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Preface

ACNS 2013, the 11th International Conference on Applied Cryptography and
Network Security, was held during June 25–28 at Banff, Alberta, Canada.

We received 150 submissions of which 33 were accepted as regular papers
(22% acceptance rate), and two as short papers. These proceedings contain the
revised versions of all the papers. There were three invited talks. Srdjan Capkun,
Professor of Computer Science at ETH Zurich, gave a talk entitled “Selected Top-
ics in Wireless Physical Layer Security.” Bryan Parno from Microsoft Research
Redmond, gave a talk on “Bootstrapping Cloud Security Speaker,” and Francois
Theberge, research mathematician with the Tutte Institute for Mathematics and
Computing spoke about “Ensemble Clustering for Graphs-Based Data.”

The Program Committee (PC) consisted of 35 members with diverse research
interest and experience. Papers were reviewed double-blind, with each paper
assigned to three reviewers. During the discussion phase, when necessary, extra
reviews were solicited. We ensured that all papers received fair and objective
evaluation by experts and also a broader group of PC members, with particular
attention paid to highlighting strengths and weaknesses of papers. The final
decisions were made based on the reviews and discussion. The task of paper
selection was especially challenging given the high number of strong submissions.
In the end, a sizable number of strong papers could not be included in the
program owing to lack of space.

We would like to sincerely thank authors of all submissions– those whose
papers made it into the program and those whose papers did not. We, and the
PC as a whole, were impressed by the quality of submissions contributed from
all around the world. Although this made the task of selecting the final list very
challenging, it gave us the opportunity to have a strong and diverse program.

We would like to extend our sincere gratitude to the Program Committee. We
were very fortunate that so many talented people put such an inordinate amount
of time to write reviews and actively participate in discussions for nearly three
weeks. They responded to our requests for extra reviews, opinions, comments,
comparisons, and inputs. We were impressed by the knowledge, dedication, and
integrity of our PC. We also would like to thank many external reviewers, some
contacted by us directly and some through PC members, who significantly con-
tributed to the comprehensive evaluation of papers. A list of PC members and
external reviewers appears after this note.

We would like to thank Mahabir Jhanwar, the Publicity Chair, for working
closely with us throughout the whole process, providing the much needed support
in every step. We would also like to thank Tongjie Zhang for handling our social
media presence, Coral Burns for her work on the ACNS website, Deb Angus
for logistical and administrative support, Camille Sinanan for her help with the
local organization and financial administration, and, finally, Hadi Ahmadi and
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numerous student volunteers who helped us with the successful organization of
the program.

We benefited from advice and feedback from Moti Yung and Jianying Zhou,
the ACNS Steering Committee. Alfred Hofmann and his colleagues at Springer
provided a meticulous service for the timely production of this volume.

We would like to thank Microsoft Research, the Pacific Institute for Mathe-
matical Sciences (PIMS), Alberta Innovates Technology Future (AITF), and the
University of Calgary for their generous support. We also gratefully acknowl-
edge our partnership with the Tutte Institute for Mathematics and Computing
(TIMC), in contributing to the success of this conference.

April 2013 Michael Jacobson
Michael Locasto

Payman Mohassel
Reihaneh Safavi-Naini
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Transparent, Distributed, and Replicated

Dynamic Provable Data Possession

Mohammad Etemad and Alptekin Küpçü

Koç University, İstanbul, Turkey
{metemad,akupcu}@ku.edu.tr

Abstract. With the growing trend toward using outsourced storage,
the problem of efficiently checking and proving data integrity needs more
consideration. Starting with PDP and POR schemes, many cryptogra-
phy and security researchers have addressed the problem. After the first
solutions for static data, dynamic versions were developed (e.g., DPDP).
Researchers also considered distributed versions of such schemes. Alas, in
all such distributed schemes, the client needs to be aware of the structure
of the cloud, and possibly pre-process the file accordingly, even though
the security guarantees in the real world are not improved.

We propose a distributed and replicated DPDP which is transparent
from the client’s viewpoint. It allows for real scenarios where the cloud
storage provider (CSP) may hide its internal structure from the client,
flexibly manage its resources, while still providing provable service to
the client. The CSP decides on how many and which servers will store
the data. Since the load is distributed, we observe one-to-two orders of
magnitude better performance in our tests, while availability and reli-
ability are also improved via replication. In addition, we use persistent
rank-based authenticated skip lists to create centralized and distributed
variants of a dynamic version control system with optimal complexity.

1 Introduction

In recent years, cloud storage systems have gained considerable attention from
both academia and industry, due to the services it can provide at lower costs. As
a result, IT outsourcing has grown by 79% [5]. In the case of outsourcing storage,
the client wants to upload her data to a server, and wants to rest assured that
her data remains intact. She may trust the server in terms of availability, but
does not necessarily trust him to keep her data intact. Indeed, the server may try
to hide data loss or corruption due to hardware or software failures. When the
data is large, it is not acceptable to require the client to retrieve the whole file
in order to validate it, since this requires high bandwidth and time complexity
[2]. This will be even more problematic if the client uses resource-constrained
devices, or performs this check frequently [15].

Ateniese et al. [2] proposed the concept of provable data possession (PDP),
which provides probabilistic guarantees of possession of the outsourced file. Juels
and Kaliski [17] developed a similar model named proof of retrievability (POR).
The route is followed by others [20,23,19,13,4], alas, only for static files.

M. Jacobson et al. (Eds.): ACNS 2013, LNCS 7954, pp. 1–18, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 M. Etemad and A. Küpçü

Later, dynamic cloud storage protocols were developed by Erway et al. [15]
and Ateniese et al. [3], and later variants followed [22]. The DPDP scheme [15]
uses rank-based authenticated skip list, which supports insertion, modification,
and deletion of blocks in O(log n) time, where n is the number of blocks.

All these schemes deal with integrity checks, but if the data is lost, it can
only be detected, not recovered. The instant solution to this problem is to store
multiple copies of the file, and use other copies if one is corrupted. Many such
solutions exist for both static and dynamic scenarios [12,9,5,7,26,27] but these
schemes require the client to perform pre-computation that is on the order of the
number of servers/replicas (e.g., generate multiple encoded copies of the file),
and the CSP architecture is not transparent from the point of view of the client.

This imposes an unnecessary burden on the client, decreasing her efficiency,
while she has no way to check whether the CSP keeps storing exactly the agreed-
upon number of replicas, unless the client interacts with each server one-by-one.
Even in that case, presumably the inter-server communication is much faster
than the client-server communication, thus a single server in the background may
be storing the data and providing proofs to multiple servers interacting with the
client. Moreover, if the client takes into account the internal architecture of the
CSP in the pre-computation, then the CSP cannot even improve his architecture
without notifying the client (which leads to re-computations). Normally, the CSP
wants to change his structure and adapt it with the world technical progress
(e.g., Amazon S3 is said to store three replicas for each file [24], which may be
increased or decreased with technological advancements).

In this paper, we propose a transparent, distributed, and replicated dynamic
PDP (DR-DPDP), based on the DPDP scheme [15] (or its variants following
a similar structure). The CSP’s architecture is completely transparent to the
client, and hence the client performs in the same way as in DPDP.

Our DR-DPDP scheme does not decrease the guarantee on detection prob-
ability, and hence incurs no harm to the client, while helping her get rid of
pre-computation imposed solely by the architecture, and later checking data
integrity toward a specific architecture. We improve the client’s efficiency, and
achieve better scalability, availability and reliability at the CSP. The CSP can
flexibly manage its resources, perform its own choice of load balancing and repli-
cation schemes in the background, while still providing provable storage for the
client. This makes DR-DPDP much easier to deploy on real systems.

We also present a provable Version Control System (VCS), achieving better,
indeed optimal, complexity O(1 + logn). We further combine our DR-DPDP
scheme with our VCS to obtain a distributed VCS (DVCS) scheme with the
same complexity.

Contributions. The main contributions of this paper are as follows:

– We propose the first transparent, distributed, and replicated provable dy-
namic cloud storage system.

• Our system incurs no cost over the single-server case; it actually improves
the performance due to parallelism. Indeed, for a system with 100 servers
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and 10 replicas, our system performs 10 times faster updates and proofs
than a single-server storage.
• Asymptotic complexity of our system does not depend on the number
of replicas, servers, or partitions.
• The CSP’s architecture is completely transparent to the client, and can
be changed on-the-fly with the sole decision of the CSP.

– We present a (distributed) version control system with optimal complexity.
• We map VCS operations to underlying cloud storage operations in a
provable manner for the first time, and show that, in many cases, the
complexity of the operation is independent of the number of versions.
• We consider the multi-client scenario for provable VCS for the first time.

1.1 Related Work

Proof of Storage. A trivial way to perform integrity check is via message au-
thentication codes or hash functions. The client hashes her file before uploading,
and stores the hash value. Later, the client retrieves the whole file, recomputes its
hash, and checks if it matches the stored hash value [5]. This is not efficient since
each verification requires the whole file to be transmitted. The client can divide
the file into blocks, hash each block separately, and challenge a random subset
of blocks. Again, all challenged blocks should be transmitted for verification [2].

Ateniese et al. [2] proposed a PDP scheme with which these efficiency prob-
lems have been solved. In PDP, first the client divides the file F into n blocks
(F = f1|f2|...|fn), then computes a tag for each block, and finally transfers the
file along with the tags to the server, deleting its local copy. Later, she sends
a challenge to the server. Upon receipt, the server constructs a proof using the
tags and blocks stored, and sends the proof back to the client for verification.

Juels and Kaliski [17] proposed a POR scheme where the main difference was
that the client uses erasure codes to encode her file before uploading. This enables
resilience against data losses at the server side: the client may reconstruct her
data even if the server corrupts (deletes or modifies) a portion of it.

The PDP and POR, as well as their later variants and generalizations [20,13,4]
support only static files. The first dynamic schemes were proposed simultane-
ously by Ateniese et al. [3] and Erway et al. [15]. Ateniese et al. [3] proposed
the Scalable PDP, where the client pre-computes responses for pre-decided chal-
lenges and stores them on the server encrypted. This means that the number of
updates and challenges a client can perform is limited and fixed.

Erway et al. [15] proposed a Dynamic PDP (DPDP) scheme in the standard
model that supports provable unlimited updates (modify, delete, and insert)
with O(log n) complexity. The scheme is based on rank-based authenticated skip
list, in which, only the relative indexes of blocks are used, so it can efficiently
support dynamism. The proof for a block is computed using values in the search
path from that block up to the root of the skip list.

All these schemes deal with the integrity of the outsourced data, but the
availability and reliability are important as well. One method to support avail-
ability and reliability is to store several copies of the file, resulting in better
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availability and efficiency. For example, MR-PDP [12] extends PDP, and HAIL
[9] distributes POR to multiple servers, trying to balance their loads.

Barsoum et al. [5] proposed a multi-copy PDP scheme for static files, where,
the client generates and uploads t distinct copies of the file. Later, she separately
challenges each copy to ensure that the CSP is possessing all t copies. Hence,
the scheme is similar to using t different PDP schemes.

Barsoum et al. later proposed two multi-copy DPDP schemes, based on tree
and map structures [7,6]. In the tree-based scheme, each copy of the file is put
into a Merkle hash tree, and their roots are used to construct another Merkle
hash tree (the directory) whose root is the metadata stored at client, similar to
the file system proposal of DPDP [15]. Again, the challenge-response mechanism
is not transparent to the client; she must know this new structure is in place.

Zhu et al. [26,27] proposed a Cooperative PDP where the client generates the
tags of the blocks and then sends them securely to the organizer. The organizer
is one of the servers who is responsible for communication with the client, and
determines on which server each part of file will be stored. Later, when the client
challenges the organizer, he gathers together responses from multiple servers and
sends a single final response back to the client. Note that the tags depend on
which server is storing a particular block.

In our DR-DPDP scheme, the client is exactly a DPDP client, and all servers
storing data are DPDP servers. The decision about the distribution of parti-
tions over servers, number of servers, replication, etc. are all up to the CSP.
Most importantly, the whole process is transparent to the client, and she is still
guaranteed that there is at least one intact copy.

It is important to note that the CSP may store all the data on a single server,
even if the scheme directs him not to do so. The client has no way of distinguish-
ing such a single-server case from multi-server storage. She may try to infer via
timing [10], but it is not a reliable measure since the inter-server communications
are much faster than the client-server communications.

Thus, instead of trying to force the CSP, we give him the flexibility. The CSP
may freely employ replication for fault tolerance and availability, and distribution
for load balancing and scalability, without the need to inform the client. On the
other hand, the client is still ensured that at least one working copy is present, or
otherwise the CSP will get caught cheating. Therefore, the CSP is incentivized
to make sure he keeps the client’s data intact. Our solution does not decrease
detection probability, while providing improved performance as seen in Section 5.

Version Control. One of the applications of dynamic data outsourcing schemes
is outsourced version control systems (VCS). Pervasive examples include CVS,
SVN, and Git.

Erway et al. [15] proposed an extension of their DPDP scheme to support
version control. If the average number of blocks in a file for each version is n, and
there are v versions, their VCS requires O(log n+log v) time and space for proofs,
whereas our proposal requires only O(1 + logn), which is independent of the
number of versions (see [15,8,18,14,11] for optimality discussion). Furthermore,
we show how to combine this VCS with our DR-DPDP to obtain distributed VCS
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with the same complexity. We also explicitly map VCS operations to provable
operations in our DR-DPDP scheme.

2 Preliminaries

A skip list is a randomized data structure, that has binary tree-like properties
(i.e., logarithmic operation cost). An authenticated skip list provides mem-
bership proofs for storing items using a collision-resistant hash function.

DPDP [15] uses a modified form of the authenticated skip lists called rank-
based authenticated skip list, where each node v also stores the number of
leaf nodes reachable from v (the rank of v), as shown in Figure 1a. The file F is
divided into n blocks m1|m2|...|mn, then a homomorphic tag Ti is computed for
each block and put in the skip list, while the blocks are stored elsewhere. Nodes
also store a label computed using a collision-resistant hash function. The client
stores locally the label of the skip list’s root to verify the membership proofs.

An interesting property of this tree-like structure is that the insertion, dele-
tion, or modification of a block affects only the nodes along the path from the
block up to the root. The ranks of the affected nodes can be recomputed in
constant time per node in a bottom-up way [15].

To make an authenticated skip list persistent, the path-copying method is
applied [1]. A block update results in a new version. The new version consists
of all unchanged nodes of the previous version, plus the nodes on the path from
the updated block up to the root, whose values are recomputed. Figure 1b shows
the process, where a new block is inserted after the second block, at level five.

(a) Numbers inside the nodes are
their ranks. The indices and levels
are imaginary.

(b) Hatched nodes are specific for old version,
filled in nodes are specific for new version, and
white nodes are in common.

Fig. 1. A regular (a) and a persistent (b) rank-based authenticated skip list
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3 DR-DPDP
DR-DPDP is a scheme that provides transparent distribution and replication of
user data over multiple servers. There are three entities in the model as depicted
in Figure 2a. The client, who stores data on the CSP, challenges the CSP to
check the integrity of data, and updates the stored data. The organizer, who is
one of the servers in CSP and is responsible for communication with the client
and other servers (acts as a gateway or load-balancer). The servers, who store
the user data, perform provable updates on behalf of the client, and respond to
the client challenges coming via the organizer. They only communicate with the
organizer and there is no inter-server communication.

It is very important to observe that even though it seems like a central entity,
the organizer is not expected to perform any disk operations or expensive group
operations (e.g., exponentiation). He will only perform simple hashing, and work
with a very small skip list. Hence, his load will be very light, making it very easy
to replicate the organizer to prevent it from becoming a bottleneck or single-
point-of-failure. (Further discussion can be found in the full version [16].)

When the client wants to store a file using this scheme, she first prepares the
file as in DPDP, then sends all blocks to the organizer. The organizer divides
the file into partitions, each with a predefined number of blocks, and sends each
partition to an agreed-upon number of servers (A partition and its rank-based
authenticated skip list will be replicated on the specified number of servers.)
Each server stores the blocks, builds the corresponding part of the rank-based
authenticated skip list, and sends the root value back to the organizer. All servers
run in parallel. Once received at least one response for each partition, the or-
ganizer builds its own part of the rank-based authenticated skip list and sends
the root value as metadata to the client. All these operations are commanded
by the organizer and all are transparent to the client.

The idea behind this architecture is that a big rank-based authenticated skip
list is divided into multiple sub-lists; the top part is stored on the organizer, and
the servers store lower parts, thereby improving scalability. Also, each sub-list
will be replicated on a predefined number of servers, improving availability and
reliability. Figure 2b shows the idea, where each partition is replicated on two
servers. Different servers replicating the same partition are required to use the
same randomness to have identical skip lists.

Remark. Note that single-server DPDP is a special case of ours, where R = r1
in Figure 2b, and the client and server behavior is unchanged. Moreover, with
small changes, 2-3/Merkle tree-based structures [25,22] can also be employed
instead of rank-based authenticated skip list.

3.1 From DPDP to DR-DPDP

This section shows how to use DPDP to construct DR-DPDP. All client opera-
tions (KeyGen, PrepareUpdate, VerifyUpdate, Challenge, Verify), and server oper-
ations (PerformUpdate, Prove) are the same as DPDP. The organizer operations
(PerformUpdate, Prove) are shown in Algorithms 3.1 and 3.2.



Transparent, Distributed, and Replicated Dynamic Provable Data Possession 7

(a) The architecture. (b) A distributed skip list with 2 replicas.

Fig. 2. The DR-DPDP architecture

For an update, the client prepares the desired update command (using Pre-
pareUpdate), and sends it to the organizer, who searches for the block indices in
his skip list, figuring out which servers hold which blocks to be updated. Then,
he delegates the job to the corresponding servers (All servers holding the same
replicas must perform the update.) All servers perform the update in parallel
and send the root value to the organizer who picks one proof and metadata per
partition among replicas (possible strategies are in the full version [16]), updates
his own skip list and sends the new root value to the client (Algorithm 3.1).

Algorithm 3.1. PerformUpdate run by the organizer.

Input: DPDP values sent by the client (e(F ), e(info), e(M)).
Output: DPDP proof to be sent to the client.

Interpret info as {o1, o2, ..., ol} // list of file block indices to be updated1
Interpret e(F ) as {mo1 ,mo2 , ...,mol} // list of corresponding file blocks2

P = {} // initialize empty proof3
for i = 1 to l do4

// find servers storing the othi block from the organizer’s skip list

loci, {Sr}sr=0 ← Search(oi)5
for j = 1 to s do6

// Servers perform DPDP update on own partitions, thinking of Fi−1
as the current version, and Mi−1 as the current skip list root
(Mcj , PMcj

)← Sj .P erformUpdate (pk, Fi−1,Mi−1, e(moi), e(oi), e(M))7
// Pick one proof PMc and one root Mc, how to pick is discussed later

P = P
⋃

PMc8
// Put new server roots to the organizer’s skip list
(M ′

c, P
′
Mc

)← PerformUpdate(pk,Fi−1,Mi−1, {Mc}, {loci}, e(M))9

P = P
⋃

P ′
Mc10

return M ′
c, P11

To get an integrity proof, the client generates a challenge command as a list of
blocks and random coefficients, and sends it to the organizer. Upon receipt, the
organizer finds out which servers hold which blocks, decides on which servers
should create the proofs (possibly based on their load), and challenges those
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Algorithm 3.2. Prove algorithm run by the organizer.

Input: DPDP challenge sent by the client (c).
Output: DPDP proof to be sent to the client.

// list of block indices challenged and associated random coefficients
Interpret c as {o1, o2, ..., ol} and {r1, r2, ..., rl}1

P = {}2
for i = 1 to l do3

loci, {Sr}sr=0 ← Search(oi)4
// Select a server from those storing block oi and challenge it
Sc ∈ {Sr}sr=05
Pc ← Sc.P rove(pk,Fi,Mi, ci)6

P = P
⋃

Pc7
return P8

servers on the blocks residing in their partition. All servers generate their proofs
in parallel, and send them to the organizer. Each proof consists of two parts:
a skip list proof, and a combined block. The organizer sums up all combined
blocks, and generates the full proof using the sub-proofs and their paths in his
own skip list (from the ris to the R in Figure 2b) as described in Algorithm 3.2.

Frequent insertions or deletions to a partition makes its size very large or
small. To solve this problem, repartitioning is required. The repartitioning strat-
egy balances the load on the servers, preserving an amortized time for challenge
and update operations (further discussed in the full version [16]).

3.2 Security of DR-DPDP

Since the client-server communication is the same as in DPDP [15], we use the
same security definition.

Definition 1 (Security of DR-DPDP). A DR-DPDP scheme is secure if for
any PPT adversary who can win the data possession game (from [15]) with non-
negligible probability, there exists a polynomial-time extractor that can extract
the challenged parts of the file by resetting and challenging the adversary.

Theorem 1. If DPDP scheme is secure, then our DR-DPDP scheme is secure
according to Definition 1.

Proof. All communication between the client and the organizer takes palace as
in DPDP. The process is transparent to the client; she thinks as if she commu-
nicates with a DPDP server. Moreover, all servers behave as in DPDP. The only
difference is how the proof is generated at the organizer, but the resulting proof
will be the same as a single-server DPDP proof. Therefore, the organizer-server
and inter-server communication is not a matter of security, and rather, we con-
sider the security of client-organizer communication. If the adversary manages
to create a verifying proof with non-negligible probability even though all copies
of the challenged blocks are corrupted, this means that he managed to cheat
either on (at least) one of the server proofs, or the organizer proof. In either
case, finally, a DPDP proof is created.

If, at the end of the data possession game [15] the proof is accepted by the
challenger with non-negligible probability, then the challenger can extract the
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requested blocks. The challenger and the extractor we use here are exactly the
same as in the DPDP proof, using the ‘weighted sums’ as described in [15].

Therefore, under the assumption that DPDP is secure, DR-DPDP is secure.
The DR-DPDP is as secure as the underlying DPDP in the sense that the client
will accept the proof, as long as there is at least one intact copy of her data.

Efficiency. Assume each partition has b blocks, and we have p partitions (so
n = pb blocks in total). Each server holds a skip list having b leaves. The organizer
has a skip list with p leaves. Since all servers run in parallel, the total time
complexity of each server’s PerformUpdate or Prove functions is O(log b). The
organizer’s skip list time is O(log p), and time for combining proofs is O(p). Since
log b+log p = logn, the total complexity of DR-DPDP proofs (both computation
and communication) is O(log n + p) for a file with n blocks, regardless of the
number of replicas. Note that p << n and mostly even p ≤ logn for realistic
values (e.g., n = 100000, p = 10, logn ∼ 17), giving total complexity of O(log n).

4 Version Control Using DPDP

In this section, we show how a persistent rank-based authenticated skip list can
be used to build a Version Control System (VCS) like SVN, CVS, Git, etc. We
store a file in a persistent rank-based authenticated skip list and assume that
each commit consists of a series of updates, resulting in a new version.

Fig. 3. Our VCS architecture

To manage these versions, Erway et al.
[15] suggests putting their roots into an-
other rank-based authenticated skip list.
But, we use a persistent rank-based au-
thenticated skip list to store the file and
its subsequent versions, and put all roots
of the persistent skip list into a PDP
[2] structure. (Note that a POR scheme
[20,17] can also be employed here, with
appropriate algorithm definitions.) Fig-
ure 3 presents an instantiation of our
VCS. We assume that the client, the or-
ganizer, and the servers share a pseudo-
random generator seed (or a pseudoran-
dom function key), so that each one can
perform any randomized computation in-

dependently, while obtaining the same result as the others. The main advantage
of this assumption is that, when the client already has a version of the file and
performs some updates on it, she can compute the persistent rank-based au-
thenticated skip list root herself, as an honest server would do with the same
randomness. She can then compute a PDP tag for that root, and send it to the
organizer (or the server in single-server case). The organizer performs the up-
date command, as the client did, and appends the PDP tag to the corresponding
PDP structure.



10 M. Etemad and A. Küpçü

4.1 Common Utility Functions

Before describing VCS operations, we present a common utility function to be
used in VCS algorithms: GetV ersion(Vi, Vj). This algorithm is executed by the
client to request the version Vj , when she already holds Vi (which may be null).

– Vi is null or Vi ≥ Vj : This corresponds to a checkout operation (Vi is null),
or to a revert operation (Vi ≥ Vj). In both cases, the server sends the version
Vj from scratch, together with its proof.

– Vi < Vj : This corresponds to an update operation, where the client is trying
to update to a newer version.

• If the total number of blocks in version Vj is low compared to the number
of changed blocks between Vi and Vj , then it is still better to send all
these blocks to the client from scratch (together with their proof).
• Otherwise, the server sends the differences (delta) and their proof sepa-
rately for each version u such that Vi < u ≤ Vj .

Normally, the server has to send all deltas starting from the client’s current
version, one by one, along with their PDP proofs. This requires O(1 + ed +
ed logn) communication, where d = Vj − Vi, and e is the average size of deltas.
Using the stated trick, we can reduce this complexity to O(1+ed), since sending
only the deltas along with versions’ PDP proofs suffices. The client can build the
skip list up to the last version using his current blocks and the deltas, and verify
the PDP proofs. We separate two cases for proof generation and verification,
when the difference is one version (d = 1) or multiple versions (d > 1):

– One version: the server sends the deltas of the new version and the corre-
sponding PDP proof (together with any other information such as commit
logs). The client rebuilds the persistent rank-based authenticated skip list,
and finds the root. Then, she decides on the validity of the version (by run-
ning PDP Verify algorithm on the root she computed).

– Multiple versions: the server should send the requested blocks, the aggre-
gated PDP proof of all versions, together with all other required information.
Now, if the server sends a linear combination of the versions’ information,
as in PDP, the client has no chance of relating them with individual ver-
sions. The client can find by herself, the fixed-length part of the Figure 4b,
but not the variable-length part. If the server sends all versions’ information
separately, then we loose the O(1) complexity of the PDP proof.
To solve the problem, the server sends a linear combination of only variable
length parts of PDP blocks of requested d versions, achieving O(1) proof
size. Let Vvark be the variable-length portion of the PDP block associated
with the kth version, Vfixk

be the fixed-length portion of length lfix, and rk
be the random challenge sent by the client for version k.

1. The server computes Vvar =
∑Vj

k=Vi
Vvark ∗ rk and sends to the client.

2. After reconstructing persistent rank-based authenticated skip lists, client

computes Vfix =
∑Vj

k=Vi
Vfixk

∗ rk since she now knows each Vfixk
.
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3. The client computes V ′ = Vvar ∗ 2lfix + Vfix by shifting Vvar to the left
lfix times and adding Vfix. One can easily verify that V ′ corresponds
exactly to the combined block in a PDP proof. From this point on, the
client may perform regular PDP verification using the combined tags
received as part of the PDP proof.1

4.2 VCS Operations

Sink [21] states common functionalities of a VCS. We now show how each of
these functionalities are supported by our scheme in a provable manner.

– Create: The first upload command issued by the client, creates the reposi-
tory. One can check if the first version (and hence the repository) is stored
by the server, using the common utility functions described above.

– Update: The client calls the GetV ersion(Vi, Vj) to request the last version
Vj from the server and update her local/working copy, who is at version Vi.

– Checkout: Similar to update with the difference that the client does not
have any local copy. She calls GetV ersion(null, Vj).

– Add, edit, delete: These operations are done locally on the working copy.
– Diff : To find the differences between two versions, the server (the organizer

in the distributed case) sends the two versions along with their proof to client
who can find the differences using a diff algorithm. Alternatively, only deltas
with their proofs can be sent.

– Commit: After performing all updates on its working copy, the client must
commit. Using our above-mentioned trick, the client computes the root of the
persistent rank-based authenticated skip list after updates, and a PDP tag
for that root. The client sends a DPDP update command with the updated
blocks, and a PDP append command for the tag of the new version’s root to
the server at once. The server(s) update using the above utility functions.

