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Preface

Reversible computing is a model of computing where the computational process
is in some measure reversible, either in a logical or physical sense, and in certain
areas, both. Reversible computation is of importance to a broad range of areas
of computer science, engineering, mathematics, and physics including low-power
circuit design, coding/decoding, program debugging, testing, databases, discrete
event simulation, reversible algorithms, reversible specification formalisms, re-
versible programming languages, process algebras, and the modeling of biochem-
ical systems. Furthermore, reversible logic provides a basis for describing and
working with quantum computation and its applications as well as other emerg-
ing computational technologies.

RC 2013 was the fifth in a series of annual meetings designed to gather
researchers for the dissemination and discussion of novel results and concepts in
all aspects of reversible computation. The first four events were held in York,
UK (2009), Bremen, Germany (2010), Ghent, Belgium (2011), and Copenhagen,
Denmark (2012). RC 2013 was thus the first of the meetings to be held outside
Europe. This volume comprises the proceedings for RC 2013.

The RC 2013 program included two invited presentations. The first presen-
tation, by Barry C. Sanders, Director, Institute for Quantum Science & Tech-
nology, University of Calgary, Canada, addressed the challenges of “Efficiently
Designing Quantum Circuits for Efficient Quantum Simulation.” The full paper
appears in these proceedings.

The invited presentation by Michele Mosca, Deputy Director Academic, In-
stitute for Quantum Computing, University of Waterloo, Canada, addressed
“Quantum Computing and the Synthesis and Optimization of Quantum Cir-
cuits.” Mosca’s presentation considered recent tremendous experimental ad-
vances in controlling quantum systems and the related impressive progress in the
theory of fault-tolerant quantum error correction, which has greatly reduced the
experimental ‘thresholds’ that would enable efficiently scalable quantum com-
puting systems. As larger and larger quantum computers are built, there will be a
greater need for automated methods for mapping high-level quantum algorithms
into operations to be executed on physical devices. The efficient synthesis and
optimization of quantum circuits is a critical step in this process. Mosca high-
lighted some recent advances using a range of mathematical tools.

The call for papers attracted 37 submissions by 90 authors from 14 countries.
All contributed papers were reviewed by at least three members of the RC 2013
Program Committee or their designated subreviewers. Based on those reviews
and extensive discussion by the Program Committee, 19 papers were selected for
presentation at RC 2013 to make up sessions on physical implementation, arith-
metic, programming and data structures, modeling, synthesis and optimization,
as well as alternative technologies.
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The list of ProgramCommittee members is provided elsewhere in this volume.
We take this opportunity to thank these 15 experts from across the international
reversible computation community for their hard work and dedication to the
quality of RC 2013. We also thank the 20 additional reviewers for their important
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X Table of Contents

On the “Q” in QMDDs: Efficient Representation of Quantum
Functionality in the QMDD Data-Structure . . . . . . . . . . . . . . . . . . . . . . . . . 125

Philipp Niemann, Robert Wille, and Rolf Drechsler

Modelling

Modelling of Bonding with Processes and Events . . . . . . . . . . . . . . . . . . . . . 141
Iain Phillips, Irek Ulidowski, and Shoji Yuen

Universal Gates in Other Universes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Jonathan A. Poritz

Time-Symmetric Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Martin Kutrib and Thomas Worsch

Synthesis and Optimization

Reversible Circuit Synthesis of Symmetric Functions Using a Simple
Regular Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Arighna Deb, Debesh K. Das, Hafizur Rahaman,
Bhargab B. Bhattacharya, Robert Wille, and Rolf Drechsler

White Dots do Matter: Rewriting Reversible Logic Circuits . . . . . . . . . . . 196
Mathias Soeken and Michael Kirkedal Thomsen

Exploiting Negative Control Lines in the Optimization of Reversible
Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Kamalika Datta, Gaurav Rathi, Robert Wille, Indranil Sengupta,
Hafizur Rahaman, and Rolf Drechsler

Reducing the Depth of Quantum Circuits Using Additional Circuit
Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Nabila Abdessaied, Robert Wille, Mathias Soeken, and Rolf Drechsler

Alternative Technologies

Quantum Process Calculus for Linear Optical Quantum Computing . . . . 234
Sonja Franke-Arnold, Simon J. Gay, and Ittoop V. Puthoor

Logically and Physically Reversible Natural Computing: A Tutorial . . . . 247
Chris Thachuk

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263



Efficient Algorithms

for Universal Quantum Simulation

Barry C. Sanders�

Institute for Quantum Science and Technology, University of Calgary,
Calgary, Alberta T3A 0E1, Canada

http://www.iqst.ca/people/peoplepage.php?id=4

Abstract. A universal quantum simulator would enable efficient sim-
ulation of quantum dynamics by implementing quantum-simulation al-
gorithms on a quantum computer. Specifically the quantum simulator
would efficiently generate qubit-string states that closely approximate
physical states obtained from a broad class of dynamical evolutions. I
provide an overview of theoretical research into universal quantum sim-
ulators and the strategies for minimizing computational space and time
costs. Applications to simulating many-body quantum simulation and
solving linear equations are discussed

Keywords: Quantum Computing, Quantum Algorithms, Quantum
Simulation.

1 Introduction

A quantum computer could allow some problems to be solved more efficiently,
by enabling efficient execution of quantum algorithms, as compared to execut-
ing classical algorithms on a classical computer that are inferior for those prob-
lems [1]. The “classical computer” refers to a computer that is built strictly
according to the principles of classical physics but more specifically is equivalent
to a Turing machine [2]. The subtle issues of a quantized computer operating over
real rather than binary fields are not discussed here [3]. The study of “quantum
simulation” focuses on simulating properties and dynamics of quantum systems
whether by classical or quantum computation, and the topic of “efficient algo-
rithms for quantum simulation” focuses on quantum simulation problems that
do not have efficient classical algorithms.

Let me clear about terminology employed here. By the term simulation, I
mean that certain pre-specified properties of the quantum system are accurately
predicted by the simulation but not necessarily all properties. Accuracy refers to
each answer being no worse than some error tolerance ε. For example one might
wish to know the mean momentum, the standard deviation of the momentum,

� This project has been supported by NSERC, CIFAR, AITF, USARO, MITACS and
PIMS, and I acknowledge numerous valuable discussions with Nathan Wiebe about
these concepts.

G.W. Dueck and D.M. Miller (Eds.): RC 2013, LNCS 7948, pp. 1–10, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.iqst.ca/people/peoplepage.php?id=4
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and average energy. The simulation is successful if these quantities are accu-
rately predicted by the simulator even if other irrelevant quantities are poorly
predicted. The term efficiency refers to the simulation yielding an accurate so-
lution to the problem with a resource (e.g., run-time and space usage) cost that
increases no faster than a polynomial function of the input bit string and of 1/ε.

Explicitly defining simulation is important because various notions of quan-
tum simulation using quantum computers, either purpose-built or universal, with
various terminology. The term “digital quantum simulator” is sometimes em-
ployed to refer to a programmable quantum simulator, and the term “analogue
quantum simulator” refers to a quantum system designed to behave analogously
to a the quantum system being studied [4], and usually these terms are employed
when error correction is not assumed hence making these systems not scalable.
Analogue quantum simulation is sometimes called “quantum emulation” [5].
Our term “universal quantum simulator” is in concordance with “digital quan-
tum simulator” provided that the latter uses a fault tolerant architecture as we
assume simulation on a scalable quantum computer.

Quantum simulation can deal with non-relativistic single-particle quantum
mechanics described by Schrödinger’s equation

i
d

dt
|ψ(t)〉 = Ĥ(t)|ψ(t)〉 (1)

with self-adjointness Ĥ = Ĥ† implying unitary dynamics, but self-adjointness
is not necessary. Alternatively simulation of relativistic quantum mechanics or
many-body quantum dynamics [6] or quantum field theories [7] may be sought.
For simplicity we focus on the easiest case of single-body dynamics (1) and
thence to the many-body case.

After choosing the equation to be studied, the question then arises as to which
problem is to be solved. Two possible problems include solving the state |ψ(t)〉
over some time domain or determining the spectrum of the Hamiltonian Ĥ .
Instead of finding the spectrum or some aspect of the spectrum such as the
smallest or largest spectral gap, the problem could be about finding eigenvectors
of Ĥ such as the ground state. For simulation purposes a natural question would
be to estimate the expectation values of some observable

〈ψ(t)|Ô|ψ(t)〉. (2)

Some of the problems discussed here could be tractable on a classical computer
hence making quantum algorithms uninteresting; other problems such as finding
ground states could be intractable as well on a quantum computer [8].

2 Algorithms and Complexity for Quantum Simulation

For algorithmic quantum simulation we are interested in those problems that are
intractable on a classical computer yet tractable on a quantum computer. We can
rule out solving problems that are amenable to the usual classical methods such
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as the following [9]. One approach is to diagonalize the Hamiltonian directly,
which is always possible in principle but, as the problem size is polylogarithmic
in dimension and diagonalization is polynomially expensive with respect to di-
mension, the cost of diagonalization is thus superpolynomially expensive hence
is not efficient in general.

Another approach to quantum simulation is to integrate the dynamical equa-
tion, for example Schrödinger’s equation (1), directly. For example the Runge-
Kutta technique is popular. Alternatively the dynamics can be tackled by
constructing the evolution operator and using the Magnus, or Baker-Campbell-
Hausdorff method, expansion. Product formulæ are valuable as a unitary evo-
lution can be factorized into an approximate product of unitary evolutions.
Product formulæ include the Forest-Ruth or symplectic integration, method,
and the Trotter-Suzuki expansion is also valuable, especially for quantum simu-
lation as we shall see.

Quantum Monte Carlo simulations include stochastic Green functions tech-
niques and variational, diffusion or path-integral Monte-Carlo methods. Density
matrix renormalization group techniques have become popular especially for
one-dimensional many-body systems with slowly increasing entanglement with
respect to the number of particles.

Perhaps the best insight into quantum simulation can be gained by studying
Feynman’s own words in his seminal 1982 paper on quantum computing based
on a his keynote talk on the topic “Simulating Physics With Computers” [10].
Feynman asks,

Can a quantum system be probabilistically simulated by a classical
(probabilistic, I’d assume) universal computer? In other words, a com-
puter which will give the same probabilities as the quantum system does.
If you take the computer to be the classical kind I’ve described so far,
(not the quantum kind described in the last section) and there’re no
changes in any laws, and there’s no hocus-pocus, the answer is certainly,
No! This is called the hidden-variable problem: it is impossible to repre-
sent the results of quantum mechanics with a classical universal device.

The concept of quantum simulation can be understood from the schematic in
Fig. 1. The essence of this figure, which is fully explained in the caption, is that
the quantum simulation necessarily approximates all information and quantum
information into bit strings and qubit strings and delivers an approximation to
the final state as a finite qubit string.

Let us now perform exegesis on Feynman’s words to seek an understanding
of what he meant. In order to understand his meaning, we delve into computer
science notions of complexity, not something that Feynman himself used. Thus,
we seek to interpret a statement more than three decades old through the lens
of modern computational complexity theory.

To understand, we cast quantum simulation as a decision problem: the com-
putational problem is constructed so that the answer can only be Yes or No.
To assess whether the quantum simulation is efficient, the question is then how
hard, i.e., how do the computational resources scale with problem size expressed
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  H 2
⊗n total

˜ Ψ 0
˜ Ψ t '

  H

Ψ0

Ψtexp −it ˆ H { }exp itĤt
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t
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ˆ ˜ H ji
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⎨ 
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⎫ 
⎬ 
⎭ 

i=1

N

∏ ˜ Ψ tε

Physical 
Space 

QComp 
Space 

0

Fig. 1. Quantum simulation is depicted by showing evolution of a state Ψ0 in a Hilbert
space H for the Physical Space and the evolution of the state’s approximation Ψ̃0 in
the n-qubit space Hn

2 in the quantum computer, or QComp Space. In the physical
world, the evolution is given by exp{−itĤ} for Ĥ the system Hamilttonian and t the
time of evolution. The resultant state is Ψt. In the quantum computer, all information
is restricted to finite bit strings and all quantum information to finite qubit strings
so even continuous time t is broken up into discrete intervals of duration t/r and the

Hamiltonian matrix is approximated by
˜̂
H. The resultant simulated state is Ψ̃ ′

t, which
is different from the approximation of the true state Ψ̃t by less than a distance ε.

as the number of bits n required to specify the input state, in order to answer
the question? Note that the resources to prove Yes or No can differ, which leads
to complexity classes and their complements. We are especially interested in the
time and space costs, which we denote as T and S, respectively.

Quantum simulation problems are no worse then EXP, which is the class of
problems that can be solved with T and S increasing no more than an exponential
function of n. That EXP is the worst case follows from using the Heisenberg
matrix representation for the dynamics and seeing that the size of the register
and the computational time for matrix operations leads to decision problems
being in EXP.

Aaronson points out that Feynman (inadvertently) reduced the complexity of
quantum mechanics to PSPACE; i.e., S increases no more than polynomially in n
by introducing path integrals [11]. The class of decision problems solvable effi-
ciently on a quantum computer is BQP, which refers to bounded-error quantum
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polynomial and is inside PSPACE. The aim of quantum simulation thus needs
to focus on narrower problems than those in PSPACE. Feynman’s words “give
the same probabilities” hints at the correct approach. One should ask questions
pertaining to expectation values of certain observables and accept answers that
are probabilistically equivalent to the true probabilities for these observables in
the physical world.

Feynman’s comment, “classical kind . . . the answer is certainly, No!” is more
problematic. He suggests that the classical simulation is provably inferior to the
quantum simulation because of “the hidden-variable problem: it is impossible to
represent the results of quantum mechanics with a classical universal device”.
This question of provable superiority remains unresolved today, and the hidden-
variable problem does not lead to its resolution. Feynman’s idea that there is a
strict separation between two computational complexity classes can be regarded
as a hard one to settle by thinking about this problem along the lines of any
reduction in the polynomial complexity hierarchy. Such problems are famously
difficult.

Lloyd recognized in 1996 that the key to formalizing Feynman’s claim lay in
how to discrete the time evolution into discrete gate steps with a bound on the
accumulated error due to time discretization [12]. Specifically Lloyd used the
Trotter product formula

eit(Â+B̂) → lim
n→∞

(
eitÂ/neitB̂/n

)n
. (3)

to approximate the evolution operator, with the Hamiltonian expressed as the
sum

∑m
j=1 Ĥj as

exp

⎧⎨
⎩−it

m∑
j=1

Ĥj

⎫⎬
⎭ =

(
N∏
i=1

exp

{
−i t

r
Ĥji

})r

+
∑
j>j′

[
Ĥj , Ĥj′

] t2

2r
+ error. (4)

Lloyd proved that this simulation had a T and S costs that are only poly(n).
This result can generalized to a time-dependent Hamiltonian and the errors
tightened [9].

In 2003, Aharonov and Ta-Shma analyzed the general question of what Hamil-
tonian systems are efficiently simulatable [13]. Their work was motivated by
strong claims about adiabatic quantum computing solving NP-Hard problems.
They tackled the problem by considering which quantum states can be efficiently
generated and cast the problem into the oracle setting: Ĥ is in a black-box, which
is queried with an assigned cost per query. A key result of their work is their
demonstration of equivalence between quantum state generation and statistical
zero knowledge problems. Another important result is the Sparse Hamiltonian
Lemma: If Ĥ acting on n qubits is d-sparse s.t. d ∈ O(polyn) and the list of
nonzero entries in each row is efficiently computable, then Ĥ is simulatable if
‖Ĥ‖ ≤ polyn.

We can use Childs’s rules for simulatability [14] to augment the Sparse Hamil-
tonian Lemma. The system is simulatable if the Hamiltonian is a sum

∑
i Ĥj
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with each Ĥj acting on O(1) qubits or is
√
−1× a commutator of two simu-

latable Hamiltonians or is efficiently convertible to a simulatable Hamiltonian
by efficient unitary conjugation or is sparse and efficiently computable. The ba-
sic element for simulating Hamiltonian evolution is depicted in Fig. 2 for the
case of a diagonal Hamiltonian. The circuit is easily generalized to one-sparse
Hamiltonian generated evolution whether diagonal or not [15].

d 

   

exp −it 1 1( )
exp −2it 1 1( )

exp −2k−1it 1 1( )

d 

0

0

0

0

0

0

a e−id a( ) t a

Fig. 2. Simulating evolution for diagonal Ĥ with d(a) = 〈a|Ĥ|a〉 ∈ {0, 1}k. The
row numbers a of the Hamiltonian are written onto a string of qubits, and the string
of qubits in the |0〉 state are ancillary. The depicted circuit circuit then effects the

transformation |a, 0〉 �→ |a, d(a)〉 �→ e−itd(a)|a, d(a)〉 �→ e−itd(a)|a, 0〉 = e−iĤt|a, 0〉.

The quantum simulation circuit is designed to approximate the desired unitary
evolution operator U by a sequence

∏N
ν=1 Ujν where each Ujν is generated by

one of m one-sparse Hamiltonians. Generalizing the Trotter formula using the
Suzuki iteration method leads to a much more efficient way of performing this
unitary factorization, i.e., to a product of unitary gates with the length of this
sequence of unitary gates being t1+o(1) [16,17].

The Hamiltonian in the oracle is promised to be d-sparse with d ∈poly(n).
This creates the algorithmic challenge of reducing the d-sparse Hamiltonian into
a disjoint sum of one-sparse Hamiltonians. The decomposition is aided by first
converting sparse Hamiltonians into graphs of low degree and then colouring the
graph so that it is a disjoint union of degree-one graphs; hence the corresponding
Hamiltonian is a direct sum of one-sparse Hamiltonians each corresponding to
one colour of the graph [16,17].

The Hamiltonian is converted to a graph as follows. Let x label a row of the
Hamiltonian matrix and y the column. As the Hamiltonian is d-sparse, there
are at most d column numbers that hold nonzero elements for row x. We call
these column entries y1,...,d in no particular order; i.e., the increasing sequence of
indices 1, . . . , d does not imply increasing values of yi. Now construct the graph
by assigning each x a vertex so that there are now 2n vertices but no edges yet.

For given x, we construct an edge to another vertex value x′ if x′ = yi such
that yi is one of the column indices where row x and column yi has a nonzero
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Hamiltonian matrix element. The weight of the edge is the value of that matrix
element 〈x|Ĥ |yi〉. If we simplify Ĥ to having only real matrix entries and note
that Ĥ = Ĥ†, then we can assign the Hamiltonian an undirected graph because
〈x|Ĥ |yi〉 = 〈yi|Ĥ |x〉. The Hamiltonian is thus faithfully represented by a degree-
d undirected graph. A superior colouring algorithm that yields a direct sum of
one-sparse Hamiltonians can reduce T and S costs for the associated quantum
query algorithm to determine the sequence of operations for evolution generated
by a d-sparse Hamiltonian.

Table 1 provides a summary of some advances over the years in reducing T
and S costs. In some cases one cost is reduced at the expense of the other.
Although the efficiency of quantum simulation has been known for quite some
time, quantum simulations could be the first practical application of quantum
computing. Cost reductions reduce the waiting time for non-trivial quantum
simulations to become a reality and hence are important.

Table 1. Key developments in reducing time T and space S costs for a quantum
computer to simulate time-independent Hamiltonian generated evolution as a function
of the number of qubits n representing the system, the sparseness d of the Hamiltonian,
the allowed error ε, and the norm of the Hamiltonian ‖Ĥ‖. The authors are listed in
the first column along with references and the year in the second column. The final
row and column is given by • to show that the space cost is not explicitly known.
The iterated logarithm log∗ in the table is the number of successive iterations of the
base-two logarithm function required to reduce the number to one or less.

Who Year T S

Lloyd[12] 1996 O(t2) O(n)

AT[13] 2003 O
(
n9d4 t2

ε

)
O(n)

Childs[14] 2003 O
(
n2d4+o(1) t3/2√

ε

)
O (n)

BACS[16] 2007 O
(
log∗nd4+o(1) t1+1/2k

ε1/2k

)
O(n log∗n)

CK[18] 2010 O
([

d3 + d2 log∗n
]

t1+1/2k

ε1/2k

)
O (nd+ n log∗n)

CB[19] 2010 O
(
‖Ĥ‖maxd

t√
ε

)
•

3 Applications

Although quantum computing was founded on the principle of quantum simu-
lation, other algorithms such as factorization have dominated the field for many
years. The reason quantum simulation is back in full force can be understood
from the prescient quote from a 1997 paper by Abrams and Lloyd[6]:

But the problem of simulation — that is, the problem of modeling the full
time evolution of an arbitrary quantum system — is less technologically
demanding. While thousands of qubits and billions of quantum logic
operations are needed to solve classical difficult factoring problems [16],
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it would be possible to use a quantum computer with only a few tens of
qubits and a few thousand operations to perform simulations that would
be classical intractable [17].

Abrams and Lloyd specifically showed that the quantum simulator would ef-
ficiently simulate fermionic systems. Combined with other results on bosonic
and anionic systems, the quantum simulator is thus known to be an efficient
simulator of all types of many-body systems.

Various many-body systems are considered for experimental quantum sim-
ulation in order to learn properties about the system that are unreachable
with classical simulations due to intractability. Let us assign X , Y and Z as
the Pauli operators on a single qubit. The Hamiltonians for these many-body
systems include the Ising Hamiltonian J

∑
〈i,j〉 Zi ⊗ Zj + B

∑
i Xi, the XY

Hamiltonian Jx
∑

〈i,j〉 Xi ⊗ Xj + Jy
∑

〈i,j〉 Yi ⊗ Yj , the Heisenberg Hamilto-

nian Jx
∑

〈i,j〉 Xi ⊗ Xj + Jy
∑

〈i,j〉 Yi ⊗ Yj and the honeycomb Hamiltonian

Jx
∑

x−linkXi ⊗ Xj − Jy
∑

y−link Yi ⊗ Yj − Jz
∑

x−link Zi ⊗ Zj . Whereas ear-
lier the algorithm for simulation is designed for the broadest class of simulatable
Hamiltonians, if the Hamitlonian is known explicitly and is a sum of strictly lo-
cal Hamiltonians, then there is a straightforward circuit-construction algorithm
for unitary gates generated by a tensor product of Pauli operators [20].

Whereas quantum simulators are evidently useful for simulating quantum
dynamics by design, they can be used more broadly, for example to solve giant
sets of coupled linear equations [21]. This approach takes quantum simulators
beyond applicability just to quantum systems, but we have to be careful about
what we mean by “solve” as we had to be careful about what we meant by
“solve” Schrödinger’s equation earlier.

The problem to be solved by the quantum linear equation solver can be un-
derstood by the following statement.

Given matrix A, vector b, and matrix M , find a good approximation
of xTMx such that Ax = b.

The strategy for using a quantum simulator to solve this problem is as follows.
Begin by replacing b by the quantum state |b〉 =

∑N
i=1 bi|i〉 with |i〉 the compu-

tational basis.
The solution would be |x〉 = Â−1|b〉, but inverting Â is hard so a method

has to be found to circumvent this difficulty. The operator Â has eigenvalues λj

and eigenvectors |uj〉 for j = 1, . . . , N , and we express |b〉 =
∑N

j=1 βj |uj〉 in the

Â-eigenbasis. The concept is to recognize that

|x〉 = Â−1|b〉 =
N∑
j=1

βj

λj
|uj〉. (5)

This approach is achieved by using the phase-estimation approach, namely by
taking b〉 with ancilla to obtain

∑N
j=1 βj|uj〉|λj〉. Then the non-unitary linear

map |λj〉 
→ λ−1
j |λj〉 is constructed in a quantum circuit. Finally the circuit

uncomputes |λj〉 to obtain the approximation |x〉.
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4 Conclusions

This article provides an overview of algorithmic quantum simulation, approaches
to implementing and improving these algorithms, and applications of quantum
algorithms for quantum simulation. Theoretical research in this area is chal-
lenging because it draws in so many different techniques from such different ar-
eas, for example graph theory, operator algebra, and computational complexity.
The field is exciting from a technological perspective because non-trivial prob-
lems could be solved with smaller quantum computers than for other planned
applications of quantum computing such as to factorization.
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Abstract. We introduce two eight-line one-bit memory modules which
are useful in the modelling of distributed memory in asynchronous delay-
insensitive circuits. Our modules are reversible and together with the
Merge element are serial-universal. We show how they can be used to
realise Morita’s Rotary Element and other reversible modules thus show-
ing their computation universality. We also propose three sets of modules
that are universal for all modules.

1 Introduction

Delay-insensitive (DI) circuits are a category of asynchronous circuits which
make no assumption about delays within elements or wires. As a type of asyn-
chronous circuit, they have no global clock. It is shown in [11] that typical logical
gates such as NAND and XOR are not Turing-complete when operated in a DI
environment. Hence, DI circuits use different types of modules. These operate
based upon the presence or absence of signals rather than the values of signals
like typical gates. However, DI circuits of these modules are inefficient when im-
plemented in CMOS due to a significant overhead. As the need for a replacement
technology for CMOS arises DI circuits are seen as a possible future direction
for the industry. Their implementation in several alternative technologies such as
cellular automata ([7]) and RSFQ circuits ([18]) is considered a potential option.

Asynchronous circuits in general have numerous advantages ([3]), one of which
is efficient energy usage. Without a global clock, only modules which are perform-
ing useful computation use power. Reversible circuit elements are also energy
efficient ([1]) for different reasons as operations result in no loss of information,
which correlates directly to energy usage. Combining these two properties is
desirable.

Keller ([5]) initially characterised the conditions required for correct DI oper-
ation, and also gave various universal sets of primitives. Much subsequent work
by Patra and Fussell ([17,16]) went into finding more efficient sets of universal
primitives. In these cases, efficiency is measured as low modularity (the max-
imum number of input-output lines for modules in a set) and low cardinality
(number of modules in a set).

Reversible elements were originally studied by Fredkin and Toffoli ([1]) and re-
sulted in synchronous universal logic elements. More recently, research by Morita,

G.W. Dueck and D.M. Miller (Eds.): RC 2013, LNCS 7948, pp. 11–24, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Lee, Peper and Adachi has been carried out into finding efficient (where efficiency
is measured as the number of states of a module, and the cardinality and mod-
ularity of a set) universal sets of reversible DI modules with memory, such as
Rotary Element (RE) ([13]), and Reading Toggle (RT) and Inverse Reading Tog-
gle (IRT) ([10]). Morita et al. have enumerated the full set of possible 2-state
elements with two, three and four pairs of input/output lines in [15]. How these
various concepts relate to each other as well as to cellular automata has been
discussed by Morita in [14].

We consider additionally another notion of efficiency. Namely, the number of
transitions required (the processing of an input followed by the production of
an output is considered a transition) in a circuit to produce its final output. Its
importance relates to the fact that more transitions correspond to both higher
power usage and longer processing time.

In this paper we introduce a new pair of DI modules based upon the idea of
distributed memory. We then prove computation-universality of these modules,
and show cases where their use substantially reduces the number of transitions
compared with similar circuits using other reversible elements with memory such
as RE and RT/IRT. This is demonstrated in both synchronous and asynchronous
design styles. We conclude by proposing three new universal sets, each containing
one of our memory modules.

2 Asynchronous Delay-Insensitive Networks

We formalise the concept of a delay-insensitive network by introducing the notion
of both a Sequential Machine and a Serial Module, with formal definitions being
adapted from [10]. A Sequential Machine is a 4-tuple N = {Q,Σ,�, δ}. Q is a
non-empty finite set of states. Σ and � are non-empty finite sets of input and
output symbols. δ is a partial transition function defined as δ : Q×Σ → Q×�.
Informally, it represents an input in a given state causing a transition to a new
state whilst causing an output.

A Serial Module is an abstraction of a Sequential Machine and is a 3-tuple
M = (I, O,N) where N is defined as a Sequential Machine, and I and O are
input and output lines in one-to-one correspondence with Σ and � in N respec-
tively. Furthermore, we also define a Reversible Sequential Machine (as in [10])
identically to a Sequential Machine, with the exception that δ is bijective. A
Reversible Serial Module ([10]) is defined analogously with N being an instance
of a Reversible Sequential Machine rather than a Sequential Machine.

A network or circuit of modules is a collection of instances of modules, such
that the output of a module is connected to at most one input of another module.
Similarly an input of a module is connected to at most one output of another
module. If an input or output is not connected, it is assumed that a signal will
never occur on this line during execution of the network. Connections between
modules are informally referred to as wires. A wire may also be a connection
between a module and an arbitrary environment (an undefined network of mod-
ules), with the required behaviour of the surrounding environment being stated
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where appropriate. A connection to an environment is visually represented by
the appropriate end of the wire left unconnected.

Operational restrictions on networks of these modules were formulated by
Keller ([5]). To summarise, an input to the Sequential Machine of a module is
represented by a ”signal” on the corresponding line to the Sequential Module.
When the input is processed by the corresponding machine, the signal is ”ab-
sorbed” by the module and the line is then considered ”empty”. After processing
the input, the Sequential Machine places a signal on the corresponding output
line of the module, moves to the appropriate state, and then repeats the pre-
vious behaviour. No line may contain more than one signal at any given time.
If a circuit operates correctly regardless of arbitrary delays in both wires and
modules, it is known as delay-insensitive. As in [5], arbitration within modules
between inputs is not embodied by default. In the case of Serial Modules, this
requires that at most one input is active at any given time.

The behaviour of a module simulated by a network of other modules is referred
to as a realisation or decomposition of a module. A set of modules is referred
to as being serial-universal if any arbitrary Serial Module can be realised using
only modules from the set. We also define the modularity of a module to be the
total number of input/output lines. Similarly, we define the modularity of a set
to be the largest modularity of all modules within the set.

We illustrate this concept by giving the definition of RE taken from [13] in a
similar manner to the definitions of RT and IRT in [10]. A definition of RE in a
similar style is also given in [15]. An RE is a 2-state, 4-input, 4-output Reversible
Serial Module shown in Fig. 1. It is defined as ({n, s, w, e}, {n′, s′, w′, e′}, NRE)
where NRE is a Reversible Sequential Machine ({V,H}, ΣRE,�RE, δRE). Let
μ : {n, s, w, e} → ΣRE and ν : {n′, s′, w′, e′} → �RE be the mappings between
the module and sequential machine. The definition of δRE is given in Fig. 1.
The inputs n, s, w and e represent, informally, the ”north”, ”south”, ”west”
and ”east” directions of input respectively. The outputs are analogous. V and
H represent ”vertical” and ”horizontal” respectively, and refer to the depiction
of the state as a rotating bar. Instead of the full definition of each module
that we consider, we shall use CCS-like notation ([12]) to specify its behaviour,
similarly as trace notation and automata are used in [17] and [9] respectively.
Each state of a module has a name, for RE these are V and H , and we give
equations for each state that specify which outputs occur in response to which

s′s′

nn n′n′

ww
w′w′ ee

e′e′

ss

δRE(V, n) = (V, s′), δRE(H,n) = (V,w′)

δRE(V, s) = (V, n′), δRE(H,s) = (V, e′)

δRE(V, w) = (H,s
′), δRE(H,w) = (H, e

′)

δRE(V, e) = (H,n
′), δRE(H, e) = (H,w

′)

Fig. 1. RE and corresponding definition of δRE
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inputs, and how this changes the state of the module. For example, RE in the
V state is defined as V = (n, s′).V + (s, n′).V + (w, s′).H + (e, n′).H where
(n, s′).V means that the input n causes the output s′ and a change to state V ,
and + is the choice operator, which is used here to represent that RE in the
V state has four different pairs of input/output behaviours. RE in H state is
H = (n,w′).V + (s, e′).V + (w, e′).H + (e, w′).H .

In the following sections, we occasionally use a serial delay-insensitive Merge
module (denoted by M), shown in Fig. 2.

Ma
b

c M = (a, c).M + (b, c).M

Fig. 2. Merge element and behaviour specification

Concluding the section, we note a related work on DI process algebra in [2,4].
Reversible process calculus CCSK and its extension with the execution control
operator in [19,20] can also be used to model our DI modules and circuits.

3 Distributed Memory Module

The Distributed Memory (DM) module is an 8-line, 4-state module with 1-bit
memory, given in Fig. 3. In the following, states S0 and S1 are referred to as
steady states and Sa and Sb as processing states. The module is composed of two
systems of functionality, represented by the dashed line. The ports to the left are
responsible for controlling the modification of the internal state, while the ports
to the right are responsible for querying the state. In S0, the module may be
said to ”hold” the value 0, and similarly for S1 and the value 1. Informally, the
behaviour of the module is described as follows. In a steady state, a query may
occur via the lines q or p, which outputs the held value or its inverse respectively,
via lines 0 or 1. An input via the r line causes an output via the s line, and the
module moves to the other steady state. Alternatively, an input via c causes the
module to output via s and move to a processing state (Sa or Sb depending on
whether the steady state was S0 or S1 respectively). It remains in this state until
an input via r, during which it will move to a new steady state (the complement
of the previous steady state) and output a.

A circuit of these modules connected in a ring with each module’s s output
connected to the next module’s r input will cause all modules to toggle their
state in series when any one of the modules is signalled via the c input. The
module which initiated the distributed toggle will eventually output on its a line
to indicate completion when the toggle signal has completed a full revolution.

We also introduce a slightly reduced version of this module, known as a Re-
duced Distributed Memory (RDM, see Fig. 4). Informally, the behaviour of this
module is identical to the DM with two exceptions. Firstly, the module lacks the
1 and c lines. Secondly, if q is signalled when in S1, or p is signalled when in S0,
the module automatically enters the corresponding processing state.
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0 1

qp

a

cr

s S0 = (q, 0).S0 + (p, 1).S0 + (r, s).S1 + (c, s).Sa

Sa = (r, a).S1

S1 = (q, 1).S1 + (p, 0).S1 + (r, s).S0 + (c, s).Sb

Sb = (r, a).S0

Fig. 3. Distributed Memory module and behaviour specification

Proposition 1. RDM can be simulated by a single DM by connecting the DM’s
1 line to its c line.

Both modules are to be operated in environments such that at most one input
may occur at any given time, and are therefore Serial Modules. The previous
state and input is always determined by the current state and the output, and
hence both modules are reversible.

0

qp

a

r

s S0 = (q, 0).S0 + (p, s).Sa + (r, s).S1

Sa = (r, a).S1

S1 = (q, s).Sb + (p, 0).S1 + (r, s).S0

Sb = (r, a).S0

Fig. 4. Reduced Distributed Memory module and behaviour specification

In the diagrams that follow, we indicate a steady state of either S0 or S1 with
a 0 or 1 in the centre of a module respectively. The use of a DM or RDM can be
distinguished via the presence of eight or six lines respectively. We also rearrange
the locations of ports in order to improve readability of diagrams.

Next, we illustrate the use of our module in the domain of irreversible DI
networks, as shown in papers such as [5] and [17]. In Fig. 5 we give the definition
of Select from [5]. We show in Fig. 6 how it can be decomposed into RDMs
and Merges, and furthermore we illustrate the behaviour when undergoing the
transition (T, T1).S1.

Theorem 2. {M, DM} and {M, RDM} are serial-universal.

Proof. The universality of {M, RDM} follows from the universality of {M, Se-
lect} in [5] and the construction of Select using {M, RDM} in Fig. 6. It follows
by Proposition 1 that {M, DM} is serial-universal.

We note that Select can be decomposed into 3 DMs. Furthermore, it is clear from
Fig. 6 that the p input is unused. We can therefore introduce a third version
of DM which is identical to RDM but does not contain a p input (we denote it
RDM\p). This module has only 5 lines.
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Corollary 3. The set {M, RDM\p} is serial-universal and has cardinality 2 and
modularity 5.

The set {M, RDM\p} is an improvement over existing serial-universal sets in [5]
and [17]. {M, Select} in [5] has modularity 7. While the set {K, G, M} from [5]
has modularity 5, it also has cardinality 3 .

T T0 T1

S S′RR′

S0 = (S, S′).S1 + (R,R′).S0 + (T, T0).S0

S1 = (S, S′).S1 + (R,R′).S0 + (T, T1).S1

Fig. 5. Select module and behaviour specification

0 0 0 0

M M

1 0 0 1

4

5

8

100

1 9 2 6 3 7

T T0 T1 S S′ R R′

qqqq

pppp

aaaa

rrrr ssss

Fig. 6. Select using RDMs and Merges undergoing the transition (T, T1).S1 in the
state S1. Each intermediate transition is represented by a circle on the appropriate
wire. There may be more than one transition, thus more than one circle, on a wire,
and the numbers in the circles indicate the order of the transitions. The final state is
the same as the one depicted. The intermediate circuit states are not shown.

4 Reversible Modules

DM is particularly desirable in that (similarly to RE), it is its own functional
inverse. This can be seen by running DM backwards and by changing output
lines to input lines (and vice versa) as given by the pairs (0, q), (1, p), (s, r) and
(a, c). This is a particularly desirable property as it implies that the reverse
behaviour of a circuit of DMs can be achieved without using different modules.
However RDM, much like RT or IRT (Fig. 7), does not have this property.

4.1 Universality

We show computation-universality of both the DM and RDM via two methods.
Firstly, we demonstrate the construction of RE using just RDMs (Fig. 8). This
construction uses only four modules, an alternative to the approach using six



Reversible Delay-Insensitive Distributed Memory Modules 17

TT

RR

TATA TBTB

A = (R, TA).A+ (T, TA).B

B = (R, TB).B + (T, TB).A

TT

RR

TATA TBTB

A = (TA, R).A+ (TB, T ).B

B = (TB, R).B + (TA, T ).A

Fig. 7. Reading Toggle (top) and Inverse Reading Toggle (bottom)

Select modules as demonstrated in [6]. Furthermore, unlike in [6], this decompo-
sition does not use Merge and is therefore fully reversible. We also contrast this
approach with a decomposition using RT/IRT as demonstrated in [10]. Whilst
our modules are more complex than RT/IRT, the resulting decomposition is
much simpler and more intuitive. This decomposition in particular demonstrates
the advantage that our module has in circuits which require multiple copies of a
single memory value. The need for additional modules dedicated to controlling
homogeneous updates is removed.

Theorem 4. DM and RDM are computation-universal.

Proof. Figure 8 demonstrates a construction of RE using only RDMs. The the-
orem follows from the universality of RE shown in [13]. Furthermore, DMs may
be used in place of RDMs (Proposition 1), so DM is also universal.

We next demonstrate the construction of a synchronous Fredkin Gate (FG) to
show the usefulness of our modules in the synchronous domain (Fig. 9) and
we compare our construction with those that use REs in [15] and RT/IRTs in
[8]. This construction is not delay-insensitive and delay elements are required
in order to ensure correct operation. A triangle with a value x inside in Fig. 9
represents a delay element of x cycles: where a cycle is a single input-output
transition. The circuit in Fig. 9 assumes that all inputs arrive simultaneously.
The absence of a signal on a line represents a 0, and the presence of a signal
represents a 1, as is standard in many synchronous systems and is identical to the
approach shown in [8]. For comparison: our circuit uses 2 DMs, 5 delay elements
and 8 cycles; [8] uses 12 RT/IRT pairs (24 modules total) and 12 delay elements,
and [15] uses 8 REs, 9 delay elements and 20 cycles. Assuming that a delay does
not count as a transition, our circuit uses a maximum of 10 transitions when
c = 1, and a maximum of 2 transitions otherwise. [15] uses a maximum of 28
transitions if c = 1, and [8] uses considerably more.

To conclude the section, we show in Fig. 10 that RDMs can simulate a DM.
Although this construction has a high transition cost, more efficient construc-
tions exist for particular circuits. For example, Select can be realised with 3 DMs,



18 D. Morrison and I. Ulidowski

0

00

0

0

01

1

0

00

0

1

10

0

4

5

0

1

2

6

3

s′s′

nn n′n′

ww

w′w′

ee

e′e′

q

q q

qq

q q

q

p

p p

pp

p p

p a

a a

aa

a a

a r

r

r

r

r

r

r

r

s

s

s

s

s

s

s

s

s

s

Fig. 8. Rotary Element using RDMs undergoing the transition (w, s′).H . The left
circuit shows the initial state of the circuit corresponding to the state V , as well as
the series of transitions (represented by numbered circles on the appropriate wires)
following a signal on w. The final state corresponding to H is shown on the right. The
intermediate circuit states are not shown.
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Fig. 9. Synchronous Fredkin Gate using DMs and delay elements. A triangle with a
value x inside represents a delay element of x cycles: where a cycle is a single input-
output transition. The diagram shows the series of transitions following simultaneous
signals on q and c. This corresponds to p = 0, q = 1, c = 1. The final state is the same
as the one depicted. The intermediate circuit states are not shown.

so if we used the construction from Fig. 10, we would need 15 RDMs. However,
we see in Fig. 6 that we only need 4 RDMs.

Proposition 5. A DM may always be substituted for RDMs.

4.2 Constructing Other Reversible Modules

Three useful constructions of RT, IRT and Patra’s Memory module (Mem) ([17],
definition given in Fig. 11) are shown below in Fig. 12. In all cases a single module
can be used. We now show a construction of a reversible Turing-tape module
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Fig. 10. DM using RDMs undergoing the transition (c, s).Sa in the state S0, followed
by the transition (r, a).S1 in the state Sa. The top circuit shows the initial state of the
circuit corresponding to the state S0, as well as the series of transitions (represented
by numbered circles on the appropriate wires) following a signal on c, and eventually r.
The final state corresponding to S1 is shown on the bottom. The intermediate circuit
states as well as the processing state Sa are not shown.
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c′ S0 = (c, c′).S1 + (t, t0).S0

S1 = (c, c′).S0 + (t, t1).S1

Fig. 11. Memory module and behaviour specification
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Fig. 12. (Left) RT in state A using RDM, (center) IRT in state A using DM and (right)
Patra’s Mem in state 0 using DM

taken from [13] (Fig. 13). A detailed operational description of its high-level
behaviour is given in [13]. In summary, there exists an infinite series of tape
modules in a linear array, with the leftmost module connected to the Turing
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Fig. 13. Reversible Turing-Tape Element using DMs and RDMs

machine’s control logic. The location of the tape’s head is recorded by setting
the tape module’s h variable to 1. The value stored on the tape module is stored
in the variable s. Whenever h is 0, the typical role of the module is to forward
signals to its neighbour, where the signals will propagate until reaching the mod-
ule whose value of h is 1, and a useful operation will be performed. We think
that the use of DMs/RDMs for this construction demonstrates an advantage
over the construction in [13], which uses REs. Due to the centralised storage of
both h and s in the RE construction, trivial operations have a high transition
cost. For example, when h is 0 and the module is to forward a signal from W to
W ′, the RE construction requires 24 transitions. Due to the distributed nature
of memory when using DMs/RDMs, h can be checked immediately, and this op-
eration requires a single transition. Additionally, the construction demonstrated
in Fig. 13 uses only 7 DMs and 7 RDMs, which is an improvement over the
use of 19 REs in [13]. The lack of utilisation of some ports represents a possible
opportunity for further optimisation.

5 Asynchronous Parallel Modules

In this section we introduce Parallel Modules and give three new sets of DI
modules that are universal for all modules (or just universal for short).

A Parallel Module is defined as a 3-tuple M = (I, O,N), where N is defined
as a Sequential Machine, and I and O are input and output lines and P (I) and
P (O) are in one-to-one correspondence with Σ and � in N respectively, where
P (x) denotes the power-set of x. The behaviour is identical to that of a Serial
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Module with the exception that a single input signal is not necessarily followed
by a single output signal. Multiple input signals in combination (simultaneous or
otherwise) cause a set of output signals. Unless otherwise stated, we also assume
by default that there is no simultaneity between multiple valid sets of inputs (i.e.
arbitration is not permitted, as in the previous sections). Partial inputs pend out-
side the module until a complete set has arrived, during which all are assimilated
simultaneously. Outputs are produced simultaneously. This is a modification of
the definition of Parallel Modules given by Keller ([5]), and is made here to re-
duce the number of states and simplify notation, but does not result in a loss of
generality. A set of modules is referred to as being universal for all modules if any
arbitrary ParallelModule can be realised using only modules from the set.We also
use the terms with-busy-waiting and without-busy-waiting ([5]). A set is without-
busy-waiting universal if any Parallel Module can be realised using only modules
in the set such that a finite period of time after receiving an input it is guaranteed
that no more transitions will occur until receiving another input. A set is with-
busy-waiting universal if any arbitrary Parallel Module can be realised but the
aforementioned condition cannot be guaranteed.

We use several standard modules such as Fork (F), Join (J) and 2×1 Join
in the following results. They are defined in Fig. 14 and additional explanation
can be found in [17]. We use an extended notation here where a|b indicates the
signals on a and b in any order, and we write, for example, (a|b, c|d).X to mean
the accepting of inputs on a and b (in any order), the production of outputs on
c and d (in any order), and then a move to state X .

We also refer to Mutex and Sequencer (Fig. 15) from [17]. Sequencer is a
special case in that multiple sets of valid inputs are permitted. If all three inputs
are signalled, then only c and either r0 or r1 (arbitrarily selected) are assimilated,
with the remaining input left pending until c is again signalled.

It is shown in [17] that the set {F, M, Mutex, 2×1 Join, Mem} is without-
busy-waiting universal. We demonstrate a (reversible) construction of a 2×1 Join
using {J, DM, RDM} in Fig. 16. Recall that Mem can be simulated with DM

Fa b
c

F = (a, b|c).F

J
a
b

c

J = (a|b, c).J

a

b0

b1

c0

c1

T =(a|b0, c0).T

+(a|b1, c1).T

Fig. 14. Fork, Join and 2×1 Join modules

r0 r1

g0 g1

c
S = (c|r0, g0).S + (c|r1, g1).S

Fig. 15. Sequencer module and behaviour specification
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Fig. 17. With-busy-wait Sequencer using Merges, aDMs and 2x1 Joins

(Fig. 12), and DM can always be decomposed into RDM (Proposition 5). We
obtain the following result:

Theorem 6. {F, M, Mutex, J, RDM} is without-busy-waiting universal.

It is also shown in [17] that the set {F, M, Select, Sequencer} is without-busy-
waiting universal for all modules. Since Select can be decomposed into RDMs,
we obtain the following result:

Theorem 7. {M, F, RDM, Sequencer} is without-busy-waiting universal.

There might be a possible improvement of this result at the cost of busy-waiting
and using DMs instead of RDMs. If we relax the requirement that the DM be
only allowed to operate in a serial environment and permit the possibility of arbi-
tration, such that the module will process a single input at a time, causing others
to pend until processed (similar to ATS in [17]), we can decompose the Sequencer
into a series of arbitrating-DMs (denoted by aDM), 2×1 Joins (and hence, aDMs
and Joins) and Merges (Fig. 17). This still requires that the environment does
not provide invalid inputs at any point, and a situation may not arise such that
an input pends until the module enters a state where it becomes invalid. Note
that the lack of atomicity when decomposing DM into RDMs prevents the use
of RDMs (as well as other simpler modules) in this decomposition.

Conjecture 8. {M, F, J, aDM} is with-busy-waiting universal.
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6 Conclusion and Future Work

In this paper we have introduced a new pair of reversible DI modules based upon
the idea of distributed memory. We have proven these elements’ computation-
universality, and shown cases where their use reduces the number of transitions
compared with similar circuits using other reversible elements with memory such
as RE and RT/IRT. Their use has been demonstrated in both the synchronous
and asynchronous domains. We have also proposed three sets of DI modules,
each containing one of our memory modules, and we have shown them to be
universal.

The use of the proposed memory modules in the modelling of circuits for
distributed computing algorithms (e.g. Leader election) remains unexplored, and
provides an interesting direction for further research. Low-level binary operations
such as arithmetic operations are also a possible future area of study.
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Abstract. Overcoming the IC power challenge requires signal energy recovery, 
which can be achieved utilizing adiabatic charging principles and logically 
reversible computing in the circuit design. This paper demonstrates the energy-
efficiency of a Bennett-clocked adiabatic CMOS multiplier via a simulation 
model. The design is analyzed on the logic gate level to determine an estimate 
for the number of irreversible bit erasures occurring in a combinatorial 
implementation, showing considerable potential for minimizing the logical 
information loss. 

Keywords: Multipliers, computer arithmetic, adiabatic charging, reversible 
logic. 

1 Introduction 

Reversible logic is a strict requirement for quantum computing, however, overcoming 
the power challenge of the traditional digital integrated circuits potentially benefits 
from the associated energy recovery enabled by the reversible computation principles. 
Standard Complementary Metal Oxide Semiconductor (CMOS) technology does not 
recover signal energy, which leads to considerable energy waste and heat dissipation, 
limiting the attainable device densities and operating frequencies, and thereby, also 
the available computing power. While the technology scales down, expected to follow 
the predictions of the International Roadmap for Semiconductors (ITRS), the loss of 
signal energy and limiting the related heat become all the more important factors for 
circuit design. [1] 

Adiabatically charged logic recovers part of the signal energy, and if the circuits 
are slowed down, asymptotically nearly all of the energy can be recovered. The cost 
of asymptotically adiabatic logic is usually high in circuit area, complexity, or timing. 
Either reversible logic gates or timing-based logical reversibility is required [2]. 

Computer arithmetic is a field where the energy-efficiency of the implementations 
restricts the available performance, measured for example as operations per Watt. In 
addition to the requirements of high-performance computing, the battery life of 
portable and embedded systems has become one of the most important technology 
drivers. Therefore, an especially interesting area of reversible computation is the 
design of computer arithmetic, including the multiplier unit presented in this paper. 
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This paper demonstrates a reversible multiplier unit, which is based on CMOS 
transistors but driven with adiabatic power-clocks. Full logical reversibility is 
achieved via concatenated Bennett-type clocking approach, avoiding costs in logic 
complexity while placing all the overhead in the timing and the clock generation. 
Based on HSPICE simulation model, the design successfully recovers the signal 
energy and surpasses comparable static CMOS unit in the low-frequency regime up to 
tens of MHz. The design has been also fabricated with a 2 µm technology, while 
measurements are in progress. 

Part of the paper concentrates on the logical reversibility of multiplication and the 
specific multiplier design. Previous work indicates that the theoretical binary 
multiplication should be achievable with a linear number of bit erasures vs. operand 
word length, at the very least. The existing implementations including the design 
proposed here are not optimized on the logic level for minimization of erasures, 
which is demonstrated with the estimated information loss in the static CMOS 
multiplier variant. 

This paper is organized as follows: Sec. 2 outlines the procedures of adiabatic 
driving and the requirement of logical reversibility, while Sec. 3 describes the 
prototyped multiplier design. Design analysis is presented in Sec. 4 and the degrees of 
reversibility discussed in Sec. 5. The conclusion follows in Sec. 6. 

2 Signal Energy Recovery 

The energy-efficiency of any integrated circuit technology is closely related to the 
method of signal representation and the associated signal energy, which has to 
overcome the thermal noise floor by a significant margin [1]. In standard static 
CMOS, every switching event leads potentially to the dissipation of all the signal 
energy related to a certain circuit node. Most of this loss can be avoided by utilizing 
adiabatic charging principles, which can be fully implemented only by logically 
reversible circuits. 

2.1 Adiabatic Charging 

The energy dissipation in standard circuits occurs when electrical currents are driven 
through transistors with a finite on-resistance and resistive signal lines. The resistive 
losses are proportional to the voltage difference for example between the terminals of 
a transistor device, which gives rise to the approach of limiting this voltage difference 
and avoiding abrupt currents. For example, a static CMOS inverter gate in Fig. 1(a) 
represents information by the output node voltage, and dissipates all of the signal 
energy during the operation. During a switching event, either the pull-up or pull-down 
network loses  

CMOS = ½ DD
2 , (1)

where C is the output node capacitance including the wiring and next gate input, and 
VDD is the operating voltage. This energy is practically all the signal energy. 
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This circuit can be modified to recover signal energy by utilizing ramped power-
clock signals instead of static operating voltage and ground. An example of such 
energy-recovering 1n1p-logic [3] inverter is shown if Fig. 1(b) with the corresponding 
dual clock waveforms in Fig. 1(c), which can input energy into the circuit and recover 
it back to the clock. The adiabatic energy loss is 

adiabatic = R 2
DD

2 / tramp , (2)

where tramp is the time duration of the ramp. The pipelining of this type of 
asymptotically adiabatic logic is challenging due to the need to utilize reversible gates 
or include garbage signals. For an introduction into a classification of adiabatic circuit 
families the reader is referred to [2], which describes also quasi-adiabatic approaches 
enabling simply pipelining but losing some part of the signal energy. 

 

a

VDD

a

C

a a

C

 

Fig. 1. CMOS inverter. (a) Standard static CMOS implementation, (b) adiabatic 1n1p CMOS 
implementation, and (c) dual-rail power-clock. 

2.2 Reversible Logic and Operations 

Recovering the signal energy to the desired extent is possible using asymptotically 
adiabatic logic, where the energy is transferred inside the circuit avoiding any abrupt 
discharge of a high potential to ground. However, based on current experience, 
designing such circuits imply that the logic operations utilized have to be reversible in 
nature. 

The logical  reversibility  is  connected  to  the physical  reversibility  of  the  
system,  that  is,  the  physical, thermodynamically described state of the system has 
to mirror to some degree the computation that is performed. Fifty years ago, Rolf 
Landauer proposed this connection in [4], and recently in 2012, the Landauer’s 
Principle was confirmed with a generic one-bit memory experiment recently reported 
in [5].  A bit erasure at the room temperature has an inevitable energy cost of about 
0.003 aJ, which usually has to be dissipated as heat into the environment. This part of 
the signal energy cannot be adiabatically recovered, unless we incorporate logical 
reversibility into the circuit. 

However, in the traditional circuits the bit erasure energy is insignificant compared 
to the other losses. For example, the end-of-the-roadmap CMOS will dissipate about 
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three orders of magnitude higher energy per switching event [1]. Losses in the 
emerging technologies like quantum-dot cellular automata (QCA) [6] are also various, 
but not counting the information loss, all of them are like friction in nature: they can 
be made as small as desired by switching more slowly, while the energy-per-bit-
erasure is unaffected by the speed. Therefore, it is necessary to design the system to 
utilize adiabatic charging for the logic or clock signal, in addition to achieving some 
degree of logical reversibility. From the circuit design perspective, reversible logic 
and adiabatic operation are desirable, but they incur various costs. An erasure-aware 
circuit involves tradeoffs between performance, timing, circuit area, and power, 
balancing the effects of the erasures and adiabatic operation. There are two 
approaches to achieve logical reversibility. 

First approach is based on using logically reversible gates like the Toffoli or 
Fredkin gates. The truth table of this type of gates contains only one-to-one mappings 
between the input and output spaces, and therefore, the physical trajectory of the 
evolving computing system can be logically tracked and reversed. The truth tables of 
irreversible operations can be augmented to include “garbage” outputs, thus 
embedding the operation into a larger logically reversible operation. This has 
significant costs in the area and complexity. 

Second approach is based on designing the timing of the circuit in such a way, that 
logical information is retained and energy recovery is enabled, following the ideas of 
Bennett [7]. The circuit first computes from the input side to the output side, the result 
is obtained, and then the circuit de-computes from the output to the input in reverse 
order. This can be efficiently implemented by Bennett-clocking technique [8], which 
is feasible for both CMOS circuits and many emerging technologies. The reversibility 
is retained by holding the predecessor parts of the circuits steady while successor 
stages compute, then relaxing after the whole computation has been finished. This is 
illustrated for a three-block design in Fig. 2, including the dual-rail power-clock 
signals necessary for 1n1p asymptotically adiabatic logic [3] we utilized in the 
presented multiplier. 

 

 

Clock 1 
Clock 2 
Clock 3 

 
Clock 3_n 
Clock 2_n 
Clock 1_n 

Relaxed 

Hold 

Relaxed 

Relaxed 

Hold 

Relaxed 

Time 

Full Cycle 

 

Fig. 2. Reversible Bennett-clocking. (a) Consequent logic blocks, (b) power-clock waveforms, 
vertically offset for clarity. 



 Energy Recovery and Logical Reversibility in Adiabatic CMOS Multiplier 29 

 

3 Combinatorial Multiplier 

The designed 4-bit multiplier unit is based on a standard combinatorial structure laid out 
manually using CMOS transistors on a 2 µm technology node. The significant 
modifications are related to the static operating voltage and ground networks, which 
have been replaced with dynamic power-clock signals. These lines can be controlled to 
provide either static potentials for irreversible operation or ramped potentials for 
reversible Bennett-clocking. While the circuit has been fabricated on silicon, the 
measurements are currently work-in-progress, and we report only the simulation results. 

Both modes of operation have been simulated in Synopsys HSPICE 2012, using a 
level 3 MOSFET model with parameters extracted from the devices made at the 
University of Notre Dame. The n-type transistors have a W/L ratio of 6 µm / 2µm 
with a threshold voltage of 0.7V, while the p-type transistors have a W/L ratio  
of 12 µm / 2 µm with a threshold voltage of -0.5V. The gate oxide thickness is  
20nm. 

3.1 Logical Structure and Implementation 

The combinatorial structure of the standard multiplier unit is inherently logically 
irreversible, composing of standard CMOS logic gates and not utilizing any registers 
[9]. The unit takes as input two 4-bit words A = (A3, A2, A1, A0) and B = (B3, B2, 
B1, B0) and produces the 8-bit output word F = (F7,…, F0). The unsigned binary 
multiplication is defined if Fig. 3(a), while the grouping used for the addition of the 
summands AiBj in the implementation is depicted in Fig. 3(b), utilizing a Wallace 
tree arrangement for the addition of the slices of three-bit groups and a final two-
operand carry-lookahead adder. The structure is shown in Fig. 4, consisting of 11 
logic levels. 

 
         
     A3 A2 A1 A0 

×     B3 B2 B1 B0 
     A3B0 A2B0 A1B0 A0B0 
    A3B1 A2B1 A1B1 A0B1  
   A3B2 A2B2 A1B2 A0B2   

+  A3B3 A2B3 A1B3 A0B3    

 F7 F6 F5 F4 F3 F2 F1 F0 

First stage 

Second stage 

Final stage 

Fig. 3. (a) 4-bit binary multiplication, and (b) grouping the summands AiBj and combining 
them with a Wallace adder tree and a final carry lookahead adder 
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B0A0B0A1B1A0B0A2B1A1B2A0B0A3B1A2B2A1B3A0B1A3B2A2B3A1B2A3B3A2B3A3

VDDFAFA

FA

FAFAVDDFA

FAFAFAFA

4-Bit Carry Lookahead Adder
A0B0A1B1A2B2A3B3

F0F1F2F3F4F5F6F7  

Fig. 4. Combinatorial multiplier based on Wallace tree summation and a final stage carry 
lookahead adder. The full adder (FA) units are used as half or full adders, depending on the 
location. 

The design was laid out manually using a 2 µm CMOS technology, resulting in the 
fabricated layout shown in Fig.5. Instead of static operating voltage lines VDD and 
ground lines GND, we connected individual positive power-clocks Clk1…Clk11 to 
the pull-up side of the logic gates and negative power-clocks Clk1N…Clk11N to the 
pull-down side, effectively forming a programmable 11-stage pipeline. The control of 
the timing can be used to select irreversible or reversible operating mode. 

3.2 Irreversible Operation 

Like standard CMOS designs, the combinatorial multiplier unit can be run in 
irreversible mode by setting the power-clock lines to static values, which are held 
constant throughout the operation. The positive power-clocks Clk1…Clk11 are tied to 
the operating voltage VDD, while the negative power-clocks Clk1N…Clk11N are 
connected to ground GND. In this configuration, the unit implements a standard 
combinatorial CMOS multiplier, without pipelining or any sequential components. 
While the power-clocks virtually implement VDD and GND and are trivially simple to 
control, this mode of operation loses the logic signal energy exactly like traditional 
irreversible CMOS logic. 
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Fig. 5. Multiplier unit layout in 2 µm CMOS. The contact pads for inputs A0…A3 and B0…B3 
are interleaved at the top, the outputs F0…F7 at the bottom, positive power-clocks 
Clk1…Clk11 on the left, and negative power-clocks Clk1N…Clk11N on the right. 

3.3 Reversible Bennett-Clocked Operation 

The multiplier unit can be configured into fully reversible mode by utilizing the 11 
dual-rail power-clock signals with the ramp-up and ramp-down timing defined by the 
requirements of Bennett-clocking, conceptually defined in Fig.  2. This forms an 11-
stage 1n1p-type asymptotically adiabatic logic circuit [3], where the computing part 
takes 11 steps and un-computing part 11 steps, while the unit is performing only one 
multiplication operation. The design shown in Fig. 5 contains all the logic needed for 
computing and un-computing, shared under the Bennett-clocking scheme. Slowing 
down the operating frequency, asymptotically all of the signal energy can be 
recovered, even while we retain the simple CMOS logic complexity and area costs. 
However, the unit is not capable of pipelining, and the generation of the complicated 
power-clock signals is challenging. 

4 Design Analysis 

The design analysis is based on the layout and HSPICE simulation model, with part of 
the simulation waveforms is shown in Fig. 6. Power consumption is the main 
optimization goal in this design, but we consider also the standard cost metrics of 
complexity, circuit area, and performance in short. The logic complexity and area of 
the proposed multiplier core is practically equal to a static CMOS counterpart, if the 
circuitry required for generating the power-clocks is not considered. Determining this 
cost is ongoing work. 
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Fig. 6. Part of simulation output waveforms. (a) Irreversible operation with two signal levels 
and a voltage swing of 0—5 V. (b) Reversible operation with three signal levels and a voltage 
swing of −2.5—2.5 V. Only the outputs F0…F7 are shown. 

 

The highest result throughput is dependent on the operating frequency, but it 
should be noted that the irreversible combinatorial multiplier is limited by the longest 
signal path across the whole unit, while the reversible Bennett-clocked multiplier is 
divided into 11 stages, which each has an internal delay similar to a corresponding 
standard pipeline stage. The frequency limits for the multipliers are not equal, but 
generally, a small stage can be switched faster that the whole unit, while on the other 
hand, the adiabatic energy recovery is less with higher frequencies. 

Power consumption of the multiplier was determined by averaging the results of 
HSPICE simulations in the range from 10 kHz to 1 GHz, shown in Fig. 7 as Watts vs. 
operating frequency. Irreversible mode has nearly two orders of magnitude higher 
power than the reversible from the slow end up to 1 MHz, while the modes get closer 
together from 20 or 30 MHz upwards, depending on the circuit parasitics. The 
irreversible multiplier is less affected by the parasitics than the reversible version, 
where the parasitic components clearly must be carefully controlled. 

The designed layout is based on 2 µm CMOS, which is not ideal for the reversible 
multiplier. Based on preliminary work, moving to a 20 nm technology would raise the 
operating frequency by two orders magnitude, while the reversible design would 
surpass the irreversible up to a frequency of several GHz. 
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Fig. 7. Simulated average power consumption, irreversible vs. reversible operation. Including 
the paracitics extracted from the layout has adverse effects on both modes of operation, but 
more pronounced on the reversible operation. 

5 Degree of Logical Reversibility 

The Bennett-clocked multiplier is asymptotically adiabatic and recovers potentially 
nearly all of the signal energy, but with the cost of timing complexity. The 
combinatorial design itself is irreversible CMOS logic, which without the clocking 
approach both loses signal energy due to the static voltage operating principle and the 
bit erasures. In static CMOS, the energy loss due to losing logical information is 
insignificant compared to the total signal energy loss, however, adiabatic logic families 
and emerging technologies will benefit from avoiding the bit erasures in multiplication. 

The amount of logical information loss in the standard irreversible multiplier can 
be estimated in a gate-level analysis, which gives a bound for the number of Landauer 
bit erasures. While the inverter gates are logically reversible, even though a static 
CMOS implementation wastes all the signal energy, the other logic gates used in the 
design, NANDs and NORs, can be coarsely approximated to lose up to two bits of 
information each. With around 140 of these gates, we can expect 280 bit erasures per 
multiplication operation in this 4-bit structure. With growing word length, the 
complexity and the number of potential erasures scale according to a square-law. 

Previous work on the theoretical binary multiplication operation indicates, that 
although the multiplication result value spectrum in Fig. 8 has a very complicated 
structure, it is possible to encode the logical relationship between the inputs and 
outputs uniquely with additional bits. The amount of extra bits scales linearly with the 
operand word length, and the theoretical minimum for full 4-bit multiplication is 5  
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Fig. 8. Unsigned binary multiplication, the beginning of the result value spectrum for operand 
word lengths 2—8 bits. The trivial multiplication result zero has the maximum of occurrences 
for each word length, while the second-highest bars represent the highest non-trivial 
information loss. 

erasures [10]. Therefore, multiplication should be amenable to modifications 
increasing the conservation of information and also the signal energy, even without 
Bennett-clocking. Currently, the authors are not aware of this type of developments 
having been published. 

6 Conclusion 

Signal energy recovery enables high-efficiency computing, but has significant costs in 
circuit area, complexity, or timing. In this work, a configurable multiplier unit was 
designed and comparisons between irreversible and Bennett-clocked asymptotically 
adiabatic reversible mode conducted. With the simulated and prototyped 2 µm 
technology, the reversible operation was more efficient into the tens of MHz region. 
Based on expected scaling, the true benefits of adiabatic energy recovery will become 
significant using more state-of-the-art 20 nm technology node. There the adiabatic 
operation would be orders of magnitude better up to GHz region. 

The multiplier unit presented was not optimized for inherent logical reversibility, 
and therefore, Bennett-clocking is the only way to enable energy recovery. However, 
when examined on pure combinatorial logic level, it turns out that this kind of 
standard structure discards two orders of magnitude more information than the 
theoretical minimum of binary multiplication operation. This suggests that there is 
considerable potential to increase the degree of reversibility in the multiplier 
implementations without using the full Bennett embedding. 

