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Abstract. Hybrid associative memories are based on the combination of two
well-known associative networks, the lernmatrix and the linear associator, with
the aim of taking advantage of their merits and overcoming their limitations.
While these models have extensively been applied to information retrieval prob-
lems, they have not been properly studied in the framework of classification and
even less with imbalanced data. Accordingly, this work intends to give a compre-
hensive response to some issues regarding imbalanced data classification: (i) Are
the hybrid associative models suitable for dealing with this sort of data? and, (ii)
Does the degree of imbalance affect the performance of these neural classifiers?
Experiments on real-world data sets demonstrate that independently of the imbal-
ance ratio, the hybrid associative memories perform poorly in terms of area under
the ROC curve, but the hybrid associative classifier with translation appears to be
the best solution when assessing the true positive rate.
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1 Introduction

An associative memory [1] is a type of neural network that allows to recall the previ-
ously stored training example xi that most closely resembles the one presented to the
network. This connectionist model has demonstrated to be very effective for informa-
tion storage and retrieval [2–4], but it has not been much studied in the framework of
classification. Among the simplest and first studied associative memory models are the
lernmatrix [5] and the linear associator [6,7], which are considered as hetero-associative
memories capable of producing exact recall. Both these models can also work as classi-
fiers, but they present some drawbacks that make difficult their application to many real-
life problems: the lernmatrix needs to be provided with binary input vectorsxi ∈ {0, 1},
whereas the linear associator requires the input vectors to be orthonormal and linearly
independent.
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In order to benefit from the advantages of these associative memories and over-
come their shortcomings, several extensions have been developed. These include the
hybrid associative classifier (HAC) and the hybrid associative classifier with translation
(HACT) [8], which combine the procedure used by the linear associator in the learning
phase with the recall stage of the lernmatrix. While these two classification models have
been used with some success in a number of applications, there still exist open questions
regarding their limitations that deserve a more thorough investigation. For example, the
present paper addresses the issue of imbalanced data classification [9], which appears
as a much more challenging task for this type of associative memories.

Many complex pattern recognition and data mining problems are characterized by
imbalanced data, where at least one class is heavily under-represented as compared to
others. Following the common practice in the area [10, 11], we will here consider only
binary classification problems where the examples from the majority class are often
referred to as the negative examples and those from the minority class as the positive
examples, since these usually represent the concept of most interest.

The importance of the class imbalance problem comes from the fact that in general,
it hinders the performance of most standard learning algorithms because they are often
biased towards the majority class and have a poor performance on the minority class.
Besides the classifiers are commonly built with the aim of reducing the overall error,
what may lead to erroneous conclusions; for example, an algorithm that achieves an
accuracy of 99% will be worthless if it fails on classifying all positive examples.

Many classifiers have been investigated in the context of class imbalance, ranging
from the nearest neighbor rule and decision trees to support vector machines and various
topologies of neural networks [11–15]. However, to the best of our knowledge, the use
of associative memory models has not received adequate attention from researchers on
this topic. In fact, we have found only a recent work [16] that analyzes the performance
of the HACT approach after under-sampling the imbalanced data set, but it presents
several limitations such as the reduced number of databases used in the experiments,
the lack of comparisons with other state-of-the-art classifiers and especially, the fact
that it does not take care of the imbalance ratio (i.e. the ratio of the majority to the
minority instances) and its effect on the HACT performance.

The purpose of this paper is to gain insight into the behavior of the HAC and HACT
associative models when these are used for the classification of imbalanced data, pur-
suing to fully understand how the class imbalance affects the performance of these
classifiers. To this end, we provide a large pool of experiments on 58 real-world bench-
marking data sets that have different degrees of imbalance, comparing those hybrid
associative memories with other well-known artificial neural networks: a Bayesian net-
work (BNet), a multilayer perceptron (MLP) and a radial basis function (RBF). We
conducted our experiments by evaluating three performance metrics: the area under the
ROC curve, the true positive rate and the true negative rate.

2 Two Hybrid Associative Memories

In this section we provide a brief introduction to the associative memory models that
will be further experimented with, covering only the general concepts and notation
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needed to understand their foundations. For a complete description of associative mem-
ories, the reader may review any of the many books on this subject (e.g. [17, 18]).

