
Reversible Circuit Synthesis of Symmetric

Functions Using a Simple Regular Structure

Arighna Deb1, Debesh K. Das1, Hafizur Rahaman2,
Bhargab B. Bhattacharya3, Robert Wille4, and Rolf Drechsler4

1 Computer Science and Engineering, Jadavpur University, Kolkata, India
arighna87@rediffmail.com, debeshd@hotmail.com

2 Information Technology, Bengal Engg. and Sci. University, Howrah, India
rahaman h@hotmail.com

3 Nanotechnology Research Triangle, Indian Statistical Institute, Kolkata, India
bhargab@isical.ac.in

4 Institute of Computer Science, University of Bremen, Bremen, Germany
Cyber-Physical Systems, DFKI GmbH, Bremen, Germany

rwille@informatik.uni-bremen.de, drechsler@uni-bremen.de

Abstract. In this paper, we introduce a new method to realize sym-
metric functions with reversible circuits. In contrast to earlier methods,
our solution deploys a simple and regular cascade structure composed of
low-cost gates which enables significant reductions with respect to quan-
tum costs. However, the number of garbage outputs increases slightly.
To overcome this, we next propose an optimized design by reusing the
garbage outputs. The resulting design thus offers a powerful approach
towards reversible synthesis of symmetric Boolean functions.

Keywords: Quantumcomputation,Reversible logic, Symmetric functions.

1 Introduction

Reversible computing has become one of the major research areas in the recent
times. Reversible logic has found applications in quantum computing [1, 2], low
power design [3, 4], optical computing [5], DNA computing [6], as well as in
nanotechnology [7]. These promising applications mandate new solutions for
design automation of the emerging classes of circuits and systems.

Among the various research problems related to the field of reversible circuit
design, logic synthesis has received significant attention. A number of reversible
synthesis methods has been proposed for this purpose [8–16]. Usually, they aim
for reducing the quantum costs, i.e. the number of elementary operations to
be conducted in a quantum device, as well as the number of garbage outputs,
i.e. output connections that are sometimes required to ensure reversibility but
are not utilized to represent the desired function.

In this paper, we address the problem of synthesizing symmetric Boolean
functions using reversible logic. These special types of functions have many appli-
cations to cryptology and to the design of secured systems, control and commu-
nications circuits. Accordingly, synthesis methods for such functions have been

G.W. Dueck and D.M. Miller (Eds.): RC 2013, LNCS 7948, pp. 182–195, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Reversible Circuit Synthesis of Symmetric Functions 183

A • Y = A

B Z = A⊕B

Fig. 1. Feynman (CNOT) Gate

A • P = A

B • Q = B

C R = AB ⊕ C

Fig. 2. Toffoli Gate

studied extensively [17–21]. Realizations of symmetric functions by reversible
logic gates have been described in [9,22,23]. Picton used Fredkin gates to realize
digital summation threshold logic (DSTL) devices [23]. An efficient realization
of arbitrary symmetric functions using a Reversible Programmable Gate Array
(RPGA) has been proposed in [9, 22].

We propose a new approach for designing symmetric functions using an array
of Peres gates. Our solution uses simpler reversible gates compared to previously
introduced designs [9,13] and is inspired by a regular structure proposed in [19].
This yields a significant reduction in the quantum cost. However, the number
of garbage outputs increases slightly. This is eventually addressed by proposing
an optimization of the regular structure that enables reuse of garbage outputs
and hence, leading to a reduction of them. The benefits of the proposed design
is demonstrated by comparing ours with the solutions obtained by previously
proposed techniques [9, 13].

The rest of the paper is organized as follows. In Section 2, we provide the
basics of reversible functions, reversible gates, and symmetric functions. Section 3
introduces the proposed regular structure as well as its optimization. Based on
that, Section 4 describes how general symmetric functions can be realized with
this structure. Finally, the resulting design is compared to previous work in
Section 5 and the paper is concluded in Section 6.

