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Abstract. Direct Anonymous Attestation (DAA) is one of the most complex
cryptographic protocols deployed in practice. It allows an embedded secure
processor known as a Trusted Platform Module (TPM) to attest to the con-
figuration of its host computer without violating the owner’s privacy. DAA
has been standardized by the Trusted Computing Group and ISO/IEC.

The security of the DAA standard and all existing schemes is analyzed
in the random-oracle model. We provide the first constructions of DAA in
the standard model, that is, without relying on random oracles. Our con-
structions use new building blocks, including the first efficient signatures
of knowledge in the standard model, which have many applications beyond
DAA.
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1 Introduction

Direct Anonymous Attestation (DAA) is a protocol for a secure embedded processor
known as a Trusted Platform Module (TPM) to authenticate itself and sign messages
attesting to the state of its host while preserving the privacy of its owner. The first DAA
protocol by Brickell, Camenisch and Chen [[10]] was standardized in 2004 by the Trusted
Computing Group (TCG) [32] as the TPM 1.2 standard and has since been adopted as an
ISO/IEC standard [28]]; millions of TPMs have been shipped with personal computers.

In DAA a party owning a TPM can join a group and then sign messages as a member
of this group. DAA signatures sign pairs of data, a message and a basename, which
can be thought of as the identity of the intended verifier. Two signatures on the same
basename can be linked, that is, they reveal whether they were produced by the same
signer. Apart from this, signatures are anonymous; in particular, signatures on different
basenames (or empty basenames) hide whether they come from the same user.

Many DAA schemes have been proposed, including [[1111641701819120], improving
both the efficiency of DAA and refining the security model. While the first schemes
were analyzed in a simulation-based model, recent papers have switched to game-based
models. We prove our results in the most recent model of Bernhard et al. [6] who pointed
out shortcomings in the models of some previous papers [10/11116417/18l19].
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The novelty of our schemes is that they are in the standard model, where one does
not need to rely on the so-called random-oracle heuristic [3]], which was required in all
previous DAA schemes but is problematic in cryptographic theory [13]]. It is common
practice nowadays to investigate which schemes can be implemented without random
oracles. Standard-model schemes are generally less efficient than their random-oracle-
based ancestors; we do not intend to improve on the efficiency of earlier DAA schemes
but construct efficient schemes in the standard model.

A Blueprint for DAA. As argued in [6], all existing DAA schemes follow the same
“blueprint” and are constructed from the same building blocks: a Randomizable weakly
Blind Signature (RwBS), a Linkable Indistinguishable Tag (LIT) and a Signature of
Knowledge (SoK). We discuss these concepts in more detail in Sect. B3] and @l DAA
users hold secret keys, on which they receive a (blind) signature as a certificate from
the issuer when joining a group. A DAA signature consists of this certificate, a LIT on
the basename under the user’s key and a SoK on the message, proving knowledge of a
key corresponding to the certificate and the LIT. Our first standard-model DAA scheme
largely follows this blueprint; for our second scheme we propose an alternative method
of constructing DAA yielding a more efficient scheme.

The security model from [6] operates in two steps: first, the authors discuss pre-DAA
schemes, which are fully functional DAA schemes but without the option for the TPM
to delegate non-security critical operations to its more powerful host computer. Sec-
ondly, they give generic methods to perform such delegation securely given a pre-DAA
scheme. Since their second step is independent of the random-oracle model (ROM), it is
also applicable to our schemes. We therefore restrict ourselves to constructing standard-
model pre-DAA schemes in this paper.

LIT in the Standard Model. A DAA signature contains a deterministic tag on the
basename. This LIT should look random, so tags under different keys are indistinguish-
able, which is trivially achievable by using a random oracle. Like Verifiable Random
Functions (VRF) [30], LITs are much harder to construct in the standard model, in par-
ticular, for large input spaces. LITs are somewhat stronger than VRFs, and we do not
know of any large-domain VRF which yields a LIT. (See the discussion in Sect.[4.2])

For DAA, we believe it is reasonable to postulate that the number of possible base-
names is polynomial in the security parameter. While the set of messages which users
can sign must be large, the number of possible verifiers (corresponding to basenames)
will be efficiently enumerable.

Overview of our Paper and Contributions. In Sect.[2] we introduce some notation as
well as the (pre-)DAA definition and security notions from [6].

In Sect. Bl we introduce and construct the first efficient signatures of knowledge [14]]
without random oracles, which may be of independent interest. SoKs are a generaliza-
tion of digital signatures and use a witness to an NP statement as the signing key. We
build them from Proofs of Knowledge (PoK), of which Groth-Sahai proofs [26] are
the only known efficient standard-model instantiation. While the transformation from
PoK to SoK is almost trivial in the random-oracle model, Groth-Sahai proofs cannot
be used directly since SoKs require strong security properties akin to simulation-sound
extractability [25]. Instead, we revert to a known technique, used by Groth [23], to
overcome this limitation.
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In Sect. [ we discuss and construct randomizable weakly blind signatures and link-
able indistinguishable tags. In order to construct DAA, these building blocks must be
compatible with each other and the Groth-Sahai-based SoK. The challenges here are
that Groth-Sahai proofs apply only to a limited class of statements and are even more
restrictive in security proofs: the language on which we make proofs is that of pairing-
product equations [25], in which we can only prove knowledge of elements of a bilinear
group. It follows that we have to choose our RwBS and LIT with some care: the RwBS
implicitly used in previous DAA schemes, even those that do not require a random or-
acle directly, are not Groth-Sahai compatible for example. We build on the signature
schemes of Abe et al. [[1]] and Ghadafi [22] to construct different RwBS schemes. As
the LIT used in previous schemes is only secure in the ROM, we construct a new LIT
based on the VRF by Dodis and Yampolskiy [21]].

