
Transparent, Distributed, and Replicated

Dynamic Provable Data Possession

Mohammad Etemad and Alptekin Küpçü

Koç University, İstanbul, Turkey
{metemad,akupcu}@ku.edu.tr

Abstract. With the growing trend toward using outsourced storage,
the problem of efficiently checking and proving data integrity needs more
consideration. Starting with PDP and POR schemes, many cryptogra-
phy and security researchers have addressed the problem. After the first
solutions for static data, dynamic versions were developed (e.g., DPDP).
Researchers also considered distributed versions of such schemes. Alas, in
all such distributed schemes, the client needs to be aware of the structure
of the cloud, and possibly pre-process the file accordingly, even though
the security guarantees in the real world are not improved.

We propose a distributed and replicated DPDP which is transparent
from the client’s viewpoint. It allows for real scenarios where the cloud
storage provider (CSP) may hide its internal structure from the client,
flexibly manage its resources, while still providing provable service to
the client. The CSP decides on how many and which servers will store
the data. Since the load is distributed, we observe one-to-two orders of
magnitude better performance in our tests, while availability and reli-
ability are also improved via replication. In addition, we use persistent
rank-based authenticated skip lists to create centralized and distributed
variants of a dynamic version control system with optimal complexity.

1 Introduction

In recent years, cloud storage systems have gained considerable attention from
both academia and industry, due to the services it can provide at lower costs. As
a result, IT outsourcing has grown by 79% [5]. In the case of outsourcing storage,
the client wants to upload her data to a server, and wants to rest assured that
her data remains intact. She may trust the server in terms of availability, but
does not necessarily trust him to keep her data intact. Indeed, the server may try
to hide data loss or corruption due to hardware or software failures. When the
data is large, it is not acceptable to require the client to retrieve the whole file
in order to validate it, since this requires high bandwidth and time complexity
[2]. This will be even more problematic if the client uses resource-constrained
devices, or performs this check frequently [15].

Ateniese et al. [2] proposed the concept of provable data possession (PDP),
which provides probabilistic guarantees of possession of the outsourced file. Juels
and Kaliski [17] developed a similar model named proof of retrievability (POR).
The route is followed by others [20,23,19,13,4], alas, only for static files.

M. Jacobson et al. (Eds.): ACNS 2013, LNCS 7954, pp. 1–18, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 M. Etemad and A. Küpçü

Later, dynamic cloud storage protocols were developed by Erway et al. [15]
and Ateniese et al. [3], and later variants followed [22]. The DPDP scheme [15]
uses rank-based authenticated skip list, which supports insertion, modification,
and deletion of blocks in O(log n) time, where n is the number of blocks.

All these schemes deal with integrity checks, but if the data is lost, it can
only be detected, not recovered. The instant solution to this problem is to store
multiple copies of the file, and use other copies if one is corrupted. Many such
solutions exist for both static and dynamic scenarios [12,9,5,7,26,27] but these
schemes require the client to perform pre-computation that is on the order of the
number of servers/replicas (e.g., generate multiple encoded copies of the file),
and the CSP architecture is not transparent from the point of view of the client.

This imposes an unnecessary burden on the client, decreasing her efficiency,
while she has no way to check whether the CSP keeps storing exactly the agreed-
upon number of replicas, unless the client interacts with each server one-by-one.
Even in that case, presumably the inter-server communication is much faster
than the client-server communication, thus a single server in the background may
be storing the data and providing proofs to multiple servers interacting with the
client. Moreover, if the client takes into account the internal architecture of the
CSP in the pre-computation, then the CSP cannot even improve his architecture
without notifying the client (which leads to re-computations). Normally, the CSP
wants to change his structure and adapt it with the world technical progress
(e.g., Amazon S3 is said to store three replicas for each file [24], which may be
increased or decreased with technological advancements).

In this paper, we propose a transparent, distributed, and replicated dynamic
PDP (DR-DPDP), based on the DPDP scheme [15] (or its variants following
a similar structure). The CSP’s architecture is completely transparent to the
client, and hence the client performs in the same way as in DPDP.

Our DR-DPDP scheme does not decrease the guarantee on detection prob-
ability, and hence incurs no harm to the client, while helping her get rid of
pre-computation imposed solely by the architecture, and later checking data
integrity toward a specific architecture. We improve the client’s efficiency, and
achieve better scalability, availability and reliability at the CSP. The CSP can
flexibly manage its resources, perform its own choice of load balancing and repli-
cation schemes in the background, while still providing provable storage for the
client. This makes DR-DPDP much easier to deploy on real systems.

We also present a provable Version Control System (VCS), achieving better,
indeed optimal, complexity O(1 + logn). We further combine our DR-DPDP
scheme with our VCS to obtain a distributed VCS (DVCS) scheme with the
same complexity.

Contributions. The main contributions of this paper are as follows:

– We propose the first transparent, distributed, and replicated provable dy-
namic cloud storage system.

• Our system incurs no cost over the single-server case; it actually improves
the performance due to parallelism. Indeed, for a system with 100 servers

Transparent, Distributed, and Replicated Dynamic Provable Data Possession 3

and 10 replicas, our system performs 10 times faster updates and proofs
than a single-server storage.

• Asymptotic complexity of our system does not depend on the number
of replicas, servers, or partitions.

• The CSP’s architecture is completely transparent to the client, and can
be changed on-the-fly with the sole decision of the CSP.

– We present a (distributed) version control system with optimal complexity.
• We map VCS operations to underlying cloud storage operations in a
provable manner for the first time, and show that, in many cases, the
complexity of the operation is independent of the number of versions.