2 Preliminaries

2.1 Reversible Logic Functions

A function f is said to be reversible if and only if f : Bn → B
n over variables

X = (x1, x2, · · · , xn) maps each input to a unique output and if f has the same
number of input and output variables. It implies that there are 2n input rows and
2n output rows in the truth table of f and the output rows are the permutation
of the input rows. We use the notation (n×n) to represent an n-input reversible
function f .

2.2 Reversible Logic Gates

A reversible circuit is a fan-out free cascade of reversible gates. The common
reversible gates include the Feynman gate, the Fredkin gate, the Toffoli gate,
and the Peres gate.

Feynman Gate:- A (2 × 2) Feynman gate (FG), also known as controlled-NOT
gate or simply CNOT gate, is shown in Fig. 1. It has two inputs, known as the



184 A. Deb et al.

Fig. 3. Peres Gate

control input (A) and the target input (B), respectively. The logical relationship
between inputs and outputs can be written as: Y = A, Z = A⊕B.

Toffoli Gate:- A multiple control Toffoli gate (TG) tm has the form tm(C, t),
where C = {xi1 , xi2 , · · · , xim} ⊂ X is the set of control lines and t = {xj}
with C ∩ t = ∅ is the target line. The value of t is inverted if and only if all
control lines are set to 1. For m = 0 and m = 1, the gates are called NOT and
CNOT, respectively. Fig. 2 illustrates the Toffoli gate with three inputs (A,B,C)
and three outputs (P,Q,R), where (A,B) are control inputs that are unaffected
by the action of the Toffoli gate. The third input is a target input (C) that is
inverted if both, A and B, are 1 and otherwise remains unchanged. Thus, we get
P = A, Q = B, R = C ⊕AB.

Peres Gate:- Fig. 3 shows a 3 × 3 Peres gate (PG). This gate performs the
following operation: P = A, Q = A ⊕ B, R = C ⊕ AB, where the outputs are
denoted as (P,Q,R) and inputs are denoted as (A,B,C).

Besides that, the following definitions related to reversible circuits are impor-
tant in this work.

Control input and target input :- A reversible gate consists of two sets of inputs:
control set and target set. If at least one control line is set to 0, then nothing
happens to the target lines. If instead all control lines are set to 1, then the gate
function is applied to the target line.

Constant input :- A constant input of a reversible function is a fixed input value
(either 0 or 1).

Garbage outputs :- They refer to the outputs that are not assigned a certain func-
tion value. Garbage outputs are very much essential without which reversibility
cannot be achieved for irreversible functions. For example, an AND operation of
the two inputs A and B can only be achieved using the structure in Fig. 2 with
C=0. In this example, the unused outputs P and Q are garbage outputs.

Quantum Cost (QC):- For its operation, a reversible gate offers a quantum cost
given by the number of elementary quantum operations, which are performed by
elementary quantum gates called as controlled-NOT (CNOT) gate, controlled-V
gate, controlled-V+ gate, etc.; each having quantum cost of unity. The quantum
costs of different reversible gates are shown in Table 1.



Reversible Circuit Synthesis of Symmetric Functions 185

Table 1. Quantum cost

Reversible Gate Quantum Cost

CNOT gate 1
TOF(a,b;c) 5
TOF(a,b,c;d) 14
PERES gate 4
Fredkin gate 5

Fig. 4. Design for 2-inputs Fig. 5. Design for 3-inputs

2.3 Symmetric Functions

A switching function over n variables is a function f(x1, x2, · · · , xn) : Q
n → Q,

where Q denotes the set that consists of two values {0, 1}. A switching function
f(x1, x2, · · · , xn) is totally symmetric if it is unchanged by any permutation of
its variables (x1, x2, · · · , xn).

For a symmetric function, it is sufficient to specify the number of inputs that
are to be set to logic 1 for the function to be 1. An n-variable symmetric function
is represented as Sn(A), where A is a set of integers (ai, · · · , aj , · · · , ak) and
∀ai, aj, 1 ≤ ai, aj ≤ n, ai 	= aj . This is denoted by Sn

ai,··· ,aj ,··· ,ak
. For n variables,

2n+1−2 different symmetric functions (excluding constant functions 0 and 1) can
be constructed. If the set A contains only consecutive integers (al, al+1, · · · , aq)
with al<aq, the symmetric function is called consecutive symmetric function
and denoted by Sn

al−aq
. A totally symmetric function Sn(A) can be expressed

as a union of maximal consecutive symmetric functions, such that Sn(A) =
Sn(A1) + Sn(A2) + · · · + Sn(Am), with m being the minimum and such that
∀i, j, 1 ≤ i, j ≤ m,Ai ∩ Aj = ∅, whenever i 	= j.

