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Preface

The 2013 Mexican Conference on Pattern Recognition (MCPR 2013) was the
fifth event in the series. The conference was jointly organized between the Na-
tional Polytechnic Institute (IPN) and the Computer Science Department of the
National Institute for Astrophysics Optics and Electronics (INAOE) of Mexico,
under the auspices of the Mexican Association for Computer Vision, Neurocom-
puting and Robotics (MACVNR), which is a member society of the International
Association for Pattern Recognition (IAPR). The MCPR series of conferences
provides a forum for the exchange of scientific results, practice, and recently
adquired knowledge, and it also promotes cooperation among research groups in
pattern recognition and related areas in Mexico and the rest of the world.

MCPR 2013, held in Queretaro, Mexico, attracted as in prior years world-
wide participation. Contributions were received from 18 countries. Out of the 81
papers received, 36 were accepted. All submissions were strictly peer-reviewed
by the Technical Program Committee, which consisted of 83 outstanding re-
searchers, all of whom are specialists in pattern recognition.

The Technical Program of the conference included lectures by the follow-
ing distinguished keynote speakers: Roberto Manduchi, Departament of Com-
puter Engineering, University of California at Santa Cruz, USA; Raul Rojas,
Department of Mathematics and Computer Science, Free University of Berlin,
Germany; and Sai Ravela, Department of Earth, Atmospheric and Planetary
Sciences, Massachusetts Institute of Technology, USA. They, along with Robert
Pless, Department of Computer Science and Engineering, Washington Univer-
sity in St. Louis, and Edgar F. Roman-Rangel Computer Vision and Multimedia
Lab, CUI, University of Geneva, presented enlightening tutorials during the the
conference. To all of them, we express our sincere gratitude for these presenta-
tions.

This conference would not have been possible without the efforts of many
people. In particular, we are grateful to the members of the Technical Program
Committee, to all of the authors who submitted papers to the conference, and
last but not least, to the members of the local Organizing Committee.

For this edition of MCPR, the authors of accepted papers were invited to
submit expanded versions of their papers for possible publication in a thematic
special issue titled “Pattern Recognition Applications in Computer Vision and
Image Analysis” to be published in Elsevier’s Pattern Recognition, the journal
of the Pattern Recognition Society.



VI Preface

We hope that MCPR will continue to provide a fruitful forum to enrich collab-
orations between Mexican researchers and the broader international community
in the area of pattern recognition.

June 2012 Jesús Ariel Carrasco-Ochoa
José Francisco Mart́ınez-Trinidad

Joaqúın Salas
Gabriella Sanniti di Baja
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Jesús Ariel Carrasco-Ochoa National Institute of Astrophysics,
Optics and Electronics (INAOE),
Mexico
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Fred, A. Instituto Superior Técnico, Portugal
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Xu, M.
Zhila, A.

Sponsoring Institutions

National Institute of Astrophysics, Optics and Electronics (INAOE)
Mexican Association for Computer Vision, Neurocomputing and

Robotics (MACVNR)
International Association for Pattern Recognition (IAPR)
National Council for Science and Technology of Mexico (CONACyT)
Secretariat of Public Education of Mexico (SEP)
Council for Science and Technology of Queretaro (CONCYTEQ)
Operating Commission for Promoting Academic Activities of the

National Polytechnic Institute of Mexico (COFAA-IPN)



Table of Contents

Kenote Addresses

Empirical Characterization of Camera Noise . . . . . . . . . . . . . . . . . . . . . . . . . 1
Jeremy Baumgartner, Markus Hinsche, and Roberto Manduchi

Vision-Based Biometrics for Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Sai Ravela, James Duyck, and Chelsea Finn

Computer Vision

A Fuzzy Scheme for Gait Cycle Phase Detection Oriented to Medical
Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Mario I. Chacon-Murguia, Omar Arias-Enriquez, and
Rafael Sandoval-Rodriguez

Virtual Target Formulation for Singularity-Free Visual Control Using
the Trifocal Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

H.M. Becerra, J.B. Hayet, and C. Sagüés
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Empirical Characterization of Camera Noise

Jeremy Baumgartner1, Markus Hinsche2, and Roberto Manduchi1

1 University of California, Santa Cruz, CA
{jbaumgar,manduchi}@ucsc.edu

2 Hasso Plattner Institute, Potsdam, Germany
markus.hinsche@student.hpi.uni-potsdam.de

Abstract. Noise characterization is important for several image pro-
cessing operations such as denoising, thresholding, and HDR. This con-
tribution describes a simple procedure to estimate the noise at an image
for a particular camera as a function of exposure parameters (shutter
time, gain) and of the irradiance at the pixel. Results are presented for a
Pointgrey Firefly camera and are compared with a standard theoretical
model of noise variance. Although the general characteristic of the noise
reflects what predicted by the theoretical model, a number of discrepan-
cies are found that deserve further investigation.

1 Introduction

The quantitative estimation of image noise is critical for basic operations such as
denoising [5], thresholding [6], and HDR [2]. The simplifying assumption of “uni-
formly distributed Gaussian noise” in images is well known to be incorrect: for
the same camera, the statistical characteristics of noise depend on the exposure
parameters as well as on the irradiance received by the pixel under consider-
ation. Theoretical noise models and procedures for noise parameter estimation
have been described by several authors [3,7,4,8]. In general, previous work either
assumes access to raw data from the sensor, or tries to “reverse engineer” the im-
age signal processor (ISP) that performs operations such as gamma correction,
gamut mapping, and white point calibration, in order to estimate the “true”
irradiance at a pixel and the noise characteristics of the acquisition process.
Published work ranges from methods that assume a well-controlled illumination
and reflection surface [3], to approaches that attempt to estimate relevant pa-
rameters from a single image [5,1]. In this work we take an intermediate stance:
we assume that a number of pictures of a stationary backdrop are taken with a
number of different exposure settings, but make no particular assumption about
the illumination and reflectance characteristics of the scene, except that they
should remain constant during data acquisition. This can be easily achieved in a
standard lab environment. For each exposure setting, pixels with similar mean
value of brightness are pooled together for noise variance estimation. This pro-
cedure produces a characterization of camera noise as a function of the mean
brightness value and of exposure parameters of interest (shutter time and gain).
The results can be used to validate theoretical models and compute relevant

J.A. Carrasco-Ochoa et al. (Eds.): MCPR 2013, LNCS 7914, pp. 1–9, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 J. Baumgartner, M. Hinsche, and R. Manduchi

parameters, or could be stored as a look-up table to be queried when needed.
This may be especially useful when using image data that has been already
processed by the ISP with unknown non-linear characteristics.

This contribution is organized as follows. We first summarize in Sec. 2 the
standard noise model for photodiode-based sensors. We then describe our simple
experimental setup in Sec. 3 and our procedure for estimation of noise variance
in Sec. 4. This procedure, which pools together pixels with similar mean value of
brightness, is an original contribution of this work. We then present an analysis
of the results vis-a-vis the theoretical model in Sec. 5. Sec. 6 has the conclusions.

2 Noise Model

In this section we summarize the standard camera noise model [3]. Let P be
the power of light impinging on a pixel (equal to the irradiance at the pixel
multiplied by the pixel area times the fill factor). Light generates a photocurrent
I, equal to P times the quantum efficiency of the photodiode. Due to photon
noise, I should be regarded as a Poisson process with rate parameter Ī. Dark
current IDC also contributes to the charge accumulated at the pixel. This can
also be modeled a Poisson process with rate parameter ĪDC We will assume the
I and IDC are independent.

The charge accumulated at a pixel is equal to Q = (I + IDC) · T , where T
is the shutter time. Since Q is the sum of two independent Poisson variables, it
is itself distributed as a Poisson variable with mean (Ī + ĪDC) · T and variance
equal to its mean. This charge is then transferred to the amplifier. The main
purpose of the amplifier is to increase the range of the signal that is passed to
the quantizer, thus increasing the quantization SNR. Read-out (thermal) noise
nRO is generated by the amplifier; this noise is usually modeled as a zero-mean
Gaussian variable with variance σ2

RO. If G is the amplifier gain, the amplified
signal is thus equal to ((I + IDC) · T + nRO) · G. The amplified signal is then
quantized with N bits. The quantization process can, in first approximation,
be modeled by the addition of a uniform random variable with zero mean and
variance equal to σ2

qt = Δ2/12, where Δ is the quantization interval. Note that,
referring to the measured values represented as integers, the quantization interval
is equal to 1, and thus the quantization noise variance of the measured values
(“brightness”, denoted by B) is equal to 1/12. Summarizing, the brightness value
B measured at a pixel is a random variable with mean B̄ equal to:

B̄ = (Ī + ĪDC) · TG (1)

and variance σ2
B equal to:

σ2
B = (Ī + ĪDC) · TG2 + σ2

RO ·G2 +
1

12
= B̄ ·G+ σ2

RO ·G2 +
1

12
(2)

where we have assumed that the sources of noise are uncorrelated with each
other. Note that the read-out noise is expressed in units of measured values. It is
noteworthy that the noise on the measured values is independent of the shutter
time.
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Setup 

Point Grey  
Firefly MV camera 

 

Setup 

 

Viewpoint of our camera 

Fig. 1. Our experimental setup

3 Experimental Setup

We devised a data collection procedure that can be easily replicated in standard
lab settings, without the need for expensive equipment or for equipment that
requires accurate calibration. The goal is to collect a large number of images of a
stationary background with different values of shutter time and gain. We do not
attempt to measure the irradiance at each pixel directly, nor do we expect that,
for a given picture, the irradiance is uniform across the image. In fact, due to non-
uniform illumination, shading, off-axis attenuation and other factors, a highly
non-uniform distribution of irradiance values should be expected for a given
picture. The main requirement for our data collection is that the illumination
of the (stationary) background being imaged is constant with time. In practice,
this means using an artificial light source, and avoiding other sources of possibly
changing light as well as shadows due to moving people in the room. For our
experiments, we placed the camera inside a cardboard box as shown in Fig. 1. A
lamp illuminated the inside of the box through a hole in one side of the box. The
lamp was left on for a certain amount of time before data collection to ensure
stable illumination.

We used a Firefly MV 0.3 MP Color USB 2.0 camera with a Fujinon 2.8mm
lens. This camera uses an Aptina MT9V022 CMOS sensor. Data from the sen-
sor is first adjusted for gain and brightness (bias) and then quantized at 10 bits,
after which gamma correction is applied followed by pixel correction, demosaic-
ing and white balance, before quantization to 8 bits. We should note that the
Firefly camera give the option of accessing raw data; we decided to use the 8-bit,
demosaiced output as this is the format most commonly used in practical appli-
cations. However, we disabled the gamma correction and white balance in our
tests in order to obtain a linear and scene-independent response. Color data was
transformed to greyscale (luminosity) using the standard conversion formula.

We collected 50 images of the scene for several combinations of shutter time
T and gain G. We considered values of T from 3 ms to 13 ms in steps of 2 ms,
and values of G from 0 dB to 12 dB in steps of 2 dB. Overall, 2100 pictures were
collected.
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4 Variance Estimation Procedure

The goal of this work is to estimate the variance of the measured value B as
a function of its mean value B̄, shutter time T , and gain G. Inspired by [8],
we use a “pooling” approach, whereby pixels that are assumed to receive the
same irradiance are grouped together to compute useful statistics. Unlike [8],
though, we don’t pool together pixels in an image with similar values of B.
Instead, for each choice of T and G, we first estimate the mean value B̄ at
each pixel by averaging over the 50 images taken for that (T ,G) pair. The mean
value B̄ is again quantized to 8 bits. For each one of the 256 possible values of
B̄, we compute the location of pixels that take on that particular value of B̄.
This set of pixels are assumed to receive the same irradiance, and thus to be
samples of the same random variable. The sample variance computed from this
pool of pixels over the 50 images represents our estimation of the variance σ2

B .
In order to reduce the effect of estimation variance, only values of B̄ for which
the pool contains at least 10 pixels (500 values overall) are considered for this
computation.

5 Analysis of Results
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Fig. 2. The average value B̄ at a pixel as a function of shutter time (left) and gain
(right). Note that the gain is expressed on a linear scale. The dots represent measured
values, while each line is a least square linear fit. Each line in the left (right) plot
corresponds to one specific value of gain (shutter time).

5.1 Validation of Linearity Assumption

According to Eq. (1), the mean measured value B̄ at a pixel should be propor-
tional to both shutter time T and gain G. In order to validate this assumption,
we plotted in Fig. 2 the mean value B̄ of one pixel in the image (averaged over
all 50 frames taken for each exposure setting) as a function of T and G. (Note
that, for the pixel selected for these plots, the value B̄ at the maximum gain and
shutter time was equal to 95.) For each plot (representing a fixed value of G or
T ), we also computed and plotted the least squares linear fit.
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From Fig. 2 it is clear that, for fixed G, the function B̄(T,G) is linear with
non-null intercept. Least-squares fitting with a common intercept for all values
of G results in an intercept of T0 = 2.95 ms with reasonably small residual. Thus,
the linear form in Eq. (1) represents an appropriate model if one substitutes T
with T − T0. The characteristic B̄(T,G) for fixed T is also linear with non-null
intercept, but least-squares estimation of a common intercept produces fairly
large residuals.
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Fig. 3. The variance of B as a function of the mean brightness B̄. Each subfigure
represents a different value of the gain G; each curve corresponds to a different value
of the shutter time T .

5.2 Noise Variance as a Function of B̄

According to Eq. (2), for a given value of the gainG, the variance of the measured
values B should be a linear function of B̄ with intercept on the Y axis at σ2

ROG
2+

1/12. In Fig. 3 we plotted the measured values of σ2
B as a function of B̄ for all
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values of G and T . (Note that, when the gain and/or shutter time are small, then
B̄ can only take small values.) The plots show that, for each value of the gain G,
the characteristic of σ2

B as a function of B̄ is indeed approximately linear with
intercept for B̄ larger than a certain value. However, when B̄ is smaller than
this value, the variance drops. This phenomenon could be explained in part by
the “floor bias”: since B cannot take on negative values, the noise distribution
is skewed for small B̄. In addition, the linear slope seems to have an unexpected
dependency on the shutter time. In particular, for small values of T (3-5 ms), the
slope is quite large; for T = 7 ms, 11 ms and 13 ms the slope is constant, while
for T = 9 ms the slope is noticeably smaller. Another strange inconsistency can
be noticed for values of B̄ around 150 with T=13 ms and G=12 dB, where the
curve of σ2

B has an unexpected dip.
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Fig. 4. The variance of B as a function of the mean brightness B̄. Each subfigure
represents a different value of the shutter time T ; each curve corresponds to a different
value of the gain G.

Fig. 4 plots the same data but grouping together curves with the same shutter
time. As expected, the slope and intercept of the linear part of each plot depend
on the gain G.
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5.3 Noise Variance as a Function of T

As noted earlier, the shutter time T does not appear in the expression of the
variance of B (2). Hence, for fixed B̄ and G, the characteristic of σ2

B as a function
of T is expected to be flat. Fig. 5 plots σ2

B against T for different values of B̄
and G. It can be seen that the characteristic is only approximately flat, with
noticeable variations around the mean value.

2 4 6 8 10
0

2

4

6

8

MEAN BRIGHTNESS = 1

SHUTTER (ms)

V
A

R
IA

N
C

E

2 4 6 8 10
0

2

4

6

8

MEAN BRIGHTNESS = 21

SHUTTER (ms)

V
A

R
IA

N
C

E

2 4 6 8 10
0

2

4

6

8

MEAN BRIGHTNESS = 41

SHUTTER (ms)

V
A

R
IA

N
C

E

2 4 6 8 10
0

2

4

6

8

MEAN BRIGHTNESS = 61

SHUTTER (ms)

V
A

R
IA

N
C

E

2 4 6 8 10
0

2

4

6

8

MEAN BRIGHTNESS = 81

SHUTTER (ms)

V
A

R
IA

N
C

E

2 4 6 8 10
0

2

4

6

8

MEAN BRIGHTNESS = 101

SHUTTER (ms)

V
A

R
IA

N
C

E

2 4 6 8 10
0

2

4

6

8

MEAN BRIGHTNESS = 121

SHUTTER (ms)

V
A

R
IA

N
C

E G =  0 dB
G = 2 dB
G = 4 dB
G = 6 dB
G = 8 dB
G = 10 dB
G = 12 dB

Fig. 5. The variance B as a function of the shutter time T . Each subfigure represents
a different value of the mean brightness B̄; each curve corresponds to a different value
of the gain G.

5.4 Noise Variance as a Function of G

Each subfigure in Fig. 6 shows the variance of B as a function of the gain G for
different values T and for a fixed value of B̄. According to Eq. (2), these plots
should overlap with each other (since they are independent of T ) and should have
a parabolic characteristic. It is seen that the plots do tend to overlap, except
for T=5 ms and T=9 ms. A light concavity can be observed, consistent with
the theory, although the linear term B̄G in Eq. (2) dominates in this interval
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of values. Note that in both Fig. 5 and 6, the variance σ2
B takes on very small

values for small B̄; this phenomenon was already observed and discussed earlier
in relation to Figs. 3 and 4.

0 1 2 3 4
0

2

4

6

8

MEAN BRIGHTNESS = 1

GAIN

V
A

R
IA

N
C

E

0 1 2 3 4
0

2

4

6

8

MEAN BRIGHTNESS = 21

GAIN

V
A

R
IA

N
C

E

0 1 2 3 4
0

2

4

6

8

MEAN BRIGHTNESS = 41

GAIN

V
A

R
IA

N
C

E
0 1 2 3 4

0

2

4

6

8

MEAN BRIGHTNESS = 61

GAIN

V
A

R
IA

N
C

E

0 1 2 3 4
0

2

4

6

8

MEAN BRIGHTNESS = 81

GAIN

V
A

R
IA

N
C

E

0 1 2 3 4
0

2

4

6

8

MEAN BRIGHTNESS = 101

GAIN

V
A

R
IA

N
C

E

0 1 2 3 4
0

2

4

6

8

MEAN BRIGHTNESS = 121

GAIN

V
A

R
IA

N
C

E T = 3 ms
T = 5 ms
T = 7 ms
T = 9 ms
T = 11 ms
T = 13 ms

Fig. 6. The variance B as a function of the the gain G (shown in linear scale). Each
subfigure represents a different value of the mean brightness B̄; each curve corresponds
to a different value of the shutter time T .

6 Conclusions

We have described a simple approach to computing the noise characteristics
at a pixel as a function of the mean brightness value at the pixel and of the
exposure parameters. This procedure can be easily reproduced without the need
for calibrated illuminators or uniformly reflective material, and thus can be used
to quickly characterize different camera models. We compared the characteristics
of the mean brightness value and of the noise variance as a function of exposure
parameters against the theoretical model. Our analysis brought to light a number
of discrepancies that deserve further study, thus confirming the importance of
direct empirical measurements for correct camera modeling.
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Vision-Based Biometrics for Conservation�
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Abstract. Identifying individuals in photographs of animals collected
over time is a non-invasive approach that enables ecological studies and
conservation planning. Here we propose SLOOP, the first image retrieval
system incorporating interactive image processing and matching tools
with relevance feedback from crowdsourcing to solve large-scale individ-
ual identification for multiple species. One outcome is an advance in
matching and image retrieval methodology; another is the creation of a
community-based individual identification system that enables conserva-
tion planning.

1 Introduction

The development of effective conservation strategies for rare, threatened, and en-
dangered species requires unbiased and precise information on their life history
requirements and population ecology. Capture-Mark-Recapture (CMR) studies
enable researchers to identify individual animals over time, which is particu-
larly useful for questions related to individual growth and survival, dispersal
and movement ecology, and reproductive strategies. CMR studies typically use
techniques in which animals are physically marked or tagged. These methods are
intrusive to varying degrees and some animals may be difficult to tag efficiently
in large numbers. Alternative identification techniques that overcome some of
these limitations are needed.

Numerous efforts have been made to identify individual animals using photo-
identification methods but often manually and using ad hoc strategies. Manual
matching is only feasible for small collections; at 10s per comparison, a 1, 000
photograph catalog will take 60 days, and a 10, 000-sized catalog will take about
15 years of nonstop work to analyze. Ad hoc strategies lead to imprecise quan-
titative analyses and they do not easily port across multiple species. A reusable
automated or semi-automated identification system would better advance the
application of individual identification in conservation biology.

We contend that image retrieval with crowdsourced relevance feedback offers
the basis for large-scale, high performance biometrics for conservation. In this
approach, an image retrieval system ranks the images in a database by visual
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similarity [1]. Instead of browsing all pairs, the user views a bounded number of
retrievals to identify matches. Although not as automated as object recognition,
high recall at substantially lower effort than manual matching can be achieved.
The throughput can be improved by dynamically incorporating relevance feed-
back from user-identified matches. A 10, 000-collection will require about three
months to analyze. Crowdsourcing can accelerate this process further; the same
task is completed in a few hours and at marginal financial cost. To be sure, a
big data challenge in the form of a large number of visual features and relevance
judgments must now be addressed.

The MIT SLOOP1 system [2–4] is, to the best of our knowledge, the first such
image retrieval system for animal biometrics that addresses these challenges.
SLOOP has expanded to multiple species. It has an operational implementation
at the Department of Conservation, Dunedin, New Zealand and finds mention in
popular press [5]. SLOOP is interactive and scalable to distributed implementa-
tions and it also easily incorporates new methods in a collaborative framework.
In this paper, we describe the SLOOP system architecture and methods, with
application to several species.

Fig. 1. SLOOP system architecture consists of interactions between a Data Exchange
and Interaction (DEI) server and an Image Processing Engine, blending multiple areas
of expertise into a single vision application

2 Related Work

There have been many efforts in the ecological community to use pattern recogni-
tion methods to aid individual identification. For example, species identification
for plants is available [6], but SLOOP predates this system and is geared to indi-
vidual identification of animals. Several efforts were made to identify individual
animals using photo-identification methods [7–11] prior to SLOOP. They are
advanced by incorporating new reusable matching techniques with rank aggre-
gation and relevance feedback. The SLOOP system’s underlying methods utilize
several published techniques [1–4, 12–15].

1 The name stands for a sloop observed Chris Yang and Sai Ravela saw over the
Charles river.
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3 The SLOOP System Architecture

The structure of the SLOOP retrieval system is shown in Figure 1. SLOOP
is comprised of a Data Exchange & Interaction Server (DEI) and an Image
Processing Engine (IPE). The DEI implements the user interface/database (see
Figure 5) as a web application running on a GlassFish Server with Postgres
binding [16]. The IPE contains segmentation, illumination correction, rectifi-
cation, matching, relevance feedback, and crowdsourcing tools. It is run as a
native MATLAB/Octave server, and can therefore incorporate research codes
with relative ease. The separation of IT and Vision components allows inde-
pendent contributions to be easily absorbed. IPE and DEI interact through a
database and, together, they implement a workflow that each image undergoes
in its journey from being a photograph to becoming an identity. The end-result
is an annotated table is made available to the biologist for subsequent analysis.

Fig. 2. A SLOOP workflow is an interaction between the users and the system and
includes preprocessing, feature extraction, relevance judgement and relevance feedback

The steps involved in a workflow (see Figure 2) typically involve upload-
ing images and metadata, preprocessing images to correct for illumination and
geometry, extracting features, producing ranked retrievals, incorporating user
judgements, and iterating using relevance feedback. The output of the system is
a table with identities associated with each image.

SLOOP enables multiple users to simultaneously work on different aspects
of the workflow. IPE and DEI typically operate asynchronously in batch or
interactive modes. Some users might be aiding preprocessing, others verification
of matches while the IPE might be running rectification and matching jobs on
a cloud computing system.

Naturally, synchronization of the system state (tables) becomes necessary for
certain tasks. For example, as multiple users verify images, the closure opera-
tion linking all matching pairs into a clique through multiple, possibly contra-
dictory, relevance judgements is necessary. SLOOP synchronizes the collection’s
state through a ”Nightly Build” process that locks users out before performing
closure operations (among others), thus preventing deadlocks or conflicts from
developing. At the end of each Nightly Build, the SLOOP system is completely
consistent, all cohorts share the same identity, new identities have been formed
where needed and identities are merged where required. At any time after the
latest Nightly Build, the user can lock SLOOP to control the quality of the
identity tables and unlock it with updated information. In the remainder of this
section, we describe SLOOP’s methods along a typical workflow.
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3.1 Preprocessing Methods

Images are typically preprocessed to prepare them for feature extraction and
matching. Although the preprocessing steps vary between species, segmenta-
tion, illumination correction, image rectification and feature extraction are often
reused tasks. To facilitate preprocessing, SLOOP contains a Mean-Shift based
segmentation algorithm. An additional algorithm is being deployed that uses a
combination of SVM and graph-cuts on color-texture features. Rectification in-
cludes a spline-based algorithm. For illumination correction, SLOOP includes a
variety of global correction techniques, as well as an example-based specularity
removal method [12]. Once images are preprocessed, features are extracted. Mul-
tiscale patch features, local features including invariant feature histograms [1, 2]
SIFT features [13], and point feature extraction methods are most commonly
used.

A distinguishing aspect of preprocessing in SLOOP is that it is interactive.
In contrast to the traditional view that image processing algorithms need to
be fully automated, SLOOP takes an interactive approach where users seed or
correct first guess solutions of the algorithms. In this way, SLOOP is designed
to maximally reduce human effort but maintain performance. As an example,
we show in Figure 3 the specularity removal algorithm within SLOOP [12]. In
this approach, the user marks specular and normal regions. Based on this input,
SLOOP replaces hypothesized specular spots with information from normal re-
gions to seamlessly in-fill —a task that is otherwise exceedingly difficult [12].

Fig. 3. Interactive example-based specularity removal

3.2 Matching Techniques

SLOOP has appearance-based and geometry-based matching methods, includ-
ing additions that combine the two. There are four appearance-based methods
within SLOOP: multiscale-PCA (MSPCA) [3] on patches and their regularized
spatial derivatives, local-feature methods including local-feature histogram [1, 2],
SIFT [13], and a new promising method called nonparametric scale-cascaded
alignment [4] for deformation invariant matching. In geometry based methods,
SLOOP implements an iterative correspondence and affine alignment on point
features. These techniques are discussed in more detail in the context of their
applications. A common element of all of these methods is that they benefit from
interaction in the form of relevance feedback.
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3.3 Relevance Feedback

Once matching is complete and ranked hypotheses are produced for photographs
in a catalog, the user must verify them. Although the number of images a user
must review changes from species to species, typically about 10 − 20 images at
a time are shown. The user selects the matching images (non-matching ones are
marked implicitly) and this information is incorporated.

Fig. 4. Crowdsourcing provides sufficient quality for large-scale relevance feedback

In addition to logging the verification and naively presenting the next set of
ranked retrievals, SLOOP uses the cohorts identified by the user to iteratively
improve similarity judgements in twoways: a) the best score from the cohort group
is used to rerank images and, b) the population-based prior is replaced by a cohort-
based covariance in MSPCA and local feature histogram methods [1]. Relevance
feedback turns out to be very useful. It isdemonstrated in the next section.

Crowdsourcing and Social Media: The efficient indexing of large image sets
demands a number of rapidly available relevance judgements. Because verifica-
tion entails ordinary matching skills, crowdsourcing is one way to gather this
information. In one experiment, three pairs of images are presented to a crowd-
user in random order: a positive control pair of a known match, a negative control
pair of a known non-match, and the experimental pair of unknown status. We
accept the user’s judgement on the unknown pair when, akin to ReCAPTCHA,
the control performance is perfect on the known pair, which is also the condi-
tion for payment. The responses are used to update the ranking in the manner
described previously.

In Figure 4, we show the results of a crowdsourcing experiment with Mechan-
ical Turk where a HIT is the task as defined above for the marbled salamander.
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In a matter of days, we were able to gather hundreds of workers. The same ef-
fort took on the order of a year in grant research, and then there were only a
handful. We paid the users five to six cents for each verification task. What we
found was a natural selection mechanism; the combination of financial incentive
and testing produced a situation where users who were not good at matching
tried it only a few times before moving on to a different task, and those who
were good kept working. One worker in particular, produced 99.96% recognition
rate and answered over 1,000 tests in one day! By the time someone performs
40 known-pairs (twenty tests) of comparisons, statistically their recall is likely
to be 95% on average (see Figure 4). The number of people passing this barrier
is about a third of the total population, which is very promising.

4 Application to Individual Identification

The Earth Signals and Systems Group’s SLOOP Research Program is currently
engaged in developing individual identification algorithms for several species.
These include Oligosoma otagense (Otago Skink, 8,900 photos/900 individuals),
Oligosoma grande (Grand Skink, 21,700/2,500), Naultinus gemmeus (Jewelled
Gecko, 10,000/1,600), Ambystoma opacum (Marbled Salamander, 10,000/2,000),
and Rhincodon typus (Whale Shark, 35,000/3,000). Additional work has been
done on Fowler’s Toad and is planned for Archey’s Frog, Humpback Whales,
Giant Manta Ray, Hector’s Dolphins, Southern Right Whales and Scree Skinks.
Here, we discuss the application of SLOOP to three species. Each uses a different
matching technique with the potential for advances to influence methods for all
species.

4.1 Grand and Otago Skinks

The SLOOP Skink systems (SLOOP-SK) incorporate photographs of the left
and of right sides of the animals. These are grouped into capture events which
may include photographs of one or both sides of an individual animal. In the
Otago Skink dataset, there are currently approximately 4,000 captures with
both left and right views and approximately 900 captures with only one view.
Of all captures with images, approximately 900 individuals have been identified.
In the Grand Skink dataset, there are currently approximately 10,100 captures
with both left and right views, approximately 1,500 captures with only one view,
and approximately 2,500 individual animals.

For each photograph, a worker verifies the image quality. A worker then marks
four key points on the image (see Figure 5). These key points are used to define
patches between the nostril and eye, between the eye and ear, and between the
ear and shoulder. The patches are only approximately rigid but are assumed as
such and are normalized in orientation and scale. A capture may have up to six
patches, three for each side. SIFT features [13] are extracted from the patches
and corresponding patches on the same side of the animal are compared against
each other. The maximum score for any patch is used for ranking, removing the
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Fig. 5. Otago Skink Dataset with DEI interface showing key points (left) and ROC
curve (right)

effect of low-scoring patches. For example, an animal may be partially behind
another object, giving a patch an irregularly low score even for photographs of
the same individual. After each capture has a ranking for every other capture,
workers verify highly-ranked pairs of captures.

The above ROC curve (Figure 5) was found using 1,000 captures (pairs of left
and right photographs of an animal) from the Otago Skink dataset. The following
groups of animals were used: 282 animals with one capture, 108 animals with two
captures, 58 with three captures, 34 with four captures, 17 with five captures,
six with six captures, three with seven captures, four with eight captures and
two with nine captures. The results indicate that this approach is promising.
Additional improvements are possible in terms of rank aggregation, relevance
feedback and deformable matching.

4.2 Whale Shark

One application of the SLOOP system is to the whale shark species. The dataset
used is a subset of the full data (14,500 images/3,000 individuals). It consists
of underwater images of a spot patterning behind the gills of the whale shark
on one or both sides. Coordinates of the spots have been specified by users
(see Figure 6), and the identification algorithm matches pairs of coordinate sets
rather than the images themselves.

The coordinate sets are first normalized for scaling and mean-value. The al-
gorithm then iteratively calculates a correspondence between the sets of points
and aligns the points based on this correspondence. In the first iteration, the
correspondence is calculated using doubly-stochastic normalization [14] and the
points are aligned by a translation. In the second, correspondence calculation
is followed by an affine transform calculated with the RANSAC algorithm [15].
The final aligned point sets are scored by determining the area between two CDF
curves: the cumulative distribution of distances between corresponding points
and that of an ideal perfect match. Thus, lower scores indicate closer matches.

The results of this basic matching algorithm are shown the ROC curves above
(see Figure 6). The algorithm was run on seven randomly chosen individuals
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Fig. 6. ROC curves for Whale Shark (left) and Marbled Salamander datasets (right)

each with 5-10 matching images in the database, totaling 56 coordinate sets.
The ranks were calculated across all 5,200 or 9,300 photos from the database of
left or right side photos respectively. Twenty of these photos and their rankings
were randomly chosen to calculate the ROC. To incorporate relevance feedback
into the algorithm, the user identifies matches from the 10 best ranking photos,
and the ranks are recalculated by taking the minimum score across the new
cohort of matching individuals. The user is then shown the 10 new top-ranked
photos. This process is repeated until no new matches are identified in the top
10 photos or until the user has viewed a maximum of 50 photos per query. The
second ROC curve in Figure 6 reports the improvement achieved through this
relevance feedback method. The results show that even for a simple matching
procedure, relevance feedback is a powerful addition. Although the improvements
to ROC are remarkable, we anticipate adding additional iterations to deal with
local deformations in a cascaded framework.

4.3 Marbled Salamander

The marbled salamander (10,000 images/2,000 individuals) was the first species
for which SLOOP was developed and applied to [3]. The earliest technique used a
multiscale local feature histogrammethod [1, 2], and a later technique used multi-
scale PCA (MSPCA) with multiscale Gaussian derivative filter responses on recti-
fied images of animals. MSPCA has also been applied to Fowler’s Toad and
experimentally to Skinks. It is comparable in performance to SIFT (see Figure 6).

Although the use of rectified images in MSPCA provides some robustness to
pose variations, for highly deformable bodies (e.g. salamanders) there is still a
substantial amount of local, nonlinear deformation that cannot easily be rectified
in advance. Some kind of deformable matching is needed. We developed a scale-
cascaded alignment (SCA) method [4] for non-parametric deformable matching
which shows considerable promise. To see how it works, consider J(q) = ||A−T ◦
q||2R+L(q) an objective that is minimized for deformation q between a template
image T and target image A, subject to constraints L, where T ◦q = T (p−q(p)).
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The vector-field q is dense (and defined at every pixel) and can admit a variety
of deformations. For completeness, when the norm R is isotropic and T ◦ q is
linearized and L represents smoothness, we have classic variational optic flow.
If T is not linearized, we have Laplace-Beltrami flow. If R is non-isotropic, we
have Ravela’s Field Alignment [4] method.

It is useful to note that the objective J can produce a highly selective solu-
tion (for example, if L only admits translations) or highly invariant ones (e.g.,
as a Laplace-Beltrami flow). It follows that the more invariant the matcher
is, the less it is able to distinguish dissimilar objects. If the matcher is made
more selective, only a few classes of deformations and, thus, only a few objects,
can be matched. To optimally adapt invariance and selectivity, we developed
Scale-Cascaded Alignment (SCA) [4]. SCA parameterizes the deformation as a
weighted sum of Gabor bases with the weights representing a power law turbu-
lence spectrum. This representation can be interpreted as the Green’s function
of a suitable deformation constraint L. In SCA, the solution is obtained in a
coarse to fine manner; the lowest wave number motion solution (translation) is
found first followed by higher modes. The total deformation solution or defor-
mation budget is thus dispersed into different modes. Deformations in the low
and very high wave numbers are ones to which invariance is desired because they
usually correspond to large scale motions or noise. Deformations in middle wave
numbers are ones to which selectivity or sensitivity is desired because they help
distinguish the natural modes from abnormal ones.

We apply this technique on the Marbled Salamander [3, 4] and the result is
shown in Figure 6. SCA outperforms MSPCA and SIFT on the salamander prob-
lem and we believe that similar performance improvements could be obtained
for skinks and other species. A version for point features is also being developed.
If the relevance feedback experiments from Whale-Sharks are also included, we
believe all species would substantially benefit.

5 Conclusion and Future Work

The MIT SLOOP system is an extensible community image retrieval system with
application to large-scale conservation. Its main benefits include independent
components in the IT, biology and vision realms, and ease of incorporation of
new research methods including a number of tools and new algorithms developed
by our group. SLOOP is being deployed on multiple species, with operational use
in two. In these developments we realize the potential for hybrid systems that
optimally utilize human interaction and machine skill to deliver high performance
recognition systems.

We are developing virtual machines that would simplify future SLOOP deploy-
ments. We are investigating rank aggregation from multiple matching methods
and a scale-cascaded procedure for iterative correspondence and alignment in
the flavor of SCA. We are incorporating graph-based and example-based meth-
ods in preprocessing. We invite motivated vision researchers to join SLOOP in
an Earth Vision endeavor to develop and apply vision and learning tools for
effective stewardship of our Earth System.
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Abstract. Gait cycle phase detection provides useful information to diagnose 
possible problems on walking. The work reported here proposes the analysis of 
gait kinematic signals, extracted from videos, through fuzzy logic to automati-
cally determine the different phases in the human gait cycle. The function of the 
fuzzy system is to detect the gait phases, loading response, mid-stance, terminal 
stance, pre-swing, initial swing, mid-swing, and terminal swing, using 2D  
information from a sagittal plane. The system was tested with normal and  
non-normal gait cycles. Experimental findings proved that the fuzzy detection 
system is able to correctly locate the phases using only 2D information. The 
maximum phase timing shift error generated was 2%.  Thus, it may be con-
cluded that the proposed system can be used to analyses gait kinematic and 
detect gait phases in normal cycle and absences of them in non-normal cycles. 
This information can be considered for gait anomaly detection and therapeutic 
purposes. 

Keywords: gait phase analysis, fuzzy systems, video segmentation.  

1 Introduction 

Nowadays, it is well known that vision systems have increased their contribution in 
areas related to human motion analysis. One of these areas is human gait analysis 
which is related to the style or characteristics involved in a person’s walking [1]. Gait 
analysis has proved to be relevant to several fields, including biomechanics, robotics, 
sport analysis, rehabilitation engineering, etc. [2-5]. In the medical field gait analysis 
has been oriented to medical diagnosis where different types of application have been 
developed [6]. A specific area in medical application is human movement analysis, 
where systems are designed to perceive and analyze human movement of upper and 
lower limbs for the purpose of providing diagnosis and/or therapy [7]. Gait analysis is 
a paramount aid for therapist because they can analyze different gait pathologies and 
thus determine appropriate therapies for their patients [8]. These pathologies may be a 
consequence of spinal cord lesion, stroke, multiple sclerosis, rheumatoid arthritis etc. 

Currently, there exist different systems, with advantages and disadvantages, which 
perform gait dynamic or kinematic quantifications. Dynamic evaluations are achieved 
through accelerometers, force platforms, etc. The kinematic quantification is done by 
electrogoniometers and 2D and 3D vision systems [9],[10]. However, not many are 
related to detect gait phase detection oriented to medical diagnosis. The aim of this 
paper is to present the development of a fuzzy system to automatically detect gait 
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phases based on the analysis of information provided by a non-invasive vision system 
[11]. There are some works related to this kind of systems like the one reported in [12] 
which uses signal from the sagittal plane like, hip, knee and ankle. Another work [13] 
rely on 3D information. In our work it is proved that a 2D system can be used instead a 
3D, and that the input variables generated with the 2D system are suitable for gait 
phase detection. The information used in the proposed system corresponds to the ki-
nematic of the sagittal plane of the knee, hip, and variables time and stage. 

The organization of the paper is structured as follows. Section 2 provides the defi-
nition of gait cycle and its phases. The development of the proposed system is ex-
plained in Section 3. Experimental tests of the system are presented in Section 4 and 
the results and conclusions are commented in section 5. 

2 Gait Cycle Definition 

Human walking is a locomotion method which involves the use of lower limbs allow-
ing the displacement of the body under a stable state. In this process, one lower limb 
serves as the support, meanwhile the other one provides propulsion. The cycle of a 
human gait is divided in two main periods; the stance which takes approximately 60% 
of the cycle and the swing that covers the remaining time. In turn, the stance period is 
divided into the phases: Loading response, LR, mid-stance, MSs, terminal stance, TSs, 
and pre-swing, PSw. The swing period is composed of: Initial swing, IS, mid-swing, 
MSw, and terminal swing, TSw. Table 1 shows the different gait phases and their  
corresponding timing and cycle percentages [1]. 

Table 1. Normal gait phase timing 

Phase number Phase Percentage of phase occurrence in full cycle 
1 Loading response 0-10% 
2 Mid-stance 10-30% 
3 Terminal stance 30-50% 
4 Pre-swing 50-60% 
5 Initial swing 60-73% 
6 Mid-swing 73-87% 
7 Terminal swing 87-100% 

3 Fuzzy System Scheme for Gait Phase Detection 

The inputs to the system correspond to sagittal information related to knee, hip, time 
and an extra input called stage. The variable time is related to the gait cycle percen-
tage. The information of these variables is acquired by an image processing method 
described in [14] which is a method to obtain this information without using artificial 
marks. The system can be formalized as follows. Given kinematic signals of the knee 
and hip, xk(n), xh(n), derive two time variables xT(n) and xS(n) to design the mapping  

                                :{ ( ), ( ), ( ), ( )}k h T SF x n x n x n x n P
                                               

(1)
       

 

where xk(n), xh(n), xT(n), xs(n) and P will be fuzzified and will have the next fuzzy 
values 
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                                  xk(n) = { xkLow , xkHigh }                                                            (2)
       

 

                                  xh(n) = { xhLow, xhMedium, xhHigh }                                              (3) 

                                 xT(n) = { xTLow, xTMedium, xTHigh}                                               (4) 

                                  xS(n) = { xSLR, xSMS, xSSS}                                                        (5) 

                           P = {PLR, PMSS, PTSS, PSw,PISw,PMSw,PTSw }                                    (6) 

The mapping F is accomplished by a Mamdani type fuzzy system through the impli-
cation relation  

                                { }( )( ), ( ), ( ), ( ) ,k h T SR x n x n x n x n P                                           (7) 

3.1 Input and Output Variables and Their Fuzzy Definition 

The knee information is obtained from an average knee kinematic signal shown in 
Figure 1a. Its membership functions represents the different intervals in the y axis. 
The trajectory can be divided into two intervals; low xk Low, and high xkHigh. Figure 1b 
corresponds to an average hip movement and it can be divided in three intervals, xh 
Low, xh Medium, xh High. The intervals for the input variable time are also low, medium and 
high as shown in Figure 2. The membership functions for the input variable stage are 
not determined based on intervals because it is used to distinguish the phases loading 
response and initial swing and between mid-stance and terminal swing. They are  
defined based on phase occurrence during the gait cycle. 
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Fig. 1. a) Grade movement intervals of an average knee signal. b) Grade movement intervals of 
an average hip signal.  

It is noteworthy that the inputs to the fuzzy systems need to be normalized, where 
zero correspond to the minimum value and 1 to the maximum. The membership func-
tions, MFs, of the input variables are shown in Figure 3. The function parameters, 
mean μ and variance σ   are as follow. For the hip input the gaussians are GLow(0, 
0.175), GMedium(0.5, 0.175), GHigh(1, 0.175). For the knee the MFs are similar except 
the value medium is not used. The gaussian parameters for the input time are  
GLow(0, 0.256), GMedium(0.5, 0.175) and GHigh(1, 0.175). As commented before the  
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Fig. 2. Time intervals of an average knee signal  

input stage is incorporated to the system in order to distinguish between the phases 
loading response and initial swing and between mid-stance and terminal stance. This 
is because some inference rules are fired for similar conditions. Thereby, the variable 
stage allows the differentiation among those fired rules so the correct output is ob-
tained from the system. The stage variable is in fact other time variable with three 
possible fuzzy values loading response,x LR, mid-stance xMSs, and swing – stance SS. 
The function xSLR is used to differentiate between loading response and mid-swing and 
it is represented through a Z function with parameters ZLR(0.1, 0.11). The function 
xSMS ,GMS(0.208, 0.05) has the purpose to distinguish between mid-stance and terminal 
stance. Finally the function xSSS, represented by a S function S(0.405, 0.632), is used 
to resolve between the swing and stance phases. 

The gait phases, defined in Section 2, correspond to the values of the output varia-
ble Phase of the system. These values are represented by triangular membership func-
tions with the following parameters and illustrated in Figure 4. PLR(0,1,2), PMSs(1,2,3), 
PTSs(,2,3,4), PPSw(3,4,5), PIS(4,5,6), PMSw(5,6,7), PTSw(6,7,8). 

3.2 Fuzzy System Rules for Phase Detection 

The fuzzy system designed is a Mamdani system defined by rules  

                      1 1:     ,...,     y   i i ni in iR if x is A x is A THEN is BAND  

The defuzzification scheme used was the mean of maximum. The rules are deter-
mined by an intuitive reasoning. That is, the output is just the consequence of a spe-
cific condition of the lower body section. For example, Rule1 corresponds to the phase 
loading response, LR, and it is derived by knowing that in a normal gait cycle the 
position of the hip is approximately 20 degrees. If we locate this value for the average 
hip movement, Figure 1b, we found that correspond to a value of High. In the case of 
the knee during the same phase, it has a low value for the intervals defined in  
Figure 1a.  
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Fig. 3. Membership function definition for input variables.  a) Knee, b) Hip, c) Time, d) Stage. 
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Fig. 4. Output membership function definition 

The value of variable stage is located in the interval LR, meanwhile the variable 
time is located in the interval low. Inference using this information yields the system 
output loading response, PLR. The same methodology was used to determine the other 
rules expressed next. 

R1. If Hip is xhHigh AND Knee is xkLow AND Stage is xSLR AND Time is xTLow Then Phase is PLR  

R2. If Hip is Not xhHigh AND Knee is xkLow AND Stage is xSMS AND Time is xTLow Then Phase is PMSS  

R3. If Hip is xhMedium AND Knee is xkLow AND Stage is xSMS AND Time is xTLow Then Phase is PMSS  

R4. If Hip is xhLow AND Knee is xkLow  AND Time is xTMedium Then Phase is PTSS 

R5. If Hip is xhLow AND Knee is Not xkLow AND Stage is xSSS  AND Time is xTMedium Then Phase 

is PSw 

R6. If Hip is xhMedium AND Knee is Not xkLow AND Stage is xSSS AND Time is xTMedium Then 

Phase is PISw 

R7. If Hip is xhHigh AND Knee is xkHigh AND Stage is xSSS AND Time is xTHigh Then Phase is PMSw 

R8. If Hip is xhHigh AND Knee is xkLow AND Stage is xSSS AND Time is xTHigh Then Phase is PTSw 

a) b) 

c) d) 
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4 Experimental Results 

4.1 Experimental Data 

The system was tested with two set of data representing two cases: normal gait and 
non-normal gait. The normal data is to verify that the system is able to detect the gait 
phases and the non-normal data to prove that the system does not detected the phases 
because they do not exist in these cases or they are misplaced. The different kinematic 
cases analyzed with the fuzzy system are as follows. Case 1 represents the kinematic 
of a patient with amputation below the knee. An average gait cycle is included in the 
cases 2, 4, 7, and 8. Case 7 includes average values in the upper bound and case 8 in 
the lower case. Case 3 is a person that presents spinal cord injury. Cases 5 and 6 cor-
respond to patients with cerebral palsy.  

Findings of the experiments using the previous cases indicate that the system was 
able to correctly detect the gait phases in the normal cases, meanwhile the system did 
not report some of the phases in the non-normal cases. Specific detail of each experi-
ment is provided next. 

Case1. In the case of the patient with amputation the kinematic tends to present a 
signal similar to a normal gait cycle, however the kinematic values are not always in 
the range of normal average values, as shown in Figure 5a. This observation can be 
visualized in Figure 5b, which presents the information of the occurrence of the gait 
phases. In a normal gait cycle the two traces must completely overlap.  It can be no-
ticed that the system detects phase 5, initial swing in the 84% of the gait cycle, when 
in this percentage the phase mid-swing should be detected. During the other gait cycle 
percentage the systems detects a normal behavior with respect phase occurrence and a 
small difference on the detection of phases 3, 4 and 7.  

Case 2. First normal gait cycle. The signals corresponding to the knee and hip of this 
normal case are shown in Figure 6a. The result of the fuzzy system is illustrated in 
Figure 6b. The loading response phase is correctly detected in the percentage 0% to 
10%, as well as the mid-stance, 11% to 30%. The terminal stance is located in the 
interval 31% to 49% and the pre-swing in the 50% to 59%, which indicates a normal 
behavior because the average occurrence of this phase is between 50% - 62%. The 
initial swing is found in the range 63%-74%, the mid-swing at 75% to 87% and the 
terminal swing at 88% - 100%. Comparing these results with the data in Table 1, 
normal timing, it can be observed that the system reports very alike timing with just a 
few but not significant differences. 

Case 3. Spinal injury case. The results of this case are presented in Figure 7a and 7b. 
It can be noticed from these figures that the system detected an anomalous behavior 
because the phase occurrence differences are large, in some occasions up to 6 percen-
tage grades. Besides, an initial swing is detected in the terminal swing phase. Changes 
as the previously mentioned indicate a non-normal gait cycle.  
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Fig. 5.  Case 1 patient with leg amputation. a) Knee and hip kinematic. b) Phase detection, 
normal vs. system timing. 
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Fig. 6.  Case 2 normal gait 1. a) Knee and hip kinematic. b) Phase detection, normal vs. system 
timing. 
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Fig. 7. Case 3 spinal injury. a) Knee and hip kinematic. b) Phase detection, normal vs. system 
timing. 

a) b) 

a) b) 

a) b) 



 A Fuzzy Scheme for Gait Cycle Phase Detection Oriented to Medical Diagnosis 27 

Case 4. Second normal gait cycle. This case and the cases 7 and 8 are incorporated 
into the experiments to warranty the robustness of the system to adequately detect 
normal gait cycle with normal variations. This case is not illustrated due to space 
constraints. The first three cycle phases, loading response, mid-stance and terminal 
stance are detected on time with the average gait cycle phases. Pre-swing, the four 
phase, is detected at 51% - 62%, the initial swing at 63%- 74%, mid-swing in the 
interval 75% - 87% and finally the terminal swing in 88% to 100%. The fuzzy system 
results present very similar time phase detection as for a normal gait cycle, being 2% 
the maximum difference. 

Case 5. Cerebral palsy 1, see Figure 8. The phase detection timing generated by the 
system presents very high deviation as well as an inadequate sequence from the nor-
mal cycle. For example, the loading response phase is detected only during the 0% to 
2% interval, when it must be identified from 0% to 10%. Other observation is with 
regard the terminal stance phase, where an initial swing is reported. 
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Fig. 8. Case 5 cerebral palsy 1. a) Knee and hip kinematic. b) Phase detection, normal vs.  
system timing. 

Case 6. Cerebral palsy 2. The kinematic and phase detection results are reported in 
Figure 9. As in the first cerebral palsy case, it can be observed how phase occurrence 
does not follow the normal timing. The loading response phase, as in the previous 
case is only detected during the 0% to 2%, besides and erroneous detection of a pre-
swing phase during mid-stance.  

Case 7. Normal gait cycle upper bound. This case corresponds to high average normal 
kinematic values. The kinematic is illustrated in Figure 10a and the phase detection 
results in Figure 10b. Results show that the first 3 phases are correctly detected fol-
lowing a normal phase timing. The fourth phase, pre-swing, was detected in 50% - 
62% which is considered correct. The initial swing is found in the 63% to 74%, mid-
swing at 75% - 87% and the terminal swing at 88% - 100%, thus having a maximum 
deviation of 1% with respect the correct timing. 

Case 8. Normal gait cycle lower bound. This case covers the lower kinematic val-
ues for a normal gait cycle. This case is not illustrated due to space constraints. The 
phase loading response, mid-stance and terminal stance are detected at the correct 
timing. The other phases, pre-swing, initial swing, mid-swing and terminal swing  

a) b) 
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Fig. 9.  Case 6 Cerebral palsy 2. a) Knee and hip kinematic. b) Phase detection, normal vs. 
system timing. 
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Fig. 10. Case 7 normal case upper bound. a) Knee and hip kinematic. b) Phase detection, nor-
mal vs. system timing. 

were located at 51% - 62%, 63% - 74% , 75% - 86% and  87% - 100% respectively. 
Only the phases pre-swing and initial swing present a small time shift. The maximum 
phase shift was 2%. 

5 Results and Conclusions 

The reported work proved that a fuzzy gait phase detection system is able to correctly 
detect the phases using only 2D information. The system was tested with non-normal 
as well as variation of normal gait cycle cases, in both circumstances the system 
showed acceptable results on the detection of the gait cycle phases for the normal 
cases. The maximum timing phase shift error generated was 2% for normal cases.  In 
the non-normal cases the system reported misplaced phases as expected as a result of 
inadequate knee and hip kinematic due to the physical problems of the patients. Thus, 
it may be concluded that the proposed fuzzy system can be used to analyses gait ki-
nematic by detecting gait phases in normal cycle and absences of them in non-normal 

a) b) 

a) b) 
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cycles. This information may be considered for gait anomalies detections as well as 
therapeutic purposes. 
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Abstract. We present a novel approach for visual control of wheeled
mobile robots, extending the existing works that use the trifocal tensor
as source for measurements. In our approach, singularities typically en-
countered in this kind of methods are removed by formulating the control
problem based on the trifocal tensor and by using a virtual target ver-
tical translated from the real target. A single controller able to regulate
the robot pose towards the desired configuration without local minima
is designed. Additionally, the proposed approach is valid for perspective
cameras as well as catadioptric systems obeying a central camera model.
All these contributions are supported by convincing simulations.

Keywords: Visual control, virtual target, trifocal tensor.

1 Introduction

The use of machine vision in robotics is still a challenging task. In this context,
the problem of visual control (visual servoing) of robots is an interesting appli-
cation of computer vision techniques, control theory and robotics. This problem
consists in computing suitable velocities to drive a robot to a desired location as-
sociated to a target image previously acquired. Feedback is obtained from visual
data by comparing current and target images. Visual servoing (VS) schemes are
classified as image-based when image data is used directly in the control loop, or
position-based, when pose parameters are needed [1]. Classical approaches use
image points as visual features, given that they are easily extracted. Advanced
approaches use other geometrical primitives (lines, moments, etc.) or geometric
constraints to improve robustness of the control scheme [2–4].

Recently, multiple-view geometry have been exploited for the visual control
of mobile robots [5–8]. When designed properly, these schemes avoid the local
minima problems of the classical schemes where overdetermined solutions are
obtained. The homography-based control relies on planar scenes [5, 6], so that,
more general constraints like the ones induced by epipolar and trifocal geometries
have been preferred. However, the epipolar geometry is ill-conditioned with short

J.A. Carrasco-Ochoa et al. (Eds.): MCPR 2013, LNCS 7914, pp. 30–39, 2013.
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baseline. Moreover, controllers based on the epipolar constraint are subject to
singularities. This has been tackled by using control schemes that switch between
two different controllers when degeneracies and singularities appear [3, 7].

The present work has been inspired by [9], where the authors suggest the use
of a virtual target in order to avoid some degeneracies of the essential matrix and
singularities of an epipolar visual control. In that work, a virtual target is gen-
erated relying on the transfer relations given by the essential matrix. However,
the transfer of points can fail for certain configurations, like collinear projection
centers [10]. In the work herein, we propose the use of the trifocal tensor (TT),
which is known to be more robust and better defined than the epipolar geometry.
The transfer relations associated with the TT can be used to transfer points and
lines from two source images into a third one without degenerate cases. In the
literature, the TT has been exploited for image-based visual servoing but with
some limitations related to local minima and switching control policies [4, 8].

The contribution of this paper is the formulation to generate and use a virtual
target (virtual image) from the 2D TT in the context of visual control of a
wheeled mobile robot. The virtual target provides additional information that
avoids the need of switching to a different controller in contrast to [3, 7, 8]. A
single controller, free of singularities, is derived in order to show the feasibility
of using the virtual target. This controller achieves regulation of the robot pose,
i.e., position and orientation are simultaneously driven to their desired values.
An additional benefit of the proposed VS scheme is that it is valid for different
types of cameras, in particular, those obeying the unified projection model [11].

The paper is organized as follows. Section 2 describes the mathematical mod-
eling of the robot and the vision system. Section 3 details the generation of
the virtual target relying on the TT. Section 4 describes the controller design
from the TT using the virtual target. Section 5 shows the performance of the
proposed approach through realistic simulations and Section 6 summarizes the
conclusions.

2 Modeling for Visual Control of a Mobile Robot

2.1 Robot Kinematics

Let χ = (x, y, φ)T be the state vector of a differential drive robot shown in Fig.
1(a), where x and y are the robot position coordinates in the plane, and φ is its
orientation. Assume that a central camera is fixed to the robot in such a way
that the robot and camera reference frames coincide. The kinematic model of
the camera-robot system expressed in state space can be written as follows:⎡⎣ ẋẏ

φ̇

⎤⎦ =

⎡⎣− sinφ 0
cosφ 0
0 1

⎤⎦[ ν
ω

]
, (1)

being ν and ω the translational and angular velocities, respectively. In the sequel,
the notation sφ = sinφ and cφ = cosφ is used.
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(a) (b)

Fig. 1. Representation of the robot model and the camera model. (a) Robot frame
definition. (b) Generic camera model of central cameras [11].

2.2 The Trifocal Tensor for Generic Cameras

A desirable feature for a VS scheme is its applicability for different types of
cameras, e.g. conventional or omnidirectional. Cameras with wide field of view
are preferred to avoid the loss of visual features during motion. Geometric con-
straints have provided a good strategy to achieve generic control schemes. Hence,
we use the generic model of central cameras [11] to exploit the computation of a
geometric constraint, like the TT, in the same way for any central vision system.

Let X be the coordinates of a 3D point. Under the unified projection model,
its corresponding point on the unit sphere Xc can be computed from point x on
the normalized image plane (see Fig. 1(b)) and the sensor parameter ζ as:

Xc =
(
η−1 + ζ

)
x̄ , x̄ =

[
xT 1

1+ζη

]T
(2)

where η =
−γ−ζ(x2+y2)
ζ2(x2+y2)−1 , γ =

√
1 + (1− ζ2) (x2 + y2). We assume that the cam-

era is calibrated if omnidirectional vision is used, which allows to exploit the
representation of the points on the unit sphere. With a conventional camera, cal-
ibration is not needed and the TT can be computed from normalized points [10].

The TT encodes the geometry between three views, independently of the scene
structure [10]. It has 27 elements (18 independent) and can be expressed using
three 3×3 matrices T = {T1,T2,T3}. Here, we use points as image features:
Consider three corresponding points projected on the unit sphere p, p′ and p′′

in three views of a 3D scene, in homogeneous coordinates, i.e. p = (p1, p2, p3)T .
The incidence relation between them is given by

[p′]×

(∑
i

piTi

)
[p′′]× = 03×3 (3)

where [p]× is the common skew symmetric matrix.
Consider images taken from three different coplanar locations, i.e., with a

camera moving at a fixed distance from the ground. In this case, several tensor
elements are zero and only 12 elements are in general non-null. Fig. 2 depicts
the upper view of three cameras with global reference frame in the third view,
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Fig. 2. Geometry between three camera locations in the plane. (a) Absolute locations
with respect to a reference frame in C3. (b) Relative locations.

in such a way that the camera locations are C1 = (x1, y1, φ1), C2 = (x2, y2, φ2)
and C3 = (0, 0, 0). The TT non-null elements can be analytically deduced [4] as:

Tm
111 = −tx1cφ2 + tx2cφ1, T

m
112 = tx1sφ2 + ty2cφ1, T

m
121 = −ty1cφ2 − tx2sφ1,

Tm
122 = ty1sφ2 − ty2sφ1, T

m
211 = −tx1sφ2 + tx2sφ1, T

m
212 = −tx1cφ2 + ty2sφ1,

Tm
221 = −ty1sφ2 + tx2cφ1, T

m
222 = −ty1cφ2 + ty2cφ1,

Tm
313 = −tx1 , T

m
323 = −ty1 , T

m
331 = tx2 , T

m
332 = ty2 (4)

where txi = −xicφi − yisφi, tyi = xisφi − yicφi for i = 1, 2 and where the su-
perscript m indicates metric information. The estimated tensor has an unknown
scale factor, changing as the robot moves. We set a common scale by normalizing
each tensor element as Tijk = T e

ijk/TN , where T e
ijk are the estimated TT ele-

ments obtained, Tijk are the normalized elements, and TN a suitable normalizing
factor. We can see from Eq. 4 that T313 and T323 are constant and non-null, if
C1 �= C3. Hence, any of these two elements can serve as normalizing factor.

3 A Virtual Target from the TT

In the sequel, as described in Fig. 2, C1, C2(t), and C3 are respectively the
initial, current (at time t) and target camera-robot locations. Notice that C1

and C3 remain fixed during the motion. The pose regulation problem consists
in driving the robot to C2(t) = C3, where the current image observed by the
camera (corresponding to C2(t)) is the same as the previously acquired target
image. On the one hand, it is numerically troublesome to estimate the TT if two
images are the same and some elements must be discarded for control purposes
in that case [4]. On the other hand, the use of the radial TT (first 8 expressions
of Eq. 4) has resulted in the need of a few controllers in order to accomplish the
pose regulation task [8]. Inspired by [9], we use a TT relative to a new, virtual
target location C̄3. This location is the same as before but shifted by a vertical
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ξd1(t), ξd2(t)T(0) T̄(0)

T̄(t)

p

p′(t)

p′′

p′(0) p̄′′

(ν, ω)

Fig. 3. Overview of the TT-based visual servoing methodology with virtual targets

translation (tz > 0) as shown in Fig. 4. Thus, the planar geometry among C1,
C2(t) and C̄3 stays the same as in Fig. 2 and the image at the end of the motion
is different to the virtual target image (C̄3). The benefits of using a virtual target
are that any non-null element of the new tensor T̄(t) (corresponding to views at
C1, C2(t), and C̄3) may be chosen for control purposes, as they are well-defined.

As depicted in Fig. 3, we define points configurations p (initial) and p′′ (tar-
get). Then, the robot moves to a second configuration from which the control
loop starts (t = 0). From this configuration, the points p have been tracked into
points p′(0), and the TT T(0) (at time 0) is computed. From section 3.1, we
deduce the TT associated to the virtual target, T̄(0), and from section 3.2, we
estimate the virtual target position p̄′′ to be used in the control loop. Then, for
t > 0, the control loop uses the entries of the TT computed from p, p̄′′ and p′(t)
(current image) to drive the robot to the target location (see Section 4).

3.1 From Real TT to Virtual TT

At time 0, the TT, T̄(0) (relating p,p′(0), p̄′′) differs from T(0) (as in Eq. 4,
computed from p,p′(0),p′′) by the following elements:

T̄m
113(0) = tz2cφ1, T̄

m
123(0) = −tz2sφ1, T̄

m
131(0) = −tz1cφ2(0), T̄

m
132(0) = tz1sφ2(0),

T̄m
213(0) = tz2sφ1, T̄

m
223(0) = tz2cφ1, T̄

m
231(0) = −tz1sφ2(0), T̄

m
232 = −tz1cφ2(0) (5)

where tz1 = tz2 = tz, as the global reference frame is now C̄3. The distance tz
is arbitrary but we recommend the unity. The angles φ1 and φ2(0) (evolving as
φ2(t) in the control loop) are estimated from T(0) (Eq. 4) as follows:

φ1 = arcsin
(

T323T212−T313T121

T323T332+T313T331

)
, φ2(0) = arccos

(
T332T121+T331T212

T323T332+T313T331

)
. (6)

Hence, by using both Eq. 5 and Eq. 6, we can deduce T̄(0).

3.2 Generating the Virtual Target

Generating the virtual target implies transferring the points seen at C1 and
C2(0) into the view corresponding to C̄3. If p and p′(0) are two such points at
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Fig. 4. Generation of a virtual target. From T, associated to C1, C2, C3, and tz, the
tensor T̄ associated to C1, C2, C̄3 is estimated and used for point transfer.

C1 and C2(0), detected independently, then in general, they do not satisfy the
epipolar constraint induced by the first two views. Hence, Eq. 3 has no solution.

A simple workaround uses the fact that the TT can give a unique transferred
straight line for the third view, given two straight lines equations in the first
and second views. As depicted in Fig. 4, consider a pair of horizontal/vertical
lines (lh, lv) through p, and a second pair of lines (l′h, l

′
v) through p′(0). By

construction, transferred points p̄′′ should belong to any straight line made from
pairs (lh, l

′
h), (lh, l

′
v), (lv, l

′
h), (lv, l

′
v), each of which being computed with T̄(0).

In Fig. 4, the process is illustrated for the pair (lv, l
′
v), which image is given

by [10]: l̄′′vv = (lTv T̄1(0)l
′
v, l

T
v T̄2(0)l

′
v, l

T
v T̄3(0)l

′
v)

T . Each of these straight line
pairs leads to a linear constraint on the coordinates of p̄′′. Hence, a linear system
can be formed to determine the coordinates of p̄′′ ∈ R3 in a least square sense
p̄′′ = min

‖q̄′′‖=1
‖Lq̄′′‖2 where L is a 4 × 3 matrix containing the line equations.

Then, p̄′′ is extracted as the singular vector of L with the smallest singular value.

4 Visual Control Using the Virtual Target

In the literature, switching control laws have been proposed to solve the pose
regulation problem of mobile robots by exploiting geometric constraints [3,7,8].
At least two different controllers with an appropriate switching policy are used
in such approaches to deal with degeneracies and singularities. In this section, we
present a single controller capable to drive the robot to the target pose (position
and orientation). Hereafter, we denote T =T̄(t) for clarity.

4.1 Input-Output Linealization

After analysis of the information provided by the TT estimated from the virtual
target, we have chosen the following measurements as outputs of our system:
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ξ1 = T332, ξ2 =
T132

T131
. (7)

Note that the first tensor element comes from the “true” trifocal tensor, while the
last two elements come from the virtual one. Hereafter, we will denote x = x2,
y = y2 and φ = φ2, the robot pose in the plane w.r.t. the reference frame
attached to C̄3. The outputs are related to the camera-robot state as follows:

ξ1 = α (xsφ− ycφ) , ξ2 = − tanφ

where α is an unknown scale factor. An important consideration is that these
outputs are valid in the range |φ| < π/2, so that, we assume that the initial
orientation of the robot accomplish such condition. Notice that both outputs
are null if the robot has reached the target location. It can be seen that ξ1 = 0
and ξ2 = 0 imply that φ = 0, y = 0 and x is a degree of freedom of the solution,
which means that the orientation and longitudinal error are corrected while the
lateral error may be different from zero (zero dynamics from the control theory
point of view [12]). However, given that ξ1 is related to the longitudinal position
and ξ2 depends directly on the orientation, the lateral deviation can be corrected
with the tracking of an adequate trajectory for ξ2 as the robot moves forward.
It is desired to drive the outputs to zero in a fixed time horizon, which is a
trajectory tracking control problem. Let us define the following error functions:

e1 = ξ1 − ξd1 , e2 = ξ2 − ξd2

where ξd1 and ξd2 are smooth desired trajectories with null final value. The track-
ing problem can be faced by using the input-output linearization technique [12].
It needs the time derivatives of the error functions, given by:[

ė1
ė2

]
=

[
−α −T331

0 −T 2
131+T 2

132

T 2
131

][
ν
ω

]
+

[
ξ̇d1
ξ̇d2

]
. (8)

This system can be written as ė = Ju + ξ̇d, where J is the interaction matrix
that relates the robot velocities to the rate of change of the visual measurements
of Eq. 7. In order to find out adequate robot velocities to track the desired
trajectories, the error system must be inverted, which is possible given that

det (J) = α
T 2
131+T 2

132

T 2
131

= α
cos2 φ �= 0. Hence, the robot velocities are given by:[
ν
ω

]
=

⎡⎣− 1
α

T331T
2
131

α(T 2
131+T 2

132)

0 − T 2
131

T 2
131+T 2

132

⎤⎦[v1
v2

]
(9)

where v1, v2 are auxiliary control inputs that define the error functions conver-
gence. Different options exist to assign the auxiliary controls but their derivation
is not in the scope of the paper. In the results section, the super-twisting control
technique [13] is used to show the applicability of the controller of Eq. 9.

4.2 Desired Trajectories

The desired trajectories must drive smoothly the outputs of the system from
their initial values to zero in a fixed time horizon. Thus, the desired trajectory
for ξ1 is always defined as follows:
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ξd1 =
ξ1(0)

2

(
1 + cos

(
πt

τ

))
, 0 ≤ t ≤ τ

ξd1 = 0, t > τ

where τ is a user-defined time horizon in which the robot reaches the target
location. Given that the orientation control also must drive the robot to correct
the lateral deviation, a desired trajectory ξd2 related to x is proposed. Let us
define the angle ψ as in Fig. 1(a), related to the lateral deviation:

ψ = arctan

(
−T332sφ− T331cφ

T332cφ+ T331sφ

)
where φ is given by Eq. 6. Then, the desired trajectory for ξd2 is given by:

ξd2 = ξ2(0)
ψ(t)

ψ(0)
, 0 ≤ t ≤ τ

ξd2 = 0, t > τ. (10)

This trajectory is used if |φ(0)| > |ψ(0)|, otherwise, an initial motion is induced
by smoothly increasing the desired value ξd2 for an initial period τ1 < τ .

5 Simulation Results

The performance of our virtual target-based approach is evaluated via simula-
tions. The results have been obtained by using Matlab scripting with a closed
loop time of 0.3s. The TT is estimated from synthetic images of size 800×600 pix-
els. Omnidirectional images are generated through the generic camera model [11].
The time to complete the regulation task is set to τ = 90s.

The resulting paths, from three different initial locations, can be seen in Fig.
5(a). The case of the initial location at L1 = (0,−11, 0o) is special, given that
φ(0) = ψ(0) = 0. In such a case, ξd2 = 0 during the navigation. This case is
also special because an epipolar control is not able to solve it. In the case of
the initial location at L2 = (4,−9, 40o), ξd2 is defined by Eq. 10 and similarly
for L3 = (−5,−13, 0o), by including an initial increment of ξd2 . In all cases, the
robot reaches the target with good precision and carries out a smooth motion,
as shown in Fig. 5(b). This behavior is obtained with the velocities of Fig. 5(c),
given by the trajectory tracking scheme of Eq. 9. In Fig. 5(d), the evolution of
the visual measurements of Eq. 7, taken as outputs of the system, are shown.
Due to the normalization of ξ1, the plots for the three cases look similar.

In order to validate the proposed VS scheme for different cameras, the motion
of the point features is also presented in Fig. 5(e) for the control from L2 with a
hypercatadioptric projection. For the control from L3, a paracatadioptric vision
system is used and the motion of the image points is shown in Fig. 5(f). Note that
the points at the end of the motion, marked with “×”, are overimposed to the
real target points, marked with “O”. The difference between the former points
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(e) Image points motion for L2. (f) Image points motion for L3.

Fig. 5. Simulation results for vision-based pose regulation using images from hypercata-
dioptric (e) and paracatadioptric (f) vision systems. The markers represent: “·”=initial
image, “O”=real target image, “�”=virtual target image and “×”=image at the end.

and the virtual target points, marked with “�”, avoids numerical problems at
the end of the task in the estimation of the TT and makes possible the derivation
of our singularity-free controller. Note that we use a calibrated camera but our
control scheme is also valid for uncalibrated conventional cameras.
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6 Conclusions

We have proposed a novel image-based visual servoing scheme that relies on the
evaluation of the trifocal tensor computed by using an automatically generated
virtual target. The pose regulation problem of a wheeled mobile robot is solved
efficiently using the new control scheme, which is based on a few elements of
the trifocal tensor relating the initial view from the robot, the current one and
the target view. Contrary to other multiple view geometry-based approaches, we
avoid control singularities by using the virtual target, easily deduced from the
real one by a vertical translation. Thus, a single controller, tracking adequate
trajectories, solves the pose regulation problem without the need of switching to
a different controller as in previous works. We have illustrated the pertinence of
this approach with very promising simulation results. Our ongoing work focuses
on real-world experiments with this approach, with different camera models.
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Abstract. Characterization and classification of corn tortillas turns out to be an 
extremely delicate and difficult process when dealing with regulations for 
import/export and production process certification.  In this paper we present a 
method for non-invasive feature extraction, based on digital imaging and a 
series of procedures to characterize different qualities of corn tortillas for their 
later classification.  The novelty in this whole method lies in the extremely 
reduced set of features required for the characterization with only geometrical 
and color features.  Nonetheless, this set of features can assess diverse quality 
elements like the homogeneity of the baking process and others 
alike.  Experimental results on a sample batch of 600 tortillas show the 
presented method to be around 95% effective. 

Keywords: Inductive characterization, digital image analysis, corn tortilla.  

1 Introduction 

Tortillas are a fundamental element in the diet of Mexican people. Tortillas have been 
hand-made since ancient times. As a result of the increasing demand of this product, 
even from other countries, new production methods have become a necessity for 
massively producing tortillas; their quality must be assessed to comply with industrial 
production standards as well as import/export regulations [17]. It has been shown  
[12, 9] that sensory characteristics are of great importance for consumers, however, 
for small and mid-size producers there is currently no protocol for quality-control; 
there is an absence of standards and guides to evaluate the sensory impression of 
consumers, i.e., color, shape, spots, etc., or some other kind of imperfections resulting 
from their elaboration and baking process, and thus, tortillas are evaluated manually 
resulting in the fact that the quality of the tortilla is not uniformly assessed. 

                                                           
* The authors wish to thank the support of the Mexican Government (CONACYT, SNI,  

SIP-IPN, COFAA-IPN, and PIFI-IPN).  
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In this work we propose to classify tortillas using digital image analysis, a non-
invasive sensor that does not cause damage to the produce.  

In Section 2 we describe the techniques used for extracting the features used for 
tortillas classification; in Section 3 we describe our method of inductive classification; 
in Section 4 we show results and discussion, and finally we draw our conclusions.  

2 Feature Extraction 

In this section we will introduce the methods we use for classifying tortillas. Sample 
tortillas will be taken from three different sources: small producer, supermarket and 
industrialized. To begin, a digital image of each side of the corn tortilla is taken. See 
Figure 1. 

 

                   

                     (a)                                        (b)                                          (c) 

Fig. 1. Tortillas sampled from: (a) small shop, (b) supermarket, (c) industrial batch 

Geometric and color features are extracted from a sample of corn tortilla images to 
determine the quality level of the tortilla. Geometric features include curvature, 
symmetry and border deformations, as well as the presence of some defects like 
ruptures, holes or bends. Color features include dark/bright spots, color homogeneity 
and average color.  

2.1 Color Features  

Each image is separated into Red, Green and Blue channels (RGB), and then three 
interest areas are determined for each image by color-reducing each channel. Those 
areas bring evidence of the cooking degree on the tortilla surface.  A tortilla can be 
considered raw (undercooked), well cooked or burnt (excessively cooked) by 
counting the surface area occupied by bright spots, average color spots or dark spots 
respectively. 

Since images have a color-depth of eight bits, every pixel within each channel 
holds an intensity value in the range [0, 255]. To reduce the number of intensity levels 
in an image channel, we establish a threshold in the following manner: each pixel’s 
intensity value is mapped to one of three pre-determined levels by two thresholds.  If 
the intensity level of the pixel reads under 30, then it is mapped to a zero value  



42 M.A. Moreno-Armendáriz et al. 

(pure black), if it reads any value between 31 and 180, then it is mapped to a value of 
64 (mid-value color) and finally, if it reads any value between 181 and 255, it is 
mapped to a value of 128(high value). These thresholds were determined based on the 
tortilla’s image histograms, so that the areas of interest are successfully extracted. 
Background pixels are also mapped to a zero-intensity value, so that they appear to be 
part of the dark spots area, but they are filtered out during the color-features 
extraction process, see Figure 2. In this Figure f1 to f8 are the features used for the 
classification process described in Section 3. 

Once the three interest areas within each image are selected, the following 
processes take place: contour identification, tortilla surface area filtering and edge 
characterization; then, features are extracted. 

 

Fig. 2. Image processing process for feature extraction 

 

Fig. 3. An example of a hit-or-miss transformation. It shows that it is necessary for both 
reference points to meet at the desired target for the operation to be performed, otherwise a gap 
appears in the region of the resulting image (Taken from [19]).  

Contour Identification. Two morphological hit-or-miss operators (see Figure 3) are 
proposed. Each structure element is applied four times, rotating 90° each time, and 
then we use the union of the results. The first structure element, composed by the 
values BN1 = {0, ¬0, ¬0} looks for image regions matching one black pixel (the 
background) followed by two consecutive non-zero values (the tortilla surface).  
The second structure element BC1 = {¬128, ¬128, 128} looks for regions matching 
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two consecutive non high-intensity pixels followed by a high-intensity pixel, thus, 
finding raw areas inside the tortilla. See Figure 4. 

Excessively cooked regions on the tortilla surface appear as dark spots on the 
digital image, while raw or undercooked regions appear as bright spots. Both kinds of 
spots can have varying sizes as can be seen on Figure 5. 

    

                            (a)                                                                   (b) 

Fig. 4. Result of applying the structure element BN1 = {0, ¬0, ¬0} (a) and BC1 = {¬128, ¬128, 
128} (b) on one sample 

    

            (a)                                    (b)                               (c)                                (d) 

Fig. 5. (a) Tortilla with dark spots from excessively cooked regions (b) interest regions from 
the same tortilla; (c) Tortilla with bright spots from raw regions (d) interest regions detected. 

We propose the following color features: 
Color homogeneity (cHom) describes a uniform temperature distribution during 

the cooking process and, of course, the average color depends on the corn type the 
tortilla is made of. A correctly baked tortilla must show a uniform specific color with 
no darker or brighter regions.  A raw or incompletely baked tortilla will show some 
brighter regions, while a burned or excessively baked one will show some darker 
ones.  Color will be less homogeneous in the last two cases.  

Average Brightness (Lavg). This feature identifies, as the name implies, the 
amount of light from the surface, which ideally should be equivalent throughout  
the surface. This value varies depending on the type of dough used for making the 
product and may go from dark yellow hues, to whitish yellow. This parameter is 
obtained by the average of all pixels’ color value contained in the tortilla surface. 
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Variance of light intensity (Lvar). The non-homogeneous colouration on the 
surface is caused by burnt or raw areas and poorly processed corn leftovers. These 
defects cause the brightness of the surface not to be homogeneous, which may vary 
dramatically from one pixel to another. In the ideal case, the variance should be zero, 
so that for a uniform brightness a value close to zero would be expected. For the 
calculation of this feature, as with the average brightness, all pixels of the surface are 
used and then the variance of these values is used. 

Burned areas (burntA). Burned areas represent sections of varying sizes of burnt 
dough produced by an excess of cooking. Coloring of these areas is common to any 
hue of the tortillas, making it easy to identify. For its identification we use the border 
extracted as described previously with the hit-miss transformation, by filtering the 
edges of the burned areas from the tortilla edges. Obtaining this feature is done in an 
indirect way, because by counting the edge borders we infer that as there are more 
edge pixels, the size of the area would be grater. 

Raw areas (rawA). The raw areas represent sections of dough that did not reach 
the proper cooking and have a lighter color than the rest of the surface. As with the 
burnt areas, the extraction of the obtained raw areas is obtained from the surface 
segmentation, and calculation is carried out indirectly by counting the pixels of the 
edges. 

         

                      (a)                         (b)                              (c)                              (d) 

Fig. 6. (a) Model of a perfect tortilla, (b) tortilla without symmetry, (c) tortilla with a slight 
defect along its border, (d) tortilla with a large defect along its border 

2.2 Geometric Features 

In order to get a discrete representation for the tortilla’s border, we divide it into 64 
arc segments.  Each arc is projected over the horizontal axis and the length of the 
projection is measured [22, 2].  A characteristic descriptor for each tortilla side is 
made up with the lengths of the 64 projected arcs [8]. 

Geometry-related features aim to capture those attributes related to the shape of the 
tortilla including curvature, symmetry and continuity. According to export 
regulations, a high quality tortilla must have a nearly perfect circular shape with no 
holes and no bends or breaks along its border (See Figure 6). Since a discrete 
characteristic chain is used to describe the border of the tortilla, this chain is 
compared with the corresponding chain of a perfect circle as described in [7] (see 
Figure 7).  If both chains are identical then the tortilla border has the best quality 
available. The following features were extracted: 
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Fig. 7. Projected arcs for measuring the ‘roundness’ of tortilla.  
A defect is shown to the right. 

Defects (dfct). A defect in a tortilla occurs when a small irregularity appears on the 
edge, perceptibly altering the circularity of the edge section. This change is often 
abrupt and has a short distance of no more than one centimeter (no more than 1/8 of 
the circumference.) Convexity is affected. 

Deformations (dfrm). The deformation in a tortilla occurs where one segment has a 
non-circular tendency. In this segment the edge is straight (no more than ¼ of the 
circumference.) Convexity is not affected. 

Circularity (circ). Its value is calculated by adding up the differences of each one of 
the diameters with regard to an average.  

3 Inductive Classification  

One of the most common techniques used to obtain the rules of inductive learning is 
known as "divide and conquer" [5]. This technique, which appeared in the early 80's, 
is named after the method applied to construct a rule induction, dividing the initial set 
of knowledge rules and selecting the rules that provide better coverage rates. 
Important works using this technique are Michaslki [14, 16], Clark [3], and Rivest 
[18]; several innovations and/or adaptations of the techniques proposed by them arose 
for nearly a decade after the publication of these mentioned works. 

One of these works to improve learning technique was performed by the same 
Michalski in the mid-1980s. The STAR method is based on the principle of "divide 
and conquer" and it further allowed the resolution of everyday problems or 
applications that have large numbers of possible solutions. Finally it emerged and 
positioned itself as the BOUNDSTAR and REDUSTAR methodologies (see [13] for 
an in-depth explanation). 
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3.1 Tortilla Characterization by Inductive Learning 

Once the features for all samples are defined and calculated, we reach the stage of 
inductive learning where the characterizing rules are learnt. The learning process is 
based on the model of the BOUNDSTAR algorithm [13] that seeks to obtain a 
characterization from events calculated by parameterizing features, with the 
conjunctions of these, trying to get a generalization and thereby obtaining rules which 
shape knowledge and allow characterization. The last step of this process is to 
implement the rules to a new group of samples and the evaluation of the classification 
results are obtained. 

3.1.1   Parameterization of Features 
Each dataset of characteristics, both color and texture and geometric data has a 
different distribution for each class along each feature domain. Based on this premise, 
the parameterization is performed for each set of data for a range in which each of the 
classes is covered in greater proportion with the rest of them, i.e., this class has a 
percentage of maximum coverage in this range. Thus, r will be obtained for each 
value of each feature, being r the number of classes that we seek to characterize. 

The set of all observed events will form an initial knowledge base. Although not all 
of those may be able to completely cover any class above the others. Some of the 
features contained in this knowledge base will be discarded, as they are of marginal 
use for the creation of knowledge rules, since their coverage percentage is very strong 
on some classes, and very weak for other classes at the same time. 

Each event is calculated relying on the histogram of each feature as well. Figure 8 
shows the distribution of the feature Lvar. We can see that the class 2 (asterisk 
symbol) will get high percentage of coverage and a considerable difference with 
respect to the percentage of coverage of other classes, a situation that does not happen 
for Class 3 (circular symbol) and even less for Class 1 (square symbol), because the 
samples of these classes are overlapping.  