Currently, the analysis methods for the reversibility of circuit structures require 
development, as does the theoretical understanding of the connection between logical 
and physical reversibility. This area of research will likely become more and more 
important as the CMOS technology transitions to the limits of predicted physical 
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scaling and beyond-CMOS technologies emerge. With transistor-less technologies 
utilizing charge-mode logic, the Landauer’s Principle and bit erasures will be 
significant design factors. 
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Abstract. In this paper, a detailed comparison between the expected 
performance of CMOS-based and nanoelectromechanical systems (NEMS) 
based adiabatic logic circuits is presented. The modeling of the NEMS devices 
is done using a 1-dimensional reduced order model (1d ROM) of the 
electromechanical switches. This model will give an honest analytical depiction 
of the NEMS-based adiabatic circuits. The performance of NEMS-based 
circuits compares favorably with that of CMOS-based circuits. To the best 
knowledge of the authors, this is the first reported detailed comparison between 
NEMS and CMOS devices for adiabatic circuits. 

Keywords: Adiabatic Circuits, Nanoelectromechanical systems, NEMS 
Switches. 

1 Introduction 

Along with the need to embed electronic systems into the surrounding environment, 
such as autonomous sensors, processors and communication nodes, comes the need for 
ever lower power consumption per operation in logic circuits. In order to accommodate 
the requirement of ultra low power consumption, a variety of approaches are being 
explored: these include device level improvements, e.g. the use of fully depleted SOI 
substrates [1], multigate devices like finFETs [2], semiconductor nanowires [3] and 
materials like III-V semiconductors [4] and Carbon nanotubes (CNT) [5]. In parallel, 
circuit- and architecture-level solutions are also being pursued in order to push down the 
power consumption of logic circuits. Along with classical circuit-level solutions, such as 
subthreshold circuits [5] and core parallelism [5], more fundamentally different, i.e. 
non-mainstream, approaches to low power logic and computing circuits are possible, of 
special interest amongst these are: adiabatic logic circuits [6], reversible computation 
[7]-[8], and quantum computation [9]. 

This work explores the combination of two such concepts in logic circuits.  On the 
one hand, adiabatic logic circuits, i.e. logic circuits that make use of the adiabatic 
charging-discharging principle in order to minimize resistive losses during circuit 
operation; on the other hand, the use of nanoelectromechanical systems (NEMS) 
relays as a replacement for CMOS switching elements. 

The NEMS-based adiabatic circuit combination is an especially appealing one, 
since NEMS switches practically do not duffer from leakage current and therefore no 
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static losses, which is a major limiting factor in the performance of CMOS-based 
adiabatic circuits. On the other hand, the use of adiabatic charging offsets the losses 
due to the relatively high voltages usually required to operate NEMS devices. 
Although the results presented in this work are for adiabatic logic circuits, they may 
be expanded to include reversible logic design, since reversible computation needs to 
rely on adiabatic logic blocks. 

By using the simplest logic circuit model, this paper starts by giving the expected 
energy dissipation of CMOS-based switching elements, after which the performance 
of NEMS-based adiabatic circuits is discussed. The analysis of energy dissipation will 
be explicitly derived based on a 1-dimensional reduced order electromechanical 
model (1d ROM) of the NEMS switches functioning in the non-pull-in regime. 
Finally a comparison between the performance of CMOS-based and NEMS-based 
adiabatic circuits will be made. 

2 Dissipation in CMOS-Based Adiabatic Logic 

In this work, the dissipation calculation will be based on the simplified circuit model 
shown in Fig. 1. This model considers a simple RC circuit as the load, denoted by RS 
for series resistance, and CL for the load capacitance (which in case of non-reversible 
architecture is due to fan-out interconnect) respectively. In both the CMOS as well as 
the NEMS models the series resistance RS will be considered to be dominated by the 
switching element itself, while the load capacitance is dominated by the interconnect 
load capacitance CL; as well as having a variable capacitance component CS in the 
case of NEMS switches, this variable capacitance represents the change in the NEMS 
device capacitance upon commutation. An expression of the variable capacitance will 
be derived in the subsequent section based on the ROM model. Energy dissipation 
will be considered for a four phase power clock, each segment having a period T as 
shown schematically in Fig. 1. 

In the following, a detailed description of the dissipation in CMOS-based adiabatic 
circuits is done; the sources of dissipation can be attributed to either adiabatic or non-
adiabatic residues. While it is possible to reduce the adiabatic residues by increasing 
the adiabatic gain factor, the non-adiabatic losses are independent of the adiabatic 
charging-discharging parameters and depends only on the device parameters and the 
power clock signal. 

The energy dissipated in a complete charge-discharge clock cycle is given by the 
following equation: 

ETotal = Eadia + Enon-adia (1)

where Etotal, Eadia, and Enon-adia, are respectively the total energy dissipation, the energy 
dissipated due to adiabatic losses, and the energy dissipated through non-adiabatic 
processes. 
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Fig. 1. Schematic representation of an equivalent logic circuit showing the four phase power 
clock with equal length segments, F represent the block’s logic function, RS is the series 
resistance dominated by the switch resistance, CL represents the load capacitance that is mainly 
due to the output interconnect capacitance, and CS represents the NEMS switch variable 
capacitance. The current provided by the power clock is labeled i, the current going into the 
static interconnect capacitance (CL) is labeled i1, and that going into the variable capacitance of 
the NEMS switch (CS) is labeled i2. 

In the case of CMOS circuits, the above expression may be re-expressed as: 
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where ξ is a factor representing the efficiency of the adiabatic charging process: it 

takes the values of 1=ξ for a ramped voltage power clock like the one shown in Fig. 

1; RS and CL take the meanings defined previously, and Vdd is the supply voltage of 
the hold phase of the power clock as shown in Fig. 1. 

In equation (2), the first term represents the adiabatic residues [9-10] of a charge-

discharge cycle, this term is considered to be accurate for 10>
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second term in the above expression represents the energy dissipation due to the 
sudden voltage drop that is due to the threshold voltage of p-type MOSFET (Vth,p) in a 
partially adiabatic CMOS circuit [10-11]. Finally, the last term represents the  
power dissipation due to leakage current, i.e. the passive power dissipation, where  
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in the above expression leakI represents the average leakage current over a clock 

phase period. 
While equation (1) is a generic expression that applies to both NEMS-based and 

CMOS-based circuits, equation (2) is CMOS specific. It is worth noting that the 
MOSFET device capacitance also changes depending on the applied voltage, 
however, that is usually a second order term that is dropped from energy dissipation 
calculations.  Therefore, the variable capacitance in Fig. 1 is only applicable in the 
case of NEMS devices. 

The leakage current encountered in a CMOS-based adiabatic circuit is herein 
derived for the linearly ramped four phase power clock shown in Fig. 1.  

The leakage current will be calculated for the generic logic circuit shown in Fig. 2: 
although the exact circuit design may vary depending on the logic used [11], the 
values derived herein may be considered as a good approximation for most CMOS-
based adiabatic logic circuits. 

Fig. 2 shows an adiabatic circuit having an arbitrary logic function F: once the 
input is in its hold phase the synchronized power clock φ will start its 4-phase period. 
During the time the power clock is applied, either the logic block or its complement 
will be passing, and therefore either the output or the inverted output will follow the 
clock voltage. This means that for any arbitrary logic block, the same leakage current 
will be experienced on one of the two latch nMOS transistors as shown in Fig. 2. 

Knowing that the main leakage current component in a MOSFET is due to the sub-
threshold leakage, the leakage current is therefore given by the following expression: 
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where Ileakage is the leakage current, I0 is a function of the transistor’s size, Vt is the 

thermal voltage 
q

kT
Vt = , where k is the Boltzmann constant, T is the temperature in 

Kelvin, and q is the electron charge  (Vt = 25 mV for room temperature), and VDS is 
the source-drain voltage which is assumed to perfectly follow the power clock. 

Taking the four phases of the power clock shown in Fig. 1 into account, the 
leakage energy term expressed in equation (2) may be re-expressed: by replacing the 
leakage current with equation (3) and the voltage by that corresponding to each clock 
phase as follows:  
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where in equation (4), all values take their previously defined meaning: the first, 
second and third integrals correspond to the rising phase, the hold phase, and the 
decreasing phase of the power clock respectively. 

By making the approximation exp(-Vdd/Vt) ~ 0, it is possible to obtain the following 
simple expression for leakage dissipation: 

TVIE ddleakage 02=  (5)

 

Fig. 2. Schematic representation of a CMOS implementation of a logic function F, also 
identifying the leakage current. This architecture is known as the PFAL architecture, however, 
the obtained results apply as a first order approximation to other architectures as well. 

3 Dissipation in NEMS-Based Adiabatic Logic Circuits 

The interest in NEMS relays as switching elements for logic circuit operation has 
increased significantly in recent years due to their highly appealing property of zero 
leakage current (see [12] for a comprehensive review).  

3.1 NEMS Switches Reduced Order Model 

Although NEMS switches of varying design, dimensions, and materials have been 
constructed and demonstrated, this paper relies on a 1-dimesional generic model that 
may be applied to all devices equally in order to obtain a generic formulation of the 
energy efficiency and performance of NEMS-based adiabatic logic circuits. 

A typical 3-terminal electrostatic NEMS switch is schematically shown in Fig. 
3(a): an electrostatic force is created between the gate electrode (G) and the 
suspended structure when a bias voltage is applied brings the structure, which is 
connected to the source (S), into contact with the drain electrode (D). The drain 
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electrode is assumed to play no role in the electrostatic actuation of the structure. The 
equivalent 1-dimensional reduced order model is shown schematically in Fig. 3(b), 
where the structure is modeled as a simple parallel plate capacitor with a varying gap. 

If the ratio of air gap (d) to actuation gap (g) is
3

1>
g

d
, an instability known as pull-

in takes place. The pull-in results in a hysteretic effect as shown for an ideal I-V plot 
in Fig. 3(c), in which case the voltage at which pull-in takes place known as the pull-
in voltage (Vpi), is larger than the voltage at which the structure breaks contact known 
as the pull-out voltage Vpo. In case that the contact is established before the onset of 

pull-in, i.e.
3

1≤
g

d
, the ideal I-V relationship takes the form shown in Fig. 3(d). 

The underlying assumptions made in this work are as follows: first, the mechanical 
commutation (τ) time is longer than the electric time constant of the circuit, 

i.e. LSCR>>τ which is a very reasonable assumption. Therefore the voltage on the 

 
 

 

Fig. 3. Schematic representation of a nanoelectromechanical electrostatic relay switch (a) 
showing the source (S), drain (D), and gate (G). Also visible are the actuation and contact gaps. 
The reduced order model of the NEMS structure is shown in (b), A represents the equivalent 
parallel plate capacitor area, x shows the direction of displacement of the structure, V and I 
represent the applied actuation voltage and the source-to-drain current respectively, and φ 
represents the power clock signal. The contact air gap plays no role in electrostatic actuation. 
Schematic representations of typical I-V plots in NEM switches are shown for the case of pull-
in (c) and non-pull-in (d) devices, where Isat represents the saturation current of the device. 
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device gate follows the clock phase without any delay. Furthermore, for proper circuit 
operation it is necessary to have T ≥ τ. Finally, the analysis performed herein is 
applicable to NEMS relays operating in the non-pull-in regime, i.e. the regime shown 
in Fig. 3(d). 

3.2 Dissipation Calculation in NEMS-Based Adiabatic Circuits 

The power dissipated in a NEMS relay-based adiabatic logic circuit may be expressed 
as follows: 

MechanicalElectricalTotal EEE +=  (6)

where ET, EElectrical and EMechanical are the total energy dissipation, the energy dissipated 
through electrical resistance, and the energy dissipated through mechanical damping 
respectively. 

While the mechanical energy dissipation may depend on the ramp period T, it 
remains a small component compared to the electrical loss components, as such it will 
be considered to be a constant second order residue throughout this work. 

The electrical dissipation may be expressed as: 
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where i, i1, and i2 are the currents going through the series resistance RS, the load 
capacitance CL, and device (NEMS) capacitance CS respectively, as shown in Fig. 1. 

An expression for the current in each branch may be derived as follows: 
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From the reduced order model shown in Fig. 3(b), the value of capacitance may be 
expressed as (for x << g): 
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where C0 is the NEMS switch capacitance when no gate voltage is applied. 
Knowing that the equilibrium between electrostatic and restoring elastic forces in 

the reduced order model gives the following voltage-displacement relationship [13]: 
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where K is the equivalent spring constant of the movable mechanical structure. 
The resulting equations in (9) and (10) rely on approximations that are valid for 

small x, i.e. x < g; these approximations result in reduced accuracy in modeling the 
device, however, in doing so they also provide simple analytical expressions of the 
power dissipation. 

By combining equations (6) through (10) and replacing expressions (9) and (10) in 
(8), an approximate analytical expression for power dissipation per complete four 
phase clock cycle is obtained, given by (for 1=ξ ): 
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Two significant differences between equations (2) and (11) are to be noticed. First in 
(11), there is no term that is directly dependent on T, as is the case with the leakage 
current in (2), which means that, as the voltage ramp period is increased, the 
dissipated energy will asymptotically tend to a lower limit without increasing again. 
Furthermore, in (2) the dissipation term that depends on the threshold voltage is 
considerably larger than the mechanical dissipation term found in NEMS-based 
circuits, compared to their respective adiabatic power dissipation. 

For comparison, the energy dissipation per clock cycle given by equations (2) and 
(11) is plotted in arbitrary units in Fig. 4. The lower limits given by the constant 
dissipation terms, i.e. mechanical energy dissipation and threshold-dependent terms in 
equations (11) and (2) respectively, are shown indicated by dashed lines. While 
CMOS-based circuits show a V-shaped energy-frequency dissipation, the dissipation 
in NEMS-based circuits asymptotically tends to a lower limit given by the mechanical 
energy dissipation EMechanical. Note that the NEMS-based circuits are not able to run 
beyond their mechanical commutation frequency, hence the sudden stop in the plot 
corresponding to NEMS. 

A factor of merit (FOM) chosen as the energy dissipation-period product, i.e. 
ETotal*T, is also plotted in Fig. 4, in arbitrary units, for both CMOS-based and NEMS-
based circuits. 

The graphs plotted in Fig. 4 help understand the behavior of both CMOS and 
NEMS-based adiabatic logic circuits: they do show that NEMS-based circuits are 
considerably more efficient in the low frequency regime compared to their CMOS-
based counterparts and that, when operating near their optimum performance, they 
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tend to dissipate significantly lower amounts of energy compared to the optimum 
afforded by CMOS devices. This could be expected to come at the expense of slower 
running circuits, since NEMS switches have yet to show a reliable high frequency 
switching behavior. 

The characterization of the contact resistance in a NEMS switch is currently under 
experimental investigation. These experimentally obtained parameters will help build 
more accurate models of NEMS switches and obtain a better comparison with 
CMOS-based circuits. 

 

Fig. 4. Plots showing the total energy dissipation (solid lines) and the FOM (dashed lines) for 
CMOS (blue color) and NEMS based (red color) adiabatic logic circuits. NEMS energy 
dissipation shows an asymptotic lower limit at low frequencies, given by the mechanical energy 
dissipated per switching operation, while CMOS energy dissipation shows a clear optimum 
resulting from the leakage current. The FOM shows that for both devices, once a certain value 
is attained, the FOM tends to an asymptotic value. The plots for NEMS-based circuits stop 
abruptly at T = τ, which is usually lower than CMOS device operating frequencies. 

4 Conclusions 

Based on a simplified reduced order model, the energy performance of adiabatic logic 
circuits that use NEMS switching elements instead of CMOS switching elements is 
derived. The derivation presented in this work is specific to NEMS switches operating 
in the non-pull-in regime; beyond that, the derivation is universal in the sense that it is 
applicable to most switch designs, once the lumped parameters used in this work are 
replaced with their respective real device parameters. 
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In addition a simple analytical expression for the leakage dissipation in CMOS-
based adiabatic logic circuits is also derived. It is found that the NEMS-based circuits 
offer the distinctive advantage of zero static losses, and therefore the possibility of 
operating the circuit at low frequencies without any energy dissipation penalties. 
Furthermore, the lowest permissible energy dissipation in a NEMS-based adiabatic 
logic circuit is given by the mechanical dissipation term which is expected to be 
orders of magnitude lower than the one afforded by CMOS-based circuits. 

References 

1. Collinge, J.P.: Silicon-on- Insulator Technology: Materials to VLSI. Kluwer (1988) 
2. Hisamoto, D., Lee, W.C., Kedzierski, J., Takeuchi, H., Asano, K., Kuo, C., Anderson, E., 

King, T.J., Bokor, J., Hu, C.M.: FinFET-A Self-Aligned Double-Gate MOSFET Scalable 
to 20 nm. IEEE Transactions on Electron Devices 47, 2320–2325 (2000) 

3. Singh, N., Agarwal, A., Bera, L.K., Liow, T.Y., Yang, R., Rustagi, S.C., Tung, C.H., 
Kumar, R., Lo, G.Q., Balasubramanian, N., Kwong, D.L.: A dual-strained CMOS structure 
through simultaneous formation of relaxed and compressive strained-SiGe-on-insulator. 
IEEE Electron Device Letters 27, 350–353 (2006) 

4. Chau, R., Datta, S., Majumder, A.: Opportunities and challenges of III-V nanoelectronics 
for future high-speed, low-power applications. In: IEEE Compound Semiconductor 
Integrated Circuit Symposium, Palm Springs (2005) 

5. Javey, A., Guo, J., Wang, Q., Lundstrom, M., Dai, H.: Ballistic carbon nanotube field-
effect transistors. Nature 424, 654–657 (2003) 

6. Koller, J.G., Athas, W.C.: Adiabatic switching, low energey computing, and the physics of 
storing and erasing information. In: Proceedings Workshop on Physics and Computation, 
pp. 267–270 (1992) 

7. Bennett, C.H.: Logical reversibility of computation. IBM Journal of Research and 
Development 17, 525–532 (1973) 

8. De Vos, A.: Reversible Computing: Fundamentals, Quantum Computing, and 
Applications. Wiley-VCH (2010) 

9. Benioff, P.: The Computer as a Physical System: A Microscopic Quantum-Mechanical 
Hamiltonian Model of Computers as Represented by Turing Machines. Journal of 
Statistical Physics 22, 563–591 (1980) 

10. Athas, W.C., Svensson, L.: Reversible logic issues in adiabatic CMOS. In: Workshop on 
Physics and Computation Proceedings, pp. 111–118 (1994) 

11. Teichmann, P.: Adiabatic Logic: Future Trend and System Level Perspective. Springer, 
Dordrecht (2012) 

12. Loh, O., Espinosa, H.D.: Nanoelectromechanical contact switches. Nature 
Nanotechnology 7, 283–295 (2012) 

13. Nathanson, H.C.: The Resonant Gate Transistor. IEEE Transactions on Electron 
Devices 14, 117–133 (1967) 



Strength of the Reversible,

Garbage-Free 2k ± 1 Multiplier

Eva Rotenberg1, James Cranch2,
Michael Kirkedal Thomsen1, and Holger Bock Axelsen1

1 DIKU, Dept. of Computer Science, University of Copenhagen, Denmark
{roden,shapper,funkstar}@diku.dk

2 Dept. of Computer Science, University of Sheffield, United Kingdom
jdc41@cam.ac.uk

Abstract. Recently, a reversible garbage-free 2k±1 constant-multiplier
circuit was presented by Axelsen and Thomsen. This was the first con-
struction of a garbage-free, reversible circuit for multiplication with non-
trivial constants. At the time, the strength, that is, the range of constants
obtainable by cascading these circuits, was unknown.

In this paper, we show that there exist infinitely many constants we
cannot multiply by using cascades of 2k±1-multipliers; in fact, there ex-
ist infinitely many primes we cannot multiply by. Using these results, we
further provide an algorithm for determining whether one can multiply
by a given constant using a cascade of 2k±1-multipliers, and for generat-
ing the minimal cascade of 2k ±1-multipliers for an obtainable constant,
giving a complete characterization of the problem. A table of minimal
cascades for multiplying by small constants is provided for convenience.

Keywords: Number theory, constant multiplication, reversible circuit
design, Mersenne numbers.

1 Introduction

Ever since reversible logic circuits were introduced by Fredkin and Toffoli [4, 8]
construction of circuits for arithmetic operations have received much attention.
However, the requirement that reversible circuits should not produce any garbage
makes design of reversible arithmetic operations much harder. Today, most of
the efficient garbage-free circuit designs are implementations of addition1 [2, 3,
7, 9, 10].

Lately however, there has been some work on garbage-free, reversible constant
multipliers [1,5]. To the best of our knowledge, the first non-trivial garbage-free
constant multiplier (i.e., where the constant is different from a power of 2) was
the 2k± 1-multiplier designed by Axelsen and Thomsen [1]. In that paper it was
observed that the combination of bit-shifts with the 2k ± 1 multiplier gives us a
method for reversible multiplication by any number which can be written as a

1 Because the circuits are reversible a good design of an addition circuit also implies
a good design of a subtraction circuit.
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product of 2k0 and 2ki ± 1’s, but also any integer that can be represented as a
fraction of such products; for division we can use the inverse circuit, since the
circuits are both reversible and garbage-free. For instance, one can multiply by
the constant 21 by cascading the constant multipliers for 7 and 3. One can also
multiply by 11 by cascading the inverse of the multiplier for 3 after the multiplier
for 33. But, still, the precise range of constants was unknown.

In this paper, we observe that the obtainable constants are those which lie in
the subgroup of the rational numbers generated by the Mersenne numbers 2n−1,
n ∈ N. This allows us to use number theory to explore the range effectively. We
use Zsigmondy’s Theorem to construct a method for showing if a number is
unobtainable and then use Lifting the Exponent to show that infinitely many
unobtainable numbers exist. We also show that representations (corresponding
to circuit choices for multiplier cascades) are unique up to some refactoring of
63; a special case which stems from Zsigmondy’s Theorem.

First, in Section 2, we show that there exist infinitely many numbers x for
which one cannot find a cascade of 2k ± 1 multipliers that multiply by x. Fur-
thermore, we prove that infinitely many primes are unobtainable. In Section 3,
we raise the question of the length of multiplier cascades, or equivalently, the
representation length of a number. It turns out that given a representation of a
number, it is very easy to transform it into a minimal representation or to de-
termine that it was already minimal. We provide an algorithm for determining
whether a constant is obtainable, and, in positive cases, providing a represen-
tation for that given number. One can then go on to use the minimalisation
algorithm to obtain the minimal cascade which multiplies by the given constant.
In Appendix A, we provide a table of odd constants up to 201 and their (min-
imal) representations and lengths, if available, with unobtainability explicitly
marked.

2 Why 23 and Infinitely Many Other Primes Are Out of
Range

We ask ourselves: For which n ∈ N can we multiply reversibly by n, only by
cascading 2k ± 1-multipliers and ordinary bit-shifts?

Cascading constant multiplier circuits corresponds to multiplication of the
constants, and cascading the inverse corresponds to division. In this section we
show that even if we allow the cascades to grow to unbounded lengths, there are
still constants they cannot multiply by.

We want to investigate the numbers that can be written as a fraction of
products of numbers of the form 2k or 2k ± 1. In order to do this, we define the
reachable subset M ⊆ N of as the smallest subset of natural numbers satisfying

M = {2n | n ∈ N0} (bit-shifts)

∪ {2n ± 1 | n ∈ N} (2n ± 1 multipliers)

∪ {ab | a, b ∈M} (Cascade of the ·a- and ·b-multipliers)

∪ {b | a, ab ∈M} . (Cascade with the ·a-multiplier inverted)
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Since M is closed with respect to multiplication, we are interested in which prime
numbers belong to M.

2.1 Connection to the Mersenne Numbers

Notice that the numbers in M include the well-known set of Mersenne numbers.

Definition 1. A Mersenne number is a number of the form 2n − 1, n ∈ N.

We can use this to describe the class M in a different and more algebraic way.
We can, namely, exclude numbers of the form 2k+1 from our generating set and
still get the same set of numbers.

Definition 2. Define the Mersennary rationals as the subgroup GM of the mul-
tiplicative group of rationals Q∗ generated by 2 and {2n − 1 | n ∈ N}, i.e.,
generated by 2 and the Mersenne numbers.

Note 1. GM ∩ N = M.

Proof. Because 2n + 1 = (2n+1)·(2n−1)
2n−1 = 22n−1

2n−1 , M is clearly a subset of GM

by the definition of M. Conversely, if a natural number b ∈ GM then b can by
definition be written in the form ab

a where a, ab ∈M, and thus b ∈ M. ��

Definition 3. We call the numbers in M Mersennary numbers. The primes in
M will be called Mersennary primes.

The question of whether all natural numbers belong to M can now be restated as
follows: Are all numbers Mersennary? The answer to this is “no”, but this leads
to other questions: Are infinitely many primes non-Mersennary? Unfortunately,
“yes”, so then: Can a computer effectively tell me if a number is Mersennary?
“Yes”, fortunately, it can and we will later show the algorithm for this.

When a number is Mersennary, it means we can write it as a product of
elements of the form 2n − 1 and a single power of 2. Such a choice of elements
we call a representation of the number.

Definition 4. A Mersennary representation of a number m, is an integer se-
quence {zn}n∈N0 , zn ∈ Z with only finitely many non-zero elements, and z1 = 0,
such that

m = 2z0
∏
n∈N

(2n − 1)zn , zn ∈ Z.

In a slight abuse of nomenclature we shall often refer to the right hand side of
this equation as the representation π, rather than the sequence.

For example, a representation of 75 is z2 = −1, z4 = 2 (and all other zi = 0), as
75 = (152)/3. A representation of m need not be unique, since 63 = 7 · 32 (and
thus has two representations). As we shall see later, however, this particular
identity is the only source of non-uniqueness of representations. We therefore
say that a representation is 63-free if z6 = 0, i.e., if 63 does not appear in the
representation, and the 63-free representation is unique, cf. Theorem 5.
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2.2 Why 23 Is a Problematic Number

Here we prove that (infinitely many) non-Mersennary numbers do exist. We
do this by exhibiting a sound heuristic for determining that a prime is non-
Mersennary, and apply it to some small numbers, the smallest non-Mersennary
of which is 23.

First, we define the width of an odd number, which becomes handy later when
dealing with Mersennary numbers.

Definition 5. The width of an odd number n is the multiplicative order of 2
modulo n, i.e, the order of [2] in (Z/n)∗;

w(n) = |[2]n|.

For example, w(3) = 2, w(7) = 3, w(5) = 4, etc. The width is well-defined
because 2 is coprime to any odd number by definition, so [2] ∈ (Z/n)∗. Note
that the width of n is at most n− 1.

We use the width to define the following central theorem, which we shall prove
below in this section.

Theorem 1. If two primes p �= q have the same width W , then neither p nor q
are Mersennary.

This theorem is important as a tool for falsifying the hypothesis that a given
number is Mersennary. We can use it as a basis for the following heuristic.

Algorithm 1. For falsification of the hypothesis that a given prime number p
is Mersennary. (Sound heuristic.)

– Calculate the width w(p) of p.
– Factorise 2w(p) − 1.
– Calculate the width of each factor ( �= p) of 2w(p) − 1. If any of these widths

equals w(p), then p is not Mersennary.

Example 1. w(23) = 11, 211 − 1 = 23 · 89, w(89) = 11, so 23 is not Mersennary.

Although this algorithm may be incomplete, as we have only shown one direction
to hold, we shall show a complete solution in Section 3.1. The key to showing
our result is the following theorem.

Theorem 2 (Zsigmondy’s Theorem2 [11]). Given n �= 6 there exists at least
one prime dividing 2n − 1 that does not divide 2k − 1 for any k < n.

In other words, each Mersenne number introduces at least one new prime; new
in the sense that it does not divide any smaller Mersenne number.

Note 2. 2W − 1 is the least Mersenne number divisible by n iff n has width W .

2 The theorem as stated here is actually a special case of Zsigmondy’s theorem, and
is sometimes referred to as Bang’s theorem.
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Proof. Assume n divides 2W − 1. Then we can write that as 2W − 1 = n · m
for some m ∈ N. But this holds if and only if [2W − 1]n ≡ 0 or equivalently
[2W ]n ≡ 1. Now, 2 modulo n has order W if W is the smallest number satisfying
the equation [2W ]n ≡ 1, so by definition n has width w(n) = W . ��

The next step is to note that the factors in a representation of a Mersennary
number cannot be arbitrarily large.

Lemma 1. If a prime p is Mersennary, then 2w(p) − 1 is the largest Mersenne
number in the (63-free) representation of p.

Proof. Let
∏

i∈N
(2i − 1)zi be a representation of p, and assume that 2k − 1 is

the largest factor with non-zero exponent. By Zsigmondy’s Theorem, 2k − 1
introduces a new prime pk which does not divide any smaller 2s − 1, s < k, so
w(pk) = k. But then pzkk must divide our original p, which means pk = p and
zk = 1, and so w(p) = k. ��

In other words, we can write p as (2w(p) − 1) ·
∏

i<w(p)(2
i − 1)zi , zi ∈ Z.

This now makes it easy to prove the earlier theorem: If two primes p �= q have
the same width W , then neither p nor q is Mersennary.

Proof (Theorem 1). Assume for the purpose of contradiction that we have a (63-
free) Mersennary representation π for p. It follows from Lemma 1 above that π
has 2W − 1 as its highest factor:

p = (2W − 1) ·
∏
i<W

(2i − 1)zi , zi ∈ Z.

But since q does not divide any smaller 2k − 1, k < W , and since q does divide
2W − 1, we have now shown q divides p, a contradiction. ��

Example 2. 47 and 178481 are not Mersennary; both have width 23.

Example 3. 29 and 113 are not Mersennary; both have width 28.

Example 4. 37 and 109 are not Mersennary; both have width 36.

Note 3. The product of a Mersennary number with a non-Mersennary number
is non-Mersennary.

Otherwise, one could divide the representation of the product with the represen-
tation of the Mersennary number, obtaining a representation of the assumed non-
Mersennary number. One the other hand, the product of two non-Mersennary
numbers can be Mersennary, e.g. 23 · 89 = 2047.

Note 4. There exist infinitely many non-Mersennary numbers.

For instance, the sequence {2i · 23}i∈N consists of non-Mersennary numbers, as
does {(2i−1) ·23}i∈N. The non-Mersennary numbers below 50 are: 23, 29, 37, 46,
and 47.
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2.3 There Are Infinitely Many Non-mersennary Primes

Every composite Mersenne number with prime exponent, i.e., a composite num-
ber of the form 2p− 1 where p is prime, gives us a new non-Mersennary prime.3

However, it is unknown whether infinitely many such Mersenne numbers exist.
Luckily, we can still prove that infinitely many non-Mersennary prime numbers
exist, by the following useful definition and lemma.4

Definition 6. For a prime p and a number n, let vp(n) denote the greatest
power in which p divides n.

For example, v3(18) = 2, as 32 divides 18, and no higher power of 3 divides 18.

Lemma 2 (Lifting the Exponent). Assume p is an odd prime that divides
a− b and assume p does not divide a or b, then

vp(a
n − bn) = vp(a− b) + vp(n).

We are here only interested in the special case where a = 2k and b = 1:

If p divides 2k − 1, then vp(2
k·n − 1) = vp(2

k − 1) + vp(n).

This entails v23(2
11·23j−1 − 1) = v23(2

11− 1)+ v23(23
j−1) = j. Therefore, |[2]23j |

divides 11 · 23j−1. However, no proper divisor d of 11 · 23j−1 will work as the
order of [2]23j , as a simple analysis shows that v23(2

d−1) < j, which contradicts
that [2d − 1]23j ≡ 0. In other words, we know the exact width of 23j, namely
w(23j) = 11 · 23j−1.

Note 5. If some prime f �= 23 is a factor of 211·23
i − 1, then, given j > i, f

divides 211·23
j − 1 as many times as it divides 211·23

i − 1. This clearly holds, as

vf (2
w(23j) − 1) = vf (2

11·23j−1

− 1) = vf ((2
11·23i−1

)23
j−i

− 1)

= vf (2
11·23i−1

− 1) + vf (23
j−i) = vf (2

w(23i) − 1),

since f does not divide 23x for any x ≥ 1 when f �= 23.

This also holds for the other prime factor 89 of 211− 1, since 89 does not divide
23x for any x ≥ 1.

Theorem 3. There are infinitely many non-Mersennary primes.

Proof. We will prove this by showing that each sj = 2w(23j) − 1 introduces a
new prime, which is not Mersennary. We proceed by case analysis on j.

First case, j = 1. We have s1 = 211− 1, which introduces the prime 89, which
is not Mersennary.

3 If 2p − 1 is composite with p prime, then its prime factors have width p, and are
thus not Mersennary.

4 This is a well-known result. See [6] for an expository note.
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Second case, j > 1. According to Note 5, any factor �= 23 of any si divides
sj−1 exactly as many times as sj . Thus, sj/sj−1 leaves us with the product of
23 and some natural number n ∈ N, where n is coprime to any si with i < j.
Now, recall that a product of a non-Mersennary number with a Mersennary
number must again be non-Mersennary (Note 3). Since sj and sj−1 are both
Mersennary, sj/sj−1 ∈ N is Mersennary. Therefore, since 23 · n is Mersennary
and 23 is non-Mersennary, n must also be non-Mersennary, and, thus, contains
a non-Mersennary prime that is not a factor of si for any i < j. ��

2.4 Wieferich Primes Are Also Non-mersennary

Definition 7. A Wieferich prime is a prime p such that p2 divides 2p−1 − 1.

Two such primes are currently known: 1093 and 3511.
To prove Wieferich primes are never Mersennary we need a small lemma:

Lemma 3. For a prime p > 2, the (multiplicative) order of [2] in (Z/p2)∗ is
either the order of [2] in (Z/p)∗, or p times that.

Proof. Let d be the order of 2 modulo p. Then (2d)p is congruent to 1 modulo
p2. But then, either [2d] was already congruent to [1], or it was an element of
order p. Since d divides p− 1, and thus is coprime to p, this means that [2] has
order d or d · p. ��

Theorem 4. Any Wieferich prime p is non-Mersennary.

Proof. Since p2 divides 2p−1 − 1, the order of [2] in (Z/p2)∗ divides p− 1. Since
this is less than p, Lemma 3 gives us that the order of 2 must be the same both
modulo p and modulo p2.

Now, let k be the order of 2 modulo p. If p is Mersennary, then it has a (63-
free) Mersennary representation (2k − 1)

∏
i<k(2

i − 1)zi , where p divides only

the 2k − 1 term (by Lemma 1). In particular, p then divides 2k − 1 exactly with
exponent 1. But p2 also has order k, and so divides 2k − 1 as well, which is a
contradiction, so p cannot be Mersennary. ��

3 Representations and Representation Lengths

So far, we have mainly considered which numbers are in the subset of constants
M ⊆ N reachable by cascading some number of 2k ± 1-multipliers. But the size
and precise number of 2k ± 1-multiplier circuits needed in order to multiply by
a given constant is also interesting. We have shown that we do not need 2k − 1
multipliers with k larger than the width of the constant, but how long cascades
(how many multipliers) can we need?

Example 5. We can write 19 as 29+1 divided by 9 ·3. In other words, we need to
cascade 3 of the 2k± 1-multipliers in order to multiply by 19. Can we determine
if a better solution exists, and what it might be?



Strength of the Reversible, Garbage-Free 2k ± 1 Multiplier 53

When we talk about representation lengths, it makes a difference which forms
of constants we allow to occur as elements (i.e., as individual multipliers in the
cascade); even though they form the same subset of the reachable constants
in total. Let us distinguish between a Mersennary representation consisting of
elements 2, {2n − 1 | n ∈ N} and a plus/minus representation consisting of
elements {2x | x ∈ N} ∪ {2n ± 1 | n ∈ N}.

A Mersennary representation 2z0
∏

n∈N
(2n − 1)zn is said to be of length∑

n∈N
|zn|, the sum of the absolute values of the exponents. Note that the z0 is

not counted towards the length, as bit shifts are trivial. Similarly, a plus/minus
representation defined by 2z0

∏
n∈N

(2n − 1)zn(2n + 1)yn is said to be of length∑
n∈N

(|zn|+ |yn|).

Example 6. The length of the Mersennary representation of 75 is 3, as 75 was
represented as 152/3 having exponents z2 = −1 and z4 = 2, giving the sum
|2|+ |−1| = 3. A plus/minus representation of 75 is 5 · 15, which has length 2.

Theorem 5. The 63-free Mersennary representation of a Mersennary number
is uniquely defined.

Proof. Let π1 = {ai}i∈N0 and π2 = {bi}i∈N0 be distinct 63-free Mersennary
representations of Mersennary numbers a and b.

Let 2k−1 be the the widest factor on which these representations differ. That
is, ak �= bk, and for all j > k, aj = bj . Now, (2

k − 1) has a prime divisor p
which does not divide any narrower factors, according to Zsigmondy’s Theorem.
p may divide some factors wider than (2k − 1), but all such factors have the
same exponents in π1 and π2. Thus, p must appear with the same exponent x in
the prime factorisations of both a/(2k − 1)ak and b/(2k − 1)bk . (Recall that the
prime factorisation of a rational number is well-defined and unique.) But p must
at the same time appear with different exponents in the prime factorisation of
(2k − 1)ak and (2k − 1)bk since ak �= bk. This means that a and b have different
prime factorisations, and so must be distinct. ��

This also shows that the identity 63 = 32 · 7 is the only source of ambiguity in
Mersennary representations.

Corollary 1. For any two Mersennary representations π1 and π2 of a Mersen-
nary number, π1 = π2 · ( 63

32·7 )
z for some z ∈ Z.5

Given a number n, let x be the largest number such that 63x divides n. Then a
representation of n has minimal length if the exponent of 63 in the representation
is x. This makes it very easy to minimize a Mersennary representation.

Algorithm 2. Algorithm for transforming a given Mersennary representation
to an equivalent minimal representation.

– Substitute all occurences of 3 · 3 · 7 by 63.

5 Formally, if π1 = {ai}i∈N0 and π2 = {bi}i∈N0 both represent the same Mersennary
number, then there exists z ∈ Z, such a2 = b2 − 2z, a3 = b3 − z and a6 = b3 + z.
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Our next question is: How do we substitute a Mersennary representation for a
plus/minus representation of a given number? First, let us observe the following
corollary to the uniqueness theorem (Theorem 5).

Theorem 6. 2k + 1 has a unique Mersennary representation (up to the refac-
toring of 63) of the form

2k + 1 =
22k − 1

2k − 1

With the obvious exception of 23+1 which is also equal to (22− 1) · (22− 1); the
exception in Zsigmondy’s Theorem, 63 = 7 · 3 · 3.

Proof. This follows from Theorem 5. ��

This provides us with a way to translate a minimal Mersennary representation
to a plus/minus representation which corresponds to a minimal cascade of 2k±1-
multipliers.

Algorithm 3. Given a minimal Mersennary representation 2z0
∏

i∈N
(2i − 1)zi

of n, a minimal plus/minus representation of n can be obtained as follows:

– Substitute each fraction of the form 22k−1
2k−1

by 2k + 1.

– Substitute 3±2n by 9±n.

– Substitute 212−1
3·7 by 65 · 3.

– Substitute 212−1
7·152 by 65

52 .

– Substitute 3 · 7 · 15 by 63 · 5, and 212−1
63 by 65.

The first point is a general case, while the last are special cases that relate to 63

or its factors. One may also make substitutions such as 24k−1
2k−1

by (22k+1)·(2k+1)
to minimize the number of gates and the delay in the final cascade.

Example 7. A minimal Mersennary representation of the number 5 is 24−1
22−1 which

we recognise as being on the form 22k−1
2k−1

for k = 2. We substitute for 2k + 1 =

22 + 1 and achieve a representation length of 1 as expected.

Corollary 2. Numbers with arbitrarily long minimal representations exist.

Proof. As example we take the sequence {31j}j∈N, and we show that 31j has
representation length j. Note that (25−1)j is a Mersennary representation of 31j.
By Theorem 5 this is also a minimal Mersennary representation of 31j. Since no
fractions occur this Mersennary representation is also the minimal plus/minus
representation of 31j. ��

The sequence {5j}j∈N would do as well, with a detour of a Mersennary repre-
sentation length twice the plus/minus representation length.
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3.1 Determining the Representation of a Given Number

The largest factor in the Mersennary representation of any Mersennary number
n is upper bounded by the width of (the odd component of) n. In fact, as we saw
in Lemma 1, the largest factor is completely determined by the widest prime in
n’s prime factorisation.

This allows us to provide an algorithm which determines whether a number
is Mersennary and, if it is, returns a Mersennary representation of that number.

Algorithm 4. Given a number n0, we calculate a Mersennary representation π
of n0 (if any exists) as follows:

1. Set n := n0 and π := [].
2. Calculate the prime factorisation of n, and the width of each factor.
3. If n = 2x0, then update the representation π := 2x0 :: π and return π.
4. One (or more) of the prime factors will have the largest width: pick one such,

p, which appears with exponent x and width W .
5. Calculate the exponent y with which p appears in the factorisation of 2W −1.
6. If x mod y �= 0, n0 cannot be Mersennary. Return “n0 is not Mersennary.”
7. Set n := n/(2W −1)x/y, and update the representation π := (2W −1)x/y :: π.
8. Update the prime factorisation of n (using the factorisation of 2W − 1).
9. If n still has prime factors of width W , then n0 cannot be Mersennary.

Return “n0 is not Mersennary.”
10. Otherwise goto step three.

The algorithm terminates, because there are only finitely many primes in a
representation of a given number, and these primes have (possibly fewer) finitely
many widths. Steps three to ten are maximally repeated once per width.

The correctness of the algorithm follow from the results in Section 2: If the
widest prime in a number has width W , we need to divide by 2W − 1 to get rid
of that prime. If that does not work because of a mismatch between the power of
the prime in the factorisation of the number and the power of the prime in the
factorisation of 2W −1 (as with Wieferich primes) then the number, n, cannot be
Mersennary. If dividing by 2W − 1 enough times to get rid of one prime of width
W does not get rid of all the primes of width W , then the number n cannot be
Mersennary. Finally, since we in all steps divide by a Mersennary number, if we
at any point have a non-Mersennary n, the original n0 must be non-Mersennary
(as we saw in Note 3).

4 Conclusion and Future Work

In this paper we have provided an algorithm (Algorithm 4) for determining
whether one can multiply by a given number by cascading 2k±1 multipliers, and,
if affirmative, which provides some cascade which multiplies by that constant.
We have also given algorithms (Algorithms 2 and 3) for turning any cascade into
the minimal equivalent cascade of 2k± 1 multipliers. All in all, one can get from
constant to minimal cascade using the algorithms provided in this paper.
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As for theoretical results, we have proven that the range of 2k ± 1 multipliers
does not include all numbers, not even all small numbers, and, in fact, that
infinitely many primes are out of reach. This provides an argument for creating
and studying new constant multiplier designs.

Another use of the algorithm for determining minimal cascades can be to
compare the 2k ± 1 multiplier cascades to the multiplier circuit design for arbi-
trary constants presented in [5]. This could be a first step to general algorithm
that, for a given constant, could give the smallest multiplier approach. Finally,
a design for 2k ± 2l ± 1 constant multipliers was also presented in [1]. It is clear
that this multiplier family has a larger range than the 2k ± 1 multipliers (e.g.
23 = 24 + 23 − 1), but it is currently unknown exactly how large the range is.
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The table contains the number, its length, and a description. If the number
is Mersennary, its minimal plus/minus representation is provided. If the number
is non-Mersennary, the description contains either a prime of same width or
a decomposition of the number into a product of a Mersennary and a non-
Mersennary number, m · n,m ∈M, n /∈ M, cf. Note 3.

The big prime of the same width as 197 is split on two lines for space reasons.

Num Len Descr.
3 1 3
5 1 5
7 1 7
9 1 9
11 2 33 · 3−1

13 2 65 · 5−1

15 1 15
17 1 17
19 3 513 · 9−1 · 3−1

21 2 3 · 7
23 NA 89
25 2 52

27 2 3 · 9
29 NA 113
31 1 31
33 1 33
35 2 5 · 7
37 NA 1417
39 3 65 · 5−1 · 3
41 3 1025 · 5−2

43 2 129 · 3−1

45 2 5 · 9
47 NA 178481
49 2 72

51 2 3 · 17
53 NA 157
55 3 33 · 3−1 · 5
57 2 513 · 9−1

59 NA 3033169
61 NA 1321
63 1 63
65 1 65
67 NA 20857

69 NA 3 · 23
71 NA 122921
73 2 511 · 7−1

75 2 5 · 15
77 3 33 · 3−1 · 7
79 NA 121369
81 2 92

83 NA 8831418697
85 2 5 · 17
87 NA 3 · 29
89 NA 23
91 3 65 · 5−1 · 7
93 2 3 · 31
95 4 513 · 9−1 · 3−1 · 5
97 NA 673
99 2 3 · 33
101 NA 8101
103 NA 2143
105 2 7 · 15
107 NA 28059810762433
109 NA 37
111 NA 3 · 37
113 NA 29
115 NA 5 · 23
117 3 65 · 5−1 · 9
119 2 7 · 17
121 3 332 · 9−1

123 4 1025 · 5−2 · 3
125 3 53

127 1 127
129 1 129
131 NA 409891
133 4 513 · 9−1 · 3−1 · 7
135 2 9 · 15

137 NA 26317
139 NA 168749965921
141 NA 3 · 47
143 3 33 · 65 · 15−1

145 NA 5 · 29
147 3 3 · 72
149 NA 593
151 3 (215 − 1) · 31−1 · 7−1

153 2 9 · 17
155 2 5 · 31
157 NA 53
159 NA 3 · 53
161 NA 7 · 23
163 NA 135433
165 2 5 · 33
167 NA 57912614113275649087721

169 4 652 · 5−2

171 2 513 · 3−1

173 NA 101653
175 3 52 · 7
177 NA 3 · 59
179 NA 62020897
181 NA 54001
183 NA 3 · 61
185 NA 5 · 37
187 3 33 · 3−1 · 17
189 2 3 · 63
191 NA 420778751
193 NA 22253377
195 2 3 · 65
197 NA 2682880399791288692971086704

1891989490486893845712448833

199 NA 153649
201 NA 3 · 67
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Abstract. Quantum arithmetic circuits have practical applications in
various quantum algorithms. In this paper, we address quantum addi-
tion on 2-dimensional nearest-neighbor architectures based on the work
presented by Choi and Van Meter (JETC 2012). To this end, we propose
new circuit structures for some basic blocks in the adder, and reduce
communication overhead by adding concurrency to consecutive blocks
and also by parallel execution of expensive Toffoli gates. The proposed
optimizations reduce total depth from 140

√
n + k1 to 92

√
n + k2 for

constants k1, k2 and affect the computation fidelity considerably.

Keywords: Quantum Adders, 2D Quantum Architectures, Nearest
Neighbor Interaction.

1 Introduction

Quantum algorithms are often described in the quantum circuit model of com-
putation, where for a quantum circuit with n qubits, any pairs of qubits can
interact. However, current advances in physical quantum technologies can only
allow qubit interactions in one-, two-, or three-dimensional spaces. Restricting
interactions to only linear dimension results in O(n) overhead. On the other
hand, working with 2D (or 3D) quantum architectures where each qubit can
interact with 4 (or 6) neighboring qubits provides more flexibility.

For a given quantum circuit C one can construct an interaction graph GC =
(VC , EC), the nodes of which represent qubits in C with edges between them
when a gate in C involves the related qubits. Additionally, the architecture (or
fabric) of a quantum computing system can be described by a simple connected
graphGQ = (VQ, EQ) where vertices VQ represent qubits and edges EQ represent
adjacent qubit pairs that gates can be applied on [1]. Accordingly, the problem
of mapping a quantum circuit C with arbitrary interactions between qubits onto
a quantum architecture with limited interaction distance can be mapped to the
problem of embedding graph GC into graph GQ.

In general, the graph embedding problem is NP-hard. However, optimal em-
bedding methods with polynomial time complexities for several classes of graphs
have been proposed [2]. In [3], the concept of dilation in graph embedding has

G.W. Dueck and D.M. Miller (Eds.): RC 2013, LNCS 7948, pp. 58–69, 2013.
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been applied to find a depth lower bound for a quantum circuit after embed-
ding. In this case, dilation is defined as the maximum distance between adjacent
nodes of the graph after embedding. Working with proven properties of log-
depth binary trees and considering the fact that log-depth quantum addition
circuits exist, Choi and Van Meter [3] showed that the depth lower bound of
the exact quantum addition circuit on a k-dimensional quantum architecture is
Ω( k
√
n). In [4], the authors examined the minimum overhead in depth for em-

ulating a circuit C by a circuit C′ subject to the constraints imposed by the
interaction constraints and showed that this overhead is O(n) for 1D, O(

√
n) for

2D, O(log2 n) or O(log n) (depending on the approach) for hypercube.
Exploring an efficient realization of a given quantum algorithm or quantum

circuit for a restricted architecture has been followed by a number of researchers
during the recent years. Physical implementations of the quantum Fourier trans-
form (QFT) [5, 6], Shor’s factorization algorithm [7–9], quantum error correction
[10], and general reversible circuits [11] for 1D/2D architectures have been ex-
plored in the past. Worst-case synthesis cost of a general/Boolean unitary matrix
under the 1D restriction has been discussed in [12–15]. In [16–18] heuristic meth-
ods for converting an arbitrary quantum circuit to its equivalent circuit on 1D
architectures have been proposed.

Quantum adder and its modular version have applications in different quan-
tum algorithms including Shor’s factoring algorithm. In [19], a quantum adder
with Θ(

√
n) depth on 2D quantum architectures was proposed which has 140

√
n−

72 depth, in terms of one- and two-qubit quantum gates. Asymptotically, the
depth of the proposed adder is optimal. However, constant-factor optimization
is possible and in fact desirable. Besides the effect of reducing circuit size/depth
on physical realization, any additional gate in the circuit longest path can reduce
circuit fidelity to some extent. Based on the analysis done in [20] for fault-tolerant
error correction with a concatenated 7-qubit CSS code [21], nearest-neighbour
communication overhead results in 175x reduction in error threshold. Improving
error threshold is costly and may include using a more sophisticated quantum
control protocol to have gates with higher fidelities or applying a more robust
error correction code. Therefore, reducing unnecessary communication overhead
for a useful quantum computation is vital. Because of the effect of addition on
e.g., modular multiplication and modular exponentiation circuits [9, 22, 23], re-
ducing communication overhead for quantum adder by circuit optimization —
the focus of this work — is of particular interest.

In this paper, we show how 140
√
n+const depth in [19] can be further im-

proved to 92
√
n+const. For this purpose, we reconsider the basic blocks in the

suggested quantum adder and introduce some constant-factor optimizations in
communication overhead in different stages. To physically implement a given cir-
cuit, one needs to decompose all gates into primitive one- and two-qubit gates.
To decompose a 3-qubit Toffoli (T ) gate, we use Clifford+T gates which are
universal and have fault-tolerant (FT) implementation [21]. Fig. 1 shows the de-
composition of the Toffoli gate into one- and two-qubit gates. To consider depth,
we report circuit depth in terms of single-qubit, CNOT (C) and SWAP (S) gates.
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The rest of this paper is organized as follows. In Section 2, the method in [19] is
discussed. We introduce the reduction techniques in Section 3. The result of the
proposed reductions is analyzed in Section 4 and Section 5. We finally conclude
the paper in Section 6.

• • • T • • • • T •

• • T �������	 T † �������	 • × �������	 T �������	 T † �������	 × T �������	 T † �������	

H �������	 T † �������	 T �������	 T † �������	 T H H �������	 T † × • × T H

Fig. 1. Decomposition of the Toffoli gate into one-qubit and six CNOT gates [24] and
the implementation with adjacent qubits

2 Quantum Addition on 2D Architectures

In this section, we describe the circuit structure in [19] for quantum addition on
2D architectures. For an n-qubit quantum circuit, the method in [19] arranges
the qubits in

√
n×√n arrays where each qubit can interact with its four neigh-

boring qubits with no additional cost. Additionally, the circuit was divided into
3 phases which are executed sequentially. In the first phase, ripple-carry addition
is performed on the first column, and carry-lookahead addition is performed on
the other

√
n− 1 columns. In the second phase, carry propagation is performed

between columns, and finally in phase 3 carry generation and summation are
performed.

In the first phase, after using a half-adder and
√
n − 1 full-adders output

carries c2, · · · c√n+1 will be available. It is done in 32
√
n− 17 unit-time steps in

[19]. The carry-lookahead addition in other columns produces

gk
√
n+j = ak

√
n+j · bk√n+j (1)

pk
√
n+j = ak

√
n+j ⊕ bk

√
n+j (2)

for 1 ≤ k ≤
√
n − 1 and 1 ≤ j ≤

√
n. After computing gi and pi values in all

columns in parallel, G[i, j] and P [i, j] are computed in serial based on (3) and
(4) for 1 ≤ k ≤

√
n− 1, and 2 ≤ j ≤

√
n where G[k

√
n+ 1, k

√
n+ 1] = gk

√
n+1

and P [k
√
n + 1, k

√
n + 1] = pk√n+1. This part takes 34

√
n − 19 time steps in

[19]. Accordingly, the first phase in [19] results in 34
√
n− 19 time steps.

G[k
√
n+ 1, k

√
n+ j] = gk

√
n+j ⊕ pk

√
n+j ·G[k

√
n+ 1, k

√
n+ j − 1] (3)

P [k
√
n+ 1, k

√
n+ j] = pk

√
n+j · P [k

√
n+ 1, k

√
n+ j − 1] (4)

In the second phase, column-level carries are computed as shown in (5) for
1 ≤ k ≤ √

n− 1 in 18
√
n− 18 time steps.

c(k+1)
√
n+1 = G[k

√
n+ 1, (k + 1)

√
n]⊕ ck√n+1 · P [k

√
n+ 1, (k + 1)

√
n] (5)
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Table 1. Basic blocks in 2D adder [19] and their depths in terms of unit-cost gates.
The last term (i.e., 3) in total depth represents 2 NOTs and one CNOT gate used to
construct the final output in [19].

Name #steps: gate sequence Circuit

H, T, CNOT (C), SWAP (S) 1

Toffoli (T (a,b,0)) 14: 2 S+ 12 1-qubit H(0)C(b,0)T†(0)S(b,0)C(a,b)T(b)C(0,b)

T†(b)C(a,b)S(b,0)T(b)T(0)C(a,b)H(0)

T(a)T†(b)C(a,b)
Half-adder(a,b,0) 15: 1 T + 1 C T (a,b,0)T (a,b)
Full-adder(c,a,b,0) 32: 2 T + 2 C+ 2 S T (a,b,0)T (a,b)S(c,a)T (a,b,0)T (a,b)S(c,a)
g,p(a,b,0) 15: 1 T + 1 C T (a,b,0)T (a,b)
G,P(P,G,a,p,g,0) 34: 2 T + 6 S S(G,a)S(P,G)T(a,p,g)S(G,a)S(g,0)T(a,p,g)

S(G,a)S(P,G)S(G,a)
Column carry(P,G,C) 18: 1 T + 4 S S(P,G)T (C,G,P)S(G,C)S(P,G)S(G,C)
Carry(P,G,a,p,C) 18: 1 T + 4 S S(P,G)S(p,C)S(a,p)T (a,G,P)S(G,a)S(P,G)
Carry1(p,g,c) 16: 1 T + 2 S S(g,c)T (p,g,c)S(p,g)
SUM(c,P,a,p) 5 : 1 C+ 4 S S(c,P)S(P,a)T (a,p)S(P,a)S(c,P)
SUM1(c,a,p) 3 : 1 C+ 2 S S(c,a)T (a,p)S(c,a)
SUM2(p,c) 1 : 1 C T (c,p)

phase 1 34
√
n − 19: g,p + (

√
n − 1)G,P

phase 2 18
√
n − 18: (

√
n − 1) Column carry

phase 3 18
√
n + 1: (

√
n − 1) Carry + Carry1 + SUM1

clearing ancillae 70
√
n − 39: phase 1 + phase 2 + phase 3 - SUM1

total depth 140
√
n − 72: phase 1 + phase 2 + phase 3 + clearing ancillae + 3

In phase 3 output carries are calculated sequentially as (6) for 1 ≤ k ≤ √
n− 1

and j =
√
n− 1, ..., 1.

ck
√
n+j+1 = G[k

√
n+ 1, k

√
n+ j]⊕ ck

√
n+1 · P [k

√
n+ 1, k

√
n+ j] (6)

Finally, addition outputs are calculated as shown in (7) for 1 ≤ k ≤ √
n− 1 and

1 ≤ j ≤
√
n. Altogether, operations in phase 3 can be performed in 18

√
n + 1

time steps.
sk

√
n+j = ak

√
n+j ⊕ bk

√
n+j ⊕ ck

√
n+j (7)

Considering the three subcircuits for phase 1, phase 2, and phase 3 in sequence
leads to 70

√
n−36 time steps in [19]. Applying the inverse circuit to clear ancillae

leads to 140
√
n− 72 time steps for the complete adder.

Based on the equations (1)-(7), Table 1 reports circuit depth in different
blocks. In this table, we used the same notation in [19] for circuit blocks — g,p
to compute gi, pi values in (1) and (2); G,P to compute G[i, j] and P [i, j] values
in (3) and (4); Column carry to compute column-level carries in (5); Carry &
Carry1 to compute carries in (6); and SUM, SUM1 & SUM2 to compute final
outputs in (7).

3 The Proposed 2D Adder

In this section, we revise the basic blocks in [19] and introduce additional paral-
lelism in various parts to reduce circuit depth. Basically, the proposed optimiza-
tions are based on (1) new circuit structures for CARRY and SUM basic blocks
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(2) reducing communication overhead in Column carry, (3) parallel execution of
expensive Toffoli gates in G,P blocks as well as in Full-adders, and (4) reducing
interaction overhead by adding concurrency to consecutive blocks.

3.1 New Circuits

Working with the same circuit structures in [19] for Half-adder, g,p, and G,P
blocks as reported in Table 1, we define several new structures for the other
blocks.

• Full-adder: The first T and C gates in the Full-adder blocks in [19] can be
executed in parallel with the gates in the Half-adder circuit. This saves one
T and one C for all

√
n− 1 Full-adders.

• Column Carry: Fig. 4 shows the new structure of Column Carry block. In
this circuit, c[k

√
n+1] is from the previous column (e.g., c4 in Fig. 2). After

the computation, the new carry, e.g., c7, is moved down, to be used by the
next Column Carry block. The previous carry, e.g., c4 is placed near to the
Carry module. This new structure saves 1 SWAP gate.

• Carry: Fig. 5 shows the new structure for Carry block. Since c[k
√
n+ 1] is

required to compute all carries in different rows, c[k
√
n+ 1] is moved up in

this figure. On the other hand, the generated carry is required to compute
sum values, and hence is moved down. This new circuit uses 5 SWAP gates
(vs. 4 in [19]).

• SUM: Applying the proposed circuit for Carry results in adjacent c[k
√
n+

j + 1] and p[k
√
n + j + 1] values (see Fig. 5). Based on (7) sum outputs

can be computed by a single CNOT gate. This saves 4 SWAP gates in [19].
In order to construct si values on bi qubits, one needs to add one SWAP
gate S(p[k√n + 1], c[k

√
n + 1]). However, this SWAP gate can be removed

because of an identical SWAP gate in the Carry circuit. Accordingly, we
define another circuit block Carry1 with excluding the SWAP on c[k

√
n+1]

and P [k
√
n+ 1][k

√
n+ j] (for j = 1) qubits. We do not need to use SUM1

and SUM2 blocks in the proposed 2D adder structure.

3.2 Reducing Communication Overhead

To use adjacent gates in the 2D quantum adder, we use a set of SWAP gates
inside each circuit block. The added SWAP gates are used for communication
between those gates required for the computation. In other words, the added
SWAP gates are not required for the computation, and should be reduced as
much as possible. Independent optimization of different blocks can reduce com-
munication overhead inside each subcircuit, but has no view about the neighbor-
ing subcircuits. In this section, we consider consecutive circuit blocks to reduce
communication overhead further. Note that the optimizations given in this sec-
tion are based on the new circuit blocks given in Section 3.1.



Optimization of Quantum Adder on 2D Quantum Architectures 63

a1

HA

•

C−1

a1

b1 �������	 �������	 �������	 s1

0

FA

0

a2 • a2

b2 �������	 �������	 �������	 s2

0

FA

0

a3 • a3

b3 �������	 �������	 �������	 s3

0

ColCarry

0

a4

g, p

• a4

b4

G,P
CARRY1

SUM
�������	 �������	 �������	 s4

0 0

a5

g, p

• a5

b5
SUM

�������	 �������	 �������	 s5

0

G,P
CARRY

0

0 0

a6

g, p

• a6

b6
SUM

�������	 �������	 �������	 s6

0 0

0

ColCarry

0

a7

g, p

• a7

b7

G,P
CARRY1

SUM
�������	 �������	 �������	 s7

0 0

a8

g, p

• a8

b8
SUM

�������	 �������	 �������	 s8

0

G,P
CARRY

0

0 0

a9

g, p

�������	 • �������	 a9

b9
SUM

�������	 s9

0 0
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Fig. 2. The revised block diagram of a 2D 9-bit adder in [19] based
on the blocks used in this paper. The critical path in this circuit is
g,p���G,P���ColCarry���ColCarry���CARRY���CARRY1���SUM. The C−1 block
is the reverse of the circuit shown in the dashed box. This reverse circuit with the
NOTs and CNOTs shown are applied to clear ancillae in [19]. Except for ColCarry
(Column carry), the number of inputs and outputs for other modules are the same as
the ones shown in this figure. In Column carry, the number of inputs/outputs is 3 —
i.e., the first line and the last two lines are actual inputs and outputs. Note that these
three lines are neighbor in the 2D layout. The qubit placement for this 2D grid and
their values during the computation (up to clearing ancillae) are given in Fig. 3.

• G,P � Carry: Reconsider (3), (4), and (6) and note that the result of
Column carry in (5), i.e., c[k

√
n+ 1], is constructed on the last qubit in the

Carry block (see Fig. 4 and Fig. 5). Fig. 6 shows the blocks in sequence.
To simplify the circuit, note that the last three SWAP gates in G,P can be
moved to right. Next, the resulting circuit can be reconstructed as shown in
Fig. 6(b). Accordingly, three SWAP gates in each G,P block can be saved.
Fig. 7 shows the new circuits for Carry and Carry1. Note that some of G,P
blocks are directly connected to the Carry (or Carry1) blocks without any
interaction with Column carry blocks. For such cases, we can apply the same
mechanism.

• G,P � G,P: Each G,P block constructs two outputs based on (4) and (3)
where G[k

√
n+1, k

√
n+j] depends on G[k

√
n+1, k

√
n+j−1] and P [k

√
n+

1, k
√
n+ j] depends on P [k

√
n+1, k

√
n+ j− 1]. Since G[k

√
n+1, k

√
n+ j]
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0, c2 b5, p5, s5 b8, p8, s8
a2 0, g5, P [4, 5], c4, c5 0, g8, P [7, 8], c7, c8
b2, s2 0, G[4, 5], P [4, 5] 0, G[7, 8], P [7, 8]
0, c3 a6 a9

a3 b6, p6, s6 b9, p9, s9
b3, s3 0, g6, P [4, 6], c4, c6 0, g9, P [7, 9], c7, c9
0, c4 0, G[4, 6], c7 0, G[7, 9], c10

Fig. 3. The qubit placement for the 2D grid in Fig. 2 and their values during the
computation

c[k
√
n+ 1] • × • × × P [k

√
n+ 1][(k + 1)

√
n] P [k

√
n+ 1][(k + 1)

√
n] • ×

P [k
√
n+ 1][(k + 1)

√
n] • × ≡ • × c[k

√
n+ 1] G[k

√
n+ 1][(k + 1)

√
n] �������	 ×××

G[k
√
n+ 1][(k + 1)

√
n] �������	 �������	 ××× c[(k + 1)

√
n+ 1] c[k

√
n+ 1] • × ×

(a) (b) (c)

Fig. 4. (a) Circuit structure for Column carry based on (5). Note that c[(k−1)
√
n+1]

and P [(k−1)
√
n+1][k

√
n] are not adjacent (see Fig. 2). (b) Circuit in (a) with adjacent

gates. (c) Circuit in (b) with relabelled qubits to show adjacent qubits.

is constructed first, we can use it to construct G[k
√
n + 1, k

√
n + j + 1] in

parallel to construction of P [k
√
n+1, k

√
n+ j−1]. This can save one Toffoli

and one SWAP. Fig. 8 shows the result of this optimization.

4 Depth Analysis

In this section, we analyze the circuit depth of a 2D n-bit quantum adder based
on the circuit structures proposed for each block.

• Phase 1 — Half-adder+Full-adder: We can execute Half-adder and
the first two gates (T +C) in all Full-adders in parallel. This results in
1T +1C+(

√
n− 1)(2S+1C+1T ) time steps.

• Phase 1 — g,p+G,P: Each g,p block includes one Toffoli gate and one
CNOT gate. Except for the first G,P block, the other

√
n− 2 G,P blocks in-

clude 3 SWAPs and 1 Toffoli. The first G,P block includes two Toffoli and two
SWAP gates. Circuit depth can be calculated as (1T +1C)+(2T +2S)+(

√
n−

2)(3S+1T ).

P [k
√
n+ 1][k

√
n+ j] • ×× • × c[k

√
n+ 1]

G[k
√
n+ 1][k

√
n+ j] �������	 × �������	 ×× P [k

√
n+ 1][k

√
n+ j]

a[k
√
n+ j + 1] ≡ × • ×× a[k

√
n+ j + 1]

p[k
√
n+ j + 1] ×× ×× p[k

√
n+ j + 1]

c[k
√
n+ 1] • × × × c[k

√
n+ j + 1]

Fig. 5. Circuit structure for Carry based on (6). Inputs a[k
√
n+j+1] and p[k

√
n+j+1]

are not used in the computation.
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• × × • × ×

· · · · · ·
P [k

√
n+ 1][k

√
n+ j] × × • × × ×

G[k
√
n+ 1][k

√
n+ j] × × × ××× �������	 ×× ≡ × × × �������	 ×××

a[k
√
n+ j + 1] × • × • × × × • ×× × • × • • ××××

p[k
√
n+ j + 1] • • ×× ×× • • × • × ××

g[k
√
n+ j + 1] �������	 × �������	 • × × × �������	 × �������	 • × × ×

0 × �������	 ××× × �������	 ×××

(a) (b)

Fig. 6. (a) G,P, Column carry, and Carry blocks in cascade. The three rightmost SWAP
gates in G,P can be merged with gates in the Carry block to construct a new circuit
shown in (b).