Example 1. S15
4,5,6,7,12,13,14,15 can be written as the summation of two consecutive

symmetric functions S15
4−7 and S15

12−15.

3 Synthesis of Symmetric Boolean Functions

In this section, we present our approach to the synthesis of symmetric Boolean
functions as reversible circuits. First, we introduce the proposed regular structure
followed by possible optimization. This builds the basis of a generic synthesis
scheme for general symmetric functions, which is outlined in the next section.



186 A. Deb et al.

Fig. 6. Design for 4-inputs

3.1 The Proposed Regular Structure

Our design consists of an array of Peres gates. The reversible gates in the design
are thereby arranged as a matrix, i.e. in the form of rows and columns. In the
following, this is illustrated for certain values of n, i.e., for different input sizes.

Consider the design for n = 2 inputs, i.e. for x1 and x2. The design is composed
of a single (3 × 3) Peres gate. Throughout the design, the input line C of the
Peres gate is assigned a value 0. Hence, a structure as depicted in Fig. 4 results.
When C is set to 0, the Peres gate produces the following outputs: P1 = x1,
Q1 = x1⊕x2, and R1 = x1x2. Thus, this design produces two symmetric Boolean
functions, namely Q1 = S2

1 and R1 = S2
2 . The output P1 is a garbage output.

Consider the design for n = 3 inputs, i.e., for x1,x2, and x3. In this case, the
design deploys two (3× 3) Peres gates. There are two rows and two columns. In
the first row, we have two Peres gates, whereas the second row does not contain
any gate. The design is shown in Fig. 5. In this case, the output Q11 from the
first Peres gate is given as one of the inputs to the second Peres gate in the
first row. The other two inputs of the second Peres gate are x3 and R21 (output
of the 1st Peres gate). Therefore, the outputs that are obtained from the 2nd

Peres gate are: P12 = Q11, Q12 = Q11 ⊕ x3, R22 = Q11x3 ⊕ R21. Here, also P12

is the garbage output. The output R22 appears in the second row as Q22. This
structure already realizes two other symmetric functions, namely Q12 = S3

1,3 and
Q22 = S3

2,3.
Consider the design forn = 4 inputs, i.e., for x1,x2,x3, andx4. Then, the top row

contains threePeres gates,whereas the second row contains a singlePeres gate. Fig.
6 shows this design. At the first row, the output Q12 of the 2

nd Peres gate is given
as input to the 3rd Peres gate along with inputs x4 and 0. This produces outputs
P13 = Q12,Q13 = (Q12⊕x4), andR23 = Q12x4. The outputR23 from the top row
and the outputQ22 from the previous column appear as inputs to the Peres gate at
the second row, which generatesQ23 = Q22 ⊕ R23. This equals to S4

1,3. The third
row has the output R33 = Q33 = Q22R23 realizing S

4
4 .

It may be observed that, for n = 2 (n = 3), there are two output lines produc-
ing S2

1 and S2
2 (S3

1,3, S
3
2,3). For n = 4, there are three output lines producing S4

1,3,
S4
2,3, S

4
4 . Hence, a regular structure results where each output line corresponding

to a row in the design produces a certain symmetric Boolean function.



