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Abstract. Maximizing the battery lifetime of wireless sensor nodes and
equipping them with elliptic curve cryptography is a challenge that re-
quires new energy-saving architectures. In this paper, we present an ar-
chitecture that drops a hardware accelerator between CPU and RAM.
Thus neither the CPU nor the data memory need to be modified. In
a detailed comparison with a software-only and a dedicated hardware
architecture, we show that the drop-in concept is smaller than the ded-
icated hardware module, while achieving similarly fast runtimes. Most
interesting for micro-chip manufacturers is that only 4 kGE of chip area
need to be committed for the dedicated drop-in accelerator.

Keywords: MSP430, ASIC, Hardware, Software, Elliptic Curve Cryp-
tography, Wireless Sensor Nodes.

1 Introduction

Privacy, authenticity, and confidentiality pose three of the most challenging cur-
rent demands on wireless sensor networks. To solve those requirements the use of
cryptography is essential. Unfortunately, it is hardly possible to solve this chal-
lenge using only symmetric cyphers. The most promising solutions are based on
asymmetric cryptography, in particular Elliptic Curve Cryptography (ECC).

Efficiently implementing ECC is a complex task, especially when a designer
also needs to be aware of the capabilities of the entities of a sensor network: A
sensor node usually comes with a microprocessor, a sensor (e.g., for humidity),
a wireless communication interface (e.g., IEEE 802.15.4 [I6], ZigBee [31]), and
a battery, which should keep the sensor-node alive for a lifetime (some years)
within a hostile environment. This means that a solution to the initial require-
ments should be light-weight and efficient. For maximizing the battery live and
keeping the price of a sensor node at a minimum, ECC has to be implemented
with care. To realize the scope of the difficulty, be aware that within the time
required for a single elliptic-curve point multiplication, several hundreds of sym-
metric encryptions and decryptions can be preformed. Thus ECC has a major
impact on both communication latency and energy consumption.
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A lot of research has been focused on efficiently and securely implement-
ing ECC. The research is performed based on three different approaches: one
is based on efficiently implementing ECC in software, one is based on adding
dedicated hardware, and one is a combination of the two preceding approaches.
Several papers discuss the use of assembly optimizations [12], instruction-set ex-
tensions [6JI0], and dedicated ECC hardware designs [19/20]. The drawback of
those techniques are the relatively low performance, the requirement to change
the microprocessor, and the potential waste of precious chip area, respectively.
As CPU vendors usually do not give away the source code of microprocessors,
but obfuscated code instead, adding new instructions is a troublesome task.
Dedicated hardware modules provide locally optimized solutions, but ignore the
existence of already available hardware modules. Our paper fills this gap.

Our contribution. In this paper, we perform a fair comparison (common algo-
rithms, technologies, tools) of three different hardware architectures, all capable
of performing ECC. Using an openMSP430 at the core, we present (i) an area
and speed-optimized software solution, (ii) a dedicated hardware module, and
most importantly (iii) a novel ECC ‘drop-in’ architecture. For the drop-in archi-
tecture, a lightweight ECC accelerator is placed right between the CPU and its
data memory. It requires less chip area than a dedicated hardware module, while
being similarly fast. Compared to the optimized software solution, the energy
consumption is reduced by a factor of 28, which certainly will make a major
impact on the lifetime of a wireless sensor node. The drop-in concept is also
most interesting for micro-chip manufacturers as only 4kGE of dedicated chip
area need to be committed for the drop-in accelerator.

The paper is structured as follows. Section [ gives a short introduction on how
to securely implement ECC and Section [] discusses different architectures for
ECC. The most promising architectures are then implemented within Sections[@l-
and compared within Section [l Conclusions are drawn within Section [8

2 A Short Introduction to ECC

Elliptic curves, used for cryptography, are built on top of finite fields. As finite
field, one can either choose a prime field or a binary extension field. Prime fields
are fast in software as they are based on integers and integer multipliers are
available in nearly all (embedded) microprocessors. Binary-extension fields on
the other hand are built on polynomials, which when implemented in hardware
do not have the drawback of carry propagation. However, in software a multipli-
cation of two polynomials has to be realized using branches, which are vulnerable
to side-channel attacks.