Using these building blocks, we construct two DAA schemes in Sect.[3land [fl These
are the first DAA schemes in the standard model. Our first construction relies solely on
existing, non-interactive assumptions. To improve efficiency, our second construction
uses some components from the literature which rely on interactive assumptions.

To evaluate efficiency, we consider the most closely related cryptographic primitive:
dynamic group signatures [4], which do not require linkability and handle tracing dif-
ferently. Our DAA signatures are shorter than Groth’s group signatures [24], which is
currently the most efficient scheme in the standard model. Moreover, our join protocol
involves fewer rounds. See the full version [5] for details.

2 Preliminaries

Notation. A bilinear group is a tuple P = (p, G1, G2, G, e, Py, P») where G1, G2 and
G are groups of prime order p; P; and P» are generators of G; and G respectively
ande: G; xGz — Gy isbilinear (i.e. e([2]Q1, [y]Q2) = e(Q1, Q2)*Y forall Q1, Q2, x
and y) and e( Py, P2) generates Gr. All group operations are efficiently computable and
[z] P denotes the z-fold composition of an element P with itself. We use asymmetric
bilinear groups (which are more efficient), for which there are no known efficiently
computable homomorphisms from G; to G, or vice versa. We let G* := G \ {0g }.

Assumptions. Our constructions rely on the following assumptions from the literature:

SXDH. The DDH assumption holds in both groups G; and Go.

CDH™ [[7]. Given (Py, Py, [a]Py,[b] Py, [a] P2), it is hard to compute [ab]P;. This is
identical to CDH in symmetric bilinear groups.

q-SDH [8]. Given (P, [x]Py ..., [z Py, Py, [2]P) for x « Z,, it is hard to output a
pair (c, [xiC]Pl) € Zp x Gy for an arbitrary ¢ € Z,\{—z} .

¢-DDHI [2]. Given (P;, [z]P;, [¢®]P;, ..., [x9]P;) where 2 +— ZX it is hard to distin-

1

¢-SFP [[]. Given A,B € Gi, A, B,G,Fz,Gr,Fy € Go, and ¢ random tuples
(Zi, Ri, Si, T, U;, Vi, W;) each satisfying e( A, fl) =e(Zi,Gz)e(R;,Gr)e(T;, Si)
and e(B, B) = e(Z;, Fz)e(Us, Fyr)e(W;, V;), it is hard to output a new such tuple
(Z*,R*,S*,T*, U*,V*, W*) with Z* ¢ {Z,}_, U{0g, }

guish [ ] P; from a random element of G,. Here ¢ can be either 1 or 2.
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DH-LRSW [22]. Given ([2]Px, [y]P,) for random (x,y) < Z2 and an oracle that,
on input a Diffie-Hellman pair (M, Ms) of the form ([m]Py, [m]P;) for some
m € Zp, picks a random a <— Z, and outputs a DH-LRSW tuple of the form
([a] Py, [ay] P, [ay] M1, [az] Py + [azy] M), it is hard to compute a DH-LRSW tu-
ple for ([m/] Py, [m'] P2) that was never queried to the oracle.

Groth-Sahai Proofs. Groth-Sahai (GS) proofs [26] are non-interactive proofs in the
Common Reference String (CRS) model. We will use GS proofs that are secure under
the SXDH assumption (which, as noted by [23]], yields their most efficient instantiation)
and that prove knowledge of a satisfying assignment for a pairing-product equation

[T, vy) [Texi,B:) [T eXi,v5) 0 = [ e(Ge, He) (1)

(the variables are underlined, all other values are constants). The language for these
proofs is of the form £ := {statement | Jwitness : E(statement, witness) holds }
where F(statement,-) is a set of pairing-product equations. The GS proof system is
formally defined by a tuple of algorithms

(GSSetup, GSProve, GSVerify, GSExtract, GSSimSetup, GSSimProve) .

GSSetup takes as input the description of a bilinear group P and outputs a binding ref-
erence string crs and an extraction key xk. GSProve takes as input crs, a set of equations
statement and a witness, and outputs a proof (2 for the satisfiability of the equations.
We write GSProveggc(crs, {witness} : statement € £), where SEC = ZK means the
proofs are zero-knowledge and W1 means they are witness-indistinguishable. Given crs,
a set of equations and a proof, GSVerify and outputs 1 if the proof is valid, and else 0.

GSExtract takes as input a binding crs, the extraction key xk and a valid proof {2,
and outputs the witness used for the proof. GSSimSetup, on input a bilinear group
‘P, outputs a hiding reference string crssi, and a trapdoor key tr that allows to sim-
ulate proofs. GSSimProve takes crsgim, a statement and the trapdoor tr and produces
a simulated proof (2s;,, without a witness. The distributions of strings crs and crsgjy,
are computationally indistinguishable and simulated proofs are indistinguishable from
proofs output by GSProve. The proof system has prefect completeness, perfect sound-
ness, composable witness-indistinguishability or composable zero-knowledge. We refer
to [26] for the formal definitions.

Direct Anonymous Attestation: The pre-DAA Model. The syntax and security model
for pre-DAA were defined in [6]. A pre-DAA scheme consists of a tuple of algorithms

(Setup, GKg, UKg, (Join, Iss), GSig, GVf, IdentifyT, Identifys, Link) )

Setup, on input the security parameter 1*, outputs public parameters param, which is
an implicit input to all other algorithms. GKg outputs (gmpk, gmsk), a public/secret key
pair for the group manager (issuer), and UKg generates a secret key sk for a user.