Reversible Circuit Synthesis of Symmetric Functions 187

(a) circuit at (n−1)th level for 2k−1<n<2k (b) circuit at (n − 1)th level for
n = 2k

Fig. 7. The circuit structure at (n− 1)th level

This can be generalized as follows: Consider the structure to be designed for n
inputs, i.e. for x1, . . . , xn. Here, we can think of different columns, where columns
may be termed as levels and respectively introduce a new input xi. Hence, the
inputs x1 and x2 are considered in the 1st level, the input x3 in the 2nd level, the
input x4 in the 3rd level, and so on. Notice that the network for n = 4, subsumes
the complete structure for n = 3. If we have the circuit for any n = i, then the
circuit for n = i + 1 can be obtained by appending one more level. Thus, there
are (n − 1) columns or levels in the array. Therefore, for a circuit structure of
n input lines, there are k rows and (n− 1) columns with k = 
log2 n�+ 1. The
circuit structure to be appended after the (n − 2)th level is shown in Fig. 7(a)
for 2k−1<n<2k and in Fig. 7(b) for n = 2k. Let the inputs to the (n− 1)th level
be represented as Y 1

n−1, Y
2
n−1, · · · , Y k

n−1. Then, the outputs after the (n − 1)th

level can be recursively determined using following relation:

Y i
n = Y i

n−1 ⊕ yin for 1 ≤ i ≤ k (1)

where
Y i
0 = 0 (2)

yin = xn for i = 1

= Y i−1
n−1y

i−1
n for i>1

(3)

It can be observed that a new row is added to the design for every n = 2k

input variables, where (k = 2, 3, 4, ...). Thus, for any n, the number of rows is

log2 n�+1. For 2k−1<n<2k, the kth row does not contain any gate. The output
R from the Peres gate of the (k−1)th row is given as the target line to the Peres
gate in the same row and next column. This results in a cascade of Peres gates
with quantum costs of 2m+ 2 [24], where m is the number of Peres gate in the
cascade. For n = 2k, the kth row contains CNOT gates except the last one where



188 A. Deb et al.

a Peres gate is used. In this case, there are (k + 1) outputs. The output in the
(k+1)th row appears from the output R of the Peres gate of the preceding row.
Hence, there is no gate in the (k + 1)th row. For n-input variables, the entire
design contains only Peres gates. For example, the circuit structure for n = 8 is
shown in Fig. 8.

Fig. 8. Circuit for 8-inputs

Following the structure outlined above, k = (
log2 n�+1) symmetric functions
are produced. The ith(1 ≤ i ≤ k) output line represents thereby the symmetric
function Sn

ai1 ,ai2 ,··· ,aiq
, where each aij is an integer whose binary representation

has a 1 in the ith bit. Apart from these symmetric functions produced at k output
lines, the Boolean functions realized by the garbage outputs are also symmetric
with a fewer number of literals. For n = 8, the corresponding inputs, outputs,
and garbage outputs at the different levels of the network are listed in Table 2.

Table 2. Inputs and outputs at each level

Levels Inputs Outputs Garbage Outputs

1 x1, x2 S2
1 , S

2
2 x1

2 x3 S3
1,3, S

3
2,3 S2

1 , S
2
2

3 x4 S4
1,3, S

4
2,3, S

4
4 S3

1,3, S
3
2,3

4 x5 S5
1,3,5, S

5
2,3, S

5
4,5 S4

1,3, S
4
2,3, S

4
4

5 x6 S6
1,3,5, S

6
2,3,6, S

6
4−6 S5

1,3,5, S
5
2,3, S

5
4,5

6 x7 S7
1,3,5,7, S

7
2,3,6,7, S

7
4−7 S6

1,3,5, S
6
2,3,6, S

6
4−6

7 x8 S8
1,3,5,7, S

8
2,3,6,7, S

8
4−7, S

8
8 S7

1,3,5,7, S
7
2,3,6,7, S

7
4−7

For an n-input function, the total number of Peres gates is therefore given by

NPG = (n�log2 n − n− 2�log2 n� + 
log2 n�+ 2) (4)

The design requires n�log2 n − 2n − 2�log2 n� + 2
log2 n� + 3 constant inputs
(fixed to 0). It may be observed that the total number of garbage in the design



Reversible Circuit Synthesis of Symmetric Functions 189

is equal to the sum of the total number of Peres gates. Therefore, the design
produces

Ngarbage = NPG (5)

garbage lines for any n.

3.2 Further Optimization of the Proposed Structure

The proposed regular structure generates a large number of garbage lines. The
design can further be improved in this respect. Notice that once the garbage lines
are used as control lines, they no longer play any role in the circuit. Therefore,
the structure can be improved by reusing the garbage lines as target or control
lines in the rest of the circuit.