The for us most interesting standardized elliptic curves [1I2123] are all based
on the Weierstrass equation: y2 4+ a12y + azy = x> + a22? + a4x + ag. Depending
on whether prime or binary-extension fields are used, this equation is simplified
to y2 = 23 + ax + b or y? + xy = x> + ax? + b, respectively. Also the formulas
used to perform point additions and doublings depend on the used finite field.
For further information, the reader is referred to standard literature on elliptic
curves [3I13].
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Table 1. ECC formulas used within this paper

Finite-field operations per key bit

Formula Field Registers Add/Subtract Square Multiply
Hutter et al. [I5] F, 7+3=10 17 4 12
Lépez and Dahab [22] Fam 54+3=28 3 5 6

For the following comparison, it is important that all implementations are
based on a common methodology. For the constant-runtime software implemen-
tations, the integer and polynomial arithmetic has been separated from the
reduction operation. The reduction is performed using only simple shift and
addition operations. Thereby advantage was taken of the used prime and
irreducible polynomial. To perform an inversion in constant time, an exponentia-
tion, based on Fermat’s little theorem (a?~2 = a~! mod (q)) is used. For binary-
extension fields an optimized inversion algorithm based on Itoh and Tsujii [17]
is used.

More important than the used finite field is that ECC implementations are
vulnerable to side-channel attacks [7]. Attackers can use runtime information,
power consumption profiles, or induce faults to recover the secret key. This is
a significant problem for the easily accessible wireless sensor nodes that usually
are deployed within unsafe environments. Thus, a methodology must be utilized
that minimizes the potential threats.

In this paper we take advantage of differential addition formulas optimized for
Montgomery ladders. Table [Il gives a short summary of the used formulas. By
using a Montgomery ladder, the underlying finite-field operations are indepen-
dently performed from the used private scalar. Thus a key-independent constant
runtime is achievable under the assumption that all finite-field operations are
performed in constant time (which they are). The formulas are also lightweight.
Only 7/5 registers are required during the point double-and-add operations. For
the recovery of the y-coordinate another two registers are needed which store
the original base point. Another register that stores the private scalar is also
included in all comparisons within this paper.

To further increase the resistance against power-analysis attacks one would use
Randomized Projective Coordinates [5] and to resist fault attacks, perform point
verifications before and after each point multiplication. In practice the resistance
against those attacks is verified by performing real-world evaluations. As those
evaluations would go beyond the scope of this paper, they have not (yet) been
done. However, the algorithms and methodologies used for our implementations
are applicable to build real-world secure hardware.

3 Architectures

The decision regarding the best architecture is most important for a final design
as it greatly influences area, runtime, power, and energy characteristics. Only
by considering all requirements and the system as a whole, a global optimum
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Fig. 1. Microprocessor-based architectures

can be found. By optimizing a single (e.g., ECC) component it is probable to
reach a local optimum only. Figure [I] shows four different architectures which
are based on microprocessors, as microprocessors are the central component in
all currently available sensor nodes. The ECC-independent components, such as
the wireless interface and the actual sensor, are considered to be constants and
therefore independent from the used architecture.

(a) The most straight-forward solution is to perform and optimize ECC in soft-
ward]. The hardware designer only has to make sure that the data memory is
sufficiently large and the assembly-optimized ECC code is placed within the pro-
gram memory. The microprocessor (CPU) is then used to execute the code. In
Figure [Il the program memory is simplified as ROM and the data memory as
RAM. As ECC is very resource demanding and a software-only solution is in most
cases insufficiently slow, one could add a memory-mapped ECC co-processor.

(b) Co-processors have already been extensively studied and optimized in related
work [19J20]. However, comparing area and power results of designs that use
different technologies and tools is inaccurate. Therefore, Section [Bl presents an
ECC co-processor on-par with related work.

The drawback of so-called ECC slaves is that they waste chip area by having
their own memory. A solution in which the global RAM is reused is preferable.
Even when area-efficient RAM macros are used, practical evaluations show that
one RAM macro with more entries is smaller than two RAM macros with fewer
entries (c.f. 128 x 8-bit: 2,073 GE vs. 256 x 8-bit: 2,897 GE). An ECC accelerator
without RAM, which only performs finite-field operations would be a solution.
Unfortunately, for this solution the CPU has to manually move operands from
the RAM to the ECC slave and vice versa, thus wasting potential performance.