(Join(sk;, gmpk), Iss(gmsk, gmpk)) are the user- and issuer-side procedures for an in-
teractive protocol by means of which a user joins a group. The user takes a secret
key sk; and the issuer’s public key gmpk as input, whereas the issuer has as input a
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key pair (gmpk, gmsk). If completed successfully, the user obtains a group signing
key gsk. We assume w.l.0.g. that gsk contains the issuer’s public key gmpk.

GSig(gsk;, ski, m, bsn) is the signing algorithm. It takes as input a group signing key
gsk;, a user secret key sk;, a message m and a basename bsn and outputs a DAA
signature o on the message m under the basename bsn.

GVf(gmpk, o, m, bsn) is the verification algorithm. It returns 1 if the signature o is
valid on the message m and the basename bsn w.r.t. gmpk. Otherwise, it returns 0.

Identifyt(gmpk, 7, sk;) is a transcript-tracing algorithm. It is mainly used in the secu-
rity model although it could be used to trace dishonest users who reveal their secret
key. This algorithm takes as input gmpk, a transcript 7 of a join/issue protocol ex-
ecution and a secret key sk;. It returns 1 if this transcript could have been produced
by an honest user with secret key sk;, and 0 otherwise.

Identifys (gmpk, o, m, bsn, sk;) is a signature-tracing algorithm. Like Identifyr, its use
is in the security model and possibly to trace dishonest users. On inputs gmpk, a
signature o, a message m, a basename bsn and a secret key sk;, it returns 1 iff o
could have been produced by an honest user with the secret key sk;.

Link(gmpk, mg, 09, m1, 01, bsn) is the linking algorithm. Its inputs are gmpk, two mes-
sages and signatures mg, m1, 0g, o1 and a basename bsn. It returns 1 iff both sig-
natures were produced by the same user on their respective messages and under the
non-empty basename bsn.

Security Definitions of pre-DAA. Here we provide an informal description of the dif-
ferent security requirements. The formal definitions can be found in [6].

Correctness: This demands that signatures produced by honest users are accepted by
the verifier, and that the user who produced a valid signature can be traced. More-
over, two signatures by the same user on the same non-empty basename link.

Anonymity: An adversary, who may control the group issuer, cannot distinguish which
of two users of his choice signed a message as long as he cannot trivially decide
this using the linking property.

Traceability: No group of users can create an untraceable signature as long as the is-
suer is honest. (A dishonest issuer could always join untraceable users to his group.)
There are two notions of traceability which deal with untraceable signatures and
signatures that do not link although they should. Since unlike in group signatures,
users do not have public keys corresponding to their secret keys, the group-join
transcript is used to identify the user.

Non-frameability: No adversary, who may even control the group issuer, can frame
an honest user by claiming that this user signed a message he did not sign. There
are again two notions: framing a user by creating a signature that traces to his key,
or one that links to a previous signature created by that user.

3 Efficient Signatures of Knowledge without Random Oracles

Let £ be an NP language, defined by a polynomial-time computable relation R as
L ={x| Jw : (x,w) € R}. We call z a statement in L and w a witness for x
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if (z,w) € R. A signature of knowledge (SoK) for L consists of the following three
algorithms: SoKSetup takes a security parameter 1* and outputs parameters par. If
(x,w) € R then SoKSign(par, R, z,w, m) outputs a signature o on the message m
w.r.t. statement x. The signature is verified by SoKVerify(par, R, x,m, o) outputting
0 or 1. Signatures produced by SoKSign on inputs par output by SoKSetup, and any
(R, z,w,m) such that (z,w) € R should be accepted by SoKVerify. The (game-based)
security definition for SoK, called SimExt security [14] requires the following:

Simulatability: There exists a simulator which can simulate signatures without hav-
ing a witness for the statement. It consists of SOKSimSetup and SoKSimSign: the
former outputs parameters together with a trapdoor tr and the latter outputs signa-
tures on input (par, tr, R, z, m). It is required that no adversary can distinguish the
following two situations: (1) It is given par output by SoKSetup and access to a
SoKSign oracle. (2) It is given par output by SoKSimSetup and an oracle SoKSim
that on input (R, z, w, m) outputs SoKSimSign(par, tr, R, z, m) if (x,w) € R.

Extraction: There exists an algorithm SoKExtract such that if an adversary, given
par < SoKSimSetup and an oracle SoKSim as above, outputs a tuple (R, x,m, o),
we have: if SoKVerify(par, R, z,m,0c) = 1 and (R, x,w’,m), for any w’, was
never queried to the SoKSim oracle then SoKExtract extracts a witness for = from
o with overwhelming probability.

Chase and Lysyanskaya [[14] offer a generic construction satisfying SimExt security,
but it is inefficient due to the use of general Non-Interactive Zero-Knowledge (NIZK)
proofs. Our construction is based on Groth-Sahai proofs [26] which are efficient NIZK
proofs that do not rely on random oracles but only apply to a restricted language. Our
SoKs are thus for the same language, namely satisfiability of sets of Pairing-Product
Equations (PPE).

If we generate a binding CRS using GSSetup, we can use GSExtract to extract a
witness from a valid proof. However, in order to simulate GS proofs, we need to set
up the CRS via GSSimSetup. In this case proofs become information-theoretically in-
dependent of their witnesses, thus we cannot extract anymore. In order to realize sim-
ulatability and extractability simultaneously, we revert to a well-known trick that was
employed by Groth in the context of PPEs [25]]. Our SoK parameters are a binding CRS
and a signature-verification key and a SoK is a proof of the following statement: one
either knows a witness for the original statement or knows a signature on the original
statement and the message to be signed, under the key contained in the parameters.

