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Abstract. A combiner for collision-resistant hash functions takes two
functions as input and implements a hash function with the guarantee
that it is collision-resistant if one of the functions is. It has been shown
that such a combiner cannot have short output (Pietrzak, Crypto 2008);
that is, its output length is lower bounded by roughly 2n if the ingoing
functions output n-bit hash values. In this paper, we present two novel
definitions for hash function combiners that allow to bypass the lower
bound: the first is an extended semi-black-box definition. The second
is a new game-based, fully black-box definition which allows to better
analyze combiners in idealized settings such as the random-oracle model
or indifferentiability framework (Maurer, Renner, and Holenstein, TCC
2004). We then present a new combiner which is robust for pseudoran-
dom functions (in the traditional sense), which does not increase the
output length of its underlying functions and which is collision-resistant
in the indifferentiability setting. Our combiner is particularly relevant
in practical scenarios, where security proofs are often given in idealized
models, and our combiner, in the same idealized model, yields strong
security guarantees while remaining short.

Keywords: hash functions, combiners, collision resistance, multi-
property combiner.

1 Introduction

A Story. Once upon a time little Cryptess was walking through her favorite
forest. As usual she was thinking about a hard problem and thus did not pay
much attention on where she was going. It thus came that she suddenly found
herself on a beautiful glade that she had never seen before. In its center she could
make out what seemed to be a fairy flapping her wings in a welcoming pattern.
Little Cryptess slowly approached the fairy and politely asked “Hello little one,
who are you?” The fairy responded “I am the fairy Cryptophia and since you
have found my magical glade, I grant you one wish.” Little Cryptess did not take
long to come up with a wish: “Can you build me a hash-function combiner that
while being robust for collision resistance does not increase the output length of
the hash functions?” “Of course I can”, said the fairy. “Here it is. But beware,
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it is a magical combiner. Given access to two hash functions H1 and H2 and a
message M it returns H1(M) if and only if H1 is ‘more’ collision-resistant than
H2. Else it returns H2(M)”. Cryptess thought for a moment and then replied
“I am sorry Cryptohia, but your combiner is utterly useless. It is not robust for
collision resistance after all. Assume I give it access to two uniformly random
functions R1 and R2 and I am given an oracle that computes collisions for the
combiner. As the oracle will only provide collisions for R1 no efficient reduction
can compute collisions for R2. This, as you should know, violates the definition
of robustness and thus your combiner is useless to me.” With this she turned
around and went home.

Hash-Function Combiners. Hash functions are an important cryptographic prim-
itive but, as with many primitives, efficient constructions used in practice are
based on heuristics [40,34,8]. As history has shown, with time, it is not unlikely
that cryptanalysists find plausible attacks [45,43,42,44,19,3,14] and it is thus a
natural question to ask whether we can hedge against the failure of an imple-
mented hash function.

A hash-function combiner is a construction which, given access to two or
more hash functions, itself implements a hash function that, however, comes
with certain guarantees. A combiner is called robust for some property π if it
guarantees to satisfy property π provided that sufficiently many input functions
do. The simplest version (and the one usually used in practice) is a combiner
which takes two hash functions as input and hedges against the failure of one of
them, i.e., it obeys π if either of the input functions does. This will also be the
variant that we examine more closely in this paper. A practical example of the
application of hash-function combiners are the original versions of the TLS and
SSL protocols [24,20].

Assume CH1,H2 is a hash-function combiner given access to two hash functions
H1 and H2, then robustness for property π is usually defined via a reductionist
approach. That is, the combiner is called robust for π if there exists a reduction
P such that if P is given access to any (breaking-)oracle B that breaks π on the
combiner with non-negligible probability, then PB,H1,H2 must in turn break π
on both input hash functions (H1 and H2) with non-negligible probability.

There are two folklore combiners for hash functions. The concatenation com-
biner CH1,H2

‖ (M) := H1(M)||H2(M) is, amongst others, robust for collision

resistance (it should be difficult to find two distinct messages that hash to
the same value). It is easy to see that a collision on the combiner directly
yields collisions for both input functions. In other words, for a message pair
(M,M ′) with M �= M ′ it holds that CH1,H2(M) = CH1,H2(M ′) if and only if
H1(M) = H1(M

′) and H2(M) = H2(M
′). The concatenation combiner is, how-

ever, not robust for pseudorandomness (no efficient distinguisher that is only
given black-box access should be able to distinguish between the hash function
and a randomly chosen function with the same domain and codomain). On the

other hand, the exclusive-or combiner CH1,H2

⊕ (M) := H1(M) ⊕ H2(M) which
computes the bitwise exclusive-or on the outputs of the two hash functions is ro-
bust for pseudorandomness if instantiated with two independent hash functions.
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However, it is not robust for collision resistance, nor even collision-resistant pre-
serving. Hash-function combiners that are robust for multiple properties, in par-
ticular for collision resistance and pseudorandomness together, have been studied
by Fischlin et al. [21,22].

