝T /

ˇ̌ˇ̌
˚a � ˚ ˇ̌ˇ̌

H
rC1
� .˝T /

C jjvjjHr
� .˝T /

ˇ̌ˇ̌
˚a � ˚ ˇ̌ˇ̌

H3
� .˝T /

/

C 	s�r jjvjjHr
� .˝T /

ˇ̌ˇ̌
˚a �˚ ˇ̌ˇ̌

H3
� .˝T /

C 	2�r 0 jjvjjHr0
� .˝T /

ˇ̌ˇ̌
˚a �˚ ˇ̌ˇ̌

H
sC1
� .˝T /

/

	 Cr;s.	s�r .1C jjvjjH2
� .˝T /

C jj$ jjH3
� .˝T /

/.1C jjvjjHr
� .˝T /

C jj$ jj
H
rC1
� .˝T /

/

C 	3�r 0

.1C jjvjjHs
� .˝T /

C jj$ jj
H
sC1
� .˝T /

/.jjvjjHr0
� .˝T /

C jj$ jjHr0
� .˝T /

//:

Hence, for r 0; r; s 2 I with r � s,
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ˇ̌ˇ̌
R.SX	 u/ � SX	 R.u/

ˇ̌ˇ̌
Xs

	 Cr;s.	s�r .1C jjujjX0/.1C jjujjXrC1 /C 	�r 0

.1C jjujjXsC1 /.1C jjujjXr0 //:

6.7.2 Estimate of the Derivatives of T

Since T is a first order differential operator, that is, T .u/ can be written as a smooth
bounded function of u and its first order derivatives for u 2 U 1, we immediately see
that T W U 1 ! Y 0 is continuous and it satisfies (20) and (19) with m1 � 1;m2 �
0;m3 � 1. Note that we have used the Sobolev embeddingH3

� .˝T / � W 1;1.˝T /.
We will in fact need to estimate the derivative of A before we fix m1;m2;m3.

6.7.3 Estimate of A � DT

We estimate
ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

Q$
@x2.˚

a C $/@x2 .L .V; $/ � f a/
ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
Hs
� .˝T /

	

Cs
ˇ̌ˇ̌ Q$ ˇ̌ˇ̌

Hs
� .˝T /

jjL .V; $/ � f ajjH3
� .˝T /

C Cs
ˇ̌ˇ̌ Q$ ˇ̌ˇ̌

H2
� .˝T /

jjL .V; $/ � f ajj
H
sC1
� .˝T /

C Cs
ˇ̌ˇ̌ Q$ ˇ̌ˇ̌

H2
� .˝T /

jjL .V; $/ � f ajjH3
� .˝T /

.1C ˇ̌ˇ̌˚a C $ � ˚ ˇ̌ˇ̌
H
sC1
� .˝T /

/:

Hence

jj.A.u/� DT.u// QujjY s
	 Cs.jj QujjXs jjT .u/� T .u0/� fjjY 0 C jjQujjX0 jjT .u/ � T .u0/� fjjY sC1

C jjQujjX0 jjT .u/� T .u0/� fjjY 0 .1C jjujjXsC1 //

where the constant Cs depends on
ˇ̌ˇ̌
˚a � ˚ ˇ̌ˇ̌

H
sC1
� .˝T /

. Thus m5 D 0, m6 D 0,

m9 D 1; l3 D 0; l4 D 1.

6.7.4 Estimate of the Derivative of A

Note that

L
0
e.U;˚/

LV D L
0.U;˚/. QV ; Q$/ �

Q$
@x2˚

@x2.L.U;˚//
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where .U;˚/ D .U aCV;˚aC$/. The first term is a component of DT . For fixed
. QU ; Q$/, the second term is Q$ multiplied by a differential operator of order 2. Hence

jjDA.u/QuhjjY s
	 Cs.jjhjjXsC1 jj QujjX0 C jjhjjX0 jj QujjXsC1 C jjhjjX0 jj QujjX0 .1C jjujjXsC1 /

C jjQujjX0 .jjhjjXsC2 C jjhjjX1 .1C jjujjXsC2 //C jjQujjXs jjhjjX1/
	 Cs.jjhjjXsC2 jj QujjX1 C jjhjjX1 jj QujjXsC2 C jjhjjX1 jj QujjX1 .1C jjujjXsC2 //:

Thus we fix m1 D 2;m2 D 1;m3 D 2.

6.8 Conclusion

We have seen that the hypotheses of the theorem are satisfied with m0 D 4;m1 D
2;m2 D 1;m3 D 2;m4 D 3;m5 D 0;m6 D 0;m7 D 1;m8 D 0;m9 D 1; l1 D
2; l2 D 0; l3 D 0; l4 D 1. Hence we may take r0 D 6. Note that in the proof we
required s1 > r0C 1; s1 � r0Cmaxfm1;m3g C l1 andM.s1 �maxfm1C l4;m3C
l4;m5;m9g/ � 0 (with slope 1 which is satisfied for s1 > r0C1 automatically). One
can check that M.s/ D s � 8 hence we require s1 � 3 � 8, so s1 � 11. Now we
require s1 C maxfl1;m4 C m7g 2 I , hence s3 � 11C 4 D 15, and thus s4 � 17

will do.
Thus we conclude that if we are given the approximate solution
.U aC; U a�; ˚aC; ˚a�/ with U a � U ;˚a � ˚ 2 H20.˝T / which satisfies the

conditions described above, with

ˇ̌ˇ̌
U a � U ˇ̌ˇ̌

H7.˝T /
C ˇ̌ˇ̌˚a �˚ ˇ̌ˇ̌

H7.˝T /

sufficiently small, then we have a unique solution .V C; V �; $C; $�/ 2 F 7
� .˝T /

to the following equations (for both C and � components),

L.U a C V;˚a C $/ D 0
@t .˚

a C $/C .va C v/@x1.˚
a C $/ � .ua C u/ D 0:

In fact, since f a 2 Y s2�2, where s2 D 12 	 s3 � 3, we may use the last part of the
theorem to conclude that .V C; V �; $C; $�/ 2 F 11

� .˝T /.