(¢) An ECC circuit which, like the CPU, is capable of accessing the global data
memory by itself solves that problem: an ECC bus master. This assumes that
the used microprocessor must support a multi-master scenario, which embedded

! Section @ discusses this solution.
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Table 2. HW synthesis of openMSP430 [24]

Functional Blocks Chip-Area [GE] Algorithm 1. Accessing the 16-
openMSP430 7,801 bit memory-mapped multiplier
Execution unit 5,536 1: MOV R4, &MPY
Register file 2,709 2: MOV R5, &0P2
ALU 693 3: NOP
Multiplier 1,826 4: MOV QRESLO, R6
openMSP430 w/o Multiplier 5,958 5: MOV @RESHI, R7

light-weight microprocessors usually do not. Also, the required arbiter can have
a significant impact on the total chip area.

(d) A more sophisticated concept is to unite the ECC master with the arbiter.
This within the context of ECC novel concept “drops” an ECC accelerator right
between the CPU and the data memory. From the viewpoint of the CPU it
behaves as simple ECC slave and does not hinder any access to the data memory.
From the viewpoint of the drop-in module, direct access to the data memory is
possible. Advantageous is also that neither the CPU (compared to instruction-
set extensions) nor the data-memory need to be modified. Section [f] discusses
this solution in more detail.

Tools. For this paper we use the 130 nm low-leakage ASIC technology by UMC
with the Faraday design libraries in combination with area-efficient single-port
register-based RAM macros. For hardware synthesis Cadence RTL Compiler
v08.10, for place-and-route and power simulation Cadence First Encounter
v08.10, and for simulation Cadence NCSim v08.20 are used. In this technology,
one gate equivalent is equal to 5.12 pm?. All evaluations are performed at 1 MHz
and can easily be synthesized to exceed an operating frequency of 50-100 MHz.

4 ECC on openMSP430

At the core of all previously discussed hardware designs is a microprocessor.
The selection of an appropriate microprocessor crucially influences the final run-
time, chip area, power, and energy results. The MSP430 [27] developed by Texas
Instruments, is considered to be a role model when it comes to low-cost and low-
power applications. It is currently already used for the sensor-node platforms
BEAN, COOKIES, EPIC mode, PowWow, Shimmer, TelosB, T-Mote Sky, and
XM1000, just to name a few. The MSP430 is a 16-bit RISC processor with a
Von Neumann architecture. This is important for saving data memory, as con-
stants do not have to be loaded to the expensive RAM before they are used. The
MSP430 comes with 16 16-bit registers, where RO is the program counter, R1 is
the stack pointer, R2 is the status register, and R3 is the constant-generator reg-
ister. So only 12 registers (R4-R15) are useable as general-purpose registers. The
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Algorithm 2. ACC « ACC + (A[0] x B[2]) + (A[1] x B[1]) + (A[2] x B[0)).

1: ADD #4 , OPB 9: MOV @OPA , &MAC
2: MOV  @OPA+, &MPY 10: MOV @OPB , &O0P2
3: MOV  @OPB , &0P2 11: SUB #4 , 0PA
4: DECD OPB 12: ADD @RESLO ,  ACCO
5: MOV ~ @OPA+, &MAC 13: ADDC ©@RESHI , ACC1
6: MOV @OPB , &0P2 14: ADDC Q@SUMEXT,  ACC2
7: DECD OPB 15: MOV~ ACCO , 4(DEST)
8: ADD @SUMEXT, ACC2 16: CLR  ACCO

MSP430 comes with only 27 instructions, from which none is a multiplication
instruction. To perform a 16-bit integer multiplication, the MSP430 optionally
has a memory-mapped multiplier. This will be discussed in detail later.