– Revert: The client wants to drop what has been changed after some ver-
sion Vi, and go back to version Vj (possibly Vj = Vi). She simply runs
GetV ersion(Vi, Vj) with the server where Vi is the current version of the
client’s local copy.

– Log: With each commit, the client may provide some logging information
(e.g., time and author of the change made, and a summary of changes). The
client adds this log to the PDP block related to the version, and builds the
PDP tag of the whole block (Figure 4b).

– Tag:2 Name of a branch, can be managed in the same way as ‘Log’ above.
– Branch This operation creates another line of development, and is useful es-

pecially in development environments where different groups work on differ-
ent parts of a project. A version is determined by branch number and version
number within the branch. Figure 4a shows a visualization of branching.

1 We use the version of PDP that does not employ the knowledge-of-exponent
assumption and does not take the hash value of the block [2].

2 Not to be confused with a PDP tag.
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(a) Branching
(b) Information stored in a PDP
block. (c) Matching nodes by the client.

Fig. 4. (a)Branching, (b)PDP block structure, and (c)merge

We store these information about each version: the branch and version num-
ber, the root of the corresponding rank-based authenticated skip list, the
previous branch that this one was generated from, version of the previous
branch that this one has began, the log, and maybe the tag (see Figure 4b).

– Merge: This is to combine together two versions of two different/same
branches and make a new version in a new/same branch. In development en-
vironments, for example, two groups of developers work on their sub-projects
separately, and at the end they want to merge what they have done. This
operation consists of the following steps: (1) the client requests the two ver-
sions of its interest, (2) the server sends those two versions to the client, along
with their DPDP and PDP proofs as described in our utility functions, (3)
the client runs an algorithm to find and match corresponding nodes of the
versions (the skip lists), and then, determines the new version (e.g., Figure
4c) and computes its PDP tag. She then sends all the new version blocks
and its PDP tag to the server.

– Lock: We believe provably locking something in a client-server setting is a
hard (or possibly impossible) problem and consider it out of scope.

4.3 Extensions and Analysis

Multi-client VCS. Our discussion above assumes the same client keeps com-
mitting and also retrieving versions. In the single-client case, the client keeps
information about the last version, preventing the server from cheating. But, in
a multi-client system, the server may cheat and send a previous version –a replay
attack where the server behaves as if some commit never occurred– to the client
(other than the client who created the last version and knows some information
about that). The scheme proposed by Erway et al. [15] as an extension to DPDP
is also vulnerable to this attack. Therefore, some level of inter-client communi-
cation is required to prevent the server/organizer from cheating. Each client,
after each commit, broadcasts information about her commit to other clients, or
puts it on a trusted bulletin board. Just the last version number (and branch
number) of the commit needs to be shared between the clients. Sharing of any
secret information is not necessary (thus the bulletin board can be public). We
assume the clients trust each other, since they modify the same repository. Now
that each client knows the latest version number (of each branch), the server
will be caught if he sends a different version.
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Distributed VCS. When the client is composed of multiple devices, all con-
necting to the server to commit or update data, i.e., in software development
environments, the above-mentioned central VCS does not suit well, and a dis-
tributed VCS (DVCS) is needed.

Using persistent rank-based authenticated skip list, the proposed DR-DPDP
scheme can be used to build a DVCS. Each server stores a persistent rank-
based authenticated skip list whose roots will be stored in another rank-based
authenticated skip list at the organizer. The organizer stores the roots of his own
persistent rank-based authenticated skip list (for versions) in the PDP structure.
With each update, a new distributed persistent rank-based authenticated skip
list will be built. The organizer sends the new version’s root back to the client.
Once the client verified the value of the new root, it computes a PDP tag for
the root, and sends it to the organizer for storage. The organizer manages the
PDP and communication with the client; hence the distributed architecture is
transparent to the client.

Efficiency. A proof has two parts: a PDP proof for the version information, and
a DPDP proof for the data in that version. The former requires O(1), while the
latter needs time and communication complexity O(log n). The client’s storage
is O(1), and proof verification complexity is O(1 + logn) for one version.

4.4 Security of VCS

Definition 2 (Security game for VCS). Played between the adversary who
acts as a VCS server, and a challenger who plays the role of a VCS client. Full
PDP and DPDP game description can be found on the original papers [2,15].
There are two kinds of VCS commands: update and retrieve. Update commands
(i.e., create, commit, branch, and merge) change data on the server, while re-
trieve commands (i.e., update, checkout, diff, and revert) ask the server to give
some parts of the stored files.

Key Generation. The challenger runs the KeyGen(1k) → (sk, pk), stores
public and private keys (pk, sk), and sends the public key pk to the ad-
versary.

Query. The adversary specifies an update F and the related information info
specifying type of the update (e.g., , create, branch, merge), and sends them
all to the challenger. The challenger runs Commit on them and sends the
results to the adversary, who replies with the new metadata and proof, which
will be verified by the challenger. The adversary will be notified about the
result, and he can repeat this interaction polynomially-many times.

Setup. The adversary creates a new repository, using the Create command.
Then, the above-mentioned interaction is performed again. The challenger
updates her local metadata only for the updates whose proofs are accepted.

Challenge. Let F denote the final version of the file as created by the adversary
using the verifying updates in the setup phase. Also, the challenger holds
the latest verified metadata. The challenger creates a challenge by picking a
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random version and running the algorithm GetV ersion with the adversary,
who replies with a proof. The adversary wins if the received proof is accepted.

Definition 3 (VCS security). A VCS scheme is secure if for any PPT adver-
sary who can win the VCS security game with non-negligible probability, there
exists a polynomial-time extractor who can extract the challenged version of the
file with non-negligible probability by resetting and challenging the adversary.

Theorem 2. Our VCS (DVCS) is secure according to Definition 3, assuming
that PDP and DPDP (DR-DPDP) are secure.

Proof. Both VCS and DVCS work in the same way except that DVCS uses DR-
DPDP in the background, so here we only consider the VCS. We already proved
that DR-DPDP is secure if DPDP is secure.

A VCS is not secure if the server can prepare proofs accepted by the client
when the requested blocks are corrupted, or the blocks used to generate the
proof belong to another version. This can be done by creating a DPDP proof,
even though (some parts of) the requested challenges do not exist, or a PDP
proof, using an old version of the file, to convince the client.

The VCS challenger combines a PDP and a DPDP challenger. She
runs the KeyGen(1k) → (sk, pk) which calls the DPDP.KeyGen(1k) →
(skDPDP , pkDPDP ) and PDP.KeyGen(1k) → (skPDP , pkPDP ), sets sk =
(skPDP , skDPDP ) and pk = (pkPDP , pkDPDP ), stores public and private keys
(pk, sk), and sends only the public key pk to the adversary..

Whenever the adversary requests a commit, the challenger runs
DPDP.PrepareUpdate on the update request from the adversary, and performs
DPDP.PerformUpdate locally to find the root of the new version. She com-
putes a PDP tag for this root using PDP.TagBlock, and sends the output of
DPDP.PrepareUpdate together with the PDP tag to the adversary.

At the challenge phase of the security game, the challenger runs GetV ersion
on a random challenge. One may think of this as sending a random version num-
ber and a series of random blocks in that version (think of this as corresponding
to deltas in GetV ersion). The adversary’s response need to include the DPDP
root of challenged version, its PDP proof, the challenged blocks of the version,
and the DPDP proof of the blocks. The PDP block contains only one data (the
DPDP root of challenged version), therefore, can be extracted easily if the PDP
proof is accepted (using PDP.CheckProof). The extractor simply outputs this
data, and is correct since PDP is assumed to be secure. Then, the challenger runs
DPDP.V erify to verify the DPDP proof. If it is accepted by the challenger with
non-negligible probability, the challenger can extract the requested blocks, again
as described in the DPDP security proof [15] solving linear equations.

Therefore, under the assumption that PDP and DPDP (DR-DPDP) are se-
cure, our VCS (DVCS) is secure.

Efficiency. After a file was stored on a server, for each update we store the
difference from the previous version, the delta, which needs logn storage per
different block. The storage complexity at the client is O(1), proof generation,
communication complexity, and verification are all O(1 + logn).
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5 Performance

In this section, we compare performance of our DR-DPDP scheme with single-
server DPDP. We obtained rank-based authenticated skip list performance num-
bers from a prototype implementation. All numbers are taken on a regular
2.5GHz machine with 4 cores (but the test running on a single core), with 4GB
RAM and Ubuntu 11.10 operating system. The performance numbers are aver-
ages from 50 runs. We consider an example scenario with these properties:

– There are 100 servers, and no server stores more than one partition or replica.
– As we increase the number of replicas, the number of partitions will decrease.
– We assume 100000 blocks in total. If each block is 1/2KB, this gives a 50MB

VCS (e.g., Tcl CVS repository), while 16KB blocks give a stored file of size
1.6GB. In both cases, it provides a realistic large number.

(a) Update times. (b) Challenge times.
(c) DR-DPDP update
time.

Fig. 5. Update and challenge times in DPDP and DR-DPDP

Figure 5a represents the total time taken for a 100-block update command
in DPDP and DR-DPDP, assuming that the servers in DR-DPDP execute in
parallel (except the organizer, who waits for servers’ responses first). In single-
server DPDP, as the number of replicas grows, the update time will grow linearly,
since there is a single server that performs the update on all replicas sequentially.
But, in DR-DPDP, the update command is executed by all servers in parallel,
and there is no noticeable growth in update time, due to the load balancing
property of the distributed scheme.

As the number of replicas grows in DR-DPDP, each server receives challenge
commands for a larger number of blocks, therefore the response time will be
increased; as shown in Figure 5b. While, in single-server DPDP, the server will
select a single replica to respond to challenge commands, and hence, the response
time does not depend on the number of replicas. As expected, when all servers
store the whole file (100-server 100-replica case), the DR-DPDP performance is
equivalent to single-server DPDP, but availability, reliability, and fault-tolerance
benefits still do exist (all servers must fail simultaneously for harm to occur).



16 M. Etemad and A. Küpçü

An interesting property of our proposed scheme is that when the number of
replicas is small (the number of partitions is large, and each partition stores a
small number of blocks), the size of organizer’s rank-based authenticated skip
list becomes large. In this case, the computation time in the organizer becomes
greater than that of the servers, becoming a bottleneck. Therefore, the total
challenge or update time will be large. As the number of replicas grows, the
number of partitions falls down, leading to a decrease in the size of the organizer’s
rank-based authenticated skip list. Since the computation time in the organizer
is reduced, the total challenge or update time will decrease. At some point, the
total challenge or update time will be minimum, after which the size of each
partition becomes large, and hence, the computation time of servers gets large
and becomes the bottleneck. Therefore, the total challenge or update time will
again increase. This is shown in Figure 5c. Based on the specifications of the
underlying hardware, each CSP can determine the optimum number of replicas
and partitions (about 10 replicas were the best in our test scenario).

As for the organizer, consider 10-replica case in the scenario above. This means
the organizer’s skip list will have only 10 leaves, requiring roughly 0.8KB of
memory. Thus, everything the organizer performs can be in memory, without
requiring disk access. In general it is easy to replicate information that is just
0.8KB in size in real time. These properties render the organizer a viable and
attractive option even though it seems to be a centralized entity in the system.

6 Conclusions and Future Work

In this paper, we presented a transparent, distributed, and replicated DPDP. Our
scheme extends DPDP to support the distributed architecture of cloud storage.
User data is distributed on multiple servers, leading to better scalability, as well
as availability and reliability since several servers may store the same partition.
We also used persistent rank-based authenticated skip list to create a VCS with
optimal complexity (O(log n)), and its distributed version (DVCS).

It is interesting to note that some ideas from RAFT [10] may be employed on
top of our work. One of the main ideas in RAFT is to correlate the response time
of the cloud with the number of hard drives. In our DR-DPDP scheme, it will
be related to the number of different servers employed, since each independent
server can run in parallel. This way, the client may have an idea about fault
tolerance of the system. Yet, we leave such an analysis as future work.
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Abstract. Today, a serious concern about cloud computing is the pro-
tection of clients’ data and computations against various attacks from
outsiders as well as against the cloud provider. Moreover, cloud clients
are rather limited in implementing, deploying and controlling their own
security solutions in the cloud. The provider theoretically has access to
stored keys in dormant images and deploying keys during run-time is
infeasible because authenticating running VM instances is not possible.

In this paper, we present a security architecture that allows for estab-
lishing secure client-controlled Cryptography-as-a-Service (CaaS) in the
cloud: Our CaaS enables clients to be in control of the provisioning and
usage of their credentials and cryptographic primitives. They can securely
provision keys or even implement their private virtual security module
(e.g., vHSM or SmartCard). All clients’ cryptographic operations run in
a protected client-specific secure execution domain. This is achieved by
modifying the Xen hypervisor and leveraging standard Trusted Comput-
ing technology. Moreover, our solution is legacy-compatible by installing
a transparent cryptographic layer for the storage and network I/O of a
VM. We reduced the privileged hypercalls necessary for administration
by 79%. We evaluated the effectiveness and efficiency of our design which
resulted in an acceptable performance overhead.

1 Introduction

Cloud computing offers IT resources, including storage, networking, and com-
puting platforms, on an on-demand and pay-as-you-go basis. This promise of
operational and monetary benefits has already encouraged various organizations
to shift from a “classical” on-premise to a cloud-based service deployment of
their workloads [12].

To secure those services, typically cryptographic security mechanisms are
installed. Usually, these mechanisms require long-term secrets, e.g. SSL/TLS-
secured web services need a secret key stored in the virtual machine (VM) for
authentication purposes. Naturally, such long-term secrets are a valuable target
for attackers that compromise the client’s service. In the classical on-premise
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datacenters, clients had the ability to incorporate security devices like Hardware
Security Modules (HSMs) or SmartCards in order to protect their cryptographic
credentials and operations. While this threat still holds in a cloud-based deploy-
ment [1,13,14], the difference is that the incorporation of security hardware is
virtually impossible as cloud providers strictly prohibit physical customizations
or access to their facilities. Additionally, outsourced data and computations are
an easy prey for insider attackers at the provider’s side since the client has
willingly delegated control over his resources to the provider [25]. Controlling
running instances of virtual machines, e.g. starting, stopping and maintaining
them, is a necessity for every virtualization solution and is done by instruct-
ing the hypervisor from a privileged management domain which by default has
ultimate access to all virtual machines. Insider attackers have access to this priv-
ileged domain and hence put clients’ cryptographic credentials that are stored
and processed in VMs at risk. This leads to trusting the cloud provider not to
eavesdrop on the data. Consequently, it is desirable to build a cloud architecture
that not only provides means to protect secrets even when the VM is exploited,
but to also allow the client to deploy keys securely to the cloud without insiders
being able to spy on it.

Cryptography-as-a-Service. In this paper, we present a security architec-
ture that allows for provisioning secret-less client VMs in clouds and separat-
ing client’s cryptographic primitives and credentials into a client-controlled and
protected cryptographic domain (DomC). In contrast to other work that also ad-
vocates self-managed cloud services [9,39], we specifically built a solution that
not only allows the establishment of a trust anchor and provisioning of user se-
cret keys, but which also provides the protection of legacy VMs that were not
tailored for our solution. We base our solution on the well-established concepts
of a) segregating and encapsulating cryptographic operations and keys from the
vulnerable client VM into a separate domain (DomC); and b) a trusted hypervisor
that efficiently and effectively protects the separate DomC against a compromised
or malicious management domain by subjecting it to the principle of least priv-
ilege. In contrast to related work, we overcome the aforementioned problem of
actually deploying keys for use in the cloud. This requires novel security ex-
tensions to the VM life cycle management to protect the DomC during storage,
transit, and instantiation, and to tightly couple it to the corresponding client’s
workload VM.

Contribution. We present the design and implementation of Cryptography-as-
a-Service (CaaS), a solution to a practical security problem of clouds based
on well-established and widely available technology. Our contributions are as
follows:

– We present a dedicated, client-specific domain DomC for the client’s crypto-
graphic primitives and credentials that can be securely deployed with secrets
by the client without the possibility for insiders or external attackers to gain
access to them. Based on our security extensions to the hypervisor and well-
established Trusted Computing technology, DomC can be protected from ma-
licious insiders and outsiders in a reasonable adversary model. In particular,
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we focus on integrating this protection in the entire VM life-cycle including
deployment, instantiation, migration, and suspension.

– Clients can leverage their DomC in two different usage-modes: a) Virtual Se-
curity Module and b) Secure Virtual Device. Case a) emulates a virtual hard-
ware security device, like an HSM/TPM, attached to the client VM while
case b) interposes a transparent layer between the client VM and peripheral
devices (disk or network) which encrypts all I/O data to/from those devices
and hence protects unaware legacy OSes.

– We present the reference implementation of CaaS based on the Xen hypervi-
sor and evaluate its performance for full disk encryption of attached storage
and for a software-based HSM and its effectiveness with respect to different
existing attack scenarios.

– Our modifications of the Xen hypervisor de-privilege the formerly privi-
leged domain and separate former monolithic components into small, single-
purpose and protected domains with a trusted computing base (TCB) that
is orders of magnitudes smaller than the original version.

2 Model and Requirements

In the cloud service model hierarchy, we target the most general level
Infrastructure-as-a-Service (IaaS) as depicted in Figure 1. In IaaS clouds, Clients
rent virtual resources such as network and virtual machines from the provider
and configure them according to their needs. Commonly, these VMs run public
services such as web services offered to End-Users over the Internet.

 
 
 
 

End-User Client Administrator 

Dom0 
(Management) 

Client DomU 
(Workload) 

Hardware 

INSIDER OUTSIDER 

Cloud 
Storage 

VM 
images Xen (Hypervisor) 

Dom0
(Management)

Fig. 1. Typical IaaS cloud model including our adversary and trust model

We focus on the popular Xen hypervisor [3] and consequently use the Xen
terminology. The clients’ VM is denoted as DomU, meaning unprivileged domains
that are guests on the hypervisor and have no direct hardware access. While
there can be many DomU executing in parallel on the Xen hypervisor, there
exists only one persistent privileged management domain, denoted Dom0. This
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domain is usually not exposed to outsiders. Xen is a bare-metal hypervisor only
concerned with the separation of virtual domains and their scheduling. It defers
device emulation tasks to Dom0, that holds the necessary rights to access hard-
ware resources. Thus, Dom0 is naturally the place for the cloud infrastructure
management software and their Administrators to operate in.

Besides computation, IaaS clouds normally also provide Cloud Storage. This
storage is not just used for workload data but also to save the VM images,
i.e., binary representations of VM states, from which DomUs are instantiated.
In newer cloud usage models like cloud app stores [8], clients are also able to
publicly provide their VM image and share it with other clients.

2.1 Trust Model and Assumptions

From a client’s perspective, one of the most debated issues in cloud computing
security is the trust placed in the cloud provider. In order to build a reasonable
and practical trust model we do not assume a fully untrusted provider, but rather
consider the involved actors and possible attacker types on the provider’s side.
We consider the following actors in our attacker model:

Compute Administrator. On a commodity hypervisor, Dom0 and thus ad-
ministrators, have read/write access to the memory of a running VM which is
necessary for VM creation or, e.g., VM introspection. Hence, they are able to
eavesdrop on data or even inject arbitrary code in the client’s running VMs as
shown by [25]. Thus, we do not trust the Dom0. We only consider attacks from
administrators with logical access to the physical servers, e.g., by operating in
the privileged management domain Dom0, and not attackers with physical access.
This attacker model stems from practical scenarios, where datacenters are oper-
ated by a small team of trusted administrators with physical access and a large
number of administrators with logical access, often outsourced and provided by
third parties with limited trust.1

Storage Administrator. For administrators of storage resources, we con-
sider an adversary that aims at learning cryptographic keys by inspecting or by
modifying VM images, e.g., by injecting malicious code that will extract crypto-
graphic keys at run-time. For storage administrators we allow physical access to
hardware.

Network Administrator. We model the network administrators (omitted
in Figure 1) according to the Dolev-Yao [16] attacker, i.e., the attacker has full
control of the network and can eavesdrop and tamper with all network traffic.

Malicious Clients. It has been shown, that clients frequently store (and
forget) security-critical information, such as cryptographic keys, in their public,
shared VM images [8]. A malicious client can easily investigate those images and
extract these information.

End-Users. Public (web-)services are a gateway for malicious intruders that
compromise a VM, for instance, due to a vulnerability in the provided services.
1 Note that purely cryptographic approaches [4,7,19] protect even against physical

attacks. However, they are still impractical due to their enormous complexity over-
head.
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Hypervisor. We exclude run-time attacks on the hypervisor, as this is an
open research problem and out of scope of this paper. Under this assumption,
we consider a trustworthy hypervisor in the sense that the client can deploy
mechanisms to verify the trustworthiness of the code a hypervisor is constituted
of. This is accomplished using standardized trusted computing mechanisms such
as authenticated boot and remote attestation [36] (cf. Section 3).

Denial-of-Service Attack. We exclude Denial-of-Service attacks from our
model. This is motivated by the fact that the privileged domain Dom0, although
not trusted, cannot be completely excluded from all operational and management
tasks, and thus is always able to block correct operation.

2.2 Objectives and Requirements

Our main security objective is the protection of the client’s cryptographic keys
and operations in the cloud, similar to well-known SmartCards. We consider the
following main security requirements to ensure the secure storage and usage of
cryptographic credentials and operations in the client’s VM:

1. Protection of long-term secrets of client VMs at runtime, i.e., an attacker
who compromised the workload VM DomU or a malicious/compromised man-
agement domain Dom0 cannot extract this information from the DomU VM.

2. The same must hold for the DomU’s integrity at rest, i.e., the client’s dormant
DomU VM image must be protected such that an attacker can neither extract
credentials from it nor unnoticeably tamper with it.

3. Secure VM management operations, i.e., suspension and migration of the
client DomU VM must preserve the integrity and confidentiality of DomU’s
state on the source and target platform as well as during transit/storage.

3 Design and Implementation

In this section, we introduce the architecture and design decisions of
Cryptography-as-a-Service (CaaS). The vital part of this paper is the deploy-
ment of secret keys to the secure environment DomC. In the first subsection 3.1,
we explain the idea of our solution, followed by our security extensions to the
hypervisor.

Prerequisites. We assume the availability of a hardware trust anchor on the
cloud nodes in the form of a Trusted Platform Module (TPM). The TPM is
used to securely attest the node’s platform state [36]. For brevity, the following
descriptions involve only one cloud client, however, we stress that the presented
solutions can be easily applied to multiple client scenarios as well. Moreover, we
apply the term encryption to abstractly describe a cryptographic mechanism for
both confidentiality and integrity protection, i.e., authenticated encryption.
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3.1 General Idea

Figure 2 illustrates the CaaS architecture using Xen. We achieve our goals by (1)
severing the client’s security sensitive operations and data in DomU into a client-
controlled secure environment denoted DomC; (2) we degrade Dom0 to an untrusted
domain but retain it’s purpose as administrative domain. This is achieved by ex-
tracting the domain management code (building, transferring, destroying VMs)
and making this code run bare-metal in a new virtual machine. The resulting
small trusted domain builder (DomT) then has exactly enough code and privileges
to build new domains and makes the fully-blown management Dom0 being a part
of the TCB obsolete. Instead, Dom0 now merely forwards commands to DomT.
The necessary modifications in the Xen hypervisor are described in subsection
3.2.

Trusted Computing Base Untrusted 

Hardware TPM 

Xen 

Dom0 DomT DomU DomC 

Access Control 

Fig. 2. Basic idea of CaaS : Establishment of a separate security-domain, denoted as
DomC, for critical cryptographic operations

To implement DomC and DomT as separate domains running on Xen without the
need for a full-fledged operating system, we leveraged Mini-OS [34], which is
a minimal stub domain directly interfacing with the Xen hypervisor. DomC ex-
poses cryptographic library functions to the corresponding coupled workload VM
(DomU) or automatically interposes external devices used by DomU to transpar-
ently encrypt/decrypt them. The privileged operations that traditionally would
be done by Dom0, like domain building, domain migration etc. are segregated to
a single-purpose stub domain DomT, the Trusted Domain Builder.

Usage Modes of DomC. Xen uses a split driver model for device drivers. It
provides a front-end and a back-end module (cf. Figure 3). The latter controls the
actual physical device while the former provides a virtualized representation of
that device to VMs. In CaaS , we leverage this split-driver mechanism to connect
DomC as a Xen virtual device to DomU. Figure 3 shows the two operation modes of
DomC that we describe below: Virtual Security Module and Secure Device Proxy.

Virtual Security Module. In this mode of operation, DomC resembles a security
module such as an HSM. In this mode, DomU has to be aware of the DomC so that
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Fig. 3. Usage Modes: DomU can use DomC either as Virtual Security Module (VSM) or
to secure its storage or network data with a transparent proxy

it can use its interface for outsourcing traditional cryptographic operations like
an SSL/TLS wrapper for a web service running in the VM. In our prototypical
implementation DomC emulates an HSM and provides a standardized PKCS#11-
compliant interface for DomU.

Secure Device Proxy. In this mode, DomC acts as a transparent layer between
DomU and external devices, such as attached storage medium or network card.
We use this layer as a convenient building block for advanced applications such
as booting fully encrypted VM images (cf. Section 3.3) or for legacy VMs that
still want to profit from full-disk encryption. To achieve the pass-through, we
chain two front-end-back-end communication channels. The first channel exists
between DomC and Dom0 where DomC connects to a device offered by Dom0 (e.g.,
storage or network). The second channel exists between DomC and DomU, where
DomC provides an identical device interface to DomU. DomC encrypts and decrypts
on-the-fly all data in this stream. Although it is technically feasible that DomC
writes directly to the physical device, routing encrypted I/O streams through
Dom0 avoids implementing (redundantly) device drivers in each DomC.

Both modes are not mutually exclusive. A transparent encryption layer can
be used while DomU is yet aware of the DomC and additionally uses it for explicit
cryptographic operations.

3.2 Security Extensions to the Xen Hypervisor

While the above mentioned modes seem not to require any changes to the Xen hy-
pervisor, default Xen does not prevent Dom0 from reading/writing another VM’s
memory. To prevent that, we added security extensions to the Xen hypervisor:

1. Additional Mandatory Access Control for low-level resources (e.g., memory)
to isolate the client’s DomC from any other domain including Dom0 (Fig. 4(a)).

2. The binary privileged/unprivileged hypercall scheme was made more fine-
grained to drastically de-privilege Dom0 and to support certain hypercalls
only for certain domains, namely DomT and DomC (Fig. 4(b)).

In default Xen, different mechanisms to access foreign memory of other domains
exist (cf. Figure 4(a)):
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Fig. 4. Access Control and disaggregation modifications of our Xen version

Privileged Domains. In default Xen, Dom0 is always able to map the memory
pages of another domain since it needs to set up a new domain’s memory be-
fore it is running. In order to remove this privilege, we separated the domain
building functionality into DomT. To this extent we ported the Xen domain man-
agment library libxl to Mini-OS to reside in DomT. Additionally, Xen’s binary
privileged/unprivileged hypercall scheme which allowed Dom0 to map arbitrary
foreign memory needed to be refined in order to support different domains with
different privileges. This new access control is enforced in the logic of the Xen
hypervisor for mapping foreign memory pages into a domain’s memory range by
extending the Xen Security Module (XSM) accordingly. The privilege of Dom0
to access foreign memory is then disabled in the hypervisor while Dom0 needs to
forward domain management requests (building, migrating, destroying) to DomT
which has now memory authority (step B). The concept of disaggregating code
from Dom0 was pioneered by Murray et al. [24] and enhanced in our design.

Grant tables. Grant tables are the default mechanism for establishing shared
memory pages between different domains (e.g. for split drivers). The owning
domain can discretely grant access to its memory pages to other domains (step
A.1), which are then able to map these shared pages into their own memory space
(step A.2). In CaaS , no additional access control on Grant Tables is required, as
DomU and DomC are in control of their own pages and thus can by default deny
any access from other domains.