 

Fig. 8. Lvar feature histograms. As noted, it is possible to achieve a separation of the class 2 
which intersects only in a small range with samples of class 1. 
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An event, either from the original knowledge base or from a later one, can be 
considered, like in the case of a complex feature, stronger than any other 
characterization if it achieves the characterization of all the elements of a class under 
parameters which only the elements of this class meet, while none of the remaining 
classes’ elements meet. So if we happen to have an event that accomplishes these 
goals, then this event is considered the strongest possible characterization for the 
elements of the class, and may even be considered as a stop condition for the 
algorithm. 

4 Experimental Results 

We obtained a sample of 600 tortillas, from three kinds of commercial establishments 
(see Figure 1), 200 from each kind. With help from some experts in food engineering, 
a model of the perfect tortilla made from each possible type of corn was defined (see 
Figure 6) and then we proceeded to apply the induction classification. We learned 
from the first half of 300, and then we evaluated with the remaining 300. The 
extraction of the first two color features of the 300 images of tortilla during the 
learning phase can be seen in Figure 9. In the case of Lavg, it can be seen that the data 
of class 2 are distant with respect to the other classes. This phenomenon is generated 
by the use of different materials (different masses or corn flour) which impact directly 
on the color and brightness of the product. Furthermore, although Lvar and Lavg are 
directly related, the distribution of such data is not necessarily the same. As shown in 
Figure 9, the variance of color (light) samples among those of the same class can be 
wider. For both features at least one class is easily identifiable above the rest; this will 
be an advantage for the parameterization and search of characteristic features of each 
class. 

 

Fig. 9. The first graph shows the data distribution of the three different classes with regard to 
the average L 

The other two color characteristics burntA and rawA are shown in Figure 10. There 
it can be seen that for both features the three classes have a poor dispersion, so that a 
differentiation between samples of a particular group will not be easy, or even 
impossible to achieve because there is little scatter in the data. Then, this feature is not 
considered as very important for the classification. 
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Fig. 10.   The first graph shows the distribution of the burntA data, which the lower one 
represents rawA; both show a difficult separation of these classes 

With regard to the geometrical features, the results extracted from the images can 
be seen in Figure 11 and Figure 12. dfct seems to provide good information for 
characterization, while as defm and circ exhibit little disjoint accumulation. A further 
analysis of the distribution and these results is offered in the discussion of results 
section. 

 

Fig. 11. The circularity circ (pictured left), presents some difficulty differentiating classes, on 
the contrary, the defects dfct (right) samples differentiate one class above the rest 

 

Fig. 12. The distribution of strain (defm) in the samples of the three classes presents difficulties 
for the separation of samples 

Other features such as correlation, homogeneity, and entropy distribution are not 
shown, since they were are not considered in the process of inductive learning. 
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4.1 Characterization 

Once we have the data shown in the histograms above, in order to obtain knowledge 
rules using inductive learning, it is necessary to first perform the parameterization of 
the extracted features. 

Because the inductive learning method used is BUNDSTAR, and that this is based 
on a set of events, it is necessary first to define events together. These events will 
form the initial knowledge base. Table 1 shows the coverage results of these events. 
The best percentage of coverage obtained for the each class of the feature is 
highlighted in bold. From Table 5 we can see some interesting phenomena in 
covering classes: 

1. The Lavg complex feature under the proposed parameters, is the strongest 
possible because it manages to strongly characterize to class 2 and thus creates 
two disjoint sets. The first is that all the elements of the class 2 and the other is 
formed by all elements in classes 1 and 3. 

2. The Lvar complex feature can characterize two different classes, using different 
parameters, classes 2 and 3, being stronger characterization of class 2. 

3. The circ complex feature, despite all samples characterize class 3 does not 
achieve it in a convenient way, since 88% of characteristic samples of class 2 are 
characterized too. 

4. The complex feature dfct can almost perfectly characterize the class 2. 
5. There are other features that were not included in Table 5 because the coverage 

percentages are not suitable, for example, the feature called dfrm is not strong 
enough to characterize a class because the difference is minimal. 

Table 1. Coverage pct. of the proposed complex features from the learning stage 

# Complex feature Class1 Class 2 Class 3 

1 Lavg >50 0 100 0 

2 Lvar >91 17 100 0 

3 Lvar <85.5 67 0 100 

4 burntA <220 70 21 14 

5 220 < burntA <450 19 37 72 

6 rawA >1200 96 49 10 

7 circ>60 48 88 100 

8 dfct<45 9 98 21 

9 0.3262 < dfrm < 0.4452 100 2 37 
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Table 2. Set of solutions that characterize better coverage percentages classes. The rules to be 
used in the generalization are shown in bold. 

Class Solution set C 1 C 2 C 3 

 
1 

burntA <220   Λ circ<60   Λ Lavg <50 38 4 0 

rawA >1200    Λ  Lavg <50 96 0 10 

0.3262 < dfrm < 0.4452  Λ Lavg <50 52 0 0 

2 Lavg >50 0 100 0 

 
3 

Lvar <85.5 Λ   0.3262 > dfrm < 0.4452 0 0 63 

220 < burntA <450 Λ Lvar <91 15 0 72 

Lavg <50  Λ rawA <1200   Λ  circ >60 0 0 90 

Table 3. Coverage percentages obtained using complex features after re-learning 

Learning Rules C 1 C 2 C 3 

Lavg >50 0 100 0 

(Lavg <50) ^ (rawA>1200)   96 0 10 

(Lavg <50) ^ (rawA <1200) ^  (circ >60)  0 0 90 

4.2 Evaluation 

To validate the proposed rule of knowledge, we used the 300 remaining samples. As 
mentioned in the previous section, it is possible that during the classification of new 
samples some of them are not classified in any of the three classes defined. These 
phenomenon occurs when the samples in question are outside of the parameters of the 
features and then they can be considered as out of context objects. 

The results of the classification of the new group of samples is shown in Table 4. 

Table 4. Classification results of 300 new samples using complex features listed in Table 2 

 Class 1 Class 2 Class 3 Not classified 

Classified Samples 84 100 113 3 

Table 5. Classified samples. The rows are read the actual class and columns are the class to 
which they were assigned according to their features and the learnd rules of knowledge. 

 Classification 

Class 1 Class 2 Class 3 No class 

 
Real 
Class 

Class 1 82 0 16 2 

Class 2 0 100 0 0 

Class 3 2 0 97 1 
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Table 4 shows that there are samples which are not classified correctly by the 
learnt rules. This is evident if we see the class 3, which has more samples that it might 
contain. For validating the results we need to determine to which class the samples 
really belong, and to which class they were assigned due to their properties. This 
confusion-matrix is shown in Table 5. 

4.3 Discussion of Results 

The results of the characterization of the three classes proposals can be seen in Table 
1, where the percentages of coverage are achieved by early complex features. From 
this learning stage it can be appreciated, as anticipated in the extraction of features, 
that not all features that are useful for the characterization, however, there are 
complex features capable of characterizing a class above the other with excellent 
results. Examples are traits Lavg> 50 and Lvar> 91, which are close to 100% 
coverage in the class of interest, class 2. 

After the implementation of the BOUNDSTAR algorithm, we obtained the ruleset 
presented in Table 2. This ruleset represents the best solutions for each class and it 
can be used independently for different purposes.  

To validate the learnt rules, we evaluate their performance and determined the 
following values: memory, precision, specificity and accuracy for each of the classes 
determined, these results are: 

1. The rule for class 1 (tortillas package) is: (Lavg <50) ^ (rawA> 1200) having an 
accuracy of 93%, a precision of 97%, a specificity of 99% and 82% memory; 
this latter being affected mainly by the 18 samples that were classified in another 
class.  

2. The rule that characterizes the class 2 (supermarket tortillas) is Lavg> 50, this 
rule has the distinction of being an ideal case, it is a strong rule. This property 
can be seen in the histogram of Lavg, see Figure 8; this graph shows the classes 
1 and 3 separated by a wide range of values with respect to Class 3, this means 
that visually the samples of class 2 are much clearer and this is enough to 
characterize. 

3. The characterization rule for class 3 (tortilla from a neighborhoodstore) is: (Lavg 
<50) ^ (rawA <1200) ^ (circ> 60), which has an accuracy of 93%, Memory 
97%, specificity of 92% and a precision of 85%. This low precision is due to the 
16 samples of Class 1 that are classified in this class. This problem is due to the 
similarity of its luminosity. In this case use the circularity is used for 
distinguishing these two kinds of samples; however this is obtained yielding a 
lower precision with regard to that of the other classes. 

5 Conclusions 

We have found that the inductive characterization of three classes of producers is 
achieved with high percentages of coverage and precision; particularly in the case of 
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Group 2 with a coverage of 100%. Importantly, despite the diversity of variables 
involved in making tortillas, it was possible to find distinctive patterns of each 
manufacturer in production. The proposed color and geometric features were useful 
for achieving this classification. The most important features in the classification, 
given the high percentage of coverage for the desired classes were color features. 
Significantly, color features become extremely important in characterizing when 
considering the preference of the consumer. 

In general, we could say that it is possible to make a quantification of the visual 
features of tortillas, using only images, and using these features to obtain an inductive 
characterization of different producers. This is shown in the results of Table 2, since 
the exposed ruleset characterizations represent the best for each class, and they are 
themselves a numerical representation of the visual properties of each class of 
common tortillas. Despite the good results obtained by the learned knowledge rule, 
characterization results could be improved by using not exclusively visual attributes, 
but also considering other features resulting from a biochemical analysis of the 
samples, such as moisture, density, elasticity, among others. This latter is left as a 
future work. 
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Abstract. In this paper we introduce a representation for object ver-
ification and a system for object recognition based on local features,
invariant moments, silhouette creation and a ’net’ reduction for depth
information. The results are then compared with some of the most recent
approaches for object detection such as local features and orientation
histograms. Additionally, we used depth information to create descrip-
tors that can be used for 3D verification of detected objects. Moments
are computed from a 3D set of points which are arranged to create a
descriptive object model. This information showed to be of matter in
the decision whether the object is present within the analyzed image
segment, or not.

Keywords: object detection, object verification, visual pattern
recognition.

1 Introduction

Object recognition is a challenging task that involves several steps aimed to find a
relation between an input image and a set of previously known objects [1]. Recent
work has brought techniques that allow detection at real-time. Nevertheless, any
method applied to object recognition is likely to find the desired object where
there is not, that is, it could throw false positive responses. The false positive rate
increases when objects are relatively small or the train data is not rich enough
or does not describes the object very accurately. The detection step consist in
matching an area or points in the image to a known object model, whilst, a
verification step goes further and reinforces the decision taken decreasing the
false positive rate. Thus, a verification step refines the object detection checking
whether the areas really contain the target objects [2].

As information is added to the detection step it becomes slower and heavier.
We analyze the inclusion of 3D information in a verification step after detection
with the main objective of reducing the false positive rate. The addition of depth
information helps to create descriptors that can be easily used to undertake a
verification step successfully. This data is added to a set of keypoints forming a
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3D model from which we compute invariant moments. This approach generates
models that are light and descriptive

In this paper, we propose to get a small descriptor based on invariant moments
to increases the effectiveness of classification. SURF keypoints [3], and Support
vector machine classifiers (SVM) [4] are used. We describe algorithms for contour
definition and 3D information reduction into a grid over the object. The paper is
organized as follows. In section 2, we describe the tools put together to integrate
the recognition system. Section 3 presents the proposed methods. In section 4,
we present experimental results. Finally, the conclusions are given in section 5.

2 Background

The use of visual features for object detection is very common and functional.
For short, features are points of interest that describe the image and make the
correspondence problem able to be solved [5]. Robust features identify objects
despite changes in illumination, orientation, translation, scale, noise and dis-
tortions. Feature descriptors add information of the neighborhood surrounding
the key point. The Speeded-Up Robust Features algorithm (SURF) proposed by
Bay et al. [3] finds features using integral images and Haar-like features. SURF
features provide robustness and speed compared to similar approaches.

Invariant Moments. Moments provide compact information of a data set. A
pattern may be represented by a density distribution function, moments can be
obtained for a pattern representing an object, and they can be used to discrim-
inate between objects (or classes)[6]. This technique has been previously used
in pattern and object recognition as far as the early 60s [7,6,8,9]. Nevertheless,
they were usually applied on measures from an RGB image and the classifiers
used were simple. The general two dimensional equation for moments is

mpq =
∑
x

∑
y

xpyqf(x, y) (1)

where f(x, y) is a function of the variables, commonly used functions for images
are the gray scale function and histograms, this last one is related to the density
distribution function. The order of moments is (p + q) [7,9]. The first order
moments can be used to locate the centroid of the set of points.

x̄ =
m10

m00
, ȳ =

m10

m00
(2)

If we compute moments considering a translation to the centroid, we generate
central moments.

μpq =
∑
x

∑
y

(x− x̄)p(y − ȳ)qf(x, y) (3)

Central moments, μpq, can be made invariant under scale dividing them by μγ
00.

μ00 defines the area so this is a scaling normalization.

ηpq =
μpq

μγ
00

, γ = [(p+ q)/2] + 1 (4)
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We use a set of 3D points for the moment functions. If we compute a density
function of the form Fx(X) =

∫
f(u) du counting the number of occurrences of

every point, the probability value assigned to them will be equal because each
point appears only once. Thus f(x, y) is assumed as 1 all the time.

The first four moments are descriptive measures for a distribution. Using
moments for visual pattern recognition not on the RGB images but on depth
information gives a new perspective on the use of moments, since 3D information
describes the distribution of points that conform an object.

3 Object Recognition System

This section is focused on describing the recognition system. First, SURF points
are extracted from an input image and matched to known models. Small areas
around matches are subject to further inspection. Using features we construct a
contour taking points with a sliding orientation window based on the magnitude
measure. Next, we proceed to extract depth information within the boundaries
of the contour and reduce the number of points that will be used to compute the
moments. The reduction is intended to generate a smaller set with rich informa-
tion and less heavy. This is done adjusting a mesh grid over the object. To do
this, a fixed number of points are initialized in coordinates inside the bounding
box of the contour then they are migrated to enhance the model. Depth infor-
mation is attached to the coordinates. Then, we calculate the invariant moments
over this reduced 3D set to form a small descriptor. Finally, the descriptor is
used for classification using a linear SVM. This process is seen in Fig. 1.

Detection Verification

Classified
Object

Fig. 1. Steps for the object recognition system

Keypoints. The first step is the extraction of keypoints using the SURF algorithm
in an image containing the object, these keypoints are later used to generate a
contour. Some other alternatives were tested, including morphological operations
and edge or corner detectors but they were not as robust. Feature description
resulted the most efficient method for the robustness of points through changes
in scene variations. The SURF keypoints used skip descriptor formation which
increases speed. Sample SURF keypoints can be seen in Fig. 2.
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Fig. 2. SURF points extracted for an object

3.1 Silhouette Extraction Algorithm

To create the silhouette from the set of keypoints, we start defining the bounding
box of keypoints and find the centroid. It is used to translate and scale the points.
Magnitude and orientation are calculated for all points using

m(x, y) =
√

(x− x0)2 + (y − y0)2 (5)

θ(x, y) = tan−1

(
y − y0
x− x0

)
(6)

Where (x0,y0) is the centroid. Next, we break the 360 degrees into a number of
bins corresponding to the number of points in the contour. For instance, if we
want 72 points, bins represent 5 degrees each. A sliding orientation window is
used to take points with the highest magnitude for every bin.

Occasionally, some points may be zero because SURF key points were not
triggered in certain zones. We scan for blanks and make a linear interpolation
to infer missing information using the previous and next known points in the
silhouette. Examples of the silhouettes obtained can be seen in Fig. 3.

The number of points in the silhouette has to be carefully chosen. Taking only a
few points will create contours with points distant from each other not describing
objects correctly. So, small sizes may cause lack of information for descriptors.
Very large sizes may cause much sparse information and overuse of interpolation.
Since points are selected from SURF features, the contour is limited to the number
of keypoints. Taking a large number will produce many blanks.

Fig. 3. Sample Silhouettes for two objects
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3.2 Fishnet Reduction Algorithm

After silhouette creation, we add depth information. If the area occupied by
the object is big, it leads to a large set of points. We perform a reduction of
the information adjusting a net over the object. Having depth and RGB images
aligned, 3D information is cropped to retain only the area contained inside the
bounding box of the silhouette.

First, we define the number of points and generate (x,y) coordinates by sec-
tioning the bounding box evenly. This creates a set of bidimensional points
Grid = {(x1, y1), (x2, y2), ..., (xn, yn)} , the value n is a constant that indicates
the number of points in a single direction. Besides,

xi ∈ [xmin, xmax], yi ∈ [ymin, ymax] (7)

x1 = xmin, y1 = ymin

xn = xmax, yn = ymax

xi+1 = xi + xinc, yi+1 = yi + yinc

xinc =
xmax − xmin

n
, yinc =

ymax−ymin

n

minimum and maximum values are defined by the contour bounding box. The
result of this process can be seen in Fig. 4 (up).

Since we take the bounding box measures some points might lie outside the
contour. The second step is to check that points lie inside the contour. Points
are valid if there exist both higher and lower values in points from the silhouette
on the vicinity of x and y dimensions. Then, for each non-valid point we take
two valid points and move the invalid one between them, this can be seen as a
biased migration. The resulting net can be seen in Fig. 4 (down).

For the third step, we add the z coordinate (depth) to the valid (x, y) points.
Since depth and RGB images are aligned we append the depth information

Fig. 4. Net creation. Up, Some points lie outside the contours. Down, points outside
the silhouette are migrated.
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located at or closest to (x,y). We check that z is a non-zero quantity. When we
find null depth points, we look for the next closest point to the coordinates. At
the end we have a 2D set of points for the silhouette and a set of 3D points
arranged in a net over the object.

3.3 Descriptor Formation

We use the four first invariant moments of each x, y, and z to create the descrip-
tor. The first moment is the mean of the distribution. The second moment is the
variance of the set which tells their spread. The third moment determines skew-
ness which measures the symmetry on the shape. The fourth moment defines
kurtosis which measures how flat or peaked a distribution is. This results in a
12 elements vector with rich information about the structure of the distribution.
After the moments are calculated the vector is used as an input to a linear SVM
which classifies the object.

4 Experimental Results

A data set was created composed by 9 objects (cups, totems, tigers, tennis,
console controls, globes, shoes, hair dryers and irons) with around 50 images
each, see Fig. 5. The images included changes in the scene conditions. For every
object 15 images were used to train the SVMs and 25 images for the test stage.
The silhouettes created were formed by 72 points, using bins of 5 degrees. On 3D
experiments, the fishnet consisted of an 81 point (9x9) mesh. The classification
tests were made using cropped, segmented images that included one object and
had a discriminative background.

4.1 2D Classification Results

The first experiment consisted in the comparison of 2D contours for invariant
moments and Histograms of Oriented Gradients (HOG) descriptors [10] using

Fig. 5. Objects conforming the data set
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SVMs classifiers for both. The descriptor was constructed using the information
from the first four moments and SURF keypoints (x, y, gradient orientation and
scale) generating a 296 element vector. The test consisted of binary classifica-
tion, with one object being discriminated from another, 1 vs 1, see table 1. In
the second test, the long descriptor was compared to a small one with only in-
variant moments. This test consisted of binary classification using the 4 objects
with an object being discriminated from the rest, 1 vs all, see table 2. The re-
sults are summarized in result tables. Each row indicates, the percentage of: (a)
correct recognitions (CR), (b) false positives (FP), a different object is classified
as the target, and (c) false negatives (FN), the target object is classified as a
different one.

Table 1. 2D 1 vs 1 Test

1 vs 1 Classification Percentages

Test SURF-Moment Desc. HOG descriptor

Name CR FN FP CR FN FP

Cups and Tigers 73% 9% 18% 76% 10% 14%

Cups and Tennis 97% 3% 0% 94% 3% 3%

Cups and Totems 92% 8% 0% 97% 0% 3%

Tennis and Tigers 88% 4% 8% 96% 0% 4%

Tennis and Totems 100% 0% 0% 95% 5% 0%

Tigers and Totems 97% 3% 0% 73% 9% 18%

Table 2. 2D 1 vs All Test

1 vs all Classification Percentages

Test SURF-Moment Desc. Moment descriptor

Name CR FN FP CR FN FP

Cups 88% 10% 2% 84% 6% 10%

Tigers 88% 10% 2% 86% 9% 5%

Tennis 84% 0% 16% 86% 0% 14%

Totems 80% 10% 14% 86% 4% 10%

For the first test, which compares contours and HOG, both SURF-moment
and HOG descriptors achieved similar results which shows that moments are
a good measure for classification. The second test analyzes classification using
moments alone. We can see that SURF information inclusion does not cause
a great difference in results. Since Moment-only descriptors throw similar re-
sults, we could spare the addition of SURF information. A final test was made
in multi-class classification where objects were classified all at once comparing
again SURF-moment and HOG descriptors. In this case HOG descriptors made a
correct classification of 56% of the objects while the Silhouette-Fishnet-Moment
approach obtained a 65% of correct classifications.
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4.2 3D Classification and Detection Results

The data set was extended to include depth information. RGB and depth images
were aligned and the whole silhouette-fishnet-moment approach was applied.
Classification was performed using a very long descriptor (SURF and moments
information) and then a simple 12 element vector that only included the first
four moments for x, y ans z. In the first experiment, table 3, we compared the
two descriptors in order to determine the effect of 3D data inclusion on the
computation of moments. Binary classification with two objects was performed.
The second experiment, table 4, shows a comparative between the reduced set
and the complete 3D set for moment generation, to determine how the reduction
affected the pattern. Binary classification with 5 objects was performed for each
test, 1 vs all.

Table 3. Results for the 3-D 1 vs 1 Tests

1 vs 1 Classification Percentage

Test SURF-Moment Desc. Moment descriptor

Name CR FN FP CR FN FP

Hair Dryer and Tigers 85% 5% 10% 100% 0% 0%

Iron and Cups 88% 8% 4% 98% 2% 0%

Shoes and Cups 82% 8% 10% 95% 0% 5%

Iron and Tigers 80% 10% 10% 92% 4% 4%

Globe and Tigers 78% 12% 10% 89% 11% 10%

Table 4. Results for the 3D 1 vs all Tests

1 vs all Classification Percentage

Test Reduced Set Full set

Name CR FN FP CR FN FP

Hair Dryer 90% 6% 4% 92% 2% 6%

Iron 90% 8% 2% 78% 12% 10%

Tigers 92% 4% 4% 85% 10% 5%

Cups 100% 0% 0% 80% 10% 10%

Shoes 90% 6% 4% 82% 10% 8%

In the first test, the extra information did not increase efficient classification
but only made the descriptor heavier. The classification performed by the de-
scriptors using only moments was better for all tests, 3D information turned out
to enhance the classification process greatly. In the second test, we can see that
using the full set for descriptors did not end in better results. Using the reduced
set also reduces time needed to compute moments and improves classification.
Finally, a multi-class 3D classification test was performed using the 12 element
descriptor and a 70% of correct classification was attained, which shows that
depth information enriches the descriptor.
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When classification tests were finished, we created a system for object recog-
nition. Using a set of images taken at not preprocessed scenes. The recognition
system described in the previous section was implemented. Detection was per-
formed by SURF feature matching and for verification we used the silhouette-
fishnet-moment approach. The experiments detected only a class of object at
once. An example of the process is seen in Fig. 6. Results are shown in table 5,
where we can see that the verification step helps to reduce false positives and
enhances detection.

Fig. 6. Recognition system steps exemplification

Table 5. Results for the Object Recognition

Recognition system results

Object Matches Found CR FN FP

Hair Dryer 51 94% 2% 4%

Iron 38 89% 6% 5%

Tigers 57 98% 0% 2%

Cups 41 86% 7% 7%

Shoes 36 86% 6% 8%

5 Conclusions

In this paper we presented an object recognition system based on an invari-
ant moment descriptor that includes depth information. Due to the addition of
3D information, invariant moments make small and robust descriptors, outper-
forming larger descriptors. The inclusion of depth information improves object
classification tasks in a huge way. Finally, when a verification step is performed
after detection, an important reduction on false positives is achieved. This is
very important in many computer vision applications
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Abstract. A method for tracking the 3D pose and controlling an un-
manned aerial vehicle (UAV) is presented. Planar faces of target vehicle
are tracked using the Efficient Second Order Minimization algorithm, one
at a time. Homography decomposition is used to recover the 3D pose of
the textured planar face that is being tracked. Then, a cuboid model is
used to estimate the homographies of the remaining faces. This allows
switching faces as the object moves and rotates. Cascade and single PID
controllers are used to control the vehicle pose. Results confirm that this
approach is effective for real-time aerial vehicle control using only one
camera. This is a step towards an automatic 3D pose tracking system.

Keywords: 3D Tracking, 3D Pose Estimation, Aerial Vehicle Control,
Homography Decomposition, Cuboid Tracking, Polygon Mesh Tracking.

1 Introduction

For autonomous navigation, a localization method and a control strategy are
determinant elements to achieve success in navigation tasks. Visual 3D pose es-
timation of objects in real environments has been an important topic in literature
because cameras have shown to be a reliable source of environment information.
Common visual approaches use a source of depth information, such as stereo
setups [15,10] and laser range data [14].

In addition to cameras, Unmanned Aerial Vehicle (UAV) control approaches
rely on multiple sensor data for pose estimation and control. Here we’re in-
terested in those approaches that work using image data as the main source
of information. For example, in [13,6,9,11], visual servoing is done in order to
control the vehicle pose.

3D object tracking can deliver 3D pose information to the vehicle controller.
3D Tracking may be accomplished by using full featured models [12,4] or by using
approximated models [7]. While full featured models allow having a very exact
representation of the real world entity, it is not well suited in all situations having
any sort of known 3D model. Approximated models can be used to overcome
this constraint. This was validated at theoretical level in [2].

In this article, the method presented in [2] for 3D pose tracking is validated
with the control of an UAV. An aerial vehicle is controlled using the visual pose

J.A. Carrasco-Ochoa et al. (Eds.): MCPR 2013, LNCS 7914, pp. 64–73, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.itesm.edu


3D Tracking and Control of UAV 65

estimation obtained using method [2] as feedback, in a Position Based Visual
Servoing (PBVS) system.

This article is divided as follows: section II will introduce work related to the
problem of 3D tracking and visual servoing of UAVs. On section III, a method
for 3D object tracking is reviewed. Section IV presents the control strategy
used to achieve control over the vehicle for then, in Section V, presenting the
experimental results. In section VI conclusions are remarked.

2 Related Work

There are two main disciplines related to this work. First, 3D tracking, which
should provide the pose estimation that is used frame to frame to effectively
control the aerial vehicle. But also, visual servoing, since output from the 3D
tracking is used to directly feed a control loop.

Visual servoing of aerial vehicles has been a well developed topic and, because
of its complexity, some works are focused on specific parts of the process. For
example, in [6], a pure Image Based Visual Servoing (IBVS) for landing and
take-off process is developed. While this work has the advantage of not requiring
a full 3D reconstruction, it can’t be used for full flight control (executing paths).
In a similar manner, in [9], a planar patch is used for 3D pose estimation of
the UAV. This is closer to our work, but it’s restricted in space. A more robust
work is done in [13], where the full object pose is controlled. Unfortunately, this
approach requires a stereo setup for 3D reconstruction. A common pattern in
these works is the use of cameras on the UAV.

In the context of 3D tracking, Cobzas and Sturm [5] presented a method for
tracking that uses standard 2D tracking in a 3D pose parameter space (6 parame-
ters, one for each DOF). A drawback is that, when changing the parametrization
to handle 3D pose changes, it results that even some movements that could be
tracked without a problem by tracking planes individually, can produce fail-
ure when tracking them using this parametrization. Another idea introduced by
them are constraints between planes to make tracking more stable.

On the same line of parametrizing directly in euclidean space, Panin and
Knoll [12] proposed a method for tracking objects that uses Mutual Information
as similarity measure, instead of the common SSD, and perform a Levenberg-
Marquardt optimization. Authors report performance of 2 fps because of the
Mutual Information step. Moreover, Panin’s method requires at each itera-
tion projecting a full CAD model to image plane (and a z-test for determining
visibility).

Another approach to 3D pose tracking is that of Manz et al. [7]. In their
work, they use a custom simplified model for 3D pose tracking based on feature
points. Their work shows robust performance on real-time vehicle tracking. But
this method has the disadvantage of requiring a fine tuning of descriptors and
the model for each different tracked target.

In this work the method introduced in [2] is used for tracking and control-
ling an UAV using a remote camera. Since this 3D tracking method assumes
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that tracked object has planar faces, a cuboid shaped object was installed over
the UAV. At any given time, one of the faces of the cuboid is tracked. Homog-
raphy decomposition is used for a 3D reconstruction. The 3D reconstruction
is necessary since, when the object rotates, it’s used to predict the adequate
transformation for the new face to track.

3 3D Object Tracking Using Planar Faces

In this section, a method for tracking objects that move in a 3D world is reviewed.
This method uses planar faces to achieve full 3D object tracking. Only one face
is tracked at image level using the ESM algorithm. Once a 2D homography be-
tween the reference template and the current image is obtained, homography
decomposition is used to obtain a 3D reconstruction of that face. Then, a set of
precomputed 3D transforms between the different faces of the model allow ob-
taining its full 3D reconstruction. A plane selection method is used to determine
which face is the most convenient to track in the next iteration. If the face that
is being tracked needs to be switched, then a 3D to 2D projection is done to
obtain the current homography for the new face to be tracked. This steps are
illustrated in figure 1. Please refer to [2] for more details on this method.

Fig. 1. General overview of the 3D Object tracking method [2]. In the initialization
stage, a human operator has to select one plane to trigger the tracking loop.

3.1 Plane Tracking of Planar Faces

In order to recover the full pose of the target object, visual tracking over a
single face is done. Because faces are planar, it’s possible to use existing plane
tracking methods for image alignment. For this work, the Efficient Second Order
Minimization proposed by Malis [8] was implemented. This method has proven
to provide higher convergence with less global error [8]. Also, this algorithm is
fast enough to achieve real-time performance.
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This method works by iteratively updating parameters p := p ◦ Δp where
Δp can be evaluated as:

Δp ≈ −2(J(e) + J(pc))
+(s(pc)− s(e)) (1)

Where p are the current parameters, J is the Jacobian, as presented in [1], and
s is the transformed current image. e is the identity parameter set, in this case
0. This method assumes the following homography parametrization:

W(x;p) = G

⎛⎝x
y
1

⎞⎠ =

⎛⎝1 + p1 p3 p5
p2 1 + p4 p6
p7 p8 1

⎞⎠⎛⎝x
y
1

⎞⎠ (2)

3.2 3D Object Reconstruction

The approach proposed in [2] is implemented to 3D reconstruct the object pro-
vided a single face of it and, in this case, assuming the real world dimensions of
the object are known. In the 3D reconstruction stage, two main steps are done.
First, a selected plane is tracked and then 3D reconstructed using homography
decomposition. Then transformation matrices are used to obtain the full 3D
object reconstruction.

Homography decomposition deals with reconstructing the 3D pose of a planar
surface given its projection on image plane. When working with plane tracking,
usually only 8 parameters are used to accomplish tracking, which are mapped
to the 3× 3 homography transform, as shown in equation 2.

The transformation matrix of extrinsic parameters P = [R | t] is a matrix
composed of rotation R and translation t. In order for P to be a valid transfor-
mation, R must have an orthonormal basis.

Using individual elements hij : 1 ≤ i, j ≤ 3 of G, the following relations can
be obtained:

P = [r1, r2, r3, t, ] (3)

P =

⎡⎢⎣α
h11−cxr31

fx
h21−cyr31

fy

h31

, α

h12−cxr32
fx

h22−cyr32
fy

h32

, r1 × r2, α

h13−cx
fx

h23−cy
fy

1

⎤⎥⎦ (4)

Where cx, cy are camera center offset parameters. fx and fy are focal distances
of the camera. Normalizing factor α must be estimated such that the magnitude
of r1 and r2 be unitary. An advantage of this decomposition method is that it
only requires one view, and camera intrinsic parameters.

Once the decomposition and 3D reconstruction of the tracked plane is ob-
tained, the full object model may be reconstructed. For this work, the model is
a cuboid. A cuboid has 6 planar faces and can be defined in terms of the planes
that conform it. That is:
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C = {Pi | 1 ≤ i ≤ 6} (5)

Where Pi refers to the homogeneous transformation matrix for plane πi from
its current referential to camera referential. For all faces in the cuboid C there
exist at least one transformation matrix iTk that maps face referential k to face
referential i. This can be expressed as:

∀πi ∈ C ∃ iTk | Pi = TkPk (6)

In the case of the cuboid used, these transforms can be estimated by assuming
certain dimensions (up to scale factor) and then applying the corresponding
rotations and translations. In fact, since there are 6 faces, a total of 30 transforms
may be precomputed (5 for each of the 6 faces) so that it becomes straightforward
obtaining the transform for face i from face k.

3.3 Face Selection

With the full 3D object reconstruction of the tracked object, the next step consist
in determining which face is the most suitable for tracking in subsequent images.
For this, the method outlined in [2] is used. This method works by finding the
normal of the visible planes that is most aligned to the camera principal axis. In
that article it’s demonstrated that this is equivalent to finding face i such that:

argmax
i

l(i) = {c · ni | ∀i : 1 ≤ i ≤ 6} (7)

Where c refers to the center of the tracked object relative to the camera coor-
dinate system. ni is a normal vector to plane i. It must be taken into account
that the selected face will not always be the one with the most suitable position
for tracking.

4 Visual Servoing of Aerial Vehicle

An Ar.Drone Parrot quadracopter was tracked and controlled using the pre-
sented approach. Since planar faces are required, a cuboid shaped object was
adapted and installed on top of it (see figure 5). The 3D object tracking ap-
proach that was used allows obtaining a 4×4 transformation matrix that relates
camera referential to object referential.

The objective of this research is having an aerial vehicle to execute a given
trajectory, provided a set of 3D poses that are part of the path. In the case of
the Ar.Drone vehicle, possible manipulations are: roll, pitch, yaw and vertical
speed. It must be noted that since the vehicle may move freely in all directions,
only set-points on translation are required. Yaw control can be used in order to
have the vehicle’s camera to look at certain places.

For the roll and pitch manipulated variables, a cascade PID control strategy
was employed. This is required to have control over the speed at which the vehicle
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moves. The input is the desired x-y position. From the difference between the set-
point and the measurement, a speed set-point is generated. A second controller
takes this input and transforms it to a roll and pitch values. This controller is
shown in figure 4.

Fig. 2. Control loop for x-y position tracking. The first control loop controls the target
speed of the drone. The second loop manipulates the pitch and roll to reach the target
speed.

For the roll and pitch controller, the integral component of the speed con-
troller plays a key role when perturbations are present, since in case of strong
wind conditions, it will help to reduce the error by increasing the manipulation
when the vehicle is having difficulty to move regardless of the pitch and roll
manipulation.

For the yaw and vertical speed, simple proportional controllers were used,
since built-in orientation and height control is good for allowing soft movements.

5 Experiments

Two exercises were run. First, the UAV was instructed to remain in “hover”
state. Since there exist different perturbations on the environment (for example,
the pressure effect produced by walls), the vehicle will not remain in that state
by itself if no manipulation is applied. Results are shown in figure 3.

For the hover exercise, only one face of the cuboid is tracked, since perturba-
tions are not capable to producing a face switch.

The second exercise consisted in a set of rotations over the yaw axis of the
vehicle. Because the starting face is not visible at all stages of the test, the
algorithm had to switch faces, consistently with employed face selection strategy.
Figure 4 shows the result of this exercise.

Regarding 3D cuboid reconstruction and face selection, current results show
that pose estimation presents substantial noise. Error in the reconstruction af-
fects how the cuboid is projected from 
3 to 
2. The reconstruction error is
related to the plane tracking process and the camera calibration used for ho-
mography decomposition.

Face selection could also be validated in the rotation experiment. In figure 5,
that corresponds to exercise two, when the vehicle rotated, the face selection
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Fig. 3. Control variables and manipulation for the “hover exercise”. The drone should
remain at a fixed position, but perturbations will affect the control. For this exercise,
only one face was tracked.

algorithm selected the face that was more suitable for plane tracking. An imple-
mentation note is that the face selection should allow the tracker to completely
converge, since using a non convergent solution can produce a race condition,
where each time, a worst reconstruction produces a new face switch, and so on,
until the tracker diverges.

Experiments confirm that our approach, that uses only one remote camera,
is able to produce a stable control.

5.1 Discussion

Vision based UAV control is usually handled via on board cameras [6,9,11,13],
requiring landmarks on the floor for pose and position control. These methods
also rely on data provided by the IMU to get a complete pose estimation of the
vehicle. However we have presented an approach that uses a single remote camera
for 3D pose tracking. This gives the possibility of tracking multiple objects with
the same camera.

This work can be compared to that presented in [13] where a hover maneuver
is presented. A significant difference is that they require a visual stereo system for
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Fig. 4. Control variables and manipulation for the “rotation exercise”. The drone
should remain at a fixed position while the yaw should reach three provided set-points:
90◦, 0◦ and −90◦. It must be noted artifacts present in plots around frames 1220, 1460
and 2420. These are produced when tracked face is switched to a different face.

Fig. 5. Sample poses of the Parrot and the corresponding 3D reconstructions (wire-
frame). Selected face is marked with red. Reconstructions do not fit exactly to the
object. Nevertheless, retro-projections of 3D transforms to image are close enough to
be a good starting point for the first iteration of the tracker.
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translational dynamics and an IMU for rotational dynamics. Our method shows
comparable results in the control while relying solely on the visual feedback
provided by the external camera.

It must be mentioned that our 3D tracking approach works at real-time (more
than 24 fps), clearly better than the proposal of Panin et al. [12] (2 fps). A major
drawback from our method is that it will be limited to track polygon meshes.

6 Conclusions and Future Work

We have presented a method for visual servoing of a flying drone in a 3D envi-
ronment. The performance of the method is completely real-time and capable of
feeding a control loop that assumes no delay.

Even though the calibration did not produce 3D reconstructions such that,
when projected back to image plane were a perfect fit for the pose of the
cuboid object, the method was able to handle this small differences during face
switching.

It also must be highlighted that only one camera was used. We showed how
using only homography decomposition and simple transforms models (in 
3) it
is possible to construct a 3D model of the target object.

An area of opportunity for this research is the fusion of data from drone IMU
and other sensors with that of the vision. This could help reducing the noise in
the pose estimation and face switching stage.

This work is aligned with our general objective of building automatic 3D
trackers. Future work will include the connection of an automatic plane detection
method with this approach for doing automatic object tracking.

Acknowledgement. Authors want to acknowledge Consejo Nacional de Cien-
cia y Tecnoloǵıa (CONACyT) and e-Robots Research Chair from Tecnológico
de Monterrey, Monterrey for supporting this research.
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Abstract. Third-eye stereo analysis evaluation compares a virtual im-
age, derived from results obtained by binocular stereo analysis, with a
recorded image at the same pose. This technique is applied for evaluating
stereo matchers on long (or continuous) stereo input sequences where no
ground truth is available. The paper provides a critical and constructive
discussion of this method. The paper also introduces data measures on
input video sequences as an additional tool for analyzing issues of stereo
matchers occurring for particular scenarios. The paper also reports on
extensive experiments using two top-rated stereo matchers.

1 Introduction

Modern applications of stereo analysis require that stereo matchers work accu-
rately on long or continuous binocular input video data. For example, in vision-
based driver assistance, those data are recorded for any possible traffic scenario
[9]. Robust matchers need to work accurately for various scenarios. In general
it is expected that there is no single best matcher; an adaptive selection of a
matcher (within a given ‘toolbox’) appears to be a possible solution.

The third-eye method of [11] provides stereo analysis performance evaluation
for long or continuously recorded stereo sequences. For a current application
of this method, see [12]. We provide in this paper a critical and constructive
discussion of this method, pointing to weaknesses and also outlining ways how
to overcome those. Video data measures are used to discuss solutions and to
propose ways for a detailed analysis of situations where a stereo matcher fails
(and should be improved accordingly), extending our initial discussion of data
measures in [10].

For testing, the eight long trinocular stereo sequences of Set 9 on EISATS [4]
have been used (each 400 stereo frames long, except the ‘People’ sequence which
is only 234 frames long); see Fig. 1. The tested stereo matchers are iterative semi-
global matching (iSGM) [7] and linear belief propagation (linBP) [10]. Both apply
the census transform as the data cost function, and linBP uses a truncated linear
smoothness constraint [5]. Both stereo matchers, iSGM and linBP, rank high on
the KITTI stereo benchmark suite (www.cvlibs.net/datasets/kitti/).

The paper is structured as follows: Section 2 provides used notations and
definitions. Section 3 illustrates interesting cases when using the third-eye ap-
proach. Section 4 discusses the use of data measures for solving critical cases
and for discussing stereo performance more in detail. Section 5 concludes.
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Fig. 1. Examples of frames of the eight sequences in Set 9. Upper row, left to right:
sequences called ‘Barriers’, ‘Bridge’, ‘Dusk’, and ‘Midday’. Lower row, left to right:
‘Night’, ‘People’, ‘Queen’, and ‘Wiper’.

2 Fundamentals

The third-eye method [11] requires that three calibrated cameras record time-
synchronized the same scene. In case of Set 9 on EISATS [4], the cameras are
placed on a bar on the left, center, and right position behind the windscreen
of the ego-vehicle (i.e. the car the stereo-matcher is operating in). Two of the
images, the center or reference image, and the right or match image, are used to
calculate a disparity map by the chosen stereo matching algorithm. The disparity
map is used to map all the pixels in the reference image into that position in
the left or control image where the pixel value would be visible from the pose
of the left camera. This calculated virtual image V is then compared with the
control image C, for example by using the normalized cross correlation (NCC)
index used as a quality measure:

MNCC(V,C) =
1

|Ω|Σ(x,y)∈Ω
[V (x, y)− μV ][C(x, y)− μC ]

σV σC
(1)

The domain Ω contains only those pixels which are successfully mapped from the
reference image into the domain of the virtual image (i.e. non-occluded pixels);
μ and σ represent mean and standard deviation of the corresponding images.

Due to possibilities of a misleading influence of homogeneous intensity regions,
[6] suggested to use a further restricted set Ω which only contains pixels locations
which are in distance of 10 pixels or less to an edge pixel in the reference image.
We use this modified NCC-mask measure, called MNCC Mask, as our standard
measure for the third-eye approach.

Having stereo sequences of length 400 (or 234 in one case) in our test data,
the measure MNCC Mask produces a real-valued function for each used stereo
matcher on such a sequence. We also define data measures on input data of
one of the cameras (e.g. variance of intensities or of Sobel edge values), or by
comparing images recorded by two of the cameras (e.g. MNCC between left and
center image). Those data measures also define real-valued functions, and they
are motivated as follows:
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Homogeneous images are a difficult case for stereo matching, thus we consid-
ered the variance of intensity values in reference and match image. Typically
those variances of reference and match image are about the same, so we only
use the standard deviation Sigma left of the reference image.

Stereo matching is supported by having image features such as edges or cor-
ners. There are complex edge detectors such as that of [2], or very simple edge
detectors such as the Sobel operator. For avoiding a bias introduced by the edge
detector we use the simple Sobel operator and measure the standard deviation
Sigma Sobel of operator values |Cx|+ |Cy| on control image C.

An important assumption for stereo matching is that both images are captured
in the same environment, with just small changes due to a minor variation in
view point or viewing direction. For example, see [3] where this is discussed for
stereo vision in astrophysics. We decided to use the above NCC measure between
reference and match image as our third data measure NCC leftright.

We intend to compare two of such real-valued functions having the same do-
main, not in a rigorous sense of direct analysis, but with respect to the curves
‘behavior’, such as the distribution of local minima or maxima. For discus-
sions about special kinds of, or comparisons between functions, see, for example,
[1,3,8,14]. One option is to study or compare the derivatives of the functions.
But, working in discrete domains, that implies a need to choose a neighborhood
of some size and a method for approximating derivatives.

Thus we decided to keep one function f fixed as a reference, and to apply a
transformation to the other functions g which allows us to define an analytical
distance between the new function gnew and f , thus defining an alternative
relationship between functions. The defined distance will not be a metric in
the mathematical sense because we do not aim at symmetry, and the distance
between two different functions (e.g. two constant functions with different values)
can be zero when applying our distance measure.

Let μf and σf be the mean and standard deviation of function f . Given are
two real-valued functions f and g with the same discrete domain and non-zero
variances. Let

α =
σg

σf
μf − μg and β =

σf

σg

gnew(x) = β(g(x) + α) (2)

As a result, gnew has the same mean and the same variance as function f . Now
we define our distance function in the common L1 way, as, for example, described
by [1]:

d1(f1, f2) =

∫
|f1(x) − f2(x)| dx (3)

Our distance is then defined by d(f, g) = d1(f, gnew). Indeed, this distance mea-
sure is not symmetric. However, we identify the value of d(f, g) with the struc-
tural similarity between both functions: lower values for d(f, g) mean that g is
structurally close to f .
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Fig. 2. Illustration of four pairings of functions

Figure 2 shows pairs of real valued functions on a discrete domain. Func-
tion Sigma left represents the standard deviation of intensity values in the refer-
ence image, and function Sigma Sobel represents the standard deviation of Sobel
edge values for the reference image. Function NCC leftright represents the NCC-
measure when comparing the reference and the match image of the sequence.
Function NCC Mask is the defined standard measure for the third-eye approach.

The two functions in the upper left image of Fig. 2 have different means and
different variances. The upper right shows both functions after Sigma left was
scaled to have the same mean and the same variance as NCC Mask. The lower
row shows two already scaled pairings of functions. Subjective inspection shows
inconsistencies between both functions in the lower left, but ‘fairly good struc-
tural similarity’ for both functions in the lower right (when zooming into the
figure). Obviously, those subjective inspections can also be replaced by an ana-
lytical analysis by calculating the sum of absolute differences in function values,
as specified by Equ. (3) and by our distance measure d(f, g) = d1(f, gnew). In
general, if a distance value d(f, g) is less than half of the standard deviation σf

used for scaling then both functions are considered to be structurally similar.

3 Discussion of Third-Eye Results

Concluding from visual inspections of calculated disparity maps for all the eight
test sequences (and many sequences for earlier projects) we see a very close
correspondence between calculated values of the NCC-Mask measure and the
actual performance of studied stereo matchers. So far the assumption was that
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Fig. 3. Dusk sequence. Upper row, left to right: Control image, reference image, and
match image. Lower row, left to right: Disparity maps for iSGM, linBP, and NCC-Mask
plot for eleven frames from 298 to 309.

a value of the NCC-Mask measure below the 70% mark is an indication for a
failure. However, in the current study we refined this threshold: we recommend
to define it in dependency of data measure values for the given stereo frame, for
example on the standard deviation of the gradient in the reference image.

As a first case we show a situation where a failure is properly detected. We
present Frame 304 from the ‘Dusk’ sequence; see Fig. 3. Temporarily around
this frame, sun strike creates a difficult lighting situation. There are no consid-
erable changes in occluded pixels between the three camera views. Therefore, the
third-eye evaluation performance is not considerably affected by occluded pix-
els. Figure 3 shows the color-encoded disparity maps of iSGM and linBP for this
frame. Visually we observe that the performance of both matching algorithms is
not good. Both NCC-Mask measures have local minima of about 70% at Frame
304. The third-eye approach works fine in this case.

In the same sense, the NCC-Mask measure also indicates good or bad perfor-
mances as illustrated in Fig. 4. The upper row illustrates depth maps resulting
from iSGM. The left map is for Frame 176 in the sequence ‘Queen’ showing an
excellent result; the right map is for Frame 382 in the sequence ‘Dusk’ show-
ing a failure. The lower row shows depth maps for linBP for those two frames.
However, here, linBP performs not well for Frame 176 in ‘Queen’, but better
than iSGM for Frame 382 in ‘Dusk’. The third-eye approach also works fine in
general for indicating the ‘current winner’ (of all participating stereo matchers)
for a given situation. There is no all-time winner so far for the tested stereo
matchers.

The third-eye approach provides a summarizing single value for each frame,
and these summarizing values may not correspond to subjective visual eval-
uations. From the appearance of the depth maps, iSGM performs better in
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Fig. 4. Depth maps provided by iSGM (upper row) and linBP (lower row), for Frame
176 of ‘Queen’ (left column) and for Frame 382 of ‘Dusk’ (right column)

detecting depth discontinuity edges, thin vertical structures, or other rapid changes
in depth. However, linBP is often performing better on large homogeneous ar-
eas. See Fig. 5 for plots of NCC-mask measures for sequences ‘Barriers’, ‘People’,
‘Queen’, and ‘Night’. In nearly all of the shown 1,434 frames, the value of linBP
is above that of iSGM. (For plots for the remaining four sequences of Set 9 of

Fig. 5. Plots of the NCC-Mask measure for iSGM and linBP for four of the eight
sequences of Set 9 of EISATS
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Fig. 6. Wiper sequence. Upper row, left to right: Control image, reference image, and
match image. Lower row, left to right: Disparity maps for iSGM, linBP, and NCC-mask
plot for eleven frames from 272 to 282.

EISATS, see [10].) The standard deviations of NCC-Mask for linBP, and the
distance to the scaled NCC-Mask for iSGM are (5.22, 2.58) for ‘Barriers’ (2.58 is
about 49% of 5.22), (0.87, 0.77) for ‘Bridge’ (88%), (3.77, 1.91) for ‘Dusk’ (50%),
(1.61, 1.16) for ‘Midday’ (72%), (13.03, 3.15) for ‘Night’ (24%), (7.14, 4.27) for
‘People’ (59%), (2.96, 2.24) for ‘Queen’ (75%), and (4.86, 1.55) for ‘Wiper’ (32%).
According to our 50% rule defined at the beginning of the next section, we con-
sider both NCC-Mask curves as being structurally similar for ‘Barriers’, ‘Dusk’,
‘Night’, and ‘Wiper’, on the other four sequences both stereo matchers behave
‘qualitatively different’. This analysis is our first important contribution to the
application of the third-eye approach.

A second important comment about the third-eye approach: summarizing
numbers do have limitations when interpreting. The more accurate detection
of 3D details by iSGM compared to linBP is not (!) expressed in the obtained
number, but the NCC-mask curves express in general accurately the ups and
downs in a matcher’s performance.

Finally, as a third important comment, there are cases where the measure pro-
vided by the third-eye approach does not coincide with what we see in disparity
maps of a stereo matcher due to differences between control and reference image.
In order to illustrate this phenomena, we show as an example a trinocular frame
of the ‘Wiper’ sequence. In Fig. 6 we have the disparity maps given by iSGM
and linBP for Frame 277 of this sequence and the local plot of the NCC Mask
measures. From the shown disparity maps we would expect a high NCC Mask
value, but there are local minima in the functions. If we observe the complete
information of this particular frame given by all the three cameras (see Fig. 6,
upper row) we notice that the control image differs significantly from reference
and match images, not by different lighting (as for the example in Fig. 3) but
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due the wiper position in the control image. Therefore, NCC Mask gives us a
low value. In the ‘Wiper’ sequence we observe the same effect for Frames 31,
185, and 216, where a low NCC Mask is incorrectly indicating a failure of the
stereo matcher.

Regarding the third comment, a simple solution is to use the NCC measure
for quantifying similarity between the control and the reference image; if the
similarity value goes below a defined threshold then the third-eye NCC Mask
value is insignificant. Typically this is only true for a very short time (as for the
moving wiper).

4 Analysis Using Data Measures

We use the NCC Mask measure for iSGM as the reference function and com-
pare data measures with this function using our distance definition. Table 1
shows those distances, also listing the standard deviation SigmaNCCMask of
the NCC Mask measure for comparison. Our 50% rule: If a distance is below
50% of this standard deviation then we call the functions structurally similar.

Table 1. Distance values between NCC Mask (for iSGM) and data measures

Barriers Bridge Dusk Midday Night People Queen Wiper

Sigma left 2.28 1.91 3.69 1.52 9.27 6.90 3.78 5.16
Sigma Sobel 2.25 1.81 4.24 2.50 9.96 9.03 3.49 6.53
NCC leftright 2.75 2.62 4.24 1.26 10.69 5.21 3.32 4.59
SigmaNCCMask 2.85 2.24 6.09 2.47 11.72 7.44 5.35 7.79

The closest to 50% is NCC leftright for ‘Midday’. This shows that structural
similarity is low between NCC Mask and the used three data measures in general.
It appears that the complexity of video data for stereo matching cannot simply
be estimated by just using a summarizing distance value for one of those three
global data measures for a whole sequence, showing (in our case) 400 frames of
one particular situation.

A more refined approach is to study the graphs of the functions of the data
measures, as we already did for NCC Mask in the third-eye approach. Scaled
functions are shown in Fig. 7, together with NCC Mask (for iSGM) which was
kept constant for scaling. Sequences ‘Midday’ and ‘Queen’ have a very low vari-
ance, and ‘Dusk’ and ‘Wiper’ represent special challenges for stereo matching
apparent by rapid drops in NCC-Mask values. Values of these curves show lo-
cally some kind of correspondence with NCC Mask, and sometimes differences.
Correspondences may explain a fail of the stereo matcher, and differences may
provide hints how to improve the stereo matcher at this particular place of the
stereo sequence.

A more refined approach is to use the local variance of data measures (e.g. for
six frames backward, the current frame, and six frames forward).We demonstrate
this for a case where iSGM failed, and discuss the data measures only in the local
context of 13 frames. See Fig. 8.



82 V. Suaste et al.

Fig. 7. Scaled curves for direct visual comparison

We analyze the situation around Frame 330 of the ‘Dusk’. Not only the
NCC Mask values (see figure on the left), but also the appearance of iSGM dis-
parity map for this frame indicates a fail in stereo matching. The figure shows
on the right the local variances of the data measures and of NCC Mask. They
all go up around Frame 330, but are nearly constant before and after.

This illustrates a general observation: at places where a fail in stereo matching
occurred, typically also one, two or all three of the data measures showed a large
local variance.

Fig. 8. Functions on the ‘Dusk’ sequence between Frames 324 to 336. Left: comparison
between scaled data measures and iSGM NCC Mask. Right: comparison of the local
variance of data measures and iSGM’s NCC Mask.
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5 Conclusions

The third-eye approach is a valuable tool for analyzing stereo matchers on long
sequences or for continuous recording. Detections of a ‘fail’ are important for im-
plemented systems. This paper provided a critical discussion how to detect such
‘fails’, and how to use data measures for a more detailed analysis at places where
a ‘fail’ was detected. Such a data analysis might lead to ideas how to improve
a given stereo matcher for a particular situation. Applied measures (here: NCC
and NCC Mask) should be studied further for comparative evaluations. For ex-
ample, iSGM appears to provide better occlusion edges compared to linBP, but
this effect is not yet measured by NCC Mask.

Acknowledgement. The authors thank Simon Hermann and Waqar Khan for
providing the executables for iSGM and linBP, respectively, and Sandino Morales
for providing the sources for the third-eye approach and comments on the paper.
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Abstract. In this document, we describe a people counting system that can pre-
cisely detect people as they are seen from a zenithal depth camera pointing at the
floor. In particular, we are interested in scenarios where there are two preferred
directions of motion. In our framework, we detect people using a Support Vector
Machine classifier, follow their trajectory by modeling the problem of matching
observations between frames as a bipartite graph, and determine the direction of
their motion with a bi-directional classifier. We include experimental evidence,
from four different scenarios, for each major stage of our method.

1 Introduction

Counting automatically the number of people passing a specific point is a function of
paramount importance in applications such as surveillance, monitoring, and interaction
between humans and machines. For instance, imagine a civil protection situation tak-
ing place in a building: People continuously enter and leave when suddenly an alarm
sounds, indicating that the building must be evacuated. One can imagine how useful it
is for people in charge of the evacuation procedure to query an automated monitoring
system to figure out how many people are still in the building and in what areas.

In this document, we describe a people counting system that can precisely detect
people as they are seen from zenithal depth cameras pointing downwards. There are
a number of advantages of this configuration, including the fact that people are less
likely to occlude one another and that privacy may be better protected. In particular,
we are interested in scenarios where there are two preferred directions of motion, such
as hallways, where people move primarily in two opposing directions, or entrances,
where pedestrians pass in or out. In this paper, we introduce the detection of people
in depth images using zenithal cameras. This allows us to develop a robust counting
system where all entities except people are readily discarded.

In our method, we detect people, follow their movement, and determine their
direction of motion. Our people detector is based on an application of Dalal and
Triggs’ method of the histograms of oriented gradients[5]. Then, we construct tracklets
(chronological sequences of observations) of people by matching observations, which
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supported by SIP-IPN through grant number 20121642.
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include appearance and space-time information, in a bipartite graph. Finally, tracklets
are classified by modeling their normalized destination and defining a quadratic classi-
fication surface[19].

The rest of the document is organized as follows (see Fig. 1). In §2 we present a sur-
vey of the reported research related to counting people, with particular emphasis on the
use of zenithal cameras. Then, as the measurement of the height will be very important
in later stages of our method, in §3, we describe how we obtain a geometric descrip-
tion of the floor underneath the camera. Next, we describe how the people detector is
implemented in §4, and how the people tracklets are constructed in §5. The direction
classifier is introduced in §6. In §7, we assess the performance and show some results
from the implementation of the methods described. Finally, we conclude and outline
possible future applications of this research.

Get
Image

People
Detector

Object
Tracking

Floor
Detection

bi ∈ Tj?

Infer
Direction
of Motion

left ← 0
right ← 0

Dk

a

{Tj}

Dk

{bi}
yes

no
left,right

Fig. 1. Solution Global Scheme. By computing the floor parameters, a, it is possible to normalize
the measurements of height. Thus, each time a new image Dk is read, there are two tasks to
solve. One is to track the moving objects and produce tracklets {Tj}. The other is to detect
people, which will eventually give a set of bounding boxes {bi}. Whenever the tracklet contains
a person, the counters left and right are updated depending on the direction of motion.

2 Related Work

Due to the considerable number of applications, ranging from entertainment to security,
the research efforts aiming to produce reliable and fast people counters has been exten-
sive. Nowadays, there are two main directions of research[14]: Pedestrian detection and
tracking-based methods, and feature regression-based methods. In the former, pedestri-
ans are singled out [2,24,11] and the trajectory of each individual is known. In the latter,
the problem is framed as a classification one. During learning, an observed set of feature
descriptors, such as edges and texture, is correlated with the number of people present.
During operation, the feature descriptors are classified and the estimated number of
people in the scene is obtained as a result, preserving privacy to some extent [1,12].
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In our case, we focus our attention on those applications where a top view image is
considered better because there are either fewer occlusions or because there are some
privacy concerns that are of prime importance. For other applications where the inter-
est is primarily frontal view images, the interested reader is referred to the reviews of
Enzweiler[6] and Gavrila or Geronimo et al.[9], where the former places more emphasis
on monocular vision and the latter on driver assistance systems. Raheja et al.[16] review
some of the techniques commonly used in the computer vision community to count peo-
ple. As a general rule, background models[22] are constructed, and the objects of inter-
est are found via background subtraction. One key component of our approach is that
people detection is done directly from depth images, extending the method proposed by
Dalal and Triggs[5] to detect people in frontal-view, intensity images. However, other
classification-based methods may be suitable. For instance, Haubner et al.[10] propose
a system to detect body parts above and around a tabletop setup using a depth camera.
Their work is based on the frontal view people detection framework proposed by Shot-
ton et al.[20]. Importantly, the subjects are dressed with special clothes where colors
signal specific portions of the body. Thus the head is covered with a red mask, the neck
is yellow, the shoulders are green, the main trunk is violet, and so on. Depth images
have been used previously to process zenithal images, in the form of stereo pairs. For
instance, Yahiaoui et al.[23] detect people by dividing the observed depth map into
intervals and applying a morphological operator to seek circular shapes representing
the head. To our knowledge, this document reports the first counting system based on
top-view depth images that uses a classifier to detect people.

3 Floor Detection

To use the height as a descriptor of the objects we observe, we normalize our measure-
ments and express them with respect to the scenario floor, which is assumed to be flat.
To that end, we rotated the 3D points computed from the depth images in order that the
z-axis would coincide with the floor’s normal orientation. The floor’s plane is defined
by the equation: ax+ by+ cz = d, where x = (x, y, z)T are the coordinates of a point
belonging to the plane. An appropriate scale factor can be obtained to make (a, b, c)T

a unitary vector normal to the plane. Then, the rotation matrix R for rotating the 3D
point cloud will satisfy ⎡⎣00

1

⎤⎦ = R

⎡⎣ab
c

⎤⎦ . (1)

In our case, R is defined by two angles, α and β, corresponding to rotation over the y

and x axes, as

⎡⎣ cosα sinα sinβ − sinα cosβ
0 cosβ sinβ

sinα − cosα sinβ cosα cosβ

⎤⎦.

Assuming that the floor either is the only plane or the plane with the largest area
visible in the image, α and β can be determined as

argmax
α,β

Nmax, (2)
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where Nmax is the highest value of frequency on a histogram of the z value of the 3D
points after being rotated by R. A large value of Nmax indicates that the points on the
floor are well aligned to have roughly the same z value.

We solved (2) using the Downhill Simplex method[15]. To avoid local minima during
the minimization process, we used an initial simplex with one of the vertices having
values of α and β computed with the RANSAC method[8]. This computation is done
by selecting sets of 3 points at random, computing the parameters of the plane which
includes each set of points, and then selecting the plane for which the maximal Nmax is
obtained, where α and β are computed using

α = arcsina, and β = arcsin
b

− cosα
. (3)

We added the Downhill Simplex optimization stage in conjunction with the RANSAC
because it results in a better solution to (2). Besides, the computation complexity is low
and the estimation is done offline, as the rotation matrix is computed only once after the
camera is fixed.

4 People Detection

In [5], Dalal and Triggs introduced a people detector model for intensity-based images
and people in upright positions. In their approach, a candidate was described in terms
of features extracted from an image that is divided into same-size overlapping blocks.
The blocks themselves are divided equally in same-size cells, and the amount of overlap
between blocks corresponds to the size of the cell. The image features Dalal and Triggs
use are based on histograms of oriented gradients extracted from the cells, weighted
by the magnitude of the gradient in the block. For classification, they used a Support
Vector Machine (SVM)[4]. In their method, the candidates in the image were sought
using a pyramidal search.

As the intensity represents properties of the blending of many factors including the
light sources, the materials of the surfaces and their geometrical structure, and the cam-
era operating function, some researchers [21] have tested successfully a research hy-
pothesis stating that depth information will reflect more clearly the structural properties
of the objects being characterized. However, these experiments have been done on im-
ages of people taken from frontal view cameras. In the problem of counting the number
of people that pass by, frontal view images may result in occlusions that could compro-
mise the objective. In what follows, we describe how we have adapted the Dalal and
Triggs methodology to detect people using zenithal depth cameras.

We define a standard size bounding box for people detection of 96 × 96 pixels.
The size was chosen by calculating an average over 993 true positive samples and ap-
proaching the resulting size to suitable cell and block elements. The sample selection
for training is illustrated in Figure 2. As in [5], the features were extracted by computing
the gradient over cell structures, which corresponds to neighborhoods of 8 × 8 pixels.
The orientation of the gradient was clustered into nine-bin histograms. The frequency
was weighted using the magnitude of the gradient blocks, of 2×2 cells. That is, a person
is described by a feature vector x of size 1089× 1.
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(a) Positive sample (b) Scenarios without people

Fig. 2. Creating samples for training the people detector. Illustration of some positive samples
and scenarios from where the negative samples were obtained to train the classifier. Samples
were created by selecting manually or randomly bounding boxes on scenarios with people and
without people, respectively, by visual inspection of the images.

5 Tracking

As activity develops below the camera, some objects are detected in the scene. Let
{Oj,1, . . . , Oj,m} correspond to the m objects detected during frame j. In our case,
we are interested in inferring where the objects that were detected during frame i have
moved in frame j. This tracking problem has been the subject of a large number of pa-
pers (for a recent review, please see[18]). We are particularly interested in the problem
where the inference process occurs between consecutive frames, and where, as conse-
quence of the observations made, we have appearance and temporal-location informa-
tion. That is, let a particular observation Oj,a = (hj,a,xj,a, tj,a) consist of the location
xj,a and time tj,a where its maximum height hj,a was observed. Just as in a number
of other articles[3,17], we model the problem of matching observations in frame j with
observations in frame j+1 as a complete bipartite weighted graph G = (O,E, P ). The
vertices O = {Oj , Oj+1} are divided between the observations made in the frame j and
the one that follows it. The set of edgesE = {ej+1,b

j,a } represents the hypothesis that two

particular observations correspond to the same person. And the weight P = {pj+1,b
j,a }

represents the likelihood of a particular hypothesis about the correspondence of two
observations.

In our approach, we express the weight between two observations as

pj+1,b
j,a = 1− p(hj,a, hj+1,b) · p(vj+1,b

j,a ) · p(tj,a, tj+1b ), (4)

where p(hj,a, hj+1,b) is defined as

p(hj,a, hj+1,b) = e−α|hj,a−hj+1,b|, (5)
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(a) (b) (c)

Fig. 3. Trackelet construction. The dots in the line correspond to the highest point positions. The
illustration is done in color images but the process was done with the depth images. This simple
strategy fails to count pedestrians when there are no people, as in (c). Therefore, there is a need
to couple it with a people detector.

and α represents the weight for how likely it is to observe heights ha
j and hb

j+1; corre-

spondingly p(vj+1,b
j,a ) is defined as

p(vj+1,b
j,a ) = e

−β
∣
∣
∣
xj,a−xj+1,b
tj,a−tj+1,b

∣
∣
∣
n

, (6)

and β is the weight associated with observing a certain velocity va,b
j between two ob-

servations; then, p(tj,a, tj+1b) is defined as

p(tj,a, tj+1,b) = e−γ|tj,a−tj+1,b|n . (7)

Here, γ is the weight corresponding to observing the same object at times tj,a and tbj+1.
Note that n in (6) and (7) has the purpose of establishing a threshold on the observable
average velocity and time values. That is, the larger the value of n, the steeper it is the
slope of (6) and (7) around the value of β and γ, respectively. In practice, this has the
effect of accepting low values but being critical for values larger than β or γ. Also, note
that the third term in (4) is introduced to avoid accepting observations that spread in
time.

Now, the problem is to find a match of observations corresponding to consecutive
frames at minimal cost. Although other more sophisticated methods could be used,
given the usually reduced size of the graphs, we have used the Hungarian algorithm[13].
Illustrations of actual tracklets are presented in Fig. 3.

6 Bi-directional Classifier

In our method, a tracklet T k = {tkj+1, . . . , t
k
j+m} corresponds to a person when the

detector responds positively to a certain number of observations within the tracklet.
Given b as the center of the person’s detected bounding box, and tkj+n as the position
of the tracked object, the observation is said to correspond to the detection whenever∥∥tkj+n − b

∥∥ < τ , for a predefined value of τ .
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Fig. 4. Classification of the direction of motion. The trajectories are normalized to start at (0, 0).
The end point is circled or crossed for the trajectories going in opposite directions. The curved
line crossing horizontally corresponds to the decision surface.

In our problem, we want to classify a person’s trajectory as going in one of two op-
posite directions. Thus, given a trajectory T k, we want to classify it in either one of
two disjoint sets Tl and Tr, which represent opposite directions. To that end, we de-

fine centered trajectories as T k
= {tkj+1, . . . , t

k
j+m}, where t

k
j+n = tkj+n − tkj+1, for

n = 1, . . . ,m. The problem now is to define a surface to distinguish between classes.
Although more sophisticated methods can be applied, in our approach we fitted mul-
tivariate normal densities with covariance estimates computed by class, resulting in a
decision surface of the form f(x) = xTAx+ xTb+ c,

D(T k
) =

{
Tl f(t

k
j+m) < 0,

Tr otherwise,
(8)

where A, b, and c correspond to the quadratic, linear, and constant coefficients com-
puted as in [19].

7 Experimental Results

We implemented and tested the methods described in this article in four different sce-
narios. To obtain the depth images, we used four Microsoft Kinects. To grab our images
and process the results we used a variety of software tools including OpenCV, OpenK-
inect, Linux, Matlab, and Eclipse.

For the people detector, we collected 993 positive images and 1,038 negative im-
ages, of which 20% were used for testing and the rest for training the SVM classifier
(see Figure 2). To assess the performance of the classifier, we constructed a precision-
recall curve where the SVM margin was varied between -1 and 1. Note that precision is
related to the fraction of detections that are correct, whereas the recall is the fraction of
detections out of the possible detections. The result is shown in Fig. 5. As customary,
we follow the practice at the Pascal Challenge[7], where a detection is declared when
the following condition is met
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Fig. 5. Precision-recall curve for the thresholds between -1 and 1, in intervals of 0.1. The circles
between the segments correspond to the evaluations.

tp =

{
1 if area(bd∩bg)

area(bd∪bg)
> 0.5,

0 otherwise,
(9)

where bd and bg correspond to the bounding box of the detection and the ground truth
(i.e., test samples labeled as positives or negatives), respectively. This curve is very
useful to find a suitable threshold for the SVM margin that satisfies a commitment
between sensitivity and a true positive rate or specificity of detections.

During tracking, we extracted foreground objects by subtracting the current depth
image from a depth image without objects. Then, we found the pixel corresponding to
the highest point in the depth map, and discarded all the pixels corresponding to the
connected component for that pixel. This procedure was repeated until there was no
point that was 0.2 (m) above the floor. The values of the constants in (5) and (6), and the
values of α, β and n are 1, 0.8, and 6 respectively.

To generate the bi-directional classifier we used a sequence with 1,000 (frames)
for each scenario. After a set of tracklets was obtained, each tracklet was normalized
to make it coincide with the origin. Each side was modeled with a multivariate normal
density with covariance estimates computed by class. For instance, for the curve corre-
sponding to the scenario illustrated in Fig. 4 the coefficients for A, b and c correspond

to 10−4

(
0.2579 −0.5389
−0.5389 0.016

)
,

(
−0.0178
0.03

)
, and 0.5249, respectively.

To count the number of people, we select a one hour sequence of images for each
scenario. In Fig. 6 we show the results organized as pedestrians going in one di-
rection (in) or the opposite direction(out). We show two columns corresponding to
the result of our system and ground truth obtained by visual inspection of the se-
quences. The results vary widely but are nevertheless encouraging. Comparing re-
sults with other methods is difficult as they may vary depending on the particular
sequence being studied. From our work, our sequences are available for review at
http://imagenes.cicataqro.ipn.mx/CountingPedestrians/.

http://imagenes.cicataqro.ipn.mx/CountingPedestrians/


92 P. Vera, D. Zenteno, and J. Salas

(a) ( b)

(c) (d)

Fig. 6. Four different scenarios were tested collecting images for an hour. The bars show people
going in one direction (in) or another (out). For each direction, we show the result of our method
and ground truth.

8 Conclusion

In this document, we introduced a computer vision system to count the number of
pedestrians in a bidirectional scenario. In our approach, we have introduced a peo-
ple detector based on depth images (inspired on the scheme proposed by Dalal and
TriggsTriggs[5]) that allows us to deal with complex scenarios in which what is mov-
ing in front of the camera may not necessarily be a person. We have included experi-
mental evidence for each major stage of out method. In particular, as for the number of
pedestrians that are being counted, the results, although varying with the scenario, are
nevertheless encouraging.

In the future, we plan to streamline every stage of the processing sequence and exper-
iment with more sophisticated scenes, such as those resulting from evacuations, where
crowds of pedestrians move very close to each other but where the advantages of a
zenithal camera to reduce the problems associated with occlusions can be demonstrated
fully.
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Abstract. A novel tracklet association framework is introduced to perform ro-
bust online re-identification of pedestrians in crowded scenes recorded by a single
camera. Recent advances in multi-target tracking allow the generation of longer
tracks, but problems of fragmentation and identity switching remain, due to oc-
clusions and interactions between subjects. To address these issues, a discrim-
inative and efficient descriptor is proposed to represent a tracklet as a bag of
independent motion signatures using spatio-temporal histograms of oriented gra-
dients. Due to the significant temporal variations of these features, they are gen-
erated only at automatically identified key poses that capture the essence of its
appearance and motion. As a consequence, the re-identification involves only the
most appropriate features in the bag at given time. The superiority of the method-
ology is demonstrated on two publicly available datasets achieving accuracy over
90% of the first rank tracklet associations.

Keywords: multi-target tracking, tracklet association, visual surveillance,
histogram of oriented gradients, computer vision.

1 Introduction

Multi-target tracking in real crowded scenes is a fundamental problem for many vi-
sion applications, and especially for visual surveillance. The performance of pedestrian
tracking algorithms has been improving to reach the point where generated tracks are
increasingly reliable over longer period of time. As a consequence, the research com-
munity has devoted more attention to tracking in dense crowds.

For instance, Nevatia et al [15] propose an online learning framework to learn non-
linear motion patterns as well as robust appearance models based on estimated en-
try/exit points. Alternatively, Kuo el al [6] suggest a robust association using appearance
based affinity measure by jointly solving ranking and classification of associations using
online weight learning for weak classifiers trained previously offline. In turn, Suna et al
[12] formulate the problem as maximum weight matching in a bipartite graph, whose
solution is learned through a structured support vector machine. In Song et al [11], a
system which simultaneously performs the scene-semantic-learning and tracking is pre-
sented and makes them supplement to each other, whereas Bo Yang et al [16] propose
to learn using Conditional Random Fields and subsequently progressively associating
detection responses into long tracks.

J.A. Carrasco-Ochoa et al. (Eds.): MCPR 2013, LNCS 7914, pp. 94–103, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Another line of work follows the standard tracking-by-detection procedure. While
Benfold et al [2] combine detections with a Markov Chain Monte Carlo Data Asso-
ciation and a KLT tracker, Andriyenko et al [1] present multi-target tracking as the
minimization of a continuous energy function. On the other hand, Simonnet et al [9]
extend the standard framework with a hierarchy of Bayesian local predictions using
a dynamic occlusion map to supplement the responses from detector. Finally, Song et
al [10] introduce a stochastic graph with an evolution step that considers the statisti-
cal properties of individual tracklets, as well as the statistics of the targets along each
proposed long-term track to perform association.

However, long and frequent occlusions as well as interactions between targets are
still challenging, especially for tracking-by-detection approaches, and result in the gen-
eration of highly fragmented tracks, hence called ‘tracklets’, with frequent identity
switches between them. To overcome this problem, we propose a novel tracklet as-
sociation process which is formulated as a re-identification process based on the ob-
servation that, for any given pedestrian, the appearances of tracklets (e.g. before and
after an occlusion) tends to be similar. As a consequence, an discriminative and effi-
cient tracklet descriptor can be used to rank candidates and select those that correspond
to the same pedestrian. In most of typical visual surveillance scenarios, even track-
lets corresponding to the same individual still differ significantly, in terms of duration
and orientation with respect to the camera. Moreover, they may consist of a number
of walking cycle repetitions which in turn may performed at various speeds. Hence,
it is extremely difficult to encapsulate all these variabilities in a single global tracklet
descriptor. Therefore, we propose to represent a tracklet as a bag of local independent
spatio-temporal descriptors which express the unique appearance properties of the mo-
tion, over relatively short periods of time around ‘key poses’. This is achieved by first
splitting trajectories of individuals into approximately linear segments based on motion
direction and speed. Then, the motion signatures are extracted by analyzing periodicity
of such segments. Finally, the obtained signatures are used to generate a representative
set of spatio-temporal features for each tracklet. This allows a re-identification process
to use only the most appropriate local descriptors at any given time, and hence sub-
stantially mitigates the impact of variability in tracklet duration, speed or orientation.
As a result, the introduced tracklet re-identification framework produces not only less
fragmented tracks, but also introduces less ‘identity-switch’ type errors.

2 Methodology

Fig. 1 presents an overview of the proposed approach. The whole framework consists
of the following stages which are discussed in subsequent sections: tracklet generation,
trajectory segmentation, periodicity analysis, local descriptors generation and tracklet
association.

Fig. 1. An overview of tracking framework
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Tracklet Generator. The tracking of multiple targets in sets of observations is per-
formed by an online tracklet generator. It is based on the extended tracking-by-detection
principle [9]. First, pedestrians are detected globally using the HoG detector [4] fol-
lowed by a local detection process using a dynamic occlusion map when no global
observation is available [9]. In turn the prediction, selection of the validated measure-
ment and update of the tracker state is carried out using the Kalman Filter [13]. Since
tracklets are very likely to be correct when maintaining a spatial proximity to a single
pedestrian for their duration, a tracklet classifier is incorporated to provide an indication
of tracklet usability for the next stage without needing to wait until the tracklet is com-
pleted [9].It allows classification of tracklets at a given frame into three states: tentative,
and reliable (when the spatio-temporal reliability condition is satisfied at each time-step
up to Δ frames or after Δ frames respectively) and unreliable (at given time-step the
reliability condition is not satisfied up to Δ frames). As a consequence, a tentative state
stands for a tracklet which is not yet long enough to extract meaningful features for the
tracklet data association step and only becomes reliable or unreliable after Δ frames. In
turn, reliable tracklets are sufficiently informative to be used in the tracklet association
stage, while unreliable tracklets are considered as false alarms by the system. Finally, a
generated tracklet T is a short sequence of appearance features with variable length L,
i.e. T = {fi}Li=1, which are extracted from the corresponding bounding boxes in which
the target is not occluded for extended time periods or to a significant spatial extent.

Trajectory Segmentation. The extracted tracklets are split into subsequent mutually
exclusive fragments (segments) so that T = {Ss}, Ss = {fi}Ls

i=1,
∏

s Ss ≡ ∅,
∑

s Ls =
L to separate significantly different appearance observations due to motion orientation
with respect to the camera. As a consequence, the periodicity analysis can be performed
for each segment as well as most of identity switches can be detected. This segmentation
is achieved by localizing fragments within a trajectory with an approximately constant
velocity.

Initially, the trajectory for a tracklet is assembled as a temporal sequence of coor-
dinates of pedestrians’ bounding boxes (e.g. the ’centre’ or ’foot’ of bounding box).
When analysed in a temporal domain, the trajectory is decomposed to three different
motion components along vertical/horizontal direction and speed (Fig. 2). Segmentation
is performed in a three level hierarchical framework. In the highest level, changes in the
direction along either horizontal or vertical axis are detected. Linear segments are fit-
ted into curve trajectory in least-squares sense using Free-Knot B-Spline approximation
[8] (Fig. 2). As a result, the trajectory curve is approximated by a set of linear segments
which allows identification of unique peaks of sudden changes along chosen dimension
(horizontal/vertical). These peaks segment the tracklet into fragments of constant direc-
tion. Afterwards this process is repeated for each segment independently in the other
direction dimension (vertical or horizontal). Finally, on the lowest level each obtained
segment is analysed again in terms of speed variation and when the noticable change is
detected, the segment is further divided.
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Fig. 2. Trajectory segmentation based on a horizontal or vertical direction of object position (y-
axis) along the time (x-axis) where red squares correspond to borders of linear segments fitted
into trajectory and red/yellow circles are peaks where the change is detected: (a) segmentation
of horizontal direction into three segments, (b) and (c) segmentation of the obtained 2nd and 3rd
segment respectively along vertical direction with no detected further changes

To address problem of identity switches, the tracklet T = {1, ..., Ss, ...} is allowed
to split into two different tracklets T1 = {1, ..., Ss} and T2 = {Ss+1, ...} when the
estimated subsequent segments represented as vectors in the image space have opposite
motion directions and an angle between them is less then a constant tolerance threshold:

arccos(

−→
Ss ·

−−−→
Ss+1

|−→Ss||
−−−→
Ss+1|

) < −A (1)

Although, this procedure cannot handle identity switches between subjects moving into
roughly the same direction, it is computationally efficient and accurate for dealing with
crossing identity switches. Note that in very rare cases, the abrupt turnaround of a sub-
ject may result in division of such tracklet, but such a split can generally be recovered
in the tracklet re-identification process.

Periodicity Detection. After segmentation, each trajectory fragment is analysed in
terms of motion periodicity to extract the key poses fk which repeat themselves with
a constant period of 2πQ′ where Q′ is the total number of cycle repetitions within the
segment.
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Initially, a square temporal self-similarity matrix is constructed for each object as it
evolves in time for a given trajectory fragment Ss [7] (Fig. 3a):

[di,j ]i,j=1..Ls =

⎡⎢⎢⎣
0 d1,2 d2,2 ... d1,LS

d2,1 0 d2,3 ... d2,LS

... ... ... ... ...
dLS ,1 dLS,2 dLS ,3 ... 0

⎤⎥⎥⎦ . (2)

where di,j is the Euclidean distance between low level features f at time instants i, j like
histogram of oriented gradients [4]. The autocorrelation of such self-similarity matrix
is a variant of the recurrence plot which encodes different spatio-temporal properties
and behaviours of dynamic systems such as periodic patterns [3]. In particular, the pe-
riodicity of the gait creates parallel diagonals in this matrix with the main diagonal of 0
corresponding to comparing frame to itself (no dissimilarity) (Fig. 3b). In turn, the tem-
poral symmetry of gait cycles are represented by cross diagonals which are orthogonal
to the main diagonal (Fig. 3c). The period of motion, i.e. the time difference between
periodic patterns, can be determined by analysing the intersections between diagonal
and cross diagonal lines which corresponds to the change of motion phase.

First, the 2D autocorrelation of the similarity matrix is computed using Fourier trans-
form based on Wiener-Khinchin Theorem [14] and then smoothed by applying the
Gaussian filter. As a result, local peaks along cross diagonal of autocorrelation ma-
trix are revealed (Fig. 3b)). Then for each local extreme a diagonal ’corridor’ is created
of a predefined size. All extremes within this corridor with coordinates (x, y) are used
to fit the optimal crossed diagonal line y = ax + b with parameters β = [a, b], i.e.
slope a and shift b. This is achieved by the standard linear least square solution of an
over-determined system of equations:

argminβ‖y − β[x, 1]T ‖2 (3)

Fig. 3. (a) Temporal self-similarity matrix of a tracklet segment. (b) Autocorrelation of the self-
similarity matrix with local peaks used to estimate parameters of cross diagonal lines. (c) Au-
tocorrelation matrix with discarded three noisy cross diagonals (magenta) and an optimal set of
cross diagonals used to determine the period of analysed motion segment (yellow).
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which minimizes the sum of squared residuals, i.e. differences between observed values
and their values estimated by a model given parameters β. The approximated solution
is obtained by normal equations or more numerically stable orthogonal decomposition
methods such as QR or SVD decompositions.

The obtained set of Q crossed diagonal lines share almost the same slope close to
−1 due to temporal symmetry of the matrix and differs by shift parameters bq > bq−1

which express the intersection of the main diagonal of the autocorrelation matrix with
corresponding cross diagonals. Based on recurrence plot patterns [3], each bq should
correspond to a phase change of periodic signal, i.e. sin(bq) = 0, so the objective is to
find the best fit of periodic sine function at points of phase change, i.e. r = [0 : π :
π ∗Q′] with obtained shift parameter space by minimizing following equation:

EQ′ =

Q∑
q=1

min(|bq − r(Q′)|), Q′ = 2 : Q

argminQ′ detrend(E) (4)

Note that some of cross diagonals may not share the same periodicity pattern due to
noisy observations (the magenta lines in Fig. 3c)), therefore the whole range of phases
πQ′ needs to be analyzed to discard such noisy cross diagonals and find the best global
fit. The final frame frequency H between phases is given by: H = 2 ∗L/Q′, while key
pose fk corresponds to location in time of phase change bq′ so that k = (q′ − 1) ∗H .
Fig. 4a presents results of such minimization process with the corresponding optimal fit
of sinus function into shift parameter space in Fig. 4b. In turn, Fig. 3c shows in yellow
colour cross diagonals which satisfied the estimated periodicity pattern, whereas Fig. 5
illustrates some examples of detected key poses corresponding to the phase change of
motion within the tracklet.