The resulting reversible circuit for n = 4 inputs is redrawn in Fig. 9 (the
original realization is depicted in Fig 6). The circuit remains the same for up
to n = 3 inputs, i.e., the 1st row produces the output Q12 = S3

1,3 and the 2nd

row produces the output R22 = S3
2,3. For n = 4, now a (3× 3) Toffoli gate with

two control lines Q12 and x4 is added to the design. This produces the output
T23 = Q12x4 = S3

1,3x4. Since the design adds a new row to the structure at

n = 4, the 2nd row will have a Peres gate producing outputs at the 2nd and
the 3rd rows. This Peres gate takes R22 and T23 as control inputs and produces
R33 = R22T23 = S4

4 at the 3rd row with the target input line set to 0. It also
produces the output Q23 = T23 ⊕R22 = S4

2,3 at the 2nd row. Now, a Peres gate
is introduced in the 1st row, which works on the same set of control and target
lines. This means that the Toffoli gate with two control lines present in the Peres
gate is an exact replica of the (3 × 3) Toffoli gate added previously in the 1st

row. This makes the garbage output T23 to become zero. Later, this line can be
reused again in the circuit.

In general, for 2k−1 ≤ n < 2k (k 	= 1, 2), the optimized design inserts a single
Toffoli gate before every Peres gate present in the (k − 1)th row. Initially, a
Toffoli gate in the (k − 1)th row and the jth (1 ≤ j ≤ n − 1) column produces
an output which appears as one of the inputs to the Peres gate in the kth row
and the jth column. Once this output line is used, and if it is not required any
more, it becomes a garbage output. The presence of a Peres gate in the (k−1)th

row results in a structure of Toffoli gates followed by another Toffoli gate and a
CNOT gate (since Peres gate is equivalent to a Toffoli gate followed by CNOT
gate) in the same row. The two back-to-back Toffoli gates work on the same set
of control lines and target line. Since the Peres gate preceded by the Toffoli gate
in the same row works on the same set of control and target lines, this makes
the garbage output to become zero. Therefore, this line can now be reused as a
target line to other gates in the next level in the structure as shown in Fig. 10
for n = 5 inputs. Note that any row where a Peres gate and a Toffoli gate share
the same target line and one of the control lines, a so called Peres-Toffoli double
gate can be applied. The quantum cost of such a gate is 7 [24].

This optimization technique results in (2
log2 n� − 1) constant input lines
for an n-input design, which is less than that of the original structure. On the



190 A. Deb et al.

x1 • • garbage
x2 • • • garbage
x3 • • • • garbage
x4 • • S4

1,3

0 • S4
2,3

0 • • garbage(= 0)

0 S4
4

Fig. 9. Optimized design for 4-inputs

x1 • • garbage
x2 • • • garbage
x3 • • • • garbage
x4 • • • • • garbage
x5 • • S5

1,3,5

0 • • S5
2,3

0 • • • • garbage(= 0)

0 S5
4,5

Fig. 10. Optimized design for 5-inputs

contrary, the optimized design requires some additional Toffoli gates along with
the Peres gates of the main structure. The total number of Toffoli gates in the
design is given by

Ntoffoli = n
log2 n� − n− 2�log2 n�+1 + 
log2 n�+ 3 (6)

while the total number of Peres gates remains the same as in the original design.
The total number of garbage lines required for the optimized design is given

as

Nreduced−garbage = n+ 
log2 n� − 2. (7)

Comparing this with the result shown in Equation (4), we observe that the
number of garbage lines in the optimized structure is less than that of the original
structure.

4 Reversible Synthesis of General Symmetric Functions

For any n inputs, the proposed structure produces 
log2 n�+ 1 number of sym-
metric functions. Two symmetric functions Sn

A and Sn
B are true for any weight

w of input vectors, w = (1, 2, · · ·n), if A∩B = {w : w ∈ A and w ∈ B}, where A
and B are a set of integers containing the Hamming weights of the input vectors.
The aim here is to separate these common weights between any two symmetric
functions and represent all the symmetric functions in terms of individual weight
of its input vector. To do this, the output lines of the regular structure are fed
to a network consisting of a number of blocks called extraction-elimination (EE)
modules.