IOMMU. A potential security risk are physical devices featuring Direct Memory
Access (DMA), having access to the entire physical memory. DMA is configured
by the domain that is in control of the physical hardware (by default Dom0; step
C.1). We require hardware support in the form of an IOMMU (step C.2) to
exclude the whole VM and Xen memory from the DMA range.

3.3 Detailed Image Setup Workflow

To ensure that the client can entrust her secrets and images to the cloud, we
leverage standard Trusted Computing protocols for the Trusted Platform Mod-
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ule (TPM) [36]. This technology provides the means to establish a trusted end-
to-end channel since the client can encrypt data such that only a platform in
a certain trusted state S (i.e., running our modified version of Xen) is able to
decrypt this data. Technically, this is realized using a TPM certified binding key
(skTPM , pkTPM) where the secret key skTPM is bound to the platform state S.
The certificate cert proves that the key-pair was created by a genuine TPM and
hence the binding property holds. To make the same key available on all cloud
nodes, we use migratable keys, i.e., its usage is bound to one or more trustworthy
platform states but not a particular platform. For brevity, we omit the setup of
this TPM key from our protocol and refer to related work [10]. An authenticated
boot [35] measures the platform state, during boot. Moreover, we make use of a
TPM feature called locality to ensure that only the trusted hypervisor (i.e. not
Dom0) is able to use the certified binding key skTPM and to further allow Dom0
to still use the TPM, however, not at the locality reserved for the hypervisor.
The pseudocode in algorithm 1 depicts the setup process of the client and trust
establishment in detail.

Algorithm 1. Pseudocode for Setup Steps
1: get (cert, pkT P M ) from cloud node
2: if Validate(cert, pkT P M ) then
3: k ← GenerateSymmetricKey()
4: domCimage ← CreateCustomDomCImage()
5: InjectKey(domCimage, k)
6: encu ← Encrypt(domUimage, k)
7: encc ← Encrypt(domCimage, pkT P M )
8: ID ← UploadAndRegister(encc, encu)
9: end if

After the client verified pkTPM using the certificate cert (line 2), she generates
at least one new secret k (line 3) and securely injects that secret into her local
plaintext image of DomC (line 5). DomC is able to act as transparent cryptographic
protection (e.g., encryption) of an attached block storage (Secure Device Proxy
mode) or as a SmartCard using key k. The DomU image is encrypted under k
(step 6) and the configured DomC image is encrypted under pkTPM (line 7) which
constitutes the trusted channel explained earlier. Both encrypted images are
then uploaded and registered in the cloud under a certain ID (line 8). Using ID,
the client can manage her images, e.g., launch an instance from her DomU image.

3.4 Detailed Launching Workflow

The instantiation of the uploaded encrypted DomU image can be divided in two
steps as shown in Figure 5: First, and only once after booting our modified Xen,
DomT is started with memory authority for the purpose of domain creation (step
1). Additionally, the locality of the TPM is set up in such a way that DomT is the
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d

Fig. 5. Booting DomU and coupling with corresponding DomC

only one allowed to use skTPM (step 2). DomT uses this skTPM to decrypt the
DomC image domCimage with the aid of the TPM2 (steps 3 & 4). DomT inserts the
Xen bootloader PV-Grub3 into the still pristine DomU image which is necessary
for DomU to be able to boot from a device offered by DomC (step 5). Then, the
front-end devices (cf. Figure 3) are set up to be available to PV-Grub to boot
from (step 6). Once DomU is scheduled for the first time (step 7) and tries to
read a block from the attached virtual disk (step 8), it gets transparently routed
through DomC which reads the actual sectors from the traditional disk provided
by Dom0 and decrypts them for DomU (steps 9 & 10).

Suspension and Live Migration. In order to support live migration, the
standard Xen migration protocol needs to be wrapped but in essence works
unaffectedly from the perspective of the client and DomU. Since we ported the
Dom0 Xen interface (libxl) to DomT, the live migration request in Dom0 is simply
forwarded to DomT which has access to any DomU’s memory. DomT then migrates
a running VM on-the-fly by first attesting the target host’s integrity using its
certificate cert and by piecemeal transmission of the memory content to the
new trusted target host. Instead of migrating plaintext VM memory from one
Node to another, the memory must be encrypted, since migration requires the
involvement of Dom0 and a potentially untrusted network.

To restore the transferred state on the target platform, DomC has to be mi-
grated as well in order to decrypt the migrated DomU state on the target plat-
2 The use of asymmetric cryptography in the TPM is an abstraction. Technically, the

decryption using a TPM is more involved and requires wrapping a symmetric key
with the pkTPM/skTPM pair.

3 http://wiki.xen.org/wiki/PvGrub

http://wiki.xen.org/wiki/PvGrub
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form. Restoring a VM state requires platform-dependent modifications to the
state, such as rebuilding the memory page-tables. DomT’s domain building code
performs these modifications on DomU during DomU’s resumption. Afterwards the
new DomC is able to decrypt and resume the DomU state on the target platform
and the old DomC on the source platform can be discarded. To achieve the pro-
tection of the transferred DomC state, this state is encrypted under the TPM key
pkTPM . Thus, only a target node running our trustworthy hypervisor is able to
decrypt and resume the DomC state. We need to make sure that the version of our
trusted Xen is not run outside of a trusted datacenter, e.g. our partly trusted
cloud provider. For the sake of simplicity, in our proof-of-concept implementa-
tion we only allowed to migrate to other secure hosts that are within the same
class-C-network. In case of suspension, the protocol works identical, except that
the “target platform” is cloud storage to which the protected DomC and DomU
states are saved by DomT.

4 Security

In this section we discuss how our architecture protects the client’s cryptographic
keys with regard to the requirements and adversary model defined in Section 2.
We also discuss the corner cases that our architecture does not handle.

Compute Administrator. Our solution protects against a malicious Com-
pute Administrator. This is guaranteed by the logical isolation of domains by
the trusted hypervisor and the de-privileged management domain in which the
administrators operate. Extracting the domain building process to DomT com-
bined with the TPM based protocols (cf. Section 3.2) ensures that Dom0 cannot
access DomT, DomC’s or DomU’s memory in plaintext. We empirically verified the
mitigation of known attacks to extract confidential information from VMs [25].

Any modifications Dom0 does on the encrypted images during launch will lead
to integrity verification failures and abortion of the launch, and hence form a
denial-of-service. The same holds for the saved, encrypted state of DomU and
DomC during migration and suspension. As mentioned in our adversary model,
we exclude compute administrators with physical access, since it seems there
exists no practical solution against these attacks yet.

Storage Administrator. Our solutions protects against a malicious Storage
Administrator by storing images only in encrypted and integrity protected form.
Thus, this attacker cannot extract any sensitive information from the images
and any modification to the images before loading them into memory results in
a denial-of-service attack. Solutions against replay attacks of outdated images,
which we do not consider in this paper, can also be based on the TPM [29,37].

Network Administrator. Images and VM states are protected (encrypted
and integrity checked) during provision to the cloud, transfer between cloud
nodes and storage during migration and suspension, respectively. Thus, a mali-
cious Network Administrator cannot extract the client’s keys from intercepted
network data. However, dropping network traffic or tampering with it will lead
to a denial-of-service attack. Freshness of network communications to protect
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against replay attacks or injection of non-authentic data is easily achieved by
using message nonces or by establishing session keys.

End-Users. If an external attacker gains full (i.e. root) access to DomU, the
attacker can misuse DomC as an oracle, e.g., to sign arbitrary messages in the
client’s name. This problem also applies to HSMs. A common countermeasure
is an auditing mechanism within DomC that detects misuse based on heuristics
(e.g., usage thresholds). The secrets however remain protected in DomC.

Malicious Clients. Since keys are neither stored nor processed within a
customer VM, there is no risk of accidentally sharing them in public VM images.
Thus, our solution protects against Malicious Clients, who inspect shared public
VM images for credentials.

Adherence. Due to our isolation from the management domain, the cloud
provider can no longer monitor the client’s behaviour. This is a potential invita-
tion to hide malicious/criminal activities such as providing illegal content. Other
solutions [9] tackled this issue by installing a mutually trusted observer for the
client VM’s activities, which simultaneously preserves the client VM’s privacy
and checks the client’s activity for conformance.

5 Performance Evaluation

We evaluated the performance overhead induced by offloading cryptographic
operations to DomC for both the Secure Device Proxy and Virtual Security Mod-
ule modes. Our test machine is a Dell Optiplex 980 with an Intel QuadCore
i7 3.2GHz CPU, 8GB RAM, and a Western Digital WD5000AAKS - 75V0A0
hard-drive connected via SATA2.

Secure Device Proxy. This setup consists of the Xen v4.1.2 hypervisor with
our extensions, an Arch Linux Dom0 (kernel 3.2.13), a Debian DomU (kernel 3.2.0)
and a Mini-OS based DomC and DomT. All domains and the hypervisor execute in
64-bit mode and each guest domain has been assigned one physical core. DomU
and DomT have been assigned 256 MB of RAM while each DomC runs with 32 MB.
All I/O data streams from DomU to the virtual block storage are passing through
DomC and are transparently encrypted using AES-128 in CBC-ESSIV mode based
on code ported to Mini-OS from the disk-encryption subsystem dm-crypt of the
Linux kernel. We measure four scenarios:

Traditional. Standard Xen setup without an interposed DomC and no encryp-
tion.

dm-crypt in DomU. This extends the Traditional scenario with AES-128 CBC-
ESSIV mode encryption of I/O data in DomU using dm-crypt.

DomC pass-through. This scenario interposes DomC between DomU and Dom0 to
merely pass-through I/O without encryption.

DomC (AES-128). This scenario extends the pass-through scenario with AES-
128 CBC-ESSIV en-/decryption in DomC.
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In a traditional Linux running as DomU, block device buffering is used for reads
and writes, where writes occur asynchronously. In this setup, the performance
overhead was negligible. To give a worst-case scenario, in this throughput bench-
mark we measure the induced performance overhead with all caching disabled
and additionally only read/write random sectors to avoid hard disk buffer effects.
The bandwidth measurements were taken using the fio tool4 in the DomU. For
each of the aforementioned four combinations measurements were taken with
each read or write lasting exactly 10 minutes (see Figure 6). Performance mea-
surements with asynchronous I/O, disk buffers left on (default Linux settings)
and linear reads produced almost negligible overhead but had a high standard
deviation.
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Fig. 6. Disk throughput performance

Virtual Security Module. Our setup consists of SoftHSM 5, a software-based
implementation of a HSM that can be accessed via a PKCS#11 interface. We
compare two scenarios: a) where SoftHSM is running in a Linux-based DomC,
and b) when running inside a DomU and being accessed directly. In scenario a,
the server resides within DomC and the client in DomU, and the communication
is realized through our backend-frontend Virtual Security Module interface. In
scenario b, both server and client reside in DomU and the network loopback device
is used.

We measure the performance of RSA signing using an HSM. This is a typi-
cal scenario found in practice, e.g., CAs signing TLS certificates or signing of
domain names within the DNSSEC system. In particular we are focusing on
the latter scenario and leverage the benchmark software ods-hsmspeed from the
OpenDNSSEC project6. As parameters for ods-hsmspeed, we selected 8 threads
requesting signatures from the HSM, RSA1024 as the signing algorithm, and
varying number of total signatures requested ranging from 1 to 10000.

Our results are illustrated in Figure 7. When requesting a low number of
signatures, i.e., only 1 or 10, the costs for the connection and benchmark setup
are more profound. However in practical scenarios, we expect a large number of
signatures that are requested. Comparing the performance in terms of signatures
per second between a SoftHSM residing in DomU vs. DomC, we notice a less than
3% overhead when offloading the cryptographic operations to DomC.
4 FIO disk benchmark – http://freecode.com/projects/fio
5 http://www.opendnssec.org/softhsm/
6 http://www.opendnssec.org/

http://freecode.com/projects/fio
http://www.opendnssec.org/softhsm/
http://www.opendnssec.org/


32 S. Bleikertz et al.

10
0

10
1

10
2

10
3

10
4

Signatures Performed

0

200

400

600

800

1000

S
ig

n
a
tu

re
s
 /

 S
e
c
o
n
d

VSM in DomU

VSM in DomC

Fig. 7. Comparing the signing performance of a software-based HSM residing in DomU
vs. DomC

6 Related Work

The field of cloud security is very active and touches various research areas. In
this section, we compare our CaaS solution to the closest related work.

Trusted Computing. In physical deployments, cryptographic services are
typically provided by cryptographic tokens [2], hardware-security modules [17],
generic PKCS#11-compliant modules, e.g. smart cards, and the Trusted Plat-
form Module (TPM) [36]. In our approach, we study how such cryptographic
services can also be securely provided in virtualized form in cloud deployments.

To provide TPM functionality to virtual machines, virtual TPMs have been
proposed [5,28] and secure migration of VM-vTPM pairs by Danev et al. [15].
Our CaaS is conceptually a generalized form of such as a service, since DomC
could also provide a vTPM daemon. However, in contrast to [5], our solution
does not rely on a security service running within a potentially malicious Dom0.

Providing a cryptographic service over a network has been considered in large-
scale networks, such as peer-to-peer or grid systems, by Xu and Sandhu [40].
Berson et al. propose a Cryptography-as-a-Network-Service [6] for performance
benefits, by using a central service equipped with cryptographic hardware ac-
celerators. Our CaaS targets specifically multi-tenant cloud environments and
aims at tightly but securely coupling the client and her credentials to enable
advanced applications such as transparent encryption of storage.

Different cloud architectures that rely on trusted computing have been pro-
posed that ensure protected execution of virtual machines. The Trusted Cloud
Computing Platform (TCCP) [31] by Santos et al. and the architecture proposed
by Schiffman et al. [33] use TCG remote attestation to prove the trustworthiness
of the cloud’s compute nodes. Our approach also builds on Trusted Computing
technology but with the goal to protect cryptographic operations and creden-
tials from external and internal attackers. Santos et al. extended their TCCP
architecture to address the problems of binary-based attestation [32] and data
sealing with an approach very similar to property-based attestation [27].

Virtualization Security. Research that advocates the benefits of virtualiza-
tion technology for security purposes has a long-standing history, even decades
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before the advent of cloud computing [20,21,26], and has introduced concepts
that establish secure (virtual) execution environments [11,18]. They implement
the concept of moving the security management to the virtualization layer
by providing two different execution security contexts for VMs on top of a
trusted VMM. Our architecture differs from those in that we provide client-
controlled cryptographic primitives for multi-tenant virtualized environments
(such as clouds) and thus have to tackle the challenges of how to securely provi-
sion and use those primitives in the presence of a malicious cloud management
domain.

Other related works leverage nested virtualization to advocate similar goals
as CaaS . Williams et al. introduced the Xen-Blanket [39], which adds an ad-
ditional virtualization layer, empowering clients to avoid cloud provider lock-in.
The CloudVisor [41] architecture by Zhang et al. adds a small hypervisor beneath
the Xen hypervisor to protect client’s DomU against an untrusted or compromised
VMM or Dom0 (including encrypted VM images). However, nested virtualization
induces an unacceptable performance overhead and usually requires introspec-
tion. In CaaS , we avoid nested virtualization and instead apply Murray’s concept
of Dom0 disaggregation [24] on top of the commodity Xen hypervisor, which is
assumed trustworthy. We note, that hardening hypervisors against attacks is an
active, orthogonal research area [38] from which our solution benefits.

The closest related work to ours, is the Self-Service Cloud (SSC) framework by
Butt et al. [9], which was developed independently and in parallel to our work. In
SSC, clients are able to securely spawn their own meta-domain, including their
own user Dom0, in which they are in control of deployed (security) services, such as
DomU introspection, storage intrusion detection, or storage encryption. This meta-
domain is isolated from an untrusted Dom0 using a mandatory access control
framework in the Xen hypervisor (XSM [30]). In contrast to SSC, our CaaS takes
care of client-controlled cryptographic operations and builds the basis for the
actual key provisioning. We tackle the challenge of how to protect and securely
use our DomC, running isolated but tightly coupled to its DomU. This requires
modifications to the VM life cycle management, i.e., secure migration/suspension
of DomU and instantiating fully encrypted DomU images.

Secure Execution Environment. Instead of relying on the trustworthiness
of the virtualization layer, DomC would ideally run in a Secure Execution Envi-
ronment (SEE) that is available as a hardware security extension on modern
CPUs, e.g., Flicker by McCune et al. [23]. However, invocations of SEE suffer
from the critical drawback that they incur a significant performance penalty.
Consequently, this makes them unsuitable for streaming operations such as en-
cryption of data of arbitrary length. McCune et al. address this issue with their
TrustVisor [22] by leveraging hardware virtualization support of modern plat-
forms, trusted computing technology, and a custom minimal hypervisor to estab-
lish a better performing SEE. Conceptually, TrustVisor is related to our CaaS
from the perspective of isolating security sensitive code in an SEE. However,
TrustVisor is designed to protect this code from an untrusted legacy OS while
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CaaS targets the specific scenario of cloud environments and thus faces more
complex challenges: First, CaaS has to address an additional virtualization layer
to multiplex multiple clients’ VMs. Second, our adversary model must consider
a partially untrusted cloud provider and malicious co-located clients.

7 Conclusion and Future Work

In this paper we present the concept of secret-less virtual machines based on
a client-controlled Cryptography-as-a-Service (CaaS) architecture for cloud in-
frastructures. Analogously to Hardware Security Modules in the physical world,
our architecture segregates the management and storage of cloud clients’ keys
as well as all cryptographic operations into a secure crypto domain, denoted
DomC, which is tightly coupled to the client’s workloads VMs. Extensions of
the trusted hypervisor enable clients to securely provision and use their keys
and cryptographic primitives in the cloud. DomC can be used as virtual security
module, e.g., vHSM, or as a transparent encryption layer between the client’s
VM and e.g. legacy storage. Furthermore, these extensions protect DomC in a
reasonable adversary model from any unauthorized access that tries to extract
cryptographic material from the VM – either from a privileged management do-
main or from outside the VM. The flexible nature of DomC allows for building
more advanced architectures, such as Trusted Virtual Domains [10], on top of
our CaaS. Evaluation of full disk encryption with our reference implementation
showed that DomC imposes a minimal performance overhead. Future work aims
at methods to mitigate run-time attacks against DomU, which enable an attacker
to misuse the securely stored credentials. An avenue to mitigate this issue would
be to install usage quotas heuristics in order to detect misuse. Further, secure
logging in DomC would support post-misuse analysis.
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Abstract. Cloud services are blooming recently. They provide a conve-
nient way for data accessing, sharing, and processing. A key ingredient
for successful cloud services is to control data access while consider-
ing the specific features of cloud services. The specific features include
great quantity of outsourced data, large number of users, honest-but-
curious cloud servers, frequently changed user set, dynamic access control
policies, and data accessing for light-weight mobile devices. This paper
addresses a cryptographic key assignment problem for enforcing a hier-
archical access control policy over cloud data.

We propose a new hierarchical key assignment scheme CloudHKA
that observes the Bell-LaPadula security model and efficiently deals
with the user revocation issue practically. We use CloudHKA to encrypt
outsourced data so that the data are secure against honest-but-curious
cloud servers. CloudHKA possesses almost all advantages of the related
schemes, e.g., each user only needs to store one secret key, supporting dy-
namic user set and access hierarchy, and provably-secure against collusive
attacks. In particular, CloudHKA provides the following distinct features
that make it more suitable for controlling access of cloud data. (1) A user
only needs a constant computation time for each data accessing. (2) The
encrypted data are securely updatable so that the user revocation can
prevent a revoked user from decrypting newly and previously encrypted
data. Notably, the updates can be outsourced by using public information
only. (3) CloudHKA is secure against the legal access attack. The attack
is launched by an authorized, but malicious, user who pre-downloads the
needed information for decrypting data ciphertexts in his authorization
period. The user uses the pre-downloaded information for future decryp-
tion even after he is revoked. Note that the pre-downloaded information
are often a small portion of encrypted data only, e.g. the header-cipher
in a hybrid encrypted data ciphertext. (4) Each user can be flexibly
authorized the access rights of Write or Read, or both.
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1 Introduction

Outsourcing data to cloud server (CS) becomes popular in these years. A data
provider (DP) no longer stores a large quantity of data locally. A user can access
them from anywhere at any time. However, the outsourced data often contain
sensitive information and CS naturally becomes a target of attacks. Even worse,
CS itself could distribute DP’s data for illegal profit. Therefore, DP does not
want to disclose his data to CS. Furthermore, DP wants to control access to
data of different sensitive levels. Only the authorized users can access the data
with certain security levels. We want to enforce a designated access control policy
for users over cloud data.

This work considers the hierarchical access control (HAC) policy. By the pol-
icy, data are organized into security classes SC1, SC2, . . ., SCn, which are par-
tially ordered with a binary relation ≺. SCj ≺ SCi means that the security level
of SCi is higher than that of SCj . If a user is authorized to read data at SCi, he
is also entitled to read data at SCj for SCj ≺ SCi. The HAC policy is widely
used in various computer systems, e.g., military, government, secure database,
and Pay-TV systems.

Hierarchical key assignment (HKA) is a cryptographic method for enforcing
HAC policies [1]. An HKA scheme consists of a set of cryptographic keys SK1,
SK2, . . ., SKn such that if SKj ≺ SKi, SKj can be derived by using SKi. To
enforce an HAC policy P for hierarchical data, a datum at SCj is encrypted into
ciphertext by using SKj. A user who is authorized to read the data at SCi is
assigned SKi. Thus, the user can decrypt the data at SCj , which is lower than
SCi, by using SKi to derive SKj .

An important issue in designing an HKA scheme is to revoke an authorized
user u from his associated class, say SCi. DP needs to remove u’s access rights
for the following two kinds of data:

– Newly encrypted data at SCz for SCz � SCi: The encrypted data under
new encryption keys after revoking u.

– Previously encrypted data at SCz for SCz � SCi: The encrypted data under
previous encryption keys before revoking u.

To prevent u from decrypting newly encrypted data at SCz, DP can encrypt
data by new keys and distribute the new keys to the non-revoked users only.
Nevertheless, since non-revoked users needs to access previously encrypted data
at SCz , they should keep all old keys. The key management cost is high if
revocation occurs frequently.

To prevent u from decrypting previously encrypted data by using his old keys,
DP can decrypt previously encrypted data and encrypt them with new keys,
which are distributed to non-revoked users only. Thus, the revoked user u cannot
use his old keys to decrypt previously encrypted data. Simultaneously, a non-
revoked user needs to keep the newest key of his associated class only. However,
since data are of a large quantity, DP needs substantial time in processing them.
A common solution is to use the hybrid encryption technique for data encryption.
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DP randomly chooses a data encryption key K for encrypting data into body-
cipher and then encryptsK into header-cipher under a cryptographic key SKi. In
processing data, CS only needs to update the header-cipher and the much larger
body-ciphers are no need to be changed. It saves computation time significantly.
Nevertheless, the solution causes a new issue, which we call it the legal access
attack. An authorized, but malicious, user may decrypt all decryptable header-
ciphers to obtain K’s. The user can use these K’s to decrypt body-ciphers in the
future even after he is revoked. Furthermore, in processing data, if decryption
and encryption operations are done in the CS side, CS gets to know the content
of data. Face to the above issues, we want a solution that updates encrypted
data without disclosing the content to CS and entailing high overhead for DP
and CS. Simultaneously, we hope that the solution is secure against the legal
access attack.

We consider the Bell-LaPadula security model [5] for HAC policies. The model
consists of two security properties: (1) The simple security property requires that
a user cannot read the data at a higher security class. (2) The �(star)-property
requires that a user cannot write data at a lower security class. To observe the
security model in an HKA scheme, we separate SKi into a write- and read-key
pair (WriteKi, ReadKi) for encrypting and decrypting data at SCi, respectively.
A user at SCi is authorized to obtain ReadKi, which is used to read (decrypt)
the data at SCz for SCz � SCi. For data writing (encryption), the user is
only authorized to obtain those WriteKz of SCz for SCi � SCz . The separation
provides flexibility in authorizing data access right of Read or Write, or both.

Our Contribution. We provide a practical CloudHKA scheme for control-
ling access for encrypted data in cloud computing. CloudHKA is a novel HKA
scheme that observes the Bell-LaPadula security model and efficiently deals with
the above issues in user revocation. The design of CloudHKA considers the spe-
cific features of cloud services. The specific features include great quantity of
outsourced data, large number of users, honest-but-curious cloud servers, fre-
quently changed user set, dynamic access control policies, and data accessing for
light-weight mobile devices.

In detail, CloudHKA has the following features.

(1) Optimal secret key size hold by each user. Each authorized user at SCi keeps
one secret distribution-key DistKi.

(2) Outsourceable computation in key derivation. An authorized user can se-
curely outsource computation for deriving a read-key to CS. He needs to do
three decryption operations only.

(3) Outsourceable data update in user revocation. To revoke a user u, DP can
outsource data update operations to CS. CS needs to update header-cipher
and a small portion (the size is the same as header-cipher) of body-cipher
only. After updating previously encrypted data, u cannot decrypt them with
his old distribution-keys and the non-revoked users can decrypt them with
their newest distribution-keys. In particular, only the distribution-key of u’s
associated class needs to be updated. It leads that the key re-distribution
occurs in u’s associated class only.
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(4) Secure against the legal access attack. CloudHKA enforces that an authorized
user cannot pre-download the needed information for decrypting body-cipher
by only accessing a small portion of encrypted data. Therefore, the legal
access attack can be prevented by denying uncommon (large traffic) data
access from a user.

(5) Flexible user access right authorization. Each user can be authorized the
access rights of Write or Read, or both.

(6) Provable-security. CloudHKA is formally shown to be message indistinguisha-
bility secure. Even if CS and a set of users collude, they cannot determine
the original datum (that is not entitled to be derived by them) from an
encrypted datum with non-negligible probability.

Figure 1 shows the system overview of CloudHKA. The detailed construction
is illustrated in Section 3. The system consists of CS, DP, and users. CS is
operated by cloud service providers. It is assumed to have bountiful storage
space and computation power. DP outsources his data to CS with a self-defined
HAC policy P . DP is free to add or delete data in CS and change the access
control policy. DP can execute his code over CS to manage his data. A user
can be authorized to read or write data in CS. Typically, a user is assumed to
have limited storage space and computing power. We assume that CS is always
on-line, but DP and users are only on-line when necessary.

Related Works. Akl and Taylor [1] first addressed the problem of assigning
cryptographic keys in an access hierarchy. They proposed an HKA scheme to
enforce an HAC policy. After that, many researches proposed methods for im-
proving performance, supporting dynamic access control policies, or providing
distinct features [2,3,13,17,20,21,25,27,31]. Atallah et al. formalized the security
requirement for HKA schemes and provided an efficient and provably-secure
HKA scheme against key recovery attacks [3]. Recently, they proposed another
scheme with security against key-indistinguishability attacks [2]. They also ad-
dressed the problem of reducing key derivation time for each user in a deep access
hierarchy. The result is obtained by maintaining extra public system information.

Sahai and Waters [24] proposed an attribute-based encryption (ABE) scheme
that provides fine-grained data access control. Most ABE schemes enforce mono-
tone access policies over encrypted data [6,14,16,18,23,24,30]. An ABE scheme
allows a user to encrypt data into ciphertexts according to a policy. Only the
users with a set of attributes that satisfy the policy can decrypt the ciphertexts.
Nevertheless, many ABE schemes do not address the issue of dynamic user set
and dynamic access policy. Boldyreva et al. [8] addressed the issue of revoking
a user with time. They periodically distribute the updated keys to non-revoked
users for decrypting newly encrypted data. Yu et al. [30] proposed a revocable
ABE scheme for revoking a user immediately. In contrast, Hur and Noh [18]
proposed a revocable ABE scheme with immediate attribute and user revoca-
tion capability. Sahai et al. [23] proposed the revocable storage ABE scheme
that deals with the issue of efficiently preventing a revoked user from decrypting
previously encrypted data. In addition to the user revocation issue, decryption
time of the existing ABE schemes grows with the depth of access formula. Green
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Fig. 1. A system overview of our CloudHKA

et al. [16] proposed a method of uotsoucing the overhead for users in decryption.
Additionally, the size of user secret key or ciphertext in existing ABE schemes
grows proportionally in the number of associated attributes. Designing an ABE
scheme with a constant size of a user secret key and a ciphertext is still an open
problem.