P [k
√
n+ 1][k

√
n+ j] × × c[k

√
n+ 1]

G[k
√
n+ 1][k

√
n+ j] �������	 ××× �������	 ××× P [k

√
n+ 1][k

√
n+ j]

a[k
√
n+ j + 1] • ×××× • ××× a[k

√
n+ j + 1]

p[k
√
n+ j + 1] × • × ×× × • ×× p[k

√
n+ j + 1]

c[k
√
n+ 1] × × × × c[k

√
n+ j + 1]

(a) (b)

Fig. 7. New circuit structures for Carry (a) and Carry1 (b) based on the optimization
shown in Fig 7. Note that the first SWAP gate can be executed in parallel with gates
in the previous block (see Fig. 7).

• Phase 2 — Column carry: There are
√
n − 1 Column carry blocks in

cascade. This results in
√
n− 1(1T +3S) time steps.

• Phase 3 — Carry + SUM: There are
√
n − 2 Carry blocks followed by

one Carry1 block and one SUM block. Therefore, circuit depth is (
√
n −

2)(1T +4S)+(3S+1T )+1C.

Table 2 reports circuit depth for each component and the total depth in the pro-
posed 2D quantum adder. As can be seen in this table, circuit depth is improved
by a factor of 26

35 (i.e., %24).
In [25], a new circuit for Peres with depth=5C+3 has been proposed (Fig.

10(a)). After inserting one CNOT (to have Toffoli) and two SWAP gates to have
adjacent gates, one can use the new circuit with depth=6C+2S+4 in order to
further optimize the proposed 2D adder. Note that in [25], a circuit structure for
Toffoli gate with depth=6C+2 has been proposed too, Fig. 9. However, working

× ×
× × × × × ×
× • × • × • × •

• • • •
�������	 × �������	 × ≡ �������	 × �������	 × × × ×

× × × × × • × × × • × × ×
× • × • × • ×× • × • ×× •

• • × × �������	 ×× • ×× �������	 ×× •
�������	 × �������	 × ×× �������	 × ×× �������	

× × ×

Fig. 8. Construction of G[k
√
n+1, k

√
n+j+1] can be done in parallel to construction

of P [k
√
n+1, k

√
n+ j − 1] in two consecutive G,P blocks. The right circuit shows the

new circuit structure for G,P (except for the first G,P block).
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Table 2. Circuit depth for our blocks in 2D adder. Circuit depths for CNOT (C),
SWAP (S), and Toffoli (T ) gates are considered as 1, 1, and 14 as done in [19].

Block Circuit Ours [19]
Half-adder 1T +1C 15 15
Full-adder 2S+1C+1T 17 32
g,p 1T +1C 15 15
G,P (first) 2T +2S 30 34
G,P (others) 3S+1T 17 34
Column carry 1T +3S 17 18
Carry 1T +4S 18 18
Carry1 3S+1T 17 18
SUM 1C 1 5
Phase1-1 1T +1C+(

√
n − 1)(2S+1C+1T ) 17

√
n − 2 32

√
n − 17

Phase1-2 (1T +1C)+(2(T +2S)+(
√
n − 2)(3S+1T ) 17

√
n + 11 34

√
n − 19

Phase2 (
√
n − 1)(1T +3S) 17

√
n − 17 18

√
n − 18

Phase3 (
√
n − 2)(1T +4S)+(3S+1T )+1C 18

√
n − 18 18

√
n + 1

clearing ancillae Phase1-2+Phase2+Phase3-SUM 52
√
n − 24 70

√
n − 39

2D Adder Phase1-2+Phase2+Phase3+clearing ancillae+3 104
√
n − 46 140

√
n − 72

a • a a T † �������	 T �������	 T † �������	 T �������	 a

b • b ≡ b T † • • • • b

c �������	 c c H • �������	 T �������	 • T † H c

Fig. 9. Toffoli decomposition with depth 6C+2 [25]

with Peres gate results in a more compact circuit in terms of the number of
SWAP gates. Following this path results in depth=92

√
n+const for the proposed

2D quantum adder. Table 3 compares circuit depth based on different costs for
Toffoli and SWAP gates.

5 Error Correction

To protect quantum information from errors due to e.g., noise or decoherence,
quantum error correction (QEC) should be used in any large-scale quantum
computation. In the recent years, various models for QEC have been proposed
[21]. A common technique, known as concatenated quantum code, is to encode
a logical qubit into the state of several physical qubits (e.g., 7 in Steane code
and 9 in Bacon-Shor code [21], both for one level of concatenation).

Let assume each unitary operation should be followed by quantum error cor-
rection for proper computation. This results in an aggressive quantum error
correction mechanism. In some circumstances, one may insert error correction

a • • a a T • • • a a T • • • • a

b • �������	 b ≡ b T �������	 T † �������	 T �������	 T † b b T �������	× �������	 T �������	× �������	 T �������	 T † �������	 b

c �������	 c c H • �������	 T † �������	 T • H c c H • × T † × T • H c

(a) (b)

Fig. 10. (a) Peres decompositions with depth 5C+3 [25], (b) Toffoli with adjacent
gates based on Peres decomposition (depth=6C+2S+4)
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Table 3. Circuit depth for the proposed adder and the one in [19] considering different
costs for Toffoli and SWAP gates

T -depth=14,S-depth=1 T -depth=14,S-depth=3 T -depth=12,S-depth=3 T -depth=12,S-depth=1
Ours [19] Ours [19] Ours [19] Ours [19]

104
√
n 140

√
n 144

√
n 176

√
n 132

√
n 160

√
n 92

√
n 124

√
n

after several operations, instead of each operation. Consider a quantum com-
putation U with NU logical operations which include only FT quantum gates.
Moreover, assume that error correction for each FT gate requires NE physical
instructions. NE includes SWAPs required for communication. Normally, NE

differs for various logical operations; however, we can consider the worst-case
value among all FT gates. Working with concatenated quantum error correction
techniques, the total physical gate count at concatenation level L can be esti-
mated as NL = NL−1 +NL−1 × NE or NL ≈ NL−1 × NE . We have N0 = NU ,
and therefore, NL = NU (NE)

L. Accordingly, besides the effect of the proposed
approach on circuit depth, one can implement the proposed 2D adder with fewer
gates — the reduction factor is 24

35 .

6 Conclusion

We considered a quantum adder on 2D quantum architectures. Our work is
based on the results reported in [19] with several improvements. In particu-
lar, we optimized the building blocks of the 2D adder with focus on reducing
the communication overhead required in 2D quantum architectures. Having op-
timized consecutive blocks, the proposed adder can execute expensive Toffoli
gates concurrently in several locations. The suggested optimizations improve
depth=140

√
n+ k1 in [19] to 92

√
n+ k2 for constants k1 and k2.
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Abstract. We present a method for constructing reversible circuitry for multi-
plying integers by arbitrary integer constants. The method is based on Mealy
machines and gives circuits whose size are (in the worst case) linear in the size
of the constant. This makes the method unsuitable for large constants, but gives
quite compact circuits for small constants. The circuits use no garbage or ancil-
lary lines.

1 Introduction

In [2], de Vos presents reversible circuitry for integer linear transformations. In one of
the instances, multiplication of a number by 5 is needed, and in order to achieve this, de
Vos copied the number, shifted and added. The shifted copy of the number became part
of the output as garbage bits, which is undesirable. To remedy this [1] modified a ripple-
carry adder so it can perform multiplications by constants of the form 2n ± 1 (using
multiplication by 5 as an example) without producing garbage. The method is not easily
generalised to other numbers except by using a pipeline of several such multipliers
(and their inverses). For example, multiplication by 19 can be done by multiplying
by 513 and dividing by 9 and 3 (all of which are of the form 2n ± 1). This doesn’t
generalise to all odd numbers. For example, 23 can not be written as a fraction where
the enumerator and denominator are both product of numbers of the form 2n± 1. To
handle more constants, the authors extended their method to also handle constants of
the form 2n± 2m± 1 by modifying a three-input adder. While this extension increases
the number of possible constant multipliers, it is not clear that all constants are within
reach of their method.

We propose a way of making compact multipliers for arbitrary integer multipliers
by simulating state machines, specifically Mealy machines. This leads to very compact
multipliers garbage-free for small constants. Additionally, these circuits use no garbage
or ancillary lines.

2 Mealy Machines

A Mealy machine [5,7] is a finite-state automaton where each state transition both reads
and writes a symbol. Huffman [4] studied reversible (loss-less) Mealy machines, i.e,
Mealy machines where the transition relation is reversible: Knowing the current state

G.W. Dueck and D.M. Miller (Eds.): RC 2013, LNCS 7948, pp. 70–83, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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and the previous output bit is enough to find the previous state and the previous input
bit. As an example, the reversible Mealy machine in Figure 1 reads the bits of a binary
number in little-endian order and outputs the number multiplied by 5 as a binary number
in little-endian form – assuming there are at least two leading zeros in the input number,
so the final state is state 0. As an example, the input sequence 10100 (representing 5 in
little-endian notation) gives the sequence of transitions 0 →1

1 2 →0
0 1 →1

0 3 →0
1 1 →0

1 0
which produces the output sequence 10011, which is little-endian for 25.1
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Fig. 1. Mealy machine for multiplication by 5

The state in the Mealy machine represents a carry with a value between 0 and 4,
so given state s and input bit a, the next state is t = (s + 5a)/2 and the output bit
is b = (s+ 5a)%2, where / and % are integer division and remainder operators. This,
obviously, generalises to arbitrary multiplication factors yielding an n-state machine for
multiplication by n. For odd factors, this is the minimal number of states. Even factors
can be decomposed into an odd factor and a power of two, the latter of which is just a
bit shift. So we will look only at odd factors.

The Mealy machine is reversible: Knowing the constant multiplier k, the state t and
the output bit b uniquely determines the previous state s and the input bit a: We have
2t + b = s + k · a, a, b ∈ {0,1} and s, t ∈ {0, . . .k−1}. So if 2t + b ≥ k, a = 1 and
s = 2t + b− k, and if 2t + b < k, a = 0 and s = 2t + b.

3 Representing the Mealy Machine in Reversible Logic

We will use �log2 k� bits to represent the k states of the Mealy machine. This leaves
some bit combinations unused. We don’t care about the transitions for these as long as
the full transition table is reversible. So we need to find reversible circuits that coincide
with the Mealy-machine transition table for states 0 to k−1. The remaining states will
have transitions that follow from the choice of circuit that represents the desired state
transition function on states 0 to k−1.

Using three bits s2,s1 and s0 for the states in the Mealy machine in Figure 1 and a as
the input bit, the next state represented by t2, t1 and t0 and the output bit b is determined
using the transition table shown in Figure 2.

1 In the transitions, the input bits are shown as superscripts and the output bits as subscripts.
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s2 s1 s0 a t2 t1 t0 b
0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 1
0 0 1 0 0 0 0 1
0 0 1 1 0 1 1 0
0 1 0 0 0 0 1 0
0 1 0 1 0 1 1 1
0 1 1 0 0 0 1 1
0 1 1 1 1 0 0 0
1 0 0 0 0 1 0 0
1 0 0 1 1 0 0 1

Fig. 2. Transition table for multiplication by 5

If a = 0, t = s/2 (implying ti = si+1), so it is natural to make ti a modification of si+1

controlled by a and, possibly, the other bits of s.
It is fairly easy to see that b = s0⊕ a and t0 = s1⊕ s0a, so we can make these using

a Feynman (controlled not) gate and a Toffoli gate, respectively. We can combine these
into a single Peres gate.2

t1 is a bit harder, but it can be obtained as s2⊕a⊕ (s1s0a), so we need one Feynman
gate and a 4-input Toffoli gate.

We don’t have any s3 to use as basis for t2. We could use a constant-0 wire controlled
by the other inputs, but that would make a a garbage output and require an ancillary
wire. So, instead, we make t2 a modification of a. We can see that t1 = 1 ⇔ t2 �= a
except when t1 = 1 and b = t0 = 0, which gives us t2 = a⊕ t1⊕ t1t0b, so we can do this
with two Toffoli gates (one of which has mixed inputs). In total, we have:

b = s0⊕ a
t0 = s1⊕ s0a
t1 = s2⊕ a⊕ s1s0a
t2 = a⊕ t1⊕ t1t0b

The entire circuit for the transition function is shown in Figure 3 and the expanded
transition table in Figure 4.3

Note that, since the state is a carry value between 0 and 4, the circuit can calculate
5x+y, where y is a value between 0 and 4. If using the circuit in reverse for dividing by
5, the state gives the division remainder.

2 A Peres gate is a combination of a Toffoli gate and a Feynman gate that has a lower quantum
cost than a Toffoli gate.

3 The three unused states (below the line) in the transition table form a three-state Mealy au-
tomaton. When starting in state 7, this is the Mealy automation for multiplication by 3 except
that the output bit b is negated.
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Fig. 3. Transition circuit for multiplication by 5

s2 s1 s0 a t2 t1 t0 b
0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 1
0 0 1 0 0 0 0 1
0 0 1 1 0 1 1 0
0 1 0 0 0 0 1 0
0 1 0 1 0 1 1 1
0 1 1 0 0 0 1 1
0 1 1 1 1 0 0 0
1 0 0 0 0 1 0 0
1 0 0 1 1 0 0 1
1 0 1 0 1 1 0 1
1 0 1 1 1 0 1 0
1 1 0 0 1 1 1 0
1 1 0 1 1 0 1 1
1 1 1 0 1 1 1 1
1 1 1 1 1 1 0 0

Fig. 4. Expanded transition table for multiplication by 5

4 More Examples

A multiplier by 3 needs two state bits s0 and s1 and from the calculations in Section 5,
we get

b = s0⊕ a
t0 = s1⊕ as0

t1 = a⊕ bt0

which gives the circuit
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b
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Note that the two first gates can be combined to a Peres gate. Multiplication by 7 uses
the formulas

b = s0⊕ a
t0 = s1⊕ as0

t1 = s2⊕ as0s1

t2 = a⊕ bt0t1

which are implemented by

s0

s1

s2

a

b

t0

t1

t2
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As we shall see in Section 5.3, the similarity between these two multipliers is a general
form for multipliers by 2n− 1.

5 Generalising to Arbitrary Odd Multipliers

We will use the same idea as above for arbitrary odd multipliers k: The state number
s is a carry value from 0 to k− 1 represented as a binary number s j . . .s0, where j =
�log2(k)�. The input bit is a, the output bit is b and the new state t is represented as
t j . . . t0. Similarly, we write k as a binary number k j . . .k0. Since we are interested in odd
multipliers only, k0 = 1.

Using the carry value (division remainder) as state number, we get a simple formula
for the next state and the output bit: t = (s+ ak)/2 and b = (s+ ak)%2, respectively.
Since k0 = 1, the latter can be simplified to b = s0 ⊕ a, as we also saw in example
circuits above. Given that t = (s+ ak)/2, we have that ti = (s+ ak)/2i+1%2.

We start by looking at the last few bits of t:

t0 = t%2
= (s+ ak)/2%2
= (s%4+ ak%4)/2%2
= (s0 + 2s1 + ak0 + 2ak1)/2%2
= (s0 + 2s1 + a+ 2ak1)/2%2
= ((s0 + a)/2+ s1+ ak1))%2
= (s0a+ s1 + ak1))%2
= (s1 + a(s0 + k1))%2
= s1⊕ a(s0⊕ k1)

So, dependent on whether k1 is 0 or 1, we have t0 = s1⊕as0 or t0 = s1⊕as0, so in both
cases it can be implemented by a Toffoli gate.
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Moving in to the next bit (when k > 3), we get

t1 = (t/2)%2
= (s+ ak)/4%2
= (s%8+ ak%8)/4%2
= (s0 + 2s1 + 4s2 + ak0 + 2ak1+ 4ak2)/4%2
= (s0 + 2s1 + 4s2 + a+ 2ak1+ 4ak2)/4%2
= ((s0 + 2s1 + a+ 2ak1)/4+ s2+ ak2)%2

We special case on the values of k1 and k2:

k1 = k2 = 0 : t1 = ((s0 + 2s1 + a)/4+ s2)%2
= (s0s1a+ s2)%2
= s2⊕ s0s1a

k1 = 0, k2 = 1 : t1 = ((s0 + 2s1 + a)/4+ s2+ a)%2
= (s0s1a+ s2 + a)%2
= s2⊕ a⊕ s0s1a

k1 = 1, k2 = 0 : t1 = ((s0 + 2s1 + 3a)/4+ s2)%2
= (a(s0∨ s1)+ s2)%2
= s2⊕ a(¬s0s1)
= s2⊕ a⊕ as0s1

k1 = k2 = 1 : t1 = ((s0 + 2s1 + 3a)/4+ s2+ a)%2
= (a(s0∨ s1)+ s2 + a)%2
= s2⊕ a⊕ a(¬s0s1)
= s2⊕ as0s1

In some of the above reductions, we have used the equality xy = x⊕xy. We will use this
again on several occasions below. The general case is

ti = (s+ ak)/2i+1%2
= ((s%2i+1 + a(k%2i+1))/2i+1 + s/2i+1 + a(k/2i+1))%2
= si+1⊕ aki+1⊕ (s%2i+1 + a(k%2i+1))/2i+1%2

We note that the contents of the outer parentheses is greater than or equal to 2i+1 if and
only if a = 1 and s%2i+1 + k%2i+1 ≥ 2i+1. So we can rewrite to

ti = si+1⊕ aki+1⊕ a(s%2i+1 + k%2i+1 ≥ 2i+1)
= si+1⊕ aki+1⊕ a(s%2i+1 ≥ 2i+1− k%2i+1)

We use Ci
k as a shorthand for 2i+1 − k%2i+1. We see that, if ki+1 = 0, we can reduce

si+1 ⊕ aki+1 ⊕ a(s%2i+1 ≥ Ci
k) to si+1 ⊕ a(s%2i+1 ≥ Ci

k). If ki+1 = 1, we instead get
si+1⊕ a⊕ a(s%2i+1 ≥Ci

k) = si+1⊕ a(s%2i+1 <Ci
k).

In both cases, the inequality can be expressed as a logical formula of the bits in
s%2i+1, i.e, the last i+1 bits of s. This logical formula can be written in disjunctive nor-
mal form, so we get ti = si+1⊕a(V1∨·· ·∨Vm), where each disjunct V is a conjunction
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of the variables s1 · · · s0, some of which may be negated. All disjuncts specify exactly
one bit patterns of the word s1 · · · s0, so only one of the disjuncts can be true. Hence,
we can rewrite the formula to ti = si+1⊕ aV1⊕·· ·⊕ aVm. We can reduce this using the
following rules:

xy⊕ xy = x resolution
x⊕ xy = xy negation
xyz⊕ xyz = xy⊕ xz cross

The cross rule does not reduce the number of gates, but it does reduce their size. Optimal
reduction is computationally hard, as the choice of which pairs to reduce can affect later
reductions. The reduced formula can be implemented as a sequence of mixed-input
Toffoli gates.

For the last output bit, we have

t j = (s+ ak)/2 j+1%2
= s+ ak > 2 j+1

= a∧ s+ k > 2 j+1

= a∧ s > 2 j+1− k
= a⊕ a(s≤ 2 j+1− k)
= a⊕ (b⊕ s0)(s≤ 2 j+1− k)
= a⊕ b(s≤ 2 j+1− k)⊕ s0(s≤ 2 j+1− k)

Rewriting this way avoids garbage, as we have b as a modification of s0, ti as a modifi-
cation of si+1 when i < j and t j as a modification of a. So all inputs are consumed when
producing the outputs, and no ancillary or garbage lines are needed.

To get a linear layout of the circuit, we prefer to use b and t0 . . . t j−1 instead of s0 . . .s j

when computing t j. There is no simple general formula, but we can use the same trick
as above: List all combinations of positive and negative b and t0 . . . t j−1 that give t j �= a
and write this as a disjunctive normal form. Essentially, we generate the truth table for
t j ⊕ a as a function of b and t0 . . . t j−1, rewrite this into a logical formula in disjunctive
normal form and reduce it using the resolution and negation rules.

5.1 Example: Multiplication by 23

As shown in [6], no sequence of multipliers and dividers by constants of the form 2n±1
(like those shown in [1]) can multiply by 23. Hence, 23 is an interesting case for our
construction. 23 = 101112, so k0 = k1 = k2 = k4 = 1 and k3 = 0. As shown above, this
gives

b = s0⊕ a
t0 = s1⊕ as0

t1 = s2⊕ as0s1

t2 = s3⊕ a(s%8≥ 8− 23%8)
= s3⊕ a(s%8≥ 1)
= s3⊕ a(s0∨ s1∨ s2)
= s3⊕ a⊕ as0s1s2
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t3 = s4⊕ a⊕ a(s%16≥ 16− 23%16)
= s4⊕ a⊕ a(s%16≥ 9)
= s4⊕ a⊕ as3(s%8 ≥ 1)
= s4⊕ a⊕ as3(s0∨ s1∨ s2)
= s4⊕ a⊕ as3⊕ as3s0s1s2

By inspection of the truth table, we see that t4 �= a for the following values:

t3 t2 t1 t0 b
1 0 1 1 1
1 1 0 0 0
1 1 0 0 1
1 1 0 1 0
1 1 0 1 1
1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

With resolution, the last eight rows can be combined to t3 = t2 = 1. So the reduced
formula is t4 = a⊕ t3t2 ⊕ t3t2t1t0b, where the last term represents the first line in the
table. The entire circuit for multiplication by 23 is shown below.
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5.2 Size of Circuits

For any ti, the disjunctive normal form can have O(2i) disjuncts, so the circuits can be
quite large: A constant k uses �log2(k)� state bits, so the upper bound is

�log2(k)�−1

∑
i=0

2i = 2�log2(k)� − 1

This bound is not tight, and in most cases the circuit is much smaller. For example, the
formula above gives 31 as a bound for the number of gates for implementing multi-
plication by 23, but, as shown above, we need only 9 Toffoli gates (two of which can
be combined to a Peres gate). We can tighten the estimate a bit by the following ob-
servation: If a formula in disjunctive normal form for i variables has more than 2i−1

disjuncts, two of these must differ in only one variable, so they can be combined using
the resolution rule. Hence, we can lower the upper bound on the size of formulas by a
factor of 2.

There are, also, some special cases of k that give much smaller formulas and circuits.
We review these below.
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5.3 Multiplying by k = 2n− 1

If k = 2n−1, we note that j = n−1. We have t = (s+a(2n−1))/2 = (s+a2n−a)/2.
This gives

t j = tn−1 = t/2n−1%2
= (s+ a2n− a)/2/2n−1%2
= (s+ a2n− a)/2n%2

=

{
0 ,s = 0
((s− a)/2n+ a)%2 ,s > 0

=

{
0 ,s = 0
a ,s > 0

= a⊕ (a = 1∧ s = 0)
= a⊕ (b = 1∧ t = k/2)
= a⊕ (b = 1∧ t = 2n−1− 1)
= a⊕ bt0 · · · tn−2tn−1

= a⊕ bt0 · · · tn−2

The last step is valid because state 2n− 1 is not used, so tn−1 can not be 1 when all the
other bits of t are 1. For i < n− 1, we get

ti = t/2i%2
= (s+ a(2n− 1))/2/2i%2
= (s+ a(2n− 1))/2i+1%2

=

{
a(2n− 1)/2i+1%2 , s = 0
((s−a)/2i+1 + a2n−i−1)%2 , s > 0

=

{
a , s = 0
(s−a)/2i+1%2 , s > 0

We note that (s−a)/2i+1 = s/2i+1 unless both a = 1 and the last i+1 bits of s are all 0.
If this is the case, the two values differ by 1. So (s−a)/2i+1%2 = s/2i+1%2⊕as0 · si =
si+1⊕ as0 · si. Since this also applies to the s = 0 case, we get ti = si+1⊕ as0 · si when
i < n− 1. This is a single Toffoli gate.

So, if k = 2n− 1, only n+ 1 gates are required for the multiplier circuit (per bit of
the number that is multiplied by k), and this can be reduced to n gates if the gates for b
and t0 are combined to a Peres gate.

5.4 Multiplying by k = 2n + 1

If k = 2n + 1, we note that j = n, so t = (s+ a2n+ a)/2 = (s+ a)/2+ a2n−1.
We first look at the two high bits (tn and tn−1) together. These represent t/2n−1 =

((s+ a)/2+ a2n−1)/2n−1 = (s+ a)/2n + a. This can have values 0, 1 and 2, or 00, 01
and 10 in binary. We note that the two bits are different unless they both are 0, so we
can write

tn = tn−1⊕¬((s+ a)/2n+ a = 0)
= tn−1⊕¬(a = 0∧ s < 2n)
= tn−1⊕ (a = 1∨ s = 2n)
= tn−1⊕ a⊕ (a = 0∧ s = 2n)
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If a = 0 and s = 2n, we have b = 0 and t = 2n−1 (and vice versa). So we continue

tn = tn−1⊕ a⊕ (a= 0∧ s = 2n)
= a⊕ tn−1⊕ (b = 0∧ t = 2n−1)

= a⊕ tn−1⊕ tntn−1tn−2 · · · t0b
= a⊕ tn−1⊕ tn−1tn−2 · · · t0b

The last step is valid because tn = 0 is implied by tn−1 = 1, as both can not be 1 at the
same time. This gives us tn as a modification of a by a Feynman and a Toffoli gate.

For the other bits of t, we have that a = 1 gives ti = ((s+ 1)/2+ 2n−1)/2i%2.
If i = n−1, this is ((s + 1)/2+ 2n−1)/2n−1%2 = ((s + 1)/2n + 1)%2 = ¬(((s +

1)/2n)%2). We note that (s+ 1)/2n = 0 except when s = 2n or s = 2n − 1, so when
a = 1, tn−1 = ¬(sn ∨ (s0 · · · sn−1)) = ¬(sn ⊕ (s0 · · · sn−1)) = sn ⊕ 1⊕ (s0 · · ·sn−1). The
first equality holds because sn and (s0 · · ·sn−1) can not be true at the same time. Com-
bining the cases for a = 0 and a = 1, we get tn−1 = sn⊕ a⊕ a(s0 · · ·sn−1).

If i < n−1 and a = 1, ti = ((s+ 1)/2+ 2n−1)/2i%2 = ((s+ 1)/2i+1 + 2n−i−1)%2 =
(s+1)/2i+1%2 (because n−i−1 > 0). We note that (s+1)/2i+1 = s/2i+1 except when
the i+1 least bits of s are 1. So we have (s+1)/2i+1%2= s/2i+1%2⊕(s%2i = 2i−1)=
si+1⊕ (s0 · · · si). Combining with the case for a = 0, we get ti = si+1⊕ a(s0 · · · si).

So for b and the first n−1 state bits, we need one gate and the last two state bits need
2 gates each. The total number of gates is, hence, n+ 4. We can reduce this by one by
combining the gates for b and t0 to a Peres gate, so the total is n+ 3.

6 Completing the Circuit

The circuits we have shown above are bit slices that can be combined to form by-k
multipliers for any number of bits. The bit slices all take j+1 = �log2(k)�+1 state bits
as part of the input and produces the same number of state bits as part of the output.

A multiplier having an n-bit number x as input needs n+ j+ 1 output bits to repre-
sent the output k ·n. But the last j+ 1 bits are exactly the output state bits from the last
bit slice. Furthermore, if the initial state bits are different from 0, the number these rep-
resent is added to the result. Conversely, if the multiplier is used in reverse for division,
these state bits will hold the division remainder.

In general, if an n-bit multiplier by k has initial state S input A, output B and final
state T , the relation is

S+A · k = B+ 2nT

Where A and B are n-bit numbers and S and T are ( j+1)-bit numbers. We number the
bits (least significant to most significant) in S as s0 · · · s j, in A as a0 · · ·an−1 and in B
as b0 · · ·bn−1. Since B and T together form an (n+ j+1)-bit number B+ 2nT , we can
number the bits in T as bn · · ·bn+ j . This gives the following diagram for a full n-bit
multiplier by k:
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×k
×k

×k

s0

...

s j

a0

a1

a2

...

an−1

...

· · ·

b0

b1

...
bn−2

bn−1

bn

...

bn+ j

Where each box labelled “×k” is a multiplier bit-slice.
For multipliers of the form K = 2mk, where k is odd, multiplication by K can be done

by a bit-shift by m and multiplication by k. It is still possible to add an arbitrary value
r below K to the result by letting the low m bits of r be the low m bits of the result
and letting the remaining bits of r form the input state s, using the equality 2mkA+ r =
2m(kA+ r/2m)+ r%2m. For example, 24A+ 13 = 8(3A+ 1)+ 5, so multiplication by
24 and adding 13 is done by multiplying by 3 and adding 1, and then concatenating the
result with the three bits in the value 5. Essentially, the least significant m bits of r are
passed unchanged through the circuit forming the least significant m bit of the product,
and the remaining bits of r are used as the initial state in a by-k multiplier, the result
of which is used as the remaining bits of the product. Again, we can use the circuit in
reverse and get division with remainder r.

6.1 Specialising to the Initial State

If the initial state S is a constant (such as 0), it is possible to specialise the first few
bit-slices to this constant, which produces smaller circuits for these bit-slices. On the
downside, division (using the circuit in reverse) will only be correct if the remainder is
equal to the constant initial state (usually 0).

We will illustrate specialisation by an example: The by-5 multiplier. We had in Sec-
tion 3 that the transition formulas for the by-5 multiplier (with added bit-slice subscript
m) are

bm = s0m⊕ am

t0m = s1m⊕ s0mam

t1m = s2m⊕ am⊕ s1ms0mam

t2m = am⊕ t1m⊕ t1mt0mbm

Note that si(m+1) = tim, as the output state of one bit-slice becomes the input state of the
next. If s00 = s10 = s20 = 0, the formulas above reduce to

b0 = 0⊕ a0 = a0 b1 = t00⊕ a1 = 0⊕ a1 = a1

t00 = 0⊕ 0a0 = 0 t01 = t10⊕ t00a1 = a0⊕ 0a1 = a0

t10 = 0⊕ a0⊕ 00a0 = a0 t11 = t20⊕ a1⊕ t10t00a1 = 0⊕ a1⊕ a00a1 = a1

t20 = a0⊕ a0⊕ a01a0 = 0 t21 = a1⊕ t11⊕ t11t01b1 = a1⊕ a1⊕ a1a0a1 = 0

Nothing is gained by specialising the next bit-slice, though. The circuit for the first two
bit-slices is shown below.
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Without specialisation, these two bit-slices would have used a total of 12 gates (10
if Peres gates are used), so specialisation to the initial state can yield a significantly
smaller circuits, though only for the first few bit-slices.

7 Unused States

For multiplication by k, we use j+1 state bits where j = �log2(k)�, so there are 2 j+1−k
unused states. Starting in one of the unused states will (because of reversibility) also
give a new state in the otherwise unused set of states, so the unused states also form
a reversible Mealy machine. We noted in Section 3 that the three unused states for the
by-5 multiplier forms a modified by-3 multiplier circuit: When starting in state 7, the
output is the bit-wise negation of the input multiplied by 3.

But can we say anything in general about the automaton formed by the unused states
in a by-k multiplier?

There are several possible ways to generate output for the unused states that retain
reversibility, but we will assume that no extra gates are added to modify the behaviour
of the unused states. For example, we will assume that b = s0⊕ a, though it would be
possible to modify it to, say, b = s0⊕ a⊕ s js j−1 (if s js j−1 is never true in the normal
states) without changing the behaviour of the normal states. Basically, this amounts to
using the simplest possible circuits for the normal states.

As noted, the formula for b is b = s0 ⊕ a and the formula for ti, where i < j is
ti = si+1 ⊕Xi, where Xi depends only on a and s0 · · · si. Adding or subtracting 2i to s
flips si and, as a consequence, ti−1 (or b, if i = 0). But adding a multiple of 2i+1 to s
does not change b nor t0 · · · ti−1. We also note that, due to reversibility, unused states
transition to unused states, so bit j of the target state (t j) is always 1.

So we can find the transitions for an unused state by subtracting 2 j from the state
number and apply the rules above to the resulting t. We can treat t0 · · · t j−2 and b as
a whole: For s < k, s transitions to t = (s+ ak)/2 and b = (s+ ak)%2. So 2t + b =
s+ ak and, hence, t0 · · · t j−2 and b combine to form (s+ ak)%2 j. Since (s+ ak)%2 j is
unaffected by adding 2 j to s, a state s≥ k transitions to (s−2 j+ak)%2 j = (s+ak)%2 j,
so t0 · · · t j−2 and b are unchanged by adding 2 j to s. The following bit, t j−1, is flipped by
adding 2 j to s, so while a state s < k makes t0 · · · t j−1 and b be the bits of (s+ak)%2 j+1,
s ≥ k makes the same result bits be the bits of (s− 2 j + ak)%2 j+1 ⊕ 2 j (where ⊕ is
bit-wise XOR). We note that taking the division remainder modulo 2 j+1 will clear the
top bit (if set), but we noted that the unused states all have this bit set, so in total we
map a state s ≥ k to ((s− 2 j + ak) |2 j+1)⊕ 2 j, where | is bit-wise OR. We can try to
reduce this:

((s− 2 j + ak) |2 j+1)⊕ 2 j

= ((s− 2 j + ak)⊕ 2 j) |2 j+1

= (s+ ak) |2 j+1
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The latter step is true because 2 j < s < 2 j+1, so subtracting 2 j from s just clears s j,
which is set again by the XOR. We note that 2 j < k < 2 j+1, so 2 j+1 < s+ k < 2 j+2.
So, if a = 1, OR’ing 2 j+1 to s+ ak doesn’t change anything, but if a = 0, it adds 2 j+1.
Hence, we can rewrite to s+ ak+(1− a)2 j+1 = s+ 2 j+1− a(2 j+1− k).

If we define s′ = 2 j+1− 1− s, k′ = 2 j+1− k, t ′ = 2 j+2− 1− t and t = (s′+ ak′)/2,
we have

s+ 2 j+1− a(2 j+1− k)
= (2 j+1− 1− s+ s′)+ s+ 2 j+1− ak′

= 2 j+2− 1− (s′+ ak′)

Taking the division remainder by 2 of this, we get (2 j+2 − 1− (s′+ ak′))%2 = (s′+
ak′)%2⊕ 1.

Dividing 2 j+2−1−(s′+ak′) by two, we get (2 j+2−1−(s′+ak′))/2= (2 j+2−(s′+
ak′+1))/2 = 2 j+1− (s′+ak′+1+1)/2 = 2 j+1−1− (s′+ak′)/2 = 2 j+1−1− t = t ′.

We have used that, with integer division, 2x≥ y implies (2x− y)/2 = x− (y+ 1)/2.
This is easily seen by verifying the cases y = 2n and y = 2n+ 1 separately.

Put together, we have that the output bit is the negation of the result bit of multiplica-
tion by k′, and that by using the mapping s′ = 2 j+1− 1− s (which is bit-wise negation
of s as a ( j+1)-bit number) on both input and output states, we get state transitions for
multiplication by k′. Hence, the behaviour we observed for the by-5 multiplier is true
for arbitrary by-k multipliers constructed as above.

8 Conclusion and Related Work

We have shown a construction based on Mealy machines for reversible circuits for
multiplication by arbitrary constants. We can multiply by constants of the form 2n− 1
using n gates per bit of the multiplicand and by constants of the form 2n+1 using n+3
gates per bit of the multiplicand. An upper bound for the number of gates needed for
multiplication by an arbitrary constant k is 2k gates per bit of the multiplicand. The
multiplier can without extra cost add a value less than k to the product. When the circuit
used in reverse, this value is the division remainder. When used with an addend or
remainder, the circuit produces no garbage bits and uses no ancillary lines.

If the initial state is constant, it is possible to specialise the first few bit-slice circuits
to these constant state bits, which reduces the size of these bit-slices.

The multipliers presented by Axelsen and Thomsen in [1] use seven gates per bit
to multiply by any constant of the form 2n± 1, so our approach is superior to theirs
only for small numbers of this form, especially since we use many-input Toffoli gates
where their gates have few inputs. We estimate that our approach wins for constants of
the form 2n − 1 when n < 6 and for constants of the form 2n + 1 when n < 4, which
is really only for multiplication by 5, since 3 = 21 + 1 is better handled as 22− 1 and
9 = 23 + 1 by using two by-3 multipliers in sequence.

But where our approach really wins is with multipliers for constants that are not of
the form 2n± 1. Axelsen and Thomsen can build multipliers for some constants not of
this form by chaining together a number of multipliers and dividers (inverse multipliers)
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for numbers of the form 2n ± 1, but this doesn’t work for all numbers. For example,
multiplication by 23 can not be done in this way [6].

Axelsen and Thomsen extended their method to handle more constants by modifying
a three-input adder, so they can handle constants of the form 2n±2m±1, which includes
23 = 24 + 23− 1. This construction, however, is less efficient than the by-23 multiplier
shown in Section 5.1, as it for each bit of the multiplicand uses 23 gates and four ancil-
lary lines compared to 9 gates and no ancillary lines in our construction. Additionally,
it is not known whether all constant multipliers can be constructed by stringing together
multipliers and divisors for constants of the forms 2n± 2m± 1 and 2n± 1, nor (when a
multiplier can be constructed) is there a known upper bound on the number and size of
circuits that need to be chained to do so.

Additionally, the multipliers presented here can, when used in reverse to do divi-
sion, compute both the fraction and the division remainder, where the multipliers shown
in [1], when used in reverse, can only divide numbers that divide evenly by k.

A problem with our approach, though, is that it uses gates with many inputs, which
is costly. For example, the by-23 multiplier uses two six-input Toffoli gates and one
five-input Toffoli gate, which are more expensive than three-input Toffoli gates. Using
pass-transistor CMOS logic [3], an n-input Toffoli gate uses 4(n− 1) pass transistors,
so a six-input gate is (slightly) more than twice as expensive as a three-input gate.

In our current design, each state bit (except the last) is calculated independently of
the other state bits. It might be possible to avoid large gates by exploiting dependencies
between these calculations. Future work should address this issue.
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Identities in Modular Arithmetic

from Reversible Coherence Operations

Peter M. Hines
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Abstract. This paper investigates some issues arising in categorical
models of reversible logic and computation. Our claim is that the struc-
tural (coherence) isomorphisms of these categorical models, although
generally overlooked, have decidedly non-trivial computational content.
The theory of categorical coherence is based around reversible structural
operations (canonical isomorphisms) that allow for transformations be-
tween related, but distinct, mathematical structures. A number of co-
herence theorems are commonly used to treat these transformations as
though they are identity maps, from which point onwards they play no
part in computational models. We simply wish to point out that doing
so overlooks some significant computational content.

We give a single example (taken from an uncountably infinite set of
similar examples, and based on structures used in models of reversible
logic and computation) of a category whose structural isomorphisms ma-
nipulate modulo classes of natural numbers. We demonstrate that the
coherence properties that usually allow us to ignore these structural iso-
morphisms in fact correspond to countably infinite families of non-trivial
identities in modular arithmetic. Further, proving the correctness of these
equalities without recourse to the theory of categorical coherence appears
to be a hard task.

1 Introduction

1.1 Historical Background

In [6], J.-Y. Girard introduced Linear Logic, a striking new decomposition of
classical logic. By contrast to previous approaches to logic, it was based around
the twin related principles of reversibility and resource-sensitivity. Although the
structural operations of copying and contraction (i.e. deletion against a copy)
were not completely abandoned (as in sub-structural logics [22]), they were
severely restricted. Via the Curry-Howard isomorphism [23] (also known as the
‘proofs-as-programs’ correspondence) linear logic also has a close connection with
reversible and resource-sensitive versions of computing systems such as lambda
calculus and combinatory logic [2].

The computational interpretation was pushed further in the Geometry of In-
teraction program [9], giving related models of linear logic [7,8] (see also [4]).
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Although these models were degenerate in the logical sense (they identified con-
junction with disjunction, and existential quantification with universal quantifi-
cation) their computational content remained, as demonstrated by a series of
practical computational interpretations in [8]. (As shown later [12], the dynami-
cal part of the Geometry of Interaction system was implemented using precisely
the same tools required to model reversible (space-bounded) Turing machines).

A significant challenge for logicians at this point was to give categorical models
of both Linear Logic and the (related but distinct) Geometry of Interaction
system, following the close correspondence between logics / type systems, and
closed categories pioneered by [17]. For the purposes of this paper, we concentrate
on the more computationally oriented Geometry of Interaction.

Several authors [1,10,15] noted that the dynamical, or computational, part
of the Geometry of Interaction system was a form of compact closure [16] aris-
ing from categorical constructions [15,1] on the category of partial reversible
functions. As pointed out in [10,11,2] (and implicit in [7]), the Geometry of In-
teraction is an essentially untyped (in the sense of λ-calculus) reversible compu-
tational system — this is a consequence of the requirements of reversibility and
resource-sensitivity. Any categorical interpretation must take this into account.

1.2 The Purpose of This Paper

The purpose of this paper is simply to point out some previously overlooked,
decidedly non-trivial, computational content that arises in these models (in fact,
familiarity with the logical models and computational systems listed above is
not a requirement for understanding this paper – but does help place the theory
firmly within its historical context). The computational content comes, not from
the dynamics of the GoI system (i.e. compact closure in categories of partial
reversible functions), but simply from the fact that the system in question is
untyped. Categorically, a model of an untyped system is a category with precisely
one object (i.e. a monoid). Thus the GoI system is modelled within a monoid of
partial reversible functions.

In categorical logic / categorical models of computation, it is standard to
ignore completely a class of structural isomorphisms known as coherence iso-
morphisms. There is a formal justification for doing so — any category with
non-trivial structural isomorphisms is equivalent (in a very precise sense) to one
with trivial structural isomorphisms [21].

However, there is a subtlety that is often overlooked; the process of construct-
ing this equivalent category with trivial structural isomorphisms involves modi-
fying the collection of objects of the category (& hence, by the correspondence
between categories and logics pioneered in [17], modifying the type system). An
appendix to [14] (see also [13]) makes clear what this means for untyped systems;
the ‘equivalent’ version with trivial structural isomorphisms has a countably in-
finite class of objects, and thus is no longer type-free.

As type-freeness is such an essential component of the GoI system, we are
thus forced to deal with these structural isomorphisms – this paper studies a set
of such isomorphisms that arise implicitly in [7]. We demonstrate that, although
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the category itself has only one object, modulo classes of integers play the same
rôle as objects in this untyped setting. Thus, the structural isomorphisms cor-
respond to (highly non-trivial) identities in modular arithmetic. Further, the
classic theory of coherence that usually allows us to ignore structural isomor-
phisms completely in this case allows us to derive infinite sets of identities in
modular arithmetic, essentially for free.

1.3 Categorical Identities Up to Isomorphism

In category theory, especially the theory of monoidal categories, coherence iso-
morphisms are reversible structural operations that transform objects of cat-
egories (frequently, concrete mathematical structures) into isomorphic objects
that differ only by a simple structural equivalence.

The canonical example, of course, is associativity, where for foundational rea-
sons one must replace the strict identity X ⊗ (Y ⊗Z) = (X ⊗ Y )⊗ Z by a pair
of mututally inverse isomorphisms

X ⊗ (Y ⊗ Z)

τX,Y,Z ��
(X ⊗ Y )⊗ Z

τ−1
X,Y,Z

��

These natural isomorphisms are required to satisfy a family of coherence condi-
tions that ensure that any such re-bracketing is both reversible and confluent.

The distinction between a strict structural property (based on equality) and
one that holds up to isomorphism is subtle, and a variety of coherence theorems
[21] tell us that for all practical purposes, we may ignore this subtlety, and treat
properties such as associativity as though they are strict. However, a passing
comment in the appendix of [14] (expanded upon in a talk given by the author at
Dagstuhl Seminar 12352, ‘Information Flow and its Applications’ [3]) observes
that in various settings, these structural isomorphisms are concrete reversible
arithmetic operations and the very coherence theorems used to ignore them
have non-trivial computational content.

This paper expands upon these observations via a simple representative ex-
ample. We give an untyped (i.e. single-object) unitless monoidal category whose
structural isomorphisms are based on modular arithmetic, and then describe
the significant computational advantage that the theory of categorical coher-
ence provides in decisions procedures for equality of such reversible operations.
In particular, we demonstrate that categorical diagrams based on k distinct
nodes correspond to arithmetic identities over equivalence classes of the form
{2k.N+ x}x=0...2k−1. Despite this, the coherence theorem for associativity pro-
vides, for free, a large (countably infinite) class of arithmetic identities over such
modular clases that are guaranteed to be correct. At least to the author, these
identities are not readily apparent simply from their algebraic description.
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1.4 MacLane’s Coherence Theorem for Associativity, and Untyped
Monoidal Categories

MacLane’s coherence theorem for associativity is commonly, although incor-
rectly, described as stating that ‘all diagrams built from coherence isomorphisms
commute’. This is a correct characterisation of the more technical result in some,
but certainly not all, cases (in particular simple calculations will demonstrate
that it does not hold the for constructions of this paper). The distinction be-
comes important when the objects of the category do not satisfy a ‘freeness’
condition with respect to the monoidal tensor, leading to what [21] refers to as
undesirable identifications between objects. Thus, when the class of objects is not
only a set, but is finite, the informal characterisation above can never coincide
with the formal statement of the theorem.

This paper presents a rather extreme example of this: we exhibit a small
(unitless) symmetric monoidal category with exactly one object N satisfying
the equality1 N ⊗ N = N , as in the example of J. Isbell used by MacLane to
motivate the notion of coherence up to isomorphism [21] p. 160.

This ‘untyped’ monoidal category is an example of a general construction
introduced in [10,11] – see also [14,13]. As demonstrated in an Appendix to
[14], there are uncountably many such untyped monoidal categories based on
functions on N (in 1:1 correspondence with the interior points of the Cantor set,
excluding a subset of measure zero), of which the one we present is merely the
simplest.

We then describe which canonical diagrams of this category are predicted to
commute by MacLane’s coherence theorem for associativity, and demonstrate
that these are non-obvious identities in modular arithmetic.

2 An Untyped Monoidal Category

We first give some simple arithmetic constructions on N, based on arithmetic
modulo 2k, for k ∈ N, with a close connection to the theory of symmetric
monoidal categories [21]:

Definition 1. Let us denote the monoid of bijections on the natural numbers
by J , and treat this as a single-object category. We define τ, σ ∈ J = J (N,N)
as follows:

τ(n) =

⎧⎨
⎩

2n n (mod 2) = 0,
n+ 1 n (mod 4) = 1,
n−1
2 n (mod 4) = 3.

σ(n) =

{
n+ 1 n even,
n− 1 n odd.

1 Note that this is strict equality, rather than isomorphism. For category-theorists
worried about foundational questions related to a notion of equality between objects,
we emphasise that this is a small category. Although N⊗(N⊗N) = (N⊗N)⊗N , this
equality of objects does not imply that the corresponding associativity isomorphism
is a strict identity.
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We also give an operation that, given two bijections on N, returns another bi-
jection. Given arbitrary f, g ∈ J , we define

(f � g)(n) =

{
2.f

(
n
2

)
n even,

2.g
(
n−1
2

)
+ 1 n odd.

The following properties of the above bijections and operations will be estab-
lished via basic modular arithmetic. These properties are, as will be apparent,
closely related to the structural properties and coherence conditions of symmet-
ric monoidal categories:

Proposition 1. Let ( � ), σ, τ be as in Definition 1 above. Then for all f, g, h ∈
J , the following properties hold:

1. Identities id � id = id
2. Interchange (h � k)(f � g) = (hf � kg)
3. Natural associativity τ(f � (g � h)) = ((f � g) � h)τ
4. Natural symmetry σ(g � f) = (f � g)σ
5. Pentagon τ2 = (τ � id)τ(id � τ)
6. Hexagon τστ = (σ � id)τ(id � σ)

Proof

1. By definition, (id � id)(n) =

⎧⎨
⎩

2
(
n
2

)
= n n even,

2
(
n−1
2

)
+ 1 = n n odd.

2. Similarly, (h � k)(f � g)(n) =

⎧⎨
⎩

(h � k)
(
2f
(
n
2

))
n even,

(h � k)
(
2g
(
n−1
2

)
+ 1

)
n odd.

Now observe that 2f
(
n
2

)
is always even, for arbitrary choice of f ∈ Bij(N,N)

and even n ∈ N. Similarly, 2g
(
n−1
2

)
+ 1 is always odd, for arbitrary choice

of g ∈ Bij(N,N) and odd n ∈ N. Thus

(h � k) ((f � g)(n)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2h

(
2f(n

2 )
2

)
n even,

2k

(
(2g(n−1

2 )+1)−1

2

)
+ 1 n odd.

Simplifying this expression,

(h � k)(f � g)(n) = (hf � kg)(n) =

{
2hf

(
n
2

)
n even,

2kg
(
n−1
2

)
+ 1 n odd.

3. We first establish explicit formulæ for f � (g �h) and (f �g)�h. By definition,

(f � (g � h))(n) =

{
2f
(
n
2

)
n even,

(g � h)
(
n−1
2

)
+ 1 n odd.
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Unwinding the definition of (g � h),

(g � h)

(
n− 1

2

)
=

⎧⎪⎪⎨
⎪⎪⎩

2g
(
n−1
4

)
n−1
2 even,

2h

(
(n−1

2 )−1

2

)
+ 1 n−1

2 odd.

Thus

(f � (g � h))(n) =

⎧⎨
⎩

2f
(
n
2

)
n (mod 2) = 0,

2g
(
n−1
4

)
+ 1 n (mod 4) = 1,

2h
(
n−3
4

)
+ 3 n (mod 4) = 3.

Using similar reasoning,

((f � g) � h)(n) =

⎧⎨
⎩

4f
(
n
4

)
n (mod 4) = 0

4g
(
n−2
4

)
+ 2 n (mod 4) = 2

2h
(
n−1
2

)
+ 1 n (mod 2) = 1

From the explicit description of τ ,

τ(f � (g � h)) =

⎧⎨
⎩

4f
(
n
2

)
n (mod 2) = 0

4g
(
n−1
4

)
+ 2 n (mod 4) = 1

2h
(
n−3
4

)
+ 1 n (mod 4) = 3

and an almost identical calculation will verify that ((f � g) � h)τ is given by
the same formula.

4. Direct calculation gives that

σ(g � f)(n) = (f � g)σ(n) =

{
2f
(
n
2

)
+ 1 n (mod 2) = 0

2g
(
n−1
2

)
n (mod 2) = 1

5. We first describe the individual parts of the Pentagon equation:

(id � τ)(n) =

⎧⎪⎪⎨
⎪⎪⎩

n n (mod 2) = 0
2n− 1 n (mod 4) = 1
n+ 2 n (mod 8) = 3
n−1
2 n (mod 8) = 7

Similarly,

(τ � id)(n) =

⎧⎪⎪⎨
⎪⎪⎩

2n n (mod 4) = 0
n+ 2 n (mod 8) = 2
n+1
2 n (mod 8) = 6

n n (mod 2) = 1

Composing, on a case-by-case basis, gives

τ2(n) = (τ � id)τ(id � τ)(n) =

⎧⎪⎪⎨
⎪⎪⎩

4n n (mod 2) = 0
n+ 2 n (mod 4) = 1
n+1
2 n (mod 8) = 3

n−3
4 n (mod 8) = 7
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6. For the hexagon equation, direct calculations (that by this stage, we are
happy to leave as an exercise) demonstrate that

τστ(n) = (σ � id)τ(id � σ)(n) =

⎧⎨
⎩

2n+ 2 n (mod 2) = 0
n+1
2 n (mod 4) = 1

n− 3 n (mod 4) = 3

Remark 1. J is a monoid — a one-object, or single-typed, category. Despite
this, the above calculations demonstrate how the rôle of distinct objects in the
theory of symmetric monoidal categories is instead played by certain subsets of
N — the congruence classes of the form {2k.N+ x}x=0...2k−1.

As demonstrated in Proposition 1 above, (J , �, τ, σ) has all the structure of
a symmetric monoidal category, except for the existence of a unit object. We
axiomatise such situations as follows:

Definition 2. Let C be a category. We say that C is semi-monoidal when it
satisfies all the properties for a monoidal category except for the requirement of a
unit object — i.e. there exists a tensor ( � ) : C ×C → C together with a natural
object-indexed family of associativity isomorphisms {τA,B,C : A�(B�C) →
(A�B)�C}A,B,C∈Ob(C) satisfying MacLane’s pentagon condition

(τA,B,C�1D)τA,B�C,D(1A�τB,C,D) = τA�B,C,DτA,B,C�D

When there also exists a natural object-indexed natural family of symme-
try isomorphisms {σX,Y : X�Y → Y �X}X,Y∈Ob(C) satisfying MacLane’s
hexagon condition

τA,B,CσA�B,CτA,B,C = (σA,C�1B)τA,C,B(1A�σB,C)

we say that (C,�, τ, σ) is a symmetric semi-monoidal category.
A functor Γ : C → D between two semi-monoidal categories (C,�C) and

(D,�D) is called (strictly) semi-monoidal when Γ (f�Cg) = Γ (f)�DΓ (g).
All monoidal categories are semi-monoidal, but not vice versa; the relationship
is precisely analogous to that between monoids and semigroups. When a semi-
monoidal category does not contain a unit object, we call it unitless monoidal.

When a semi-monoidal category has only one object, we call it untyped
monoidal, or simply untyped.

Theorem 1. The structure (J , � , τ, σ), as given in Definition 1 is an untyped
symmetric monoidal category.

Proof. This follows from Proposition 1 above.

Remark 2. As observed in [14], we may construct similar structures based on
congruence classes of the form {pkN + x}x=0...pk−1, for arbitrary p ≥ 2 ∈ N,
and in general the untyped symmetric monoidal structures on the monoid of
bijections on the natural numbers are in 1:1 correspondence with the interior
points of the Cantor set (and thus are uncountably infinite). We also refer to
[10,18] for many examples of these, given in terms of algebraic representations
of inverse semigroups. As observed in the introduction, these are heavily used in
models of reversible computation and logic.
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2.1 Coherence in Unitless Monoidal Categories

When working with semi-monoidal categories, it would be exceedingly useful to
be able to rely on MacLane’s coherence theorems, for both associativity and
(when appropriate) symmetry. A natural worry, therefore, is whether there is
some exceedingly subtle interaction between the existence of a unit object, and
the monoidal tensor, that means these theorems are not applicable in the absence
of a unit object.

Readers familiar with the proof of MacLane’s coherence theorem for associa-
tivity will recall that associativity and the units conditions are treated individu-
ally, and so this is unlikely to be the case. A conclusive argument is provided by
an Appendix to [13], where the obvious procedure for adjoining a (strict) unit
object to a semi-monoidal category is described, and proved to be adjoint to
the equally obvious forgetful functor. Thus, a semi-monoidal category may be
transformed into a monoidal category with no side-effects.

Despite this, there is a subtlety about untyped monoidal categories that is
worth observing. In [21], MacLane gives an argument, due to J. Isbell, for consid-
ering associativity up to canonical isomorphism, rather than up to strict identity.
This argument was based on a denumerable object D in the skeletal category
of sets satisfying D ⊗ D = D, and a proof that strict associativity at this ob-
ject would force a collapse to a triviality (i.e. the unit object for this category).
Isbell’s argument was phrased in terms of a single category with categorical
products — an appendix to [14] argues that this is the case in arbitrary untyped
monoidal categories, and a full coherence result is given in [13].

2.2 Coherence in the Untyped Monoidal Category (J , �)

In Section 1, we have seen that canonical isomorphisms for the untyped monoidal
category (J , �) are simply arithmetic expressions, built using modular arith-
metic. Thus, it is possible (albeit frequently tedious and complex – see also
Section 3) to verify whether or not a diagram commutes by direct calculation.
Fortunately, we are also able to use MacLane’s coherence theorem for associativ-
ity to derive — from basic categorical principles — a large class of diagrams that
are guaranteed to commute, and thus a large class of number-theoretic identities
that are guaranteed to be true.

However, we are not able to use the common simplification of the associativity
theorem — valid in a wide range of settings — that states all canonical diagrams
commute. Since all arrows of J have the same source and target, this would
imply that all arrows built recursively from the set

{
τ, ( � ), ( )−1

}
are equal,

and this is clearly not the case! Instead, we must use the full statement of
MacLane’s theorem, in order to give a large class of diagrams that are guaranteed
to commute.

The coherence theorem for associativity is based on the free monogenic
monoidal category. As we are interested in the unitless case, we work with this
category, with the unit removed. Readers unhappy with this are invited to ad-
join a unit object to J , apply the coherence theorem for associativity, and then
remove the unit object.
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Definition 3. We define (W ,�), the free monogenic semi-monoidal cat-
egory, to be precisely MacLane’s free monogenic monoidal category [21], with
the unit object removed. An explicit description follows:,

– (Objects) These are non-empty binary trees over a single variable symbol
x. Thus, x ∈ Ob(W), and, for all a, b ∈ Ob(W), the formal string a�b ∈
Ob(W).

– (Arrows) Given w ∈ Ob(W), the rank of w is the number of occurrences
of the symbol x within the string w, so rank(x) = 1, and rank(w) ≥ 1 for
arbitrary w ∈ Ob(W). There then exists a unique arrow between any two
objects a, b of the same rank, which we denote (b← a) ∈ W(a, b).

– (Composition) The composite of two unique arrows is simply the unique
arrow with the appropriate source / target. Thus, (c← b)(b← a) = (c← a).

– (Tensor) On objects, the tensor of a and b is the formal string a�b. The
definition on arrows must then be (b, a)�(v, u) = (b�v, a�u).

– (Associativity isomorphisms) The canonical isomorphism from a�(b�c)
to (a�b)�c is the unique arrow between these two objects.

The arrows between objects of rank n correspond to the rebracketings of binary
trees with n leaves, in the obvious way.

There is then a natural semi-monoidal functor, Sub : (W ,�) → (J , �), the
(unitless version of the) Substitution functor of [21] p. 162. Expanding out the
abstract definition gives the following characterisation of this functor:

– Sub(w) = N, for all w ∈ Ob(W).
– Sub(w ← w) = idN
– Sub(a�v ← a�u) = idN � Sub(v ← u)
– Sub(v�a← u�a) = Sub(v ← u) � idN
– Sub(a�b)�c← a�(b�c) = τ .

MacLane’s theorem states that Sub(W ,�)→ (J , �) is indeed a (semi-) monoidal
functor, and thus any diagram over (J , �) that is the image of a diagram over
(W ,�) under this functor is guaranteed to commute. This simple result gives
a countably infinite set of diagrams that are guaranteed to commute (and thus
a corresponding set of arithmetic identities that are guaranteed to hold). For
example, in (J , �, τ), the following diagram commutes:

N

τ

��

N
τ�� τ−1

��

τ−1�τ

��

N

τ−1

��
N N

τ
����
��
��
�

τ−1
���

��
��

��
N

N

(τ(τ�1))�1���

		���

N

1�(τ−1(1�τ))���



���

To prove that this commutes, simply note that it is the image of the following
diagram over (W ,�)
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((v�v)�v)�(v�v)

��

((v�v)�v)�(v�(v�v))�� ��

��

(v�v)�(v�(v�v))

��
(((v�v)�v)�v)�v v�(v�(v�(v�v)))

((v�(v�v))�(v�v))�v

��

(v�(v�v))�((v�v)�v)�� �� v�((v�v)�((v�v)�v))

��

(We do not label the arrows of this diagram, since they are uniquely deter-
mined by their source and target. They may, of course, simply be thought of as
re-bracketings of binary trees of rank 6).

3 Number-Theoretic Identities via Coherence

We have shown that MacLane’s coherence theorem provides a countably infinite
set of categorical diagrams that may be guaranteed to commute; however, the
basic building blocks of these diagrams are the modular arithmetic operations
of Definition 1 — thus the coherence theorem predicts identities within modular
arithmetic. It is of course possible to verify that such diagrams, such as the above
diagram, commute, using modular arithmetic and a case-by-case analysis, as in
Section 1. However, to prove the following identities

τ2 = ((τ(τ � 1)) � 1)τ(τ−1 � τ) and τ−2 = (1 � (τ−1(1 � τ−1)))τ−1(τ−1 � τ)

as expressed by this diagram, would involve working with a case-by-case analysis
of modulo classes of the form {n (mod 32) = k}k=0...31. The unfortunate referee
assigned the task of verifying the calculations of Proposition 1 will agree that
this is a task to be avoided, if at all possible.

In general, a canonical diagram with N nodes may be the image of a diagram
in (W ,�) containing trees of depth N . An arithmetic check of the validity of
this diagram may therefore require a case-by-case analysis that includes modulo
classes {N+ x (mod K)}x=0...K , where 0 ≤ K < 2N . Clearly this is unfeasible,
even for moderately large N . However, when a diagram is indeed the image of
a diagram in (W ,�) the coherence theorem for associativity allows us to assert
equality between all paths within the diagram that have the same source and
target — and thus the correctness of the (somewhat complicated) corresponding
arithmetic identities.

Checking that an arbitrary diagram is within the image of this functor (and
thus commutes) may be seen intuitively to be a much simpler task. In Section 4
below, we suggest that this task is in fact linear, instead of exponential.

Remark 3. As well as the modular arithmetic identities predicted by the coher-
ence theorem for associativity, it may be observed that (J , �) is a symmetric
untyped monoidal category, and thus the theory of coherence of symmetry will
predict an additional countably infinite set of identities. This is indeed correct,
and coherence for other categorical properties (e.g. the distributivity of × over
 ) also provide further sets of arithmetic identities. The study of these is work
in progress.
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4 Conclusions and Future Work

We have demonstrated that, working within a simple representative arithmetic
example, MacLane’s coherence theorem predicts the correctness of a countably
infinite set of identities in modular arithmetic. As observed in the introduction,
this particular category is simply the simplest possible example of an uncount-
ably infinite set of similar untyped monoidal categories based on reversible arith-
metic functions of the natural numbers. Thus, there appears to be considerable
scope for deriving arithmetic and number-theoretic identities from categorical
first principles.

Of equal interest – both in the category we give, or in any similar category
— is whether we can go in the opposite direction; given a canonical diagram
expressing some identities of modular arithmetic, is there a partial or complete
decision procedure that will tell us whether it is the image of some diagram un-
der MacLane’s substitution functor (and thus whether the arithmetic identities
expressed are correct)? We conjecture that not only is this the case, but that
the complexity of this decision procedure is linear in the number of edges of the
diagram (this conjecture is based on an algorithm presented by the author at
the conference [3], based on Robinson’s unification algorithm [5]).

We also expect to find further applications in a number of other fields. In
particular, constructions similar to those of this paper were used in an algebraic
setting to give full concrete representations of Thompson’s V and F groups
[19,20]. Thus, any results or decision procedures for the abstract categorical
theory can reasonably be expected to find applications to the theory of these
groups.
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of Constructor Terms in the Heap
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Abstract. We currently have limited understanding of how complex
data (e.g. algebraic data types) can be represented and manipulated in
reversible machine code, in particular without generating garbage. In
this paper we present methods for representing and manipulating binary
trees (constructor terms) in the heap of a reversible machine. We also
give methods for enforcing the so-called first-match policy for a simplified
version of the recent reversible functional language RFUN by Yokoyama
et al., and simple methods to support let-calls via stack environments.

Keywords: Data structures, memory management, reversible program-
ming.

1 Introduction

Reversible programming languages are scarce, and there are even fewer such
languages with native support for complex data structures, to the frustration of
reversible programmers everywhere. Recent developments may change this, how-
ever. The reversible functional programming language described in [16] (hence-
forth referred to asRFUN) has environments where variables bind to constructor
terms. Another recent example is Πo [9,10] with its rich type system. Thus, there
is some hope that reversible programming may become easier in the future.

Now, reversible programming languages are usually considered in isolation,
without regard for their place in the reversible programming stack, ignoring is-
sues such as compilation. Also, these new languages handle very different types
of data from those otherwise considered in reversible computation—usually bit
values in circuits, or the flat strings used in reversible automata models. Fur-
thermore, there is little to no understanding of how structured data can be
represented and manipulated in low-level reversible machine code. One excep-
tion is the manipulation of (static size) arrays for Janus [1], but to the best of
our knowledge more advanced data types have not yet been implemented. It is
therefore basically unknown how one can manipulate complex structured data
reversibly at the implementation level.

Besides the fundamental problem itself, this is a troubling hole in our knowl-
edge for the following reason: there may be significant hidden costs associated
with using complex data structures in reversible languages, e.g. unacceptable
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slowdown or space consumption, when compared to their irreversible counter-
parts.1 This is especially critical if we desire garbage-free implementations (and
we generally do).

The main questions we are facing are as follows. First, how do we represent
structured heap data in a reversible machine? Second, how do we manipulate
such data reversibly, without generating garbage? Third, what are the costs of
these methods?

Here, we present garbage-free methods for representing (Sect. 3) and manip-
ulating (Sect. 4) constructor terms in the heap of a reversible machine. We use a
simplified version of the RFUN language [16] to describe which (injective) high-
level transformations on tree-structured data we wish to perform (Sect. 2), and
PISA as the reversible assembler language [3,7,13]. We also provide a method for
implementing RFUN’s first-match policy (inherited in the simplified language),
and outline an implementation of function calls. We discuss the methods further
in Sect. 5 and conclude in Sect. 6.

2 RFUN for Tree-Structured Data

For concrete presentation purposes and to describe the high-level manipulation
of tree-structured data a simplified version of the RFUN language is used in this
paper. In this language, constructors build tree-structured data. Values consist of
a constructor and its arguments, which again are constructor values. Values are
thus recursively defined by constructor c and arguments vi: v ::= c(v1, . . . , vn)
where n ≥ 0 and each constructor has a fixed arity.