• We consider the multi-client scenario for provable VCS for the first time.

1.1 Related Work

Proof of Storage. A trivial way to perform integrity check is via message au-
thentication codes or hash functions. The client hashes her file before uploading,
and stores the hash value. Later, the client retrieves the whole file, recomputes its
hash, and checks if it matches the stored hash value [5]. This is not efficient since
each verification requires the whole file to be transmitted. The client can divide
the file into blocks, hash each block separately, and challenge a random subset
of blocks. Again, all challenged blocks should be transmitted for verification [2].

Ateniese et al. [2] proposed a PDP scheme with which these efficiency prob-
lems have been solved. In PDP, first the client divides the file F into n blocks
(F = f1|f2|...|fn), then computes a tag for each block, and finally transfers the
file along with the tags to the server, deleting its local copy. Later, she sends
a challenge to the server. Upon receipt, the server constructs a proof using the
tags and blocks stored, and sends the proof back to the client for verification.

Juels and Kaliski [17] proposed a POR scheme where the main difference was
that the client uses erasure codes to encode her file before uploading. This enables
resilience against data losses at the server side: the client may reconstruct her
data even if the server corrupts (deletes or modifies) a portion of it.

The PDP and POR, as well as their later variants and generalizations [20,13,4]
support only static files. The first dynamic schemes were proposed simultane-
ously by Ateniese et al. [3] and Erway et al. [15]. Ateniese et al. [3] proposed
the Scalable PDP, where the client pre-computes responses for pre-decided chal-
lenges and stores them on the server encrypted. This means that the number of
updates and challenges a client can perform is limited and fixed.

Erway et al. [15] proposed a Dynamic PDP (DPDP) scheme in the standard
model that supports provable unlimited updates (modify, delete, and insert)
with O(log n) complexity. The scheme is based on rank-based authenticated skip
list, in which, only the relative indexes of blocks are used, so it can efficiently
support dynamism. The proof for a block is computed using values in the search
path from that block up to the root of the skip list.

All these schemes deal with the integrity of the outsourced data, but the
availability and reliability are important as well. One method to support avail-
ability and reliability is to store several copies of the file, resulting in better

4 M. Etemad and A. Küpçü

availability and efficiency. For example, MR-PDP [12] extends PDP, and HAIL
[9] distributes POR to multiple servers, trying to balance their loads.

Barsoum et al. [5] proposed a multi-copy PDP scheme for static files, where,
the client generates and uploads t distinct copies of the file. Later, she separately
challenges each copy to ensure that the CSP is possessing all t copies. Hence,
the scheme is similar to using t different PDP schemes.

Barsoum et al. later proposed two multi-copy DPDP schemes, based on tree
and map structures [7,6]. In the tree-based scheme, each copy of the file is put
into a Merkle hash tree, and their roots are used to construct another Merkle
hash tree (the directory) whose root is the metadata stored at client, similar to
the file system proposal of DPDP [15]. Again, the challenge-response mechanism
is not transparent to the client; she must know this new structure is in place.

Zhu et al. [26,27] proposed a Cooperative PDP where the client generates the
tags of the blocks and then sends them securely to the organizer. The organizer
is one of the servers who is responsible for communication with the client, and
determines on which server each part of file will be stored. Later, when the client
challenges the organizer, he gathers together responses from multiple servers and
sends a single final response back to the client. Note that the tags depend on
which server is storing a particular block.

In our DR-DPDP scheme, the client is exactly a DPDP client, and all servers
storing data are DPDP servers. The decision about the distribution of parti-
tions over servers, number of servers, replication, etc. are all up to the CSP.
Most importantly, the whole process is transparent to the client, and she is still
guaranteed that there is at least one intact copy.

It is important to note that the CSP may store all the data on a single server,
even if the scheme directs him not to do so. The client has no way of distinguish-
ing such a single-server case from multi-server storage. She may try to infer via
timing [10], but it is not a reliable measure since the inter-server communications
are much faster than the client-server communications.

Thus, instead of trying to force the CSP, we give him the flexibility. The CSP
may freely employ replication for fault tolerance and availability, and distribution
for load balancing and scalability, without the need to inform the client. On the
other hand, the client is still ensured that at least one working copy is present, or
otherwise the CSP will get caught cheating. Therefore, the CSP is incentivized
to make sure he keeps the client’s data intact. Our solution does not decrease
detection probability, while providing improved performance as seen in Section 5.

Version Control. One of the applications of dynamic data outsourcing schemes
is outsourced version control systems (VCS). Pervasive examples include CVS,
SVN, and Git.

Erway et al. [15] proposed an extension of their DPDP scheme to support
version control. If the average number of blocks in a file for each version is n, and
there are v versions, their VCS requires O(log n+log v) time and space for proofs,
whereas our proposal requires only O(1 + logn), which is independent of the
number of versions (see [15,8,18,14,11] for optimality discussion). Furthermore,
we show how to combine this VCS with our DR-DPDP to obtain distributed VCS

Transparent, Distributed, and Replicated Dynamic Provable Data Possession 5

with the same complexity. We also explicitly map VCS operations to provable
operations in our DR-DPDP scheme.

2 Preliminaries

A skip list is a randomized data structure, that has binary tree-like properties
(i.e., logarithmic operation cost). An authenticated skip list provides mem-
bership proofs for storing items using a collision-resistant hash function.