Short Combiners. If we assume that H1 and H2 take on values in {0, 1}n then
the concatenation combiner doubles the output length, whereas the exclusive-or
combiner does not. Furthermore, it is a common property that all combiners
robust for collision resistance share: their output length is in the order of the
sum of the output lengths of the input hash functions.

This observation lead to the question whether short hash-function combiners
(combiners with an output length significantly shorter than that of the concate-
nation combiner) that are robust for collision resistance exist [12]. It has been
shown that this is not the case, i.e., there exists a lower bound on the output
length for combiners that are robust for collision resistance as well as for related
properties [12,13,36,37,30] where the lower bound is roughly the output length
achieved by the concatenation combiner.1

Cryptophia’s Magical Combiner. Cryptess rejected Cryptophia’s magical com-
biner on the grounds that it is not robust for collision resistance. Indeed, she
was right, as the combiner only evaluates one of the two functions a collision
on the combiner cannot possibly yield information about collisions for the other
function. On the other hand, the robustness definition is usually only given
for black-box combiners, i.e., combiners that only get black-box access to the
hash functions; Cryptophia’s magical combiner is, however, clearly not black-
box. Nevertheless, what this shows is that the robustness definition requires the
combiner, in some sense, to be stronger than both input hash functions which
in turn leads to the lower bound on the output-length of combiners for collision
resistance. This, however, goes against the intuition of what a combiner should
capture: it should be at least as strong as the stronger of the two functions, but
not necessarily stronger.

Contributions and Outline. In this paper we examine the current definition of
robust combiners and the reason why it is necessary for combiners that are
robust for collision resistance to satisfy a lower bound on their output-length
(Section 3). In Section 3.2, we extend the definition (in a semi black-box way) in
order to better capture the intuition: a combiner does only need to be as strong
as the strongest input function and not necessarily stronger. We then present
a new game-based definition for combiners (Section 3.3) which also allows to
bypass the lower bounds while still being fully black-box. This second notion

1 A recent framework by Baecher et al. [4] allows to precisely characterize reductions
(and thus separation results) in terms of the level of black-boxness used by the con-
struction and the reduction. In terms of the impossibility result for short combiners
it can be shown that the ruled-out reductions are of the type NNN meaning that it
holds even if the construction or the accompanying security reduction were using
non-black-box techniques. See the full-version of this work [31] for further details.
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is tailored to analyze combiners in idealized models such as the random oracle
model (ROM; [7]) or the indifferentiability framework introduced by Maurer,
Renner and Holenstein [28,17] giving guarantees of the form: the combiner has
property π if one of the input functions is ideal even if the other function is
completely under the control of the adversary and possibly even based on the
first function. We go on to present a new construction for a combiner which we
analyze in this new model (Section 4). The combiner does not increase the output
length of its ingoing functions while guaranteeing collision resistance (and related
properties) provided that one of the two input functions is indifferentiable from
a random oracle (assuming ideal compression functions). Finally, we show that
our combiner is robust for pseudorandomness under the “traditional” definition
of robustness without needing to assume independence (as is the case for the
“standard” xor-combiner). This yields the first multi-property combiner with
short output length, which is robust for pseudorandomness and which gives
additional guarantees about collision resistance and related properties such as
pre-image resistance or target collision resistance.

2 Preliminaries

Lower-case letters, such as n ∈ N, usually represent natural numbers and by 1n

we denote the unary representation of n. Upper-case letters in standard typeface,
like M , stand for bit-strings which we usually call messages. By {0, 1}n we
denote the set of all bit-strings M of length |M | = n, while {0, 1}∗ denotes
the set of all bit-strings. For bit-strings X,Y ∈ {0, 1}∗ we denote with X ||Y
their concatenation and with X ⊕ Y the bit-wise exclusive-or (XOR) operation.
If X is a set then by M ← X we mean that M is chosen uniformly from X .
If X is a distribution then M ← X denotes that M is chosen according to the
distribution.

If A is an algorithm (often also called adversary) that has black-box access
to one or more oracles O1, ...,Oz we denote this by adding them in superscript,
i.e., AO1,...,Oz . By X ← A(M) we denote that algorithm A on input M outputs
value X . Throughout this paper we assume 1n to be a security parameter and we
call an algorithm efficient if it runs in polynomial time in the security parameter.

If X is a random variable, Pr[X = x] denotes the probability that X takes
on value x. By H∞ (X) we denote the min-entropy of variable X , defined as

H∞ (X) := min
x∈Supp(X)

log(1/Pr[X = x])

where the probability is over X . The (average) conditional min-entropy of ran-
dom variable X conditioned on variable Z is defined (in the style of [1]) as

H̃∞ (X |Z) := min
A

log(1/Pr[X = A(Z)])

where the probability is over X and Z and the random coins of A (which has
no efficiency bounds).
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2.1 Hash Functions and their Properties

Formally, a hash functionH is defined as a family of functions together with a key
generation algorithm HKGen that picks one of the functions to be used. That
is, a hash function (family) is a pair of efficient algorithms H = (HKGen, H)
where HKGen(1n) is a probabilistic algorithm that takes as input the security
parameter 1n and outputs a key k, while deterministic algorithm Hk(M) :=
H(k,M) takes a key k and message M ∈ {0, 1}∗ as input and outputs a hash
value Hk(M) ∈ {0, 1}n. Note that we will drop the subscript and simply write
H(M) whenever the key is clear from context.