4.1 openMSP430

As our desired goal is a microprocessor-based hardware design, we need a hard-
ware model of the MSP430. Olivier Girard programmed a synthesizable Verilog
clone of the MSP430, called openMSP430 [24]. This clone fully supports the in-
struction set of the original MSP430 (with nearly identical timings), interrupts,
and power-saving modes. It optionally comes with a 16 x 16-bit hardware mul-
tiplier, watchdog, timer, and GPIOs. A first evaluation of this core is depicted
in Table 2 An openMSP430 without data or program memory (which will be
chosen appropriately) requires 7,801 GE. Most of this chip area is spent on the
execution unit (71 %), and the hardware multiplier (23 %). Without the multi-
plier, which is not necessary for binary-field based ECC, the openMSP430 only
requires 5,958 GE.

4.2 Integer Arithmetic

In order to perform a 16-bit integer multiplication, four memory accesses are
necessary. Algorithm [Il shows the assembly code necessary to multiply R4 with
R5 and to store the product in R6 and R7. The code shown in Algorithm [[] needs
4444 1+2+ 2 =13 cycles to complete.

As multiple words are needed to represent integers within the used finite
field, the multi-precision product-scanning multiplication technique of Comba [4]
is used. Algorithm [2] sketches the used methodology. Three registers are used
to hold pointers to the operands (OPA and OPB) and the result (DEST), three
registers for the accumulator (ACCO-2) and three registers to hold addresses of
the memory-mapped multiplier (RESLO, RESHI, and SUMEXT). In order to avoid
loading the product after each multiplication, multiply-accumulate operations
are performed directly within the memory-mapped multiplier. The overflowing
bit stored within the SUMEXT register needs to be loaded within line 8. After line
14, the accumulated product resides within the registers ACCO-2. This technique
has already been presented by Gouvéa and Lépez [§].
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Table 3. Comparison with related work
Algorithm 3. 64 x 1-bit polyno-

mial multiplication Curve Type ROM RAM Runtime
[Bytes] [Bytes] [kCycles]
1: RLA BO 8: XOR #0, CO Gouvéa et al. [9] and Szczechowiak et al. [26]
2: JNC +10 9: XOR #0, C1 secp160rt [0] T, 23,300 2,800 2,528
3: XOR A0, CO  10: XOR #0, C2 sect163kl [9] Fom 27,800 3,600 2,032
4: XOR A1, C1  11: XOR #0, C3 Custom [26] F, 31,300 2,900 5,898
5: XOR A2, C2  12: NOP sect163kl [26] Fom 32,100 2,800 8,519
6: XOR A3, C3 13: NOP ours on MSP430
7: JMP +12 secp160ri F, 4,230 282 5,721
sect163r2 Fom 4,126 294 7,447

4.3 Polynomial Arithmetic

As the MSP430 lacks a carry-less multiplier, a polynomial multiplication has
been implemented using branch operations. Algorithm [3 shows a 64 x 1-bit poly-
nomial multiplication which was used to build a 64 x 32-bit multiplication. The
64 x 32-bit multiplication can be performed without the use of a single, costly
memory load or store operation. Using the methodology of Karatsuba and Ofman
a three-way split of a single 192-bit multiplication to 6 64-bit multiplications has
been performed. On the MSP430 a 64 x 32-bit polynomial multiplication takes
383 cycles and a 192-bit polynomial multiplication takes 6,089 cycles. For con-
stant runtime, lines 8-13 in Algorithm [ perform dummy operations. Without the
dummy operations, a speedup of 23 % is possible on average. For comparison, a
192-bit integer multiplication takes 2,254 cycles and therefore is 2.7 times faster.
Gouvéa et al. [9] report an assembly optimized implementation for sect163k1
which only needs 3,907 cycles, but their implementation is not safe from timing
attacks.

4.4 Software Results

Four standardized elliptic curves providing security-levels of 80-96 bits have been
implemented. secp192r1 and sect163r2 are chosen because they are the small-
est elliptic curves within the NIST standard [2J23], still providing a sufficient
level of security. secp160r1 has been chosen because it is popularly used within
related work. As c2tnb191v1 [I] provides a similar security level as secp192r1
(95 vs 96 bits) it can be used for comparison.