Fig. 4. (a) The detrend error of fitting periodic sine function into a sequence of shift parameters
at points of phase change. (b) The best fit of periodic sine function (blue) into a sequence of shift
parameters (red) at points of phase change.
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Fig. 5. Examples of detected key poses corresponding to the phase change of motion within the
tracklet

Descriptor Generation. At this stage, a tracklet is represented as a bag of local and
independent motion signatures M = {mk},mk = {fi}k+cH/2

i=k−cH/2 of the length cH
where parameter c controls overlapping of signatures. These signatures are generated at
estimated key poses fk and each represented by a spatio-temporal descriptor which cap-
ture a key appearance properties of the motion over corresponding short period of time
around change of motion phase. Here, we propose to adopt the histogram of oriented
3D gradients [5] as a descriptor which proves to be very effective for action recognition
but to the best of our knowledge has not been yet applied for tracking. Such a histogram
is extracted densely inside a bounding box based video volume of given motion signa-
ture in a very efficient way due to integral video representation of 3D gradients. Such
volume is first divided into cells at different spatio-temporal scales. Then, for each cell
the mean 3D gradient vector is computed and its full orientation is quantized using
3D polar binning. Afterwards, the cells are normalized and concatenated to form the
histogram vector which is finally normalized over all cells. For very short tracklets or
tracklets without periodic pattern, only one motion signature is generated at its centre.

Tracklet Data Association. Given a reliable ‘probe’ tracklet Tz , the objective is to
identify and then uniquely associate the most similar subsequent tracklet among a
‘gallery’ set of Nt predicted tracklets (Tz,v)v∈�1,Nt�, generated during a time window
t. This is achieved by first comparing all motion signatures of both tracklets and the
best ones are ranked according to:

rankv=1..Nt(W min(χ2(Mz,Mz,v))) (5)

where χ2 is the chi-square distance between histograms and W is penalty weight ex-
pressed by: W = exp(‖fz,L − fz,v,1‖ which favours candidate tracklets which are
spatially closer to the probe tracklet.

3 Evaluation

The proposed framework was validated using two public benchmark datasets,
i.e. PETS2009 [12] (Scenario S2.L1) and Oxford [2], which have been commonly
used in recent multi-target tracking research. Both datasets containing typical crowded
pedestrian scenes. The evaluation follows methodologies of [1,6,15,12] for PETS2009
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and [2,9] for Oxford to provide the fair comparison with the current state of the art
approaches. The considered metrics include: recall and precision rate (showing detec-
tion performance after tracking), false alarms per frame (FA), mostly tracked (MT),
mostly lost (ML) and partially tracked (PT) (the ratio of tracks with successfully tracked
parts for more than 80% or less than 20% or between respectively), track fragmentation
(Frag) (the number of times that a ground truth trajectory is interrupted) and id switches
(IDS) (the number of times that a track changes its matched id). Note that novelty of
this paper is focused on the tracklet re-identification, thus the most relevant metrics are
track fragmentation and identity switches.

The tracklet generator was initialized using a few default parameters [9]. As a feature
for pedestrian detection and periodicity estimation, the standard spatial histogram of
oriented gradients was used [4] (8x8 pixel cells, 9 orientation bins). On the other hand,
the motion signatures were represented as spatio-temporal histograms of oriented gra-
dients [5] (7x7x2 cells, 15 orientation bins). Motion signatures did not overlap (c = 1),
whereas the tolerance angle for splitting tracks was set to A = 25◦.

Tables 1 and 2 present the performance of the proposed framework in comparison
to other state-of-the-art approaches. The improved performance is clearly demonstrated
in the track fragmentation and identity switch metrics, which are arguably the most
relevant indicators. Other metrics are still competitive with other approaches.

This is supported by obtaining almost 96% and 90% of first rank tracklet association
for Oxford and PETS2009 datasets respectively (Fig. 6). This accuracy difference was
expected since in the Oxford dataset motion orientation of pedestrians with respect to

Table 1. Comparison of results on Oxford sequence

Method FA GT MT PT ML Frag IDS

SWT [2] 0.190 201 0.42% 0.46% 12.0% 144 91

DTWAF [9] 0.060 201 0.40% 0.43% 17.0% 44 28

Our approach 0.067 201 0.44% 0.48% 8.0% 20 15

Table 2. Comparison of results on PETS2009 sequence

Method Recall Precission FA GT MT PT ML Frag IDS

Energy Min. [1] - - - 23 82.6% 17.4% 0.0% 21 15

PRIMPT [6] 89.5% 99.6% 0.020 19 78.9% 21.1% 0.0% 23 1

NLMPRAM [15] 91.8% 99.0% 0.053 19 89.5% 10.5% 0.0% 9 0

S-SVM MOT1 [12] 97.2% 93.7% 0.379 19 94.7% 5.3% 0.0% 19 4

S-SVM MOT2 [12] 96.6% 93.4% 0.396 19 94.7% 5.3% 0.0% 26 5

Our approach 93.3% 99.1% 0.025 19 89.5% 10.5% 0.0% 4 1
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the camera is much more stable than in PETS2009, thus making the re-identification
process more reliable. On the other hand, in the former dataset, recovery from identity
switches is more of a challenge (than in the latter dataset).

Note that in contrast to our methodology, frameworks [15,12,6] require either some
context information a priori or are learned online which in some scenarios may not
be feasible or difficult to perform due to lack of appropriate training data. Finally, our
results may be further improved when a more advanced tracker is used to generate initial
tracklets.

Fig. 6. Cumulative Matching Characteristic of ranking tracklets for Oxford (left) and PETS2009
(right) datasets

4 Conclusion

This paper has proposed a new descriptor for robust tracklet association using a bag
of motion signatures expressed by spatio-temporal histograms of oriented gradients. To
overcome problems of tracklet variability such as change of velocity or existence of
cyclic repetitions, features in bag are generated at various time points to encapsulate
key appearance and dynamic properties over short period of time. As a consequence,
the ranking procedure for re-identification can take into account only the best features at
given time as well as recover from badly assigned identities during tracking. The exper-
iments have confirmed that our approach provides generally comparable performance
to other methods, while being advantageous in the reduction of track fragmentation and
number of identity switches, thus producing more reliable tracks.
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Angel-Iván Garćıa-Moreno, José-Joel Gonzalez-Barbosa,
Francisco-Javier Ornelas-Rodriguez, Juan B. Hurtado-Ramos,

and Marco-Neri Primo-Fuentes

CICATA, Instituto Politécnico Nacional
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Abstract. Mobile platforms typically combine several data acquisition
systems such as lasers, cameras and inertial systems. However the geo-
metrical combination of the different sensors requires their calibration,
at least, through the definition of the extrinsic parameters, i.e., the
transformation matrices that register all sensors in the same coordinate
system. Our system generate an accurate association between platform
sensors and the estimated parameters including rotation, translation,
focal length, world and sensors reference frame. The extrinsic camera
parameters are computed by Zhang’s method using a pattern composed
of white rhombus and rhombus holes, and the LIDAR with the results of
previous work. Points acquired by the LIDAR are projected into images
acquired by the Ladybug cameras. A new calibration pattern, visible
to both sensors is used. Correspondence is obtained between each laser
point and its position in the image, the texture and color of each point
of LIDAR can be know.

Keywords: panoramic camera, LIDAR, sensor calibration, extrinsic
calibration.

1 Introduction

Reconstruction of urban environments is a challenge given the variety of scenes
that can be scanned and problems that arise when working with real data. Many
techniques are used for three-dimensional reconstruction, each with their own
limitations and none of them efficiently solves the problems of digital modeling
of urban environments. Recently new approaches for this purpose have been
developed with the idea of using the information from different sensors, depth
laser sensors, CCD cameras and inertial systems primarily [9] [4].

Information fusion from multiple sources is an important issue when process-
ing data as it must have an accurate calibration of all the instruments of the
acquisition platform, a good real-time data fusion technique is proposed in [9],
they fuse colour camera, range scanning anda navigation data to produce a three
dimensional colour point clouds. For this article we will focus on characterizing
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the rigid transformation between the camera and laser sensor. Using the intrin-
sic parameters of the camera and LIDAR, and the transformation we project a
3D point from LIDAR to the image plane of the camera. The problem of rigid
transformation is solved by matching features of the 3D calibration pattern ac-
quired from LIDAR and camera. These features are usually the corners of planar
checkboard pattern, in the image as an intersection of black and white square,
in the LIDAR correspont the intersection to square plane and hole square.

In this work, two types of sensors are used, Velodyne HDL-64E laser scanner
and Point Grey Ladybug2 spherical digital camera. The laser scanner operates
by pulsing a laser diode for a short duration (typically 4 nanoseconds) and
precisely measuring the amount of time it takes for the pulse to travel to an
object, reflect off and return to a highly sensitive photodetector and camera
system is a high resolution omnidirectional sensor, it has six 0.8 − Megapixel
cameras, with five CCDs positioned in a horizontal ring and one positioned
vertically, that enable the system to collect video from more than 75% of the full
sphere. Complementary benefits of both sensors, it’s possible to acquire more
reliable scenes have characteristics such as depth, color and orientation. Both
sensors are georeferenced. Data fusion approaches between LIDAR and images
can be divided in two categories [11]:

· Centralized: the data fusion process occurs at pixel or feature level, i.e.,
the LIDAR and camera characteristics are combined into a single vector for
subsequent classification. One drawback to this approach is that only areas
that are seen by both sensors can be processed.

· Decentralized: data processing from each sensor is made separately and then
fusion occurs. These methods usually require training to determine the fusion
model.

The estimation of LIDAR and camera intrinsic parameters is a nonlinear prob-
lem that can be solved in different ways. A novel algorithm is proposed [5]
for joint estimation of both the intrinsic parameters of the laser sensor and the
LIDAR-camera transformation. Specifically, they use measurements of a calibra-
tion plane at various configurations to establish geometric constraints between
the LIDAR’s intrinsic parameters and the LIDAR-camera 6 d.o.f. relative trans-
formation. They process these measurement constraints to estimate the calibra-
tion parameters as follows: First, analytically compute an initial estimate for the
intrinsic and extrinsic calibration parameters in two steps. Subsequently, they
employ a batch iterative (nonlinear) least-squares method to refine the accuracy
of the estimated parameters. Other method using a planar board checkerboard
patterns is proposed in [6], the autors defines the rotation matrix between the
sensor laser and camera as achieved moving they platform and observing the
resulting motion of the sensors, this step attempts to solve the well-known ho-
mogeneous transform, translation is calculated using a commonly least-squares
estimation algorithm according to the corners of the pattern, detected by both
sensors. Besides the problem of calibration in [8] provide a solution for the occlu-
sion problem that arises in conjuntion with different view points of the fusioned
sensors, they approach first perfoms a synchronization of both sensors to allow
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for moving objects which incorporates an inertial correction of the LIDAR data
and an automatic trigger mechanism depending on the view direction of the
camera, the occlusion detection algorithm uses 2D convex hulls derived from a
3D object segmentation to allow for a visibility check of projected 3D LIDAR
data.

Not only square flat patterns are used for calibration between these two sen-
sors, in [7] they use a circle-based calibration object because its geometry allows
to obtain an accurate estimation pose in the camera frame and the camera in-
trisic parameters. The autors use a linear minimization of the Euclidian distance
error between the 3D circle center point sets, then they first generate the 3D
circles of the n poses estimated by the camera, it consists in computing m points
of each estimated circle pose by using the 3D circle center and an orthonormal
base lying in circle’s plane. Other approach using a conic based geometry object
to calibrate 2D/3D laser sensors is presented in [1].

2 Platform Projection Model

The goal of the method is to find homogeneous transformation between the
pinhole camera and the LIDAR in order to fuse the measurements from both
sensors in urban digitalize enviroments applications.

Data is collected by a mobil platform using the data collection vehicle shown
in Figure 1. This mobile mapping system is composed of a LIDAR sensor, video
camera, GPS, Inertial Measurement Unit (IMU).

GPS

LADYBUG

LIDAR

[R,T ]GPS→LB

[R,T ]GPS→L

[R,T]Ci

L

LB Lady Bug
L LIDAR

Fig. 1. Sensor platform composed of LIDAR Velodyne HDL-64E (L) Ladybug2 (LB)
and GPS. Ladybug2 R© spherical digital video camera system has six cameras (Ci). L,
Ci represent the LIDAR and six camera frames of the Ladybug.

This research work focuses the refinement of the registration of LIDAR and
panoramic images.
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2.1 Panoramic Camera and LIDAR Model

The six cameras frames of the Ladybug2 are represented by Ci (where i =
1, . . . , 6). The 3D points acquired by the LIDAR (XL) are transform from LI-
DAR frame to camera frames by [RCi

L ,TCi

L ], called the extrinsic parameters (see
Figure 2.)

A 2D point in the camera Ci is denoted by uCi =
[
uCi vCi

]T
. A 3D point

in LIDAR frame is denoted by XL =
[
XL Y L ZL

]T
. We use x̂ to denote the

augmented vector by adding 1 as the last element: ûCi =
[
uCi vCi 1

]T
and

X̂L =
[
XL Y L ZL 1

]T
. A camera is modeled by the usual pinhole: The image

uCi of a 3D point XL is formed by an optical ray from XL passing through the
optical center Ci and intersecting the image plane. The relationship between the
3D point XL and its image projection uCi is given by

sûCi = ACi [RCi

L ,TCi

L ]X̂L = PCi

L X̂L (1)

with ACi =

⎡⎣−ku f 0 u0 0
0 kv f v0 0
0 0 1 0

⎤⎦Ci

and P = ACi [RCi

L ,TCi

L ]

where s is an arbitrary scale factor, [RCi

L ,TCi

L ], called the extrinsic parameters,
is the rotation and translation which relates from LIDAR system L to camera
system Ci, and ACi is called intrinsic matrix for the camera Ci, with (u0, v0)
the coordinates of the principal point, fku and fkv the scale factors in image u
and v axes. The 3× 4 matrix PCi

L is called the camera projection matrix, which
mixes both intrinsic and extrinsic parameters.

fku

fkv

(u0, v0)C2

(u0, v0)

fkv

fku
C6

L

fkv
fku

C1

(u0, v0)

XL

X
C1 = R

C1

L
X

L +T
C1

L

uC1

Fig. 2. LIDAR frame L and the six pinhole camera model
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3 Panoramic Camera and LIDAR Calibration

The six cameras of the Ladybug2 are calibrated with the Zhang’s method [10], in
this the intrinsic parameters (ACi) of the cameras are computed. The LIDAR is
calibrated using the method proposed in [2]. We use a pattern which facilitates
the extraction of the same point in camera and LIDAR data. This pattern is
shown in Figure 7 and it is composed of white rhombus and rhombus holes which
take the black color by the background. The Figure 3 shows the relationship
between the pattern Wi camera Ci and LIDAR L. The transformation between
LIDAR and cameras shown in te Equation 1 is computed by

[RCi

L ,TCi

L ] = [R,T]Ci

W ∗ ([R,T]LW )−1 (2)

L

[R,T]Ci
W [R,T]LW

W

Ci

fku
fkv

(u0, v0)

Fig. 3. The extrinsic parameters [R,T]Ci
W are computed by Zhang’s method and

[R,T]LW are computed by Algorithm shows in Figure 4

In the algorithm shows in Figure 4, the function transform to XY Z trans-
form the LIDAR data to X,Y, Z points using the method proposed in [2].
RANdom SAmple Consensus (RANSAC) algorithm is widely used for plane
detection in point cloud data. The principle of RANSAC algorithm consists
to search the best plane among a 3D point cloud. For this purpose, it selects
randomly three points and it calculates the parameters of the corresponding
plane. Then it detects all points (nPatternPointCloud) of the original cloud
belonging to the calculated plane (Π), according to a given threshold. The
project to normal pattern algorithm projected the points nPatternPointCloud
to plane Π . In function MaximizingFunction, we build an artificial calibration
pattern (Pattern(radius, θ)) using the dimension of the pattern calibration. The
artificial pattern can be moved on the plane Π rotating an angle θ and moving a
distance radius in the direction of rotation. The nProjectedPattern points are
comparing with the artificial pattern plane, the maximum comparison allows us
to calculate the distance (radius) and angle (θ) in the plane where the reference
pattern placed. Using the plane equation Π and (radius, θ) we computing the
[R,T]LW parameters.
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For each camera Ci do:

Algorithm for computing of extrinsic LIDAR parameters.

1: for each nRawPointCloud do
2: nPointCloud ← transform to XY Z(nRawPointCloud)
3: (nPatternPointCloud,Π) ← RANSAC(nPointCloud) � extract pattern

points
4: nProjectedPattern ← project to normal pattern(nPatternPointCloud)
5: [R,T]LW ← MaximizingFunction(nProjectedPattern,Π)
6: end for

Algorithm for computing extrinsic and intrinsic Ladybug2 parameters.

1: for each nImage do
2: [R,T]Ci

W , ACi ← use Bouguet’s camera calibration Toolbox

3: end for

LIDAR and Ladybug calibration

1: for each nImage do
2: [RCi

L ,TCi
L ] = [R,T]Ci

W ∗ ([R,T]LW )−1

3: end for

Fig. 4. Algorithms used in this work

4 Results

The results are presented in three stages, the computation of extrinsic parameters
of the LIDAR, the computation of extrinsic and intrinsic parameters of the
cameras Ci of the Ladybug and extrinsic parameters between each camera and
LIDAR. For practical purposes, we show the results by only one camera, however
the Ladybug is formed with six cameras.

4.1 Algorithm for Computing of Extrinsic LIDAR Parameters

The Figure 5 shows the exracted points (blue points) using the RANSAC al-
gorithm and they proyected onto plane Π using the project to normal pattern
algorithm. The red circle in the Figure 5 represent the position of the artificial
pattern plane. This position is compute by the algorithmMaximizingFunction.
The MaximizingFunction computes the matches between the real pattern data
and the synthetic pattern, this is shown in Figure 6. The rotation and translation
are performed on the plane Π , and the traslation is carried out in θ orientation.

The rigid transformation of a 3D point in the LIDAR frame, L, into the world
frame (pattern frame) is defined by the rotation matrix and translation vector
([R,T]LW ):
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Fig. 5. Extraction of the calibration pattern using the RANSAC algorithm and pro-
jection onto the plane Π
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Fig. 6. The maximization function computes the number of points of the real pattern
matches with the synthetic pattern

RL
W =

⎡⎣ 0.1085 -0.3006 0.9475
-0.7800 -0.6167 -0.1063
-0.6164 0.7275 0.3014

⎤⎦ ;TL
W =

⎡⎣ -282.9080.71
-49.82

⎤⎦
4.2 Algorithm for Computing Extrinsic and Intrinsic Ladybug

Parameters

We use camera calibration toolbox for Matlab [3]. The intrinsic camera param-
eters are:
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intrinsic parameters value

Focal length (628.4651, 622.5191) px
Principal point location (348.0818, 507.8548) px
Distortion coefficients (-0.3759,0.1139,0.0027, 0.0049,0) px2

Skew coefficient 0

The Figure 7(a) shows the subpixelic extraction points. The pattern plane
position is the same for the pattern plane acquired by the LIDAR in the Figure
5. The world frame is shown in the Figure 7(b) with respect to the camera frame.
The [R,T]Ci

W are:

RCi

W =

⎡⎣ 0.6588 0.6417 -0.3926
0.6257 -0.7572 -0.1877
-0.4178 -0.1220 -0.9003

⎤⎦ ;TCi

W =

⎡⎣ 35.0
76.35
365.36

⎤⎦

O
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Fig. 7. (a) Subpixel corners extration. (b) World frame respect to the camera frame.

4.3 LIDAR and Ladybug Calibration

The rigid transformation between camera and LIDAR frame is computed using
the Equation 2. The result is shown in Figure 8. In this figure, the pattern
acquired by the LIDAR is transformed onto the image frame using the extrinsic
parameters [RCi

L ,TCi

L ], this transformation allows us referenced in the camera the
points acquired by the LIDAR. The projection is completed using the intrinsic
camera parameters. The Figure 9 demostrate the calibration system. The Figure
9 (a) shows the LIDAR data that correspond a person, the 3D data are projected
into the image. The projected points are show in Figure 9 (b) as red points.
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Fig. 8. The red points are acquired by the LIDAR and projected to image
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Fig. 9. (a) A person acquired by the LIDAR. (b) The red points correspond the 3D
points projected into image.

5 Conclusions and Future Work

A new extrinsic calibration method for a multiple sensor has been proposed. By
using a plane calibration target, extrinsic calibration between sensors and intrin-
sic camera calibration can be effectuated simultaneously. The results obtained
in real data tests illustrate an appropriate and accurate projection of the lidar
data. The future work are oriented to estimate the confidence intervals in the
calibration method and the error propagation in data sensor fusion for texture
3D data.
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Abstract. To date, research on the iris recognition systems are focused on the 
optimization and proposals of new stages for uncontrolled environment systems 
to improve the recognition rate levels. In this paper we propose to exploit the 
biometric information from video-iris, creating a fusioned normalized template 
through an image fusion technique. Indeed, this method merges the biometric 
features of a group of video images getting an enhanced image which therefore 
improves the recognition rates iris, in terms of Hamming distance, in an 
uncontrolled environment system. We analyzed seven different methods based 
on pixel-level and multi-resolution fusion techniques on a subset of images 
from the MBGC.v2 database. The experimental results show that the PCA 
method presents the best performance to improve recognition values according 
to the Hamming distances in 83% of the experiments. 

Keywords: Fusion, Iris, MBGC, PCA, Recognition. 

1 Introduction 

To date, the commercial iris recognition systems based on still images [1-2] are 
designed to work with special or restricted conditions. This means that they require an 
ideal environment and cooperative user’s behavior during the iris image acquisition 
stage to obtain high quality images. Therefore, if any of these requirements are not 
met, it can cause a substantially increase of error rates, specially the false rejections. 
Many factors can affect the quality of an iris image, including defocus, motion blur, 
dilation and heavy occlusion. Naturally, poor image’s quality cannot generate 
satisfactory recognition because they do not have enough feature information, in this 
regard; iris recognition is dependent on the amount of information available in two 
iris images being compared. A typical iris recognition system commonly consists of 
four main modules as shown in Figure 1: 

• Acquisition the aim is to acquire a high quality image. 
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• Preprocessing, involves the segmentation and normalization processes. The 
segmentation consists in isolating the iris region from the eye image. The 
normalization is used to compensate the varying size of the pupil. 

• Feature encoding, uses texture analysis method to extract features from the 
normalized iris image. The significant features of the iris are extracted as a 
series of binary codes known as digital biometric template. 

• Matching compares the user digital biometric template with all the stored 
templates in the database. The matching metric will give a range of values of 
the compared templates from the same iris. 

 

Fig. 1. Architecture for iris recognition system 

In recent years, with an increasing of new massive biometric security demands around 
the world, it seems difficult to fulfill the conditions mentioned above in order to have 
a reliable iris recognition system [3-4]. Thus, with the aim of overcoming these 
drawbacks, news approaches are being developed in an attempt to improve iris 
recognition performance under non ideal situations. Among these approaches, the 
video-based eye image acquisition for iris recognition seems to be an interesting 
alternative [5-7] because it can provide more information through the capture of a 
video iris sequences. Besides that, it is a friendly system because it is not intrusive 
and requires few users’ cooperation.  In this paper, we propose to use the video-iris. It 
contains information related to the spatio-temporal activity of the iris and its neighbor 
region over a short period of time, such that, iris images can be selectively chosen for 
fusion while avoiding poor quality images. Therefore, the information from individual 
iris images can be fused into a single composite iris image with higher biometric 
information, resulting in better recognition performance and reducing the error rates. 

The idea of fusing iris templates to perform biometric recognition has been 
recently described in the literature. Jillela and Ross [8] fused frames of iris videos 
using a variation of the PCA method with three data-level resolution, the performance 
of the image-level fusion was compared against that of score-level fusion, they 
observe significant improvements of the proposed technique, when compared to the 
use of any individual frame. Hollingsworth et al. [5] improve the matching 
performance using signal-level fusion. From multiple frames of iris video, they 
created a single average image, having observed that signal-level fusion performs 
comparably to state-of-the-art score-level fusion techniques. There are several 
methods of fusion, the main objective in this research is to experiment and analyze 
some fusion methods to determine the most suitable to be included as a step in the 
recognition system for unconstrained environments. This paper is organized as 



116 J.M. Colores-Vargas et al. 

follows: section 2 explains the basics of the evaluated image fusion methods. Section 
3 presents the evaluation methodology and the evaluation results, finally in section 4 
presents the conclusions and future work. 

2 Image Fusion 

The image fusion tries to solve the problem of combining information from several 
images taken the same object to get a new fusioned [9]. In this paper, each image of 
video is first pre-processed in order to obtain a single normalized template. Then, a 
fusion method is applied to provide a representative fusioned normalized template 
from these individual normalized templates. The resulting template should be contains 
more texture information as compared to individual templates. We analyzed the 
image fusion methods to determine the most suitable to achieve greater extraction of 
texture information. The image fusion methods can be categorized in two categories: 
pixel level and multi-resolution. 

• Pixel-level methods, the input images are fused pixel by pixel followed by 
the information extraction. To implement the pixel level fusion, arithmetic 
operations are widely used, include basic arithmetic operations, logical 
operations and probabilistic operations. 

• Multi-resolution methods, Multi-scale Transform (MST) is applied on the 
original images to construct a composite representation followed by down-
sampling. Then an image fusion rule is applied to fuse the images in the 
MST format. After that, an Inverse Multi-scale Transform (IMST) is applied 
to create the fused image.  

2.1 Image Fusion Using the Weighted Average 

The fusion method based on the weighted average is a pixel level method that using 
weights assigned to each original image, the weight may be fixed or variable based on 
specific applications; commonly using the sharpness analysis to assigns a higher 
weight to the sharpest pixels in the input images [10]. The weights for each source 
image are defined by two arrays W  and W , where 0 W , W 1 and W x, yW x, y 1, a resulting image is given by the equation 1. , , , , ,  (1) 

To calculate the weight array is used the information from the image edges obtained 
by applying high-pass filters which reflect the abrupt changes in the intensities of the 
pixels with respect to its environment (edges).  

 

Fig. 2. Illustration of the weighted average fusion method 
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To obtain the related frequencies components of the edges in the images, was used 
a high-pass filter, is a Gaussian 3x3 convolution kernel that uses the concept of the 
second derivative defined by equation 2. Thus if  contains the edges information of 
the picture  and  to the image I2, in both cases by the application of predefined 
kernel. The weights can be obtained as shown in Figure 2. 

, |  , | 1 1 11 8 11 1 1 (2) 

2.2 Image Fusion Using Principal Component Analysis 

The fusion method based on the principal component analysis [11] is a straightforward 
way to build a fused image as a weighted superposition of several input images. The 
optimal weighting coefficients, with respect to information content, can be determined 
by a principal component analysis of all input intensities. By performing a PCA of the 
covariance matrix of input intensities, the weightings for each input image are obtained 
from the eigenvector corresponding to the largest eigen-value. Figure 3 shows the basic 
fusion scheme, where two images    are fused to obtain a resultant image I  
given by equation 3,    are the weights coefficients. 

 
Fig. 3. PCA operation to fuse two images 

, , , , ,  (3) 

The weights for each source image are obtained from the eigenvector corresponding 
to the largest eigen-value of the covariance matrix of each source. Arrange source 
images in two-column vector.  

• Organize the data, let S be the resulting column vector.  
• Compute empirical mean (Me) along each column. 
• Subtract Me from each column of S, the resulting is a matrix X.  
• Find the covariance matrix C of matrix X. 
• Compute the eigenvectors V and eigen-value and sort them by decreasing 

eigen-value. 
• Consider first column which correspond to larger eigen-value to compute 

normalized component   . 

2.3 Laplacian Pyramid Image Fusion 

Laplacian pyramid of an image is a set of band-pass images, in which each is a band-
pass filtered copy of its predecessor [12]. Band-pass copies can be obtained by 
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calculating the difference between low-pass (Gaussian filter) images at successive 
levels of a Gaussian pyramid. In Laplacian fusion approach the Laplacian pyramids 
for input images are used. A strength measure is used to decide from which source 
what pixels contribute at each specific sample location. Given an image I, the first 
level of its Gaussian pyramid is defined as a copy of the original image and the k-th 
level is defined by the equation 4 and the k-th level of the Laplacian pyramid is 
defined by the equation 5, where 2 and 2 denotes a down-sampling and up-
sampling at a factor of 2, w represent a 5x5 low-pass filter kernel , ,  (4) 

, , 4 , (5) 

To reconstruct the original image  from both pyramids (Laplacian and Gaussian), is 
used equation 6. The fusion of the low-pass coefficients involves blending all the 
Gaussian pyramid coefficients; the fusion of the high-pass coefficients involves 
blending only the level of the Laplacian pyramid. Zhang and Blum [13] proposed a 
combination method, where the coefficients are considered separately; the low pass 
coefficients are fused using the arithmetic mean and the high pass coefficients 
according with the biggest absolute value (see equations 7 and 8). , , 4 ,  (6) 

 , , ,2  (7) 

,  , , , ,  (8) 

2.4 Contrast Pyramid Image Fusion 

The composite images produced by this scheme preserve those details from the input 
images that are most relevant to visual perception [14].The essential problem in 
fusion images for visual display is pattern conservation: important details of the 
component images must be preserved in the resulting fused image, while the fusion 
process must not introduce spurious pattern elements that could interfere with 
succeeding analysis. Contrast itself is defined as the ratio of the difference between 
luminance at a certain location in the image plane and local background luminance to 
the local background luminance. Luminance is defined as the quantitative measure of 
brightness and is the amount of visible light energy leaving a point on a surface in a 
given direction. The construction of the Contrast pyramid is similar to the 
construction of the Laplacian pyramid. First a Gaussian pyramid is constructed by 
equation 9, which describes the k-th level of the pyramid and the reconstruction is 
defined by Equation 10. The coefficients fusion methodology employs a method 
similar to the Laplacian pyramid (see equation 7). However, to fuse the Laplacian 
coefficients are used the absolute maximum criterion described by Equation 11. 
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, , /4 ,  (9) 

, , 4 ,  (10) 

,  , , 1 , 1 ,  (11) 

2.5 Gradient Pyramid Image Fusion 

The gradient pyramid is emerging as a variation to the Laplacian pyramid. A gradient 
pyramid is obtained by applying a set of 4 directional gradient filters (horizontal, 
vertical and 2 diagonal) to the Gaussian pyramid at each level. At each level, these 4 
directional gradient pyramids are combined together to obtain a combined gradient 
pyramid that is similar to a Laplacian pyramid. The gradient pyramid fusion is 
therefore the same as the fusion using Laplacian pyramid except replacing the 
Laplacian pyramid with the combined gradient. The k-th level with  orientation of 
the gradient pyramid is defined by equation 12.  is the k-th level of the Gaussian 
pyramid,  is the gradient filter for the  orientation and  is a Gaussian filter kernel 
described by equation 12, the gradient filters are given by equations (13-16). 

, , , , 1 2 12 4 21 2 1  (12) 

1 1 , √ 01 10 , 11 , √ 10 01  (13-16) 

To reconstruct the image from the gradient pyramids is used equation 17. The fusion 
of coefficients involves the same methodology of the Laplacian pyramid. , 1 , ,  (17) 

2.6 FSD Pyramid Image Fusion 

FSD (filter, subtract, decimate) pyramid technique [15], is a variation of the Laplacian 
fusion. In Laplacian pyramid, the difference image  at level  is obtained by 
subtracting an image up-sampled and then low-pass filtered at level 1 from the 
Gaussian image  at level , while in FSD pyramid, this difference image is 
obtained directly from the Gaussian image  at level  subtracted by the low-pass 
filtered image of  as a result, FSD pyramid fusion method is computationally more 
efficient than the Laplacian pyramid method by skipping an up-sampling step.  , , ,  (18) 

, , , 4 ,  (19) 
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The calculation of the k-th level of the Laplacian pyramid is computationally more 
efficient (see equation 18), however this variation restricts to use the equation 6. Thus 
it is necessary to define a different reconstruction formulation given by equation 19. 
The coefficients fusion uses the same methodology of the Laplacian pyramid. 

2.7 Image Fusion Based on Wavelet Decomposition 

The Wavelet transform decomposes an image into various sub images based on local 
frequency content [16]. The discrete Wavelet transform (DWT) coefficients are 
computed by using a series of low pass filter L[k], high pass filters H[k] and down 
samplers across both rows and columns. The results are the wavelet coefficient the 
next scale. The filter bank approach to calculate two dimensional dyadic DWT is 
shown in figure 4. The wavelet coefficients are of smaller spatial resolution as they go 
from finer scale to coarser scale. The wavelet representation has the advantage of not 
generating redundant information since functions are orthogonal, thus original image 
can be reconstructed from the wavelet decomposition of an inverse algorithm. 

According with equations (20-23), we can define the k-th level of the pyramid of 
Wavelets, where 1 2  is a down-sampling to remove half of the rows of the image 
and 2 1  to remove half of the columns of the image. The pyramid is constructed by 
applying this decomposition recursively on approximation coefficients. To reconstruct 
the image, we must apply the inverse transformations. 

 

Fig. 4. Two-dimensional orthogonal Wavelet fusion 

,   , | √ 1 1  (20) ,   , | √ 1 1  (21) ,   , | √ 1 1  (22) ,   , | √ 1 1  (23) 

Finally, the reconstructed image is obtained from Equation 24. 

 , , , , (24) 
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3 Experimental Results 

3.1 Database 

In order to evaluate the performance of the fusion methods, were handled a test set 
with 120 iris images from different videos of the Multiple Biometrics Grand 
Challenge “MBGC.v2” [17] database. All videos were acquired using an LG2200 
camera with near-infrared illumination of the eye, some features: MPEG-4 format and 
the size for each frame in the video has 480 rows and 640 columns in 8 bits-grayscale 
space. The MBGC.v2 database presents noise factors, especially those relative to 
reflections, contrast, luminosity, eyelid and eyelash iris obstruction and focus 
characteristics. These facts make it the most appropriate to study the iris recognition 
system for uncontrolled environments. The test set is composed by 10 videos from 10 
different people, for each video were randomly selected 10 images, analyzing and 
verifying that each image met the minimum quality parameters and segmentation 
rates exposed by Colores et al. [18]. In addition, we selected two reference images 
from each video for biometric comparison purposes, a reference image called 
"Reference 1" was chosen from the video based on the higher energy criterion [18], 
and the reference image called "Reference 2" was chosen based on the best subjective 
quality perceived. Each image in the set of test was segmented and normalized using 
the algorithms for iris recognition of Libor Masek [19], obtaining for each image a 
normalized template; this template contains only the texture information of the iris 
region. As mentioned in the first section, the recognition process is based on the value 
of the Hamming distance; this value reflects the correlation between two digital 
biometric templates. The digital biometric template is obtained from the normalized 
template by the encoding stage of an iris recognition system. In this sense, the 
Hamming distance will have a small value if digital biometric templates generated 
from the same iris (comparison Intra-class) are compared, or otherwise will have a 
value close to 1 (comparison Inter-class). In this paper, we are focused on improving 
the recognition by reducing the Hamming distance, this serves to reduce the chances 
of a false match. Hence, all possible Intra-class comparisons were performed on the 
test set, 100 comparisons for each reference image. In Figure 5, are illustrated 
Hamming distance values for different Intra-class comparisons, it can be seen that 
correlation values show a similar behavior in the two reference images, with average 
values of 0.2871 and 0.2863 for the image reference 1 and 2 respectively. 

 

Fig. 5. Hamming distance values obtained from intra-class comparisons 
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3.2 Comparison of Image Fusion Schemes 

The experimental analysis involves fusing pairs of normalized templates. Figure 6 
illustrates the fusing process for normalized templates for each video. We calculated a 
total of 100 new fusioned normalized templates for each analyzed fusion method. 

 

Fig. 6. Fusing process for normalized templates for each video 

We implemented seven fusion methods described in section 2, intra-class 
comparisons were performed again with the 100 new digital biometric templates 
fused by each method, and the purpose was to determine the method that enhances the 
intra-class correlation values, as this could increase recognition rates by reducing the 
values of Hamming distances. Figure 7 shows the percentage of the experiments 
which had an improvement in the reduction of the Hamming distance for each method 
tested. 

 

Fig. 7. Reduction percentage of Hamming distance for experiments with fusion methods 

The fusion method based on principal component analysis PCA has the best 
performance compared to other methods; this does reduce the Hamming distance 
values in approximately 83% of the experiments. In Figures 8-9, are shown the 
variation between the Hamming distance values obtained from the intra-class 
comparison before and after to deploy the FSD and Gradient pyramid fusion methods. 
It can be appreciated that in these fusion methods, the majority of intra-class 
comparisons increased the Hamming distance values. Moreover, the fusion methods 
able to improve the correlation values in a high percentage of intra-class comparisons 
are performed by PCA, Laplacian pyramid and Gradient pyramid. 
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Fig. 8. Hamming distance values. After to deploy the FSD pyramid image fusion. 

 

Fig. 9. Hamming distance values. After to deploy the Gradient pyramid image fusion. 

Figure 10, shown the reduction in the Hamming distance values which were 
obtained by implementing the PCA fusion method. This method achieve the better 
percentage reduction in the experiments, reduces an average Hamming distance value 
in 0.015. Laplacian pyramid fusion methods and Contrast pyramid fusion method 
only reduce an average Hamming distance value at 0.0102. It is remarkable reduction 
in value of the Hamming distance at implement the PCA fusion method, which can 
project a possible reduction in the recognition error rates when implemented as a new 
module in a biometric system for uncontrolled environments. 

 

 

Fig. 10. Hamming distance values. After to deploy the PCA image fusion. 

4 Conclusions  

This paper proposes to exploit the biometric information from video-iris acquired 
under non-cooperative scheme, creating a fusioned normalized template through an 
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image fusion technique. The performances of seven image fusion methods are 
evaluated. The experimental results show that the PCA method presents the best 
performance to improve recognition values according to the Hamming distances in 
83% of the experiments. In PCA, it is assumed that the information is carried in the 
variance of the features that is equivalent to walking around the data to see from 
which one gets the best information. In our opinion, the underlying reason is that PCA 
is more suitable to obtain the weights for iris images fusion, it's that analysis is based 
on small samples  statistically independent (columns) of the source images data, 
resulting in a weights matrix more accurately. Thus, the results suggest that adding a 
fusion module to the architecture of the non-cooperative iris recognition, it could 
increase the system performance. Therefore, we can conclude that our proposal can be 
integrated as an optimization to the system developed by Colors et al [18], for an 
application of iris recognition in uncontrolled environments. 
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Abstract. Biologically inspired systems are a common tendency in robotics. 
Nowadays the common robots use human-like behaving senses as capabilities 
as soon as they can see, hear and touch, but the senses of smell and taste, are 
starting to emerge. There are three main problems to solve when including a 
smell sensor into a robot: the environmental model or the way the odor mole-
cules behave either in outdoors or indoors, the sensor model, and the algorith-
mic or process model.  One of the difficulties of developing chemical sensors 
versus another sensor is that chemical reactions tend to change the sensor com-
position often in a way that is nonreversible. Also, the odor exposure quickly 
saturates the sensor which needs a lot of time to be ready for the next measure.  
This is why; the smell system design must be biologically inspired. In this paper 
we present the results of the sensor model including the biological inspired 
process of aspiration and the design of a smell system device. 

Keywords: smell, bio-inspired nose model, nose system, nostrils, smell sense, 
chemical sensor model. 

1 Introduction 

Biologically inspired systems are a common tendency in robotics. Nature is a wide 
and wise teacher of how to reach specific goals. This is why; robotics and intelligent 
systems are trying to emulate behaviors and physical mechanisms out of it. For exam-
ple there are artificial systems using algorithms based on animal behaviors to reach 
cooperation and coordination [1], odor path followers [2, 3], while there are also me-
chanical systems learning how to walk exactly as a human would do [4].  

Nowadays there are a huge variety of robots emulating human senses as capabili-
ties to reach its goals, as soon as they commonly can see, hear and touch, but the 
senses of smell and taste, are not commonly implemented. Although olfaction seems 
not to be essential for our survival, in fact, it is very important because if we lost this 
sense our lives becomes a little more dangerous, for example, we would not be alerted 
to spoiled foods, leaking gas or smoke from a fire [5].  

In animal kingdom it is used for inspection, recognition, mating, hunting, and oth-
ers. Due to this ability, dogs smell capability can be trained to search for drugs, explo-
sives, some chemicals or hazardous substances or even lost people and are commonly 
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used in search and rescue operations at disaster areas, at airports or border controls 
[6].  Smell sensors and robotics are starting to emerge as a unified area using emula-
tions of the fast response of hound dogs in search and rescue operations [7-9]. At this 
task, the principal problem is the odor source localization. Nevertheless, to obtain the 
best algorithmic results, the perception of the environment is crucial. 

There are three main problems to solve when including a smell sensor into a robot: 
the environmental model or the way the odor molecules behave either in outdoors or 
indoors, the sensor model, and the algorithmic or process model.   

The main characteristics of commonly used smell sensors are the discrimination 
between odors and the sensitivity [10]. One of the difficulties of developing chemical 
sensors versus another sensor is that chemical reactions tend to change the sensor 
composition often in a way that is nonreversible. Also, the odor exposure quickly 
saturates the sensor which needs a lot of time to be restarted. There are some re-
searchers trying to solve the saturation problem by other solutions [11].  

Knowing that odor can be propagated without air flows present by diffusion, and 
by advection depending on the laminar air velocity, in a non-reversible process that 
increases the entropy, as the chemical reactions take place [12]; in this paper we are 
focusing on the perception problem, showing the results of the mathematical model 
for the sensor that includes as improvement the addition of the aspiration process 
biologically inspired, and the qualitative model for the sensorial system design.   

In the following section we present the related work about smell and robotics ap-
plications, then on the third section the analysis of the biological nose, followed by 
the analysis of the bio-inspired sensorial model and the mathematical sensor model in 
section 4.  In section 5 are presented the results.  Finally on section 6 we present the 
conclusions and future work. 

2 Related Background 

2.1 Chemical Sensors Applications 

Pashami et. al. in [13] propose a change point detection algorithm to find chances in 
intensity, compound, or mixture ratio of an odor. In this approach they evaluate it on 
individual gas sensors in an experimental setup where a gas source changes these 
variables.  

But besides the discrimination of an odor, chemical sensors can be useful in a lot of 
more applications, for example: Using the concentration measurement at continuous 
time, the increment or decrement of certain odor could alert an oil plant about some 
leak of toxic or explosive gas and the corresponding time averaged behavior of it.  
This cannot be achieved if the sensor is saturated with a peak of that certain odor. 
This could lead to a false alarm and probably to a loss of time or money.  In the other 
hand, the constant minimum increment that chemical sensors produce innately could 
lead to a constant replacement. In these applications it is important that odor sensors 
had the capability of desaturation. 

The saturation of the sensor is a common problem in chemical sensors. Some re-
search is focused to solve it [11]. They are using a multi-chamber system to decrease 
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the sampling time between sensors, but instead of it, we are trying to simplify the 
design by using only one chamber. 

2.2 Smell and Robotics Applications 

The principal task of a sniffing robot is the odor source localization. The algorithms 
used to solve this problem are commonly categorized by the terms of chemotaxis and 
anemotaxis.  The first one refers to the orientation and movement of the agent in 
relation to the chemical gradient. In the other hand, anemotaxis, instead of following 
the gradient, considers the direction or current of a fluid [14]. 

Ishida and Miyatani in [15] are using pumps pulling air into a chamber with chem-
ical sensors and creating an air curtain between two of them to produce two samples 
at different positions at the same time. 

In [16] an odor grip map was presented, where the readings of the robot are con-
volved as soon as it moves using the radial symmetric two dimensional Gaussian 
function to create the next portion of the grid map. They used three different robot 
movement techniques: spiral, sweeping and instant gradient. 

From this research, a hound robot was presented by Loutfi et. al. in [9]. This robot 
discriminates odors and creates grid maps of these using the sweeping movement 
technique. A major drawback of this approach is that the volatility of the odor par-
ticles causes them to be quickly distributed in the room so, by the time the robot has 
finished its sweeping routine, the distribution of the odor could be different.  

Lochmatter and Martinoli [3, 17] developed three bio-inspired odor source locali-
zation algorithms, using a chemical sensor. The algorithms implemented in this  
research have the tendency of using the wind measurements to decide the best move-
ment of the robot.  They are also working on a simulation platform for the  
experimentation process [2].  

At this point, the analysis of the sensor model and its efficient functionality is cru-
cial before implement the odor source localization algorithms. This is why; this re-
search is focused in the analysis, design and implementation of a biologically inspired 
sensor that generates a better measurement.  The next section explains the human 
nose process to allow a complete understanding of the proposed design.  

3 Biological Nose Functionality 

According to [18], knowledge of the detailed air flow patterns in the human nasal 
cavity and the subsequent quantity of odorant transport to the olfactory receptor cites 
appear essential to a complete understanding of human olfaction. This is why the 
design of a biologically inspired smell sensor must considerate the air flow patterns to 
simulate complete olfaction.  

The nose, in both, animals and humans, has two principal functions: breathing and 
odor perception [19]. Each nostril or nasal cavity is divided in three zones which are 
the nasal airway with bones into the lateral walls of the nasal cavity, forming a series 
of folds called turbinates; the epithelium, surrounded by an aqueous mucus layer; and 
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4 Perception System 

As said before, the intention of this paper is to prove that the biological nose system 
can be emulated and implemented, improving the perception aptitude of chemical 
sensors thanks to the aspiration process generating a desaturation capability. At this 
point it is important to understand the implementation and the sensor behavior. This 
section describes the design and sensor model with and without the aspiration process. 

4.1 Bio-inspired Design 

Knowing that the smell sense in nature is divided in stages, we implemented a biolog-
ically inspired design of a nostril [25, 26]: 

1. Aspiration process. At this stage the odor is carried by an air flow being absorbed 
by a nostril. In this process there must be a physical filter to protect the sensors 
from dust and other particles.  The humidification of the sensor is also necessary 
to amplify the odor.  

2. Conduction. At this stage the turbinates homogenize the air and mix the odor in 
such a way that the mix is prepared to be sensed. Then a good sample of the odor is 
conducted to the sensory array. The other part of the air is used in respiration.  

3. Sensing. In this stage each array consists of three sensors separated by 2.5 cm from 
center to center in a linear position.   

4. Processing. This is the algorithmic stage of the smell sense. It means that the data 
collected is sent to the brain which analyzes the information.   

5. Transforming. The air is transformed to clean the sensory system so the saturation 
is not occurring.  

6. Exhalation. The last stage is the expulsion of the air through the nose and the venti-
lation of all the system. 

 

Fig. 3. Comparison between olfaction stages and processes, biological and implemented 
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All these stages are included in the smell system developed in this research to pro-
vide an efficient and optimized measurement. The complete system has the ability to 
inhale and exhale, using two ventilators in opposite direction, one for pull the air into 
the chamber, and one to send it out. After the measurement, the chamber is cleaned. It 
has different turbinates, that transport the odors at the same time that is being mixed, 
and then a sample of this mix is oriented to the sensory system. This system provides 
the homogenization and sampling of environment besides the results in section 5.  

4.2 Sensor Model 

The aim of a model is to represent the predicted behavior of a system in a logical, 
simplified and objective way depending on an input. In this research we are using an 
odor exposure as the input, and improving the model described in [27] by the inclu-
sion of the aspiration process. A model is also useful to understand the behavior of the 
system by the analysis of the results obtained with the modification of common inde-
pendent variables.  

The gas sensor selected discriminates alcohol from any other odor. The chemical 
reaction changes the resistance between two terminals and because the supply voltage 
is maintained the current over the load changes and generates a different voltage on it. 
Then the results of the three sensors in the array for each nostril, are averaged and this 
average  [28] is the one that would be measured and analyzed. The concentration 
change (% C) was calculated as in [2]: % ∆ ⁄ 100                        (1) 

Where  is the maximum voltage ever measured, R or Reference is the lower 
voltage ever measured in absence of alcohol, and ∆  or differential range is the dif-
ference between averaged and R. 

                                                                                   ∆      ∆  ∆  ∆                            ∆  ∆                              (2) 

R                             (3)  1 exp                (4) 

 ∆ 1   ∆               (5)  exp ∆ ∆              (6)  1 exp ∆ ⁄                         (7)  ∆  ∆ 1   ∆  ∆            (8) 
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Table 1 shows the comparative results of the rate of change in /   of the no-
stril measurements when an odor source is present and the ventilation system is off, 
inhaling or exhaling. And the same analysis when the odor source was turned off or 
closed. 

These results show that aspiration is crucial when a sample of the environment is 
analyzed into the chamber; otherwise the sensors are saturated easily. Inhalation pull 
air into the nostril and the measure is reached faster, and exhalation desaturates the 
sensor even when an odor source is saturating the environment as a normal leak of 
gas.  

6 Conclusions and Future Work 

Thanks to the nostril design, we were able to concentrate the odor molecules near the 
sensors. And in the other hand, the aspiration system also helps in the desaturation of 
the sensors and makes them ready for the next measure.  

Once we have a biologically inspired system that perceives the environment and 
obtain a homogenized and desaturated sample, the next goal is to use different sensors 
or array of sensors to discriminate more than one odor finding patterns in the envi-
ronment of different mixtures.  

In particular, we aim to apply this system on unmanned vehicles that can locate the 
source of an odor autonomously or with minimal human intervention, even at out-
doors using time and space average, probably following the gradient of the odor trail.   
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Abstract. Soft Biometric traits are physical or behavioral human characteristics 
like skin color, eye color, gait, used by humans to distinguish their peers. 
However soft biometric characteristics lack in distinctiveness and permanence 
to identify an individual uniquely and reliably. In this paper a new Gaze 
Analysis based Soft-biometric (GAS) is investigated. The way an observer 
looks at a particular subject, was recorded with a remote eye tracker. Feature 
vectors were built for each observation and used for testing the system as a 
recognition system. The accuracy of the GAS system was assessed in terms of 
Receiving Operating Characteristic curves (ROC), Equal Error Rate (EER) and 
Cumulative Match Curve (CMC), and provided encouraging results. 

Keywords: gaze analysis, soft biometrics, eye tracking. 

1 Introduction 

Most studies related to soft biometrics have to date considered the iris as a potential 
predictor for ethnicity and gender [1]. For example, Qiu et al. have used specific 
features in the texture of the iris to determine ethnicity—Asian vs. Caucasian [2]. A 
similar approach has been used to determine gender by Thomas et al. [3]. More 
recently, the problem of predicting both gender and ethnicity using iris patterns has 
been addressed by Lagree et al. in 2011 [9]. While undoubtedly related to soft 
biometrics, however, these studies do not actually aim at identification, but rather at 
recognizing a single character. On the other hand, in [10], iris color is actually used as 
a soft biometry for indexing, in order to obtain a subset of identities where actual 
recognition will be performed.  

While all the above cited works relate to static aspects of the human eye, eye 
movements can also be exploited to infer biometrically significant anatomical 
characteristics of the oculomotor plant [11]. This paper, too, examines a dynamic 
aspect, with the purpose to assess the relevance of eye movement patterns as a soft 
biometry [12].  
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Reliable data about eye movements can be obtained through an eye tracker, that is a 
device (similar to an ordinary LCD monitor in its appearance) able to detect the user's 
gaze, usually when looking at a screen [4]. Eye movements occur as sudden, almost 
instantaneous, “saccades” (lasting less than 100 ms), followed by “fixation” periods of 
about 100-600 ms, during which the eye is almost still. According to the so-called “Eye-
Mind Hypothesis” [5], there is a direct correspondence between the user’s gaze and his 
or her point of attention. As demonstrated in some experiments [6], while it is possible 
to move one’s attention without shifting the gaze, it is not possible to move one’s gaze 
without shifting the attention, which is therefore strictly correlated to eye behavior. In 
particular, the vision process can occur both overtly and covertly [7], and it is just this 
last “vision modality” that is strictly related to a person’s cognitive and psychological 
processes. Potentially, proper eye parameters can thus be exploited for a soft biometry 
which identifies, if not always the specific individual, at least groups of possible persons 
or classes of cognitive and emotional states. 

The “scanpath” (i.e. the sequence of fixations acquired by an eye tracker during a 
vision process) obtained from the observation of images or other kinds of content in 
both overt and covert vision processes is one of the main sources of information for 
biometrics based on eye behavior. For example, simple forms of explicit 
authentication require the user to fixate some areas of the screen in sequence, thus 
creating a sort of visual “PIN”. Implicit authentication, in which the user can watch 
wherever he or she wants on the screen (for example when observing a photograph), 
is much more complex. Although it is very difficult to find one-to-one 
correspondences between eye data and the subject, soft biometrics is however 
possible (see for instance [8]). The focus of this paper is specifically on verifying the 
conjecture that the way an individual looks at an image—specifically, at a head 
shot—might be a personal distinctive feature, albeit possibly a weak one. In 
particular, a new Gaze Analysis based Soft-biometric (GAS) is investigated.  

2 Data Acquisition and Processing 

A specific device, namely Tobii 1750 remote eye tracker, was used for data 
acquisition. It integrates all necessary components (camera, infrared lighting, etc.) 
into a 17’’ LCD monitor (1280×1024 resolution). Data have been processed in order 
to have compact representations easier to compare with each other. Images employed 
in the experiment as stimuli, represent human faces. Each headshot has been 
segmented into significant areas of interest (AOIs). In order to attempt identification, 
a metric is needed to quantify distance between vectors. Even if several metrics have 
been investigated (Euclidean, Jaccard, Spearman, Cityblock, Cosine, and 
Correlation), we only report results for the Euclidean and Cosine distances, as they 
provided the best recognition accuracy. 

2.1 Data Acquisition 

In the Tobii device, five NIR-LED (Near Infra-Red Light Emitting Diodes) light eyes 
up producing reflection patterns. An image sensor records pupil position and  
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corneal-reflections to determine eyes position and the gaze point. With an accuracy of 
0.5 degrees and relatively high freedom of movements, the system is ideal for real-use 
settings, where it would be intolerable to constrain users too much in their activities. 
For correct use of the system, at least one eye (better if both) must stay within the 
field of view of the infrared camera, which can be represented as a box with size 
20×15×20 cm placed about 60 cm from the screen. 

The sampling frequency of the device is 50 Hz (that is, the user's gaze coordinates 
are acquired 50 times a second). The Tobii ClearView gaze recording software was 
employed to define stimuli (still images, slideshows, videos, etc. to be presented to 
the subject), record and manipulate gaze data. The Tobii ClearView software acquires 
50 raw gaze coordinates per second, from which fixations are then obtained 
(characterized by coordinates, duration and timestamps). For the purpose of our 
experiments, a fixation was considered a sequence of successive samplings detected 
within a circle with a 30 pixel radius, for a minimum duration of 100 ms. The 
ClearView software also allows to obtain two useful graphical depictions, namely 
gazeplots and hotspots. While a gazeplot displays the sequence of fixations of a user, 
in the form of circles with areas proportional to fixation times, a hotspot uses color 
codes to highlight those screen portions in which there are high concentrations of 
fixations – and consequently have been watched most. Gazeplot circles are numbered, 
thus clearly indicating the fixation order. A further output of the eye tracker is the 
gaze replay, which dynamically shows the evolution of fixations and saccades (fast 
eye movements) with time. A system output example is given in Figure 1.  

 

Fig. 1. A system output example: a gazeplot on the left and the corresponding hotspots on the 
right 

2.2 Feature Extraction 

As input images used as stimuli are all faces, it has been possible to define a limited 
set of AOIs which are always the same for all the observed photos, even if their 
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locations and dimensions can lightly change depending on the specific image. For this 
reason, GazePoint coordinates have been normalized and quantized according to the 
AOIs. Doing so, the size of the feature vector is fixed in advance and equals the 
number of AOIs. In particular, each AOI is assigned an element into the feature 
vector, which represents the total time spent looking at that AOI. It is worth noting 
that, at present, our feature vector does not take into account the number of visits for 
each AOI. If an observer spends some time on an AOI, quits and goes back on it later, 
only the total amount of time spent by the observer on that AOI is considered and 
computed by totaling up durations of both observations. Future enhancement of GAS 
strategy may involve the number of visits as an additional information to better 
characterize the observer behavior. 

Figure 2 shows an example of a face sketch together with its AOIs marked with 
different colors and labeled with integer values. 

 

Fig. 2. A graphical sketch of the AOI mask 

Doing so, feature vectors show a conveniently uniform representation that can be 
summed over observers as well as over subjects. That allows the fixation behavior of 
an observer to be modeled by averaging his or her feature vectors extracted from 
given set of face images used as training. In other words, the average feature vector 
over all training face images provides a description of the way that observer looks. In 
Figure 3, 16 feature vectors with a length of 17 AOIs are depicted for one of the 
observer involved in our experimentation (Observer 6). The bold line represents the 
average duration of fixations on each AOI computed over all 16 feature vectors. 
Different fusion strategies have been also investigated such as maximum, minimum 
and product rule; however the average value provided the best recognition accuracy in 
our experimental sessions. 
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Fig. 3. Plots of feature vectors extracted from the gaze analysis of a given observer. Each 
vector refers to the observation of a single face image, while the (red) bold line represents the 
corresponding fixation model. 

2.3 Matching 

A small pool of face images that have been selected as training set is submitted to 
each observer and his/her fixation model is computed by averaging all corresponding 
feature vectors. A new observer is enrolled into the system by computing his/her 
fixation model, while the collection of all fixation models (one for each enrolled 
observer) constitutes the system gallery. When an observer asks for an authentication 
operation, a face image (different from that used for training) is submitted to him/her 
and the corresponding feature vector is then extracted. GAS computes the Euclidean 
distance between this vector and all fixation models into the system gallery. If the 
minimum distance is less than a fixed threshold δ, the system finds a match and the 
observer is associated with the identity corresponding to the fixation model that 
provided this minimum value. Otherwise the user is rejected by the system. 

3 The Experimental Protocol 

A total of 88 volunteer testers (59 males and 29 females) took part in the trials, 
subdivided into the following age groups: 17-18 (11 testers), 21-30 (39), 31-40 (7), 
41-50 (15), 51-60 (7), 61-70 (8) and 71-80 (1). All participants reported normal or 
corrected-to-normal vision. 

Prior to the beginning of the experiment, the observers were informed about the 
fact that some images, without specifying their kind, would appear on the eye trackers 



 A New Gaze Analysis Based Soft-Biometric 141 

display, interleaved with blank white screens with a small cross at their center. Each 
test was preceded by a short and simple calibration procedure, lasting about 10 
seconds and consisting in following a moving circle on the screen. Participants were 
then instructed to look at the cross when the blank screen was displayed, and to freely 
watch wherever they wanted when the images were presented. The first blank screen 
was displayed for five seconds, while the others for three seconds. Each image was 
shown for ten seconds. 16 black-and-white pictures were used for the experiment, 
they contained close-up faces of 8 males and 8 females. Half of the faces (4 males and 
4 females) were of famous persons (mostly actors and actresses), while the others 
were of people unknown to the testers. 

The order of presentation of the 16 images was random. Behind the eye tracker 
there was a wall painted in neutral gray and the illumination of the room was uniform 
and constant. The tests were carried out in a quiet environment. On average, a single 
test session, including task explanation, device calibration etc., lasted a little more 
than five minutes. 

36 of the 88 participants were involved in a second test session performed after the 
first one (with the same images), and 16 other participants were also involved in a third 
test session. The total number of tests carried out in the three sessions was therefore 
140. Time intervals between the first and the second session, and between the second 
and the third session, ranged from a minimum of 5 days to a maximum of 9 days. As 
mentioned before, to compare observations Cosine and Euclidean metrics were used. 

4 Experimental Results 

The accuracy of the GAS system has been assessed in terms of Receiving Operating 
Characteristic curve (ROC), Equal Error Rate (EER) and Cumulative Match Curve 
(CMC). The ROC is a curve relating the Genuine Acceptance Rate and False 
Accepting Rate according to an acceptance threshold δ varying in the range [0,1]. The 
Equal Error Rate represents a sort of steady state for the system, as it corresponds to 
the point where False Acceptance Rate equals False Recognition Rate. The 
Cumulative Match Score at a rank n of a biometric identification system represents 
the likelihood that the correct identity is returned by the system among its top n 
answers. Thus the CMC is a curve representing the CMS with the rank ranging from 1 
to N, where N is the number of enrolled subjects into the system gallery. 

In all the following experiments, data acquired during the first session were used to 
enroll the observers, while observations captured during second and third sessions 
served as testing set.  

In the first experiment only one feature vector has been used to build the fixation 
model of each observer, that is the fixation model coincides exactly with that feature 
vector. In particular, for each of the 16 face images in turn, the observation coming 
from the first session was considered as fixation model, while those acquired during 
second and third sessions were used as testing query. For each observer, results have 
been averaged over all 16 face images. Figure 4, shows the CMCs and ROCs obtained 
by averaging results over all the observers. 
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Fig. 4. CMC and ROC curves of the GAS system when only one feature vector is used to build 
the fixation model and the Euclidean/Cosine distance is used for matching 

Looking at Curves in Figure 4 (upper left) and (upper right), it seems that 
Euclidean and Cosine distances reach comparable results. On the contrary, Figure 4 
(lower left) and (lower right) show a small improvement in both CMC and ROC when 
the Euclidean distance is used. Session 2 and 3 mainly differ in the time gap from  
session 1 which was used to enroll the observers, thus pointing out the Euclidean 
distance to be more robust with respect to changes of feature vectors over time. This 
is also confirmed when looking at Equal Error Rates of the GAS system that are 0.404 
and 0.415 for the Cosine and Euclidean distance respectively, when session 2 is used 
as probe and 0.432 and 0.355 when testing GAS with session 3. EERs also underline 
an improvement when using the Euclidean distance on session 3. For this reason, only 
the Euclidean distance is considered for next experiments. 

In the second experiment, the fixation model of each user was built by using all 16 
observations coming from the first session, while testing was performed by 
considering in turn one of the observations acquired during sessions 2 and 3 
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separately. Even in this case, results have been averaged over all face images 
belonging to the same session. Figure 5 reports the performance of GAS on session 2 
and 3 when the Euclidean distance is used for matching. 

 

 

Fig. 5. CMC and ROC curves of the GAS system on session 2 and 3 when sixteen feature 
vectors (session 1) were used to build the fixation model and the Euclidean distance was used 
for matching 

Figure 5 underlines that curves obtained exploiting the fixation model overcome 
those provided by a single feature vector in all cases. This is particularly noticeable 
for session 3 for which EER drops down from 0.408 (single feature vector) to 0.361 
(fixation model). In other words, the fixation model better describes the way an 
observer looks a face image over time, since it is computed as the average of a pool of 
feature vectors that were used for training. 

5 Conclusions 

In this paper, the way an observer looks at a face image has been investigated as a 
potential new soft biometric trait by designing a new Gaze Analysis based  
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Soft-biometric system, namely GAS. Results obtained in terms of recognition 
accuracy confirm the feasibility of this line of research, even if many ways of 
improving the GAS architecture still remain to be tread. Increasing the number of 
AOIs by including some kind of "extra" points of interest (birthmarks, accessories, 
wrinkles) can take into account for further regions that are occasionally relevant in 
attracting the observer attention. The process of creation a mask of AOIs may also be 
automated by using a Facial Feature Point Detection algorithm, so that each fixation 
will be assigned with the closest Facial Feature Point. Last but not least, information 
coming from the temporal sequence of scanpaths and recurrent points of eye rest can 
be considered as additional features. 
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Abstract. In this work we address the problem of detecting instances
of complex shapes in binary images. We investigated the effects of com-
bining DoG and Harris-Laplace interest points with SIFT and HOOSC
descriptors. Also, we propose the use of a retrieval-based detection frame-
work suitable to deal with images that are sparsely annotated, and where
the objects of interest are very small in proportion to the total size of
the image. Our initial results suggest that corner structures are suitable
points to compute local descriptors for binary images, although there is
the need for better methods to estimate their appropriate characteristic
scale when used on binary images.

Keywords: Shape detection, image retrieval, Maya hieroglyphs.

1 Introduction

The interpretation of ancient Maya inscriptions requires the identification of the
basic individual components (glyphs) of the Maya writing system. Currently,
this identification process is performed manually by experts, who often need to
consult printed catalogs [1], [2]. However, often the size of the individual glyphs
is considerably small in proportion to the size of a complete inscription, thus
making laborious the manual detection process.

The complexity of the manual detection process increases if we take into con-
sideration that, it is a common feature of the Maya writing system to arrange
glyphs at arbitrary position within the inscriptions. Therefore, the implemen-
tation of techniques for automatic detection of these complex glyphs requires
special attention. Fig. 1 shows and example of a Maya inscription.

One issue related to the automatic detection of Maya hieroglyphs, is that
currently, the amount of annotated data that is available remains limited, thus
making difficult the implementation of supervised learning methods.

In this paper we present the results of an evaluation of shape descriptors
for the automatic detection of Maya glyphs, using weakly annotated binary
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Fig. 1. Maya inscription from the archaeological site of Yaxchilan, Mexico. In a green
rectangle, there is an instance of syllable u used as ground-truth for the random block
bounded by the blue rectangle. c© Image provided by archaeologist Carlos Pallan (Uni-
versity of Bonn), we use this image with his consent.

images. We believe this work will have a positive impact on the daily work
of archaeologist diminishing the time required to decipher Maya inscriptions.
Namely, the contributions of this paper are:

1. The generation of a synthetic dataset of Maya syllables, which was gathered
to overcome the issue of only having few available instances in each visual
class. Because of the nature and visual complexity of its instances, this is a
unique and highly valuable dataset.

2. The approximation of the sliding-window detection approach by a retrieval-
based detection scenario. Our approach overcomes the issue of having only
few annotated data, which constrains the use of supervised learning methods.

3. The evaluation of two popular interest point detectors, and their combination
with two state-of-the-art image descriptors on the task of shape detection.
More precisely, the DoG [3] and Harris-Laplace [4] interest point detectors,
and the SIFT [3] and HOOSC [5] descriptors.

Note that the HOOSC descriptor builds on top of Shape Context (SC) [10], and
that was proposed to overcome some of its limitations when dealing with shapes
that are more complex than the brand logos SC was evaluated on.

The rest of this paper is organized as follows. Section 2 discusses the related
work in shape description and image detection. Section 3 introduces the dataset
we used in this work. Section 4 explains our experimental protocol. Section 5
discusses the results obtained with our approach. Finally, in section 6 we present
our conclusions and a discussion on the open issues.

2 Related Work

The representation of shapes is a research topic with long tradition [6], [7], [8],
[9]. In a nutshell, shape descriptors differ according to whether they are applied
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to contours or regions, and whether they describe global or local patterns of
the shapes. For instance, descriptors based on moments are relatively easy to
compute, and they are robust against location, scale, and rotation variations
[6]. And Fourier descriptors work well for simple shapes of convex contours [7].
However, both of them perform poorly with affine transformations, and for com-
plex shapes whose instances have many local variations. Also, they need efficient
approaches to normalize descriptors derived from different shape signatures [8].

Shape context descriptors [10] incorporate robustness against affine variations,
and are able to deal with shapes of high visual complexity [5]. However, the size
of the bounding box containing the shape of interest is of high relevance for the
normalization, which in principle is unknown on a detection setup. Therefore,
they are not suitable for detection purposes.

Several approaches have shown success in the task of detecting objects on
gray-scale images [11]. The common framework for image detection implements a
sliding-window, in which a classifier is used to evaluate sub-windows and decides
whether or not they contain the element of interest. However, such methods
require having enough amount of data to train the classifier. Another limitation
for using traditional gray-scale oriented approaches [3], is that they rely on local
regions of interest whose size is estimated using the information provided by
local intensity changes [4], and this information is absent in binary images.

Common approaches to deal with the problem of detecting shapes address
these issues by relying on shape information estimated upon gray-scale images,
i.e., by extracting contours and local orientations based on the local gradients
of intensity images rather than using binary images [12]. For instance, using a
networks of local segment as descriptors, and performing detection of shapes
belonging to classes that are relatively easy to differentiate in visual terms [13].

In contrast, in this work we address the problem of detection of complex
shapes that exist as binary images. These shapes belong to visual classes that
exhibit high levels of both inter-class similarity and intra-class variability, thus
making the problem more challenging. Also, we implement an ad-hoc approach
to address the issue of having limited amount of data to train a classifier.

3 Dataset

We use blocks randomly segmented from very large inscriptions to have a better
control over the experimental setup. The reason for this is that the inscriptions
are very sparsely annotated relatively to their size and content, such that there is
a high probability of detecting non-annotated true-positive instances. With this
purpose, we generated three set of images: ground-truth, positive, and negative
instances.

More specifically, we followed a five-steps process for data generation: (1)
First, we chose 24 visual classes of syllabic Maya hieroglyphs, and for each of
them, we manually located 10 different instances on a large collection of inscrip-
tions (thus, 240 instances). We labeled this set as ground-truth instances. The
reason to choose only 24 visual classes is because they correspond to the hiero-
glyphs that were most commonly used, thus facilitating their manual location
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and segmentation. (2) Then, we generated a random block for each ground-truth
instance. This generation of random blocks consisted in segmenting a sub-window
containing the ground-truth itself plus a surrounding area, with the restriction
that the left and right margins surrounding the ground-truth had a random
size between one and four times the width of the respective ground-truth, while
the top and bottom margins have random sizes between one and four times
the height of it. The decision to use such values is to generate random blocks
that contained enough visual information around the ground-truth, such that
the challenge of a realistic detection setup is kept. Fig. 2 shows the details of
the random block highlighted in Fig. 1. (3) The next step consisted in anno-
tating the random blocks, such that the bounding box of each ground-truth is
known, relative to the random block and not to the original large inscription,
i.e., once a random block was segmented, we annotated the coordinates x and y
where the ground-truth bounding box starts, and its corresponding width (w)
and height (h). (4) Later, we generated 20 variants of each ground-truth by ran-
domly shifting the position of its bounding box up to 0.2 times its width and
height respectively, and we annotated the location (x, y, w, h) of these variants.
This resulted in 200 instances per syllabic class that we labeled as positive. (5)
Finally, for each segmented random block, we annotated the location (x, y, w,
h) of all the existing bounding boxes that are of the same size as its respective
ground-truth, but that do not overlap with it. This last part resulted in 6000+
bounding boxes that we labeled as negative instances. On average, each block
contributed with 26.1 ± 16.0 negative instances.

Fig. 2. Random block extracted from the inscription shown in Fig. 1. The ground-
truth corresponds to an instance of syllable u, and it is inside the green rectangle,
the positive instances are marked with blue rectangles, and the red rectangles indicate
some of the negative instances.

In summary, the dataset is composed by 24 syllabic classes, in total containing
240 ground-truth instances (10 for each syllabic class), 4800 positive instances
(200 for each syllabic class), and 6000+ negative instances that do not belong to
any of the positive classes. By annotating the images in this way, we turned the
traditional detection approach based on sliding-windows into a retrieval-based
approach. This change avoids the risk of detecting non-annotated true-positive
instances, and resulted in fast detection experiments, although at the price of
non-exhaustive scanning of the large inscriptions.
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4 Experimental Protocol

This section explains the experimental protocol followed to evaluate the detec-
tion performance achieved by using DoG and Harris-Laplace interest point, and
combining them with the SIFT and HOOSC descriptors. Table 1 summarizes
the combinations we evaluated.

Table 1. Tested combinations of interest points and local descriptors for detection of
Maya syllables

Name Interest points Descriptor Input format

DoG-SIFT DoG SIFT shapes with thick contours

DoG-SIFT-thin DoG SIFT shapes with thinned contours

DoG-HOOSC DoG HOOSC shapes with thinned contours

HarrLapl-HOOSC Harris-Laplace HOOSC shapes with thinned contours

For the DoG and SIFT implementations we used the OpenCV libraries, and
we implemented the Harris-Laplace and HOOSC methods in Matlab. Since the
HOOSC descriptor was developed to deal with medial axes of shapes, and with
the purpose of comparing the two descriptors, we also computed DoG points
and SIFT descriptors for the thinned versions of the shapes, as shown in Table
1. Namely, we performed our experiments under the following six-steps protocol:

1. Interest point detection: First, we detected points of interest (DoG or
Harris-Laplace), along with their characteristic scales and local orientations
on the random blocks. For the computations of interest points we considered
each random block as a whole (i.e., the points of interest were not computed
individually per each bounding box), thus avoiding potential boundary ef-
fects as in a common detection setup.

2. Description: Second, we computed the local descriptors (SIFT or HOOSC)
using the point’s characteristic scales and local orientations. This computa-
tions were also performed over each complete random block.

3. Estimating visual vocabularies: After computing the sets of descriptors
for all the random blocks, we randomly drew 1000 descriptors (SIFT or
HOOSC) from each visual class and clustered them into 1000 “words”. To
do so we used the k -means clustering algorithm.

4. Indexing: Then, we constructed bag-of-visual-words (bov) representations
individually for each bounding box. The bov were constructed taking into
account only those points whose characteristic scale was relevant within the
current bounding box, thus excluding points that might contain more in-
formation about the exterior than about the interior of the bounding box.
Therefore, we excluded: (1) points whose scale is much larger than the bound-
ing box, and (2) points near the the edge of the bounding box and whose
scale only intersects a small proportion of it. More specifically, we excluded
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all those points whose ratio of intersection r = A/ (2s)2 was below 0.5, where
s is the characteristic scale of the point, and where A is the intersection area
between the characteristic scale and the current bounding box.

5. Detection: After computing the bov representation of each bounding box,
we computed the euclidean distance from each ground-truth’s bov against
the bovs of all the positive and negative bounding boxes extracted from the
random blocks of the same class as the current ground-truth, i.e., we per-
formed detection on weakly annotated random blocks, looking for instances
for which we know they are present inside a given random block. Note that we
excluded the random block that contains the current ground-truth, as itself
and all its positive variants are easily detected. In practice, each ground-
truth is expected to have smaller distances to 189 bounding boxes (the other
9 ground-truth instances plus their 180 positive instances) than to the neg-
ative instances (on average, 234.8 negative bounding boxes per class). Thus
our detection method is not a classical exhaustive sliding-window but an
approximation based on a retrieval approach.

6. Evaluation: Finally, we ranked all the bounding boxes based on the com-
puted distances, and evaluated the detection performance in terms of,

– ROC curves. Comparing the mean average detection-rate (mA-DR) ver-
sus the mean average false-positive-rate-per-window (mA-FPPW) at var-
ious threshold values.

– Curves showing the average-precision achieved at different top-N posi-
tions of the ranked subwindows.

– The mean Average Precision (mAP).

Note that the HOOSC descriptor, as described in [5], has five main character-
istics. Namely, (1) it uses thinned versions of the shapes, (2) estimates local
descriptors only for certain locations (termed pivots) with respect to whole set
of points in the thinned shapes, (3) computes an histogram of local orientations
in each of the regions of a polar grid around each pivot, (4) in turn, the spatial
scope of the polar grid is defined as a function of the average pair-wise distance
between all the point in the thinned shape, and (5) the explicit relative position
of the pivot to be described may be used as a part of its own descriptor.

These characteristics of the HOOSC descriptor work well in tasks such as
classification and retrieval of shapes that have been previously segmented and
where the instances are not rotated or reflected. However, such assumptions
are not true in the case of a detection setup. For our experiments, it was not
possible to compute the spatial scope of the polar grid as a function of the pair-
wise distances of the contour points, as the correct size of the bounding box
is unknown a priori, and evaluating all possible sizes would result impractical.
Therefore, we made use of the characteristic scale of the interest point (DoG or
Harris-Laplace) at which the descriptor is computed. More precisely, the polar
grid we implemented has two local rings with boundaries at 0.5 and 1.0 times
the characteristic scale of the interest point. Also note that we did not use the
explicit relative position of the pivots in their description, as the size of the
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candidate bounding boxes is assumed to be unknown, and also because some
elements might be rotated within the inscriptions.

5 Results

The ROC curves in Fig. 3 show that the use of DoG points with thinned contours
gives detection rates close to chance, both with SIFT and HOOSC descriptors
(green and red curves, respectively). This observation is not especially surprising
as binary images lack of intensity information which is the main clue to localize
DoG interest points and to estimate their characteristic scale. The motivation
to use DoG points in thinned shapes was based on the high frequency of blob
structures present in the Maya syllables. However, some times of the DoG interest
points correspond to large blob structures that encompass visual information
beyond the locality of the glyph of interest, which in practice, were excluded as
explained in section 4. This in turn, resulted in poor shape representations.

Fig. 3. ROC curves showing the detection performance of different combinations of
interest point detectors and shape descriptors

Note that the detection rate is relatively increased with the estimation of DoG
points on the original shapes that have thick contours (blue curve in Fig. 3),
this is mainly explained by the used of the Gaussian convolutions that smooth
the thick contours and approximate intensity values on the resulting image.
Moreover, the use of Harris-Laplace interest points resulted in a slightly increased
detection rate when used on thinned shapes (see cyan curve Fig. 3).

In terms of retrieval precision, the relative difference among the four methods
remains proportional to their ROC curves, as shown in Fig. 4a. The slight peak in
the retrieval precision at position 21 results because some classes have instances
very similar to one another, such that for a given query (ground-truth instance),
the 21 bounding boxes (ground-truth + positive instances) of (at least) one
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relevant random block are well ranked at the top of the retrieved vector. To
better illustrate this, we recomputed the average precision regrouping the ranked
vectors into two sub-groups: one with the queries whose precision curves remain
equal to 1 at the 21-st position, and the other with the remaining queries. These
results are shown in Fig. 4b, where the solid curves (named XXX-01) show the
average precision for the first set, and the dashed curves (named XXX-02) show
the average precision of the second set. This said, some visual classes are very
easy to retrieve, whereas some others are quite hard.

(a) Average precision at top N (b) Split average precision at top N

Fig. 4. Average retrieval precision achieved by the different combinations of interest
point detectors and shape descriptors. (a) ROC curves, and (b) mean Average Preci-
sion curves at top N, plotted for different combinations of interest points and images
descriptors evaluated in detection experiments.

The cyan solid curve in Fig. 4b corresponds to HOOSC descriptors computed
at Harris-Laplace interest points. Note that this curve remains with good pre-
cision values at the 40-th position of the top N vector. Thus indicating that
this combination of interest points and descriptor works well in general terms.
To summarize the retrieval performance of the tested combinations, we present
their mean Average Precision (mAP) in Table 2. Note that the use of corners as
interest points achieves better performance than blob structures. Finally, Table
3 shows visual examples of the detection obtained using Harris-Laplace points
with HOOSC descriptors.

Table 2. Mean average precision (mAP) for the combinations of interest points and
local descriptors tested for detection of Maya syllables

Method DoG-SIFT DoG-SIFT-thin DoG-HOOSC HarrLapl-HOOSC

mAP 0.614 0.449 0.440 0.646
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Table 3. Visual examples of detection with Harris-Laplace interest points and HOOSC
descriptors. The first random block in each row contains a query inside a blue rectangle
(ground-truth). The next four random block correspond to the four most similar bound-
ing boxes according to the method, where green rectangles indicate correct detection,
and red rectangles indicate erroneous detection.

Top
Query 1 2 3 4

6 Conclusions

In this work we explored an initial approach for detection of complex binary
images (syllabic Maya hieroglyphs), evaluating the performance of DoG and
Harris-Laplace interest points combined with SIFT and HOOSC descriptors.

We presented a controlled retrieval-based framework for detection that can
be used as an alternative resource when the data is sparsely annotated, thus
avoiding the risk of detecting non-annotated true-positive instances. This setup
also avoids the exhaustive scanning of the traditional sliding-window approach.

Our results show that regardless of the local image descriptor, the use of
DoG points with thinned contours gives detection rates close to chance as a
consequence of the lack of intensity information in binary images. A slightly
better performance is achieved by using thicker contours since the Gaussian
smoothing approximates some sort of intensity information. Moreover, the use
of corner detectors seems suitable for local description of complex binary images,
as shown by the detection rates obtained by the Harris-Laplace interest points.
In terms of retrieval performance, the HOOSC descriptor achieves competitive
results, specially when it is combined with Harris-Laplace interest points.
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It is important to remark, that this initial stage suggests the need for interest
point detectors specially tailored for binary images, such that regions of interest
are located within the shape along with their characteristic scales, and therefore,
shape descriptors that have proven successful with segmented shapes can be used
also for detection.
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Abstract. We propose a person re-identification non-learning based ap-
proach that uses symmetry principles, as well as structural relations
among salient features. The idea comes from the consideration that lo-
cal symmetries, at different scales, also enforced by texture features are
potentially more invariant to large appearance changes than lower-level
features such as SIFT, ASIFT. Finally, we formulate the re-identification
problem as a graph matching problem, where each person is represented
by a graph aimed not only at rejecting erroneous matches but also at
selecting additional useful ones.

Experimental results on public dataset i-LIDS provide good perfor-
mance compared to state-of-the-art results.

Keywords: Person Re-identification, Graph Matching, Symmetry.

1 Introduction

Symmetry detection is highly relevant in pattern recognition. Indeed, the de-
scription of a figure may be different when it is embedded in a context with
horizontal or vertical symmetry [13]. Besides, in tasks requiring the completion
of partially occluded visual stimuli, subjects tend to produce systematically sym-
metrical figures [11]. The concept of symmetry is not univocal: various kinds of
properties of an image are defined as symmetry [24] [22]. As instance, a figure
has rotational symmetry when it can be rotated less than 360◦ around its central
point, or axis, and still matches the original figure.

This cue is peculiar in person re-identification where the problem consists in
recognizing people in different poses from images coming from distinct cameras.
This is an important task in the video surveillance, where large and structured
environments must be supervised (such as airport, metro, station or shopping
centers) and it becomes more critical when the cardinality of gallery set increases.

Like [5] we use symmetry principles, but not in a global exception, that is to
say symmetry detected at high value of scale. In person re-identification context,
global symmetry is not a good descriptor for pedestrian images, where there is
often high variation of pose. On the contrary, we use local symmetry as descriptor
like [2], based on the consideration that, at different scales, it is potentially
more invariant to large appearance changes than lower-level features such as
SIFT. Indeed, the symmetry feature combined with a texton-based feature is
high discriminative [8].