2 Preliminaries

2.1 HAC Policy with the Bell-LaPadula Security Model

An HAC policy P is a 5-tuple (SC,≺,U ,D, λ), where SC = {SCi : 1 ≤ i ≤ n} is
a set of security classes, ≺ is a binary relation over SC ×SC, U is a set of users,
D is a set of data, and λ : U ∪D → SC is a security function that associates each
user and datum with a security class. (SC,≺) forms a partial order set (poset),
where SCj ≺ SCi means that the security level of class SCi is higher than that
of SCj . To observe the Bell-LaPadula security model, P requires the following
two properties.

1) Simple security property: A user U ∈ U cannot read a datum D ∈ D if
λ(U) ≺ λ(D).
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2) �-property: A user U ∈ U cannot write a datum D ∈ D if λ(D) ≺ λ(U).

The poset (SC,≺) is represented as a directed graph (access hierarchy) G. Each
class SCi is a node and the relation SCj ≺ SCi is represented by the directed
edge (SCi, SCj) in G. G can be simplified by eliminating the edges that are
implied by the transitive closure property. For example, Figure 1 has an ac-
cess hierarchy G with the nodes SC1, SC2, . . ., SC6 and edges (SC1, SC2),
(SC1, SC3), (SC2, SC4), (SC2, SC5), (SC3, SC5), and (SC3, SC6).

2.2 Proxy Re-Encryption (PRE) Scheme

A proxy re-encryption (PRE) scheme delegates a proxy to re-encrypt a ciphertext
under key ekA into another ciphertext under key ekB by using the re-encryption
key rkA→B without revealing the plaintext [4,7,9,15,19,26,28]. A PRE scheme Ψ
consists of the following six poly-time algorithms:

– Setup(τ) → (sp,MK). On input a security parameter κ, Setup outputs the
public system parameter sp (which is explicit used in other algorithms) and
master secret key setMK.

– KeyGen(MK, i)→ (eki, dki). On input the master secret key setMK and an
index i, KeyGen outputs a pair of encryption and decryption keys (eki, dki).

– ReKeyGen((eki, dki), (ekj , dkj))
1 → rki→j . On input two pairs of encryp-

tion and decryption key (eki, dki) and (ekj , dkj), ReKeyGen outputs a re-
encryption key rki→j .

– Enc(eki,m) → ci. On input an encryption key eki and a plaintext m, Enc
output a ciphertext ci.

– ReEnc(rki→j , ci) → cj . On input a re-encryption key rki→j and ciphertext
ci, ReEnc output a ciphertext cj under ekj .

– Dec(dki, ci) → m. On input a decryption key dki and ciphertext ci, Dec
outputs a plaintext m.

These algorithms satisfy the following two requirements.

– For all (eki, dki)← KeyGen(MK, i), Dec(dki, Enc(eki,m)) = m,
– For all rki→j ← ReKeyGen((eki, dki), (ekj , dkj)), Dec(dkj , ReEnc(rki→j ,

Enc(eki, m))) = m.

Ψ is uni-directional if rkj→i cannot be derived from rki→j . It is multi-hop if a
ciphertext can be re-encrypted many times in a sequence.

For security, a uni-directional PRE scheme is IND-CPA secure if, for a given
ciphertext, a collusive set of malicious entities cannot determine which message,
m0 or m1, is encrypted under an uncorrupted eki. A malicious entity is the
proxy, a non-user, or an authorized user with a partial set of decryption keys.
The formal security notion is described in the full version of this paper [10].

1 For the construction of a PRE scheme, it is preferable to compute rki→j in a non-
interactive way, that is, without using the secret key dkj . While using PRE scheme
as a building block in our scheme, an interactive PRE scheme is also suitable.
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2.3 All-Or-Nothing Transformation

All-or-nothing transformation (AONT) AONT is an unkeyed and randomized
function with the property that it is hard to compute the whole message unless
the entire function output is known [22]. AONT maps an �-block message X =
X1||X2|| · · · ||X� and a random string r to an �′-block string Y = Y1||Y2|| · · · ||Y�′ .
AONT satisfies the following properties:

– Given X and r, Y ← AONT(X, r) can be computed efficiently.

– Given Y , X ← AONT−1(Y ) can be computed efficiently.
– If any block of Y is lost, it is infeasible to recover X .

3 Our CloudHKA

3.1 Overview

The construction of CloudHKA is based on a uni-directional and multi-hop PRE
scheme Ψ . Assume that the given HAC policy is P , which is represented by a
directed graph G = (V,E). For each class SCi ∈ V , DP generates a pair of write-
and read-key (WriteKi, ReadKi). A message that is encrypted by using WriteKi
can be decrypted by using ReadKi. A user who obtains the write-key WriteKi is
authorized the Write right for SCi. A user who obtains the read-key ReadKi
is authorized the Read right for SCi and its lower classes. Although the pair
of write- and read-key is like the pair of public- and private-key of a public-key
system, neither of them can be published to a public domain in CloudHKA. A
write-key WriteKz is given to a user at SCi (through a secure channel) when he
requests to write data into SCz for SCi � SCz .

In data outsourcing, a datum M at SCi is transformed into

M ′ = M ′
1||M ′

2|| . . . ||M ′
�′ ← AONT(M, r)

and then encrypted in the form

〈data ID, uploader ID, class, header-cipher, body-cipher, 〉
= 〈ID, uID, SCi, Hdr

SCi

ID = {K}ΨWriteKi , Body
SCi

ID = {M ′
1}AESK || . . . ||{M ′

ρ−1}AESK ||
� ||{M ′

ρ}ΨWriteKi ||{M
′
ρ+1}AESK || . . . ||{M ′

�′}AESK 〉, (1)

where

– uID is a user who stores (uploads) his data into CS,
– {K}ΨWriteKi and {M ′

ρ}ΨWriteKi are respectively the ciphertexts of a randomly
chosen AES encryption key K and ρ-th block of M ′ under WriteKi,

– ρ ∈ {1, 2, · · · , �′} only known by CS and DP,
– � is a special symbol for marking the start position of BodySCi

ID [ρ], and

– {M ′
ω}AESK is the ciphertext of M ′

ω for ω ∈ {1, 2, . . . , �′} \ {ρ} under K.
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Before CS storing an encrypted datum into SCi, he should authenticate that
the associated class of a data uploader is no lower than SCi. It observes the
�-property.

For each relation (SCj , SCi) ∈ E, DP generates a (public) relation-key
RelatKi→j that is used to re-encrypt a header-cipher and body-cipher (ρ-th
block) of SCi into that of SCj . Assume that a user who is authorized the
Read right of SCj wants to read (decrypt) datum ID encrypted as (1). CS re-
encrypts {K}ΨWriteKi and {M ′

ρ}ΨWriteKi into {K}ΨWriteKj and {M ′
ρ}ΨWriteKj by using

the relation-key RelatKi→j . The user then decrypts {K}ΨWriteKj and {M ′
ρ}ΨWriteKj

to obtain K and M ′
ρ by using ReadKj . By using K to decrypt {M ′

ω}AESK for
ω ∈ {1, 2, . . . , �′} \ {ρ}, the user obtains M ′

ω and combines it with M ′
ρ to re-

cover M ← AONT−1(M ′). The concept can be easily extended for the case with
d = dstG(SCj , SCi) > 1, where dstG(SCj , SCi) is the distance between SCj

and SCi in the access hierarchy G.
To revoke a user u at SCi, DP does the following procedures.

– Removing Write right: DP simply removes u from his SCi in P . Then, u’s
Write right of SCz for SCi � SCz is removed since he cannot pass CS’s
authentication in data writing.

– Removing Read right: This part can be separated into two cases.

(1) Preventing u from decrypting newly encrypted data at SCz for SCz �
SCi: DP re-generates SCz’s key pair and related relation-keys. Then,
the new data at SCz will be encrypted under the new write-key of SCz .
The new read-key of SCz is distributed to the non-revoked users only.

(2) Preventing u from decrypting previously encrypted data at SCz for
SCz � SCi: DP sends CS a (public) transform-key TranKz for trans-
forming (re-encrypting) SCz’s header-ciphers and body-ciphers under
the old write-key into the new one under the new write-key. Thus, only
the non-revoked users who obtain the new read-keys can decrypt the
updated header-ciphers and body-ciphers.

Remark. The data encryption form in (1) enforces a user accesses the whole
body-cipher for decryption. Assume that an authorized user u at SCi wants to
access a datum ID in (1). u needs to obtainK andM ′

ρ by using ReadKi so that he

can recover M . To obtain M ′
ρ, u needs to find the start position of {M ′

ρ}ΨWriteKi .
Since u does not know ρ, he needs to find � by accessing whole BodySCi

ID (or the
part before meeting �.) This design effectively prevents the legal access attack.
In the legal access attack, u pre-downloads K and M ′

ρ for each datum. However,
u does not know the position of � until the whole body-cipher is retrieved. In
CloudHKA, a authorized, but malicious, user needs to access a large portion
of a data for pre-downloading the needed information for decryption. A large
collection of pre-downloaded information will cause traffic in accessing. A traffic
limitation mechanism (with a specified policy according to the system) can easily
deny the legal access attack. For example, in a protected database, the amount
of transmitted data for each user in a time period is often limited.
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3.2 The Construction

Let Ψ = (Ψ.Setup, Ψ.KeyGen, Ψ.ReKeyGen, Ψ.Enc, Ψ.ReEnc, Ψ.Dec) be a uni-
directional and multi-hop PRE scheme. Let AES be a symmetric key encryp-
tion scheme with key generation, encryption, and decryption algorithms (AES.G,
AES.E, AES.D). Let PKE be an asymmetric key (or public-key) encryption scheme
with key generation, encryption, and decryption algorithms (PKE.G, PKE.E,
PKE.D). Let AONT be an all-or-nothing transformation function that maps an
�-block message and a random string to an �′-block string.

To simplify the description of our scheme, we assume that two system entities
of CS, DP, and users can authenticate the identity of each other. The integrity
and correctness of messages or data transmitted between two system entities can
be verified by each other.

System Setup. DP defines an initial HAC policy P = (SC,≺,U ,D, λ) with
n security classes SC1, SC2, . . ., SCn. Assume that P is represented as an
access hierarchy G = (V,E). Then, DP generates (sp,MK) ← Ψ.Setup(κ)
with a given security parameter κ and associates each SCi ∈ V with the
following keys and tokens.

– Write- and read-key pair (WriteKi, ReadKi)← Ψ.KeyGen(MK, i).
– Distributed-key DistKi ← AES.G(κ).
– ReadKey-cipher {ReadKi}AESDistKi

← AES.E(DistKi, ReadKi).

DP associates each relation (SCj , SCi) ∈ E a relation-key

RelatKi→j ← Ψ.ReKeyGen((WriteKi, ReadKi), (WriteKj , ReadKj)).

Finally, DP uploads P , 〈SCi, WriteKi, {ReadKi}AESDistKi
〉 for SCi ∈ V , and

〈(SCj , SCi), RelatKi→j〉 for (SCj , SCi) ∈ E to CS. DP keeps P and 〈SCi,
WriteKi, ReadKi, DistKi〉 for SCi ∈ V locally. Each user u of the system
generates his public- and private-key pair (pku, sku).

Access Right Authorization. Assume that DP associates a user u with a
class SCi in P . To authorize u the Read right of SCz for SCz ≺ SCi, DP
uses u’s public-key pku to encrypt the distribution-key DistKi as a distKey-
cipher

{DistKi}PKEu ← PKE.E(pku, DistKi)

and uploads 〈u, {DistKi}PKEu 〉 to CS. CS forwards {DistKi}PKEu to u and u
decrypts it to obtain DistKi. To observe the �-property, CS gives the current
WriteKz to u when u requests to write data into SCz for SCi � SCz.

Data Writing. To write a datum M into SCi, an uploader uID computes
M ′ ← AONT(M, r), where r is a random string. uID then generates a data
encryption key K ← AES.G(κ), randomly chooses an index ρ ∈ {1, 2, . . . , �′},
and sends CS the encrypted data in the form

〈ρ, SCi, C1, C2〉 = 〈ρ, SCi, {K}ΨWriteKi , {M
′
1}AESK || . . . ||{M ′

ρ−1}AESK ||
� ||{M ′

ρ}ΨWriteKi ||{M
′
ρ+1}AESK || . . . ||{M ′

�′}AESK 〉.
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After receiving the data, CS checks the validity of the writing request from
uID. If uID is associated with SCz for SCi � SCz, CS selects a unique
data identity ID and stores the data with the format

〈data ID, uploader ID, class, header-cipher, body-cipher〉
= 〈ID, uID, SCi, Hdr

SCi

ID = C1, Body
SCi

ID = C2〉. (2)

CS keeps ρ as a secret. The value will be used when CS needs to update
body-ciphers.

Data Reading. Assume that an authorized user u at SCj wants to read a
datum encrypted as (2). If SCi � SCj , CS re-encrypts the header-cipher
and body-cipher as follows. Let d = dstG(SCj , SCi).
– Extract the relation-keys on the path from SCi to SCj as RelatKv1→v2 ,

RelatKv2→v3 , . . ., RelatKvd→vd+1
, where v1 = i and vd+1 = j.

– For each vz from v1 to vd, replace {K}ΨWriteKvz and {M ′
ρ}ΨWriteKvz as

{K}ΨWriteKvz+1
← Ψ.ReEnc(RelatKvz→vz+1, {K}ΨWriteKvz ),

{M ′
ρ}ΨWriteKvz+1

← Ψ.ReEnc(RelatKvz→vz+1, {M ′
ρ}ΨWriteKvz ).

CS returns 〈C0, C1, C2〉 = 〈{ReadKj}AESDistKj
, Hdr

SCj

ID , Body
SCj

ID 〉 to u. After re-
ceiving the ciphertexts, u decrypts C0 to obtain ReadKj by using his (newest)
DistKj . u finds � to extract {M ′

ρ}ΨWriteKj from C2. Then, u decrypts C1 and

{M ′
ρ}ΨWriteKj to obtain K and M ′

ρ by using ReadKj . u then decrypts the other
blocks of C2 to obtain M ′

ω for ω ∈ {1, 2, . . . , �′} \ {ρ} by using K. Finally, u
combines M ′

ρ and M ′
ω’s as M

′ and recovers M ← AONT−1(M ′).
Data Deletion. A datum can be deleted by its uploader only. To delete a

datum ID, its uploader with identity uID sends a deletion request of ID to
CS. CS deletes the datum ID and its associated information.

User Revocation with Outsourceable Data Update. Assume that DP
wants to revoke a user u from SCi.

– Removing u’s Write right: DP simply updates his HAC policy. Here-
after, when u wants to write data into SCz for SCi � SCz, he cannot
pass CS’s validity check in data writing.

– Removing u’s Read right:
(1) To remove u’s Read right for newly encrypted data at SCz

for SCz � SCi: DP re-generates the key pair of SCz as
(WriteK′z, ReadK

′
z) and affected relation-keys. DP then updates the

affected readKey-ciphers as follows.
• For SCz ≺ SCi, DP updates SCz’s readKey-cipher as
{ReadK′z}AESDistKz

.
• For SCi, DP updates SCi’s distribution-key as DistK′i and
readKey-cipher as {ReadK′i}AESDistK′i

.

DP distributes the updated distribution-key DistK′i to the non-
revoked users at SCi. For each non-revoked user ū, DP updates 〈ū,
{DistKi}PKEū 〉 as 〈ū, {DistK′i}PKEū 〉.
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(2) To remove u’s Read right for previously encrypted data at SCz for
SCz � SCi: DP sends CS a transform-key

TranKz ← Ψ.ReKeyGen((WriteKz , ReadKz), (WriteK
′
z, ReadK

′
z)).

CS uses TranKz to update each SCz’s header-cipher and ρ-th block
of body-cipher as

{K}ΨWriteK′z ← Ψ.ReEnc(TranKz , {K}ΨWriteKz ),

{M ′
ρ}ΨWriteK′z ← Ψ.ReEnc(TranKz , {M ′

ρ}ΨWriteKz).
Updates of Access Hierarchy. The update operations include relation in-

sertion, relation deletion, class insertion, and class deletion.
– Relation insertion. To insert a new relation (SCj , SCi), DP generates

a new RelatKi→j ← Ψ.ReKeyGen((WriteKi, ReadKi), (WriteKj , ReadKj))
and uploads the updated HAC policy and 〈(SCj , SCi), RelatKi→j〉 to
CS.

– Relation deletion. To delete a relation (SCj , SCi), DP needs to prevent
the users at SCi from re-encrypting the header-ciphers and body-cipher
of SCz into that of SCj for SCz � SCi. The procedure is like to re-
voke a ”psuedo-user” from SCi. The differences are that DP does not
need to re-generate (1) SCi’s distribution-key and readKey-cipher and
(2) (SCj , SCi)’s relation-key. There is no need to distribute the new
distribution-key of SCi.

– Class insertion. To insert a class SCi, DP generates (WriteKi, ReadKi),
DistKi, and {ReadKi}AESDistKi

and uploads the updated HAC policy and
〈SCi, WriteKi, {ReadKi}AESDistKi

〉 to CS. DP then runs the relation insertion
procedure to insert the incoming and outgoing relations of SCi.

– Class deletion. To delete a class SCi, DP deletes SCi’s associated pa-
rameters in CS and runs the relation deletion procedure for every SCi’s
incoming and outgoing relations.

4 Analysis

4.1 Performance Analysis

This section illustrates the performance of CloudHKA. We compare CloudHKA
with the first HKA scheme [1] and recent two HKA schemes [2,3] in Table 1. To
our best knowledge, the schemes in [2,3] provide most features up to now and
are provably-secure.

Storage Cost. In CloudHKA, each user at SCi stores the distribution-key
DistKi. In the other three schemes, the secret key size for each user is also one.

Key Derivation Cost. In CloudHKA, when a user u at SCj requests to
read a datum at SCi for SCi � SCj , CS runs d = dstG(SCj , SCi) times of
Ψ.ReEnc to re-encrypt the header-cipher under WriteKi into the header-cipher
under WriteKj . u then runs one AES.D to obtain ReadKj and two Ψ.Dec to
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Table 1. A comparison of our CloudHKA with previous HKA schemes

AT [1] AFB [3] ABFF [2] CloudHKA

Storage cost
#(user secret key) 1 1 1 1

Key derivation cost (for a user u at SCj to derive a key of SCi)

Full computation tExp d · (tH + tXOR) 2d · (tH + tAES.D) + tH 2d · tΨ.ReEnc + 2tΨ.Dec + tAES.D
Outsourceable - - - 2d · tΨ.ReEnc
computation

User revocation cost (revoking a user u from SCi)
Rekey - O(|Ei| +

∑
SCz∈Vi

nz) O(|Vi| + |Ei| + ni) O(|Vi| + |Ei| + ni)

Full data update - #c(u) · (tAES.D + tAES.E) #c(u) · (tAES.D + tAES.E) |Vi| · tΨ.ReKeyGen + 2 · #c(u) · tΨ.ReEnc
Outsourceable - - - 2 · #c(u) · tΨ.ReEnc
data update

User access right authorization
Read-Write

√ √ √ √

Read-only - - -
√

Write-only - - -
√

Security
Security game - Key-Recovery Key-Indistinguishability Message-Indistinguishability
Building block - PRF family PRF family and AES Uni-directional PRE
† Exp: A modular exponentiation over a large group.
† H: A cryptographic hash function.
† tf : The computation time of function f .

obtain K and M ′
ρ. The total key derivation cost of the other three schemes

are also linear in d. Nevertheless, only CloudHKA can outsource most of the
computation operations to CS so that a user only needs constant computation
time in key derivation. Note that in [1], although the computation operation
only contains a modular exponentiation, the size of the used group equals to the
size of the multiplication of d large co-prime numbers. The computation time in
key derivation is still linear to d.

User Revocation Cost. In CloudHKA, to revoke a user u at SCi, the rekey
operation for DP contains: (1) |Vi| times of Ψ.KeyGen, Ψ.ReKeyGen, and AES.E,
(2) one AES.G, (3) |Ei| times of Ψ.ReKeyGen, (4) ni times of PKE.E, and (5)
2 · #c(u) times of Ψ.ReEnc, where Vi = {SCz : SCz � SCi} is the set of SCi

and its lower classes, Ei = {(SCξ, SCz) : SCz ∈ Vi} is the set of relations
related to the classes in Vi, ni is the number of users (excluding u) at SCi, and
#c(u) is the number of decryptable data ciphertexts of u. The distribution-key
update only occurs in the class SCi, the distribution of the new distribution-
key is needed for the non-revoked users at SCi only. Note that the extended
HKA scheme in [2] is the first HKA scheme supporting this kind of local key re-
distribution property. To let the non-revoked users decrypt previously encrypted
data, in CloudHKA, DP only needs to run |Vi| times of Ψ.ReKeyGen to generate
the needed transform-keys to CS. CS can update every u’s decryptable header-
cipher into the one under the new write-key by using Ψ.ReEnc. In other three
HKA schemes, to update all u’s decryptable ciphertexts, DP needs to download
them, decrypt them with old data encryption keys, encrypt them with new data
encryption keys, and then upload them to CS.

4.2 Bell-LaPadula Security Model Observation

Our CloudHKA observes the simple security property and �-property. The uni-
directional property of Ψ ensures that a relation-key RelatKj→i cannot be re-
versed. Thus, it is not possible to compute the inverted header-cipher and
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body-cipher re-encryptions from class SCi to its lower class SCj . Therefore,
CloudHKA observes the simple security property. The �-property is observed
in CloudHKA since CS only allows a user at SCi to write data into SCi and
its higher classes. Note that giving all write-keys to CS does not violate the
�-property since CS does not have the Read right of any class in the policy.

4.3 Security Analysis

In this section, we formally show that CloudHKA ensures data confidentiality
based on the security of PRE schemes. We also demonstrate that the user revo-
cation mechanism in CloudHKA removes the access rights of a revoked user.

To simplify our security analysis, we assume that the encryption schemes AES
and PKE are IND-CPA secure. For example, AES with CBC mode and ElGa-
mal suit our need, respectively. The IND-CPA security of an encryption scheme
ensures that an unauthorized user cannot distinguish an encrypted distribution-
key, read-key, or datum from an encrypted random string. By the assumption,
CloudHKA ensures that only an authorized user can obtain legal distribution-
keys and read-keys. Then, the security of our CloudHKA only relies on the
security of PRE scheme Ψ for protecting (K,M ′

ρ).
User- and Read-Key Authorization. In CloudHKA, DP stores DistKi as

{DistKi}PKEu under user u’s individual public-key pku for a user u at SCi. Only u
can decrypt {DistKi}PKEu to obtain DistKi. DP stores ReadKi as {ReadKi}AESDistKi

.
Only an authorized user who is assigned DistKi can obtain ReadKi.

Data Confidentiality. Our goal is to show that even if CS and a set of
malicious users collude, for a given SCi∗ ’s header-cipher and ρ-th block body-
cipher pair (HdrSCi∗

ID , BodySCi∗
ID [ρ]) that encrypts eitherm0 = (K0,M

′
ρ,0) orm1 =

(K1,M
′
ρ,1), it is hard for the collusive entities to determine the original message

of the ciphertext pair. The original messages m0 and m1 are chosen by the
collusive entities. A malicious user can be a non-user, a revoked user, or an
authorized user. They are not authorized to read the data at SCz for SCi∗ �
SCz. The formal security notion for message-indistinguishable HKA and detailed
proof of the following theorem is described in the full version [10].

Theorem 1. Our CloudHKA is message-indistinguishable if the underlying
PRE scheme Ψ is IND-CPA secure.

Revocation of Access Rights. We illustrate that the user revocation mecha-
nism in CloudHKA removes the Write and Read rights of a revoked user.

– Preventing a revoked user from writing data. To revoke a user from SCi, DP
removes u from SCi in his HAC policy directly. Then, the request of writing
operations from u will not pass CS’s validity check. u is no longer allowed
to write data into SCz for SCi � SCz .

– Preventing a revoked user from reading newly encrypted data. The rekey
operation for revoking u ensures that u cannot decrypt newly encrypted
data. We give an illustration with the following three parts:
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• u cannot obtain the updated ReadK′i. The readKey-cipher of SCi is up-
dated as {ReadK′i}AESDistK′i

. Only the non-revoked users at SCi can update

the distribution-key as DistK′i for decrypting {ReadK′i}AESDistK′i
to obtain

ReadK′i.
• u no longer decrypts new ciphertext pair (Hdr′SCz

ID , Body′SCz

ID [ρ]) for
SCz � SCi. Since u cannot obtain ReadK′i, u cannot decrypt
(Hdr′SCz

ID , Body′SCz

ID [ρ]). The relation-keys RelatKz→ξ for SCz � SCi

are re-generated by using the updated key pairs. u cannot use the new
(or old) relation-keys to re-encrypt new (Hdr′SCz

ID , Body′SCz

ID [ρ]) into the
old one under WriteKz. Thus, u cannot derive the original message in
(Hdr′SCz

ID , Body′SCz

ID [ρ]).

• u no longer decrypts new body-ciphers Body′SCz

ID for SCz � SCi. Since u

cannot decrypt the new (Hdr′SCz

ID , Body′SCz

ID [ρ]) for SCz � SCi to obtain
(K,M ′

ρ), he cannot recover M by computing AONT−1(M ′).

– Preventing a revoked user from reading previously encrypted data. In revok-
ing a user u from SCi, DP sends a transform-key TranKz for each SCz , SCz �
SCi. CS uses TranKz to update (re-encrypt) each old (HdrSCz

ID , BodySCz

ID [ρ])

as a new (Hdr′SCz

ID , Body′SCz

ID [ρ]). Hereafter, when u requests to read old da-

tum ID, CS returns the new 〈{ReadK′z}AESDistK′z
, Hdr′SCz

ID , Body′SCz

ID 〉. Since u

cannot obtain DistK′z, he cannot obtain (K,M ′
ρ) and recover M .

5 Discussion

This section introduces some existing desirable PRE schemes for CloudHKA.
Then, we demonstrate that CloudHKA can be slightly extended for dealing with
the following extra issues in practical system. (Please refer to the full version
[10] for detailed illustrations.)

– Issue 1. The outsourced data stored in CS may be altered by unexpected bit
flips from system errors or accidentally deleted by CS. (Solution: To apply
data integrity check schemes such as hash-then-sign.)

– Issue 2. The re-encryption operations in key derivation and ciphertext up-
date may cause some unexpected errors. (Solution: To apply IND-CCA se-
cure PRE schemes [26,28])

– Issue 3. The rekey cost in computation and communication for distributing a
new distribution-key of SCi is linear in the number of users at SCi. (Solution:
To apply a tree-based group key management (GKM) scheme [11,12,29] to
maintain distribution-key among a dynamic set of users at each class.)

6 Conclusion

In this paper we propose a practical CloudHKA for controlling data access in
cloud computing. CloudHKA observes the Bell-Lapadula security model. We
use ciphertext re-encryption technique to minimize the computation cost for a
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user in key derivation and for DP and CS in ciphertext update. CloudHKA
deals with the user revocation issue practically and provides flexible authoriza-
tion of data access rights. Simultaneously, CloudHKA is secure against the le-
gal access attack. The proposed CloudHKA is formally shown to be message-
indistinguishable by assuming IND-CPA security of the underlying PRE scheme.
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Abstract. The notion of P-homomorphic signatures, introduced by Ahn
et al. (TCC 2012), generalizes various approaches for public computa-
tions on authenticated data. For a given predicate P anyone can derive a
signature for a message m′ from the signatures of a set of messages M ,
as long as P(M,m′) = 1. This definition hence comprises notions and
constructions for concrete predicates P such as homomorphic signatures
and redactable signatures.