In general, an associative memory can be defined as a mapping matrix M so that an
input vector xi ∈ R

n (with n components) will be transformed into an output vector
yi ∈ R

m (with m components), that is

yi = Mxi i = 1, . . . , p (1)

where p denotes the number of input vectors.
The stored samples will be represented in the form of pairs of associations (xi,yi)

between the input and output vectors, xi and yi, and are often called fundamental pat-
tern. The set of p pairs (fundamental patterns) constitutes the fundamental set of asso-
ciations.

The matrix M has to be determined through an iterative procedure in the learning
phase. Afterwards, during the recall or recovery phase, an unknown pattern x0 will be
applied to the input of the matrix in order to produce the vector y0, which is expected
to be a good approximation of the true output y.

Hybrid Associative Classifier (HAC). As previously pointed out, the HAC model [8]
arises from the combination of the lernmatrix and the linear associator with the aim of
overcoming the practical drawbacks of these associative neural networks. Apart from
these obvious advantages, it is worth remarking that the HAC model presents some
other interesting properties such as simplicity, requirements of low computational cost
and the ability to support real-valued input vectors [8].

During the learning phase, the HAC memory imitates the process of the linear as-
sociator: each sample that belongs to class k is represented by a vector with zeros in
all components except the k’th element that equals 1. In this way, the outer product of
vectors xi and yi gives the corresponding associations between them. Then the matrix
M of size n×m will be obtained as the sum of all p outer products as

M =

p∑

i=1

(yi)(xi)T (2)

After computing the mapping matrix M, the recovery of a given input sample will be
performed following the process of the lernmatrix model in order to estimate its class
label.

It has to be pointed out, however, that a practical drawback of the HAC model comes
from the possible large differences in the magnitude of the input vectors because in such
a case, the vectors with a lower magnitude will be assigned to the class of the vectors
with a larger magnitude.

Hybrid Associative Classifier with Translation (HACT). This is a modification of
the HAC model that tries to face several of its limitations. More specifically, if the input
samples are clustered in the same quadrant, the performance of the HAC memory will
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be affected negatively. Thus the HACT approach [8] starts with a translation of the
coordinate axes whose origin is taken to lie in the mean vector of all the input vectors
as computed by

x =
1

p

p∑

i=1

xi (3)

In this way, the new coordinate axes are parallel to the original coordinate axes, but
eliminates the clustering of samples in a unique quadrant. Then the input and test vec-
tors in the new coordinate system will be obtained as xi = xi − x. After the corre-
sponding translation of axes, the learning and recovery phases will be the same as those
described for the HAC model.

3 Experimental Set-Up

As already discussed, the aim of this work and the experiments conducted here is to
investigate whether two models of hybrid associative memories, which are based on the
lernmatrix and the linear associator, are suitable or not for imbalanced data classifica-
tion, and to what extent the degree of imbalance may affect their performance.