4.1 Extraction-Elimination (EE) Module

As the name implies, this module performs two operations: the first one is an
“extraction”, which extracts the common weight of an input vector from two
symmetric functions for which the functions are true. The second one is an
“elimination”, which eliminates the common weight from those two symmetric



Reversible Circuit Synthesis of Symmetric Functions 191

S3
1,3 • S3

1

S3
2,3 • S3

2

0 • • S3
3

Fig. 11. Extraction-Elimination module: S3
1,3, S

3
2,3 are inputs along with target line set

to 0 and S3
1 , S

3
2 , S

3
3 are outputs

functions. This module produces three symmetric functions of single weight.
The extraction operation is implemented using a Toffoli gate whose target line
is set to 0. The two elimination operations (one for each symmetric function)
are performed using two CNOT gates. The quantum cost of this module is 7.
The complete module is shown in Fig. 11. It is a garbage-free circuit where each
output line is essential.

4.2 Realization of General Symmetric Functions

The EE module is used to decompose k = 
log2 n� + 1 symmetric functions of
multiple weights realized by the regular structure described in Section 3 into n
symmetric functions of single weight of its input vector, where k < n. This is
done using the following procedure:

1) First, the regular structure as described in Section 3 is constructed for n
inputs. The structure produces k = 
log2 n� + 1 outputs, each of which is a
symmetric function of n inputs. For any given regular structure, we represent
integers 1 to n with its binary equivalent, i.e., for any n, the bit positions are
(2�log2 n� · · · 23222120), where 2�log2 n� is the most significant bit of the number n.
Each bit position of the decimal number n indicates an output line of the regu-
lar structure. Hence, there are 
log2 n�+1 outputs in the regular structure. The
total number of 1′s present in any bit position 2m, where m = 0, 1, 2, · · · 
log2 n�
indicates the corresponding output line of the regular structure realizing a sym-
metric function. If a 1 is present at the bit position 2m, which is an MSB, then
the regular structure has at most m + 1 output lines. It is noticed that the in-
tegers 1 to n denote the weights of the input vector for which the functions are
true. Once all the integers are represented in their equivalent binary forms, the
process of identification follows.

2) During this process, we identify all the 2m bit positions that are 1 for binary
equivalents of all the consecutive integers 1 to n. This helps in indicating all the
corresponding output lines realizing symmetric functions, i.e., they are true for
that integer (weight of the input vector). Two cases related to the identification
of bit positions are considered. The first case implies if any one of the 2m bit
positions is 1 and rest of the bit positions are 0. Then, the symmetric function
in the corresponding output line is true only for that integer (weight of the
input vector). In the second case, if more than one bit positions are 1, then
the corresponding output lines realizing the functions, are true. Whenever the
second case is encountered, the output lines of the regular structure are identified



192 A. Deb et al.

Table 3. Binary representations of five consecutive numbers

Decimal number its binary equivalent

1 0001
2 0010
3 0011
4 0100
5 0101

from the bit positions of the binary number equal to 1. Now an EE module is
applied to the two lines indicated by the two bit positions. This results in the
extraction of the corresponding integer value. The extracted integer is copied at
the target line of a (3× 3) Toffoli gate by setting the line to 0. This integer is a
weight of the input vector for which the functions in those two lines are set to
1. Following the extraction operation, the elimination operations are performed
on these two lines by two CNOT gates, one for each line. This results in three
symmetric functions with no common input weight. This process continues until
all the integers are considered.

Following this procedure, we require (n−
log2 n�−1) number of EE modules
for an n-input structure to convert 
log2 n�+1 symmetric functions of multiple
weights to n symmetric functions of single weight.