J.A. Carrasco-Ochoa et al. (Eds.): MCPR 2013, LNCS 7914, pp. 155–164, 2013.
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According to the idea that an image can be described at the higher level
in terms of a nested hierarchy of local symmetries, in this paper we present a
novel graph matching approach to the problem aimed at evolving an initial set
of correspondences computed with the local features, as a kind of compromise
between the constraints imposed by both the local features and the structural
relations. The vertices are the image key points detected by the SIFT (specifically
we adopt ASIFT [21]), enriched by features based on color, texture, and local
symmetry. The cost of an edge joining two vertices represents a measure of their
dissimilarity. Therefore, the problem of Person Re-Identification is formulated
as a graph matching problem. Our approach is an appearance-based method
which differs from the state of art: i) unlike [3] [15] we give great weight to local
features; ii) we do not adopt spatio-temporal information such as [12] [10]; iii)
our method is non-learning based one, unlike [26] [1] [16].

The paper is organized as follows: the Sec. 2 deals with local features; in the
Sec. 3 we provide details about how graphs are obtained from images and how
they are compared. In Sec. 4 we show testing results on public dataset ILIDS
and finally in Section 5, some conclusions are drawn.

2 Feature Extraction

First of all, we start with the phase of enhancement applying a Gaussian filter
on the image. Then, we transform each image I in the HSV space. In order to
make the feature based on color invariant to lighting changes, we equalize the
histogram of the V component.

Later, for each pedestrian we detect image asymmetry axes. We obtain the
axes of asymmetry combining opportunely two operators: chromatic bilateral
operator C and spatial covering operator S. Given two regions, the former C
calculates the color distance, the latter S calculates the difference of FG (fore-
ground). The asymmetry axes separate regions corresponding to human body’s
parts (head, trunk, and legs). The first axis, which is located at height iTL,
separates regions with different chromatic contents but similar areas. These re-
gions correspond to t-shirt/pants or suit/legs, for example. The second axis is
calculated taking into account only the areas. This axis separates regions corre-
sponding to head/body and iis located at height iHT .

This step assumes that the background has been subtracted from each pedes-
trian image. We use for each image I a mask Z generated through the STEL
model [7].

We have chosen to detect features separately because each region is charac-
terized by contrasting aspects. Specifically, features based on color, symmetry,
and texture are extracted. They can discriminate the trunk part from the legs
part, as shown in Fig. 2, where the first three PCA components of feature vec-
tors derived from the same region are plotted: the head components are red; the
trunk components are green; the legs components are blue. It clearly appears
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(a) (b) (c) (d)

Fig. 1. Fig(a) Image 5003 in ILIDS dataset, Fig(b) Equalized Image, Fig(c) Back-
ground Subtraction, Fig(d) Asymmetry Axes at height iHT and iTL

that blue and green components are concentrated in clusters. To resume, this
experiment shows that the features are dicriminative; they can distinguish the
trunk region from the legs region.

Fig. 2. First three PCs from head (in red), trunk (in green) and legs (in blue)

2.1 Local and Multiscale Symmetry

The property of being symmetrical finds correspondence in size, shape, and rel-
ative position of parts on opposite sides of a dividing line or median plane or
about a center or axis. In particular, we deal with bilateral symmetry and the
symmetry detection algorithm that has been considered in the present paper,
named Kondra&Petrosino algorithm, was one of the top winners of the ”Sym-
metry Detection from Real World Images” competition at IEEE CVPR2011[17].
We specifically take advantage of a measure obtained by using correlation with
the flipped image around a particular axis. Indeed, in any direction, the opti-
mal symmetry axis corresponds to the maximal correlation of a pattern with its
symmetric version [4].
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Instead of taking every point in the image, we downsample original images to
increase speed by filtering with circular steerable filters [19]. Also, reflecting the
patch around both x-axis and y-axis will save half the rotations of the patch.
For color images, the patch is reflected with respect to the three bands before
doing the correlation.

Fig. 3. Filters

2.2 Texture

Texture features are based on the technique proposed in [9]. Specifically, a two-
dimensional patch is “seen” for each interest point. The method uses 3 spatial
filters of dimension 13 × 13 as shown in Figure 7. The first is a Gaussian filter
with σ = 0.5, the second is a LoG filter with σ = 0.7. Finally, the third filter is
of the form

F (r, σ, τ) = cos
(πτr

σ

)
e

r2

2σ2 (1)

In this case σ and τ are equal to 2. Each two-dimensional patch is convoluted
with these filters, later thresholded so as to keep only the positive responses.
The obtained binary image is denominated the “on” response. Thus, three binary
images were obtained, and then one for each filter. The “on” responses are further
convoluted with average filters, respectively of size 3×3 and 6×6 so as to obtain
a multi-scale representation. At the next step, images are converted to grayscale
and the intensity is normalized to have zero mean and variance equal to one. All
filters have been normalized using a L1 normalization, so that the responses of
each filter are in the same range, i.e. each filter Fi is divided by the ‖Fi‖.

3 From Person Re-identification to Graph Matching

Each salient location detected by ASIFT [21] is enriched by the features described
above. Each pedestrian image is rapresented by a graph, in order to consider
structural relations. Furthermore, a graph can take into account the dissimilarity
between keypoints. So the problem of person re-identification becomes a problem
of graph matching.
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3.1 Graph Construction

Usually a Graph G is a 3-tuple G = (V,E, Z) where V is a set of vertices, E ⊆
V × V is a set of edges, where e ∈ E , e = (vi, vj) is an edge joining nodes vi,vj
∈ V , and Z is a set of vectors, where zi ∈ Z is the vector of attributes associated
to node vi ∈ V.

We build the graph for each pedestrian image as follows: vertices are the
image key points detected by the ASIFT algorithm. We associate to each vertex
a feature vector that contains features based on color (R,G,B), texture, local
symmetry and ASIFT descriptor Pi = (Xi, Ri, Ui), where Xi = (xi, yi) is its 2D
location, Ri = (ri, αi) its scale and orientation (in radians from −π to π ) and a
vector of length 128, i.e. Ui = (Ui,1, .., Ui,128), including information about the
local texture on image.

The edge cost represents a measure of the joined vertex dissimilarity. We
build an edge from vertex vi to vertex vj if dist(Zi, Zj) = min(dist(Zi, Zk)),
k = 1, . . . ,m (m is the number of vertices) where dist is the Euclidean distance.

(a) (b) (c) (d)

Fig. 4. Graphs of some ILIDS images: Fig(a) 3001; Fig(b) 5003; Fig(c) 13001 and
Fig(d) 28005

3.2 Graph Matching

One main point is how to measure the contribution of matching one node to
another with regards to the structural relations.

We adopt a revised version of the algorithm reported in [18]. The distance
between the vertices is obtained through the combination of two measures: the
measure of similarity and the measure of consistency. The former is the Eu-
clidean distance between the feature vectors; the latter takes into account the
links between the vertices. The algorithm calculates the matching matrix. The
matching matrix S is a binary matrix defining an injective mapping between two
graphs GD = (VD, ED, ZD, ) and GM = (VM , EM , ZM , ) . An element Sij ∈ S is
set to 1 if node vi ∈ VD is matched to node vj ∈ VM and 0 otherwise. A measure
of structural consistency for the match vi → vj is given by:
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Qij = exp

[
μ
∑
k∈Vd

∑
l∈Vm

DikMjlSkl

]
where μ is a control parameter to avoid local minima. A cleaning heuristic is
needed to obtain a binary matching matrix SS that selects the matches corre-
sponding to the highest coefficients according to a parameter ρ. We set the value
of ρ = 0.8 (to control the acceptance rate) and the valure of control parameter
μ = 0.15. In fig. 4 we show the correspondences detected by the algorithm.

(a) (b)

Fig. 5. Results achieved by the graph matching algorithm: Fig. (a) 0001001 vs 0001003;
Fig. (b) 0002002 vs 0002004

4 Validation and Testing

We evaluate performance of our method on the i-LIDS MCTS dataset [20] depict-
ing a real scenario observed by a multi-camera CCTV network monitoring the
arrival hall of an airport. i-LIDS MCTS contains 479 images of variable size, for
a total of 119 pedestrians. Each pedestrian is characterized at least by 2 images
representing the same person wearing the same clothes. Such scenario is affected
by several events such as illumination changes, occlusions, shape deformation
and image blurring that make challenging the reidentification process.

4.1 Experimental Setup

We focus our attention on the challenging case MvsS, comparing our method
with methods at state-of-the.art. [5] proposes SDALF, an appearence method
that weights appearence informations extracted from different body parts, in
agreement with their distance from symmetry axis calculated over the entire
pedestrian image.

Zheng[25] tackles the MvsS case analyzing different types of visual features:
Concatenated Histogram, Concatenated Histogram SIFT, and CRRRO-BRO.

In this setup, images are scaled to 128x64 pixels and the probe set P is built
by selecting one image for each pedestrian randomly, while the gallery set G is
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composed by the remaining images. Each image pi ∈ P is compared with each
image gi ∈ G in order to evaluate the matching or score distance:

d (pi, gj) =α · dWH (WH (pi) ,WH (sj))+

+ β · dGRAPH (GRAPH (pi) , GRAPH (sj))
(2)

where WH (·) (Weighted Color Histograms) [5] is the concatenated HSV his-
togram extracted by splitting the image I into regions (head, trunk, legs) through
horizontal asymmetry axes as described in sec. 2. GRAPH (·) is the graph repre-
sentation of the pedestrian image as described in sec. 3.1 Vertices of the graph are
characterized by concatenation of visual features (R, G, B, KIMA, TEXTONS1,
TEXTONS2, ASIFT) and spatial information (x, y), resulting in a final feature
vector F ∈ R138. Furthermore, KIMA is a measure of symmetry obtained by se-
lecting maxima correlation between image patches N ×N defined by flipping an
image region over an axes having M possible orientation and centered in (x,y).
In our experiment we set N = 8 and M = 12. TEXTONS1 and TEXTONS2 are
textural filters response evaluated in (x, y) as described in sec. 2.2. dGRAPH is
the graph similarity distance described in sec. 3.1, α and β are weighting values
used to give different emphasis to dWH and dGRAPH .

4.2 Experimental Results

Once all the matches have been evaluated, for each pi ∈ P , we generate the
ranking list composed by elements of G in ascending order, whose first element
rapresents the more similar pedestrian to pi. In our experiment we obtain the
best performances with these weighting values: α = 0.4, β = 0.6. In fig. 6, CMC
and SRR curves are reported. CMC [6] represents the re-identification rate of the
system in function of rank position. Such measure is the analogous to the Roc
Curve for detection problem [23]. The SRR or SDR (Synthetic Disambiguation
or Reacquisition Rate) converts a performance metric of size N to one of size
M , showing the probability that any of the M best matches is correct [6]. SRR
and CMC are related by:

SDR(M) = SRR(M) = CMC(N/M) (3)

We repeat the experiment MvsS described above 100 times in order to build the
CMC curve. As depicted in fig. 6, we achieve a percentage of 48% for rank 1 re-
identification, producing results quite similiar to state-of-the-art method SDALF
and outperforming Concatenated Histogram SIFT, Concatenated Histogram and
CRRRO-BRO.

Such results are very promising since we are enriching ASIFT feature with a
descriptor of simmetry that should be very discriminative also in condition of
strong occlusions, where the SDALF method clearly should fail since it is based
on global simmetry analysis. Unfortunally, the dataset we have utilized to eval-
uate re-identification methods, is not designed specifically on strong occlusions.
State-of-the-art results are relative to the generic reidentification problem, where
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the number of occlusion is relatively low compared with the number of images.
Our method works correctly on a strong occlusions, such as shown in figure 6
where it obtains rank 1 re-identification .

(a)

(b)

Fig. 6. Comparison in term of CMC (a) and SDR (b) on iLIDS MCTS dataset

Fig. 7. Example of occlusion
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5 Conclusions

We report a new feature detector and descriptor based on ASIFT enriched by lo-
cal symmetries detected densely across image and scale space, collected together
in a graph representation. The basic features are designed for finding corre-
spondence between difficult image pairs rich in symmetries, whilst the graph
representation should be able to catch structural relations.

A graph matching method aimed at solving the point-set correspondence prob-
lem, takes into account relative structural and geometrical measurements.

The descriptor and results on the i-LIDS MCTS dataset demonstrates that
the presence ASIFT feature enriched by local symmetries and structure of an
individual is very informative for re-identification. The idea appears completely
new, promising and opening a new perspective to the investigation of the oc-
clusion problem, that should be furtherly analyzed. There is room for further
improvements in accuracy, mainly for what concerns the tuning of parameter
values and a sensitivity analysis.
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Abstract. In this paper, we introduced a new video-based spatio-temporal iden-
tification system and we also presented our initial identity authentication results 
based on the spontaneous pupillary oscillation features. We demonstrated that 
this biometric trait has the capability to provide enough discriminative informa-
tion to authenticate the identity of a subject. We described the methodology to 
compute a spatio-temporal biometric template recording the pupil area changes 
from a video sequence acquired at constant light conditions. To our knowledge, 
no attempts were made in order to distinguish individuals based on the spatio-
temporal representations computed from the normal dilation/contraction  
condition of the pupil. In preliminary experiments, for the privately collected 
database, we observe that Equal Error occurs at a threshold of 5.812 and the  
error is roughly 0.4356%. 

Keywords: Spatio-temporal biometric template, spontaneous pupillary oscilla-
tions, hippus. 

1 Introduction 

In humans, the iris around the pupil is one of the few autonomic physiological effec-
tors that are immediately accessible to the eye. Eye-based biometric systems have 
some modalities: iris, retina, sclera veins, etc. [1, 6, 7, 8, 12, 16, 17, 18, 19,21], which 
sometimes are combined or fused, for example, using iris/retina features. This work 
introduced a spatio-temporal representation of the pupil dynamic features extracted 
from a video sequence acquired at constant external light conditions. This new ap-
proach employs the spontaneous pupillary oscillations as a liveness indicator by re-
cording the pupil area fluctuations from the video record (Fig. 1). The spatio-temporal 
biometric template that has been proposed to extract efficiently the uniquely identifia-
ble local dynamic features of the pupil is described in this work.  

Since the eye-based biometric systems have unique features in their templates, so 
far in the existing literature there is not any identification method that completely 
relies on the pupil itself. This may be perhaps due to the difficulty in extracting and 
representing the “exact” features of the pupil.  
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The goal of this study is to develop a spatio-temporal pupillary representation 
through the use of the spontaneous pupillary oscillations signals (extracted from a 
video sequence) that are specific to the pupil of different people, and acquired at con-
stant light conditions (without external stimuli). This natural dynamic behavior of the 
pupil will be the warranty that this template belongs to a living subject. The spatio-
temporal representation of the spontaneous pupillary oscillations satisfies the follow-
ing common biometric requirements: universality, distinctiveness, permanence and 
collectability. 

 
Fig. 1. Spontaneous pupillary oscillations as a biometric trait 

The major contributions of this work are: 
The acquisition of the video sequence of 50 subjects and the creation of our own pupil 
video sequence set, the design of the experiment and the algorithms to extract and 
represent the pupil spatio-temporal features, the evaluation and demonstration of the 
potential discrimination among subjects based on the spatio-temporal representation 
of the spontaneous pupillary oscillations, the proposal of a mechanism of liveness 
detection based on the natural spontaneous pupillary oscillations induced at constant 
light conditions.  

2 Background 

Biometric traits are the human characteristics (physiological or behavioral) used by 
biometric-based application like identity access management, access control, surveil-
lance, etc. [5]. The pupil is the circular aperture at the center of the iris which allows 
light from our environment to pass freely to the light-sensitive sensory cells of the 
retina. The size of the pupil is determined by the iris muscles, the radial dilator pupil-
lae and the concentric smooth muscle circles of the sphincter pupillae, which work in 
opposition to dilate (mydriasis) and constrict (miosis) the pupil. [3,4] 

The sphincter and dilator muscles are innervated by the Autonomic Nervous Sys-
tem (ANS) parasympathetic and the sympathetic pupillomotor fibers of the third 
cranial nerve, respectively. The sympathetic and parasympathetic systems work in 
opposition; a tonic activation in both systems balances each other to produce an aver-
age waking pupil-size in ambient illumination of 2-6mm, with an average of 5mm and 
a range of 1-9mm (Fig. 2). 
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Fig. 2. Muscles of the iris. Two opposite muscle groups within the iris of the human eye deter-
mine the aperture of the pupil. 

It has been hypothesized, that the muscles controlling the dilation and contraction 
of the pupil are anatomically proper of the individual. In other words, such a complex 
system could exhibit high degree of uniqueness. As the iris has a trabecular structure 
capable of altering its size according to luminous stimuli, it is assumed that this fea-
ture can be altered differently in each subject, or that the evaluation of the pupillary 
fluctuations pattern can contribute to the recognition of a particular subject [18]. It has 
been demonstrated that the pupil/iris dynamic feature (DF) is discriminating, reason 
by which may be employed for personal identification. In addition, the possibility to 
extract this DF from living irises could avoid attempts of fraud in personal identifica-
tion. [4,16,18].  

As it was demonstrated by John Daugman in 2004 [21], the pupil, in most cases, is 
not a perfect circle; it is better approximated by an ellipse. Because the shape of the 
pupil is controlled by muscles (trabeculae), the contraction and dilation can change 
the size of the pupil, however the shape of the pupil remains same. [6,18]. 

Infrared video pupillography (IVP) combined with a special image processing and 
analyzing software offers the possibility of noninvasive stable long time record of 
pupil area and detailed analysis of changes of spontaneous pupillary oscillations. Per-
son’s eyes provide several useful biometric features both for the high security and 
user convenient applications. [11, 15, 17, 19]. Arguably, the most important feature in 
facial expression and animation are the eyes. [19]. The size of the pupil is determined 
by the iris muscles, the radial dilator pupillae and the concentric smooth muscle cir-
cles of the sphincter pupillae, which work in opposition to dilate (mydriasis) and con-
strict (miosis) the pupil. [4,17,18, 19, 21] 

2.1 Spontaneous Pupillary Oscillations (HIPPUS) 

The pupil area of the human eye continuously undergoes to small temporal fluctua-
tions even in dark or under conditions of constant illumination, ranging in magnitude 
from 0 to 20%. This pupil activity, also called “hippus”, is a normal condition, is in-
dependent of illumination, convergence, or psychic stimuli (Fig.3). Hippus appeared 
to be spontaneous and seems most likely to occur when the subject is passive and left 
to himself. There is no doubt that hippus occurs in the absence of any light stimulus 
and in the pupils of both eyes, simultaneously and in phase.  [2, 9 10, 13, 14]. 
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As we had no preconceived hypothesis about whether and how the spatio-temporal 
features of pupillary signals are discriminative or not, in this work we present the 
preliminary verification results based on the spontaneous pupillary oscillations com-
puting a spatio-temporal template recording the pupil area changes from a video se-
quence acquired at constant light conditions. A prototype image acquisition system 
was designed and developed to capture the pupillary hippus. In this work, we could 
detect liveness using as involuntary information mechanism the spontaneous pupillary 
oscillations. Our preliminary experimental results on a private database containing 50 
subjects are presented. 

 

Fig. 3. Typical example of spontaneous Hippus. At constant illumination, the average diameter 
of the pupil decreases as slow oscillations appear. When oscillations cease the pupil diameter 
returns to its initial value. 

3 The Proposed Video-Based Method 

Still-image recognition is routinely covered by existing research studies. However, 
video-based recognition approach is a relatively new research topic. The pupil video-
based recognition method has superior advantages over the static image-based recog-
nition [20]. Firstly, the temporal information of pupil images can be utilized to facili-
tate the recognition task (the person-specific dynamic pupil characteristics can help 
the recognition). Secondly, more effective representations can be obtained from the 
video sequence and used to improve recognition results. Thirdly, the involuntary cha-
racteristic of the pupil will be employed as a liveness detector. Finally, video-based 
recognition allows learning or updating the subject model over time. 

Our proposed algorithm can represent the dynamic information of the spontaneous 
pupillary oscillations by a spatio-temporal biometric template and hence improve the 
recognition performance of the system. The proposed video-based biometric approach 
integrates a number of steps, each of which are explained in detail in the following 
sub-sections. 

Pupil video acquisition, extraction of the Region of Interest, pupil region segmen-
tation and representation, template matching. 

3.1 Pupil Video Acquisition 

A problem associated with the video-based technique is primarily that of getting a 
good view of the pupil. Head and eye movements can set up the image of the pupil 
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out of focus or out from the view field of the camera. So, if we want to obtain accu-
rate measurements of a human subject´s pupil, it is necessary that the subject remains 
absolutely still, thus, we employed a combined head/chin stand where the subjects 
rested their chin in such a way that the head position remains adjusted (Fig. 4). The 
study followed the tenets of the declaration of Helsinki. 

 
Fig. 4. Experimental setup used for the proposed system [22] 

The head/chin rest was mounted in a small table, approximately 20 centimeters in 
front of the infrared (IR) camera. In this way, the subject was able to feel comfortable 
and eventual eye movements would not appear. The alignment of the infrared camera 
was adjusted depending of the central position of the pupil in the screen. The accuracy 
of the IR video camera was greatly improved by fixing the head and eye position. 
[13,14]. Subjects were seated on a comfortable chair.  

When (infrared) light arrives to the user's eye, several reflections occur on the 
boundary of the pupil, the so-called Purkinje images. This reflex can compromise the 
image quality of the pupil to be analyzed and segmented, so we positioned the IR 
video camera on a fixed place and instructed the subjects to look at the IR LED (2 
mm in diameter) of the camera such that the reflex falls at the center of the pupil. 

To reduce fatigue, and the potential effects of head or eye movements, each stage 
lasted 10 seconds approximately. The recordings started when the pupil image is lo-
cated at the center of the screen camera and when the IR LED reflex appears at the 
center of the pupil. We acquired 20 infrared frames per video sequence per subject. 
Data were recorded from one eye only, typically the left eye. All the gray images 
were stored in *.jpeg format. 

Another challenge in this approach is related to the detection and definition of the 
dynamic features of the pupil related to the light conditions, with the best discrimina-
tion potential among the subjects. The light luminance level was controlled in a quan-
titative manner using the visible light LEDs placed on the back of the campimeter, at 
a number of discrete stimulus locations out of the visual field.   

We performed an exhaustive analysis on the spontaneous pupillary oscillations re-
lated to the ambient light conditions. After this, the selected luminance of the stimulus 
was 40 cd/m2. This was the highest luminance available on the experiment. As we 
were interested in evaluating the inter-person variations of the spontaneous pupillary 
fluctuations, we should factor out the possible influence of the light reflex in the pupil 
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(change in pupil size from the dark to light condition); therefore, complete dark adap-
tation was not necessary. In constant light condition, the amount of information ob-
tained from subject’s individual images is almost the same, so the data will be  
compatible.  

Pupil images were recorded and transferred frame by frame by means of a video 
capture board providing real-time digitizing along the video sequences. The video-
capture board was fitted by USB on a Pentium ® Dual-Core T4200 @ 2GHz and 4 
GB of internal memory, and with a MATLAB 7.10 (R2010a) implementation to  
obtain real time recordings of the movie. The image size is 480 x 640 pixels.  

 

        

Fig. 5. Samples of IR pupil images of 4 different persons; the bright spot in the middle of the 
pupil is the reflex of the infrared illumination LED used as the fixation point 

We also developed a Graphical User Interface (GUI) which provides a real time 
visual feedback of the pupil images that is actually acquired. This GUI has the follow-
ing functionality:  

Assist the user in correct positioning of the pupil at the center of the screen and of 
the light reflex at the center of the pupil before the video recording starts, acquires the 
video sequence of the user’s pupil, displays video sequences that were recorded pre-
viously, extracts the spatio-temporal representations from a given pupil video se-
quence, registers the user in the database along with the extracted spatio-temporal 
representation, checks whether a given video sequence of the pupil match any of the 
subject in the database, and updates a particular user’s entry in the database by  
re-computing the spatio-temporal representation. 

To preprocess the data, erroneous measurements were previously removed. These 
problems were caused mostly by involuntary blinking and in few cases from uninten-
tional head and eye movements. Fig. 5 shows some examples pupil images of our 
database.  

3.2 Extraction of the Region of Interest 

Commonly, eye images without preprocessing are used to detect pupil region. This 
takes more time to process the image and in biometric applications the time of analy-
sis plays an important role in the performance of the system. Therefore, before the 
feature extraction step, it is necessary to extract from the original images a specific 
portion to work with. This step is known as extraction of the Region of Interest (ROI) 
and let us to restrict the spatial image processing to the central region. This step re-
duces a lot the data amount without losing much useful information. This will speed 
up the following feature extraction and matching processes.  
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The proposed approach is based on the fact that all eyes’ pupils are black round 
shaped, are far less covered by the eyelids than the iris and are located mostly at the 
center of the image. For simplify the process, we excluded the external regions, be-
cause they contain information that can compromise the image evaluation, such as 
eyelashes, eyelids, and sclera. The proposed algorithm scans only on the expected 
pupil’s position. For finding the pupil region, the original image is reduced. For ex-
ample, given a grey level image, we will divide the image by four equidistant hori-
zontally and then by four equidistant vertically fringes, the first and last horizontal 
and vertical quarts are eliminated and we focus only on the central region. After this, 
a new image is provided with a clear pupil region that can be easily and quickly  
segmented and processed. 

3.3 Pupil Region Segmentation and Representation 

The low contrast between pupil and iris, usually, will harden the pupil boundary de-
tection process and decrease the accuracy of its detection. The textural contrast be-
tween sclera and iris is high; conversely the texture contrast between iris and pupil is 
low. The problem is further aggravated with the presence of light reflection in the 
pupil [15]. 

The proposed pupil segmentation scheme relies on the fact that the pupil is round 
and is typically much darker than its surroundings. This is done using some morpho-
logical operations with a suitable thresholding detection procedure. Thresholding 
pupil detection procedures refer to an image segmentation method manipulating the 
statistical properties of the image brightness probability distribution (histogram). 
Hence, the reduced pupil image is preprocessed through the successive application of 
two morphological operations. 

 

Fig. 6. Example of the image thresholding and pupil region segmentation method 

Fig. 6 illustrates the outcome of each step of the pupil region segmentation stage. 
The measurement of the pupil area frame by frame is saved as the spatio-temporal 
representation of the pupillary oscillations. By taking into account all the frames in 
the video sequence, we initially proposed a feature vector with 20 elements.  

 

    

Original Image Reduced pupil image Morphological opening Morphological closing 

   
Pupil region detection Pupil region Filling holes Thresholding 
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3.4 Matching 

After the extraction of features from pupil images, a matching metric is required to 
find the similarity between the probe and the gallery template. This metric should 
give one range of values when comparing templates generated from the same pupil 
(known as intra-class comparisons) and another range of values when comparing 
templates created from different pupils (known as inter-class comparisons). These two 
cases should give distinct and separate values so that a decision can be made with 
high confidence related to whether two templates are from the same pupil or from 
different pupils. The metric used for the proposed system is the Euclidean distance.  

4 Experimental Results 

4.1 Database Establishment 

A particular own database was created for this study. We studied 50 healthy young 
subjects between 24 and 45 years old (20 females and 30 males); most of the subjects 
were university students and employers. The consent to participate in this study was 
obtained from each subject after the nature of the procedure was completely explained 
to them. We collected 1000 grayscale left eye images from 50 persons, 20 from each 
person. The size of all eye images in the database is 480×640 pixels. Experiments 
were conducted in a quiet usability laboratory. The video sequences were collected in 
a resting condition with subjects seated on a comfortable chair.  

4.2 Evaluation of the Segmentation Method 

We visually evaluated the success of the proposed pupil thresholding and segmenta-
tion method for all the 1000 images. The pupil region was correctly detected in all the 
images getting a success rate of 100%. The proposed method is robust enough be-
cause: a) the head/chin rest avoid the involuntary head movements, b) the alignment 
of the IR camera guaranty that the pupil region is almost always at the center of the 
video frame and c) the pupil region is not affected by the eyelid and eyelashes noise. 
Evaluation of the inter-individual differences  

The spontaneous pupillary oscillation-based verification system was tested using 
our own database of 50 users. As was mentioned previously, the measurement of the 
pupil area frame by frame is saved as the spatio-temporal representation of the pupil-
lary oscillations. 20 images of each user’s pupil were used to compute the feature 
vector fusing it with the user’s abbreviation name and birthday and then were stored 
in the database. 

To better evaluate the inter-subject variability in spatio-temporal pupillary 
oscillations, it seemed useful to plot the individual feature template of 20 of the users  
using the Chernoff faces mapping the spatio-temporal dynamic features of the pupil to 
the attributes of the cartoon faces (area and shape of the face, length of the nose, 
location of the mouth, curve of the smile, width of the mouth, location, separation, 
angle, shape and width of the eyes, location and width of the pupil, and location, 
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angle and width of eyebrow). We found great inter-individual differences with regard 
to the extent as reflected in these cartoon faces.  

4.3 Experimental Results on Spontaneous Pupillary Oscillation Verification 

To obtain the verification accuracy for the spatio-temporal pupillary template, we 
computed the false acceptance rate (FAR) and false rejection rate (FRR) at different 
match thresholds. For this, each pupil video sequence is matched with the feature 
vector stored in the database associated with the claimed identity. The verification is 
positive if the distance between the query and the stored feature vector is lower than 
the threshold value, otherwise is considered as a non-matched vector. The FRR de-
creases from 0.102 to 0 whereas FAR increases from 0 to 0.9463 as the threshold 
value increases from 1 to 7. In a pilot experiment, for the privately collected database 
we noticed that the FRR and FAR intersect at the point [5.813, 0.004356] which 
represent the EER.  

5 Conclusions 

This work introduced a new pupillary video-based spatio-temporal verification sys-
tem. We also presented the initial identity authentication results based on the pupil 
dynamic features extracted from a video sequence which was acquired at constant 
light conditions. This paper reports the preliminary results conducted by using an IR-
camera, a head/chin rest and a campimeter in laboratory conditions. We demonstrated 
that this biometric characteristic provide enough discriminative information to verify 
the identity of a subject. We described the methodology to compute a spatio-temporal 
feature vector recording the pupil area changes frame by frame from a video sequence 
acquired at constant light conditions. The pupil region was correctly detected in all 
the images getting a success rate of 100%. The proposed method is robust enough 
because: a) the chin rest avoid the involuntary head movements, b) the alignment of 
the IR camera guaranty that the pupil region is almost always at the center of the vid-
eo frame and c) the pupil region is not affected by the eyelid and eyelashes noise. We 
found great inter-individual differences with regard to the extent as reflected in the 
Chernoff cartoon faces. In preliminary experiments, for the privately collected data-
base, we observe that Equal Error occurs at a threshold of 5.812 and the error is 
roughly 0.4356%.  
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Abstract. We present a color image segmentation algorithm, RCRM, based on 
the detection of Representative Colors and on Region Merging. The 3D color 
histogram of the RGB input image is built. Colors are processed in decreasing 
frequency order and a grouping process is accomplished to gather in the same 
cluster all colors that are close enough to the current color. Colormapping is 
done to originate a preliminary image segmentation. Segmentation regions 
having small size undergo a merging process. Merging is actually accomplished 
only for adjacent regions whose colors do not significantly differ. The 
parameters involved by the algorithm are set automatically by taking into 
account color distribution in the input image and geometrical features of the 
regions into which the image is partitioned. The algorithm has been tested on a 
large number of RGB color images originating satisfactory results. 

Keywords: RGB color images, 3D histogram, color quantization, image 
segmentation. 

1 Introduction 

Segmentation is one of the most important processes when dealing with computer 
vision applications and has a crucial role since the quality of the obtained result is 
strongly conditioned by the quality of segmentation. It consists in a suitable partition 
of an image into non-overlapping, connected and homogeneous regions, each of 
which represents (part of) an object in the scene. All pixels in the same region are 
rather similar to each other in terms of a specific property (for example, color or 
texture). In turn, pixels belonging to adjacent regions significantly differ from each 
other as regards the same property. 

While segmentation is a quite easy task for human beings, it is definitely hard for 
machines and a large number of different segmentation schemes can be found in the 
literature. Low level image features, such as color and texture, as well as higher level 
features, such as geometric models for the objects or Gestalt principle of perceptual 
organization, have been used. Some surveys covering most of the approaches 
suggested in the literature can be found for example in [1-3]. 

When color is the main feature used to achieve segmentation, segmentation 
methods can be framed as following two possible approaches, respectively involving 
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edge detection and region reconstruction [1]. Edge detection schemes are based on the 
assumption that local discontinuities of colors exist at the boundaries of adjacent 
regions representing different objects. In turn, region reconstruction schemes are 
based on the assumption that a region is a subset of connected pixels sharing similar 
color properties. Region reconstruction methods can be furthermore divided into two 
categories, depending on whether color distribution is analyzed in the image plane or 
in the color space. Spatial analysis is based on region growing that, starting from a set 
of initial seeds, sequentially groups in the same regions neighboring pixels with 
similar colors as far as the aggregating conditions are satisfied. In turn, when the 
analysis of color distribution is accomplished in the color space, where each pixel of 
the input image is associated with its color point in the three-dimensional color space, 
regions that are homogeneous in the image plane originate clusters of color points in 
the color space. Image pixels with similar color properties are grouped in the same 
cluster. Clusters can be identified by analyzing the color histogram or by means of a 
cluster analysis procedure, and are successively mapped back to the original image 
plane to obtain the segmented image. Independently of whether the image plane or the 
color space are analyzed, the result is likely to be affected by the presence of a 
number of small size regions scattered through the image. Thus, a merging process is 
also generally taken into account to reduce over-segmentation [2]. 

The segmentation algorithm proposed in this paper can be classified as a region 
reconstruction method, where color distribution is analyzed in the color space. The 
algorithm, named RCRM, includes two steps, respectively aiming at the detection of 
Representative Colors in the 3D color space, and at Region Merging in the image 
plane. The first step originates a preliminary over-segmented partition of the input 
image. The second step reduces over-segmentation. RCRM is the follow up of a 
previous method [4]. The main novelties introduced by RCRM are the automatic 
setting of the parameters and a clever merging process. RCRM has been tested on a 
large dataset of images taken from publicly available repositories, producing 
satisfactory results from both the qualitative and the quantitative points of view. 

The paper is organized as follows: basic notions are given in Section 2; the 
algorithm is described in Section 3; experimental results are discussed in Section 4; 
finally, concluding remarks are given in Section 5. 

2 Basic Notions 

Let I be a 2D RGB color image. We interpret colors of the pixels of I as 3D vectors, 
where each vector element has an 8-bit dynamic range. For each color in the 2D 
image, the coordinates of the corresponding color point along the three Cartesian axes 
are integer numbers in the range [0, 255]. Thus, colors present in the 2D image 
correspond to color points within a 3D cube. Of course, the same color is likely to 
characterize more than one pixel in I. By assigning to each color point in the 3D cube 
a value counting the number of pixels of I characterized by the color corresponding to 
that point, the 3D histogram of colors H becomes available.  

Though in principle 16 millions of different colors are possible, the number of 
colors in a digital image is generally remarkably smaller. This is due both to the 
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obvious limitation given by the size of the images (for example, for images with size 
1024×1024, about one million different colors are possible), and to the fact that the 
same color is likely to appear more than once in the image. Thus, sparse points having 
value different from zero generally exist in the 3D histogram H. Since the three 
components and the frequency of a color are expressed by integer numbers, H can be 
interpreted as a discrete 3D voxel image.  

Let Ci be a connected component of voxels of H, where each voxel is characterized 
by the same frequency fi. Ci has locally maximal frequency if each voxel of H that 
does not belong to Ci but has at least a neighbor in Ci has frequency smaller than fi. 
For any component with locally maximal frequency, MCi, we identify the centroid ci. 
Obviously, if MCi consists of a single voxel, the centroid coincides with the voxel 
itself and the coordinates of ci are certainly expressed by integer numbers. When MCi 
includes more than one voxel, we use the ceiling function to express the coordinates 
of the centroid ci by integer numbers, i.e., we map the real numbers expressing the 
coordinates of ci to the largest following integer numbers. The color corresponding to 
the centroid ci is taken as the color for all voxels of MCi.  

For the sake of completeness, we remark that synthetical images can be built where 
MCi is likely to include voxels so far from each other to correspond to very different 
colors. However, this does not generally happen for natural images. Thus, we can 
assume that any MCi found in H includes only voxels corresponding to colors 
sufficiently similar to each other.  

3 Segmentation 

The segmentation algorithm RCRM consists of two steps. The first step involves the 
analysis of the 3D histogram H to identify the representative colors and colormapping 
to originate a preliminary partition of I. The connected components of colors having 
locally maximal frequency are identified in H. The color corresponding to the 
centroid of any such a component is taken as the color of the component itself. Then, 
a grouping process is done to select a subset of the centroids so as to detect the 
representative colors. The centroids are processed in decreasing frequency order, 
starting from the centroid with the largest frequency. The currently examined centroid 
ci is taken as a representative color. A grouping process builds the cluster associated 
to ci by including in the same cluster all colors present in the 3D histogram that satisfy 
the following conditions: i) have smaller frequency with respect to ci, ii) are 
sufficiently close to ci, and iii) have not been assigned to any other cluster already 
built. Since the cluster of ci may include also colors with locally maximal frequency, 
the number of representative colors will generally result to be significantly smaller 
than the initial number of centroids. When all centroids have been considered, the 
color points corresponding to the colors of the input image result to be grouped into 
clusters, each of which obtained in correspondence with a centroid taken as 
representative color. Colormapping is then accomplished to complete the first step of 
the process and obtain the preliminary partition of the 2D input image. To this aim, 
the color of each pixel of the image is replaced by the representative color of the 
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corresponding cluster. The second step is done to reduce over-segmentation. In fact, 
since the histogram of colors does not take into account spatial information, the image 
obtained at the end of the first step is likely to be over-segmented. During the second 
step, a merging process is done, based on the size of the partition regions and on the 
distance of colors of adjacent regions. 

We point out that our representative colors detection technique can be classified as 
a color clustering technique. With respect to other color clustering techniques, such as 
K-means [5] and the fuzzy C-means [6], an advantage of our method is that we do not 
need to fix a priori the number of clusters and the distribution of the centroids. In fact, 
the clusters are as many as the centroids that survive the grouping process, and are 
found in correspondence with the connected components of colors with locally 
maximal frequency in the histogram, i.e., with the colors that appear more often than 
their neighboring colors in the image. Since we work directly on the 3D histogram, no 
information contained in the dependence among the three color components is lost. 

RCRM involves four parameters, whose values are automatically computed during 
the process in terms of features characterizing the image, as it will be described in the 
following. Two of these parameters, π and δ, are employed during Step 1 and are 
respectively concerned with the minimal value that the frequency of a centroid should 
have in order that centroid is considered as a possible representative color, and with 
the maximal distance from a centroid that a color should have to be assigned to the 
cluster associated to that centroid. The remaining two parameters, α and β, are used 
during Step 2. The parameter α is concerned with the maximal size of regions that 
undergo the merging process. The parameter β is concerned with the distance of the 
color of a small size region from the colors of the adjacent regions. 

3.1 Step 1- Selection of Representative Colors and Colormapping 

Preliminarily, the centroid cH of the color distribution for the input image I is detected 
and the arithmetic mean λ of the distances of all colors in H from cH is computed. All 
MCi, i.e., the connected components of voxels of H with locally maximal frequency, 
are identified and the arithmetic mean μ of their frequencies is computed. The 
centroid ci of any MCi is identified. If all centroids are taken as possible representative 
colors, a large number of representative colors is likely to be obtained, which are not 
all equally meaningful. Moreover, a longer computation time would be necessary to 
complete Step 1. Thus, we introduce the parameter π and consider as possible 
representative colors only the centroids with frequency larger than π. Of course, the 
same value of π would not produce equally good results for images with different 
color distribution. Accordingly, we relate the value of π to the arithmetic mean μ of 
the frequencies of the centroids, so as to have a dependence of π on color distribution.  
To avoid a too drastic reduction of the number of possible representative colors, we 
should keep the parameter π rather small. Thus, we tentatively set π=0,01μ and use 
the ceiling function to get an integer approximation for π. The final value for π is 
computed by taking into account also the number of pixels of I with colors that would 
not be taken as representative colors due to their small frequency. To this purpose, we 
compute the sum S of the frequencies of the centroids that, according to the tentative 
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value of π, would not be regarded as possible representative colors, and increase or 
decrease by one the tentative value of π depending on the sum S. In practice, we 
compare S with the total number N of pixels of I. If S is less than a given percentage 
of N (set to 40% in our work), the tentative value of π is increased, otherwise the 
value is decreased. The sum S is newly computed and π is again suitably 
increased/decreased. The final value of π is the largest possible value for which S 
remains less than the selected percentage of N. We have experimentally verified that, 
in the average, satisfactory results are achieved by computing the value of π according 
to the above strategy and by using the two suggested percentages (1%μ and 40%N). 
Such a value is in fact large enough to reduce the number of possible representative 
colors so as to limit the computation time, and at the same time is small enough to 
guarantee that only for a small number of pixels of I a representative color is not 
identified. These are the pixels of I whose colors have frequency smaller than π (and, 
hence, are not taken as representative colors themselves) and largely differ from the 
colors of detected representative colors (and, hence, are not grouped with any 
detected representative color). 

All centroids with frequency not smaller than π are examined in decreasing 
frequency order, starting from the centroid with the largest frequency. The rationale 
for checking centroids in decreasing frequency order is that we regard the relevance 
of a color as proportionally related to the number of times that the color appears in the 
image. The current centroid ci is taken as a representative color. The Euclidean 
distance is computed between ci and each color in H that has not yet been assigned to 
clusters built in correspondence with already selected representative colors and has 
smaller frequency with respect to ci. Colors at distance from ci smaller than the value 
of the parameter δ are grouped with the centroid ci. The value of δ should be fixed by 
taking into account the maximal distance between two colors that a user would not 
distinguish from each other. The larger is δ the smaller are the numbers of 
representative colors and of segmentation regions, but the quality of the segmentation 
becomes rougher. To relate δ to the distribution of colors in I, we set its value to a 
percentage of the arithmetic mean λ of the distances of all colors in H from the 
centroid cH of the color distribution for the input image I. We have experimentally 
verified that satisfactory results are generally obtained by setting δ=0,5λ. The above 
process is likely to group with the current centroid also some centroids with smaller 
frequency placed at distance from ci smaller than δ. Thus, not all centroids with 
frequency larger than π will actually be selected as representative colors.  

Once the representative colors have been selected, the preliminary segmentation I’ 
is obtained by colormapping. Any pixel that in the input image I has a given color is 
set in I’ to the corresponding representative color. As already remarked, some colors 
present in I may not be associated to any representative color and, hence, remain 
temporarily without any assigned color in I’. The two parameters π and δ play an 
important role in this respect and their values have to be carefully selected to 
guarantee at the same time a limited number of representative colors and a small 
number of pixels without any assigned color in I’. Large values for π favor reduction 
of the number of centroids, i.e., of possible representative colors, but may originate 
large portions of pixels without any assigned color. Analogously, large values of δ 
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definitely favor color grouping, which reduces the number of pixels without any 
assigned color, but can produce an excessive color fusion that would result in 
unnatural colors. The criteria to compute the values for π and δ described in this paper 
have experimentally resulted adequate to have only tiny regions of I’ consisting of 
pixels without any assigned color. These pixels are assigned the color of their 
neighbors. When more than one color can be assigned, we follow a majority rule and 
assign to the pixel the more frequent color among the colors of its neighbors. While 
coloring the pixels of I’ that were not assigned a color during colormapping, also 
noise cleaning is performed by using the same majority rule: pixels of I’ grouped into 
components having very small size (set to at most four pixels in this paper) are 
assigned the color of their neighbors. We remark that pixels of I’ that are colored with 
the same representative color do not necessarily belong to the same connected 
component. In fact, the histogram of colors counts the number of times that a color 
appears in the image and the grouping process measures the distance among points in 
the histogram, but spatial information is not taken into account. As an example of the 
performance of Step 1 refer to Fig. 1. For the input image 118035 consisting of 
321×481 pixels with 23786 different colors (Fig. 1 left), 13134 centroids were 
detected in the 3D histogram characterized by µ=348. Only 14 representative colors 
were selected by using the automatically computed parameter values π=3 and δ=46. 
The resulting image (Fig. 1 middle) is over-segmented, since it includes 348 regions. 

 

   

Fig. 1. The input image 118035, left, preliminary segmentation, middle, final segmentation, 
right 

3.2 Step 2 - Region Merging 

Step 2 is aimed at region merging to reduce over-segmentation. Preliminarily, 
connected component labeling is accomplished on I’ to distinguish all regions of the 
partition, some of which are possibly characterized by the same representative color. 
At the same time, the area of each connected component is also computed as well as 
the arithmetic mean A of the areas of all partition regions.  

During one inspection of I’, regions with area smaller than an a priori fixed value α 
are considered for merging. The parameter α is related to a percentage of A, so that 
different values of α will be used for images characterized by preliminary 
segmentations that differ from each other for the number of partition regions or for 
their geometric properties. We have used different values for α to process the images 
of our dataset. Our experiments suggested to set α=0,2A as default value. Let Rk be a 
region with size smaller than α. Merging of Rk is done only if the color of Rk does not 



 Image Segmentation Based on Representative Colors Detection and Region Merging 181 

significantly differ from the colors of the adjacent regions that will absorb the pixels 
of Rk. Practically, for Rk with identity label lk and color cj, merging is accomplished by 
ascribing to the pixels of Rk the identity label ln of the adjacent region whose color cm 
is the closest to cj, provided that the distance of cm from cj is smaller than a parameter 
β. Since the distance between colors of adjacent regions in I’ is not smaller than δ, a 
value larger than δ should be used for β. We suggest β=λ as default value, by taking 
into account that we set δ=0,5λ, where λ is the arithmetic mean of the distances of all 
colors in H from the centroid cH of the color distribution for the input image I. 

We point out that merging may reduce the number of final representative colors 
with respect to the number of those selected during Step 1. This happens whenever all 
pixels that were assigned a given representative color cj are grouped into regions 
satisfying the merging conditions. We also point out that the number of regions is 
generally larger than the number of final representative colors. 

In Fig. 1 right, the final segmentation for the input image 118035 is shown. 
The arithmetic mean of the area of the 348 regions detected in I’ before merging is 

A=439, which implies α=88. Out of 312 regions with size smaller than α, 270 regions 
are actually merged to adjacent regions. Only 78 regions remain after merging and the 
number of final colors is 11. 

4 Experimental Results 

RCRM has been tested on about 100 images with different size and color distribution, 
taken from databases publicly available. A subset of the above collection, including 
10 test images taken from Berkeley Segmentation Dataset and Benchmarking 
(http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/) is shown in Fig. 2.  

 

     
118035 143090 196073 2092 22090 253036 24004 368078 46076 60079 

Fig. 2. Test images 

As concerns performance evaluation, we remark that this can be accomplished by 
following either a supervised approach or an unsupervised approach. In the former 
case, a ground truth reference is necessary for the evaluation. However, the ground 
truth is often manually generated and different users may originate a different ground 
truth, so that evaluation is somehow subjective. In the latter case, a quality score 
based only on the segmented image is used. Several goodness measures are available 
in the literature, but unfortunately a unique completely satisfactory measure has not 
yet been found and the combination of different measures to obtain a single 
evaluation function is subjective. Thus, we prefer to resort to an unsupervised 
approach and instead of combining different measures we simply count the number of 
measures for which the performance of a given segmentation method is better with 
respect to that of other methods. For each segmented image we compute the number 
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of representative colors NC, the number of regions NR, and three goodness measures 
(the Liu and Yang function F, the Borsotti et al. function Q and the entropy E [7]).  

We have compared the performance of RCRM with that of the Color Structure 
Code CSC [8]), the Edge Detection and Image SegmentatiON EDISON [9], and the 
Recursive Hierarchical Image Segmentation RHSEG [10]. The results are 
summarized in Table 1. To qualitatively compare the performances of RCRM, CSC, 
EDISON and RHSEG, refer to Fig. 3, where the results obtained for the test image 
46076 are shown.  

Table 1. Performance evaluation 

Image Methods NC NR F Q E
118035 CSC 347 662 3.681 0.732 10.947 

EDISON 30 86 0.155 0.082 10.588 
RHSEG 3 375 0.961 0.238 10.680 
RCRM 11 78 0.100 0.036 10.650 

143090 CSC 68 83 0.123 0.135 13.746 
EDISON 40 71 0.162 0.170 13.848 
RHSEG 4 1011 0.810 0.703 13.863 
RCRM 13 102 0.114 0.046 13.382 

196973 CSC 339 736 1.785 0.574 9.323 
EDISON 56 163 0.093 0.053 9.324 
RHSEG 2 633 0.219 0.654 9.290 
RCRM 7 60 0.059 0.030 9.353 

2092 CSC 203 246 0.285 0.136 12.230 
EDISON 34 78 0.112 0.089 12.213 
RHSEG 4 1327 1.297 2.478 12.183 
RCRM 15 164 0.255 0.060 12.271 

22090 CSC 758 1093 3.873 0.631 12.654 
EDISON 144 242 0.322 0.108 12.595 
RHSEG 5 1432 1.044 1.503 12.532 
RCRM 13 224 0.381 0.097 12.599 

253036 CSC 192 378 1.666 0.390 12.340 
EDISON 27 31 0.100 0.152 12.355 
RHSEG 2 46 0.059 0.061 12.306 
RCRM 6 43 0.073 0.042 12.418 

24004 CSC 2027 3585 52.316 45.661 14.593 
EDISON 214 621 3.159 0.740 14.598 
RHSEG 6 8064 52.731 1455.036 14.631 
RCRM 17 655 3.116 0.532 14.567 

368078 CSC 723 1071 5.948 1.562 14.527 
EDISON 233 403 1.848 0.808 14.882 
RHSEG 5 3383 7.888 49.315 14.500 
RCRM 21 597 2.943 0.600 14.621 

46076 CSC 167 235 0.444 0.151 12.954 
EDISON 34 82 0.227 0.208 12.814 
RHSEG 3 1437 2.328 3.748 12.852 
RCRM 18 223 0.440 0.109 12.913 

60079 CSC 134 241 0.445 0.091 9.251 
EDISON 14 39 0.081 0.109 9.249 
RHSEG 3 1622 0.672 5.475 9.572 
RCRM 10 33 0.019 0.010 9.399 

 
The smallest values of F, Q and E (in bold in Table 1) denote the best performance 

with respect to that goodness measure. As regards NR, note that a too small (large) 
value could denote under-segmentation (over-segmentation). It is then difficult to say 
whether the smallest (largest) value of NR denotes the best performance. To facilitate 
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reading of Table 1, we have set in bold the smallest value for NR. As for NC, we just 
give it as an indication of the performance by taking into account the complexity of 
the input image, but don’t consider it as an evaluation measure. In the majority of 
cases, RCRM has a better performance for a larger number of goodness measures. 
However, we remark that counting the number of goodness measures for which the 
performance of a given segmentation method is better with respect to that of other 
methods is not enough to claim that a given method outperforms with respect to the 
others. The results should also be at least qualitatively evaluated. 

 

          

Fig. 3. From left to right, segmentation results with RCRM, CSC, EDISON and RHSEG 

5 Concluding Remarks 

We have presented the algorithm for image segmentation RCRM based on the 
detection of representative colors in the 3D histogram and on region merging. Colors 
present in the input image I are considered as possible representative colors on the 
basis of their frequency in the histogram and are processed in decreasing frequency 
order. The currently processed color is taken as a representative color and a grouping 
process is accomplished to gather with it all colors with smaller frequency, provided 
that they have not yet been grouped with any previous representative color and are 
such that their distance from the currently processed representative color is smaller 
than an a priori fixed value, set depending on color distribution. Once representative 
colors have been selected, the preliminary segmented image I’ is built by 
colormapping. Since I’ is likely to result over-segmented, a merging process is 
accomplished. Only regions with size smaller than an a threshold, whose value is 
related to the arithmetic mean of the areas of all regions of I’, undergo to merging. 
Regions are actually merged only provided that their colors do not significantly differ 
from the colors of the adjacent regions that will absorb their pixels. 

The values for the four parameters involved by the process are automatically 
computed by taking into account properties evaluated on the image at hand. RCRM 
has been tested on about 100 RGB color images with different size and color 
distribution, and the obtained results can be regarded as generally satisfactory. 
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Abstract. In this paper, a watermarking system based on the integer
wavelet transform is proposed. A set of different wavelets was chosen
for this propose so their performance as watermark transmission channel
can be analyzed. The watermark is embedded in the second decompo-
sition level of the wavelet transform of a PCM signal in a block wise
approach, the coefficients of the wavelet transform are assumed to be
accurately modeled as a Laplacian channel. A set of attacks were per-
formed in order to test system’s robustness, we found that this approach
is robust against several attacks such as additive white noise, low pass
filtering, cropping, among other attacks; the best suited wavelet class for
developing watermarking systems was identified too.

Keywords: Watermarking, Integer wavelet transform, Optimal detec-
tor, Laplacian channel.

1 Introduction

A very handy approach to watermarking is to establish analogies to the very
strong field of the theory of communications, in this context, we can think of a
watermark as a signal that propagates through a communications channel.

The watermarking model is shown in Fig. 1, we can identify the main input
variables: the cover, which is an audio signal that will carry the watermark, a
user’s key which is used to generate a pseudo-random signal and the embedding
gain which is related to the embedding energy of the watermark.

In this work, a watermark is a binary signal W = [wi] with wi ∈ {−1, 1} and
is zero mean with variance 1. This watermark is embedded in the cover X = [xi]
so we get the watermarked signal Y = [yi] ; Ideally, the cover does not interfere
the watermark, however in practice this is not true, in consequence, we model
the effects of the cover within the channel block, and attacks to the watermark
are modeled as noise in the channel during the propagation of the watermark.
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Fig. 1. Watermark propagation model

Once the watermark reaches the detector, it has to assess the presence of the
watermark, usually by computing two statistics, one that measures the pres-
ence of the watermark in the possibly watermarked audio signal and the other
is a threshold. If the computed statistics surpasses the threshold value, the wa-
termark is detected, otherwise, the watermark is considered to be absent. The
computed statistics are often known as the decision variable d and the decision
threshold Th respectively.

The remaining of this paper is organized as follows in Sect. 1.1 related works
are discussed, then in Sect. 1.2 we will introduce the integer wavelet transform,
in Sect. 2 the proposed system is discussed in detail and the corresponding
experimental results are presented in Sect. 3; finally the conclusions in Sect. 4
and references.

1.1 Related Works

There are some works in the field of audio watermarking that make use of the
Laplacian channel model, for example, in [1] a method that uses MPEG 1 Layer
3 compression as a reference to determine where and how the watermark must be
embedded. The results show that their watermarking scheme is robust against
the attacks of the audio Stirmark benchmark.

The authors of [2] change the length of the intervals between salient points
of the audio signal to embed data. Their results suggest that the algorithm is
robust to common audio processing operations e.g. MP3 lossy compression, low
pass filtering, and time-scale modification. The major drawback of this proposal
is its low bit embedding rate.

In [3], the analysis filterbank decomposition, the psychoacoustic model and
the empirical mode decomposition (EMD) techniques are used. This algorithm
embeds the watermark bits in the final residue of the subbands in the transform
domain. The authors claim that the scheme is robust against MP3 compression
and Gaussian noise attacks. A drawback is that it might not be robust to common
attacks such as band-pass filtering and cropping.

The adaptive tabu search (ATS) has been explored in order to develop wa-
termarking systems, in [8], the Daubechies wavelet decomposition is used for
watermark embedding. The optimal intensity of watermark is searched by us-
ing the ATS. Experimental results show that watermark is inaudible and robust
to many digital signal processing, such as resamplig, cropping, low pass filter,
additive noise and MP3 compression.
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In [4,5], the authors propose to use the Laplacian channel model for audio
signal in temporal domain, they derive an optimal detector and the threshold
equation, their system is semi-fragile, but has several advantages, first, since no
transform domain is involved, the resulting system has very low computational
complexity, second, memory requirements could be easily satisfied, and finally,
the system performs very well for attacks such as additive white noise, cropping
and echo attacks.

In this paper, propose a system in the Integer Wavelet Transform domain
assuming they can be accurately modeled as a Laplacian communication channel,
so the optimal detector equation and the threshold equation proposed in [4,5]
can be used for detecting watermarks. Several Wavelets were tested in order to
select the best suited wavelet for a robust watermarking system. Once identified,
a watermarking system was derived, the resulting scheme has low complexity and
it proved to perform remarkably well, furthermore, it proved to be unaffected
for low pass filtering attack and additive white noise and phase inverting attack
whilst it is almost unaffected for cropping attack and echo attacks.

1.2 Integer Wavelet Transforms

An Integer Wavelet Transform (IWT) maps a set of integers into another set of
integers, this property is well suited for signal coding for example in lossless image
compression [7]. In our case, integer coefficients reduce damage to embedded
watermark caused by quantization, in addition, the well know advantages of the
IWT can be exploited for robust watermarking systems design.

The following equations are mathematical definitions of several IWT used in
this work, here the notation IWT(m,n) is used to denote an IWT with m and
n vanishing moments in the analysis and synthesis high pass filters respectively
([6,7]).

IWT(1,1):

dn = x2n+1 − x2n , (1)

sn = x2n +

⌊
dn
2

⌋
. (2)

IWT(2,4):

dn = x2n+1 −
⌊
1

2
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⌋
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IWT(4,2):
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IWT(6,2):
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2

⌋
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In this paper, we denote the coefficient sequence ant the k-th decomposition
level of any given signal as S(k) = [s(k)i] and its related detail sequence as
D(k) = [d(k)i]. The operator �·� denotes the floor operation.

The IWT equation set just introduced is going to be used for computing the
IWT for the proposed watermarking system discussed right away.

2 Proposed System

In this section, we introduce the proposed system, as we stated early in this
paper, the system embeds a watermark in the second decomposition label of
the IWT, first, the signal is divided in non overlaping blocks of length 16 times
the sampling frequency, then the IWT of the blocks is computed, the detail se-
quences D(1) and D(2) are stored for later use, and the wavelet coefficients S(2) is
watermarked, the audio signal is reconstructed by reversing the transformations
as shown in Fig. 2. At the receiver, the system computes the second level IWT
decomposition in order to detect the watermark as shown in Fig.3.

The embedding rule and detection variables are discussed in next section.

2.1 Embedding Algorithm

The embedding algorithm is the multiplicative embedding rule since it exhibits
several desirable properties, for example, one the most important is the masking
effect that allows greater embedding strength while imperceptibility holds. The
multiplicative watermark embedding rule is given as:

s′(2)i = s(2)i(1 + gwi), (9)

where s′(2)i is the i-th watermarked coefficient, wi is the i-th watermark bit and
g is the watermark embedding gain, which controls the watermark energy.
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Fig. 2. Block diagran for the proposed watermarking system. IWT is the forward
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Fig. 3. Block diagram for a generic watermark detection system

2.2 Optimal Watermark Detector for Laplacian Channel

The coefficients of the IWT, and thus the channel, are considered to be sta-
tistically modeled using a Laplacian PDF, so the optimal detector variable is
computed as [4,5]:

d = ĝ =
1

Nαy

N∑
i=1

|s′(2)i|wi , (10)

where,

αy =
1

N

N∑
i=1

|s′(2)i| . (11)
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Equation (10) can not be used “as is” since the IWT coefficients must to be
normalized first. We found that as one goes deeper in wavelet decomposition,
the resulting coefficients must to be scaled to ensure they hold the Laplacian
channel assumption, our experiments showed that in order to enforce the IWT
coefficients to hold the Laplacian assumption, (10) should be scaled this way:

d = k
1

Nαy

N∑
i=1

|s′(2)i|wi , (12)

where k = 1
32 . One can normalize individual samples, however for a block size

of L, L divisions must to be made, whilst by scaling (10) it takes just one.
In order to properly detect the watermark, the decision variable d must be

compared to a threshold, a watermark is present if d ≥ Th, the general threshold
equation derived from the Neyman-Person criterion in [4,5] is:

Th = erfc−1(1− 2pfp)

√
2

N
, (13)

where erfc−1(·) is the inverse error function complementary.
Since (13) does not depend upon the samples, then no scaling is needed for this

equation. Equations (12) and (13) are meant to be used for detecting watermarks
in the IWT domain, the corresponding experimental results are shown in next
section.

3 Computer Simulations

All test were carried out under the following scenario: the watermark was em-
bedded in non overlapping blocks with length of 16 times the sampling frequency
of an audio signal using (9). Detection is made in the same block wise approach,
d and Th are computed for each block using (10) and (13) and the responses for
each block are accumulated and averaged. We let Pfp = 10−6 and the embedding
gain was set to 0.5. All audio signal used for our tests were uncompressed 16-bit
stereo WAV files with 48000 Hz sampling rate.

We repeated the same attacks using the wavelets defined in section 1.2, so we
can identify which of them has the best performance for practical watermarking
system design. The performance of the system is presented in next section.

3.1 Main Results

In this section we present simulation results that validate that (12) and (13)
provide an accurate watermark detection model. Several audio were used in the
following test, however, we show our worst case.

First we tested detector performance; we present in Fig.4 the response for
IWT(4,2). Given that watermark number 500 is the watermark that was em-
bedded in an audio signal. One can verify that the response is way bigger that
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any other watermark, furthermore, the response to any watermark different to
the one embedded is far from crossing the decision threshold which confirms the
Laplacian channel model is accurate for IWT(4,2) coefficients.

Fig. 4. Detector characteristics. It is shown that the system performs remarkably for
IWT(4,2) even for our worst case host signal.

Fig. 5. Watermark detection for different IWT for various values of the decay factor

In the second test, we added a echo signal, The echo signal has a delay of
1 second for a given value of decay factor which determines how fast the echo
fades away. In Fig.5 the response for various values of the decay factor is shown,
it is clear that IWT(4,2) perform better whilst IWT(2,4) performed poorly.
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In the next test, additive white noise was added to the carrier signal, the
detection characteristic for several values of amplitude of the noise is shown
in Fig.6. It can be seen that again IWT(4,2) outperforms the other wavelet
decompositions and once again IWT(2,4) has the worst performance.

Fig. 6. Detector characteristics for additive white noise at various amplitudes

Fig. 7. Low pass filtering attack for various cutoff frequencies

A low pass filter was applied and detector response was measured for various
cutoff frequencies, the results are shown in Fig.7, in this test all wavelets exhibit
very good performance against low pass filtering with IWT(1,1) being the best
and IWT(6,2) was the worst.
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Another attack is cropping, Fig.8 shows detection characteristics as the crop-
ping percentage is varying. In this case IWT(4,2) performed best again and once
more IWT(2,4) performed poorly.

Fig. 8. Cropping attack; horizontal axis is the cropping percentage

Inverting attacks exploits the fact that the human auditory system is unable
to perceive phase changes, the system response is d = 0.0813, d = 0.0162, d =
0.0899, d = 0.0394 for wavelets IWT(1,1), IWT(2,4), IWT(4,2) and IWT(6,2)
respectively ,threshold value is Th = 0.0113. So the system is not affected by
inverting attacks and once more, IWT(4,2) is clearly the winner.

These results clearly show a trend: the IWT(4,2) is best in almost all cases
whilst IWT(2,4) is worst in almost all cases.

4 Conclusions

We can draw several conclusions, first, IWT based watermarking proved to be
more robust than other previously proposed systems, it has the additional ad-
vantage of being a blind algorithm, so the original audio is not needed.

Second, IWT(4,2) is the best choice among the set of wavelets tested in this
paper whilst IWT(2,4) performed worst in almost all test. Furthermore, a test
not shown in this paper using IWT(2,2) performed so bad that we decided not to
include it in the tests presented in this work, its poor performance prevented the
proposed structure from detecting watermarks accurately even when no attacks
were made.

The resulting system has low complexity so the detection of the watermark
can be done in a couple of seconds for a full length song using a consumer laptop.
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Future works include: Analyzing the performance of other classes of IWT
and to investigate the influence of different decomposition levers in the wavelet
transform and the proper derivation of the scaling factor of (12).
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Abstract. In this paper, we propose to use a Reduced Connectivity
Mask (RCM) in order to enhance connected component labeling (CCL)
algorithms. We use the proposed RCM (a 2 × 2 spatial neighborhood)
as the scanning window of a Union-Find labeling method and of a fast
connected component labeling algorithm recently proposed in the litera-
ture. In both cases, the proposed mask enhances the performance of the
algorithm with respect to the one exhibited by each algorithm in its orig-
inal form. We have tested the two enhanced approaches proposed here
against the fast connected component labeling algorithm proposed by
He and the classical contour tracing algorithm. We have compared their
execution time when labeling a set of uniform random noise test images
of varying occupancy percentages. We show detailed results of all these
tests. We also discuss the differences in behavior shown by the set of
algorithms under test. The RCM variants exhibit a better performance
than the previous CCL algorithms.

1 Introduction

Main tasks in computer vision include the detection and recognition of objects
of interest in a binary image. Binary images are often the result of a feature
detection step, where a binary feature is detected in a pixel-wise approach. This
problem arises in image analysis tasks such as figure-background discrimination
and motion detection, as two examples. Typically, images are preprocessed ac-
cordingly with the task and they are thresholded to output a binary image. A
second step involves the association of connected pixels into single entities to
be handled by further processing steps. A set of methods to perform this task
are known as Connected Components Labeling (CCL) algorithms. The goal of a
CCL algorithm is to label all the foreground pixels in a binary image. The label
for each foreground pixel has to be the same for all the pixels belonging to the
same connected component. Each connected component has to be labeled with
a unique identifier. Two pixels are said to belong to the same component if there
exists a path that links them.

Recent work on CCL has been directed towards: i) reducing the number of
scans and ii) optimizing the connectivity mask and the definition and usage of the
data structures for the labeling procedure. For the first case, the contour tracing
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algorithm (Chang, Chen & Lu 2004) is an example. In this kind of methods,
there is only a single scanning pass to the image because a set of heuristic rules
guides the decision of what pixel is the next requiring analysis. For the second
concern, two of the reference works are: i) the Union-Find approach, originally
proposed by Fiorio and Gustedt (Fiorio & Gustedt 1996) and further enhanced
by Wu et al. (Wu, Otoo & Shoshani 2005) and ii) the Connection-List approach
proposed recently by He et al. (He, Chao & Suzuki 2008).

We propose to use a 2 × 2 neighborhood as the spatial support of the con-
nectivity mask for the CCL task. The rationale behind this design choice is that
in such a region, all the pixels are connected among themselves and that the
use of such a reduced connectivity mask (RCM) will speed up the computation
of the label assignment for all the foreground pixels of the input image. The
connectivity analysis implied by this shape of mask is performed by using a sort
of operational look-up table. For any pixel under analysis, we access the look-up
table entry that corresponds to the actual configuration of the neighborhood to
determine what operations need to be executed. In this work, we compare the
performance of our method against the enhanced Union Find approach (UF)
(Wu, Otoo & Shoshani 2005) and to the Connection List (CL) method (He
et al. 2008).

Rest of this paper is organized as follows: In Section 2, we review previous
work for the CCL problem. The CCL problem is formulated in Section 3. A
detailed presentation of the proposed method is addressed in Section 4. Results
and their discussion are presented in Section 5. Finally, we present our main
findings and conclusions in Section 6.

2 Taxonomy of CCL Methods

A number of methods have been developed to address the connected component
labeling task. Suzuki et al. (Suzuki, Horiba & Sugie 2003) and Wu et al. (Wu,
Otoo & Suzuki 2005) have classified the CCL methods in four main classes
accordingly to the characteristics of the algorithms:

i) Single-pass algorithms like those proposed by (Chang et al. 2004) and
(Chang & Chen 2003),

ii) Multi-pass algorithms, see, for example, (He, Chao & Suzuki 2007), (Wu,
Otoo & Shoshani 2005), (Fiorio & Gustedt 1996), (Di Stefano & Bulgarelli
1999), (He et al. 2008), (Asano & Tanaka 2010), (He, Chao & Suzuki 2010a),
(He, Chao, Suzuki & Wu 2009) ,(Wu, Otoo & Suzuki 2008),

iii) Parallel computing approaches ((Greiner 94), (Han & Wagner 1990),
(Hardwick 1997), (Krishnamurthy, Lumetta, Culler & Yelick 1994)), and

iv) Hierarchical image representation methods ((Samet 1981), (Wang & Davis
1986), (Dillencourt & Samet 1992), (Samet & Tamminen 1988)).

In the three first classes (i, ii and iii ) of the above taxonomy, the image un-
der analysis is represented as a data matrix whose elements will be assigned
a connected component label as the output of the algorithm.
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Class iv) algorithms, instead, use more complex data structures to represent the
binary image. Examples of data structures used for this end include bin-trees
and quad-trees. In this work, we will focus on issues related to methods that
use a data matrix representation of the image under analysis and it is out of the
scope of this paper to study further details of the CCL methods belonging to
the fourth category in the enumeration above.

3 Methodology

3.1 Overview of a CCL Algorithm

Any CCL algorithm needs to scan the input image a number of times depending
on the scanning strategy, the connectivity mask used and the label equivalence
handling method.

As we traverse the image on the first scan, we assign temporary labels to the
foreground pixels. In order to ensure that all the pixels belonging to the same
connected component are marked with the same label, each CCL algorithm uses
a particular equivalence handling method. Some approaches use a set of heuristic
rules (Chang et al. 2004) and some others use particular data structures designed
for that purpose (Fiorio & Gustedt 1996), (He et al. 2009). Further scans of the
input image may be needed to resolve the label assignment for all the foreground
pixels.

In each traversal, the image is scanned by using a connectivity mask (CM) that
serves to analyze the connectivity among the pixels in the neighborhood defined
by the spatial support of the CM. Different authors have proposed different
CMs. We show several examples of previously used CMs in Figure 1. The spatial
configuration of the CM is a critical factor in the performance of any CCL
algorithm.

(a) (b) (c) (d)

Fig. 1. Typical shapes of neighborhood masks used for connectivity analysis in CCL
algorithms, the pixel under analysis is marked on them: (a) 3× 3 mask, (b) 4-neighbor
mask, (c) forward scan mask and (d) backward scan mask

3.2 Reduced Connectivity Mask for CCL Algorithms

Finding ways to simplify the connectivity analysis step is an important way
of reducing the computational load required by CCL methods. That is why we
propose a reduced connectivity mask (RCM) that covers only 2×2 pixels. Figure
2 shows the RCM and the notation used for the pixels in this mask. For this
type of mask we do not need to use a central pixel to perform the analysis.
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(a) (b)

Fig. 2. Reduced Conectivity Mask: (a) the spatial neighborhood, and (b) the notation
used to identify each pixel in the mask

4 Our Approach

We analyze the use of two labeling strategies: i) Union-Find, originally proposed
by Fiorio and Gustedt (Fiorio & Gustedt 1996) and enhanced by Wu et al. (Wu,
Otoo & Suzuki 2005) and ii) the Connection-List approach proposed by He et
al. (He et al. 2008), but using a 2× 2 connectivity (RCM) mask instead of their
choices for the connectivity mask. We call these approaches as UF-RCM and
CL-RCM respectively.

4.1 Labeling Procedure

The labeling procedure in CCL algorithms that use a RCM requires two image
scans. The first scan is used to assign a temporary label to each foreground pixel
in the image. The second scan is used to resolve the equivalence relationships
between labels and to assign definitive labels to all foreground pixels in the
image.

Table 1. Look-up table operations associated to each neighborhood configuration in
the proposed approaches

Row a b c d L(x, y) Union-Find Connection-List

0 0 0 0 0 NOP NOP NOP
1 0 0 0 1 m+1 NOP NOP
2 0 0 1 0 NOP NOP NOP
3 0 0 1 1 c NOP NOP
4 0 1 0 0 NOP NOP NOP
5 0 1 0 1 b NOP NOP
6 0 1 1 0 NOP Union(c, b) resolve(c, b)
7 0 1 1 1 b Union(c, b) resolve(c, b)
8 1 0 0 0 NOP NOP NOP
9 1 0 0 1 a NOP NOP
10 1 0 1 0 NOP NOP NOP
11 1 0 1 1 c NOP NOP
12 1 1 0 0 NOP NOP NOP
13 1 1 0 1 a NOP NOP
14 1 1 1 0 NOP NOP NOP
15 1 1 1 1 a NOP NOP
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(a) (b)

Fig. 3. Look up table operations: (a) The only case where a new label is created for
the pixel under analysis. (b) RCM configuration where two labels are merged.

The first step in label handling is to initialize the structures for each specific
approach. In the case of the UF method, the Parent vector is initialized, whilst
in the CL approach, next, tail and rtable arrays are initialized.

The input image is augmented by a dummy row and a dummy column com-
posed of background pixels that are located before the first row and the first
column of the image under analysis, respectively. These supplementary pixels
do not interfere with the connected components actually present in the image.
Conversely, they help to reduce the number of conditions to analyze in the con-
nectivity mask enabling a faster processing in the connectivity analysis step. The
scanning of the augmented image is performed in a left to right, top to bottom
sequence.

Table 1 summarizes the operations needed to analyze the connectivity of each
pixel. Figure 2 shows the position of each pixel (a, b, c and d) in the Reduced
Connectivity Mask proposed in this paper.

We can identify four different operations on this table:

– The first case is the NOP (no operation) circumstance. We do not perform
any operation when the pixel d (the only pixel not yet analyzed in the RCM)
is a background pixel.

– The second operation occurs when only one of the pixels a, b, c is a foreground
pixel and it has already a label assigned. Under such a condition, the label
to assign to the pixel under analysis is the same label of the already assigned
pixel. This operation is needed for the cases in rows 3, 5, 7, 9, 11, 13 and 15.

– The third operation needed is a label creation operation. That operation
requires that the pixel under analysis be the only foreground pixel in the
neighborhood defined by the connectivity mask. The operation is defined as
m = m+1 because we need to increment m, the number of labels currently
being used. We perform this operation only for the case in row 1.

– The fourth operation is the connectivity analysis for both labeling methods.
The Union procedure for the Union-Find method, or the resolve operation
for the Connection-List algorithm, is used to determine what is the correct
label from the different labels already assigned to the pixels in the neighbor-
hood. The cases for this operation are those presented in rows 6 and 7.

As said before, Table 1 specifies the operation needed for each condition that
can present the 4-uple (a, b, c, d). In columns 1-4, a “0” stands for a background
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(a) (b)

Fig. 4. Look up table operations: (a) RCM configurations where no operation (NOP)
is needed. (b) RCM configurations where the label is copied from a previously labeled
pixel.

pixel, and a “1” for a foreground pixel. Fifth column of this table shows the label
to assign to the d pixel and the sixth and seventh columns show the operations
needed to perform in the merge operation to store the equivalence information
for each method (Union-Find for the sixth column and Connection-List for the
seventh column, respectively).

We call the merge procedure for each foreground pixel in the image accordingly
to the labeling method. In the case of the UF-RCM approach, we call the Find
procedure with the label associated to the pixel under analysis. The root label
found by the aforementioned procedure is then assigned as the definitive label
for the pixel under analysis.

In the case of the CL-RCMmethod, we perform instead a look up of the rtable
array. That is L′(x, y) = rtable[L(x, y)], with L′(x, y) being the definitive label
for the pixel under analysis. After completing the second scan, all the foreground
pixels are correctly labeled.

5 Results

5.1 Test Protocol

In order to evaluate our algorithm, we have experimented with a set of uniform
random noise images to measure the execution time. We have compared the
performance of the Contour Tracing (CT) algorithm (Chang et al. 2004), and
the fast connected component labeling method (He et al. 2009) to the proposed
approaches, UF-RCM and CL-RCM. The comparison of the proposed approach
to these methods can provide us some insight because their particular differences.

We have generated test images using a uniform random noise across the im-
age. The goal of this test set is to demonstrate how the algorithm performs on
random input (see Figure 5). We have used eleven occupancy percentages for
the foreground pixels in the images (0 to 100 percent in 10 percent steps). We
have used a size of 512× 512 pixels for all the images in this data set. We have
generated 40 random test images for each occupancy percentage, and we used
all these images as input.

We have developed all these tests using C-language implementations for all
the methods in an Intel Dual Core-based desktop computer with a processor
running at 2.66 GHz and 4 GB RAM memory. The execution time figures are
the average in 40 runs for each test.
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(a) (b)

Fig. 5. Two examples of uniform random noise images with varying occupation per-
centage of the foreground pixels: (a) 20 % and (b) 60 %

(a) (b)

Fig. 6. (a) Performance results of the four methods using uniform random noise images
of varying occupancy percentage of the foreground pixel as input. (b) Difference in time
execution between the He’s method and CL-RCM approach. A positive value implies
a better performance of the CL-RCM algorithm.

5.2 Results

In Figure 6 (a) we can observe the comparison of the performance exhibited by
the four methods under analysis when uniform random noise images are used as
inputs. In this graph, we can observe that CL-RCM method performs the best,
even if it is only slightly faster than He’s method. The marginal advantage (see
Figure 6 (b) for a direct comparison) of the CL-RCM method over the faster
connected component labeling algorithm (He’s method) is due to the reduced
size of the connectivity mask used by that approach. The improvement in time
is the same that the others authors in the field, report on their works (He,
Chao & Suzuki 2010b) . We can also see that the UF-RCM method exhibits
a poorer performance than the CL-RCM and the fast connected component



202 U.H. Hernandez-Belmonte, V. Ayala-Ramirez, and R.E. Sanchez-Yanez

labeling method. Nevertheless, its performance is significantly better than the
one exhibited by the Contour Tracing algorithm in this test.

6 Conclusions

In this paper, we have proposed the use of a reduced connectivity mask (RCM)
in two CCL algorithms: the Union-Find approach previously proposed by Wu
and the fast connected component labeling method proposed by He et al. We
call these approaches UF-RCM and CL-RCM respectively. The RCM consists of
a 2× 2 pixel neighborhood as the scanning window. As we have seen in a set of
tests involving random noise and typical benchmark pattern images, the RCM-
based approaches proposed here exhibit an overall performance that is better
than the others performance with respect to execution time.

We have also observed that the optimal labeling strategy strongly depends on
the structure shown by the components in the input image. In the near future,
we are going to explore other data structures to handle label equivalence that
improve the overall method performance. We will work to automatically decide
the CCL algorithm best suited to deal with a given input image, according
to its content. That will also serve to improve memory usage required by our
algorithm. We are also going to explore its applications in more complex tasks,
as for example, motion detection clustering and optical character recognition.
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Abstract. Recently, the research interest on biometric systems and applications 
has significantly grown up, aiming to bring the benefits of biometrics to the 
broader range of users. As signal processing and feature extraction play a very 
important role for biometric applications, they can be thought as a particular 
subset of pattern recognition techniques. Most of iris biometric systems have 
been designed for security applications and work on near-infrared (NIR) 
images. NIR images are not affected by illumination changes in visible light 
making systems working both in darker and lighter conditions. The reverse of 
the medal is a very short distance allowed between the acquisition camera and 
the user, further than a strictly controlled pose of the eye. For those reasons, the 
viability of NIR image based systems in commercial applications is quite 
limited. Several efforts have been devoted to designing new iris biometric 
approaches on color images acquired in visible wavelength light (VW). 
However, illumination changes significantly affect the iris pattern as well as the 
periocular region making both segmentation and feature extraction harder than 
in NIR. In the specific case of iris biometrics, segmentation represents a crucial 
aspect, as it must be fast as well as accurate. To this aim, a new watershed 
based approach for iris segmentation in color images is presented in this paper. 
The watershed transform is exploited to binarize an image of the eye, while 
circle fitting together with a ranking approach is applied to first approximate the 
iris boundary with a circle. The experimental results demonstrate this approach 
to be effective with respect to location accuracy. 

Keywords: iris segmentation, watershed, circle fitting. 

1 Introduction 

In the last years iris recognition system under constrained acquisition protocols has 
proven to be effective if compared with automatic fingerprint in several scenarios 
(e.g., physical access control, computer log-in, international border crossing and 
national ID cards) [1, 9]. However,  the effectiveness  and feasibility of iris 
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technology under controlled data acquisition conditions may significantly decay in 
real data scenario with subjects moving and at widely varying distances under both 
visible wavelength and artificial lighting sources. Although deployed iris recognition 
systems operate mainly in the near infrared (NIR) spectrum, the majority of ICT 
devices, including new smart mobile generation, includes visible wavelength cameras. 
Just the rapid spread of mobile and its evident economic and security implications that 
it would have in modern societies, is the spring board of throwing for both the 
detection and recognition of degraded iris images acquired in visible wavelengths. So 
recently, the scientific community promoted two international evaluation initiatives 
about iris detection and recognition, named NICE I [13] and NICE II (Noisy Iris 
Challenge Evaluation) [14]. The UBIRIS database, including heavily degraded iris 
image, was used as data sources for this event. 

First papers on iris detection and recognition, operating in the NIR illumination, 
have been proposed by Daugman [2] and Wildes [17]. Just a few years after Puhan 
[11] proposed a novel framework for iris analysis using data source acquired under 
the visible wavelength light. In this scenario the goal of some participants in NICE I 
was to optimize the iris localization [15]. Others aimed to reduce the computing time, 
as for example Li et al [6] that adopt Haar based AdaBoost  technique or Labbati and 
Scotti [5] that propose a novel approach using a rough estimate of the center of the 
pupil and iris to focus search only in a limited area of the image. Along the same idea 
ISIS [4] operates only on iris edges extracted by Canny filter performing a precise 
estimate of the center and radius of the pupil with a low computing time. Iris 
detection is then determined by using circle fitting algorithm. Even if ISIS 
demonstrated to be suitable for quasi real-time applications, it always provides, as 
output, a circle as approximation of both pupil and iris contours. 

This paper proposes a novel Watershed based Iris Segmentation, namely WISE 
that demonstrated to be able in providing the real iris contour and not simply a blurry 
circle. The watershed transform is a well known that true color and gray level image 
segmentation performing low asymptotical time complexity of O(n) and also the real 
computation speed. WISE, by means of an iterative region growing transform to limit 
any over-segmentation uses a merging technique specifically designed for the iris 
context.  

The output of the watershed transform suitably thresholded, is subject to a further 
phase of processing that produces as its final result the contours of both the iris and 
pupil. The rest of the paper has the following structure. Section 2 describes WISE 
basic terms, while Sections 3 and 4 show experimental protocol and results. 
Conclusions and the future work follow in Section 5. 

2 How the WISE Approach Works 

Iris localization (segmentation) is a pattern recognition task aimed to extract the iris 
texture from a snapshot of the whole periocular region. The most of the existing 
approaches rely on that iris outer edge is characterized by a strong contrast to the 
white of the sclera and to darker pixels of the eyelids. Otherwise, the inner edge 
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separating the iris from pupil can be more or less contrasted depending on the 
pigmentation of the iris texture. In both cases, the segmentation process should 
consider the differences in pixel contrast to accurately locate both iris boundaries. The 
gradient of an image comes out as a powerful tool to analyze derivatives of 
brightness, as it underlines the directions of its maximum intensity variations. In 
particular, gradient information are exploited by the watershed transform [7] to 
agglomerate pixels in regions, generally named basins and surrounded by gradient 
banks. As the number of basins tends to be very high, the watershed image is often 
affected by the problem of over-segmentation; so a merging criterion is implemented 
to remove week banks and bring together similar regions. In this specific case, the 
watershed transform is directly applied to an RGB color snapshot of the eye and a 
binary image is obtained with eyelid and sclera marked as foreground, while iris 
texture and pupil belonging to the background.  