Collision Resistance and Related Properties. A hash function H is called
collision-resistant (cr) if no efficient adversary can find two distinct messages
(M,M ′) such that Hk(M) = Hk(M

′). More formally, a hash function is called
collision-resistant, if for any efficient adversary A there exists a negligible func-
tion negl such that:

Advcr
H(A) := Pr

[
k← HKGen(1n);

(M,M ′)← A(k) :
M �= M ′ ∧
Hk(M) = Hk(M

′)

]
≤ negl(n)

where the probability is over the choice of key and A’s internal coin tosses.
Two closely related properties are second pre-image resistance (spr) and target

collision resistance (tcr) (see [41] for an overview of several variants of these
notions). Here the adversary’s task is not to find an arbitrary collision but a
specific one, in case of second pre-image resistance the target message is sampled
according to a distributionM whereas for target collision resistance the target
message is specified by a first-round adversary.2

Finally, we consider another variant of second pre-image resistance called pre-
image resistance (also often referred to as one-wayness). In the pre-image resis-
tance experiment a message M is again chosen according to some distribution
M. Given only the resulting hash value Hk(M) (and not message M) and key
k, the adversary’s task is to find a corresponding pre-image M ′, i.e., a message
M ′ such that Hk(M) = Hk(M

′).

Pseudorandomness and Message Authentication Codes. Besides colli-
sion resistance and its variants, hash functions are often assumed to be pseu-
dorandom (or a pseudorandom function; prf) or secure message authentication
codes. Here the adversary is not given access to the hash function’s key but only
to a black-box implementing the hash function, i.e., the key is kept private at all
times. A hash function H is called pseudorandom if no efficient adversary can
tell whether it is given black-box access to the hash function H or to a random

2 Note that target collision resistant hash functions are also known as universal one-
way hash functions [33].
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function f with the same domain and range. More formally, for any efficient
adversary A there exists a negligible function negl such that:

Advprf
A (A) := ∣∣Prk [AHk(1n) = 1

]− Prf
[Af (1n) = 1

]∣∣ ≤ negl(n)

The probability is over the adversary’s random coins and the choice of key in
the first part and the choice of function in the second, respectively.

A hash function is called a secure message authentication code (mac) if no
adversary given only black-box access to a hash oracle can find a message and
corresponding hash value (without querying the oracle on the corresponding
message) with noticeable probability. The probability is over the choice of key k
and the adversary’s internal coin tosses.

Random Oracles and Indifferentiability. Many security proofs are given in
the random oracle model (ROM; [7]) where hash functions are modeled as ideal,
i.e., as truly random functions (e.g., [16,5,6,11]). While random oracles have no
structure at all hash functions, on the other hand, are usually built from a fixed-
length compression function and some iteration scheme defining how arbitrarily
long messages are hashed [29,18,40,27,8].

The indifferentiability notion introduced by Maurer, Renner and Holenstein
in [28] can be seen as a generalization of indistinguishability that allows to better
analyze constructions—such as hash functions—where internal state is publicly
available. Coron et al. [17] applied the notion to hash functions and proved sev-
eral hash constructions to be indifferentiable from a random oracle. The com-
position theorem for indifferentiability allows to reduce the security of a scheme
in the random oracle model to the security of the compression function, in case
the random oracle is implemented by a hash construction that is indifferentiable
from a random oracle. As a compression function is a much more graspable object
than a random oracle, indifferentiability has become an accepted design crite-
rion for hash functions; indeed, many candidates to the SHA-3 competition [35],
including the winner Keccak [8] enjoy proofs of indifferentiability [15,2,32,9,10].

3 A Novel Definition of Combiners for Hash Functions

3.1 Black-Box Combiners for Hash Functions

Combiners for hash functions are traditionally defined in the following fashion
(see, for example, [12,37] for a version of this definition for collision resistance):
a hash-function combiner robust for property π (e.g., collision resistance) is a
construction that given black-box access to two hash functions H1 andH2 imple-
ments a hash function which obeys property π as long asH1 orH2 obeys property
π. Formally, a hash-function combiner C := (CKGen, C,P), robust for property
π, is a triple of efficient algorithms, where CKGen(1n,HKGen1,HKGen2)
generates keys for hash functions H1 and H2 and possibly some additional key
kC for the combiner. Algorithm C is an efficient deterministic algorithm that on
input keys kH1 , kH2 , kC and M ∈ {0, 1}∗ returns a hash value CkH1 ,kH2 ,kC

(M)
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in target domain {0, 1}n. We will usually simply write CH1,H2(M). Algorithm
P is a security reduction, i.e., P is a probabilistic polynomial-time oracle Turing
machine that given access to a (breaking-)oracle B that breaks property π on
the combiner (for example, samples collisions) breaks property π on both hash
functions H1 and H2. Note that B may be inefficient.