Table 1. Description of the data sets used in the experiments

Data sets Features Samples IR Data sets Features Samples IR
Glass1 9 214 1.82 Ecoli-0-3-4-6 vs 5 7 205 9.25
Pima 8 768 1.87 Ecoli-0-3-4-7 vs 5-6 7 257 9.28
Iris0 4 150 2.00 Yeast-0-5-6-7-9 vs 4 8 528 9.35
Glass0 9 214 2.06 Vowel0 13 988 9.98
Yeast1 8 1484 2.46 Ecoli-0-6-7 vs 5 6 220 10.00
Haberman 3 306 2.78 Glass-0-1-6 vs 2 9 192 10.29
Vehicle3 18 846 3.00 Ecoli-0-1-4-7 vs 2-3-5-6 7 336 10.59
Glass-0-1-2-3 vs 4-5-6 9 214 3.20 Led-0-2-4-5-6-7-8-9 vs 1 7 443 10.97
Vehicle0 18 846 3.25 Ecoli-0-1 vs 5 6 240 11.00
Ecoli1 7 336 3.36 Glass-0-6 vs 5 9 108 11.00
New-thyroid2 5 215 5.14 Glass-0-1-4-6 vs 2 9 205 11.06
Ecoli2 7 336 5.46 Glass2 9 214 11.59
Segment0 19 2308 6.02 Ecoli-0-1-4-7 vs 5-6 6 332 12.28
Glass6 9 214 6.38 Cleveland-0 vs 4 13 177 12.62
Yeast3 8 1484 8.10 Ecoli-0-1-4-6 vs 5 6 280 13.00
Ecoli3 7 336 8.60 Shuttle-0 vs 4 9 1829 13.87
Page-blocks0 10 5472 8.79 Yeast-1 vs 7 7 459 14.30
Ecoli-0-3-4 vs 5 7 200 9.00 Glass4 9 214 15.47
Yeast-2 vs 4 8 514 9.08 Ecoli4 7 336 15.80
Ecoli-0-6-7 vs 3-5 7 222 9.09 Page-blocks-1-3 vs 4 10 472 15.86
Ecoli-0-2-3-4 vs 5 7 202 9.10 Glass-0-1-6 vs 5 9 184 19.44
Glass-0-1-5 vs 2 9 172 9.12 Yeast-1-4-5-8 vs 7 8 693 22.10
Yeast-0-3-5-9 vs 7-8 8 506 9.12 Glass5 9 214 22.78
Yeast-0-2-5-6 vs 3-7-8-9 8 1004 9.14 Yeast-2 vs 8 8 482 23.10
Yeast-0-2-5-7-9 vs 3-6-8 8 1004 9.14 Yeast4 8 1484 28.10
Ecoli-0-4-6 vs 5 6 203 9.15 Yeast-1-2-8-9 vs 7 8 947 30.57
Ecoli-0-1 vs 2-3-5 7 244 9.17 Yeast5 8 1484 32.73
Ecoli-0-2-6-7 vs 3-5 7 224 9.18 Ecoli-0-1-3-7 vs 2-6 7 281 39.14
Glass-0-4 vs 5 9 92 9.22 Yeast6 8 1484 41.40
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The empirical analysis has been performed over a total of 58
benchmarking data sets taken from the KEEL Data Set Repository
(http://www.keel.es/dataset.php) [19]. Note that all the original
multi-class databases have firstly been transformed into two-class problems. Table 1
summarizes the main characteristics of the data sets, including the imbalance ratio
(IR), i.e. the number of negative examples divided by the number of positive examples.
As can be seen, the databases chosen for the experiments go from a low imbalance of
1.82 in Glass1 to a high/moderate imbalance of 41.40 in the case of Yeast6.

In order to gain sufficient insight into the behavior of the associative memory mod-
els, three other neural networks (BNet, MLP, RBF) have been used as baselines for
comparison purposes. These were taken from the Weka toolkit [20] with their default
parameter values. For the experiments here carried out, we have adopted a 5-fold cross-
validation method to estimate three classification performance measures commonly
used in skewed domains: the area under the ROC curve (AUC), the true positive rate
(TPrate) and the true negative rate (TNrate). Each data set has been divided into five
stratified blocks of size N/5 (where N denotes the total number of samples in the
database), using four folds for training the connectionist classifiers and the remaining
block as an independent test set. Therefore the results reported in tables of Section 4
correspond to those three measures averaged over the five runs.

Table 2. Confusion matrix for a two-class problem

Predicted positive Predicted negative
Positive class True Positive (TP) False Negative (FN)
Negative class False Positive (FP) True Negative (TN)

Given a 2 × 2 confusion matrix as that illustrated in Table 2, the performance mea-
sures used in the experiments can be calculated as follows: TPrate = TP

TP+FN ,

TNrate = TN
TN+FP , and AUC = TPrate+TNrate

2 . Note that the latter corresponds
to the AUC defined by a single point on the ROC curve.

4 Experimental Results

Table 3 reports the AUC values obtained by the neural network models on each database,
along with the average across the whole collection of data sets. From these results, the
first observation is that the HAC memory yields a 50% of AUC, which indicates that
all samples of one class have been misclassified while all of the other have been cor-
rectly classified. This effect has not been found in the case of the HACT model, but its
performance in terms of AUC is lower than that achieved by the three other neural net-
works on most databases. When paying attention of the average values, the MLP model
clearly performs the best (80.70% of AUC), but the results of the Bayesian network and
the RBF are not too far from that of the HACT approach.

http://www.keel.es/dataset.php
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Table 3. Experimental results using the AUC