DPDP [15] uses a modified form of the authenticated skip lists called rank-
based authenticated skip list, where each node v also stores the number of
leaf nodes reachable from v (the rank of v), as shown in Figure 1a. The file F is
divided into n blocks m1|m2|...|mn, then a homomorphic tag Ti is computed for
each block and put in the skip list, while the blocks are stored elsewhere. Nodes
also store a label computed using a collision-resistant hash function. The client
stores locally the label of the skip list’s root to verify the membership proofs.

An interesting property of this tree-like structure is that the insertion, dele-
tion, or modification of a block affects only the nodes along the path from the
block up to the root. The ranks of the affected nodes can be recomputed in
constant time per node in a bottom-up way [15].

To make an authenticated skip list persistent, the path-copying method is
applied [1]. A block update results in a new version. The new version consists
of all unchanged nodes of the previous version, plus the nodes on the path from
the updated block up to the root, whose values are recomputed. Figure 1b shows
the process, where a new block is inserted after the second block, at level five.

(a) Numbers inside the nodes are
their ranks. The indices and levels
are imaginary.

(b) Hatched nodes are specific for old version,
filled in nodes are specific for new version, and
white nodes are in common.

Fig. 1. A regular (a) and a persistent (b) rank-based authenticated skip list

6 M. Etemad and A. Küpçü

3 DR-DPDP
DR-DPDP is a scheme that provides transparent distribution and replication of
user data over multiple servers. There are three entities in the model as depicted
in Figure 2a. The client, who stores data on the CSP, challenges the CSP to
check the integrity of data, and updates the stored data. The organizer, who is
one of the servers in CSP and is responsible for communication with the client
and other servers (acts as a gateway or load-balancer). The servers, who store
the user data, perform provable updates on behalf of the client, and respond to
the client challenges coming via the organizer. They only communicate with the
organizer and there is no inter-server communication.

It is very important to observe that even though it seems like a central entity,
the organizer is not expected to perform any disk operations or expensive group
operations (e.g., exponentiation). He will only perform simple hashing, and work
with a very small skip list. Hence, his load will be very light, making it very easy
to replicate the organizer to prevent it from becoming a bottleneck or single-
point-of-failure. (Further discussion can be found in the full version [16].)

When the client wants to store a file using this scheme, she first prepares the
file as in DPDP, then sends all blocks to the organizer. The organizer divides
the file into partitions, each with a predefined number of blocks, and sends each
partition to an agreed-upon number of servers (A partition and its rank-based
authenticated skip list will be replicated on the specified number of servers.)
Each server stores the blocks, builds the corresponding part of the rank-based
authenticated skip list, and sends the root value back to the organizer. All servers
run in parallel. Once received at least one response for each partition, the or-
ganizer builds its own part of the rank-based authenticated skip list and sends
the root value as metadata to the client. All these operations are commanded
by the organizer and all are transparent to the client.

The idea behind this architecture is that a big rank-based authenticated skip
list is divided into multiple sub-lists; the top part is stored on the organizer, and
the servers store lower parts, thereby improving scalability. Also, each sub-list
will be replicated on a predefined number of servers, improving availability and
reliability. Figure 2b shows the idea, where each partition is replicated on two
servers. Different servers replicating the same partition are required to use the
same randomness to have identical skip lists.

Remark. Note that single-server DPDP is a special case of ours, where R = r1
in Figure 2b, and the client and server behavior is unchanged. Moreover, with
small changes, 2-3/Merkle tree-based structures [25,22] can also be employed
instead of rank-based authenticated skip list.

3.1 From DPDP to DR-DPDP

This section shows how to use DPDP to construct DR-DPDP. All client opera-
tions (KeyGen, PrepareUpdate, VerifyUpdate, Challenge, Verify), and server oper-
ations (PerformUpdate, Prove) are the same as DPDP. The organizer operations
(PerformUpdate, Prove) are shown in Algorithms 3.1 and 3.2.

Transparent, Distributed, and Replicated Dynamic Provable Data Possession 7

(a) The architecture. (b) A distributed skip list with 2 replicas.

Fig. 2. The DR-DPDP architecture

For an update, the client prepares the desired update command (using Pre-
pareUpdate), and sends it to the organizer, who searches for the block indices in
his skip list, figuring out which servers hold which blocks to be updated. Then,
he delegates the job to the corresponding servers (All servers holding the same
replicas must perform the update.) All servers perform the update in parallel
and send the root value to the organizer who picks one proof and metadata per
partition among replicas (possible strategies are in the full version [16]), updates
his own skip list and sends the new root value to the client (Algorithm 3.1).

Algorithm 3.1. PerformUpdate run by the organizer.

Input: DPDP values sent by the client (e(F), e(info), e(M)).
Output: DPDP proof to be sent to the client.

Interpret info as {o1, o2, ..., ol} // list of file block indices to be updated1
Interpret e(F) as {mo1 ,mo2 , ...,mol} // list of corresponding file blocks2

P = {} // initialize empty proof3
for i = 1 to l do4

// find servers storing the othi block from the organizer’s skip list

loci, {Sr}sr=0 ← Search(oi)5
for j = 1 to s do6

// Servers perform DPDP update on own partitions, thinking of Fi−1
as the current version, and Mi−1 as the current skip list root
(Mcj , PMcj

)← Sj .P erformUpdate (pk, Fi−1,Mi−1, e(moi), e(oi), e(M))7
// Pick one proof PMc and one root Mc, how to pick is discussed later

P = P
⋃

PMc8
// Put new server roots to the organizer’s skip list
(M ′

c, P
′
Mc

)← PerformUpdate(pk,Fi−1,Mi−1, {Mc}, {loci}, e(M))9

P = P
⋃

P ′
Mc10

return M ′
c, P11

To get an integrity proof, the client generates a challenge command as a list of
blocks and random coefficients, and sends it to the organizer. Upon receipt, the
organizer finds out which servers hold which blocks, decides on which servers
should create the proofs (possibly based on their load), and challenges those

8 M. Etemad and A. Küpçü

Algorithm 3.2. Prove algorithm run by the organizer.