7 Further Applications and Open Problems

There are several other situations involving characteristic discontinuities for the
Euler equations or the equations of ideal magnetohydrodynamics where it may be
possible to obtain a tame estimate for the linearised equations, and thus apply the
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above Nash-Moser iteration scheme. In these contexts a characteristic discontinuity
is a surface of discontinuity in the fluid across which the Rankine-Hugoniot jump
conditions are satisfied with zero mass transfer. The first step is usually to perform a
normal modes analysis by linearising about a background state (constant either side
of a plane across which the Rankine-Hugoniot jump conditions are satisfied) and to
determine criteria which rule out exponentially growing solutions. The aim is then
to show short-time existence of solutions with the same structure as the background
state (that is, smooth either side of a surface of discontinuity across which the
Rankine-Hugoniot jump conditions are satisfied) where the initial data is a small
perturbation of the background state, under the assumption that the background state
satisfies the stability criteria. We call this structural stability.

One obvious open problem is to extend the above result by Coulombel and Secchi
in [8] on the 2D isentropic Euler equations to the 2D full Euler equations. Miles
showed in [17] that the stability criterion on the background solution NU˙ (using
notation as above) in this case is

jŒNu�j > .. NcC/
2
3 C . Nc�/

2
3 /

3
2

(where Œu� D uC � u�) under the simplifying assumption

N�C. NcC/2 D N��. Nc�/2:

The main difficulty is to solve, and to deduce a tame estimate for, the linearised
equations, assuming this stability criterion, after which we would expect the
application of Nash-Moser iteration to be similar. In fact Morando and Trebeschi
have obtained an L2 estimate with derivative loss for the linearised equations under
this stability criterion – see [18]. We note that vortex sheets in 3D Euler are always
unstable according to normal modes analysis – see Miles and Fejer [13].

A modification of the Nash-Moser scheme similar to the one above has been
used successfully by Chen and Wang in [5] and [6] for current-vortex sheets in
ideal compressible magnetohydrodynamics under the assumption that the jump in
the non-parallel component of the magnetic field dominates the jump in tangential
velocity. This stability criterion was first found by Trakhinin by forming a new
symmetric form of the equations – see [24] – although it is almost certainly stricter
than necessary. One of the key observations made by Chen and Wang is that, using
this new symmetric form of the equations, the linearised problem for current-vortex
sheets is endowed with a well-structured decoupled formulation into a standard
initial-boundary value problem for a symmetric hyperbolic system and a separate
scalar PDE for the front. Chen and Wang then modify the iteration scheme to
reconstruct the extensions of the front, $˙, with $C D $� on the boundary,
which is why their scheme does not exactly fit into the above framework, but would
require a small modification. In fact Trakhinin in [25] obtained the same result on
current-vortex sheets, but instead of modifying significantly the iteration scheme of
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Coulombel and Secchi, he solved the original linearised equations having used his
new symmetric form only to help with the treatment of the linearised equations,
which results in his approach being longer, although it should fit into the above
framework. The normal modes analysis to determine the expected weakest possible
stability criteria for current-vortex sheets in compressible magnetohydrodynamics
leads to high order algebraic equations which seem impossible to solve analytically,
and is detailed by Fejer in [12], where some special cases are considered.

The stability criterion for current-vortex sheets in incompressible magnetohydro-
dynamics is easier to determine – see e.g. Axford [4]. In 2D, the condition is

2.
ˇ̌ NHC

ˇ̌2 C ˇ̌ NH�
ˇ̌2
/ > jŒNu�j2 :

In 3D, there are two conditions

2.
ˇ̌ NHC

ˇ̌2 C ˇ̌ NH�
ˇ̌2
/ > jŒNu�j2

2
ˇ̌ NHC � NH�

ˇ̌2
>
ˇ̌ NHC � ŒNu�

ˇ̌2 C ˇ̌ NH� � ŒNu�
ˇ̌2

although in fact the first follows from the second under the additional assumption
NHC � NH� ¤ 0.

Given these stability criteria, one would hope to be able to obtain a tame
estimate for the linearised equations and then use Nash-Moser iteration as above
to prove nonlinear structural stability of incompressible current-vortex sheets. In
[19], Morando, Trakhinin and Trebeschi obtain an energy estimate for the linearised
3D equations under the above stability criteria. Also, using a different approach,
Coulombel et al. [9] have derived a priori high order energy estimates directly
for the nonlinear equations in 3D, using the incompressible version of Trakhinin’s
stability criterion – see Coulombel et al. [9]. However, the full problem of nonlinear
structural stability of incompressible current-vortex sheets is still open.

The case of current-vortex sheets in 2D isentropic magnetohydrodynamics,
where the magnetic fields are parallel on either side of the discontinuity, has been
considered by Wang and Yu in [26]. They obtain a low order energy estimate
for the linearised equations with loss of derivatives, under some quite restrictive
assumptions to simplify the algebra and make the treatment similar to that of 2D
isentropic Euler.

Another open problem is the case of current-entropy waves for the full magneto-
hydrodynamics equations, where the normal component of the magnetic field is no
longer zero on the surface of discontinuity, but the velocity and magnetic field are
continuous, with only the pressure, entropy and density experiencing a jump. There
are strong indications that such waves ought to be stable under certain conditions,
but the normal modes analysis again results in high-order algebraic equations which
are difficult to study analytically.
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