Data set HAC HACT BNet MLP RBF Data set HAC HACT BNet MLP RBF
Glass1 50.00 56.02 67.51 68.6 62.24 Ecoli-0-3-4-6 vs 5 50.00 79.12 83.11 88.65 91.96
Pima 50.00 57.58 69.01 74.69 70.30 Ecoli-0-3-4-7 vs 5-6 50.00 79.05 73.78 88.92 84.06
Iris0 50.00 95.50 100 100 100 Yeast-0-5-6-7-9 vs 4 50.00 74.94 56.91 72.79 53.36
Glass0 50.00 71.53 79.93 77.01 67.63 Vowel0 50.00 77.39 88.43 99.44 86.78
Yeast1 50.00 66.92 67.59 66.94 60.74 Ecoli-0-6-7 vs 5 50.00 79.75 82.25 86.50 87.25
Haberman 50.00 62.74 55.42 58.10 55.11 Glass-0-1-6 vs 2 50.00 63.14 50.00 47.71 48.00
Vehicle3 50.00 65.10 67.63 74.26 63.63 Ecoli-0-1-4-7 vs 2-3-5-6 50.00 76.81 80.51 87.03 79.01
Glass-0-1-2-3 vs 4-5-6 50.00 92.69 88.26 92.03 89.41 Led-0-2-4-5-6-7-8-9 vs 1 51.25 81.66 88.24 89.30 83.06
Vehicle0 50.00 74.64 81.74 94.95 84.51 Ecoli-0-1 vs 5 50.00 77.72 87.04 89.54 89.54
Ecoli1 50.00 87.36 85.01 85.83 88.35 Glass-0-6 vs 5 50.00 86.34 78.39 100 94.50
New-thyroid2 50.00 75.71 92.85 95.15 98.01 Glass-0-1-4-6 vs 2 50.00 64.62 50.00 48.67 49.74
Ecoli2 50.00 82.34 86.08 89.24 90.72 Glass2 50.00 65.49 50.00 51.03 48.97
Segment0 50.00 75.82 98.78 99.39 97.71 Ecoli-0-1-4-7 vs 5-6 50.00 79.30 51.84 84.87 83.19
Glass6 50.00 89.41 91.17 84.92 87.44 Cleveland-0 vs 4 50.00 47.92 62.63 87.22 84.90
Yeast3 50.00 78.92 85.42 85.85 87.06 Ecoli-0-1-4-6 vs 5 50.00 77.31 86.93 79.05 89.23
Ecoli3 50.00 81.96 84.01 78.34 66.82 Shuttle-0 vs 4 50.00 91.19 100 99.60 99.11
Page-blocks0 50.00 48.70 89.73 87.59 74.52 Yeast-1 vs 7 50.00 65.25 46.43 62.61 54.53
Ecoli-0-3-4 vs 5 50.00 80.00 84.44 88.60 91.66 Glass4 50.00 82.57 64.92 87.34 86.59
Yeast-2 vs 4 50.00 74.67 87.40 82.50 87.89 Ecoli4 50.00 81.51 82.34 89.21 89.05
Ecoli-0-6-7 vs 3-5 50.00 77.00 89.00 82.50 68.50 Page-blocks-1-3 vs 4 50.00 80.17 96.56 97.89 91.99
Ecoli-0-2-3-4 vs 5 50.00 80.22 86.40 89.17 89.20 Glass-0-1-6 vs 5 50.00 88.29 90.43 79.14 89.71
Glass-0-1-5 vs 2 50.00 63.63 50.00 52.48 50.24 Yeast-1-4-5-8 vs 7 50.00 59.65 50.00 51.37 50.00
Yeast-0-3-5-9 vs 7-8 50.00 69.43 59.78 64.69 61.45 Glass5 50.00 88.05 91.34 89.51 84.02
Yeast-0-2-5-6 vs 3-7-8-9 50.00 69.89 75.08 73.38 67.66 Yeast-2 vs 8 50.00 77.32 77.39 77.06 79.78
Yeast-0-2-5-7-9 vs 3-6-8 50.00 75.75 83.89 86.22 88.86 Yeast4 50.00 73.32 62.84 64.39 50.00
Ecoli-0-4-6 vs 5 50.00 78.97 89.18 88.92 86.69 Yeast-1-2-8-9 vs 7 50.00 65.03 57.96 56.46 51.67
Ecoli-0-1 vs 2-3-5 50.00 77.54 50.56 80.67 79.21 Yeast5 50.00 78.65 91.77 83.60 63.30
Ecoli-0-2-6-7 vs 3-5 50.00 77.95 80.01 81.01 81.01 Ecoli-0-1-3-7 vs 2-6 50.00 80.85 84.63 84.81 84.63
Glass-0-4 vs 5 50.00 90.81 99.41 100 94.41 Yeast6 50.00 74.89 83.30 73.85 50.00
Average 50.02 75.45 77.16 80.70 77.05