The foreground binary image is inputted to a morphological operator that sets a 
pixel to 0 if all its 4-connected neighbors are 1, thus only retaining foreground 
contours. Since the limbus should often be included as part of a more complex 
contour (see Fig. 2-c), curvature analysis is exploited to split edges at high curvature 
points. Edges are treated as connected components and circle fitting is applied to find 
the circle that better approximate the iris boundary. Many approaches search circular 
shapes, possibly representing the iris, through Hough transform [17] or adaptations 
[8], which suffer for a high computational cost. Ellipse fitting is faster than the Hough 
transform, but it also shows some limitations. Indeed, the presence of noise (e.g. 
spurious branches) may cause the erroneous detection of an elliptical shape even 
where the expected result would be a circular one. WISE detects circular objects 
within the image using a precise and fast circle detection procedure presented by 
Taubin in [16]. The difference between Taubin’s approach and ellipse fitting is a 
relevant aspect to consider; as a matter of fact, given a set of points on a plane, the 
former identifies a circle which better approximates them, while the latter identifies 
an ellipse. Since many circles are found while searching for the iris, and WISE does 
not rely on the Hough transform, a ranking criterion is defined in order to only select 
the best candidate iris circle. 

2.1 The Watershed 

The watershed is a segmentation approach that builds agglomerations of pixels 
(region growing) by using gradient ridges as a barrier for growing algorithms [12]. 
According to this technique, the gradient image is considered as a 3D surface 
characterized by ridges (banks) and catchment basins (basins). The ridges correspond 
to curves of maximum gradient, and each basin represents a homogeneous region in 
which all pixels are connected to a local minimum of the gradient. Generally, the 
positions of ridges produced by the watershed fits well with the way they would be 
placed by the human perception. Unfortunately, the number of basins may be very 
high, as it is proportional to the number of local minima of the gradient, thus resulting 
in an over-segmented image. In such cases, specific merging criteria are designed to 
bring together basins with very similar characteristics.  
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WISE exploits the watershed to transform an RGB image into a binary one, in 
which iris is separated as much as possible from the rest of the eye elements (sclera, 
eyelid, eyelashes). First of all, a median filter with window size n×n (n has been set to 
7, according to the resolution of the input images 800×600 pixels) is applied to the 
image (Fig. 1-b), in order to remove noise as well as to smooth sharper color 
differences (a first way of preventing over-segmentation). In order to produce the 
initial partitioning of the image, the Sobel’s filter is used to extract the gradient 
information that is inputted to the watershed transform (Fig. 1-c). Regions Di 

produced by the watershed are a covering of the image (Fig. 1-d), that is they are all 
disjoint (Di∩ Dj=∅), while their union gives back exactly the whole image (∪Di=I). 
In order to reduce the number of segmented regions, a color based merging criterion 
is implemented. In more details, each region Di is assigned with its average color 
Ci=(Ri, Gi, Bi) that is computed as the mean value of the colors of pixels belonging to 
it. The distance between average colors Ci and Cj of each pair of adjacent regions is 
computed according to the following formula (eq. 1): 

 

          
( ) ( ) ( ) ( )222, jijijiji BBGGRRCCd −+−+−= , (1) 

The color distance d represents the criterion WISE uses to decide if two adjacent 
basins must be merged into a larger region. In other words, given a basin Di, the color 
distances to its adjacent basins are calculated and it is merged with the one having the 
minimum color distance, provided that this distance is lower than a fixed threshold δd 
(in this work δd has been experimentally set to 50) (Fig. 1-e). The average color is 
then re-computed over all pixels belonging to the new basin (Fig. 1-f). Assuming that 
white color (W) is represented by R-,G- and B-component with value 255, while 
black (K) has R-, G- and B-component equal to 0, the couple of distances d(Ci,W) and 
d(Ci,K) is computed for each region Di. The mean values WC and KC are obtained by 
averaging d(Ci,W) (symmetrically d(Ci,K)) distances over all regions Di. Furthermore, 
the distance d(W, K) is considered as the maximum value the distance d can assume 
and it equals to 441.6730. In order to separate foreground regions from the 
background, that is to produce a binarization of the input image, the value of the 
distance d must be thresholded. In other words, we need a threshold  εd to which color 
distances must be compared with. Distances dW and dK are defined as follows (eq. 2):  
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The threshold εd is used to binarize all regions produced by the watershed and is 
computed just once for a given image according to the following equation (eq. 3): 
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Obviously it changes from an image to another, as it depends on distances between 
pair of regions that come out from the watershed (Fig. 1-g). Notice that in the binary 
image (Fig. 1-g) the foreground corresponds to black regions, while the background is 
represented by the white ones. The separation between foreground and background in 
the binary image is further improved by applying a refining process that can switch 
the membership of a basin from foreground into background. In more details, let be 
CF the average color of the foreground computed by averaging all Ci of the basins Di 
that belong to it. In a symmetric way, CB is calculated as the average color of the 
background. For each basin Di in foreground the distance of the corresponding Ci to 
the average colors CF and CB is calculated; so if Di belongs to the foreground, while 
holding that d(Ci,CB)≤d(Ci,CF), its membership is switched into background (see Fig. 
1-h).  

 

Fig. 1. Some images produced by WISE during the binarization process: a) the original colour 
image, b) the smoothed image, c) the gradient image, d) the output of the watershed transform 
(1100 basins), e) the pool of basins after the merging operation (690 basins), f) the quantized 
image, g) the binary image produced by thresholding the watershed, h) the improved binary 
image 

2.2 Curvature Analysis and Circle Fitting 

The output of the thresholded watershed transform is a binary image, in which the 
background is represented by black pixels and the foreground by white ones. As 
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WISE searches for a circle approximating the iris boundary, a considerably amount of 
computation can be saved by focusing the attention only on contour information. To 
this aim, an edge image is computed by applying a morphological operator to the 
binary mask produced by the watershed (Fig. 2-c). This operator sets a pixel to 0 if all 
its 4-connected neighbors are 1, thus leaving only the boundary pixels on. It is worth 
noting that the watershed transform well separate lighter regions from darker ones in 
the original image. For this reason the sclera is marked as foreground in the binary 
mask, unlike the iris texture which belongs to the background. Pupil and iris 
correspond to a black concavity hollowed into the foreground region of the sclera, 
making the iris boundary to be part of the sclera contour. It is essential to isolate 
pixels belonging to the iris boundary from the rest of the sclera contour, in such a way 
that a circle fitting technique can be used to approximate it. Fig. 2-c shows that 
contour direction changes very smoothly along the iris boundary, while a sharp bend 
in this line characterizes its end points. This peculiar behavior of the iris contour 
makes the curvature analysis particularly suitable for detecting sharp diverts in the 
edge image.  

However, the aim of this processing step is only to cut edges at points with high 
curvature and the point-wise computation of the curvature of a generic shape entails a 
high computational cost, so we can rather estimate it by using such an heuristic 
criterion that would be easier to calculate. Edges are treated as connected 
components. For each connected component C a contour tracing algorithm is applied 
to sorts all points Pk=(xk,yk) belonging to C in a list LC={P1, P2,…, Pn}. According to 
this list, the contour C is linearly scanned point by point. For each Pk, a further point 
Pk+t is also considered, where t=4⋅log2(|C|) is a parameter, whose value is 
proportional to the contour length. In particular, WISE considers the midpoint 
M=(mx,my) of the segment S ended by Pk and Pk+t and calculates the Euclidean 
distance dk,t(M, Pn) between M and Pn, where n=(k+t)/2. The values of dk,t(M, Pn) 
are divided by  ( )tk

k
dd ,max maxarg= , to ensure they belong to the range [0,1]. The higher is 

dk,t(M, Pn), the larger is the value of the estimated curvature at point Pk. Given a fixed 
threshold σ (in this case σ =0.5), all points Pk for which the estimated curvature dk,t is 
larger than σ are deleted from LC, so that a complex contour C is partitioned in a set of 
smoothed edges E1, E2, …, Eq, as shown in Fig. 2-c. 

A connected component search is applied to the resulting edge image, so that all 
pixels belonging to the edge Ei are grouped in the same component Qi (Fig. 2–d), 
while only those containing a number of pixels greater than a threshold ThQ  are 
included in a unique list H (here ThQ=150). Taubin’s algorithm [16] is applied to each 
element Qi in H to compute the corresponding circle Ri and its approximation error 
e(Qi, Ri)∈[0,1]. The final list HQ is obtained by pruning from H all components whose 
circles are not completely contained inside the image. In order to identify the iris, 
each circle Ri undergoes a voting procedure, according to a score value si, which is 
computed as follows: 

 
 
 



210 M. Frucci, M. Nappi, and D. Riccio 

( )iihi RQees ,−= , 

where ( )( )ii
i

RQeh ,maxarg=  
(4) 

The circle Rmax with highest score smax is considered as the circular shape which better 
approximates the iris (Fig. 2–e). 

 

Fig. 2. A graphical representation of outputs produced by the intermediate steps of WISE: a) 
the original colour image, b) the binary image produced by the thresholded watershed, c) points 
where curvature is larger than a given threshold σ, d) circle fitting of the connected 
components, e) the circle with best rank 

3 The Experimental Setup and Results 

We evaluated the precision of iris detection and compared the results obtained by our 
WISE system with those provided by a system built from Masek’s implementation of 
various iris-related algorithms, where segmentation is performed according to Wildes’ 
method [17] as well as those reached by the ISIS approach [4].  

In order to assess the accuracy of the iris segmentation approaches we considered 
in this paper, a precise manual localization of the iris centre and radius was used as 
ground truth for each iris image. A manual annotating system was used, in which iris 
images were shown to a human operator who selected their centre (x, y) and radius (r) 
by clicking them with the mouse. 

The different approaches were tested on UBIRIS v1 Session 2 database [10]. The 
UBIRIS v1s2 database is composed of 1877 images with a resolution of 800×600 
pixels, which have been collected from 241 persons. The presented experimental 
results report location accuracy iris centre (x, y) and radius (r). Table 1 reports the 
relative precision of iris location by ISIS, Wildes, and WISE with respect to manual 
segmentation. Mean and variance of error are relative to the image size. Image 
coordinates are normalized according to the respective direction (x with 800, y with 
600). Radiuses are normalized according to the horizontal direction. Experimental 
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results demonstrated that if the distances are greater than a 20 pixels threshold, the iris 
can’t be detected because the eye is closed or the detection is wrong. The columns 
“no out.” (“no outliers”) report mean and variance computed by eliminating 
completely wrong locations (error greater than 20 pixels) or also UBIRIS closed eyes. 
Under the method’s label we report the number of eliminated outliers. 

Table 1. Location results for UBIRIS database 

UBIRIS v1s2 
Iris x Iris y Iris radius 

all no out. all no out. all no out. 
ISIS 

out. =  12% 
mean 2.4 0.3 4.3 1.6 2.2 0.8 

std 6.3 0.3 6.4 1.4 5.0 0.6 
WILDES 

out. =  38% 
mean 24.8 24.9 24.8 24.9 10.4 10.2 

std 7.0 2.4 7.9 3.7 1.7 1.7 
WISE 

out. =  18% 
mean 1.3 0.5 2.2 1.7 1.2 0.8 

std 4.2 0.8 3.7 1.9 2.3 1.1 
 
A first observation is the slightly worst performances on the vertical coordinate of 

the pupil centre. This might be due to eyelids, which especially affect such dimension. 
When outliers are not dropped from whole set of iris images, WISE always 
outperforms the other methods. Otherwise, in the case in which outliers are not 
considered for evaluating the segmentation accuracy, WISE performance overcomes 
that of WILDES, being comparable with that of ISIS. Similarly, the number of 
outliers produced by WISE is comparable to that provided by ISIS, which is the 
smallest one. 

It is worth to notice that even when images are affected by a wide number of 
problems due to occlusions or reflections, WISE still achieves acceptable 
performances, while those by the other methods dramatically decrease. 

4 Conclusions 

This paper has illustrated a new watershed based approach for iris segmentation on 
color images acquired in visible wavelength light. The technique has been designed to 
provide a more robust segmentation that is a crucial step when illumination changes 
significantly. The adopted watershed transform combines a classical iterative region 
growing and a novel merging technique specifically designed for the iris context. The 
experimental results demonstrate this approach to be effective with respect to location 
accuracy if compared with today’s algorithms. 
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Abstract. Digital terrain models (DTM) are basic products required
for a number of applications and decision making processes. Nowadays,
high spatial-resolution DTMs are primarily produced through airborne
laser scanners (ALS). However, the ALS does not directly deliver DTMs
but a dense cloud of 3-d points that embeds both terrain elevation and
height of natural and human-made features. Such a point cloud is gener-
ally rasterized and referred to as the digital surface model (DSM). The
discrimination of aboveground objects from terrain, also termed ground
filtering, is a basic processing step that has proved especially difficult for
large areas of complex terrain characteristics. This paper presents the
development of a multiscale erosion operator for removing aboveground
features in the DSM, thus producing a surface that is close to the DTM.
Such an approximation was used to separate ground from non-ground
points in the original point-cloud and the discrimination accuracy was
assessed using publicly available data. Results indicated an improvement
over a previously published method.

Keywords: Remote sensing, LiDAR, Ground filtering, multiscale Her-
mite transform.

1 Introduction

The small-footprint, discrete-return light detection and ranging system (LiDAR)
has become one of the most important means to produce high-resolution DTM
data. This has been due in part to a number of advantages over competing
aerial photogrammetric techniques, such as independence of sun light, higher
vertical accuracy, less missing data by occlusion, low redundancy and because
it does not rely on existence of textured surfaces and discontinuities for a suc-
cessful point matching [1]. The discrete return LiDAR system is based on the
accurate measurement of the elapsed time between emitted and backscattered
laser pulses. The emitted pulse is typically short-time and unimodal, whereas
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the backscattered may spread over longer times exhibiting multiple modes called
returns. Returns are associated to distinct layers the laser interacted with. For
each return, the 3-d position is determined and its intensity recorded. Hence the
raw LiDAR data consists of a dense cloud of 3-d points with associated return
intensity. Each point provides the location where the laser hit the Earth’s surface
during the scanning process, whereas the intensity is a digital representation of
the fraction of pulse energy reflected at that location.

The z-coordinate of points correspond to terrain elevation with respect to a
horizontal datum, typically the mean see level, plus the height of non-terrain fea-
tures in some instances. In order to produce a DTM by interpolation of ground
points, a discrimination of ground from non-ground points must be carried out
first. This discrimination process is referred to as ground filtering and is gen-
erally considered a preprocessing for generating not only the DTM, but also
the height of non-ground components [2, 1]. Further classification of non-terrain
points into meaningful features, such as trees, buildings, roads, and so on, is also
common task that is needed for detailed analysis and quantification of landscape
characteristics.

Methods to ground filtering can be grouped into two big categories, namely
point-based and raster-based methods. Methods in the first category classify di-
rectly the point cloud whereas methods in the second category first rasterize the
point cloud onto a regular grid through an interpolation method. Each approach
has advantages and disadvantages. In general, rasterizing the data first allows
to take advantage of digital image processing algorithms which run much faster
than point-based operations, whereas point-based processing tends to be more
accurate [2]. A recent review of methods and critical issues of the ground filter-
ing problem is provided in [3]. Interestingly, the need for processing at multiple
scales/resolutions has been increasingly recognized by several studies [4–6]. This
has let to the adoption of multiresolution image decomposition techniques in
raster-based approaches by some authors [4, 7]. These algorithms tend to be
very efficient, less sensitive to parameter selection, less sensitive to point density
and are able to remove large non-ground features, such as bridges and complex
buildings.

The method presented in this paper falls in the raster-based category and
is based on an wavelet-like transform termed the multiscale hermite transform
(MHT), which is an overcomplete signal decomposition based on scaled and
rotated Gaussian derivatives [8]. The original filtering method was introduced
in [7] and, based on an extensive accuracy assessment, was ranked among the
top three out of nine algorithms tested. Furthermore, its performance has been
demonstrated in several real applications [9–11]. The rationale of the method
is as follows. A DSM is first generated through a point-to-raster conversion of
the point cloud. Then the DSM is decomposed using the MHT expansion with
transform coefficients processed through the so-called erosion operator, so that
when applying the inverse transform, the re-synthesized surface corresponds to
an eroded version of the DSM. The resulting surface is then used to gener-
ate a ground/non-ground mask by comparing the original DSM with its eroded
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version. The overall process is illustrated in Figure 1, but major improvement
presented in this paper corresponds to the “Multiscale Erosion Operation” step.
A more complete description of the overall algorithm is to appear in [12].

Ground Mask  
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Point Cloud 

Point-to-raster  
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Parameters  
Measurement 
or Selection 

Multiscale 
Erosion 
Operation 

Eroded  
DSM 

Ground  
Mask 
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Point Cloud 

DSM 

Estimated 
DTM = 

Fig. 1. Flow diagram of ground filtering method. Adapted from [12]

The rest of the paper is organized as follows. Section 2 provides a summary of
the theoretical background around the MHT. Then, in Section 3 the multiscale
erosion operator is defined and illustrated. Next, in Section 4 some filtering
tests are described and results of the accuracy assessment presented. Conclusions
drawn from the study are presented in Section 5.

2 Background

The MHT can be defined for one, two and higher dimensions and for both con-
tinuous and discrete signals, here we summarize the theory for two-dimensional,
discrete signals, and refer the interested reader to the original source [8] for other
forms. For simplicity, exposition starts with the single-scale case and then extend
the result to multiple scales.

2.1 Single-Scale Discrete Hermite Transform

The discrete Hermite transform (DHT) of a signal z(x, y) defined on a discrete
domain can be expressed as a convolution of the input signal with a bank of 1-d
filters along each dimension and followed by a subsampling with a rate factor of
two. This is expressed in mathematical terms as follows:

zn,m(p, q) =
∑
x,y

z(x, y)bn(x − 2p)bm(y − 2q) (1)
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where

bn(x) = 2−N
√
Cn

N

n∑
j=0

(−1)n−jCj
nC

x+N/2+j−n
N−n (2)

for x = −N/2, . . . , N/2 and by bn(x) = 0, for all other values of x, represent the
bank of 1-d filters for n = 0, . . . , N . The set of such filters is referred to as the
binomial family. Since the binomial family is the discrete counterpart of Gaussian
derivatives, a transform coefficient zn,m(p, q) approximates (up to a normalizing
factor) the partial derivative of order n with respect to x and of order m with
respect to y of a Gaussian-smoothed version of the input signal z at the location
(p, q). The degree of smoothness of the Gaussian kernel is controlled through the
scale parameter s = N/4.

Conversely, the full set of transform coefficients allows recovering the input
signal through the inversion procedure summarized in the following equation:

z(x, y) =

N∑
n,m=0

∑
p,q

zn,m(p, q)b̃n(2p− x)b̃m(2q − y) (3)

where the interpolation filters b̃(x) = 2b(−x), for n = 0, 2, . . . , N , are binomial
filters reflected around the origin.

In general, the DHT expansion compacts most of the signal information in the
first few coefficients. Hence, a near perfect reconstruction can be obtained with
a truncated expansion. Further compaction of the information can be achieved
through local orientation of the coordinate axis along the strongest signal vari-
ation. More specifically, the expansion coefficients can be defined with respect
to a coordinate system (u, v), that has been rotated by an angle θ with respect
to the original coordinate system (x, y). Since different orientation angles are
chosen for different sampling points, this operation is referred to a local spatial
rotation. Figure 2 shows an example of original versus rotated coefficients.

2.2 Local Spatial Rotation

Let z
(θ)
n,m denote the rotated coefficients at a generic sampling location, where

location is purposely omitted in the notation for simplicity. This can be com-
puted as linear combinations of the original (un-rotated) coefficients through the
following mathematical relation:

z
(θ)
n−m,m√
Cm

n

=

n∑
k=0

a
(θ,n)
m,k

zk,n−k√
Ck

n

(4)

The recovery of the original coefficients from the rotated ones is performed

through rotation by a negative angle. The angle functions a
(θ,n)
m,k correspond

to the generalized binomial filters (GBF), a family of discrete sequences with
parameters n and θ, which are given by

a
(θ,n)
m,k = skc−kΔm{Ck−m

n−mc2k−msn−2k+m} (5)
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(a) (b)

Fig. 2. Example of DHT coefficients up to fourth order (a) and corresponding ro-
tated coefficients (b). In both cases, the order of derivation with respect to x- and
y-coordinates grows from left to right and from top to bottom, respectively.

for m, k = 0, . . . , n, and c = cos θ and s = sin θ. The first few GBFs can be

expressed using the matrix notation A(θ,n) = [a
(θ,n)
m,k ]m,k=0,...,n, so that

(
s c
c −s

)
,

⎛⎝s2 2sc c2

sc c2 − s2 −sc
c2 −2sc s2

⎞⎠ ,

⎛⎜⎜⎝
s3 3s2c 3sc2 c3

s2c −s3 + 2sc2 −2s2c+ c3 −sc2

sc2 −2s2c+ c3 s3 − 2sc2 s2c
c3 −3sc2 3s2c −s3

⎞⎟⎟⎠
correspond to the matrices for n = 1, 2 and 3, respectively.

In all the examples presented here, the rotation was set to the orientation of
the local gradient, that is:

θ = arctan
z0,1
z1,0

(6)

This selection of the angle makes the rotated coefficients z
(θ)
0,1 = 0, and

z
(θ)
1,0 =

√
z21,0 + z20,1 (7)

The latter corresponds (up to a constant factor) to the magnitude of the local
gradient. Other angles may be computed that involve higher order coefficients,
however the gradient angle generally achieves higher energy compaction of the
signal along the first coordinate. This is the case if the input signal embeds
strongly oriented features, such as the edges of buildings in a DSM (see Figure 2).
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2.3 Multiscale Discrete Hermite Transform

The multiscale discrete Hermite transform (MDHT) is implemented by recur-

sively replacing the zero-order (low-pass) coefficient of previous level, z
(k−1)
0,0 (x, y),

by its DHT expansion times a scaling factor, thus yielding a wavelet-like pyra-
midal decomposition.

Mathematically, the MDHT with K + 1 pyramid levels is expressed through:

z(0)n,m(p, q) =
∑
x,y

z(x, y)bn(x− 2p)bm(y − 2q), for k = 0 (8)

and

z(k)n,m(p, q) =
∑
x,y

z
(k−1)
0,0 (x, y)cn(x− 2p)cm(y − 2q), for k = 1, . . . ,K (9)

for n,m = 0, . . . , N and cn(x) = (
√
3/2)nbn(x). Conversely, the reconstruction

of the original signal is carried out through successive reconstruction of low-pass
coefficients from the coefficients of the upper pyramid levels. This is expressed
as:

z
(k−1)
0,0 (p, q) =

6∑
n,m=0

∑
i,j

z(k)n,m(i, j)c̃n(2i− p)c̃m(2j − q), for k = K, . . . , 1 (10)

and

z(x, y) =
8∑

n,m=0

∑
p,q

z(0)n,m(p, q)b̃n(2p− x)b̃m(2q − y)) (11)

with c̃n(x) = (
√
3/2)−nb̃n(x).

It should be noted that the replaced low-pass coefficients are not part of
the MDHT expansion, but only used for the computation of the next coarser
level. In contrast, since the coarsest low-pass coefficient is not replaced, it has
to be considered part of the MDHT expansion. Also, the length of binomial
filters of the first pyramid level is N = 8, whereas that for higher levels is
N = 6. These filter length values ensure that the low-pass coefficients comprise
a scale-space representation in normalized spatial coordinates for a discrete scale
sequence. Such a representation is equivalent to filtering the original signal with
a sequence of low-pass binomial filters of length Nk = 8 × 4k, for k = 0, . . . ,K,
and then resample the output by a factor 2k. Because of this, the MDHT can
also be interpreted as an expansion of the Gaussian pyramid in terms of its
derivatives. Furthermore, the MDHT coefficients can also be rotated using the
same formulas as stated previously. In this case, the notation is extended to

z
(θ,k)
n,m , which accounts for the rotation angle.

3 The Multiscale Erosion Operator

The multiscale erosion operator is a processing of the coefficients that allows
to remove aboveground features in the transform domain. This can be seen as
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a local spatial shifting of the signal, a process that is performed only around
detected ground/non-ground transition pixels, so that the portion of the signal
in the vicinity of a ground/non-ground transition is replaced by a portion of the
signal located along neighbor ground points.

The local spatial shifting is based on a property of the binomial filters stating
that the members of a binomial filter family can reconstruct the members of a
binomial filter family at a shifted location and decreased filter length. Otherwise
stated:

bn(x−M/2;N −M)√
Cn

N−M

=

M∑
m=0

(−1)mCm
M

bn+m(x;N)√
Cn+m

N )
(12)

forM < N , where shifting occurs both in scale (N) and space (x). Since the DHT
is a linear transform, a similar relation can be obtained for the DHT coefficients
in 1-d. For 2-d and higher-dimensional signals, the spatial shifting operation can
be combined with the rotation operation, thus resulting in a directional spatial
shifting. In particular, for 2-d signals the spatial shifting along a direction defined
by an angle θ is expressed through:
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Fig. 3. These plots illustrate the effect of the shifting parameter (M) in reconstructed
surface profiles (circles and stars). The input profile (dots) corresponds to a sharp step
for the first and second case and to a smooth step for third case. The DHT of the input
was computed with N = 8 and the transform coefficients were processed with a scale-
space shifting of Eq. (13) for M = 2 and M = 4. Then, the profiles were reconstructed
from processed coefficients with the inverse DHT using the same filter length (N = 8)
for the first and third cases, but a decrease filter length (N −M) for the second case.
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z
(θ,N−M)
n,l (p−M/2, q)√

Cn
N−M

=

M∑
m=0

(−1)mCm
M

z
(θ,N)
n+m,l(p, q)√

Cn+m
N

(13)

for n = 0, . . . , N−M and l = 0, . . . , N , where now the filter length is included in
the notation of the coefficients to make explicit the shifting in scale as well1. Fig-
ure 3 illustrates the effect of the shifting parameter M on a reconstructed profile
from its shifted transform coefficients. The shifting in scale can be ignored only
if the signal is smooth enough (bottom panel). However, for sharp transitions
the inverse transform requires to account for the scale shifting (middle panel),
or otherwise signal distortions may occur (upper panel) and this is accentuated
with increasing values of M.

Of special interest is the case for N = 8,M = 2 and n = l = 0, for which the
above equation reduces to:

z
(θ,6)
0,0 (p− 1, q) = z

(θ,8)
0,0 (p, q)−

z
(θ,8)
1,0 (p, q)

√
2

+
z
(θ,8)
2,0 (p, q)
√
28

(14)

which would correspond to the erosion operator developed in [7] if the scale
shifting and the third term in the left-hand side were neglected. In that study,
such an erosion operator was derived from an explicit model of a 1-d surface
profile in the continuous domain, and then extrapolated for the 2-d discrete
case. In contrast, the formula of Equation (13) represents a more general way as
it allows shifting the higher order coefficients as well, instead of simply setting
them to zeroes as in the previous work.

Additionally, in the original formulation, the terrain elevation underneath
non-ground features was assumed flat. This was convenient because the erosion
operator is essentially a local spatial shifting. In order to account for higher order
variations of terrain elevations at those sites, a truncated Taylor expansion is
also proposed in this study. Specifically, the following approximation was used
to estimate terrain elevations at transition points:

z(θ,N)
n,m (p, q) ≈ z(θ,N)

n,m (p−M/2, q) + c1z
(θ,N)
n+1,m(p−M/2, q) (15)

with the constant c1 = (M/4)
√
n+ 3, which accounts for the relation between

the transform coefficients and the signal derivatives. Hence, the new erosion
operator is implemented by plugging the local spatial shifting of Equation (13)
into Equation (15).

In all tests presented below the shifting parameter was set to M = 2 and the

Equation (15) applied to the coefficients z
(θ,k)
0,0 and z

(θ,k)
1,0 at detected ground/non-

ground transitions, while all other coefficients are set to zero. Such a processing
was inserted in the computation of the MDHT, so that erosion is carried on the
coarser layers. The processed coefficients are then used to synthesize a surface

1 It should be noted that the scale rather than a scale index is used here.
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that approximates the DTM, which in turn was used to classify the original point
cloud into ground and non-ground points. Further details on both the detection
of ground/non-ground transition points, as well as on the insertion of the erosion
operator in the MDHT, are provided in [7].

4 Ground Filtering Tests

Both the previously developed and the new erosion operators were applied to
the ISPRS datasets for two sites (www.commission3.isprs.org/wg3/). The first
site corresponds to an urban area (CSite2) exhibiting large and irregular shaped
buildings, as well as a road with bridge and small tunnel. The second site cor-
responds to a rural area (FSite5) with vegetation on steep slopes, quarry, vege-
tation on river banks and gaps. The original point cloud included elevation and
intensity from first and last returns; however, only first return was used in the
tests as it was generally the cleanest measurement.

Table 1. Selected filter parameters for each test site

Parameter CSite2 Fsite5

Maximum Feature Width [m] 100 50
Maximum Terrain Elevation Difference [m] 30 90
Maximum Terrain Slope [Deg] 25 55
Maximum Elevation Tolerance [m] 0.25 0.25
Cell Size [m] 1 2

The parameters used for the filtering of each dataset are provided in Table 1.
Cell sizes for point-to-raster conversions were roughly equivalent to the origi-
nal average point spacing. Further details on the interpolation of the data are
available in the reference [7]. Other parameters were interactively measured from
visualizations of the DSM as suggested in [12]. Nonetheless, although a very steep
slope of 88 degrees was measured for the forested area, a value of 55 degrees was
used instead in order to avoid leaving most non-ground features unfiltered.

The accuracy assessment of the filtering results was carried out for up to four
test insets per site, for which classification was available. Ground points from
the reference data were interpolated to generate a reference DTM that served
to compute the root mean square error (RMSE) of the estimated DTM (eroded
DSM) (Table 2(a)). The latter was also used to classify the original point cloud
and the overall classification accuracy (OCA) was computed for each sample set
(Table 2(b)).

In general, the new method showed lower RMSE for both sites, thus indicating
a superior method for estimating the DTM. In terms of classification accuracy,
the new method was still better than the old one in the average, yet there were a
few cases were the old method remained comparable or even superior to the new
method. In either case, results for the urban site showed significant commission

www.commission3.isprs.org/wg3/


222 J.L. Silván-Cárdenas

Fig. 4. This figure illustrates the surfaces derived for one of the test samples (samp24).
From left to right: Input DSM, reference DTM, synthesized DTM with the old erosion
method and synthesized DTM with the new erosion method.

Table 2. Root mean square error in meters of estimated DTM (a) and overall accuracy
of ground/non-ground classification (b) for each test site and method

(a)

Sample CSite2 Fsite5
Set Old New Old New

samp*1 4.12 4.07 4.44 3.96
samp*2 6.85 4.26 9.03 2.30
samp*3 10.41 8.86 7.03 5.11
samp*4 6.32 3.77 4.62 4.00

average 6.92 5.74 6.28 3.84

(b)

Sample CSite2 Fsite5
Set Old New Old New

samp*1 70 68 77 75
samp*2 77 81 69 86
samp*3 78 84 62 82
samp*4 65 74 85 79

average 73 77 73 81

errors along the eastern side due to the edge effect of the multiscale filtering and
the terrain elevation gradient towards the eastern direction, yet this was less
significant than in the tests reported in previous work. The reason for this was a
change from symmetric reflection to an anti-symmetric reflection of the boundary
cells. According to this condition, the extension of a sloppy terrain near the edge
will maintain its slope rather than change it with a symmetric reflection. For
the forested site, the major problem was the omission errors along the southern
side, where a sharp terrain shape was present.

5 Conclusions

This paper presented a filtering method based on a multiscale signal decom-
position termed the multiscale Hermite transform, which has been formulated
in the context of the scale-space theory for signal processing [8]. As the overall
filtering method had been extensively tested and applied elsewhere [7, 9–11],
the main focus of this work was on an extension of the erosion operator used in
that method. Such an extension used a truncated Taylor expansion and a local
spatial shifting operator in the transform domain for predicting terrain elevation
underneath non-ground features, such as buildings and trees. When compared
with the original method, it was found that synthesized DTM was more accurate
than for the previous method, which also led to a better discrimination of ground
points from the original point cloud. Although the synthesized DTM relied on
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coefficients of up to first order only, there were involved coefficients of up to
fourth order through the scale-space shifting operation, which was a major rea-
son for the reconstruction of more details. Future work should develop practical
ways for parameter selection and investigate the effects of incorporating even
higher order coefficients.
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Abstract. In this paper we present a novel computational scheme to determine 
the impulse response of the UFIR filters. A recursive form of impulse response 
is developed using the theory of the discrete orthogonal polynomials. An 
example of an enhanced of medical image is considered to compare its 
performance versus the matrix formulation of the impulse response UFIR 
filters. Finally, some quantitative and qualitative evaluations are carried out to 
verify its efficiency based on RMSE analysis.  

Keywords: UFIR filters, biomedical images, discrete orthogonal polynomials, 
recurrent relation.  

1 Introduction 

Biomedical imaging is a powerful tool in many medical procedures, such as detection 
of abnormal mass, diagnosis of some diseases, proper treatment for illnesses, among 
others. Nowadays, exist a variety of medical imaging techniques, such as: X-ray, 
Magnetic Resonance Imagery (MRI), Positron Emission Tomography (PET), and 
Ultrasound images [1, 2]. These images are classified in two categories: images 
formed with electromagnetic waves and images formed from acoustic waves. The 
first, are formed with particles provided by a particles beam so that the penetration in 
tissue and the organs is used for forming images. On the other hand, the second 
category to group images formed with the scatter waves that return from both the 
tissue and organs, respectively. Particular features are identified in such images for 
example: attenuation, reflection, dispersion, and impedance [3, 4]. However, these 
features are the result of the change in density between different tissues. In addition, 
the noise is an important issue in image formation and the most important types of 
noise in biomedical imaging field are speckle and Gaussian noise. 

The problem of saving sharp edges whilst enhancing the image corrupted by either 
speckle or Gaussian noise is typical in biomedical image processing [2]. An overall 
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overview of nonlinear filtering has been given in [5] along with the important 
modifications for a large class of nonlinear filters employing order statistics. The 
algorithm problems for the FIR filter design have been discussed in [6]. In [7] the 
finite impulse response (FIR) median hybrid filters (MHF) strategy has been proposed 
with applications to image processing. 

In the other hand, the family of Unbiased Finite Impulse Response (UFIR) filter is 
relatively new in signal processing applications [8]. This digital FIR filter was 
developed by Shmaliy in order to reduce the Time Interval Error (TIE) in Global 
Position System (GPS) signals. Later, in [9-11] a modification in the impulse 
response of the UFIR filters is introduced, this new approach makes use of  the size of 
the step (p) of process which is very important,  this development presented the next 
three processes: Filtering, when, p = 0, Prediction when, p > 0, and  Smoothing when, 
p < 0. Some applications of UFIR [12, 13] and p-UFIR [14-16] filters in biomedical 
image processing were developed by Morales-Mendoza, for ultrasound images 
applications. Furthermore, in [17] a ramp UFIR filter was used in the new 
computational scheme for synthetic image processing also targeted the ultrasound 
image processing [18]. Finally, a recursive scheme for computing the UFIR filters 
impulse response was proposed in [19, 20].  

In this paper, we present an application of UFIR filters with recursive response to 
preserve sharp edges with a simultaneous enhancing of biomedical images. The rest 
of the paper is organized as follows. In Sect. 2, we derive the polynomial image 
model. In Sect 3, we briefly discuss the derivation of the impulse responses of the 
filters UFIR using the matrix method approach. The orthogonality UFIR functions 
and the development of recursive impulse response of UFIR filters are discussed in 
detail in Sect. 4. An example of biomedical image processing is given in Sect. 5 and 
concluding remarks are drawn in Section 6. 

2 Polynomial Image Model 

A two-dimensional image is often represented as a kc × kr matrix, M = {μi,j}. In order 
to perform two dimensional filtering, this matrix can be written in the form of a row-
ordered vector (known as lexicographic form) or a column-ordered vector, 
respectively 

[ ]Tkkkkr rccr ,1,´,11,1´ μμμμ =y ,                                                 (1) 

[ ]Tkkkkc rcrc ,,1´1,1,1´ μμμμ =y .                                                 (2) 

The filtering procedure is then often applied twice, first to (1) and then to (2), or vice 
versa.  

If a two-dimensional  image is accurately represented using both (1) and (2), then 
each of the vectors may also considered as a deterministic one-dimensional signal, y. 
The unbiased FIR filter estimate is provided by the discrete convolution as follows 

( ) ( ) ( )tyNthts n ⊗= ,ˆ                                                             (3) 
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where, hn(t, N) is the filter's impulse response with order approximation n, the constant 
N is the averaging boundary of the samples and s(t) is the measurement signal 
(lexicographic image). It has shown in [8] it is possible to compute an unbiased 
estimation of s(t) at time t from y(t) by using the convolution defined in (3). The UFIR 
filter of n-degree, n ∈ [0, K – 1], with impulse response function hn(t, N) and monic 
polynomial is defined as follows  

( ) ( ) ( ) ( ) ( ) n
nnnnnn tNatNatNaNaNth ++++= 2

210, ( )
=

=
n

j

j
jn tNa

0

.            (4) 

3 Matrix Model of the Impulse Response UFIR Filter 

In this Section, we derive the general mathematical model for signals and images 
based on (4). First, we substitute t by discrete variable x so we have a polynomial that 
exist from 0 to N – 1 with the following fundamentals properties [8, 10], 

• Unit area 
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1

0
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−

=

N

x
n Nxh .                                                                            (5) 

• Zero Moments 

( ) 0,
1

0

=
−

=

N

x
n

u Nxhx ,                 1 ≤ u ≤ n.                                       (6) 

• Finite norm (energy) 
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In order to compute the coefficients of (4), lets first recall the properties described 
previously in (5), (6) and (7), respectively. Thus, the coefficients are defined as follows 
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where, |. | is the determinant of D(N) and M(j+1)1(N) is the minor of the Hankel matrix 
Hn(N) ∈ℜ(n + 1)×(n + 1) , 
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each component in (9) can be found using the recursive relation of the Bernoulli 
polynomials Bn(x) established in [8, 10]. Note that, so far, the following low-degree 
polynomials hn(x, N) were found and investigated so far 
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N

Nxh
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,0 =                                                            (10) 
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4 Recurrent Relation of the Impulse Response UFIR Filter 

4.1 Orthogonality of the UFIR Functions 

By definition, a set of orthogonal polynomials is a special system of polynomials 
{Pm(x)}, m = 0, 1, 2… that are orthogonal with respect to some weight function ρ(x) 
on an interval [a, b].  Given the n-degree polynomials functions hn(x, n) defined by (4) 
and (8) from 0 to N – 1 with the properties (5)-(7), a class of functions {hn(x, N)} is 
orthogonal on x ∈[0, N – 1], satisfying  

( ) ( ) ( ) ( ) knn

N

x
nk NdNxNxhNxh δρ 2

1

0

,,, =
−

=

,                                      (14) 

where, the subscripts k and n ∈[0, K – 1], δkn is Kronecker delta, dn
2(N) is defined as 

the square of the weighted norm of hn(x, N) and ρ(x, N) is the ramp probability density 
function defined earlier, both functions are defined in [19, 21] as follows 

( ) ( ) 0
1

2
, ≥

−
=

NN

x
Nxρ                                                          (15) 

and dn
2(N) is defined as the weighted norm of hn(x, N).  

4.2 Recurrent Equation of UFIR Polynomials 

It is known that any real orthogonal polynomials Pn(x) such as (4) satisfy the Favard’s 
theorem they are a sequence of polynomials satisfying a suitable three-term 
recurrence relation. The recursive relationship for determining the impulse response 
of UFIR filters [18-21] is defined as 
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( ) ( ) ( )
( )( ) ( ) ( )( )

( )( ) ( )Nxh
nNn

nNn
Nxh

nNnn

nxNn
Nxh nnn ,

12

12
,

12

1412
2, 21

22

−− +−
−+−

+−
−−−=

           (16) 

where, the above ratio, are constrained to the following initial conditions 

h–1 (x, N) = 0 ,         and          h0 (x, N) =1/N                          (17) 

using the relation (16) with the initial conditions defined in (17) yields the impulse 
response defined in (11) to (13), respectively. 

5 Simulations 

For further investigation, we chose a biomedical image of 200 × 200 pixels to 
grayscale showed in Fig. 1a. The image was contaminated with both additive white 
Gaussian and speckle noise as shown in Fig. 1b. The simulation conditions were set as 
follows: The average of horizon is N = 11 samples and the noises added to image are 
the white and speckled noise with a variance of 0.1 each one.  

 

a)  

 

b)  

Fig. 1. a) Original biomedical Image, b) Noisy Image with σ2 = 0.1 

The computational evaluation is carried out using a biomedical imaging. Image 
improvement is obtained using low-order polynomial approximation of the impulse 
response of the filter. Fig. 2 shows the enhanced images using different impulse 
responses. The evaluation in terms of RMSE metric is shown in Table 1.   

The computational evaluation is carried out in a personal computer that used an 
Intel® CORE 2 DUO processor with 2.4GHz of speed and 2GB of RAM. In Fig. 3, the 
time requested to pixel processing using the matrix and recursive forms of the impulse 
response of UFIR filter is shown.  
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a)  

 
b)  

 
c) 

 
d) 

 
e) 

Fig. 2. Enhancing images with a) h1(N, x), b) h5(N, x), c) h10(N, x), h15(N, x) and e) h20(N, x) 
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Table 1. I. Quantitative evaluation 

RMSE h1(N, x) h5(N, x) h10(N, x) h15(N, x) h20(N, x) 
Matrix 0.1238 0.2934 0.4594 0.6256 0.6874 

Recursive 0.1283 0.2301 0.4376 0.6211 0.6834 

 

Fig. 3. Pixel processing using the Impulse Response of UFIR filter vs Time 

6 Conclusions 

In this paper we presented the development of two forms to derive the impulse 
response of the UFIR filter. The matrix and recursive form can be used to filter 
biomedical images interchangeably. The quantitative evaluation (Table I) of both 
forms is quite similar. The processing time of each form is the main factor to 
consider. In Fig. 3 shows that the higher order approximation, the greater the 
processing time required is, and we can conclude that recursive approach requires less 
processing time than the matrix form. Finally, this comparison would help to 
significantly reduce the computational complexity required to implement the 
algorithm in a signal processor. 
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Abstract. This paper describes a new EEG pattern recognition method-
ology in Brain Computer Interface (BCI) field. The EEG signal is ana-
lyzed in real time looking for detection of “intents of movement”. The
signal is processed at specific segments in order to classify mental tasks
then a message is formulated and sent to a mobile device to execute
a command. The signal analysis is carried out through eight frequency
bands within the range of 0 to 32 Hz. A feature vector is conformed us-
ing histograms of gradients according to 4 orientations, subsequently the
features feed a Gaussian classifier. Our methodology was tested using
BCI Competition IV data sets I. For “intents of movements” we detect
up to 95% with 0.2 associated noise, with mental task differentiation
around 99%. This methodology has been tested building a prototype us-
ing an Android based mobile telephone and data gathered with an EPOC
Emotive headset, showing very promising results.

Keywords: EEG Pattern Recognition, Self-Paced Control, BCI appli-
cation, Mental Tasks Differentiation.

1 Introduction

A Brain Computer Interface (BCI) is a system that enables communication be-
tween brain and computer. For the last two decades, there have been a great
interest using Electro-Encephalographic (EEG) signals on applications in order
to help people with motor disabilities, such as amyotrophic lateral sclerosis [1]
or spinal cord injury [2]. There are works implementing EEG signal processing,
such as Tanaka et al. [3], which used left and right thinking to control the direc-
tion of an electric wheel chair; and Müller et al. [2] which used motor imagery
movements to control prosthesis for the upper extremities. Recently, control ap-
plications have been developed for other purposes, for example: differentiation
of six limb movements was used to control the Khepera robot [4]; exploration,
communication or monitoring space applications were improved with BCI tech-
nologies [5]; a BCI integrated to computer vision system was used to prioritize
the interests of a person in different images [6]; and the differentiation of right
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and left imagery movements were used to control a video-game [7]. Our vision
consists of people using thoughts to control mobiles in their daily lives. A lot
of issues need to be solved, mainly concerning the usability of the EEG signal
acquisition devices, but also with the effective differentiation of the mental task
on real time, the efficient processing of the EEG signal over portable computers
and of course wireless communications.

Synchronous or asynchronous approaches have been used to process the EEG
signals. Synchronous is useful only for offline characterization and analysis of
the signal; for online control, an asynchronous approach is needed. Plenty of
work has to do with the fact of enabling self-paced control, the work of Borisoff
et al. [8] was developed for enabling a switch to be activated with a move-
ment of a finger, achieving a detection of 80%; and Faradji et al. [9] processed
data from five mental tasks in a self-paced fashion with 70% of detection, but
in some cases without noise. Feature extraction is a very important stage, the
more properly built the features, the more efficient results we got from the clas-
sifier, even if it is a simple one. Feature vectors have been conformed on a
great variety of forms, from the work of Keirn et al. [10] which used left-right
asymmetric ratio and spectral density with 90% of classification results with
a Quadratic Bayesian classifier; adaptive autoregressive parameters and event
related synchronization/desynchronization of the μ and β rhythms where used
by Pfurtscheller et al. [1], [11], [2]; Zhang et. al used power spectral entropy
[12] achieving 90% of classification with a time-variable linear classifier; wavelet
transform was used by Qin et al. [13] and Bostanov [14], the latter used a linear
discriminant analysis to got 84% of classification, and Sun used energy difference
with a support vector machine achieving 90% [15].

In the present work an EEG pattern recognition methodology and a prototype
of one application in a real time control system of a mobile device are presented.
The major functional blocks are shown in Fig.1. As the ongoing EEG signal is
received, it must be continuously analyzed, we can not know in advance at what
time the user is going to perform a mental task with the intention of executing
a command, so we need to detect that precise time. In order to classify a mental
task and correlates it to a command, the signal is processed in a window around
the time detected in the previous stage. A feature vector is built over this window
and then it is fed to a statistical parametric classifier (in our case a Gaussian
classifier is used). The rest of the paper is organized as follows: In Section 2
our EEG pattern recognition methodology proposal is detailed; the evaluation
data are shown in Section 3; experimental results and prototype are explained
in Section 4; and finally conclusions and further work are presented in Section 5.

Fig. 1. Major functional blocks of the real time control system
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2 EEG Pattern Recognition Methodology Proposal

2.1 Time-Frequency Pre-processing

The whole input EEG signal is conformed by N−separated signal, where N
represents the number of available channels. The signal is processed over one-
second windows. Lets call Sk the signal for any k−window (1), M represents the
number of samples per second.

Sk =

⎛⎜⎜⎜⎜⎜⎜⎝

sk1,1 . . . sk1,j . . . sk1,M
...

...
...

ski,1 . . . ski,j . . . ski,M
...

...
...

skN,1 . . . s
k
N,j . . . s

k
N,M

⎞⎟⎟⎟⎟⎟⎟⎠ . (1)

Since the EEG signal is highly non-stationary, the shift between one window
and the next consists of only one sample. A new window is conformed for each
sample after the first second of the signal elapsed. The mean of the signal for each

channel Sk
i is subtracted from every Sk

i row to eliminate the offset and produce

S̃k
i . The spectral power P

k
i for each channel is calculated using the short-Fourier

transform (F ) with a Hanning window using (2) and subsequently the result is
multiplied by its complex conjugate (3).

F{S̃k
i } =

∞∑
n=−∞

S̃k
i WHanning [n]eee

−jωn . (2)

P k
i = F{S̃k

i } · F ∗{S̃k
i } . (3)

Low frequencies, between 0 and 32 Hz, associated to delta (δ), theta (θ), alpha
(α) and beta (β) rhythms are the most important part of the spectral power
P k
i . Eight bands of frequency are conformed from P k

i as follows: (0 − 4], (4 −
8], (8− 12], (12− 16], (16− 20], (20− 24], (24− 28], (28− 32]. A single value P k

ij

associated to each frequency band is calculated using (4), i = 1, ..., N denotes
the channel, j = 1, ..., 8 denotes the band of frequency, and pki,m the m−value of

P k
i , for m = 1, ..., 32.

P k
i,j =

1

4

m=4(j−1)+4∑
m=4(j−1)+1

pki,m , m = 1, ...32 j = 1, ...8 . (4)

As a result, each k−window produces eight values per channel. The k discrete
variable can easily be associated to a specific instant of time, lets say the mid-
dle of the k−windows. Figure 2 shows the plots of the power values for each
frequency band against time.
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Fig. 2. Spectral power plots for the eight frequency bands

2.2 Detection of Intent of Movement

The “intent of movement” detection is important because it allows the signal
to be processed, for differentiation purposes, at specific periods of time. When
the subject imagines himself performing a movement, some frequency bands are
blocked, others are enhanced and some others are synchronized with the signal
from the electrode on the opposite side of the brain. An up-flag is turned on if
the value of any frequency band is higher than an upper threshold, a down-flag
indicates if the value is lower than a bottom threshold and a sync-flag indicates
that the difference between two channels is lower than a synchronization thresh-
old. For purposes of robustness, a 36 − sample stabilization window is defined.
An event happens, if some of the flags are turned on during the stabilization win-
dow. Using this mechanism, a lot of noise associated with short-in-time jumps of
the signal are eliminated. Even more, if only certain percentage of the stabiliza-
tion window is required, not 100%, real mental tasks are not discarded if they
do not fully reach the threshold during the complete stabilization window. As a
result, each i−channel will have blocking bebebe

k
i , enhancing eeeeee

k
i and synchronizing

events sesese
k
i , associated to each frequency band as shown in (5).

bebebe
k
i = [be

k
i,1, · · ·b eki,j , · · ·b eki,8] . (5a)

eeeeee
k
i = [ee

k
i,1, · · ·e eki,j , · · ·e eki,8] . (5b)

sesese
k
i = [se

k
i,1, · · ·s eki,j , · · ·s eki,8] . (5c)
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If we are looking for an enhancing event, the upper threshold is relevant while the
bottom threshold does not matter, it is set to zero this way is never reached. If we
are looking for a blocking event, the bottom threshold is relevant while the upper
does not matter and hence it set to infinite (or high enough) to be unreachable.
Lets say that zero or infinite thresholds are simply not-relevant thresholds. Each
person has characteristic numbers of blocking events N−, enhancing events N+

and synchronizing events N˜whereas performs a “mental task”. An “intent of
movement” is detected if these characteristic numbers (N−, N+, N˜)are reached
at a specific instant of time.

The length of the interval of time where a mental task are assumed to be
performed, varies according to the acquisition protocol between 2 and 8 secs. We
presume that a motor-imaginary mental task takes only 0.3 secs, hence periods
in the signal where the “mental task” is performed are really conformed with
two classes of samples, one corresponding to the true mental task realization
and other corresponding to relax-time. Thresholds for an specific data set are
estimated through an statistical analysis of the signal over mental task realization
periods, in comparison with relax-periods.

2.3 Feature Vector Construction and Classification

A feature vector is conformed from the spectral power values within a region
around P k

i,j , lets call P k,r
i,j the r−value in the region. Each r value of spectral

power is normalized to obtain P̃ k,r
i,j , first the minimum value in the segment is

subtracted and subsequently it is divided by the difference between the maximum

and the minimum. A gradient vector∇ P̃ k,r
i,j is estimated using an spectral power

difference at every inner point in the segment of the signal (6).

∇ P̃ k,r
i,j =

(
˜
P k,r+1
i,j − ˜

P k,r−1
i,j , tr+1 − tr−1

)
. (6)

Notice that the second element of the vector is constant. Instead of that value,
the mean of the spectral power differences is used, it allows to enhance differenti-
ation of the angles. A 4−bin histograms with the gradients are built, vectors for
every point are grouped according to their angles as follows: bin 1 = [45◦, 90◦),
bin 2 = [0◦, 45◦), bin 3 = [−45◦, 0◦) and bin 4 = (−90◦, −45◦), subse-
quently they are counted to conform the histogram. For robustness, the count
is weighted with the magnitude of the gradient (7). As a result, a 4−bin his-
togram for each channel and each band associated to the “intent of movement”
is obtained.

H(bin i) =
∑
r

|∇ P̃r| , for r such that ∠∇P̃r ∈ bin i . (7)

The featured vector fed to the classifier
−→
F is integrated with a selection of the

histograms for certain bands of frequency and channels. In the present work,
the feature vector was conformed on a 32−sample segment, using 2nd and 6th
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frequency bands and adding the mode and mean values for robustness, the final
dimension of the vector is 48. For classification we use a Gaussian classifier (8),
we believe that a simple classifier is efficient when the input feature vector is
built properly.

p(
−→
F /ci) =

1

(2π)(
n
2 )|Σi|(

1
2 )

exp

[
−1

2
(
−→
F −−→μi)

TΣ−1
i (

−→
F −−→μi)

]
. (8)

3 Evaluation Data

The proposed strategy for the EEG pattern recognition was tested with two
different input data. First, BCI Competition IV data sets I, provided by the
Berlin Group [16]. Those data were selected because they have an asynchronous
approach, suitable for our objective. In addition, data gathered in our laboratory
using the EPOC headset from Emotiv Systems 1 were used too.

3.1 BCI Competition IV Data Sets I

EEG data from 59 channels, recorded at a rate of 100 samples per second,
from healthy people whereas performing one motor imagery task. The classes
of mental task to perform are: (i) imaginary movement of the left hand, (ii)
imaginary movement of the right hand and (iii) imaginary movement of any
foot. Calibration data were recorded as follows: an arrow was displayed on a
computer screen indicating the class of the motor imagery task to perform,
the arrow was presented for period of 4 seconds, during which the subject was
supposed to imagine the performance of the movement. Periods were interleaved
with 2 seconds of blank screen and 2 seconds with a cross in the center of the
screen, the cross superimposed to the cue, so it was displayed during 6 seconds.

3.2 Data Gathered at Our Laboratory

EEG-data were recorded from the 14 available channels using an EPOC headset
from Emotiv System, at a rate of 128 samples per second. Our objective was to
gather data with variable time between each mental task realization to simulate
self-paced control. We worked with six healthy people, between 20 and 30 years
old, each person was asked to select two mental tasks from the following ones:
(i) imaginary movement to the right of right hand, (ii) imaginary movement
to the left of the left hand, (iii) imaginary movement over the head of both
hands and (iv) imaginary movement of the head. In order to get 200 mental task
records from each person, five recordings with 40 mental task were performed.
A white circle was presented in the middle of a computer screen, it was moved
during 2 seconds to indicate the kind of mental task to be performed. The time
between each mental task varied between 6 and 10 seconds. Further explanation
are available at our Web Page by request. 2

1 Emotiv System, http://emotiv.com/
2 uamaML datasetI, http://www.eegspiga.com



238 L. Gutiérrez-Flores et al.

Table 1. Detection of “intents of movement” and classification for BCI Competition
IV dataset I

Data set Detection rate Noise Classification rate

BCICIV calib ds1b 98% 0.18 99%
BCICIV calib ds1c 96% 0.23 97%
BCICIV calib ds1d 92% 0.19 92%
BCICIV calib ds1e 97% 0.21 97%
BCICIV calib ds1g 92% 0.18 98%
uamaML datasetIb 76% 0.5 81%

4 Experimental Results and Discussion

Electrodes located over the sensorimotor cortex were taken, according to the
10−10 electrode configuration system. For the BCI Competition IV data, signals
in 27th and 31st channels, corresponding to C3 and C4 electrode positions were
used in the present work. Similarly, for our own data, signal from 6th and 13th

channels, corresponding to FC5 and FC6 electrode positions were used. To
evaluate the “intent of movement” detection, a detection rate and an associated
noise are calculated from (9) and (10), where TP stands for True Positives, FP
for False Positives and FN for False Negatives.

Detection Rate =
TP

(TP + FN)
. (9)

Noise = 1− TP

(TP + FP )
. (10)

The proposed strategy detects up to the 98% of the imagery movements for the
five evaluated dataset from the BCI Competition IV data. The noise associated
to the false positives is around 0.2 as shown in Tab. 1. The work of Zhang et al.
[17] used the same data for self-paced EEG-based motor imagery detection. As
a results [17] shown a mean-squared-error of class label prediction for dataset
ds1b around 0.3 and around 0.23 for dataset ds1g. For dataset ds1b we used
[180, 0, 0, 0, 0, 0, 0, 0] for upper thresholds and [Inf, 0.2, 0.07, 0.07, 0.007, 0.007,
0.007, 0.007] for bottom ones, it means that an enhancing-event over band 1
and blocking-events in the other bands were searched. You can see how it is
noticeable in Fig. 2, over the dashed areas while the imagery mental task occurs.
The classification results using a Gaussian classifier, are close to 99%, leave-one-
out evaluated for the BCI Competition IV data, as shown in Tab. 1. Results
with our own data reach a detection up to 70% of “intent of movement” and
80% of good classification as shown in last row of Tab. 1.

The current system architecture of the prototype is shown in Fig. 3, it includes
a MS-Windows Vista PC which receives wirelessly the EEG signal from the
EPOC headset at a rate of 128 samples per second. The PC processes data and
communicates to a mobile device via Bluetooth. The signal processing programs
were developed using Matlab. The client-server Bluetooth application between
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Fig. 3. System architecture of the prototype

Fig. 4. Application GUI

Fig. 5. Screens for the mobile device

the PC and the mobile device was developed using Blue Cove 2.1.0 API JSR-82
implementation library for J2SE 3 and the Bluetooth Android API. 4 The final
application has a graphic interface conformed with two windows as shown in
Fig. 4. The first one is to work with the EEG signal data: acquisition, training

3 BlueCove 2.1.0 API, http://bluecove.org/bluecove/apidocs/
4 Android Developers:Bluetooth,
http://developer.android.com/guide/topics/wireless/bluetooth.html
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and using databases files to simulate an input signal. The second one is for the
management of Bluetooth connectivity: looking for the remote mobile device,
searching for services and establishing connection. Functional evaluation were
performed, mental task 1 was associated to the command “call mom” and mental
task 2 was associated to “call dad”. In the mobile device the server process is
started, once the connection is established, when an “intent of movement” is
detected and classified, a message is sent to the mobile device in order to make
the phone call, as shown in sequence of Fig. 5.

5 Conclusions and Further Work

This work presents a comprehensive point of view for creating a real time control
system suitable for mobile devices using EEG signals. Previous works addressed
only a particular aspect such as: (i) enabling asynchronous control, (ii) strat-
egy for integrate a feature vector and classification, (iii) final application and
(iv) acquisition EEG signal device. Concerning to the EEG signal processing,
a phased strategy is proposed, first the detection of an “intent of movement”,
then the feature vector conformed around the detected instant, as the signal
is received and finally the classification. Excellent results were obtained using
the BCI Competition IV data sets I. Comparing to related asynchronous works,
Borisoff et al. [8] reached up to 80% of good detection for finger movements and
Faradji et al. [9] reached up to 70% for five mental tasks, some cases with no-
noise. Our methodology reached up to 98%. The submitted mental tasks were
classified correctly with percentages of classification around 95% using a simple
Gaussian-classifier. Comparing to other methodologies Keirn et al. [10] reached
90% of good classification, Zhang et. al [12] reached 90% and Bostanov [14]
reached 84%.

Processing remains lightweight and can be carried out in the mobile device.
Our vision for future work persues to gather and processes the signal from the
mobile. Taking into account the convenience of using a relatively easy and af-
fordable EEG signal acquisition device. Our results are promising, we reached
a detection up to 70% of “intent of movement” and 80% of good classification.
Much work has to be done in regard to the usability of those commercially avail-
able devices. Further work comprises a strategy to minimize the noise. Either
with a mechanism to detect false positives, avoiding large amount of noise that
is sent to the classifier; or by implementing a rejection class that catches all the
noise.

Acknowledgments. The authors give thanks to UAM (Universidad Autonoma
Metropolitana), ICYTDF (Instituto de Ciencia y Tecnologa del Distrito Federal)
and PROMEP under grant UAM-PTC-328 for the economical support.
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Abstract. An approach to the restoration of dependences (regressions) is 
proposed that is based on solving problems of supervised classification.  
The main task is finding the optimal partitioning of the range of values of 
dependent variable on a finite number of intervals. It is necessary to find 
optimal number of change-points and their positions. This task is formulated as 
search and application of piece-wise constant function. When restoring 
piecewise constant functions, the problem of local discrete optimization using a 
model of logic supervised classification in leave –one-out mode is solved. The 
value of the dependent value is calculated in two steps. At first, the problem of 
classification of feature vector is solved. Further, the dependent variable is 
calculated as half of the sum of change-points values of the corresponding class.  

Keywords: regression, supervised classification, discrete optimization, 
approximation.  

1 Introduction 

Many data analysis tasks may be written in the next standard form. Let training 

sample miz ii ,...,2,1},,{ =x , is given, and ),...,,( 21 iniii xxxx  is a feature 

description of an object, Rzi ∈ , jij Mx  ( jM - a set of allowed values of 

feature № j ).  Vector ix will be considered as a vector of values of independent 

parameters, and scalar iz  as a dependent value (it is supposed that iz  may be 

calculated by ix , i.e. )( ii fz x= ).  It takes to calculate )(xfz = , Rz ∈  for 

any new ),...,,( 21 nxxx=x , jj Mx ∈ .Vector x  is the objects (situation, 

phenomenon or process) description in term of features, and z  is  the value of 
some of its hidden scalar characteristic.  

This problem in the statistical formulation is known as the problem of the 
regression reconstruction. Regression is a function of conditional expectation, 
assuming the existence of conditional density )|( xzp . In this paper, we will 

not use any probabilistic models.  
Currently, there are different approaches to the restoration of regressions when 

niRxi ,...,2,1, =∈ , which can be conditionally divided into two types: 
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parametric and nonparametric. Parametric approach [1] assumes the functional 
dependence of a certain type, depending on the parameters ω :  

• linear regression - 
=

+=
n

j
jj xf

1
0)( ωωxω, ;  

• polynomial regression of degree γ  -  
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• curvilinear regression -  
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• logistic regression: 
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In the non-parametric approach [2] characteristic z  for x  is defined as 
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ρω , mi ,...,2,1= , K - kernel 

function, h  - the width of the window. Well-known methods of support vector 
machine regressions [3] may be considered as curvilinear regressions.  

In recent years a large number of publications devoted to regression via 
classification.  In [4] it was proposed general fuzzy piecewise regression where 
change-points and their positions are obtained simultaneously as a solution of a 
mixed-integer programming problem. It is supposed that nR∈x . Change-points 
which are the joints of the pieces are quoted from conventional statistical piecewise 
regression. The proposed fuzzy piecewise regression is the direct generalization 
of linear piecewise regression. In [5] the Bayesian regression algorithm for 
piecewise constant functions with unknown segment number, location and level 
is proposed. It is assumed that one-dimension measurements of some function at 
discrete locations are given and measurements are independently distributed. The 
common polynomial-time dynamic-programming-type algorithm is derived.   

A heuristics approach for learning regression rules by transforming the 
regression problem into a classification task is proposed in [6]. The 
discretization of the class variable is integrated into the rule learning algorithm. 
The key idea is the dynamical definition of a region around the target value 
predicted by the rule. The common approaches to construction of regression via 
classification are observed in [7]. The authors note that standard methods 
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comprise two stages: the discretization of the numeric dependent variable in 
order to learn a classification model, and the reverse process of transforming the 
class output of the model into a numeric prediction. The discretization of target 
variable is considered usually as some unsupervised classification task. The 
universal estimator for the regression problem in supervised learning is considered in 
[8]. The based on a least-square fitting procedure estimator does not depend on any a 
priori assumptions about the regression function to be estimated. It is proved that if 
the regression function is of a certain class, then the estimator converges to the 
regression function with an optimal rate of convergence in terms of the number of 
samples. It is assumed the existence of probability measure on 1nR + . There are other 
closes in a matter of fact approaches. 

It should be noted certain limitations of these approaches. Parametric 
approaches require a priori knowledge of the analytical form of functions. The 
presence of different types of features (real, nominal, binary, ordinal, etc.) 
requires additional tools for describing objects in a single scale. Nonparametric 
methods use widely frequency estimation, distance functions, which can be very 
approximate and practically difficult for samples of small length, with a large 
number of independent parameters under various information and diverse nature. 
Many studies suggest a probabilistic model of the data and nR∈x .  Construction of 
the functions of multiple nonlinear regressions using the analytical methods of 
mathematical statistics is impossible in most cases.  

In this paper we propose an approach not involving probabilistic assumptions 
and based on supervised classification. According to the training set are the 
change-points that define an optimal partition of the sample into a finite number 
of classes. To find the optimal number of classes and positions of change-points 
the logic supervised classification model with leave-one-out procedure is used. 
All problems related to different information content of features, their type, and 
metrics are transferred to the level of supervised classification where the 
effective logic methods for supervised classification are used. The optimal 
number of change-points, their positions, and the classification algorithm are 
obtained simultaneously by solution of the discrete optimization task and use fast 
procedure for re-training of neighboring supervised classification tasks.  

The basic idea is as follows. We assume that the range of dependent variable 

is the interval ],[ ba , i
mi

za
,...,2,1

min
=

= , i
mi

zb
,...,2,1

max
=

= . There is a partition of the 

segment ],[ ba  using points 121 ... −<<< laaa  for l  

segments ],...,,(],,[ 212101 aaIaaI == ],( 1 lll aaI −= , ,0 aa = bal = . Then the 

problem of approximate calculating the value of the regression )(xfz =  can be 

solved as follows.  

1. The set },...,2,1,:{
~

miIzK jiij =∈= x  will be corresponding to the 

segment jI , lj ,...,2,1= . Denote class })(:{ jj IfzK ∈== xx , 

ljKK jj ,...,2,1,
~ =⊆ .  
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2. For any x , supervised classification problem is solved with respect to classes 

lK ,...,2,1, =νν .  

3. We put 1( ) ( ) / 2i iz f a a −= = +x , if x classified as iK∈x .  

Function )(xf  is uniquely determined by the partition and classification algorithms. 

So, we must enter the criterion of ),...,,,,()( 121 −≡ laaalff xx  quality as a 

function of the number of change-points l  and their positions 121 ,...,, −laaa , 

take classification model and find the optimal solution, which is to construct 
function )(xf . 

Note that for the implementation the item number 2, there are various models 
of classification by precedent. The following sections will be offered to the 
implementation of this general approach for the case of some logical supervised 

classification algorithm. Without loss of generality, we assume that the values iz  

are different, and the objects of the training sample in ascending order of values 

iz , i.e. 1,...,2,1,1 −=< + mizz ii .  

The paper is organized as follows. Section 2 develops the theoretical part of paper. 
The statement of main optimization task is formulated in 2.1. The standard local 
optimization algorithm is considered in 2.2. The logical supervised classification 
algorithm is explained in 2.3. It’s modification does not require introduction of metric 
for some feature. The feature may be only ordered. The neighboring classes are 
considered in main optimization task. It is required to construct a classification 
algorithm for neighbor task and efficiently to compute the optimized criterion in 
leave-one-out mode. The problem of recalculation of considered supervised 
classification algorithm for neighbor classes is considered in 2.4. Section 3 gives 
some illustration of proposed method and the results of experiments for one practical 
task. Some remarks are denoted in paper conclusion (section 4).  

2 Construction of Approximate Regressions as Piecewise 
Constant Functions 

2.1 Main Optimization Task 

Let ,,...,2,1),,...,,( 121 mjaaaAA l
jj =≡ −  is some classification algorithm 

with respect to the classes defined in accordance with item 1 of introduction. 
jA corresponds to some numbers 121 ... −<<< laaa , and to sample 

miz ii ,...,2,1},,{ =x , ji ≠ . Let tA j
j =)(x  denotes that jx  is classified by 

jA as tj K∈x .  
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Let ]}3/[,...,3,2{ ml ∈ is fixed. We introduce 0 1 1( , ,..., , )l lF y y y y−  as the 

criterion of ),...,,,,()( 121 −≡ laaalff xx  quality, and consider the next discrete 

optimization task for  


=

−− −−=
m

i
AAill

i
i

i
i yyzyyyyF

1
1)()(110 2/)(),,...,,(

xx
 ,min

121 ,...,, −

→
lyyy

 (1) 

3}:,...,2,1,{ 10 ≥≤≤= yzymjz jj ,     (2) 

3}:,...,2,1,{ 1 ≥≤<= +ijij yzymjz , ,1,...,2,1 −= li   (3) 

,10 zy = ,1,...,1,0,1 −=< + liyy ii ,ml zy =     

    ,1,...,2,1},,...,,{ 343 −=∈ − lizzzy mi  (4) 

Restrictions (2-3) are the consequence of leave-one-out mode and classification 
method that were used. The optimal value l  and change points 

121 ... −<<< laaa  are calculated by solving task (1-4) for various l .  

So, efficiency of task (1-4) solution depends highly from efficiency of 

mjaaaAA l
jj ,...,2,1),,...,,( 121 =≡ −  construction. Later we use the local 

approach for ),...,,,( 210 lyyyyF  optimization where one logical classification 

model will be used with fast procedure of classification algorithm re-training for 
neighboring classification tasks.  

2.2 Local Optimization 

Consider the problem (1-4), where the function )(xf  (and the corresponding 

classification algorithm A ) given by the current values ),,...,,( 110 ll yyyy − . 

Since objects ordered by increasing iz , takes place 11, −≤≤= ltzy
tit . A 

scheme of standard local optimization of ),,...,,( 110 ll yyyyF − , 

,10 zy = ,ml zy =  has been considered. Points ),,...,,{( **
1

*
1

*
0 ll yyyy − , 

},{ 11
*

+−∈
jj iij zzy  , ,*

tt yy =  jt ≠ , ,0
*
0 yy = },*

ll yy =  1,...,2,1 −= lj , are 

called neighboring for  ),,...,,( 110 ll yyyy −  if conditions (2-4) are satisfied.   

Starting with an arbitrary admissible ),,...,,( )0(
1

)0(
10 ll yyyy −  we  browse all 

nothing more than )1(2 −l  a neighboring admissible points and find minimum 

for ),,...,,( 110 ll yyyyF −  in neighborhood of ),,...,,( )0(
1

)0(
10 ll yyyy −  . Later, the 

procedure is repeated for point ),,...,,( )1(
1

)1(
10 ll yyyy −  that is point of F  
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minimum in neighbor of ),,...,,( )0(
1

)0(
10 ll yyyy − . Finiteness of local optimization 

follows from the finiteness of the set of all possible values of 

),,...,,( 110 ll yyyyF − . 

2.3 Supervised Classification Model 

Classification algorithms have been considered, which are modifications of 
estimation calculation algorithms [9]. We describe the principle of the estimation 
calculation algorithms (ECA).  

Let a set X  of admissible objects nR∈x  has the form 


l

j
j KKKX

1

,
=

=∩= μν Ø, μν ≠ . Given training sample 

{ , , 1, 2,..., },t tz t m=x  where tz j=  if jt K∈x . Let n
n Rxxx ∈= ),...,,( 21x , 

and a training sample contains representatives of all classes. Denote 

,:{
~

jiij KK ∈= xx  },...,2,1 mi = , 1
~ ≥jK . Let the system of supporting sets 

}{Ω=ΩA , },...,2,1{ n⊆Ω  of algorithm A  is the fixed one.  Some supporting 

set Ω  defines a subset of features. The proximity of classified object x  to some 

training object tx  by support set Ω  is defined as  



 Ω∈∀≤−

=ΒΩ otherwise.,0

,,,1
),(

ixx itii
t

ε
xx     (5) 

There are the numerical parameters nii ,...,2,1, =ε  in (5) set by the user or 

calculated as, for example, 
<=

−
−

=
m

iii xx
mm βαβα

βαε
,1,)1(

2
.  The estimation 

)(xjΓ  for class  ljK j ,...,2,1, =   is calculated for the object x .  

 
∈ Ω∈Ω

Ω=Γ
ji AK

i

j

j B
K ~

),(~
1

)(
x

xxx .     (6)  

Estimation )(xjΓ  characterizes the heuristic degree of proximity of the object 

x  to the class jK . Next, apply the decision rule in the space of estimates: the 

object  x  is classified by algorithm A  as belonging to class jK  when 

jiij ≠∀Γ>Γ ),()( xx . Otherwise, the rejection is made. Usually, the set 

}:{ kA =ΩΩ=Ω , nk ≤≤1 , k  - integer,  or all possible subsets of 

},...,2,1{ n  are used as a system of supporting sets of classification algorithm.  
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Parameter k  is the external one, usually 



=

3

n
k  is used.  In [9] proved that 
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xxx  in the second case, where 

},...,2,1,:{),( njxxjd jijji =≤−= εxx . In this study, we used some 

modification of the proximity function (5) and estimation (6).  

Let jK
~

, ∈βα xx . Define the proximity function ),,(
~

βα xxxΩΒ  of the object 

x  to the couple βα xx , , and its estimation )(
~

xjΓ  for the class jK  by the 

following expressions.  
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It can be proved that here also we have similar effective formulas for calculating 
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xxxx , where 

},...,2,1),()(:{),,( ntxxxxxxtd tttttt =≤≤∨≤≤= αββαβα xxx . Denote that here 2
~ ≥jK .  

After calculating the estimations ,,...,2,1),(
~

ljj =Γ x  the previously given 

decision rule is used. Note that any metric in feature space and parameters 

nii ,...,2,1, =ε  are not used in this case. Here jj Mx ∈  ( jM  - linearly ordered 

set). The features may be ordinal. This algorithm does not contain parameters 
that require adjustment during training.  

2.4 Recalculation of Classification Algorithm for Neighbor Samples 

Denote ljKm jj ,...,2,1,
~ == . Consider the optimization task (1-4), when the 

classification of objects is carried out in a leave-one-out mode. The choice of change-
points determines a partition of the training set for classification problems. 
Neighboring training samples (and the classification problems) can be obtained from 
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the original by deleting an object, or moving an object from one class to another. 
Efficiency of task (1-4) solution depends directly on quick recalculation of 
classification algorithm after transition to the neighbor sample.  

In solving the problem (1-4) estimations )(
~

xjΓ  are easily converted into a 

leave-one-out mode. Really, we calculate the matrices 
mmm

D
××

= 11
αγβD , 

k
dD ),,(

1 C
βγααγβ xxx= , 

mmm
D

××
= 22

αγβD , 12 ),,(2 −= βγα
αγβ

xxxdD .   

Let tx  is   any object in the training sample, there is a current partition into 

classes lKKK ,...,, 21 , and it K∈x .  Then in a leave-one-out mode 
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Here }2,1{∈h . For simplicity, we omit here and further h  in notations of 

)(
~

tj xΓ . Consider the recalculation of estimations ljtj ,...,2,1),(
~ =Γ x , during 

function (1) recalculation in arbitrary neighbor point on some step of 
optimization. In this case, the boundary between a pair of classes is changing as 

a result of the transfer of an object τx  from one class to the neighboring class. 

Denote the "new" classes as **
2

*
1 ,...,, lKKK , and estimations for tx  through 

ljtj ,...,2,1),(
~* =Γ x .  

We have the following four possible variants: 
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Thus, the calculation of the function (1) in the next point of general optimization 
algorithm is carried out effectively. The complexity of one optimization step will 
be )( 2mO . 

3 Illustrations and Experiments 

To date, the set of initial experiments have been carried out that have confirmed 
practical use of suggested algorithm. In this model, we assumed at first that the 
number l  of change-points (number of classes in classification) is fixed. For 
function (1) calculation, the leave-one-out mode is used. The optimal number of 
change-points and their positions are computed by solving the problem (1-4) 
with various values of l . Finally, the efficiency of built piecewise constant 
dependence was estimated in leave-one-out mode.  

As an illustrative example, consider the function 3/)sin()( xxxy +=  on the 

interval [1: 25] . To create a training set has been used 100 points 

99,...,1,0,4/1 =+= iixi . Figure 1 shows the function )(xz  and optimal 

piecewise constant functions obtained with the ECA. Corresponding to the ECA 
values of the functions (1) are denoted by the symbols « − ». The values of the 
mean modulus error were found to be 0.63 for the linear regression, and 0.19 for 
ECA with 32=l .  
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Fig. 1. Piece-wise constant function approximating ( ) sin( ) / 3z x x x= +  

Below is an example of constructing a piecewise constant function, according to 
data [10]. Considered the problem of automatic evaluation of the cost of housing in 
the suburbs of Boston. The training set consisted of 366 objects described in terms of 
13 features (12 real and one binary). Figure 2 shows the distribution of housing costs 
in the axes of "number of the object - the cost of housing in thousands of dollars". 
Objects pre-ordered by increasing cost of housing. The real cost of housing is 
indicated by «▲». The calculated estimates of the cost of housing using the proposed 
in this work method are marked by symbols " − ". Number of piecewise components 

found to be 32, the value of the mean modulus of error is 1.07. The average modulus 
error of linear regression was equal to 1.213.  

 

Fig. 2. Piece-wise constant function approximating the cost of housing in the suburbs of 
Boston 
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4 Conclusions 

It is important to note the following details of this research.  

1. Algorithms for reconstruction of the regression were considered for the case of 
numeric attributes niRxi ,...,2,1, =∈ . It is easy to see that features may be 

dissimilar (numeric, binary, or ordinal) when we are constructing piecewise 
constant regressions by using the training samples. The proposed model of 
regressions restoration is based on the modification of the ECA, which does not 
require a metric in the feature space. The feature values are used only in (7) 
where the order relation for each feature is applied.  
2. At the beginning of this paper, it was remarked some situations where the 
classical methods of regressions restoration are not applicable or restricted. It 
should be added the cases when the values of the dependent quantities are very 
unevenly shared, or dependent quantities are in fact the l -valued with large 
value of l . The most preferable case for supervised classification at a fixed 
length of the training sample is the case when number of classes is equal to 2. 
However, this case may not be optimal for the functional (7). Thus, it is expected 
that the model for constructing piecewise constant regressions will be helpful in 
addressing the many "bad " problems, inconvenient for standard regression 
approaches, and for classification tasks. In these cases, "bad" regression problem 
reduces to the problem of classification with an optimal choice of l .  

Previously, we have considered the case 1( ) ( ) / 2i iz f a a −= = +x . Of course, it 

can be used here other methods for ( )z f= x calculation by 121 ,...,, −laaa  (mean in 

iI  by training sample, median, etc.).  

In future work a generalization of the approach is supposed to restore the 
piece-wise non-constant dependencies.  

Acknowledgments. I would like to thank the postgraduate student of 
M.V.Lomonosov Moscow State University A.S. Schichko for experiments performed. 
This work was supported by RAS Presidium Program number 15, Program number 2 
of Department of Mathematical Sciences of RAS, RFBR 12-01-00912, 11-01-00585, 
12-01-90012-bel.  

References 

1. Draper, N., Smith, H.: Applied regression analysis. John Wiley & Sons, New York (1966) 
2. Hardle, W.: Applied nonparametric regression. Cambridge University Press, Cambridge 

(1990) 
3. Collobert, R., Bengio, S.: Support Vector Machines for Large-Scale Regression Problems. 

Journal of Machine Learning Research 1, 9/1/, 143–160 (2001) 
4. Yu, J.-R., Tzeng, G.-H., Li, H.-L.: General fuzzy piecewise regression analysis with 

automatic change-point detection. Fuzzy Sets and Systems 119, 247–257 (2001) 
5. Hutter, M.: Bayesian Regression of Piecewise Constant Functions. Technical Report 

IDSIA-14-05, Galleria 2, CH-6928 Manno-Lugano, Switzerland (2005) 



 Regression via Logic Supervised Classification 253 

6. Janssen, F., Fyurnkranz, J.: Heuristic Rule-Based Regression via Dynamic Reduction to 
Classification. In: Proceedings of the Twenty-Second International Joint Conference on 
Artificial Intelligence (IJCAI 2011), pp. 1330–1335 (2011) 

7. Bibi, S., Tsoumakas, G., Stamelos, I., Vlahavas, I.: Regression via Classification applied 
on software defect estimation. Expert Systems with Applications 34, 2091–2101 (2008) 

8. Binev, P., Cohen, A., Dahmen, W., DeVore, R., Temlyakov, V.: Universal Algorithms for 
Learning Theory. Part I: Piecewise Constant Functions. Journal of Machine Learning 
Research 6, 1297–1321 (2005) 

9. Zhuravlev, Y.: Selected Scientific Publications, p. 420. M. Magistr Publishing (1998) 
10. Harrison, D., Rubinfeld, D.L.: Hedonic prices and the demand for clean air. J. Environ. 

Economics & Management 5, 81–102 (1978) 



J.A. Carrasco-Ochoa et al. (Eds.): MCPR 2013, LNCS 7914, pp. 254–263, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Music Genre Classification: A Semi-supervised Approach 

Soujanya Poria1, Alexander Gelbukh2, Amir Hussain3,  
Sivaji Bandyopadhyay1, and Newton Howard4 

1 Computer Science and Engineering Department, Jadavpur University, India  
soujanya.poria@ieee.org, sbandyopadhyay@cse.jdvu.ac.in 

2 CIC, Instituto Politécnico Nacional, 07738 DF, Mexico  
www.Gelbukh.com 

3 Dept. of Computing Science and Mathematics, University of Stirling, United Kingdom, 
ahu@cs.stir.ac.uk 

4 Brain Science Foundation 
nhmit@mit.edu 

Abstract. Music genres can be seen as categorical descriptions used to classify 
music basing on various characteristics such as instrumentation, pitch, rhythmic 
structure, and harmonic contents. Automatic music genre classification is im-
portant for music retrieval in large music collections on the web. We build a 
classifier that learns from very few labeled examples plus a large quantity of 
unlabeled data, and show that our methodology outperforms existing supervised 
and unsupervised approaches. We also identify salient features useful for music 
genre classification. We achieve 97.1% accuracy of 10-way classification on 
real-world audio collections. 

1 Introduction 

Downloading and purchasing music from online music collections has become part of 
the daily life of probably the majority of people in the world, and quality of music 
recommendation affects quality of life of billions of people. The users often formulate 
their preferences in terms of genre, such as jazz or disco. However, many tracks in 
existing collections are not classified by genre, or a genre is specified for an artist or 
an album but not for a particular track. Given huge size of existing collections, auto-
matic genre classification is crucial for organization, search, retrieval, and recommen-
dation of music. 

While huge amount of unlabeled data is readily available, labeled data—tracks 
with the genre reliably assigned by human annotators—are scarce. In this paper we 
propose to use for genre classification a methodology that was proven to work well in 
a similar situation: affective labeling of words in natural language texts, where, simi-
larly, unlabeled texts abound but few words have a manually assigned affective label 
[1]. For brevity we refer to this methodology as semi-supervised learning, to emphas-
ize that it uses two kinds of data: few labeled examples and a large quantity of unla-
beled data; however, internally our two-step procedure works differently from a  
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typical semi-supervised learner. We show that this methodology outperforms a num-
ber of standard supervised learning techniques, such as Support Vector Machine 
(SVM) and k-Nearest Neighbor (kNN). 