As an example, the function mirror that recursively swaps the subtrees of a
given binary tree can be written as follows. Here the nodes of the binary tree
are formed by the binary constructor Cons , where each of its two arguments is
again a subtree, and the nullary constructor Nil that represents the leaves.

mirror t � case t of
Cons(a, b)→ let c = mirror a in

let d = mirror b in Cons(d, c)
Nil → Nil

Case-expressions deconstruct values into their arguments by pattern matching,
such as the value of t in the example above, which is either a node with two
subtrees (a, b) or a leaf of the tree. Constructor terms on the right-hand side of
a case-expression, such as Cons(d, c) or Nil , build new values.

The well-known language LISP was the first to be built on high-level ab-
stract data formed by a single binary constructor (Cons) and a set of nullary
constructors (atoms) [12]. The fundamental problem of representing and ma-
nipulating tree-structured data can even be further reduced by considering only
the two constructors (Cons , Nil), and we shall follow this approach in this pa-
per. The same simplified structures have also turned out to be quite useful in

1 For example, statement x += e requires reversible simulation of expression e.
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Grammar:

q ::= d∗ (program)

d ::= f x∗ � e (definition)
e ::= l (left-expression)

| let x = f x∗ in e (let-expression)
| case x of {ci(x∗) → ei}mi=1 (case-expression)

l ::= x (variable)
| c(l1, . . . , ln) (constructor)

c ::= Nil | Cons

Syntax domains:

q ∈ Programs
d ∈ Definitions
f ∈ Functions
l ∈ Left-expressions
e ∈ Expressions
x ∈ Variables
c ∈ Constructors

Fig. 1. Syntax for simple RFUN for binary trees (n ∈ {0, 2}, m ∈ {1, 2})

computability and complexity theory [11]. In fact, these two constructors are
sufficient, even though not convenient for practical programming, to represent
all tree-structured data. They can be generalized at the expense of additional
mechanisms. For example, an (infinite) set of nullary constructors instead of just
a single one (Nil), is a fairly trivial extension, with only little extra cost to our
implementation. However, in order to focus on the essence of the problem of
reversibly manipulating tree-structured data we restrict our attention to data
built from these two constructors.

The simplified version of the first-order functional language (Fig. 1) that we
use in this paper inherits its key features from RFUN including a new sym-
metric first-match policy and linearity of variable usage. It is tailored to ensure
reversibility and is a modified version of a language that was originally defined
for reversibility [16].

A program q is a sequence of function definitions. A function definition d
consists of a function name f , variables x∗ and an expression e. An expression
e is a left-, let- or case-expression. A left-expression l can contain variables and
constructor terms. We call ci(x

∗)→ ei the i-th branch of a case-expression.

Linearity. We consider only well-formed programs in the following sense: each
variable in patterns appears at most once, and each variable is bound before its
use and is used linearly in each branch. This is essential to a reversible language
to avoid discarding values. Also, there is not implicit duplication of values (e.g.
by using a variable twice in a branch). The duplication and comparison of values
has to be programmed explicitly in our simplified language (a more convenient
and explicit duplication/equality operator �.� can be provided as in RFUN).

Symmetric first-match. The semantics of case-expressions is symmetric by requir-
ing that the first-matching branch is the same at the entry and exit of a branch.
This is essential for reversibility. Consider the following general case-expression.

case x of
l1 → · · · in l′1

. . .
li → · · · in l′j

. . .
ln → · · · in l′m

(1)
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The value of x is matched in turn against the pattern of each branch (l1, l2, . . .)
until the first successful match at some li. In each branch, the execution may
ultimately reach one of several leaves, if there are nested case-expressions. After
evaluating the right-hand side of the matching branch, and ending up at, say,
the j-th leaf l′j , then the return value must not match any of the preceding
leaf left-expressions (l′1, . . . , l

′
j−1). (Note that in general i ≤ j and n ≤ m.)

This symmetric first-match policy ensures that evaluation of branching function
bodies is forward and backward deterministic.

The full language [16] allows more programming conveniences including mul-
tiple nested patterns in case-expressions, which can be expressed in our simplified
language by nested case-expressions, and rlet-expressions which invoke the in-
verse of functions, which need to be written explicit in our language. These
reversible programming features are not relevant for the tree-data manipulation
problem studied in this paper.

3 Heap Data Structure Representation

In this section we describe the (static) heap structure we shall use, i.e., how the
heap concretely will represent an environment, in between manipulations.

Our heap structure is primarily motivated by the fact that RFUN uses
(ground) constructor terms for its variable bindings. A natural reading is to
view a constructor term as a tree with each constructor represented by a node,
and its entries as child nodes, which makes for a straightforward representation
via pointer trees. In general this allows many different concrete representation
in machine memory of the abstract same constructor term.

Conceptually, the heap consists of constructor cells of fixed size (or, cons cells
as in LISP). Specifically, we deal with two constructors in simplified RFUN,
namely Cons and Nil , and our cons cells are three words long: this allows a
cons cell to accommodate a constructor name (in the constructor field), and if
necessary, pointers to two child nodes in the children (or left and right) fields.2

The heap structure is as follows. Constructor terms (pointer trees) live in the
heap data area of memory. The environment contains pointers to the roots of
these trees. The edge of the heap is given by the heap pointer. As is usual, we
shall diagrammatically show the heap as growing downward. Below the heap
pointer is an area of (zero-cleared) free space, into which the heap can grow, if
necessary. The heap need not be densely populated, and can thus contain free
cons cells. Such free cells are linked together in a (finite) free list, so that we
may reuse them for constructing other trees. The free list pointer points to the
head of the free list, and is null if the free list is empty. For technical reasons to
be explained in Sect. 4.1, we place the following restriction on the free list, to
be maintained as an invariant: the last element of the free list may not be the
cons cell immediately above the heap pointer. Figure 2 shows an example heap
representation.

2 Three words are not necessarily the most compact representation for the binary trees
of the simplified RFUN, but allows us to generalize it to other constructors later.
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Cons

Cons

Nil

Nil

Nil

Nil

bottom of heap

heap pointer

free space

x :

y :

environment

free list pointer

Fig. 2. Heap representing the environment {x �→ Nil , y �→ Cons(Nil ,Cons(Nil ,Nil)}.
Gray memory cells are empty (zero-cleared).

Note that each cons cell in our heap example has reference count exactly one,
i.e., the heap is linear. This is not accidental, as RFUN uses variables linearly,
so if we enforce that environments may only bind distinct variables to separate
pointer trees, we can guarantee that the heap is linear. This is advantageous, in
that we can then alter heap data representations directly (update-in-place). Our
heap data is mutable, in contrast to conventional functional language implemen-
tations, where heap data is usually immutable. In a linear heap with mutable
data the problem of garbage collection (in the conventional sense) becomes easy,
as noted by Baker [5]. In fact, the combination of mutable data, linearity and
reversibility actually means that garbage collection will be automatically per-
formed simply by maintaining the heap structure across updates.

Using mutable data is not without drawbacks. In particular, the duplication
operator �.� from the general RFUN (omitted from our simplified version here)
would be less efficient to implement directly, than if heap data were immutable.
Duplication of immutable data merely requires copying a pointer to the data
structure (breaking linearity), whereas if the heap data is mutable, an explicit
traversal of the data structure appears necessary (again, noted by Baker [4]).

Although the static heap structure in Figure 2 appears fairly conventional,
it thus has a number of differences from implementations used in irreversible
functional languages, including LISP.

4 Heap Data Manipulation

In this section we explain our methods for construction and deconstruction of a
tree at run-time, while maintaining the overall heap structure described above.
The methods provide implementations of left-expressions as return values, and
pattern matching in case-expressions (including the first-match policy), in our



Reversible Manipulation of Constructor Terms in the Heap 101

simplified language. We also describe how the stack may be used to handle
environments, which implements let-calls.

4.1 Data Construction

Here, a left-expression is a constructor term over Cons\2, Nil\0 and named vari-
ables (Sect. 2). A left-expression is allowed to be a nested constructor term, so
the top-level constructor may contain entries other than variables, e.g. the left-
expression Cons(Cons(x,Nil), y)). If so, then the compiler can generate all the
necessary construction code inductively over the constructor term. This means
that the construction can be assumed to happen in straight-line code (or pos-
sibly as a sequence of calls to subroutines) that build Nil and Cons nodes. In
particular, we can assume that the entries of a given Cons node have already
been built as heap data, and are available as bindings in the environment.

We now describe how such nodes can be built in assembler code on a reversible
register machine [3, 7, 13].

Building a Nil . Building a leaf node for a Nil in the heap is conceptually easy. We
first get a pointer to a free cell, from either the free list or by growing the heap
(how get free() is implemented is described below). This gives us a pointer
to a cons cell (say, in temporary register rcell) with all fields zero-cleared. We
then write the constant Nil (in some encoding) in the constructor field of the
cell. Since Nil is a nullary constructor, nothing should be written in the (empty)
children fields. Then, we simply return the cell pointer.3

In reversible assembly this can be done as follows.

< rcell ← get free() > ; subroutine call
XORI rt Nil ; Nil is a constant
EXCH rt M(rcell) ; write Nil in the constructor field
< return rcell >

Note that the temporary register rt is zero-cleared after the EXCH instruction:
the constructor field of the new cons cell is initially zero and EXCH exchanges
the contents of the register and the memory location. In this sense the reversible
instruction set actually helps in maintaining linearity. For example, if a pointer
is to be copied, this must be done explicitly.

Building a Cons. The method for building a binary node Cons(a, b) is only
slightly more involved. We first allocate a free cell for the node, and write Cons
in the constructor field. The pointers to heap data a and b for the child nodes are
supplied by the environment (e.g. in registers ra and rb). Now, by the linearity of
RFUN and our linear heap structure, we know that this particular construction
is the only use of either pointer. Thus, even though we have mutable data, we
can place these pointers in the left and right child fields of the new Cons node,
without destroying the consistency of the heap.

3 Here, ‘returning’ can mean both as an RFUN return value, or as an intermediate
value when building a nested constructor term.
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Nil
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Fig. 3. How the heap changes while building a Cons node, corresponding to eval-
uating the left-expression Cons(a, b) in the environment {x �→ Nil , a �→ Nil , b �→
Cons(Nil ,Nil)}. (a) shows an initial heap representation. (b) shows the heap after al-
locating a free cons cell. We then write Cons in the constructor field, and move a and b
from the environment into the children fields, resulting in the (c) heap representation.

Figure 3 shows how to build a Cons node. The method can be implemented
with the following assembler code.

< rcell ← get free() > ; subroutine call
XORI rt Cons ; Cons is a constant
EXCH rt M(rcell ) ; write Cons in the constructor field
ADDI rcell 1 ;

EXCH ra M(rcell) ; move pointer to a to the ‘left’ field
ADDI rcell 1 ;

EXCH rb M(rcell) ; move pointer to b to the ‘right’ field
SUBI rcell 2 ; realign cell pointer
< return rcell >

Note how similar this code is to how one would build the node irreversibly (even
using immutable data) in a conventional implementation. This correspondence
is made possible exactly because of the reversible heap design.

Using the free list. Now we consider the problem of how to retrieve a free
cons cell. Näıvely, one might expect a simple implementation as follows.

EXCH rcell M(rflp)
SWAP rcell rflp

The rflp register points to a memory location, which in turn contains a pointer
to the tail of the free list. The EXCH instruction moves this tail pointer from the
memory location M(rflp) to register rcell . By swapping4 the tail pointer in rcell

4 Although SWAP would seem to be a natural instruction in a reversible architecture,
neither PISA nor BobISA contain an instruction to swap the contents of two regis-
ters. However, it is easy to simulate reversibly, e.g. using the ‘xor trick’.
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with the head pointer in rflp , we get the desired operation—effectively popping
the head of the free list to rcell .

However, this is only guaranteed to work if the free list is infinite, and it
is not.5 There are in fact two places where the free cell can come from: 1)
the free list, or 2) by growing the heap (if the free list is empty). These two
situations are handled differently, which means there is a split in control flow in
the subroutine get free(). Because the implementation language is reversible,
an orthogonalizing condition is necessary to join the control flow again. This
requires an important reversible programming trick [14].

Recall from Sect. 3 that the free list is empty if the free list pointer is null.
If the free list is non-empty after popping a cons cell, then we obviously did not
grow the stack. However, this is not quite enough to orthogonalize the following
two situations.

– get free() pops the last element off the free list.

– get free() ‘pops’ an element off an empty free list, and grows the heap by
one cons cell.

In both cases the free list will be empty after the allocation, so more than a
zero check of the free list pointer is necessary. We resolve this by requiring that
the last element of the free list must never be the cons cell at the top of the
heap. This invariant is strong enough to provide us with an orthogonalizing
condition to join the control flow: we grew the heap only if the free list is empty
and the allocated pointer (rcell ) points to the top of the heap. Interestingly,
this is remarkably similar to the solution of a related problem [14], namely, how
to reversibly simulate an infinite stack with a finite one in a Turing-machine
interpreter.

The body of the final get free() subroutine is as follows.

if (rflp == 0) ; subroutine body get free()

then ; grow heap:
XOR rcell rhp ; cell := hp

ADDI rhp 3 ; hp++ (3 is the size of a cons cell)
else ; pop free list:
EXCH rcell M(rflp) ; cell ⇔ M(flp)

SWAP rcell rflp ; cell ⇔ flp

fi (rflp == 0) && (rcell == rhp- 3)

The above gives pseudocode for the control flow in the style of Janus [14]. The
if-then-else-fi reversible control flow statement works almost as a traditional if-
then-else, except that is also has a joining assertion (the expression following
the fi). This assertion must be true if control comes from the then-branch, and
false otherwise, to guarantee reversibility. See [1] for garbage-free methods for
translating this to PISA.

5 This could be approximated by initializing all the heap space as a single free list —
indeed, Baker assumes this structure for his pointer machine [5].
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As a final remark, we mention the following compiler optimization: if another
cons cell has been deconstructed immediately prior to the construction, then the
interaction with the free list can be factored out. In RFUN code opportunities
for this optimization can be applied in case-expressions when a pattern match
with a constructor is followed by a left-expression with a top-level constructor
(e.g. case x of Cons(a, b)→ Cons(b, a)).

4.2 Data Deconstruction

Deconstruction of tree-structured data in the heap is necessary in pattern match-
ing of case-expressions, to direct control flow in the program. In our version of
RFUN, case-expressions only contain flat patterns, so no nested constructors
are allowed, and only the top-level constructor is matched.

Pattern Matching Constructors. To a great extent, pattern matching is
‘merely’ the inverse of the construction of values. As an example, consider the
following case-expression with two branches.

case x of Nil → Cons(Nil ,Nil)
Cons(a, b)→ let c = f a in Cons(c, b)

Here, in the second branch, the Cons cell is deconstructed as follows: Pull the
constructor field and child node pointers into temporary registers, and zero-
clear the constructor field. Place the cons cell on the free list, and add the two
children to the environment (a, b). This is exactly the inverse of the method
for constructing a Cons cell, and it is safe to implement like this for the same
reasons construction is safe: evaluating this case-expression removes x from the
environment by linearity, and adds a, b to the environment in the e2 branch.

When freeing the empty cons cell we have to maintain the free list invariant.
Again, this is simply the inverse procedure used to allocate free cells, and can
invoked by, say, a reverse subroutine call, or inlined with program inversion. The
effect is exactly as desired: if the top cell of the heap is freed and the free list is
empty, then shrink the heap. This maintains the invariant.

In fact, the key semantic difference to consider is that construction of a left-
expression is statically determined by the program code, but deconstruction in
pattern matching dynamically decides control flow. In turn, left-expressions can
be implemented as straight-line code, but pattern matching requires branching.

Pattern matching can be implemented in reversible assembler as code with
the following control structure.

if (constructor field == Nil)
then

deconstructNil()

< code for branch e1 >
else

deconstructCons()

< code for branch e2 >
fi match(result, Cons(Nil ,Nil))
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Now, the forward branching condition is merely the constructor field value. Based
on this we either deconstruct a Nil or a Cons , and evaluate the correspond-
ing branch expression.6 Although it might not be immediately obvious from a
high-level RFUN function, it is very clear in the low-level implementation that
control flow through the branches of a function body needs to be joined again.
Eventually, all control flow through a function must arrive at a single return
point regardless of which branch in a case-expression was taken. In RFUN, the
branches of a function are orthogonalized by the first-match policy to ensure
reversibility and thereby avoid information destruction, as described in Sect. 2.

Implementing the first-match Policy. The first-match policy makes RFUN

programming significantly easier than the original pairwise orthogonalization of
branches [8], and is even more important in that it resolves the control flow
confluence of the branches of a function body, as we saw above. In a reversible
implementation, we must orthogonalize the branches somehow, and the first-
match policy is the key to making the implementation not just reversible, but
also garbage-free. Here we propose a solution using pattern matching.

The first-match policy states that the value returned by the left-expression li
in the leaf of a branch must not match any preceding leaf left-expression lj
(j < i). Thus, before returning from li, its value is pattern matched against all
the preceding left-expressions, and it is a run-time error if it matches any of
them. Thus, we have the run-time assertion that the return value does not unify
with any of the preceding left-expressions. If we have two branches with two left-
expressions in the leaves (l1, l2), as in the example above, the joining condition
is a pattern match of the concrete return value of the evaluation of the function
body, v, with the first left-expression l1 (in our example, Cons(Nil ,Nil)).

We have not yet described how pattern matching with left-expressions that
include nested constructors may be performed. This is not difficult: we can sim-
ulate a one-branch case-expression with a left-expression for its pattern, by de-
constructing the left-expression sequentially into nested case-expressions (of the
same kind). For example,

case a of Cons(Cons(x,Nil), y)→ e

can be simulated without using nested patterns by

case a of Cons(t1, y) → case t1 of
Cons(x, t2)→ case t2 of
Nil → e

where t1 and t2 are fresh variables.
Of course, the matching operation used to implement the first-match policy is

non-destructive, so we shall have to restore the return value. Thus it is not quite
a pattern match in the same sense as in the RFUN language. Also, rather than

6 If the case-expression has only one branch, then it acts as an assertion on the shape
of its argument, and the missing branch should abnormally halt the computation.
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enter f X

case

X

case

l1 � r exit f

l2 � r

X

case

l3 � r

l1 t

l2 t

f

l3 t

f

l4

f

Fig. 4. Control flow for the reversible implementation of the first-match policy for a ex-
ample function f with nested case-expressions. Here, there are four leaf let-expressions
(l1, . . . , l4). The actual return value r is matched (denoted by l � r) in turn against the
corresponding left-expressions. The circle in the flow diagram denotes an assertion [15]
that must be true when coming from an ingoing edge marked t, and false if the ingoing
edge is marked f.

an abnormal halt, a failure merely returns false, as the matching is used as a
conditional expression. Neither of these modifications will give rise to difficulties
in implementation, however.

In general, we can now join all the branches of a function body as follows.
Assuming the leaves are {l1, . . . , ln}, we first join the n-th and (n− 1)-th branch
by matching the return value with ln−1. Join the resulting merged branch with
the (n − 2)-th branch by matching the return value with ln−2, and so forth
until all branches are merged. Thus, the return value from the i-th branch will
be matched against li (which will trivially succeed) and then matched against
li−1, . . . , l1 as required (all of which should fail). Fig. 4 shows the control flow
involved for an example with four leaves. This method provides a garbage-free
implementation of the first-match policy if the joins (using the matchings as
conditionals) are performed in the garbage-free manner of [1].

We remark that it is not unexpected that the first-match policy is not free to
implement reversibly, nor is it surprising that the cost increases with the number
of branches: this is inherent in the design of a reversible language which requires
determinism in both computation directions. An optimizing compiler using static
analysis can probably in many cases factor the constructor matching for the first-
match policy into more efficient code. Such static program analyses are left for
future work on optimizing compilers for reversible languages.

4.3 Call Stack Interaction

We here explain how function calls can be implemented by using the call stack for
environments. Although this does not involve direct manipulation of the heap,
this is needed for let-calls, which is the last major component of RFUN we need



Reversible Manipulation of Constructor Terms in the Heap 107

to implement. Fortunately, the linearity of RFUN allows us to sidestep most of
the issues associated with parameter passing in reversible languages, cf. [14].

In particular, for the caller a let-call will always have the effect of removing the
argument variables from the environment, replacing them with the single fresh
variable for the result.7 This allows us to use a fairly simple calling convention
for RFUN functions, in combination with an existing method for parameterless
procedure calls.8

For the call sequence, the caller pushes its complete environment onto the
call stack (with the non-argument variables first, and the argument variables on
top) and calls the callee. The prologue of the callee then extracts the arguments
into its own local variables, and stores the return offset on the stack. Evaluation
of the callee function body completely consumes these local variables, leaving
only (a pointer to) the return value in, say, a designated result register. For the
callee epilogue, the callee returns to the caller using the return offset on the
stack (which is automatically removed in the return). The callee then restores
the non-argument variables of its environment from the stack, and moves the
result (pointer) to the fresh return variable into the environment as well, and
proceeds with evaluating the rest of its function body. In particular, no garbage
is generated using this calling convention.

This completes our description of the reversible heap.

5 Heap Data Properties

We here discuss further interesting properties of the heap representation.
When a program returns an output value, in fact, a link to the root of the

result tree represented in the heap is returned. The free list maintained behind
the scene, and not interesting to the user, will point to a list of unused cons cells
and the heap pointer to an unclaimed memory region. If we start out with an
empty free list, the final free list may grow as large as the largest intermediate
data structure produced during program execution. Can we then get rid of the
free list? Yes, by using the Bennett trick [2, 6], with the reasonable assumption
that the input value is explicitly given in the program.

Clearly an abstract constructor value can be represented in many different
concrete ways in the heap. However, the concrete linking of the cons cells in the
heap does not matter to program execution. Two different internal representa-
tions of the same constructor value will yield two different internal representa-
tions of the same output value. This is good news because it means that for
inverse execution of a program, we need not recreate the exact same free list by
which the original output was accompanied. Any consistent heap representation
of the same abstract tree data will do, including one with an empty free list.

7 The full RFUN language allows conveniences such as left-expressions as arguments
of function calls, and implicit pattern matching by a return left-expression. This can
be supported as syntactic sugar for the simplified language, as described above for
the first-match policy.

8 Such subroutine calls are implemented in reversible assembly in [7]; see also [1,3,13].
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Given these properties, one might question whether our heap representation
is too liberal. Now, the free list is useful in that it can always be used to store
heap data, and thus it does not seem reasonable to the authors to consider the
free list in toto to be garbage data. On the other hand, there appears to be a
way to keep the free list small during execution, by using canonical heap forms
for constructor terms: we can adopt a heap representation format with one-to-
one correspondence between the abstract and concrete data. However, we expect
there to be non-trivial tradeoffs involved: if this canonical representation is to
be maintained continually, it could require deep copying of all data on the heap
for every manipulation. Further investigation is warranted.

6 Conclusion

In this paper we propose the design of a heap structure for tree-structured data
for a reversible low-level machine, and provide methods for reversibly manipu-
lating the structures in the heap. We give a simple high-level reversible func-
tional language in which to describe functions that work on tree data, based on
RFUN [16], and show how to implement its non-trivial features using these
methods. In particular, we note that the implementation does not generate
garbage data, and that “any consistent heap will do” for the methods to work.
The methods presented here implement all major elements of RFUN for manip-
ulating data: pattern matching (deconstruction), left-expressions (construction),
let-calls (call stack interaction), and the first-match policy.

The extension of the methods to the full RFUN language remains for fu-
ture work. However, arbitrary tree-structured data can be represented by binary
trees and the generalization of Nil to a set of nullary constructors (atoms) is
straightforward. Thus, the simplified RFUN (or a variant thereof) might be
used as an intermediate language for the translation of RFUN. Recall that bi-
nary Cons-structures are the main data structures available in many program-
ming languages used for non-trivial symbol manipulation, such as LISP. A more
space-efficient representation may include n-ary constructor cells at the expense
of a more involved mechanism for handling the free-list with cells of different
sizes. Other possibilities to explore are an extension of RFUN with iterators over
data structures (such as map and fold) and the implementation of the methods
presented above in a complete compiler to a reversible register machine [3,7,13].
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1 Introduction

1.1 Overview

Quipper [10] is an embedded functional programming language for quantum com-
putation. It has been developed as part of IARPA’s QCS project [13]. The stated
goal of the QCS project is to “accurately estimate and reduce the computational
resources required to implement quantum algorithms on a realistic quantum com-
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have been added specifically for this task. Quipper’s development was guided
by the goal of implementing seven non-trivial quantum algorithms from the
literature [3,5,11,12,14,17,18]. These algorithms were chosen by the QCS project,
and provided to us in modified form. They cover a broad spectrum of techniques
used in quantum computation. Each algorithm introduced its own challenges
that helped guide the language features that are now available in Quipper.

We will use simple examples to try to demonstrate the use of Quipper, and
to give insights into the types of problems that the various language features are
useful for. We will consider three main stand-alone examples:

– Quantum teleportation will guide us through: Quipper’s underlying circuit
model, Quipper’s primitive operations, quantum data-types, generic func-
tions, comments, and labels.

– The quantum Fourier transform and quantum addition will help us look at:
recursion, circuit-level operators, boxed circuits, and simulation.

– We will end by looking at Quipper’s features that can be used to implement
quantum oracles, including: automatic generation of circuits from classical
code, synthesis of reversible circuits, and circuit transformations.

We will also have a brief look at how Quipper can be used to estimate the
computational resources required by the algorithms that have been implemented.

In another recent paper [10], we have described in more detail the rationale
behind the various design choices that went into Quipper, including a high-level
overview of, and justification for, its language features. We also gave more back-
ground on general issues affecting quantum programming languages, and on the
implementation of the language itself. By contrast, the aim of this present paper
is to give a tutorial introduction to Quipper from a programmer’s perspective,
using examples that have been chosen to guide readers through some of Quip-
per’s main features.

1.2 Quipper as an Embedded Language

Quipper has been implemented as an embedded language, using Haskell as the
host language. Therefore, Quipper can be seen as a collection of data types,
combinators, and a library of functions within Haskell, together with an idiom,
i.e., a preferred style of writing embedded programs. In this paper, we present
Quipper as if it were a language in its own right, i.e., without presupposing any
knowledge of Haskell.

While the embedded language approach has many advantages (see [6, Sec. 1.3]
for a general discussion), there are also certain potential pitfalls that program-
mers should be aware of. One of these is the temptation to “escape to the host
language”, i.e., to write general Haskell programs rather than following Quip-
per’s intended idiom. This can break intended abstractions, and make the pro-
grams less portable in case of implementation changes. Another drawback of
the embedded language approach is that compilation errors are often difficult to
decipher, because the compiler presents them in terms of concepts of the host
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language, rather than the embedded language. Finally, while Haskell is a good fit
for Quipper in many respects, it does lack two features that would be useful for
a quantum programming language: linear types and dependent types. We must
therefore live with checking certain well-formedness properties of programs at
run-time, although they could in principle be checked by the type-checker in a
dedicated language.

1.3 Quipper’s Underlying Circuit Model

Quipper uses an extended circuit model of quantum computation. We allow for
both quantum and classical wires and operations within a circuit. Quantum
operations can be controlled by a classical wire, but not vice versa. A quantum
wire can be explicitly measured, thus creating a classical wire. Quipper’s circuit
model also incorporates explicitly scoped ancilla wires, allowing for an ancilla
to only come into scope for the part of the circuit in which it is used. This
is achieved by allowing explicit qubit initialization and termination within a
circuit.

Using a circuit model leads to three distinct phases of execution: compile
time, circuit generation time, and circuit execution time. This, in turn, gives
rise to an extra distinction among inputs. Inputs whose value is known at circuit
generation time will be called parameters; whereas inputs whose value is only
known at circuit execution time will be called inputs. To keep this distinction
explicit, Quipper introduces three basic types for bits and qubits. We use the
type Bool for a boolean parameter that is known at circuit generation time, the
type Bit for a classical boolean input to a circuit, and the type Qubit for a
quantum input to a circuit. A parameter of type Bool can easily be converted to
an input of type Bit, but not vice versa. Also, because measurements can only
occur at circuit runtime, the outcome of a measurement is a Bit, not a Bool.

2 Quipper by Example

2.1 Quantum Teleportation

Quipper’s Primitive Operations. Although Quipper can be regarded as a
language for describing quantum circuits, when actually developing computa-
tions within Quipper it is often preferable to think in terms of gates being ap-
plied in real time to qubits (or bits) that are held in variables. This procedural
paradigm is the foundation for developing quantum computations in Quipper,
on top of which more powerful higher-order operators are built.

Computations in Quipper take the form of functions. The following example
shows how we can write a simple quantum function in Quipper.

plus_minus :: Bool -> Circ Qubit

plus_minus b = do

q <- qinit b

r <- hadamard q

return r
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The first line corresponds to the type of the function. We see that the input to the
function is a boolean parameter. The output type of the function is Circ Qubit.
The Circ part of the type is actually a type operator, and is used to state that
the function being defined can have a physical side effect when it is evaluated
(Haskell programmers will recognize this as a monad). The Qubit part of the
output type tells us that the function returns a qubit. The body of the function
usually starts with the keyword do, followed by a block of quantum operations to
be evaluated in the given order. The body of the plus_minus function uses three
operations. The qinit operator initializes a new qubit, in the state corresponding
to b. Here, False corresponds to |0〉 and True corresponds to |1〉. The notation
tells us that this newly created qubit is stored in the variable q. The operator
hadamard applies the Hadamard gate to the qubit q, storing the updated qubit
in the variable r. The last line returns the qubit r as the output of the whole
function. In summary, this function introduces a newly initialized qubit in either
of the states |+〉 or |−〉 depending on a boolean parameter. We also note that
variables in the function body are used linearly: each qubit is written exactly
once and read exactly once. This restriction is imposed by the laws of quantum
physics. In Quipper’s syntax, however, it would have been permitted to use the
same name for the two variables q and r, and we will often do so in future
examples.

Circuit Generation. After defining a quantum function in Quipper, there
are various things we can do with it. The most basic of these is to evaluate
the function to generate a circuit. When Quipper evaluates a circuit producing
function, the circuit is produced lazily, on-the-fly. This is useful for defining very
large circuits, whereby the whole circuit doesn’t need to be stored in memory.
Moreover, circuits can also be consumed lazily, for example by a transformation
(see p. 122), or by passing instructions sequentially to an (actual or simulated)
quantum computer (see p. 121).

A useful operation provided by Quipper is a circuit printing function that
enables the circuits produced by Quipper to be exported in various formats. For
example, to produce a PDF document from the circuit defined by the above
plus_minus function, we can use the built-in Quipper operator print_simple.
Note that parameters, but not inputs, must be specified at circuit generation
time. Here, we set the parameter b to False.

print_plus_minus :: IO ()

print_plus_minus = print_simple PDF (plus_minus False)
0 H

The circuit diagrams used throughout the rest of this paper have been created
directly from the given code examples. The next example illustrates how to
control a quantum gate. This function inputs a qubit and returns a pair of
qubits. The qnot operation applies a not-gate to the qubit b. Moreover, the infix
operator ‘controlled‘ causes this operation to be controlled by the qubit a.
The overall effect of the function share is to take a qubit in the state α |0〉+β |1〉
and entangle it with a newly initialized qubit to create the state α |00〉+ β |11〉.
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share :: Qubit -> Circ (Qubit, Qubit)

share a = do

b <- qinit False

b <- qnot b ‘controlled‘ a

return (a,b)

0

Previously defined quantum functions can be used as building blocks in other
quantum functions. In fact, they can be used in exactly the same way as Quip-
per’s built-in operators. In the next example, we use our previously defined
functions, plus_minus and share, to produce a pair of qubits in the Bell state
1√
2
(|00〉+ |11〉).

bell00 :: Circ (Qubit, Qubit)

bell00 = do

a <- plus_minus False

(a,b) <- share a

return (a,b)

0 H

0

A Teleportation Circuit. Let us now consider quantum teleportation (see
[15] for an introduction). This involves two parties Alice and Bob. Alice’s goal
is to teleport a qubit q to Bob. Alice and Bob must each have access to a single
qubit from an entangled Bell pair (a, b), which we can produce with the above
bell00 function. We can think of Alice’s role in terms of a function that inputs
the two qubits q and a. The output of the function will be a pair of classical
bits, produced by Alice by applying some unitary gates and then measuring both
qubits.

alice :: Qubit -> Qubit -> Circ (Bit,Bit)

alice q a = do

a <- qnot a ‘controlled‘ q

q <- hadamard q

(x,y) <- measure (q,a)

return (x,y)

H

meas

meas

Note that the function measure has been applied to a pair of qubits. In Quipper’s
syntax, this is simply an abbreviation for measuring both qubits in the pair.
This abbreviated syntax is possible because the Quipper operator measure is
a generic operator: it can be applied to any data structure containing qubits,
and returns a corresponding data structure containing bits. Another example
of a generic Quipper operator is cdiscard, which can be applied to any data
structure containing classical bits. It is used in Bob’s part of the teleportation
protocol:

bob :: Qubit -> (Bit,Bit) -> Circ Qubit

bob b (x,y) = do

b <- gate_X b ‘controlled‘ y

b <- gate_Z b ‘controlled‘ x

cdiscard (x,y)

return b

X Z

The following function ties all the pieces of the teleportation example together.
We can see that a Bell state is created, which is then used by Alice, along with
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the input qubit, to create a pair of classical bits. These are passed to Bob along
with his qubit from the Bell state. The generated circuit diagram shows that
Quipper joined together the various steps as expected.

teleport :: Qubit -> Circ Qubit

teleport q = do

(a,b) <- bell00

(x,y) <- alice q a

b <- bob b (x,y)

return b

0 H

0

H

meas

meas

X Z

Quantum Data Types and Generic Functions. Quantum data types are
types that are built up from Qubit by means of data constructors, such as tuples
and lists. For example, (Qubit,[Qubit]) is the type whose elements are pairs
of a qubit and a (variable but finite length) list of qubits. Every quantum data
type, such as qa = (Qubit,[Qubit]), has an associated classical data type, such
as ca = (Bit,[Bit]), and boolean data type, such as ba = (Bool,[Bool]). We
say that qa, ca, and ba have the same shape, but different leaf types. A Quipper
function is called generic if it can act on data types of any shape.

We have already seen several examples of generic built-in Quipper functions,
namely measure, cdiscard, and print_simple. However, what makes generic
functions particularly useful in Quipper is the fact that it is easy to create new
user-defined generic functions. We will now illustrate this feature by defining a
generic version of the teleportation circuit.

In Quipper, the keyword QShape is used to declare that three types qa, ca,
and ba are the quantum, classical, and boolean version of some data type. To
define a generic version of the plus_minus function, we replace Bool and Qubit

in its type by such a pair of related ba and qa:

plus_minus_generic :: (QShape ba qa ca) => ba -> Circ qa

plus_minus_generic a = do

qs <- qinit a

qs <- mapUnary hadamard qs

return qs

We note that the qinit function is already generic. The operator mapUnarymaps
a function of type Qubit → Circ Qubit over every qubit in a quantum data
structure. To extend the share function, we use the function qc_false which
generates a boolean data structure of the correct shape, with every boolean set
to False. The mapBinary function is similar to mapUnary, but maps a function
of the type Qubit → Qubit → Circ (Qubit, Qubit) over every corresponding
pair of qubits from two quantum data structures of the same shape. We also use
the built-in controlled_not operation.

share_generic :: (QShape a qa ca) => qa -> Circ (qa, qa)

share_generic qa = do

qb <- qinit (qc_false qa)

(qb, qa) <- mapBinary controlled_not qb qa

return (qa, qb)
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Updating the bell00 function requires a little more thought, as we now need
to explicitly know the shape of the data being teleported in order to generate
enough Bell pairs. This is achieved by adding a shape argument to the function,
which can then be used by the call to plus_minus_generic.

bell00_generic :: (QShape a qa ca) => a -> Circ (qa, qa)

bell00_generic shape = do

qa <- plus_minus_generic shape

(qa, qb) <- share_generic qa

return (qa, qb)

The changes to Alice’s function are very similar to those we have seen already.

alice_generic :: (QShape a qa ca) => qa -> qa -> Circ (ca,ca)

alice_generic q a = do

(a, q) <- mapBinary controlled_not a q

q <- mapUnary hadamard q

(x,y) <- measure (q,a)

return (x,y)

For Bob’s function, we need a way of mapping classically controlled X- and
Z-rotations over the input bits and qubits. The function mapBinary_c is sim-
ilar to mapBinary, except that it expects a function of type Qubit → Bit →
Circ (Qubit, Bit). Also, whereas the controlled_not function is a built-in op-
erator, the classically controlled X and Z rotations are not. We use a where

clause to define a generic controlled_gate function locally.

bob_generic :: (QShape a qa ca) => qa -> (ca,ca) -> Circ qa

bob_generic b (x,y) = do

(b, y) <- mapBinary_c (controlled_gate gate_X) b y

(b, x) <- mapBinary_c (controlled_gate gate_Z) b x

cdiscard (x,y)

return b

where

controlled_gate gate b x = do

gate b ‘controlled‘ x

return (b,x)

The various parts of the generic teleportation function can now be tied together.

teleport_generic :: (QData qa) => qa -> Circ qa

teleport_generic q = do

(a,b) <- bell00_generic (qc_false q)

(x,y) <- alice_generic q a

b <- bob_generic b (x,y)

return b

Note that a generic Quipper function defines a family of circuits, one for each
data type. To be able to print specific members of this family, we must replace
the print_simple operator by the more general print_generic. The difference
is that print_generic takes additional arguments to determine which instance
of the circuit family to print. We show examples for teleporting a pair of qubits,
and a list of three qubits:



An Introduction to Quantum Programming in Quipper 117

print_generic PDF teleport_generic (qubit, qubit)

0

0

H

H

0

0

H

H

meas

meas

meas

meas

X

X

Z

Z

print_generic PDF teleport_generic [qubit,qubit,qubit]
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X

X

X

Z

Z

Z

Comments and Labels. When reading very large circuits, it is sometimes hard
to keep track of what each part of the circuit is doing, or which wires certain
variables correspond to. As a convenience to the programmer, Quipper offers a
way of adding comments and labels to a circuit:

teleport_generic_labeled :: (QData qa) => qa -> Circ qa

teleport_generic_labeled q = do

comment_with_label "ENTER: bell00" q "q"

(a,b) <- bell00_generic (qc_false q)

comment_with_label "ENTER: alice" (a,b) ("a","b")

(x,y) <- alice_generic q a

comment_with_label "ENTER: bob" (x,y) ("x","y")

b <- bob_generic b (x,y)

return b
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2.2 The Quantum Fourier Transform and Quantum Addition

Recursion. In Quipper it is possible to write circuit producing functions that
are recursive over any parameters known at circuit generation time. Notably,
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we can write functions that are recursive over the shape of an input, such as a
list of qubits. For example, consider the quantum Fourier transform, or QFT,
which lends itself nicely to a recursive definition. The function qft’ is defined
over a list of qubits. We provide two base cases for the recursion. If the input
list is empty, the circuit itself is empty. If the input is a singleton qubit, then
the QFT is just the Hadamard gate. For the recursive case, the circuit for the
QFT for n+ 1 qubits consists of the circuit for the n qubit QFT, followed by a
set of rotations over all n + 1 qubits. This set of rotations can also be defined
in terms of a recursive function, which we call rotations. Also, rGatem is a
built-in Quipper operator that represents the z-rotation by 2πi

2m .

qft’ :: [Qubit] -> Circ [Qubit]

qft’ [] = return []

qft’ [x] = do

hadamard x

return [x]

qft’ (x:xs) = do

xs’ <- qft’ xs

xs’’ <- rotations x xs’ (length xs’)

x’ <- hadamard x

return (x’:xs’’)

where

rotations :: Qubit -> [Qubit] -> Int -> Circ [Qubit]

rotations _ [] _ = return []

rotations c (q:qs) n = do

qs’ <- rotations c qs n

let m = ((n + 1) - length qs)

q’ <- rGate m q ‘controlled‘ c

return (q’:qs’)

The function qft’ expects its list of input qubits in little-endian order, but
returns the output in big-endian order. Because this is confusing, we wrap it
in another function qft_big_endian, which simply reverses the order of the
input qubits. In Quipper, this is done not by swapping wires in a circuit, but
by reordering references to wires; Quipper will attach the rest of the circuit
appropriately.

qft_big_endian :: [Qubit] -> Circ [Qubit]

qft_big_endian qs = do

comment_with_label "ENTER: qft_big_endian" qs "qs"

qs <- qft’ (reverse qs)

comment_with_label "EXIT: qft_big_endian" qs "qs"

return qs
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Circuit-Level Operations. Most operators we have seen so far work at the
level of gates, i.e., their effect is to append gates one by one to a circuit under
construction. Quipper also has the idiom of circuit-level operations, which are
operations that can be applied to circuits as a whole. One example is the printing
of circuits, but there are also circuit-level operations that can be used while
constructing circuits. These often take a circuit generating function as input,
and produce a new circuit generating function as an output, which can then
be used just like any other circuit generating function. A useful example is the
operator reverse_generic_endo, which reverses a whole circuit. The following
function computes the inverse of the QFT.

inverse_qft_big_endian :: [Qubit] -> Circ [Qubit]

inverse_qft_big_endian = reverse_generic_endo qft_big_endian
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A Quantum Adder. As an application of the QFT, we look at a quantum
circuit that performs addition [7], without the use of ancilla qubits. The circuit
uses a QFT as a basis change. The inverse QFT is then applied at the end to
change back to the computational basis. The part of the circuit that performs
the actual addition, between the two uses of the QFT, once again lends itself to
a recursive definition.
qft_adder :: [Qubit] -> [Qubit] -> Circ ()

qft_adder _ [] = return ()

qft_adder as (b:bs) = do

qft_adder’ as b 1

qft_adder (tail as) bs

where

qft_adder’ :: [Qubit] -> Qubit -> Int -> Circ [Qubit]

qft_adder’ [] _ _ = return []

qft_adder’ (a:as) b n = do

b <- rGate n b ‘controlled‘ a

qft_adder’ as b (n+1)

The pattern of applying an initial computation, followed by some operation,
followed by the inverse of the initial computation, is quite common in quan-
tum computation. For this reason, Quipper provides a circuit-level operator
with_computed, which automatically takes care of applying the inverse com-
putation at the end. We use this here to complete the quantum addition circuit,
using the QFT as the initial computation to be inverted at the end.
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qft_add_in_place :: [Qubit] -> [Qubit] -> Circ ([Qubit], [Qubit])

qft_add_in_place a b = do

label (a,b) ("a","b")

with_computed (qft_big_endian b) $ \b’ -> do

qft_adder a (reverse b’)

label (a,b) ("a","b")

return (a,b)
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Boxed Subcircuits. In many quantum algorithms, the same subcircuit is
reused multiple times, which can cause a lot of duplication in circuits. Quipper
helps alleviate such duplication by providing a hierarchical model of circuits, in
the form of boxed subcircuits. A circuit can be boxed, and then reused multiple
times as a subcircuit in a larger circuit. This means that the boxed subcircuit
only needs to be generated once, and then a call to the boxed subcircuit is placed
in the main circuit, whenever the subcircuit would appear. Quipper also permits
an iteration count to be attached to a boxed subcircuit call.

A subcircuit can be boxed by using the box operator, which takes as its
arguments a name and a function to be boxed. Here, we replicate the previous
example, but with the QFT boxed.

qft_add_in_place_boxed :: [Qubit] -> [Qubit] -> Circ ([Qubit], [Qubit])

qft_add_in_place_boxed a b = do

label (a,b) ("a","b")

with_computed (box "QFT" qft_big_endian b) $ \b’ -> do

qft_adder a (reverse b’)

label (a,b) ("a","b")

return (a,b)

Subroutine QFT, shape ([Q,Q,Q,Q],()):
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Simulation of Circuits. Unlike many quantum programming languages in the
literature, Quipper was not designed as a front-end language for a quantum sim-
ulator; rather, it was designed to control an actual (future) quantum computer.
Therefore, non-physical operations are not provided in Quipper. Nevertheless,
during development and testing (and in the absence of an actual quantum com-
puter), it is useful to be able to run simulations. Quipper provides three different
simulators, which can be used depending on which gates are used within a circuit.

– Classical simulation - efficiently simulates classical circuits.
– Stabilizer simulation - efficiently simulates Clifford group circuits [1].
– Quantum simulation - simulates any circuit (with exponential overhead).

The simulators are generic: they take any circuit producing function and convert
it into a function acting on the boolean counterparts to the quantum data types
used in the circuit. Both the stabilizer simulator, and the quantum simulator are
probabilistic.

2.3 Quantum Circuits from Classical Functions

Generating Circuits from Classical Code. A notable feature of Quipper is
the ability to automatically generate reversible circuits from ordinary functional
programs. This is achieved by inserting the Quipper keyword build_circuit

right before the classical function definition. This causes Quipper to define a new
circuit generating function, with the same name as the given classical function,
preceded by template_, where any Bool arguments in the type are changed to
Qubit. We found that this language feature is useful when defining many of
the oracles that appear in quantum algorithms, as they are often of a classical
nature, but need to be applied to a quantum register. We have used this feature,
for example, to implement a quantum library for real fixed-point arithmetic.
The following example shows a single-bit full adder. A quantum function named
template_adder will be automatically generated.

build_circuit

adder :: (Bool,Bool,Bool) -> (Bool,Bool)

adder (a,b,carry_in) = (s,carry_out)

where

s = bool_xor (bool_xor a b) carry_in

carry_out = (a && b) || (a && carry_in) || (b && carry_in)

The helper function unpack is used to tidy up the type of any circuit produced
using the build_circuit keyword, by removing some unnecessary occurrences
of the Circ operator.

adder_circ :: (Qubit,Qubit,Qubit)

-> Circ (Qubit,Qubit)

adder_circ = unpack template_adder

0

0

0

0

0

1

1

The build_circuit feature is implemented using a Haskell extension known
as Template Haskell ; this gives programs access to their own syntax tree in
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parsed form. Because of this generality, essentially arbitrary Haskell functions
can be used with the build_circuit keyword. However, the programmer must
supply quantum templates for any library functions that are used, unless they
are among the standard templates already predefined by Quipper.

Synthesis of Reversible Circuits. The circuit produced by adder_circ is not
a self-contained reversible circuit, as the automatic transformation introduces
ancilla qubits that may be left in an indeterminate state, possibly entangled
with the outputs. The Quipper operator classical_to_reversible turns a
circuit f :: a→ Circ b into a reversible circuit f ′ :: (a, b)→ Circ (a, b), ensuring
that any ancillas are suitably un-computed and terminated, provided that f uses
only reversible primitives.

adder_reversible :: ((Qubit,Qubit,Qubit),(Qubit,Qubit))

-> Circ ((Qubit,Qubit,Qubit),(Qubit,Qubit))

adder_reversible = classical_to_reversible adder_circ
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Circuit Transformations. Quipper provides a means for transforming cir-
cuits, on-the-fly, at circuit generation time. This allows for transformations such
as gate decompositions, or adding certain types of error-correcting codes. Quip-
per provides some pre-defined transformers, as well as an extensible framework
for user-defined transformers. Example transformers include the simulators, as
well as a transformer to decompose circuits to only binary gates, or binary gates
plus the Toffoli gate. In the following example, we apply the binary gate decom-
position transformer to the adder circuit.

adder_circ_b :: (Qubit,Qubit,Qubit) -> Circ (Qubit,Qubit)

adder_circ_b = decompose_generic Binary adder_circ

0

0

0 V V* V

0 V V* V

0 V V* V

1 V V* V

1 V V* V

3 Final Remarks

3.1 Scalability and Resource Estimation

As we have seen, there are various things that Quipper can do with a generated
circuit. However, when defining large circuits, it isn’t always feasible to generate
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the circuit in its entirety. Quipper provides a mechanism by which one can count
the resources associated with a circuit (e.g., number of gates, number of qubits,
number of ancillas). Combining this feature with boxed subcircuits, we have
been able to do resource estimation for some very large circuits. For example,
our Quipper implementation of the triangle finding algorithm [14] produces a
circuit containing over 30 trillion gates, which can be counted in under two
minutes on a 1.2GHz laptop.

3.2 Prior Art

There have been a number of quantum programming languages introduced in the
literature (see [8]). Among the languages that have actually been implemented
are Ömer’s QCL [16], a C-style language optimized for quantum simulation;
the Quantum IO Monad [2], which is a quantum programming language also
embedded in Haskell; and Giles’s LQPL [9], a functional quantum programming
language with linear types. However, most of the languages that can be found
in the literature are not shown to be scalable to large problem sizes.

The problem of generating circuit descriptions from functional programs has
also been studied outside of the realm of quantum computing; see, e.g., [4,6].

3.3 Conclusion

Quipper has many language features, and only a selection of them have been
discussed in this introductory paper. The Quipper distribution also includes
some libraries of commonly used quantum functions. For example, we provide an
extensive library of arithmetic functions, both for integer arithmetic and fixed-
point real arithmetic; and functions for random access to a quantum register
using a quantum index. Although Quipper is still in active development, we feel
that the current stable release is a full-featured and scalable language. Many of
the improvements that we are hoping to make are to the type system, such as
introducing linear types, which will allow for more type errors to be caught at
the initial compilation stage, as opposed to at circuit generation time.
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Abstract. The Quantum Multiple-valued Decision Diagram (QMDD)
data-structure has been introduced as a means for an efficient represen-
tation and manipulation of transformation matrices realized by quan-
tum or reversible logic circuits. A particular challenge is the handling of
arbitrary complex numbers as they frequently occur in quantum func-
tionality. These numbers are represented through edge weights which,
however, represent a severe obstacle with respect to canonicity, modifi-
ability, and applicability of QMDDs. Previously introduced approaches
did not provide a satisfactory solution to these obstacles. In this pa-
per, we propose an improved factorization scheme for complex numbers
that ensures a canonical representation while, at the same time, allows
for local changes. We demonstrate how the proposed solution can be
exploited to improve the data-structure itself (e.g. through variable re-
ordering enabled by the advanced modifiability) and how applications
such as equivalence checking benefit from that.

1 Introduction

Exploiting quantum mechanical phenomena such as superposition and entan-
glement, quantum computation [1] offers the promise of efficient computing for
problems that are of exponential difficulty for classical computing paradigms.
For this purpose, information is stored in terms of qubits, i.e. a superposition of
the Boolean states 0 and 1. This enables one to solve many important problems
(e.g. database search, factorization, graph problems) significantly faster than
with classical approaches (see e.g. [2,3,4]). The states of the qubits are modified
by quantum operations which can be represented by unitary matrices that may
include complex numbers.

Hence, an efficient and compact data-structure for the representation and ma-
nipulation of the respective quantum functionality is important for many design
tasks in this area. Accordingly, a variety of decision diagram types have been intro-
duced such as the X-decomposition Quantum Decision Diagram (XQDD) [5], the
Quantum Information Decision Diagram (QuIDD) [6], and theQuantumMultiple-
valued Decision Diagram (QMDD) [7]. In this work, we focus on QMDDs which
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already have successfully been used in applications such as equivalence check-
ing [8], property checking [9], or synthesis [10]. However, in these applications
the focus was often on the representation of different quantum realizations for re-
versible Boolean functions. Although pure quantum functionality has also been
represented using QMDDs, some crucial aspects have not been addressed yet.

In particular, the handling of arbitrary complex numbers – a core characteristic
of quantum functionality – is unsatisfactory. So far, these numbers are represented
through edge weights corresponding to common scalar factors to be applied to all
entries of a certain sub-matrix. But, as entries in sub-matrices can be factorized
in numerous fashions, several representations of a particular quantum circuit are
possible. This has a large influence with respect to canonicity, modifiability, or
applicability of QMDDs (this is discussed later in detail in Section 3).

In this work, we investigate this problem of factorization and, eventually, pro-
pose a solution allowing for an efficient and modifiable representation of general
quantum functionality in the QMDD data-structure. To this end, we review ex-
isting factorization efforts by normalization of edge weights and identify their
drawbacks. In addition, we prove that QMDD representations of a fixed matrix
have the same invariant structure of vertices and connecting edges for a wide
range of normalization schemes. However, weights of corresponding edges may
differ by some non-zero factor for different schemes. These observations lead to
an extension to the QMDD data-structure by so called vertex weights that, in-
dependently from the considered quantum functionality, allow for a canonical
representation as well as an efficient manipulation. By this, central problems of
previous QMDD realizations are solved.

The remainder of this paper is structured as follows. In order to keep the
paper self-contained, Section 2 briefly reviews the basics on the QMDD data-
structure. Afterwards, the problem with respect to the representation of quantum
functionality is discussed and investigated in Section 3. The solution derived from
these observations, i.e. the use of vertex weights, is proposed in Section 4. The
use of the proposed solution for adjacent variable interchange is demonstrated
in Section 5 and evaluated in Section 6. Section 7 concludes the paper.

2 Preliminaries

Quantum systems are composed of qubits. Analogously to classical bits, a qubit
can be in one of the computational basis states |0〉 and |1〉, but also in a so called
superposition α|0〉+β|1〉 for complex-valued α, β with |α|2+|β|2 = 1. The number
of basis states of a qubit is called its radix. Usually, we use radix two but also
qubits with more than two basis states (qudits) have been considered [11].

Quantum circuits are commonly represented by their complex-valued, unitary
transformation matrix. A special case are permutation matrices which represent
reversible circuits. The transformation matrix of an n-qubit circuit has dimension
rn × rn where r is the radix. These matrices grow exponentially in size, thus
standard representations as tables of complex numbers are restricted to circuits
with a small number of qubits.
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To represent and manipulate larger circuits, we need more elaborate represen-
tations that take advantage of the specific properties of transformation matrices:

– Quantum gates often only operate on a small subset of qubits of a quantum
system. The transformation matrix for the whole system, which is the Kro-
necker product of the smaller gate matrix and identity matrices, contains
the same pattern (gate matrix) several times. Thus, similar structures occur
which offers the opportunity for compression.

– Transformation matrices, especially gate matrices, are often sparsely popu-
lated, i.e. they contain many zero entries. Therefore, blocks of zero can be
marked and treated separately.

Taking this into account, we observe that an rn × rn matrix can be partitioned
into r2 sub-matrices of dimension rn−1 × rn−1 as

M =

⎡
⎢⎢⎢⎣

M0 M1 · · · Mr−1

Mr Mr+1 · · · M2r−1

...
...

. . .
...

M(r−1)r M(r−1)r+1 · · · Mr2−1

⎤
⎥⎥⎥⎦ .

This partitioning can be repeated until we reach the level of single matrix entries.
Now, the fundamental idea is to create a vertex for each of these matrices with
unidirectional edges pointing to the vertices of the respective sub-matrices. More
precisely:

Definition 1. A Quantum Multiple-valued Decision Diagram (QMDD) is a di-
rected acyclic graph with the following properties:

– There is a single terminal vertex representing the complex number 1 without
any outgoing edge.

– Non-terminal vertices are labelled by an r2-valued selection variable and have
r2 outgoing edges designated e0, e1, . . . , er2−1.

– There is a single root vertex which has a single incoming edge (the root
edge) that itself has no source vertex.

– Every edge (including the root edge) has an associated complex-valued weight
and edges with a weight of 0 ( 0-edges) point to the terminal vertex.

– The selection variables are ordered, assume with no loss of generality x0 ≺
x1 ≺ · · · ≺ xn−1. On each path from the root vertex to the terminal vertex
the variables appear in this order while each variable appears at most once.

– There are no redundant vertices, i.e. no non-terminal vertex has r2 identical
outgoing edges (destinations and weights).

– Non-terminal vertices are unique, i.e. no two non-terminal vertices labelled
by the same selection variable have the same set of outgoing edges (destina-
tions and weights).

– Non-terminal vertices are normalized (see details in the following section).

Each assignment to the selection variables corresponds to choosing the respective
sub-matrices in the partitioning process and, therefore, to some matrix entry.
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Fig. 1. Matrix and QMDD representations of a 2-qubit quantum circuit

Thus, for any entry of the rn × rn matrix the QMDD can be evaluated in at
most n steps by multiplying the weights on the path from the root vertex to the
terminal vertex that is determined by the respective assignment.

Example 1. Fig. 1 shows QMDD representations of a 2-qubit quantum circuit.
Outgoing edges point to the vertices representing the top left, top right, bot-
tom left, and bottom right sub-matrix from left to right. For example, the high-
lighted matrix entry −i in Fig. 1a corresponds to the paths highlighted in bold in
Fig. 1b and Fig. 1c. Its value can be determined by multiplying the edge weights
on these paths.

For simplicity we omit edge weights equal to 1 in illustrations of QMDDs and
indicate 0-edges, i.e. edges that point to the terminal vertex with weight 0, by
stubs.

3 Normalization of Edge Weights in QMDDs

The main difference between QMDDs and decision diagrams for conventional
logic are the complex-valued edge weights. They represent common scalar factors
to be applied to all entries in a sub-matrix represented by the vertex to which
the respective edge is pointing to. Hence, the precise value of a particular matrix
entry is determined by multiplying the weights of all edges in the corresponding
path from the root vertex to the terminal.

Using weighted edges allows for the representation of structurally equivalent
sub-matrices whose entries differ only by a scalar factor with a single vertex. For
example, the matrix in Fig. 1a includes two structurally equivalent sub-matrices
(highlighted in gray) which differ by a common scalar factor only. But instead
of representing each sub-matrix separately (as illustrated in Fig. 1b), weighted
edges allow for a representation with a shared vertex (as illustrated in Fig. 1c).

However, as entries in the respective matrices can be factorized in numerous
fashions, normalization of edge weights plays a significant role. More precisely:

– The representation of structurally equal matrices by the same vertex is only
possible if a decomposition into a scalar factor and a normal form is avail-
able. In order to determine that, factorization has to be conducted using a
normalization scheme.
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– Data-structures like QMDDs benefit from providing a possibly canonical
representation to be exploited e.g. in equivalence checking [8]. In QMDDs,
canonicity is achieved with respect to an applied variable ordering but also
depends on how the edge weights (scalar factors) have been determined.

– In many applications, e.g. synthesis, the determination of the smallest or
largest magnitude (or even greatest common factors) of matrix entries is of
interest. Here, normalization can be exploited as it allows for an upwards
propagation of the desired values.

Unfortunately, ensuring and maintaining a normalized representation is sub-
ject to severe obstacles. In the past, proper normalization rules and corre-
sponding schemes have been proposed. However, they either do not ensure a
canonical representation or suffer from the fact that local modifications in the
QMDD structure (caused e.g. through re-ordering of vertices as commonly ap-
plied in optimization approaches like sifting) possibly destroy the normalized
representation.

In this section, we review existing and propose new normalization rules and
illustrate the obstacles with them. Afterwards, we discuss the application of these
vertex-based rules within generic normalization schemes for entire QMDDs. We
focus on canonicity as the primary requirement. Here, we prove that QMDD
representations of the same matrix that follow (possibly different) normalization
schemes always have the same invariant structure of vertices and edges, and
only differ in the weights of corresponding edges by some non-zero factor. These
observations lead to an extension to the QMDD data-structure by so called
vertex weights that maintain the normalized structure after local modifications
by only using local re-normalizations.

3.1 Normalization Rules

With the introduction of the QMDD data-structure in [7], various rules for the
normalization of edge weights have been proposed. In the following, we define
normalization rules as follows:

Definition 2. A normalization rule defines a property that the weights of the
outgoing edges of a QMDD vertex must exhibit in order to call the vertex nor-
malized. Normalizing a vertex means that we divide the weights of all outgoing
edges by a normalization factor such that this leads to a normalized vertex.

The first normalization rule that was used for QMDDs is defined as follows:

Normalization Rule 1. A QMDD vertex is normalized if the first edge with
a non-zero edge weight has weight +1, i.e. for some k (0 ≤ k ≤ r2 − 1) the edge
ek has weight +1 and all edges ei have weight 0 for i = 0, . . . , k − 1.

Example 2. The application of Rule 1 is illustrated in Fig. 2. Since normalization
factors (here: −i) can easily be propagated to incoming edges when building a
QMDD bottom-up, the common way to ensure normalized vertices according to
this rule is to apply the normalization rule as the QMDD is built.
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Fig. 3. Matrix and QMDD representations for interchanged variables

Normalization Rule 1 enables a canonical representation [7] and, hence, is very
useful for applications like equivalence checking (see e.g. [8]). However, once a
QMDD has been built following this scheme, local modifications on the data-
structure often require a re-normalization of the entire QMDD.

Example 3. Consider the QMDD shown in Fig. 3a which has been built follow-
ing Normalization Rule 1. Afterwards, e.g. as part of a re-ordering process, the
variables x1 and x2 shall be interchanged. According to the corresponding ma-
trices (see Fig. 3b), this leads to a QMDD structure as shown in Fig. 3c, i.e. the
weight of the leftmost edge of the x0-vertex changes from 1 to i. Thus, this ver-
tex is not normalized anymore. In the worst case, changes like this propagate
through the entire QMDD structure. As a result, variable interchanges are no
longer local operations and, hence, significantly complicate established optimiza-
tion approaches such as variable re-ordering by adjacent variable interchange as
used in sifting [12].

In order to address this problem, an alternative normalization rule has been
proposed in [12].

Normalization Rule 2. A QMDD vertex is normalized if its edges are of the
form that the largest1 weight on any outgoing edge is 1.

This normalization indeed enables local operations since local maxima, i.e. ma-
trix elements with the largest magnitude appearing in the respective sub-matrix,
are propagated upwards to the root edge weight. Since these maxima do not
change during a local variable reordering, the resulting structure of the QMDD

1 We refer to [13] for a more detailed consideration on the magnitude-based order of
complex numbers that is meant here.
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is not affected by this and normalization is preserved. In contrast, this scheme
destroys the canonicity of the representation as illustrated in the next example.

Example 4. Consider again the QMDDs shown in Fig. 1. Inspection shows that
both are properly normalized according to Rule 2. However, although both
QMDDs represent the same functionality and follow the same variable order-
ing and normalization scheme, their structure is not equivalent. That is, the
proposed normalization does not lead to unique representations.

As another alternative, we propose the following normalization rule:

Normalization Rule 3. A QMDD vertex is normalized if the edges are of the
form that (1) no edge has a magnitude larger than 1 and (2) the first edge
exhibiting this largest magnitude has exactly weight +1.

Example 5. In most cases, Rule 3 coincides with Rule 2. E.g., in Fig. 1 the only
vertex that is normalized according to Rule 2, but does not obey to Rule 3 is
the x2-vertex on the right of Fig. 1b, where we have edge weight i “before” +1.

Rule 3 again enables a canonical representation of QMDDs as it provides a
unique tie breaking mechanism in case of several edge weights having the same
(largest) magnitude. But as for Rule 1, swapping adjacent variables is not a local
operation in general. This can be seen from Example 3 where the QMDDs are
the same when Rule 3 is used instead of Rule 1.

The benefit of Rule 3 is that it still ensures canonicity when using the small-
est non-zero magnitude. Moreover, it then realizes an upward propagation of
smallest absolute values and, hence, enables a fast determination of how “far” a
matrix is “away” from being a Boolean permutation matrix by just looking at
the root edge weight.

3.2 Normalization Schemes

As discussed above, several normalization rules for QMDDs exist. Now, we con-
sider their generic application in the normalization process for an entire QMDD.
For each vertex in a QMDD, these rules basically compute a normalization factor
which has to be applied to the represented (sub-)matrix. More precisely:

Definition 3. Let Mat(C) := {M ∈ Cm×n| m,n ∈ IN} be the set of complex-
valued matrices. A map N : Mat(C) → C is called a normalization scheme if it
satisfies

N(αM) = αN(M) for all M ∈Mat(C), α ∈ C (1)

N(M) = 0⇔ all entries in M are zero. (2)

Using the normalization scheme N, a QMDD vertex representing a matrix M
will be normalized by dividing all outgoing edge weights by its normalization
factor N(M) and will afterwards represent the matrix M

′
N := M

N(M) .
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Remark 1. Note that property (1) guarantees that structurally equal matrices
(which only differ by a scalar factor α �= 0) are compressed to a shared vertex,
i.e.

(αM)
′
N =

αM

N(αM)
=

αM

αN(M)
=

M

N(M)
= M

′
N,

while (2) is just another way of saying that all 0-edges must point to the termi-
nal vertex. Thus, normalization schemes lead to unique QMDD representations.
Conversely, any normalization rule that ensures canonicity, e.g. Rules 1 and 3,
can be extended to a normalization scheme. Note that a vertex is normalized if,
and only if, it represents a matrix with normalization factor 1, i.e.

N(M
′
N) = N

(
M

N(M)

)
=

1

N(M)
N(M) = 1.

A generic normalization scheme as defined in Definition 3 is not limited to rules
that take into account only local information about edge weights. It may rather
rely on arbitrary knowledge about the represented matrix. Thus, one could as-
sume that significantly different QMDD structures result for the same matrix.
However, as the following theorem shows, QMDDs representing the same ma-
trix and following (possibly different) normalization schemes indeed exhibit an
isomorphic structure of vertices and edges.

Theorem 1. Consider a QMDD that uniquely represents a complex-valued ma-
trix using a normalization scheme. Any QMDD that represents the same matrix
using a different normalization scheme has the same structure of vertices and
edges, while the weights of corresponding edges may differ by some non-zero
factor.

Proof (Sketch). Assume there are matrices that lead to different QMDD struc-
tures for different normalization schemes. From these we can choose a matrix of
minimal size. Clearly, this matrix cannot be a single complex number, so without
loss of generality we may consider the regular structure of r2 sub-matrices. Since
these are smaller and the matrix was chosen minimal, their QMDD structure
must be the same for any normalization scheme. Now, when creating the top ver-
tex of a QMDD, edges to these sub-structures are used and applying different
normalization schemes may result in different (non-zero) edge weights, but does
not change the structure of the vertex. This is a contradiction to our assumption
and proves the theorem. ��

This is an important result. While it was already known that QMDD repre-
sentations are canonical for certain normalization rules, Theorem 1 now tells
that even regardless of the normalization scheme, the QMDD structure is an
invariant of a matrix. This can be exploited in order to provide a normalization
approach that not only guarantees this invariant canonical QMDD structure (as
Rule 1 and Rule 3), but additionally also allows for certain local operations (as
possible in Rule 2). For this purpose, the QMDD data-structure needs to be
slightly extended as described next.
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4 Introducing Vertex Weights

So far, we discussed (1) that local changes of edge weights might require to rework
a large part of the QMDD in order to restore the normalization (as illustrated in
Example 3) and (2) that regardless of the normalization scheme the structure of
a QMDD is invariant and can already be established using simple normalization
rules such as Rule 1 or Rule 3. Now, these observations are exploited in order
to propose a slightly revised QMDD data-structure which is capable of both,
representing matrices in a canonical fashion and enabling local operations.