Input: DPDP challenge sent by the client (c).
Output: DPDP proof to be sent to the client.

// list of block indices challenged and associated random coefficients
Interpret c as {o1, o2, ..., ol} and {r1, r2, ..., rl}1

P = {}2
for i = 1 to l do3

loci, {Sr}sr=0 ← Search(oi)4
// Select a server from those storing block oi and challenge it
Sc ∈ {Sr}sr=05
Pc ← Sc.P rove(pk,Fi,Mi, ci)6

P = P
⋃

Pc7
return P8

servers on the blocks residing in their partition. All servers generate their proofs
in parallel, and send them to the organizer. Each proof consists of two parts:
a skip list proof, and a combined block. The organizer sums up all combined
blocks, and generates the full proof using the sub-proofs and their paths in his
own skip list (from the ris to the R in Figure 2b) as described in Algorithm 3.2.

Frequent insertions or deletions to a partition makes its size very large or
small. To solve this problem, repartitioning is required. The repartitioning strat-
egy balances the load on the servers, preserving an amortized time for challenge
and update operations (further discussed in the full version [16]).

3.2 Security of DR-DPDP

Since the client-server communication is the same as in DPDP [15], we use the
same security definition.

Definition 1 (Security of DR-DPDP). A DR-DPDP scheme is secure if for
any PPT adversary who can win the data possession game (from [15]) with non-
negligible probability, there exists a polynomial-time extractor that can extract
the challenged parts of the file by resetting and challenging the adversary.

Theorem 1. If DPDP scheme is secure, then our DR-DPDP scheme is secure
according to Definition 1.

Proof. All communication between the client and the organizer takes palace as
in DPDP. The process is transparent to the client; she thinks as if she commu-
nicates with a DPDP server. Moreover, all servers behave as in DPDP. The only
difference is how the proof is generated at the organizer, but the resulting proof
will be the same as a single-server DPDP proof. Therefore, the organizer-server
and inter-server communication is not a matter of security, and rather, we con-
sider the security of client-organizer communication. If the adversary manages
to create a verifying proof with non-negligible probability even though all copies
of the challenged blocks are corrupted, this means that he managed to cheat
either on (at least) one of the server proofs, or the organizer proof. In either
case, finally, a DPDP proof is created.

If, at the end of the data possession game [15] the proof is accepted by the
challenger with non-negligible probability, then the challenger can extract the

Transparent, Distributed, and Replicated Dynamic Provable Data Possession 9

requested blocks. The challenger and the extractor we use here are exactly the
same as in the DPDP proof, using the ‘weighted sums’ as described in [15].

Therefore, under the assumption that DPDP is secure, DR-DPDP is secure.
The DR-DPDP is as secure as the underlying DPDP in the sense that the client
will accept the proof, as long as there is at least one intact copy of her data.

Efficiency. Assume each partition has b blocks, and we have p partitions (so
n = pb blocks in total). Each server holds a skip list having b leaves. The organizer
has a skip list with p leaves. Since all servers run in parallel, the total time
complexity of each server’s PerformUpdate or Prove functions is O(log b). The
organizer’s skip list time is O(log p), and time for combining proofs is O(p). Since
log b+log p = logn, the total complexity of DR-DPDP proofs (both computation
and communication) is O(log n + p) for a file with n blocks, regardless of the
number of replicas. Note that p << n and mostly even p ≤ logn for realistic
values (e.g., n = 100000, p = 10, logn ∼ 17), giving total complexity of O(log n).

4 Version Control Using DPDP

In this section, we show how a persistent rank-based authenticated skip list can
be used to build a Version Control System (VCS) like SVN, CVS, Git, etc. We
store a file in a persistent rank-based authenticated skip list and assume that
each commit consists of a series of updates, resulting in a new version.

Fig. 3. Our VCS architecture

To manage these versions, Erway et al.
[15] suggests putting their roots into an-
other rank-based authenticated skip list.
But, we use a persistent rank-based au-
thenticated skip list to store the file and
its subsequent versions, and put all roots
of the persistent skip list into a PDP
[2] structure. (Note that a POR scheme
[20,17] can also be employed here, with
appropriate algorithm definitions.) Fig-
ure 3 presents an instantiation of our
VCS. We assume that the client, the or-
ganizer, and the servers share a pseudo-
random generator seed (or a pseudoran-
dom function key), so that each one can
perform any randomized computation in-

dependently, while obtaining the same result as the others. The main advantage
of this assumption is that, when the client already has a version of the file and
performs some updates on it, she can compute the persistent rank-based au-
thenticated skip list root herself, as an honest server would do with the same
randomness. She can then compute a PDP tag for that root, and send it to the
organizer (or the server in single-server case). The organizer performs the up-
date command, as the client did, and appends the PDP tag to the corresponding
PDP structure.

10 M. Etemad and A. Küpçü

4.1 Common Utility Functions

Before describing VCS operations, we present a common utility function to be
used in VCS algorithms: GetV ersion(Vi, Vj). This algorithm is executed by the
client to request the version Vj , when she already holds Vi (which may be null).