In our work we address the question of how to combine Pi-
homomorphic schemes for different predicates P1,P2, . . . to create a
richer and more flexible class of supported predicates. One approach
is to statically combine schemes for predicates into new schemes for log-
ical formulas over the predicates, such as a scheme for AND (P1 ∧ P2).
The other approach for more flexibility is to derive schemes which allow
the signer to dynamically decide which predicate to use when signing a
message, instead of supporting only a single, fixed predicate.

We present two main results. One is to show that one can indeed de-
vise solutions for the static combination for AND, and for dynamically
adjustable solutions for choosing the predicate on the fly. Moreover, our
constructions are practical and add only a negligible overhead. The other
main result is an impossibility result for static combinations. Namely, we
prove that, in contrast to the case of AND, many other formulas like the
logical OR (P1 ∨ P2) and the NOT (¬P) do not admit generic com-
binations through so-called canonical constructions. This implies that
one cannot rely on general constructions in these cases, but must use
other methods instead, like finding new predicate-specific solutions from
scratch.

1 Introduction

The notion of P-homomorphic signatures has been put forward by Ahn et al. [1]
as a generalization of several concurrent approaches to compute on authenti-
cated data. The predicate P takes as input a set of messages M and deter-
mines the admissible messages m′ which can be derived from M , and for which
a signature can be publicly computed from the signatures for the messages
in M . Examples covered by such signatures include homomorphic signatures
[14,19,13,6,16,18,3,8,7,15,11] where m′ is the sum of all messages in M , transi-
tive signatures [20,5,23,26,25,10] where m′ describes a path in a graph given by
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M , and redactable signatures [19,24,21,2,17,12,22,9] where m′ is a substring of
the single message M .

Ahn et al. [1] proposed two general security notions for P-homomorphic signa-
tures. The first one is unforgeability and says that one should not be able to forge
signatures for fresh messages which have not been signed before, and which are
not publicly derivable. The other notion is called context hiding and provides
strong privacy. It says that a derived signature for an admissible message m′

and freshly created signatures for m′ have statistically close distributions. This
guarantees for instance that the original message in case of redactable signatures
remains hidden. The context hiding notion has been subsequently refined in [4].

P-Homomorphic Signatures with Adjustable Predicates. While the abstract no-
tion of P-homomorphic signatures is very handy for arguing about the security
of solutions, any construction so far, even the ones in [1,4], are for a specific
fixed predicate P, such as quoting substrings of a message. What is currently
unknown is how to adjust solutions for fixed predicates in the following sense:

– One desirable option may be the possibility to combine a set of given homo-
morphic schemes for predicates P1,P2, . . . into one for a new P-homomorphic
signature scheme. Here, P may be a simple combination such as P1 ∧ P2

or P1 ∨ P2, or describe even more complex functions. An example are two
redactable schemes, one allowing for redaction only at the front of the mes-
sage (P1), and the other one enabling redaction only at the end (P2). Then
a P1 ∨ P2-homomorphic scheme would be a scheme for quoting substrings,
by first pruning at the front and then truncating in another step at the end.
Note that the problem here is to present a general transformation which
supports a rich set of combinations from, say, basic predicates P1,P2, . . . ,
instead of having to build schemes for P from scratch.

– Another desirable feature, which is not offered by the previous ability to
combine predicates, is that signer can decide “on the fly” for each signature
which predicate P the signature should support. Here, the set of admissible
predicates is only bound by the universe P of predicates for which such
signature schemes have been devised yet. This would allow to make the set
of admissible message derivates depend on the message itself, e.g., supporting
selective redaction for different messages.

We call general constructions with the first property statically adjustable because
the combined predicate P is fixed at the time of key generation. The latter
schemes are called dynamically adjustable. Both approaches have their merits
and display their full power only in combination. One can first derive (statically)
adjustable schemes for a larger universe P , and then use this universe for the
dynamically adjustable scheme.

Constructing Schemes with Statically Adjustable Predicates. We first investigate
simple static combinations such as P1∧P2, P1∨P2, and ¬P. Having solutions for
these cases would immediately allow arbitrarily complex combinations of predi-
cates. Our first result is to confirm for the logical AND that the “componentwise”
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solution works: sign each message with the schemes for predicates P1,P2 individ-
ually, and derive signatures by applying the corresponding algorithms for each
component.

Our main result is to show that the logical OR, P1 ∨ P2, in general does not
admit canonical constructions. Such canonical constructions can combine given
signatures of the individual schemes into one for the P1 ∨ P2 predicate, and can
vice versa split any signature for the OR into parts for the individual schemes.
Our AND construction is of this type. Our negative result for the OR holds for
(almost) arbitrary predicates P1,P2, essentially only excluding trivial examples
like P1∨P1. Note that we cannot hope to show a similar result for non-canonical
solutions, as for some cases we know constructions from scratch for P1∨P2 (e.g.,
for quotable substrings).

We actually present a more general result, saying that one cannot find canon-
ical constructions for any predicate combination f(P1,P2, . . . ) if one is able to
efficiently find a derivable message m′ under f(P1,P2, . . . ) and from a message
set M , such that m′ is not derivable under one of the predicates individually.
This excludes the AND case, because any derivable message m′ in P1 ∧P2 must
be also valid according to both in P1 and P2. Yet, this notion includes the OR
case if m′ can be derived under one predicate, and therefore the OR, but not un-
der the other predicate. It also covers the NOT case straightforwardly, because
if m′ is derivable under f(P1) = ¬P1, then it is clearly not derivable under P1.
The impossibility result holds even if the canonical construction depends on f
and the predicates. Put differently, it seems that the only general and non-trivial
solutions for statically adjustable predicates are the ones for logical ANDs.

Constructing Schemes with Dynamically Adjustable Predicates. Does the neg-
ative result for statically adjustable parameters also rule out solutions for the
dynamic case? Not necessarily, because in this case we assume that the signer
adaptively chooses the predicate P from the universe P for which constructions
are already known. Indeed we show that the “certify-then-sign” construction
provides a solution in this case: use a regular signature scheme to certify a pub-
lic key for the P-homomorphic scheme for the chosen predicate P ∈ P and sign
the message under the secret key for P. Some care must be taken, though, be-
cause in order to preserve context hiding the key pair for the P-homomorphic
scheme must remain fixed throughout the life time.

2 Preliminaries

We recall the definition and security notions of P-homomorphic signatures, as
given in [1,4], and adopt them slightly for our adjustable setting.

2.1 Adjustable P-homomorphic Signature Schemes

We assume a fixed but public universe P of predicates P1,P2, . . . , each pred-
icate associated with a publicly known Pi-homomorphic signature scheme. A
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predicate Pi : 2
M ×M → {0, 1} indicates whether a set of messages M allows

to derive another message m′ from the message space M or not. We give the
signer and the verifier the predicate P in question as additional input. In case
of a single fixed predicate P, as for the statically adjustable setting, where the
universe P is a singleton, this is an invariant for the scheme and could be ig-
nored by both algorithms. In fact, in this case the notion basically coincides
with the definition of a P-homomorphic scheme, the only difference being the
predicate given to the signers and verifier as additional input. In this sense the
definition of schemes with statically adjustable predicates is a rehash of the no-
tion of P-homomorphic signatures. We stress that we do not suggest to change
the terminology for P-homomorphic schemes. The reader should bear in mind,
however, that schemes with statically adjustable predicates in this paper implic-
itly assume a construction from selected P-homomorphic schemes underneath.
In light of this it matches the dynamic counterpart where predicates are chosen
adaptively for each signature.

We simplify the notation below, and write Verify(pk,M,Σ,P) as shorthand for∧
m∈M Verify(pk,m, σm,P) with Σ = {σm}m∈M . Similarly, we sometimes write

Σ ← Sign(sk,M,P) for Σ = {Sign(sk,m,P) |m ∈M }.

Definition 1 (Adjustable P-homomorphic Signature Scheme). A (stat-
ically or dynamically) adjustable P-homomorphic signature scheme is a tuple of
PPT algorithms (KeyGen, Sign, SignDer,Verify) such that:

– (sk, pk) ← KeyGen(1λ) maps the security parameter λ ∈ N, given in unary,
to a key pair.

– σ ← Sign(sk,m,P) on input the secret key sk, a message m ∈ M, and a
predicate P ∈ P returns a signature σ to m and P.

– σ′ ← SignDer(pk,M,Σ,m′,P) takes as input the public key pk, a set of mes-
sages M ⊆ M along with signatures Σ = {σm}m∈M , a message m′ ∈ M,
and the predicate P ∈ P to be applied, and outputs a signature σ′ (or a
special symbol ⊥ indicating failure).

– b ← Verify(pk,m, σ,P), given the public key pk, a signature σ, a message
m ∈ M, and a predicate P ∈ P, returns 1 if the signature is valid for the
given message, and 0 if not.

We assume the usual correctness condition, namely, that for any λ ∈ N, any
(sk, pk)← KeyGen(1λ), any (m,M,m′) ∈M×2M×M and any P ∈ P we have:

– if σ ← Sign(sk,m,P), then Verify(pk,m, σ,P) = 1 with probability 1; and
– for any Σ = {σm}m∈M , if Verify(pk,M,Σ,P) = 1 and P(M,m′) = 1, then

for any σ′ ← SignDer(pk,M,Σ,m′,P) we have Verify(pk,m′, σ′,P) = 1 with
probability 1.

2.2 Unforgeability

For any predicate P and set M of messages it is convenient to consider the set of
messages which can be derived (recursively) from M through P . Hence, similar
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to [1], we define P(M) = {m′ ∈M | P(M,m′) = 1} for any M ⊆M, as well as
P0(M) = M and Pi(M) = P(Pi−1(M)) for i > 0. Let P∗(M) =

⋃
i∈N0

Pi(M).
We sometimes switch between the set P∗(M) and its predicate analogue, with
P∗(M,m′) = 1 iff m′ ∈ P∗(M). Unless mentioned differently, we assume that
any predicate can be evaluated efficiently.

We also presume, without further mentioning it, that predicates aremonotone,
that is, P(M ′) ⊆ P(M) if M ′ ⊆M . It follows inductively that P∗(M ′) ⊆ P∗(M)
in this case as well. This is necessary to ensure that, below in the unforgeability
game, the set of messages for which a signature can be trivially derived from
known signatures for M , does not shrink by asking for more signatures.1 An
alternative is to consider below all subsetsM ′ ⊆M and declare that any message
which is in P(M ′) to be a message for which a signature is trivial to derive from
the signatures for messages in M ′.

We again consider both the static and the dynamic case simultaneously, with
the understanding that the predicate is fixed in the static case via P = {P}.
Definition 2 (Unforgeability). A (statically or dynamically) adjustable P-
homomorphic signature scheme (KeyGen, Sign, SignDer,Verify) is called unforge-
able, if any PPT adversary A has a negligible advantage in the following game:

1. The challenger C generates the key pair (sk, pk)← KeyGen(1λ) and gives pk
to the adversary A. The challenger initializes two empty sets T and Q.

2. A interleaves adaptively the following queries:
– Signing queries: A chooses a message m ∈ M and a predicate P ∈ P,

upon which C returns a unique handle h to A, runs σ ← Sign(sk,m,P),
and stores (h,m, σ,P) in T .

– Derivation queries: A chooses a set of handles h = {hi}i, a message m′ ∈
M and a predicate P. The challenger C retrieves the tuples (hi,mi, σi,Pi)
from T and returns ⊥ if one of these tuples does not exist, Pi �= P for
some i, or P(M,m′) = 0. Otherwise, the challenger returns a unique
handle h′ to A, runs σ′ ← SignDer(pk,M, {σm}m∈M ,m′,P) for M =
{mi}i and stores (h′,m′, σ′,P) in T .

– Reveal queries: If A chooses a handle h then C returns ⊥ if there does
not exist a tuple of the form (h,m, σ,P) in T . Otherwise, it returns σ to
A and adds (m,σ,P) to the set Q.

3. A outputs a pair (m,σ,P) and wins if the following conditions hold:
– Verify(pk,m, σ,P) = 1, and
– m /∈ P∗(MP), where MP = {m ∈ M | (m, ∗,P) ∈ Q}, the set of messages

in the query set Q for the same predicate P.

Note that the condition on m /∈ P∗(MP) can be relaxed by considering the set M
of messages which have been signed under some predicate (and not only those
which have been signed under the same predicate P as in the forgery attempt).
In the static case both cases coincide, of course.

1 Interestingly, this is not stipulated explicitly in previous works [1,4]. Still, the pred-
icates for the constructions there satisfy this property. It is, nonetheless, generally
required for a reasonable definition in order to avoid trivial examples of schemes
which are formally unforgeable, but intuitively insecure.
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2.3 Context Hiding

The original definition of Ahn et al. [1] requires a strong privacy requirement,
basically saying that a derived signature (from previously signed messages M),
and a fresh signature for the new message m′ are statistically close. It follows
that a derived signature does not leak any information about the starting mes-
sages M , and thus implies other common privacy notions for, say, redactable
signature schemes [9]. Still, the notion has been strengthened in [4] to adaptive
context hiding and complete context hiding, basically saying that derived sig-
natures (for messages with any valid signatures) and fresh signatures are close.
The generalization to valid signatures as input, instead of only signed messages,
allows to cover previously excluded cases like rerandomizable signatures.

While the notion of adaptive context hiding is game-based, the notion of com-
plete context hiding is defined through statistically close distributions of signa-
tures. It is convenient for us here to present the latter definition also through
a game, but considering unbounded adversaries (as opposed to efficient adver-
saries for adaptive context hiding). Otherwise the notions are identical. Our
game-based definition of complete context hiding can be seen easily to be equiv-
alent to the distributional approach in [4].

Definition 3 ((Complete and Adaptive) Context Hiding). A
(statically or dynamically) adjustable P-homomorphic signature scheme
(KeyGen, Sign, SignDer,Verify) is called completely (resp. adaptively) context
hiding, if any unbounded (resp. PPT) adversary A has a negligible advantage
in the following game:

1. The challenger C generates the key pair (sk, pk) ← KeyGen(1λ) and gives
(sk, pk) to the adversary A.

2. The adversary selects a set M of messages, and set {σm}m∈M of signatures,
a predicate P ∈ P, and a message m′ and hands it to the challenger. If
P(M,m′) = 0 or if Verify(pk,M, {σm}m∈M ,P) = 0 then the challenger im-
mediately returns ⊥. Else it picks a random bit b ← {0, 1} and computes a
derived siganture σ′ ← SignDer(pk,M, {σm}m∈M ,m′,P) if b = 0, and a fresh
signature σ′ ← Sign(sk,m′,P) in case b = 1. It returns σ′ to the adversary.

3. Eventually the adversary outputs a bit b∗ ∈ {0, 1} and wins if b∗ = b. The
advantage of A is defined to be Adv(A) =

∣∣Prob[ b∗ = b]− 1
2

∣∣.
Some remarks are in place. First note that the adversary can ask the challenger
only once. A standard hybrid argument shows that this remains true for multiple
(polynomially many) queries for which the challenger re-uses the same bit b. For
both cases, the static and the dynamic one, the advantage grows by a factor
proportional to the number of queries.

Secondly, note that in the dynamically adjustable case we do not aim to hide
the predicate P which has been used to compute the signature. In a stronger
requirement one could demand that the actual predicate remains hidden, either
among all predicates from the universe, or among the predicates for which the
public derivation algorithm would succeed. The former would require a super-
polynomial set P (else the privacy attacker could probe the derivation algorithms
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for all predicates). The latter would mean a trade-off between privacy, usability,
and the signer’s intention for restricting the class of admissible public opera-
tions: if the signature would hide the corresponding predicate among multiple
possibilities, then signatures for a different predicate than the original choice
may be derivable. This would imply that the signer loses some control about the
(in)ability to derive further signatures. Hence, we do not pursue such stronger
requirements here.

3 Statically Adjustable Computations

In this section we investigate statically adjustable constructions for the basic
operations AND, OR, and NOT. As explained in the introduction, we can give
a general solution for AND, but cannot hope to give (general) transformations
for the other two cases.

Below we consider combinations for arbitrary functions f over a fixed2 number
q of predicates P1,P2, . . . ,Pq. We assume that such a function f(P1,P2, . . . ,Pq)
over the predicates itself constitutes a predicate and defines a set of derivable
messages from M in a straightforward way, by evaluating the predicates for
(M,m′) and plugging the results into the formula. If viewed as sets, our basic
examples for OR, AND, and NOT can then be written as f∨(P1,P2)(M) =
P1(M)∪P2(M), and f∧(P1,P2)(M) = P1(M)∩P2(M), as well as f¬(P1)(M) =
M\ P1(M).

Note that one could more generally also define f(P1,P2, . . . ,Pq) for divisible
message sets M = (M1,M2, . . . ,Mq) by evaluating f(M,m′) as a logical formula
over P1(M1,m

′), . . . ,Pq(Mq,m
′), i.e., assigning only the i-th part Mi of M to

the i-th predicate, instead of using the same set M for all predicates. This can be
captured in our notion with a single M by having the predicates Pi first project
M onto Mi and then evaluating the actual predicate on (Mi,m

′). For sake of
readability we use the simpler notion with identical M .

We also assume that the message spaces Mi of all schemes are identical.
This can always be achieved by setting M =

⋂q
i=1Mi. Note that, if message

spaces are not identical this in principle allows to distinguish, say, in case of OR
which predicate can be used to create a signature for some message. Since this
would violate the idea of privacy immediately, we restrict ourselves to the case
of identical message spaces.

3.1 Statically Adjustable Computations for AND

We first confirm that the solution to sign each message component-wise under
a set of public keys yields a secure solution for the AND. Instead of considering
only two predicates we allow to combine any fixed number q of predicates.

2 Note that, in general, the number of combined predicates is specific for the scheme
and must not depend on the security parameter, i.e., the design of the scheme does
not change with the security parameter. In this sense the number q of predicates is
constant in the security parameter.
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Construction 1 (AND-Construction). Let (KeyGeni, Signi, SignDeri,Verifyi)
be Pi-homomorphic signature schemes for predicates P1, . . . ,Pq. Then the fol-
lowing scheme (KeyGen, Sign, SignDer,Verify) is a P-homomorphic signature
scheme for P = P1 ∧ . . . ∧ Pq:

– KeyGen(1λ) runs (ski, pki)← KeyGeni(1
λ) for all i = 1, 2, . . . , q, and outputs

sk = (sk1, . . . , skq) and pk = (pk1, . . . , pkq).
– Sign(sk,m,P) computes σi ← Signi(ski,m,Pi) for all i and returns σ =

(σ1, . . . , σq).
– SignDer(pk,M,Σ,m′,P) first checks that Pi(M,m′) = 1 for all i, and then

creates σ′
i ← SignDeri(pki,M,Σi,m

′,Pi) where Σi is the set of projections
on the i-th component for each signature tuple in Σ = {σm}m∈M . It returns
σ′ = (σ′

1, . . . , σ
′
q).

– Verify(pk,M,Σ,P) returns 1 if and only if Verifyi(pki,M,Σi,Pi) = 1 for all
i (where again Σi is the set of projections on the i-th component for each
signature in Σ).

Correctness follows easily from the correctness of the underlying Pi-
homomorphic schemes.

Proposition 1. For any constant q and any unforgeable and completely
(resp. adaptively) context-hiding Pi-homomorphic schemes, Construction 1
(AND-Construction) is unforgeable and completely (resp. adaptively) context-
hiding.

For concrete parameters our proof shows that the advantage of breaking unforge-
ability resp. context hiding for the AND scheme is bounded by the sum of the
advantages for the corresponding property over all Pi-homomorphic schemes.

Proof. We first show unforgeability, then context hiding.

Unforgeability Assume that there exists a successful adversary A against un-
forgeability (Definition 2) for the P-homomorphic signature scheme where P =
P1∧. . .∧Pq. For each i ∈ {1, 2, . . . , q}, we first construct an adversaryAi against
the unforgeability of the underlying Pi-homomorphic signature schemes:

– Ai initially receives pki from the challenger Ci for the game against the Pi-
homomorphic signature schemes.

– Ai creates an initially empty table T ′ and runs (skj , pkj)← KeyGenj(1
λ) for

all j = 1, 2, . . . , q, j �= i to create the other keys.
– Ai invokes adversary A against the AND-scheme on pk = (pk1, . . . , pkq).
– For every signing query (m,P) from A, adversary Ai creates a signing query

for message m and the predicate Pi for its challenger and gets the handle h,
then computes σj ← Signj(skj ,m,Pj) for all j �= i, and stores (j, h,m, σj ,Pj)
in T ′.

– For every derivation query ({h},m′,P) ofA, adversaryAi passes a derivation
query for the corresponding handles ({h},m′,Pi) to its challenger to receive
a handle h′. If h′ �= ⊥ adversary Ai looks up all entries (j, h,m, σm,Pj) for
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j �= i in T ′ for the queried handles in {h} to formM = {m}, internally checks
Pj(M,m′) = 1, and computes σ′

j ← SignDerj(pkj ,M, {σm}m∈M ,m′,Pj). If
no error occurs it returns h′ to A and stores (j, h′,m′, σ′

j ,Pj) in T ′ for all
j �= i; else it returns ⊥.

– For every reveal requestAi runs a reveal request for the corresponding handle
h, combines the reply σi with the values σj from entries (j, h,m, σj ,Pj) in
T ′ to σ and sends it to A; in case of an error it simply returns ⊥.

– When A eventually outputs a tuple (m,σ,P), then Ai outputs the tuple
(m,σi,Pi) for the i-th component σi in σ.

Note that for each i adversary Ai perfectly simulates an attack of A on the P-
homomorphic scheme with the help of its challenger, such that A would output
a successful forgery with the same probability in the simulation as in the original
attack. By construction, we also have that the message setMP of queries (m, ∗,P)
in A’s queries in the simulation is identical to the set MPi

for queries (m, ∗,Pi)
of Ai to its challenger for each i. Hence, from m /∈ P∗(MP) it follows that
m /∈ P∗

i (MPi
) for some i ∈ {1, 2 . . . , q}. Furthermore, since verification succeeds

for all components, it also holds that Verifyi(pki,m, σ,Pi) = 1 for this i.
In other words, any successful forgery yields a successful forgery against (at

least) one of the underlying schemes. It follows that the probability of breaking
unforgeability for the AND scheme is bounded from above by the sum of the
probabilities to break each underlying scheme.

Context Hiding. Assume next that there exists a successful adversary A against
context hiding (Definition 3) for our P-homomorphic signature scheme with
P = P1 ∧ . . . ∧ Pq. As in the case of unforgeability we construct, for each
i ∈ {1, 2, . . . , q}, an adversary Ai against context hiding of the i-th scheme.
The advantage of A will be bounded from above by the sum over all advan-
tages of the Ai’s via a standard hybrid argument. Furthermore, each Ai will be
efficient if A is, such that the claim remains true for adaptive context hiding.

AdversaryAi receives a pair (ski, pki) from its challenger and creates the other
key pairs (skj , pkj) for j �= i by running KeyGenj(1

λ). It hands sk = (sk1, . . . , skq)
and pk = (pk1, . . . , pkq) to adversary A and waits for the adversary to create a
challenge request M,Σ,m′. For each signature σm in Σ adversary Ai extracts
the i-th component and thereby forms the set Σi. It passes M,m′, and Σi to
its own challenger to receive a signature σ′

i (or an error message). It creates the
signatures σ′

j for j < i by running the signing algorithm on m′; for j > i it
runs the signature derivation algorithm on M,m′, Σj to create the remaining
signatures σ′

j . In all cases it checks the validity of the predicates and signatures.
If there is an error it returns ⊥ to the adversary A, and (σ′

1, . . . , σ
′
q) otherwise.

If A eventually outputs a bit b∗ then Ai, too, outputs this bit and stops.
For the analysis note that A1, given that its challenger uses b = 0, describes

the case that all signatures are derived via SignDer. It follows that the probability
of A correctly outputting 0 for derived signatures in the attack (and thus in the
perfect simulation throughA1) is exactly the probability that A1 returns 0, given
b = 0 in its challenge. Analogously, given b = 1 adversary Aq only creates fresh
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signatures via Sign in all components, hence given b = 1 the probability that Aq

returns 0 is exactly the same that A outputs 0 in the case that all signatures
are fresh. A standard hybrid argument now yields: Adv(A) =

∑q
i=1 Adv(Ai).

This proves context hiding. ��

3.2 Statically Adjustable Computations for OR and NOT

Our impossibility result holds for canonical constructions which combine Pi-
homomorphic schemes in a general way, ruling out specific constructions which
ignore the underlying schemes and builds a new scheme from scratch. We require
four algorithms, one for synthesizing public keys of the individual schemes into
one for the combined scheme (PKComb), one for splitting keys (PKSplit), one for
combining signatures (SigComb), and one to divide signatures for the combined
scheme into signatures for the individual schemes (SigSplit). The latter is usually
necessary to reduce the security to the security of the individual schemes.

For sake of readability we follow the statistical indistinguishability approach
also used for (complete) context hiding, and require that the distributions of the
algorithms above for combining and splitting keys and signatures have identical
distributions as if running the actual algorithms of the combined scheme directly.
As our proof below shows our impossibility result can be extended to cover
computationally indistinguishable distributions.

Definition 4 (Canonical Construction). Let f be a functional pred-
icate over predicates P1, . . . ,Pq for a fixed number q of predicates.
A statically adjustable f(P1, . . . ,Pq)-homomorphic signature scheme
(KeyGen, Sign, SignDer,Verify) is a canonical construction out of Pi-
homomorphic signature schemes (KeyGeni, Signi, SignDeri,Verifyi) if there
exist PPT algorithms (PKComb,PKSplit, SigComb, SigSplit) such that:

Identical distribution of combined keys: The following random variables
are identically distributed:
– Let (pk, sk)← KeyGen(1λ) and output pk;
– Let (pki, ski)← KeyGeni(1

λ) for all i, pk← PKComb(pk1, . . . , pkq), out-
put pk,

Identical distribution of split keys: The following random variables are
identically distributed:
– Let (pk, sk)← KeyGen(1λ) and output (pk1, . . . , pkq)← PKSplit(pk);

– Let (pki, ski)← KeyGeni(1
λ) for all i, output (pk1, . . . , pkq),

Identical distribution of combined signatures: For any PPT algorithm F
the following pairs of random variables are identically distributed:
– Run M ← F(1λ). Compute (pk, sk) ← KeyGen(1λ) and output

Σ ← Sign(sk,M, f(P1, . . . ,Pq));
– Run M ← F(1λ). For all i, compute (pki, ski) ← KeyGeni(1

λ)
along with Σi ← Signi(ski,M,Pi). Synthesize the pub-
lic key via pk ← PKComb(pk1, . . . , pkq) and output Σ ←
SigComb(pk, pk1, . . . , pkq, Σ1, . . . , Σq,M).
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Splitting Signatures: For any PPT algorithm F ′ we have that for
(pki, ski) ← KeyGeni(1

λ) for all i, pk ← PKComb(pk1, . . . , pkq),

(M,m′) ← F ′(1λ) where m′ ∈ f(P1, . . . ,Pq)(M), Σi ←
Signi(ski,M,Pi), Σ ← SigComb(pk1, . . . , pkq, Σ1, . . . , Σq,M),
σ′ ← SignDer(pk,M,Σ,m′, f(P1, . . . , Pq)), the probability that
(σ′

1, . . . , σ
′
q) ← SigSplit(pk, pk1, . . . , pkq,m

′, σ′) does not contain some
valid component and thus Verifyi(pki,m

′, σ′
i) = 0 for all i, is negligible.

In other words, SigSplit returns at least one valid signature for one of the underly-
ing predicates with sufficiently high probability. Our AND-construction is canon-
ical in the above sense: PKComb and SigComb both concatenate their inputs
(and PKSplit divides the concatenated keys again), and SigSplit simply returns
the signature itself. Note that the definition allows PKComb,PKSplit, SigComb,
and SigSplit to depend on the given predicates Pi; the construction only follows
a canonical pattern.