By the analysis of the behavior of these classifiers as a function of the imbalance
ratio, one can guess that there is not necessarily a direct relationship between the classi-
fication performance and the degree of imbalance. For instance, the balanced accuracies
for the Ecoli-0-1-3-7 vs 2-6 database, which has an imbalance ratio of 39.14, are sig-
nificantly higher than those for Glass1, even though this presents a very low imbalance
ratio of 1.82. In some sense, it appears that databases may also suffer from other in-
trinsic problems such as class overlapping, small disjuncts, feature noise and lack of
representative data, which in turn may affect classification performance much more
strongly than the presence of class imbalance.

In order to accomplish a better understanding of the performance of these neural
network models, Tables 4 and 5 report the true positive and true negative rates, respec-
tively. These measures allow to analyze the behavior of a classifier on each individual
class, thus drawing out whether it is biased towards one class or another. This is es-
pecially important in the context of imbalanced data because the examples from the
minority class, which usually correspond to the most interesting cases, are more likely
to be misclassified. In addition, it is often preferable to achieve a higher true positive
rate rather than a higher true negative rate and consequently, the AUC by itself is not
sufficiently informative when evaluating the performance of a set of classifiers.
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Table 4. Experimental results using the true positive rate

Data set HAC HACT BNet MLP RBF Data set HAC HACT BNet MLP RBF
Glass1 0 80.17 47.34 59.60 50.00 Ecoli-0-3-4-6 vs 5 0 95.00 70 80 85.00
Pima 0 44.36 58.22 67.18 55.20 Ecoli-0-3-4-7 vs 5-6 0 96.00 48.00 80.00 72.00
Iris0 0 100 100 100 100 Yeast-0-5-6-7-9 vs 4 0 86.36 18.00 48.72 8.00
Glass0 0 100 80.00 70.00 42.84 Vowel0 0 97.78 78.86 98.88 75.56
Yeast1 0 76.68 46.14 43.84 27.28 Ecoli-0-6-7 vs 5 0 95.00 65.00 75.00 75.00
Haberman 0 59.26 17.52 28.20 15.98 Glass-0-1-6 vs 2 0 100 0 0 0
Vehicle3 0 60.33 63.64 58.94 41.92 Ecoli-0-1-4-7 vs 2-3-5-6 0 93.33 62.66 76.00 58.66
Glass-0-1-2-3 vs 4-5-6 0 94.00 80.18 87.74 84.36 Led-0-2-4-5-6-7-8-9 vs 1 2.50 100 78.20 81.06 67.84
Vehicle0 0 100 95.94 90.98 80.92 Ecoli-0-1 vs 5 0 100 75.00 80.00 80.00
Ecoli1 0 94.83 83.16 76.68 91.02 Glass-0-6 vs 5 0 100 70.00 100 90.00
New-thyroid2 0 91.43 85.70 91.42 97.14 Glass-0-1-4-6 vs 2 0 100 0 0 0
Ecoli2 0 96.36 77.44 82.72 87.08 Glass2 0 100 0 6.66 0
Segment0 0 100 98.20 99.10 97.90 Ecoli-0-1-4-7 vs 5-6 0 100 44.00 72.00 68.00
Glass6 0 96.67 86.66 72.00 78.66 Cleveland-0 vs 4 0 33.50 26.04 78.18 71.52
Yeast3 0 98.79 72.94 74.28 77.32 Ecoli-0-1-4-6 vs 5 0 100 75.00 60.00 80.00
Ecoli3 0 97.14 79.98 59.98 34.30 Shuttle-0 vs 4 0 99.20 100 99.20 98.40
Page-blocks0 0 19.15 85.32 76.92 50.84 Yeast-1 vs 7 0 76.67 13.34 26.64 10.00
Ecoli-0-3-4 vs 5 0 100 70.00 80.00 85.00 Glass4 0 90.00 33.32 76.68 76.68
Yeast-2 vs 4 0 90.18 76.54 66.54 78.36 Ecoli4 0 100 65.00 80.00 80.00
Ecoli-0-6-7 vs 3-5 0 88.00 80.00 67.00 41.00 Page-blocks-1-3 vs 4 0 68.67 100 96.00 86.00
Ecoli-0-2-3-4 vs 5 0 100 75.00 80.00 80.00 Glass-0-1-6 vs 5 0 100 90.00 60.00 80.00
Glass-0-1-5 vs 2 0 95.00 0 13.34 5.00 Yeast-1-4-5-8 vs 7 0 66.67 0 3.34 0
Yeast-0-3-5-9 vs 7-8 0 86.00 20.00 34.00 24.00 Glass5 0 100 90.00 80.00 70.00
Yeast-0-2-5-6 vs 3-7-8-9 0 77.68 54.36 49.42 37.32 Yeast-2 vs 8 0 70.00 55.00 55.00 60.00
Yeast-0-2-5-7-9 vs 3-6-8 0 89.95 70.68 73.78 79.94 Yeast4 0 90.18 29.28 29.46 0
Ecoli-0-4-6 vs 5 0 95.00 80.00 80.00 75.00 Yeast-1-2-8-9 vs 7 0 80.00 16.68 13.34 3.34
Ecoli-0-1 vs 2-3-5 0 96.00 10.00 65.00 65.00 Yeast5 0 100 86.4 68.08 26.92
Ecoli-0-2-6-7 vs 3-5 0 90.00 63.00 64.00 64.00 Ecoli-0-1-3-7 vs 2-6 0 100 70.00 70.00 70.00
Glass-0-4 vs 5 0 100 100 100 90.00 Yeast6 0 94.29 71.42 48.58 0
Average 0.04 88.96 60.16 64.75 57.42