The basic idea is to store weight changes (as they result from local modi-
fications) within the vertices instead of propagating them to incoming edges.
Therefore, we suggest to extend the QMDD definition as follows:

Definition 4. Each non-terminal QMDD vertex is enriched with a complex-
valued vertex weight (v-weight) τ �= 0. A vertex weight τ �= 1 is called effective.

Remark 2. Vertex weights represent scalar factors to be applied to all entries
in the sub-matrix represented by the respective vertex. Hence, to determine the
value of a particular matrix entry they have to be included when computing
the product of the edge weights on the respective path. Besides this v-weight
interpretation, also the standard interpretation can be used to evaluate QMDDs,
i.e., ignoring vertex weights. Thus, a QMDD vertex can represent two different
matrices depending on which interpretation we use.

Having this extended structure, local operations become possible as illustrated
in the following example.

Example 6. Consider a standard QMDD (without effective vertex weights) that
is normalized according to a normalization scheme which operates on the stan-
dard interpretation of a vertex and ignores vertex weights (denoted by Nstd in the
following). At the beginning, v-weight and standard interpretation match since
all vertex weights are ineffective (Fig. 4a). Then, local modifications are applied
(Fig. 4b). This can be a variable interchange, but anything that preserves struc-
tural equivalence is allowed. More precisely, we require that afterwards the same
matrices are structurally equal as before. We will see later that variable inter-
changes indeed have this property. For now, we note that destroying structural
equivalence will definitely require modifications on referencing vertices. Hence,
in current implementations which do not store referencing (incoming) edges of
a vertex this property is a necessary condition for local operations. As a by-
product, this requirement ensures that we do not get vertices representing the
same matrix in standard interpretation, but contain different weights.

Finally, the respective vertices are normalized according to Nstd. But instead
of propagating the normalization factor to all referencing edges, now this is
stored locally in the vertex weight (see Fig. 4c).

The crucial point is that the resulting QMDD structure is isomorphic to the
canonical invariant structure of the equivalent standard representation, i.e. with-
out effective vertex weights. To justify that, note that a QMDD vertex with an
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Fig. 4. Using vertex weights to restore normalization (Nstd). M{a,b,c} or Mv−weight

denotes the matrix represented by the particular vertex in standard or v-weight inter-
pretation, respectively.

effective weight (Fig. 4c) can be transformed to a vertex that is equivalent
in v-weight interpretation but has a weight of 1. For this purpose, we simply
apply the effective weight to all outgoing edges of the considered vertex. This
basically undoes the normalization and leads back to the vertices as in Fig. 4b.
The resulting QMDD – now without effective vertex weights – has the same
structure as before but is no longer normalized according to Nstd. However, it
can be viewed as normalized according to a normalization scheme Nadjusted with

“adjusted” normalization factors, i.e. Nadjusted(M̃v) = 1 for all vertices v where

M̃v denotes the standard interpretation of the vertex after the transformation
(see Fig. 4b). Hence, this QMDD representation of the matrix has the canonical
structure which is consequently also present in the QMDD with effective vertex
weights.

Overall, the proposed extension maintains canonical representations even after
local modifications as they are used by optimization techniques such as sifting.

At the same time, a transformation back to trivial vertex weights is always
possible. The only problem here is that we might need to replace some vertices
with almost identical copies, but without an effective weight (see e.g. the x2-
vertices in Fig. 5).

This can be overcome by building an intermediate QMDD that is not func-
tionally equivalent in v-weight interpretation, but represents the correct matrix
in standard interpretation, i.e. when ignoring vertex weights. This intermediate
QMDD can be obtained as follows:

Algorithm: “Build intermediate QMDD” for an edge e pointing to vertex v
with weight w:

1. If v is the terminal vertex, return e unchanged.

2. Perform “Build intermediate QMDD” on all outgoing edges of v.

3. Create a vertex r (with τr = 1) from the edges resulting from Step 2, nor-
malize it and store the normalization factor π.

4. If r is identical to an already existing vertex (up to the vertex weight), the
result is an edge pointing to that vertex with edge weight w · π · τv.
Else, the result is an edge pointing to r with the same edge weight.
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Fig. 5. Computing equivalent QMDDs without effective vertex weights

Remark 3. Note that this algorithm can also be used to switch between different
normalization rules if we start with a QMDD in one normalization and use the
other normalization in step 3 of the algorithm.

We illustrate the algorithm by the following example:

Example 7. The QMDD in Fig. 5a has a few effective vertex weights indicated
by (·)τ . In order to transform it to the equivalent representation without effec-
tive vertex weights, we compute the intermediate QMDD (highlighted in gray
in Fig. 5b) which shares the x2-vertices with the still valid initial QMDD rep-
resentation. Figure 5d shows for the left x1-vertex how our algorithm first pulls
vertex weights from the child vertices to the respective outgoing edges before
the new vertex is normalized and the normalization factor (i) and vertex weight
(−1) are applied to the referencing edge.

The final QMDD (Fig. 5c) is obtained from the intermediate QMDD (Fig. 5b)
by setting all vertex weights to 1.

5 Using Vertex Weights for Variable Interchange

As discussed above, normalization can be a severe obstacle when performing
modifications on QMDDs such as adjacent variable interchanges. However, using
the concept of vertex weights, this problem is solved, i.e. a local modification
such as a variable interchange can be performed without ramifications to other
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Fig. 6. Sketch of the adapted variable interchange procedure for binary QMDDs

parts of the QMDD structure. The particular way of employing vertex weights
is demonstrated in this section.

We use an interchange scheme which is similarly applied in other decision dia-
gram types, e.g. Binary Decision Diagrams (BDDs) [14]: Consider a BDD where
two adjacent variables x1 and x2 shall be interchanged. Then, each x1-vertex is
replaced by an x2-vertex which shall represent the same Boolean function in
order to make the swap a local operation. This is done by interchanging the
labels of the vertices and permuting the sub-trees representing the respective
cofactors [14]. Analogously, for QMDDs each x1-vertex is replaced by an x2-
vertex which shall represent the same functionality. By doing so, an interchange
of variables x1 and x2 for a given matrix leads to a permutation of sub-matrices
as illustrated in Fig. 6a, i.e. the swapping of certain columns and rows. This
accordingly needs to be conducted in the QMDD structure [12,13] in which each
of the affected sub-matrices is represented by a vertex as well as weighted edges
and vertices.

That is, to interchange two adjacent variables x1 and x2 in a QMDD (where
x1 precedes x2 in the variable order), we process all vertices that are labelled
x1. We skip all such vertices that do not point to any x2-vertex. For each of the
remaining x1-vertices V with outgoing edges eVi (i = 0, . . . , r2 − 1), from which
at least one edge points to a v2-vertex, we perform the following three steps:

1. Create an r2 × r2 square matrix T = (tij) and set tij to be the jth outgoing
edge of the x2-vertex pointed to by eVi and multiply the weight of tij with
the weight of eVi and the (vertex) weight of the v2-vertex. If the destination
of eVi is not labelled with x2, set tij = eVi instead.
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2. From each column j of T create a vertex labelled x1 with outgoing edges
ei = tij and let eVj point to this vertex. Relabel V to x2.

3. Apply the normalization scheme and store the normalization factor of V by
multiplying it to the current vertex weight τV .

Remark 4. We could also deal with an effective vertex weight at x1-level by
applying it to all edges in T , but since normalization would propagate this com-
mon factor back to its origin, we rather keep it and adapt it appropriately after
relabelling.

This procedure is illustrated by the following example:

Example 8. Consider Fig. 6 showing a part of a binary QMDD (r = 2) in which
both variables x1 and x2 should be interchanged. First, a matrix containing all
sub-trees representing the sub-matrices m0 until m15 is created according to
Step 1 (see Fig. 6b). Then, these sub-trees are re-arranged in Step 2 eventually
leading to the structure shown in Fig. 6c. Finally, the respective vertices are
normalized in Step 3. This is illustrated in Fig. 6d for the sub-tree m8. First,
this sub-tree is relocated (according to the previous steps). Then, the product
of the corresponding edge and vertex weights is concentrated at the bottom
level. The final factorization of this product (highlighted in gray) is achieved by
applying normalization to the new structure.

The interchange procedure operates in the same fashion on each sub-matrix of
the particular partitioning level that corresponds to the interchanged variables.
Thus, it preserves structural equivalence. This allows for the use of effective
vertex weights during the variable reordering process and – as discussed in the
previous section – thereby allows for the determination of essential information
about the QMDD structure without having to perform renormalization after
each variable interchange. Hence, a large variety of objective functions (which
we try to minimize by variable reordering) will give the same result for the inter-
mediate variable orders as if we had transformed the QMDD to its normalized
equivalent without effective vertex weights. We need to perform this potentially
expensive transformation at most once, after we have arrived at the final variable
order and only if there are effective vertex weights left. For this purpose we can
use the algorithm presented in the previous section.

6 Application and Evaluation

The extension of the data-structure as described above has been implemented
in C on top of the original QMDD package presented in [7]. In this section, we
discuss and evaluate the application of the proposed vertex weights. For this
purpose, we consider the task of equivalence checking of quantum circuit func-
tionality. Equivalence checking is an important design task and aims e.g. for
checking whether two circuits (the initial realization as well as an optimized
version) realize the same functionality. This constitutes a representative appli-
cation as characteristics like canonicity (for fast equivalence checking) as well as



138 P. Niemann, R. Wille, and R. Drechsler

modifiability of the data-structure (allowing for a compact representation) are
crucial here.

QMDDs have already been used for checking the equivalence of different quan-
tum realizations of reversible Boolean functions [8]. However, we focus on func-
tionality of general quantum computation like phase shifting, superposition, and
entanglement [1] which requires various quantum values to be adequately rep-
resented in the QMDD. In this context an extended definition of equivalence is
applied:

Definition 5. Unitary transforms M1 and M2 of a quantum system are called
equal up to global phase if M1 = eiθM2 for some real number θ, where eiθ is
called the global phase factor.

Remark 5. Classical equivalence is a special case for eiθ = 1. The reason for
using this extended definition is that for global phase equivalent transforms it
can not be physically distinguished which of the transforms has been applied to
a quantum system since the outcomes have the same measurement statistics [1].

Verifying for global phase equivalence can easily be performed if canonical rep-
resentations of the two functions are available. Canonicity ensures that global
phase equivalent transforms have the same representation up to the weights of
the root edges that differ by the global phase factor. Thus, it is sufficient to
check whether (1) the root edges of the two QMDDs point to the same ver-
tex and (2) the weights of these edges have the same magnitude. This can be
performed in constant time using proper unique tables. First, we consider the
applicability of the previously available QMDD-based approaches relying on the
normalization rules as discussed in Section 3.1:

– QMDDs following the Normalization Rule 1 would allow for a fast check
for equivalence as canonicity is ensured. However, the QMDDs would be
restricted to the given initial variable order. Optimizations through variable
re-ordering (e.g. using sifting which heavily relies on variable interchanges)
could destroy the canonical, normalized structure as described in Example 3
or require to rework large parts of the data-structure many times. This lack of
modifiability prevents this approach from deriving an efficient representation
– a serious obstacle particularly for a task like equivalence checking where
a major issue is to maintain a manageable diagram size while building the
circuit representation.

– Normalization Rule 2 is not applicable as it does not guarantee canonicity
of the representation as demonstrated before in Example 4. Here, an equiv-
alence check would require a complete traversal of the entire data-structure
and, hence, becomes computationally expensive. Moreover, the lack of canon-
icity can make it hard to find a good variable order for a compact represen-
tation. Once a promising variable order was found it might not be possible
to reproduce the particular diagram (size) and we might end up with a sig-
nificantly different representation.
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Table 1. Size reduction of QMDDs through variable re-ordering

Benchmark Initial Sifting Exact
Size Time (s) Size Time (s) Size Time (s)

Grover-7 187 0.01 36 <0.01 35 0.37

Grover-9 722 0.02 52 0.01 51 29.14

Grover-11 2817 0.15 67 0.02 66 3709

5-qubit-code-9 90 0.01 57 0.01 43 24.73

7-qubit-code-7 44 <0.01 26 <0.01 26 0.35

9-qubit-codeFigN1-9 40 <0.01 22 0.01 22 24.47

9-qubit-codeFigN2-17 1172 0.01 60 0.04 (84) >7200

QFT-3 22 <0.01 9 <0.01 9 <0.01

QFT-4 86 <0.01 24 <0.01 24 0.01

QFT-5 342 <0.01 40 <0.01 40 0.01

QFT-6 1366 <0.01 103 <0.01 103 0.1

QFT-7 5462 0.02 167 0.02 167 1.2

In contrast, the proposed extended data-structure supports both, a canonical
representation as well as an advanced modifiability. While the canonicity allows
for a fast check for equivalence as described above, the modifiability ensures a
compact representation of the respective functionality. This is also demonstrated
by experimental results summarized in Table 1. Here, the respective QMDD sizes
(i.e. the number of vertices; denoted by Size) for a selection of benchmark func-
tions is presented if either (1) the initial variable ordering is applied, (2) if the
data-structure has been improved through a heuristic approach (sifting tech-
nique), and (3) if an exact approach is applied that establishes the optimal vari-
able ordering. As benchmarks, we applied circuits realizing Grover algorithms
(Grover-N ), error correction functionality (k-qubit-code-N, taken from [15]), and
quantum Fourier transforms (QFT-N ) where N denotes the number of qubits.
Note that the quantum Fourier transforms actually do not show shared ver-
tex compression in the standard variable order and, thus, exhibit the largest

possible number of QMDD vertices ( 4
N−1
3 non-terminal vertices) for the respec-

tive matrix size. The run-time (in CPU seconds) is additionally provided in the
columns denoted by Time. All experiments have been conducted on a 2.8 GHz
Intel Core i7 machine with 8 GB of main memory running Linux.

It can be seen that the size of the QMDD significantly depends on the applied
variable ordering. Reductions of up to a factor of 42 (for the Grover-11 circuit)
can be observed. This clearly emphasizes the necessity of a canonical, but also
easily modifiable data-structure. While this has not been achieved for general
quantum functionality with the previously introduced approaches, the proposed
solution relying on vertex weights satisfies these needs.

7 Conclusions

In this paper, we proposed an extension to the QMDD data-structure by so called
vertex weights. They provide a method supplemental to edge weights to represent
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common factors of sub-matrices composed of complex numbers. Vertex weights
ensure a canonical representation and allow for an advanced modifiability and
applicability of QMDDs – even for complex quantum functionality. An evaluation
demonstrated how this can be exploited to improve the data-structure itself (e.g.
through variable re-ordering enabled by the advanced modifiability) and how
applications such as equivalence checking benefit from that.
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Abstract. We introduce two forms of modelling of systems that consist
of objects that are combined together by the means of bonds. In reac-
tion systems for bonding we define how bonds are created and dissolved
via reduction-style semantics. The usefulness of reaction systems is illus-
trated with examples taken from software engineering and biochemistry.
We also introduce reversible event structures and define the notion of
configuration. We then discuss how to give semantics of reaction sys-
tems for bonding in terms of reversible event structures.

1 Introduction

Undoing of computation in concurrent and distributed systems has many tech-
nical and conceptual challenges. There are several forms of undoing computa-
tion that have been studied over the last ten years. Backtracking and reversing
of computation that preserves causal order were considered, for example, in
[5, 3, 10, 11, 7, 2]. Reversing out of causal order, however, which is a very com-
mon mode of operation in biochemical systems, has not been studied widely. The
first attempt was made in [12] where an extension of the reversible process cal-
culus CCSK with the execution control operator was proposed. A different form
of controlling reversibility based on the rollback construct of the higher-order π
calculus was given in [6].

Let us recall what backtracking and reversing is, both in causal order and out
of causal order [12]. Consider a computation where the event a causes the event
b, written a < b, and the event c occurs independently of a and b. The three
traces of this computation that preserve causality are abc, acb and cab: note
that a always precedes b. There are several conceptually different ways of undo-
ing these events. Backtracking is undoing in precisely the inverse order in which
they happened. So, undo b undo c undo a, written as b c a, is a backtrack of acb.
Reversing is more general: here events can be undone in any order as long as
causality is preserved, meaning that causes cannot be undone before effects. For
example, c b a is a reversal of acb for a, b and c as defined above. However, there
are processes, especially common in cell biochemistry, where events are undone,
out of causal order. The creation and breaking of molecular bonds between the
proteins involved in the ERK signalling pathway or the creation of polymers by
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c© Springer-Verlag Berlin Heidelberg 2013



142 I. Phillips, I. Ulidowski, and S. Yuen

scaffolding proteins, described in Sections 2 and 3, are good examples. Simplify-
ing, let us assume that the creation of molecular bonds is represented by events
a, b, c where, as above, a < b and c is independent of a and b. In the ERK path-
way, the molecular bonds are broken in the following order: a, b and c, which
apparently reverses the cause a before the effect b.

In the paper we propose two alternative methods (to [12]) for defining forwards
and reverse computation. We draw some inspiration from the fields of graph and
term rewriting, and define reaction systems for creating and dissolving bonds
between objects, and explain how computation, both forwards and in reverse,
can be modelled as a process of bonding and unbonding. We show with examples
that reaction systems for bonding can represent naturally reversing out of order,
and that they have an expressive power comparable to CCSK with the execution
control operator [12].

Event structures were proposed by Winskel in [16] as a denotational model
of concurrent computation. Systems are represented as sets of events which are
constrained by relations of consistency and enabling. Event structures allow us
to discuss directly relationships between events such as concurrency, causality
and conflict. Our contribution is a definition of reversible event structures. To the
best of our knowledge this is the first form of event structure where computation
can proceed both forwards and in reverse, both in and out of causal order. We
also describe, given a reaction system and an initial process, how to construct a
reversible event structure that captures the behaviour of the initial process.

The benefits of reaction systems for bonding and reversible event structures
are demonstrated with several examples taken from software engineering and cell
biochemistry. We consider the modelling of long-running transactions, creation
of a polymer by scaffolding proteins, and a signal-passing mechanism employed
by a section of the ERK signalling pathway. All our examples show how crucial
out-of-order reversing is in the world of artificial and natural systems.

2 Reaction Systems for Bonding

We develop reaction systems for representing objects that can bond with each
other, thus creating more complex objects, and where bonds can be dissolved
within a composite object. The building blocks of the calculus are the base
objects, or simply called bases. A base object has a sort, for example A, and an
arity which is the maximal number of bonds the base object can have with other
base objects. Consider two bases of sort A and arity 1 and a base of sort B and
arity 2. We shall write a collection of these three objects simply using their sort
names as A,A,B, or as A1, A2, B if we wish to distinguish between objects of
the same sort (here A). A creation of a single bond between A and B is defined
by the relation →, for example

A,B → A ·B

where ‘·’ in A·B denotes the bond between the A and B, andA·B is a (composite)
object consisting of bases A and B. A single bond can be dissolved and this is
given by the relation �, for example
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A · B � A,B

A system of objects, also called a process, is a collection of objects written with
the comma operator ‘,’, for example A,A,B. Many of our examples are inspired
by biochemistry, and so we shall call objects molecules and a system of objects a
solution. The order in which objects are written in a system is irrelevant, and can
be changed. A molecule can move around in a solution, thus changing relative
position with respect to other molecules. This is defined by structural equiva-
lence X,Y ≡ Y,X , where X,Y are objects or molecules. Systems, processes or
solutions, S and T can be combined by taking their multiset union, written as
S, T . Clearly, S, T ≡ T, S.

Given A,B → A ·B, we would like to deduce that a system containing A and
B can evolve to a system that contains A ·B. This is done by having two global
rules inspired by the laws for the chemical abstract machine [1]:

S → S′

S, T → S′, T
(c1)

S � S′

S, T � S′, T
(c2)

We call this substitutivity in the ‘,’ context. We shall also have rules for structural
equivalence:

S ≡ S′ S′ → T ′ T ′ ≡ T

S → T
(s1)

S ≡ S′ S′ � T ′ T ′ ≡ T

S � T
(s2)

We do not have substitutivity in the ‘·’ context. If A·B � A,B, we do not always
wish to have C · A ·B � C ·A,B, for example, when C inhibits the dissolution
of A ·B. Our reaction systems are unlike term or graph rewrite systems for this
reason.

Two bases D of arity 2 can have two bonds between each other; this is written

as D ·D or, equivalently, D ·D. A ring of three copies of D is D ·D ·D or
D ·D ·D. Let x·A denote an object consisting of a base A and an object x where
there is precisely one bond between A and some base in x. We can generalise
this notation (using over- or under-bracket notation) to denote that there are k
bonds between A and other base molecules in x, assuming that the arity of A is
n ≥ k and x has capacity for at least k fresh bonds. Since all examples in this

paper and in [12] use molecules with arity at most 3 the notation x · A, x ·A,

x ·A is sufficient.
Next, we set out rules for structural equivalence for bonding ≡. Objects can

be seen as undirected graphs, where the bases of an object are the nodes and
the bonds between the bases of the object are the edges, and the arity of a base
is an upper bound on the degree of the corresponding node. Structural equiva-
lence of two objects implies that the underlying graphs are isomorphic, and we
note that isomorphism of graphs with bounded degree is decidable in polynomial
time [8]. For illustration, we give a set of rules for ≡ for objects with bases of arity
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at most two. Let y represent a possibly empty arbitrary string of bonded bases
A1 · · ·An (n ≥ 0), and let y−1 represent y in reverse order, i.e. An · · ·A1.

A · y ≡ y−1 ·A A · y ·B ≡ B · y−1 ·A

A · y ·B · C ≡ C · A · y · B A, y ·B ≡ A · B · y−1

A · y ·B ≡ A · y ·B

Our first example is a reaction system that models how a catalyst molecule helps
otherwise inactive molecules to bond.

Example 2.1. Consider molecules of sort A and B and arity 2 and 1 respectively
that cannot bond easily unless they are “assisted” by a catalyst molecule of sort
C and arity 1. In a solution that contains copies of A,B and C, molecules C and
A bond initially by the rule

C,A→ C · A
Then, molecules C · A combine with copies of B

C ·A,B → C ·A ·B

Finally, having helped A and B to react, the bond between C and A is broken
thus releasing C into a solution to help other A,B pairs

C · A · B � C,A · B

Consider a solution S = A,B,A,B,C. It computes as follows:

S ≡∗ C,A,B,A,B → C · A,B,A,B → C · A ·B,A,B � C,A ·B,A,B

Next, the molecules rearrange themselves into A·B,C,A,B and the computation
continues as follows:

A ·B,C,A,B → A · B,C · A,B → A · B,C · A ·B � A · B,C,A ·B

producing two molecules A ·B and, of course, the original C. This solution could
have produced the same outcome by following a different route: C could have
reacted with the second pair of A and B first by positioning itself initially in the
middle of the solution.

Definition 2.2. A reaction system for bonding is a tuple P = (Σ,→,�) where
the signature Σ contains the bonding operator ‘·’, the solution operator ‘,’ and
the definitions of base objects in the form of sort, arity pairs. Objects are either
base objects or collections of bonded bases such that the arities of the bases are
not exceeded and each base is connected to another base via a sequence of bonds.
A process (or a system or solution) is either an object or a collection of objects
composed with the solution operator. Reduction relations → and � are binary
relations over processes. A computation starts with an initial process (solution),
which is a multi-set of bases taken from Σ, and is a sequence of transitions
derived from → and � and the rules (c1-c2) and (s1-s2).
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In the setting of reaction systems for bonding, we specify which bonds are created
and dissolved, and in which order, by the reduction style relations→ and�. This
is in contrast to the majority of previously considered reversible calculi where
the syntax of processes (prefixing, keys, parallel composition and restriction) and
global operational semantics determine the forwards and reverse computation.

The next example is a reaction system for the modelling of long-running
transactions with a compensation. Previously, transactions were also considered
in the setting of reversible process calculi in [4, 12].

Example 2.3. We define the signature first. A transaction is a sequence of n ≥ 3
steps Ai for 1 ≤ i < n of sort A and arity 3. It starts with the initial step I,
arity 2, which never fails. I is followed by the steps Ai, where A1 bonds with I
and then each consecutive Ai+1 bonds to Ai, indicating a successful completion
of Ai. Finally, a success step S of arity 1 occurs which is represented by a bond
between An and S. A transaction can fail at any stage after I. This is represented
by a fail object F of arity 2 bonding with the last Ai, which represents the failure
of Ai. When this happens all steps Ak for 1 ≤ k ≤ i are undone, and then the
compensation step C of arity 1 takes place.

The forwards and reverse reduction relations determine which bonds are cre-
ated and which are dissolved. Firstly, the chain of Ais is created

I, A1 → I · A1

I ·A1, A2 → I · A1 ·A2

x · Ai ·Ai+1, Ai+2 → x ·Ai ·Ai+1 · Ai+2 1 ≤ i < n− 2

x · An, S → x ·An · S

Fail can occur at any stage of building the chain of Ais, where 1 ≤ i < n:

I · A1, F → I ·A1 · F → I · A1 · F
x ·Ai · Ai+1, F → x · Ai ·Ai+1 · F → x ·Ai ·Ai+1 · F

Following a fail transaction steps are undone

I ·A1 · F � I, A1 · F � I · F, A1

x · Ai ·Ai+1 · F � x ·Ai, Ai+1 · F � x ·Ai · F, Ai+1

Note that I, A1 · F ≡ I · F · A1 cannot bond with A2, and correspondingly
x ·Ai · F ·Ai+1 cannot bond with Ai+2. This is due to the form of the first four
rules for →.

Finally, compensation takes place

C, I · F → C · I · F � C · I, F

The initial process I, A1, . . . , An, S, C, F can reach one of the two terminated pro-
cesses: the transaction has completed successfully I ·A1 · . . . ·An · S, C, F , or the
transactionhas failed and the compensation has takenplace I ·C,A1, . . . , An, S, F .
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Example 2.4. This reaction system describes how a polymer is constructed by a
scaffolding protein. We have scaffolding proteins S of arity 2 and and polymer
molecules Q of arity 3. Firstly, two molecules of sort S combine into a scaffolding
and then attract copies of Q

S, S → S · S S · S,Q→ S · S ·Q x · S · S,Q→ x · S · S ·Q

Once two copies of Q are bonded to the scaffolding they bond together

Q · S · S ·Q → Q · S · S ·Q ≡ Q ·Q · S · S

x ·Q · S · S ·Q→ x ·Q · S · S ·Q ≡ x ·Q ·Q · S · S

Note that for the last structural equivalence we need a further rule, where y, z
can be empty, in addition to those we gave earlier for arities at most two

y ·A ·B · z · C ≡ y ·A · C · z−1 ·B

Now the bond between the last S and Q breaks

Q ·Q · S · S � Q ·Q · S · S

x ·Q ·Q · S · S � x ·Q ·Q · S · S

The S at the end is now available to bond to an unattached Q (using the rule
x · S · S,Q → x · S · S · Q given above), and the process can continue while
unattached Qs remain.

An initial solution consisting of two copies of S and four copies of Q becomes
eventually the solution Q ·Q ·Q ·Q · S · S. If we add two further rules below for
breaking bonds between molecules bonded to S, the solution computes further
to Q ·Q ·Q ·Q,S, S.

x · S · S � x, S · S
S · S � S, S

The addition of S·S � S, S makes the computation potentially non-terminating:
S, S → S · S � S, S . . ..

The last two examples show that reactive systems are capable of expressing
both causal reversing and out-of-causal-order reversing and, in this respect, re-
active systems are comparable to CCSK with the execution control operator [12]
and extend what RCCS [3] and higher order roll-π [6] can express.

3 Reversible Event Structures

In this section we recall what event structures are, define the reversible form of
event structures including a new notion of configuration in the reversible setting,
and discuss how simple reaction systems from Section 2 can be given meaning
in terms of reversible event structures.
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3.1 Event Structures

Event structures were defined by Winskel [16] following earlier work by Nielsen,
Plotkin and Winskel [9]. They were further developed, for example, in [14, 13, 17]
and in [15].

Definition 3.1 ([16, Def. 1.1.1]). Event structures are triples E = (E,Con,")
where E is a set of events with typical elements e, e′, Con ⊆ Pfin(E) is the
consistency relation which is non-empty and satisfies the property Y ⊆ X ∈ Con
implies Y ∈ Con (downwards closure), and " ⊆ Con×E is the enabling relation
which satisfies the weakening condition X " e and X ⊆ Y ∈ Con implies Y " e
for all e ∈ E.

We omit brackets for singleton sets in expressions X " e where convenient.
Informally, events are things that happen, for example a creation of a bond

between bases A and B, a communication of a value between a sender and a
receiver, a part of a long-running transaction. Configurations are the sets of
events that have occurred (in accordance with Con and "):

Definition 3.2 ([16, Def. 1.1.2]). Let E = (E,Con,") be an event structure.
The set S(E) of configurations of E consists of X ⊆ E which are

– consistent : every finite subset of X is in Con;
– secured : for all e ∈ X there is a sequence of events e0, . . . , en ∈ X such that

en = e and for all i < n, {e0, . . . , ei−1} " ei.

Example 3.3. Consider the events a, b with all subsets of {a, b} in Con, and the
enabling relation ∅ " a, a " b. We notice that {a} is a configuration because
{a} ∈ Con and a is enabled without any preconditions: ∅ " a. Once a takes place,
b can happen because {a, b} ∈ Con and b is enabled by the already performed a:
a " b. We can say here that a causes b and b cannot take place before a happens
first.

Some events are in conflict : they cannot happen in the same computation.
Consider the events a, b as above and the event c which is conflict with a. This is
represented by {a, c} /∈ Con and, by the downwards closure property, {a, b, c} /∈
Con. The enabling relation is ∅ " a, a " b and ∅ " c. The configurations are ∅,
{a}, {a, b} and {c} representing that either a or c can happen initially, but once
one has taken place the other cannot happen.

Example 3.4. Some events are independent of each other, or concurrent. Con-
sider the events a, b and d, with no events in conflict. The enabling relation is
∅ " a, a " b and ∅ " d. Since a and d are not in conflict ∅ " a, ∅ " d imply that
a, d can happen independently of one another, in any order. Moreover, b and d
are independent and can happen in any order provided that b always follows a.
The configurations are ∅, {a}, {a, b}, {d}, {a, d}, {a, b, d}.

The next definition is equivalent to Definition 3.2; it will be easier to generalise
to the reversible setting. It is partly inspired by the step-wise securings of [13,
Definition 3.5].
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Definition 3.5. Let E = (E,Con,") be an event structure. A set X ⊆ E is a
configuration of E if there is an infinite sequence X0, . . . with X =

⋃∞
n=0 Xn,

X0 = ∅, Xn ⊆ Xn+1 and Xn consistent (all n ∈ N), where for every n ∈ N, and
every e ∈ Xn+1 \Xn, there is a rule X ′ " e with X ′ ⊆fin Xn.

Proposition 3.6. Let E = (E,Con,") be an event structure and let X ⊆ E.
Then X is a configuration according to Definition 3.2 iff X is a configuration
according to Definition 3.5.

There is a natural notion of computation for configurations. A transition relation
can now be defined to represent how a new event can happen in a configuration
giving rise to a bigger configuration. Given configurationsX,Y we haveX → Y if
Y = X∪{e} (with e �∈ X) and X ′ " e, for some e and X ′ ⊆fin X . A computation
of the event structure E is a computation (sequence of transitions) starting from
∅E , the empty configuration of E . As an illustration, ∅ → {d} → {a, d} → {a, b, d}
is a part of a computation of the event structure in Example 3.4. We also have
∅ → {a} → {a, d} → {a, b, d} and ∅ → {a} → {a, b} → {a, b, d}. See Figure 1.

∅ {a}

{d}

{a, b}

{a, d} {a, b, d}

Fig. 1. Configurations and transitions in Example 3.4

We now return to Example 2.1. The bonds in C ·A and A ·B are the events,
and we denote them as ca and ab. The enabling relation is ∅ " ca, ca " ab. If
we consider the order in which the bonds are created we deduce that ca causes
ab. If these bonds were to be dissolved in a causality preserving manner, then
ab ought to be reversed first, and only then ca. But breaking the bonds in this
manner would not lead to any real change or progress: we would end up where we
started. If the bonds are undone out of causal order, then there may be progress.
In this example, if ca is dissolved and ab is left untouched, we have the molecule
A · B at the end. This would have not been possible if we reversed in causal
order. The main question of this paper thus arises: how do we represent undoing
of events in any order in the setting of event structures?

3.2 Reversible Event Structures

Let E be a set of events. We define the corresponding set of undone events
(strictly speaking, events that are to be undone) to be E = {e : e ∈ E}, where
E is disjoint from E. For e ∈ E, let e∗ be either e or e; we sometimes use the
notation X + e∗ to mean either X ∪ {e} or X \ {e} respectively.

Definition 3.7. A reversible event structure (RES for short) is a triple E =
(E,Con,") where E and Con are as before and " ⊆ Con×P(E)× (E ∪E) is the
enabling relation satisfying:
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1. if X � Y " e∗ then (X ∪ {e}) ∩ Y = ∅;
2. if X � Y " e then e ∈ X ;
3. weakening: if X � Y " e∗ and X ⊆ X ′ ∈ Con then X ′

� Y " e∗, provided
X ′ ∩ Y = ∅.

We shall write X�∅ " e∗ as X " e∗ for short. Also we omit brackets for singleton
sets in expressions X � Y " e∗ where convenient.

The new enabling relation " extends the enabling relation from Definition 3.1 in
two directions. Firstly, it permits reversing of events as e∗ in X �Y " e∗ can be
an undone event. Secondly, it allows us to specify which events prevent e∗ (here
those in Y ) in addition to the events that enable e∗ (those in X). For example,
{a, b}� {c, d} " a says that a can be undone in a configuration which contains
a and b and does not contain c and d.

Example 3.8. Consider an RES with a single event e and the enabling rule ∅ " e.
As in the previous subsection the sets ∅ and {e} are configurations. Next we add
another rule e " e. This allows us to regress from {e} to ∅. Now the sets ∅
and {e} are reachable from ∅ in any number of steps; they are configurations
according to Definition 3.10 below. There is, however, an infinite computation
sequence ∅, {e}, ∅, {e}, . . ..

The example illustrates that in the reversible setting sets of events can grow and
and shrink as computation progresses. Also, it may happen that sets of events
grow non-monotonically as, for example, in a0, b, a1, b, a2, b, a3, b, a4, . . .. So we
shall need to consider limits of infinite sequences of subsets of E in order to
define configurations. Recall that a subset S ⊆ N is cofinite if N \ S is finite.

Definition 3.9. Let X0, . . . be an infinite sequence of subsets of E. We say that
X = limn→∞ Xn if for every e ∈ E:

1. {n ∈ N : e ∈ Xn} is either finite or cofinite;
2. e ∈ X iff {n : e ∈ Xn} is cofinite.

Note that a sequence of sets does not necessarily have a limit. The sequence
∅, {e}, ∅, {e}, . . . has no limit, since e belongs to infinitely many sets and does
not belong to infinitely many sets. However if Xn ⊆ Xn+1 (all n ∈ N) then
limn→∞ Xn exists and is

⋃∞
n=0 Xn. Also note that a finite sequence X0, . . . , Xn

can be extended to an infinite sequence by letting Xm = Xn for all m > n; the
extended sequence has the limit Xn. In Example 3.8 the sequence ∅, {e} can be
extended to an infinite sequence ∅, {e}, {e}, . . . and has the limit {e}.

Next we define configurations for RESs. Our aim is that they generalise con-
figurations in Definition 3.5. We use the notational convention that e ∈ A \ B
means e ∈ B \A.

Definition 3.10. Let E = (E,Con,") be an RES. A set X ⊆ E is a con-
figuration of E if there is an infinite sequence X0, . . . with X = limn→∞ Xn,
X0 = ∅ and Xn ∪Xn+1 consistent (all n ∈ N), where for every n ∈ N, and every
e∗ ∈ Xn+1 \Xn, there is a rule X ′

� Y ′ " e∗ such that:
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1. X ′ ⊆fin Xn and X ′ + e∗ ⊆ Xn+1;
2. Y ′ ∩ (Xn ∪Xn+1) = ∅.

We require Xn ∪Xn+1 to be consistent, as configurations can only be extended
in a consistent fashion. However, there is no requirement that Xi ∪ Xj is con-
sistent if j > i+ 1; events in Xi which are inconsistent with Xj can be reversed
in constructing Xi+1, . . . , Xj−1. Also, note that the Xis in the above definition
can grow smaller as well as bigger as computation progresses. Moreover, a finite
sequence X0, . . . , Xn = X that satisfies the conditions of Definition 3.10 is suf-
ficient for X to be a configuration. The sequence ∅, {e} in Example 3.8 can be
extended to an infinite sequence and, since the conditions of Definition 3.10 are
satisfied, its limit {e} is a configuration.

The next result shows that RESs are a generalisation of event structures.

Proposition 3.11. Suppose E = (E,Con,") is an event structure. Then E ′ =
(E,Con,"′) is a reversible event structure, where we define X � ∅ "′ e iff X " e
(and there are no reverse enablings X � Y "′ e). Moreover, X is a configura-
tion of E according to Definition 3.5 iff X is a configuration of E ′ according to
Definition 3.10.

Our generalised enabling rules are powerful enough that we no longer need the
consistency relation.

Proposition 3.12. Let E = (E,Con,") be an RES. Define Con′ = Pfin(E) and
define "′ by X � [Y ∪ (E \Z)] "′ e∗ whenever X,Y, Z are such that X �Y " e∗,
Z is consistent with respect to Con and X + e∗ ⊆ Z. Then E ′ = (E,Con′,"′) is
an RES, and X is a configuration of E iff X is a configuration of E ′.

In the light of the previous result, we could dispense with Con altogether in
the setting of RESs. However we allow Con as sometimes it may be natural or
convenient to identify certain configurations as being consistent or inconsistent,
before defining enabling rules in detail.

Example 3.13. Let E = {a, b, c}, Con = {{a, c}, {b, c}} plus deducible subsets,
and ∅ " a, ∅ " b, a " c, b " c. Then E = (E,Con,") is a (reversible) event
structure where either a or b causes c, and {a, b} is inconsistent. We can use
the procedure of Proposition 3.12 to convert E into E ′ = (E,Con′,"′) where
Con′ = Pfin(E) and ∅� b "′ a, ∅�{b, c} "′ a, ∅�a "′ b, ∅�{a, c} "′ b, a� b "′ c,
b � a "′ c.

Configurations are ∅, {a}, {b}, {a, c}, {b, c} for both E and E ′. However in E ′

there are two extra consistent sets, namely {a, b} and {a, b, c}.
Note that the converted RES can be optimised by removing ∅�{b, c} "′ a and

∅� {a, c} "′ b, since they are implied by ∅� b "′ a and ∅� a "′ b, respectively.

Definition 3.14. Given configurations X,Y of a reversible event structure E
we let

– X → Y if Y = X ∪ {e} and X ′
� Z " e for some e,X ′, Z with e �∈ X ,

X ′ ⊆fin X and Z ∩ (X ∪ {e}) = ∅;
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– X � Y if Y = X \ {e} and X ′
�Z " e for some e,X ′, Z with X ′ ⊆fin X and

Z ∩X = ∅.

As before, a computation of E is a computation starting from ∅E .

Example 3.15. Consider events a and b in Example 3.4. We have that a causes
b so if we wish to achieve causal-order reversing we need to add the following to
the definition of ": b " b and a� b " a. The configuration {a, b} can reverse to a
by undoing b as allowed by b " b. But it cannot regress to {b} because a� b " a
can only be applied in a configuration that contains a and does not contain b.
See Figure 2(i).

(i) (ii) (iii)

∅∅∅

{a}{a}{a}

{b}{b}

{a, b}{a, b}{a, b}

Fig. 2. Configurations and transitions in Example 3.15

If reversing out of order is required, we instead add to the definition of " in Ex-
ample 3.4 the following: a " a and b� a " b. This means that a can be reversed in
any configuration that contains a (with or without b), and b can be reversed only
when a is not present. Since a causes b, this means that b can be reversed only when
a is reversed. See Figure 2(ii), where reverse transitions are indicated by dashed
lines. Finally, if wewould like instead that a and b are reversed in any order, thenwe
would extend the enabling relation simply with b " b and a " a. See Figure 2(iii).

We now give an example where we get an infinite configuration as a limit of a
non-monotonically increasing sequence.

Example 3.16. Let E = (E,Con,") where E = {ai : i ∈ N} ∪ {bj : j ∈ N} and
Con = {ai, b0, . . . , bj} (any i, j ∈ N) plus deducible subsets, with

∅ " a0 ai " bi {ai, bi} " ai bi " ai+1 (all i ∈ N)

The only possible computation sequence is a0, b0, a0, a1, b1, . . ., with which we
can associate a sequence X0 = ∅, X1 = {a0}, . . .. This has limit the infinite set
{bj : j ∈ N}, which is therefore a configuration of E ; note that each ai appears
finitely often in the sequence Xn, while each bj appears cofinitely often.

3.3 Modelling of Bonding with Events

We now discuss how reaction systems from Section 2 can be given meaning in
terms of reversible event structures. Recall that an object of a reaction system
can be seen as an undirected graph, where the bases of the object are the nodes
and the bonds between the bases are the edges. We shall represent the bonds,
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and thus the edges of the associated graph, as events. Given bases X,Y of a
reaction system each bond X · Y will be denoted by the event xy.

We begin with a simple reaction system in Example 2.1. The events are ca
and ab (representing the bonds C · A and A · B) and Con = P({ca, ab}). The
bonds are created by ∅ " ca, ca " ab, and are broken by {ca, ab} " ca. Note that
we do not require here the full generality of the new enabling relation.

The next example is inspired by the ERK signalling pathway [12].

Example 3.17. We describe bonding and unbonding that takes place along a
section of the ERK signalling pathway. The molecule A receives a signal P at
the top of the pathway by bonding to it. The molecule P ·A travels then towards
the middle of the pathway where it combines with B. A bond between P and
B is then created and the bond between P and A is dissolved thus, in a sense,
passing the signal P to B. Once the bond between A and B is broken B is able
to pass P towards the bottom of the pathway. The forwards reduction rules are

P, A→ P · A P · A,B → P · A ·B P ·A ·B → P ·A · B

and the reverse rules for dissolving the bonds are

P · A · B � P, A ·B (≡ A ·B · P ) A ·B · P � A, B · P B · P � B, P

The events are xy for everyX ·Y and Con is defined as P({pa, ab, bp}). We derive
the following enabling rules from the forwards reduction rules

∅ " pa pa " ab {pa, ab} " bp

and we obtain the following enabling rules from the reverse reduction rules

{pa, ab, bp} " pa {ab, bp}� pa " ab bp � {pa, ab} " bp

Note the form of the last three rules and how the operator � is used in the last
two rules to enforce the order of undoing of pa, ab and bp.

The configurations are ∅, {pa}, {pa, ab}, {pa, ab, bp}, {ab, bp}, {bp}, and the cre-
ation and dissolving of the bonds happens in the following order: pa, ab, bp,
pa, ab, bp. We deduce that pa causes ab which causes bp, and we note that the
bonds are reversed out of causal order.

We now return to the reaction system in Example 2.3.

Example 3.18. The events are xy for every bond X ·Y among the bases X,Y in
Example 2.3. We take Con to be the powerset of the set of all events. Step Ai of
the transaction either succeeds by bonding to the next step or it fails by bonding
to F for 1 ≤ i ≤ n. So we need to express this in the enabling relation by stating
that if aiai+1 takes place then (a) ai+1ai+2 can happen if ai+1f did not take
place, and (b) ai+1f can happen if ai+1ai+2 did not take place for i < n−1. This
negative information is represented using � in the following two sets of enabling
rules. Transaction steps occur as follows:
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∅� if " ia1

ia1 � a1f " a1a2

aiai+1 � ai+1f " ai+1ai+2 1 ≤ i ≤ n− 2

an−1an � anf " ans

Fail can bond with the transaction steps as follows:

ia1 � a1a2 " a1f

a1f " if

aiai+1 � ai+1ai+2 " ai+1f 1 ≤ i ≤ n− 2

an−1an � ans " anf

ai+1f � {ai+1ai+2, ai+2f} " aif 1 ≤ i ≤ n− 2

anf " an−1f

Next, bonds of the transaction steps are undone so we need to use the full
strength of the enabling relation, where 1 ≤ i < n

{ia1, a1f, if} " ia1

{a1f, if}� ia1 " a1f

{aiai+1, ai+1f, aif} " aiai+1

{ai+1f, aif}� aiai+1 " ai+1f

Consider {aiai+1, ai+1f, aif}. Here F is bonded with Ai and Ai+1. We require
that the bond Ai ·Ai+1 breaks first, and then Ai+1 ·F breaks. We achieve this by
requiring that all events aiai+1, ai+1f, aif are present in order to undo aiai+1,
and we undo ai+1f when ai+1f, aif are present and aiai+1 is not. Correspond-
ingly for {ia1, a1f, if}.

Finally, compensation takes place

if � {ia1, a1f} " ci {if, ci} " if

We can reach from ∅ two terminated configurations (where no forwards or re-
verse transitions are possible), namely {ia1, . . . , aiai+1, . . . , ans} which denotes
the successful completion of the transaction, or {ci} which is the compensation
following the failure.

4 Conclusion

We have introduced simple reaction systems for bonding and illustrated their
usefulness with examples taken from software engineering and biochemistry, in-
cluding long running transactions with compensation, polymer creation by scaf-
folding proteins, and a signal passing mechanism used by the ERK pathway. We
have proposed reversible event structures, which has not been done before, de-
fined the notion of configuration, and discussed how to give semantics to reaction
systems for bonding in terms of reversible event structures.

It remains for future work to clarify the expressive power of reversible event
structures and in particular whether they can model reversible process calculi.
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Abstract. I describe a new formalization for computation which is sim-
ilar to traditional circuit models but which depends upon the choice of
a family of [semi]groups – essentially, a choice of the structure group of
the universe of the computation. Choosing the symmetric groups results
in the reversible version of classical computation; the unitary groups
give quantum computation. Other groups can result in models which are
stronger or weaker than the traditional models, or are hybrids of classical
and quantum computation.

One particular example, built out of the semigroup of doubly stochas-
tic matrices, yields classical but probabilistic computation, helping ex-
plain why probabilistic computation can be so fast. Another example
is a smaller and entirely Real version of the quantum one which uses a
(real) rotation matrix in place of the (complex, unitary) Hadamard gate
to create algorithms which are exponentially faster than classical ones.

I also articulate a conjecture which would help explain the different
powers of these different types of computation, and point to many new
avenues of investigation permitted by this model.

Keywords: reversible computation, quantum computation, structure
group, universal families of gates, unitary groups, symmetric groups,
circuit models of computation, probabilistic computation, exponential
speed-up.

1 Introduction

The foundations of quantum mechanics place unitary groups, and the Hilbert
spaces on which they act, in a surprisingly central location. The complex linear
algebraic structure, Hermitian form, and group of transformations that preserve
this structure are certainly unexpected when compared to classical mechanics,
where phase spaces are symplectic manifolds and the passage of time is a sym-
plectomorphism.

When quantum computation arrived on the scene, it posited wires with quan-
tum states in a Hilbert space interacting in gates which were unitary transfor-
mations in the tensor product of the Hilbert spaces of the input wires. This was
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again a striking contrast with classical circuit models of computation with values
from a finite alphabet on the wires, the alphabet being Z2 in the simplest case
or some other finite alphabet when the circuit is viewed as embodying a Turing
machine.

In this paper, I describe a new model of circuits with very general gates
which allows a uniform description of several important issues in computation.
In particular, the gates are to lie in a structure group – really, a system of groups
– as specified below, with the wires carrying elements in a vector spaces on which
representations of the structure groups act.

The first examples I consider are when the structure groups are permutation
groups, which encompasses classical (reversible) computation. What is then very
interesting is that I can use even a semigroup, and when the semigroup is the
Birkhoff polytope of doubly stochastic matrices, the model implements classical
probabilistic/non-deterministic computation. There are the first hints here, to my
knowledge, of why probabilistic computation can be faster than deterministic.

After this, I proceed to the unitary structure group, which gives just standard
quantum computation. However, the simple algebraic structure of the repre-
sentation of the unitary group which allows destructive interference to create
exponential speed-up over classical approaches can also be realized in a purely
real situation which I then describe. In particular, using the special orthogo-
nal structure group and a gate in SO(2) which has a very similar form to the
Hadamard gate of quantum computation, I provide an explicit example of such
an exponential speed-up.

As Blum, Cucker, Shub and Smale [5] brought techniques of ring theory and
algebraic geometry to a computation model which generalized classical computa-
tion, and Coecke and many co-workers [7] brought category theory and graphical
calculi, the goal of the current work is to bring techniques of [Lie] group theory
and (eventually) functional analysis to a different generalization.

1.1 Notation

Here are some basic notations and assumptions I use in this entire paper:

– F is a fixed field.
– Hilbert spaces are always assumed to be defined over F. When F = R, we

shall use the term Hilbert space to refer to a complete (real) inner product
space; When F = C, inner products are always Hermitian.

– No matter the base field F, we shall use the adjective unitary to mean a
transformation which preserves the inner product. For example, where we
say unitary representation below, if F = R this is what is usually called an
orthogonal representation.

– Linear transformations are always assumed to be bounded, when defined on
an infinite dimensional Hilbert space.

– For a Hilbert space V , Aut(V ) denotes the (bounded) linear self-maps – in
particular, even if V has an inner product, Aut(V ) does not contain only
isometries – and likewise for maps between different Hilbert spaces.
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– Σ will be a fixed finite alphabet, often used when we need to do symbolic
computation on strings; it usually suffices to use Σ = {0, 1}.

2 The Computational Model

In this section, I present the new generalized computational model ... but first,
some foundations. The goal is to replace classical logical gates acting on bits or
the unitary group acting on qubits with a general [semi]group action on a vector
space. Therefore, wires in circuits (or cells in a Turing machine tape) will have
values in this vector space.

2.1 Generalizing Gates and Wires

The operations in our computations come from the following:

Definition 1. Let V a vector space and for each k ∈ N let Gk be a group
(resp., semigroup) and ρk : Gk → End(V ⊗k) a homomorphism. We shall call
the collection G = {Gk, ρk | k ∈ N} a system of groups (resp., semigroups)
acting on [the tensor powers of] V .

Here are the most basic examples:

Example 1. Fix d ∈ N and let V = Fd. Then there is the usual representation of
the symmetric group Sd on V as permutation matrices (permuting the standard
basis vectors), and of Sdk on V ⊗k in the same way.

Using Gk = Sdk and this standard representation results in the system Sym
of symmetric groups acting on [the tensor powers of] V = F

d.

Example 2. Again fix d ∈ N and let V = Fd. A very general system of groups
acting on V is the system Gl of general linear groups acting on V given
by the full general linear group GL(dk,F) acting on V ⊗k under the usual repre-
sentation.

There is an interesting example which mixes these first two, built out of the
following.

Definition 2. An n × n matrix over R is called doubly stochastic if all the
column- and row-sums equal 1. The set of such matrices is denoted Bn and called
the Birkhoff polytope.

The Birkhoff-von Neumann Theorem states that the convex hull of the permuta-
tion matrices, viewed as sitting in R

n2

, is exactly the Birkhoff polytope Bn (see,
e.g., the original [4] or a more modern [14]). A simple calculation shows that Bn

is a semigroup but not a group: it contains the identity and all products, but
not inverses.

Example 3. The Birkhoff-von Neumann system of semigroups BvN act-
ing on V = R2 is the system which has the semigroup B2d acting on V ⊗d by
the standard representation.
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Going instead in the direction of complexity, we have

Example 4. Fix d ∈ N and now let V = Cd. The group of unitary matrices
U(d) acts on V and the group U(dk) acts on V ⊗k by the natural representation.
This collection of groups and representations will be called the system U of
unitary groups acting on [the tensor powers of] V = Cd or, if we restrict
to matrices of determinant one, the system SU of special unitary groups.

In exactly the same way, if F = R, we get the system SO of special or-
thogonal groups acting on [the tensor powers of] V = R

d.

Let us first fix a notation with tensor products and corresponding suggestive
terminology which will be useful when we want to promote an endomorphism of
a tensor power of a vector space to one of a higher tensor power of that space.

Definition 3. Suppose V is a vector space over F and j, k, l ∈ N satisfy j− 1+
l ≤ k. If T ∈ End(V ⊗l), we use T on the l factors of V ⊗k starting with the jth

to define an endomorphism T∧j = Id⊗(j−1)⊗T ⊗ Id⊗(k−j+1−l) of V ⊗k which we
shall call the T -gate starting at j operating on V ⊗k.

[Here the associativity of the tensor product is crucial.]
Once we have a system of [semi]groups acting on the tensor powers of a vector

space, we can let a set of its elements act on n-tuples of “wires” in an appropriate
sense.

Definition 4. Given a system G = {Gk, ρk} of groups acting on the vector space
V and n,m ∈ N, a circuit C with structure group G on n wires using m
gates is a sequence ((g1, j1, d1), . . . , (gm, jm, dm)) of triples of the form (g, j, d)
where g ∈ Gd and j, d ∈ N satisfy j − 1 + d ≤ n.

Such a circuit induces a map, for which we shall also use the same symbol,

C : V ⊗n → V ⊗n : v 
→ ρdm(gm)∧jm · · · · · ρd1(g1)
∧j1(v)

called the computation with C on vectors (or raw computation with C);
this element ρdm(gm)∧jm ·· · ··ρd1(g1)

∧j1 ∈ End(V ⊗k) will be called the program
implemented by the circuit C.

Note 1. These circuits use wires in a slightly different way from some other
authors (see, e.g., [6]), where sometimes gates are permitted to operate on any
input wires, in any order, selected from all the available wires. The difference is
that in the approach of this paper, some permutation gates would have to be
used first to bring these wires together, and G would have to be large enough to
contain these permutations as well.

We need some additional information before we can use the above circuits to do
symbolic computation. In particular, we need a way to get information out of a
circuit.
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Definition 5. Given a Hilbert space V and a finite alphabet Σ, an observable
decomposition of V with values in Σ is a collection of mutually orthogonal,
closed subspaces O = {Vσ | σ ∈ Σ} indexed by Σ which is complete in the sense
that its sum is all of V , so V =

⊕
σ∈Σ Vσ. This decomposition allows us to

define a probabilistic function (again overloading the notation) O : S1(V ) → Σ

by saying that O(v) = σ with probability ‖Pσ(v)‖2, where S1(V ) is the unit
sphere in V and Pσ : V � Vσ is the orthogonal projection.

Such an O induces also a decomposition of V ⊗n and hence a similar proba-
bilistic function O : S1(V ⊗n)→ Σn.

Definition 6. Fix a circuit C with structure group G on n wires having values
in the Hilbert space V . Given a function ε : Σ → S1(V ) (called the encoding
function) and an observable decomposition O of V , we define a probabilistic
function

C : Σn → Σn : (σ1, . . . , σn) 
→ O(C(ε(σ1)⊗ · · · ⊗ ε(σn)))

called the symbolic (or cooked) computation with C.

Example 5. For any base field F, let d ∈ N and V = Fd. We will use the physi-
cists’ notation for the standard orthonormal basis of V , being {|0〉, . . . , |d− 1〉}.
Then the standard d-ary encoding is the encoding function on the alphabet
Σ = Zd defined by εd : a 
→ |a〉. In this situation, vectors in V are often called
qudits. When d = 2, the encoding is termed binary and the vectors qubits.

Corresponding to the standard basis, there is an observable decomposition of
V with values in Σ defined by the subspaces {F · |0〉, . . . ,F · |d− 1〉} which is
called measurement in the d-ary computational basis, written O|d〉.

2.2 Notions of Universality

There are a number of ways in which the word “universal” could be used in
this computational model. One way is external to the computational processes
we are using here, in that it asks if our cooked computations can yield some
large known universe of computations, such as perhaps computing all Boolean
functions. This will be investigated below in §3.2.

Another sense for universality is bases on the practical consideration that if
we are to construct computational circuits in the real world, we want to have
a limited number of specific gates which we can figure out how to construct,
but which in combination will be able to do a large universe of useful work.
Since in practice it is hard to anticipate what circuits we will eventually figure
out do useful computation, we usually seek a small number of gates which in
combination will create any gate from the structure group in question, operating
on any number of wires.

There are in fact two versions of this notion of sufficiently powerful sets of
gates which are useful.
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Definition 7. Let V be a vector space on which a system G = {Gk, ρk} of groups
acts. A collection of sets of gates in specific dimensions H = {Hk | k ∈ K}, where
K ⊆ N is some index set and Hk ⊆ Gk ∀k ∈ K, generates a set of circuits built
just as in Def. 4 except that only group elements from one of the Hk are allowed,
only operating on k wires, where k ∈ K.

We say the collection H is exactly universal for G if the program imple-
mented by any circuit with structure group G is also implemented by a circuit
generated as above with gates only from H.
H is instead said to be approximately universal for G if the programs of

circuits with structure group G on n wires can be approximated to any desired ac-
curacy in the operator norm on End(V ⊗n) by the programs of circuits generated
as above with gates only from H.

3 Relation to Classical Circuits

3.1 Deterministic Classical

The first thing to notice about our computational model is that it includes all
of classical, deterministic computation.

For this, use the standard binary encoding ε2, the system Sym of symmetric
groups acting on F2 (F being either R or C) and finish with measurement O|2〉 in
the binary computational basis. As has been well known for some time (see for
example [3], [17], or [11] for early work, or many explanations of quantum com-
puting, such as [2] or [15], for more modern descriptions) all functions computed
by a traditional Boolean circuit can be realized as computations of reversible
circuits with ancilla (extra wires).

Reversible gates are permutations of their input spaces, which amounts to the
standard basis vectors in (F2)⊗d for a d-bit gate, and such gates are all available
in the full symmetric system Sym. Further, observation in the computational
basis simply decodes this association of the objects being permuted and the
standard basis elements of (F2)⊗d.

3.2 Universality in Deterministic Classical

The classical results mentioned above give a kind of universality for the circuit
based on permutations, external in the sense of §2.2: with ancilla and techniques
such as Bennett’s famous “trick”, any of these external objects – Boolean func-
tions – can be computed by our Sym-structured circuits.

Note that it was traditional even before the connection with reversible compu-
tation to say that the NAND gate is universal in the context of Boolean circuits.
This simply meant that the other basic gates of Boolean circuits could be built
up out of NAND. Then within the realm of reversible computation often uses
the Toffoli gate as its basic universal and reversible gate, in the same sense (now
with ancilla).

Taking into account the crossing of wires implicit in traditional circuit models
(as mentioned above in Note 1), we can rephrase this result as
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Theorem 1. The two gates

SWAP =

(
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

)
and TOF =

⎛
⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎞
⎟⎠

generate a set of set of circuits acting on the tensor powers of V = R2 large
enough to compute all Boolean functions, using ancilla and the Bennett trick.

Notice that this notion of universality is not the one described in §2.2 for small
sets generating all of an ambient structure group. There are many obvious fam-
ilies which work in this particular case, however, particularly easily because the
groups are finite. A favorite of mathematicians, for example, would be to take
some traditional set of generators for each S2k , such as all the transpositions,
or a large cycle and a single appropriate transposition. Which generating set is
most convenient depends upon the physical realization one wants to attempt:
nearest-neighbor interactions may be the easiest to realize, plus some single
larger operation (such is in linear ion traps). Any proposed generating set can
then be tested to see if it generates, in the sense of §2.2 the structure group Sym
(or some subset necessary for a particular family of computations).

3.3 Nondeterministic Classical

There is a tension between nondeterminism and reversibility which I have not
seen spelled out explicitly elsewhere, but which is fairly clear using the com-
putational approach of this paper. The issue is that a circuit with access to
nondeterminism – which is usually imagined as a gate with no inputs but an
output that is uniformly distributed on {0, 1} – really cannot be reversed. That
random bit came from nowhere, and even if we imagine the gate as having an
input wire in addition to the output, we have no way of knowing what the input
was simply by knowing the output.

In our model, this amounts to a wire on which the gate that produces a
random bit is realized as the matrix (remember we are using V = R2 or C2)

RAND1/2 =

(
1/2 1/2
1/2 1/2

)
.

Notice that this RAND1/2 is an equally weighted convex combination of the
identity Id2 = ( 1 0

0 1 ) and the gate NOT = ( 0 1
1 0 ) and implements a tradition fair

coin.
Biased coins can also be incorporated into this model. For α ∈ [0, 1], let

RANDα =

(
α 1− α

1− α α

)
= α Id2 + (1 − α)NOT .

If for some physical reason in our computational hardware, we only have access
to a biased RANDα but want the fair RAND1/2, there are well known ways to
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make a fair coin out of a biased one. These methods perhaps began with the von
Neumann extractor [18] but have been improved over the years in several ways,
see [12] and [16], for example. All of these methods require several flips of the
biased coin (hopefully independently) and some (Boolean) computation, which
may therefore require additional ancilla.

On the other hand, once we have a circuit which implements RAND1/2, if
we wish in some computation to use a RANDα for some other α ∈ [0, 1], we
can proceed as follows. First, choose some e ∈ N, from which we shall allow an
error bound of size 2−e. Run e copies of the gate RAND1/2 in parallel and apply
(the reversible version of) a Boolean circuit which compares the resulting bits
to the first e binary digits of α to the right of the binary point and outputs a 1
if the random number is less than that portion of α, or 0 otherwise. This output
bit, once ancilla are discarded, amounts to a RANDα.

Suppose we wish to add the single random-bit gate RANDα on the jth wire at
the beginning of a computation performed by a circuit over the structure group
Sym with program P = ρdm(gm)∧jm · · · · · ρd1(g1)

∧j1 (in the sense of Def. 4).
Since tensoring with other matrices commutes with taking linear combinations,
the resulting program will be the linear combination

α Id∧j
2 · P + (1− α)NOT∧j · P = αP + (1 − α)NOT∧j · P

Adding further nondeterministic gates to the circuit – additional randomness in
the form of RANDα gates – results in circuits with raw computations coming
from convex combinations of permutation matrices with additional NOT ’s at
arbitrary locations. The coefficients in these convex combinations resulting from
using several fair coins or any number of the RANDα’s produced by the simple
scheme described above will always be dyadic rationals.

Nevertheless, it makes sense (by continuity, if for no other reason) to allow all
convex combinations of permutations in non-deterministic circuits. As mentioned
before, the Birkhoff-von Neumann Theorem then tells us that this amounts to
using gates in the semigroup Bn. In summary:

Theorem 2. The symbolic computations performed by circuits with structure
semigroup BvN [using ancilla] are exactly the computations performed by clas-
sical probabilistic Boolean circuits.

This theorem points to a kind of answer to the old question of why classical prob-
abilistic computation produces algorithms which seem faster than deterministic:
probabilistic computations are basic on the structure [semi]group BvN which
maybe have an algebraic defect (no inverses) but is a very large superset of the
permutation structure group Sym which underlies deterministic computation.
Furthermore, the doubly stochastic matrices in Bn have a quality of creating a
mixture, or probabilistic superposition, of many computational paths simulta-
neously. That this only leads to some improvement and not the the exponential
speed-up of quantum computation seems to be due to the fact that we cannot
cancel the unwanted computational paths in the same way as the famous quan-
tum computational algorithms. In §6 below, a conjecture is formulated which
makes this crucial distinction precise.
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4 Relation to Quantum Circuits

If we want to generalize classical computation in a way that allows both prob-
abilistic and reversible computation, we can change our structure group from
the symmetric S to something which includes mixtures like the gate providing
a random bit and yet remains a group. The way this happened in the history of
computer science was by going to the unitary structure group U and full-fledged
quantum computation. With this group, we have access to the Hadamard gate

H =
1√
2

(
1 1
1 −1

)
which is a nice generalization of the random-bit gate RAND1/2 above, with only
a well placed negative entry to make it invertible (and different over-all scale).

The computation model in this paper is clearly designed primarily to be an
extension of that standard version of quantum computation, so using the struc-
ture group U simply implements that standard. The one thing I do here which is
not always done in the basic quantum set-up is that I do all measurement at the
end. However, the principle of deferred measurement (to use the name coined, I
believe, by [15]) says that we may always do this, at least if we are not interested
in the raw computation of a circuit, its effect on qubits, but want only to work
with the symbolic computation. Thus

Theorem 3. The symbolic computations produced by circuits in the sense of
this paper with structure group U , binary encoding, and measurement O|2〉 in
the computational basis are exactly the symbolic computations produced by the
standard model of quantum computation.

4.1 Universal Quantum Gates

The machinery set up in this paper allows a different approach to proving uni-
versality of sets of quantum gates: one must show how to build up exactly or
approximately the elements of U(2d) out of the chosen set of gates by multiplica-
tion of tensor products of the smaller gates from the set. This can be applied to
the specific choices of universal families from [1], [10], or [6], for example. I defer
those calculations to another work, in order to pursue further generalizations of
the quantum model here.

I note here only a couple of facts which are known about universal families of
quantum gates: it is known that almost any 2-bit gate, together will the whole
set of 1-qubit gates, is an exactly universal family for quantum computation; also
several finite subsets of the 1-qubit gates, again together with a 2-qubit gate,
are known to be approximately universal. See references mentioned immediately
above, as well as [13] and many other references in [15].

5 Universes with Other Structure Groups

The promise of the computational model presented in this paper is that it gen-
eralizes both classical and quantum computation, and leaves open the possibili-
ties to explore computation performed by circuits using other structure groups.
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Since the unitary group carries the basic physics of the quantum universe in
which we live, and the permutation group carries the basic physics of idealized
classical computation (à la billiard ball computers or ideal Turing machines in
a Newtonian universe), one way to think of this new possibility is as examining
computation in other universes, with their own structure groups.