Note that Table [l shows the runtimes of our software implementation, simu-
lated on a cycle-accurate model of the MSP430, while Table fl shows the slightly
better runtimes for an openMSP430. In Appendix [A] a detailed comparison of
all software implementations is depicted.

In literature many speed-optimized ECC implementations for the MSP430
have been reported [92T26128] (cf. Table [3). Because of the extentsively per-
formed assembler optimization, our software implementation outperforms the
related work of Szczechowiak et al. [26] that also requires larger memories. The
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Table 4. Synthesized software implementations of ECC on the openMSP430

Curve Type Security ROM RAM ROM RAM Area Runtime Power Energy

[Bits] [Bytes] [Bytes] [GE] [GE] [GE] [kCycles] [uW] nJ]
secpl6orlt F, 80 4,230 282 5,907 3,175 16,638 5,445 55.9  304.3
secp192r1 F, 96 4,846 322 6,173 3,400 17,128 8,650 53.9  466.7
sect163r2 Fom 81 4,126 294 5737 3,275 14,167 7,217 49.1 3543
c2tnb191vl Fom 95 3,994 310 5,735 3,375 14,014 8,376 554  463.8

fastest (ECDSA) implementation was done by Gouvéa et al. [9] in 2012. Com-
pared to our implementations, they report twofold faster runtimes at the expense
of 7 times larger program and 12 times larger data memories. As we synthesize
the program memory and choose appropriately large RAM macros, their imple-
mentation would result in a significantly larger hardware design, compared to
ours.

Table @ shows the measured chip area, runtime, power, and energy results
for the four implemented elliptic curves. The biggest impact of up to 60 % on
the total chip area is due to the size of the program memory and data memory.
For the elliptic curves over Fom the integer multiplier has been removed. The
binary-field-based ECC implementations are about 16 % smaller and similarly
fast, compared to the prime-field-based ECC implementations. For sect163r2
the used 176-bit polynomial multiplier which is based on the 192-bit multiplica-
tion algorithm discussed before, renders the runtime results inferior compared
to secp160ril.

The elliptic curve requiring the least amount of energy is secp160r1 (303.3 nJ).
However, the biggest potential for hardware optimizations (cf. [29]) lies within
binary-field based elliptic curves (354.3nJ). Therefore sect163r2 alias NIST
B-163 has been selected for the following hardware implementations.

5 Stand-Alone ECC Hardware

The dedicated hardware design used for this paper (cf. Figure [) is strongly
related to the works of Kumar and Paar [I9] and Lee et al. [20], but uses a
different memory architecture. As register-based memory is most expensive, it
is replaced by latches, which are 27 % smaller in the used 130 nm technology. As
latches are not synchronous, the depicted circuit only works because a common
Work register is placed before the latches. At the positive clock level, activated
via the clock gate (CG), the latch inherits the contents stored within the Work
register. A single multiplexer is used to select the content of a latch which is
then used as operand OpA for the datapath. The datapath consists of an MSB-
first digit-serial multiplier, an adder, and optionally a squaring unit. For the
multiplication, an operand is split into W-bit sized parts which are stored in
OpB. d of the W bits are then concurrently handled within the multiplication
circuit. Dependent on the desired speed grade, it is possible to increase the size
of d, or to use a dedicated squaring circuit. For interfacing the module with
an external W-bit wide bus, the existing multiplexers are reused. For memory
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Fig. 2. Dedicated ECC hardware

storing operations, W of the N-bit wide bus are overridden by the externally
driven bus signal.

5.1 Stand-Alone ECC Hardware Results

A complete ECC coprocessor including datapath, controlpath, memory, private
scalar, modifiable base point, and resulting point with recovered y-coordinate
needs at least 11,778 GE and up to 341,835 cycles. Table[Blsummarizes our results
for different d parameters. Adding a dedicated 1-cycle squaring unit only costs
884 GE (7.5 %) of additional hardware, but improves the runtime by a factor of
approximately two. The most energy-efficient circuit is using d = 2. The circuit
with the best scaled area-runtime product (SARP) is using d = 4.

Compared to related work [TAT92002530], our designs are smaller or faster
and therefore provide a better area-time product. In terms of power and energy,
which are highly dependent on the used technology, our results are similar to
related work.