Example 2. Consider the regular structure for n = 5 inputs. There are three
output lines producing outputs f1 = S5

1,3,5, f2 = S5
2,3 and f3 = S5

4,5 on line 1, 2,
and 3 respectively. The possible weights of the input vector and their binary
equivalents are shown in Table 3. From the table, it can be observed that the
first binary number has a single 1 at its bit position 1. This represents weight
1 for which f1 will be true. Similarly, the second binary number has a single
1 at its bit position 2, thus representing weight 2 for which f2 is true. In the
third binary number, we have two 1’s - one in bit position 1 and another in bit
position 2, indicating weight 3 for which the functions in line 1 (f1) and line 2
(f2) are true. Therefore, we append an EE module to line 1 and 2 which produces
three outputs- S5

1,5 at line 1, S5
2 at line 2, and S5

3 at line 4. In the fourth binary
number, there is a single 1 at bit position 3 meaning that the output line 3 is
true for weight 4. In the last binary number, we observe that there are two 1’s in
bit positions 1 and 3. Thus, line 1 and line 3 are now applied to the EE module
which produces outputs S5

1 at line 1, S5
4 at line 3, and S5

5 at line 5. Therefore,

S5
1,3,5 • • S5

1

S5
2,3 • S5

2

S5
4,5 • S5

4

0 • • S3
3

0 • • S5
5

Fig. 12. EE modules appended at the end of the regular structure for 5 inputs



Reversible Circuit Synthesis of Symmetric Functions 193

using two EE modules five symmetric functions of single weight are produced
as shown in Fig. 12.

5 Comparison to Previous Work

We have compared the cost metrics of the proposed regular and the optimized
structure with those reported in previous work [9, 13]. The comparison is made
on the basis of quantum cost and the number of garbage lines. The results are
reported in Table 4. We observe that the realizations of benchmark functions
obtained by the first technique have less quantum costs as compared to those
reported in previous work [9, 13]. The number of garbage bits in this design is
larger in comparison to those from [13], but fewer than those of [9]. However,
these garbage outputs also implement symmetric functions with a fewer number
of literals and, thus, can be utilized to synthesize other symmetric functions.
Furthermore, by slightly increasing the quantum costs, the number of garbage
lines can further be reduced using the proposed optimization technique.

Table 4. Comparison of quantum cost

Function Quantum cost Garbage

Name In Out [9] [13] Sect. 3.1 Sect. 3.2 [9] [13] Sect. 3.1 Sect. 3.2

rd53 5 3 145 36 20 28 15 5 6 5

rd73 7 3 303 64 32 46 30 7 10 7

rd84 8 4 403 98 44 66 39 11 13 9

9sym 9 1 505 94 59 88 37 11 19 14

6 Conclusion

In this paper, we have proposed a synthesis scheme for realizing symmetric
Boolean functions with reversible logic. Compared to earlier synthesis meth-
ods, our solution relies on a simple and regular cascade structure. The garbage
outputs of our design can also be used to realize symmetric Boolean functions
with a fewer number of literals. We have evaluated the proposed design on some
well known benchmark symmetric functions. Our simulation results reveal that
the proposed design significantly reduces the quantum cost, but may require
additional ancillary lines thereby increasing the number of garbage outputs. To
reduce these garbage lines further, we have also proposed a modified structure in
which these garbage lines can be properly reused while implementing the output
functions. Both of these design approaches admit a hierarchical structure and
can thus be built in an iterative fashion. This regular structure thus obtained
can be fed to a network of extraction-elimination (EE) modules to synthesize
symmetric functions of single weights from those having multiple weights. The
EE network is an entirely garbage-free network.



194 A. Deb et al.

Acknowledgement. This work was partly supported by CSIR grant
(ref.-22(0590)/12/EMR− II) and UGC MRP grant (ref.-41− 620/2012(SR)).