5.1 An Un-real but Real Universe

Here is just one example. The first quantum algorithm to show exponential
speed-up was the algorithm to solve Deutsch’s Problem [8], which uses the lin-
ear structure of the tensor product and the particular action of the Hadamard
transformation. But the Hadamard matrix shown above looks very much like
another matrix from elementary linear algebra: the real, special orthogonal 2×2
matrix

Rπ/4 =
1√
2

(
1 −1
1 1

)
which implements rotation by π/4 counterclockwise in R2. So let us use the
structure group SO with the vector space V = R2 to build an entirely Real
circuit that solves this problem in much the same was as the structure group U
solves it in our universe governed by complex quantum mechanics.

Following the model exposition in [15], we suppose that we have a function
f : {0, 1} → {0, 1} which may or may not be constant. We imagine have an
oracle Uf in our Real world which can compute the SO version of f , as Uf :
|x〉|y〉 
→ |x〉|f(x)⊕ y〉.

We start with the initial state |01〉 = |0〉⊗|1〉 and apply Rπ/4⊗Rπ/4, yielding

(
Rπ/4

)⊗2
(|01〉) = 1

2
(|0〉+ |1〉) (−|0〉+ |1〉)

which we submit to the oracle Uf , yielding

1

2
[|0〉 (−|f(0)⊕ 0〉+ |f(0)⊕ 1〉) + |1〉 (−|f(1)⊕ 0〉+ |f(1)⊕ 1〉)]

which simplifies a bit as

(−1)f(0) 1
2

(
|0〉+ (−1)f(0)⊕f(1)|1〉

)
(−|0〉+ |1〉) .

Finally, we apply R∧1
π/4 = Rπ/4 ⊗ Id2 [“Rπ/4 on the first qubit”] to get

|f(0)⊕ f(1)⊕ 1〉 1√
2
(−|0〉+ |1〉)

so the first bit of the measurement O|2〉 tells us the if f(0)⊕f(1) is 0 or 1, hence
if f is constant or not.

The above is merely a toy model, but its use of the Real analogue Rπ/4 of
the quantum Hadamard demonstrates that the full Deutsch-Jozsa algorithm [9],
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based as it is on repeated use of the Hadamard gate and its tensor powers, will
go straight through in the Real world of SO circuits.

Pulling back a little from the science-fictional conceit above that physical
implementation of this approach would involve a visit to another universe, we
can imagine now solving these kinds of problems – with exponential speed-up
over classical computation – by finding a system with SO(2) symmetry (a round
ring, or rotationally (in R2) symmetric object or field, or ...?) of which multiple
copies can be coupled, in the manner of the tensor products underlying our
circuit model. Such a system would implement the Real computation described
above, so would permit all of the usual exponential speed-up from quantum
computation, regardless of whether the hardware used quantum mechanics at all
– the only necessary ingredient being the algebraic structure described above.

6 Future Directions, Including a Conjecture and a
Proposal

The computational model of this paper allows a search for other structure groups
which may

1. be associated with physically realizable systems, and
2. be used to perform calculations at significant speedup over classical algo-

rithms

There are two directions which I think are particularly promising for this ap-
proach. One is to vary the structure group (which variation so far has not be
much the subject of investigation) in order to determine which groups and repre-
sentations admit quantum speedup. On that matter, it seems to me that useful
information is extracted, out of the exponentially large tensor product spaces
in which states of the many wires of our circuits lie, only when there can be
destructive interference.

Conjecture 1. I conjecture that structure groups G = {Gk, ρk} can only exhibit
exponential speedup over classical algorithms if there are matrix coefficients of
with different signs.

The converse probably needs some additional hypotheses, however.

In this context, it is worth thinking about the hierarchy of computational power
we have seen in this paper, and how delicate it is:

– Straight permutations give circuits over Sym which yield classical determin-
istic computation.

– Other finite groups presumably do not give any speed-up – all finite groups
arise as subgroups of permutation groups.

– Taking convex combinations of permutations yields BvN circuits, and prob-
abilistic classical computation – which is intriguingly faster than determinis-
tic. This structure semigroup is no longer finite (it is uncountable), but it is
compact and non-Abelian, and its standard representation has only positive
matrix coefficients.
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– We have seen above an example (the Real world of circuits over SO) with
exponential speed-up over classical computation. The structure group here
is an actual group: compact and Abelian, and has a representation on a real
vector space, but also with negative matrix coefficients.

– The (complex) unitary structure group of quantum mechanics also has its
famous algorithms with exponential speed-up over classical ones. U(n) is
compact and non-Abelian, with non-positive matrix coefficients in its stan-
dard representation. Yet finite [universal] families of gates can implement
these fast algorithms.

That finite structure groups are classical (slow) and finite families of unitary
gates are quantum (fast) is quite surprising, as is the example of quantum-like
algorithms in a two-dimensional Real set-up.

Finally, having opened up the possibility of circuits with different structure
groups, we can seek out much larger groups where there may be radically different
behavior. I therefore propose that some of these much large groups, but perhaps
groups which are symmetries of real, known, physical systems, be investigated.
Of particular interest would be

1. non-compact, non-Abelian Lie groups – these usually have their interest-
ing representations on infinite dimensional vector spaces, but such function
spaces and group actions do occur in quantum mechanics; and

2. really large groups, such as ones which are not even locally compact (as
sometimes arise in quantum field theory, among other areas), for example
the group of isometries of a separable Hilbert space, or the group of diffeo-
morphisms of some manifold.

Acknowledgements. I would like to thank Normal Herzberg for a very
important comment at a crucial point in this work.
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Abstract. Reversible computational models with discrete internal states
are said to be time-symmetric, if they can go back and forth in time by
applying the same transition function. The direction in time is adjusted
by a weak transformation of the phase-space, that is, an involution. So,
these machines themselves cannot distinguish whether they run forward
or backward in time. From this viewpoint, finite state machines and
pushdown machines are studied in detail. In essence, it turns out that
there are reversible machines which are not time-symmetric, but equiva-
lent time-symmetric machines can effectively be constructed. The notion
of time-symmetry is discussed, several examples are given, and further
results concerning unary inputs and descriptional complexity issues are
shown.

1 Introduction

Computational models with discrete internal states can to some extent be seen
as prototypes of computing devices that, in principle, can be constructed in the
real world. So, computational models being able to obey physical laws are of nat-
ural interest. The physical observation that a loss of information results in heat
dissipation [22] strongly suggests to study computations in which no information
is lost. A first study of this kind has been done in [6] for Turing machines where
the notion of reversible Turing machines is introduced. The main result obtained
there is that every Turing machine can be simulated by a reversible one in a con-
structive way. See [5,27] for improved constructions. On the opposite end of the
automata hierarchy, reversibility in simpler devices has been studied in [3,29] for
deterministic finite automata, in [18] for pushdown automata, and in [4,20,25,26]
for multi-head finite automata. Reversible deterministic finite automata are also
studied in the context of quantum computing [12,13], whereas construction prob-
lems are investigated in [9,10,23]. Reversible versions of parallel models have been
studied as well. For cellular automata, it is shown in [2] that global reversibility
is decidable for one-dimensional cellular automata, whereas the problem is un-
decidable for higher dimensions [14]. Reversible cellular automata in connection
with language theory are studied in [16,17]. The paper [24] summarizes results
on reversible cellular automata, logic gates, logic circuits, and logic elements
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with memory. A motivation for studying reversible computing from the vantage
point of physics can be found in [7]. Other reversible computational devices and
other perspectives on reversible computing can be found in [28,30,31].

In [21] a further aspect of reversibility in real systems is discussed. In [8] it
is motivated that, for example, in Newtonian mechanics, relativity, or quantum
mechanics one can go back in time by applying the same dynamics, provided
that the sense of time direction is changed by a specific transformation of the
phase-space. For Newtonian mechanics, the transformation leaves masses and
positions unchanged but reverses the sign of the momenta. This aspect is called
time-symmetry. In this connection, computational models with discrete internal
states have been studied in [8] for the first time. In this seminal paper reversible
cellular automata were considered.

Here we investigate time-symmetry for several reversible computational mod-
els with discrete internal states that evolve in discrete time. The “direction of
time” is adjusted by a weak transformation of the phase-space, that is, an in-
volution. So, these machines themselves cannot distinguish whether they run
forward or backward in time.

The rest of this paper is organized as follows. In the next section we recall
some basic definitions and discuss the notion of time-symmetry from a general
viewpoint on computational models with discrete internal states. In Section 3 de-
terministic finite-state machines are considered. The notion of time-symmetry is
clarified and discussed in more detail. In particular, it turns out that there are re-
versible machines which are not time symmetric, but equivalent time-symmetric
machines can effectively by constructed. In general, this construction requires
to increase the size of the machines to twice as many states. It is shown that
this bound is tight for infinitely many machines. Moreover, we obtain that every
reversible finite-state machine on unary input is necessarily time symmetric. Sec-
tion 4 is devoted to the study of time-symmetry for pushdown machines. The
handling of the additional resource makes the definitions of reversibility and
time-symmetry more involved. An example reveals that there are non-regular
languages accepted by time-symmetric pushdown automata. Furthermore, the
situation for finite automata is complemented and contrasted by proving that
there are reversible unary pushdown automata that are not time symmetric, and
that from every reversible pushdown automaton one can effectively construct an
equivalent time-symmetric one.

2 Preliminaries and Definitions

Let Σ∗ denote the set of all words over the finite alphabet Σ. The empty word
is denoted by λ, and Σ+ = Σ∗ \ {λ}. For convenience, we use Σλ for Σ ∪ {λ}.
The reversal of a word w is denoted by wR and for the length of w we write |w|.
Set inclusion is denoted by ⊆, and strict set inclusion by ⊂. Let A,B,C be
arbitrary sets, and f : B → C, g : A → B two mappings. For their composition
we write f ◦ g : A → C. A mapping τ : A → A is said to be an involution if
τ ◦ τ = id, where id denotes the identity mapping.
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In the following we consider computing machines with a finite number of
discrete internal states. The machines may be equipped with further resources,
and evolve in discrete time, where each computation step is driven by a so-called
transition function δ. The transition function is used to compute the successor
configuration of a given configuration. It depends on the current internal state
and maybe on the status of further resources the machine is equipped with. It
deterministically gives the successor state and maybe changes the status of the
resources.

A first study of reversibility of such devices has been done in [6] for Turing
machines. Deterministic Turing machines are called reversible when they are
also backward deterministic. That is, any configuration occurring in any com-
putation must have at most one predecessor which, in addition, is computable
by a deterministic Turing machine, say, with transition function δ←. Generaliz-
ing this convention, we assume that for any reversible computing machine with
discrete internal states and transition function δ the reverse transition function
is denoted by δ←.

We denote the (global) one-step relation " from one configuration to the next
on by ". So, for a machine M to be reversible there has to be a machine M←

with global one-step relation "←
such that c " c′ if and only if c′ "←

c. Since we
only consider deterministic machines in this paper, it follows that " and "←

are
injective. As a very special case it might be that M = M← is its own inverse, so
that the machine always switches back and forth between a configuration and its
successor. However, the time-symmetric machines considered in this paper are
more involved. The basic requirement is that each modification of a configuration
can be undone by the machine itself, but in order to do so it may be necessary
to change the internal state before and after the step back. Loosely speaking,
a time-symmetric machine M itself does not know whether it runs forward or
backward in time, it just applies its transition function. The direction in time is
changed by a weak transformation of the phase-space, where weak means that
the transformation is an involution. More precisely, we say that a machine M
with state set S is time symmetric if there exists an involution τ on the phase-
space so that τ ◦ δ ◦ τ = δ←, which means the following. Given a configuration c
of the machine, an application of the involution τ transforms it, then δ is used to
compute a new configuration, which is again transformed by a second application
of τ . The result is the predecessor configuration of c. Precise definitions are given
for the specific machines where considered.

3 Time-Symmetry in Finite-State Machines

We first look at the simplest type of device in question, deterministic finite
automata (DFA) which can accept the regular languages. A deterministic finite
automaton is a system M = 〈S,Σ, δ, s0, F 〉, where S is the finite set of internal
states, Σ is the finite set of input symbols, s0 ∈ S is the initial state, F ⊆ S is the
set of accepting states, and δ : S ×Σ → S is the transition function. Note, that
here the transition function is not required to be total. The language accepted
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by the finite automaton M is defined as L(M) = {w ∈ Σ∗ | δ(s0, w) ∈ F },
where the transition function is recursively extended to δ : S ×Σ∗ → S.

A DFA is called reversible if and only if for each input symbol x ∈ Σ the
(possibly partial) function δx : S → S : s 
→ δ(s, x) is injective. We write δ← for
the function S × Σ → S satisfying δ←(s, a) = δ−1

a (s). A reversible DFA is time
symmetric if and only if there is an involution τ : S → S such that δ−1

x = τ ◦δx◦τ
holds for all x ∈ Σ. At first sight this seems to be a strong condition, since the
same τ has to work for all δx. Theorems 1 and 2 will shed more light on this.

Reversible DFA have been investigated in [3,29], where it turned out that there
are finite automata that cannot be made reversible. That is, there are regular
languages which cannot be accepted by any reversible DFA (see Figure 1). So, a
question arises immediately: Are there regular languages accepted by reversible
DFA which cannot be accepted by time-symmetric DFA?

0 1

a b

bstart

Fig. 1. Example of an irreversible DFA accepting the language a∗b+ (a double circled
state is accepting). There is no reversible DFA accepting this language.

Before we turn to answer these questions, we clarify the notion time-sym-
metry. Consider the p-state DFA M = 〈{0, 1, . . . , p − 1}, {a}, δ, 0, {0}〉, where
δ(i, a) = (i + 1) mod p, for 0 ≤ i ≤ p − 1 (see Figure 2). The language
accepted by M is { aj·p | j ≥ 0 }. The automaton M is reversible since with
δ←(i, a) = (i + p− 1) mod p, we have δ←(δ(i, a), a) = i.

0

1

2

3

4

p−1

a

a a

a

a

a

a

start

Fig. 2. Example of a unary reversible DFA accepting the language { aj·p | j ≥ 0 }

In order to obtain time-symmetry one has to go back in time by applying
the same transition function. But an involution τ : S → S of the phase-space
is allowed which satisfies δ−1

x = τ ◦ δx ◦ τ . Looking at two successive steps, we
obtain δ−1

x ◦ δ−1
y = τ ◦ δx ◦ τ ◦ τ ◦ δy ◦ τ = τ ◦ δx ◦ δy ◦ τ . Obviously this generalizes
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to arbitrary numbers of steps. In some sense τ reverses the direction in time
permanently (that is, until τ is applied again).

It turns out that the DFA M is time symmetric. As witness involution one
can take τ(i) = p− i− 1. We have

τ(δa(τ(i))) = τ(δa(p− i − 1)) = τ(p − i) = i− 1 = δ−1
a (i) = δ←(i, a),

for all i (all arithmetic being done mod p). Now the question arises whether
all reversible DFA are already time-symmetric. The next theorem answers this
question in the negative.

Theorem 1. There are reversible DFA which are not time symmetric.

Proof. Let p ≥ 6. We use the DFA M = 〈{0, 1, . . . , p− 1}, {a, b}, δ, 0, {0}〉, with

δ(i, a) = (i + 1) mod p, for i ∈ {0, 1, . . . , p− 1},
δ(i, b) = i, for i ∈ {1, 3, 4, . . . , p− 3}, and

δ(0, b) = 2, δ(2, b) = 0, δ(p− 2, b) = p− 1, δ(p− 1, b) = p− 2

as witness for the assertion (see Figure 3).

0 1 2 · · · p-3 p-2 p-1

b b

a a a a a a

b

b

a

start

Fig. 3. Example of a reversible DFA that is not time symmetric

Assume there is an involution τ : {0, 1, . . . , p−1} → {0, 1, . . . , p−1} such that
τ ◦ δx ◦ τ = δ−1

x , for all x ∈ Σ. We consider possible states for τ(0) and will show
that every choice leads to a contradiction. As mentioned above δ−1

x = τ ◦ δx ◦ τ
can be extended to sequences of input symbols, that is,

δ−1
x1

◦ · · · ◦ δ−1
xk

= τ ◦ δx1 ◦ · · · ◦ δxk
◦ τ.

As a consequence if an input word w leads from some state i back to i, then the
same word w also leads τ(i) back to itself (and vice versa).

If τ(0) = q with q ∈ {1, 3, 4, . . . , p− 3}, then

τ(δb(τ(0))) = τ(δb(q)) = τ(q) = 0 �= 2 = δ−1
b (0)

implies a contradiction.
Analogously, the input word aab leads from state 0 back to itself, but this is

not the case for states 2, p− 2 and p− 1; therefore τ(0) has to be different from
them.
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The only remaining possibility is τ(0) = 0. By

τ(δb(τ(τ(2)))) = τ(0) = 0 = δ−1
b (τ(2))

the equation τ(2) = 2 follows. But by τ(δa(τ(0))) = τ(1) = δ−1
a (0) = p− 1 and,

thus, by τ(δa(τ(p−1))) = τ(2) = δ−1
a (p−1) = p−2 we obtain τ(2) = p−2, which

is a contradiction to τ(2) = 2. So, τ(0) cannot be equal to 0 which concludes the
proof, since we have shown that state 0 cannot be mapped to any other state,
either. ��

By Theorem 1 there are reversible DFA which are not time symmetric. However,
the relation between reversible and time-symmetric DFA is different from the
relation between arbitrary and reversible DFA.

Theorem 2. Let p ≥ 1 and M be a p-state reversible DFA. Then there exists
an equivalent 2p-state time-symmetric DFA M ′.

Proof. Let M = 〈S,Σ, δ, s0, F 〉 be a reversible DFA. The idea is to put a copy
of M and a copy of its inverse side by side. To this end, we construct a DFA
M ′ = 〈S′, Σ, δ′, s0, F

′〉 by setting S′ = S × {→,←}, F ′ = F × {→,←}, and
s′0 = (s0,→). For all s ∈ S and a ∈ Σ, the transition function is defined by
δ′((s,→), a) = (δ(s, a),→) and δ′((s,←), a) = (δ←(s, a),←).

Clearly, the DFA M ′ works like M while in states from S×{→}, and it works
like the inverse of M while in states from S × {←}. In order to conclude the
proof of the theorem we notice that L(M ′) = L(M), since M ′ starts in (s0,→)
and there is no transition leading from a state in S×{→} to a state in S×{←},
and that M ′ is reversible, since M and its inverse are reversible.

Now, for all s ∈ S, let the involution τ be defined by τ((s,→)) = (s,←) and
τ((s,←)) = (s,→). We consider an arbitrary state (s,→) and an input symbol
a ∈ Σ. Then

τ(δ′a(τ((s,→)))) = τ(δ′a((s,←))) =

τ((δ−1
a (s),←)) = (δ−1

a (s),→) = δ′−1
a ((s,→))

and analogously for the case of a state (s,←) shows τ ◦ δ′a ◦ τ = δ′−1
a . ��

The previous theorem reveals that the families of languages accepted by re-
versible and time-symmetric DFA coincide. However, the state complexity may
increase by at most a factor two. The next result shows that this upper bound is
tight, that is, there are languages accepted by p-state reversible DFA such that
the minimal equivalent time-symmetric DFA requires 2p states.

Theorem 3. Let p ≥ 6. There is a p-state reversible DFA so that every equiv-
alent time-symmetric DFA has at least 2p states.

Proof. The reversible but not time-symmetric p-state DFA M depicted in Fig-
ure 3 is used as a witness for the assertion. We consider the language L(M).
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Let M ′ = 〈S′, Σ, δ′, s′0, F
′〉 be any time-symmetric DFA equivalent to M , that

is, L(M) = L(M ′).
Since L(M ′) ∩ a∗ = { aj·p | j ≥ 0 }, on long inputs of the form a∗ automa-

ton M ′ runs into a cycle. But M ′ is reversible and, thus, the only possibility to
run through cycles on unary input is from the very beginning. Therefore, the ini-
tial state belongs to the cycle. Moreover the cycle length must be a multiple of p.
Otherwise unary words not belonging to L(M) would be accepted. If the cycle
length is at least 2p, the assertion follows immediately. So, we assume the cycle
length to be p. More precisely, we consider the states C = {0, 1, . . . , p− 1} ⊆ S′,
where i = δ′(s′0, a

i), for 0 ≤ i ≤ p− 1. In addition, we know δ′(s′0, a
p) = s′0.

Let us assume |S′| < 2p. Then |S′ \ C| < p since |C| = p. Moreover, any
involution on |S′| is bijective. So, any involution on |S′| has to map at least one
of the p states from C to a state from C, say state i is mapped to state j. By
τ(δa(τ(i))) = τ((j + 1) mod p) = δ−1

a (i) = (i + p − 1) mod p, the involution τ
necessarily maps the successor of j to the predecessor of i. Continuing inductively
with these two states, we obtain that the successor of the successor of j is mapped
to the predecessor of the predecessor of i. The induction stops when the two
states mapped to each other are their own successor and predecessor, or are one
and the same state. For example, let p = 7, i = 6, and j = 1. Then τ(5) = 2 and
τ(4) = 3 follows. For p = 7, i = 5, and j = 1, we obtain τ(4) = 2 and τ(3) = 3.

Similarly, by τ(δa(τ(j))) = τ((i+1) mod p) = δ−1
a (j) = (j+ p− 1) mod p, we

derive that the involution τ necessarily maps the successor of i to the predecessor
of j, and so on. Completing the example, τ(6) = 1 and τ(7) = 0 follows for the
first case, and τ(6) = 0 and τ(7) = 7 for the second case.

Altogether, all states from the set C are mapped to states from C.
Now we turn to the structure of M ′ and denote the set of states which are

not part of the a-cycle as C′ = S′ \ C. Since M ′ is reversible, there are no
a-transitions from C′ to the cycle C. Since M ′ is deterministic, there are no
a-transitions from C to C′.

If there is a b-transition from C to C′, then there must be an a-transition back
from C′ to C. Otherwise subsequent cycle runs on input suffixes from a∗ have
solely to appear within the states from C′, but |C′| < p. Since this a-transition
back to C cannot exist, there is no b-transition from C to C′.

So, since the initial state belongs to C, all states from C′ are unreachable by
transitions. Since furthermore τ maps all states from the set C to states from C,
which in turn implies that all states from C′ are mapped to states from C′,
we can safely omit all states from C′ without altering the language accepted
by M ′ and without violating the time-symmetry of M ′. The resulting equivalent
time-symmetric DFA M ′′ has exactly as many states as M . However, since M
is easily verified to be minimal, and minimal DFA are unique (up to isomorphic
renaming of states), there is no other p-state DFA equivalent to M . So, M ′′ must
be equal to M which in turn is not time symmetric. ��

Finally, we come back to the question whether every reversible DFA is time
symmetric. This general question has been answered negatively by Theorem 1.
However, we can answer it in the affirmative for unary alphabets.
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Theorem 4. Each reversible unary DFA is time symmetric.

Proof. We distinguish whether the language L(M) is finite or infinite. If it is
infinite, then M eventually runs through cycles. Since M is reversible, the only
possibility to run through cycles on unary input is from the very beginning and,
thus, M as a whole is one cycle. Now we can continue similar as in the proof
of Theorem 3, where an involution τ witnessing the time-symmetry of M is
constructed. There it turned out that, starting with two arbitrary states i and
j, one can set τ(i) = j and gets the complete involution as a consequence of the
choice of i and j (cf. Example 5).

Now let L(M) be finite. In this case, the structure ofM is just a finite chain of,
say p, states {0, 1, . . . , p−1}, which are connected by the transitions δ(i, a) = i+1,
for 0 ≤ i ≤ p− 2. We define the involution τ by τ(0) = p− 1, τ(1) = p− 2, . . .
In particular, it follows τ(δa(τ(0))) = τ(δa(p−1)) is undefined as required, since
δ−1
a (0) = δ←(0, a) is undefined. For 1 ≤ i ≤ p − 1, the equation τ(δa(τ(i))) =
τ(p − i) = i − 1 = δ−1

a (i) shows that, in fact, τ witnesses the time-symmetry
of M . ��

Example 5. We reconsider the reversible unary DFA in Figure 2. Arbitrarily, we
choose i = 1 and j = 4. Then by the construction in the proof of Theorem 3,
the involution τ(1) = 4, τ(2) = 3, τ(0) = 5, τ(p − 1) = 6, . . . follows. It is
immediately verified that τ witnesses the fact that M is time symmetric. ��

Corollary 6. Let M be a reversible unary DFA with at least three states ac-
cepting an infinite language. Then the involution witnessing the time-symmetry
of M is not unique.

4 Time-Symmetry in Pushdown Machines

Now we turn to a type of machine in question having an additional resource.
In particular we consider the resource pushdown store or stack and obtain the
so-called pushdown automata, whose deterministic variants have important ap-
plications in parser theory. They capture the deterministic context-free languages
that can still be parsed in linear time using the well-known parsing algorithms for
LR(1) grammars (see, for example, [1]). The handling of the additional resource
makes the definitions of reversibility and time-symmetry more involved. A de-
terministic pushdown automaton (DPDA) is a system M = 〈S,Σ, Γ, δ, s0,⊥, F 〉,
where S is the finite set of internal states, Σ is the finite set of input symbols, Γ
is the finite set of pushdown symbols, s0 ∈ S is the initial state, ⊥ ∈ Γ is a dis-
tinguished pushdown symbol, called the bottom-of-stack symbol, which initially
appears on the stack, F ⊆ S is the set of accepting states, and the transition
function δ maps S × Σλ × Γ to S × Γ ∗. As for DFA we allow δ to be a partial
function. The input word is provided on an input tape, which can be scanned
by the DPDA “from left to right” using a reading head. A DPDA may, but need
not, read the next input symbol in a step. There must never be a choice of using
an input symbol or of using λ input. So, it is required that for all s in S and Z
in Γ : if δ(s, λ, Z) is defined, then δ(s, a, Z) is undefined for all a in Σ.
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Let δ(q, aλ, Z) = (p, β), for some p, q ∈ S, aλ ∈ Σλ, Z ∈ Γ , and β ∈ Γ ∗. For
the explanation of its meaning we first have a look at configurations. A con-
figuration of a DPDA is a quadruple (v, s, w, γ), where s is the current state,
v is the part of the input to the left of the input head, and w the part of
the input to the right of the input head, and γ the current content of the
pushdown store, the leftmost symbol of γ being the top symbol. On input w
the initial configuration is defined to be (λ, s0, w,⊥). For s ∈ S, aλ ∈ Σλ,
v, w ∈ Σ∗, γ ∈ Γ ∗, and Z ∈ Γ , let (v, q, aλw,Zγ) be a configuration. Then its
successor configuration is (vaλ, p, w, βγ), where δ(q, aλ, Z) = (p, β). We write
(v, q, aλw,Zγ) " (vaλ, p, w, βγ) in this case.

Thus the size of the stack can only decrease (by exactly 1) if β = λ; this is
usually called a pop operation. If |β| = 1 the top of stack symbol is exchanged,
leaving the size of the stack unchanged. If |β| > 1 the size of the stack increases
(by |β| − 1); we call this a push operation.

While the usual presentation of DPDA uses the transition function δ, in the
present context it is advantageous to consider its induced extended transition
function δ̂ : S×Σλ×Γ ∗ → S×Γ ∗ as follows. For any γ ∈ Γ ∗ set δ̂(q, aλ, Zγ) =
(p, βγ) if and only if δ(q, aλ, Z) = (p, β).

The reflexive transitive closure of " is denoted by "∗. The language accepted
by M with accepting states is

L(M) = {w ∈ Σ∗ | (λ, s0, w,⊥) "∗ (w, q, λ, γ), for some q ∈ F and γ ∈ Γ ∗ }.

Now we turn to reversible pushdown automata which have been introduced
in [19], where a weaker form of reversibility has been studied. There, reversibil-
ity is considered only for configurations that are reachable from some valid initial
configuration. To remain in context, here we require reversibility for all configu-
rations. To this end, the pushdown automata have to be backward deterministic.
That is, any configuration must have at most one predecessor which, in addi-
tion, is computable by a DPDA. A DPDA is called reversible if and only if for
each input symbol x ∈ Σλ the (possibly partial) function δx : S × Γ → S × Γ ∗:
(s, Z) 
→ δ(s, x, Z) is injective. As before, we write δ← for the reverse transition
function δ← : S × Σλ × Γ → S × Γ ∗ satisfying δ←(s, x, Z) = δ−1

x (s, Z), and we

write δ̂x for the extension of δx.
In [19], basically it is observed that the following structure of transitions

enables reversibility.

Fact 7. Let M be a DPDA and M← its inverse. In one operation M← can
decrease the height of its stack by at most one. Therefore, M may increase the
height of its stack only by at most one, too. Furthermore, when M← pops a
symbol this operation simply reveals the next-to-top symbol. Therefore when M
increases the height of its stack, it must do so by leaving the previous top-of-stack
symbol intact: If δ(s, aλ, Z) = (t, β) and |β| > 1 then β = Y Z for some symbol
Y ∈ Γ . Thus for a reversible DPDA M there are only the following possibilities:

push: δ(s, aλ, Z) = (t, Y Z) =⇒ δ←(t, aλ, Y ) = (s, λ)
change top: δ(s, aλ, Z) = (t, Y ) =⇒ δ←(t, aλ, Y ) = (s, Z)
pop: δ(s, aλ, Z) = (t, λ) =⇒ for all X ∈ Γ : δ←(t, aλ, X) = (s, ZX)
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A reversible DPDA is time symmetric if and only if there is an involution
τ : S × Γ ∗ → S × Γ ∗ so that, δ̂−1

x = τ ◦ δ̂x ◦ τ holds for all x ∈ Σλ. To clar-
ify our notion we continue with an example.

Example 8. The linear context-free language

{wcv | w ∈ {a, b}∗, wR = vu, 0 ≤ |u| ≤ |w| }

is accepted by the time-symmetric DPDA

M = 〈{s0, s1}, {a, b, c}, {a, b,⊥}, δ, s0,⊥, {s1}〉,

where the transition functions δ and δ← are as follows.

Transition function δ
(1) δ(s0, a,⊥) = (s0, a⊥)
(2) δ(s0, b,⊥) = (s0, b⊥)
(3) δ(s0, a, a) = (s0, aa)
(4) δ(s0, a, b) = (s0, ab)
(5) δ(s0, b, a) = (s0, ba)
(6) δ(s0, b, b) = (s0, bb)

(7) δ(s0, c,⊥) = (s1,⊥)
(8) δ(s0, c, a) = (s1, a)
(9) δ(s0, c, b) = (s1, b)

(10) δ(s1, a, a) = (s1, λ)
(11) δ(s1, b, b) = (s1, λ)

Reverse transition function δ←

(1) δ←(s0, a, a) = (s0, λ)
(2) δ←(s0, b, b) = (s0, λ)

(3) δ←(s1, c,⊥) = (s0,⊥)
(4) δ←(s1, c, a) = (s0, a)
(5) δ←(s1, c, b) = (s0, b)

(6) δ←(s1, a, a) = (s1, aa)
(7) δ←(s1, a, b) = (s1, ab)
(8) δ←(s1, b, a) = (s1, ba)
(9) δ←(s1, b, b) = (s1, bb)
(10) δ←(s1, a,⊥) = (s1, a⊥)
(11) δ←(s1, b,⊥) = (s1, b⊥)

The transitions (1) through (6) of δ are used by M to store the input prefix w.
When a c appears in the input, transitions (7) through (9) are used to change
to state s1 while the pushdown store remains unchanged. By transitions (10)
and (11) the input suffix is matched with the stored prefix.

For the backward computation the transitions of δ← are constructed according
to Fact 7.

So, M is reversible. In order to show that it is time symmetric, we define the
involution τ(s0, γ) = (s1, γ) for any γ ∈ Γ ∗. The condition δ̂x ◦ τ = τ ◦ δ̂−1

x

implies time-symmetry. It is easily verified, for example, by truth table since τ
only changes the state. Exemplarily, we mention that

(δ̂b ◦ τ)(s0, bγ) = (s1, γ) = (τ ◦ δ̂−1
b )(s0, bγ)

and that (δ̂c ◦ τ)(s0, γ) as well as δ̂−1
c (s0, bγ) are undefined. Therefore, the prin-

ciple of time-symmetry is matched. Again exemplarily, let

(v, s1, aw, abγ) " (va, s1, w, bγ)

be a computation step. Applying τ on the configuration (va, s1, w, bγ) gives
(va, s0, w, bγ), on which δ is applied while the a following the prefix v is provided
as input. This yields (v, s0, aw, abγ). Applying τ again results in the configuration
(v, s1, aw, abγ) which is the predecessor of (va, s1, w, bγ). ��
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Corollary 9. There is a non-regular language which is accepted by a time-
symmetric DPDA.

The next theorem contrasts the situation for DFA.

Theorem 10. There are reversible unary DPDA which are not time symmetric.

Proof. Let n ≥ 1 be a constant. Then the unary language { ai | i ≥ n } is accep-
ted by the reversible DPDA M = 〈{s0, s1, . . . , sn}, {a}, {a,⊥}, δ, s0,⊥, {sn}〉,
where δ(si, a,⊥) = (si+1,⊥), for 0 ≤ i ≤ n − 1, and δ(sn, a,⊥) = (sn, a⊥),
δ(sn, a, a) = (sn, aa).

So, on any sufficiently long input M runs into a cycle with state sn. However,
since in every step in the cycle a symbol is pushed, in reverse computations a
DPDA can detect that it has to leave the cycle: when the pushdown store gets
empty. The reverse transition function can thus be defined as δ←(sn, a, a) =
(sn, λ) and δ←(si, a,⊥) = (si−1,⊥), for 1 ≤ i ≤ n.

In order to give evidence thatM is not time symmetric we consider state sn. In
any forward step starting in state sn a symbol is pushed. In particular, this means
that a backward step has to pop a symbol. However, there are no states appearing
in a transition from δ that pop a symbol. Therefore, there is no state to which sn
could be mapped by an involution witnessing the time-symmetry. ��

As for DFA any reversible DPDA can be simulated by a time-symmetric DPDA
with at most twice as many states.

Theorem 11. Let p ≥ 1 and M be a p-state reversible DPDA. Then there exists
an equivalent 2p-state time-symmetric DPDA M ′.

Proof. We argue similar as for finite automata. Therefore, given some reversible
DPDA M = 〈S,Σ, Γδ, s0,⊥, F 〉 we construct an equivalent and time-symmetric
DPDA M ′ = 〈S′, Σ, Γ δ′, s0,⊥, F ′〉 by setting S′ = S × {→,←}, s′0 = (s0,→),
and F ′ = F ×{→}. For all s ∈ S, aλ ∈ Σλ, and Y, Z ∈ Γ , the transition function
is defined as follows.
If δ(s, aλ, Z) = (t, Y Z) (and hence δ←(t, aλ, Y ) = (s, λ)) then

δ′((s,→), aλ, Z) = ((t,→), Y Z) (push) and
δ′((t,←), aλ, Y ) = ((s,←), λ) (pop).

If δ(s, aλ, Z) = (t, Y ) then

δ′((s,→), aλ, Z) = ((t,→), Y ) (change top) and
δ′((t,←), aλ, Y ) = ((s,←), Z) (change top).

If δ(s, a, Z) = (t, λ) then

δ′((s,→), aλ, Z) = ((t,→), λ) (pop) and
for all X ∈ Γ : δ′((t,←), aλ, X) = ((s,←), ZX) (push).

Clearly, the DPDA M ′ works like M while in states from S×{→} and it works
like the inverse M← while in states from S × {←}. Furthermore, we notice that
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L(M ′) = L(M) since M ′ starts in (s0,→) and there is no transition leading from
a state in S × {→} to a state in S × {←}, and that M ′ is reversible, since M
and its inverse are reversible.

Now, for all s ∈ S, let the involution τ be defined by τ((s,→), γ) = ((s,←), γ)
and τ((s,←), γ) = ((s,→), γ), for any γ ∈ Γ ∗. Then it is easily verified that M ′

is time symmetric. ��

Though it is well known that every unary context-free language is regular [11],
the families of reversible and time-symmetric unary languages are different.

Theorem 12. (1) The family of languages accepted by time-symmetric (unary)
DFA is properly included in the family of languages accepted by time-symmetric
(unary) DPDA.

(2) The family of languages accepted by reversible (unary) DFA is properly
included in the family of languages accepted by reversible (unary) DPDA.

Proof. The inclusions are straightforward. Their propernesses follow by the unary
language of the proof of Theorem 10, which cannot be accepted by any reversible
DFA. However, the language is accepted by some time-symmetric DPDA by
Theorem 11. ��

5 Conclusion

Let k ≥ 1 be a natural number. A two-way k-head finite automaton is a finite
automaton having a single read-only input tape whose inscription is the input
word in between two endmarkers. The k heads of the automaton can move freely
on the tape but not beyond the endmarkers. If the heads are not allowed to move
to the left, the k-head automaton is said to be one-way. Reversible multi-head
automata have been studied in [4,20,25,26].

Without going into deep details, we just mention that the idea to put a re-
versible k-head finite automaton and its inverse “side by side” shows that for
any reversible p-state k-head finite automaton one can effectively construct an
equivalent time-symmetric one with 2p states. Furthermore, it is evident that
this technique also works for reversible Turing machines.

However, whether the increase in size caused by doubling the number of states
is always necessary is an interesting question for further investigations.

The authors gratefully acknowledge corrections and suggestions by the referees
which lead to an improved presentation.
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Abstract. In this paper, we introduce a new method to realize sym-
metric functions with reversible circuits. In contrast to earlier methods,
our solution deploys a simple and regular cascade structure composed of
low-cost gates which enables significant reductions with respect to quan-
tum costs. However, the number of garbage outputs increases slightly.
To overcome this, we next propose an optimized design by reusing the
garbage outputs. The resulting design thus offers a powerful approach
towards reversible synthesis of symmetric Boolean functions.

Keywords: Quantumcomputation,Reversible logic, Symmetric functions.

1 Introduction

Reversible computing has become one of the major research areas in the recent
times. Reversible logic has found applications in quantum computing [1, 2], low
power design [3, 4], optical computing [5], DNA computing [6], as well as in
nanotechnology [7]. These promising applications mandate new solutions for
design automation of the emerging classes of circuits and systems.

Among the various research problems related to the field of reversible circuit
design, logic synthesis has received significant attention. A number of reversible
synthesis methods has been proposed for this purpose [8–16]. Usually, they aim
for reducing the quantum costs, i.e. the number of elementary operations to
be conducted in a quantum device, as well as the number of garbage outputs,
i.e. output connections that are sometimes required to ensure reversibility but
are not utilized to represent the desired function.

In this paper, we address the problem of synthesizing symmetric Boolean
functions using reversible logic. These special types of functions have many appli-
cations to cryptology and to the design of secured systems, control and commu-
nications circuits. Accordingly, synthesis methods for such functions have been
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A • Y = A

B Z = A⊕B

Fig. 1. Feynman (CNOT) Gate

A • P = A

B • Q = B

C R = AB ⊕ C

Fig. 2. Toffoli Gate

studied extensively [17–21]. Realizations of symmetric functions by reversible
logic gates have been described in [9,22,23]. Picton used Fredkin gates to realize
digital summation threshold logic (DSTL) devices [23]. An efficient realization
of arbitrary symmetric functions using a Reversible Programmable Gate Array
(RPGA) has been proposed in [9, 22].

We propose a new approach for designing symmetric functions using an array
of Peres gates. Our solution uses simpler reversible gates compared to previously
introduced designs [9,13] and is inspired by a regular structure proposed in [19].
This yields a significant reduction in the quantum cost. However, the number
of garbage outputs increases slightly. This is eventually addressed by proposing
an optimization of the regular structure that enables reuse of garbage outputs
and hence, leading to a reduction of them. The benefits of the proposed design
is demonstrated by comparing ours with the solutions obtained by previously
proposed techniques [9, 13].

The rest of the paper is organized as follows. In Section 2, we provide the
basics of reversible functions, reversible gates, and symmetric functions. Section 3
introduces the proposed regular structure as well as its optimization. Based on
that, Section 4 describes how general symmetric functions can be realized with
this structure. Finally, the resulting design is compared to previous work in
Section 5 and the paper is concluded in Section 6.

2 Preliminaries

2.1 Reversible Logic Functions

A function f is said to be reversible if and only if f : Bn → Bn over variables
X = (x1, x2, · · · , xn) maps each input to a unique output and if f has the same
number of input and output variables. It implies that there are 2n input rows and
2n output rows in the truth table of f and the output rows are the permutation
of the input rows. We use the notation (n×n) to represent an n-input reversible
function f .

2.2 Reversible Logic Gates

A reversible circuit is a fan-out free cascade of reversible gates. The common
reversible gates include the Feynman gate, the Fredkin gate, the Toffoli gate,
and the Peres gate.

Feynman Gate:- A (2 × 2) Feynman gate (FG), also known as controlled-NOT
gate or simply CNOT gate, is shown in Fig. 1. It has two inputs, known as the
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Fig. 3. Peres Gate

control input (A) and the target input (B), respectively. The logical relationship
between inputs and outputs can be written as: Y = A, Z = A⊕B.

Toffoli Gate:- A multiple control Toffoli gate (TG) tm has the form tm(C, t),
where C = {xi1 , xi2 , · · · , xim} ⊂ X is the set of control lines and t = {xj}
with C ∩ t = ∅ is the target line. The value of t is inverted if and only if all
control lines are set to 1. For m = 0 and m = 1, the gates are called NOT and
CNOT, respectively. Fig. 2 illustrates the Toffoli gate with three inputs (A,B,C)
and three outputs (P,Q,R), where (A,B) are control inputs that are unaffected
by the action of the Toffoli gate. The third input is a target input (C) that is
inverted if both, A and B, are 1 and otherwise remains unchanged. Thus, we get
P = A, Q = B, R = C ⊕AB.

Peres Gate:- Fig. 3 shows a 3 × 3 Peres gate (PG). This gate performs the
following operation: P = A, Q = A ⊕ B, R = C ⊕ AB, where the outputs are
denoted as (P,Q,R) and inputs are denoted as (A,B,C).

Besides that, the following definitions related to reversible circuits are impor-
tant in this work.

Control input and target input :- A reversible gate consists of two sets of inputs:
control set and target set. If at least one control line is set to 0, then nothing
happens to the target lines. If instead all control lines are set to 1, then the gate
function is applied to the target line.

Constant input :- A constant input of a reversible function is a fixed input value
(either 0 or 1).

Garbage outputs :- They refer to the outputs that are not assigned a certain func-
tion value. Garbage outputs are very much essential without which reversibility
cannot be achieved for irreversible functions. For example, an AND operation of
the two inputs A and B can only be achieved using the structure in Fig. 2 with
C=0. In this example, the unused outputs P and Q are garbage outputs.

Quantum Cost (QC):- For its operation, a reversible gate offers a quantum cost
given by the number of elementary quantum operations, which are performed by
elementary quantum gates called as controlled-NOT (CNOT) gate, controlled-V
gate, controlled-V+ gate, etc.; each having quantum cost of unity. The quantum
costs of different reversible gates are shown in Table 1.
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Table 1. Quantum cost

Reversible Gate Quantum Cost

CNOT gate 1
TOF(a,b;c) 5
TOF(a,b,c;d) 14
PERES gate 4
Fredkin gate 5

Fig. 4. Design for 2-inputs Fig. 5. Design for 3-inputs

2.3 Symmetric Functions

A switching function over n variables is a function f(x1, x2, · · · , xn) : Q
n → Q,

where Q denotes the set that consists of two values {0, 1}. A switching function
f(x1, x2, · · · , xn) is totally symmetric if it is unchanged by any permutation of
its variables (x1, x2, · · · , xn).

For a symmetric function, it is sufficient to specify the number of inputs that
are to be set to logic 1 for the function to be 1. An n-variable symmetric function
is represented as Sn(A), where A is a set of integers (ai, · · · , aj , · · · , ak) and
∀ai, aj, 1 ≤ ai, aj ≤ n, ai �= aj . This is denoted by Sn

ai,··· ,aj ,··· ,ak
. For n variables,

2n+1−2 different symmetric functions (excluding constant functions 0 and 1) can
be constructed. If the set A contains only consecutive integers (al, al+1, · · · , aq)
with al<aq, the symmetric function is called consecutive symmetric function
and denoted by Sn

al−aq
. A totally symmetric function Sn(A) can be expressed

as a union of maximal consecutive symmetric functions, such that Sn(A) =
Sn(A1) + Sn(A2) + · · · + Sn(Am), with m being the minimum and such that
∀i, j, 1 ≤ i, j ≤ m,Ai ∩ Aj = ∅, whenever i �= j.

Example 1. S15
4,5,6,7,12,13,14,15 can be written as the summation of two consecutive

symmetric functions S15
4−7 and S15

12−15.

3 Synthesis of Symmetric Boolean Functions

In this section, we present our approach to the synthesis of symmetric Boolean
functions as reversible circuits. First, we introduce the proposed regular structure
followed by possible optimization. This builds the basis of a generic synthesis
scheme for general symmetric functions, which is outlined in the next section.
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Fig. 6. Design for 4-inputs

3.1 The Proposed Regular Structure

Our design consists of an array of Peres gates. The reversible gates in the design
are thereby arranged as a matrix, i.e. in the form of rows and columns. In the
following, this is illustrated for certain values of n, i.e., for different input sizes.

Consider the design for n = 2 inputs, i.e. for x1 and x2. The design is composed
of a single (3 × 3) Peres gate. Throughout the design, the input line C of the
Peres gate is assigned a value 0. Hence, a structure as depicted in Fig. 4 results.
When C is set to 0, the Peres gate produces the following outputs: P1 = x1,
Q1 = x1⊕x2, and R1 = x1x2. Thus, this design produces two symmetric Boolean
functions, namely Q1 = S2

1 and R1 = S2
2 . The output P1 is a garbage output.

Consider the design for n = 3 inputs, i.e., for x1,x2, and x3. In this case, the
design deploys two (3× 3) Peres gates. There are two rows and two columns. In
the first row, we have two Peres gates, whereas the second row does not contain
any gate. The design is shown in Fig. 5. In this case, the output Q11 from the
first Peres gate is given as one of the inputs to the second Peres gate in the
first row. The other two inputs of the second Peres gate are x3 and R21 (output
of the 1st Peres gate). Therefore, the outputs that are obtained from the 2nd

Peres gate are: P12 = Q11, Q12 = Q11 ⊕ x3, R22 = Q11x3 ⊕ R21. Here, also P12

is the garbage output. The output R22 appears in the second row as Q22. This
structure already realizes two other symmetric functions, namely Q12 = S3

1,3 and
Q22 = S3

2,3.
Consider the design forn = 4 inputs, i.e., for x1,x2,x3, andx4. Then, the top row

contains threePeres gates,whereas the second row contains a singlePeres gate. Fig.
6 shows this design. At the first row, the output Q12 of the 2

nd Peres gate is given
as input to the 3rd Peres gate along with inputs x4 and 0. This produces outputs
P13 = Q12,Q13 = (Q12⊕x4), andR23 = Q12x4. The outputR23 from the top row
and the outputQ22 from the previous column appear as inputs to the Peres gate at
the second row, which generatesQ23 = Q22 ⊕ R23. This equals to S4

1,3. The third
row has the output R33 = Q33 = Q22R23 realizing S

4
4 .

It may be observed that, for n = 2 (n = 3), there are two output lines produc-
ing S2

1 and S2
2 (S3

1,3, S
3
2,3). For n = 4, there are three output lines producing S4

1,3,
S4
2,3, S

4
4 . Hence, a regular structure results where each output line corresponding

to a row in the design produces a certain symmetric Boolean function.
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(a) circuit at (n−1)th level for 2k−1<n<2k (b) circuit at (n − 1)th level for
n = 2k

Fig. 7. The circuit structure at (n− 1)th level

This can be generalized as follows: Consider the structure to be designed for n
inputs, i.e. for x1, . . . , xn. Here, we can think of different columns, where columns
may be termed as levels and respectively introduce a new input xi. Hence, the
inputs x1 and x2 are considered in the 1st level, the input x3 in the 2nd level, the
input x4 in the 3rd level, and so on. Notice that the network for n = 4, subsumes
the complete structure for n = 3. If we have the circuit for any n = i, then the
circuit for n = i + 1 can be obtained by appending one more level. Thus, there
are (n − 1) columns or levels in the array. Therefore, for a circuit structure of
n input lines, there are k rows and (n− 1) columns with k = �log2 n�+ 1. The
circuit structure to be appended after the (n − 2)th level is shown in Fig. 7(a)
for 2k−1<n<2k and in Fig. 7(b) for n = 2k. Let the inputs to the (n− 1)th level
be represented as Y 1

n−1, Y
2
n−1, · · · , Y k

n−1. Then, the outputs after the (n − 1)th

level can be recursively determined using following relation:

Y i
n = Y i

n−1 ⊕ yin for 1 ≤ i ≤ k (1)

where
Y i
0 = 0 (2)

yin = xn for i = 1

= Y i−1
n−1y

i−1
n for i>1

(3)

It can be observed that a new row is added to the design for every n = 2k

input variables, where (k = 2, 3, 4, ...). Thus, for any n, the number of rows is
�log2 n�+1. For 2k−1<n<2k, the kth row does not contain any gate. The output
R from the Peres gate of the (k−1)th row is given as the target line to the Peres
gate in the same row and next column. This results in a cascade of Peres gates
with quantum costs of 2m+ 2 [24], where m is the number of Peres gate in the
cascade. For n = 2k, the kth row contains CNOT gates except the last one where
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a Peres gate is used. In this case, there are (k + 1) outputs. The output in the
(k+1)th row appears from the output R of the Peres gate of the preceding row.
Hence, there is no gate in the (k + 1)th row. For n-input variables, the entire
design contains only Peres gates. For example, the circuit structure for n = 8 is
shown in Fig. 8.

Fig. 8. Circuit for 8-inputs

Following the structure outlined above, k = (�log2 n�+1) symmetric functions
are produced. The ith(1 ≤ i ≤ k) output line represents thereby the symmetric
function Sn

ai1 ,ai2 ,··· ,aiq
, where each aij is an integer whose binary representation

has a 1 in the ith bit. Apart from these symmetric functions produced at k output
lines, the Boolean functions realized by the garbage outputs are also symmetric
with a fewer number of literals. For n = 8, the corresponding inputs, outputs,
and garbage outputs at the different levels of the network are listed in Table 2.

Table 2. Inputs and outputs at each level

Levels Inputs Outputs Garbage Outputs

1 x1, x2 S2
1 , S

2
2 x1

2 x3 S3
1,3, S

3
2,3 S2

1 , S
2
2

3 x4 S4
1,3, S

4
2,3, S

4
4 S3

1,3, S
3
2,3

4 x5 S5
1,3,5, S

5
2,3, S

5
4,5 S4

1,3, S
4
2,3, S

4
4

5 x6 S6
1,3,5, S

6
2,3,6, S

6
4−6 S5

1,3,5, S
5
2,3, S

5
4,5

6 x7 S7
1,3,5,7, S

7
2,3,6,7, S

7
4−7 S6

1,3,5, S
6
2,3,6, S

6
4−6

7 x8 S8
1,3,5,7, S

8
2,3,6,7, S

8
4−7, S

8
8 S7

1,3,5,7, S
7
2,3,6,7, S

7
4−7

For an n-input function, the total number of Peres gates is therefore given by

NPG = (n�log2 n� − n− 2�log2 n� + �log2 n�+ 2) (4)

The design requires n�log2 n� − 2n − 2�log2 n� + 2�log2 n� + 3 constant inputs
(fixed to 0). It may be observed that the total number of garbage in the design
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is equal to the sum of the total number of Peres gates. Therefore, the design
produces

Ngarbage = NPG (5)

garbage lines for any n.

3.2 Further Optimization of the Proposed Structure

The proposed regular structure generates a large number of garbage lines. The
design can further be improved in this respect. Notice that once the garbage lines
are used as control lines, they no longer play any role in the circuit. Therefore,
the structure can be improved by reusing the garbage lines as target or control
lines in the rest of the circuit.

The resulting reversible circuit for n = 4 inputs is redrawn in Fig. 9 (the
original realization is depicted in Fig 6). The circuit remains the same for up
to n = 3 inputs, i.e., the 1st row produces the output Q12 = S3

1,3 and the 2nd

row produces the output R22 = S3
2,3. For n = 4, now a (3× 3) Toffoli gate with

two control lines Q12 and x4 is added to the design. This produces the output
T23 = Q12x4 = S3

1,3x4. Since the design adds a new row to the structure at

n = 4, the 2nd row will have a Peres gate producing outputs at the 2nd and
the 3rd rows. This Peres gate takes R22 and T23 as control inputs and produces
R33 = R22T23 = S4

4 at the 3rd row with the target input line set to 0. It also
produces the output Q23 = T23 ⊕R22 = S4

2,3 at the 2nd row. Now, a Peres gate
is introduced in the 1st row, which works on the same set of control and target
lines. This means that the Toffoli gate with two control lines present in the Peres
gate is an exact replica of the (3 × 3) Toffoli gate added previously in the 1st

row. This makes the garbage output T23 to become zero. Later, this line can be
reused again in the circuit.

In general, for 2k−1 ≤ n < 2k (k �= 1, 2), the optimized design inserts a single
Toffoli gate before every Peres gate present in the (k − 1)th row. Initially, a
Toffoli gate in the (k − 1)th row and the jth (1 ≤ j ≤ n − 1) column produces
an output which appears as one of the inputs to the Peres gate in the kth row
and the jth column. Once this output line is used, and if it is not required any
more, it becomes a garbage output. The presence of a Peres gate in the (k−1)th

row results in a structure of Toffoli gates followed by another Toffoli gate and a
CNOT gate (since Peres gate is equivalent to a Toffoli gate followed by CNOT
gate) in the same row. The two back-to-back Toffoli gates work on the same set
of control lines and target line. Since the Peres gate preceded by the Toffoli gate
in the same row works on the same set of control and target lines, this makes
the garbage output to become zero. Therefore, this line can now be reused as a
target line to other gates in the next level in the structure as shown in Fig. 10
for n = 5 inputs. Note that any row where a Peres gate and a Toffoli gate share
the same target line and one of the control lines, a so called Peres-Toffoli double
gate can be applied. The quantum cost of such a gate is 7 [24].

This optimization technique results in (2�log2 n� − 1) constant input lines
for an n-input design, which is less than that of the original structure. On the
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x1 • • garbage
x2 • • • garbage
x3 • • • • garbage
x4 • • S4

1,3

0 • S4
2,3

0 • • garbage(= 0)

0 S4
4

Fig. 9. Optimized design for 4-inputs

x1 • • garbage
x2 • • • garbage
x3 • • • • garbage
x4 • • • • • garbage
x5 • • S5

1,3,5

0 • • S5
2,3

0 • • • • garbage(= 0)

0 S5
4,5

Fig. 10. Optimized design for 5-inputs

contrary, the optimized design requires some additional Toffoli gates along with
the Peres gates of the main structure. The total number of Toffoli gates in the
design is given by

Ntoffoli = n�log2 n� − n− 2�log2 n�+1 + �log2 n�+ 3 (6)

while the total number of Peres gates remains the same as in the original design.
The total number of garbage lines required for the optimized design is given

as

Nreduced−garbage = n+ �log2 n� − 2. (7)

Comparing this with the result shown in Equation (4), we observe that the
number of garbage lines in the optimized structure is less than that of the original
structure.

4 Reversible Synthesis of General Symmetric Functions

For any n inputs, the proposed structure produces �log2 n�+ 1 number of sym-
metric functions. Two symmetric functions Sn

A and Sn
B are true for any weight

w of input vectors, w = (1, 2, · · ·n), if A∩B = {w : w ∈ A and w ∈ B}, where A
and B are a set of integers containing the Hamming weights of the input vectors.
The aim here is to separate these common weights between any two symmetric
functions and represent all the symmetric functions in terms of individual weight
of its input vector. To do this, the output lines of the regular structure are fed
to a network consisting of a number of blocks called extraction-elimination (EE)
modules.

4.1 Extraction-Elimination (EE) Module

As the name implies, this module performs two operations: the first one is an
“extraction”, which extracts the common weight of an input vector from two
symmetric functions for which the functions are true. The second one is an
“elimination”, which eliminates the common weight from those two symmetric
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S3
1,3 • S3

1

S3
2,3 • S3

2

0 • • S3
3

Fig. 11. Extraction-Elimination module: S3
1,3, S

3
2,3 are inputs along with target line set

to 0 and S3
1 , S

3
2 , S

3
3 are outputs

functions. This module produces three symmetric functions of single weight.
The extraction operation is implemented using a Toffoli gate whose target line
is set to 0. The two elimination operations (one for each symmetric function)
are performed using two CNOT gates. The quantum cost of this module is 7.
The complete module is shown in Fig. 11. It is a garbage-free circuit where each
output line is essential.

4.2 Realization of General Symmetric Functions

The EE module is used to decompose k = �log2 n� + 1 symmetric functions of
multiple weights realized by the regular structure described in Section 3 into n
symmetric functions of single weight of its input vector, where k < n. This is
done using the following procedure:

1) First, the regular structure as described in Section 3 is constructed for n
inputs. The structure produces k = �log2 n� + 1 outputs, each of which is a
symmetric function of n inputs. For any given regular structure, we represent
integers 1 to n with its binary equivalent, i.e., for any n, the bit positions are
(2�log2 n� · · · 23222120), where 2�log2 n� is the most significant bit of the number n.
Each bit position of the decimal number n indicates an output line of the regu-
lar structure. Hence, there are �log2 n�+1 outputs in the regular structure. The
total number of 1′s present in any bit position 2m, where m = 0, 1, 2, · · · �log2 n�
indicates the corresponding output line of the regular structure realizing a sym-
metric function. If a 1 is present at the bit position 2m, which is an MSB, then
the regular structure has at most m + 1 output lines. It is noticed that the in-
tegers 1 to n denote the weights of the input vector for which the functions are
true. Once all the integers are represented in their equivalent binary forms, the
process of identification follows.

2) During this process, we identify all the 2m bit positions that are 1 for binary
equivalents of all the consecutive integers 1 to n. This helps in indicating all the
corresponding output lines realizing symmetric functions, i.e., they are true for
that integer (weight of the input vector). Two cases related to the identification
of bit positions are considered. The first case implies if any one of the 2m bit
positions is 1 and rest of the bit positions are 0. Then, the symmetric function
in the corresponding output line is true only for that integer (weight of the
input vector). In the second case, if more than one bit positions are 1, then
the corresponding output lines realizing the functions, are true. Whenever the
second case is encountered, the output lines of the regular structure are identified
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Table 3. Binary representations of five consecutive numbers

Decimal number its binary equivalent

1 0001
2 0010
3 0011
4 0100
5 0101

from the bit positions of the binary number equal to 1. Now an EE module is
applied to the two lines indicated by the two bit positions. This results in the
extraction of the corresponding integer value. The extracted integer is copied at
the target line of a (3× 3) Toffoli gate by setting the line to 0. This integer is a
weight of the input vector for which the functions in those two lines are set to
1. Following the extraction operation, the elimination operations are performed
on these two lines by two CNOT gates, one for each line. This results in three
symmetric functions with no common input weight. This process continues until
all the integers are considered.

Following this procedure, we require (n−�log2 n�−1) number of EE modules
for an n-input structure to convert �log2 n�+1 symmetric functions of multiple
weights to n symmetric functions of single weight.

Example 2. Consider the regular structure for n = 5 inputs. There are three
output lines producing outputs f1 = S5

1,3,5, f2 = S5
2,3 and f3 = S5

4,5 on line 1, 2,
and 3 respectively. The possible weights of the input vector and their binary
equivalents are shown in Table 3. From the table, it can be observed that the
first binary number has a single 1 at its bit position 1. This represents weight
1 for which f1 will be true. Similarly, the second binary number has a single
1 at its bit position 2, thus representing weight 2 for which f2 is true. In the
third binary number, we have two 1’s - one in bit position 1 and another in bit
position 2, indicating weight 3 for which the functions in line 1 (f1) and line 2
(f2) are true. Therefore, we append an EE module to line 1 and 2 which produces
three outputs- S5

1,5 at line 1, S5
2 at line 2, and S5

3 at line 4. In the fourth binary
number, there is a single 1 at bit position 3 meaning that the output line 3 is
true for weight 4. In the last binary number, we observe that there are two 1’s in
bit positions 1 and 3. Thus, line 1 and line 3 are now applied to the EE module
which produces outputs S5

1 at line 1, S5
4 at line 3, and S5

5 at line 5. Therefore,

S5
1,3,5 • • S5

1

S5
2,3 • S5

2

S5
4,5 • S5

4

0 • • S3
3

0 • • S5
5

Fig. 12. EE modules appended at the end of the regular structure for 5 inputs
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using two EE modules five symmetric functions of single weight are produced
as shown in Fig. 12.

5 Comparison to Previous Work

We have compared the cost metrics of the proposed regular and the optimized
structure with those reported in previous work [9, 13]. The comparison is made
on the basis of quantum cost and the number of garbage lines. The results are
reported in Table 4. We observe that the realizations of benchmark functions
obtained by the first technique have less quantum costs as compared to those
reported in previous work [9, 13]. The number of garbage bits in this design is
larger in comparison to those from [13], but fewer than those of [9]. However,
these garbage outputs also implement symmetric functions with a fewer number
of literals and, thus, can be utilized to synthesize other symmetric functions.
Furthermore, by slightly increasing the quantum costs, the number of garbage
lines can further be reduced using the proposed optimization technique.

Table 4. Comparison of quantum cost

Function Quantum cost Garbage

Name In Out [9] [13] Sect. 3.1 Sect. 3.2 [9] [13] Sect. 3.1 Sect. 3.2

rd53 5 3 145 36 20 28 15 5 6 5

rd73 7 3 303 64 32 46 30 7 10 7

rd84 8 4 403 98 44 66 39 11 13 9

9sym 9 1 505 94 59 88 37 11 19 14

6 Conclusion

In this paper, we have proposed a synthesis scheme for realizing symmetric
Boolean functions with reversible logic. Compared to earlier synthesis meth-
ods, our solution relies on a simple and regular cascade structure. The garbage
outputs of our design can also be used to realize symmetric Boolean functions
with a fewer number of literals. We have evaluated the proposed design on some
well known benchmark symmetric functions. Our simulation results reveal that
the proposed design significantly reduces the quantum cost, but may require
additional ancillary lines thereby increasing the number of garbage outputs. To
reduce these garbage lines further, we have also proposed a modified structure in
which these garbage lines can be properly reused while implementing the output
functions. Both of these design approaches admit a hierarchical structure and
can thus be built in an iterative fashion. This regular structure thus obtained
can be fed to a network of extraction-elimination (EE) modules to synthesize
symmetric functions of single weights from those having multiple weights. The
EE network is an entirely garbage-free network.
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Abstract. The increased effort in recent years towards methods for
computer aided design of reversible logic circuits has also lead to research
in algorithms for optimising the resulting circuits; both with higher-level
data structures and directly on the reversible circuits. To obtain struc-
tural patterns that can be replaced by a cheaper realisation, many direct
algorithms apply so-called moving rules; a simple form of rewrite rules
that can only swap gate order.

In this paper we first describe the few basic rules that are needed to
perform rewriting directly on reversible logic circuits made from general
Toffoli circuits. We also show how to use these rules to derive more
complex formulas. The major difference compared to existing approaches
is the use of negative controls (white dots), which significantly increases
the algebraic strength. We show how existing optimisation approaches
can be adapted as problems based on our rewrite rules.

Finally, we outline a path to generalising the rewrite rules by showing
their forms for reversible control-gates. This can be used to expand our
method to other gates such as the controlled-swap gate or quantum gates.

Keywords: Reversible logic, term rewriting, circuit optimisation, cir-
cuit equivalence.

1 Introduction

When Landauer presented his seminal paper [9] he exemplified some of his ideas
with a simple reversible logic gate; a gate that is equivalent to the controlled-
controlled-not gate or Toffoli gate. Fredkin and Toffoli [7,17] later formalized the
computational model for reversible logic and reversible logic circuits have since
been associated with low-power computing circuits.

An important aspect of reversible logic design is to be able to find an imple-
mentation of a desired functionality. This problem has been researched at many
different levels: from hand-made (arithmetic) circuits (e.g. [3,5,16,19]), over dif-
ferent variants of synthesis algorithms (e.g. [11–13]), to specification languages
that can ease the implementation phase (e.g. [14, 15, 20]). But another, just as
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important, aspect is to have a good or (even better) optimal implementation of
the reversible circuit. Of course, some synthesis methods seek optimality, but
for larger functions this is hard to achieve. This has lead to the development of
algorithms for optimising reversible circuits, where some of these work directly
on reversible logic circuits: these include moving rules [10] (there referred to as
passing rule), for locally swapping gates without changing their functionality,
and template matching [11], that over several gates can recognise sub-circuits
which are functionally equivalent to smaller circuits.

In this work the goal is not to design a new and better optimisation algorithm.
Instead, we desire a better understanding of the reversible circuit constructions.
We do this by exploring which basic rules are necessary to perform transforma-
tions directly on reversible logic circuits. At first, we limit ourselves to general
(mixed-polarity multiple-controlled) Toffoli gates. In this small, but widely used,
subset of reversible gates, it is still possible to show many of the interesting fea-
tures that this approach gives. In particular the use of negative controls (white
dots) significantly increase the algebraic strength; this is shown by the power
of the very simple rules. Furthermore, we also show how to use these rules to
derive more complex formulas that can then be used to derive more rules.

A particular use of these rules (or algebraic laws) is in the implementation
of a term rewriting system, cf. [4]. One use of rewriting is for optimisation,
which gives a connection to template matching and moving rules. We will show
this connection by deriving some template transformations and simple moving
rules. Another use of rewriting is to do equivalence checking. Here an example
will show how a circuit cascaded with the inverse of another can be rewritten
into the identity circuit. We will only shortly discuss (but not present) a term
rewriting system based on our rules. Implementing term rewriting systems is
not a simple task and, among other, avoiding divergence poses a problem. The
rewriting strategy based on the general decomposition of reversible circuits into
V-shaped target lines [18].