The classical combiner for collision resistance (and related properties) is the
concatenation combiner defined as

CH1,H2

|| (M) := H1(M)||H2(M) .

Obviously, any collision on the combiner C|| directly yields collisions for hash
functions H1 and H2. The same applies for second pre-image resistance, target
collision resistance and pre-image resistance. This combiner is, however, trivially
not robust for pseudorandomness. The traditional combiner for pseudorandom-
ness is the exclusive-or combiner

CH1,H2

⊕ (M) := H1(M)⊕H2(M)

although one has to make the additional assumption that the two functions are
independent. Under this assumption the combiner is robust for pseudorandom-
ness, message authentication codes and indifferentiability [23,26]. Without this
additional assumption it is, however, not even pseudorandomness preserving.
Take two (keyed) random oracles H1, H2 : {0, 1}∗ → {0, 1}n where H2 is defined
as H2 := H1⊕1n. Individually, these two functions are information-theoretically
indistinguishable from random functions. The XOR-combiner would, however,
implement the constant 1n-function. The exclusive-or combiner is also not ro-
bust for collision resistance, even assuming independent functions, as a collision
on the combiner does not require collisions under both input functions.

Short Combiners for Collision Resistance. A crucial difference between
the two classical combiners (apart from being robust for different properties) is
that the concatenation combiner doubles the output length, i.e., if the two input
hash functions have range {0, 1}n, then the concatenation combiner outputs
hash values in {0, 1}2n while the exclusive-or combiner only outputs bit-strings
of length n. A natural question to ask is: can we do better? That is, does a
secure combiner for collision resistance, which has a significantly shorter output
length than the concatenation combiner, exist? This question was first posed by
Boneh and Boyen in [12] and has since been answered negatively [12,13,36,37]:
combiners, robust for collision resistance, with significantly shorter output length
than the concatenation combiner do not exist. Recently, a similar result was
proved for second pre-image resistance, target collision resistance and pre-image
resistance [30].

Let us quickly sketch the proof idea for collision-resistance. Assume we have a
combiner for two hash functions with range {0, 1}n. If the combiner compresses
its output to below 2n bits, then by the pigeonhole principle, there must exist
collisions that result from compression rather than from collisions on the origi-
nal hash functions. This allows to show the existence of an adversary which only
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samples such collisions that result from compression (note that the breaking
oracle does not need to be efficient and can, thus, search for such a collision).
Naturally, these collisions do not help any security reduction P in finding colli-
sions on the input hash functions. For example, assume the input hash functions
are random oracles: then, a collision on the combiner which solely results from
compression does not provide any help in finding a collision for one of the random
oracles. This allows to show that no security reduction can exist if the combiner
compresses. Hence, combiners with short output-length do not exist.

3.2 Extending the Traditional Definition

In the introduction we saw that Cryptophia’s magical combiner is not robust
for collision resistance under the traditional definition of robustness. In the fol-
lowing we extend the traditional definition of combiners for collision-resistant
hash functions such that it also captures the “magical” combiner. To this end,
we need to relax the requirements on the security reduction P while ensuring
that, in doing so, we won’t label any insecure combiners “secure”. The idea is
to call a combiner robust for some property π if the advantage of any efficient
adversary against the combiner is upper-bounded by the maximal advantage of
any efficient adversary against any of the two input hash functions. That is, the
combiner needs to be at least as strong as the better of the two functions, but
not necessarily stronger.

To formalize the idea, we need a notion of the maximum advantage of any
adversary against some property π.

Definition 1. Let t ∈ N be a natural number and n be a security parameter.
The maximum t-advantage AdvMaxt

π against property π on hash function H is
defined as the maximum advantage of any adversary running in time t against
property π on hash function H:

AdvMaxt
π(H, 1n) := max

A
AdvπA(H, 1n) s.t. A runs in time t

We now present an extension to the current black-box definition of robust com-
biners for hash functions. We extend the original definition such that all robust
combiners remain robust under the new definition but we relax the requirements
on the security reduction such that the combiner does not need to be stronger
than any of the input functions.

Definition 2 (extension). Let n be a security parameter. Let C := (CKGen, C)
be a combiner for hash functions H1 and H2 as defined earlier. Let π be a prop-
erty on hash functions. We say C is a robust combiner for property π if C is
robust under the original definition, or if for all t ∈ N:

AdvMaxt
π(C, 1n) ≤ min

(
AdvMaxt

π(H1, 1
n),AdvMaxt

π(H2, 1
n)
)

Note that any combiner that is robust for some property π under the traditional
definition is also robust under our new definition. The introduced loophole, how-
ever, allows a combiner to be robust even if no security reduction P exists. In this
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case, the combiner must guarantee that the advantage for any adversary running
in time t against property π on either H1 or H2 denotes an upper-bound on the
advantage of any adversary running in time t against the combiner.