– Vi is null or Vi ≥ Vj : This corresponds to a checkout operation (Vi is null),
or to a revert operation (Vi ≥ Vj). In both cases, the server sends the version
Vj from scratch, together with its proof.

– Vi < Vj : This corresponds to an update operation, where the client is trying
to update to a newer version.

• If the total number of blocks in version Vj is low compared to the number
of changed blocks between Vi and Vj , then it is still better to send all
these blocks to the client from scratch (together with their proof).

• Otherwise, the server sends the differences (delta) and their proof sepa-
rately for each version u such that Vi < u ≤ Vj .

Normally, the server has to send all deltas starting from the client’s current
version, one by one, along with their PDP proofs. This requires O(1 + ed +
ed logn) communication, where d = Vj − Vi, and e is the average size of deltas.
Using the stated trick, we can reduce this complexity to O(1+ed), since sending
only the deltas along with versions’ PDP proofs suffices. The client can build the
skip list up to the last version using his current blocks and the deltas, and verify
the PDP proofs. We separate two cases for proof generation and verification,
when the difference is one version (d = 1) or multiple versions (d > 1):

– One version: the server sends the deltas of the new version and the corre-
sponding PDP proof (together with any other information such as commit
logs). The client rebuilds the persistent rank-based authenticated skip list,
and finds the root. Then, she decides on the validity of the version (by run-
ning PDP Verify algorithm on the root she computed).

– Multiple versions: the server should send the requested blocks, the aggre-
gated PDP proof of all versions, together with all other required information.
Now, if the server sends a linear combination of the versions’ information,
as in PDP, the client has no chance of relating them with individual ver-
sions. The client can find by herself, the fixed-length part of the Figure 4b,
but not the variable-length part. If the server sends all versions’ information
separately, then we loose the O(1) complexity of the PDP proof.
To solve the problem, the server sends a linear combination of only variable
length parts of PDP blocks of requested d versions, achieving O(1) proof
size. Let Vvark be the variable-length portion of the PDP block associated
with the kth version, Vfixk

be the fixed-length portion of length lfix, and rk
be the random challenge sent by the client for version k.

1. The server computes Vvar =
∑Vj

k=Vi
Vvark ∗ rk and sends to the client.

2. After reconstructing persistent rank-based authenticated skip lists, client

computes Vfix =
∑Vj

k=Vi
Vfixk

∗ rk since she now knows each Vfixk
.

Transparent, Distributed, and Replicated Dynamic Provable Data Possession 11

3. The client computes V ′ = Vvar ∗ 2lfix + Vfix by shifting Vvar to the left
lfix times and adding Vfix. One can easily verify that V ′ corresponds
exactly to the combined block in a PDP proof. From this point on, the
client may perform regular PDP verification using the combined tags
received as part of the PDP proof.1

4.2 VCS Operations

Sink [21] states common functionalities of a VCS. We now show how each of
these functionalities are supported by our scheme in a provable manner.

– Create: The first upload command issued by the client, creates the reposi-
tory. One can check if the first version (and hence the repository) is stored
by the server, using the common utility functions described above.

– Update: The client calls the GetV ersion(Vi, Vj) to request the last version
Vj from the server and update her local/working copy, who is at version Vi.

– Checkout: Similar to update with the difference that the client does not
have any local copy. She calls GetV ersion(null, Vj).

– Add, edit, delete: These operations are done locally on the working copy.
– Diff : To find the differences between two versions, the server (the organizer

in the distributed case) sends the two versions along with their proof to client
who can find the differences using a diff algorithm. Alternatively, only deltas
with their proofs can be sent.

– Commit: After performing all updates on its working copy, the client must
commit. Using our above-mentioned trick, the client computes the root of the
persistent rank-based authenticated skip list after updates, and a PDP tag
for that root. The client sends a DPDP update command with the updated
blocks, and a PDP append command for the tag of the new version’s root to
the server at once. The server(s) update using the above utility functions.

– Revert: The client wants to drop what has been changed after some ver-
sion Vi, and go back to version Vj (possibly Vj = Vi). She simply runs
GetV ersion(Vi, Vj) with the server where Vi is the current version of the
client’s local copy.

– Log: With each commit, the client may provide some logging information
(e.g., time and author of the change made, and a summary of changes). The
client adds this log to the PDP block related to the version, and builds the
PDP tag of the whole block (Figure 4b).

– Tag:2 Name of a branch, can be managed in the same way as ‘Log’ above.
– Branch This operation creates another line of development, and is useful es-

pecially in development environments where different groups work on differ-
ent parts of a project. A version is determined by branch number and version
number within the branch. Figure 4a shows a visualization of branching.

1 We use the version of PDP that does not employ the knowledge-of-exponent
assumption and does not take the hash value of the block [2].

2 Not to be confused with a PDP tag.

12 M. Etemad and A. Küpçü

(a) Branching
(b) Information stored in a PDP
block. (c) Matching nodes by the client.

Fig. 4. (a)Branching, (b)PDP block structure, and (c)merge

We store these information about each version: the branch and version num-
ber, the root of the corresponding rank-based authenticated skip list, the
previous branch that this one was generated from, version of the previous
branch that this one has began, the log, and maybe the tag (see Figure 4b).