Finally, it is possible to generalise the basic rules to cover other reversible
logic gates than the general Toffoli gates, e.g. a controlled-swap (Fredkin) gate
or quantum gates. We will exemplify this by defining a general control-gate and
show some of the rules for these.

Some, but not all of our rules, have been used in previously presented papers,
often without explicitly considering them rules. The most related work is [2], in
which rules are used in order to optimise reversible circuits. However, they have
either used very simple rules or rules that require the simulation of the function-
ality which is afterwards optimised based on Karnaugh maps and the approach
is therefore not efficient for large functions. In contrast, the rules presented in
this paper can all be applied structurally, hence, the size of the circuit does not
matter. Also in [8] a rule-based approach is presented, but their rules only apply
for a small subset of the reversible circuits (they call them quantum Boolean cir-
cuits), where only one single line is semantically updated: reversible many-to-one
functions. In comparison our approach applies to all reversible circuits.
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2 Reversible Logic and Circuits

In this paper we use the formalism of Toffoli and Fredkin [7, 17] to describe
reversible logic circuits with diagram-notation based on Feynman [6]. In general,
a reversible gate is defined as a bijective function from n to n Boolean values.
There exist many such gates and in this work we restrict ourselves to mixed-
polarity multiple-controlled Toffoli gates.

Definition 1. Given a set of variables X = {x1, . . . , xn}, a mixed-polarity
multiple-controlled Toffoli gate (referred to as Toffoli gate in the following) is
defined as a tuple (C, xt) of control lines C and target line xt such that

C ⊂ {x, x̄ | x ∈ X} and {x, x̄} �⊂ C for all x ∈ X

and
{xt, x̄t} ∩ C = ∅ .

Control lines x and x̄ are referred to as positive and negative, respectively. From
the control lines the control function of the gate f : IBn−1 → IB is defined as

f : (x1, . . . , xt−1, xt+1, . . . , xn) 
→
∧
c∈C

c .

The gate represents the Boolean function g : IBn → IBn with

g : (x1, . . . , xn) 
→ (x1, . . . , xt−1, xt ⊕ f(x), xt+1, . . . , xn)

with x = x1, . . . , xt−1, xt+1, . . . , xn.

In other words, we restrict to reversible gates with a single updated target line,
xt, and multiple control lines that are inputs to a control function f . Here f
is defined as the conjunction of its inputs, where each input can be identity,
negated, or not used at all. The target line is updated with the result of the
exclusive-or product of xt and the result of f . Although f cannot be any Boolean
function, it is possible to define any Boolean function as an exclusive-sum of
products (ESOP) of control functions, which will result in a reversible circuit
with several cascaded gates that have the target line in common.

A reversible circuit is a cascade of reversible gates and the function defined
by the reversible circuit is defined as the composition of all functions defined by
the gates. It has been shown that every reversible function can be represented
by a reversible circuit consisting of Toffoli gates [17].

Notation. Our notation is based on the widely-used diagrams that were in-
troduced by Feynman [6]. The notation is illustrated in Fig. 1 by means of
an example for the reversible circuit ({x1, x̄2}, x3), ({x3}, x1), ({x̄1}, x2), (∅, x3).
The target line is marked with , positive and negative control lines with•and ,
respectively. To accommodate a more general use, we will denote Toffoli gates
as:

x / f / x

xt xt ⊕ f(x)
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x1 • x′
1

x2 x′
2

x3 • x′
3

Fig. 1. Reversible circuit

Lines marked with ‘/’ indicate that this line may consist of several bits. Note here
that the control function f is not (necessarily) a reversible function (following
from Def. 1), but the entire gate is still reversible as it is constructed as reversible
update [21].

3 Rewriting Toffoli Circuits

In this section we will show how to rewrite Toffoli circuits and define the basic
rewrite rules that are needed. We will show how to use these rules to derive some
well-known formulas, which can then be used to rewrite the Toffoli circuits in
fewer steps. When performing rewrites one has infinitely many possible ways to
apply the rules. It is, therefore, often helpful to have guiding strategies and we
will also outline some of them here.

3.1 Rewrite Rules

We now introduce the rewrite rules. Most rules are very simple, but this is also
the intention. They should contain exactly enough for us to later derive more
advanced rules and this is what we will do in Sect. 3.2.

First, however, note that gate composition is associative. By this we mean
that in a cascade of gates the order in which we look at the gates does not
matter; e.g. in Fig. 1 we are free to either look at the two first gates and perform
some rewriting on these, or start with the middle or last two gates. Just as we
assume the existence of identity gates between all other gates.

Gate Modifying Rules. The first rule is for introducing and eliminating Not-
gates and states that we can always rewrite the empty line (the identity function)
to two Not-gates. This is true because the Not-gate is self-inverse.

= (R1)

Although simple, the rule is very useful as we will see in a moment.
But before this, we will introduce the first rules with negative controls. The

rule (there are two rules to be exact) simply states that we can “move” a Not-gate
over a control if we negate this control.

•
= and

•
=

(R2)
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Notice that only one of the rules is elementary and the other one can be derived
from it:

•
(R1)
=

•
(R2)
=

(R1)
=

With these simple rule we, for the first time, see the power of having negative
controls. Without negative controls a similar rule would not exist, which will
result in a less powerful rewriting system.

Control Aware Rules. We can always extend a gate by copying it and adding
once a positive and once a negative control line to it. Conversely, if two adjacent
gates are equal except for one control line in which the polarity differs, the gates
can be merged and the control on that line can be removed.

• •
= =

(R3)

Furthermore, two arbitrary adjacent gates, which can also have different tar-
get lines, can be interchanged whenever they have a common control line with
different polarities. Then, at most one of the gates can be applied.

• •
• = •

(R4)

Notice, that the diagram notation only depicts one special case of the rule. To
capture this rule in the diagrams we would need a more general notation, which
will only be introduces in the generalisation (cf. Sect. 5).

Grouping Rules. Whenever two gates share the same control line with the
same polarity, these two gates can be grouped together where the group is con-
trolled by that control line, e.g.

• • •
• = •

(R5)

Also this rule is more general than to what is depicted in the diagram notation.
The next rule is for introducing and eliminating groups of wires. A group of

wires is either zero or more gates that are controlled by the same wire; it is
analogous to parenthesis in Boolean logic and can be used to work on smaller
parts of the circuits. These two rules state that either a positive or negative
control on a group that only contains the identity gate is equal to the identity.

•
= and =

(R6)
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Similar to Rule R2, one rule can be derived from the other one:

(R1)
=

(R2)
=

•
(R6)
=

(R1)
=

These two rules can be generalised to arbitrary control functions, i.e.

/ f / /

=

The proof is by structural induction, but we will not show it here.

Deriving More General Rules. Based on the rules described above, we are
now introducing more general rules that apply to arbitrary Toffoli gates. Based
on Rules R1, R5, and R6 we can derive what is famously known as deletion rule,
i.e. two adjacent equal Toffoli gates can be removed:

/ f f / /

=

(D1)

As f is defined as conjunction of is inputs (Def. 1), the proof is by structural
induction with Rule R1 being the base case and Rule R5 applied in the inductive
step. The proof illustrated by the following example:

• •
(R5)
=

•
(R5)
=

•
(R1)
=

•
(R6)
=

•
(R6)
=

With Not-gates the control line of an arbitrary Toffoli line can be negated:

/ f1 /

• =

/ f2 /

/ f1 /

/ f2 /

/ f1 /

• =

/ f2 /

/ f1 /

/ f2 /

(D2)

This can also be proved using structural induction and the proof is sketched by
means of the following example.

•
• (R3)

=

• •
• (R4)

=

• •
• (R5)

=

•
• (R2)

=

•
(R5)
=

• •
(R3)
=

•
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Similarly we can also generalize Rule R3 for arbitrary Toffoli gates:

/ f / =

•
/ f f / =

•
/ f f /

(D3)

3.2 Derived Formulas

We now have seen how to use the basic rules to derive more general forms of
these rules. Now, we will use the rules to derive new formulas; some of which are
well-known from Boolean logic. We will use these formulas later in the paper,
but at the same time it also gives more examples of using the rewrite rules. In an
EXOR expression, the polarity of the operands can be swapped, i.e. x̄⊕y = x⊕ȳ.
This formula can also be expressed using the above introduced rewrite rules.

•
(R3)
=

• •
(D1)
=

(D4)

Also the following rewrite rule turns out to be quite helpful.

•
• (D3)

=

• •
• • (D3)

=

• • •
• • • (D1)

=

•
•

(D5)

As can be seen, new rules can be composed solely from other derived rules which
shows the strength of the underlying formalism.

Moving Rules. Also the classical moving rule can be derived from other rewrite
rules:

• •
(D3)
=

• • •
(D2)
=

•

• • •
(D2)
=

• •

• • •
(D3)
=

•

• • (D6)

The general moving rule can be applied to any two adjacent gates (Ci, ti)
and (Ci+1, ti+1) if and only if {ti, t̄i} ∩ Ci+1 = ∅ and {ti+1, t̄i+1} ∩ Ci = ∅,
i.e. controls cannot be on wires where the other gate has a target.

But the rewrite rules are more powerful than the moving rule and allow us to

interchange gates such as
•• for which moving rules are not sufficient:

•
• (D3)

=

• •
• • (D2)

=

• •
• (R4)

=

• •
• (D5)

=

• •
•
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We can generalize this rule to

x1 / f1 / x1

x2 / f2 / x2 =

t2 • t′2
t1 t′1

x1 / f1 f1 / x1

x2 / f2 f2 / x2

t2 • t′2
t1 t′1

(D7)

This can also be proven using Boolean logic. On the left-hand side we have t′1 =
t1 ⊕ (t2 ∧ f2(x2)) and t′2 = t2 ⊕ f1(x1). Clearly, on the right-hand side we also
have t′2 = t2 ⊕ f1(x1). For t

′
1 we have

t′1 = t1 ⊕ ((t2 ⊕ f1(x1)) ∧ f2(x2))⊕ (f1(x1) ∧ f2(x2))

= t1 ⊕ (t2 ∧ f2(x2))⊕ (f1(x1) ∧ f2(x2))⊕ (f1(x1) ∧ f2(x2))

= t1 ⊕ (t2 ∧ f2(x2))

Limitations. The proposed rewrite rules cover almost all combinations in which
two adjacent gates can occur. However, there is one combination that cannot be
rewritten on its own. Interchanged gates with one control line such as

•
•

do not match any of the rules introduced above. However, they can often be
rewritten if they occur as a sub-circuit in a larger circuit, which is e.g. shown
later in Sect. 4 when rewriting the template with the id 5.1.

3.3 Rewriting Strategies

In order to implement an algorithm that makes use of the rewrite rules, a good
rewriting strategy is inevitable as otherwise convergence is not necessarily guar-
anteed. As one rewriting strategy we suggest to bring the circuit into a V-shape.
Gates in V-shaped circuits are arranged in a way that the target line for each
gate moves down from the top to the bottom and afterwards moves up again.
Adjacent gates can have their target on the same line. That each reversible func-
tion can be represented as V-shaped circuit has e.g. been shown in [12]. In their
paper, Algorithm B describes a synthesis algorithm that can be applied to all
reversible functions and naturally results in V-shaped circuits.

4 Examples

Given our new rewrite rules, it is possible to rewrite templates to the empty circuit.
As an example we consider the following template which has been proposed in [11].

• • • •
• • • •

• •
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The arrows indicate all rewrite possibilities if only the classical moving rule can
be applied, as it has been done in previous work. With the classical moving rule,
the middle gates can be interchanged but also the first gate can be swapped with
the last gate since the circuit represents the identity. However, it can easily be
seen that the moving rules are not sufficient in order to remove gates from the
circuit. In particular it is not possible to move the fifth gate next to the second,
which is indeed possible using the proposed rewrite rules. For this purpose, we
first apply Rule D3 to the fourth gate resulting in

• • • • •
• • • • •

•
(D1) (R4)

•

Note that the third and the fourth gate can be removed since they represent the
identity and the fifth and sixth gate can be swapped since they have disjoint
controls. Applying both rules allows to place the Toffoli gates with target on the
second line next to each other:

• • •
• • • (D1)

=
• •

•
• • • (D3)

=

• •
• • • • (D1)

=

Following the previous example, we can apply rewrite rules in order to per-
form structural equivalence checking. Taking two circuits representing the func-
tions G1 and G2, we can construct a new circuit that represents G = G1◦G−1

2 by
appending the reverse of G2 to G1. If both circuits represent the same function,
then G must represent the identity function and therefore it must be possible to
rewrite G to the empty circuit.

We will illustrate this approach by means of an example in which we consider
the circuits:

• • •
G1 = • • G2 = • •

• • • • • •

In order to rewrite G2 ◦G−1
1 to the empty circuit the following rewrite rules can

be applied:

• • •
G2 ◦G−1

1
= • • • • =

• • •
(D6)

• •
(D6)

•

• • •
• • • • =
• • •

(D1)

•
(D7)

• •

• • • •
• • • • =
• •

(D1) (D6)+(D5)

• •

• •
• • • • =
• •

(D5)

• •

• •
• • • •
• • • •
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•
2.1 (R2)

=
(D4)
=

• • •
2.2 (R2)

=
• (R3)

=

• •
3.1 • (R2)

=

• •
(R3)
=

• • •
• (D1)

=

•
•

• •
3.2 • (D7)

=

• • •
• (D1)

=

•
•

• • •
3.3 • (D2)

=

• • •
(R3)
=

• • • •
• (D1)

=

• •
•

•
4.1 • • (D7)

=

• •
• • (D1)

=

• •

• • •
4.2 • • (D2)

=

• • •
• (D3)

=

• • • •
4.3 • • (D2)

=

•
• • (D3)

= •

•
4.4 • (D2)

=

•
(D1)
=

• • •
(D3)
=

• • • •
• (D1)

=

• •
•

• • •
4.5 • (D2)

=

• • •
(D1)
=

• • •
(D3)
=

• • • •
• (D1)

=

• •
•

• •
4.6 • (D7)

=

• • •
• (D1)

=

•
•

• • •
5.1 • • (D1)

=•

• • •
• • • • (R4)

=•

• • •
• • • • (D3)

=•

•
• •

•

Fig. 2. Rewriting templates

Notice, that as a strategy we are bringing the combined circuit to the V-shape
and finally apply the deletion rule starting from the inner gates towards the
outer gates.

Figure 2 shows examples in which all Toffoli templates from [11] have been
considered. The templates have been listed with a left-hand side and right-hand
side circuit instead of giving the identity circuit explicitly. We applied our rewrite
rules in order to write the left-hand side to the right-hand side. The identifiers
have been taken from the original paper.

5 General Rewriting of Reversible Gates

All previous rules and derivations have, in essence, been specialised to a subset
of the reversible logic gates, namely the general Toffoli gates. However, depend-
ing on the implementation technology (CMOS, quantum technology, etc.) other
reversible gates are also of interest. In this section we will, therefore, show the
first steps towards a general set of rules.

First, we need gate introduction / elimination rules similar to Rule R1:

= f f−1

where f can be any reversible logic function defined over any number of lines1.
That this rule is true is obvious and if f is a self-inverse function (such as the

1 As all lines can represent more than one bit-wire, we have, for aesthetic reasons,
omitted the slash (/) on the lines.
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Not-gate), then f = f−1. Notice also the similarity with the box-notation for
grouping rules. If we remove the control, then the circuit in the box can be any
reversible circuit.

This brings us to the second introduction / elimination rule, which is the
general version of Rule R3:

f f
=

g g g

where f can be any n-input Boolean function and g any reversible function. This
exemplifies the controlled-gate structure that is used as the basis in all rules; we
will call, for the first gate, f the control function of g. The semantics of the gates
is simply that g is evaluated (updates its input wires) if and only if f evaluates
to True.

An important part of the rules was the use of negative controls. Therefore, as
a final example we show here the general version of Rule R2:

f h h f ◦ h−1

=
g g

where the number of inputs to the control function f must equal the number of
bit-wires that the reversible function h maps over.

This section has only shown a bit of the rules that is needed to describe the
general system. Future work will provide the formalisation to general rules and
show how other known reversible gates (e.g. the controlled-swap / Fredkin gate)
relate to this.

6 Conclusion

In this paper, we have presented a rewrite system for reversible logic. We have
illustrated our approach by means of Toffoli circuits but also illustrated how
it can be generalised to be applied to all kind of reversible circuits. We have
categorised the rules into basic ones and rules that can be derived from them.
It turns out that the set of basic rules remains compact.

Since the rewrite rules can be applied to almost all possible gate combinations,
an expensive matching step as it is required in similar methods such as template
matching can be omitted. Instead, the rewrite rules require appropriate rewrite
strategies in order to be applied efficiently, which we want to consider in future
work, e.g. with rewrite strategies based on Boolean satisfiability (cf. with the
template matching approach presented in [1]). Also to show completeness, in the
sense that these rules can rewrite a circuit to all its equivalent circuits, is left
for future work. Though not constructive, such a proof will also show that it is
possible to rewrite a circuit into its minimal representation according to some
metric.
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Furthermore, we want to generalise the rewrite rules to arbitrary reversible
circuits. Also the consideration of multiple-valued logic circuits, e.g. quantum
circuits based on the NCV library, is an interesting target for future work.

Acknowledgement. The authors thank the Danish Council for Strategic Re-
search for partially supporting this work through the MicroPower research
project (http://topps.diku.dk/micropower).
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Abstract. The development of approaches for synthesis and optimiza-
tion of reversible circuits received significant attention in the past. This
is partly due to the increasing emphasis on low power design method-
ologies, and partly motivated by recent works in quantum computation.
While most of them relied on a gate library composed of multiple-control
Toffoli (MCT) gates with positive control lines, some initial works also
exist which additionally incorporate negative control lines. This usually
leads to smaller circuits with respect to the number of gates as well as the
corresponding quantum costs. However, despite these benefits, negative
control lines have hardly been considered in post-synthesis optimization
of reversible circuits so far. In this paper, we address this issue. We are
presenting an optimization scheme inspired by template matching which
explicitly makes use of negative control lines. Experimental evaluations
demonstrate that exploiting negative control lines in fact lead to a re-
duction in the number of gates and the quantum costs by up to 60%
and 25%, respectively.

Keywords: Reversible Circuits, Optimization, Negative control gates,
Template Matching.

1 Introduction

Despite the sustained advancements in semiconductor technology over the last
few decades, conventional circuit technologies are approaching severe physical
boundaries particularly caused by the exponential miniaturization. Besides that,
engineers are facing consequent demands for the development of ultra-low-power
designs. Motivated by this, there has been several attempts by researchers to look
for alternative circuit technologies. In the recent past, reversible logic circuits
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received significant attention as a viable and futuristic technology to address
these issues.

For low-power design, reversible logic offers interesting advantages since al-
most zero power dissipation will only be possible if computation is reversible [1,
2]. Also in the domain of low-power on-chip interconnect encoding promising
solutions can be achieved when exploiting reversible computations [3]. Besides
that, research on reversible circuits has been further strengthened by recent
accomplishments in the domain of quantum computation [4], since the basic
quantum operations are reversible in nature.

Consequently, the development of approaches for synthesis and optimization
of reversible circuits received significant attention in the past (see e.g. [5–8]).
The problem is thereby significantly different from that of conventional logic
circuits – in particular, since established concepts such as fan-out and feedback
are not directly allowed in reversible circuits [4]. Because of the complexity of
the problem, most of the approaches generate sub-optimal netlists of reversible
gates. Hence, there is an ample scope for post-synthesis optimization.

Approaches addressing this issue have already been introduced. More pre-
cisely, techniques such as template matching [9] or window optimization [10]
have been presented. But they relied on a gate library composed of multiple-
control Toffoli (MCT) gates with positive control lines. Instead, additionally
considering negative control lines often leads to reductions in the number of
gates and quantum cost. However, while the functional power of negative con-
trol lines has already been exploited in synthesis, this has hardly been considered
in post-synthesis optimization of reversible circuits so far.

In this paper, we address this issue. We are presenting an optimization scheme
inspired by template matching which explicitly makes use of negative control
lines. That is, so-called templates (generalized to rules) are introduced that allow
for a substitution of a cascade of (positively controlled) Toffoli gates with a
single but functional equivalent (negatively controlled) Toffoli gate. Rules for
both, positive and negative controlled Toffoli gates, have thereby been proposed.
Experimental evaluations demonstrate that exploiting negative control lines in
fact leads to a reduction in the number of gates and the quantum costs by up
to 60% and 25%, respectively.

The rest of the paper is organized as follows. Section 2 gives a brief intro-
duction to reversible circuits followed by the general motivation of the work in
Section 3. The proposed optimization approach is discussed in Section 4. Sec-
tion 5 presents and discusses the obtained results followed by conclusions in
Section 6.

2 Reversible Functions and Circuits

A Boolean function f : Bn → Bn is reversible if it is bijective, i.e. if each input
pattern is uniquely mapped to a corresponding output pattern. The synthesis
problem is defined as the task of determining a reversible circuit for a given
function f .
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x1 = 0

x3 = 1

x2 = 0
0

1

1

0

0

1 1

0

0

g1 g2 g3 g4

x’1 = 1

x’3 = 1

x’2 = 0

Fig. 1. Reversible Circuit

Reversible circuits differ from conventional circuits, since e.g. fanout and feed-
back are not directly allowed [4]. Usually, they are built as a cascade of reversible
gates, like the Toffoli gate [11] or the Fredkin gate [12]. In this paper, we focus
on circuits composed of multiple-control Toffoli (MCT) gates.

Definition 1. Let X = {x1, . . . , xn} be a set of variables or lines. Then, a
reversible circuit is described as a cascade g1 . . . gd. A multiple control Tof-
foli (MCT) gate gi = (Ci, ti), i ∈ {1, . . . , d}, is a tuple of a set Ci ⊂ {x� | x ∈
X, � ∈ {−,+}} of (positive and negative) control lines and a target line ti ∈ X
with {t−i , t+i }∩Ci = ∅. The target line ti of a Toffoli gate is inverted if and only
if all positive (negative) control lines evaluate to one (zero). The values of all
remaining lines are passed through the gate unaltered. That is, the Toffoli gate
maps (x1, . . . , xti , . . . , xr) to (x1, . . . ,

∧
x∈Ci

ẋ ⊕ xti , . . . , xr) with ẋ = x for any
x+ and ẋ = x for any x−.

Example 1. Fig. 1 shows a reversible circuit with three lines and composed of
four gates. The target lines are denoted by ⊕, while a • represents a positive
control line and a ◦ represents a negative control line. For example, assigning
the input pattern 001 to the circuit results in the output pattern 101. Due to
the reversibility, this computation can be performed in both directions.

In order to evaluate the costs of a reversible circuit, the following two metrics
are applied:

– The gate count (GC) denotes the number of MCT gates in the final netlist.
– The quantum costs (QC) denote the effort needed to transform a reversible

circuit to a quantum circuit based on the principles proposed in [13]. For
positively controlled Toffoli gates, we apply thereby the metric as used in
RevKit [14]. If negative control lines occur, the same cost metric is applied
except for the case where the Toffoli gate is entirely composed of negative
controls. In this special case, the costs are increased by one for this particular
gate [15].

3 Motivation and General Idea

Synthesis and optimization of reversible circuits received significant attention in
the past. For this purpose, various approaches have been introduced (see e.g. [5–
8]). The majority of them relied thereby on a gate library exclusively composed
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Table 1. All 3-input negative and positive gate realizations

Toffoli gate Equivalent netlist

NetlistGCQC Netlist GC QC

1 6 4 8

1 6 4 8

1 6 4 8

1 5 2 6

1 5 2 6

1 5 2 6

1 5 2 6

1 5 2 6

Toffoli gate Equivalent netlist

NetlistGCQC NetlistGC QC

1 5 2 6

1 2 2 2

1 2 2 2

1 2 2 2

1 2 2 2

1 2 2 2

1 2 2 2

of MCT gates with positive control lines only. However, if negative control lines
are additionally considered, significant reductions with respect to the number of
gates as well as the resulting quantum costs can be achieved.

As an example, consider Table 1 showing the pictorial representation of all
the possible 3-input Toffoli gates with negative-control lines together with the
corresponding minimal realizations composed of (positively controlled) Toffoli
gates only1. Columns denoted by GC and QC provide the number of gates
and quantum costs, respectively. The table clearly shows that a consideration
of negative control lines allows for a significantly more compact realization of
reversible functionality with respect to both, number of gates and quantum costs.

However, despite these benefits, the exploitation of negative control lines for
circuit optimization has hardly been considered yet. Although synthesis and op-
timization approaches which create circuits composed of negatively controlled
Toffoli gates already exist (e.g. ESOP-based synthesis [16–18] or QMDD-based
synthesis [19]), they often just exploited the structure of the respective function
representation. More precisely, in ESOP-based synthesis, negative control lines
are just applied as they allow for a straight-forward realization of negative liter-
als. In QMDD-based synthesis, negative control lines have been utilized in order
to address negatively controlled paths in the data-structure.

1 Note that the minimal realizations have been obtained using the exact synthesis
methods proposed in [7].
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Just recently, first approaches have been presented that directly considered
negative control lines in order to obtain more efficient circuit realizations. For
example, in [20] an exact synthesis approach was proposed that enabled the de-
termination of minimal realizations for small functions. In [21], a group theory-
based synthesis approach has been proposed that uses both, negative and posi-
tive control lines for synthesis. The results show that, compared to previous ap-
proaches, significant reductions in gate count and quantum costs can be achieved
directly at the synthesis level.

In this work, we propose an alternative approach that addresses the post-
synthesis stage. That is, an optimization approach is presented that explicitly
aims for a reduction in the number of gates and the quantum costs of reversible
circuits by exploiting the functional power of negative control lines. The gen-
eral idea for our rules is motivated by Table 1. A careful analysis of the depicted
cascades unveils that certainly structured cascades of positively controlled Toffoli
gates often subsume into a single negatively controlled Toffoli gate. For exam-
ple, a cascade of Toffoli gates with all possible combinations of positive control
connections can be subsumed into a single Toffoli gate with negative control
lines only (see first row in Table 1). Similar observations can be made for the
remaining cases in Table 1. By analyzing these patterns, we have formulated
generalized rules which can be applied in order to reduce the number of gates
and the quantum costs for given circuit realizations. In the next section, these
rules as well as the resulting optimization approach are described in detail.

4 Proposed Optimization Approach

In this section, we present an approach for optimizing a given MCT gate netlist
using certain rules consisting of both positive and negative control lines. As
mentioned above, the design of the rules is motivated by an analysis of all possible
3-input negative control gates and the corresponding minimum realizations with
positive control gates (see again Table 1). In the following, first the derived rules
are presented before the resulting optimization algorithm is sketched and briefly
discussed.

4.1 Proposed Templates and Rules

Table 2 presents the proposed rules in terms of the templates together with
the equivalent minimal netlists that can be used to replace them. Rules can be
applied to cascades of Toffoli gates composed of a different number of lines as
denoted in Column n, with certain target line connections as denoted in Col-
umn Targ.L., and a total size of gates as denoted on Column GC (for gate
count). Besides that, the additional requirements as denoted in Column Re-
quirement must hold. If all these conditions are satisfied, the considered cascade
can be replaced by a more efficient alternative as described in Column Replace
Template by. Examples illustrating the application of these rules are provided in
Table 3.
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More precisely, the templates corresponding to rules R1 and R2 can be applied
to any cascade composed of 2k−1 k-input gates, where all possible combinations
of (positive/negative) control line patterns are present. Rules R3 and R4 can be
considered as extensions to rules R1 and R2, respectively, where the gate with
all control dots has reverse dot polarity as compared to the other gates in the
template. For cases in which not an exact but a partial match of the rules R1,
R2, R3 or R4 can be determined, rule R5 can be applied (as long as this leads
to a reduction in the quantum cost). Rule R6 is a simple rule where two CNOT
gates of opposite control polarities are combined into a single NOT gate. Rule
R7 can be applied to reduce NOT gates in any MCT gate netlist.

The rules are general and, except for R6, can be applied to cascades of MCT
gates with an arbitrary number k number of lines.

Table 2. The generalized templates and their rules for application

Template Specification Replace Template by

n Targ.L.GC Requirement

R1 k All on
line x

2k−1 Positive control dots appear in
all 2k−1 possible ways, in lines
other than x

One k-input MCT gate, with
target on line x, and negative
controls on all other lines

R2 k All on
line x

2k−1 Negative control dots appear
in all 2k−1 possible ways, in
lines other than x

One k-input MCT gate, with
target on line x, and positive
controls on all other lines

R3 k All on
line x

2k−1 One gate with all negative
control dots, and other gates
having all other possible com-
binations of positive control
dots, in lines other than x

One k-input MCT gate, with
target on line x, and positive
controls on all other lines

R4 k All on
line x

2k−1 One gate with all positive con-
trol dots, and other gates hav-
ing all other possible combina-
tions of negative control dots,
in lines other than x

One k-input MCT gate, with
target on line x, and negative
controls on all other lines

R5 k All on
line x

r <
2k−1

Unique combinations of the
control dots appear in the
gates (as per rules R1, R2, R3,
R4 )

One k-input MCT gate with
all positive (or negative)
controls, and the remaining
(2k−1 − r) MCT gates with
the missing unique patterns
of control dots

R6 2 All on
line x

2 One CNOT gate with negative
control dot and one CNOT
gate with positive control dot

One NOT gate on line x

R7 k No
restric-
tion

No
re-
stric-
tion

Two NOT gates on a line y,
with no target placed on line y
in any of the gates in between

Remove the NOT gates and
complement the polarities of
all control dots on line y be-
tween the two NOT gates



Exploiting Negative Control Lines in the Optimization of Reversible Circuits 215

Table 3. Example application of the rules

Rule R1:

Rule R2:

Rule R3:

Rule R4:

Rule R5:

Rule R6:

Rule R7:

4.2 Algorithm

Using the rules introduced above, the proposed optimization approach traverses
the given reversible circuit and checks for any possible application of rules R1-R7.
This procedure is iterated until no further reduction is possible. This is because,
the application of a rule may change a netlist in such a way that a subsequent
application of rules is possible in a next iteration. For instance, if the initial
netlist consists of positive control MCT gates only, then just rules R1, R5 or R7
can be applied during the first iteration. However, some negative control gates
may get added to the netlist during the process, so that also the other rules may
become applicable in the subsequent iterations.
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Algorithm 1. Template Matching Algorithm

Input: Cascade of MCT gates G = {g1, g2, . . . , gp}
Output: Optimized cascade of MCT gates
begin

ngates = p;
while (there is change in G) do

begin
index = 1;
while (index ≤ ngates) do

begin
Gseg = find seg(G, index);
apply rule(Gseg); // Using gate swapping, if required
index = index+ |Gseg |;
ngates = compact netlist(G);

end
end

end

Besides that, the order in which the respective gates of a template occur in a
circuit does not matter as long as the lines with control connections are disjoint
from the lines with target connections. Then, gates can be swapped without
changing the function of the (sub-)circuit. This is because values on control lines
are not modified by such a structure and the XOR operation on the target lines
is commutative in general.

Overall, this leads to a procedure as sketched in Algorithm 1. The outer loop
iterates through the gate netlist until no further rules can be applied. In each
iteration, the function find seg is invoked which identifies a segment Gseg in
the gate netlist starting from index within which gates can be swapped (i.e. no
control dots on the outputs). The function apply rule checks the segment Gseg

for applicability of the rules, considering the possible gate swappings, and applies
a rule if a match is found. The iteration continues over the entire netlist. Finally,
the netlist is compacted using the compact netlist function. The time complexity
of every iteration is linear in the number of gates.

The application of the algorithm is illustrated by the following example:

Example 2. Consider the reversible circuit depicted in the top-left corner of
Fig. 2. In a first step, the NOT gates at the two top lines can obviously been
removed. They only affect the positive control lines of the sixth and seventh gate
which can simply be replaced by corresponding negative lines according to R7.
Afterwards, the first three gates can be replaced by a smaller cascade according
to R5, while R2 allows for the reduction of the last two gates. Finally, R2 allows
for another reduction eventually leading to the circuit as shown in the bottom-
right corner of Fig. 2. By this, the number of gates is reduced from 9 to 2 while
the quantum costs are reduced from 17 to 11.
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R7, R7

R5 R2 R2

GC = 9, QC = 17 GC = 5, QC = 15

GC = 4, QC = 15 GC = 3, QC = 12 GC = 2, QC = 11

Fig. 2. Application of the proposed optimization

Due to the generic fashion of the rules, the approach described above can
be applied to arbitrary circuits, i.e. realizations obtained by various synthesis
approaches. However, our evaluations showed that the proposed methodology is
particularly suited for circuits derived by ESOP-based synthesis [16–18]. Here,
the targets lines are usually assumed to be placed on certain output lines, while
control lines are usually placed on the separate input lines. By this, patterns as
the ones from R1-R7 occur frequently.

5 Experimental Evaluation

This section provides experimental results for the proposed approach. To this
end, the method and the rules described above have been implemented in C on
top of RevKit [14] and applied to benchmarks circuits from the RevLib reversible
logic website [22]. All experiments have been conducted on a Pentium dual-core
desktop system with 4 GB of main memory running Ubuntu version 11.10.

Table 4 provides the results. The first columns denote thereby the name of the
respective benchmark circuits (denoted by Circuit) together with its number of
lines (denoted by Lines). Afterwards, the gate count (denoted by GC) and the
quantum costs (denoted by QC) of the original circuit as well as the optimized
circuits are provided. Finally, the last columns show the percentage improvement
with respect to the gate count and the quantum costs. All results have been
determined in less than one CPU second. Because of this, a detailed listing of
the run-time for the respective benchmarks is omitted.

The results clearly show the effect of the proposed rules to the size of the
corresponding circuits. Improvements of almost up to two-third can be achieved.
Even for large circuits composed of more than 1,000 gates a reduction of half
the number of gates can be observed (see e.g. alu4 201 or tial 265 ). Considering
that these results have been generated in almost no run-time, this represents a
worthwhile achievement. Similar template matching algorithms such as the one
proposed in [9] usually require significantly more computation time and lead to
a smaller reduction.
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Table 4. Experimental evaluation

Original circuit Optimized circuit Impr. (%)

Circuit Lines GC QC GC QC GC QC

sf 274 5 19 155 7 143 63 8

rd32 273 5 20 116 8 104 60 10

rd53 131 7 28 119 12 104 57 13

sym10 262 11 194 25866 87 22717 55 12

9symml 195 10 129 14193 58 12747 55 10

max46 240 10 107 5444 51 4498 52 17

alu4 201 22 1063 55388 523 46388 51 16

tial 265 22 1041 56203 516 47125 50 16

sf 276 5 16 152 8 144 50 5

life 238 10 107 6766 57 5740 47 15

f51m 233 22 663 37400 358 33316 46 11

sf 275 5 11 51 6 42 45 18

example2 231 16 157 5654 87 4767 45 16

mux 246 22 35 1078 20 804 43 25

ham15 298 45 153 309 100 290 35 6

mlp4 245 16 131 3753 93 3531 29 6

cm150a 210 22 53 1096 38 822 28 25

in0 235 26 338 20031 245 18988 28 5

dc2 222 15 75 1886 55 1777 27 6

f2 232 8 19 255 14 238 26 7

rd73 252 10 80 1143 60 1066 25 7
All results have been determined in less than one CPU second.

Moreover, also the resulting quantum costs of the circuits can considerably
been reduced. Here, improvements of up to 25% (e.g. for mux 246 ) are reported
– in many cases we see reductions of 10-20%. Note that alternative synthesis
approaches such as the one proposed in [20] indeed reduced the number of gates
using negative control lines, but were not able to reflect this improvement to the
quantum costs. In fact, quantum costs increased in the results shown in [20]. Us-
ing the approach proposed in this paper, we achieve substantial improvements
with respect to both, number of gates and quantum costs. Besides that, de-
termining better mappings of Toffoli circuits including negative control lines is
subject to ongoing research (see e.g. [23, 24]). Thus, we expect better mappings
and accordingly better quantum costs here.

6 Conclusions

In this work, we presented a post-synthesis optimization approach for reversible
circuits which explicitly exploits the functional power of negative control lines.
For this purpose, we analyzed that certain structured cascades of positively
controlled Toffoli gates often subsume into a single negatively controlled Toffoli
gate. Based on these observations, generalized rules have been derived which
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are applied in order to reduce the size of the given circuits. An experimental
evaluation confirmed that the proposed approach leads to substantial reductions
in both, the number of gates as well as the quantum costs. As a future work
better gate reordering and template matching mechanism can be implemented
to provide further reduction in gate count and quantum cost.
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Abstract. The synthesis of Boolean functions, as they are found in
many quantum algorithms, is usually conducted in two steps. First, the
function is realized in terms of a reversible circuit followed by a mapping
into a corresponding quantum realization. During this process, the num-
ber of lines and the quantum costs of the resulting circuits have mainly
been considered as optimization objectives thus far. However, beyond
that also the depth of a quantum circuit is vital. Although first synthe-
sis approaches that consider depth have recently been introduced, the
majority of design methods did not consider this metric.

In this paper, we introduce an optimization approach aiming for the
reduction of depth in the process of mapping a reversible circuit into a
quantum circuit. For this purpose, we present an improved (local) map-
ping of single gates as well as a (global) optimization scheme considering
the whole circuit. In both cases, we incorporate the idea of exploiting
additional circuit lines which are used in order to split a chain of serial
gates. Our optimization techniques enable a concurrent application of
gates which significantly reduces the depth of the circuit. Experiments
show that reductions of approx. 40% on average can be achieved when
following this scheme.

1 Introduction

Quantum computation has become an active research field due to its promising
results for important tasks such as factorization or database search. Motivated
by this, researchers have developed several synthesis approaches [1–5]. Many
quantum algorithms are often described by means of a structured quantum cir-
cuit in which only the representation of Boolean components differs. Hence,
for the synthesis of these components into quantum circuits, usually a two-step
approach is applied: First, the desired Boolean functionality is realized as a re-
versible circuit only consisting of reversible gates which is afterwards mapped
to an equivalent realization based on quantum gates. For this purpose, mapping
schemes as introduced e.g. in [6, 15] are applied.

In this flow, minimizing the number of lines and the quantum costs have been
considered as the major optimization objectives thus far. However, beyond that
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also the depth of the circuit is vital. Depth optimization techniques consider the
concurrent application of single gates in order to reduce the overall execution
time of the circuit realization.

While first approaches for synthesis with respect to depth have recently been
introduced (see e.g. [7–11]), the vast majority of design methods does not con-
sider this metric. As an example in [7, 11], a cycle representation was chosen and
input cycles where partitioned into three subsets. Each subset is synthesized in-
dependently on a different set of ancillae in parallel. This method requires 2n
additional lines and focuses only on reducing the depth of reversible circuit
rather than the quantum circuit. This is crucial since the execution times for
two reversible gates can differ significantly when taking the respective quantum
circuit mapping into account. As a consequence, even a depth-optimal reversible
circuit likely leads to a quantum circuit with non-optimal depth. Another post-
synthesis approach has been presented in [8]. However, their approach makes use
of a special class of templates. Finally, the work presented in [10] describes an
exhaustive algorithm aiming to find a minimal depth quantum circuit using a
special gate library. However, due to its exponential time complexity, it is only
applicable to circuits with a small number of qubits.

In this paper, we present an idea on how depth of quantum circuits can be
reduced by adding an additional line to the circuit. Based on this idea, two
depth optimization approaches are presented. The first method aims to reduce
the depth by applying the reduction gate-per-gate, whereas the second method
focuses on the whole circuit. An experimental evaluation of both approaches
shows that a significant improvement of depth can be achieved for quantum
circuits.

The remainder of this paper is structured as follows. The next section briefly
introduces reversible and quantum circuits. Depth metrics and the general idea
are presented in Sect. 3. Afterwards, both proposed approaches are described
and evaluated in Sect. 4 and Sect. 5, respectively. Finally, Sect. 6 concludes the
paper.

2 Background

To keep the remainder of this paper self-contained, this section briefly intro-
duces the basics on reversible circuits, quantum circuits, and the corresponding
mapping from reversible to quantum circuits.

2.1 Reversible Circuits

Boolean reversible functions are those functions f : IBn → IBn that are bijective,
i.e. there exists an 1-to-1 mapping from the inputs to the outputs and vice
versa. Reversible functions can be realized by reversible circuits that consist of
at least n lines. Reversible circuits are cascades of reversible gates that belong
to a gate library. One gate library that is often used consists of multiple control
Toffoli gates [12].
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1 1

1 1

0 1

(a) Reversible gate

1 1

1 1

0 0

0 1

(b) Reversible circuit

Fig. 1. Reversible circuitry

Definition 1. Given a set of variables V = {x1, . . . , xn}, a multiple control
Toffoli gate T(C, t) has control lines C = {xj1 , xj2 , . . . , xjl} ⊂ V and a target
line t ∈ V \C. The gate maps t 
→ t⊕ (xj1 ∧ xj2 ∧ · · · ∧ xjl) and leaves all other
lines unaltered. In the special cases |C| = 0 and |C| = |{c}| = 1, the gates are
referred to as NOT and CNOT gate and denoted N(t) and C(c, t), respectively.

In [13], it has been shown that any reversible function f : IBn → IBn can be
realized by a reversible circuit with n lines when using Toffoli gates.

Example 1. Figure 1(a) shows a Toffoli gate with two control lines. The control

lines are denoted by •, while the target line is denoted by⊕. The annotated
values demonstrate the computation of the gate for a given input assignment.
Figure 1(b) shows different Toffoli gates in a cascade forming a reversible circuit.

2.2 Quantum Boolean Circuits

Instead of bits, quantum circuits manipulate qubits which can represent the
classical Boolean values but also the superposition of them. More precisely, a
qubit |ϕ〉 is a vector

(
a
b

)
where a, b ∈ C such that |a|2 + |b|2 = 1. If a = 1,

then |ϕ〉 represents the classical 0, denoted |0〉, and if b = 1, then |ϕ〉 represents
the classical 1, denoted |1〉.

In general, a quantum gate acting on n qubits represents a 2n × 2n unitary
matrix [14], where a matrix U is unitary if U †U = UU † = I and U † is the

adjoint matrix U † = U∗T

. Using this gate definition, many quantum mechanical
effects such as superposition and entanglement can be formulated. However,
in the scope of this paper we are considering circuits that realize pure Boolean
functionality but still need to be realized using quantum gates in order to embed
them into quantum algorithms such as Deutsch-Josza, Grover, or Shor. Toffoli
gates represent a unitary matrix and are hence suitable for realizing quantum
Boolean circuits. However, with respect to the actual physical implementation,
it is of interest to obtain circuits that make use of gates from a library with only
a few elements [6]. For the present paper, we are making use of a common gate
library consisting of four quantum gates that only change one qubit at a time
and is defined as follows.

Definition 2. A quantum gate U(C, t) applies the unitary 2 × 2 matrix to the
qubit that corresponds to the target line t, if and only if all control lines C are
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|1〉 |1〉

|0〉 |0〉

|1〉 |1〉V

|1〉

|1〉

|1〉

|1〉

|1〉

|v0〉V†

|1〉

|1〉

|0〉V†

Fig. 2. Quantum circuitry

x1 x1

x2 x2

x3 x3 ⊕ x1x2V V V†

(a) Based on Fig. 1(a)

x1 x1

x2 x2

x3 x3

x4 x4V V V† V V V†

(b) Based on Fig. 1(b)

Fig. 3. Mapping reversible circuits to quantum circuits

assigned 1. We consider a gate library X({}, t),X({c}, t), V ({c}, t), and V †({c}, t)

with X =

(
0 1
1 0

)
, V V = X, and V † being the adjoint of V .

Note that X({}, t) = N(t) and X({c}, t) = C(c, t). The gate library is often
referred to as NCV library.

Example 2. Figure 2 depicts a quantum circuit consisting of four gates,
where |v0〉 = V †|1〉 = V |0〉.

2.3 Mapping Reversible Circuits to Quantum Circuits

Since any quantum operation can be represented by a unitary matrix [14], each
quantum circuit is inherently reversible. As discussed above, when reversible
circuits should be represented as a quantum circuit, the Toffoli gates are too
general and, thus, not suitable for a realization. As a consequence, reversible
circuits are mapped to quantum circuits that only consists of gates of a particular
gate library, e.g. the NCV library. For this purpose, each gate of the reversible
circuit is mapped into a cascade of functionally equivalent quantum gates.

Example 3. Consider a Toffoli gate with two control lines as shown in Fig. 1(a).
A functionally equivalent realization in terms of quantum gates is depicted in
Fig. 3(a). This cascade can be applied to fully map the reversible circuit shown in
Fig. 1(b) into an equivalent quantum circuit. For this purpose, all corresponding
Toffoli gates are respectively substituted with a corresponding quantum gate
cascade. The 2nd, 4th, and 5th gate remain unchanged as they already repre-
sent quantum gates. The resulting fully equivalent quantum circuit is shown in
Fig. 3(b).

Similar mappings exist for Toffoli gates with more than two control lines. But
with increasing number of control lines, the resulting quantum circuits become



Reducing the Depth of Quantum Circuits Using Additional Circuit Lines 225

more expensive, i.e. require more quantum gates. The currently best known map-
pings of single Toffoli gates into quantum cascades have been introduced in [15].
In this work, we are following the mappings introduced there. As single quan-
tum gates are assumed to have unit costs, the number of gates of the resulting
cascades usually is referred to as quantum costs.

3 Reducing the Depth of Quantum Circuits

In this work, we are proposing optimization approaches aiming for a reduction
of the depth in quantum circuits using additional circuit lines. This section first
motivates the consideration of depth in quantum circuits, whereas the general
idea of the proposed approaches is outlined afterwards.

3.1 Consideration of Depth in Quantum Circuits

Thus far, the major optimization objectives for synthesis have been the num-
ber of lines and the quantum costs of the resulting circuits as reviewed above.
However, beyond that also the depth of a quantum circuit is vital. This metric
recognizes whether gates can concurrently be applied which likely leads to a
reduction in the execution time of a circuit.

Definition 3. Let Ui(Ci, ti) and Ui+1(Ci+1, tj+1) be two consecutive quantum
gates. These gates can be applied concurrently if

|Ci ∪ Ci+1 ∪ {ti, ti+1}| = |Ci|+ |Ci+1|+ 2.

In other words, if the lines used by each gate (both control and target line) are
disjoint. Let G be a quantum circuit with k elementary quantum gates, then G
can be partitioned into m ≤ k subcircuits whose gates can be pairwise applied
concurrently. We refer to the minimal m as the depth of the circuit.

Algorithm D (Determine Circuit Depth). Given a quantum circuit G =
U1(C1, t1) . . . Uk(Ck, tk) over n variables x1, . . . , xn. This algorithm determines
the depth m of the circuit according to Definition 3 by applying a greedy search
to gates that can be executed in parallel. For the computation, we are making
use of the integers b1, . . . , bn.

D1. [Initialize.] Set m← 1, i← 1, and bj ← 0 for 1 ≤ j ≤ n.

D2. [Terminate?] If i > k, terminate.

D3. [Apply gate.] For each xj ∈ Ci ∪ {ti}, set bj ← bj + 1.

D4. [Gates do not overlap?] If there exists no j ∈ {1, . . . , n} such that bj = 2,
set i← i+ 1 and goto Step D2.

D5. [Gates overlap.] For each j ∈ {1, . . . , n}, set bj ← 1, if xj ∈ Ci ∪ {ti},
otherwise set bj ← 0; set m← m+ 1, i← i+ 1, and goto Step D2.

Example 4. Figure 4 illustrates the depth for the reversible circuit shown in
Fig. 1(b).
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a a

b b

c c

d dV V V† V V V†

Fig. 4. Quantum depth for the reversible circuit shown in Fig. 1(b)

Although the coherence time, i.e. the time a qubit can keep its quantum state,
and the gate operation time, i.e. the time a gate needs to perform its operation,
may vary from one technology to another (see e.g. Table III of [16]), keeping the
overall execution time as small as possible is essential in all these cases. Con-
sequently, the depth metric can be applied in a generic manner, as it provides
a proper model which can be considered already at the synthesis stage in the
absence of precise technological constraints. Despite the fact that quantum algo-
rithms already exploit algorithmic parallelism to increase the processing speed,
synthesis approaches should aim for producing circuits with at least as possible
circuit depth.

Motivated by this, we are considering the question how the depth of a quantum
circuit can be reduced in the remainder of this paper. For this purpose, we are
making use of additional circuit lines as motivated in the following.

3.2 Exploiting Additional Circuit Lines

Keeping the number of circuit lines as small as possible is well accepted in the
synthesis of quantum circuits. This is mainly motivated by the fact that each
circuit line has to be represented by a qubit, which is a very limited resource.
Nevertheless, evaluations also showed that a (slight) extension of a circuit with
additional lines may have significant benefits. For example in [6, 15], it has been
demonstrated that a larger amount of circuit lines allow for a much cheaper map-
ping of reversible circuits to quantum circuits in terms of gate count. In [3], eval-
uations showed that using twice the number of circuit lines reduces the quantum
costs by up to two orders of magnitude. Eventually, this led to a post-synthesis
optimization approach [17] which enables reductions in quantum costs of up
to 69% only by adding a single additional line to the circuit.

In this work, we show that similar concepts also help in reducing the depth
of quantum circuits. We are following the established synthesis flow reviewed in
Sect. 2.3, i.e. first a reversible circuit is realized which afterwards is mapped to a
quantum circuit. However, by incorporating additional lines during this process,
a depth-aware optimization becomes possible. The additional circuit lines are
introduced as helper lines.

Definition 4. Let G be a reversible or quantum circuit. A helper line is an
additional line whose input is set to a constant 0 and is used in a way throughout
the circuit such that the output of the line is also 0.
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(a) Initial circuit
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0 0

V

V†

V

V†

V

V†

(b) Circuit with reduced depth

Fig. 5. Depth reduction by using additional helper lines

Following the concept from [17], helper lines can now be applied in order to
“buffer” values of circuit lines so that they can be re-used later by other gates.
Whenever the current value of a helper line h is 0, another signal line x can be
copied to h by appending a copy gate C({x}, h) to the circuit. The helper line
can be restored with the same gate if no other gate has used h as target line in
between.

In [17], this buffering has been exploited to remove common control lines con-
nections between Toffoli gates in order to reduce the quantum cost. However, the
same concept can similarly be applied to reduce the depth of quantum circuits
as illustrated by the following example.

Example 5. Figure 5(a) shows a circuit in which no gates can be performed in
parallel since they all share the same control line b. In Fig. 5(b) a helper line has
been added to copy the value of b. By doing this, the gates can be rearranged
which reduces the depth from 8 to 6.

Clearly, Example 5 presents a rather artificial circuit. However, based on this
general idea we are proposing different optimization approaches whose evalua-
tions show that indeed a significant reduction of depth in quantum circuits can
be achieved.

4 Optimization Approaches

Motivated by the general idea outlined above, two optimization approaches are
proposed in this section which aim for reducing the depth by exploiting addi-
tional circuit lines. The first approach follows a local scheme, i.e. considers each
Toffoli gate independently, where the second approach considers the whole cir-
cuit instead. Finally, techniques are presented to further reduce the depth and
the quantum costs which can be applied to the resulting quantum cascades.

4.1 Consideration of Single Toffoli Gates

The availability of a helper line as introduced in the previous section allows for
an improvement of the mapping scheme reviewed in Sect. 2.3. Recall that, when
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a c

b a

c b

(a) Toffoli Gate

a a

b b
c cV V V†

(b) Original mapping

a a
b b
c c
0 0

V V V†

(c) Proposed mapping

Fig. 6. Consideration of single Toffoli gates

following the default mapping scheme, each Toffoli gate is mapped to a quantum
realization of depth 5 as shown in Fig. 6(b). However, as the second and the third
gate share the same control line, an additional helper line allows for a concurrent
execution of both gates as shown in Fig. 6(c). Since additionally the copy gates
can be inserted without increasing the depth, a depth reduction for the quantum
circuit realization for each Toffoli gate from 5 to 4 can be obtained.

Example 6. Consider again the reversible circuit from Fig. 1(b). Using the estab-
lished mapping scheme from Sect. 2.3, a quantum circuit with depth 12 results
(as shown in Fig. 3(b); none of the gates except for the single NOT gate can
be executed concurrently). In contrast, applying the additional helper line as
proposed in Fig. 6, the circuit depicted in Fig. 7(a) results. This reduces the
depth from 12 to 9.

Note that this procedure can also be applied to Toffoli gates with more than
two control lines. In fact, state-of-the-art mapping schemes (such as described
in [15]) decompose these gates into cascades of two-controlled Toffoli gates. For
them, the depth-optimized mapping to quantum gates as proposed in Fig. 6 can
be applied. Moreover, the same scheme can be applied to other reversible gates
such as the Peres gate as well.

This scheme is not beneficial in all cases. In fact, if concurrent Toffoli gates
are mapped to a quantum circuit, the original mapping leads to better results.
This is illustrated by means of Fig. 8. Applying the original mapping scheme to
the two Toffoli gates shown in Fig. 8(a) leads to the quantum cascade as shown
in Fig. 8(b). As both Toffoli gates are applied concurrently, also the resulting
quantum gate cascades can be applied concurrently, i.e. a depth of 5 results.
Applying the proposed scheme from Fig. 6 would worsen the result. In fact, the
helper line together with the required copy gates would increase the depth to 7
as shown in Fig. 8(c).

a a
b b
c c
d d
0 0

V V V† V V V†

(a) Consideration of single Toffoli gates

a a
b b
c c
d d
0 0

V V† V V V V†

(b) Consideration of the whole circuit

Fig. 7. Application of the proposed approaches to the circuit from Fig. 1(b)
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(a) Original circuit
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Fig. 8. Application of the local scheme to concurrent Toffoli gates
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(b) Resulting circuit

Fig. 9. Consideration of the whole circuit

Consequently, this scheme is only applied in cases where an actual depth im-
provement can be achieved. However, experiments summarized in Sect. 5 clearly
confirm that substantial improvements with respect to the depth can still be
achieved. As a drawback, this obviously comes with the price of increased quan-
tum costs in the resulting cascade. But also here, experiments show the resulting
increase to be moderate.

4.2 Consideration of the Whole Circuit

While so far the helper line has been exploited in a local context, also a global
consideration turns out to be beneficial. The idea is to identify subcircuits of
gates sharing the same control line and use the helper line in order to partition
the gates. Then, each consecutive pair of gates in such a cascade can concurrently
be executed by using the original control line for the first gate and the copied
value at the helper line for the second gate.

Example 7. Figure 9(a) shows a quantum circuit composed of gates that share
the same control lines. Using the helper line, an equivalent realization as shown
in Fig. 9(b) can be derived. This reduces the depth from 5 to 4.

This scheme can additionally be improved by applying the moving rule for quan-
tum circuits. In fact, two adjacent gates U(C1, t1) and U(C2, t2) can be inter-
changed if t2 /∈ C1 and t1 /∈ C2 ∩ {t1} = ∅. As a result, gates can be moved
through the circuit which might lead to larger subcircuits of gates sharing the
same control line. In this case, a more substantial reduction can be achieved.
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Example 8. Consider again the quantum circuit shown in Fig. 4. The second,
fifth, sixth, and seventh gate share the same control line b and can be moved
together (note, although also the third and tenth gate have control line b, they
cannot be moved to a consecutive cascade). Exploiting that, this cascade can
be optimized leading to the circuit shown in Fig. 7(b). This reduces the depth
from 12 to 9.

Note that this scheme also increases the quantum costs of the resulting circuit.
However, since for each identified subcircuit only two copy gates have to be
added, the increase is almost negligible.

4.3 Further Optimizations

Independent of the optimization schemes proposed above, the depth of quantum
gate cascades can additionally be improved using existing optimization schemes
that originally aimed for quantum cost reduction. In particular, the application
of merging and deletion rules as explained in [18] together with the moving
rule as already discussed above is beneficial. For example, the circuit shown in
Fig. 7(b) (obtained using existing mapping schemes) obviously can be improved
by removing the fifth and the sixth gate which cancel each other. This reduces
the quantum costs but also improves the depth of the circuit. Accordingly, such
simple optimizations are also applied in our approach. For the experimental
evaluation summarized in Sect. 5, the methods exploiting additional helper lines
are applied to circuits already optimized using moving, merging, and deletion
rule.

5 Experimental Results

In order to confirm the efficiency of the proposed idea, the approaches described
above have been implemented and experimentally evaluated. For this purpose,
the open source toolkit RevKit [19] has been applied and benchmarks have been
taken from the RevLib [20] database. All experiments have been conducted on an
Intel Core i5 Processor with 4 GB of main memory. In this section, we summarize
and discuss the obtained results.

Table 1 provides the obtained numbers. For all benchmarks listed in the
first column, the number of lines (Lines), the quantum costs (Costs), and the
depth (Depth) of the respective circuit realizations as well as the run-time (Time)
needed to generate them are provided. We distinguish between the following
circuits:

– Initial Circuits (IC) represent the circuits as taken from RevLib and
mapped to quantum circuits as described in Sect. 2.3, i.e. without any depth
optimization whatsoever.

– Optimized Circuits (OC) represent the circuits that have additionally
been optimized using the straightforward techniques reviewed in Sect. 4.3.



Reducing the Depth of Quantum Circuits Using Additional Circuit Lines 231

T
a
b
le

1
.
E
x
p
er
im

en
ta
l
ev
a
lu
a
ti
o
n

B
e
n
c
h
m
a
r
k

I
n
i
t
i
a
l
C
i
r
c
u
i
t
s

O
p
t
i
m
i
z
e
d
C
i
r
c
u
i
t
s

L
o
c
a
l

G
l
o
b
a
l

(S
ec
t.

4
.3
,
+
0
li
n
e)

(S
ec
t.

4
.1
,
+
1
li
n
e)

(S
ec
t.

4
.2
,
+
1
li
n
e)

L
in
es

C
o
st

D
ep

th
T
im

e
C
o
st

D
ep

th
T
im

e
Im

p
r I

C
C
o
st

D
ep

th
T
im

e
Im

p
r I

C
Im

p
r O

C
C
o
st

D
ep

th
T
im

e
Im

p
r I

C
Im

p
r O

C

ex
5
p
2
9
6

2
0
6

1
8
4
3

1
5
8
4

0
,0
0

1
5
7
8

1
3
5
2

4
6
,9
5

1
5
%

1
7
7
5

3
0
3

1
8
1
,4
8

8
1
%

7
8
%

1
5
7
8

2
2
6

1
3
9
,9
2

8
6
%

8
3
%

h
w
b
9
3
0
4

1
7
0

2
2
7
5

1
9
1
6

0
,0
1

1
8
5
3

1
6
2
4

7
7
,7
1

1
5
%

2
1
4
4

4
2
4

4
1
0
,6
4

7
8
%

7
4
%

1
8
5
3

3
0
5

3
1
3
,5
8

8
4
%

8
1
%

c2
1
8
1

3
5

3
6
8

2
8
0

0
,0
0

3
4
4

2
6
2

0
,0
4

6
%

3
7
8

7
1

0
,7
3

7
5
%

7
3
%

3
4
4

7
1

0
,6
6

7
5
%

7
3
%

h
w
b
8
3
0
3

1
1
2

1
4
6
1

1
2
2
6

0
,0
1

1
2
0
2

1
0
4
9

2
0
,8
8

1
4
%

1
4
1
0

2
9
4

1
1
6
,5
9

7
6
%

7
2
%

1
2
0
2

2
1
2

8
9
,2
1

8
3
%

8
0
%

h
w
b
7
3
0
2

7
3

9
0
9

7
6
9

0
,0
1

7
5
4

6
5
8

4
,0
9

1
4
%

8
9
8

2
2
2

3
4
,2
8

7
1
%

6
6
%

7
5
4

1
6
7

2
8
,4
4

7
8
%

7
5
%

b
w

2
9
1

8
7

9
4
3

7
8
8

0
,0
1

7
8
2

6
8
1

5
,2
6

1
4
%

9
3
2

2
3
0

2
9
,1
1

7
1
%

6
6
%

7
8
2

1
8
9

2
1
,4
7

7
6
%

7
2
%

h
w
b
6
3
0
1

4
6

5
0
7

4
2
6

0
,0
0

4
3
2

3
7
6

0
,6
7

1
2
%

5
0
7

1
3
6

5
,7
9

6
8
%

6
4
%

4
3
2

1
0
9

4
,4
2

7
4
%

7
1
%

a
d
d
6
4
1
8
4

1
9
3

7
6
8

6
4
2

0
,0
0

6
4
2

5
1
6

0
,2
3

2
0
%

7
7
0

1
9
7

1
0
,0
6

6
9
%

6
2
%

6
4
2

1
9
8

5
,9
9

6
9
%

6
2
%

a
d
d
3
2
1
8
3

9
7

3
8
4

3
2
2

0
,0
0

3
2
2

2
6
0

0
,0
6

1
9
%

3
8
6

1
0
1

1
,3
5

6
9
%

6
1
%

3
2
2

1
0
2

0
,8
5

6
8
%

6
1
%

a
d
d
1
6
1
7
4

4
9

1
9
2

1
6
2

0
,0
0

1
6
2

1
3
2

0
,0
2

1
9
%

1
9
4

5
3

0
,1
9

6
7
%

6
0
%

1
6
2

5
4

0
,1
4

6
7
%

5
9
%

h
a
m
1
5
2
9
8

4
5

3
0
9

2
7
9

0
,0
0

2
4
2

2
0
9

0
,5
1

2
5
%

2
8
2

8
4

1
,3
5

7
0
%

6
0
%

2
4
2

7
7

1
,2
2

7
2
%

6
3
%

a
d
d
8
1
7
2

2
5

9
6

8
2

0
,0
0

8
2

6
8

0
,0
0

1
7
%

9
8

2
9

0
,0
3

6
5
%

5
7
%

8
2

3
0

0
,0
3

6
3
%

5
6
%

h
w
b
5
3
0
0

2
8

2
7
6

2
3
7

0
,0
0

2
3
7

2
0
8

0
,1
1

1
2
%

2
8
9

9
2

1
,1
5

6
1
%

5
6
%

2
3
7

8
3

0
,9
5

6
5
%

6
0
%

m
o
d
5
a
d
d
er

3
0
6

3
2

2
9
2

2
5
2

0
,0
0

2
4
9

2
1
9

0
,1
7

1
3
%

2
9
2

9
7

1
,8
0

6
2
%

5
6
%

2
4
9

7
7

1
,5
5

6
9
%

6
5
%

rd
7
3
3
1
2

2
5

2
1
7

1
8
6

0
,0
0

1
8
0

1
5
8

0
,0
8

1
5
%

2
0
6

7
1

0
,8
0

6
2
%

5
5
%

1
8
2

6
3

0
,7
3

6
6
%

6
0
%

rd
8
4
3
1
3

3
4

3
0
4

2
5
8

0
,0
0

2
4
7

2
1
8

0
,3
0

1
6
%

2
9
5

9
9

2
,6
5

6
2
%

5
5
%

2
4
7

7
1

1
,7
9

7
2
%

6
7
%

e6
4
-b
d
d
2
9
5

1
9
5

9
0
7

7
4
8

0
,0
1

7
7
9

6
2
0

3
,0
0

1
7
%

9
7
3

3
2
2

5
8
,5
8

5
7
%

4
8
%

7
7
9

3
2
3

5
7
,9
9

5
7
%

4
8
%

cn
t3
-5

1
7
9

1
6

6
5

5
6

0
,0
0

6
2

5
3

0
,0
0

5
%

7
1

2
8

0
,0
3

5
0
%

4
7
%

6
2

3
4

0
,0
4

3
9
%

3
6
%

h
a
m
7
2
9
9

2
1

1
4
1

1
2
4

0
,0
0

1
1
1

9
6

0
,0
3

2
3
%

1
4
4

5
6

0
,1
4

5
5
%

4
2
%

1
1
1

4
9

0
,1
2

6
0
%

4
9
%

m
o
d
5
d
2
7
0

5
1
6

1
4

0
,0
0

1
5

1
3

0
,0
0

7
%

1
8

1
0

0
,0
0

2
9
%

2
3
%

1
5

9
0
,0
0

3
6
%

3
1
%

u
rf
2
2
7
7

8
7
5
2
1

6
7
5
0

0
,0
4

7
1
7
2

6
3
9
0

1
0
,1
9

5
%

7
8
8
5

4
9
9
8

3
4
7
,7
4

2
6
%

2
2
%

7
2
4
4

4
8
3
2

3
3
0
,0
3

2
8
%

2
4
%

4
m
o
d
5
-v
0
1
8

5
2
5

2
4

0
,0
0

1
6

1
4

0
,0
0

4
2
%

2
2

1
1

0
,0
0

5
4
%

2
1
%

1
6

9
0
,0
0

6
3
%

3
6
%

a
ry
y
6
2
5
6

1
7

5
5
9
3

5
4
9
1

0
,0
3

4
8
7
3

4
8
1
0

2
0
,3
6

1
2
%

5
1
9
7

3
9
6
3

5
1
7
,1
4

2
8
%

1
8
%

4
9
4
9

3
8
7
7

6
4
7
,5
5

2
9
%

1
9
%

a
lu
3
2
0
0

1
8

3
3
8
7

3
3
2
2

0
,0
1

2
9
7
0

2
9
2
6

8
,1
9

1
2
%

3
1
7
0

2
4
1
3

2
6
2
,4
6

2
7
%

1
8
%

2
9
8
2

2
3
6
3

3
1
9
,2
5

2
9
%

1
9
%

A
v
er
a
g
e
Im

p
ro
v
em

en
t

1
5
%

6
0
%

5
2
%

6
3
%

5
6
%



232 N. Abdessaied et al.

Both, the initial circuits and optimized circuits, allow for a comparison to the
circuits obtained by the proposed techniques, namely:

– Circuits that have been obtained by using the optimization scheme that
considers single Toffoli gates (Local) as described in Sect. 4.1.