In addition, we present several features salient for the genre classification task. Ac-
cording to Lee et al. [3], musical features can be divided into three categories: short-
time features, long-time features, and beat features. We show that long-term features 
are more salient for music genre classification than short-time ones, though using 
features of both types together gives best results. We explore various feature combi-
nations and identify those that perform best on our task. 

The rest of the paper is organized as follows: Section 2 describes related work. 
Section 3 gives an overview of our method. Section 4 presents the dataset and the 
features used in our experiments. Sections 5, 6, and 7 describe the three main steps of 
our algorithm: fuzzy clustering, mapping of the obtained clusters to labels, and the 
final hard categorization. Section 8 gives the experimental results and evaluation. 
Finally, Section 9 presents conclusions and future work. 

2 Related Work 

The state-of-the-art music genre classification systems can be classified into those 
based on supervised or unsupervised approach [4]. 

Unsupervised Approaches. These approaches mainly concern with determination of 
a genre taxonomy. Music files are clustered basing on an objective function to dy-
namically build a taxonomy depending on the clustering outcome. Shao et al. [5] used 
Agglomerative Hierarchical Clustering. 

The main drawback of unsupervised methods is that the clusters are not labeled 
and the boundaries between clusters are not reliably defined. In this paper, we rely on 
a genre taxonomy well-defined by music experts and well-known to the users, which 
suggest using a supervised approach. 

Supervised Approaches. Pampalk et al. [7] used a kNN classifier; Mandel et al. [10], 
Lidy et al. [11], and Scaringella et al. [12] obtained good results with SVM. 

 
Semi-Supervised Approaches. Xu et al. [23] used co-training based semi-supervised 
classifier based on some novel “multi-view” [23] features. Yaslan et al. [24] stated 
how Random Subspace Method for Co-training [24] can help the genre classification 
process. 

Our approach is a bit different from existing semi-supervised approaches in a man-
ner that we used fuzzy for training supervised classifier in order to map a 10-way 
classification problem to 2-way or 3-way classification problem. 

Feature Selection. Proper feature selection is crucial for classification. For this, a 
segment of audio is represented by numerical values of several audio features.  
Peeters [14] proposed a variety of features to characterize the timbre of instruments. 
These features are called low level features [15] because they usually describe sound 
on small scale, such as slices of 10 to 60 seconds. Spectral features have been used to 
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distinguish between speech and music [4] and to identify isolated sounds [16] and 
instruments [17]. Rauber et al. [6] used psychoacoustic features of music to determine 
similarities between music files. The importance of the size of texture window for 
extracting timbral features has been explored by Meng et al. [18], who stated that 
texture window of 1 sec. works best for music retrieval task and there is no significant 
gain in increasing the size of the texture window, while the accuracy decreases with 
smaller window size. 

Tzanetakis [19] designed a basic music genre classification system based upon 
timbral, temporal, and beat features with 61% accuracy, outperformed by Lee et al. 
[3] with a spectral modulation-based approach.  

While we work with a conventional genre classification, we explore the perfor-
mance of different features and feature combinations, achieving 97.1% accuracy. 

3 Overview of the Procedure 

We followed a procedure suggested in [1] for a quite different task: effective classifi-
cation of words [2]. The procedure consists in the following steps: 

− Feature extraction: the real-world data, both labelled and unlabelled, are  
represented by numerical vectors, which then are used for classification. 

− Fuzzy clustering: the whole available dataset, including both labelled and unla-
belled data (the labels are ignored even when available), is clustered in unsuper-
vised manner into the number c of clusters corresponding to the number of target 
categories (in our case, c = 10 music genres), in hope that the found clusters 
would roughly correspond to the target categories. Fuzziness accounts for uncer-
tainty: a data point can be assigned more than one label, with a different degree. 
This ambiguity is resolved at the last step.  

− Mapping: the obtained fuzzy clusters are one-to-one identified with the c target 
categories. The classes are identified through a majority voting technique, per-
formed within each of the clusters. In our case we have all annotated music sam-
ples but for that situation when we have maximum number of unlabeled data and 
much lower number of labelled data we can still carry out our method by taking 
all of those unlabeled and labelled data for clustering and determine the fuzzy 
classes of the clusters through the majority voting with the help of available la-
belled data taking part in the clustering step. 

− Hard clustering: the ambiguity of the fuzzy assignment of category labels to data 
items is resolved, leaving each data item assigned to exactly one category using a 
supervised technique. 

4 Dataset and Features 

As a dataset for the music genre classification task, we used the one presented by 
Tzanetakis [19]. The dataset is publicly available for research purposes.1 It consists of 
                                                           
1 http://opihi.cs.uvic.ca/sound/genres.tar.gz 
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1000 audio tracks, each being 30 sec. long, classified into 10 genres: BLUES, 
CLASSICAL, HIPHOP, COUNTRY, DISCO, POP, ROCK, JAZZ, METAL and REGGAE. Each 
genre is represented by 100 tracks. We followed this taxonomy for our classification. 

All tracks are 22,050 Hz mono 16-bit audio files in .wav format, collected in 2000–
2001 from a variety of sources including personal CDs, radio, and microphone re-
cordings, in order for a variety of recording conditions to be represented. 

For feature extraction, we used the Jaudio toolkit [20], a music feature extraction 
toolkit written in Java, freely available for research purposes.2 As we have mentioned, 
we used the following three kinds of features: short-time features, long-time features, 
and beat features. 

Short-time features are mainly used to distinguish the timbral characteristics of 
music and are usually extracted independently from each short time window (frame) 
during which the audio signal is assumed to be stationary. We used the following 
features [3, 20]: mel-frequency cepstral coefficients (MFCC; Jaudio gives first five 
coefficients of 13, and [3] states that these five coefficients give best classification 
result), spectral centroid, spectral roll-off, spectral flux, root mean square, compact-
ness, and time domain zero crossing;  

Long-time features can be obtained by aggregating the short-term features ex-
tracted from several consecutive frames within a time window. We have used deri-
vate, standard deviation, running mean, derivative of running mean, and standard 
derivative of running mean as the aggregation methods of short-time features. 

Beat features give meanings to audio signals in human-recognizable terms which 
generally reveal the human interpretation or perception of certain audio properties such 
as mood, emotion, tempo, genre, etc. We used the following four main beat features: 
beat histogram, beats per minute, beat sum, and strongest beat in the audio signal. 

5 Fuzzy Clustering 

The first step in our process is unsupervised: we cluster the music files into 10 catego-
ries, given that we consider 10 genres. On output, we define for each music file and 
each of the ten classes the membership value between 0 and 1 with which the given 
music file belong to the given class. 

Fuzzy C-means Clustering Algorithm. For fuzzy clustering, we used the fuzzy  
c-means clustering algorithm [21] with a modified objective function as described in 
Section 5.2 below. 

The well-known fuzzy c-means clustering algorithm takes as input a set of N data 
points x1, x1, ..., xN described via their coordinates in a P-dimensional feature space: 
xk = (xk1, xk2,..., xkP). As output, it constructs two sets: a set of c centroids v1, v2, ..., vc, 
points in the same feature space, that represent the constructed c clusters, and a set of 
cN membership values μik, i = 1, ..., c; k = 1, ..., N, which represent the degree of 
membership of a point xk in a class ci, such that 0 ≤ μik ≤ 1 and the values sum up to a 
unity for each point: 

                                                           
2 http://sourceforge.net/projects/jmir/files/ 
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To find the optimal distribution of points by clusters and optimal placement of the 
centroids, it uses an given objective function J, which is minimized when the distribu-
tion is optimal: (μ0 ,v0) = arg min J (μ ,v), where μ  = {μik} and v = {vi} represent the 
sets of the variables to be found and μ0 ,v0 are the optimal solutions. An expression 
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where the power p > 1 is a given parameter that controls the degree of fuzziness of the 
obtained clusters  (we used p = 2). The optimal solution of a constraint optimization 
problem defined by (1) and (2) is given [1] by 
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A stationary point (μ0 ,v0) of the system (3), which is the desired result of the  
algorithm, was found iteratively: 

− Assigning random values to all μik, normalized to satisfy the constraints (1); 
− Iteratively re-calculate the values for all vi and then all μik according to (3); 
− Stop when the objective function J changes from the previous iteration less than 

by a small number ε, a given parameter (we used ε = 0.01). 

Modified Objective Function. To achieve more compact clusters in which the most 
similar elements are clustered together, we incorporated an additional term in the 
original objective function (2): 
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where the parameter ρ is intended to control the effect of the new term (we used 
ρ = 1) and Nk is the set constructed in the following way: 

− For each data point x, we identified the nearest centroid 

 ||||minarg)( xvxv ii −=  (5) 

(in case of a tie an arbitrary one was chosen); 
− Now, )}()(|{ kk xvxvxN ==  is the set of all data points with the same nearest 

centroid as xk. 

This additional term forces the algorithm to increase the membership of a data point 
in the cluster with the nearest centroid, grouping similar points together. 
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In our implementation we constructed these sets on the fly while re-calculating the 
positions of the centroids according to (6) below, which is a modification of (3). I.e., 
when re-calculating v2, we considered in (5) already re-calculated value for v1. 

The change of the objective function required modification of the formulas (3): 
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the derivation can be found in [1]. 

6 Mapping Fuzzy Classes to Music Genre Labels 

After the fuzzy clustering process had been completed, we identified which one of the 
c = 10 classes corresponded to which one of the ten music genre labels. For this, first 
we converted the fuzzy clustering into hard clustering; in our implementation we 
chose for each data point xk a cluster ikikxC μmaxarg)( =  (in case of a tie, arbitrary 

class was chosen). Now, the music genre label for each hard cluster was chosen by 
majority voting. 

Such procedure does not guarantee for a hard cluster to be non-empty, for the ma-
jority voting not to result in a tie, or for two clusters not to share the same genre label, 
in which case some labels would not be assigned at all. However, this is low probable 
and did not happen in our experiments. Moreover, correctness of the obtained map-
ping of the classes to genre labels is confirmed by the fact that we obtained over 90% 
accuracy of the final results, which is not possible with incorrectly mapped labels. 

7 Hard Clustering 

In our evaluation, we consider a label to be assigned correctly if the evaluation dataset 
assigns this label to the music file. To choose only one class for a token under classi-
fication, we used a two-step process. 

Reducing the Confusion Set. For each data point, we chose K classes for which the 
fuzzy clustering gave the highest value of the membership function. The hard cluster-
ing technique used afterwards was only allowed to choose between those K labels pre-
selected for a given music file. 

In case of K = 1 no further processing is needed and the final result is determined 
by the greatest membership value of the fuzzy clustering. The case of K = 10 means 
no reducing of the confusion set. In case of K = 2 or K = 3—the values we experi-
mented with—the confusion set is reduced to 2 or 3 options, correspondingly. We 
show in Section 8 that reducing the confusion set to 2 candidates increased the accu-
racy. However, selection of the proper size of confusion set depends to the problem: 
on another task a confusion set of, say, 3 might result in better accuracy. 
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Final Hard Categorization. Given the K options left after reducing the confusion set, 

we trained different classifiers for each of the 
)!(!

!10

KcK

c

K −
=







 , c = 10, possible 

combinations of K genre labels: for example, with K = 3, a separate classifier was 
trained for choosing between BLUE, METAL, and COUNTRY, another one to choose 
between JAZZ, METAL, and ROCK, etc. For K = 3, therefore, 120 different classifiers 
were trained; for K = 2, 45 different classifiers were trained. To assign a label to data 
point, the K genre labels for the point are selected as explained above, and then the 
corresponding classifier is used. 

For training, we have taken care of all training music files in ten genre lists of our 
dataset, i.e., we used 60 music files of each 10 genres lists for training. For example, 
to train a classifier for the confusion set {BLUE, METAL}, all music files extracted from 
the lists and have their either the label BLUE or the label METAL were used. 

As features, we used the same feature vectors as for fuzzy clustering, extended 
by 10 extra dimensions: the membership values generated by the fuzzy classifier for 
the 10 genre labels, except the experiments where the fuzzy clustering was not used. 
As classes, the K selected labels were used for each classifier; in case of K = 2 the 
classification was binary, for K = 3 the classification is ternary. 

As a hard clustering algorithm, we used the SVM framework. Specifically, we 
used the libsvm library of the WEKA toolset [22], which, for the case of K > 2, 
provides an implementation of a multiclass SVM. As a result, we obtained one music 
genre label for each music file in the test dataset. 

8 Evaluation 

Impact of Different Feature Combinations. Table 1 shows that we obtained better 
accuracy when we used long-time features than using short-time features. However, a 
much lower accuracy was obtained when we used only beat features. The highest 
accuracy was obtained when we used all three types of features: long-time,  
short-time, and beat features. 

Table 1. Accuracy with different feature combinations and different classifier combinations 

Feature Combination Fuzzy SVM Fuzzy + SVM 
Long-time features 59.12% 61.20% 63.25% 
Short-time features 42.54% 44.15% 48.92% 
Long-time + short-time features 68.21% 71.24% 75.34% 
Beat features 39.15% 39.46% 41.27% 
Long-time + short-time + semantic 76.33% 87.45% 96.23% 
Long-time + beat features 68.67% 72.35% 76.25% 
Long + short + semantic +  fuzzy vector 79.21% — 97.10% 

We have done the evaluation in two ways. In one experiment we performed tenfold 
cross-validation on each of the 120 and 45 classifiers mentioned in Section 7.2 using 
all 1000 music files. The result and the corresponding confusion sets are given in 
Section 8. Using all three feature sets along with fuzzy membership vector as a  
feature, we obtained 97.10% accuracy.  
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Table 2. Impact of the selection of most 
likely fuzzy cluster 

Table 3. Accuracy obtained using different 
classifiers 

K Accuracy 
1 76.33% 
2 97.10% 
3 79.38% 
4 77.51% 

10 67.45% 
 

Classifier Accuracy 
KNN 54.21% 
Naïve Bayes 65.88% 
MLP 74.23% 
Our procedure 97.10% 

 

In another experiment we split our dataset into 60% training and 40% test data. Us-
ing 60% training data we trained our 60 or 45 classifiers correspondingly, depending 
on the value of K, and tested them on the unseen test data. With this, we obtained 
91.50% accuracy, which is probably explained by smaller size of the training data. 

In particular, we observed that spectral centroid and MFCC are the most important 
features, because removing these two features significantly decreases accuracy.  

Impact of the Fuzzy Clustering and Hard Categorization. In addition to the data 
presented in Table 1 for fuzzy-only and hard-only classifiers, we experimented with 
different values of K: the size of the confusion set after reduction based on the result 
of fuzzy clustering; see Table 2:  

− K = 1 means that the final classification is made basing on the results of the fuzzy 
clustering and no further hard clustering is necessary;  

− K = 2 means that the hard classification has to do only binary choices;  
− K = 3 reduces the confusion set for the hard classification to three options; 
− K = 10 means no reduction of the confusion set. It is not the same as not to use 

the fuzzy clustering phase at all, because the fuzzy clustering results are still used 
as additional features for final categorization. 

We can see that SVM performed better on choosing between the category with the 
highest membership value and that of the second highest one. Here, we used all  
features, which corresponds to the last row of Table 1.  

Table 4. Confusion Matrices 

 Tenfold cross-validation 60% training  / 40% test split 
Classified as    a b c d e f g h i j    a b c d e f g h i j 
a. blues 100 0 0 0 0 0 0 0 0 0 38 0 0 0 1 0 0 0 0 1 
b. country 0 98 0 0 0 0 0 0 0 2 0 37 0 0 0 0 0 0 0 3 
c. classical 1 0 99 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 
d. disco 1 0 1 94 4 0 0 0 0 0 1 0 1 34 4 0 0 0 0 0 
e. hiphop 1 0 0 5 93 0 0 0 1 0 1 0 0 3 35 0 0 1 0 0 
f. jazz 0 0 0 0 0 100 0 0 0 0 0 0 0 5 0 34 0 1 0 0 
g. metal 0 0 0 0 0 0 100 0 0 0 0 0 1 0 0 0 39 0 0 0 
h. pop 0 0 0 0 0 0 3 95 0 2 0 0 1 0 0 0 2 36 0 1 
i. reggae 0 3 0 0 0 0 0 0 97 0 0 3 0 0 0 0 0 0 37 0 
j. rock 0 4 0 0 0 0 0 1 0 95 0 2 0 0 0 1 0 1 0 36 
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Comparing with other Classifiers. We tried several classifiers, such as Multi-Layer 
Perception (MLP), Naïve Bayes, and kNN. While MLP performed better than Naïve 
Bayes and kNN, none of them outperformed our two-stage procedure; see Table 3. 

Confusion Matrices. The confusion matrices obtained with our procedure are shown 
in Table 4. We can observe that misclassification problems are very rare, and quite 
similar in both cases. 

9 Conclusions and Future Work 

We have proposed a method of music genre classification in a large music dataset 
using a two-stage classification methodology. The methodology consists in fuzzy 
clustering followed by disambiguation using a hard classifier. As features of musical 
data, we used the values obtained with the Jaudio toolkit.  

Soon, we plan to expand the classification tool on a different level by taking into 
account also lyrics associated with music tracks. In particular, we will extract concep-
tual and affective information associated with songs by means of semantic multi-
dimensional scaling [25] and, hence, add these as additional semantic and sentic [26] 
features for classification. 
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Sta. Maŕıa Tonanzintla, Puebla, México, C.P. 72840
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Abstract. Classifiers based on emerging patterns are usually more un-
derstandable for humans than those based on more complex mathemat-
ical models. However, most of the classifiers based on emerging patterns
get low accuracy in those problems with imbalanced databases. This
problem has been tackled through oversampling or undersampling meth-
ods, nevertheless, to the best of our knowledge these methods have not
been tested for classifiers based on emerging patterns. Therefore, in this
paper, we present an empirical study about the use of oversampling and
undersampling methods to improve the accuracy of a classifier based on
emerging patterns. We apply the most popular oversampling and under-
sampling methods over 30 databases from the UCI Repository of Ma-
chine Learning. Our experimental results show that using oversampling
and undersampling methods significantly improves the accuracy of the
classifier for the minority class.

Keywords: supervised classification, emerging patterns, imbalanced
databases, oversampling, undersampling.

1 Introduction

Supervised classification is a branch of Pattern Recognition that finds relations
between unseen objects and a set of objects previously classified, in order to
predict the class of those unseen objects. Due to the high diversity in pattern
recognition problems, there is a large collection of techniques (classifiers) to find
out these relations. Commonly, for a given problem, the user has to test different
classifiers to select the most accurate. Nevertheless, for many learning tasks [12],
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a high accuracy is not the only goal; the result of the classifier should also be
understandable by humans [11].

An important family of both understandable and accurate classifiers is the
one based on emerging patterns [7]. A pattern is an expression, defined in a
language, which describes a collection of objects [9]. An emerging pattern is a
pattern that frequently appears in objects of a single class, but it barely ap-
pears in objects belonging to other classes. This way, emerging patterns can
be used to predict the class of unseen objects. Classifiers based on emerging
patterns are valuable tools that have been used to solve real-world problems
in fields like Bioinformatics, streaming data analysis, intruder detection, human
activity recognition, anomaly detection in network connection data, rare event
forecasting, and privacy preserving data mining; among others [12].

Like most classifiers, those based on emerging patterns do not have a good
behavior when they are trained with imbalanced datasets, where objects are not
equally distributed into the classes, and therefore, classifiers get results which are
biased by the class with more objects. These classifiers generate many emerging
patterns for the majority class and only a few patterns (or none) for the mi-
nority class. This fact leads to low accuracy for the minority class. Imbalanced
databases often appear in fields like finance [2], biology and medicine [15].

Currently, applying oversampling or undersampling methods [1,8,4] is the
most common approach to deal with databases containing imbalanced classes.
However, to the best of our knowledge, there is not any study about the impact
of these methods for emerging pattern based classifiers.

In this paper, we present a study of applying oversampling and undersampling
methods for an emerging pattern based classifier, over 30 imbalanced databases.
We show that the accuracy is significantly improved (according to the Friedman
test [6] and the Bergmann-Hommel dynamic post-hoc procedure [10]) for the
minority class.

The rest of the paper has the following structure. Section 2 provides a brief
introduction to emerging patterns. Section 3 reviews the most popular over-
sampling and undersampling methods. Section 4 presents the empirical study
developed with the methods presented in section 3, it includes a description of
the setup, the way we evaluate the results and some concluding remarks that
arise from these results. Finally, section 5 provides conclusions and future work.

2 Emerging Patterns

A pattern is an expression, defined in a language, which describes a collection
of objects. The objects described, or covered, by a pattern are named the pat-
tern support. In a supervised classification problem, we say that a pattern is
an emerging pattern if its support increases significantly from one class to the
others [12]. Emerging patterns are usually expressed as combinations of feature
values, like (Eyes = blue, Sex = male,Age = 30) or as logical properties, for
example [Eyes = blue] ∧ [Sex = male] ∧ [Age > 30].
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Extracting emerging patterns from a training sample is a challenge because
the number of candidates grows exponentially with respect to the number of
features. Moreover, the downward closure property, one of the most effective
pruning strategies, does not hold for emerging patterns [12].

In the literature, there are several algorithms for mining emerging patterns.
Special attention deserve those algorithms based on decision trees, which usu-
ally do not find all the emerging patterns, but obtain a good collection of high
quality patterns [12]. In this paper, we use LCMine [11] because it is an effi-
cient algorithm for finding discriminative regularities (patterns) for supervised
classification in problems with mixed and incomplete data. LCMine induces di-
verse decision trees, extracts patterns from these trees, and in a filtering post-
processing stage, LCMine finds a reduced set of high quality discriminative prop-
erties (emerging patterns) for each class. In [11] the authors propose a classifier
(LCMine classifier), which uses several strategies to avoid over-fitting [11].

As far as we know, this is the first paper that studies the use of oversampling
and undersampling methods for a classifier based on emerging patterns (LCMine
classifier) in order to solve the imbalance in databases.

3 Oversampling and Undersampling Methods

Most supervised classifiers work with databases containing balanced classes.
However, there are application domains that contain high imbalance among
classes. Imbalanced classes bias the classifiers which tend to classify all objects
into the majority class. One way to deal with this problem is applying oversam-
pling and undersampling methods.

Oversampling methods increase the amount of objects in the minority class in
order to balance the classes. On the contrary, undersampling methods adjust the
class distribution by removing objects from the majority class. In the literature
there are also hybrid methods which combine oversampling and undersampling.
However, there is no consensus in the literature about what type of method is
the best [5].

In this paper, we perform several experiments to study the impact of over-
sampling and undersampling methods on the LCMine classifier. The following
are the methods that we use in our study:

1. Spread Subsample: This undersampling method generates a random sub-
sample of a database. This method adjusts the class distribution through
a random elimination of objects from the majority class. This distribution
is computed in dependence of a Spread value determined by the user. The
Spread value (a parameter) specifies the maximum ratio between the major-
ity and minority classes.

2. Synthetic Minority Over-sampling Technique (SMOTE) [4]: This is an over-
sampling method that generates synthetic objects based on the nearest
neighbor of each sample in the minority class. Synthetic samples are gen-
erated computing the difference between the feature vector (sample) under
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consideration and its nearest neighbor, then this difference is multiplied by a
random number between 0 and 1, and the result is added to the feature vector
under consideration. This causes the selection of a random point along the
line segment between two specific features values. This approach effectively
forces the decision region of the minority class to become more general.

3. SMOTE NEW: This method is similar to SMOTE but it determines dynam-
ically for each class the percent of new objects to be generated depending on
the ratio between classes. Since this percent depends on the ratio between
classes, the higher the imbalance, the higher will be the percent to be used.
In short, the goal of this algorithm is to achieve uniform distribution among
classes, increasing the amount of objects in the minority class but without
exceeding the majority class as occurs in SMOTE.

4. Resample: This is a hybrid method that produces a random subsample of
the majority class and applies oversampling the minority class in order to
obtain uniform class distribution. This method can use sampling with re-
placement or without replacement. The parameter B specifies the level of
balance between classes; values close to one will produce more uniform class
distribution.

4 Experimental Results

This section presents the empirical study developed in this paper.

4.1 Experimental Setup

For our experiments, we use 30 databases taken from the UCI Repository of
Machine Learning [3]. Table 1 describes the used databases. These databases
have different characteristics according to size, class distribution, feature types
and percentage of objects with missing values.

Similar to other authors [17,14] we modify the databases hypothyroid M, page-
blocks M and postoperative M. In these databases, we merge into a single class
(named minority class) those objects belonging to the complement of the ma-
jority class. The iris M database is a modification of the original iris database
where we join the two classes with higher overlapping.

For each database and each oversampling and undersampling method, we
perform 10 fold cross validation averaging the classification accuracy for the
minority and majority classes.

For our experiments we use the Friedman test [6] and the Bergmann-Hommel
dynamic post-hoc procedure [10] to compare the accuracy results. We also use
CD diagrams to show the post-hoc results. In a CD diagram, the top line is the
axis where the average rank of the classifiers is plotted, the rightmost classifier
is the best classifier, while two classifiers sharing a thick line have statistically
similar behavior [6].

We use the implementations of Resample, Spread Subsample and SMOTE
taken from Weka [13]. We modify the parameter values, as it is shown in the
Table 2, to ensure an uniform distribution of classes.
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Table 1. Databases used in the experiments. #Obj: number of objects; Class Distrib:
objects per class; #Features: number of features; Missing values: percentage of objects
with missing values; Ratio: the ratio between the majority class and its complement.

# Features
Database #Obj Class Distrib (%) Numeric Non-Numeric Missing values Ratio

sick 3772 6/94 7 22 5.54% 15.3
hypothyroid M 3772 8/92 7 22 5.54% 12.0
page-blocks M 5473 10/90 10 0 - 8.8
wdbc 569 37/63 30 0 - 3.2
haberman 306 26/74 2 1 - 2.8
postoperative M 90 30/70 0 8 < 1% 2.5
breast-cancer 286 30/70 0 9 < 1% 2.4
credit-g 1000 30/70 7 13 - 2.3
iris M 150 34/76 4 0 - 2.0
breast-w 699 35/65 9 0 < 1% 1.9
tic-tac-toe 958 35/65 0 9 - 1.9
diabetes 768 35/65 8 0 - 1.9
labor 57 35/65 8 8 35.75% 1.9
ionosphere 351 36/64 34 0 - 1.8
heart-h 294 36/64 6 7 20.46% 1.8
colic 368 37/63 7 15 23.80% 1.7
colic.ORIG 368 37/63 7 20 19.39% 1.7
wpbc 198 24/76 33 0 < 1% 1.7
vote 435 39/61 0 16 5.63% 1.6
spambase 4601 39/61 57 0 - 1.5
shuttle-landing 15 40/60 0 6 28.89% 1.5
liver-disorders 345 42/58 6 0 - 1.4
cylinder-bands 540 43/57 18 21 4.74% 1.4
heart-statlog 270 44/56 13 0 - 1.3
credit-a 690 45/55 6 9 < 1% 1.2
crx 690 45/55 6 9 < 1% 1.2
cleveland 303 46/54 6 7 < 1% 1.2
sonar 208 46/54 60 0 - 1.1
kr-vs-kp 3196 48/52 0 36 - 1.1
mushroom 8124 48/52 0 22 1.39% 1.1

Table 2. Description of the oversampling an undersampling methods and the param-
eters in our experiments

Path in Weka Parameters

weka.filters.supervised.instance.Resample -B 1.0 -S 1 -Z 100.0
weka.filters.supervised.instance.SpreadSubsample -M 1.2 -X 0.0 -S 1
weka.filters.supervised.instance.SMOTE -C 0 -K 5 -P 100.0 -S 1

4.2 Accuracy Analysis

In this section, we analyze the global accuracy and the accuracy in the minority
and majority classes obtained by oversampling and undersampling methods over
the tested databases. We also include the plain results for LCMine.
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Fig. 1. CD diagram with a statistical comparison of the global accuracy of the LCMine
classifier before and after using oversampling and undersampling methods over all the
tested databases

Figure 1 shows that the global accuracy of SMOTE NEW+LCMine classifier
is the best. Nevertheless, there is not significant statistical difference among
using or not using oversampling or undersampling methods.

Fig. 2. CD diagram with a statistical comparison of the accuracy in the minority class
of the LCMine classifier before and after using the oversampling and undersampling
methods over all the tested databases

Figure 2 shows that applying oversampling or undersampling methods
improves the accuracy of the LCMine classifier in the minority class.
SMOTE+LCMine achieves the best results, nevertheless, notice that there is not
statistical significant difference among the different results obtained by oversam-
pling and undersampling methods.

Fig. 3. CD diagram with a statistical comparison of the accuracy in the majority class
of the LCMine classifier before and after using the oversampling and undersampling
methods over all the tested databases

Figure 3, we can see that LCMine classifier obtained the best results in the
majority class. Nevertheless, notice that there is not significant statistical differ-
ence between the results of LCMine and SMOTE NEW+LCMine .
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Table 3. Accuracy results of the compared oversampling and undersampling methods
on the tested databases. We show the accuracy for the minority (min) and majority
(maj ) classes. The best results for each database in the minority and majority classes
appear bolded.

Database Resample
SMOTE
NEW

SMOTE
No resam-

pling
Spread

Subsample
min maj min maj min maj min maj min maj

sick 87.01 73.85 83.98 75.01 82.68 71.14 83.55 67.27 94.37 72.86
hypothyroid M 84.88 88.25 31.62 68.86 95.53 75.98 86.94 14.22 98.63 87.04
page-blocks M 84.11 97.44 54.11 83.72 84.82 91.33 83.21 84.86 93.93 95.91
wdbc 72.34 64.24 59.57 72.19 48.94 81.46 34.04 93.38 70.21 62.91
haberman 58.02 69.78 38.27 79.56 41.98 80.44 28.40 83.11 59.26 67.11
postoperative M 26.92 53.13 7.69 65.63 7.69 64.06 3.85 84.38 38.46 64.06
breast-cancer 57.65 65.67 40.00 77.61 41.18 78.61 34.12 86.57 56.47 65.17
credit-g 66.33 71.29 54.67 84.43 53.00 83.43 41.00 90.29 65.67 74.57
iris M 100 99.00 100 100 100 100 96.00 100 100 99.00
breast-w 93.36 96.51 92.95 96.51 92.95 96.29 92.53 97.16 92.53 96.51
tic-tac-toe 94.88 96.49 96.08 99.52 94.88 99.52 92.77 100 95.78 99.20
diabetes 74.63 75.00 70.90 76.20 73.13 75.00 59.33 83.60 74.63 76.60
labor 85.00 62.16 90.00 70.27 100 59.46 80.00 78.38 90.00 67.57
ionosphere 82.54 96.89 83.33 97.78 80.95 96.44 76.98 99.11 76.98 97.78
heart-h 86.79 69.15 86.79 62.23 87.74 52.13 76.42 81.38 84.91 70.21
colic 71.32 88.79 77.21 86.21 80.15 82.33 72.06 90.95 74.26 87.93
colic.ORIG 75.74 87.93 76.47 86.64 72.79 86.64 69.12 92.24 75.74 88.79
wpbc 91.98 96.92 93.87 96.08 93.40 95.24 91.51 97.48 93.40 96.36
vote 94.05 92.88 91.07 94.01 92.86 94.01 89.88 94.01 91.67 93.26
spambase 93.33 90.32 78.27 83.21 47.10 83.39 92.83 78.08 91.06 81.71
shuttle-landing 0.00 77.78 0.00 100 50.00 77.78 0.00 100 0.00 100
liver-disorders 60.69 78.00 60.69 78.50 68.28 68.00 60.00 80.50 62.76 76.00
cylinder-bands 44.30 78.53 49.56 78.53 54.39 73.08 32.46 85.58 42.11 80.77
heart-statlog 77.50 84.67 74.17 87.33 80.00 84.67 76.67 84.00 77.50 85.33
credit-a 83.71 85.38 87.95 84.07 88.60 85.90 85.34 85.12 86.64 85.12
crx 85.34 84.60 86.64 83.81 87.30 83.81 84.36 84.33 85.02 78.50
cleveland 78.42 77.44 75.54 88.41 79.14 81.71 76.98 86.59 77.70 86.59
sonar 61.86 90.99 75.26 45.59 82.47 71.17 74.23 84.68 74.23 84.68
kr-vs-kp 98.82 99.34 99.41 99.46 99.61 98.74 99.41 99.46 99.41 99.46
mushroom 99.13 100 99.80 100 100 100 99.18 100 99.18 100

Average 75.69 83.08 70.53 83.38 75.38 82.39 69.11 86.22 77.42 84.03

In the Table 3 we can see the global accuracy. This table shows that, in most
of the databases, the use of oversampling and undersampling methods jointly
with LCMine achieved the best average accuracy in the minority class (min). In
this table we can also see that Spread Subsample gets the best average accuracy
in the minority class; nevertheless, the original LCMine classifier gets the best
average accuracy in the majority class (maj ).
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4.3 Accuracy in the Minority Class Regarding the Imbalance Ratio

In this section, we show the accuracy results in the minority class regarding
the imbalance ratio. For this analysis we divide the databases in two groups
depending if their imbalance ratio is lower than 2 or greater than or equal to
2. The goal of this experiment is to show the behavior of oversampling and
undersampling methods with respect to imbalance ratio.

Fig. 4. CD diagram with a statistical comparison of the LCMine classifier before and
after using the oversampling and undersampling methods over databases with imbal-
ance ratio lower than 2 (see Table 1)

Figure 4 shows that, when the imbalance ratio is lower than 2, there is not
statistical significant difference among the results obtained by LCMiner and
those results obtained by Resample+LCMine and Spread Subsample+LCMine.
While, applying SMOTE or SMOTE NEW jointly with LCMine is statistically
better than using the original LCMine classifier.

Fig. 5. CD diagram with a statistical comparison of the LCMine classifier before and
after using the resampling methods over databases with imbalance ratio greater than
or equal to 2 (see Table 1)

Figure 5 shows that, when the imbalance ratio is greater than or equal to
2, there is not statistical significant difference among the results obtained by
the original LCMine classifier and the results obtained by SMOTE+LCMine
and SMOTE NEW+LCMine. While, applying Resample or Spread Subsam-
ple jointly with LCMine is statistically better than using the original LCMine
classifier.
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4.4 General Concluding Remarks

The results shown in the previous section lead us to conclude that oversampling
and undersampling methods improve the accuracy of the LCMine classifier in
the minority class without significantly reducing the accuracy in the majority
class. Moreover, if the imbalance ratio is lower than 2 then it is better to use
SMOTE; else, it is better to use Spread Subsample.

A possible explanation for this behavior is that, when the imbalance ratio
is greater than or equal to 2, the oversampling methods create as many false
objects as the real objects in the oversampled class. This way, the classifier
cannot correctly classify new objects in the minority class if its knowledge in
this class is 50% artificial.

5 Conclusions and Future Work

The classifiers based on emerging patterns are sensitive to databases containing
imbalanced classes. These classifiers generate many emerging patterns for the
majority class and only a few patterns (or none) for the minority class. This
fact affects this type of classifiers, leading them to obtain low accuracy for the
minority class.

The main contribution of this paper is an empirical study of the behavior
of a classifier based on emerging patterns when using oversampling and under-
sampling methods in databases containing imbalanced classes. The experimental
results show that there is not a method which clearly outperforms the others,
but applying any oversampling or undersampling method improves the LCMine
classifier accuracy.

From our experimental study we can conclude that if the classes in the
database have an imbalance ratio greater than or equal to 2 (1:2) the best option
is to use undersampling methods; otherwise, if the ratio is lower than 2 the best
option is to use an oversampling method.

As future work, we plan to build a cascade classifier, based on emerging pat-
terns, capable of accurately classifying imbalanced databases with more than two
classes. The idea is to apply an oversampling or undersampling method in the
complement of the majority class, and then applying this procedure recursively
for the other classes, in order to build a cascade classifier. On the other hand,
since some studies in the literature propose decision trees that are robust to im-
balanced databases [16]; another future work would be studying how to modify
the LCMine classifier following these ideas in order to improve its results for
imbalanced databases without using oversampling or undersampling methods.
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Abstract. To count models for two conjunctive forms (#2SAT prob-
lem) is a classic #P problem. We determine different structural patterns
on the underlying graph of a 2-CF F allowing the efficient computation
of #2SAT(F ).

We show that if the constrained graph of a formula is acyclic or the
cycles on the graph can be arranged as independent and embedded cycles,
then the number of models of F can be counted efficiently.

Keywords: #SATProblem, Counting models, Structural Patterns, Graph
Topologies.

1 Introduction

#SAT is of special concern to Artificial Intelligence (AI), and it has a direct
relationship to Automated Theorem Proving, as well as to approximate reasoning
[3,4,9].

The problem of counting models for a Boolean formula (#SAT problem) can
be reduced to several different problems in approximate reasoning. For example,
for estimating the degree of reliability in a communication network, computing
degree of belief in propositional theories, for the generation of explanations to
propositional queries, in Bayesian inference, in a truth maintenance systems, for
repairing inconsistent databases [1,3,5,9,10]. The previous problems come from
several AI applications such as planning, expert systems, approximate reasoning,
etc.

#SAT is at least as hard as the SAT problem, but in many cases, even when
SAT is solved in polynomial time, no computationally efficient method is known
for #SAT. For example, 2-SAT problem (SAT restricted to consider (≤ 2)-CF’s),
it can be solved in linear time. However, the corresponding counting problem
#2-SAT is a #P-complete problem. Earlier works on #2-SAT include papers
by Dubois [6], Zhang [11] and Littman [8]. More recently, new upper bounds for
exact deterministic algorithms for #2-SAT have been found by Dahllöf [2], Fürer
[7], Angelsmark [1] and Jonsson [2]. And given that #2SAT is a #P-complete
problem, all the above proposals are part of the class of exponential algorithms.

The maximum polynomial class recognized for #2SAT is the class (≤ 2, 2μ)-
CF (conjunction of binary or unary clauses where each variable appears twice at
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most) [9,10]. Here, we extend such class for considering the topological structure
of the undirected graph induced by the restrictions (clauses) of the formula. We
extend here some of the procedures presented in [5,4] for the #2-SAT problem
and show how to apply them to compute the number of models in a propositional
theory. Furthermore, we show different structural patterns on the constrained
graph of the formula which allow the efficient computation of the number of
models for some classes of 2-CF’s.

2 Notation

Let X = {x1, . . . , xn} be a set of n Boolean variables. A literal is either a variable
xi or a negated variable xi. As usual, for each xi ∈ X , x0

i = xi and x1
i = xi. A

clause is a disjunction of different literals (sometimes, we also consider a clause
as a set of literals). For k ∈ N , a k-clause is a clause consisting of exactly k
literals and, a (≤ k)-clause is a clause with at most k literals. A variable x ∈ X
appears in a clause c if either x or x is an element of c.

A Conjunctive Form (CF) F is a conjunction of clauses (we also consider a
CF as a set of clauses). We say that F is a positive monotone CF if all of its
variables appear in unnegated form. A k-CF is a CF containing only k-clauses
and, (≤ k)- CF denotes a CF containing clauses with at most k literals. A kμ-
CF is a formula in which no variable occurs more than k times. A (k, jμ)-CF
((≤ k, jμ)-CF) is a k-CF ((≤ k)-CF) such that each variable appears no more
than j times.

We use ν(X) to express the set of variables involved in the object X , where
X could be a literal, a clause or a Boolean formula. For instance, for the clause
c = {x1, x2}, ν(c) = {x1, x2}. And Lit(F ) is the set of literals which appear in
a CF F , i.e. if X = ν(F ), then Lit(F ) = X ∪X = {x1, x1, . . . , xn, xn}. We also
denote {1, 2, . . . , n} by [[n]].

An assignment s for F is a Boolean function s : ν(F ) → {0, 1}. An assignment
can be also considered as a set of non complementary pairs of literals. If l ∈ s,
being s an assignment, then s turns l true and l false. Considering a clause c
and assignment s as a set of literals, c is satisfied by s if and only if c ∩ s �= 0,
and if for all l ∈ c, l ∈ s then s falsifies c. If F1 ⊂ F is a formula consisting of
some clauses of F , then ν(F1) ⊂ ν(F ), and an assignment over ν(F1) is a partial
assignment over ν(F ). Assuming n = |ν(F )| and n1 = |ν(F1)|, any assignment
over ν(F1) has 2

n−n1 extensions as assignments over ν(F ).
Let F be a Boolean formula in Conjunctive Form (CF), F is satisfied by an

assignment s if each clause in F is satisfied by s. F is contradicted by s if any
clause in F is contradicted by s. A model of F is an assignment for ν(F ) that
satisfies F . Given F a CF, the SAT problem consists of determining if F has
a model. The #SAT problem consists of counting the number of models of F
defined over ν(F ). #2-SAT denotes #SAT for formulas in 2-CF.
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3 Computing #2SAT for Acyclic Formulas

Let F be a 2-CF F , its signed constrained undirected graph is denoted by GF =
(V (F ), E(F )), with V (F ) = ν(F ) and E(F ) = {{ν(x), ν(y)} : {x, y} ∈ F}, that
is, the vertices of GF are the variables of F , and for each clause {x, y} in F there
is an edge {ν(x), ν(y)} ∈ E(F ). Each edge c = {ν(x), ν(y)} ∈ E is associated
with an ordered pair (s1, s2) of signs, assigned as labels of the edge connecting
the variables appearing in the clause. The signs s1 and s2 are related to the signs
of the literals x and y respectively. For example, the clause {x ∨ y} determines
the labelled edge: ”x−+y” which is equivalent to the edge ”y+−x”.

A graph with labelled edges on a set S is a pair (G,ψ), where G = (V,E)
is a graph, and ϕ is a function with domain E and range S. ψ(e) is called the
label of the edge e ∈ E. Let S = {+,−} be a set of signs . Let G = (V,E, ψ)
be a signed graph with labelled edges on SxS. Let x and y be nodes in V . If
e = {x, y} is an edge and ψ(e) = (s, s′), then s(s′) is called the adjacent sign to
x(y). We say that a 2-CF F is a path, cycle, or a tree if its signed constrained
graph GF is a path, cycle, or a tree, respectively.

3.1 If the 2-CF Represents a Path

If GF is a path, then F = {C1, C2, . . . , Cm} = {{xε1
1 , xδ1

2 }, {xε1
2 , xδ1

3 }, . . . , {xεm
m ,

xδm
m+1}}, where δi, εi ∈ {0, 1}, i ∈ [[m]]. Let fi be a family of clauses of the

formula F , built as follows: f1 = ∅; fi = {Cj}j<i, i ∈ [[m]]. Notice that n =
|υ(F )| = m+ 1, fi ⊂ fi+1, i ∈ [[m− 1]]. Let SAT (fi) = {s : s satisfies fi}, Ai =
{s ∈ SAT (fi) : xi ∈ s}, Bi = {s ∈ SAT (fi) : xi ∈ s}. Let αi = |Ai|; βi = |Bi|
and μi = |SAT (fi)| = αi + βi.

For every node x ∈ GF a pair (αx, βx) is computed, where αx indicates how
many times the variable x is ’true’ and βx indicates the number of times that
the variable x can take value ’false’ into the set of models of F . The first pair
is (α1, β1) = (1, 1) since x1 can be true or false in order to satisfy f1. The pairs
(αx, βx) associated to each node xi,i = 2, . . . ,m are computed according to the
signs (εi, δi) of the literals in the clause ci by the following recurrence equation:

(αi, βi) =

⎧⎪⎪⎨⎪⎪⎩
(βi−1 ,αi−1 + βi−1) if (εi, δi) = (−,−)
(αi−1 + βi−1,βi−1 ) if (εi, δi) = (−,+)
(αi−1 ,αi−1 + βi−1) if (εi, δi) = (+,−)
(αi−1 + βi−1,αi−1 ) if (εi, δi) = (+,+)

(1)

Note that, as F = fm then #SAT (F ) = μm = αm +βm. We denote with → the
application of one of the four rules of the recurrence ( 1).

Example 1. Let F = {(x1, x2), (x2, x3), (x3, x4), (x4, x5), (x5, x6)} be a path.
The series (αi, βi), i ∈ [[6]], is computed as: (α1, β1) = (1, 1) → (α2, β2) = (2, 1)
since (ε1, δ1) = (1, 1), and the rule 4 has to be applied. In general, applying
the corresponding rule of the recurrence ( 1) according to the signs expressed by
(εi, δi), i = 3, ..., 6, we have (2, 1) → (1, 3) → (3, 4) → (3, 7) → (α6, β6) = (10, 7),
and then, #SAT (F ) = μ6 = α6 + β6 = 10 + 7 = 17.
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3.2 If the 2-CF Represents a Tree

Let F be a 2-CF where its associated constrained graph GF is a tree. We de-
note with (αv, βv) the pair associated with the node v (v ∈ GF ). We compute
#SAT (F ) while we are traversing by GF in post-order.

Algorithm Count Models for trees(GF )
Input: GF - a tree graph.
Output: The number of models of F
Procedure:
Traversing GF in post-order, and when a node v ∈ GF is left, assign:

1. (αv, βv) = (1, 1) if v is a leaf node in GF .
2. If v is a parent node with a list of child nodes associated, i.e., u1, u2, ..., uk

are the child nodes of v, as we have already visited all child nodes, then each
pair (αuj , βuj ) j = 1, ..., k has been determined based on recurrence (1).

Then, let αv =
∏k

j=1 αvj and βv =
∏k

j=1 βvj . Notice that this step includes
the case when v has just one child node.

3. If v is the root node of GF then return(αv + βv).

This procedure returns the number of models for F in time O(n +m) which is
the necessary time for traversing GF in post-order.

Example 2. If F = {(x1, x2), (x2, x3), (x2, x4), (x2, x5), (x4, x6), (x6, x7),
(x6, x8)} is a monotone 2-CF, we consider the post-order search starting in the
node x1. The number of models at each level of the tree is shown in Figure 1.
The procedure Count Models for trees returns for αx1 = 41, βx1 = 36 and the
total number of models is: #SAT(F ) = 41 + 36 = 77.

X1 X2

(41,36) +

+

++

X3

+

+

+
+X 4

X5

+

+

+

+

X6+

X7

X
+  8

(36,5)

(1,1)

(1,1)(1,1)

(1,1)

(2,1)

(2,1) (4,1)

(2,1)

(2,1)(5,4)
(9,5)

Fig. 1. Counting models over a tree

4 Processing 2-CF’s Containing Cycles

Let GF be a simple cycle with m nodes, that is, all the variables in υ(F ) appear
twice, |V | = m = n = |E|. Ordering the clauses in F in such a way that
| υ(ci) ∩ υ(ci+1) |= 1, and ci1 = ci2 whenever i1 ≡ i2 mod m, hence x1 = xm,

then F =
{
ci = {xεi

i−1, x
δi
i }
}m

i=1
, where δi, εi ∈ {0, 1}. Decomposing F as F =

F ′ ∪ cm, where F ′ = {c1, ..., cm−1} is a path and cm = (xεm
m−1, x

δm
1 ) is the edge

which conforms with GF ′ the simple cycle: x1, x2, ..., xm−1, x1. We will call to
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GF ′ the internal path of the cycle and to cm the back clause of the cycle. We
can apply the linear procedure described above in equation 1 for computing
#SAT (F ′).

Every model of F ′ had determined logical values for the variables: xm−1 and
x1 since those variables appear in υ(F ′). Any model s of F ′ satisfies cm if and
only if (x1−εm

m−1 /∈ s and x1−δm
m /∈ s), that is, SAT (F ′ ∪ cm) ⊆ SAT (F ′), and

SAT (F ′ ∪ cm) = SAT (F ′) − {s ∈ SAT (F ′) : s falsifies cm}. Let X = F ′ ∪
{(x1−εm

m−1 ) ∧ (x1−δm
m )}, then #SAT (X) is computed as a path with two unitary

clauses:

#SAT (F ) = #SAT (F ′ ∧ Cm) = #SAT (F ′)−#SAT (F ′ ∧ (x1−εm
m−1 ) ∧ (x1−δm

m ))
(2)

Example 1. Let Σ = {ci}6i=1 = {{x1, x2}, {x2, x3}, {x3, x4}, {x4, x5}, {x5, x6},
{x6, x1}} be a monotone 2-CF which represents a cycle: GΣ=(V ,E). Let G′ =
(V,E′) where E = E′ ∪ {c6}, that is, the new graph G′ is Σ minus the edge c6.
Applying equation ( 2), we have that #SAT (Σ) = #SAT (F ′) − #SAT (F ′ ∧
x6 ∧ x1) = 21− 3 = 18. This example is illustrated in figure 2.

When we count models over any constrained graph GF , we use computing
threads. A computing thread is a sequence of pairs (αi, βi), i = 1, . . . ,m used
for computing the number of models over a path of m nodes. A main thread,
denoted by Lp, is associated to a spanning tree of GF , this thread is always ac-
tive until the process of counting finishes completely. While the thread used for
computing the pair associated with #SAT (F ′ ∧ (x1−εm

m−1 ) ∧ (x1−δm
m )) is denoted

by Le.

X

+

+ ++1
+

+ X2 X6X3 X4 X5+ + + + + +

(α1, β1) → (α2, β2) → (α3, β3) → (α4, β4) → (α5, β5) → (α6, β6)
Lp : (1, 1) → (2, 1) → (3, 2) → (5, 3) → (8, 5) → (13, 8)
Le : (0, 1) → (1, 0) → (1, 1) → (2, 1) → (3, 2) → (5, 3)

⇒ (13, 8) − (0, 3) = (13, 5)

Fig. 2. Computing #SAT (F ) when GF is a cycle

4.1 Cycles on Alternating Signed Paths

Let GF = (V,E, {+,−}) be a signed connected graph of an input formula F in
2-CF. Let vr be the node of minimum degree in GF which is chosen to start a
depth-first search. We obtain a spanning tree TG with vr as the root node and a
set of fundamental cycles C = {C1, C2, ..., Ck}, and where each back edge ci ∈ E
marks the beginning and the end of a fundamental cycle Ci ∈ C.
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The edges in TG are called tree edges. A back edge e ∈ E is an edge of GF

which is not part of the spanning tree TG but e is incident to two nodes of TG.
Each back edge holds the maximum path contained in the fundamental cycle
which is part of. We will call to such maximum path, the internal path of a
fundamental cycle. Given any pair of fundamental cycles Ci and Cj in GF , if Ci

and Cj share edges, we call them intersecting cycles; otherwise, they are called
independent cycles.

In some cases, the value #SAT(Ci) for a fundamental cycle Ci ∈ GF can
be computed previously to the computation of the total graph GF in order to
determine if the cycle Ci can be reduced to a path or any other simple structure.
For example, let us assume a cycle Ci whose internal path is formed by nodes
with alternating signs on its edges, while the signs on the back edge e determine
the different cases to analyze. Let us order the nodes into the internal path of
the cycle as: x1 − x2 − . . .− xk, and we consider to x1 as the initial node and xk

as the final node of the cycle. Notice that e = {x1, xk} is the back edge.

X

S

+ -+
1

-
X2 X3

X4
+ -

1 2S

C1 C3C2

Cc

(α1, β1) → (α2, β2) → (α3, β3) → (α4, β4)
Lp : (1, 1) → (1, 2) → (1, 3) → (1, 4)

Fig. 3. GF and the computing over the path

Figure 3 shows a cycle with an internal path whose nodes have alternating
signs. Let ψ(e) = (a, b′) be the signs on the back edge. Assuming that the variable
x1 appears only with sign a and the variable xk appears only with sign b, that
means that the signs of the back edge coincides with the signs of its endpoints
in the internal path. For this case, the back edge (its corresponding clause) can
be eliminated from the cycle because the final pair obtained in the secondary
thread Le is (0, 0), as it is shown in figure 4.

X X2 X3 Xk-1 X
-

- - - -

+

+ + + +

a b

ba

1 k

(α, β) → (α+ β, β) → (α+ 2β, β) . . .→ (α+ k · β, β) ⇒ (α+ k · β, β)
(α, 0) → (α, 0) → (α, 0) . . .→ (α, 0) ⇒ −(0, 0)

Fig. 4. When a back edge does not substract models to the path

The previous example shows that pre-processing the cycles appearing in a
current constrained graph is relevant. In some cases, the clause corresponding
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with the back edge can be eliminated or the value #SAT (Ci) for a cycle Ci can
be computed using symbolic values without knowing the real values of the pairs
(αj , βj) on the internal path of the cycle, as it is shown in figure 5.

X X2 X3 Xk-1 X- - - -
-

+ + + +

b

-

1 K

(α, β) → (α, α+ β) → . . . → (α, k · α+ β) ⇒ (α, k · α+ β)− (α, 0) = (0, k · α+ β)
(α, 0) → (α, α) → . . . → (α, k · α) ⇒ −(α, 0)

Fig. 5. Computing #SAT (Ci) using symbolic values on the pairs (αj , βj)

5 Processing Embedded Cycles

Let GF = (V,E) be a connected constrained graph of a 2-CF F . Given two
intersecting plane cycles Ci, Cj of a graph, Ci is embedded into Cj , if
a)V (Ci) ⊂ V (Cj) : the set of nodes of Ci is a subset of the nodes of Cj .
b)|E(Ci)−E(Cj)| = 1 : there is only one edge from Ci which is not edge of Cj .
In this case, Ci is an internal embedded cycle of Cj and Cj is an external
embedded cycle of Ci.

Let us consider a graphGF formed by a setD = (C1, C2, . . . , Ck) of embedded
cycles, such that Ci is embedded in Ci+1, i = 1, . . . , k−1. C1 is the most internal
embedded cycle and Ck is the most external cycle of D. For processing this class
of graphs, we determine a processing order given by traversing the graph from
the most internal to the most external embedded cycle.

For a graph GF formed by a set of embedded cycles, Lp will be associated
with the path formed by the nodes of GF . Three computing threads are used
for processing a current cycle, and for processing all the set of embedded cycles
we require at most six computing threads.

Case 1: Processing the Most Internal Embedded Cycle
Let eb = {vs, vf} be the back edge which embraces the most internal cycle C1

of GF . We use three computing threads with initial values: (α1
s, β

1
s ) = (1, 1),

(α2
s, β

2
s ) = (1, 0) - this thread carry on the number of models of C1 where the

3  3 5 6  7  81 29 10  4 11

Fig. 6. An initial graph GF with embedded cycles
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variable xs does not appear, and (α3
s, β

3
s ) = (0, 1) - this thread carry on the

number of models of C1 where the first variable x0 appears.
We traverse by the internal path of C1 from its initial node vs to its end node

vf and the last visited edge is its back edge eb. Each time that a new node on the

path is visited, recurrence (1) is applied, obtaining: (αj
i , β

j
i ) → (αj

i+1, β
j
i+1), j =

1, . . . , 3. When the search arrives to vf , we have obtained the pairs (α1
f , β

1
f),

(α2
f , β

2
f ) and (α3

f , β
3
f ). The last edge processed is eb and for this, we use two

temporal variables αC1 and βC1 defined as: αC1 = α1
f , βC1 = β1

f − β3
f for the

monotone case or according to the signs associated with eb this last rule is tuned.
And, the numbers of models for the internal cycle C1, is #SAT (C1) = αC1+βC1.

 31 2  4

Nodes : Node1 Node2 Node3 Node4
Lp : (1, 1) → (2, 1) → (3, 2) → (5, 3) = (α1

4, β
1
4)

L1 /∈ S : (1, 0) → (1, 1) → (2, 1) → (3, 2) = (α2
4, β

2
4)

L2 ∈ S : (0, 1) → (1, 0) → (1, 1) → (2, 1) = (α3
4, β

3
4)⇒ (αC1, βC1) = (5, 3 − 1) = (5, 2)

Fig. 7. Processing the most internal cycle

Case 2: Processing an External Embedded Cycle
Let Cj = Ci+1 be the following external embedded cycle of the last processed
cycle Ci. After processing an internal embedded cycle Ci, all the cycle is con-
tracted into a single node Crsf where s is the number of the initial node and f
is the number of the final node of the path in Ci. Then, Crij is now a new fat
node on the path formed by the nodes: (V (Cj)− V (Ci)) ∪ Crij .

We use new three computing threads for processing the external cycle Cj

according to the previous case 1. Cj is traversing as a path and appliying recur-
rence (1) over each node of the path until arrive to the fat node Crsf . When
the computing threads cross by Crsf , each current pair (αi

x, β
i
x), i = 1, 2, 3 is

updated according to the following recurrence.

αi
x+1 = α2

f · αi
x + α3

f · βi
x

βi
x+1 = β2

f · αi
x + β3

f · βi
x, for i = 1, 2, 3.

(3)

Obtaining the new pairs (αi
x+1, β

i
x+1), for i = 1, 2, 3. We will denote the appli-

cation of the recurrence ( 3) as (αx, βx)� (αx+1, βx+1). As it exists an implicit
back edge into the contracted fat node Crsf then we have to update the pair
(α1

x+1, β
1
x+1) as (α

1
x+1, β

1
x+1) = (α1

x+1, β
1
x+1−β1

x∗β3
f ). We will denote the process-

ing of a back edge by ←↩, then (αx, βx) ←↩ (αx+1, βx+1) meaning the application
of the formula (αx+1, βx+1) = (αx+1, βx+1 − βx ∗ β2

f ).

We obtain new current values for the last node of the cycle Cj :(α
1
f , β

1
f ),(α

2
f , β

2
f ),

(α3
f , β

3
f ) and the cycle Cj is contracted into a new fat node Ckf where k was the

number of the initial node and f was the number of the final node processed in



282 G. De Ita, P. Bello, and M. Contreras

Cj . In this way, we process any embedded cycle until arrives to the most external
cycle of GF .

 5 6  7  81 - 4

G2 Node6 Node5 Node1−4 Node7 Node8
Lp : (1, 1) → (2, 1) → (3, 2) � (13, 8) ←↩ (13, 6) → (19, 13) → (32, 19) = (α1

8, β
1
8)

L1 /∈ S : (1, 0) → (1, 1) → (2, 1) � (8, 5) ←↩ (8, 4) → (12, 8) → (20, 12) = (α2
8, β

2
8)

L2 ∈ S : (0, 1) → (1, 0) → (1, 1) � (5, 3) ←↩ (5, 2) → (7, 5) → (12, 7) = (α3
8, β

3
8)⇒ (32, 19) − (0, 7) = (32, 12)

Fig. 8. Processing an external embedded cycle

Notice that our proposal for counting models on a set D of embedded cycles
has a linear time complexity over the number of edges |E(D)|. Then, we have
shown that for some restricted cases of a 2-CF F , particularly when GF con-
tains only independent and embedded cycles, #2-SAT(F ) can be computed in
polynomial time.

6 Conclusion

#SAT problem for the class of Boolean formulas in 2-CF is a classical #P-
complete problem. However, However, there are several instances of 2-CF’s for
which #2SAT can be solved efficiently.

We have shown here, different polynomial-time procedures for counting mod-
els of Boolean formulas for subclasses of 2-CF’s. For example, for formulas whose
contrained graph is acyclic, its corresponding number of models is computed in
linear time.

Given a formula F in 2-CF, we show that if the cycles in its constrained graph
GF can be arranged as independent and embedded cycles, then we can count
efficiently the number of models of F .

Thus, the unique graph topology for the constrained graph GF of a 2-CF F
where the computation of #2SAT(F ) continues being intractable is when GF

has intersected cycles and they can not be arranged as embedded cycles.

References

1. Angelsmark, O., Jonsson, P.: Improved Algorithms for Counting Solutions in
Constraint Satisfaction Problems. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833,
pp. 81–95. Springer, Heidelberg (2003)
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Abstract. Hyper-heuristics are methodologies that choose from a set
of heuristics and decide which one to apply given some properties of the
current instance. When solving a constraint satisfaction problem, the or-
der in which the variables are selected to be instantiated has implications
in the complexity of the search. In this paper we propose a logistic regres-
sion model to generate hyper-heuristics for variable ordering within con-
straint satisfaction problems. The first step in our approach requires to
generate a training set that maps any given instance, expressed in terms
of some of their features, to one suitable variable ordering heuristic. This
set is used later to train the system and generate a hyper-heuristic that
decides which heuristic to apply given the current features of the ins-
tances at hand at different steps of the search. The results suggest that
hyper-heuristics generated through this methodology allow us to exploit
the strengths of the heuristics to minimize the cost of the search.

Keywords: Constraint Satisfaction, Hyper-heuristics, Logistic
Regression.

1 Introduction

A constraint satisfaction problem (CSP) is defined by a set of variables X , where
each variable is associated a domain D of values subject to a set of constraints
C [17]. The goal is to find a consistent assignment of values to variables in such
a way that all constraints are satisfied, or to show that a consistent assignment
does not exist. There is a wide range of theoretical and practical applications
like scheduling, timetabling, cutting stock, planning, machine vision, temporal
reasoning, among others (see for example [9] and [17].

Several deterministic methods to solve CSPs exist(see for example [14], and
solutions are found by searching systematically through the possible assignments
to variables, guided by heuristics. It is a common practice to use depth first
search (DFS) to solve CSPs [24]. When using DFS to solve CSPs, every variable
represents a node in the tree and the deeper we go in that tree, the larger the
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number of variables that have already been assigned a feasible value. Every time
a variable is instantiated, a consistency check occurs to verify that the current
assignment does not conflict with any of the previous assignments given the
constraints in the instance. When an assignment produces a conflict with one
or more constraints, the instantiation must be undone, and a new value must
be assigned to that variable. When the feasible values decrease to zero, the
value of a previously instantiated variable must be changed, this is known as
backtracking [2]. Backtracking always goes up one single level in the search tree
when a backward move is needed. Backjumping is another powerful technique for
retracting and modifying the value of a previously instantiated variable and goes
up more levels than backtracking in the search tree [11]. Another way to reduce
the search space is using constraint propagation, where the idea is to propagate
the effect of one instantiation to the rest of the variables due to the constraints
among the variables [10]. Thus, every time a variable is instantiated, the values
of the other variables that are not allowed due to the current instantiation are
removed.

Logistic regression is a type of regression analysis used for classification pro-
blems. The idea is to map from a set of input variables to one output variable
that represents a class. Logistic regression is one type of supervised machine
learning because training examples where the expected output corresponding
to the given input must be provided. The general idea of this investigation is
to combine the strengths of some existing heuristics through a logistic regres-
sion approach to generate a method that chooses among heuristics based on
the features of the current instance. Hyper-heuristics are methods that choose
from a set of heuristics and decide which one to apply given some properties of
the instances. Because of this, they seem to be a suitable technique to imple-
ment our idea. Different approaches have been used to generate hyper-heuristics
(see for example: [1], [5] and [21]) and they have achieved promising results on
many optimization problems such as scheduling, transportation, packing and
allocation.

This paper is organized as follows. Section 2 presents a brief description of
previous studies related to this research. Section 3 describes the methodology
used in our solution model which includes the features used to characterize the
CSP instances, the set of heuristics used and the hyper-heuristic model. The
experiments and main results are discussed in Sec. 4. Finally, Sec. 5 presents the
conclusion and future work.

2 Background and Related Work

The idea of combining heuristics goes back to 1960s [8] and has been used in
many investigations under different names [26,28,7]. Hyper-heuristics are one
alternative to combine the strengths of heuristics based on the current problem
features. Hyper-heuristics can be divided into two main classes: those which
select from existing heuristics and those that generate new heuristics [21]. A more
detailed description about the classification of hyper-heuristics can be found
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in [6]. In this investigation we will focus our attention on hyper-heuristics that
select from existing heuristics.

The first attempts to systematically map CSPs to algorithms and heuristics
according to the features of the instances were presented in [29]. In their work,
the authors presented a survey of algorithms and heuristics for solving CSPs and
proposed a relation between the formulation of the CSP and the most adequate
solving method for that formulation. More recently, Ortiz-Bayliss et al. [19]
developed a study about heuristics for variable ordering within CSPs and a
way to exploit their different behaviours to construct hyper-heuristics by using
a static decision matrix to select the heuristic to apply given the current state of
the problem. More studies about hyper-heuristics applied to CSPs include the
work done by Terashima-Maŕın et al. [27], who proposed a genetic algorithm
framework to produce hyper-heuristics for variable ordering; Bittle and Fox [3]
who presented a hyper-heuristic approach for variable and value ordering based
on a symbolic cognitive architecture augmented with case based reasoning as the
machine learning mechanism for their hyper-heuristics; and recent works where
neural networks are used as hyper-heuristics for variable ordering [18,20]. The
differences between all these works on hyper-heuristics for CSPs lies in the set of
heuristics used and the learning mechanism used to produce the hyper-heuristics.

3 Solution Model

In this section we discuss the problem state representation, the set of heuristics
and the hyper-heuristic model used in this investigation.

3.1 Problem State Representation

For this research we have included only binary CSPs. A binary CSP contains
unitary and binary constraints only. Rossi et al. [23] proved that for every general
CSP there is an equivalent binary CSP. Thus, all general CSPs can be reduced
into a binary CSP. To represent the problem state we propose the use of three
important binary CSPs properties known as constraint density (p1), constraint
tightness (p2) and κ [12]. The constraint density is a measure of the proportion
of constraints within the instance; the closer the value of p1 to 1, the larger the
number of constraints in the instance. The constraint tightness (p2) represents
a proportion of the conflicts within the constraints. A conflict is a pair of values
〈x, y〉 that is not allowed for two variables at the same time. The higher the
number of conflicts, the more unlikely an instance has a solution. The value of κ is
suggested in the literature as a general measure of how restricted a combinatorial
problem is. If κ is small, the instances usually have many solutions with respect
to their size. When κ is large, instead, the instances often have few solutions or

do not have any at all [12]. κ is defined as κ =
−∑

c∈C log2(1−pc)∑
x∈X log2(mx)

, where pc is

the fraction of unfeasible tuples on constraint c and mx is the domain size of
variable x. It has been found that the most difficult instances with respect to
their size occur when κ ≈ 1 [12].
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Every time a variable is assigned a new value and the infeasible values are
removed from domains of the remaining uninstantiated variables, the values of
p1, p2 and κ change, and a sub-problem with new features appears. This is the
reason why we decided to use this set of features to represent the problem state
and guide the selection of the heuristics.

3.2 Variable Ordering Heuristics

A solution to any given CSP is constructed by selecting one variable at the time
based on one of the five variable ordering heuristics used in this investigation:
minimum domain (DOM), maximum weighted degree (WDEG), domain over
weighted degree (DOM/WDEG), kappa (K) and maximum tightness (MXT).
Each one of these heuristics orders the variables to be instantiated dynamically
at each step during the search process. These heuristics are briefly explained in
the following lines.

DOM. This heuristic selects the variable with the fewer available values in its
domain [13,22].

WDEG. This heuristic attaches a counter, called weight, to every constraint of
the problem [4,15]. The counters will be updated during the search whenever
a dead-end occurs (no more values available for the current variable remain).
This heuristic gives priority the variables with the largest weighted degrees.

DOM/WDEG This is a combination of DOM and WDEG heuristics. It selects
first the variable that maximizes the quotient of the domain size over the
weighted degree of the variable.

K orders the variables based on the value of the kappa factor, κ. K will select
first the variable that minimizes the value of κ of the remaining instance [12].

MXT prefers the variable with the tightest constraints (the one with the highest
average value of p2 among all the constraints where it is involved).

We have also used Min-Conflicts [16] as value ordering heuristic to improve the
search. When using Min-Conflicts, the next value to try for the selected variable
is the one involved in the minimum number of conflicts. Min-Conflicts is not
considered as part of the hyper-heuristic model because it is a value ordering
heuristic and at the moment we are only using the hyper-heuristic approach for
variable ordering. We expect to extend our approach to include value ordering
as part of the hyper-heuristic on future developments.

3.3 Instances Used

Our set of instances includes 1000 random binary CSPs distributed among three
sets. We will refer to these sets as training set, cross validation set and testing
set. These sets contain 600, 200 and 200 instances, respectively. All the CSP ins-
tances used for this research were randomly generated with a modified version of
model D [25]. First, a constraint graph G with n nodes is randomly constructed
and then, the incompatibility graph C is formed by randomly selecting a set of
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edges (incompatible pairs of values) for each edge (constraint) in G. The instance
generator receives five parameters: 〈n,m, σm, w1, w2〉. The number of variables
is defined by n and the domain size by m; with a maximum deviation of σ in the
domain size of each variable. The parameter w1 determines the probability that
a constraint exists in the CSP instance, whereas w2 determines the probability
that an unfeasible pair of values occurs on each constraint.

For each instance, the number of variables was randomly selected in the range
[15, 30], where each variable can contain a domain of size in the range [10, 20]
(the domain is not uniform among the variables within each instance because
of the parameter σm used by the generator). The values of w1 and w2 were
determined by independently choosing at random values in the range [0, 1] for
each instance.

Because sometimes more than one heuristic obtains the best result for a given
instance (the one with the minimum number of consistency checks), it was nec-
essary to perform a filtering process during the generation of the instances. All
the instances where more than one heuristic obtained the best result in terms of
consistency checks were discarded and another one was created.

3.4 The Hyper-heuristic Model

This investigation describes a hyper-heuristic model for variable ordering on
CSPs based on a logistic regression approach. The hyper-heuristic proposed in
this investigation dynamically decides which heuristic to apply as the search
progreses. At each step of the search, every time a new variable is to be in-
stantiated, the hyper-heuristic decides which heuristic to apply according to the
current problem state (defined by the values of p1, p2 and κ).

The hyper-heuristic contains a module for multi-class logistic regression. The
hyper-heuristic needs to be trained before being applied. A detailed description
of the training process will be provided in the next sections. The core of the
hyper-heuristic contains a sigmoid function:

h(θh,f) =
1

1 + eθh·f (1)

where f is the vector of features that characterizes the current problem instance
(p1, p2, κ). The vector θh is adjusted for each heuristic during the training phase.

In our model, each heuristic is associated a specific vector θh. The function
h(θh,f) is evaluated with the corresponding θh from each heuristic and the vec-
tor of features f of the current problem state. The heuristic which θh produces
the largest output is selected to be applied on the instance. This is a common
way to implement multi-class classification by using logistic regression. In the
next section we will discuss how to obtain the vectors θh associated to each
heuristic.

4 Experiments and Results

In this investigation, we are using logistic regression for multi-class classification.
A vector θh is generated for each heuristic. A set of examples containing the
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features f and the best heuristic for such features was obtained from the training
set. For each instance in this set, its features (p1, p2 and κ) and the most suitable
heuristic (the one that required the fewer consistency checks for the search) were
saved. The training set was later used to produce specific training examples for
each heuristic. These particular training examples contain only binary outputs:
1 when the example corresponds to problem features that made the current
heuristic the best option, and 0 otherwise. We used a gradient descend procedure
to obtain the values of θh that minimize the cost function for each heuristic. We
used 0.01 as learning rate and 1000 iterations to minimize the cost function.

There is a cost function associated to the minimization problem. In this case,
the cost function is given by:

J(θh) =

{
log(h(θh,f )) y = 1
log(1− h(θh,f )) y = 0

(2)

Then, the idea is to find a vector θh that minimizes the cost function J(θh).
With gradient descend, at each iteration we must simultaneously update all the
values in θh by using the following equation:

θh = θh − α

l∑
j=1

h(θh,f
(j))f

(j)
i (3)

where l is the number of examples in the training set and f (j) is the jth example
of the training set and f j

i is the feature i of the jth example of the training set
(p1, p2 and κ, in that order).

At the end, the values of the vectors θh obtained for each heuristic are:

θMRV = [−5.6922, 2.5416, 1.6944, 0.6989]
θWDEG = [1.7820,−0.6832, 1.8075,−2.8147]

θDOM/WDEG = [−5.6356, 2.7119, 3.9738, 0.3091]
θK = [−3.1786, 1.6747, 2.0354, 0.1376]

θMXT = [−1.6886, 0.7275,−4.9322, 0.7212]

(4)

We used this set of vectors as the core of the hyper-heuristic that was tested in
the following experiments. Nevertheless the vector of features f contains only
three elements, θh contains four because the first element in the vector corres-
ponds to a bias. To be consistent, a fixed feature with a constant value of 1 is
added at the first position of the vector of features f . Thus, the first element of
the vector θh is always multiplied by 1 at the moment of calculating θh · f .

4.1 Evaluating the Hyper-heuristics

We tried the hyper-heuristic obtained with the proposed approach on the three
sets. The results are shown in Table 1. It is important to stress that for these
instances, all the methods are able to find a solution or to prove that none exists.
Then, the only difference is the number of consistency checks which is used for
comparison of the quality of the methods.



290 J.C. Ortiz-Bayliss, H. Terashima-Maŕın, and S.E. Conant-Pablos

Table 1. Percentage of instances on each set where each method obtains the best result
(requires the fewer consistency checks)

Method Training set Validation set Test set

MRV 5.00% 3.50% 3.50%
WDEG 57.50% 57.00% 55.00%

DOM/WDEG 8.83% 10.50% 7.50%
K 18.83% 20.50% 22.50%

MXT 9.83% 8.50% 11.50%

HH 62.67% 64.50% 60.50%

We can observe that, even though WDEG is clearly the heuristic that achieves
the minimum number of consistency checks on the largest fraction of instances on
the three sets, the hyper-heuristic is able to overcome this proportion in all the
sets. One consideration about these results is the fact that the hyper-heuristic
is choosing among different heuristics during the search and then, the cost of
the search (in terms of consistency checks) is not exactly the same than the best
result obtained by the heuristics applied in isolation. Then, we must interpret
the results from table 1 as the proportion of instances where the hyper-heuristic
behaves at least as well as the best result obtained with the heuristics applied
in isolation.

In Table 2 we present the average costs of each method on the three sets. The
average cost for each method is calculated as the average consistency checks
required by each method to solve an instance in the set (the sum of the costs on
all the instances over the number of instances).

Table 2. Average cost per instance (in consistency checks) for each method on the
three sets

Method Training set Validation set Test set

MRV 228430 299319 79901
WDEG 252989 451341 133057

DOM/WDEG 195621 222157 84241
K 160538 222780 74548

MXT 286714 301132 258061

HH 190447 229294 82566

The results of the average costs per instance on the different sets show that,
even though WDEG was the heuristic that most of the times obtained the best
results, it is not the heuristic with the smallest average cost. This is an interesting
result that makes us think that most of the instances that were best solved by
using WDEG were not hard, and then, the variance in the results with respect
to the other heuristics was small. On the other hand, the instances where K and
DOM/DEG (on the cross validation set) were the best options, represent large
reductions in the number of consistency checks.
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Even though the hyper-heuristic is not able to overcome K with respect to the
average cost of the search, it is a very competent solving method with respect
to the other heuristics. It is important to stress the difference in the average
cost of WDEG and the hyper-heuristic. The percentage of instances where both
methods achieved the best results are very close to each other (around 5%), but
when we evaluate the average cost, the hyper-heuristic proves its real contribu-
tion. The hyper-heuristic is, in all the sets, a best solving method than WDEG.
The reductions in the average costs obtained by using the hyper-heuristic, with
respect to WDEG, are of 24.72%, 49.19% and 37.94% for the training, cross
validation and test set, respectively.

5 Conclusion and Future Work

We have explored the use of a logistic regression approach to produce hyper-
heuristics for CSPs. The results show that it is possible to map a CSP instance
to one suitable heuristic given the described features. The hyper-heuristic out-
performs the best heuristic in the fraction of instances where it achieves the best
results. Also, the hyper-heuristic is very competent with respect to the average
cost per instance. We observed that the hyper-heuristic is able to exploit the
strengths of individual heuristics to perform well on distinct sets of instances.

Even though the results are promising, more work is needed regarding the
features used to characterize the instances. In this investigation we used the
constraint density (p1), constraint tightness (p2) and kappa (κ), but we con-
sider that more features are needed to improve the mapping from instances to
heuristics. We think the most important idea to be addressed in the future is the
analysis of other relevant CSP features that could lead to a better classification
of the instances and the solving methods according to those features.

We also observed that there are opportunities to improve the approach in the
way we select the best heuristic for a given instance. In this investigation we
produced a set of examples by mapping the instance features to the heuristic
that required the fewer consistency checks on that instance. By using this idea
we concluded that WDEG was the best heuristic. Nevertheless WDEG was the
heuristic with the largest proportion of best results, it was not the heuristic with
the minimum average cost per instance. Then, it may be a good idea to explore
other alternatives to create the training examples. This is left as part of the
future work.

Finally, we are interested in testing our approach on other classes of instances.
For example, we would like to apply it to real problems such as scheduling and
timetabling, and some optimization problems from vision and biology. This will
raise the question of whether one heuristic exists that dominates the others for
each specific problem domain.
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28. Terashima-Maŕın, H., Ross, P., Valenzuela-Rendón, M.: Evolution of constraint
satisfaction strategies in examination timetabling. In: Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO 1999), pp. 635–642. Morgan
Kaufmann (1999)

29. Tsang, E., Kwan, A.: Mapping constraint satisfaction problems to algorithms and
heuristics. Tech. Rep. CSM-198, Department of Computer Sciences, University of
Essex (1993)



Social Interaction Discovery: A Simulated Multiagent
Approach
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Abstract. Social interaction inference is a problem that has been of interest in
the past few years. The intrinsic mobility patterns followed by humans present
a number of challenges that range from interaction inference to identification of
social relationships linking individuals. An intuitive approach is to focus on the
similarity of mobility patterns as an indicator of possible social interaction among
individuals. By recording the access points observed at each unit of time along
with the strength of the signals received, individuals may be group based on sim-
ilar walking patterns shared on space and time. In this paper, an implementation
of a multiagent simulation of a University-like environment is tested using Net-
Logo and a methodology that consists of two phases: 1) Cluster Analysis and 2)
Construction of Social Networks is used to discover possible interactions among
individuals. The first phase consists of a number of clustering methods that are
used to identify individuals that are more closely related given the characteristics
that describe their mobility patterns obtained from simulated Wifi data. In the
second phase, users belonging to the same cluster are linked within a social net-
work, meaning that there is possible ongoing social interaction or tie that might
link the individuals.

1 Introduction

Social interactions can be described in terms of different context variables (e.g. phys-
ical proximity, association affiliation, online profiles, etc.). Discovering physical inter-
actions is a challenging task given the dynamic characteristic of human interactions.
For this particular work, social interaction is defined as the process of influencing on
each other’s mobility behaviours due to physical proximity.

Analyzing interaction information from a simulated world environment allows us to
control the environment and as a consequence to validate the results obtained, there-
fore a NetLogo simulation was designed. In this simulation environment, it is possible
to configure a Univeristy-like environment with features such as access points, and
software agents behaving like real people. The user interface allows us to modify the
conditions of the environment in order to study grouping patterns.

By analyzing mobility patterns followed by individuals, we can gain valuable infor-
mation about the context of users’ social world [1]. Social networks are constructed
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from the empirical evidence of pattern similarity discovered by applying cluster analy-
sis to the Wifi context data. The groups of people that are linked in the social network,
are individuals who are most likely to be linked by a social interaction.

Clustering algorithms have been chosen to segment individuals that might be linked
by a probable interaction due to their effectiveness in identifying distinct groups of
individuals based on their characteristics (e.g. the signals received from the different
access points that surround the context) [2]. In other words, objects that are grouped in
the same cluster, are more closely related to one another than objects that are grouped
in different clusters [3].

The k-means algorithm is a widely used method for data segmentation or grouping
when a number of k groups is known; it assigns an observation to a cluster with the
nearest mean. For this research project, we tested the k-means implementation supplied
in R software environment (as described by Hartigan and Wong) [4] with k = 4, since
the experiments were initialized with 4 groups. In the k-medoids clustering algorithm
the centers for the clusters are restricted to be one of the observations that were assigned
to the cluster, i.e., it is more robust in the presence of outliers. The ‘fpc’R package [5]
has an implementation of an enhanced version called pamk(), which calls pam and
clara algorithms for the partitioning around medoids clustering method, as introduced
by Kaufman and Rouseeuw [5].This function does not require a k value, instead, it uses
the CLARA algorithm to do the partitioning around medoids to estimate an appropriate
k value. The DBSCAN clustering algorithm, as introduced by Ester et al. [5], is based
on the notion of density of data points. The idea of this algorithm is that a group has to
contain at least a minimum number of points (minpoints) within a given radius (eps); in
other words, the density of the neighborhood has to exceed some threshold [6].

This paper is organized as follows. Section 2 describes a number of related works fol-
lowed by Section 3, which describes the simulation implemented in NetLogo platform .
In Section 4, there is an overview of the methodology proposed to discover social group
interaction followed by experimental results described in Section 5. A brief conclusion
is given in Section 6, and future work is described in Section 7.

2 Related Work

The field of computing sciences has given birth to a vast number of applications that
allow us to understand human dynamics. Although research in this field is very recent,
some approaches to understand complex human dynamics have been made. In a study
led by Eagle et al. [7], they show that it is possible to infer friendships based solely
on observational data exploiting Bluetooth traces, cellular data, phone data (e.g. SMS,
call records), as sources of social information. On the other hand, Mokhtar et al. [8]
propose a middleware service that aims to combine both social and physical interac-
tions in order to identify encounters, i.e. interactions between individuals. Encounters
are logged from Bluetooth radio conectivity. In a research work [1], Cranshaw et al.
introduce an analysis of GPS location for contextual features of human location trail
data, to elicit the existance of a physical social network and to analyze the context of the
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social interactions. In [9,10], Xu et al. collected and analyzed Wifi data to explore the
relationship between physical proximity and social links between individuals. In this
work, the physical position of the individuals was estimated from Wifi signal strength
and MAC address of nearby Wifi access points. Then, proximity encounters between
individuals were computed based on the distance threshold and duration threshold. The
positioning of individuals was accomplished by performing a site survey that involves
recording the Wifi signal strengths and access points of all floors in the building on the
floor map [10]. Nevertheless, this approach requires the construction of radio maps a
priori, which makes it unsuitable for highly dynamic scenarios.

3 The Simulation

A university-like environment was designed using NetLogo platform [11]. This mul-
tiagent simulation environment offers the tools to simulate, among many other types
of environments, social interactions among software agents simulating individuals and
access points.

A control panel, as shown in Fig. 1, allows to modify initial settings in order to
simulate different social scenarios with different mobility patterns. Among the different
configurations, the user can choose the number of initial groups of individuals. On the
other hand, mobility pattern generation can be adjusted for each of the initial groups,
allowing the user to choose the number of individuals per group, the starting location
for each group, as well as the walking patterns. The walking patterns are defined for
each initial group, allowing the group to be either static or dynamic. Those groups tha
are dynamic can either follow their own path (i.e. random walking), or can follow a
leader (i.e. group walking).

Besides the group behaviors described previously, access point configurations can
also be adjusted. The simulation control panel also allows the user to choose the num-
ber of access points (up to 25) that sorround the environment. In order to generate a
more realistic set of Wifi data, the access points generate data following the theoreti-
cal signal propagation model shown in (1) and described in [12]. However, in real life
scenarios, signals are constantly affected by external factors such as interference from
signals, temperature, obstacles and other factors, causing signal degradation. In order
to compensate for such factors of signal degradation, Gaussian noise was added to the
data generated by the simulated access points, since Bose et al. [13] show that when
large samples of RSS are collected over time, the noise is normally distributed among
the samples.

RSS = −(10nlog10d+A) (1)

where:

– n: signal propagation constant (n = 3)
– d: distance from sender.
– A: received signal strength at a distance of one meter.