References

1. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation
with linear optics. Nature, 46–52 (2001)

2. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cam-
bridge Univ. Press (2000)

3. Wille, R., Drechsler, R., Oswald, C., Garcia-Ortiz, A.: Automatic design of low-
power encoders using reversible circuit synthesis. In: DATE, pp. 1036–1041 (2012)

4. Desoete, B., Vos, A.D.: A reversible carry-look-ahead adder using control gates.
INTEGRATION, the VLSI Jour. 33(1-2), 89–104 (2002)

5. Cuykendall, R., Andersen, D.R.: Reversible optical computing circuits. Optical
Letters 12(7), 542–544 (1987)

6. Thapliyal, H., Srinivas, M.B.: The need of DNA computing: reversible designs
of adders and multipliers using fredkin gate. In: Proc. SPIE, Optomechatronic
Micro/Nano Devices and Components (2005)

7. Merkle, R.C.: Reversible electronic logic using switches. Nanotechnology 4, 21–40
(1993)

8. Agarwal, A., Jha, N.K.: Synthesis of reversible logic. In: DATE, pp. 21384–21385
(2004)

9. Perkowski, M., Kerntopf, P., Buller, A., Chrzanowska-Jeske, M., Mishchenko, A.,
Song, X., Al-Rabadi, A., Jozwiak, L., Coppola, A., Massey, B.: Regularity and
symmetry as a base for efficient realization of reversible logic circuits. In: IWLS,
pp. 245–252 (2001)

10. Mishchenko, A., Perkowski, M.: Logic synthesis of reversible wave cascades. In:
IWLS, pp. 197–202 (2002)

11. Gupta, P., Agrawal, A., Jha, N.: An algorithm for synthesis of reversible logic
circuits. IEEE TCAD 25(11), 2317–2330 (2006)

12. Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible logic
circuits. IEEE TCAD 22(6), 723–729 (2003)

13. Maslov, D.: Efficient reversible and quantum implementations of symmetric
Boolean functions. IEEE Proc. of the Circuits, Devices and Systems 153(5), 467–
472 (2006)

14. Große, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact multiple control Toffoli
network synthesis with SAT techniques. IEEE TCAD 28(5), 703–715 (2009)

15. Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for
reversible logic synthesis. In: Design Automation Conf., pp. 318–323 (2003)

16. Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions.
In: Design Automation Conf., pp. 270–275 (2009)

17. Rovetta, C., Mouffron, M.: De Bruijan sequences and complexity of symmetric
functions. Cryptography and Communications Journal 3(4), 207–225 (2011)

18. Yanushekvich, S.N., Butler, J.T., Dueck, G.W., Shmerko, V.P.: Experiments on
FPRM expressions for partially symmetric logic functions. In: IEEE International
Symposium on Multiple Valued Logic, pp. 141–146 (2000)

19. Lauradoux, C., Videau, M.: Matriochka symmetric Boolean functions. In: IEEE
ISIT, pp. 1631–1635 (2008)



Reversible Circuit Synthesis of Symmetric Functions 195

20. Keren, O., Levin, I., Stankovic, S.R.: Use of gray decoding for implementation of
symmetric functions. In: International Conference on VLSI, pp. 25–30 (2007)

21. Rahaman, H., Das, D.K., Bhattacharya, B.B.: Implementing symmetric functions
with hierarchical modules for stuck-at and path-delay fault testability. Journal of
Electronic Testing: Theory and Applications 22(2), 125–142 (2006)

22. Perkowski, M., Kerntopf, P., Buller, A., Chrzanowska-Jeske, M., Mishchenko, A.,
Song, X., Al-Rabadi, A., Jozwiak, L., Coppola, A., Massey, B.: Regular realization
of symmetric functions using reversible logic. In: EUROMICRO Symp. on Digital
Systems Design, pp. 245–252 (2001)

23. Picton, P.: Modified Fredkin gates in logic design. Microelectronics Journal 25,
437–441 (1994)

24. Moraga, C., Hadjam, F.Z.: On double gates for reversible computing circuits. In:
Proc. Intl. Workshop on Boolean Problems (2012)


	Reversible Circuit Synthesis of Symmetric Functions Using a Simple Regular Structure
	1 Introduction
	2 Preliminaries
	2.1 Reversible Logic Functions
	2.2 Reversible Logic Gates
	2.3 Symmetric Functions

	3 Synthesis of Symmetric Boolean Functions
	3.1 The Proposed Regular Structure
	3.2 Further Optimization of the Proposed Structure

	4 Reversible Synthesis of General Symmetric Functions
	4.1 Extraction-Elimination (EE) Module
	4.2 Realization of General Symmetric Functions

	5 Comparison to Previous Work
	6 Conclusion
	References