To simulate SoKs, we can now use the corresponding key to sign the statement and
the message, and use this signature as a witness for the modified statement. Witness
indistinguishability of GS proofs guarantees that simulated SoKs are indistinguishable
from SoKs that use the witness of the original statement. Extractability follows since
from any SoK we can extract a witness for the modified statement. This witness must be
for the original statement, as a signature on a statement/message pair which was never
signed by the SoKSim oracle would be a forgery.

Choosing the Signature Scheme. As we need to prove knowledge of a signature, we
require a scheme whose signatures consist of group elements and whose validity is
verified by evaluating PPEs. An ideal candidate would be the signatures by Waters
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[33]], which are secure under the Computational Diffie-Hellman (CDH) assumption,
which is implied by the assumptions required for GS proofs. (Their main drawback is
a long public key, which will result in long parameters for our SoK.) Waters signatures
are defined over symmetric bilinear groups (where G; = Gy3). Using the Groth-Sahai
instantiation over these groups, our construction yields SoKs for the same statements
and under the same assumption as GS proofs. To allow for a more general class of
statements, we use the following generalization of Waters signatures to asymmetric
groups from [7]]:

Parameter Generation. Given a bilinear group P, to sign messages of the form m =
(m1,...,my) € {0,1}", choose (Q, U, ..., Uy) + GV 2.

Key Generation. Choose a secret key sk <— Z,, and set vk := [sk]P.

Signing. To sign (myq, ..., my) using key sk, choose a random r <— Z,, and output
(W1 = [sKIQ + [ (Uo + Soiv [mi]Us), W = [—r] Py, W := [—r]Py) .

Verification. Check whether e(Wy, Py)e(Uy + SO [m)Us, Wa) = e(Q,vk) and
G(WQ,PQ) = €(P1, Wg)

This scheme is unforgeable under chosen-message attack under the CDH™ assump-
tion. In order to sign arbitrary messages, we assume a collision-resistant hash function
H:{0,1}* = {0, 1}V (for a suitable N).

Disjunctions of Pairing-Product Equations. Groth [25] shows how to express dis-
junctions of two sets of PPEs as a new set of PPEs. The idea is the following: introduce
a “selector equation” of the form e(P;, S + T — P,) = 1, which can only be satisfied
if either S or T are different from 0. Setting one of them to O will enable us to simulate
one clause of the disjunction. To do so, for every variable Groth introduces an auxiliary
variable and adds an equation.

We choose a more efficient approach inspired by that from [26]]. In order to simulate
equations of the form (), it suffices to replace the constants G, by auxiliary variables
G, as then, setting all variables to 0 is a satisfying assignment for (I). Now it only
remains to ensure that a signer without the trapdoor is forced to set G, to G, which is
done by adding equations e(Gy — G'¢,S) = 1, where S can only be set to 0 when the
prover knows a signature under the public key from the CRS.

With this intuition in mind we now define our signature of knowledge of a satisfying
assignment for a set of pairing-product equations. Regarding the Chase-Lysyanskaya
definition, we have fixed the relation R to be the set of all pairs ((Ex)p;, ((X;)™,
(Yj)j—1)) such that ((X;), (Y;)) € G* x GY satisfy E}, forall1 <k < K.

3.1 A Construction of Signatures of Knowledge without Random Oracles

Setup. On input P, run (crs, xk) + GSSetup(P) and choose parameters (Q, Uy, . . .,
Un) + G2 and a key pair for Waters signatures: choose ¢ < 7, and set T' := [t] P,.
SoKSetup outputs par := (crs, (Q, Uy, ..., Un,T)), whereas SoKSimSetup addition-
ally outputs (xk, t) as an extraction/simulation trapdoor.
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Signing. Let £ := (Ek) , be the set of equations representing the statement w.r.t.
which we sign, where Fj; i 1s

n m m n M,
[ eArs.v5) [[eXi. Beo) [T [[ e(Xi.v5) 0 = [ e(Grus Hre) + (Er)
J=t =1 i=1j=1 =1

and let ((X;)i%y, (Y;)}—1) be a witness for E. We define a new set of equations £':

(i) Modified equations. Forall1 < k < K:
[Te(Ar;, Y;) ITe(Xs, Bri) [Te(Gh oo —Hie) ITTTe(X0, Yj)M00 =1 .

(ii) Selector equations. Foralll < k < K,1 < /¢ < Mjy: G(Gk,E*G;j,T—T’) =1.
(iii) Signature-verification equations.

e(W1, Py) e(Uo + S0 [hilUs, W) = e(Q, T") e(Wa, Py) = e(Py, W3)

To sign a message m € {0,1}* under par := (crs, (Q, Uy, ..., Un,T)) for the state-
ment E using witness ((X;), (¥;)) proceed as follows:

o SetT' =W, =Wy = W5 :=0and G;M = G, forall k and £.

« Compute h = (hy,...,hy) := H(E|m) € {0,1}", where E is an encoding of
the original equations.

» The SoK is a GS proof X of satisfiability of the set of equations E’, using as witness

(T', Wy, Wa, Wa, X1, oo, Xy Yoo Yo, Gy Gl ) - ()

Verification. Under par := (crs, (Q, Uy, ...,Un,T)), to verify a SoOK X on m for
the statement F, verify that under crs the GS proof X is valid on the statement E’ for
the values Ay, j, Bii, Gi,e, H ¢ and 7y ; ; from the description of F, values T" and
(Q,Uy,...,Uy) from par and h defined as H(E||m).