Discussion. The extended definition captures the security of the “magical” (non
black-box) combiner. However, being a semi-black-box notion, it seems difficult
to design an actual (non-magical) combiner exploiting the loophole offered by
this notion. In the following section we build upon the ideas developed so far and
present a fully black-box model which also allows to circumvent the lower bound
on the output length. For this, we strengthen the assumption on the “input
functions” requesting that one of the functions is ideal. Knowing that one of the
functions is ideal then allows us to model that the combiner should be as strong
as the ideal function, while it can “ignore” the second function.

3.3 Secure Combiners in Idealized Models

In this section we use a different and more practical approach to bypass the lower
bound. We present a novel game-based security notion for black-box combiners
that is tailored to be used in the idealized random oracle setting. Being black-
box makes it easy to design combiners for this new notion and assuming, to a
certain extend, idealized functions allows us to bypass the lower bound. In short,
a combiner proven secure in our new notion provides the guarantee that it has
a certain property as long as one of the two functions is ideal even in case the
other function is highly dependent upon the first; this is modeled by giving the
adversary full control over the second function.

Ideally Secure CombinerCA

HR
A , st←− A1(1

n)

R, k←− sample RO and keys3

return AR,HR
A

2 (st, k) breaks π for

combiner CR,HR
A or CHR

A ,R

Fig. 1. Security of Combiners in Idealized Settings

We say that a combiner C is
ideally secure for some property
π if no adversary can win the
ideally secure combiner game
(see Figure 1). For this we
consider a two-stage adversary
A = (A1,A2), where A1 out-
puts some state st and a de-
scription of an efficient function
that can contain special oracle
gates to call a random oracle. Then a random oracle R and a key k for the com-
biner are sampled. We say the adversary wins the game if A2 breaks property
π on combiner C initialized with the random oracle and the function output by

A1: that is, A2 breaks property π on either combiner CR,HR
A or on combiner

CHR
A ,R (note the different order of oracles).

3 In the Ideally Secure Combiner game (and in following security games) the random
oracle is sampled such that its domain and range matches allowed hash functions
and the keys are sampled using the key generation algorithm of combiner C.



Cryptophia’s Short Combiner for Collision-Resistant Hash Functions 145

Definition 3. A combiner C is called ideally secure for property π if no efficient
adversary A = (A1,A2) can win the Ideally Secure Combiner game (Figure 1)
with non-negligible advantage.

The security guarantees given in this model are that the combiner has property π
as long as one of the two functions is a random oracle. Furthermore, security may
be reduced to the security of compression functions, when analyzing the security
in the indifferentiability model [28]. We find this notion particularly useful from
a practical point of view as many security proofs are only given in the random
oracle model (to name a few [16,5,6,11]) and a combiner proven secure under
our new notion allows us to hedge against the failure of the instantiation of the
random oracle in the corresponding scheme. Furthermore, while our new notion
makes stronger assumptions about the ingoing hash functions it allows to bypass
the restrictions given by the traditional definition. As these stronger assumptions
are, however, frequently needed in security proofs for practical constructions,
we do not loose anything by also applying the very same assumptions in the
examinations of combiners to be used in these schemes. On the other hand,
there is lots to gain.

Further note that our new notion is far from trivial to fulfill although we
know that one of the two functions is ideal to begin with. Take the exclusive-or
combiner (compare Section 3.1) as an example. If one of the functions can depend
on the other, most, if not all properties are easily breakable. Let, for example,
adversary A1 output function HRA (M) := R(M). In this setting the exclusive-or
combiner would implement the constant zero function C⊕(M) = R(M)⊕R(M)
which is, of course, not collision-resistant or pseudorandom.

Remark 1. Recently, Ristenpart et al. [39] gave the somewhat surprising result
that the indifferentiability composition theorem does not hold in general but
only in what they call single-stage settings. A game is called single-stage if we
can assume a single global adversary. Note that this applies to all but one of
the security games considered in this paper (see Figures 1 and 2), as we usually
allow adversaries to pass on their current state without any restrictions. For the
exception, Lemma 2, it can be shown that it falls into the class of secure-1-pass-
games in the terminology of [25]. The authors in [25] study multi-stage games
for which indifferentiability (with certain additions) suffices to allow composi-
tion. For games falling into their class of secure-1-pass-games no additions are
needed and thus plain indifferentiability is sufficient to allow composition. The
idea, why access to the underlying compression function does not yield any ad-
vantage is that all “interesting” random oracle evaluations (notably, R(m⊕ k3),
cf. Figure 3) have a block-length of exactly 1. Thus, length extension attacks
via the computation of inner compression function evaluations do not yield any
advantage over directly computing the full hash value.