In what follows, we need to exclude trivial examples like P1 ∨ P2 = P1 ∨ P1.
Hence, for the OR we assume below the existence of a message m′ which can
be derived from a set of messages M under one predicate, but not the other
predicate. This clearly prevents P1 = P2. More generally, and to include for in-
stance also the NOT case, we assume thatm′ can be derived under f(P1,P2, . . . )
but not under one of the predicates; the excluded predicate Pi can be arbitrary,
but the output distribution of m′ does not depend on this choice. The latter is
necessary to ensure that m′ does not contain any information about the pred-
icate’s index i. Furthermore, we assume that such pairs (M,m′) are efficiently
computable. We discuss an illuminating example after the definition.

Definition 5 (Efficiently Distinguishable Predicates). Let f be a func-
tional predicate over predicates P1, . . . ,Pq. Consider a statically adjustable
f(P1, . . . ,Pq)-homomorphic signature scheme (KeyGen, Sign, SignDer,Verify).
Then the predicates are called efficiently distinguishable with respect to f , if
there exists a PPT algorithm F such that for any i ∈ {1, 2, . . . , q} and for any
(M,m′) ← F(1λ, i), we have m′ ∈

(
f(P1, . . . ,Pq)(M) \ P∗

i (M)
)
. Moreover, for

any i, j ∈ {1, 2, . . . , q} the distribution of m′ (over the coin tosses of F) in the
output of F(1λ, i) resp. F(1λ, j) is identical.

Let us demonstrate the property for the introductory example of two redactable
signature schemes (with message space M = {0, 1}∗), one allowing to drop
message bits only at the front (predicate P1), and the other one only at the
end (P2). Consider the OR predicate P1 ∨ P2 describing a scheme for quotable
substrings. Then F can simply pick m′ = 0λ and for i = 1 output M = {0λ1},
and for i = 2 it returns M = {10λ} instead. Clearly, for i = 1 one can derive
m′ from M via P2 and therefore for the OR, but not via P1, because the ’1’ at
the end cannot be redacted through P1. The same argument holds vice versa
for i = 2, and the (trivial) distributions on m′ are identical for both i = 1 and
i = 2. Hence, this examples has efficiently distinguishable predicates.

The case of NOT is even simpler. Algorithm F simply needs to find some
M and some m′ which lies in (¬P(M)) \ P∗(M) = M \ P∗(M), i.e., if m′ is
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not derivable according to P∗(M). Finally note that constructions based only on
AND cannot be distinguishable, since (P1(M) ∩ P2(M)) \ P∗

i (M) = ∅ for any i.

Theorem 1. Let f be a functional predicate over predicates P1, . . . ,Pq for a
fixed number q of predicates. Assume further that the predicates are efficiently
distinguishable with respect to f . Then there is no adaptively context-hiding,
statically-adjustable f(P1, . . . ,Pq)-homomorphic signature scheme which is a
canonical construction out of unforgeable Pi-homomorphic signature schemes.

The proof idea is as follows. Essentially we show how to forge a signature for
one of the underlying schemes. For this we use the distinguishability of the
predicates to create a set of messages M and a message m′ which is derivable
by f(P1, . . . ,Pq)(M) but does not lie in P∗

i (M) for some i. Then we ask for
signatures for the messages in M , and derive a signature for m′ via the public
operation SignDer for the combined scheme and for f(P1, . . . ,Pq). Splitting up
the signature into its components via SigSplit we obtain (with sufficiently large
probability) a valid signature for m′ under the i-th scheme. But since m′ /∈
P∗
i (M) we thus create a valid forgery, contradicting the security of the underlying

scheme. In the course of the proof we use the context hiding property to show
that the “skewed” choice of M,m′ (with m′ /∈ P∗

i (M)) does not bias the success
probability of SigSplit for returning a valid signature component for the i-th
scheme significantly. The formal proof appears in the full version.

We stress that the impossibility result holds for the computational notion of
adaptive context hiding (with efficient distinguishers), which even strengthens
our result. As mentioned before, a slightly more involved argument allows to
extend the result also to algorithms PKComb,PKSplit, SigComb whose output is
only computationally indistinguishable from the one of the original algorithms
(instead of being identical). This requires some additional steps to prove that
gradually replacing the algorithms does not change the behavior of SigSplit in
the above proof significantly.

4 Dynamically Adjustable Computations

In the dynamic case we assume a polynomial universe P of predicates such that
there exists a Pi-homomorphic scheme for each Pi ∈ P . We furthermore assume
that given (a description of) Pi one can efficiently recover the corresponding
scheme, e.g., if the universe consists only of a fixed number of predicates. Vice
versa, we assume that Pi is identifiable from the scheme’s public key pki. This
in particular implies that the public keys for predicates must be unique. For
simplicity we assume an ordering on predicates in P and often identify the
predicate Pi and the scheme with its number i according to this order. We
simply call sets P as above efficient.

In the construction we need to assume that for a given predicate identifier i
there is a fixed yet (pseudo)random key pair (ski, pki)← KeyGeni(1

λ), generated
according to the key generation algorithm for the scheme for predicate Pi. This
key pair remains identical for all signature requests for Pi. For a polynomial
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universe P this can be in principle implemented by generating the keys (ski, pki)
when creating the scheme’s keys (sk, pk), and storing them in sk. In practice this
may indeed be admissible for a small number of predicates, a more applicable
approach may be to generate the keys on the fly via a pseudorandom function.
Namely, store a key κ of a pseudorandom function in sk, and to create the
key pair for predicate Pi, recover the (pseudo)random output ωi = PRF(κ,Pi)
and re-run KeyGeni(1

λ;ωi) for ωi to derive the same pair (ski, pki) as before.
For unforgeability it can be formally shown via standard techniques that this
solution is (quasi) as secure as generating fresh key pairs and maintaining a table
to look up previous keys; for context hiding, however, one requires an additional
assumption on the security of the underlying scheme to preserve privacy, as
discussed in the full version.

Similarly, the public keys pki and their (fixed) certificates certi may be pub-
lished at once, or may be attached to each signature upon creation. Below we
adopt the latter solution as it rather complies with our notion of (stateless)
P-homomorphic signatures. Hence, below we assume for simplicity that the ef-
ficient universe P stores all pairs (ski, pki) with once-created certificates certi at
the beginning in sk. For certification we use a regular signature scheme which
we can subsume as a special case under P-homomorphic schemes, without con-
sidering a SignDer algorithm nor context hiding. If we define P(M) = M for
this scheme, unforgeability for this “homomorphic” scheme corresponds to the
common notion of unforgeability for regular schemes.

Construction 2 (Certify-Then-Sign Construction). Let P be an efficient
set of predicates P1,P2, . . . ,Pq. Let (KeyGen0, Sign0,Verify0) be a regular signa-
ture scheme. Define the following dynamically adjustable P-homomorphic signa-
ture scheme (KeyGen, Sign, SignDer,Verify):

– KeyGen(1λ) generates (sk0, pk0) ← KeyGen0(1
λ), generates key pairs

(ski, pki) ← KeyGeni(1
λ) for all predicates Pi, and certificates certi ←

Sign0(sk0, pki) for all i. It returns sk = (sk0, {(ski, pki, certi)}i) and pk = pk0.
– Sign(sk,m,Pi) looks up (ski, pki, certi) for Pi in sk and computes σi ←

Signi(sk,m) and returns σ = (σi, pki, certi).
– SignDer(pk,M,Σ,m′,P′) checks that all signatures carry the same pki

and certi for predicate Pi, that P′ = Pi, that Pi(M,m′) = 1, that
Verifyi(pki,M,Σ) = 1, and, if all checks succeed, computes σ′

i ←
SignDeri(pki,M,Σ,m′) and returns σ′ = (σ′

i, pki, certi).
– Verify(pk,m, σ,P) checks that P corresponds to the public key in

(σi, pki, certi), that Verify0(pk, pki, certi) = 1, and that Verifyi(pki,m, σi) = 1.
Only if all checks succeed, it returns 1.

It is straightforward to verify that the above construction is correct in the sense
that genuine (fresh and derived) signatures are accepted by Verify. This follows
from the correctness properties of the regular scheme and of the Pi-homomorphic
ones.

Proposition 2. Assume that the signature scheme (KeyGen0, Sign0,Verify0) and
all Pi-homomorphic schemes are unforgeable according to Definition 2. Then the
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Certify-then-Sign Construction 2 is also unforgeable for the efficient universe
P = {P1, . . . ,Pq} for the fixed number q of predicates.

In terms of concrete security, the success probability of any adversary against the
construction is (for similar running time) bounded from above by the probability
of forging certificates, plus q times the maximal advantage against any of the
schemes from P .

Proof. Assume that there exists a successful forger A. Then this adversary is
able to forge with non-negligible probability a signature σ∗ = (σ, pk, cert) for
a message m such that, in particular, Verify0(pk0, pk, cert) = 1. Note that if
the probability that A succeeds and that pk does not match any of the keys
pki created by the signer for the predicates Pi, was non-negligible, then this
would straightforwardly contradict the unforgeability of the certification scheme.
Namely, construct an algorithm A0 against the certification scheme which, on
input pk0, creates the polynomial number of key pairs (ski, pki)← KeyGeni(1

n)
and asks for signatures certi for all pki from the signing oracle, and then emulates
the attack of A with the help of the secret keys. If A eventually outputs σ∗ =
(σ, pk, cert), then A0 returns pk, cert as the forgery attempt.

If the probability that A would succeed for a fresh pk with non-negligible
probability as defined above, then our efficient algorithm A0, which perfectly
simulates the actual attack, would then successfully forge a signature cert for
a new “message” pk with non-negligible probability. Since this would contra-
dict the unforgeability of the certification scheme, we can assume that this case
happens with negligible probability only. It follows that A must succeed with
non-negligible probability for a key pk = pki for some (unique) i, such that
Verifyi(pki,m, σ,Pi) = 1, and the message is not trivially derivable under the
corresponding predicate Pi from the signing queries for Pi.

Note that the specific choice pki may depend on the adversary’s randomness.
However, there must exist at least one predicate Pi (among the q schemes) such
thatA succeeds for this key fixed pki with non-negligible probability. We can now
derive an adversary Ai successfully forging signatures for this Pi-homomorphic
scheme. Adversary Ai receives from the challenger the public key pki and gets
access to a Signi-oracle. It generates (sk0, pk0) and all other key pairs (skj , pkj)
and signs all of them, including pki. The adversary Ai then runs A on pk0,
supplying all signatures requests for Pj �= Pi with the help of the secret keys,
and using the external signing oracle for Pi. IfA finally returnsm and (σ, pk, cert)
then Ai returns m and σi.

Note that, if A has a non-negligible success probability for forging under the
key pki, then Ai has the same success probability. This follows as the signature
verifies under pki, and if the message m is not derivable from A’s queries for Pi,
then this is also true for Ai. This, however, would contradict the unforgeability
assumption about the Pi-homomorphic scheme. ��

Proposition 3. Assume that all Pi-homomorphic schemes are completely
(resp. adaptively) context-hiding according to Definition 3. Then the Certify-
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then-Sign Construction 2 is also completely (resp. adaptively) context-hiding for
an efficient universe P = {P1,P2, . . . ,Pq} of a fixed number q of predicates.

The proof is similarly to the unforgeability case and omitted for space reasons.
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Abstract. In the problem of private “swarm” computing, n agents wish to se-
curely and distributively perform a computation on common inputs, in such a way
that even if the entire memory contents of some of them are exposed, no informa-
tion is revealed about the state of the computation. Recently, Dolev, Garay, Gilboa
and Kolesnikov [ICS 2011] considered this problem in the setting of information-
theoretic security, showing how to perform such computations on input streams
of unbounded length. The cost of their solution, however, is exponential in the
size of the Finite State Automaton (FSA) computing the function.

In this work we are interested in efficient (i.e., polynomial time) computation
in the above model, at the expense of minimal additional assumptions. Relying on
the existence of one-way functions, we show how to process unbounded inputs
(but of course, polynomial in the security parameter) at a cost linear in m, the
number of FSA states. In particular, our algorithms achieve the following:

In the case of (n, n)-reconstruction (i.e., in which all n agents participate in
the reconstruction of the distributed computation) and at most n− 1 agents
are corrupted, the agent storage, the time required to process each input sym-
bol, and the time complexity for reconstruction are all O(mn).
In the case of (n − t, n)-reconstruction (where only n − t agents take part
in the reconstruction) and at most t agents are corrupted, the agents’ stor-
age and time required to process each input symbol are O(m

(
n−1
n−t

)
). The

complexity of reconstruction is O(mt).
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We achieve the above through a carefully orchestrated use of pseudo-random
generators and secret-sharing, and in particular a novel share re-randomization
technique which might be of independent interest.

1 Introduction

Distributed computing has become an integral part of a variety of systems, including
cloud computing and “swarm” computing, where n agents perform a computation on
common inputs. In these emerging computing paradigms, security (i.e., privacy and
correctness) of the computation is of a primary concern. Indeed, in swarm computing,
often considered in military contexts (e.g., unmanned aerial vehicle (UAV) operation),
security of the data and program state is of paramount importance; similarly, one per-
sistent challenge in the field of cloud computing is ensuring the privacy of users’ data,
demanded by government, commercial, and even individual cloud users.

In this work, we revisit the notion of perennial private distributed computation, first
considered by Dolev, Garay, Gilboa and Kolesnikov [8]. In such a computation, an un-
bounded sequence of commands (or inputs) are interpreted by several machines (agents)
in a way that no information about the inputs as well as the state of the computation is
revealed to an adversary who is able to “corrupt” the agents and examine their internal
state, as long as up to a predetermined threshold of the machines are corrupted.

Dolev et al. were able to provide very strong (unconditional, or information-theoretic)
security for computations performed by a finite-state machine (FSA), at the price how-
ever of the computation being efficient only for a small set of functions, as in general
the complexity of the computation is exponential in the size (number of states) of the
FSA computing the function.

In this work, we minimally weaken the original model by additionally assuming the
existence of one-way functions (and hence consider polynomial-time adversaries—in
the security parameter; more details below), and in return achieve very high efficiency
in some cases as a function of the size of the FSA. We stress that we still consider
computation on a priori unbounded number of inputs, and where the online (input-
processing) phase incurs no communication. We now describe the model in more detail.

The setting. As in [8], we consider a distributed computation setting in which a party,
whom we refer to as the dealer, has a finite state automaton (FSA) A which accepts
an (a priori unbounded) stream of inputs x1, x2, . . . received from an external source.
The dealer delegates the computation to agents A1, . . . , An, by furnishing them with
an implementation of A. The agents receive, in a synchronized manner, all the inputs
for A during the online input-processing phase, where no communication whatsoever
is allowed. Finally, given a signal from the dealer, the agents terminate the execution,
submit their internal state to the dealer, who computes the state of A and returns it as
output.

We consider an attack model where an entity, called the adversary, Adv, is able to
adaptively “corrupt” agents (i.e., inspect their internal state) during the online execution
phase, up to a threshold1 t < n. We do not aim at maintaining the privacy of the

1 We note that more general access structures may be naturally employed with our constructions.
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automatonA; however, we wish to protect the secrecy of the state of A and the inputs’
history. We note that Adv may have external information about the computation, such
as partial inputs or length of the input sequence, state information, etc. This auxiliary
information, together with the knowledge of A, may exclude the protection of certain
configurations, or even fully determine A’s state. We stress that this cannot be avoided
in any implementation; thus, our goal is to prevent the leakage or derivation by Adv of
any knowledge from seeing the execution traces that Adv did not already possess.

As mentioned above, our constructions relying on one-way functions dictates that
the computational power of entities (adversary, agents), be polynomially bounded (in
κ, the security parameter). Similarly, our protocols run on input streams of polynomial
length. At the same time, we do not impose an a priori bound on its length; moreover,
the size of the agents’ state is independent of it. This allows to use agents of the same
(small) complexity (storage and computational power) in all situations.

Our contributions. Our work is the first significant extension of the work of [8]. To-
wards the goal of making never-ending and private distributed computation practical,
we introduce an additional (minimal) assumption of existence of one-way functions
(and hence pseudo-random number generators [PRGs]), and propose the following con-
structions:

A scheme with (n, n) reconstruction (where all n agents participate in reconstruc-
tion), where the storage and processing time per input symbol is O(mn) for each
agent. The reconstruction complexity is O(mn).
A scheme with (n− t, n) reconstruction (where t corrupted agents do not take part
in the reconstruction), where the above costs are O(m

(
n−1
n−t

)
).2

Regarding tools and techniques, the carefully orchestrated use of PRGs and secret-
sharing techniques [17] allows our protocols to hide the state of the computation against
an adaptive adversary by using share re-randomization. Typically, in the context of se-
cret sharing, this is simply done by the addition of a suitable (i.e., passing through the
origin) random polynomial. However, due to the no-communication requirement, share
re-randomization is more challenging in our setting, particularly so in the more gen-
eral case of the (n − t, n)-reconstruction protocol. We achieve share re-randomization
by sharing PRG seeds among the players in a manner which allows players to achieve
sufficient synchronization of their randomness, which is resilient to t corruptions.

Related work. Reflecting a well-known phenomenon in distributed computing, where a
single point of failure needs to be avoided, a team of agents (e.g., UAVs) that collaborate
in a mission is more robust than a single agent trying to complete a mission by itself
(e.g., [1, 3]). Several techniques have been suggested for this purpose; another related
line of work is that of automaton splitting and replication, yielding designs that can
tolerate faults and as well as provide some form of privacy of the computation (see,
e.g., [6–8,10,11]). As mentioned above, only [8] addresses the unbounded-input-stream
scenario.

2 For some values of t, e.g., t = O(n), this quantity would be exponential in n. This however
does not contradict our assumption on the computational power of the participants; rather, it
simply means that, given κ, for some values of n and t this protocol cannot be executed in the
allowed time.
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Recall that in secure multi-party computation [2, 4, 13], n parties, some of which
might be corrupted, are to compute an n-ary (public) function on their inputs, in such
a way that no information is revealed about them beyond what is revealed by the func-
tion’s output. At a high level, we similarly aim in our context to ensure the correctness
and privacy of the distributed computation. However, as explained in [8], our setting is
significantly different from that of MPC, and MPC definitions and solutions cannot be
directly applied here. The reason is two-fold: MPC protects players individual inputs,
whereas in our setting the inputs are common to all players. Secondly, and more impor-
tantly, MPC operates on inputs of fixed length, which would require an a priori estimate
on the maximum input size smax and agents’ storage linear in smax. While unbounded
inputs could be processed, by for example processing them “in blocks,” this would re-
quire communication during the online phase, which is not allowed in our setting. Refer
to [8] for a more detailed discussion on the unbounded inputs setting vis-à-vis MPC’s.

We note that using recently proposed fully-homomorphic encryption (FHE— [12]
and follow-ups) trivially solves the problem we pose, as under FHE the agents can
simply compute arbitrary functions. In fact, plain additively homomorphic encryption
(e.g., [15]) can be used to encrypt the current state of the FSA and non-interactively
update it as computation progresses, in a manner similar to what is described in our
constructions (see the high-level intuition in Section 3). We note that, firstly, public-key
encryption and, dramatically so, FHE, suffer from orders-of-magnitude computational
overhead, as compared to the symmetric-key operations that we rely on. Perhaps more
importantly, in this work we aim at minimizing the assumptions needed for efficient
unbounded private distributed computation.

Finally, and as mentioned above, the problem of share re-randomization and conver-
sion has been considered in the literature. Related to our setting, Cramer, Damgård and
Ishai [5] for example consider the problem of locally converting a secret sharing of a
value into another secret sharing of the same value.

Organization of the paper. The remainder of the paper is organized as follows. In Sec-
tion 2 we present in more detail the model, definitions and building blocks that we use
throughout the paper. We dedicate Section 3 to a high-level description of our construc-
tions, while in Section 4 we present them in detail. The full privacy analysis is presented
in the full version of the paper [9].

2 Model and Definitions

A finite-state automaton (FSA) A has a finite set of states ST , a finite alphabet Σ, and
a transition function μ : ST ×Σ −→ ST . In this work we do not assume an initial state
or a terminal state for the automaton, i.e., it may begin its execution from any state and
does not necessarily stop.

We already described in the previous section the distributed computation setting—
dealer, agents, adversary, and unbounded input stream—under which the FSA is to be
executed. In more detail, we assume a global clock to which all agents are synchronized.
We will assume that no more than one input symbol arrives during any clock tick. By
input stream, we mean a sequence of input symbols arriving at a certain schedule of
clock ticks. Abusing notation, we will sometimes refer to the input without explicit
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reference to the schedule. (We note that the global clock requirement can in principle
be removed if we allow the input schedule to be leaked to Adv.)

We also mentioned that Adv is allowed to corrupt agents as the execution of the
protocol proceeds. We consider the so-called passive or semi-honest adversary model,
where corrupted agents can combine their views in order to learn protected information,
but are not allowed to deviate from the protocol. Furthermore, each agent can be cor-
rupted only once during an execution. When it does, Adv can view the entire contents
of a corrupted agent’s memory, but does not obtain any of the global inputs.

Incidentally, we consider event processing by an agent as an atomic operation. That
is, agents cannot be corrupted during an execution of state update. This is a natural
and easily achievable assumption, which allows us to not worry about some tedious
details. The computation is then considered to be secure, if any two executions (possibly
on different inputs and initial states—defined more formally below) are “similarly”
distributed.

This model of security for distributed computation on unbounded input streams was
introduced by Dolev et al. [8] as the progressive corruption model (PCM), allowing
Adv to be computationally unbounded, and in particular requiring that the distributions
of the two executions (again, more formally defined below) be identical.

In this work we use a variant of PCM, applying the following two weakenings to the
PCM definition:
1. Rather than requiring that the distributions of executions be identical, we require

them to be computationally indistinguishable. This means that we guarantee se-
curity only against polynomial-time-bounded adversaries.

2. We require indistinguishability of executions for the same corruption timeline
(and, of course, different input streams). This means that, for example, agent IDs
are now allowed to be included in the agents’ views. (We use agent IDs in one
of our constructions.) We stress that this is not a significant security weaken-
ing, as essentially we only allow the adversary to differentiate among the agents’
identities; the inputs and current state of the computation remain computationally
hidden.

We now present our amended PCM definition. We first formalize the notion of cor-
ruption timeline and the view of the adversary.

Definition 1. A corruption timeline ρ is a sequence ρ = ((A1, τ1), . . . , (Ak, τk)), where
A1, . . . , Ak are the corrupted agents and τ1, . . . , τk (τ1 ≤ . . . ≤ τk) denote the time
when the corresponding corruption took place. The length of a corruption timeline is
|ρ| = k.

We denote by VIEWΠ
ρ (X, s) the probability distribution of the aggregated internal

states of corrupted agents at the time of corruption, when executed on input X and
initial state s.

Definition 2 (Computational Privacy in the Progressive Corruption Model). We
say that a distributed computation scheme Π is t-private in the Progressive Corruption
Model (PCM) if for every two states s1, s2 ∈ ST , polynomial-length input streams
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X1, X2, and any corruption timeline ρ, |ρ| ≤ t,

VIEWΠ
ρ (X1, s1)

c≈ VIEWΠ
ρ (X2, s2).

Here, ‘
c≈’ denotes the computational indistinguishability of two distributions.

Tools and Building Blocks. A pseudo-random generator (PRG) is a function of the
form G : X → Y , where X and Y are typically of the form {0, 1}k and {0, 1}k+l,
respectively, for some positive integers k, l. Recall that PRGs are known to exist based
on the existence of one-way functions, and that the security property of a PRG guar-
antees that it is computationally infeasible to distinguish its output on a value chosen
uniformly at random from X from a value chosen uniformly at random from Y (see,
e.g., [14]). In our setting, we will further assume that the old values of the PRG seeds
are securely erased by the agents upon use and hence are not included in the view of the
adversary.

The other basic tool that our protocols make use of is (n, t)-secret sharing [17],
where, essentially, a secret piece of information is “split” into shares and handed out
to a set of n players by a distinguished player called the dealer, in such a way that up
to a threshold t < n of the players pulling together their shares are not able to learn
anything about it, while t+ 1 are able to reconstruct the secret. We present the specific
instantiations of secret sharing as needed in the corresponding sections.

3 Overview of Our Approach

LetA be a publicly known automaton with m states. We assume that we have some or-
dering of the states ofA, which are denoted by corresponding labels. Every agent stores
the description of the automaton. In addition, during the computation, for every state sj
of A, every agent Ai computes and stores its current label �ij . As mentioned above, all
agents receive a global input stream Γ = γ1, γ2, ...γi, ... and perform computation in
synchronized time steps.

At a high level, the main idea behind our constructions is that the state labels will
be shares (à la secret sharing [17]) of a secret which identifies the currently active state
of A. More specifically, for each of the m automaton states, the n state labels (held by
the n agents) will be shares of value 1 if the state is currently active, and shares of 0
otherwise. We will show how the players’ local computation on their shares will ensure
that this property is maintained throughout the computation on the entire input stream
Γ . When the input stream Γ is fully processed (or a stop signal is issued), the agents
recover the current state by reconstructing the secrets corresponding to each automaton
state. At the same time, shares of the secrets (when not taken all together) reveal no
information on the current state of A.

We now present additional high-level details on two variants of the approach above.
Recall that we consider the semi-honest adversary model, where corrupted players are
not allowed to deviate from the protocol, but combine their views in order to learn
protected information.
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(n,n)-reconstruction. In this scenario, we require that all n agents participate in the
reconstruction of the secret (corrupted players are considered semi-honest and hence
honestly provide their computed shares).

At the onset of computation, the shares are initialized using an (n, n) additive secret-
sharing scheme, such that the initial state labels are the sharing of 1, and labels of each
of the other states are shares of 0. When processing a global input symbol γ, each
agent computes a new label for a state s by summing the previous labels of all states s′

such that μ(s′, γ) = s. It is easy to see that, due to the fact that we use additive secret
sharing, the newly computed shares will maintain the desired secret-sharing property.
Indeed, say that on input symbol γ, u states transition into state s. If all of them were
inactive and their labels were shares of 0’s, then the newly computed shares will encode
a 0 (as the sum of u 0’s). Similarly, if one of the u predecessor states was active and its
label shared a 1, then the new active state s will also correspond to a share of 1.

A technical problem arises in the case of “empty” states, i.e., those that do not have
incoming transitions for symbol γ, and hence their labels are undefined. Indeed, to hide
the state of the automaton from the adversary who corrupts agent(s), we need to ensure
that each label is a random share of the appropriate secret. Hence, we need to generate
a random 0-share for each empty state without communication among the agents.

In the (n, n) sharing and reconstruction scenario, we will non-interactively generate
these labels pseudo-randomly as follows. Each pair of agents (Ai, Aj) will be assigned
a random PRG seed seed ij Then, at each event (e.g., processing input symbol γ), each
agent Ai will pseudo-randomly generate a string rj using each of the seeds seed ij ,
and set the label of the empty state to be the sum of all strings rj . This is done for
each empty state independently. The PRG seeds are then (deterministically) “evolved”
thereby erasing from the agent’s view the knowledge of the labels’ provenance, and
making them all indistinguishable from random. As all agents are synchronized with
respect to the input and the shared seeds, it is easy to see that the shares generated
this way reconstruct a 0, since each string rj will be included twice in the total sum,
and hence will cancel out (we will use an appropriate [e.g., XOR-based] secret-sharing
scheme such that this is ensured.).

Finally, and intuitively, we observe that PCM security will hold since the view of
each corrupted agent only includes pseudo-randomly generated labels for each state
and the current PRG seed value. As noted above, even when combined with the views
of other corrupted players, the labels are still indistinguishable from random.

(n− t,n)-reconstruction. In this scenario, up to t corrupted agents do not take part in
the reconstruction (this is motivated by the possibility of agents (UAVs) being captured
or destroyed by the adversary). Agents who submit their inputs are doing so correctly.
Thus, here we require n > 2t.