Theorem 1. The above is a signature-of-knowledge scheme satisfying SimExt security
for the language of sets of pairing-product equations.

Proof sketch. To simulate a signature without knowing a witness, one uses the trapdoor
t to make a signature (Wy, Wa, W3) on (hq,...,hx) := H(E||m), and sets T/ := T
and all remaining witnesses components X; = Y; = G, := 0, which satisfies E’.
Simulatability then follows from witness indistinguishability of GS proofs.

For “Extraction”, consider an adversary that has never queried a signature for a pair
(E,m), but outputs a SoK X' for it. By soundness of GS proofs, we can extract from
X a witness for E’ of the form ). We must have 7" # T, as otherwise (W1, Wa, W3)
would be a forgery on (E||m) (which was never queried to the simulator) by equations
(iii) of E'. Together with equations (ii) of E', 7" # T implies that G}, , = G for all
k, £, and therefore, by (i), ((X;), (Y;)) is a witness for the original equation E. We have
thus extracted a witness for E. ]

To reduce the parameter length, but relying on stronger (“g-type”) assumptions, we
could replace Waters signatures with any of the structure-preserving schemes from [[1]].
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4 New Building Blocks

4.1 Randomizable Weakly Blind Signatures

Bernhard et al. [6] introduce Randomizable Weakly Blind Signatures (RwBS) as one
of the building blocks for DAA. These are similar to blind signatures [15/31] except
that blindness must hold only against adversaries that never get to see the message they
signed, that is, a signature should not be linkable to its issuing session.

Randomizability means that given a signature, anyone can produce a fresh signature
on the same message. We construct two RwBS that do not rely on random oracles. The
syntax and security definitions for RwBS can be found in [65].

Partially Randomizable Weakly Blind Signatures. To work with our SoKs, we re-
quire our scheme to be structure-preserving: the signatures and the messages it signs
must be group elements and the verification equations must be pairing-product equa-
tions. For our first construction we use a standard-model signature scheme based on
non-interactive assumptions by Abe et al. [1], which we call AHO after its authors. Its
security relies on the g-SFP assumption (see Sect. 2)). Abe et al. show that six of the
seven group elements which constitute an AHO signature can be randomized. (We are
not aware of a fully randomizable structure-preserving scheme based on non-interactive
assumptions.)

This randomizability is useful, since we show that if the signer is given parts of
a (partial) randomization of a signature he issued earlier, they are independent of the
original signature. When used as a certificate for DAA, we thus only need to hide part of
the certificate in a DAA signature to guarantee anonymity. We therefore further relax the
notion of weak blindness from [|6] to partial weak blindness defined w.r.t. a projection
function 7. In the security game a signer blindly signs a message chosen by the game.
He is then either given the projection of a (partial) randomization of his signature or of
a signature on another message and should not be able to distinguish the two cases. The
details of this notion and our construction can be found in the full version [5]].

Fully Randomizable Weakly Blind Signatures. In order to provide a more efficient
DAA scheme, we construct a RwBS satisfying the original definition of [6]. Our con-
struction uses a fully randomizable signature scheme by Ghadafi [22] called NCL,
which is a structure-preserving variant of CL-signatures [[12] based on a variant of the
LRSW assumption [29] (see Sect. 2)).

Messages of NCL are of the form ([m] Py, [m]P2) € G1 x G, for some m € Z,,. The
secret and verification keys are of the form (x,y) € Z2 and ([x] Py, [y] P2), respectively.
A message (M, M>) is signed by choosing a random a < Z; and outputting

(A:=a]lP, B:=[y|A,C = [ay]My, D := [z](A+ C)) .

The verification equations are A # 0, e(B, P2) = e(A,Y), e(C, P) = e(B, Ms),
e(D,Py) =e(A, X)e(C, X) and e(My, Py) = e(P1, Ma). A signature is randomized
by choosing a’ < Z and setting A := [a/]A, B" := [¢/] B, C" := [a']C, D" := [d/] D.

We observe that to compute a signature on a message (M;, Ms), only M; is re-
quired, whereas verification of the signature could be done using M5 only. A first idea
to construct a weakly blind signature from NCL is to define BSRequest as only sending
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Experiment: Expt’l'-lj-c:am()\) Experiment: EXPKIZ{:TI:Q( (\)
e b+ {0,1}; par < GlobalSetup(1*). e (sko,mo,ski,mi,T) < A(par).
o skog,ski < LITKeyGen(par). e Return 1 if and only if :
o (mi,...,mg,m*,St) « A1 (1*). o LITTag(sko, mo) = 7.
e Fori= 1ltogdo o LITTag(sky,m1) = 7.
o Ifm; =m*thent; := L o Either (sko = ski and mqg # m1)
o Else 7; < LITTag(sko, m;). or (sko # ski and mg = m1).
o 7% := LITTag(sky, m™).
e b* «— As(St,par, f(sko),T1, ..., Tq,T").

Return 1 if b* = b, else 0.

Fig. 1. Security games for indistinguishability (left) and linkability (right) of LIT.

M;. However, in the security proof of weak blindness, the simulator (playing the user)
will not have M5 (otherwise it could break the notion itself) and can therefore not verify
the correctness of the adversary’s signature. We therefore require the signer to provide
a NIZK proof of correctness of the signature.