4 A Short Multi-property Combiner for Hash Functions

In this section we present a new black-box combiner for two hash functions that
does not increase the output length. The combiner is robust for pseudorandom-
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ness (under the traditional definition of robust combiners) without needing to
assume independence of the input functions (cf. Section 3.1). Further, it is ide-
ally secure (cf. Definition 3) for collision resistance, second pre-image resistance,
target collision resistance and pre-image resistance, that is, it holds these prop-
erties if one of the hash functions is instantiated with a random oracle or if
one of the functions is indifferentiable from a random oracle (assuming an ideal
compression function, also see remark at end of last the section).

Our construction is based on the exclusive-or combiner where each message
block is preprocessed. To ease on notation, we will not explicitly model the key
generation stage for hash functions but implicitly assume that the functions are
chosen from a family of functions (i.e., the key is implicit in the hash function).

Construction 1. Let H1, H2 : {0, 1}∗ → {0, 1}n be two hash functions and
m1|| . . . ||m� := M ||pad(M) be a message from the joint domain of both hash
functions padded to a multiple of the block length n. The combiner is given by

CH1,H2(M) := GH1,H2

1 (M)⊕GH1,H2

2 (M)

where G1 and G2 are stateless and deterministic constructions given by

GH1,H2

1 (M) := H1

(
m̃1

1‖ . . . ‖ m̃1
�

)
GH1,H2

2 (M) := H2

(
m̃2

1 ‖ . . . ‖ m̃2
�

)

with preprocessed blocks

m̃1
j := H2(1 ‖ mj ⊕ k1)⊕mj ⊕ k2 ⊕H1(1 ‖ mj ⊕ k3)

m̃2
j := H1(0 ‖ mj ⊕ k4)⊕mj ⊕ k5 ⊕H2(0 ‖ mj ⊕ k6)

for j := 1, . . . , � and for independently chosen keys ki ∈ {0, 1}n for i = 1, ..., 6.

Let us examine the combiner more closely before proving its security. First notice
that the combiner is symmetric, that is, it makes no difference if functionsH1 and
H2 are interchanged. Function G1(M) can be thought of as simply calling hash
function H1 on some preprocessed input. If the original input m1|| . . . ||m� :=
M ||pad(M) consisted of � blocks, then the preprocessed input also consists of �
blocks. Each block mi is preprocessed independently and becomes

H2(1 ‖ mi ⊕ k1)⊕mi ⊕ k2 ⊕H1(1 ‖ mi ⊕ k3) .

The idea behind this construction is that the outer most hash function in G1

(i.e., H1(·)) cannot, given its input, guess (or rather compute) the input that
is going into the outer most hash function in G2, i.e., H2(·). This will become
more evident when we prove security for various properties. Furthermore, note
that we achieve domain separation between the calls to functions within G1 and
G2 (i.e., calls to H1 and H2 are prefixed by 1 for G1 and by 0 for G2).

Finally, we want to note that the combiner can be efficiently implemented.
If we take as measure the number of hash block evaluations then the combiner
increases the number of evaluations by a factor of 3. However, in contrast to
other multi-property combiners [21,22] it is completely parallelizable as each
block is preprocessed independently of others.
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FindPreImageA

R, k1, . . . k6 ←− sample RO and keys

H
R
A , st,X ←− A1(1

n
)

τ ←− X

M ←− AR,HR
A

2 (st, CR,HRA (τ), k1, . . . , k6)

return (CR,HR
A (M) = CR,HR

A (τ))

FindCollisionA

R, k1, . . . k6 ←− sample RO and keys

H
R
A , st ←− A1(1

n
)

(M,M ′)←− AR,HRA
2 (st, k1, . . . , k6)

return (CR,HRA (M) = CR,HRA (M ′))

Fig. 2. Security Games

4.1 Security Analysis

We will first show that the combiner is pre-image resistant if one of its input
functions is a random oracle. Remember that the basic XOR-combiner is not
necessarily pre-image resistant even if instantiated with two random oracles (see
Sections 3.1 and 3.3). We give the security experiments necessary for the follow-
ing proofs in Figure 2.

Proposition 1. Construction 1 is ideally secure for pre-image resistance (ow).
That is, for any efficient adversary A which outputs efficiently sampleable dis-
tributions X with super-logarithmic min-entropy (H∞ (X ) ∈ ω(n)) it holds that
its advantage in the FindPreImage game is bound by

AdvFindPreImage
A (1n) ≤ qA · 2−H∞(X )

where qA denotes an upper-bound on the number of combiner evaluations.

We prove Proposition 1 via an intermediate result about the preprocessed mes-
sage blocks m̃b

j (cf. Construction 1). These we regard as “preprocessing func-
tions” of the form {0, 1}n → {0, 1}n with oracle access to hash functions H1

and H2, parameterized by keys k1, k2, k3, taking message blocks m ∈ {0, 1}n
as input and outputting a preprocessed message block; we write m̃H1,H2

k1,k2,k3
(m).

We show that these pre-processed message blocks are, in fact, random variables
with min-entropy n bits over the choice of random oracle and keys k1, k2, k3. By
applying the union bound, we can then argue that if an efficient adversary with
access to the random oracle and keys k1, . . . , k3 can choose message m it can at
most reduce the entropy to n −O (logn) bits, where the logarithmic reduction
is bound by the number of random oracle evaluations.