We will take our (n, n)-reconstruction solution as the basis, and adapt and expand it
as follows. First, in order to enable reconstruction with n− t (= t+ 1) agents, we will
use (n, t) additive secret-sharing (such as Shamir’s [17]). Second, as before, we will
use a PRG to generate labels, but now we will have a separate seed for each subset of
agents of size n− t+1. Then, at each event (e.g., processing of an input symbol), each
agent Ai, for each of the groups he belongs to, will update its shares by generating a
random (n, t)-secret sharing of a 0 using the randomness generated by applying G to
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the group’s seed. Then, agent Ai will use the share thus generated for the i-th agent as
its own, and set the label of the empty state to be the sum of all such shares.

Here we note that, since agents are excluded from some of the groups, and that in this
scenario up to t agents might not return their state during reconstruction, special care
must be taken in the generation of the re-randomizing polynomials so that all agents
have invariantly consistent shares, even for groups they do not belong to, and that any
set of agents of size t+ 1 enable the reconstruction of the secrets. (See Section 4.2 for
details.) The above is done for each empty state independently. As before, the PRG seeds
are then (deterministically) “evolved,” making them all indistinguishable from random.

Algorithm 1: Template algorithm for agent Ai, 1 ≤ i ≤ n, for label and state
update.

Input: An input symbol γ.
Output: New labels for every state.
1: if γ is initialized then
2: �ij :=

∑
k,μ(sk,γ)=sj

�ik (the sum is calculated over some field F, depending on the
scheme).

3: end if
4: for every T ∈ T s.t. Ai ∈ T do
5: Compute BTST ← G(seedT

r ), where BT = bT1 b
T
2 ...b

T
m, and bTj ∈ F, 1 ≤ j ≤ m.

6: seedT
r+1 := ST .

7: for j = 1 to m do
8: �ij := �ij +Rj , where Rj is a scheme-specific pseudo-random quantity.
9: end for

10: end for

Remark 1. This approach reveals the length and schedule of the input Γ processed
by the players. Indeed, the stored seeds (or more precisely, their evolution which is
traceable by the adversary simply by corrupting at different times players who share
a seed) do reveal to the adversary the number of times the update function has been
invoked. We hide this information by requiring the agents to run updates at each clock
tick.

Algorithm 1 summarizes the update operations performed by agent Ai (1 ≤ i ≤
n) during the r-th clock cycle. The key point is the generation of Rj , the label re-
randomizing quantity. Notice also that in every clock cycle, there may or may not be an
input symbol received by the agent; if the agent did not receive any input, we assume
that the input symbol is not initialized.

4 The Constructions in Detail

4.1 The (n, n)-Reconstruction Protocol

We start our formalization of the intuition presented above with the case where all n out
of the n agents participate in the state reconstruction. The protocol for this case, which
we call Π(n,n), is presented below.
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Protocol Π(n,n). The protocol consists of three phases:

Initialization. The dealer secret-shares among the agents a secret value for each state,
such that the value for the initial state is 1 and for all the other states is 0. This is done
as follows. Agent Ai (1 ≤ i ≤ n) is given a a random binary string xi

1x
i
2...x

i
m, with the

constraints that
x1
init + x2

init + ...+ xn
init ≡ 1 mod 2,

where init is the index of the initial state of the computation, and for every 1 ≤ j �=
init ≤ m,

x1
j + x2

j + ...+ xn
j ≡ 0 mod 2.

Each agent then proceeds to assign its state labels as �ij ← xi
j .

Event Processing. Each agent runs Algorithm 1, updating its labels and computing the
new seeds for the PRG. Let T be the set of all possible agents’ pairs. For line 8 of
Algorithm 1, each agent Ai now computes

Rj =
∑

T∈T ,Ai∈T

(bTj )r.

s1 s2

s3

α
α

α

α

β β

β

β

s4

(�i
1)r−1 (�i

2)r−1

(�i
3)r−1

(�i
4)r−1

Fig. 1. The internal state of agent Ai before a transition

Reconstruction. All agents submit their internal states to the dealer, who reconstructs
the secrets corresponding to each state, by adding (mod 2) the shares of each state, and
determines and outputs the currently active state (the one whose reconstructed secret
is 1).

Before proving the correctness and privacy achieved by the protocol, we illustrate the
operation of the online (Event Processing) phase with the following example; refer to
Figures 1 and 2. The two figures describe the execution of the protocol on an automaton
with four states and two possible inputs. Figure 1 presents the internal state of agent Ai
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s1 s2

s3

α
α

α

α

β β

β

β

s4

(�i1)r =
(�i2)r =

(�i3)r =

(�i4)r =

=
∑

T,i∈T (b
T
1 )r+p

= (�i2)r−1 + (�i4)r−1+

=
∑

T,i∈T (b
T
3 )r+p

= (�i1)r−1 + (�i3)r−1+

+
∑

T,i∈T (b
T
2 )r+p

+
∑

T,i∈T (b
T
4 )r+p

Fig. 2. The internal state of agent Ai after an α transition

after the (r − 1)-th clock cycle. The agent holds the original automaton and has a label
for each of the four states, (�i1)r−1, (�i2)r−1, (�i3)r−1 and (�i4)r−1.

Figure 2 shows the changes in the agent’s internal state compared to Figure 1 after
the r-th clock cycle. We also assume that in this clock cycle the agents receive an input
symbol α. The new labels for each state are the sum of old labels and pseudo-random
values. The labels in the sum are the old labels of all the states that transition to the
current state given the input. Thus, the new (�i2)r includes a sum of the old (�i2)r−1 and
the old (�i4)r−1, while the new (�i3)r doesn’t include any labels in its sum because there
is no state that transitions to s3 after an α input. The pseudo-random addition to each
state j = 1, . . . , 4 is the sum

∑
T,i∈T (b

T
j )r.

We start by proving the correctness of the construction.

Proposition 1. At every Event Processing step of protocol Π(n,n), the secret corre-
sponding to the current state in the computation is 1 and for all other states the secret
is 0.

Proof. The proof is by induction on the number of steps r that the automaton performs,
i.e., the number of clock cycles.

For the base case, if we consider the state of the protocol after the initialization step
and before the first clock cycle, i.e., at r = 0, then the statement is true by our definition
of the label assignments. Let us first consider the case where at the r-th step an input
symbol γr from Γ is received. Following the protocol, agent Ai’s new label for state j
becomes

�ij ←−
∑
k :

μ(sk,γr)=sj

�ik +
∑
Ai∈T

(bTj )r.

Consider now the next state of the computation in the automaton; we wish to show that
the secret corresponding to that state will be 1. Let curr be the index of the current state
of the automaton, and next be the index corresponding to the next state; by definition,
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μ(scurr , γr) = snext . Then,

�inext ←−
∑
k :

μ(sk,γr)=snext

�ik =

�icurr +
∑

k 	=curr :
μ(sk,γr)=snext

�ik +
∑
i∈T

(bTj )r.

By the induction hypothesis, we know that

n∑
i=0

�icurr ≡ 1 (mod 2)

and for k �= curr ,
n∑

i=0

�ik ≡ 0 (mod 2).

Thus, if we sum over all the agents:

n∑
i=0

⎛⎜⎜⎝�icurr +
∑

k 	=curr :
μ(sk,γr)=snext

�ik +
∑
i∈T

(bTj )r

⎞⎟⎟⎠
=

n∑
i=0

�icurr +
∑

k 	=curr :
μ(sk,γr)=snext

n∑
i=0

�ik

+
n∑

i=0

∑
i∈T

(bTj )r ≡ 1 + 0 ≡ 1 (mod 2).

This is because in
∑n

i=1

∑
i∈T (b

T
j )r, every (bTj )r appears exactly twice in this sum,

once for every element in T . Using similar arguments one can see that all the other
states will resolve to 0.

In the case that in the r-th step no input symbol is received, due to the fact that we
just add the random strings in the same way as in the case above, we again get that
the secret corresponding to the current state of the computation is 1, and for all others
is 0. ��

Proposition 2. Protocol Π(n,n) is (n− 1)-private in the PCM model according to Def-
inition 2.

Proof (sketch). Recall that the underlying observation is that when a corruption takes
place (which cannot happen during the label-update procedure), the agent’s state in-
cludes the current labels and PRG seeds which have already been evolved, and hence
cannot be correlated with the label shares previously generated.
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Without loss of generality, consider the case where Adv corrupts all but one agent ac-
cording to an arbitrary corruption timeline, and assume, say, agent A1 is not corrupted.
We argue that the view of the adversary is indistinguishable from a view corresponding
to (randomly) initialized agents A2, ..., An on the given automaton and any initial state.
In other words, the view of the adversary is indistinguishable from the view he would
obtain if he corrupted the agents simultaneously and before any input was processed.
Once we prove that, the proposition follows.

The view of each corrupted agent includes n − 1 seeds that he shares with other
agents and the FSA labels which are secret shares of 0 or a 1. We argue that, from the
point of view of the adversary, these labels are random shares of either 0 or 1. This
follows from the PRG property that an evolved seed cannot be correlated with a prior
output of the PRG, and from the fact that A1 remains uncorrupted. Indeed, the newly
generated “empty” states’ labels look random since the adversary cannot link them to
the PRG seeds in his view. The other states’ labels look random to the adversary since
they are XORed with A1’s label.

Thus, the total view of the adversary consists of random shares of 0 and 1, and is
hence indistinguishable from the one corresponding to the initial state. ��

We now calculate the time and storage complexity of Π(n,n). At every step of the com-
putation, each agent pseudo-randomly generates and XORs n− 1 strings. Further, each
agent holds a small constant-length label for each automaton state, and n − 1 PRG
seeds, yielding an O(m+ n) memory requirement.

4.2 The (n − t, n)-Reconstruction Protocol

Recall that in this case, up to t of the agents might not take part in the reconstruction,
and thus n > 2t.

A straightforward (albeit costly) solution to this scenario would be to execute Π(n,n)

independently for every subset of agents of size t + 1 (assuming for simplicity n =
2t + 1). This would involve each agent Ai holding

(
n−1
t

)
copies of the automaton A,

one copy for each such subset which includes Ai, and updating them all, as in Π(n,n),
according to the same input symbol. Now, during the reconstruction, the dealer can
recover the output from any subset of t+ 1 agents. The cost of this approach would be
as follows. Every agent holds

(
n−1
t

)
automata (one for every t+1 tuple that includes this

agent), and executes Π(n,n), which requires O(m+ t) memory, resulting in a total cost
of O

((
n−1
t

)
·(m+t)

)
, with the cost of computation per input symbol being proportional

to storage’s. In the sequel, we will refer to this approach as Π(n−t,n)
naive .

We now present Π(n−t,n), an improved (n − t, n) reconstruction scheme, whose
intuition was already presented in Section 3. The protocol uses Shamir’s secret-sharing
scheme [17], which we now briefly review. Let F be a field of size greater than n, and
s ∈ F be the secret. The dealer randomly generates coefficients c1, c2, ..., ct from F and
construct the following polynomial of degree t, f(x) = s+c1x+c2x

2+ ...+ctx
t. The

dealer gives each participantAi, 1 ≤ i ≤ n, the value f(i). It can be easily seen that one
can reconstruct the secret from any subset of at least t + 1 points, and no information
about the secret is revealed by t points (or less).
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Protocol Π(n−t,n). As before, the protocol consists of three phases:

Initialization. Using Shamir’s secret sharing as described above, the dealer shares a
secret 1 for the initial state and 0 for all other states. In addition, the dealer generates
a random seed for every set of n − (t − 1) = n − t + 1 agents, and gives each agent
the seeds for the sets it belongs to. Let T be the set of all possible subsets of n− t+ 1
agents.

Event Processing. Each agent runs Algorithm 1 updating its labels, as follows.
Let T ∈ T and j, 1 ≤ j ≤ m, be a state of the automaton. Upon obtaining value bTj

(refer to Algorithm 1), the agents in T (individually) construct a degree-t polynomial,
PT
j , by defining its value on the following t+1 field points: 0, all the points i such that

Ai �∈ T , and k such that k is the minimal agent’s index in T (the choice of which point
in T is arbitrary). Now define PT

j (0) = 0, PT
j (i) = 0 ∀Ai �∈ T , and PT

j (k) = bTj .
Observe that by this definition, every agent Ai ∈ T can use polynomial interpolation

to compute PT
j (i), since the only required information is bTj (and the knowledge of set

membership).
Let polynomial Pj be defined as Pj =

∑
T∈T PT

j . Each agent Ai now computes
Pj(i) (note that this is possible since the values corresponding to sets the agent does
not belong to is set to 0), and updates the j-th label, 1 ≤ j ≤ m, in Algorithm 1 by
setting Rj = Pj(i) in line 8.

Reconstruction. At least t + 1 agents submit their internal state to the dealer, who,
for every j = 1, . . . ,m, views the j-th labels of t + 1 agents as shares in a Shamir
secret-sharing scheme. The dealer reconstructs all the m secrets using the scheme’s
reconstruction procedure, and determines and outputs the currently active state (whose
recovered secret is equal to 1).

Proposition 3. At every Event Processing step of protocol Π(n−t,n), the shared secret
for the current state in the computation is 1 and for all the other (inactive) states, the
shared secret is 0. Furthermore, t+ 1 agents can jointly reconstruct all secrets.

Proof. We prove the proposition by induction on the number of clock cycles r. We
show that at each clock cycle r, for every state sj , the n labels �1j , . . . , �

n
j are points

on a degree t polynomial Qj whose free coefficient is 1 if j is the current state and 0
otherwise.

At initialization, the claim is true by our definition of the label assignments.
Assume that the induction hypothesis is correct after r− 1. We prove the hypothesis

for the r-th step. Assume first that in this step the agents receive an input letter γr, and
denote the current state by scurr . By our definition, the new label of the state j of agent
i is

�ij ←−
∑
k :

μ(sk,γr)=sj

�ik + Pj(i),

or, equivalently,
�ij ←−

∑
k :

μ(sk,γr)=sj

Qk(i) + Pj(i).
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For every j, 1 ≤ j ≤ m, define polynomial Q′
j as

Q′
j =

∑
k :

μ(sk,γr)=sj

Qk + Pj .

Therefore, Q′
j(i) = �ij for every j and every i. In addition, since every Qk is of degree

t and so is Pj , we deduce that Q′
j is also of degree t. We finish proving the induction

step by showing that Q′
j(0) = 1 only for the correct state.

Let μ(scurr , γr) = snext . By induction, Qcurr(0) = 1 and Qj(0) = 0 for any
j �= curr . Furthermore, by construction Pj(0) = 0, and therefore Q′

curr(0) = 1. Since
Qj(0) = 0 for any j �= curr , we have that Q′

j(0) = 0 for any j �= next .
If the agents do not receive any input symbol in the r-th clock cycle, then the claim

follows by similar arguments as above. ��

Proposition 4. Π(n−t,n) is t-private in the PCM model according to Definition 2.

At a high level, the proof follows the steps of the proof of Proposition 2. The full details
of the privacy analysis are presented in the full version of the paper [9].

We now calculate the costs incurred by the protocol. The space complexity of each
agent is as follows. An agent holds a label for every state, i.e. m · (�log|F|� + 1) bits.
Additionally every agent holds

(
n−1
n−t

)
=

(
n−1
t−1

)
seeds, where every seed is of size len .

Thus, in total we have
(
n−1
t−1

)
· len + m · (�log|F|� + 1) bits. Each step of the Event

Processing phase requires O(m
(
n−1
t−1

)
) time for seed manipulation and field operations.

Reconstruction (by the dealer) is just interpolation of m polynomials of degree t.
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Abstract. AES block cipher is an important cryptographic primitive
with many applications. In this work, we describe how to efficiently im-
plement the AES-128 block cipher in the multiparty setting where the
key and the plaintext are both in a secret-shared form. In particular, we
study several approaches for AES S-box substitution based on oblivious
table lookup and circuit evaluation. Given this secure AES implemen-
tation, we build a universally composable database join operation for
secret shared tables. The resulting protocol scales almost linearly with
the database size and can join medium sized databases with 100, 000
rows in few minutes, which makes many privacy-preserving data mining
algorithms feasible in practice. All the practical implementations and
performance measurements are done on the Sharemind secure multi-
party computation platform.

1 Introduction

Many information systems need to store and process private data. Encryption is
one of the best ways to assure confidentiality, as it is impossible to learn anything
from encrypted data without knowledge of the private key. However, the number
of processing steps one can carry out on encrypted data is rather limited unless
we use fully homomorphic encryption. Unfortunately, such encryption schemes
are far from being practical even for moderate-sized data sets [21].

Another compelling alternative is share-computing, since it assures data confi-
dentiality and provides a way to compute on secret shared data, which is several
magnitudes more efficient than fully homomorphic encryption. In this setting,
data is securely shared among several parties so that individual parties learn
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nothing about shared values during the computations and the final publication
of output shares reveals only the desired output(s). For most share-computing
systems, even a coalition of parties cannot learn anything about private data
unless the size of a coalition is over a threshold.

Development and implementation of such multi-party computing platforms is
an active research area. FairPlayMP [5], SecureSCM [2], SEPIA [13], Share-
mind [8], VMCrypt [31] and TASTY [24] computing platforms represent only
some of the most efficient implementations and share-computing has been suc-
cessfully applied to real-world settings [10,9].

Note that various database operations are particularly important in privacy-
preserving data processing. Efficient and secure protocols for most key operations
on secret-shared databases are already known, see [30]. The most notable op-
eration still missing is database join based on secret-shared key columns. This
operation can be used e.g. for combining customer data coming from different
organisations or linking the results of statistical polls into a single dataset.

Our main theoretical contribution is an efficient multi-party protocol for
database join, which combines oblivious shuffle with pseudorandom function
evaluation on secret-shared data. In practice, we instantiate the pseudorandom
function with the AES-128 block cipher and implement it on the Sharemind
platform [8]. The latter is a non-trivial task, since the input and the secret key are
secret-shared in this context. The resulting AES-evaluation protocol is interest-
ing in its own right. First, AES is becoming a standard performance benchmark
for share-computing platforms [18,25,34,28] and thus we can directly compare
how well the implementation on the Sharemind platform does. Second, a secret-
shared version of AES can be used to reduce security requirements put onto the
key management of symmetric encryption [18]. In brief, we can emulate trusted
hardware encryption in the cloud by sharing a secret key among several servers.

2 Preliminaries

AES. Advanced Encryption Standard (AES) is a symmetric block cipher ap-
proved by the National Institute of Standards and Technology [32]. AES takes
a 128-bit block of plaintext and outputs 128 bits of corresponding ciphertext.
AES can use cipher keys with lengths of 128, 192 or 256 bits. In our work we
will only use AES-128, which denotes AES with 128-bit keys.

Sharemind Platform. Sharemind platform is a practical and secure share-
computing framework for privacy-preserving computations [8], where the private
data is shared among three parties referred to as miners. In its original imple-
mentation, Sharemind uses additive secret sharing on 32-bit integers, i.e., a
secret s is split into three shares s1, s2, s3 such that s = s1 + s2 + s3 mod 232.
In this work, we use bitwise sharing where the secret can be reconstructed by
XOR-ing individual shares: s = s1 ⊕ s2 ⊕ s3.

The current Sharemind implementation is guaranteed to be secure only if the
adversary can observe the internal state of a single miner node. Thus, we report
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performance results only for the semi-honest setting. Additionally, we show how
to generalise our approach to malicious setting. The latter is rather straight-
forward, as all protocols are based only on secure addition and multiplication
protocols. Although the bitwise sharing alone is not secure againstmalicious cor-
ruption, shared message authentication codes can be used to guarantee integrity
of secret sharings throughout the computations [19,33].

Security Definitions and Proofs. We use standard security definitions based
on ideal versus real world paradigm. In brief, security is defined by comparing a
real protocol with an ideal implementation where a trusted third party privately
collects all inputs, does all computations and distributes outputs to correspond-
ing parties. We say that a protocol is secure if any plausible attack against real
protocol can be converted to an attack against ideal protocol such that both
attacks have comparable resource consumption and roughly the same success
rate, see standard treatments [22,14,15] for further details.

A canonical security proof uses a wrapper (simulator) to link a real world ad-
versary with the ideal world execution model. More precisely, the simulator has
to correctly fake missing protocol messages and communicate with the trusted
party. As most protocols are modularly built from sub-protocols, security proofs
can be further compacted. Namely, if all sub-protocols are universally compos-
able, then we can prove the security in the hybrid model where executions of all
sub-protocols are replaced with ideal implementations [15].

Since almost all share-computing platforms including Sharemind provide
universally composable data manipulation operations, we use this composability
theorem to omit unnecessary details from security proofs (see also [8]).

Efficiency Metrics in Protocol Design. Real-life efficiency of a protocol
execution depends on the number of rounds and the total amount of messages
sent over communication channels. The actual dependency is too complicated
to analyse directly. Hence, we consider two important sub-cases. When the total
communication is small compared to channel bandwidths, then the running time
depends linearly on the number of rounds. If the opposite holds, then running
time depends linearly on the communication complexity.

3 Share-Computing Protocol for AES Block Cipher

The overall structure of our protocol follows the standard AES algorithm speci-
fication [32]. However, there are some important differences stemming from the
fact that the secret key and the message is bitwise secret shared and we have to
use share-computing techniques. Fortunately, three out of four sub-operations
are linear and thus can be implemented by doing local share manipulations.
The efficiency of the AES protocol implementation is determined by SubWord()

and SubBytes() operations that evaluate the S-box on secret-shared data. The
SubWord() function used in key expansion applies the S-box independently to
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each byte of its input word. Similarly, the SubBytes() function uses the S-box
independently on each byte of the 4-word state given as the argument.

3.1 S-Box Evaluation Protocol Based on Oblivious Selection

As the AES S-box is a non-linear one-to-one mapping of byte values, it can
be implemented as 256 element lookup table. In our setting, the input of the
S-box is secret shared and we need oblivious array selection to get the shares
of the right table entry. The latter can be achieved by using various techniques
from [30]. First, we must convert the input x into a zero-one index vector z where
all entries, except one, are zeros. The non-zero vector element zx corresponds to
the entry in the S-box array that we want to pick as the output. More precisely,
let x7x6 . . . x0 be the bit-representation of the input x and i7i6 . . . i0 be the bit-
representation of an index i. Then zi = [x7 = i7] ∧ · · · ∧ [x0 = i0] and the shares
of index vector z can be computed by evaluating multinomials

zi = (x7 ⊕ i7 ⊕ 1) · · · (x0 ⊕ i0 ⊕ 1) . (1)

For example, the first entry can be computed as z0 = (1⊕x7)(1⊕x6) . . . (1⊕x0)
and the second entry as z1 = (1⊕ x7)(1⊕ x6) . . . (1⊕ x1)x0.

Note that each multinomial zi is of of degree 8 and thus 1792 secure multi-
plications over F2 are needed. To reduce the number of communication rounds,
we gather terms bij = xj ⊕ ij ⊕ 1 into eight 256 element vectors:

b7 = (b0,7, . . . , b255,7), . . . , b0 = (b0,0, . . . , b255,0)

and use vectorised bitwise multiplications to multiply all eight terms in the same
row. If we do them sequentially, then the computation of index vector requires
seven multiplication rounds. With tree-style evaluation strategy we can reduce
the number of multiplication rounds to three. For that, we must evaluate same
level brackets in parallel for z = ((b7 · b6) · (b5 · b4)) · ((b3 · b2) · (b1 · b0)). The
multiplicative complexity of this step can be further decreased by utilising the
underlying recursive structure of the index vector, as proposed by Launchbury
et al. [28]. For comparison, we also reimplemented their solution.

As the second step, we must compute scalar product between the indicator
vector z and 256-element output table y of the S-box. As elements of y are 8-bit
long whereas elements of z are from F2, we must select output bits one by one.
Let yj = (y0,j , . . . , y255,j) denote the vector of jth bits in the output table y.
Then the jth output bit fj of the S-box can be computed as

fj = 〈z,yj〉 =
255∑
i=0

zi yij (2)

over F2. Since the output table y is public, all operations can be done locally
and the second step does not contribute to the communication complexity.
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3.2 S-Box Evaluation Protocol Based on Circuit Evaluation

The oblivious indexing as a generic approach is bound to provide a protocol with
sub-optimal multiplication complexity, as the two stage evaluation of output bits
fj forces us to compute terms zi that are dropped in the equation (2).

We can address this issue by secure computation techniques based on branch-
ing programs [26]. For that, we must convert the expression for fj into a binary
decision diagram B with minimal number of decision nodes. After that we must
build a corresponding arithmetic circuit that evaluates B in bottom-up manner.
As each decision node introduces two secure multiplications, the efficiency of
the resulting protocol is determined by the shape of B. Let c denote the total
number of decision nodes and d denote the longest path in B. Then the resulting
protocol consists of 2c secure multiplication operations over F2, which can be
arranged into d rounds of parallel multiplications.

Although this approach produces significant gains, we can use recent findings
in hardware optimisation to boost efficiency further. Circuit minimisation for the
AES S-box is a widely studied problem in the hardware design with many known
results. In this work, we use the designs by Boyar and Peralta [11,12]. Note that
their aim was to minimise the total number of gates and the overall circuit depth,
while we need a circuit with minimal number of multiplication gates (AND oper-
ations) and with paths that contain as few multiplications as possible, i.e., have a
low multiplicative depth. Hence, their best design with 128 gates is not the best
for our purposes, as it contains 34 multiplications and its multiplicative depth is
4, while their older design [11] contains 32 multiplication and has a multiplicative
circuit depth 6. Of course, the multiplicative depth plays also important role in the
protocol, when the bandwidth is high, hence, the newer design might have advan-
tages when only a few AES evaluations are performed.

As extended versions of both articles contain straight-line C-like programs
for their circuits, it is straightforward to implement the corresponding secure
evaluation protocol with a minor technical tweak. As byte is the smallest data
unit supported by network communication libraries, entire byte is used to send
elements of F2 over the network during a secure multiplication protocol. We
can eliminate this bloat by doing eight multiplications in parallel, since eight
individual values can be packed into the same byte.

It is straightforward to achieve this grouping for the SubBytes() function, as
it evaluates 16 S-boxes in parallel. Consequently, if we treat original variables
as 16-element bit-vectors, we can evaluate all 16 copies of the original circuit in
parallel without altering the straight-line program. For the SubWord() function,
additional regrouping is necessary, as it evaluates only four S-boxes in parallel.
It is sufficient if we must split all multiplications into pairs that can be executed
simultaneously so that we can do eight multiplications in parallel.

3.3 Security Analysis for the Entire Protocol

Note that all three versions of the AES S-box evaluation algorithms are arith-
metic circuits consisting of addition and multiplication gates. Hence, it is straight-
forward to prove the following result.
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Theorem 1. If a share-computing framework provides universally composable
protocols for bitwise addition, bitwise multiplication and bit decomposition, then
all three AES S-box implementations are universally composable. Any universally
composable AES S-box implementation gives a rise to a universally composable
share-computing protocol for the AES block cipher.

Proof. The proof follows directly from the universal composability theorem as
we use share-computing protocols to evaluate arithmetic circuits. ��

Note that this result holds for any corruption model including the Sharemind
framework, which provides security against one-out-three static passive corrup-
tion. To get security against active corruption, the underlying secret sharing
scheme must support both bitwise addition and multiplication while being veri-
fiable. There are two principal ways to achieve this.

First, we can embed elements of F2 into some larger finite field F2t with ex-
tension element α and then use standard verifiable secret sharing schemes which
support secure multiplication over F2t . On top of that it is rather straight-
forward to implement universally composable bit decomposition [17], which
splits a secret x ∈ F2t into a vector of shared secrets xt−1, . . . , x0 such that
x = xt−1α

t−1 + · · ·x1α + x0. As a consequence, all three assumptions of Theo-
rem 1 are satisfied and we get a secure protocol for evaluating AES. However,
there is a significant slowdown in the communication due to prolonged shares.