– Circuits that have been obtained by using the optimization scheme that
considers the whole circuit (Global) as described in Sect. 4.2.

The percentage depth-improvement of the circuits obtained by the proposed
techniques with respect to the initial circuit and the optimized circuits are pro-
vided in the columns denoted by Impr IC and ImprOC , respectively.

First of all, it can be observed that already the naive approaches reviewed
in Sect. 4.3 lead to significant improvements (15% on average and up to 42%
in the best case for 4mod5-v0 18 ). However, exploiting additional circuit lines
enables further improvements which are factors beyond that. In the best case
(ex5p 296 ), depth can be reduced from 1352 to 303 (using the local approach
from Sect. 4.1) or 226 (using the global approach from Sect. 4.2). But also for
the other benchmarks substantial reductions can be observed, even compared to
the already optimized circuits.

As discussed above, these improvements in the depth may come at the price
of higher quantum costs. As our evaluations show, this particularly holds for the
local consideration of single Toffoli gates (see columns denoted Local). Here,
quantum costs increase by 18% on average compared to the already optimized
circuit. However, for the global scheme, no such disadvantages can be observed.
In fact, quantum costs remain unchanged here (see columns denoted Global).

Overall, even compared to already optimized circuits, improvements of more
than 50% on average can be achieved. If the global scheme is applied, these
achievements are possible without the need to accept an increase in the quantum
costs. This is made possible by the addition of a single circuit line. Although this
eventually results in the consideration of another qubit to be physically realized,
the possible benefits with respect to timing and particularly decoherence time
might be worth the overhead.

6 Conclusion

In this paper, depth optimization by adding a helper line to quantum circuits has
been introduced and evaluated. Two approaches, namely gate based and circuit
based, have been considered. Experimental results for the two methods have
shown significant depth reductions which reaches over 50% for quantum circuits.
Although these methods increase quantum cost, applying further improvements
to the quantum circuits have fixed the problem.
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Abstract. We extend quantum process calculus in order to describe lin-
ear optical elements. In all previous work on quantum process calculus a
qubit was considered as the information encoded within a 2 dimensional
Hilbert space describing the internal states of a localised particle, most
often realised as polarisation information of a single photon. We extend
quantum process calculus by allowing multiple particles as information
carriers, described by Fock states. We also consider the transfer of in-
formation from one particular qubit realisation (polarisation) to another
(path encoding), and describe post-selection. This allows us for the first
time to describe linear optical quantum computing (LOQC) in terms of
quantum process calculus. We illustrate this approach by presenting a
model of an LOQC CNOT gate.
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1 Introduction

Quantum information processing (QIP) is a well established field of research
which offers high potential in computation, communication and quantum key
distribution [1]. It provides reasonable improvements in the efficiency of per-
forming certain computations. Secure quantum communication systems using
quantum key distribution (QKD) are now commercially available [2,3]. Optical
implementations offer to date the most advanced system for QIP, and photons
naturally allow to integrate quantum computation and quantum communica-
tion. Photons can easily be generated, manipulated and detected and they also
possess large coherence times which makes them suitable for computation and
communications. Linear optical quantum computing (LOQC) is one potential
way for implementing small-scale quantum computing [4]. The computation is
based on spatial encoding where a quantum bit is represented by two optical or
spatial modes containing a single photon. Precise manipulation of the quantum
information inscribed in the internal (polarisation) and external (path) states
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of a photon are routinely achieved using linear optical elements [5]. Recently it
has been shown that quantum optical circuits can be miniaturized using optical
fibre and integrated waveguide circuits [6]. In order to ensure that the QIP sys-
tems are reliable, there is now the requirement to develop techniques and tools
for formal modelling and analysis of quantum communication and cryptographic
systems.

The field of formal methods has been a successful approach in the analysis
of classical systems. Formal methods provide us with the necessary theories and
tools to develop and verify systems in a systematic manner. The success of this
field for classical computation provided the main motivation to develop quantum
formal methods. One line of research in quantum formal methods, based on
process calculus, referred to as quantum process calculus, is used to describe and
analyse the behaviour of systems that arise from the combination of quantum
and classical computation and communication.

Our own approach is based on a particular quantum process calculus called
CommunicatingQuantumProcesses (CQP), developed byGay andNagarajan [7].
Modelling in CQP provides us an abstract view of the quantum system. Our aim is
to model realistic (non-ideal) systems and the associated experimental processes.
CQP assumes that a qubit is a localised unit of information. This view works well
with QKDbut not with LOQC as it cannot describe spatial encoding. In this paper
we extend CQP in order to model LOQC. We illustrate this by defining various
linear optical elements such as beam splitters and phase shifters in CQP and by
modelling an LOQCCNOTgate.Post-selection plays an important role in LOQC,
where one considers only a subset of all experimental runs that fulfil predefined
criteria, e.g. given by the desired number of detected photons in particular chan-
nels. Therefore the computation succeeds with a certain probability, and with the
complementary probability it is aborted with no result.We describe post-selection
in CQP by modelling a linear optic CNOT gate.

The rest of the paper is organised as follows. In Section 2 we recall the basic
concepts of quantum optics which are needed to understand LOQC. We review
the language of CQP in Section 3 and illustrate it by defining the linear optical
elements in CQP. With the help of our definitions, we present a model of the
LOQC CNOT gate in Section 4 and describe the post-selection process. Section 5
provides a brief summary of the extension of the syntax and semantics of CQP
that are required to describe LOQC. We provide the labelled transition rules
and illustrate a few of them with some examples. Finally, Section 6 concludes
with an indication of directions for future work.

Related Work: All the quantum process calculi which have been established so
far considered qubits as a unit of information that could be sent or received
through channels. Lalire and Jorrand developed a quantum process calculus
called QPAlg [8] and Feng et al. [9] developed qCCS, a quantum extension of
the classical value-passing CCS [10]. The present paper extends CQP, for the first
time, to describe details of an experimental realisation of quantum computing.



236 S. Franke-Arnold, S.J. Gay, and I.V. Puthoor

2 Preliminaries

The fundamental unit of QIP is a quantum bit or a qubit. A qubit is a physical
system which is the quantum analogue of a classical bit. It is associated with a
complex Hilbert space H, called its state space, which is a 2-dimensional vector
space over the complex numbers, C with a basis denoted by {|0〉q, |1〉q} that
is called the standard basis. The state space of a qubit therefore consists of all
superpositions of the basis states: |ψ〉 = α|0〉q+β|1〉q where α,β ∈ C are complex
amplitudes such that |α|2 + |β|2 = 1. The states can be represented by column
vectors: (

α
β

)
= α

(
1
0

)
+ β

(
0
1

)
= α|0〉q + β|1〉q

When the two basis states represent the polarisation state of a photon (|0〉q =
|H〉 and |1〉q = |V 〉), we refer to the qubit as a polarisation qubit where H and V
are horizontal and vertical polarisations of the photon respectively. An individual
photon can encode a single qubit. We introduce the notation α|H〉 + β|V 〉 =
α|10〉HV + β|01〉HV , where the entries in the ket states represent the number
of photons in the state basis indicated by the subscripts. This will allow us to
generalise the notation to more than one photon. Two photons in the states
αi|H〉+ βi|V 〉 (where i is 1,2 respectively for each photon) can then be encoded
in the shorthand α1α2|20〉HV + β1β2|02〉HV + (α1β2 + α2β1)|11〉HV , if they are
indistinguishable in all other parameters. In LOQC [4], we consider qubits which
are encoded in different optical paths ’a’ and ’b’ rather than different polarisation
states. This is referred to as dual rail logic. Again, we denote the quantum states
in the number state basis, giving the number of photons travelling along the
different paths. The basis states in dual rail logic are then |0〉q → |1〉a|0〉b, and
similarly for |1〉q → |0〉a|1〉b.

In experiments, the conversion of a polarisation qubit into a dual rail qubit
is accomplished by the combination of a polarising beam splitter (PBS) and a
phase shifter (PR) as shown in Figure 1(a). The PBS has two input ports and two
output ports, where the unused input port is denoted by X . The superposition
of |H〉 and |V 〉 is converted into a superposition of paths a and b. The PBS
therefore links polarisation information with path information. A subsequent
phase shifter rotates the polarisation of the vertical output by 90◦ so that the
components of the dual rail qubit are indistinguishable in their polarisations
and can interfere [5]. The combination of a PBS and phase shifter, works as a
unitary operation PS which converts a polarisation encoded qubit into a dual
rail encoded qubit.

Definition 1 (PS operator) A PS is an operator that transforms a polarisa-
tion qubit |ψ〉 ∈ H1 to a dual rail qubit |φ〉 ∈ H2 represented by spatial modes
(a, b).The action of PS is defined by

PS|Y 〉 ≡ PS|nm〉HV = |nm〉ab

where n and m ∈ {0, 1} and n = m⊕ 1 and Y ∈ {H,V }.
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The evolution of a closed quantum system can be described by unitary transfor-
mations. In LOQC, optical elements such as phase shifters and beam splitters
generate the evolutions. The total photon number is preserved by these transfor-
mations. If the state of a qubit is represented by a column vector then a unitary
transformation U can be represented by a matrix.

Operations on number states or Fock states (|n〉) are described in terms of
the creation and annihilation operators â† and â, which when acting on a state
|n〉 increase or decrease the photon number (n) by one. Therefore, each Fock

state can be built up from creation operators given by |n〉 = (â†)n√
n!
|0〉. A unitary

transformation in LOQC [11] can be described by its effect on each mode’s
creation operator. A phase shifter (PR) is given by the unitary transformation
U(PR) : |n〉 → einφ|n〉 and a non polarising beam splitter (BS) is defined by the
transformation matrix

U(BS) =

(
cos θ eiφ sin θ

e−iφ sin θ − cos θ

)
.

The reflectivity of BS is given by η = cos2 θ, where cos θ and sin θ are the
probability amplitudes and φ is the relative phase. Here we consider φ = 0,
which is the case for BSs in integrated circuits. If we consider the state |mn〉ab
incident on a beam splitter with m photons along path a and n photons along
path b, the transformation is:

|mn〉ab = (â†
a)

m

√
m!

(â†
b)

n

√
n!
|00〉ab →
1√
m!n!

(â†a cos θ + â†b sin θ)
m(â†a sin θ − â†b cos θ)

n|00〉ab.
(1)

Figure 1(b) provides a description of the LOQC CNOT gate [5]. The BSs used
in this CNOT gate have reflectivities of 1

2 or 1
3 . The theory and operation of the

gate is provided in [12] and we summarise it here. Consider the general input
state

|φ〉 = (α|HH〉+ β|HV 〉+ γ|V H〉+ δ|V V 〉)|00〉, (2)

where the ordering in the kets is |c0c1t0t1〉|x0x1〉. Here c0, c1 are the number
states for the control qubit, t0, t1 are for the target qubit and x0, x1 are the
vacuum states and we use the shorthand |1010〉 = |HH〉, etc., where appro-
priate. Using the operators as discussed in Eq. 1 and applying it to the in-
put state, Eq. 2 we get the number of photons in the respective output ports
(C1,out, C0,out, T1,out, T0,out, X1,out and X0,out) of the CNOT gate as shown in
Figure 1.

|φ〉out = 1
3
{(α|HH〉+ β|HV 〉+ γ|V V 〉+ δ|V H〉)|00〉+

√
2(α+ β)|0100〉|10〉+√

2(α− β)|0000〉|11〉 + (α+ β)|1100〉|00〉 + (α− β)|1000〉|01〉 +
√
2α|0010〉|10〉+√

2β|0001〉|10〉 −
√
2(γ + δ)|0200〉|00〉 − (γ − δ)|0100〉|01〉 +

√
2γ|0020〉|00〉

+(γ − δ)|0010〉|01〉 + (γ + δ)|0011〉|00〉 + (γ − δ)|0001〉|01〉 +
√
2δ|0002〉|00〉}.

(3)
From these states we post-select only those where one photon is found in the
target and one in the control state, giving

|φ〉ps = α|HH〉+ β|HV 〉+ γ|V V 〉+ δ|V H〉. (4)
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X

|ψ〉 = α|10〉HV + β|01〉HV a

b
α|10〉ab + β|01〉ab

PBS

PR

(a)

X0,outX0,inp

C1,inp

C0,inp

C1,out

C0,out

A

B

C

D

E
T1,inp

T0,inp

T1,out

T0,out

X1,outX1,in

(b)

Fig. 1. (a) Conversion of a polarisation qubit to a spatially encoded qubit, which is
given as input to the LOQC CNOT gate shown in (b). (b) A sign change occurs upon
reflection of the optically thicker side (indicated in black) of the BSs. A and E are
BSs of reflectivity 1

2
and the rest (B,C,D) are of reflectivity 1

3
. X indicates that the

respective input port of the PBS or BS is not used and the photons coming out of
output ports X1,out and X0,out are not considered. C0,inp, C1,inp are the control (C)
input ports and T0,inp, T1,inp are the target (T ) input ports. The output ports are
C0,out, C1,out, T0,out, T1,out.

This occurs with a probability of one-ninth and the relationship between Eq. 2
and Eq. 4 is a controlled-NOT transformation.

3 Defining Linear Optical Elements in CQP

CQP [7] is a quantum process calculus, which was developed for formally defining
the structure and behaviour of systems that are a combination of both quantum
and classical communication and computation. The language is based on the π-
calculus [13,14] with primitives for quantum information. The general idea is that
a system is considered to be made up of independent components or processes.
The processes can communicate by sending and receiving data along channels
and these data are qubits or classical values. A distinctive feature of CQP is its
static type system [15], the purpose of which is to classify classical and quantum
data and also to enforce the no-cloning property of quantum information. The
concept of behavioural equivalence between processes, which provides a formal
description of the idea of observational indistinguishability, has been defined in
CQP [16] and applied to the analysis of a quantum error correcting code [17].
We will now define the elements used in the LOQC CNOT gate, in an extension
of CQP which will be formally defined in Section 5.

We have seen in Section 2 that the combination of a PBS and PR converts
a polarisation qubit to a dual rail qubit as shown in Figure 1. We define the
combination as a process PolSe which provides the input to the LOQC CNOT
gate.

PolSe(a : [̂Qbit], c : [̂NS], d : [̂NS]) = a?[q0 :Qbit] . [(s0 :NS, s1 :NS) ∗= PS(q0)]
. c![s0] . d![s1] .0
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PolSe is parameterized by three channels, a,c and d. The polarisation qubit (say
q0) is received through channel a whose type is [̂Qbit]. The qubit q0 will be
encoded in terms of the number of photons (s0 and s1) travelling along channels
c and d respectively.

The right hand side of the definition specifies the behaviour of the process
PolSe. The first term, a?[q0 :Qbit] specifies that the qubit is received from chan-
nel a and given the local name q0. The following sequence of terms, separated
by dots, indicate temporal sequencing. The term [(s0 : NS, s1 : NS) ∗= PS(q0)]
specifies that the PS operation is applied to qubit q0 thereby generating s0 and
s1 of type number states (NS). PS corresponds to the transformation produced
by the combination of PBS and PR, introduced by Definition 1. The last two
terms (c![s0] and d![s1]) indicate that the respective values of the number states
are sent through the respective output channels. The term 0 simply indicates
termination.

The CQP definition of the beam splitter BS is

BS (e : [̂NS], f : [̂NS], h : [̂NS], i : [̂NS], η) = e?[s2 :NS] . f?[s3 :NS] . {s2, s3 ∗= Bη} .
h![s2] . i![s3] .0

where η is the reflectivity. Process BS has input channels e and f , and output
channels h and i, all of type [̂NS]. After receiving inputs s2 and s3 from e and
f , the unitary operation of BS represented by {s2, s3 ∗= Bη} is carried out on
the input number states as defined by Eq. 1. Here Bη is the unitary operation
represented by the matrix U(BS) for φ = 0. The number states are then output
on h and i.

Finally, we define the process Det which encapsulates measurement of a num-
ber state as a detector component. This will be used for the post-selecting mea-
surement of the outputs of the CNOT gate.

Det(l : [̂NS], u : [̂Val]) = l?[s0 :NS] . u![measure s0] .0

The expression measure s0 probabilistically evaluates to a positive integer which
is the number of photons detected.

4 The LOQC CNOT Gate in CQP

The structure of the system is shown in Figure 2. The system receives two polar-
isation qubits (control and target) as inputs through the channels a and b. The
qubits are then converted to number states by the process PolSeCT , and these
are provided as the input to the CNOT gate represented by process CNOT . The
output of CNOT is then post-selected by the process PSM . We demonstrate this
by removing the unsuccessful outcomes of the gate and recording a coincidence
count for every successful outcome. The output of the system are the classical
values of the CNOT gate output for which a coincidence count is obtained. The
whole system is then defined as a parallel composition of PolSeCT |CNOT |PSM ,
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PolSe
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PolSe
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e

f BS1

g

h

BS2

i jk
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q

r

Det1
u

Det2

v

Det3
w

Det4

x

Counter
cnt

s

t

PolSeCT CNOT Postselective measurement (PSM)

Fig. 2. Model of LOQC CNOT gate: The dashed lines enclose the subsystems which
are defined in the text

which is indicated by the vertical bar (|). It means that the processes can pro-
ceed simultaneously and interact with each other, and the CQP definition of the
system is

System(a, b, s, t, cnt) = (new c, d, e, f, g, h, i, j, k, l,m, n, o, p, u, v, w, x, q, r)
(PolSeCT (a, b, c, d, e, f) | CNOT (c, d, e, f, i, j, n, j, k, l, p, q, r)|

PSM (k, l, q, r, s, t, cnt))

where the channels (a,b) are of type [̂Qbit], channels (c,. . . ,r) are of type [̂NS],
channels (s,. . . ,x) are of type [̂Val] and the channel cnt is of type [̂Bit]. The
scope of the channels is restricted, indicated by new in the definition. We have
omitted the types from our definitions, for brevity. Each process is parameterised
by the channels on which it interacts with other processes.

PolSeCT represents the conversion of the control and target qubits from po-
larisation encoding to spatial encoding or number states given by the definition:

PolSeCT (a, b, c, d, e, f) = PolSe(a, c, d) | PolSe(b, e, f)

Recall from Section 3 that PolSe represents the combination of a PBS and PR.
The number states are then provided as inputs to the CNOT gate.

The CNOT gate, represented by the process CNOT , is a combination of five
beam splitters. Each BS is represented by a process BS and is annotated to
show the correspondence with Figure 2. The process CNOT consists of all BSs
in parallel. BS2 and BS3 have their inputs crossed over, corresponding to their
orientation in Figure 1(b). Vacuum states y and z (which means absence of a
photon) are created by (ns y, z) and communicated to BS2 and BS4 respectively
through the channels i and n. The CQP definition of CNOT is:

CNOT (c, d, e, f, i, n, j, k, l, p, q, r) = (new g, h,m, o)(ns y, z)(BS1 (e, f, g, h,
1
2 )|

i![y] .0 | BS2 (i, c, j, k,
1
3 ) | j?[y : NS] .0 | BS3 (d, g, l,m, 13 ) | n![z] .0|

BS4 (h, n, o, p,
1
3 ) | p?[z : NS] .0 | BS5 (m, o, q, r, 1

2 ))

The parallel composition of processes in CNOT permits interaction between
processes. This means that the output on the channels g,h,m and o of the re-
spective processes BS1 , BS3 and BS4 synchronises with the input on channels
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T ::= Int | Qbit | NS | [̂T̃ ] | Op(1) | Op(2) | · · ·
v ::= 0 | 1 | · · · | H | PS | · · ·
e ::= v | x | measure ẽ | ẽ ∗= ee | e+ e

P ::= 0 | (P |P ) | P + P | e?[x̃ : T̃ ].P | e![ẽ].P | {e}.P | [e].P | (qbit x)P | (ns x)P |
(new x : [̂T ])P

Fig. 3. Syntax of CQP

g,h,m and o of processes BS3 , BS4 and BS5 . The outputs (number states) of
CNOT are communicated through the channels k, l, q and r, to the process PSM .
The unused BS outputs j and p are absorbed by j?[y : NS] and p?[z : NS].

PSM (k, l, q, r, s, t, cnt) = (new u, v, w, x)(Det1 (k, u) |Det2 (l, v) | Det3 (q, w)|
Det4 (r, x) | Counter(u, , v, w, x, s, t, cnt))

PSM performs the post-selective measurement. This is achieved with the parallel
composition of detectors and a processCounter . DetectorsDet1 ,Det2 ,Det3 ,Det4
are annotated to match Figure 2 and measure the number states associated
with the control and target qubits. The output of a detector is a classical value
which represents the measurement outcome, that is the number of photons de-
tected. The outcomes of the detector processes are given as inputs to the process
Counter .

Counter(u, v, w, x, s, t, cnt) = u?[c0 :Val] . v?[c1 :Val] . w?[t0 :Val] . x?[t1 :Val] .
if (c0 + c1 = 1 and t0 + t1 = 1) then s![c1] . t![t1] . cnt![1] .0 else cnt![0] .0

Counter is a process which represents the coincidence measurement. Coincidence
is observed by detecting two photons, one at channels u or v and the other
at w or x. It also provides the correct output of the CNOT gate in terms of
classical values through the channels s and t. The output is received only for
coincidence. This is determined by the if . . . else conditions in the definition.
When the condition is satisfied, then a count is registered by outputting a value
1 through the channel cnt. If the condition is not satisfied then a value 0 is given
as output, which signifies no coincidence and we don’t get any values from the
channels s and t. Thus, we achieve post-selection in the coincidence basis in our
model.

5 Syntax and Semantics of CQP

The intended behaviour of the processes which represent the linear optical ele-
ments of the CNOT gate model was described informally in the previous section
but in fact the behaviour is precisely specified by the formal semantics of CQP. In
this section we will explain the operational semantics of CQP, excluding named
process definitions and recursion, which can easily be added. In this paper, our
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v ::= . . . | q | s | c
E ::= [] | measure E, ẽ | measure v, E, ẽ | . . . | measure ṽ, E | E + e | v + E

F ::= []?[x̃].P | []![ẽ].P | v![[].ẽ].P | v![v, [], ẽ].P | · · · | v![ṽ, []].P | {[]}.P

Fig. 4. Internal syntax of CQP

focus is to provide the new additions to the previously defined formal syntax and
semantics of CQP [16], in order to describe the behaviour of the linear optical
CNOT gate.

The syntax of CQP is defined by the grammar as shown in Figure 3. We use
the notation ẽ = e1, . . . , en, and write |ẽ| for the length of a tuple. The syntax
is similar to the previous version of CQP which consists of types T , values v,
expressions e (including quantum measurements and the conditional application
of unitary operators ẽ∗=ee), and processes P . We have a new type called NS for
number state. Values v consist of variables (x,y,z etc), literal values of data types
(0,1,..), unitary operators such as the Hadamard operator H and PS. Expressions
e consist of values, measurements measure e1, . . . , en, applications e1, . . . , en ∗=e
of unitary operators, and expressions involving data operators such as e + e′.
Processes include the nil process 0, parallel composition P |P , inputs e?[x̃ : T̃ ].P ,
outputs e![ẽ].P , actions {e}.P (typically a unitary operation or measurement),

[e].P (typically for PS operation), typed channel restriction (new x : [̂T̃ ])P ,
qubit declaration (qbit x)P and number state declaration (ns x)P . In order to
define the operational semantics we provide the internal syntax in Figure 4.
Values are supplemented with either qubit names q or number state names s,
which are generated at run-time and substituted for the variables used in qbit
and ns declarations respectively. Evaluation contexts for expressions (E[]) and
processes (F []) are used to define the operational semantics [18].

In quantum process calculus such as CQP, the execution of a system is not
completely described by the process term (which is the case for classical process
calculus) but also depends on the quantum state. Hence the operational seman-
tics are defined using configurations, which represent both the quantum state
and the process term.

Definition 2 (Configuration) A configuration is defined as a tuple of the
form (x̃ : T̃ ;σ;ω;P ) where x̃ is a list of names (qubits q̃, number states s̃ or
both) associated with their types T̃ , σ is a mapping from names (x̃) to the quan-
tum state and ω is a list of names associated with the process P

We operate with configurations such as

(q1 : Qbit, s0 : NS, s1 : NS; [q1, s0, s1 
→ (|0〉|10〉+ |1〉|01〉)]; q1; c![q1] . P )

We interpret the NS variables as dual-rail representations of qubits, which were
in the initial configuration. For example, in this case, s0 and s1 represent the
original qubit q0. There is a fixed relationship between the indices of qubits and
number state variables: qi is represented by s2i, s2i+1. There may be additional
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(x̃ : T̃ ;σ;ω;u+ v) −→v (x̃ : T̃ ;σ;ω;w)if u and v are integer literals and w = u+ v
(R-Plus)

(x̃ : T̃ ; [x̃ �→
∑
s̃

αs̃|β〉|γ〉];ω;measure sr) −→v (R-Measure-NS)

�u≥0pu • (x̃ : T̃ ; [x̃ �→
∑
s̃′

αs̃′

pu
|β〉|γ′〉];ω;u) where pu =

∑
ĩ

|αs̃′ |
2,

s̃ = s0, . . . , s2n−1, s̃′ = s0, . . . , sr−1, u, sr+1, . . . , s2n−1, ĩ = s0, . . . , sr−1, sr+1, . . . , s2n−1

(q̃ : Qbit, s̃ : NS; [q̃, s̃ �→ |β〉|γ〉];ω; s0, . . . , s2r−1 ∗= U) −→v (R-Trans-NS)

(q̃ : Qbit, s̃ : NS; [q̃, s0, . . . , s2n−1 �→ |β〉(U ⊗ I(n−r))|γ〉];ω; unit)
(x̃ : T̃ ; σ;ω; e) −→v �ipi • (x̃ : T̃ ;σi;ωi; ei)

(x̃ : T̃ ;σ;ω;E[e]) −→e �ipi • (x̃ : T̃ ;σi;ωi;E[ei])
(R-Context)

Fig. 5. Transition rules for values and expressions

NS variables, introduced by the ns declarations, representing vacuum states.
This configuration means that the global quantum state consists of a qubit, q1,
number states s0 and s1, in the specified state; that the process term under
consideration has access to qubit q1 but not to the number states; and that the
process itself is c![q1] . P .

For the evaluation of expressions we also introduce expression configurations
(x̃ : T̃ ;σ;ω; e), which are similar to configurations, but include an expression in
place of the process. The semantics of expressions is defined by the reduction
relations −→v (on values) and −→e (on expressions), given in Figure 5. Rules
R-Plus, R-Measure-NS and R-Trans-NS deal with the evaluation of terms
that result in values, including measurement which produces a probabilistic dis-
tribution over the possible measurement outcomes u, and unitary transforma-
tions which result in literal unit. R-Trans-NS operate on number states listed
first in the state. The important aspect of R-Trans-NS and R-Measure-NS is
the effect they have on the quantum state. R-Measure-NS is a rule defined for
the measurement of number states. On the right of the rule R-Measure-NS,
we have a probabilistic configuration in which the � ranges over the possible
outcomes u of the measurement and the |αs̃′ |2 are the weights of the compo-
nents of the mixture. The measurement outcomes are classical values which are
the number of photons detected.

The semantics of the process calculus is defined by labelled transitions between
processes. The transition takes the form P

α−→ P ′ where α is an action that
can be classified as either input, output (representing potential interaction with
the environment) or internal action (representing a step of internal activity,
which may be the result of internal communication). The actions c?[x], c![x]
and τ represents input on channel c, output on channel c, and internal action
respectively.
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�ipi • (x̃ : T̃ ;σi;ω;Pi)
pi−→ (x̃ : T̃ ;σi;ω;Pi) (L-Prob)

(x̃ : T̃ ;σ;ω, ṽ; c![ṽ].P )
c![ṽ]−→ (x̃ : T̃ ;σ;ω;P ) (L-Out)

(x̃ : T̃ ; σ;ω; c?[ỹ].Q)
c?[ṽ]−→ (x̃ : T̃ ; σ;ω, ṽ;Q{ṽ/ỹ}) (L-In)

(x̃ : T̃ ;σ;ω, ṽ;P )
c![ṽ]−→ (x̃ : T̃ ;σ;ω;P ′) (x̃ : T̃ ;σ;ω;Q)

c?[ṽ]−→ (x̃ : T̃ ; σ;ω, ỹ;Q′)

(x̃ : T̃ ;σ;ω, ṽ;P |Q)
τ−→ (x̃ : T̃ ;σ;ω, ṽ;P ′|Q′)

(L-Com)

(x̃ : T̃ ;σ;ω;P )
α−→ �ipi • (x̃ : T̃ ;σi;ω;Pi)

(x̃ : T̃ ;σ;ω;P +Q)
α−→ �ipi • (x̃ : T̃ ;σi;ω;Pi)

(L-Sum)

(x̃ : T̃ ;σ;ω;P )
α−→ �ipi • (x̃ : T̃ ;σi;ω;Pi)

(x̃ : T̃ ;σ;ω;P |Q)
α−→ �ipi • (x̃ : T̃ ;σi;ω;Pi|Q)

(L-Par)

(x̃ : T̃ ;σ;ω;P )
α−→ (x̃ : T̃ ; σ′;ω;P ′)

(x̃ : T̃ ;σ;ω; (new c : [̂T ]).P )
α−→ (x̃ : T̃ ; σ′;ω; (new c : [̂T ]).P ′)

if α /∈ {c?[.], c![.]}

(L-Res)

(x̃ : T̃ ;σ;ω; {v}.P )
τ−→ (x̃ : T̃ ;σ;ω;P ) (L-Act)

(x̃ : T̃ ; [x �→ |φ〉];ω; (ns s)P )
τ−→ (x̃ : T̃ , s : NS; [x̃, s �→ |φ〉|0〉];ω, s;P ) if s is fresh

(L-Ns)

(x̃, ỹ : ˜Qbit, qc : Qbit, z̃ : ÑS; [x̃, qc, ỹ, z̃ �→ |φ〉];ω; [s2c, s2c+1 ∗= PS(qc)] . P ) (L-PS)
τ−→ (x̃, ỹ : ˜Qbit, z̃ : ÑS, s2c : NS, s2c+1 : NS; [x̃, ỹ, z̃, s2c, s2c+1 �→ |ψ〉];ω′;P )

(x̃ : T̃ ;σ;ω; e) −→e �ipi • (x̃ : T̃ ;σi;ω; ei)

(x̃ : T̃ ;σ;ω;F [e])
τ−→ �ipi • (x̃ : T̃ ;σi;ω;F [ei])

(L-Expr)

Fig. 6. Transition Relation Rules

The semantics of CQP consists of labelled transitions between configurations,
which are defined in a similar way to classical process calculus. This is given by
a set of rules called the labelled transition rules which are needed to describe the
behaviour of a system. Due to space constraints, we have provided just a few
important rules that are shown in Figure 6 and shall explain some of them.

The rule L-Prob is a probabilistic transition in which pi is the probability
of the transition. The rules L-In and L-Out represent the input and output
actions respectively, which are the visible interactions with the environment.
Q{ṽ/ỹ} in rule L-In indicates that Q with a list of values ṽ substituted for the
list of variables ỹ. When the two processes of the input and output actions are
put in parallel then each has a partner for its potential interaction, and the input
and output can synchronise, resulting in a τ transition which is given by the rule
L-Com. The rule L-Act just removes actions. This is a reduction of the action
expression to v which would involve effects like measurement or transformation
of the quantum state. The rules discussed are similar to the rules in [16] with the
modification of introducing the number states into the configuration in order to
describe the behaviour of LOQC.
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Rule L-PS describes the PS operation, which is the conversion of a po-
larisation qubit (qc) to the number states (s2c and s2c+1). Here x̃, ỹ and z̃
means a list of names of the form qi, qj and sk where k �= (2i, 2i + 1, 2j,
and 2j + 1). The quantum state of the system before the operation is given
as |φ〉 = |α〉|0〉|β〉|γ〉+ |α′〉|1〉|β′〉|γ′〉. The initial configuration shows that qc ∈ ω
and s2c, s2c+1 /∈ ω where ω is a list of names that is owned by the process P and
after the operation we have a new list ω′ (where qc /∈ ω′ and s2c, s2c+1 ∈ ω′) and
the quantum state of the system is given as |ψ〉 = |α〉|β〉|γ〉|10〉+ |α′〉|β′〉|γ′〉|01〉.

Example 1.
(q0 : Qbit, q2 : Qbit, s2 : NS, s3 : NS; [q0, q2, s2, s3 
→ α|00〉|10〉+ β|11〉|01〉];
q0, q2, s2, s3; [s0, s1 ∗= PS(q0)] . P )

τ−→
(q2 : Qbit, s̃′ : ÑS; [q2, s0, s1, s2, s3 
→ α|0〉|1010〉+β|1〉|0101〉]; q2, s0, s1, s2, s3;P ).

Example 1 shows the effect of PS operation on qubit q0. The qubit is converted
to the number states s0, s1 and s̃′ indicates that it is a list of names comprising
s0, s1, s2 and s3 of type NS.

The original papers on CQP [7,15] defined the semantics in terms of reduc-
tions, corresponding to τ transitions. The reduction semantics allows us to define
the behaviour of a whole system but the labelled transitions and their interpre-
tation are needed to define equivalence between processes, which is an area of
future work.

6 Conclusion and Future Work

The main contribution of this paper is the extension of CQP to describe linear
optical quantum computing. This is the first work in using quantum process cal-
culus to describe a physical realisation of quantum computing. We have defined
the linear optical elements in CQP, and have described a model of an LOQC
CNOT gate. Using our model, we have also described post-selection in CQP.

The importance of process calculus is that it provides a systematic method-
ology for verification of quantum systems. Previous work on CQP defined be-
havioural equivalence [16]; considering a qubit has to be a localised unit of infor-
mation. Equivalence is a congruence, meaning that equivalent processes remain
equivalent in any context, and supporting equational reasoning. Our next step
for this line of research is to extend the theory of equivalence in CQP to LOQC.
This would not only help us to verify systems but would also give a more phys-
ical understanding of the property of equivalence. The fact that CQP can also
express classical behaviour means that we have a uniform framework in which to
analyze classical and quantum computation and communication. The long-term
goal is to develop software for automated analysis of CQP models, following the
established work in classical process calculus.

Acknowledgement. We would like to thank Scott N. Walck for valuable com-
ments.
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Logically and Physically Reversible
Natural Computing: A Tutorial
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Abstract. This year marks the 40th anniversary of Charles Bennett’s seminal
paper on reversible computing. Bennett’s contribution is remembered as one of
the first to demonstrate how any deterministic computation can be simulated by
a logically reversible Turing machine. Perhaps less remembered is that the same
paper suggests the use of nucleic acids to realise physical reversibility. In context,
Bennett’s foresight predates Leonard Adleman’s famous experiments to solve in-
stances of the Hamiltonian path problem using strands of DNA — a landmark
date for the field of natural computing — by more than twenty years. The ensuing
time has seen active research in both reversible computing and natural comput-
ing that has been, for the most part, unrelated. Encouraged by new, experimen-
tally viable DNA computing models, there is a resurgent interest in logically re-
versible computing by the natural computing community. We survey these recent
results, and their underlying ideas, which demonstrate the potential for logically
and physically reversible computation using nucleic acids.

Keywords: reversible computing, natural computing.

1 Introduction

By the 1960’s, scientists and mathematicians concerned with the study of computing
had already begun to ask and answer the question: what can be computed efficiently?
Many results emerged showing that seemingly difficult problems could be solved by
algorithms that had time complexity bounded by a polynomial — a criterion Edmonds
advocated as a measure of a (time) efficient algorithm [7]. We can extend this question
to ask: what constitutes an energy efficient algorithm? More generally, can any compu-
tation be performed in an energy efficient manner? By 1961, this question was partially
answered when Landauer proved that it was only logically irreversible operations —
those which cause information loss — that must expend energy [12]. Unfortunately, de-
terministic computation is not necessarily logically reversible and typical programming
is unlikely to be so. Fortunately, it was later shown that any deterministic computation
could be simulated by a logically reversible Turing machine, thus showing that compu-
tation does not, in principle, have a fundamental limit with respect to energy expendi-
ture. The result emerged independently by Lecerf [14] in 1963 and later by Bennett [2]

� This work is supported by the ERC Advanced Grant VERIWARE and by the Oxford Martin
School.

G.W. Dueck and D.M. Miller (Eds.): RC 2013, LNCS 7948, pp. 247–262, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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in 1973; although Lecerf’s result was little known and Bennett’s is often cited as the
seminal paper for logically reversible Turing machines.

While Turing machine models can be used to reason about theoretical improvements,
any reaped benefit of energy efficient computation must occur in the physical world.
Thus, one must also consider computing with physically reversible systems, whether
they be electronic or quantum circuits, billiard-ball computers [8], or an altogether
different physical system. In his seminal paper, Bennett suggests using the standard
machinery of a cell for the bio-synthesis and bio-degradation of messenger RNA —
a nucleic acid similar to DNA — as a means for physically reversible computation,
where the synthesis and degradation actions are analogous to reading and writing, re-
spectively, to a Turing machine tape. Interestingly, this idea predates the demonstrated
use of nucleic acids for computation by more than twenty years [1], and the field of
DNA nanotechnology in general, by nearly a decade [24].

Using just four bases (A,C,G, and T), DNA acts as a storage device by encoding genes
and other blueprint sequences that can be inherited by future generations. This purpose
of DNA is very much in line with Bennett’s original insight. However, DNA is not
limited to the role of information carrier. Consider the most common shape associated
with DNA — the famous double helix. This structure is formed by two sequences, in
opposite orientation,1 that hybridize together by forming bonds between complemen-
tary bases (see Fig. 1 (top left)). The A base will bond with a T base and, similarly,
C will bond with G. The beginning of DNA nanotechnology is largely attributed to a
paper by Seeman [24] in 1982 where he demonstrated the potential for DNA to assume
shapes other than the double helical structure. This is accomplished by a careful design
of strands and, in particular, by a careful design of domains, or subsequences, of those
strands so that when they are added into the same solution, they self-assemble, via hy-
bridization, into the intended shape (see Fig. 1 (top right)). DNA has since proven itself
to be an effective and programmable construction material for engineering arbitrary
shapes at the nanoscale [19].

In addition to self-assembly into static structures, DNA hybridization can be lever-
aged for creating dynamic systems that change over time. This has led to the explo-
ration of using DNA to perform computation. The advantage? A natural interface with
biological systems that can be implemented in vitro and, potentially, in vivo. Many mod-
els of computing with DNA have arisen over the years, including the Adleman-Lipton
model — based on the ideas underlying Adleman’s famous experiments to solve in-
stances of the Hamiltonian path problem [1], the Sticker model [22] — where short
DNA molecules ‘stick’ and ‘unstick’ to a long template strand, analogous to a Turing
machine tape, and the Tile self-assembly model [27] where ‘tiles’ of DNA containing
different types of ‘glue’ on each side can hybridize together and give rise to periodic
shapes such as the Sierpinski triangle [20].

In the remainder of this tutorial, we limit our focus to one natural computing model
that overlaps with the goals of reversible computing. In particular, we concentrate
on a relatively new DNA computing model using so-called DNA strand displacement
systems (DSDs) that provide a natural mechanism to perform physically reversible

1 A strand of DNA is oriented and has a 5’ end and a 3’ end. Hybridization can only occur
between two complementary sequences of DNA in opposite orientation.
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Fig. 1. Single stranded DNA molecules, or strands, are polymers over four monomer units called
bases. The strands are oriented and have a 5’ end and a 3’ end. A sequence of DNA, or substrand,
is complementary to another if their bases are complementary and in opposite orientation. An
A base is complementary to the T base, as the C base is to the G base. When single stranded
DNA molecules are added in solution, complementary sequences will hybridize together to form
stable double stranded structures. For example, when strand 1 and strand 2 are added in the same
solution, a DNA duplex forms (top left). Similarly, when strands 3,4,5 and 6 are added in the same
solution, they form a branched structure (top right). When designing strands to self-assemble into
different shapes, it is common to abstract their sequences into labeled domains which are used to
indicate complementary sequences (bottom).

computation steps. We focus on DSD systems as they are simple, widely studied and
experimentally practical. These systems leverage the fact that an unbound strand A
can still hybridize with a complementary domain on some strand B, even if it is al-
ready hybridized to some other strand C. If A does hybridize to B, strand C is said
to be displaced and can next be used to displace some other strand [28]. DNA strand
displacement mechanisms have been experimentally implemented and verified to sim-
ulate neural networks [18], Boolean logic circuits [23,5], and even reversible Boolean
logic circuits [9], among numerous other applications. As we will see, they are also
capable, in principle, of physically and logically reversible Turing-universal computa-
tion [16,11].

2 Background

In the natural computing results we study in this tutorial, a distinct notion of logically
reversible computation is used that differs from the standard definition. We begin with
a discussion of this distinction in terms of configuration graphs, as opposed to restric-
tions on Turing machine transitions [2], which will be used to simplify our presentation
of natural computing examples. This is followed by an overview of the DNA strand
displacement model, and stochastic chemical reaction networks.
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Fig. 2. Example configuration graphs, induced on four different inputs, for (a) logically reversible
computation, and (b) logically reversible computation (with symmetric transitions) arising in
some chemical reaction networks. Nodes represent possible states in a computation and directed
edges denote valid state transitions.

2.1 Logical Reversibility

The reversible computing results we will discuss in this tutorial use a slightly differ-
ent notion of logical reversibility. As we will see, this distinction is important as the
physical reversibility of these systems is actively exploited to achieve space efficient
computation. For our purposes here, it suffices to understand the important difference
distinguishing this notion from the standard notion of logically reversible computation.
The intuition of the difference is captured well by considering the configuration graph
of a computation which has a node for every possible state on every possible input for
the underlying Turing machine being modeled. There is a directed edge from node i to
node j if and only if state j is reachable from state i in a single state-transition of the
Turing machine.

Shown in Fig. 2a is a configuration graph of a typical logically reversible compu-
tation, shown for four different inputs (source nodes A-D). Importantly, a logically
reversible computation for a particular input forms a directed path, from its input to its
final state, which is unconnected to any state for any other possible input. This means
any state along the chain can be deterministically reached from the final state, if the en-
tire chain is reversed. Thus, information is not lost. Contrast this with the configuration
graph of a logically reversible computation (with symmetric transitions) for the same
four inputs shown in Fig. 2b. The only difference is that each non-terminal node along
the chain has two possible choices of where to next proceed: its successor state, or its
predecessor state. Therefore, each transition, and the overall computation, is symmet-
ric [15]. As we will see, the state transitions in the systems we consider model reversible
chemical reactions. That is, after each reaction it is possible the reaction is immedi-
ately reversed. The computation is still logically reversible in the following sense. One
choice is always the previous state of the computation. (Retreating to the previous state
is equivalent to the transition never having occurred.) The important point is that at any
given node, the computation cannot proceed to more than one other node that is not the
previous state.
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2.2 DNA Strand Displacement Systems (DSD)

A DNA strand displacement system (DSD) consists of unbound strands and double
stranded complexes consisting of one or more bound strands to a long template strand.
For example, in Fig. 3a there is one unbound strand labeled I and one double stranded
complex consisting of the strand labeled E bound to the template strand labeled S.
Strands in the system are composed of two types of strand domains: short toehold do-
mains, and long domains. Distinct domains are assumed to have a distinct sequence
design. The short length of toehold domains is chosen to ensure strands bound together
only by a toehold can spontaneously unbind from one another at the experimental tem-
perature. In contrast, two strands bound by a complementary long domain is considered
a stable binding such that that they cannot spontaneously unbind at the experimental
temperature.
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Fig. 3. A successful toehold mediated strand displacement. (a) Toehold t (black subsequence)
of the invading strand I binds with its unpaired complement, t∗, on the template strand S. (b)
The invading and evading strands share the common long domain x (gray subsequence). They
compete, via a random walk process, to bind with the complementary long domain x∗ of the
template strand until all bases of the invading strand are paired. (c) Toehold of the evading strand
E detaches from the template strand S, at which point it has been displaced. Since there remains
a free toehold on S, the process is reversible as strand E could displace strand I .

The fundamental operation in a DSD is strand displacement, whereby a toehold
domain of an unbound strand, called the invading-strand, binds to an unbound comple-
mentary toehold domain of a template strand and, if the adjacent long domain is com-
plementary, it can displace a currently bound signal strand, called the evading strand,
of the same length. We illustrate a simple, reversible version of strand displacement
in Fig. 3. First, the toehold t of the invading strand, I , binds (forms base-pairs) to the
complementary toehold t∗ of the template strand, S. Note that any strand with toehold
t could initially bind here. However, the process only continues if the adjacent long
domain of invading strand I is identical to the long domain of evading strand E. If I
and E do share an identical long domain, then in random walk process (often referred
to as three-way branch migration), the bases of the long domain of I compete with
those belonging to the identical long domain of E to form base pairs with the comple-
mentary long domain of the template strand S. Once the long domain of I has bound
to its complement domain on the template strand, strand E remains bound by just its
short toehold domain. Due to their short length, the toehold bonds can break, thereby
releasing signal E. (Of course I may detach from the template before E is released,
in which case the displacement does not happen.) The displacement is physically re-
versible because signal E can next bind to the template strand S to displace strand I
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via the same principles. However, the template complex does have an orientation. For
example, after I has displaced E in the original displacement, another strand identical
to I cannot be used to displace another strand identical to E. This will only be possible,
using this same template complex, after some strand E displaces the bound strand I .
Alternatively, an I strand can displace and E strand if a another copy of the template
complex is present in its original orientation.

2.3 Chemical Reaction Networks (CRN)

Just as a DSD abstracts sequence level details of interacting DNA strands using the con-
cept of domains, stochastic chemical reaction networks (CRN) abstract details about
displacements. CRNs provide a concise language for writing molecular programs and
affords us the opportunity to express complex ideas more succinctly. A chemical reac-
tion equation details a process whereby certain molecule types can be consumed — the
reactants — and others produced — the products — within some reaction volume. A
reaction may also require the presence of catalyst molecules of certain types. A cata-
lyst molecule is neither consumed nor produced by a reaction, but rather it facilitates
a reaction which could not otherwise occur without its presence. We refer to all three
categories of molecules, generically, as signal molecules. For example, the reaction

A+B
C→ D consumes a signal of type A and a signal of type B and produces a signal

of type D in the presence of the catalyst2 signal C. This is an example of an irreversible

reaction; however, A + B
C� D is an example of a reversible reaction meaning that

both a signal of type A and of type B can also be produced by consuming a signal
of type D in the presence of the catalyst signal C. A CRN is a set of chemical reac-
tions, in addition to a multiset of signals present within the reaction volume, prior to
any reaction occurring, called the initial signal multiset. The current signal multiset is
the current composition of signals of a given CRN within a reaction volume — in terms
of computation, this specifies the state of the system. From a given state, any reaction
can be applied if both the required reactants and catalysts are in the current signal mul-
tiset. Thus, arbitrary CRNs are not necessarily deterministic. Importantly, it has been
shown that any chemical reaction equation can be realized by a physically reversible
DNA strand displacement cascade [16,3].

Let us consider a concrete example of a 3-bit standard binary counter that should
begin at count 000, advance to 001, and so on, until reaching the count 111. In our
molecular program, we let signal 0i and signal 1i denote that bit i has value 0 and 1,
respectively, for 1 ≤ i ≤ 3. Thus, our 3-bit counter will have the following initial signal
multiset: {03, 02, 01}. Fig. 4a gives three chemical reaction equations for exchanging
signals and thus changing the state, or current signal multiset, of the counter. Initially,
only reaction 1 can be applied in the forward direction. This is because all other re-
actions require at least one of the bits to be set to 1. When reaction 1 occurs, signal
01 is consumed and signal 11 is produced, putting the counter in state {03, 02, 11}.

2 Some reactions require the presence of one or more signals, called catalysts, which they do
not consume. Note how we represent catalysts in our reaction equations. These are not to be
confused with rate constants which do not factor into our current discussion. Catalysts do play
a significant role and this representation was chosen for its succinctness.
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(1) 01 � 11
(2) 02 + 11 � 12 + 01
(3) 03 + 12 + 11 � 13 + 02 + 01

(a)
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Fig. 4. (a) Chemical reaction equations for a 3-bit standard binary counter. (b) The configuration
graph of the computation performed by the 3-bit standard binary counter forms a chain and is
logically reversible (with symmetric transitions). The nodes represent the state of the computation
and the edges are directed between states reachable by a single reaction.

From this state, two reactions are next possible. Either the previous reaction is reversed
(i.e., reaction 1 next occurs in the reverse direction), or reaction 2 can occur in the for-
ward direction, resulting in state {03, 12, 01}. Similarly, either reaction 2 is reversed,
or reaction 1 next occurs once again, bringing the counter to state {03, 12, 11}. This
continues until the counter reaches the final state {13, 12, 11}. Fig. 4b represents all
reachable states of the counter as nodes and has edges between states that are reachable
within one reaction step. Notice that this CRN specifies a logically reversible computa-
tion (with symmetric transitions). This 3-bit counter can be extended to a 4-bit counter
by adding signal 04 to the initial signal multiset, and by adding the reversible reaction
04 +13 +12 +11 � 14 +03 +02 +01. In a similar manner, the CRN can be extended
to simulate any n-digit counter.

3 Reversible and Turing-Complete Natural Computing

Are DNA strand displacement systems capable of logically and physically reversible
Turing-universal computation? This question was answered in the affirmative by Qian
et al. [16] whose work stands as one of the most important theoretical contributions
to the area. In a first major contribution of that work, the authors offer a design for a
reversible DSD reaction cascade that can realise any chemical reaction. An example for
the reversible reaction A + B � C + D is given in Fig. 5. The signal molecules are
represented by the strands in the shaded boxes, consisting of three domains. The other
strands and complexes, which facilitate the reaction, are collectively called the reaction
transformer. Note that for a reversible reaction cascade, the transformer has two orien-
tations — one for each direction of the reaction. In Fig. 5, the forward orientation is
shown top-to-bottom, where the DNA strands for the signals A and B are consumed,
and those for C and D are produced. The reverse is shown from bottom-to-top. Con-
sider the forward reaction (top-to-bottom) in Fig. 5. Initially, the only available toehold
complement on the template strand is adjacent to a domain complementary to a long
domain of strand A. Once strand A displaces a bound strand, a new toehold is avail-
able for strand B to bind. Next, auxiliary strands are used to displace C and D — the
intended products of this reaction. Once the transformer is in this orientation, it cannot
be used to consume A and B and produce C and D. It can however perform the reverse
reaction next.

In their second major contribution, the authors enriched the DSD computing model
by showing how displacement reactions could be used to add and remove strands to
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Fig. 5. A strand displacement implementation of the bi-molecular chemical reaction equation
A+B � C +D using the construction proposed by Qian et al. [16]

a growing polymer. Consider the example in Fig. 6, clockwise from state 1 to state 4,
showing how a signal denoting the value X can be appended to a growing polymer.
Initially, in state 1, the polymer is considered to be an empty list and consists of a single
strand, with one toehold and one long domain, that denotes the head of the list. In state 2,
the domains denoting the head can interact with a transformer, containing the value X ,
to form a new extended complex. However,X is only tentatively appended. The process
can continue into state 3 if a signal strand, denoting that value X is present, interacts
with the new extended complex. Finally, the process in finalized in state 4 when the new
extended complex interacts with another transformer resulting in the original exposed
domains denoting the head of the list. At this point a new value could be appended to
the list, or the previous value X could be removed by performing the reaction sequence
in reverse.

Coupled with a clever design of reactions to control state, the authors were able to
simulate a (multi) stack machine using only strands of DNA. As the stack machine could
be used to simulate Bennett’s original reversible Turing machine, and since the reaction
cascades of the stack machine simulation are reversible, the authors demonstrated that
Turing-universal computation could be realized by a logically and physically reversible
DSD sytem enriched with polymers.

One important issue must not be overlooked. As Bennett points out [2], a physi-
cal system performing a computation of length t, with no positive drift in the forward
direction, will reach the end state in t2 expected steps. However this should not be con-
sidered a computation, as the process can immediately reverse once reaching the output
state — the probability of observing the output in this manner is only 1

t . To overcome
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Fig. 6. A reproduction of a figure from Qian et al. [16] illustrating (clockwise from the top) how
a new signal X can be pushed on to a stack by a reaction cascade for polymer extension

this in the stack machine construction, the authors introduce a small bias in favour of
forward reactions, thus introducing a positive drift in the computation chain towards the
output state. The positive drift is accomplished as follows. DSD reactions are always
bi-molecular reactions between two distinct species types (one invading strand and one
transformer complex). The propensity of a reaction A+ B → . . . within a well-mixed
solution of size v is |A||B|

v , where |X | is the count of molecules of type X . Consider the
reaction X+Tf � Y +Tr and suppose Tf is the transformer for the forward reaction,
and Tr is the transformer for the reverse. The propensity of the forward reaction can be
made to be twice as large as the propensity of the reverse by ensuring |TF | = 2|TR|.
Thus, in the stack machine construction, the authors ensure more copies of each reac-
tion transformer is in the forward orientation, rather than the reverse, for the duration
of the computation. To next reverse the computation towards the beginning state, addi-
tional transformers in the reverse orientation could be added to the system to bias the
computation to next reverse.

4 Reversible and Space-Efficient Natural Computing

As with Bennett’s original reversible Turing machine, the stack machine construction
uses space proportional to the length of the computation. This is because a new copy

(1) 01 � 11

(2) 02
11� 12

(3) 03
12+01� 13

(a)
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(b)

Fig. 7. (a) Chemical reaction equations for a 3-bit binary reflecting Gray code counter. (b) The
configuration graph of the computation performed by the 3-bit binary reflecting Gray code
counter forms a chain and is logically reversible (with symmetric transitions).
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of a transformer must be used for every computation step as all reactions of the stack
machine simulation, from the beginning state to the ending state, are in the forward
direction. Condon et al. [6] asked if space-efficient reversible computation is possi-
ble in CRNs and DSDs. They showed that, in principle, it was by demonstrating how
transformers can be actively recycled during a computation. Specifically, the authors
proposed an n-bit binary counter that can perform a logically reversible computation
through 2n states, using only poly(n) strands in a DSD system. Their counter was
based on the binary reflecting Gray code (BRGC) sequence. Due to the symmetric na-
ture of that particular sequence, only one copy of each reaction transformer is necessary
to complete the computation, as each particular reaction is performed alternately in the
forward and reverse direction. An example of a 3-bit BRGC counter is given in Fig. 7.
As with the standard binary counter, only reactions advancing the counter to a successor
state, or to the predecessor state is ever possible.
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Fig. 8. Comparing two different binary counters over 3 bits. (a) To reach the end state, the standard
binary counter must perform a sequence of reactions that always occur in the forward direction,
thus requiring a new transformer for every reaction as they are not recycled. (b) The binary
reflecting Gray code counter only requires one transformer per reaction equation as each reaction
occurs alternately in the forward and the reverse direction.

Contrast the sequence of reactions required for the standard counter in Fig. 8a with
that of the Gray counter in Fig. 8b. A standard n-bit binary counter, much like the
stack machine, performs only forward reactions when progressing in a computation
and would therefore require 2n − 1 transformers to reach the end state. In the case of
the 3-bit counter, seven transformers are required in total for the standard counter to
reach the end state. However, the Gray counter has a regular symmetry which can be
exploited to use only one transformer per bit of the counter. In the case of the 3-bit
counter, only three transformers are required to reach the end state. In general, the Gray
counter is exponentially more space-efficient than the standard counter.

4.1 Technique: Active Computation Reversal

Interestingly, the recursive nature of the binary reflecting Gray code sequence leads
to a powerful technique for logically reversible computing. To extend the 3-bit BRGC
counter to a 4-bit BRGC counter, all that is required is to add the signal 04 to the initial
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Fig. 9. (a) The computation chain of a logically reversible CRN (with symmetric transitions).
(b) The computation chain from (a) doubled by adding one new initial signal, X , and one new

reaction, X
Sn� Y , that requires the signals of the previous final state as catalysts.

signal multiset and to add the new reaction 04
13+02+01� 14. The new signal molecule

does not affect the reactions for the first 3 bits; furthermore, the new reaction requires
as catalysts the signals of the final state of the 3-bit counter. This means the original
reaction sequence of the 3-bit counter will proceed prior to the new reaction. Once the
3-bit sequence is complete, the new reaction can occur for the first time to produce
14. Other than next reversing this new reaction — stepping back in the computation
chain — the only other possibility is to perform the entire reaction sequence of the 3-
bit counter in reverse. Note that since the 14 signal was not present before, this means
the computation is actually stepping forward towards a new end state. By introducing
one new signal, and one new reaction, we can effectively double the computation chain
length, and ensure active recycling of transformers. The general technique is illustrated
in Fig. 9.

When using active recycling of transformers the computation chain must be unbiased
as reactions are repeated in alternating orientations — thus we cannot force a positive
drift as in the stack machine construction. To ensure the output of the computation can
be witnessed with high probability, this same technique can be used to repeatedly ex-
tend the overall computation chain. For instance, consider a computation for a decision
problem where a special signal is produced to indicate if the input is accepted and an-
other signal is produced to indicate if it is not. This extension technique can be used
to double the overall computation chain length, ensuring the output signal can be ob-
served in strictly more than half of the states. As the computation performs an unbiased
random walk along the logically reversible computation state space, the steady state
probability of observing the output signal is p > 0.5. In this manner, for every new re-
action added to the CRN to double the chain length, the probability of not observing an
output signal is cut in half. Formally, the probability of observing an answer becomes
p′′ > 1 − 2−(1+c) when c ≥ 0 number of new reactions are added to extend the com-
putation chain. Thus, we can make the steady state probability of observing a solution
signal arbitrarily high.

This same chain extension technique was used by Thachuk & Condon who gave a
space-efficient and logically reversible CRN for performing an in-order traversal of a
complete binary tree. Coupled with the ideas for verifying a 3-SAT formula (which we
explore next), and the new tree traversal procedure, the authors demonstrated how any
quantified 3-SAT problem instance could be solved, by giving a logically reversible
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QSAT solver that could be realized as a physically reversible DSD [26]. Thus, any
problem in PSPACE can be solved by a space-efficient and reversible DSD. This result
was later generalized to solve any problem in SPACE — the class of all space bounded
computation [25].

4.2 Designing a 3-SAT Solver

In this section, we will explore, at a high level, how the logically reversible and space-
efficient BRGC counter can be used in conjunction with a 3-SAT verification procedure
to solve 3-SAT instances. We will use a very simple strategy. For a formula with n
variables, an n-bit counter can enumerate every possible variable assignment, and a
verification procedure can be run every time the counter changes. The entire computa-
tion can be made to halt either when a satisfying solution is found, or when all states of
the counter have been exhausted. Furthermore, the entire computation chain will be log-
ically reversible. We do not discuss the specifics of how the counter and the verification
procedure can be coupled, but a set of auxiliary reactions are sufficient to achieve the
desired result [25]. We note that one detail which cannot be overlooked in such a cou-
pling is that the entire verification procedure must be reversed in between invocations
for different variable assignments. Next, we discuss how a 3-SAT formula can be veri-
fied. The procedure illustrates the use of history signals to ensure the overall procedure
is logically reversible.
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Fig. 10. (a) A set of reactions acting as a truth table for clause i. (b) Flow control when verifying
a formula φ having m clauses.

Verifying an Arbitrary Clause. Consider an arbitrary 3-SAT clause over three liter-
als, each for a distinct variable. There are exactly eight possible truth assignments to the
three distinct variables. Thus, for each such clause, we create a set of eight reversible re-
actions to determine if the clause is satisfied. The reactions for verifying the ith clause,
containing literals for variables xj , xk and xl are given in Fig. 10a. When the clause sig-
nal molecule C?

i is present, exactly one of the eight reactions can be applied, specified
by the current variable assignment. The variable signals act as catalysts and the C?

i sig-
nal is consumed producing either a CT

i signal if the clause is satisfied, or CF
i otherwise.

In this example, it is supposed that the variable assignment xj = F, xk = T, xl = F
does not satisfy the clause, while the first two variable assignments do. Note that for
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a particular variable assignment, only one reaction will apply in both the forward and
reverse direction, ensuring the process is logically reversible.

Verifying the Overall Formula. For the formula to be true, all clauses must be satis-
fied. However, any combination of unsatisfied clauses will result in φ being false. To
ensure reversibility, verification of the overall formula must be completed systemati-
cally. A diagram illustrating the flow control of the procedure is given in Fig. 10b. The
verification is initiated by consuming the signal φ? and will complete either by produc-
ing the signal φT , if φ is satisfied, or by producing the signal φF , otherwise. Note that
the signals for the variable assignment (which are manipulated by the counter) only act
as catalysts in this procedure. Each clause is checked in order. Suppose the formula is
not satisfied. Then the first clause i to be unsatisfied will produce the signal CF

i . This is
followed by a reaction that not only produces the φF signal, but also produces a unique
history signal which records the first unsatisfied clause. This history signal ensures that
the entire process remains logically reversible. Should the overall formula be satisfied,
the φT signal will be produced. Once φF or φT is produced, the verification is complete.

5 Unique Challenges in Natural Computing

Consider the additional challenges of computing with a soup of interacting molecules,
such as DNA. At once the molecules form the hardware and the software of the sys-
tem. The state of the computation is denoted only by the presence or absence of cer-
tain signals, and this in turn fully dictates which reactions can next occur. Despite
this, constructions such as the stack machine and the BRGC counter demonstrate that
not only is logically reversible computation possible in these systems, it can also be
Turing-universal and space-efficient. However, both constructions share a common as-
sumption: certain signal molecules in the initial set must occur as a single copy. The-
oretical results have emerged that suggest these systems will not operate correctly
when this single copy assumption is violated [4,6]. To illustrate this point, we again
consider the 3-bit BRGC counter. Initially, in a single copy of the construction, the
signal molecules {03, 02, 01} denote the state 030201. Consider a two-copy network
where the initial multiset of present signal molecules is duplicated, yielding the mul-
tiset {03, 03, 02, 02, 01, 01}. (We also assume a duplicate multiset of transformers is
available.) As in the single copy case, assume reaction (1) occurs in the forward direc-
tion, followed by reaction (2) in the forward direction. The resulting multiset of signal
molecules is {03, 03, 02, 12, 01, 11}. In the single copy case, we intend that reaction (1)
in the reverse direction will occur next; however, given the current multiset of present
signal molecules in the two-copy case, reaction (3) in the forward direction could in-
stead occur, resulting in the multiset {03, 13, 02, 12, 01, 11}. At this point, a copy of
every signal molecule is present, and any reaction can occur, in either direction. Fur-
thermore, the single copy case required at least seven reactions to produce the final state
130201, whereas the two-copy case can reach it in three. Crosstalk between the copies
has broken the counter. The intuition as to why the single copy assumption is important
is that it gives us a means to (temporarily) erase information. In a single copy setting,
once a molecule of a particular type is consumed, it is no longer present. In a multi-copy
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setting, once a molecule of a particular type is consumed, there is no guarantee that the
other copies are simultaneously consumed.

While the single copy restriction permitted us to study systems pushing the limits
of computation for a chemical soup, it imposes a significant engineering challenge. All
DSD implementations to-date use concentrations of strands of each type. Producing and
successfully executing a DSD with a single copy restriction is currently challenging, but
feasible. For instance, the first published result on the measurement of a single enzyme
molecule was by Boris Rotman, in 1961 [21]. The experimental techniques developed in
that first paper are still influential and in use, and new advancements in single molecule
studies continue to be made [10].

6 Conclusion

Progress in natural computing, both on the theoretical and experimental side, has been
steady. New, experimentally viable computing models, such as DNA strand displace-
ment systems, have inspired promising results to realize logically and physical reversible
computing systems using nucleic acids. In this brief tutorial, we have highlighted
some of these results and discussed their underlying ideas. These constructions we stud-
ied are theoretical, have not been experimentally realized, and are not without unique,
practical challenges. An underlying assumption in all constructions surveyed is that cer-
tain signal species occur within the reaction volume as a single copy. This contrasts
sharply with DNA based computations that have been experimentally realized — copies
of each type of strand typically number in the millions or billions. While it may be possi-
ble to ensure the single-copy assumption is met, another promising direction is to tether
strands to a surface [17,11], such as a DNA origami tile [19].

Finally, we find the current complexity classes for logically reversible computation
too general to capture the realities of logically reversible chemical reaction networks
(CRNs) and DNA strand displacement systems (DSDs). The class ReversibleSPACE
represents all problems that can be solved by a space-bounded logically reversible Tur-
ing machine. As with any Turing machine, the space bound is with respect to the length
of tape necessary to complete the computation. In CRNs and DSDs, bits of information
are represented with the presence and absence of signal molecules. Thus, the length of
tape required in the Turing machine computation corresponds well with the maximum
quantity of signals required during the CRN computation. However, this does not ac-
count for fuel (transformers) that a CRN may require to complete its computation. The
reaction is the fundamental operation in a CRN just as a state transition is the funda-
mental operation for a Turing machine. However, with current technology, a reaction
in a CRN requires fuel, which in turn requires physical space, whereas a Turing ma-
chine state transition does not. In essence, a logically reversible Turing machine could
perform all state transitions in only one direction, while still using significantly less
space than the number of computation steps. This is not currently possible in molec-
ular programming. It has been demonstrated that any space-bounded computation can
be realized with a logically reversible CRN that requires only one copy of fuel species
(transformers) per reaction equation [25]. It is conceivable this CRN could be simulated
with a logically reversible Turing machine. It is also conceivable that such a simulation
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could be constructed to ensure that each state transition of the Turing machine either
strictly alternates being applied in the forward and reverse direction, or adheres to a
polynomial bound in the difference between forward and reverse transitions, at every
step of the computation. Such a construction would be a logically reversible Turing
machine (with symmetric transitions), capable of simulating any space-bounded Tur-
ing computation, that is semantically restricted to capture the notion of fuel. We let
ReversibleSPACE� denote the class of problems solvable by such a Turing machine. It
has already been shown by Lange et al. [13] that ReversibleSPACE = SPACE. An open
question is whether ReversibleSPACE� = SPACE.
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