The chip area shown in Table [l does not include the area needed by the
MSP430 (5,958 GE), its data memory (8 x 16-bit RAM — 1,443 GE), and its pro-
gram memory (354 bytes — 801 GE). So all our dedicated ECC hardware designs
need additional 8,202 GE of hardware in order to provide the full functionality
of an MSP430.

The major drawback of the ECC hardware module is the inefficient data mem-
ory. Unfortunately, there are no efficient RAM macros with a 163-bit interface.
Even though latches are used, the memory requires 6,924 GE, or 59 % of the total
hardware area. A comparable register-based RAM macro with 8 x 163 = 1,467
bits requires only 2,600 GE. That is 62 % less. For the drop-in concept discussed
in the next section, such an area-efficient RAM macro is used.
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Table 5. Synthesis results of the dedicated ECC hardware design without MSP430

Design Technology Area Runtime Power Energy SARP
[nm] [GE] [kCycles]  [nW] [nJ]
d=1w/o squ. 130 11,778 341,835 63.3 21.6 5.2
d=1w/ squ. 130 12,662 174,025 71.5 12.4 2.8
d=2w/ squ. 130 13,307 93,997 784 74 1.6
d=4w/ squ. 130 14,552 53,489  140.1 7.5 1.0
Kumar and Paar [19] d =1 350 15,094 376,864 788.0  297.0 7.3
Hein et al. [14] 180 11,904 296,299 101.9 30.2 4.5
Lee et al. [20] d =1 130 12,506 302,457 324 9.8 4.9
Lee et al. [20] d=5 130 20,316 83,375 48.9 4.1 2.2

6 Drop-in Concept

The drop-in concept has some similarities with instruction-set extensions. The
drawback of ISE is that the HW designer needs to be able to modify both the
controlpath and the datapath of the used processor, as well as the corresponding
software toolchain. A different solution, based on a memory mapped carry-less
multiply-accumulate unit has similarly large access times as the already existing
integer multiply-accumulate unit of the MSP430. Therefore, it would only make
a minor impact on the ECC runtime.

The drop-in concept provides full advantage even when the hardware designer
is not able to modify the used microprocessor. Performance similar to dedicated
ECC hardware is achievable and the verification and validation process regarding
the used microprocessor does not have to be redone. The drop-in concept is
also flexible: A hardware designer can shift control logic between the program
memory and the dedicated hardware module. In this paper the drop-in module
is designed to efficiently perform finite-field arithmetic (addition, squaring, and
multiplication) only. The finite-field inverse as well as the point-multiplication
algorithm are implemented in software.

As interface, the drop-in module provides three address, a command, and a
status register. Before each operation, the address registers are written with two
source and a destination memory address, and the operation is started by writing
the command register. The status register is then polled to check whether the
operation has been finished. Actually, experiments showed that waiting at the
beginning of the finite-field operations for the previous operations to finish is
more performant. In this way the CPU and the drop-in module can partly work
in parallel.

6.1 Drop-in Architecture

Figure [3 shows the architecture of the drop-in module. The data-bus is depicted
in red and orange, the address bus in blue. The drop-in module consists of a
lightweight arbiter, controlpath, and datapath. If both the CPU and the drop-in
module want to access the data memory, the currently pending operation within
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Fig. 3. Drop-in module for Elliptic Curve Cryptography

the drop-in module is put on hold and the CPU is given access to the data
memory. Therefore the drop-in module needs to be specially prepared for the
case in which it is put on hold. For our ECC design, only 7 1-bit registers are
necessary to provide this functionality. As a side note, the openMSP430 does
not support to have delayed memory access.

The datapath within the drop-in module is very similar to the datapath of the
dedicated ECC hardware module. Figure @ shows that only two N-bit registers
and a W-bit register are necessary for an MSB-first digit-serial multiplier. In
each cycle, the N bits of OpA are multiplied with d bits of 0pB, which are added
to a d-bit shifted intermediate product, stored within the N-bit Work register.
The (N +d)-bit sum is then reduced and used to update the Work register. At the
beginning of the algorithm, Work is initialized with zero and OpA is initialized
with the value stored within the data memory. The W-bit chunks of OpB are
loaded on-demand, as it is shown within Figure [l (d). When the multiplication
is finished, the result within Work is stored back to the data memory.