– Merge: This is to combine together two versions of two different/same
branches and make a new version in a new/same branch. In development en-
vironments, for example, two groups of developers work on their sub-projects
separately, and at the end they want to merge what they have done. This
operation consists of the following steps: (1) the client requests the two ver-
sions of its interest, (2) the server sends those two versions to the client, along
with their DPDP and PDP proofs as described in our utility functions, (3)
the client runs an algorithm to find and match corresponding nodes of the
versions (the skip lists), and then, determines the new version (e.g., Figure
4c) and computes its PDP tag. She then sends all the new version blocks
and its PDP tag to the server.

– Lock: We believe provably locking something in a client-server setting is a
hard (or possibly impossible) problem and consider it out of scope.

4.3 Extensions and Analysis

Multi-client VCS. Our discussion above assumes the same client keeps com-
mitting and also retrieving versions. In the single-client case, the client keeps
information about the last version, preventing the server from cheating. But, in
a multi-client system, the server may cheat and send a previous version –a replay
attack where the server behaves as if some commit never occurred– to the client
(other than the client who created the last version and knows some information
about that). The scheme proposed by Erway et al. [15] as an extension to DPDP
is also vulnerable to this attack. Therefore, some level of inter-client communi-
cation is required to prevent the server/organizer from cheating. Each client,
after each commit, broadcasts information about her commit to other clients, or
puts it on a trusted bulletin board. Just the last version number (and branch
number) of the commit needs to be shared between the clients. Sharing of any
secret information is not necessary (thus the bulletin board can be public). We
assume the clients trust each other, since they modify the same repository. Now
that each client knows the latest version number (of each branch), the server
will be caught if he sends a different version.

Transparent, Distributed, and Replicated Dynamic Provable Data Possession 13

Distributed VCS. When the client is composed of multiple devices, all con-
necting to the server to commit or update data, i.e., in software development
environments, the above-mentioned central VCS does not suit well, and a dis-
tributed VCS (DVCS) is needed.

Using persistent rank-based authenticated skip list, the proposed DR-DPDP
scheme can be used to build a DVCS. Each server stores a persistent rank-
based authenticated skip list whose roots will be stored in another rank-based
authenticated skip list at the organizer. The organizer stores the roots of his own
persistent rank-based authenticated skip list (for versions) in the PDP structure.
With each update, a new distributed persistent rank-based authenticated skip
list will be built. The organizer sends the new version’s root back to the client.
Once the client verified the value of the new root, it computes a PDP tag for
the root, and sends it to the organizer for storage. The organizer manages the
PDP and communication with the client; hence the distributed architecture is
transparent to the client.

Efficiency. A proof has two parts: a PDP proof for the version information, and
a DPDP proof for the data in that version. The former requires O(1), while the
latter needs time and communication complexity O(log n). The client’s storage
is O(1), and proof verification complexity is O(1 + logn) for one version.

4.4 Security of VCS

Definition 2 (Security game for VCS). Played between the adversary who
acts as a VCS server, and a challenger who plays the role of a VCS client. Full
PDP and DPDP game description can be found on the original papers [2,15].
There are two kinds of VCS commands: update and retrieve. Update commands
(i.e., create, commit, branch, and merge) change data on the server, while re-
trieve commands (i.e., update, checkout, diff, and revert) ask the server to give
some parts of the stored files.

Key Generation. The challenger runs the KeyGen(1k) → (sk, pk), stores
public and private keys (pk, sk), and sends the public key pk to the ad-
versary.

Query. The adversary specifies an update F and the related information info
specifying type of the update (e.g., , create, branch, merge), and sends them
all to the challenger. The challenger runs Commit on them and sends the
results to the adversary, who replies with the new metadata and proof, which
will be verified by the challenger. The adversary will be notified about the
result, and he can repeat this interaction polynomially-many times.

Setup. The adversary creates a new repository, using the Create command.
Then, the above-mentioned interaction is performed again. The challenger
updates her local metadata only for the updates whose proofs are accepted.

Challenge. Let F denote the final version of the file as created by the adversary
using the verifying updates in the setup phase. Also, the challenger holds
the latest verified metadata. The challenger creates a challenge by picking a

14 M. Etemad and A. Küpçü

random version and running the algorithm GetV ersion with the adversary,
who replies with a proof. The adversary wins if the received proof is accepted.

Definition 3 (VCS security). A VCS scheme is secure if for any PPT adver-
sary who can win the VCS security game with non-negligible probability, there
exists a polynomial-time extractor who can extract the challenged version of the
file with non-negligible probability by resetting and challenging the adversary.

Theorem 2. Our VCS (DVCS) is secure according to Definition 3, assuming
that PDP and DPDP (DR-DPDP) are secure.

Proof. Both VCS and DVCS work in the same way except that DVCS uses DR-
DPDP in the background, so here we only consider the VCS. We already proved
that DR-DPDP is secure if DPDP is secure.

A VCS is not secure if the server can prepare proofs accepted by the client
when the requested blocks are corrupted, or the blocks used to generate the
proof belong to another version. This can be done by creating a DPDP proof,
even though (some parts of) the requested challenges do not exist, or a PDP
proof, using an old version of the file, to convince the client.

The VCS challenger combines a PDP and a DPDP challenger. She
runs the KeyGen(1k) → (sk, pk) which calls the DPDP.KeyGen(1k) →
(skDPDP , pkDPDP) and PDP.KeyGen(1k) → (skPDP , pkPDP), sets sk =
(skPDP , skDPDP) and pk = (pkPDP , pkDPDP), stores public and private keys
(pk, sk), and sends only the public key pk to the adversary..

Whenever the adversary requests a commit, the challenger runs
DPDP.PrepareUpdate on the update request from the adversary, and performs
DPDP.PerformUpdate locally to find the root of the new version. She com-
putes a PDP tag for this root using PDP.TagBlock, and sends the output of
DPDP.PrepareUpdate together with the PDP tag to the adversary.