Moreover, in the reduction of blind-signature unforgeability to unforgeability of
NCL, the simulator (playing the signer) needs the full message (M7, Ms) to query its
signing oracle. Therefore, when requesting a signature, the user must provide a NIZK
proof of knowledge of Ms. These NIZK proofs use different CRSs (as the reductions
exploit different properties) and are efficiently implemented using Groth-Sahai proofs.

We refer to the full version [5] for the details of our scheme and a security proof.

4.2 Linkable Indistinguishable Tags

The second building block introduced to construct DAA schemes generically in [6]
is a Linkable Indistinguishable Tag (LIT). These tags are similar to MACs, but have
stronger security requirements. LIT schemes are defined w.r.t. a one-way function PK()
such that a tag created with a secret key sk can be verified given PK(sk) rather than sk.
Thus, PK(sk) can be viewed as a public key for the tag. A LIT scheme is defined by the
following algorithms. W.1.0.g. we assume that there is an algorithm GlobalSetup which
generates global parameters par (such as a bilinear group), which all algorithms take as
an (implicit) input.

LITKeyGen(par) takes global parameters par and outputs a secret key sk.

LITTag(sk,m) is deterministic, takes as input a secret key sk and a message m, and
outputs a tag 7.

LITVerify(PK(sk), m, 7) is given the image of sk under PK, a message m and a tag 7
and checks whether 7 is a valid tag on the message m w.r.t. sk, outputting 1 or 0.

Security. Besides correctness, [6] defines the notions linkability and indistinguisha-
bility, of which we only require relaxations. A LIT is weakly linkable if the follow-
ing holds: if two tags are identical then they are either w.r.t. the same key and the
same message, or both keys and both messages are different. In particular, two tags
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LITKeyGen(P) LITTag(sk, m) LITVerify (PK(sk), m, )
Return sk < Zj,. If m = —sk then return L. If e(7, PK(sk) + [m]P2) = e(P1, P2)
Return 7 := [skim 1Py then return 1, else return 0.

Fig. 2. The WBB-based Linkable Indistinguishable Tag (WBB-LIT).

under different keys on the same message (or under the same key on different mes-
sages) must be different. Weak linkability was used implicitly in [6]. We formalize
it by experiment Exp‘ﬁ’,’%ﬁK(A) in Fig. [[l and say a LIT scheme is weakly linkable if
Adv‘,_”,'%}ﬁK()\) = Pr[Exp‘C’,’%ﬂK()\) = 1] is negligible in A for any PPT adversary A.
The LIT f-indistinguishability is defined w.r.t. a one-way function f and states that
no adversary, having access to a LITTag(sk, -) oracle, can distinguish a tag on a mes-
sage of his choice (for which he did not query the oracle) from a tag produced under a
different random key. This should hold even if the adversary is given the image f(sk)
of the secret key in question. We weaken this property by requiring that the adversary
submit all the oracle queries and announce the message to be challenged on before see-
ing the parameters and the image of the secret key. This is formalized by Exp",_vl’{’ff\\lD N

in Fig. [[l and we say a LIT scheme is weakly f-indistinguishable if Adv‘,_”,'{fij(/\) =

|2 . Pr[Exvavl’%c:g\]D()\) =1] - 1’ is negligible in A for any PPT adversary .A.
Small Message Spaces. If the size of the message space is polynomial in the security

parameter then f-indistinguishability from [6] is implied by its weak version: assuming
an adversary 4 breaking the standard notion, we can construct an adversary 53 breaking

the weak notion as follows: Let {my, ..., m,} be the message space, with £ = poly(\).
Then B randomly picks ¢ < {1,...,¢} and outputs its queries and the challenge as
(ma,...,mi—1,Mit1,...,mg,m* := m;). With non-negligible probability A will ask

to be challenged on m;, in which case B can simulate all Tag queries and use A to break
weak f-indistinguishability.

A Weak LIT in the Standard Model. The weak Boneh-Boyen signature scheme [§]]
was used in [21)2]] to construct verifiable random functions [30] for small message
spaces under two variants of the DDHI assumption. The proof of pseudorandomness
uses a technique similar to that for the unforgeability of weak Boneh-Boyen signatures
in [8]): if the queried messages m, . . ., m,, and the challenge m* (whose VRF value is
to be distinguished from random) are known in advance then given a DDHI instance,
we can set up the VRF parameters and the public key so that we can (1) construct the
VREF values on my, ..., my, and (2) use the DDHI challenge to construct a challenge
for m*. Using the proof strategy for small message spaces discussed above, this suffices
to prove pseudorandomness. We define our LIT as the VRF from [2] and use the first
part of their proof of pseudorandomness of VRFs to prove weak f-indistinguishability
w.r.t. f(sk) := [sk]P;.

Theorem 2. The WBB-LIT in Fig. 2lis a LIT for PK(sk) := [sk]P». It is weakly link-
able and satisfies weak f-indistinguishability for f(sk) := [sk] Py if the DDHI assump-
tion holds in group G.
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Since it is impossible to have 7 = LITTag(sko, mg) = LITTag(ski, m1) with (skg =
sk; and mg # mq) or (skg # ski and mg = m1), weak linkability holds uncondi-
tionally. Weak f-indistinguishability is proved analogously to the pseudorandomness
property of the VRF under the ¢-DDHI assumption (see [21, Theorem 2]).