Social Interaction Discovery: A Simulated Multiagent Approach 297

(a)

Fig. 1. Environment and Control Panel

4 Methodology

4.1 Social Group Discovery

Our approach discovers social group interactions in 2 phases:

1. Cluster analysis: in this phase, simulated Wifi data is segmented using the three
clustering algorithms described in Section 1. The clustering is based on the Re-
ceived Signal Strength (RSS) observed by the closest access points (APs) at each
unit of time.

2. Construction of social networks: the groups of individuals obtained from the clus-
ter analysis can be seen as a social network, where the individuals who belong to the
same cluster are linked among themselves forming a social network. Similar move-
ment patterns can be associated to possible physical interaction given the physical
proximity through time.

4.2 Data Sets

The data sets analyzed for this project are collections of simulated context data that
includes Wifi readings. The data collected contains four types of information with the
following signature: wifi{User, Timestamp, MacAddress, RSS}. This signature con-
tains information about the individual that collects the data, the time at which it was
collected, the unique ID of the access points observed, and the signal strengths of each
observed access point respectively.
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An intuitive assumption made in this project is that if two users are close to each other
at the same time, i.e. same timestamp, they will observe similar access points with the
same MacAddresses and similar RSS (Signal Strength) readings. In other words, if a
group of users walk together, they will observe the same movement patterns, detecting
the same access points with similar signal strengths as time passes.

4.3 Experimental Settings

For the study of social interaction based on clustering methods, we performed 16 ex-
periments with different initial configurations. All the experiments initially contain four
groups. Each group was located at one of the four available initial locations. The num-
bers of individuals per group was regularly changed from one experiment to another.
Table 1 includes the set of experiments taken for this study. In this table, Static refers
to the number of groups (i.e. initial number of groups of individuals) that were station-
ary. Follow-Leader refers to the number of groups that moved together (i.e. following a
leader), and Agents refers to the number of simulated individuals that were part of the
experiment.

Table 1. Experiment configuration details

Movement Patterns Data Set

Experiment Static Follow-Leader Agents Instances
1 4 0 19 3800
2 4 0 14 2800
3 2 2 18 3600
4 0 4 13 2600
5 2 0 21 4200
6 0 0 12 2400
7 0 0 8 1600
8 2 2 18 3600
9 1 3 18 3600

10 0 0 4 800
11 0 0 5 1000
12 0 4 8 1600
13 0 0 4 800
14 0 0 8 1600
15 0 4 15 3000
16 0 1 15 3000

The initial setup of the simulations show different conditions under which social
interactions might take place in real life. Since every single group of people simulated
in the social environment has its own selective control, it is possible to change the
behavior of each group. For example: it is possible to have one group with no motion at
all, while the individuals of a second group may move randomly around, and the other
two groups could follow the walking patterns of their leader.



Social Interaction Discovery: A Simulated Multiagent Approach 299

5 Experimental Results

The experimental phase consists of a set of 16 experimental configurations simulating
different conditions for social interaction, as described in Sect. 4. For all the exper-
iments, three clustering algorithms were tested: k-means, k-medoids, and DBSCAN.
The results obtained for the three algorithms are presented in Table 2.

The k-means algorithm [4] was tested with a parameter k = 4 for all the experi-
ments since all of them consist in initial settings of 4 groups. The error rate, computed
as shown in (2), was used as a measure of performance of the algorithm. The num-
ber of misclassified individuals was computed from visual inspection of the movement
patterns observed on the individuals, i.e. we used observational validation. Execution
time was also considered in order to see how the algorithm behaved as the number of
instances varied. As a result, the error rate for the k-means algorithm, as shown in Table
2, was observed to be 0.246 in average. On the other hand, the execution time for this
algorithm was 4.669s in average.

ER = ε/ω (2)

where:

– ε is the number of misclassified individuals
– ω is the total number of individuals.

k-medoids algorithm implementation [5] showed an average error rate of 0.209 and
an execution time of 4.902s, as presented in Table 2. Although k-medoids algorithms
require the number of clusters (i.e. k value), the algorithm implementation provided in
R programming environment [5] provides an enhanced way of selecting the number of
clusters automatically based on the input data.

The DBSCAN algorithm implemented in [5] was also tested on the same datasets.
This algorithm requires two parameters, the minimum number of points in a cluster,
which was set to 2 (minpoints = 2), and the radius around which to search for data
points to be added to the same cluster, which was obtained empirically for most of the
data sets to be 0.22 (eps = 0.22). For this algorithm, the average error rate was 0.336
and the execution time was 4.642s, as we can see in Table 2.

Table 2 shows that all three algorithms have a similar average execution time. The av-
erage error rate shows that k-means and k-medoids algorithms outperform the density-
based DBSCAN algorithm. The k-medoids shows a better average performance over the
other two algorithms, although the k-means performs almost as well as the k-medoids.
The k-means works well for controlled environments, but when the context is very dy-
namic, as the study case presented in this work, the k value has to be adjusted. In other
words, there is a need for a method that estimates the appropriate k value that is adjusted
to the model representing the environment.

Among the advantages of the k-medoids algorithm implementation [5] we find the
fact that it does not require a predefined k value, and that it outperforms the other
two algorithms when two characteristics of the context apply: 1) the environment is
dynamic, 2) the distribution of Wifi access point signals cover most of the environment
under study. It is important to note that when there are many uncovered regions, users
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Table 2. Experimental Results

K-Means K-Medoids DBSCAN
Error Exec. Error Exec. Error Exec.

Exp. # k val. Rate Time (s) k val. Rate Time (s) k val. Rate Time (s)
1 4 0 5.152 4 0 4.998 4 0 4.759
2 4 0 3.871 4 0 4.041 4 0 3.885
3 4 0 4.758 4 0 4.917 2 0.270 4.749
4 4 0 3.863 4 0 3.811 4 0 3.953
5 4 0.333 5.510 4 0 5.739 2 0.285 5.392
6 4 0.250 3.790 4 0.333 3.942 4 0.250 3.737
7 4 0.250 2.825 8 0.875 2.877 1 1 2.939
8 4 0 4.889 4 0 5.332 3 0.166 4.714
9 4 0.277 4.780 4 0 5.077 2 0.333 4.813

10 4 0.277 4.898 4 0 5.230 2 0.333 4.973
11 4 0 1.866 1 1 2.057 1 1 1.922
12 4 0 2.354 4 0 6.107 2 0.5 2.366
13 4 0 6.084 2 0.875 3.453 4 0 6.016
14 4 0 4.554 4 0 5.936 1 1 5.120
15 4 0 6.361 4 0.266 7.423 4 0.25 6.114
16 4 0.066 9.158 4 0 7.497 4 0 8.821

Avg. Error Rate: 0.246 – 0.209 – 0.336 –
Avg. Exec. Time (s): – 4.669 – 4.902 – 4.642

can be grouped in the same cluster even when they are far away from each other. The
reason for this is that users are grouped based on the observed access points, and when
no access point is in sight, a value of 0 is assigned to the user at that point in time. As
a consequence, when two individuals have long trajectories in areas without any signal
coverage, they will report high similarities even when they are far away from each other.

Some of the benefits of grouping individuals based on observed access points and
RSS include robustness to noise in Wifi readings, and the ability to apply the methodol-
ogy in real time, since the results are not affected if the distribution of access points is
modified as oppose to methods that require radio maps to be constructed a priori. The
results were validated using observation of trajectory traces followed by the human-like
agents in the simulation.

Figure 2 shows the resulting social network after running the three algorithms, men-
tioned above, on the data collected in experiment number 8, described in Table 1. Exper-
iment 8 is a controlled environment where 2 of the groups are static and 2 groups move
randomly but following the traces of a leader. As a consequence there are 4 groups
perfectly identifiable and separated from each other as shown in Fig. 2 (a) and (b).
The image shows the social network constructed using the “igraph” R package [14],
based on the clusters identified by each of the three clustering algorithms revised in
this project. As it has been mentioned in the analysis of the results obtained for each
clustering method, the k-medoids and k-means perform well in average, both having
similar results. Figure 2(c) shows that the DBSCAN algorithm has a similar set of clus-
ters than those identified by the other two algorithms. The only difference is that two of
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(a) (b) (c)

Fig. 2. Experiment #8 a) K-means. b) K-medoids. c) DBSCAN.

(a) (b) (c)

Fig. 3. Experiment #16 a) K-means. b) K-medoids. c) DBSCAN.

the clusters are merged into one, which means that it misclassified some of the individ-
uals. For this specific scenario, DBSCAN’s grouping is not far from the known groups.
The scenario describing the patterns followed by the individuals using the settings of
experiment 8 can be seen in Fig. 4 (a).

On the other hand, Fig. 3 shows the social networks constructed from the results of
experiment 16 shown in Table 1. Experiment 16 consists of 4 non-fixed random groups,
one of which follows a leader’s trace. For this particular scenario, both k-means and
k-medoids were able to find the same clusters while DBSCAN was unable to find the
clusters at all, as it is shown in Fig. 3 (c). From visual inspection, we conclude that
the groups of individuals found by k-means and k-medoids are the most likely groups
given the movement patterns followed by the groups of individuals. Even though this
experiment consists of 3 groups walking randomly, 4 groups were detected due to the
amount of time they were close to each other, which is the time it took the individ-
uals to leave the cafeteria and classroom. The scenario of experiment 16 is shown
in Fig. 4 (b).
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(a) (b)

Fig. 4. Experimental Scenarios a) Experiment #8. b) Experiment #16.

6 Conclusions and Future Work

The NetLogo platform contains suitable characteristics to model and simulate mobility
patterns in a bidimensional space. Cluster analysis is an efficient way to group indi-
viduals based on similar mobility patterns described by contextual Wifi data. Out of
the three algorithms we tested in this project, k-means and k-medoids performed fairly
well on the data sets obtained from the NetLogo simulations. One of the advantages
of k-medoids over k-means, as implemented in [5], is that k-medoids can estimate the
number of clusters while k-means requires the user to adjust the parameter manually.
The resulting clusters of individuals represent discovered social groups that are likely
to be linked by a social interaction. We were also able to identify the k-medoids as
the best option for grouping individuals of similar movement patterns in the simulated
environment when two conditions applied: 1) dynamic environment 2) high Wifi signal
coverage. Also, it is possible to tell that the clustering methodology is robust to the
presence of Wifi signal noise because it does not depend on a predefined distribution of
access points. The signal noise robustness should make this clustering approach suitable
for applications that require real-time analysis.

Real world mobility patterns can be hard to analyze due to the difficulty in con-
trolling the context as well as the restriction on the amount of experiments. From this
perspective, having a controlled environment allow us to analyze the power of the pro-
posed methodology and to learn about the expected behavior of the clustering strategies
prior to test it in a real and more complex scenario.

As future work, we propose to apply the methodology followed in this paper on data
collected on real scenarios. A deeper analysis of unsupervised learning algorithms can
also be tested on Wifi data to discover group interactions (e.g. FRiS-Tax, Hierarchical,
etc.). Other types of measures to estimate the error rate can also be investigated, fur-
thermore different type of sensors (e.g. Bluetooth, GPS, Magnetic sensors) and online
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social network information (e.g. Facebook, Twitter, Foursquare) can be incorporated to
improve the cluster accuracy.
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Abstract. The paper describes a novel associative model for the fore-
casting of time series in petroleum engineering. The model is based on
the Gamma classifier, which is inspired on the Alpha-Beta associative
memories, taking the alpha and beta operators as basis for the gamma
operator. The objective is to reproduce and predict future oil production
in different scenarios in an adjustable time window. The distinctive fea-
tures of the experimental data set are spikes, abrupt changes and frequent
discontinuities, which considerably decrease the precision of traditional
forecasting methods. As experimental results show, this classifier-based
predictor exhibits competitive performance. The advantages and limita-
tions of the model, as well as lines of improvement, are discussed.

Keywords: Time series forcasting, associative models, oil production
time series, Gamma classifier.

1 Introduction

Time series (TS) analysis has become a relevant tool for understanding the
behavior of different processes, both naturally ocurring and human caused [1].
One of the latter kind of processes is the study of oil production through time,
more specifically in fractured oil reservoirs, given their non-homogenous nature
[2]. One of the tasks involved in such TS analysis is the prediction of future values
(also known as TS forecasting), which is of particular interest in the context of
industrial processes.

Computational Intelligence and Machine Learning have become standard tools
for modeling and prediction of industrial processes in recent years, contributing
models related mainly to Artificial Neural Networks (ANN) [3,4]. On the other
hand, classical approaches, such as the Box-Jenkins Auto-Regressive Moving
Average (ARMA) models, are still widely in use [1]. However, TS which exhibit
non-linear, complex behavior tend to pose difficulties to such methods.
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In the current paper, a novel associative model for the forecasting of TS is
proposed. This method is based on the Gamma classifier (GC) [8], which is a
supervised learning pattern classifier of recent emergence, belonging to the asso-
ciative approach to Pattern Recognition. The GC has been previously applied to
forecast atmospheric pollution TS [8], exhibiting a quite promising performance.
However, that manner of forecasting had some limitations. In particular, it was
able to predict only the following sample, given a known section of the TS.

This paper extends the previous work in order to predict a whole fragment of a
TS, as well as to forecast samples located towards the past of a known fragment,
allowing for a more complete reconstruction. The proposed method is applied to
the prediction of several TS of oil production at a Mexican fractured oil reservoir,
as well as to the synthetically generated Mackey-Glass TS, commonly used as a
benchmark for TS forecasting.

The rest of the paper is organized as follows. Section 2 describes the TS used,
while section 3 presents the GC, which is the basis for the proposal. The method
presented here is further discussed in section 4, while section 5 introduces the
experimental results and their discussion, and the conclusions and future work
are included in the final section.

2 Oil Production Time Series

Since the beginning of petroleum engineering history, it has been a concern
to forecast how long the production will last, sparking an ongoing interest for
methods to predict production [4]. Yet, forecasting oil production is not an easy
task. Production TS have several distinctive features regarding their predictabil-
ity, which separate them from financial TS or physical processes TS, which are
usually used for forecasting competitions [5].

First, monthly production TS are rather short: for a 30 years old brown oil-
field, the longest series have about 300 data points; the rest of the series are
shorter covering only several years or even months of production, so the data
sets may only be a few dozens points long. Moreover, many TS are discontinuous:
there are periods when for some reason the well is shut. Usually, a data set is
predictable on the shortest time scales, but has global events that are harder to
predict (spikes). These events can be caused by workovers, change of producing
intervals and formations and so on. Some of these features (e.g. spikes, abrupt
changes, discontinuities, and different trend segments) are evident in the plots of
the TS used for experimentation, shown in figures 1 and 2. As can be seen, such
TS lack typical patterns such as periodicity, seasonality, or cycles. Even though
direct measurements are possible, the sampling process for these data is noisy.

Two data sets were used for the experiments: the first consisting of 6 randomly
selected TS related to the monthly oil production and 6 wells in a Mexican oil-
field, while the second is a synthetically generated TS coming from Mackey-Glass
delay differential equations (MG equation) [6].

Table 1 summarizes statistical characteristics of the selected TS belonging to
the first data set. TS forecasting is usually made on a one-year basis. Though the
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Table 1. Statistical characteristics of the 6 selected TS of the first data set

Characteristic TS1 TS2 TS3 TS4 TS5 TS6

Data points 154 296 126 131 139 140

Linear trend
−264.52x N/A −84.437x −0.0927x −645.83x −763.69x
+79625 +89559 +9590.6 +96228 +111875

R2 0.27 N/A 0.02 0.00 0.67 0.43
Mean 59,366.91 46,083.38 84,440.67 6,692.23 58,381.15 55,221.67

Std. deviation 24,245.14 50,872.73 21,880.89 2,118.10 29,912.79 45,683.36
Mode 86,185.58 14,819.24 97,495.00 6,824.65 81,493.00 72,007.00

Skewness -0.81 1.11 -0.58 0.57 -0.14 0.68
Kurtosis -0.34 -0.31 2.64 1.67 -1.07 -0.10
Normality 0.89 0.87 0.92 0.92 0.95 0.90

Partial ACF 0.90 0.98 0.76 0.65 0.91 0.96

selected data set covered in all cases more than 10 years periods, discontinuities
found almost in all TS substantially reduced the training basis.

To check for normality, the Shapiro-Wilk test was applied [7]. As can be seen
from table 1, the normality test statistic (W) values for TS1 and TS2, though
close but do not pass the test (W should be above 0.90 for normality). Many
models used in TS analysis, including ARMA models, assume stationarity. To
check for stationarity both parametric (partial autocorrelation function, ACF)
and nonparametric (runs) tests were applied. Though nonparametric tests for
stationarity are more applicable for our dataset since TS1 and TS2 do not meet
the normality assumption, the auto-correlation does seem to agree with results
of the nonparametric runs test. Partial ACF plots (calculated for 18 lags) show
similar results for most of the wells. Most of the autocorrelation is actually just
a lag 1 (1 month) effect (shown in table 1), with minor effects at other lags
(maximum of 0.32 for lag of 6 months for TS6). The results indicate that there
is actually little pattern in the data —though having a distinct decline trend,
they have very little periodicity, and only very short term, month-to-month
correlation between observations.

3 Gamma Classifier

This supervised learning associative model was originaly designed for the task
of pattern classification, and borrows its name from the operation at its heart:
the generalized Gamma operator [8,9]. This operation takes as input two binary
patterns — x and y— and a non-negative integer θ and gives a 1 if both vectors
are similar (at most as different as indicated by θ) or 0 otherwise. Given that
the Gamma operator uses some other operators (namely α, β, and uβ), they will
be presented before. The rest of this section is strongly based on [8,9].

Definition 1 (Alpha and Beta operators). Given the sets A = {0, 1} and
B = {0, 1, 2}, the alpha (α) and beta (β) operators are defined in a tabular
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form as shown in table 2. The corresponding vector versions of both operators
for inputs x ∈ An, y ∈ An, and z ∈ Bn give an n-dimensional vector as output,
whose i-th component is computed as follows.

α (x,y)i = α (xi, yi) and β (z,y)i = β (zi, yi) (1)

Definition 2 (uβ operator). Considering the binary pattern x ∈ An as input,
this unary operator gives the following integer as output.

uβ(x) =

n∑
i=1

β(xi, xi) (2)

Definition 3 (Gamma operator). The similarity Gamma operator takes two
binary patterns —x ∈ An and y ∈ Am; n,m ∈ Z+ n ≤ m— and a non-negative
integer θ as input, and outputs a binary number, according to the following rule.

γg(x,y, θ) =

{
1 if m− uβ [α(x,y) mod 2] ≤ θ

0 otherwise
(3)

where mod denotes the usual modulo operation.

The GC makes use of the previous definitions, as well as that of the Modified
Johnson-Möbius code [10] in order to classify a (potentially unknown) test pat-
tern x̃, given a fundamental set of learning or training patterns {(xμ,yμ)}. To
do this, it follows the algorithm described below.

1. Convert the patterns in the fundamental set into binary vectors using the
Modified Johnson-Möbius code.

2. Code the test pattern with the Modified Johnson-Möbius code, using the
same parameters used for the fundamental set.

3. Compute the stop parameter ρ =
n∧

j=1

p∨
i=1

xi
j .

4. Transform the index of all fundamental patterns into two indices, one for
their class and another for their position in the class (e.g. xμ in class i
becomes xiω).

Table 2. The alpha (α) and beta (β) operators

α : A× A → B β : B × A → A
x y α (x, y) x y β (x, y)
0 0 1 0 0 0
0 1 0 0 1 0
1 0 2 1 0 0
1 1 1 1 1 1

2 0 1
2 1 1
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5. Initialize θ = 0.
6. Do γg(x

iω
j , x̃j , θ) for each component of the fundamental patterns.

7. Compute a weighted sum ci for each class, according to this equation:

ci =

∑ki

ω=1

∑n
j=1 γg(x

iω
j , x̃j , θ)

ki
(4)

where ki is the cardinality in the fundamental set of class i.
8. If there is more than one maximum among the different ci, increment θ by

1 and repeat steps 6 and 7 until there is a unique maximum, or the stop
condition θ ≥ ρ is fulfilled.

9. If there is a unique maximum among the ci, assign ỹ to the class correspond-
ing to such maximum.

10. Oterhwise, assign ỹ to the class of the first maxima.

The main characteristic of the GC, which sets it appart from other classifiers, is
that the measure of similarity between patterns (on which the classification de-
cision is based) is computed independently on each feature, and later integrated
for the whole pattern. This fundamental difference allows this model to offer
better performance than more conventional models on those problems for which
computing the similarity using all features give rise to ambiguity. This property
is useful to address such issues as spikes and abrupt changes: if the majority
of features are similar enough among two patterns, the differences between two
particular features have little bearing on the final outcome. Another defining and
desirable characteristic of the GC is its low computational complexity, which is
O(pn) for a fundamental set of p n-dimensional learning patterns [8,9].

4 Proposed Model

As mentioned before, the GC has been already applied to forecast TS, but pre-
dicting only the following sample. The current proposal takes the previous work
and extends it in order to predict not only the first unknown sample in a frag-
ment of a TS, but the whole fragment (of arbitrary length). Also, it is now
possible to forecast samples located towards the past of a known fragment (i.e.
towards the left of the TS, or previous to the known segment), which allows
for a more complete reconstruction. In order to achieve the fomer objectives,
the coding and pattern building method introduced in [8] is generalized in order
to consider negative separations between input and output patterns, as well as
separations greater than one sample away.

Definition 4 (Separation). Given a TS D with samples d1d2d3 . . ., the sepa-
ration s between a segment didi+1 . . . dn−1 (of length n) and sample dj is given
by the distance between the closest extreme of the segment and the sample.

Example 1. Let D be the TS with the following sample values: D = 10, 9, 8, 7, 6,
5, 4, 3, 2, 1. Considering the segment D1 of size 3 as D1 = d3d4d5 = 8, 7, 6 then
sample d6 = 5 is at a separation s = 1, sample d7 = 4 is at s = 2, sample d10 = 1
is at s = 5, and sample d1 = 10 is at s = −2.
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Based on this definition and the GC, the proposed TS forecasting method follows
the algorithm presented below, considering a TS D of length l with a prediction
(test) segment of length t, and a length for the patterns of size n.

1. Starting from the TS D, calculate the differences between succesive samples
in order to work with values relative to that of the previous sample. The
new time series D′ has length l − 1.

Dl×1 −→ D′
(l−1)×1 (5)

2. Build a set of associations between TS difference segments of length n and
its corresponding difference with separation s, for both positive and negative
values of s = 1, 2, . . . , t− 1, t.
Thus, there will be 2t sets of associations of the form {aμ,bμ} where a ∈ Rn

and b ∈ R, and the i-th association of the s-th set is made up by aμ =
didi+1 . . . di+n−1 and:

bμ =

{
di+n+s−1 if s > 1

di−s if s < 1
(6)

3. Train a different GC from each association set; there will be 2t different
classifiers, each with a distinct fundamental set {xμ,yμ} for its corresponding
value of s.

4. Operate each GC with all the input segments aμ.
5. When multiple classifiers give different output values ỹ for the same data

point in the differences TS D′, there are two prominent alternatives to inte-
grate them into one value ỹ′.
(a) Average the values given by the two classifiers with the same absolute

separation |s| = {−s, s}; this is denoted as the combined method.
(b) Average the values given by all available classifiers; this is known as the

combined average method.
6. Convert back to absolute values by adding the forecast relative value (ỹ′) to

the original value of the previous sample, taken from D.

ỹi = Di−1 + ỹ′
i (7)

Thus, the proposed method uses a classifier to obtain a particular value for each
fundamental set (associated to a different separation), in order to later integreate
these output values into a single value, which may or may not be known. With
this method, a TS with no discontinuities will be reconstructed and predicted
in its entirety, except for the first sample. This is due to the differences taken
as the first step, which decreases the length of TS D′ in one with respect to the
original series D.

Also, given the guaranteed correct recall of known patterns exhibited by the
GC [8], it is most likely that the known segments of the TS will be exactly
reconstructed (i.e. error of 0). There will be a difference between the original
and forecast values only if the same input pattern (ai = aj) appears more than
once, associated to different output values (bi �= bj).

∃
(
ai,bi

)
∧
(
aj ,bj

)
, i �= j such that ai = aj ∧ bi �= bj (8)
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5 Experimental Results

In order to test the proposed prediction model, it was applied to two data sets:
one made up by several TS related to oil production, which were previously
described, and the other a synthetically generated TS coming from the MG
equation [6].

For comparison purposes, two optimality measures were used: the Mean Square
Error (MSE) and the adjusted Mean Absolute Percent Error introduced by Arm-
strong, also known as symmetric MAPE (SMAPE, though it is not symmetric
since over- and under-forecasts are biased). These error metrics are computed
as shown in equations 9 and 10, where yj is the actual and ŷj is the predicted
value, with N being the amount of samples considered.

EMSE =
1

N

N∑
i=1

(yi − ŷi)
2 (9)

ESMAPE =
1

N

N∑
i=1

∣∣∣∣yi − ŷi
yi + ŷi

∣∣∣∣ (10)

5.1 Oil Production TS Experiment

For the first data set, three scenarios were considered, with test segments of 12,
18, and 24 samples of length, in order to find out how the length of the test
segment affects prediction. Meanwhile, the experimetal results are summarized
in table 3, and for illustrating purposes, the resulting monthly oil production
predictions for two TS are shown in figures 1 and 2.

Fig. 1. Prediction of TS 1 Fig. 2. Prediction of TS 2

As can be seen, the performance of the proposed method varies throughout
the different experiments, as was expected given the differences presented by the
TS used. TS 1 and 3 show very good results on both metrics, while TS 4 has
very good MSE and reasonably good SMAPE. On the other hand, the metrics
for TS 5 are large for both metrics. When looking at the plots, the reasons for
such behaviors start to emerge. TS 1 has no discontinuities, while out of the 296
samples of TS 2, only 146 are valid data points grouped in 5 segments. Under
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Table 3. Experimental results of oil production data for Mean Square Error in millions
(MSE × 1.0E+06) and Symmetric Mean Absolute Percentage Error (SMAPE)

Mean Squared Error

Time Combined Combined Avg.
Series l =12 l =18 l =24 l =12 l =18 l =24

TS 1 24.01 27.50 28.82 20.87 20.96 36.08
TS 2 33.76 38.11 105.28 48.39 64.32 60.49
TS 3 8.71 20.30 35.59 8.71 28.78 36.55
TS 4 0.99 3.43 4.06 1.19 2.60 5.62
TS 5 297.13 195.10 206.62 297.13 291.22 202.31
TS 6 28.05 64.07 4.12 29.48 82.83 15.08

Symmetric Mean Absolute Percentage Error

Time Combined Combined Avg.
Series l =12 l =18 l =24 l =12 l =18 l =24

TS 1 0.0304 0.0349 0.0323 0.0304 0.0272 0.0366
TS 2 0.2252 0.3172 0.2908 0.3162 0.3172 0.2908
TS 3 0.0182 0.0248 0.0284 0.0182 0.0264 0.0328
TS 4 0.0508 0.1376 0.1046 0.0488 0.1140 0.1609
TS 5 0.1858 0.1321 0.1334 0.1858 0.1699 0.1215
TS 6 0.4329 0.3893 0.0711 0.3616 0.3574 0.1516

such conditions, it can only be expected that any predictor will have a hard time
obtaining good results.

It is noteworthy that for all six TS, on both variants (Combined and Combined
average) and both performance metrics, the best results were obtained with test
segments of length l = 12. It is well-known in TS forecasting that the farther
away from the learning samples, the greater the uncertainty in the prediction [1].
However, given the characteristics and properties of the GC (i.e. a segment and
a sample with arbitrary separation could be associated and learned) the effect
of l was previously unknown.

Another interesting finding is that some TS yield quite good results under
some performance metrics, while the results for the other metric are surprisingly
poor. Such is the case of TS 6, whose MSE (1.51E+07 best, 3.73E+07 average)
is below the mean of the six TS (6.61E+07), while its SMAPE (0.2940 aver-
age, 0.4329 worst) is considerably above the mean (0.1502, respectively). Yet,
each metric emphasizes different aspects of the prediction error, thus giving rise
to such apparent discrepancies. What remains to be found is why such large
inconsistencies in performance arise.

5.2 Mackey-Glass TS Experiment

On the other hand, the TS for the second data set is generated by the MG
equation, which has been extensively used by different authors to perform com-
parisons between different techniques for forecasting and regression models. The
MG equation is explained by the time delay differential equation defined as:
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Table 4. Comparison of performance on the Mackey-Glass benchmark [6,11]

Model RMSE

Gamma Classifier 0.001502
MLMVN 0.0063
CNNE 0.009

SuPFuNIS 0.014
GEFREX 0.0061
EPNet 0.02
GFPE 0.026

Classical BP NN 0.02
ANFIS 0.0074

y(t) =
αy(t− τ)

1 + yc(t− τ)
− βy(t) (11)

where α, β, and c are parameters and τ is the delay time. According as τ in-
creases, the solution turns from periodic to chaotic. To make the comparisons
with earlier work, one thousand data points are generated with an initial con-
dition x(0) = 1.2 and τ = 17 based on the fourth-order Runge-Kutta method
with time step 0.1. The following parameters (taken from consulted literature)
have been used as a benchmark: α = 0.2, β = 0.1, c = 10 [6]. From these 1000
samples, the first 500 were used for training and the latter 500 points were used
for testing. Rooted MSE (RMSE, the square root of the MSE) was used given
that it is the performance measure of choice for this TS through the consulted
literature, obtaining a RMSE of 0.001502. Table 4 includes a comparison against
other models [6,11].

As can be seen, the proposed model based on the GC clearly outperforms the
other techniques, giving an RMSE which is approximately four times smaller
than that of GEFREX (0.001502 against 0.0061), its closest competition.

6 Conclusions and Future Work

In this paper the forecasting capabilities of an associative model are tested.
The main result is that a pattern classifier is successfully applied to the task
of TS prediction, though it is not the kind of tasks envisioned while designing
and developing the GC. Moreover, the proposed method uses only one variable
when there are more available, and the phenomenon under study is considered
to be a rather complex one. Experiments with the GC-based predictor under
multivariate settings for oil-production forecasting are on-going. One of such
scenarios is the development of a hierarchichal model, which begins by detecting
and classifying specific events, ir order to use a specific predictor.

On a different matter, the dependencies of forecasting uncertainty on separa-
tion between predicted data point and known data have been confirmed, despite
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the independency offered by the proposed model. This indicates a likely depen-
dency in the actual data sampled from the natural phenomenon, which remains
to be tested.
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10. Yáñez, C., Felipe-Riveron, E., López-Yáñez, I., Flores-Carapia, R.: A Novel Ap-
proach to Automatic Color Matching. In: Mart́ınez-Trinidad, J.F., Carrasco Ochoa,
J.A., Kittler, J. (eds.) CIARP 2006. LNCS, vol. 4225, pp. 529–538. Springer, Hei-
delberg (2006)

11. Aizenberg, I., Moraga, C.: Multilayer feedforward neural network based on multi-
valued neurons (MLMVN) and a backpropagation learning algorithm. Soft Com-
puting 11, 169–183 (2007)



Modified Dendrite Morphological Neural
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Abstract. In this paper a modified dendrite morphological neural net-
work (DMNN) is applied for recognition and classification of 3D objects.
For feature extraction, the first two Hu’s moment invariants are calcu-
lated based on 2D binary images, as well as the mean and the standard
deviation obtained on 2D grayscale images. These four features were fed
into a DMNN for classification of 3D objects. For testing, COIL-20 image
database and a generated dataset were used. A comparative analysis of
the proposed method with MLP and SVM is presented and the results
reveal the advantages of the modified DMNN. An important characteris-
tic of the proposed recognition method is that because of the simplicity
of calculation of the extracted features and the DMNN, this method can
be used in real applications.

Keywords: Dendrite morphological neural network, efficient training,
3D object recognition, classification.

1 Introduction

Recognizing an object from an image is an important task in computer vision
due to it having a variety of applications in many areas of artificial intelligence
including, for example, content-based image retrieval, industrial automation or
object identification for robots [1].

In recognition systems, objects are represented in a suitable way for the pro-
cessing; such representations (features) can be considered as patterns, so the
correct classification of these patterns is an essential part of these systems.

Besides the pattern recognition approach that uses low-level appearance infor-
mation for recognizing an object, there are feature-based geometric approaches
that construct a model for the object to be recognized and match the model
against the image [2]. In this paper, we describe a method to recognize 3D ob-
jects from 2D images through a pattern recognition approach using a modified
DMNN for classification [3].

The proposed method of object recognition system has two phases: training
and testing phase. During the training phase, the images are given as input to
the system, the image is preprocessed and the feature vector is generated. The
feature vector is stored with the image label and the DMNN is trained. During
testing phase, the test image is given to the system; the features are extracted

J.A. Carrasco-Ochoa et al. (Eds.): MCPR 2013, LNCS 7914, pp. 314–324, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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from the preprocessed image and then the classifier is employed to recognize the
object.

The system was evaluated on the COIL-20 dataset [4] and on a set of images
captured without controlled lighting condition. The system was trained using a
small number of images of each object class, and as we show experimentally, it
is then able to identify objects under other non trained transformations.

The rest of the paper is organized as follows. Section 2 describes the feature
extraction process. Section 3 explains the modified DMNN. Section 4 presents
the proposed object recognition method. Section 5 is focused to present the
experimental results where the classification method used in the recognition
process is tested and compared with other classifiers. Finally, Section 6 is oriented
to provide the conclusions and directions for further research.

2 Feature Extraction Process

Feature extraction is a process for converting the input data into a set of features
that extract the relevant information from the data in order to perform a task, in
this case, recognize an object. In this paper, we use Hu’s moment invariants and
the mean and standard deviation of the distribution of the pixels to represent
the object.

2.1 Moment Invariants

The geometric moment invariant was introduced by Hu based on the theory of
algebraic invariants [5]. Image or shape feature invariants remain unchanged if
the image undergoes any combination of the following transformations: trans-
lation, rotation and scaling. Therefore, the moment invariants can be used to
recognize the object even if the object has changed in certain transformations.

The 2D moment of order (p+ q) of a digital image f (x, y) of size M × N is
defined as [6]

mpq =

M−1∑
x=0

N−1∑
y=0

xpyqf (x, y) (1)

where p, q = 0, 1, 2, .. are integers. The corresponding central moment of order
(p+ q) is defined as

μpq =

M−1∑
x=0

N−1∑
y=0

(x− x̄)
p
(y − ȳ)

q
f (x, y) (2)

for p, q = 0, 1, 2, .. where x̄ = m10

m00
and ȳ = m01

m00
.

The normalized central moments, denoted ηpq, are defined as

ηpq =
μpq

μγ
00

(3)

where γ = p+q
2 + 1 for p+ q = 2, 3, ...
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A set of seven invariant moments can be derived from the second and third
moments

φ1 = η20 + η02 (4)

φ2 = (η20 − η02)
2 + 4η211 (5)

φ3 = (η30 − 3η12)
2 + (3η21 − 3η03)

2 (6)

φ4 = (η30 + η12)
2
+ (η21 + η03)

2 (7)

φ5 = (η30 − 3η12) (η30 + η12)
[
(η30 + η12)

2 − 3 (η21 + η03)
2
]
+

(3η21 − η03) (η21 + η03)
[
3 (η30 + η12)

2 − (η21 + η03)
2
] (8)

φ6 = (η20 − η02)
[
(η30 + η12)

2 − (η21 + η03)
2
]
+4η11 (η30 + η12) (η21 + η03) (9)

φ7 = (3η21 − η30) (η30 + η12)
[
(η30 + η12)

2 − 3 (η21 + η03)
2
]
+

(3η21 − η03) (η21 + η03)
[
3 (η30 + η12)

2 − (η21 + η03)
2
] (10)

In this paper we only use the first and second invariant moments to represent
the object.

3 Dendrite Morphological Neural Networks

The dendrite morphological neural networks (DMNN) were first described by
Ritter and colleagues in [7] and [8]. DMNN emerge as an improvement of clas-
sical morphological neural networks (MNN), originally introduced by Davidson
in [9] and then re-discussed by Ritter and Sussner in [10]. Algorithms and ap-
plications of MNN can be found in [11], [12], [13], [14], [15], [16], [17], [18] and
[19]. Morphological perceptrons with competitive learning, a variation of stan-
dard morphological perceptrons are discussed in [20]. Processing at the level of
dendrites and not only at the level of the cell body allows neurons to power
their processing capacities [21]. This fact is taken into account by Ritter and
colleagues in the DMNN proposal.

A key issue in the design of a DMNN is its training; this is in the selection
of the number of dendrites and the values of synaptic weights for each dendrite.
Diverse algorithms to automatically train a DMNN can be found in [7], [8], [22],
[23], [24], [25] and [26].

A novel algorithm for the automatic training of a DMNN was proposed in [3]
and it is applied in this work for object recognition.
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3.1 Basics on Dendrite Morphological Neural Networks

Morphological neural networks are closely related to Lattice Computing [27],
which can be defined as the collection of Computational Intelligence tools and
techniques that either make use of lattice operators inf and sup for the construc-
tion of the computational algorithms and replace the multiplication operator of
the algebra of the real numbers (R,+, ·) by the addition. Therefore, morpho-
logical neural networks use lattice operations ∨ (maximum), or ∧ (minimum),
and + from the semirings (R−∞,∨,+) or (R∞,∧,+) where R−∞ = R ∪ {−∞}
and R∞ = R ∪ {∞}. The computation at a neuron in a MNN for input x =
(x1, x2, . . . , xn) is given by

τj (x) = aj

n∨
i=1

bij (xi + wij) (11)

or

τj (x) = aj

n∧
i=1

bij (xi + wij) (12)

where bij = ±1 denotes if the ith neuron causes excitation or inhibition on the
j th neuron, aj = ±1 denotes the output response (excitation or inhibition) of the
j th neuron to the neurons whose axons contact the j th neuron and wij denotes
the synaptic strength between the ith neuron and the j th neuron. Parameters bij
and aj take +1 or -1 value if the ith input neuron causes excitation or inhibition
to the j th neuron.

The computation performed by the kth dendrite can be expressed by the
formula:

Dk (x) = ak
∧
i∈I

∧
l∈L

(−1)
1−l (

xi + wl
ik

)
(13)

where x = (x1, x2, . . . , xn) ∈ Rn corresponds to the input neurons, I ⊆ {1, . . . , n}
denotes to the set of all input neurons Ni with terminal fibers that synapse on
the kth dendrite of a morphological neuron N,L ⊆ {0, 1} corresponds to the set
of terminal fibers of the ith neuron that synapse on the kth dendrite of N , and
ak ∈ {−1, 1} denotes the excitatory or inhibitory response of the kth dendrite.

Clearly, I �= 0 y L �= 0 since there is at least one axonal fiber coming from at
least one of the input neurons with synapse dendrite k. The activation function
used in a MNN is the hard limiter function that assigns 1 if the input is greater or
equal to 0 and assigns 0 if the input is lesser than 0. A more detailed explanation
can be found in [7] and [25].

Figure 1 shows a dendrite morphological neural network with an input layer
that separates two classes: C1 and C2. The neurons of the input layer are con-
nected to the next layer via the dendrites. The black and white circles denote
excitatory and inhibitory connection respectively. The geometrical interpretation
of the computation performed by a dendrite is that every single dendrite defines
a hyperbox which can be defined by a single dendrite via its weight values wij

as the example shows.
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Fig. 1. Morphological neural network for solving the two classes separation problem
that appears on the right side of the figure. Points of C1 are shown as black solid dots
and points of C2 are shown as red solid dots. Points of class C1 are enclosed by the
two black boxes and C2 by the red box generated by the dendrites.

3.2 The Training Algorithm

The proposed training algorithm for a DMNN in [3] is summarized below. Given
p classes of patterns, Ck, k = 1, 2, ..., p, each with n attributes, the algorithm
applies the following steps:

Step 1) Select the patterns of all the classes and open a hyper-cube HCn (with
n the number of attributes) with a size such that all the elements of the
classes remain inside HCn. The hyper-cube can be one whose coordinates
match the patterns of class boundaries; it can be called the minimum hyper-
cube MHC. For having better tolerance to noise at the time of classification,
add a margin M on each side of the MHC. This margin is a number greater
or equal to zero and is estimated as a function of the size T of the MHC. If
M = 0.1T then the new hyper-cube will extend that ratio to the four sides
of the MHC.

Step 2) Divide the global hyper-cube into 2n smaller hyper-cubes. Verify if
each generated hyper-cube encloses patterns from only one class. If this is
the case, label the hyper-cube with the name of the corresponding class, stop
the learning process and proceed to step 4.

Step 3) If at least one of the generated hyper-cubes (HCn) has patterns of more
than one class, then divide HCn into 2n smaller hyper-cubes. Iteratively re-
peat the verification process onto each smaller hyper-cube until the stopping
criterion is satisfied.

Step 4) Based on the coordinates on each axis, calculate the weights for each
hyper-cube that encloses patterns belonging to Ck. By taking into account
only those hyper-cubes that enclose items Ck and at this moment the DMNN
is designed.
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To improve the classification results, an evolutive algorithm was used to deter-
mine the optimal value of M and the hard limiter activation function of the
original DMNN was changed by the maximum function.

4 Object Recognition System Overview

The flowchart of the framework for object recognition is shown in Fig. 2. For
recognition purpose, a modified DMNN is used as classifier supported by fea-
tures extracted from the given images. Hu’s moment invariants and the mean
and standard deviation of the distribution of the pixels are the features that
represent the object. The original images are in grayscale, therefore the prepro-
cessing phase converts the gray image into binary image necessary to calculate
the moment invariants. The binarization is performed using the Otsu algorithm.
The mean and the standard deviation are obtained directly from the grayscale
images.

Fig. 2. Object recognition process

5 Experimental Results and Discussion

To test the performance of the object recognition approach, we use a set of
images captured without controlled lighting condition and the COIL-20 dataset.
The experimental dataset consists of 5 objects with 10 images each one. The
images were captured using a RGB camera with a resolution of 320x240 but
the region of interest of the image was of 250x200 pixels. Figure 3 a) shows the
objects of the dataset.
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The COIL-20 dataset [4] consists of grayscale images of 20 different objects
with black background, each one is rotated with 5 degree angle interval in vertical
axis. Hence for every object there are 72 images. The size of the images is of
128x128 pixels. A part of the gallery used is shown in Fig. 3 b).

Fig. 3. a) Set of 5 objects, b) Sample objects from COIL-20 dataset

The proposed object recognition process (Fig. 2) was implemented for training
and testing online using a platform developed in C#. All the algorithms were
implemented on a desktop computer with Intel i7 2.2 GHz processor, with 8GB
in RAM. Figure 4 shows an image of the graphic interface of the application.
The 5 objects dataset was generated with this interface.

Fig. 4. Graphic interface for online training and testing for object recognition

Figure 5 presents some taken images of the carrot; on these images it is obvious
that the carrot has shadows because these images were not taken under strict
illumination controlled condition; in spite of this, results were satisfactory.

Fig. 5. Sample images of the carrot

For object representation, we use four features: the first and second Hu’s
moments obtained from binary images and the mean and standard deviation of
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the distribution of the pixels calculated from gray images. The binary images
were generated in the preprocessing stage by the Otsu algorithm.

The system was trained with 3 random images of each object and the rest
of the images (7) were used for testing. To display some results MATLAB 7.11
was used; Figure 6 presents a graphic of attributes from the 5 objects, it only
displays three features (first moment, second moment and mean), in this way,
the patterns are in the 3D space and the results can be viewed graphically.

Fig. 6. Three features from the 5 objects dataset

Figure 7 a) presents the result of the training and Figure 7 b) shows the
classification results. In these figures, solid dots represent the training points for
the classes. Empty diamonds represent the test samples and asterisks represent
the test samples classified in each class. The algorithm achieved a recognition
rate of 88.57% with M=0.2861 and 10 dendrites. These results were compared
with a Multilayer Perceptron (MLP) and Support Vector Machine (SVM).

Fig. 7. a) Training result for 3 features, b) Classification results
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The MLP and SVM were applied using the software Weka 3-6-8. For the MLP
with one hidden layer, the training parameters were established as: learning
rate=0.3 and momentum=0.2, the activation function used was the sigmoid. For
the SVM, a Polynomial Kernel of degree 2 was used. Table 1 presents the results
of the comparison, as it can be seen, the modified DMNN improves the results
of the MLP and the SVM, so the performance of the proposed algorithm [3] is
satisfactory for object recognition.

Table 1. Comparison table of the MLP, SVM and modified DMNN for the 5 objects
dataset

MLP SVM DMNN
# Neurons % of Recognition % of Recognition # Dendrites M % of Recognition

9 80 85.71 10 0.2861 88.57

For the COIL-20 dataset, we used the images at 0, 45, 90, 135, 180, 225,
270 and 315 degrees for training on each of the 20 classes. Testing was done on
the remaining images. Table 2 presents the recognition results for the COIL-20
dataset obtained by each one of the algorithms. As can be seen, also for this
problem, the error obtained with the modified DMNN improves the results of
the MLP and minimally to the SVM.

Table 2. Comparison table of the MLP, SVM and modified DMNN for the COIL-20
dataset

MLP SVM DMNN
# Neurons % of Recognition % of Recognition # Dendrites M % of Recognition

32 79.76 82.10 75 0.2876 82.27

To have an estimated error generalization, 10 experiments were realized with
training and testing samples randomly selected for both datasets. Table 3 shows
on the left, the average of the percentage of recognition for the 5 objects dataset,
and on the right, the average for the COIL-20 dataset is presented. For the 5
objects dataset, 3 images were randomly selected for training and the rest were
used for testing; and for the COIL-20 dataset, 8 images of each object were
randomly selected (160 samples) for training and the others 1280 samples were
used for testing. For the COIL-20 dataset, the results show that is convenient to
include images of specific views of the object in the training dataset to improve
the recognition percentage.

These results reveal that the performance of the modified DMNN for object
recognition improves the results obtained with the MLP and SVM; however, it
is necessary to find better features that describe to objects for improving these
recognition rates.
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Table 3. Average percentage of recognition of the MLP, SVM and modified DMNN
for both datasets

MLP SVM DMNN
5 objects dataset
% of Recognition 80.57 83.42 86.85

MLP SVM DMNN
COIL-20 dataset
% of Recognition 75.77 79.16 79.36

6 Conclusions

In this paper a modified DMNN was applied for 3D object recognition using
2D images. By using 2D moments and characteristics of the pixel distribution,
the proposed method does not require complex features calculation, thus re-
duces processing time in feature extraction stage. Comparisons of the modified
DMNN with the MLP and SVM demonstrated the advantages of the DMNN.
The characteristics of the proposed method allowed its implementation in a real
application with good results.

Future work will be focused on the improvement of the results using features
more adequate for 3D images as color and depth characteristics. Furthermore, it is
necessary the implementation of DMNN training algorithm on a parallel architec-
ture for evaluating the method in larger databases with more describing features.
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Abstract. Hybrid associative memories are based on the combination of two
well-known associative networks, the lernmatrix and the linear associator, with
the aim of taking advantage of their merits and overcoming their limitations.
While these models have extensively been applied to information retrieval prob-
lems, they have not been properly studied in the framework of classification and
even less with imbalanced data. Accordingly, this work intends to give a compre-
hensive response to some issues regarding imbalanced data classification: (i) Are
the hybrid associative models suitable for dealing with this sort of data? and, (ii)
Does the degree of imbalance affect the performance of these neural classifiers?
Experiments on real-world data sets demonstrate that independently of the imbal-
ance ratio, the hybrid associative memories perform poorly in terms of area under
the ROC curve, but the hybrid associative classifier with translation appears to be
the best solution when assessing the true positive rate.

Keywords: Class Imbalance, Associative Memory, Neural Network.

1 Introduction

An associative memory [1] is a type of neural network that allows to recall the previ-
ously stored training example xi that most closely resembles the one presented to the
network. This connectionist model has demonstrated to be very effective for informa-
tion storage and retrieval [2–4], but it has not been much studied in the framework of
classification. Among the simplest and first studied associative memory models are the
lernmatrix [5] and the linear associator [6,7], which are considered as hetero-associative
memories capable of producing exact recall. Both these models can also work as classi-
fiers, but they present some drawbacks that make difficult their application to many real-
life problems: the lernmatrix needs to be provided with binary input vectorsxi ∈ {0, 1},
whereas the linear associator requires the input vectors to be orthonormal and linearly
independent.

J.A. Carrasco-Ochoa et al. (Eds.): MCPR 2013, LNCS 7914, pp. 325–334, 2013.
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In order to benefit from the advantages of these associative memories and over-
come their shortcomings, several extensions have been developed. These include the
hybrid associative classifier (HAC) and the hybrid associative classifier with translation
(HACT) [8], which combine the procedure used by the linear associator in the learning
phase with the recall stage of the lernmatrix. While these two classification models have
been used with some success in a number of applications, there still exist open questions
regarding their limitations that deserve a more thorough investigation. For example, the
present paper addresses the issue of imbalanced data classification [9], which appears
as a much more challenging task for this type of associative memories.

Many complex pattern recognition and data mining problems are characterized by
imbalanced data, where at least one class is heavily under-represented as compared to
others. Following the common practice in the area [10, 11], we will here consider only
binary classification problems where the examples from the majority class are often
referred to as the negative examples and those from the minority class as the positive
examples, since these usually represent the concept of most interest.

The importance of the class imbalance problem comes from the fact that in general,
it hinders the performance of most standard learning algorithms because they are often
biased towards the majority class and have a poor performance on the minority class.
Besides the classifiers are commonly built with the aim of reducing the overall error,
what may lead to erroneous conclusions; for example, an algorithm that achieves an
accuracy of 99% will be worthless if it fails on classifying all positive examples.

Many classifiers have been investigated in the context of class imbalance, ranging
from the nearest neighbor rule and decision trees to support vector machines and various
topologies of neural networks [11–15]. However, to the best of our knowledge, the use
of associative memory models has not received adequate attention from researchers on
this topic. In fact, we have found only a recent work [16] that analyzes the performance
of the HACT approach after under-sampling the imbalanced data set, but it presents
several limitations such as the reduced number of databases used in the experiments,
the lack of comparisons with other state-of-the-art classifiers and especially, the fact
that it does not take care of the imbalance ratio (i.e. the ratio of the majority to the
minority instances) and its effect on the HACT performance.

The purpose of this paper is to gain insight into the behavior of the HAC and HACT
associative models when these are used for the classification of imbalanced data, pur-
suing to fully understand how the class imbalance affects the performance of these
classifiers. To this end, we provide a large pool of experiments on 58 real-world bench-
marking data sets that have different degrees of imbalance, comparing those hybrid
associative memories with other well-known artificial neural networks: a Bayesian net-
work (BNet), a multilayer perceptron (MLP) and a radial basis function (RBF). We
conducted our experiments by evaluating three performance metrics: the area under the
ROC curve, the true positive rate and the true negative rate.

2 Two Hybrid Associative Memories

In this section we provide a brief introduction to the associative memory models that
will be further experimented with, covering only the general concepts and notation
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needed to understand their foundations. For a complete description of associative mem-
ories, the reader may review any of the many books on this subject (e.g. [17, 18]).

In general, an associative memory can be defined as a mapping matrix M so that an
input vector xi ∈ Rn (with n components) will be transformed into an output vector
yi ∈ Rm (with m components), that is

yi = Mxi i = 1, . . . , p (1)

where p denotes the number of input vectors.
The stored samples will be represented in the form of pairs of associations (xi,yi)

between the input and output vectors, xi and yi, and are often called fundamental pat-
tern. The set of p pairs (fundamental patterns) constitutes the fundamental set of asso-
ciations.

The matrix M has to be determined through an iterative procedure in the learning
phase. Afterwards, during the recall or recovery phase, an unknown pattern x0 will be
applied to the input of the matrix in order to produce the vector y0, which is expected
to be a good approximation of the true output y.

Hybrid Associative Classifier (HAC). As previously pointed out, the HAC model [8]
arises from the combination of the lernmatrix and the linear associator with the aim of
overcoming the practical drawbacks of these associative neural networks. Apart from
these obvious advantages, it is worth remarking that the HAC model presents some
other interesting properties such as simplicity, requirements of low computational cost
and the ability to support real-valued input vectors [8].

During the learning phase, the HAC memory imitates the process of the linear as-
sociator: each sample that belongs to class k is represented by a vector with zeros in
all components except the k’th element that equals 1. In this way, the outer product of
vectors xi and yi gives the corresponding associations between them. Then the matrix
M of size n×m will be obtained as the sum of all p outer products as

M =

p∑
i=1

(yi)(xi)T (2)

After computing the mapping matrix M, the recovery of a given input sample will be
performed following the process of the lernmatrix model in order to estimate its class
label.

It has to be pointed out, however, that a practical drawback of the HAC model comes
from the possible large differences in the magnitude of the input vectors because in such
a case, the vectors with a lower magnitude will be assigned to the class of the vectors
with a larger magnitude.

Hybrid Associative Classifier with Translation (HACT). This is a modification of
the HAC model that tries to face several of its limitations. More specifically, if the input
samples are clustered in the same quadrant, the performance of the HAC memory will
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be affected negatively. Thus the HACT approach [8] starts with a translation of the
coordinate axes whose origin is taken to lie in the mean vector of all the input vectors
as computed by

x =
1

p

p∑
i=1

xi (3)

In this way, the new coordinate axes are parallel to the original coordinate axes, but
eliminates the clustering of samples in a unique quadrant. Then the input and test vec-
tors in the new coordinate system will be obtained as xi = xi − x. After the corre-
sponding translation of axes, the learning and recovery phases will be the same as those
described for the HAC model.

3 Experimental Set-Up

As already discussed, the aim of this work and the experiments conducted here is to
investigate whether two models of hybrid associative memories, which are based on the
lernmatrix and the linear associator, are suitable or not for imbalanced data classifica-
tion, and to what extent the degree of imbalance may affect their performance.

Table 1. Description of the data sets used in the experiments

Data sets Features Samples IR Data sets Features Samples IR
Glass1 9 214 1.82 Ecoli-0-3-4-6 vs 5 7 205 9.25
Pima 8 768 1.87 Ecoli-0-3-4-7 vs 5-6 7 257 9.28
Iris0 4 150 2.00 Yeast-0-5-6-7-9 vs 4 8 528 9.35
Glass0 9 214 2.06 Vowel0 13 988 9.98
Yeast1 8 1484 2.46 Ecoli-0-6-7 vs 5 6 220 10.00
Haberman 3 306 2.78 Glass-0-1-6 vs 2 9 192 10.29
Vehicle3 18 846 3.00 Ecoli-0-1-4-7 vs 2-3-5-6 7 336 10.59
Glass-0-1-2-3 vs 4-5-6 9 214 3.20 Led-0-2-4-5-6-7-8-9 vs 1 7 443 10.97
Vehicle0 18 846 3.25 Ecoli-0-1 vs 5 6 240 11.00
Ecoli1 7 336 3.36 Glass-0-6 vs 5 9 108 11.00
New-thyroid2 5 215 5.14 Glass-0-1-4-6 vs 2 9 205 11.06
Ecoli2 7 336 5.46 Glass2 9 214 11.59
Segment0 19 2308 6.02 Ecoli-0-1-4-7 vs 5-6 6 332 12.28
Glass6 9 214 6.38 Cleveland-0 vs 4 13 177 12.62
Yeast3 8 1484 8.10 Ecoli-0-1-4-6 vs 5 6 280 13.00
Ecoli3 7 336 8.60 Shuttle-0 vs 4 9 1829 13.87
Page-blocks0 10 5472 8.79 Yeast-1 vs 7 7 459 14.30
Ecoli-0-3-4 vs 5 7 200 9.00 Glass4 9 214 15.47
Yeast-2 vs 4 8 514 9.08 Ecoli4 7 336 15.80
Ecoli-0-6-7 vs 3-5 7 222 9.09 Page-blocks-1-3 vs 4 10 472 15.86
Ecoli-0-2-3-4 vs 5 7 202 9.10 Glass-0-1-6 vs 5 9 184 19.44
Glass-0-1-5 vs 2 9 172 9.12 Yeast-1-4-5-8 vs 7 8 693 22.10
Yeast-0-3-5-9 vs 7-8 8 506 9.12 Glass5 9 214 22.78
Yeast-0-2-5-6 vs 3-7-8-9 8 1004 9.14 Yeast-2 vs 8 8 482 23.10
Yeast-0-2-5-7-9 vs 3-6-8 8 1004 9.14 Yeast4 8 1484 28.10
Ecoli-0-4-6 vs 5 6 203 9.15 Yeast-1-2-8-9 vs 7 8 947 30.57
Ecoli-0-1 vs 2-3-5 7 244 9.17 Yeast5 8 1484 32.73
Ecoli-0-2-6-7 vs 3-5 7 224 9.18 Ecoli-0-1-3-7 vs 2-6 7 281 39.14
Glass-0-4 vs 5 9 92 9.22 Yeast6 8 1484 41.40
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The empirical analysis has been performed over a total of 58
benchmarking data sets taken from the KEEL Data Set Repository
(http://www.keel.es/dataset.php) [19]. Note that all the original
multi-class databases have firstly been transformed into two-class problems. Table 1
summarizes the main characteristics of the data sets, including the imbalance ratio
(IR), i.e. the number of negative examples divided by the number of positive examples.
As can be seen, the databases chosen for the experiments go from a low imbalance of
1.82 in Glass1 to a high/moderate imbalance of 41.40 in the case of Yeast6.

In order to gain sufficient insight into the behavior of the associative memory mod-
els, three other neural networks (BNet, MLP, RBF) have been used as baselines for
comparison purposes. These were taken from the Weka toolkit [20] with their default
parameter values. For the experiments here carried out, we have adopted a 5-fold cross-
validation method to estimate three classification performance measures commonly
used in skewed domains: the area under the ROC curve (AUC), the true positive rate
(TPrate) and the true negative rate (TNrate). Each data set has been divided into five
stratified blocks of size N/5 (where N denotes the total number of samples in the
database), using four folds for training the connectionist classifiers and the remaining
block as an independent test set. Therefore the results reported in tables of Section 4
correspond to those three measures averaged over the five runs.

Table 2. Confusion matrix for a two-class problem

Predicted positive Predicted negative
Positive class True Positive (TP) False Negative (FN)
Negative class False Positive (FP) True Negative (TN)

Given a 2 × 2 confusion matrix as that illustrated in Table 2, the performance mea-
sures used in the experiments can be calculated as follows: TPrate = TP

TP+FN ,

TNrate = TN
TN+FP , and AUC = TPrate+TNrate

2 . Note that the latter corresponds
to the AUC defined by a single point on the ROC curve.

4 Experimental Results

Table 3 reports the AUC values obtained by the neural network models on each database,
along with the average across the whole collection of data sets. From these results, the
first observation is that the HAC memory yields a 50% of AUC, which indicates that
all samples of one class have been misclassified while all of the other have been cor-
rectly classified. This effect has not been found in the case of the HACT model, but its
performance in terms of AUC is lower than that achieved by the three other neural net-
works on most databases. When paying attention of the average values, the MLP model
clearly performs the best (80.70% of AUC), but the results of the Bayesian network and
the RBF are not too far from that of the HACT approach.

http://www.keel.es/dataset.php
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Table 3. Experimental results using the AUC

Data set HAC HACT BNet MLP RBF Data set HAC HACT BNet MLP RBF
Glass1 50.00 56.02 67.51 68.6 62.24 Ecoli-0-3-4-6 vs 5 50.00 79.12 83.11 88.65 91.96
Pima 50.00 57.58 69.01 74.69 70.30 Ecoli-0-3-4-7 vs 5-6 50.00 79.05 73.78 88.92 84.06
Iris0 50.00 95.50 100 100 100 Yeast-0-5-6-7-9 vs 4 50.00 74.94 56.91 72.79 53.36
Glass0 50.00 71.53 79.93 77.01 67.63 Vowel0 50.00 77.39 88.43 99.44 86.78
Yeast1 50.00 66.92 67.59 66.94 60.74 Ecoli-0-6-7 vs 5 50.00 79.75 82.25 86.50 87.25
Haberman 50.00 62.74 55.42 58.10 55.11 Glass-0-1-6 vs 2 50.00 63.14 50.00 47.71 48.00
Vehicle3 50.00 65.10 67.63 74.26 63.63 Ecoli-0-1-4-7 vs 2-3-5-6 50.00 76.81 80.51 87.03 79.01
Glass-0-1-2-3 vs 4-5-6 50.00 92.69 88.26 92.03 89.41 Led-0-2-4-5-6-7-8-9 vs 1 51.25 81.66 88.24 89.30 83.06
Vehicle0 50.00 74.64 81.74 94.95 84.51 Ecoli-0-1 vs 5 50.00 77.72 87.04 89.54 89.54
Ecoli1 50.00 87.36 85.01 85.83 88.35 Glass-0-6 vs 5 50.00 86.34 78.39 100 94.50
New-thyroid2 50.00 75.71 92.85 95.15 98.01 Glass-0-1-4-6 vs 2 50.00 64.62 50.00 48.67 49.74
Ecoli2 50.00 82.34 86.08 89.24 90.72 Glass2 50.00 65.49 50.00 51.03 48.97
Segment0 50.00 75.82 98.78 99.39 97.71 Ecoli-0-1-4-7 vs 5-6 50.00 79.30 51.84 84.87 83.19
Glass6 50.00 89.41 91.17 84.92 87.44 Cleveland-0 vs 4 50.00 47.92 62.63 87.22 84.90
Yeast3 50.00 78.92 85.42 85.85 87.06 Ecoli-0-1-4-6 vs 5 50.00 77.31 86.93 79.05 89.23
Ecoli3 50.00 81.96 84.01 78.34 66.82 Shuttle-0 vs 4 50.00 91.19 100 99.60 99.11
Page-blocks0 50.00 48.70 89.73 87.59 74.52 Yeast-1 vs 7 50.00 65.25 46.43 62.61 54.53
Ecoli-0-3-4 vs 5 50.00 80.00 84.44 88.60 91.66 Glass4 50.00 82.57 64.92 87.34 86.59
Yeast-2 vs 4 50.00 74.67 87.40 82.50 87.89 Ecoli4 50.00 81.51 82.34 89.21 89.05
Ecoli-0-6-7 vs 3-5 50.00 77.00 89.00 82.50 68.50 Page-blocks-1-3 vs 4 50.00 80.17 96.56 97.89 91.99
Ecoli-0-2-3-4 vs 5 50.00 80.22 86.40 89.17 89.20 Glass-0-1-6 vs 5 50.00 88.29 90.43 79.14 89.71
Glass-0-1-5 vs 2 50.00 63.63 50.00 52.48 50.24 Yeast-1-4-5-8 vs 7 50.00 59.65 50.00 51.37 50.00
Yeast-0-3-5-9 vs 7-8 50.00 69.43 59.78 64.69 61.45 Glass5 50.00 88.05 91.34 89.51 84.02
Yeast-0-2-5-6 vs 3-7-8-9 50.00 69.89 75.08 73.38 67.66 Yeast-2 vs 8 50.00 77.32 77.39 77.06 79.78
Yeast-0-2-5-7-9 vs 3-6-8 50.00 75.75 83.89 86.22 88.86 Yeast4 50.00 73.32 62.84 64.39 50.00
Ecoli-0-4-6 vs 5 50.00 78.97 89.18 88.92 86.69 Yeast-1-2-8-9 vs 7 50.00 65.03 57.96 56.46 51.67
Ecoli-0-1 vs 2-3-5 50.00 77.54 50.56 80.67 79.21 Yeast5 50.00 78.65 91.77 83.60 63.30
Ecoli-0-2-6-7 vs 3-5 50.00 77.95 80.01 81.01 81.01 Ecoli-0-1-3-7 vs 2-6 50.00 80.85 84.63 84.81 84.63
Glass-0-4 vs 5 50.00 90.81 99.41 100 94.41 Yeast6 50.00 74.89 83.30 73.85 50.00
Average 50.02 75.45 77.16 80.70 77.05

By the analysis of the behavior of these classifiers as a function of the imbalance
ratio, one can guess that there is not necessarily a direct relationship between the classi-
fication performance and the degree of imbalance. For instance, the balanced accuracies
for the Ecoli-0-1-3-7 vs 2-6 database, which has an imbalance ratio of 39.14, are sig-
nificantly higher than those for Glass1, even though this presents a very low imbalance
ratio of 1.82. In some sense, it appears that databases may also suffer from other in-
trinsic problems such as class overlapping, small disjuncts, feature noise and lack of
representative data, which in turn may affect classification performance much more
strongly than the presence of class imbalance.

In order to accomplish a better understanding of the performance of these neural
network models, Tables 4 and 5 report the true positive and true negative rates, respec-
tively. These measures allow to analyze the behavior of a classifier on each individual
class, thus drawing out whether it is biased towards one class or another. This is es-
pecially important in the context of imbalanced data because the examples from the
minority class, which usually correspond to the most interesting cases, are more likely
to be misclassified. In addition, it is often preferable to achieve a higher true positive
rate rather than a higher true negative rate and consequently, the AUC by itself is not
sufficiently informative when evaluating the performance of a set of classifiers.
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Table 4. Experimental results using the true positive rate

Data set HAC HACT BNet MLP RBF Data set HAC HACT BNet MLP RBF
Glass1 0 80.17 47.34 59.60 50.00 Ecoli-0-3-4-6 vs 5 0 95.00 70 80 85.00
Pima 0 44.36 58.22 67.18 55.20 Ecoli-0-3-4-7 vs 5-6 0 96.00 48.00 80.00 72.00
Iris0 0 100 100 100 100 Yeast-0-5-6-7-9 vs 4 0 86.36 18.00 48.72 8.00
Glass0 0 100 80.00 70.00 42.84 Vowel0 0 97.78 78.86 98.88 75.56
Yeast1 0 76.68 46.14 43.84 27.28 Ecoli-0-6-7 vs 5 0 95.00 65.00 75.00 75.00
Haberman 0 59.26 17.52 28.20 15.98 Glass-0-1-6 vs 2 0 100 0 0 0
Vehicle3 0 60.33 63.64 58.94 41.92 Ecoli-0-1-4-7 vs 2-3-5-6 0 93.33 62.66 76.00 58.66
Glass-0-1-2-3 vs 4-5-6 0 94.00 80.18 87.74 84.36 Led-0-2-4-5-6-7-8-9 vs 1 2.50 100 78.20 81.06 67.84
Vehicle0 0 100 95.94 90.98 80.92 Ecoli-0-1 vs 5 0 100 75.00 80.00 80.00
Ecoli1 0 94.83 83.16 76.68 91.02 Glass-0-6 vs 5 0 100 70.00 100 90.00
New-thyroid2 0 91.43 85.70 91.42 97.14 Glass-0-1-4-6 vs 2 0 100 0 0 0
Ecoli2 0 96.36 77.44 82.72 87.08 Glass2 0 100 0 6.66 0
Segment0 0 100 98.20 99.10 97.90 Ecoli-0-1-4-7 vs 5-6 0 100 44.00 72.00 68.00
Glass6 0 96.67 86.66 72.00 78.66 Cleveland-0 vs 4 0 33.50 26.04 78.18 71.52
Yeast3 0 98.79 72.94 74.28 77.32 Ecoli-0-1-4-6 vs 5 0 100 75.00 60.00 80.00
Ecoli3 0 97.14 79.98 59.98 34.30 Shuttle-0 vs 4 0 99.20 100 99.20 98.40
Page-blocks0 0 19.15 85.32 76.92 50.84 Yeast-1 vs 7 0 76.67 13.34 26.64 10.00
Ecoli-0-3-4 vs 5 0 100 70.00 80.00 85.00 Glass4 0 90.00 33.32 76.68 76.68
Yeast-2 vs 4 0 90.18 76.54 66.54 78.36 Ecoli4 0 100 65.00 80.00 80.00
Ecoli-0-6-7 vs 3-5 0 88.00 80.00 67.00 41.00 Page-blocks-1-3 vs 4 0 68.67 100 96.00 86.00
Ecoli-0-2-3-4 vs 5 0 100 75.00 80.00 80.00 Glass-0-1-6 vs 5 0 100 90.00 60.00 80.00
Glass-0-1-5 vs 2 0 95.00 0 13.34 5.00 Yeast-1-4-5-8 vs 7 0 66.67 0 3.34 0
Yeast-0-3-5-9 vs 7-8 0 86.00 20.00 34.00 24.00 Glass5 0 100 90.00 80.00 70.00
Yeast-0-2-5-6 vs 3-7-8-9 0 77.68 54.36 49.42 37.32 Yeast-2 vs 8 0 70.00 55.00 55.00 60.00
Yeast-0-2-5-7-9 vs 3-6-8 0 89.95 70.68 73.78 79.94 Yeast4 0 90.18 29.28 29.46 0
Ecoli-0-4-6 vs 5 0 95.00 80.00 80.00 75.00 Yeast-1-2-8-9 vs 7 0 80.00 16.68 13.34 3.34
Ecoli-0-1 vs 2-3-5 0 96.00 10.00 65.00 65.00 Yeast5 0 100 86.4 68.08 26.92
Ecoli-0-2-6-7 vs 3-5 0 90.00 63.00 64.00 64.00 Ecoli-0-1-3-7 vs 2-6 0 100 70.00 70.00 70.00
Glass-0-4 vs 5 0 100 100 100 90.00 Yeast6 0 94.29 71.42 48.58 0
Average 0.04 88.96 60.16 64.75 57.42

For instance, the results of HAC in Table 4 demonstrate that this hybrid associative
model is of no value at all because it fails on the classification of all positive examples.
This makes clear that the AUC of 50% reported in Table 3 is due to the awful true
positive rate of this classifier and the very high rate achieved on the negative class (see
Table 5). On the contrary, the true positive rate of HACT suggests that this can be a good
tool for the classification of data with class imbalance because it yields a true positive
rate of close to 89% in average, that is, even higher than that of the best performing
algorithm (MLP) in terms of AUC.

It is also interesting to note that in general, the highest differences between HACT
and MLP are found in the most strongly imbalanced data sets. Unfortunately, in these
cases, the true negative rate of the HACT model is lower than that of the MLP, but we
should recall that there exist numerous real-world applications in which the minority
class represents the concept of most interest and therefore, it will be crucial to correctly
classify the positive examples even if this might entail a certain degradation of the true
negative rate.
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Table 5. Experimental results using the true negative rate

Data set HAC HACT BNet MLP RBF Data set HAC HACT BNet MLP RBF
Glass1 100 31.88 87.68 77.6 74.48 Ecoli-0-3-4-6 vs 5 100 63.24 96.22 97.30 98.92
Pima 100 70.80 79.80 82.20 85.40 Ecoli-0-3-4-7 vs 5-6 100 62.11 99.56 97.84 96.12
Iris0 100 91.00 100 100 100 Yeast-0-5-6-7-9 vs 4 100 63.53 95.82 96.86 98.72
Glass0 100 43.05 79.86 84.02 92.42 Vowel0 100 57.01 98.00 100 98.00
Yeast1 100 57.16 89.04 90.04 94.20 Ecoli-0-6-7 vs 5 100 64.50 99.50 98.00 99.50
Haberman 100 66.22 93.32 88.00 94.24 Glass-0-1-6 vs 2 100 26.29 100 95.42 96.00
Vehicle3 100 69.87 71.62 89.58 85.34 Ecoli-0-1-4-7 vs 2-3-5-6 100 60.28 98.36 98.06 99.36
Glass-0-1-2-3 vs 4-5-6 100 91.38 96.34 96.32 94.46 Led-0-2-4-5-6-7-8-9 vs 1 100 63.33 98.28 97.54 98.28
Vehicle0 100 49.29 67.54 98.92 88.10 Ecoli-0-1 vs 5 100 55.45 99.08 99.08 99.08
Ecoli1 100 79.88 86.86 94.98 85.68 Glass-0-6 vs 5 100 72.68 86.78 100 99.00
New-thyroid2 100 60.00 100 98.88 98.88 Glass-0-1-4-6 vs 2 100 29.25 100 97.34 99.48
Ecoli2 100 68.31 94.72 95.76 94.36 Glass2 100 30.99 100 95.40 97.94
Segment0 100 51.64 99.36 99.68 97.52 Ecoli-0-1-4-7 vs 5-6 100 58.59 59.68 97.74 98.38
Glass6 100 82.16 95.68 97.84 96.22 Cleveland-0 vs 4 100 52.50 99.22 96.26 98.28
Yeast3 100 59.05 97.90 97.42 96.80 Ecoli-0-1-4-6 vs 5 100 54.62 98.86 98.10 98.46
Ecoli3 100 66.78 88.04 96.70 99.34 Shuttle-0 vs 4 100 83.18 100 100 99.82
Page-blocks0 100 78.24 94.14 98.26 98.20 Yeast-1 vs 7 100 53.84 79.52 98.58 99.06
Ecoli-0-3-4 vs 5 100 60.00 98.88 97.20 98.32 Glass4 100 75.13 96.52 98.00 96.50
Yeast-2 vs 4 100 59.17 98.26 98.46 97.42 Ecoli4 100 63.03 99.68 98.42 98.10
Ecoli-0-6-7 vs 3-5 100 66.00 98.00 98.00 96.00 Page-blocks-1-3 vs 4 100 91.67 93.12 99.78 97.98
Ecoli-0-2-3-4 vs 5 100 60.44 97.80 98.34 98.40 Glass-0-1-6 vs 5 100 76.57 90.86 98.28 99.42
Glass-0-1-5 vs 2 100 32.26 100 91.62 95.48 Yeast-1-4-5-8 vs 7 100 52.63 100 99.40 100
Yeast-0-3-5-9 vs 7-8 100 52.85 99.56 95.38 98.90 Glass5 100 76.10 92.68 99.02 98.04
Yeast-0-2-5-6 vs 3-7-8-9 100 62.10 95.80 97.34 98.00 Yeast-2 vs 8 100 84.65 99.78 99.12 99.56
Yeast-0-2-5-7-9 vs 3-6-8 100 61.55 97.10 98.66 97.78 Yeast4 100 56.46 96.40 99.32 100
Ecoli-0-4-6 vs 5 100 62.94 98.36 97.84 98.38 Yeast-1-2-8-9 vs 7 100 50.06 99.24 99.58 100
Ecoli-0-1 vs 2-3-5 100 59.09 91.12 96.34 93.42 Yeast5 100 57.29 97.14 99.12 99.68
Ecoli-0-2-6-7 vs 3-5 100 65.90 97.02 98.02 98.02 Ecoli-0-1-3-7 vs 2-6 100 61.69 99.26 99.62 99.26
Glass-0-4 vs 5 100 81.62 98.82 100 98.82 Yeast6 100 55.49 95.18 99.12 100
Average 100 61.94 94.16 96.65 96.68

5 Conclusions and Further Research

This paper pursues to investigate the suitability of associative memories for the classifi-
cation of data in imbalanced domains. In particular, the present work has concentrated
on two hybrid models, the hybrid associative classifier (HAC) and the hybrid associative
classifier with translation (HACT), which come from the combination of the learning
phase of the linear associator with the recall phase of the lernmatrix.

In contrast to the lernmatrix and the linear associator, two of the main characteristics
of HAC and HACT refer to the potential of using real-valued input vectors that do not
require to be orthonormal and linearly independent. These appealing properties allow
the application of the hybrid associative models to a huge number of real-life problems.
However, they have not been thoroughly studied in the context of imbalanced data clas-
sification and therefore, it is not possible to fully assert their suitability in domains
where it is common to find such a complexity in data (i.e., credit risk evaluation, fraud
detection in mobile telephone communications and prediction of rare diseases).

The experiments carried out over a collection of 58 real-world databases with the
two hybrid associative models and three classical neural networks (Bayesian network,
MLP and RBF) have demonstrated both the non-suitability of the HAC approach and
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the good performance of the HACT memory. In fact, this model has achieved the highest
true positive rate, which is often the most important measure when working on imbal-
anced data because it denotes the percentage of examples from the minority class that
have been correctly classified.

This work has to be viewed just as a preliminary analysis of the hybrid associative
memories in classification problems with skewed class distributions. Other avenues for
further research still remain open and therefore, it will be necessary a more exhaustive
experimentation that will allow to give response to a number of important issues: (i)
How do other complexities in data affect the classification performance on imbalanced
data sets?, (ii) Are the gains in the true positive rate of the HACT model statistically sig-
nificant?, (iii) Does the HACT memory outperform other non-neural classifiers such as
support vector machines and decision trees?, and (iv) How do other associative memory
models perform in the presence of class imbalance?
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Abstract. In this paper we study some of the most common global measures em-
ployed to measure the classifier performance on the multi-class imbalanced prob-
lems. The aim of this work consists of showing the relationship between global
classifier performance (measure by global measures) and partial classifier perfor-
mance, i.e., to determine if the results of global metrics match with the improved
classifier performance over the minority classes. We have used five strategies to
deal with the class imbalance problem over five real multi-class datasets on neural
networks context.

Keywords: Multi-class imbalance, global measures, accuracy by class.

1 Introduction

Nowadays, the multi-class classification methods are increasingly required by mod-
ern applications (p.e. protein function classification, music categorization and seman-
tic scene classification) [1]. However, while two-class classification problem has been
widely studied, multi-class classification problem has not received much attention [2].

In addition, many multi-class classification applications suffer the class imbalance
problem [3]. Class imbalance learning refers to a type of classification problems, where
some classes are highly underrepresented compared to other classes. Several studies
have shown that the class imbalance problem causes seriously negative effects on the
classification performance [2,4,3], since the classifier algorithms are often biased to-
wards the majority classes [5].

Much research has been done in addressing the class imbalance problem [4], and
many new algorithms, methods and techniques have been presented [6]. Often the
researchers use global measures to compare the classifier performance.

On two-class imbalance problems, global metrics to assessments of the classifier
performance have been amply studied [7], and in the multi-class imbalance problems
some of them have been modified to be adapted at the multi-class imbalance context
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[8], for example the geometric mean, F-measure or measures of the area under curve
family.

The use of global measures in order to evaluate the classifier performance on multi-
class imbalance problem lead to some open interesting questions: a) the global mea-
sures can measure if the classifier performance over minority and majority classes is
improved? b) Global measures can give us useful information about the true behavior of
the classifier over minority and majority classes? c) How could we measure efficiently
whether the archive classifiers allow a tradeoff between minority and majority classes
performance? Or what measure can give us real information about of true behavior of
the classifier?

In this paper, we presented a preliminary study about of some of the most often
global metrics applied to evaluate the classifier performance over multi-class imbal-
ance problems on the neural networks context. Our main contribution consists in to
show the relationship between the results obtained by global metrics applied to evalu-
ate the classifier performance and the classifier behavior over the minority classes, i.e.,
to determine if the results of global metrics match with the improve classifier perfor-
mance over the minority classes.

2 Assessments Metrics for Multi-class Imbalance Learning

The most studied metrics for assessment the classifier performing in class imbalance
domains have been focused a two class imbalance problems and some of them have
been modified to accommodate them at the multi-class imbalanced learning problems
[6]. In this section we present some of the most common two-class imbalance metrics
adapted at multi-class imbalance scenarios.

Macro average geometric (MAvG): This is defined as the geometric average of the
partial accuracy of each class.

MAvG = (
J∏

i=1

ACCi)
1
J , (1)

where ACCj = ( correctly classified of class j)/( total of samples of classj),
i.e., the accuracy on the class j. J is the number of classes.

Mean F-measure (MFM): This measure has been widely employed in information
retrieval

F − measure(j) =
2 · recall(j) · precision(j)
recall(j) + precision(j)

, (2)

where recall(j) = (correctly classified positives)/(total positives) and precision
(j) = (correctly classified positives)/(total predicted as positives); j is the in-
dex of the class considered as positive. Finally, mean F -measure is defined for multi-
class in Reference [8] as follow:

MFM =
J∑

j=1

FMeasure(j)

J
. (3)
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Macro average arithmetic (MAvA): This is defined as the arithmetic average of the
partial accuracies of each class.

MAvA =

∑J
i=1 ACCi

J
. (4)

One the most widely used techniques for the evaluation of binary classifiers in imbal-
anced domains is the Receiver Operating Characteristic curve (ROC), which is a tool
for visualizing, organizing and selecting classifiers based on their trade-offs between
true positive rates and false positive rates. Furthermore, a quantitative representation of
a ROC curve is the area under it, which is known as AUC [9]. The AUC measure has
been adapted at multi-class problems [8] and can be defined as follow.

AUC of each class against each other, using the uniform class distribution (AU1U):

AU1U =
2

‖J‖(‖J‖ − 1)

∑
ji,jkεJ

AUCR(ji, jk) , (5)

where AUCR(ji, jk) is the AUC for each pair of classes ji and jk.

AUC of each class against each other, using the a priori class distribution (AU1P):

AU1P =
2

‖J‖(‖J‖ − 1)

∑
ji,jkεJ

p(j)AUCR(ji, jk) , (6)

where p(j) is a priori class distribution.

AUC of each class against the rest, using the uniform class distribution (AUNU):

AUNU =
1

J

∑
jεJ

AUCR(j, restj) , (7)

where restj gathers together all classes different from class j, i.e., the area under the
ROC curve is computed in the approach one against all.

AUC of each class against the rest, using the a priori class distribution (AUNP):

AUNP =
1

J

∑
jεJ

p(j)AUCR(j, restj) , (8)

this measure takes into account the prior probability of each class (p(j)).

3 Experimental Protocols

3.1 Database Description

We have used in our experiments five remote sensing datasets: Cayo, Feltwell Satim-
age, Segment and 92AV3C. Feltwell is related to an agricultural region near Felt Ville,
Feltwell (UK) [10], Cayo represents a particular region in the Gulf of Mexico, and
Satimage consists of the multi-spectral values of pixels in 3x3 neighborhoods in a
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satellital image [11]. The Segment contains instances drawn randomly from a dataset
of seven outdoor images [11]. 92AV3C dataset1 corresponds to a hyperspectral im-
age (145x145 pixels) taken over Northwestern Indianas Indian Pines by the AVIRIS
sensor.

In order to cover Cayo in a highly imbalanced dataset some of their classes were
merged as follows: join classes 1, 3, 6, 7 and 10 to integrate class 1; join classes 8, 9
and 11 to integrate class 3, finally, the rest of classes (2, 4 and 5) were obtained from the
original dataset. M92AV3C is a subset of 92AV3C, it contains six classes (2, 3, 4, 6, 7
and 8) and 38 attributes. The attributes were selected using a common features selection
algorithm (Best-First Search [12]) implemented in WEKA2.

Feltwell, Satimage, Segment and 92AV3C were random under-sampled with the
goal of generating severe class imbalanced datasets. A brief summary of these multi-
class imbalance datasets is shown in the Table 1. Note that they are highly imbalanced
datasets. For each database, a 10−fold cross−validation was applied. The datasets were
divided into ten equal parts, using nine folds as training set and the remaining block as
test set.

Table 1. A brief summary of some basic characteristics of the datasets. The bold numbers rep-
resent the samples of minority classes. Observe that in these datasets is very easy to identify the
minority and majority classes.