At the challenge phase of the security game, the challenger runs GetV ersion
on a random challenge. One may think of this as sending a random version num-
ber and a series of random blocks in that version (think of this as corresponding
to deltas in GetV ersion). The adversary’s response need to include the DPDP
root of challenged version, its PDP proof, the challenged blocks of the version,
and the DPDP proof of the blocks. The PDP block contains only one data (the
DPDP root of challenged version), therefore, can be extracted easily if the PDP
proof is accepted (using PDP.CheckProof). The extractor simply outputs this
data, and is correct since PDP is assumed to be secure. Then, the challenger runs
DPDP.V erify to verify the DPDP proof. If it is accepted by the challenger with
non-negligible probability, the challenger can extract the requested blocks, again
as described in the DPDP security proof [15] solving linear equations.

Therefore, under the assumption that PDP and DPDP (DR-DPDP) are se-
cure, our VCS (DVCS) is secure.

Efficiency. After a file was stored on a server, for each update we store the
difference from the previous version, the delta, which needs logn storage per
different block. The storage complexity at the client is O(1), proof generation,
communication complexity, and verification are all O(1 + logn).

Transparent, Distributed, and Replicated Dynamic Provable Data Possession 15

5 Performance

In this section, we compare performance of our DR-DPDP scheme with single-
server DPDP. We obtained rank-based authenticated skip list performance num-
bers from a prototype implementation. All numbers are taken on a regular
2.5GHz machine with 4 cores (but the test running on a single core), with 4GB
RAM and Ubuntu 11.10 operating system. The performance numbers are aver-
ages from 50 runs. We consider an example scenario with these properties:

– There are 100 servers, and no server stores more than one partition or replica.
– As we increase the number of replicas, the number of partitions will decrease.
– We assume 100000 blocks in total. If each block is 1/2KB, this gives a 50MB

VCS (e.g., Tcl CVS repository), while 16KB blocks give a stored file of size
1.6GB. In both cases, it provides a realistic large number.

(a) Update times. (b) Challenge times.
(c) DR-DPDP update
time.

Fig. 5. Update and challenge times in DPDP and DR-DPDP

Figure 5a represents the total time taken for a 100-block update command
in DPDP and DR-DPDP, assuming that the servers in DR-DPDP execute in
parallel (except the organizer, who waits for servers’ responses first). In single-
server DPDP, as the number of replicas grows, the update time will grow linearly,
since there is a single server that performs the update on all replicas sequentially.
But, in DR-DPDP, the update command is executed by all servers in parallel,
and there is no noticeable growth in update time, due to the load balancing
property of the distributed scheme.

As the number of replicas grows in DR-DPDP, each server receives challenge
commands for a larger number of blocks, therefore the response time will be
increased; as shown in Figure 5b. While, in single-server DPDP, the server will
select a single replica to respond to challenge commands, and hence, the response
time does not depend on the number of replicas. As expected, when all servers
store the whole file (100-server 100-replica case), the DR-DPDP performance is
equivalent to single-server DPDP, but availability, reliability, and fault-tolerance
benefits still do exist (all servers must fail simultaneously for harm to occur).

16 M. Etemad and A. Küpçü

An interesting property of our proposed scheme is that when the number of
replicas is small (the number of partitions is large, and each partition stores a
small number of blocks), the size of organizer’s rank-based authenticated skip
list becomes large. In this case, the computation time in the organizer becomes
greater than that of the servers, becoming a bottleneck. Therefore, the total
challenge or update time will be large. As the number of replicas grows, the
number of partitions falls down, leading to a decrease in the size of the organizer’s
rank-based authenticated skip list. Since the computation time in the organizer
is reduced, the total challenge or update time will decrease. At some point, the
total challenge or update time will be minimum, after which the size of each
partition becomes large, and hence, the computation time of servers gets large
and becomes the bottleneck. Therefore, the total challenge or update time will
again increase. This is shown in Figure 5c. Based on the specifications of the
underlying hardware, each CSP can determine the optimum number of replicas
and partitions (about 10 replicas were the best in our test scenario).

As for the organizer, consider 10-replica case in the scenario above. This means
the organizer’s skip list will have only 10 leaves, requiring roughly 0.8KB of
memory. Thus, everything the organizer performs can be in memory, without
requiring disk access. In general it is easy to replicate information that is just
0.8KB in size in real time. These properties render the organizer a viable and
attractive option even though it seems to be a centralized entity in the system.

6 Conclusions and Future Work

In this paper, we presented a transparent, distributed, and replicated DPDP. Our
scheme extends DPDP to support the distributed architecture of cloud storage.
User data is distributed on multiple servers, leading to better scalability, as well
as availability and reliability since several servers may store the same partition.
We also used persistent rank-based authenticated skip list to create a VCS with
optimal complexity (O(log n)), and its distributed version (DVCS).

It is interesting to note that some ideas from RAFT [10] may be employed on
top of our work. One of the main ideas in RAFT is to correlate the response time
of the cloud with the number of hard drives. In our DR-DPDP scheme, it will
be related to the number of different servers employed, since each independent
server can run in parallel. This way, the client may have an idea about fault
tolerance of the system. Yet, we leave such an analysis as future work.

Acknowledgement. We would like to acknowledge the support of TÜBİTAK,
the Scientific and Technological Research Council of Turkey, under project num-
ber 112E115. We also thank Ertem Esiner and Adilet Kachkeev.