Optionally, a dedicated squaring unit can be used. In our implementation
(Figure [l (a)), OpA is loaded from the data memory, the squaring is performed
within a single cycle, and the result is stored back to the data memory. The
datapath of the addition is not shown in Figure [ as it only is a simple XOR-
gate. For the finite-field addition (Figure [ (b)) three times [N/W] memory
operations are necessary.

If at any moment, the CPU needs to do some (real-time) interrupt handling
and needs access to the data memory, the operation in progress within the drop-
in module is simply halted and continued when the data memory bus is free to
use (Figure [l (c)).
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6.2 Drop-in Concept Hardware Results

Similar to before, the drop-in module was evaluated for different configurations
(cf. Table[d). Independent of the size of the digit-serial multiplier and the avail-
ability of a squaring unit, the size of the CPU (5,715 GE), the program memory
(1,426 bytes — 2,635 GE), and the data memory (222 bytes — 2,875 GE) are con-
stant. The drop-in module only needs between 4,114 GE and 6,760 GE in chip
area.

This is the most interesting number for microchip manufacturers. As not every
customer actually needs ECC, they want to leave out unnecessary components,
as they produce unnecessary costs. On the other hand, customers that require
performant ECC can take advantage of the drop-in ECC module. Compared
to a dedicated ECC hardware module, which requires 12-15kGE, the drop-in
module requires only a fraction of it: 35 %.

6.3 Related Work

In 2009, Guo and Schaumont [I1] identified the data bus as potential bottleneck
for ECC designs. Cause of that, they add the necessary data memory to the
dedicated ECC accelerator to keep the number of necessary bus accesses at a
minimum. Thus their ECC accelerator becomes more like a dedicated hardware
module. As it is an FPGA design, a comparison with our work is impracticable.

Most comparable to our drop-in concept is the work of Koschuch et al. [I§].
They implemented a memory-less ECC accelerator and used a DMA controller
for efficiently accessing the data memory. Their architecture is best comparable
with the previously discussed architecture (¢). Their DMA controller is 1,029 GE
large, their ECC accelerator is 11,618 GE large, and their total design for Fayie
requires 29,491 GE. For a scalar multiplication, they require 1,416 kCycles. Thus
their design is slower and larger than our drop-in designs.
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Table 6. Synthesis results of all ECC hardware architectures at 1 MHz for sect163r2

Design Module Chiparea Runtime Power Energy

(GE] [GE] [Cycles] [RW] (nJ]

Architecture (a) — Software-only implementation
openMSP430 w/o mult. - 14,167 7,216,905 49.1 354.3
Architecture (b) — Dedicated ECC Hardware Accelerator
d=1w/o squ. 11,778 19,980 342,724 93.8 32.1
d=1w/ squ. 12,662 20,864 174,910 112.9 19.7
d=2w/ squ. 13,307 21,509 94,882 152.4 14.5
d=4w/ squ. 14,552 22,754 54,376 181.7 9.9
Architecture (d) — Drop-in Module Based

d=1w/o squ. 4,114 15,282 467,370 66.1 30.9
d=1w/ squ. 4,895 16,121 303,202 77.6 23.5
d=2w/ squ. 5,512 16,738 224,222 73.6 16.5
d=4w/ squ. 6,760 17,986 182,130 70.0 12.8

7 Comparison of Implemented Architectures

In the previous sections, architectures (a) - a plain software implementation,
(b) - a dedicated ECC hardware module, and (d) - a drop-in module - have
been presented and discussed in connection with the appropriate related work.
Thereby all implementations are on-par with related work or outperform related
work. Most important however is the comparison of the three implemented ar-
chitectures (a,b,d) with each other.

Table Bl shows the area, runtime, power, and energy values of all architectures.
The column ‘Module’ gives the area for the dedicated ECC hardware blocks,
while ‘Chiparea’ accumulates the program memory, the data memory, the mi-
croprocessor, and the special hardware module. The runtimes of architecture
(b) now include the calling overhead needed to trigger and poll the dedicated
hardware module. In comparison to Table[], the area and power values now also
include the RAM, ROM, and CPU.