LIT vs. VRF. To construct a LIT which is fully indistinguishable and supports large
domains, a natural approach would be to consider large-domain VRFs. There have
been several such schemes in the recent literature, e.g. [912/27]]. Unfortunately, all of
the aforementioned schemes violate the weak linkability requirement for LITs, as it is
easy to find skg # ski and m such that LITTag(sko,m) = LITTag(sky,m). While
in the random-oracle model LITs are easy to construct, it is not clear how to construct
fully indistinguishable LITs for large basename spaces without resorting to interactive
assumptions. VRFs are already hard to construct, but due to the subtle linkability re-
quirement, LITs seem even harder.

5 A Generic Construction of pre-DAA in the Standard Model

Our first construction of pre-DAA uses AHO signatures as partially weakly blind sig-
natures, the VRF from [2]] given in Fig.[2las a LIT and Waters signatures [33] implicitly
for the signatures of knowledge, which are themselves Groth-Sahai proofs [26].

The setup algorithm outputs a bilinear group and parameters for the SoK. The issuer
generates an AHO signature key pair as (gmsk, gmpk). To join a group, a user creates
a LIT key sk and sends F; := [sk]P; to the issuer, who replies with an AHO signature
cred on F. To make a DAA signature on a message m under a basename bsn, a user first
(partially) randomizes his AHO signature cred and then splits it into a public part cred p
and a part credz which he will include in the witness for the SoK. Next, he creates a
LIT tag 7 := LITTag(sk, bsn) on the basename using his key. He then computes a
signature of knowledge X' on the message bsn||m proving knowledge of a LIT key sk
and the hidden part of an AHO signature credz; such that the tag and the AHO signature
both verify w.r.t. this key. The DAA signature is o := (credp, 7, X).

We formalize the above. The language of the SoK needs to be a pairing-product
equation as in (I) with witnesses in G; and G,. Rather than proving knowledge of
sk, the witness will be F; := [sk|P; and F5 := [sk]P,. The AHO signature is on Fy
rather than sk so F} is also sufficient to verify it. The signature is split into a public part
credp := (S, T, V, W) and ahidden part credy = (Z, R, U) (see the full version [3] for
the details). We let BSVerify’ (gmpk, F, (credyr, credp)) denote the AHO verification
algorithm of a split signature on F}.

The value F5 is the public key for the LIT from Sect.[£.2] so 7 can be verified using
LITVerify(Fz, bsn, 7). It remains to prove that (Fy, F5) is a Diffie-Hellman pair, that is,
of the form ([sk] Py, [sk] P). The language of the SoK is thus

L: {((gmpk,credp, bsn,7), (F1, Fa,credy)) :e(—Py, Fp)e(F1, P,) =1
A BSVerify’ (gmpk, Fi, (cred iz, credp)) = 1 A LITVerify(Fy, bsn, 7) = 1} .

If bsn = L then the DAA signature is (credp, '), where X is a SoK for the language
L' : {((gmpk, credp), (Fy,credy)) : BSVerify’ (gmpk, Fy, (credp, credp)) = 1}.
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To verify a DAA signature, one verifies the SoK. To link two signatures under the
same basename, one compares the contained tags 7 and returns 1 if they are equal; to
identify a transcript given sk, one checks if the first message by the user is the value
[sk]P1; and to identify a signature, one checks the LIT tag 7 using sk and bsn. Our
construction follows closely the blueprint from [6] (except for proving knowledge of a
function of sk and hiding parts of the certificate) and is proven analogously.

6 A More Efficient pre-DAA Scheme in the Standard Model

To construct a truly efficient pre-DAA scheme, we replace the partially randomiz-
able AHO-based partially weak blind signatures by the fully randomizable NCL-based
RwBS; this avoids having to include parts of the certificate in the SoK. In addition, we
replace the SoKs by more efficient Proofs of Knowledge (PoK).

The main obstacle in doing so is that the user secret key sk is used both for the
tag on bsn and (implicitly in the SoK) for the signature on the message m. Suppose
we replaced the SoK of sk by a regular Groth-Sahai proof of knowledge of sk and of
a signature on m. Non-frameability corresponds to a forgery of a signature on m, to
which the notion must be reduced. In the reduction we thus have to extract a signature
from the PoK, and therefore cannot simulate proofs, as GS proofs only allow extraction
or simulation (while SimExt security of SoKs allows both at the same time.) However,
if we do not simulate the PoK then when answering DA A-signing queries, we need to
provide actual tags—for which we do not have the user’s secret key.

We overcome this by using a novel approach: we use a signature scheme which in
the reduction allows us to simulate tags under the same secret key and a tag scheme
which allows us to simulate signatures. We do so by choosing the schemes in a way that
tags of one scheme and signatures of the other scheme have the same form—although
the security requirements are different, and they are based on different assumptions.
In particular, note that the values of the VRF from [2] are essentially “weak” Boneh-
Boyen signatures [8]]. (These signatures are only secure against adversaries which make
all signing queries before seeing the public key.) Weak signatures can easily be turned
into standard signatures using a hybrid construction, where one signs a verification
key of a one-time signature and uses the corresponding secret key to sign the actual
message. Unlike for the message space of the LIT (i.e. the basename space), there is no
restriction on the message spaces of the signature schemes (and thus the message space
of our DAA is big enough to sign messages of arbitrary length by hashing them first).

We separate the domains for the messages of the weak signatures and the messages
of the tags by prepending a bit to the messages. In the reduction of non-frameability
to weak signature unforgeability we can then use our (weak) signing oracle to obtain
signatures and simulate the tags: The basename space is polynomial in size and the ver-
ification keys of the one-time signatures can be produced beforehand; we can therefore
make our signature queries on all basenames and on the one-time keys beforehand.