For instance, the results of HAC in Table 4 demonstrate that this hybrid associative
model is of no value at all because it fails on the classification of all positive examples.
This makes clear that the AUC of 50% reported in Table 3 is due to the awful true
positive rate of this classifier and the very high rate achieved on the negative class (see
Table 5). On the contrary, the true positive rate of HACT suggests that this can be a good
tool for the classification of data with class imbalance because it yields a true positive
rate of close to 89% in average, that is, even higher than that of the best performing
algorithm (MLP) in terms of AUC.

It is also interesting to note that in general, the highest differences between HACT
and MLP are found in the most strongly imbalanced data sets. Unfortunately, in these
cases, the true negative rate of the HACT model is lower than that of the MLP, but we
should recall that there exist numerous real-world applications in which the minority
class represents the concept of most interest and therefore, it will be crucial to correctly
classify the positive examples even if this might entail a certain degradation of the true
negative rate.
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Table 5. Experimental results using the true negative rate

Data set HAC HACT BNet MLP RBF Data set HAC HACT BNet MLP RBF
Glass1 100 31.88 87.68 77.6 74.48 Ecoli-0-3-4-6 vs 5 100 63.24 96.22 97.30 98.92
Pima 100 70.80 79.80 82.20 85.40 Ecoli-0-3-4-7 vs 5-6 100 62.11 99.56 97.84 96.12
Iris0 100 91.00 100 100 100 Yeast-0-5-6-7-9 vs 4 100 63.53 95.82 96.86 98.72
Glass0 100 43.05 79.86 84.02 92.42 Vowel0 100 57.01 98.00 100 98.00
Yeast1 100 57.16 89.04 90.04 94.20 Ecoli-0-6-7 vs 5 100 64.50 99.50 98.00 99.50
Haberman 100 66.22 93.32 88.00 94.24 Glass-0-1-6 vs 2 100 26.29 100 95.42 96.00
Vehicle3 100 69.87 71.62 89.58 85.34 Ecoli-0-1-4-7 vs 2-3-5-6 100 60.28 98.36 98.06 99.36
Glass-0-1-2-3 vs 4-5-6 100 91.38 96.34 96.32 94.46 Led-0-2-4-5-6-7-8-9 vs 1 100 63.33 98.28 97.54 98.28
Vehicle0 100 49.29 67.54 98.92 88.10 Ecoli-0-1 vs 5 100 55.45 99.08 99.08 99.08
Ecoli1 100 79.88 86.86 94.98 85.68 Glass-0-6 vs 5 100 72.68 86.78 100 99.00
New-thyroid2 100 60.00 100 98.88 98.88 Glass-0-1-4-6 vs 2 100 29.25 100 97.34 99.48
Ecoli2 100 68.31 94.72 95.76 94.36 Glass2 100 30.99 100 95.40 97.94
Segment0 100 51.64 99.36 99.68 97.52 Ecoli-0-1-4-7 vs 5-6 100 58.59 59.68 97.74 98.38
Glass6 100 82.16 95.68 97.84 96.22 Cleveland-0 vs 4 100 52.50 99.22 96.26 98.28
Yeast3 100 59.05 97.90 97.42 96.80 Ecoli-0-1-4-6 vs 5 100 54.62 98.86 98.10 98.46
Ecoli3 100 66.78 88.04 96.70 99.34 Shuttle-0 vs 4 100 83.18 100 100 99.82
Page-blocks0 100 78.24 94.14 98.26 98.20 Yeast-1 vs 7 100 53.84 79.52 98.58 99.06
Ecoli-0-3-4 vs 5 100 60.00 98.88 97.20 98.32 Glass4 100 75.13 96.52 98.00 96.50
Yeast-2 vs 4 100 59.17 98.26 98.46 97.42 Ecoli4 100 63.03 99.68 98.42 98.10
Ecoli-0-6-7 vs 3-5 100 66.00 98.00 98.00 96.00 Page-blocks-1-3 vs 4 100 91.67 93.12 99.78 97.98
Ecoli-0-2-3-4 vs 5 100 60.44 97.80 98.34 98.40 Glass-0-1-6 vs 5 100 76.57 90.86 98.28 99.42
Glass-0-1-5 vs 2 100 32.26 100 91.62 95.48 Yeast-1-4-5-8 vs 7 100 52.63 100 99.40 100