Dataset Size Attr. Class Class distribution
MCayo 6019 4 5 2941/293/2283/322/133
MFelt 10944 15 5 3531/2441/91/2295/178
MSat 6430 36 6 1508/1531/104/1356/93/101
MSeg 1470 19 7 330/50/330/330/50/50/330
M92AV3C 5062 38 6 190/117/1434/2468/747/106

3.2 Resampling Methods

SMOTE and random under sampling (RUS) are used in the empirical study, because
they are popular approaches to deal with the class imbalance problem. However, these
methods have an internal parameter that enables the user to set up the resulting class
distribution obtained after the application of these methods. In this paper, we decided
to add or remove examples until a balanced distribution was reached. This decision was
motivated by two reasons: a) simplicity and b) effectiveness. Results obtained with the
other classifiers [13], have shown that when AUC is used as a performance measure,
the best class distribution for learning tends to be near the balanced class distribution.

Another common re-sampling method is the Gabriel Graph Editing (GGE). The GGE
consists of applying the general idea of Wilson’s algorithm [14], but using the graph
neighbors of each sample instead of either the Euclidean or the norm-based distance
neighborhood. The original GGE was proposed to improve the k-NN accuracy [15].
However, in Reference [16] the original GGE was adapted to do it effective in the back-
propagation context.

1 engineering.purdue.edu/biehl/MultiSpec/hyperspectral.html
2 www.cs.waikato.ac.nz/ml/weka/

engineering.purdue.edu/biehl/MultiSpec/hyperspectral.html
www.cs.waikato.ac.nz/ml/weka/
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3.3 Modified Back-Propagation Algorithm (MBP)

The most popular training procedure for the MLP neural network is the back-
propagation algorithm, which uses a set of training instances for the learning process.
Several works have shown that the class imbalance problem generates unequal contri-
butions to the mean square error (MSE) during the training phase in the MLP, where
the major contribution to the MSE is produced by the majority class.

Given a training data set with two classes (J = 2), such that the size is denoted by
N =

∑J
j nj and nj is the number of samples that belong to class j, the MSE by class

can be expressed as

Ej(U) =
1

N

nj∑
n=1

J∑
p=1

(tnp − znp )
2 , (9)

where tnp is the desired output and znp is the actual output of the network for the sam-
ple n.

Then the overall MSE can be written in terms of Ej(U) as follows:

E(U) =

J∑
j=1

Ej(U) = E1(U) + E2(U) . (10)

When n1 << n2, the E1(U) << E2(U) and ‖∇E1(U)‖ << ‖∇E2(U)‖. Conse-
quently,∇E(U) ≈ ∇E2(U). So, −∇E(U) is not always the best direction to minimize
the MSE in both classes.

The unequal contribution to the MSE can be compensated by introducing a cost
function (γ) in order to avoid that the MLP ignores the minority class:

E(U) =
∑J

j=1 γ(j)Ej = γ(1)E1(U) + γ(2)E2(U)

= 1
N

∑J
j=1 γ(j)

∑nj

i=1

∑J
p=1(t

i
p − zip)

2 ,

(11)

where γ(1)‖∇E1(U)‖ ≈ γ(2)‖∇E2(U)‖.
In this work, we define a cost function γ as γ(j) = ‖∇Emax(U)‖/‖∇Ej(U)‖,

where ‖∇Emax(U)‖ corresponds to the majority class.

3.4 Neural Network Configuration

The MLP was trained with the standard back-propagation (SBP) and modified back-
propagation (MBP) algorithm in batch mode. For each training data set, MLP was ini-
tialized ten times with different weights, i.e., the MLP was run ten times with the same
training dataset. The results here included correspond to the average of those accom-
plished in the ten different initialization and of ten partitions. The learning rate (η) was
set at 0.1 and only one hidden layer was used. The stop criterion was established at
25000 epoch or an MSE below to 0.001. The number of neurons for the hidden layer
was obtained from the trial and error strategy. So, the number of neurons was 7, 6, 12,
10 and 10, for MCayo, MFelt, MSat, MSeg and M92AV3C datasets respectively.
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4 Experimental Results

In order to assessment the multi-class imbalance measures (sec. 2) we have carried
out an experimental comparison over five popular strategies to deal with class imbal-
ance problem: (i) Modified Back-Propagation Algorithm (MBP), (ii) Standard Back-
Propagation with Gabriel Graph Editing (SBP+GGE), (iii) Modified Back-Propagation
with Gabriel Graph Editing (MBP + GGE), (iv) SMOTE and (vi) Random Under Sam-
pling (RUS).

The Standard Back-Propagation Algorithm (SBP) is presented as baseline method.
The datasets that were preprocessed by the SMOTE and RUS strategies were applied to
the SBP algorithm. In addition, we have used seven global measures: MAvG, MFM ,
MAvA, AU1U , AU1P , AUNU and AUNP (see sec. 2) to evaluate the global clas-
sifier performance.

In the Table 2 the experimental results are presented. The columns represent a strate-
gies used to deal with class imbalance problem, the rows show values obtained for dif-
ferent measures. We use the average accuracy for majority and minority classes (acc−

and acc+ respectively), because they can give us useful information about of the clas-
sifier performance.

The values between parentheses are the average rank (AR), they provide a useful tool
to compare algorithms [17]. In the AR the best performing algorithm should have the
rank of 1, the second best rank 2, the third best rank 3, etc. The values of AR in Table 2
might seem wrong but not so, consider that they are average of ten folds and ten run of
the MLP for each dataset (see sec. 3).

AR-GM represents the average rank for the seven global measures (MAvG, MFM ,
MAvA, AU1U , AU1P , AUNU and AUNP ), i.e., it is the average of the ranks of the
seven global measures. We make this because the global measures tend to give similar
ranks. For example see M92AV3C with RUS strategy in Table 2. With other datasets
and strategies it is not as clear as with the last one. However, in general terms the global
measures show similar ranks. This is consistent with the presented in Reference [8].

Table 2 shows some interesting results. For example in M92AV3C the best AR-GM
is obtained by RUS and the best AR for the partial measure acc+ is presented by RUS
too, i.e., the best ranks at classes level and at global level are showed for the same
strategy (RUS). In contrast to M92AV3C, MSegment shows that the best AR-GM and
the worst AR are obtained for MBP, i.e., the best ranks at classes level and at global
level are showed for different strategies. This imply that global measures to indicate
a good classifier performance but a classes level do not performance well. This might
address at wrong conclusions.

In the rest of datasets MCayo, MFeltwell, and MSatimage, the behavior of the global
and partial measures follow the same tendency (see Table 2), i.e., the best AR-GM
and AR for the acc+ are not presented by the same strategy. The results presented in
Table 2 pose some interesting facts: MSegment presents a best AR-GM but the worst
performance at minority class’s level. Some strategies improve the minority classes
perform but damage the majority classes’ performance and the global measures not
always reflect this situation (for example, see the MBP+GGE results).

The global measures have been introduced for very different applications and, sup-
posedly, measure quite different things [8] but in many researches they are applied to
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Table 2. Performance on five datasets measured using MAvG, MAvA, AU1U , AU1P ,
AUNU , AUNP and average rank (AR)

Measure GGE1 MBP+GGE Imbalanced1 MBP RUS1 SMOTE1

acc− 0.918 (2.8) 0.850 (5.0) 0.924 (1.8) 0.911 (3.5) 0.899 (3.0) 0.699 (3.0)
acc+ 0.448 (5.0) 0.814 (2.0) 0.179 (6.0) 0.585 (4.0) 0.605 (3.0) 0.968 (1.0)
MAvG 0.484 (5.0) 0.820 (2.0) 0.000 (6.0) 0.692 (4.0) 0.702 (3.0) 0.822 (1.0)
MFM 0.466 (4.0) 0.503 (1.0) 0.386 (60) 0.501 (2.0) 0.491 (3.0) 0.393 (5.0)
MAvA 0.636 (5.0) 0.828 (2.0) 0.477 (6.0) 0.715 (4.0) 0.722 (3.0) 0.860 (1.0)

MCayo AU1U 0.636 (5.0) 0.828 (2.0) 0.477 (6.0) 0.715 (4.0) 0.722 (3.0) 0.860 (1.0)
AU1P 0.840 (4.0) 0.841 (3.0) 0.804 (5.0) 0.853 (1.0) 0.844 (2.0) 0.738 (6.0)
AUNU 0.743 (5.0) 0.833 (1.0) 0.649 (6.0) 0.788 (3.0) 0.786 (4.0) 0.790 (2.0)
AUNP 0.840 (4.0) 0.841 (3.0) 0.804 (5.0) 0.853 (1.0) 0.844 (2.0) 0.738 (6.0)
AR-GM 4.6 2 5.7 2.7 2.8 3.1
Measure GGE1 MBP+GGE Imbalanced1 MBP RUS1 SMOTE1

acc− 0.964 (2.7) 0.926 (5.3) 0.970 (2.0) 0.954 (2.8) 0.965 (2.2) 0.908 (5.0)
acc+ 0.305 (5.2) 0.811 (2.0) 0.188 (5.8) 0.668 (3.0) 0.424 (4.0) 0.876 (1.0)
MAvG 0.000 (5.5) 0.875 (2.0) 0.000 (5.5) 0.823 (3.0) 0.530 (4.0) 0.890 (1.0)
MFM 0.614 (5.0) 0.631 (3.0) 0.598 (6.0) 0.661 (1.0) 0.641 (2.0) 0.617 (4.0)
MAvA 0.700 (5.0) 0.880 (2.0) 0.658 (6.0) 0.839 (3.0) 0.749 (4.0) 0.895 (1.0)

MFeltwel AU1U 0.700 (5.0) 0.880 (2.0) 0.658 (6.0) 0.839 (3.0) 0.749 (4.0) 0.895 (1.0)
AU1P 0.942 (3.5) 0.923 (4.0) 0.942 (3.5) 0.944 (2.0) 0.947 (1.0) 0.909 (5.0)
AUNU 0.822 (5.0) 0.902 (2.0) 0.801 (6.0) 0.892 (3.0) 0.849 (4.0) 0.903 (1.0)
AUNP 0.942 (3.5) 0.923 (4.0) 0.942 (3.5) 0.944 (2.0) 0.947 (1.0) 0.909 (5.0)
AR-GM 4.6 2.7 5.2 2.4 2.9 2.6
Measure GGE1 MBP+GGE Imbalanced1 MBP RUS1 SMOTE1

acc− 0.699 (5.0) 0.649 (5.3) 0.956 (1.5) 0.954 (1.8) 0.954 (2.3) 0.885 (3.7)
acc+ 0.849 (2.0) 0.866 (1.2) 0.369 (4.8) 0.550 (4.3) 0.498 (4.8) 0.768 (2.5)
MAvG 0.739 (2.0) 0.723 (3.0) 0.000 (5.5) 0.494 (4.0) 0.000 (5.5) 0.801 (1.0)
MFM 0.346 (4.0) 0.317 (5.0) 0.512 (3.5) 0.563 (1.0) 0.546 (2.0) 0.512 (3.5)
MAvA 0.774 (2.0) 0.757 (3.0) 0.663 (6.0) 0.752 (4.0) 0.726 (5.0) 0.826 (1.0)

MSatimage AU1U 0.774 (2.0) 0.757 (3.0) 0.663 (6.0) 0.752 (4.0) 0.726 (5.0) 0.826 (1.0)
AU1P 0.709 (5.0) 0.664 (6.0) 0.912 (3.0) 0.924 (1.0) 0.920 (2.0) 0.875 (4.0)
AUNU 0.741 (5.0) 0.709 (6.0) 0.790 (4.0) 0.839 (2.0) 0.825 (3.0) 0.851 (1.0)
AUNP 0.709 (5.0) 0.664 (6.0) 0.912 (3.0) 0.924 (1.0) 0.920 (2.0) 0.875 (4.0)
AR-GM 3.6 4.6 4.4 2.4 3.5 2.2
Measure GGE1 MBP+GGE Imbalanced1 MBP RUS1 SMOTE1

acc− 0.905 (3.2) 0.890 (5.0) 0.973 (1.4) 0.961 (2.9) 0.921 (3.4) 0.914 (3.9)
acc+ 0.905 (2.0) 0.958 (2.7) 0.736 (4.3) 0.857 (5.0) 0.905 (2.7) 0.835 (3.3)
MAvG 0.892 (4.0) 0.913 (1.0) 0.666 (6.0) 0.901 (3.0) 0.904 (2.0) 0.788 (5.0)
MFM 0.625 (6.0) 0.630 (4.0) 0.706 (2.0) 0.764 (1.0) 0.656 (3.0) 0.627 (5.0)
MAvA 0.905 (4.0) 0.919 (1.0) 0.871 (6.0) 0.917 (2.0) 0.914 (3.0) 0.880 (5.0)

MSegment AU1U 0.905 (4.0) 0.919 (1.0) 0.871 (6.0) 0.917 (2.0) 0.914 (3.0) 0.880 (5.0)
AU1P 0.906 (5.0) 0.900 (6.0) 0.947 (2.0) 0.951 (1.0) 0.920 (3.0) 0.907 (4.0)
AUNU 0.906 (4.0) 0.910 (3.5) 0.910 (3.5) 0.935 (1.0) 0.917 (2.0) 0.894 (5.0)
AUNP 0.906 (5.0) 0.900 (6.0) 0.947 (2.0) 0.951 (1.0) 0.920 (3.0) 0.907 (4.0)
AR-GM 4.6 3.2 3.9 1.6 2.7 4.7
Measure GGE1 MBP+GGE Imbalanced1 MBP RUS1 SMOTE1

acc− 0.764 (2.0) 0.723 (3.3) 0.773 (2.3) 0.688 (4.7) 0.732 (4.0) 0.634 (4.7)
acc+ 0.467 (4.3) 0.837 (2.0) 0.252 (6.0) 0.493 (4.7) 0.860 (1.7) 0.773 (2.3)
MAvG 0.322 (5.0) 0.733 (2.0) 0.000 (6.0) 0.494 (4.0) 0.778 (1.0) 0.555 (3.0)
MFM 0.340 (3.0) 0.356 (2.0) 0.316 (4.0) 0.285 (5.0) 0.363 (1.0) 0.274 (6.0)
MAvA 0.615 (4.0) 0.780 (2.0) 0.512 (6.0) 0.590 (5.0) 0.796 (1.0) 0.703 (3.0)

M92AV3C AU1U 0.615 (4.0) 0.780 (2.0) 0.512 (6.0) 0.590 (5.0) 0.796 (1.0) 0.703 (3.0)
AU1P 0.720 (2.0) 0.718 (3.0) 0.702 (4.0) 0.653 (5.0) 0.726 (1.0) 0.599 (6.0)
AUNU 0.677 (3.0) 0.754 (2.0) 0.615 (6.0) 0.630 (5.0) 0.759 (1.0) 0.649 (4.0)
AUNP 0.720 (2.0) 0.718 (3.0) 0.702 (4.0) 0.653 (5.0) 0.726 (1.0) 0.599 (6.0)
AR-GM 3.3 2.3 5.1 4.9 1 4.4

1 Classification using SBP.
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compare the effects of new algorithms over the classifier performance. We think it is not
enough to evaluate the global performance whether it is not necessary to consider the
classifier performance at classes’ level too. Table 2 shows that not always the classifier
performance over minority or majority classes are favorable when the global measures
present a good performance of the classifier.

5 Conclusion

In this paper we study some commons global metrics (MAvG, MAvA, AU1U ,AU1P ,
AUNU and AUNP ) used to assessment classifier performance over multiclass imbal-
ance datasets. So we employ average accuracy of minority and majority classes (partial
metrics) to contrast the results, and average rank to facility the algorithms comparison.
The classifier used was a multilayer perceptron trained with the back-propagation algo-
rithm. The study was made over five multi-class imbalanced datasets and five popular
strategies to deal with the class imbalance problem.

The results obtained from five datasets used in this paper, show that not always is
enough to use the global metrics to compare algorithms (over these datasets), because
we observed that by one hand in some datasets these global metrics show well results
and at the same time the partial metrics exhibit a bad classifier performance over mi-
nority classes. This implies that global metrics indicates a good classifier performance
(on some of the datasets used in this work), but in some classes the classifier does not
perform well and this might to address us at wrong conclusions. On the other hand,
in some other datasets the global and partial metrics present good results, i.e., global
and partial metrics agree in results. These differences in their results suggest that global
metrics no always reflect the improving or damage of the strategies applied to deal
with the class imbalance problem on the classifier performance over minority classes,
so it is necessary to study other alternatives to assessment classifier performance over
multi-class imbalance datasets.

Future work will be primarily addressed to get in depth in this topic. Priority is
expand the research using more datasets and applies a significance statistical test to give
better confidence to the conclusions. Also it is necessary the study of new metrics which
help to assessment classifier performance over multi-class imbalance datasets and that
they reflect the changes caused for the strategies used to deal with class imbalance
problem on the classifier performance over the majority and minority classes.
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Abstract. This work is part of a project which main objective is to design and 
implement an electric wheelchair capable of climbing up stairs. The wheelchair 
is operated thru silent speech non-conventional control presented on this paper 
using electromyographic (EMG) signals which are fed to a multiple artificial 
neural network (ANN) system for pattern recognition. Mechanical design of the 
wheelchair, powering and sensing aspects are presented on additional papers. 
Electromyographic signals are captured from the patient’s anterior triangle of 
the neck muscle area using Surface Electromyography (SEMG) with electrodes 
in bipolar configuration. Silent speech commands from patient’s gestural 
movements of three, four and five phonetically different words are used to inte-
ract with a Graphic User Interface (GUI) for wheelchair navigation. The system 
was tested on five patients, achieving an overall recognition accuracy of 95% 
with 0.6s maximum response time. 

Keywords: Artificial Neural Network (ANN), Electromyography (EMG), IIR 
Digital Filtering, Digital Signal Processing, Discrete Wavelet Transform,  
Probabilistic Inference, Silent Speech. 

1 Introduction 

Bioelectric signal recognition using Electroencephalography (EEG), Electrocardio-
graphy (ECG) and Electromyography (EMG) has allowed the development of inter-
faces between machines and human’s electrical nature. Most of these interfaces have 
found different applications like robot control and language recognition/translation. 
Nowadays, one of the main intentions behind developing these kinds of non-
conventional interfaces is to allow disabled people, especially paraplegic and quadrip-
legic people, to control applications by which they can overcome their physical  
limitations. 

In the case of non-conventional interfaces based on Electromyography, some re-
search has been done at the University of Hawaii in association with the NASA Ames 
Research Center, where researchers developed a sub-auditory speech recognition 
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interface using electromyogram sensors [1]. Additional research has been carried out 
at the Karlsruhe Institute of Technology (KIT), where they have developed a speech 
recognition system based on myoelectric signals using seven EMG channels [2].  
Related work using bioelectric signals was also developed at Del Valle de Guatemala 
University as part of the ANIMA project [3]. ANIMA implements several  
non-conventional interfaces, one of them using Electrooculography to control a robot. 

Electromyographic signals can be obtained through Surface Electromyography 
(SEMG) using surface electrodes over the muscles of interest or Needle Electromyo-
graphy (NEMG) using needles that reach the muscles of interest penetrating the skin. 
The EMG signals are produced by ion exchange activity in the relaxation and contrac-
tion movements of muscle fibers that are activated by motoneurons (central nervous 
system cells) [4]. 

To be able to observe the potentials from a specific muscular region in human body 
(micro-volt scale), a comparison between two electrodes placed at the muscle region 
of interest and a reference electrode placed at a reference muscle area is needed. 

The usable frequency range of surface electromyograhic signals is 20 Hz to 500 Hz 
for most applications. Frequencies outside this range need to be filtered out to keep 
only the frequencies of interest. Amplification and digitization stages are required in 
our application in order to send information of the EMG signal (produced by the si-
lent speech gestural movements of the patient) to a computer for further processing. 

An artificial neural network is a mathematical or computational model inspired by 
various aspects of the structure and function of biological neural networks in order to 
emulate the behavior of the human brain. Artificial neural networks have a great abili-
ty to extract patterns from complex and rich data. The adaptive learning, tolerance 
fault and flexibility are the main advantages behind the idea of using artificial neural 
networks to perform pattern recognition [5]. On this work a single EMG channel was 
used to recognize what the patient is trying to say via a silent speech recognition sys-
tem. For the recognition system multiple feedforward multilayer artificial neural net-
works were used.  Probabilistic inference based on a multiple ANN system was used 
in order to add robustness to the application. 

2 Experimental Setup 

This work uses silent speech gestural movements from a specific set of phonetically 
different words in order to generate movement commands for wheelchair navigation. 
The set is composed of the Spanish words “Eco”, “Noviembre”, “Omega”, “Sigma”, 
“Teléfono” and “Uniforme”. The system implemented on this work consists of two 
main modules: Electromyographic Signal Module and Pattern Recognition Module. 

2.1 Electromyographic Signal Module 

Fig. 1 shows all the necessary stages for electromyographic signal capturing,  
conditioning and transmission to the Pattern Recognition module for further 
processing. 
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Fig. 1. Electromyographic Signal Module 

This module used three Ag/AgCl F-E9M-40 surface electrodes (from Grass Tech-
nologies) connected to the printed circuit board implemented on this work (Fig. 4). 
Surface Electromyography was chosen for simplicity and safety. Two surface elec-
trodes were placed in bipolar configuration on the anterior triangle of the neck muscle 
area and a reference electrode was placed on the left ear lobule (Fig. 2). 

 

  

Fig. 2. Surface electrodes placed on the area of interest for electromyographic module 

Preamplification Stage. Proper amplitude is needed before any analog or digital 
signal processing. Instrumental amplifiers offered by different manufacturers are 
commonly used to achieve this goal. For this stage an AD620 (from Analog Devices) 
instrumental amplifier was used. This IC offers up to 1000X adjustable differential 
gain, high-input impedance and high CMR (Common-Mode Rejection). The gain at 
this stage is adjusted using a precision potentiometer located on the implemented 
printed circuit board. 

Analog Filtering Stage. Analog filtering ensures that the EMG signal will not con-
tain any noise due to motion artifacts nor any unnecessary frequency components and 
guarantees a correct sampling for the digitizing stage. This filtering consists of an 
eight-pole anti-aliasing Butterworth filter with 1000 Hz cut-off frequency and a  
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fourth-pole high-pass Butterworth filter with 20 Hz cut-off frequency so that the sig-
nal’s DC component is eliminated. The output of this stage is an EMG signal in the 
hundreds of mili-volt range and still contaminated by the 60-Hz AC power-line noise. 

Amplification and Normalization Stage. Proper amplitude and voltage limits need 
to be guaranteed prior to digitization. An operational amplifier was used in order to 
add a DC offset voltage and to amplify the EMG signal. The output of this circuit is 
an EMG signal centered in the 0–5 V range so that it is compatible with the digital 
signal processor’s ADC (Analog to Digital Converter). Both the DC offset voltage 
and the gain are adjusted using precision potentiometers located on the implemented 
printed circuit board. A voltage limiter circuit built with two high-speed diodes was 
used to keep the EMG signal in the 0–5 V range. 

Digital Filtering (60-Hz) and Transmission Stage. Digitization and filtering was 
implemented on a dsPIC30F4013 running at 20 MIPS with 2.6 kHz sampling fre-
quency. Samples serve as input to a difference equation that implements a 60-Hz 
notch second order IIR digital filter. Two bytes are used to store each 12-bit sample of 
the EMG signal and a third byte is used as a checksum for the computer to detect 
corrupt data. The dsPIC microcontroller transfers data to the computer using a UART 
interface at 115,200 bps. 

2.2 Pattern Recognition Module 

Fig. 3 shows all the necessary stages for discretization, detection and recognition of 
silent speech gestural movements in order to generate commands to be sent to the 
Wheelchair Control Module (not addressed on this paper).  

 

Fig. 3. Pattern Recognition Module 
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Discretization Stage. Data discretization is the first step in which the EMG signal is 
modified once entered into the computer. The stage begins by performing data down-
scaling for graphical representation purposes and offset adjusting for further 
processing. Discretization seeks to separate the EMG data and divide it into data 
blocks in order to accelerate the detection process. On this work the block size was 
defined as 0.05 seconds of data, which was useful for distinguishing consecutive ges-
tural commands from consecutive syllables within a single gestural command. 

Data Detection Stage. Once the signal is divided into a set of blocks, the system 
performs a data detection method. The aim of this method is to classify all blocks as 
useful blocks (gestural data present) and not useful blocks (none gestural data 
present). This data detection method was implemented using confidence intervals 
based on signal amplitude. These confidence intervals were previously defined by 
preliminary tests and are calibrated according to the current signal data when the pa-
tient is not performing any gestural movements. This stage provides segments (a 
group of blocks) of a size corresponding to one second (the approximate time it takes 
a patient to gesticulate a word). Zero-filling is used to complete segments with less of 
one second of gestural data. 

Recognition Stage. This stage receives block segments provided by the data detec-
tion stage. These block segments are analyzed by multiple feedforward multilayer 
artificial neural networks (initial tests were performed using a single feedforward 
multilayer artificial neural network and final tests were performed using 25 different 
artificial neural networks). A fifth-order Daubechies Discrete Wavelet Transform was 
repeatedly applied to the data as a data reduction technique, in order to reduce the 
amount of data in the EMG signal. The output of this transform was fed into the mul-
tiple artificial neural network system. All artificial neural networks design (number of 
hidden layers and artificial neurons per layer) was based on heuristic methods. 

Artificial neural networks provide outputs which are analyzed by a probabilistic in-
ference method based on probability estimates of success and failure of each neural 
network for each command. This method seeks the probability for a sample to be or 
not to be a specific command, so the Bayes Theorem was applied to the specific case 
of a binary partition. The model used to determine the probability for a sample being 
a specific command is given by (1). P | , , … , ∏ |∏ | ∏ |  (1) 

Where,  represents the probability that a sample is a command (depends solely 
on the number of commands) and |  represents the observations obtained by 
the ‐  artificial neural network for the command . These observations consist of 
a group of independent events. Once the method has computed the probability of each 
command, a rule indicating the acceptance is carried out to determine whether the 
sample corresponds to a valid command or to an unidentified command. The rule of 
acceptance is based on individual probability magnitude. 



 Non-conventional Control and Implementation of an Electric Wheelchair 349 

System Training Stage. One of the main tasks is the system training. This stage is 
used to train the artificial neural networks which perform pattern recognition as ex-
plained in the previous stage. Supervised learning was chosen, which required the 
recording of patient samples.  System training is personalized, so it was necessary to 
record samples from all patients individually. Several samples were recorded for each 
gestural command, between 250 and 400 samples per command depending on the 
patient’s difficulty to produce gestural movements. A session-independent training 
method as explained in [6] was chosen to obtain robust pattern recognition. 

2.3 Graphic User Interface 

The set of gestural commands is used to interact with a Graphic User Interface (GUI) 
in order to navigate through a menu of options representing predefined instructions to 
move the wheelchair. This GUI was implemented using Python language and consists 
of several screens with either three, four or five options. 

The option set allows tasks like rotating the wheelchair at a desired angle and mov-
ing forward, backwards and sideways. The option set also allows the use of a camera 
so the patient can select a destination point for the wheelchair to move with obstacle 
avoidance (camera navigation algorithm not presented on this paper). 

3 Results 

Fig. 4 shows the implemented printed circuit board for the Electromyographic Signal 
Module. All the important components and terminals are properly identified over the 
PCB image. 

 

Fig. 4. Electromyographic Signal printed circuit board 

Fig. 5 shows oscilloscope images for electromyographic signals after the preampli-
fication stage (in blue) and the normalization and amplification stage (in yellow) for 
two different gestural commands: “Eco” (left image) and “Noviembre” (right image).  
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5 Future Work 

Future research has to be done to test the system on handicapped subjects (paraplegic 
and quadriplegic people). Additional gestural commands can be tested so that the 
system might be useful for more complex interaction applications. Analyzing the 
possibility for migrating the ANN system running on the laptop to an FPGA-based 
system would be of interest in terms of cost, area, weight, response time and portabili-
ty. The Electromyographic Signal Module could be redesigned to include additional 
signal channels so that there would be more useful data for further processing. 

Satisfactory results were obtained for a small vocabulary as used on this work, but 
exploring similar systems using other approaches like HMM or SVM for EMG pat-
tern recognition would be interesting in order to evaluate the performance for exten-
sive vocabularies in the case of other applications which may require much more than 
a few words. 

Genetic algorithms can be used instead of heuristic methods for ANN design in  
order to evaluate possible accuracy improvement. 
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Abstract. In this paper it is presented a methodology for tackling the
problem of question answering for reading comprehension tests. The im-
plemented system accepts a document as input and it answers multiple
choice questions about it. It uses the Lucene information retrieval en-
gine for carrying out information extraction employing additional auto-
mated linguistic processing such as stemming, anaphora resolution and
part-of-speech tagging. The proposed approach validates the answers, by
comparing the text retrieved by Lucene for each question with respect
to its candidate answers. For this purpose, a validation based on textual
entailment is executed. We have evaluated the experiments carried out
in order to verify the quality of the methodology proposed using two
corpora widely used in international forums. The obtained results show
that the proposed system selects the correct answer to a given question
with a percentage of 33-37%, a result that overcomes the average of all
the runs submitted in the QA4MRE task of the CLEF 2011 and 2012.

Keywords: Question answering system, reading comprehension, infor-
mation retrieval, textual entailment.

1 Introduction

Reading comprehension is a task associated with the ability of a reader to under-
stand the main ideas written in a given text. This understanding comes basically
from the knowledge that is triggered to the reader by observing the different
words that appear in the text. Analyzing a text is quite different than just read-
ing it. The goal of reading comprehension is to understand the main ideas implied
in the text. With the aim of evaluate the level of reading comprehension, there
exist tests that ask the students to read a story or article and answer a list of
questions about it. See Figure 1 in which an example of reading comprehension
test is presented.

Answering a question about a given text in an automatic way to evaluate the
understanding of that text, is a very difficult task that oftenly has been tackled
in the literature through some Natural Language Processing (NLP) techniques,
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Fig. 1. Reading Comprehension test document and question

such as Question Answering (QA). Information retrieval and QA are related,
however, QA assumes that given a query, the result must be the correct answer
of that question, instead of a number of references to documents that contain
the answer.

In this paper we present some experiments for exploring question answering
architectures that can be applied to reading comprehension tests as an evaluation
method for language understanding systems (machine reading systems). Such
tests take the form of standardized multiple-choice diagnostic reading skill tests.

The main idea behind QA systems for reading comprehension tests is to an-
swer questions based on a single document. This approach is different from that
of traditional QA systems, in which they have a very large corpus for searching
the requested information, which implies in some cases a very different system
architecture.

There exist a seminal work on QA for reading comprehension tests written
in the late 90’s by Hirschman which describes an automatic reading compre-
hension system, Deep Read. The system receives as input a document, and
answers questions about it. The authors designed a corpus with 60 test docu-
ments, and each document contained five associated questions, along with their
correct answers. In a first approach, the system used basic techniques based on
pattern matching (bag of words), enriched with automated linguistic processing
(stemming, named entity identification, semantic class identification, and pro-
noun resolution) for extracting the sentence containing the answer. The system
reported between 30-40% of precision [1].

Other studies were conducted on this research line using the same corpus. The
work presented by Charniak [2], for instance, apply techniques that achieve small
improvements over the Hirschman’s research work. These techniques range from
simple (give higher weights to verbs in the answer selection) to more complex (use
specific techniques to answer specific types of questions). In the Riloff’s work
[3], a rule-based system is presented, Quarc. It uses heuristic rules to look for
lexical and semantic clues in the question and the answer. This system finds the
correct answer 40% of the time. Finally, Hwee Tou Ng [4] presents an approach
based on machine learning techniques, in particular decision trees algorithms,
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with a set of features extracted from the corpus. This was the first work that
achieved competitive results in the task of QA for reading comprehension tests
using these techniques (39% accuracy).

The QA for reading comprehension tests field has been inactive for a long
time, due to the lack of agreement in the way the systems evaluation should be
done [5] . In 2011, and later in the 2012, the CLEF conference1 proposed a QA
task for Machine Reading (MR) systems evaluation called QA4MRE. The task
consists of reading a document and identifying answers for a set of questions
about the information that is expressed or implied in the text. The questions
are written in the form of multiple choices; each question has 5 different options,
and only one option is the correct answer. The detection of the correct answer is
specifically designed to require various types of inference, and the consideration
of prior knowledge acquired from a collection of reference documents [6,7].

The QA4MRE task encourage the interest in this research line, because it pro-
vides a single evaluation platform for the experimentation with new techniques
and methodologies towards giving a solution to this problem. In this sense we
can take the systems presented in this conference as state-of-the-art work for
this research field.

The rest of the paper is organized as follows. Section 2 describes the System
Architecture. Section 3 presents the evaluation results in a collection of docu-
ments of the QA4MRE task at CLEF 2011 and 2012, and compares these results
against those reported in literature. Finally, Section 4 presents the conclusions
obtained, so that it outlines some future work directions.

2 System Architecture

The proposed architecture is made up of three main modules. Each of these
modules are described in the following subsections.

2.1 Document Processing

The document processing module consists of three sub-modules: an XML Inter-
preter, a Query Analyzer, and a Document Pre-Processor. A detailed description
of each submodule follows.

XML Parser: The XML parser receives as input a corpus structured in XML
format which contains all the documents of the reading comprehension test,
along with their respective questions and multiple choice answers. The XML
parser extracts the documents, questions and associated answers. It stores the
questions and answers identifying them according to the document to which they
belong in order to be used in the following processes.

1 The Cross-Lingual Evaluation Forum: http://www.clef-initiative.eu
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Query Analyzer: This module receives as input the question set associated
with the documents. A Part-Of-Speech (POS) tagger is applied to the questions
in order to identify the “question keywords” (what, where, when, who, etc.),
and the result is passed to the hypothesis generation module (this module will
be explained more into detail in Section 2.2).

Document Pre-Processing: This module has the task of performing anaphora
resolution for the documents associated with the questions. It has been ob-
served that applying anaphora resolution in QA systems improves the results
obtained, in terms of precision [8]. In the experiments carried out in this paper,
the JavaRAP 2 system was used for anaphora resolution. It resolves third person
pronouns, lexical anaphora, and identifies pleonastic pronouns.

Given that JavaRAP does not resolve anaphora of first-person pronouns, we
added a process for the resolution of these cases. The process added is as follows:

1. Identify the author of the document, which is usually the first name in the
document. For this purpose, the Stanford POS tagger 3 was used.

2. Each personal pronoun in the first person set PRP={“I”, “me”, “my”, “my-
self”} generally refers to the author.

3. Replace each term of the document that is in the PRP set, by the document
author name identified in step 1.

Take the following text for showing how this procedure works:
Emily Oster flips our thinking on AIDS in Africa. So I want to talk to

you today about AIDS in sub-Saharan Africa. I imagine you all know something
about AIDS

Step 1: Emily NNP Oster NNP flips VBZ our PRP$ thinking NN on IN
AIDS NNP in IN AfricaSo NNP.

In this case, the 2 first terms that have the NNP label are selected to identify
the author. Author = Emily Oster.

Step 2: I PRP want VBP to TO talk VB to TO you PRP today NN about IN
AIDS NNP in IN sub-Saharan NNP Africa NNP . . I PRP imagine VBP
you PRP all DT know VBP something NN about IN AIDS NNP . ..
In these lines two words are identify within the defined PRP set.

Step 3: So Emily Oster want to talk to you today about AIDS in sub-Saharan
Africa. Emily Oster imagine you all know something about AIDS.

Here the words within the PRP set are replaced by the name of the author
of the document.

2 http://wing.comp.nus.edu.sg/ qiu/NLPTools/JavaRAP.html
3 http://nlp.stanford.edu/software/tagger.shtml
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2.2 Information Extraction

The information extraction module consists of the following two submodules: Hy-
pothesis Generation and Information Retrieval. Both submodules are described
as follows.

Hypothesis Generation. This module receives as input the set of questions
with their multiple choice answers, which were previously processed in the mod-
ule Questions Analysis. In this work we define hypothesis as the concatenation
of the question with each of the possible answers. This hypothesis is intended to
become the input to the Information Retrieval (IR) module, i.e., the query. In
order to generate the hypothesis, first the “question keyword” is identified and
subsequently replaced by each of the five possible answers, thereby obtaining five
hypotheses for each question. The process is illustrated in the following example:

Question: Where was Elizabeth Pisani’s friend incarcerated?

Answer 1: in the Philippines
Answer 2: in the Taiwan Island
Answer 3: in the Islands of Malaysia
Answer 4: in the Greater Sunda Islands archipelago
Answer 5: in the Lesser Sunda Islands archipelago

From the previous question and their possible answers, we obtain the following
hypotheses:

hypothesis 1: in the Philippines was Elizabeth Pisani’s friend incarcerated?
hypothesis 2: in the Taiwan Island was Elizabeth Pisani’s friend incarcerated?
hypothesis 3: in the Islands of Malaysia was Elizabeth Pisani’s friend incar-
cerated?
hypothesis 4: in the Greater Sunda Islands archipelago was Elizabeth
Pisani’s friend incarcerated?
hypothesis 5: in the Lesser Sunda Islands archipelago was Elizabeth Pisani’s
friend incarcerated?

The benefit of using these hypotheses as queries for the IR module is to search
passages containing words that are in both, the question and the multiple-choice
answer, instead of search passages containing words from the question and the
answer, independently.

Information Retrieval. The IR module was built using the Lucene4 IR library.
It is responsible for indexing the document collection, and for the further passage
retrieval, given a query. Each hypothesis obtained in the hypothesis generation
module is processed in order to identify the query keywords, removing stop words
(using the stop word list of python NLTK5). Every processed hypothesis is sent
to the IR module.

4 http://lucene.apache.org/core/
5 http://nltk.org/
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The IR module returns a relevant passage for each hypothesis. This passage is
used as a support text to decide whether or not the hypothesis can be the right
answer. For each hypothesis the first passage returned is taken (only one), which
is considered the most important one. This process generates a pair “Hypothesis
+ Passage (H-P )”, along with a lexical similarity score calculated by lucene.

2.3 Answer Validation

The answer validation module aims to assign a score based on the textual entail-
ment judgment to the pair H-P generated in the Information Retrieval module.

It has been proven that the textual entailment judgment may improve the
performance of the hypothesis validation, given a support text, which in this
case is the retrieved passage [9,10,11]. The aim of this module is to obtain the
textual entailment judgment over all the H − P pairs that it receives as input.
In order to determine whether or not the passage P implies an hypothesis H ,
we implemented an approach based in an research work[12] presented in the
Crosslingual Textual Entailment task of the SEMEVAL-20126. In this work the
set provided in that conference is used as a training data. The textual entailment
judgment is performed over the hypotheses-passages set as test data.

For this particular problem all the previously developed models were tested,
determining that the best performance is obtained when the following 10 fea-
tures are used: the number of n-grams of words and characters (n = 1, · · · , 5),
which share each pair of sentences. In addition, the length of both sentences are
included to the feature set, since it has been proven to help to obtain the textual
entailment judgment. Since this problem can be seen as a classification one, after
several experiments, it was decided to use a 4-layer neural network, using the
WEKA7 data mining tool.

2.4 Answer Selection

For this last phase of the system, the method shown in Algorithm 1 is developed
based on the following rules:

1. Check the entailment judgment between the hypothesis and the recovered
passage. If the judgment is “no entailment”, then this algorithm discards
this answer, in other case, the lexical similarity score obtained by lucene
and the prediction percentage given by the textual entailment judgement
are added.

2. For each question, the answer obtaining the highest sum of scores is selected
as the correct answer.

The reason for discarding the hypothesis with “no entailment” judgment is that
even thought the IR module returned a passage for the hypothesis, this one does

6 http://www.cs.york.ac.uk/semeval-2012/task8/
7 http://www.cs.waikato.ac.nz/ml/weka/
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Algorithm 1. AnswerSelection

Input: Hypotesis
Input: Support Text
Input: lucene score : Lexical similarity score given by lucene
Input: te prediction: Textual entailment Prediction percentage given by weka
Input: te judgment : Textual entailment judgment
Output: List of correct answer for each question

1 foreach pair (ak = Hypotesisk + Support textk) di qj
2 where i = 1 . . . 12, j = 1 . . . 10, k = 1 . . . 5 do
3 if judgment = “no entailment′′ then
4 discards that possible answer;
5 else
6 score[di, qj , ak] = lucene score+ te prediction;

7 foreach i, j, k in score do
8 if mayor[i, j] < score[di, qj , ak] then
9 mayor[i, j] = score[di, qj , ak];

10 mayorId[i, j] = k;

11 foreach i, j in di qj do
12 return i, j, mayorId[i,j]

not share sufficient information to support the selection of that hypothesis as the
correct answer to the question. The use of the lexical similarity score obtained
by lucene allows the system to determine which answer is more similar with
its support text. The textual entailment prediction value obtained through the
Weka tool adds extra information when the correct answer is selected.

3 Experimental Results

This section describes the datasets used for evaluating the methodology proposed
in this paper. Additionally, the results obtained in the experiments carried out
are reported and discussed.

3.1 Corpus Description - QA4MRE Task

In order to determine the performance of the system proposed in this paper we
used the corpora provided in the QA4MRE task of the CLEF 2011 and 2012.
The features of the two test datasets are detailed in Table 1.

3.2 Obtained Results and Error Analysis

The main measure used in this evaluation campaign is c@1, which is defined as
shown in equation 1. This measure is defined in the QA4MRE task at CLEF
2011 with the purpose of allowing the systems to decide whether or not to answer
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Table 1. Features of the two test datasets (QA4MRE 2011 and 2012 tasks)

Features 2011 2012

1. Topics 3 4
2. Topic details Climate Change, Climate Change,

Music & Society, Music & Society,
and AIDS Alzheimer and AIDS

2. Reading tests (documents) 4 4
3. Questions per document 10 10
4. Multiple-choice answers per question 5 5
5. Total of questions 120 160
6. Total of answers 600 800

a given question. The aim of this procedure is to reduce the amount of incorrect
answers, maintaining the number of correct ones.

c@1 =
1

n
(nR + nU

nR

n
) (1)

where:
nR: number of correctly answered questions.
nU : number of unanswered questions.
n: total number of questions.

Table 2 presents the obtained results. It can be observed that in both data sets,
the 2011 data set and the 2012 data set, the average over all best runs and over
all runs were exceeded.

Table 2. Comparison of the results obtained by our QARCT system and the Average
Scores over all runs and over best runs

Description 2011 2012

QARCT 0.33 0.37
Avg. over all best runs 0.28 0.32
Avg. over all runs 0.21 0.26
Random baseline 0.20 0.20

For evaluation purposes of this task and given the evaluation measure, it is
considered that is better do not give answer at all than provide an incorrect
answer. In that sense, we analized the number of questions that have been incor-
rectly answered. According to this error analysis, it was considered important to
experiment with other passages division models: using n sentences rather than a
single one, defining a window of n words that should include the passage. Unfor-
tunately, this experiment did not improve the precision of the system, therefore
it was discarded.
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After an extensive review of the passages retrieved by each hypothesis, it was
noticed that the IR module is not consistent returning, in the first place, the
passage containing the answer to the question, but instead the passages were
returned sometimes in the second, third or even in the fifth place. This issue
makes the validation step useless for these cases. It is therefore necessary that
the IR module retrieves a 100% of the correct passages. As a possible solution it
is planned to extend the number of the recovered passages from 1 to 5, for each
hypothesis.

Another problem found in the Answer Selection module is that the lexical
similarity score given by lucene is not enough to capture the similarity between
the hypothesis and the support text, when they do not share the same words.
To overcome this problem, two things can be done: 1) To include a query ex-
pansion module trying to add synonyms, hyperonyms, etc, in order to obtain a
higher lexical similarity, and 2) To add a semantic similarity algorithm which
can discover the degree of similarity between two sentences, even though they do
not share the same words exactly. For example in the hypothesis: “she esteems
him is Annie Lennox ’s opinion about Nelson Mandela”, the recovered passage
is “Everyone one in the world respects Nelson Mandela, everyone reveres Nelson
Mandela”; but the score assigned by lucene is too small and it does not select
that answer as the correct one. The addition of semantic similarity score will
help to raise the score of this two phrases and select the correct answer because
it will probably find the relation between the words “esteems”, “revers” and
“respect”.

4 Conclusion and Future Work

In this paper we have presented a complete methodology for tackling the problem
of question answering for reading comprehension tests. Additional modules can
be added to this methodology, or maybe a refinement of each step presented may
be done. However, we consider that the proposal is complete in terms of such
modules needed in order to solve the aforementioned problem.

The implementation of the first person anaphora resolution algorithm helped
Lucene to find more precise information for retrieving more accurately those
passages that contain the possible answer. This type of anaphora resolution was
not implemented in the original software used in the experiments, therefore, we
consider this contribution very important in this research work.

By adding the textual entailment module to the basic measures based on
lexical similarity, it allowed to correctly answer a higher number of questions.
Additionally, this module allowed to determine whether or not to answer the
given question, which have a high impact in the final scores of the proposed
system.

We have compared the performance of the system presented in this paper
with those reported in the QA4MRE task of CLEF 2011 and 2012. We observed
that the obtained results overcome the average of the runs submitted to that
conference. There still is more research to do as future work.
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It is planned to analyze the use of Machine Learning techniques for the answer
validation module. For this purpose, it is necessary to determine the features
that fulfills an answer when it is correct or incorrect. Based on these features, a
classifier should be trained in order to obtain a model capable of identify whether
or not an answer is correct or not. Additionally, we are considering to implement
semantic similarity measures with the aim of improving the level of matching
between the hypothesis and the possible passages of the target text, when these
two sentences do not share the exactly same words, but those that are semantic
similar.
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Determining the Degree of Semantic Similarity

Using Prototype Vectors�

Mireya Tovar1,2, David Pinto2, Azucena Montes1,3, and Darnes Vilariño2

1 Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET), Mexico
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Abstract. Measuring the degree of semantic similarity for word pairs
is very challenging task that has been addressed by the computational
linguistics community in the recent years. In this paper, we propose a
method for evaluating input word pairs in order to measure the degree of
semantic similarity. This unsupervised method uses a prototype vector
calculated on the basis of word pair representative vectors which are
contructed by using snippets automatically gathered from the world wide
web.

The obtained results shown that the approach based on prototype
vectors outperforms the results reported in the literature for a particular
semantic similarity class.

Keywords: Semantic similarity, hierarchical relationships, prototype
vectors.

1 Introduction

With the exponential growth of the information contained in the World Wide
Web it arises the need for automating user processes such as searching, informa-
tion retrieval, question answering, etc. One of the main problems of this automa-
tion is that much of the information remains unstructured, i.e., it is written in
natural language and its ambiguity is difficult to be automatically processed by
machines. The Semantic Web attempts to solve these problems by incorporating
semantic to the web data, so that it can be processed directly or indirectly by
machines in order to transform it into a data network [1]. For this purpose, it has
been proposed to use some knowledge structures such as ontologies for giving se-
mantic and some structure to unstructured data. Among other applications, an
ontology is a lexical/semantic resource that allows to perform semantic annota-
tion of web pages contents. Thus, we consider very important to investigate the
manner of evaluate the quality of these kind of resources that are continuously
been used in the framework of semantic web.
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Gruber [2] defines an ontology as: “an explicit specification of a conceptu-
aliation”. An ontology includes classes, instances, attributes, relationships, con-
straints, rules, events and axioms. In many cases, ontologies are structured as
hierarchies of concepts modeled either by means of part-whole or class-inclusion
semantic relationships. In particular, the class-inclusion relationships are also
named is-a, hyponymy or subsumption. There exist, others type of semantic re-
lationships that are not hierarchical such as synonyms, antonyms, etc, however,
in this paper, we focus the experiments in the evaluation of semantic hierarchical
relationships.

There are two types of nodes in an ontology: concepts and instances [3], but
in this paper, we are particularly interested in determining the degree of simi-
larity between a given pair of instances of the ontology that share a semantic
hierarchical relationship.

A number of diverse classification methods have been addressed for identifying
relationships between concepts or instances [4], [5] and [6]. For instance, for
identifying whether or not a given instance (a pair of words flower :tulip) belongs
to a specific relationship (class-inclusion) [7].

Other approaches identify the degree of semantic similarity between a set of
word pairs that is known that they belong to a certain class (semantic relation-
ship) [8].

The latter case is the matter of this research work and clearly this problem
goes beyond of identifying the membership of an instance in a given class, that
is, to detect the variability of the instance with respect to the class.

The remaining of this paper is structured as follows. Section 2 describes with
more detail the problem of measuring the degree of semantic similarity for hi-
erarchical relationships. The state of the art is also discussed in Section 2. In
Section 3, we present the model proposed for addressing the problem afore-
mentioned. Section 4 show and discuss the results obtained by the presented
approach. Finally, in Section 5 the findings and the future work are given.

2 Degree of Semantic Similarity

Even if there exist a number of widely used semantic relationships (see Table 1),
in this paper we consider only two classes: Class-Inclusion and Part-Whole for
determining the degree of semantic similarity between two instances of an on-
tology.

The degree of semantic similarity involves the process of determining a ranking
for pairs that belong to the same semantic class. For instance, let us consider
the following word pairs: {dog : bark}, {cat : meow} and {floor : squeak} that
share the ENTITY:SOUND semantic relationship. The intuition is that the first
pair is more similar to the second than with the third one. In this sense, it is
very important to construct formulae that allows to rank word pairs sharing
the same semantic similarity. In this paper, we analize techniques for obtaining
such ranking by means of prototype vectors. For the experiments carried out, we
have considered only two semantic relationships: class-inclusion and part-whole.
A description of these two relationships follows.
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Table 1. High-level classes and instances examples that belong to some subclass [9]

High-level class Subclass Instances examples

1 CLASS-INCLUSION Taxonomic flower:tulip
2 PART-WHOLE Object:Component car:engine
3 SIMILAR Synonymity car:auto
4 CONTRAST Contradictory alive:dead
5 ATTRIBUTE Item:Attribute beggar:poor
6 NON-ATTRIBUTE Item:Nonattribute harmony:discordant
7 CASE RELATIONS Agent:Recipient doctor:patient
8 CAUSE-PURPOSE Cause:Effect joke:laughter
9 SPACE-TIME Location:Action/Activity school:learn

10 REFERENCE Sign:Significant siren:danger

The Class-Inclusion relationship defines a parent-child relationship (taxon-
omy, e.g. flower: tulip), whereas part-whole relationship divides a concept as
a whole in different parts (e.g engine:car). Both relationships, as mentioned
before, are considered to be hierarchical [10], [11], [12]. The subclasses of the
Class-Inclusion and the Part-whole classes are shown in Table 2 and Table 3, re-
spectively. Syntactic patterns for each subclass, together with instance examples
are also presented in these Tables.

Table 2. The Class-Inclusion class: subclasses, syntactical patterns and examples of
instance pairs that belong to each subclass

Subclass Syntactical patterns Examples of instances (Y : X)

1b Functional Y functions as an X ornament:brooch, weapon:knife, ve-
hicle:car

1c Singular Collective a Y is one item in a col-
lection/group of X

cutlery:spoon, clothing:shirt, ver-
min:rat, medicine:asprin

1d Plural Collective Y are items in a collec-
tion/group of X

groceries:eggs, re-
freshments:sandwiches,
drugs:amphetamines

1e ClassIndividual Y is a specific X queen:Elizabeth, river:Nile,
city:Berlin

One of the most important forums that have tackled the problem of identifying
the degree of semantic similarity is Semeval1. There have been some teams that
presented different approaches for this particular problem. Thus, the state of the
art is scarce but it follows.

In [13] it was proposed two systems that tackled the problem. Their method-
ology employed lexical patterns generated from the contexts in which the word
pairs occurs. They constructed patterns using the example word pairs for each
subclass (see the third column of Table 2). They used a corpus with 8.4 million

1 http://www.cs.york.ac.uk/semeval-2012/
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Table 3. The Part-Whole class: subclasses, syntactical patterns and examples of
instance pairs that belong to each subclass

Subclass Syntactical patterns Examples of instances
(X : Y )

Object:Component a Y is a part of an X car:engine, face:nose,
novel:epilogue, tur-
tle:carapace

Collection:Member X is made from a collection
of Y

forest:tree, anthol-
ogy:poem, fleet:ship,
medley:melodies

Event:Feature Y is typically found at an
event such as X

rodeo:cowboy, ban-
quet:food, wedding:bride

Activity:Stage X is one step/action/part of
the actions in Y

shopping:buying, plant-
ing:gardening, kick-
off:football

Item:Topological Part Y is one of the ar-
eas/locations of X

room:corner, moun-
tain:foot, table:top

Object:Stuff X is made of / is comprised
of Y

glacier:ice, salt:sodium,
lens:glass, parquet:wood

Item:Distinctive Nonpart X is devoid of / cannot have
Y

tundra:tree, horse:wings,
perfection:fault, soci-
ety:pariah

Item:Ex-part/Ex-possession an X once
had/owned/possessed Y
but no longer

apostate:belief,
wood:splinter, pris-
oner:freedom, metal:dross

documents from Gigaword and 4 million articles from Wikipedia. They ranked
word pairs using a model predicting the probability that they belong to the input
relationship. They proposed two approaches for ranking the word pairs of the
subclasses: The UTD-NB approach used a probabilistic model, whereas UTD-
SVM employed a SVM-rank model to rank the word pairs. Their performance
was interesting, achieving good results reported in the Semeval conference [8].

In [14] it was proposed three unsupervised approaches that used the Gloss
Vector measure found in the package WordNet::Similarity. The author expanded
the vector of glosses by using the relationships associated to each word pair. Ad-
ditionally, superglosses have been produced. The cosine measure was employed
for ranking the results obtained for each pair of words. The corpus used was
the complete collection of glosses and examples from WordNet 3.0, i. e., 118,000
glosses.

In [15] a supervised approach has been proposed. They used lexical, semantic,
WordNet-based and contextual features. In order to rank the obtained results,
the cosine measure was employed. Moreover, they used a very restricted corpus
for testing their approach in comparison with the other teams of the competition.

The approach presented in this paper is described in the following section.
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3 A Prototype-Based Model

In order to calculate a ranking for a set of word pairs that belong to the same se-
mantic relationship, we have constructed a prototype vector for this relationship.
This prototype is calculated as the average value among all the representative
vectors for each word pair. We assume that the prototype vector (also known as
the class centroid) has enough quality for representing such semantic relation-
ship. Thus, the final ranking is calculated by means of the distance that exist
between each word pair representative vector and the prototype vector.

The representative vectors for each word pair are calculated in the basis of
information gathered from the Web by using a search engine2. Thus, we obtain
snippets that contain the two words of the given pair. All the snippets for each
word pair are analized for constructing a representative vector using the TF-
IDF weighting schema. In Figure 1 we show the unsupervised approximation
for determining the degree of instance prototypicality within a given subclass.
As we mentioned before, we only considered two classes (class-inclusion and
part-whole), and 12 (n = 12) subclasses, as shown in Tables 2 and 3.

Fig. 1. The proposed architecture for calculating the degree of semantic similarity

The architecture proposed presents the following phases:

– Gathering the corpus. The corpus consists of short texts (snippets) containing
the keywords of the instances (word pairs). We used the Google API for
gathering such snippets from the world wide web.

– Building the feature vectors. Using the vocabulary of the corpus, we built the
feature vectors for each subclass. Normally, each subclass contain between 27
to 31 instance pairs, and the feature vector contains frecuency-based lexical
features of the terms associated the instance pairs. Let V the vocabulary
of the whole corpus, and −→pi the representative vector for the word pair
pi. Thus, −→pi = {wi,1, wi,2, · · · , wi,|V |}, where wi,k is the weight of the k-th
element of the vocabulary in the −→pi representative vector of the word pair pi.

2 In this case we used Google.com
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This weight is calculated using two formulae: term frequencies (TF) and the
combination of term frequency and inverse document frequency (TF-IDF).

– Constructing the prototype vector. The prototype vector is constructed by
considering the mean value among all the feature vectors for all the pos-
sible word pairs in a given subclass. Thus, this prototype vector may be
seen as the centroid of the subclass. Formally, for each pi ∈ S with i =
{1, · · · , num of pairs}, where S is the current subclass, the centroid μS of
this subclass is calculated as shown in Eq.1.

−→μS = {μS,1, μS,2, · · · , μS,|V |}
with μS,k = 1

num of pairs

∑num of pairs
i=1 wi,k (1)

– Calculating the ranking We apply different distance measures between the
feature vectors and their corresponding prototype vector for determining a
score that indicates the degree of representativeness of the instance pairs
with respect to the whole subclass. Thus, the closer a representive vector to
the centroid, the higher the ranking of representativeness. In other words,
we assume that those word pairs that are closer to the subclass prototype
vector are more representative for this subclass.
In order to measure the distance among the representative vectors and their
corresponding prototype vector, we employed two classical distance mea-
sures: Euclidean (Equation 2) and Manhattan (Equation 3).

d(−→pi ,−→μS) =
‖−→pi −−→μS‖

|V | (2)

d(−→pi ,−→μS) =

∑|V |
k=1 |pi,k − μS,k|

|V | (3)

– Evaluating the ranking. In order to determine the performance of the pre-
sented approach, we have used the MaxDiff evaluation measure. MaxDiff is
an analitycal techique that indicate the preference that a respondent has for
a set of alternatives [16], [17]. This measure provides an average evaluation
result, when evaluating the score of each pair of instances of the subclass
with respect to a given gold standard. This reference of evaluation (gold
standard) is built as follows. The respondents are asked to evaluate four or
five pairs of words in an specified subclass and later they choose the best
and worst pair of instance prototipical of the relationship [8].

4 Experimental Results

In this section we present the results obtained with the proposed approach. These
results are compared with those reported in [8]. We have reported only the 12
subclasses that we have analized in this paper. We first describe the dataset used
in the experiments, and later the obtained results are presented and discussed.
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4.1 Dataset

Tables 4 and 5 present the number of word pairs to be evaluated for each sub-
class, the number of possible swaps (reversals), and examples of word pairs. The
reversals were added to the subclass with the aim of determining how efficient
are the approaches that consider these reversals pairs. In particular, with rela-
tionships that are completely directional such as Part-Whole, but also for other
type of simetric classes, such as synonymy.

An example of a reversal word pair could be dogs:animals and animals:dogs
of the Part-Whole class and the Plural Collective subclass. The ranking for each
one should be different because the relationship is valid in only one direction. In
this example, the correct word pair should be animals:dogs, because the represen-
tative pattern “Y are items in a collection/group of X” fulfills the relationship
semantics when the pattern is used.

Table 4. The Class-Inclution class: subclasses, number of pairs and examples of
instance pairs that belong to each subclass to evaluate

Subclass Number
of pairs

Reversals Example

Functional 41 6 instrument:clarinet, fuel:gasoline, seat:stool,
seat:chair, lubricant:oil, home:tree

Singular Collective 42 5 internet:website, book:novel, bever-
age:water,fruit:apple, art:sculpture

Plural Collective 43 5 birds:crows, colors:blue, silverware:spoon,
dogs:animals animals dogs

ClassIndividua 33 2 horse:Palomino, snake:Cobra, Earth:planet,
king:Arthur, university:Yale

4.2 Results

We gathered approximately 264,000 snippets from Internet in order to made up
the reference corpus for the 12 subclasses to be evaluated. Table 6 and 7 show the
average performance obtained by the four different runs executed in the exper-
iments using the Class-Inclusion and the Part-Whole classes, respectively. The
other results correspond to those reported in the literature. In particular, the run
named Euclidian-TF uses TF as a weighting schema, employing the Euclidian
distance measure for ranking the degree of semantic similarity. Euclidian-TF-
IDF uses TF-IDF as a weighting schema in combination with the Euclidian
distance measure. The runs named Manhattan-TF and Manhattan-TF-IDF
are similar but they use the Manhattan distance measure instead of the Euclidian
one.

From the obtained results we can observe that there is not a significative
difference between the two distance measures employed. Actually, it can be seen
that the Euclidean distance generally improves the Manhattan one. This means
that the snippets that correspond to a given word pair that were gathered from
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Table 5. The Part-Whole class: subclasses, number of pairs and examples of instance
pairs that belong to each subclass to evaluate

Subclass Number of
pairs

Reversals Example

Object:Component 44 5 house:room, recipe:ingredient,
fin:fish, motor:boat, eye:lashes

Collection:Member 38 4 flock:sheep, album:songs, para-
graph:word, herd:antelopes

Event:Feature 39 3 funeral:coffin, church:preacher, bap-
tism:priest, competition:athlete

Activity:Stage 40 5 soaping:showering, stitching:sewing,
purling:knitting, tennis:volleying

Item:Topological Part 43 4 tree:root, river:bed, coast:east,
bush:roots

Object:Stuff 43 5 boots:leather, lawn:grass,
box:cardboard, sock:thread

Item:Distinctive Nonpart 39 4 forest:sand, hearing:deaf,
pride:embarrassment, venus:life

Item:Ex-part/Ex-possession 42 4 corpse:life, repair:break, note-
book:paper, widow:husband

Table 6. Results for CLASS-INCLUSION Class

Approaches MaxDiff

Euclidian-TF 39.15
Manhattan-TF 38.85
UTD-NB 37.60
UMD-V1 35.60
UMD-V2 33.13
UTD-SVM 31.58
Euclidian-TF-IDF 31.55
BUAP 31.43
Random 30.98
Manhattan-TF-IDF 30.60
UMD-V0 29.23

the Internet are quite similar because the representative vectors are close to the
prototype vector (it is a dense group of representative vectors). This behaviour
is valid for approximately 39% of the word pairs (for the Class-Inclusion class),
whereas this percentage was approximately 30% for the Part-Whole class. The
rest of word pairs need to be tuned in order to retrieve more representative
snippets, or a new document collection which may be used for the same purpose.

It is remarkable that the TF representation schema obtained a very good
performance with the Class-Inclusion class. We consider that this behavior is
due to the unsupervised system proposed do not consider symmetric vs asym-
metric relationships (reversal word pairs). The proposed system neither consider
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Table 7. Results for the PART-WHOLE Class

Approaches MaxDiff

UTD-NB 40.89
UTD-SVM 35.65
BUAP 35.05
Euclidian-TF-IDF 33.30
Manhattan-TF-IDF 32.13
Random 31.86
Manhattan-TF 30.45
Euclidian-TF 29.46
UMD-V0 29.40
UMD-V2 28.55
UMD-V1 26.51

the order of the words in the relationship, nor the direction of the semantic
relationship. However, both Class-Inclusion and Part-Whole are asymmetric re-
lationships and the approach presented is highly sensible to reversals, therefore,
the performance decreases. This consideration is also avoided in the information
retrieval system leading to obtain snippets that may not represent adequately
the semantic relationship. Further investigation should integrate the concept of
symmetric vs asymmetric relationships into the methodology proposed.

In summary, the results obtained outperformed all the results reported in the
literature for the Class-Inclusion class, whereas in the class Part-Whole, we have
slightly improved the random baseline. Further experiments will allow to analize
the manner we may improve these results.

5 Conclusions

The schema proposed for measuring the degree of similarity based on prototype
vectors performed well for the Class-Inclusion class. A simple weighting measure
such as term frequencies allowed to capture the neccesary features for represent-
ing the word pairs that share a semantic relationship. On the other hand, we
did not succeed representing adequately for the Part-Whole class, an issued that
must be further investigated.

From the results obtained, we were able to observe that the snippets retrieved
have an acceptable quality, but they may also be improved by adding other lexical
resources or document collections. As future work, we would like to analize more
into detail the outliers in order to remove them for generating a much better
reference corpus.
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1. Soĺıs, S.: La Web Semántica. Lulu Enterprises Incorporated (2007)
2. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge

sharing. Technical Report KSL-93-04, Knowledge Systems Laboratory, USA (1993)



Determining the Degree of Semantic Similarity Using Prototype Vectors 373

3. Ruiz-Casado, M., Alfonseca, E., Castells, P.: Automatic extraction of semantic re-
lationships for wordnet by means of pattern learning from wikipedia. In: Montoyo,
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Abstract. Extractive text summarization consists in selecting the most impor-
tant units (normally sentences) from the original text, but it must be done as 
closer as humans do. Several interesting automatic approaches are proposed for 
this task, but some of them are focused on getting a better result rather than giv-
ing some assumptions about what humans use when producing a summary. In 
this research, not only the competitive results are obtained but also some as-
sumptions are given about what humans tried to represent in a summary. To 
reach this objective a genetic algorithm is proposed with special emphasis on 
the fitness function which permits to contribute with some conclusions. 

1 Introduction 

According to Lee [1], the amount of information in Internet continues growing, but much 
of this information is redundant. Therefore, we need new technologies to efficiently 
process information. The automatic generation of document summaries is a key 
technology to overcome this obstacle. Given this, it is essential to develop automated 
methods that extract the most relevant information from a text, researched by Automatic 
Text Summarization (ATS) area [2], [3], [4], [5]. ATS is an active research area that 
deals with single- and multi-document summarization tasks. In single-document 
summarization, the summary of only one document is built, while in multi-document 
summarization the summary of a whole collection of documents (such as all today’s 
news or all search results for a query) is built. While we believe that our ideas apply to 
both cases, in this work we have experimented only with single-document summaries. 

Summarization methods can be classified into abstractive and extractive 
summarization. An abstractive summary is an arbitrary text that describes the contexts 
of the source document. Abstractive summarization process consists of 
“understanding” the original text and “re-telling” it in fewer words. Namely, an 
abstractive summarization method uses linguistic methods to examine and interpret 
the text, and then to find new concepts and expressions to best describe it by 
generating a new shorter text that conveys the most important information from the 
original document. While this may seem the best way to construct a summary (and 
this is how human beings do it), in real-life setting immaturity of the corresponding 
linguistic technology for text analysis and generation currently renders such methods 
practically infeasible. 
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An extractive summary, in contrast, is composed with a selection of sentences (or 
phrases, paragraphs, etc.) from the original text, usually presented to the user in the 
same order—i.e., a copy of the source text with most sentences omitted. An extractive 
summarization method only decides, for each sentence, whether or not it will be 
included in the summary. The resulting summary reads rather awkward; however, 
simplicity of the underlying statistical techniques makes extractive summarization an 
attractive, robust, language-independent alternative to more “intelligent” abstractive 
methods. In this paper, we consider single extractive summarization. 

The main problem for generating an extractive automatic text summary is to detect 
the most relevant information in the source document. Although, some approaches 
claim being domain and language independent, they use some degree of language 
knowledge like lexical information [5], key-phrases or a golden sample for supervised 
learning approaches [6] [7]. Furthermore, training on a specific domain tends to 
customize the extraction process to that domain, so the resulting classifier is not 
necessarily portable. For that reason, these works present a high dominion and 
language dependence degree. 

A typical extractive summarization method [8] [9] consists in 5 steps: 
preprocessing, term selection, term weighting, sentence weighting and sentence 
selection; at each of them different options can be chosen. We will assume that the 
units of selection are sentences (these could be, say, phrases or paragraphs). Thus, 
final goal of the extractive summarization process is sentence selection. 

Usually, in the preprocessing step the document is analyzed for removing words 
without meaning (stop words) and for getting a canonical representation of each word 
by applying a stemming algorithm in order to find relations between significant 
words. Moreover, some methods use more complex resources such as Part-of-speech 
tagging, lemmatization (instead of stemming), key words, key phrases, etc. 

Most of the language-independent methods employing the -gram as the unit in 
term selection step which is composed by all the sequences of  words of the 
document. Recently, the Maximal Frequent Sequence (MFS) model has been 
proposed as text model [8] [10] [11] [12] which tried to select only the important 
terms according to the frequency without the need of determine . A MFS text model 
can be defined in terms of grams as all the frequent grams (of any size) that are not 
subsequence of other frequent grams. For considering that a gram is frequent it must 
be repeated at least a threshold times in the text, when the threshold it not specified it 
is assumed that is taken the lowest possible, i.e. two. 

In third step is given an importance to the selected terms, for example the presence 
or absence of a term can be used as Boolean weighting, but in this weighting it is not 
possible to know which term is more important. An alternative is to use the frequency 
of the term as TF weighting, but a very frequent term is not always important since 
could be a stop word or a term that it is repeated in most of the sentences; therefore it 
is important for the entire document and not for a single sentence. This problem can 
be solving if the inverse document frequency is used as IDF weighting, in this case 
the frequency of a term is divided by the number of sentences where the term is 
presented; it means a frequent term is more important if it appears in a single sentence 
instead of all the sentences. 
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Normally, for composing the summary the sentences are selected according to its 
relevance in the sentence selection step. This way of sentence selection tends to 
produce redundant summaries. In this research, special attention is given to sentence 
selection step since this process must consider all the relevant information getting in 
previous steps. In this paper, a genetic algorithm is proposed for optimizing the 
sentences selection step based on the frequency of the words (1-grams). 

2 Related Works 

In different ways, several approaches have employed a genetic algorithm for the ATS 
task based on attribute selection [13] [14]. However, these kinds of approaches have 
in common that represent each sentence as a set of attributes extracted from the 
original text. The following features are gotten using only static and structural 
information from the original text, without linguistic knowledge. 

Similarity to title [13] [14] [15] is a measure that arise sentences that have common 
words with the title. This is determined by counting the number of matches between 
the words in a sentence and the words in the title [13] or it is calculated as the cosine 
similarity [14].  

Similarity to keywords [14] is an analogous measure to similarity to title. 
Sentence length feature [13] [14] [15] gives more preference for longer sentences, 

under the idea that short sentences could bring, for example: datelines, numbers or 
author names. This measure is normalized to the longest sentence in the document. 

Term weight feature [13] is based on the frequency of the terms presented in the 
sentence. The score of a sentence can be calculated as the sum of the weights of the 
terms in the sentence. A term will be more important if it appears frequently into the 
document but simultaneously it does not appear in others sentences.  

Sentences position feature [13, 14, 16] relies in the baseline heuristic [17] that 
establishes the first sentences of a text can be considered as a good summary. Document 
collections created specifically for ATS systems has proved that it is a hard line to 
overcome. Normally, this feature assigns the inverse order number as the importance for 
the sentence, for example, if there are 10 sentences in the document, the first sentence 
has a score of 10/10, and the second one has a score of 9/10 and so on. 

Sentence similarity feature [13] measures the similarity that has a sentence against 
the rest of sentences in order to avoid getting untypical sentences. Therefore, a 
sentence with high score is more probable to appear in the summary. One option to 
get the similarity between two sentences is to use the cosine similarity measure. 

Numerical feature [13] is based on the idea that in the sentences where numerical 
data appears are more relevant. For measure this feature is calculated as the ratio of 
the number of the numerical data in the sentences over the sentence length. 

It is possible to extract other dependent-linguistic features based on Proper Noun, 
[13] [14] Thematic Word [13], Anaphors [14], Discourse Markers [14]. 

Some approaches that using a genetic algorithms for the ATS task [13] [14] are 
based on attribute sentence selection in a supervised classification scheme [13], thus, 
for these approaches is needed to account with a previously set of golden summaries 
for training. Other approaches [15] use the GA in an unsupervised classification 
scheme, where the fitness function is formulated with some of the above features for 
evaluating the summarized sentences. 
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3 Proposed Genetic Algorithm 

Genetic Algorithm (GA) is the most traditional evolutionary technique that has 
proved to be an alternative solution for an optimization problem. In the first step, the 
GA proposes a population of random solutions (initial population step) that are 
evaluated according to the objective function to optimize (fitness function step). In 
this sense, a solution for one problem is not absolute, it means, there is set of possible 
solutions where some are better than others. Considering mostly the best solutions 
(parents selection step), the GA proposes a new population mixing (crossover step) 
some parts from a canonical codification (Chromosome encoding step) of these good 
solutions in order to get better solutions (evolution principle). Eventually, the way of 
mixing some parts from the canonical codification could produce repeated solutions. 
Therefore, the GA applies a small variation (mutation step) to the canonical 
codification in the new population in order to explore new solutions. The new 
population is evaluated again and the process is repeated until a satisfactory solution 
is reached or until some arbitrary stop-criteria is reached (stop condition). 

3.1 Proposed Genetic Operators 

Preprocessing. Before the original text could be used for the GA, it is needed to adapt 
the entry of the original text to the format of the GA. In this step, the original text is 
separated in sentences. Also, the text is preprocessed with the well-known Porter Stem-
mer [18] in order to find related words. Since the proposed method is based on the fre-
quency of the words as a measure of its relevance (section 4.3), this does not take into 
account the frequency of stop words because it is higher than meaningful words. 

Chromosome Encoding. GA must encode each solution (chromosome) using a ca-
nonical way. One of the most used encodes for a chromosome is the binary represen-
tation. For the ATS problem we propose to represent the genes of a chromosome ( ) 
with a vector of length  of binary values ( ), where the  gene corresponds with 
the -th sentence in the original text. If  gene has a value of 1 ( 1) means that 
the -th sentence is included in the summary, otherwise not. 

Initial Population. After the chromosome encoding is setup, it is possible to create 
the first generation considering some parameters. Each gene can take a binary random 
value ( … 0,1 ). However, if a sentence is selected to appear in the 
summary ( 1) then the number of words of the -th sentence are summed to the 
number of words in the summary. The number of words in the summary must contain 
at least the number of words specified by the user ( ). To guarantee that each sen-
tence could be selected for the summary, there are created  number of chromosomes 
in the initial population and in each one a different gene is arbitrary set to 1. 1 … , 1 … , 1, 0,1  

Fitness Function. One of the key steps of a genetic algorithm is the Fitness Function 
which in this case it is based on the idea of f-measure that it is a harmonic balance of 
recall and precision measures. Usually in information retrieval, precision is defined as 
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the number of correctly recovered units divided by the number of recovered units; and 
recall is defined as the number of correctly recovered units divided by the number of 
correctly units. In this way, precision measures the fraction of retrieved units that are 
relevant, while recall measures the fraction of relevant instances that are retrieved. 
However, for generating a summary ( ), the maximum-words threshold ( ) of a 
summary is considered. Consequently, the number of recovery units always is limited 
by the maximum-word threshold. Therefore the golden summary must have, for one 
side, the most relevant words of the original text ( ) and, for the other side, must have 
expressivity, it means, it must not be redundant. 

The relevance of a word  is represented by the appearing frequency of the word 
in the original text ( , )), and the expressivity is represented if only are 
considered the different words that the summary can have ( word   ).  In this 
sense, the best summary would contain the most frequent words with respect to the 
original text and each word must be different. In order to have a normalized measure 
the sum of the frequencies of the different words in the summary is divided by the 
sum of the frequencies of the most frequent words with respect to the original text: 

  ∑ ,   ∑ ,    

 
Sentence position feature is a heuristic that has proved that the first sentences from 
the original text are good candidates of being part for the summary. Normally, the 
inverse position order of the sentence it is used as a measure of its relevance.  
The problem of measuring this feature in this way is that, for example, with a 30-
sentence text, the first sentence will be 30 times more important that the last one. It 
makes almost impossible that the last sentence could appear in the summary. In 
contrast to [13] [14], we propose to make this difference softer using the linear 
equation with slope , if  is -1 we will measure the sentence position as in [13] [14], 
and if  is 0, it will give the same relevance to each sentence. For a text with  
sentences, if the sentence  was selected for the summary (it is, the 
chromosome| | 1) then its relevance is defined as:  , where 11 2⁄  and  is the slope for discovering. In order to normalize the sentence 
position measure ( ), it is calculated the relevance of the first  sentences, where  
is the number of selected sentences. 

 ∑ | |∑ ,  1  

 
Therefore the fitness function is:  

Parent Selection. In this point, each chromosome must have associated a fitness val-
ue that will let to mostly select the best chromosomes. The evolution principle estab-
lishes that normally if two good solutions are crossing it could produce better  
solutions; nevertheless, in some cases the solution could be worse. In this step, we 
employ the classical roulette selection that gives more probability of being selected as  
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a parent, to the chromosomes that have a greater fitness value. In this way, the worst 
chromosome has the possibility of being selected, although it was slight probable. 

Crossover. Classical crossover operators as n-point crossover does not work properly 
because the new child chromosome could represent a summary with more or less 
words than the user specified. Therefore, to create the new chromosome we propose 
to choose from both parents the genes randomly, but consider only those with value 1. 
In this way, if the  gene has a value of 1 in both parents, it has more probability of 
being selected for the child chromosome. Each time a gene in the child chromosome 
is selected the minimum number of words for the summary is reviewed. 

Mutation. According to the evolution scheme, the mutation slightly happen in the 
nature with a low probability of 0.1 percentages, however is one of the fundamental 
mechanisms to preserve the evolution. The classical operator inverse mutation opera-
tor inverts the binary value of a randomly selected gene. In our proposed scheme, this 
operator will produce summaries with more or less words than the user specified. In 
this step we propose to apply the invert operator twice to the child chromosome, but 
the first time only the genes with value 1 are considering for invert the value; in the 
second time only the genes with value 0 are considering for invert the value. After 
that, the number of words in the summary is review it, if the numbers of words do not 
have the number of words specified by the user, another gene with value 0 is inverted, 
this process continues until the number of words specified by the user is satisfied. 

4 Experimentation 

We used the standard DUC 2002 document collection provided [19]. In particular, we 
used the data set of 567 news articles of different length and with different topics. 
Each document in the DUC collection is supplied with a set of human-generated 
summaries provided by two different experts 1 . While each expert was asked to 
generate summaries of different length, we used only the 100-word variants. 

Evaluation Procedure. We used the ROUGE evaluation toolkit [20] which was 
found to highly correlate with human judgments [21]. It compares the summaries 
generated by the program with the human-generated (gold standard) summaries. For 
comparison, it uses n-gram statistics. Our evaluation was done using n-gram (1, 1) 
setting of ROUGE, which was found to have the highest correlation with human 
judgments, namely, at a confidence level of 95%. ROUGE lets to know the f-measure 
that is a balance (not an average) of recall and precision results.  

Table 1 shows the ROUGE evaluation from our approach with the whole DUC-
2002 collection; varying the slope from -0.25 to -0.75. In figure 1, it is possible to 
observe that our approach has the best f-measure when the slope is -0.625. 

 
 

                                                           
1 While the experts were supposed to provide extractive summaries, we observed that the 

summaries provided in the collection were not strictly extractive: the experts considerably 
changed the sentences as compared with the original text. 
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Table 1. Results of our proposed approach varying slope from -0.25 to -0.75 

Slope Recall Precision F-measure 
-0.25 0.4737 0.4686 0.4710

-0.375 0.4736 0.4736 0.4760
-0.5 0.480 0.4747 0.4772

-0.55 0.4829 0.4775 0.4801
-0.625 0.4855 0.4802 0.4827

-0.7 0.4843 0.4789 0.4815
-0.75 0.4790 0.4735 0.4761

 

Fig. 1. Behavior of the performance when the slope is varying 

5 Comparison with Related Works 

In table 2, our proposed approach is compared to others approaches that have used the 
same DUC-2002 document collection for text summarization. 

 
– Baseline (random) [3]: This is a heuristic in which the summaries are built from a 

set of sentences selected in random way. This simple strategy has the purpose of 
determine how significant the results can be achieved. 

– TextRank [17]: The approach is a ranking algorithm based on graphs. A graph is 
built to represent the text, so that the nodes are words (or other text entities) 
interconnected by vertices with meaningful relationships. For the task of 
extracting sentences, the goal is to qualify whole sentences and sort highest to 
lowest rating. Therefore, a vertex is added to the graph for each sentence in the 
text. To establish connections (cycles) between sentences, define a relationship of 
similarity, where the relationship between two sentences can be seen as a process 
of "recommendation": a sentence that points to some concept in the text gives the 
reader a "recommendation" to refer to other sentences in the text that point to the 
same concepts and therefore a link can be established between any two sentences 
that share a common content. 

– Maximal Frequent Sequences (MFSs) [3] [8] [9]. Ledeneva et al. [3] [8] [9] 
experimentally shows that the words which are parts of bigrams (2-word 
sequences) which are repeated more than once in the text are good terms to 
describe the content of that text, so also called the maximal frequent sequences 
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(sequences of words that are repeated a number of times and also are not 
contained in other frequent sequences). This work also shows that the frequency 
of the term as ranking of terms gives good results (while only count the 
occurrences of a term in repeated bigrams).  

– Baseline (first): This heuristic selects the first sentences of the document until the 
desired size of the summary is reached [9]. Besides of being a simple heuristic, 
only four DUC-2002 systems (S1,S2,S3,S4) could outperform the baseline results 
(showed in table 2).  

– K-means: The k-means algorithm creates clusters of similar objects. In [3] the  
k-means is used for creating clusters of sentences from the original text that allow 
identifying the main ideas; after that, from each cluster the most representative 
sentence is selected for the summary. 

– Topline [6]. In this work, a GA was used to calculate the best summaries that it is 
possible to find according with the ROUGE evaluation. 

The comparison of the best F-measure results of our proposed approach with the 
above state-of-the-art approaches is presented in table 2. Since, any method can be 
worse than choosing random sentences (baseline: random) the significance of  
f-measure is recalculated as 0%. In opposite way, since any method can outperform 
the Topline is considered as 100%. Using baseline and topline is possible to 
recalculate the f-measure results in order to see how significant the results are  
(see table 2). 

Table 2. Results of f-measure with other methods 

System F-measure Significance 
Baseline: random  0.3881 0% 
TextRank:  0.4432 26.50% 
MFS’s (k-best) 0.4529 31.16% 
Baseline: first 0.4599 34.53% 
GA 0.4662 37.56% 
S1 0.4683 38.57% 
S2 0.4703 39.53% 
TextRank 0.4708 39.77% 
S3 0.4715 40.11% 
MFS’s (1best+first) 0.4739 41.26% 
K-means  0.4757 42.13% 
MFS’s-EM-5  0.4774 42.95% 
S4 0.4814 44.87% 
Proposed GA  0.4827 45.50% 
Topline [6] 0.596 100% 

6 Conclusions 

We have proposed a genetic algorithm for automatic single extractive text 
summarization task. Specifically, we proposed the preprocessing, chromosome 
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encoding, initial population, fitness function, parent selection, crossover and mutation 
step. Our genetic algorithm allow to consider the number of words that a user desire. 
All the parameters that the GA could need are calculated automatically considering 
the structure of the original text (in fact, it was applied to 567 documents of the DUC 
collection). In this sense, from the original text was possible determine the number of 
chromosomes in the population and the number of maximum iterations. 

In contrast to the state-of-the-art works related to GA, the proposed GA is not 
based in a database that was built from features whose were extracted from sentences. 
Instead, our GA evaluates how good the summary is with respect to the original text, 
without the necessity of having a collection for training a classifier. In these sense,  
fitness function tell us more what a summary must contain instead of what process 
humans follows for building a summary.  

Furthermore, we found that if there were a linear relevance with respect to sentence 
position in the original text, it is of 0.625 considering two consecutive sentences. This 
parameter was calculated for the DUC-2002 collection. As a future work, other 
collections will be tested with this parameter. 

There are different terms that can be chosen as words, -grams or MFS; we use 
words that are easier for extracting for the original text. There are other features that 
can be extracted from the sentences as similarity to title, sentence length, etc.; the 
proposed approach uses only the frequency of words and the sentence position. Also, 
it is important to note that our purposed approach works independently from linguistic 
resources. We think that this research is relevant since employing basic language-
independent information from the original text, it was possible to outperform the 
others approaches that use the same collection. 
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