The smallest of all implementations is the plain software implementation (a)
needing only 14,167 GE. Both the drop-in solution (d) (15,282 GE) and the ded-
icated hardware solution (b) (19,980 GE) are larger. However, those solutions
are up to 132 times faster and up to 36 times more energy efficient. Thus ar-
chitecture (a) can be considered as fall-back solution, but is practically to slow
for most relevant applications. The runtime is nearly one second at a common
sensors-node frequency of 8 Mhz.

Thus the question is whether architecture (b) or (d) is better. The drop-in
concept (d) is 22 % smaller and requires 50 % less power. On the other hand,
architecture () is faster. The comparison is visualized in Figure [ which prints
the chiparea values versus the runtimes. The dashed lines indicate constant area-
runtime products. After investigating the results in detail, our conclusion is that
both architectures (b) and (d) have the very right of existence. However, if the
application requires that a point multiplication is finished within, e.g., 30 ms
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Fig. 6. Area-runtime-characteristics of the various ECC architectures

(@8MHz), architecture (d) based on the drop-in concept with d = 2 is the
smallest and therefore best solution.

8 Conclusion

This work proofs that the drop-in concept is a viable alternative to previously
existing plain software and dedicated hardware solutions. Both the presented
software-only and the presented dedicated hardware solution enable a fair com-
parison using a common side-channel aware methodology and identical tools.
The software implementation is (supposed to be) side-channel secure and needs
7—-12 times less memory compared to latest related work. The hardware imple-
mentation is more area-efficient compared to related work, because a specially
designed data memory is used. However, a plain hardware implementation is
not aware of the versatile MSP430, which is usually available in wireless sensor
nodes. Hereby the drop-in concept provides a novel solution which actually is
smaller than the hardware module based architecture, while being similarly fast,
and requiring 36 times less energy than the dedicated software solution. This
makes the newly presented drop-in concept a great solution for microchip and
sensor-node manufacturers.
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A Implementation Runtimes

Table [1 lists the constant key-independent runtimes of all implementations
done for this paper. Architectures (b) and (d) implemented the elliptic curve
sect163r2.

We distinguish between runtimes for the original MSP430 and the open-
MSP430. The runtimes of the openMSP430 are better, because several instruc-
tions of the openMSP430 perform the same operation in less cycles than the
original MSP430. In average, the openMSP430 is 5% faster for the prime field
based elliptic curves (secp160ri, secp192rl) and 3 % faster for the binary field
based elliptic curves (sect163r2, c2tnb191vl).

Table 7. Runtimes for finite-field addition/subtraction (ADD), squaring (SQU), mul-
tiplication (MUL), inversion (INV), and point-multiplication (P-MUL) operations

Implementation ADD SQU MUL INV P-MUL

[Cycles] [Cycles] [Cycles] [Cycles] [Cycles]
(a) MSP430 secp160ri 163 1,905 1,905 327,366 5,721,420
(a) MSP430 secp192ri 191 2,559 2,559 526568 9,100,128
(a) MSP430 sect163r2 109 852 6,604 199,815 7,446,677
(a) MSP430 c2tnb191vl 118 778 6,566 229,297 8,610,906
(a) openMSP430 secp160r1 161 1,808 1,808 310,812 5,445,010
(a) openMSP430 secp192ri 189 2,426 2,426 499,331 8,650,455
(a) openMSP430 sect163r2 107 781 6,446 186,663 7,216,905
(a) openMSP430 c2tnb191v1 116 725 6,420 217,209 8,376,138
(b) HW d = 1 w/o squ 2 174 174 29754 341,835
(b)) HWd =1 2 1 174 1,728 174,025
(b)) HW d = 2 2 1 93 999 93,997
(b)) HW d =4 2 1 52 630 53,489
(d) drop-in d = 1 w/o squ 40 208 208 36,419 467,370
(d) drop-in d = 1 40 38 208 9,963 303,202
(d) drop-in d = 2 40 38 128 9,227 224,222

(d) drop-in d =4 40 38 80 8,843 182,130
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