Yeast-0-3-5-9 vs 7-8 100 52.85 99.56 95.38 98.90 Glass5 100 76.10 92.68 99.02 98.04
Yeast-0-2-5-6 vs 3-7-8-9 100 62.10 95.80 97.34 98.00 Yeast-2 vs 8 100 84.65 99.78 99.12 99.56
Yeast-0-2-5-7-9 vs 3-6-8 100 61.55 97.10 98.66 97.78 Yeast4 100 56.46 96.40 99.32 100
Ecoli-0-4-6 vs 5 100 62.94 98.36 97.84 98.38 Yeast-1-2-8-9 vs 7 100 50.06 99.24 99.58 100
Ecoli-0-1 vs 2-3-5 100 59.09 91.12 96.34 93.42 Yeast5 100 57.29 97.14 99.12 99.68
Ecoli-0-2-6-7 vs 3-5 100 65.90 97.02 98.02 98.02 Ecoli-0-1-3-7 vs 2-6 100 61.69 99.26 99.62 99.26
Glass-0-4 vs 5 100 81.62 98.82 100 98.82 Yeast6 100 55.49 95.18 99.12 100
Average 100 61.94 94.16 96.65 96.68

5 Conclusions and Further Research

This paper pursues to investigate the suitability of associative memories for the classifi-
cation of data in imbalanced domains. In particular, the present work has concentrated
on two hybrid models, the hybrid associative classifier (HAC) and the hybrid associative
classifier with translation (HACT), which come from the combination of the learning
phase of the linear associator with the recall phase of the lernmatrix.

In contrast to the lernmatrix and the linear associator, two of the main characteristics
of HAC and HACT refer to the potential of using real-valued input vectors that do not
require to be orthonormal and linearly independent. These appealing properties allow
the application of the hybrid associative models to a huge number of real-life problems.
However, they have not been thoroughly studied in the context of imbalanced data clas-
sification and therefore, it is not possible to fully assert their suitability in domains
where it is common to find such a complexity in data (i.e., credit risk evaluation, fraud
detection in mobile telephone communications and prediction of rare diseases).

The experiments carried out over a collection of 58 real-world databases with the
two hybrid associative models and three classical neural networks (Bayesian network,
MLP and RBF) have demonstrated both the non-suitability of the HAC approach and
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the good performance of the HACT memory. In fact, this model has achieved the highest
true positive rate, which is often the most important measure when working on imbal-
anced data because it denotes the percentage of examples from the minority class that
have been correctly classified.

This work has to be viewed just as a preliminary analysis of the hybrid associative
memories in classification problems with skewed class distributions. Other avenues for
further research still remain open and therefore, it will be necessary a more exhaustive
experimentation that will allow to give response to a number of important issues: (i)
How do other complexities in data affect the classification performance on imbalanced
data sets?, (ii) Are the gains in the true positive rate of the HACT model statistically sig-
nificant?, (iii) Does the HACT memory outperform other non-neural classifiers such as
support vector machines and decision trees?, and (iv) How do other associative memory
models perform in the presence of class imbalance?
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