Then, in the proof of anonymity we use the trick the other way round and simulate
signatures using the tag oracle. In the reduction to weak f-indistinguishability of the
tags, we can again make all tag queries (on basenames and one-time verification keys)
upfront. Another advantage of this approach is that, since weak signatures have the form
of LITs, they are unlinkable to the key that produced them, which means that we can
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Setup(1*)
o (P,crsy,crsg) < BSSetup(1*).
e Return param := (P, crsy, crs2).
GKg(param)
e (gmpk, gmsk) < BSKeyGen(param).
e Return (gmpk, gmsk).
UKg(param)
o sk; < LITKeyGen(P).
e Return sk;.
(Join, Iss)
e Run (BSRequest, BSlssue) for message
(f1(sks), f2(ski)) € Mes.
e User has input ((f1(ski), f2(ski)), gmpk).

e Issuer has input gmsk.
e User’s output is gsk; = cred.

GSig(gsk;, ski, m, bsn)
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GVf(gmpk, m, bsn, o)
e Parse o as (cred, T, 0w, VKots, 2, Tots)-
o If OTSVerify(vkots, (m, T, bsn), oos) = 0, return 0.
e If bsn #_L then
o ¢ := (gmpk, cred, bsn, 7, Vkots, O )-
o Return GSVerify (crs1, ¢ € £, X).
e If7 = () then
o ¢ := (gmpk, cred, vkots, 0 ).
o Return GSVerify (crs1, ¢ € £/, X).
e Return 0.

Identifyt (gmpk, sk;, T)

e If 7 is a valid transcript then check if the user message
in Join® = BSRequest” is (f1 (ski), £2), for some £2.
e If soreturn 1, otherwise return 0.

Identifys (gmpk, sk, , m, bsn, o)

e Parse o as (cred, T, 0w, VKots, 2, Tots)-
o If BSVerify(gmpk, (f1(ski), f2(ski)),cred) = 0
then return 0.

e cred < BSRandomize(gsk;).

o (VKots, Skots) <— OTSKeyGen(1*).

® o, < BBSign(sk;, 1||vkots).

o Ifbsn #L
o 7 < LITTag(sks, 0||bsn).
o ¢ := (gmpk, cred, bsn, 7, vkots, O ) -
o X <+ GSProve(crsy, {(f1(ski),

f2(ski))} : @ € L).

o If OTSVerify(vkots, (M, T, bsn), oos) = 0
then return 0.
e Return 1 iff one of the following hold
o bsn= 1,7 =0and
BBVerify (f2(ski), 1]|vkots, o) = 1.
o bsn # L, LITVerify(f2(sk;), 0||bsn, 7) = 1
and BBVerify(f2(sk;), 1||vkots, 0w ) = 1.
e Else
o 7:=0; ¢ := (gmpk, cred, vkots, 04 ).
o X <+ GSProve(crsy, {(f1(ski),
fa(ski))}: g € L').
®  Oots < OTSSign(skots, (m, 7, bsn)).
o o := (cred, T, 0w, VKots, X, Tots)-

Link(gmpk, oo, mo, o1, m1, bsn)
e Ifbsn =_ return 0.
e Forb=0,1:
If GVf(gmpk, myp, bsn, o) = 0, return L.
Parse oy, as (credy, 75, Ty s VKotsy s by Totsy, ).
e Return 1 if and only if 79 = 71.

Fig. 3. An efficient pre-DAA scheme construction in the standard model

even include the weak signatures in the clear in the DAA; we thus only need to prove
knowledge of the secret key.

Our construction is shown in Fig. 3] and uses the LIT scheme from Fig. [2l and the
NCL-based RwBS described in Sect. £l As in the generic scheme, the user group
signing key gsk is a credential (i.e. a blind signature) obtained from the issuer when
joining the group. To make a DAA signature, the user randomizes gsk to cred, chooses
a one-time signature key pair (skots, Vkots) and uses his secret key sk to generate a LIT
tag 7 on O||bsn (if bsn =L then 7 := (), and a weak signature o, on 1||vkets. The
user then produces a GS PoK X' of (f1(sk) := [sk] Py, f2(sk) := [sk| P») showing well-
formedness, that cred is valid on it and that 7 and o, both verify under fa(sk).

The DAA signature is defined as o := (cred, 7, 04, VKots, 27, Oots), Where oots 1S
a one-time signature produced with skets on the tuple (m, 7, bsn). Note that the one-
time signature also only needs to be weakly unforgeable, as the message (m, 7, bsn) is
known before vkt is chosen. The languages for the GS proofs are defined as follows,
where £’ is used when bsn = | and £ otherwise.
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{((gmpk, cred, bsn, 7, vkots, 0w), (F1, F2)) : e(—Py, Fy)e(F1, Py) =1
A BSVerify(gmpk, (Fi, Fy), cred) = 1 A LITVerify(Fy,0||bsn, 7) = 1
A BBVerify(Fy, 1||vkots, o) = 1}
{(gmpk. cred. viae, ), (Fi, F2)) : e(— Py, Fa)e(Fy, Py) = 1
A BSVerify(gmpk, (F1, F,), cred) = 1 A BBVerify(Fy, 1||vkots, o) = 1}

A detailed analysis of the efficiency of the construction can be found in the full version

(51,

where we also give a proof of the following.

Theorem 3. If the NCL-based RwBS scheme is unforgeable and weakly blind, the LIT
scheme is weakly linkable and weakly f-indistinguishable, the Groth-Sahai proof sys-
tem is sound and zero-knowledge, and the one-time signature scheme is weakly unforge-
able then the construction in Fig.Blis a secure pre-DAA scheme.
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