References

1. Anagnostopoulos, A., Goodrich, M., Tamassia, R.: Persistent authenticated dictio-
naries and their applications. In: Davida, G.I., Frankel, Y. (eds.) ISC 2001. LNCS,
vol. 2200, pp. 379–393. Springer, Heidelberg (2001)

Transparent, Distributed, and Replicated Dynamic Provable Data Possession 17

2. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song,
D.: Provable data possession at untrusted stores. In: CCS 2007. ACM (2007)

3. Ateniese, G., Di Pietro, R., Mancini, L.V., Tsudik, G.: Scalable and efficient prov-
able data possession. In: SecureComm 2008, pp. 9:1–9:10. ACM (2008)

4. Ateniese, G., Kamara, S., Katz, J.: Proofs of storage from homomorphic identi-
fication protocols. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
319–333. Springer, Heidelberg (2009)

5. Barsoum, A., Hasan, M.: Provable possession and replication of data over cloud
servers. CACR, University of Waterloo 32 (2010)

6. Barsoum, A., Hasan, M.: Enabling data dynamic and indirect mutual trust for
cloud computing storage systems (2011)

7. Barsoum, A., Hasan, M.: On verifying dynamic multiple data copies over cloud
servers. Technical report, Cryptology ePrint Archive, Report 2011/447 (2011)

8. Blum, M., Evans, W., Gemmell, P., Kannan, S., Naor, M.: Checking the correctness
of memories. Algorithmica 12(2), 225–244 (1994)

9. Bowers, K., Juels, A., Oprea, A.: Hail: A high-availability and integrity layer for
cloud storage. In: CCS 2009, pp. 187–198. ACM (2009)

10. Bowers, K.D., van Dijk, M., Juels, A., Oprea, A., Rivest, R.L.: How to tell if your
cloud files are vulnerable to drive crashes. In: CCS 2011. ACM (2011)

11. Clarke, D., Devadas, S., van Dijk, M., Gassend, B., Suh, G.E.: Incremental multiset
hash functions and their application to memory integrity checking. In: Laih, C.-
S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 188–207. Springer, Heidelberg
(2003)

12. Curtmola, R., Khan, O., Burns, R., Ateniese, G.: Mr-pdp: Multiple-replica provable
data possession. In: ICDCS 2008, pp. 411–420. IEEE (2008)

13. Dodis, Y., Vadhan, S., Wichs, D.: Proofs of retrievability via hardness amplifica-
tion. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 109–127. Springer,
Heidelberg (2009)

14. Dwork, C., Naor, M., Rothblum, G.N., Vaikuntanathan, V.: How efficient can mem-
ory checking be? In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 503–520.
Springer, Heidelberg (2009)

15. Erway, C., Küpçü, A., Papamanthou, C., Tamassia, R.: Dynamic provable data
possession. In: CCS 2009, pp. 213–222. ACM (2009)

16. Etemad, M., Küpçü, A.: Transparent, distributed, and replicated dynamic provable
data possession. Cryptology ePrint Archive, Report (2013)

17. Juels, A., Kaliski Jr., B.S.: Pors: proofs of retrievability for large files. In: CCS
2007, pp. 584–597. ACM, New York (2007)

18. Naor, M., Rotblum, G.: Complexity of online memory checking. In: FOCS (2005)
19. Sebé, F., Ferrer, J.D., Ballesté, A.M., Deswarte, Y., Quisquater, J.: Efficient remote

data possession checking in critical information infrastructures. In: TKDE 2008
(2008)

20. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)

21. Sink, E.: Version Control by Example, 1st edn. Pyrenean Gold Press (2011)
22. Wang, Q., Wang, C., Li, J., Ren, K., Lou, W.: Enabling public verifiability and

data dynamics for storage security in cloud computing. In: Backes, M., Ning, P.
(eds.) ESORICS 2009. LNCS, vol. 5789, pp. 355–370. Springer, Heidelberg (2009)

23. Zeng, K.: Publicly verifiable remote data integrity. In: Chen, L., Ryan, M.D., Wang,
G. (eds.) ICICS 2008. LNCS, vol. 5308, pp. 419–434. Springer, Heidelberg (2008)

18 M. Etemad and A. Küpçü

24. Zhao, L., Ren, Y., Xiang, Y., Sakurai, K.: Fault-tolerant scheduling with dynamic
number of replicas in heterogeneous systems. In: HPCC 2010, pp. 434–441 (2010)

25. Zheng, Q., Xu, S.: Fair and dynamic proofs of retrievability. In: Proc. of the First
ACM Conf. on Data and App. Security and Privacy, pp. 237–248. ACM (2011)

26. Zhu, Y., Hu, H., Ahn, G.-J., Yu, M.: Cooperative provable data possession for
integrity verification in multi-cloud storage. IEEE TPDS 99(PrePrints) (2012)

27. Zhu, Y., Wang, H., Hu, Z., Ahn, G.-J., Hu, H., Yau, S.S.: Efficient provable data
possession for hybrid clouds. In: CCS 2010, pp. 756–758. ACM, New York (2010)

	Transparent, Distributed, and Replicated
Dynamic Provable Data Possession
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 DR-DPDP
	3.1 From DPDP to DR-DPDP
	3.2 Security of DR-DPDP

	4 Version Control Using DPDP
	4.1 Common Utility Functions
	4.2 VCS Operations
	4.3 Extensions and Analysis
	4.4 Security of VCS

	5 Performance
	6 Conclusions and Future Work
	References