Lemma 1. The preprocessed blocks m̃H1,H2

k1,k2,k3
(·) in Construction 1 are random

variables with min-entropy n; that is, if Hb := R for b ∈ {1, 2} is a random
oracle, then it holds for all message blocks m ∈ {0, 1}n and functions H2−b+1

with restrictions as in Construction 1 that

H̃∞
(
m̃H1,H2

k1,k2,k3
(m)|m, k1, k2, k3

)
= n (1)

where the probability is over the choice of random oracle R and keys k1, . . . , k3.
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DistR,k1,k2,k3
A (m)

m′ ←− AR(1n,m⊕ k3)

return R(m⊕ k1)⊕m⊕ k2 ⊕m′

Fig. 3. Adv. Controlled Distribution

To prove Lemma 1 we consider
the following distribution (see Fig-
ure 3). The distribution is parameter-
ized by an (efficient) algorithm A, a
random oracle from the function space
{0, 1}∗ → {0, 1}n and uniformly and
independently chosen keys k1, k2, k3 from {0, 1}n. To compute the mapping for
message m, adversary A receives value m⊕ k3 and outputs a message m′. Value
R(m⊕ k1)⊕m⊕ k2 ⊕m′ is returned as sample.

Proof (of Lemma 1). In the adversarial distribution (Figure 3), the adversary can
be regarded as the adversarially created function HRA (·) in Construction 1. Thus,
we have that the min-entropy of the adversarial distribution (instantiated with

any efficient adversary A) is an upper bound for the min-entropy of m̃H1,H2

k1,k2,k3
:

H̃∞
(
m̃H1,H2

k1,k2,k3
(m)|m, k1, k2, k3

)
≥ H̃∞

(
DistR,k1,k2k3

A (m)|m, k1, k2, k3

)
As the keys are chosen uniformly at random from {0, 1}n and in particular

independently of the random oracle, we know that for every message m value
R(m⊕ k1) is uniformly distributed and thus:

H̃∞ (R(m⊕ k1)⊕m⊕ k2|m, k1, k2, k3) = n

To estimate the min-entropy of distribution DistR,k1,k2k3
A (·) we thus need to

analyze the effect of value m′ as output by adversary A on input m ⊕ k3. In
order to output m′ such that the min-entropy of

H̃∞ (R(m⊕ k1)⊕m⊕ k2 ⊕m′|m, k1, k2, k3) (2)

is less than n bits, adversary A itself must have sufficient information on R(m⊕
k1) ⊕ m ⊕ k2 given its sole input m ⊕ k3. To model, that A has access to the
random oracle, we add its list of queries to the conditions. Let qry(AR(m⊕ k3))
denote the query-answer pairs of A to the random oracle on input m⊕ k3. Note
that this is a random variable over the coins of A and the random oracle R.
Then, we can formalize the uncertainty of A about value R(m⊕ k1)⊕m⊕ k2 by

H̃∞
(R(m⊕ k1)⊕m⊕ k2|m⊕ k3, qry(AR(m⊕ k3))

)
(3)

It is easily seen that this denotes an upper bound for

H̃∞
(R(m⊕ k1)⊕ k2|m, qry(AR(m))

)
(4)

where we removed the distortion of m by k3 on the conditions, which in turn
allows us to remove messagem from the conditioned side. Note that values k2 and
R(m⊕k1) are uniformly distributed and independent (k2 is chosen independently
ofR and similarlym and k1 are chosen independently ofR). Thus we can analyze
the two terms going into the exclusive-or operation individually; that is,

H̃∞
(
k2 ⊕R(m⊕ k1)|m, qry(AR(m))

) ≥
max

(
H̃∞

(
k2|m, qry(AR(m))

)
, H̃∞

(R(m⊕ k1)|m, qry(AR(m))
))

(5)
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As m is independent of keys k1 and k2 we have that both terms in the max-
operation have n bits of entropy and thus

H̃∞
(
k2 ⊕R(m⊕ k1)|m, qry(AR(m))

)
= n. (6)

Thus, adversary A cannot output m′ such that the entropy in (2) is reduced. ��
By an application of the union bound it follows that for any message m that
is generated by an efficient adversary AH1,H2(k1, k2, k3) which is given the keys

and that has oracle access to the hash functions, the min-entropy of m̃H1,H2

k1,k2,k3
(m)

is at most reduced by logarithmically (in n) many bits (see full version [31] for
details).

Lemma 2. Let the setup be as in Lemma 1. Then, for all efficient adversaries
A it holds that

H̃∞
(
m̃H1,H2

k1,k2,k3
(m)|m← AH1,H2(1n, k1, k2, k3), k1, k2, k3

)
≥ n−O(log q) (7)

where q is an upper bound on random oracle evaluations by H2−b+1 and adver-
sary A. The probability is over the choice of keys k1, k2, k3, random oracle R and
A’s internal coin tosses.

Remark 2. We have examined Lemma 1 in the random oracle model using the
information theoretic min-entropy notion. We can also analyze it in the privately
keyed standard model assuming a pseudorandom function instead of a random
oracle. For this we need to switch to a computational version of entropy such as
HILL entropy (see [38] for an introduction). The proof works analogously.

We now prove Proposition 1 by showing that the advantage of any adversary in
winning the FindPreImage game is bounded by qA · 2−H∞(X ) where qA is the
number of combiner evaluations. Let us first examine the FindPreImage game.
In a first step, a random oracleR is sampled from the space of all functions of the
form {0, 1}∗ → {0, 1}n together with keys k1, . . . , k6. Adversary A1 is then given
the security parameter and it outputs a target distribution X , some state st, and
a description of a hash function HRA which can contain special gates to evaluate
random oracle R (note that A1 does not get access to R while constructing
HRA and that distribution X must have super-logarithmic min-entropy given
state st). In a next step a target message τ is sampled from distribution X .
Then, adversary A2 is given keys k1, . . . , k6 and and hash value CR,HR

A (τ) and
is given oracle access to R and HRA . It wins if it outputs a message M which,

under the combiner, yields value CR,HR
A (τ), i.e.: CR,HR

A (M) = CR,HR
A (τ).

Proof (Proposition 1). Let us examine the preprocessed message blocks going

into G
R,HR

A
2 (cf. Construction 1) for some message m1, . . . ,m� := M‖PAD(M).

Each block is of the form

R(0 ‖ mi ⊕ k4)⊕mi ⊕ k5 ⊕HRA (0 ‖ mi ⊕ k6) (8)
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By Lemma 2 we can assume each of these blocks to be a random variable with
min-entropy n bits (note that the factor log(q) of Lemma 2 is implicit in the
number of random oracle queries by the adversary) and thus the combined blocks
(via concatenation) to be a random variable of also at least n bits. The same

necessarily holds for for the blocks going into G
R,HR

A
1 . Furthermore, by achieving

domain separation for the random oracle calls (prefixing the input with 0 and

1, respectively) within G
R,HR

A
1 (·) and G

R,HR
A

2 (·), we can assume the random
variables for blocks of G1 to be independent of those for blocks of G2.

If Un and U ′n are independent random variables from the message space to

{0, 1}n with min-entropy n bits, then we can write the combiner CR,HR
A as

CR,HR
A (M) := R(Un(M))⊕HRA (U

′
n(M))

Hence, the probability for any message M to be mapped to CR,HR
A (τ) under

the combiner is 2−n. As one possible pre-image (namely τ) is contained in the
support of distribution X , the best strategy for an adversary is to sample mes-
sages from X , which allows us to upper bound the advantage of an adversary
winning in the FindPreImage game by

AdvFindPreImage
A (1n) ≤ qA · 2−H∞(X )

where qA denotes the number of combiner queries by adversary A2. ��
For second pre-image and target collision resistance it suffices to slightly change
the FindPreImage game to adapt it to the specifics in the examined property.

Collision resistance is examined using the FindCollision game (see Figure 2).
We show that the advantage of any efficient adversary is bound by q2A · 2−(n+1)

where qA denotes the number of combiner evaluations. In short we show that
as the inputs to the outer hash functions in G1 and G2 have entropy at least
n − O (log q) bits, the problem of finding collisions can be rewritten as finding
collisions for

R(Un(M))⊕R(Un(M
′)) = HRA (U

′
n(M))⊕HRA (U

′
n(M))

where Un and U ′n are again independent random variables mapping from {0, 1}∗
to {0, 1}n and having n bits of min-entropy (again the logarithmic factor is
hidden in the number of Un evaluations by the adversary). We refer to the full
version [31] for details.

4.2 Pseudorandomness

Finally, we show that our combiner is robust for pseudorandomness and ideally
secure for message authentication codes. For pseudorandomness we can directly
show robustness in the standard model (that is, without assuming a random
oracle). We want to stress that, in contrast to the exclusive-or combiner, we do
not need to assume that the two ingoing functions H1 and H2 are independent
(cf. Section 3.1).



Cryptophia’s Short Combiner for Collision-Resistant Hash Functions 151

Proposition 2. The combiner given in construction 1 is robust for pseudoran-
domness.

Proof (sketch). We have already argued that we can analyze Lemma 1 and
Lemma 2 also in the standard model, using computational analogues of entropy
(see remark following Lemma 2). Thus, assuming that H1 is pseudorandom,

Lemma 2 yields that the input to GH1,H2

1 (M) := H1(M̃) has sufficiently high
computational min-entropy and hence G1 is pseudorandom. Due to the symmet-
ric design of the combiner, this also yields that GH1,H2

2 is pseudorandom if H2 is
pseudorandom. Note, that due to the domain separation, the inputs to the outer
hash evaluations in G1 and G2 are independent and thus the further analysis
can be reduced to the analysis of the exclusive-or combiner which we know to
be robust for pseudorandom functions assuming independent inputs. ��
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