Alternatively, we can use oblivious message authentication [19] to protect in-
dividual bits without extending shares. However, this step attaches a long secret
shared authentication code to each bit. To avoid slowdown, we can authenticate
long bit vectors with a singe authentication code. The latter fits nicely into the
picture, as we have to evaluate 16 circuits in parallel.

3.4 Further Tweaks of the AES Evaluation Protocol

Block ciphers are often used to encrypt many messages under the same secret
key. In such settings, it is advantageous to encrypt several messages in parallel in
order to reduce the number of communication rounds. The latter is straightfor-
ward in the Sharemind platform, as it naturally supports parallel operations
with vectors. The corresponding vectorised AES protocol takes in a vector of
plaintext shares and a vector of shared keys and outputs a vector of cipher text
shares. As another efficiency tweak note that we need to execute that key schedul-
ing only once if the secret key is fixed during the encryption. Hence,we can run
the key scheduling protocol separately and store the resulting shares of all 128-
bit round keys for later use. The corresponding separation of pre-processing and
online phases decreases amortised complexity by a fair margin.

3.5 Efficiency Metrics and Real-Life Performance

Having established essentially four methods with very different complexity pa-
rameters, we need to compare their real-life performance. For that we have im-
plemented four versions of SubBytes() routines on the Sharemind platform
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Table 1. Performance results of various S-box evaluation algorithms

Protocol Multiplicative Running time Multiplicative Running time
depth (1 evaluation) complexity (4096 evaluations)

ObSel 3 32.5 ms 1792 9051 ms
Lddam 3 31.1 ms 304 1109 ms
BCirc-1 6 69.6 ms 32 148 ms
BCirc-2 4 40.8 ms 34 127 ms

and measured the actual performance. The tests were done on a cluster where
each of the three Sharemind miners was deployed in a separate machine. The
computers in the cluster were connected by an ethernet local area network with
link speed of 1Gbps. Each computer in the cluster had 48GB of RAM and a
12-core 3GHz CPU with Hyper Threading. The channels between the computers
were also encrypted using 256-bit elliptic curve key agreement and the ChaCha
stream cipher [7] provided by the underlying RakNet networking library [1].
While the choice of ChaCha is not standard, the best known attacks against it
are still infeasible in practice [4].

We considered algorithms in two different settings. First, we measured the
time needed to complete a single evaluation of SubBytes() function. Second,
we measured how much time does it take to evaluate 4096 SubBytes() calls
in parallel. The first setting corresponds to the case where various delays have
dominant impact on the running-time, whereas the effect of communication com-
plexity dominates in the second case. Table 1 compares theoretical indicators1

and practical performance for all four protocols. The ObSel protocol is based on
oblivious selection vector and Lddam is the same protocol with reduced number
of multiplications [28]. Protocols based on Boolean circuits designed by Boyar
and Peralta are denoted by BCirc-1, BCirc-2.

The results clearly show that multiplicative depth and complexity are good
theoretical performance measures for optimising the structure of arithmetic cir-
cuits, as they allow us to predict the running times with 10 − 20% precision.
Each communication round costs 10− 12 ms in single operation mode and each
multiplication operation adds 3.5− 5.1 ms to amortised running-time.

Secondly, we measured amortised cost of the AES evaluation protocol with
precomputed round keys, see Figure 1. As expected, various algorithms have
different saturation points where further parallelisation does not decrease the
amortised cost any more. In particular, note that for few blocks the amortised
costs of Lddam and circuit evaluation algorithms BCirc-1 and BCirc-2 is
comparable, i.e., the advantage of circuit evaluation manifests only if we encrypt
around 80 plaintexts in parallel. Also, note that the newer design BCirc-2 with
smaller multiplicative depth performs better when the number of encryption calls
is between 100 − 10, 000. After that the impact of communication complexity
becomes more prevalent and the BCirc-1 protocols becomes more efficient.

1 As all multiplications are carried over F2, we do not have to compensate for various
input lengths and can just count the number of multiplications.
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Fig. 1. Performance of AES evaluation protocols using precomputed round keys

As the final test, we measured the running time of the AES protocol with and
without key scheduling. Table 2 depicts the corresponding results. As before, we
give the running times for a single encryption operation and limiting cost of a
single operation if many encryptions are done in parallel. Mode I denotes en-
cryption with key expansion and mode II denotes encryption with pre-expanded
secret key. Again, the results are in good correspondence. The cost of a single
operation is roughly two times slower with the key expansion2 , since computing
a shared round key requires one parallel invocation of S-boxes. For the amortised
cost, the theoretical speedup should be 1.25 as there are 20 S-box invocation per
round in the mode I and 16 invocations per round in the mode II. The difference
in actual speedup factors suggest existence of some additional bottlenecks in our
key-expansion algorithms.

Table 2. Performace results for various AES evaluation algorithms

Single operation Amortised cost
Mode I Mode II Ratio Mode I Mode II Ratio

ObSel 682 ms 343 ms 1.99 20.34 ms 18.69 ms 1.09
Lddam 652 ms 323 ms 2.02 4.16 ms 2.51 ms 1.66
BCirc-1 1329 ms 664 ms 2.00 0.48 ms 0.29 ms 1.68
BCirc-2 890 ms 443 ms 2.01 0.37 ms 0.32 ms 1.17

Table 3 compares our results with the state of the art in oblivious AES-128
evaluation protocols. To make results comparable, the table contains results only
for the semi-honest setting. In most cases, authors report the performance of

2 The slowdown can be further reduced to 1.2 if we compute next subkey in parallel
with the AES round to reduce multiplicative depth of the circuit.
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AES with pre-shared keys (mode II). More than tenfold difference between two-
party and three-party implementations is expected, as two-party computations
require costly asymmetric primitives. Note that the cost of single operation for
our implementation in Table 3 uses the approach of Launchbury et al., whereas
the amortized time is obtained using the circuit-based approach.

We can not fully explain roughly 20 times performance difference between the
two implementations of single operation following the approach of Launchbury et
al. Possible explanations include measurement error and extreme concentration
on the network layer optimization by the authors of [28].

Table 3. Comparison of various secure AES-128 implementations

Authors Reference Setting Mode Single operation Amortised cost

Pinkas et al. [34] 2-party II 5000 ms — ms
Huang et al. [25] 2-party II 200 ms — ms
Damg̊ard and Keller [18] 3-party I 2000 ms — ms
Launchbury et al. [28] 3-party II 14.28 ms 3.10 ms
This work 3-party II 323 ms 0.29 ms

4 Secure Database Join

As mentioned in the introduction, secure database join is a way to combine
several data sources in privacy-preserving manner. In this work, we consider the
most commonly used equi-join3 operation, which merges tables according to one
of few key columns using the equality comparison in the join predicate. In many
cases, the key value is unique, such as social security number or name and postal
code combined. The uniqueness assumption significantly simplifies our task. The
need to deal with the colliding keys significantly increases the complexity of the
protocols, and this case is handled in the extended version of the paper [29].

An ideal secure inner join protocol takes two or more secret-shared database
tables and produces a new randomly ordered secret-shared table that contains
the combined rows where the join predicate holds. The parties should learn noth-
ing except for the number of rows in the new database. The random reordering
of the output table is necessary to avoid unexpected information propagation
when some entries are published either for input or for the output table.

Let m1 and m2 denote the number of rows and n1 and n2 the number of
columns in the input tables. Then it is straightforward to come up with a solu-
tion that uses Θ(m1m2) oblivious comparison operations by mimicking a näıve
database join algorithm. We can obliviously compare all the possible key pairs,
shuffle the whole database, open the comparison column and remove all the rows
with the equality bit set to 0. It is straightforward to prove that this protocol is
secure, since it mimics the actions of ideal implementation in verbatim. We will
refer to this algorithm as NaiveJoin and treat it as a baseline solution.

3 The authors adapt the Structured Query Language (SQL) terminology in this paper.
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Database shuffling phase

1. Miners obliviously shuffle each database table Ti.
Let T ∗

i denote the resulting shuffled table with a key column k∗
i .

Encryption and join phase

2. Miners choose a pseudorandom permutation πs by generating a shared key s.
3. Miners obliviously evaluate πs on all shared key columns k∗

i .
4. Miners publish all values πs(k

∗
ij) and use standard database join to merge

the tables based on columns πs(k
∗
i ). Let T

∗ be the resulting table.

Optional post-processing phase for colliding keys

5. If there are some non-unique keys in some key column πs(k
∗
i ), miners should

perform additional oblivious shuffle on the secret-shared table T ∗

Protocol 1. Secure implementation of PrpJoin operation

4.1 Secure Inner Join Based on Unique Key Column

As the first step towards a more efficient algorithm, consider a setting where
the computing parties (miners) obliviously apply pseudorandom permutation
πs to encrypt the key column. As πs is a pseudorandom permutation (a block
cipher depending on an unknown key s) and all the values in the key column are
unique, the resulting values look completely random if none of the miners knows
πs. Hence, it is secure to publish all the encryptions of key columns. Moreover,
the tables can be correctly joined using the encryptions instead of key values.

However, such a join still leaks some information – miners learn which data-
base rows in the first table correspond to the database rows in the second table.
By shuffling the rows of initial tables, this linking information is destroyed. The
resulting algorithm is depicted as Protocol 1. We emphasise that in each step all
the tables are in secret-shared form. In particular, each miner carries out step 4
with its local shares and thus the table T ∗ is created in a secret-shared form.
Note that we have also added step 5 to deal with the case of colliding keys. This
case will be discussed in the extended version of the paper [29].

As the actual join operation is performed on public (encrypted) values, the
construction works also for the left and right outer joins, where either the left or
right table retains all its rows, whether a row with a matching key exists in the
other table or not. These outer joins are common in data analysis. For instance,
given access to supermarket purchases and demographic data, we can use outer
join to add person’s wealth and his/her home region to each transaction, given
that both tables contain social security number. As the data about some per-
sons might be missing from the demographic database, miners must agree on
predefined constants to use instead of real shares if the encrypted key is missing.
In this case, optional post-processing step is needed to hide rows with dummy
values. However, the post-processing phase does not hide the number of missing
data entries. We discuss this issue in the extended version of the paper [29].
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Theorem 2. Let P = (πs) be a pseudorandom permutation family. If a share-
computing framework provides universally composable protocols for database shuf-
fle and oblivious evaluation of πs(x) from secret shared values of x and s, and
there are no duplicate key values in any of the input tables, then the PrpJoin
protocol is universally composable in the computational model.

Proof (Sketch). For clarity, let us analyse the security in the modified setting
where P is the set of all permutations and Steps 1–4 are performed by trusted
third party. Let m be the number of rows in the final database table and y1

and y2 the vectors of encrypted values published during PrpJoin protocol. For
obvious reasons, |y1 ∩ y2| = m and the set y1 ∪ y2 consists of m1 + m2 − m
values, which are chosen randomly from the input domain without replacement.
As Step 1 guarantees that the elements in y1 and y2 are in random order, it is
straightforward to simulate y1 and y2 given only the number of rows m.

Hence, the simulation of the protocol is straightforward. First, the simulator
forwards all input shares and gets back the final output shares and thus learnsm.
After that it generates shares for the shuffled databases by creating the correct
number of valid shares of zero. As the adversarial coalition is small enough, the
adversary cannot distinguish them from valid shares. Next, it generates y1 and
y2 according to the specification given above and forwards the values to the
adversary together with properly aligned output shares such that a semihonest
adversary would assemble the database of output shares in the correct way.

It is easy to see that the simulation is perfect in the semihonest model. The
same is true for the malicious model with honest majority, since honest parties
can always carry out all the computations without the help from the adversarial
coalition. In case of dishonest majority, the adversarial coalition is allowed to
learn its output and then terminate the protocol. In our case, the simulator
must terminate the execution when the adversarial coalition decides to stop
after learning the encrypted vectors y1 and y2.

We can use the same simulation strategy for the original protocol where the
trusted third party uses a pseudorandom permutation family. As the key s is
unknown to all parties, the joint output distributions of the real and hybrid
worlds are computationally indistinguishable. The latter is sufficient, as security
in the hybrid model carries over to the real world through universal composability
of share shuffling and oblivious function evaluation protocols. ��

Efficiency. By combining the secure oblivious AES evaluation and the oblivious
shuffle from [30], we get an efficient instantiation of the PrpJoin protocol. For
all database sizes, the resulting protocol does Θ(m1 + m2) share-computing
operations and Θ(m1 logm1 +m2 logm2) public computation operations.4

4 The theoretical asymptotic complexity is higher, as the size of the database can be
only polynomial in the security parameter and thus oblivious PRF evaluation takes
poly(m) steps. Consequently, the protocol is asymptotically more efficient than the
naive solution as long as the PRF evaluation is sub-linear in the database size.
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Offline phase

1. Generate shared random keys (kij) for the Carter-Wegman construction.

Online hashing phase

2. Treat each key tuple as a long bit string x = (xs, . . . , x1).
3. Use secure scalar product algorithm to compute the secret shared hash code:

h(kj ,x) = xsksj + · · ·+ x1k1j .

Protocol 2. Oblivious hashing Ohash

4.2 Secure Inner Join Based on Unique Multi-column Key Values

Let us now consider the case when database tables are joined based on several
columns, such as name and birth date. We can reduce this kind of secure join to
the previous case by using oblivious hashing. An ε-almost universal hash function
is a function h : K×M→ T that compresses message into shorter tags so that
the following inequality holds:

∀x �= x′ ∈M : Pr [k ← K : h(k, x) = h(k, x′)] ≤ ε.

Such a function can be used to reduce the length of the unique key that spans
over several columns. However, this function must support efficient oblivious
evaluation. The Carter-Wegman construction [16]

h(k,x) = xsks + · · ·+ x2k2 + x1k1

is a good candidate for our application as it consist of a few simple operations
and it is 2−� almost universal when computations are done over the field F2� .
Another compelling alternative is to use several independent Carter-Wegman
functions over F2. For � independently chosen keys, the collision probability is
still 2−�. In the semihonest model, the communication complexity of the resulting
oblivious hashing protocols is the same, as the amount of communication scales
linearly wrt the bit length. For the malicious models, the trade-offs depend on
exact implementation details of multiplication protocol. The resulting algorithm
for oblivious hashing is depicted as Protocol 2.

Theorem 3. If a share-computing framework provides universally composable
protocols for addition and multiplication over F2, the Ohash protocol is uni-
versally composable in the information theoretical model. For ε-almost universal
hash function and m invocations of Ohash the probability that two different
inputs lead to the same output is upper bounded by 1

2m
2ε.

Proof (Sketch). The claim about security is evident as multiplication together
with addition is sufficient to implement scalar product over F2. The collision

probability follows from the union bound Pr [collision] ≤
(
m
2

)
· ε ≤ m2ε

2 . ��
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Fig. 2. Benchmarking results for the oblivious database join operation

Efficiency. A collision in the same key column invalidates the assumptions of
Theorem 2, whereas a collision between keys of different tables introduces fraud-
ulent entry in the resulting table. Hence, the size of Carter-Wegman construction
must be chosen so that the probability of a collision event is negligible. By using
2−80 as the failure probability, we get that 128 bit Carter-Wegman construction
allows us to operate up to 33.5 million table entries, which is clearly more than
a secure database join protocol can handle in feasible time. To handle around
million entries with the same failure probability it is sufficient to use 119-bit
Carter-Wegman construction. However, note that the standard implementation
of Ohash that computes each bit of the MAC separately and thus duplicates the
data vector for each bit, has a larger communication complexity than oblivious
AES. Experiments show that for 288 bit input and 128-bit output the complex-
ity of a single Ohash is around 25 ms while the amortised complexity is around
5.7 ms. The corresponding numbers are 11 ms and 0.012 ms for the optimised
Ohash protocol detailed in Appendix A. To put the results into context, note
that unoptimised Ohash is over 10 times slower than oblivious AES, while the
optimised Ohash has almost no impact to performance of the equi-join protocol
as its running time is around 5%.

4.3 Benchmarking Results

We measured the performance of two secure database join protocols with the
same setup as we used for timing the oblivious AES evaluation. For the experi-
ment, we measured how much time it takes to join two database tables consisting
of five 32-bit columns including the single column key. Both databases were of
the same size and each key in one table had exactly one matching key in the
other table. For AES, we used the BCirc-1 version of the protocol as it has the
lowest amortized cost for tables with thousands of rows.

Results depicted in Figure 2 clearly indicate that PrpJoin protocols is much
more efficient even for modest database sizes and it scales nearly linearly. More
precisely, the only non-linear performance component is public database join
operation, which is known to take Θ(m logm) operations. The exact balance
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between oblivious AES evaluation and database shuffle depends on the number
of columns. As the oblivious database shuffle scales linearly with the number
of columns, the fraction of time spent on shuffling increases linearly with the
number of columns. However, the slope is rather small.

For instance, consider two database tables with 10, 000 rows each. Then the
amount of time spent on oblivious shuffle becomes comparable with oblivious
AES evaluation only if the number of columns per table exceeds 180 for our
experimental setting. Hence, we can safely conclude that the oblivious database
join is feasible in practical applications.

The NaiveJoin algorithm spends most of its time doing oblivious database
shuffle. The shuffle operation itself is efficient, but the share size of the database
is big. Even for two tables consisting of 1000 rows we must shuffle a database
with million rows. Hence, it is affordable only for small databases.

4.4 Comparison with Related Work

Protocols for privacy-preserving database join have been proposed before. How-
ever, none of them are applicable in our model where input and output tables are
secret shared. One of the first articles on privacy-preserving datamining showed
how exponentiation can be used to compute equi-join in two-party case [3]. How-
ever, their protocol reveals the resulting database.

Freedman et al. showed how oblivious polynomial evaluation and balanced
hashing can be used to implement secure set intersection [20]. The resulting
two-party protocol is based on additively homomorphic encryption and has com-
plexity Θ(m1m2) without balanced hashing. The latter significantly reduces the
amount of computations by splitting the elements into small distinct groups.
The same idea is not directly applicable in our setting, since our data is secret
shared, while their protocol assumes that key columns are local inputs.

Oblivious polynomial evaluation is not very useful in our context, as it is
shorthand for the test x ∈ {b1, . . . , bk} which requires Θ(k) multiplications,
while the PrpJoin protocol does all such comparisons publicly.

Hazay and Lindell [23] have also proposed a similar solution that uses pseu-
dorandom permutation to hide initial data values and performs secure set inter-
section on ciphertexts. However, they are working in a two-party setting where
one of the parties learns the intersection.

5 Conclusion

In this paper we showed that there are several compelling ways to implement
oblivious AES evaluation in a multi-party setting where the plaintext and the
ciphertext are shared between the parties. As the second important contribu-
tion, we described and benchmarked efficient protocols for joining secret-shared
databases.

Our benchmarking results showed that it is possible to get throughputs around
3500 blocks per second for the oblivious AES, which is the fastest three-party
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MPC implementation known to the authors. In general, any block cipher based
on substitution permutation networks (SPN) is a good candidate for oblivious
evaluation as long as the Sbox has low multiplicative complexity and the rest
of the cipher is linear over F2k . Experimental results allow us to conclude that
throughput around 350 blocks per second is achievable for any comparable SPN
cipher, as the evaluation method of [28] is applicable for any Sbox.

Note that the AES key schedule is appropriate for oblivious evaluation, as all
the round keys can be computed on demand. Consequently, the usage of pre-
shared round keys reduces the running time for a single operation only by 25%.
The only way to get more efficient oblivious evaluation protocols is to use Sbox
constructions with smaller multiplicative complexity than 32. However, these
Sboxes are also more likely to be weaker against linear cryptanalysis and alge-
braic attacks. Thus, it would be really difficult to come up with more compelling
block cipher for multi-party setting – any secure block cipher designed for the
oblivious evaluation, is also a good ordinary block cipher.

For the database join, we showed how to combine oblivious evaluation of
almost universal hashing and pseudorandom functions to get a collision resistant
pseudorandom function, which can handle arbitrary sized database keys. The
resulting PrpJoin protocol works under the assumption that all key column
entries are unique. Although we can always fall back to NaiveJoin and preserve
security without this restriction, the performance penalty is excessive. A better
solution remained out of the space restrictions of this paper and is presented in
the extended version [29].

From a truly theoretical viewpoint, the question whether sub-quadratic com-
plexity for oblivious database join is achievable depends on existence of pseudo-
random functions with low multiplicative complexity. The latter is an interesting
open question. Another practically more important open question is to find new
almost universal hash function constructions with lower multiplicative complex-
ity or to prove that current constructions are optimal. The circuit complexity of
universal hash functions has been studied in the context of energy efficiency [27],
the main goal has been minimisation of total circuit complexity which is a con-
siderably different minimisation goal.
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A Carter-Wegman MAC Protocol Proof

As the computation of Carter-Wegman hash function is essentially a matrix-vector
multiplication over the field F2, we can use an optimisation technique, which is ap-
plicable in many other matrix multiplication settings. The corresponding protocol is
depicted as Protocol 3. We use double brackets to denote secret shared values, e.g.
the secret shared version of s = s1 ⊕ s2 ⊕ s3 is shown as [[s]], where party Pi holds
si. For double indices, the second index shows which party holds the bitstring and the
first shows for which output bit it will be used for. Since all values are bitwise shared,
we can operate with individual bits of the shares. Operations on individual bits use
superscript bit index notation.

Theorem 4. Assume that the shares of m are correctly generated. Then Protocol 3 is
correct and secure against single passively corrupted miner.

http://eprint.iacr.org/


From Oblivious AES to Efficient and Secure Database Join 101

Input-oputput specification

Protocol input is a shared s-bit value [[m]] and shared s-bit keys [[k1]], . . . , [[k�]].
Protocol output is a shared �-bit MAC value [[c]].

Precomputation phase

1. Each miner Pi generates � random bits r1i , . . . , r
�
i ← Z2.

Data distribution phase

3. Miner P1 sends s-bit shares m1, k1,1, . . . , k�,1 to P2.
Miner P2 sends s-bit shares m2, k1,2, . . . , k�,2 to P3.
Miner P3 sends s-bit shares m3, k1,3, . . . , k�,3 to P1.

Post-processing phase

5. Each miner Pi computes wt
ij ← mt

i ∧ kt
j,i ⊕mt

i−1 ∧ kt
j,i ⊕mt

i ∧ kt
j,i−1

for each key j ∈ {1, . . . , �} and bit t ∈ {1, . . . , s} and sums them
up together with re-randomisation cji ← w1

ij ⊕ · · · ⊕ ws
ij ⊕⊕rji ⊕ rji−1.

Protocol 3. More efficient protocol for Carter-Wegman MAC

Proof (Sketch). For each bit cj of MAC the correctness follows from

[[cj ]] =

3⊕
i=1

(
s⊕

t=1

mt
i ∧ kt

j,i ⊕mt
i−1 ∧ kt

j,i ⊕mt
i ∧ kt

j,i−1

)
⊕ rji ⊕ rji−1

=
3⊕

i=1

s⊕
t=1

(
mt

i ∧ kt
j,i ⊕mt

i−1 ∧ kt
j,i ⊕mt

i ∧ kt
j,i−1

)
=

s⊕
t=1

(mt ∧ kt
j) = h(kj ,m)

since the inner most sum contains all combinations of ma ∧ kb.
For the security analysis, it is sufficient to consider the corruption of P2 who re-

ceivers all shares owned by P1. Note that two shares out of three have always uniform
distribution. Hence, it is trivial to simulate all messages received by P2. Since P2 is
semihonest, the simulator can extract shares of the message and keys from the input
of P2 and submit them to the trusted party who will return shares c12, . . . , c

�
2. Since the

simulator knows what random values r12, . . . , r
�
2 P2 is going to use, it can pick r11 , . . . , r

�
1

so that P2 will indeed output c12, . . . , c
�
2. We leave the detailed analysis of the simulation

construction to the reader. �	
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Abstract. In a private database query system, a client issues queries to
a database and obtains the results without learning anything else about
the database and without the server learning the query. While previous
work has yielded systems that can efficiently support disjunction queries,
performing conjunction queries privately remains an open problem. In
this work, we show that using a polynomial encoding of the database
enables efficient implementations of conjunction queries using somewhat
homomorphic encryption. We describe a three-party protocol that sup-
ports efficient evaluation of conjunction queries. Then, we present two
implementations of our protocol using Paillier’s additively homomorphic
system as well as Brakerski’s somewhat homomorphic cryptosystem. Fi-
nally, we show that the additional homomorphic properties of the Brak-
erski cryptosystem allow us to handle queries involving several thousand
elements over a million-record database in just a few minutes, far outper-
forming the implementation using the additively homomorphic system.

1 Introduction

Enabling private database queries is an important research problem that arises
in many real-world settings. The problem can be thought of as a generalization
of symmetric private information retrieval (SPIR) [3,8] where clients can retrieve
records by specifying complex queries. For example, the client may ask for the
records of all people with age 25 to 29 who also live in Alaska, and the server
should return these records without learning anything about the query. The
client should learn nothing else about the database contents.

In this work we explore the use of somewhat homomorphic encryption (SWHE)
[5] for the design of private database query protocols. In particular, we show that
certain polynomial encodings of the database let us implement interesting query
types using only homomorphic computations involving low-degree polynomials.
There are now several encryption schemes [1,2] that efficiently support the nec-
essary low-degree homomorphic computations on encrypted data needed for our
constructions.
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Unfortunately, being a generalization of SPIR, private database queries is
subject to all the same inherent inefficiency constraints as SPIR. To understand
these limitations let us consider the two parties involved in the basic setup: the
client and the server. The server has a database and the client has a query. We
seek a protocol that gives the client only those records that match its query
without the server learning any information about the query. In this setting the
server must process the entire database for every query; otherwise, it would learn
that the unprocessed records do not match the query. Moreover, the server has
to return to the client as much data as the number of records in the database,
or else the database would learn some information about the number of records
that match the query. Thus, for large databases, the server is forced to do a con-
siderable amount of work, rendering such systems impractical in most scenarios.

To overcome these severe limitations we modify the basic model a bit and
consider a setting in which the database server is split into two entities called
the “server” and the “proxy.” Privacy holds as long as these two entities do
not collude. This approach was taken by De Cristofaro et al. [4], who designed
a system that supported private evaluation of a few simple query types and
demonstrated performance similar to a non-private off-the-shelf MySQL system.
However, the architecture of De Cristofaro et al. could not handle conjunctive
queries: for instance, the client could ask for all the records with age=25 OR

name=‘Bob’, but could not ask for the records with age=25 AND name=‘Bob’.
Another multi-party architecture for performing private database queries is pro-
posed in [13]. In this case, the server constructs an encrypted document index
which is stored on an index server (e.g., “proxy” in our setting). To submit
queries, the client interacts with a query router. One of the limitations of this
scheme is that for each query, the server has to perform a computation on each
record in the database, which does not scale well to very large databases.

In this work, we develop protocols that can efficiently support conjunction
queries over large databases using an architecture similar to [4]. We rely on
somewhat homomorphic encryption schemes [1,2] that efficiently support low-
degree homomorphic computations on encrypted data.

1.1 Security Model

The functionality that our protocol implements gives the client the indices of
the records that match its query. The client should learn nothing about the data
beyond this set and the server and proxy should learn nothing about the query
beyond what is explicitly leaked.

More precisely, security for the client means that if the client issues one of two
adversarially-chosen queries with the same number of attributes, the adversarial
server cannot distinguish between them. Security for the server means that for
any fixed query and two adversarially-chosen databases for which the query
matches the same set of records, the client cannot distinguish the two databases.

In this paper, we adopt the honest-but-curious security model. Our protocols
can be enhanced to handle malicious adversaries using generic tools such as [10].
It is an interesting open problem to design more efficient protocols in the ma-
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licious settings specific to the private database queries problem. Security holds
as long as the server and the proxy do not collude. This is very similar to the
assumptions made in [13].

1.2 Our Protocol

The protocol and tools we present in this work are aimed at revealing to the
client the indices of the records that match its query, leaving it to a standard
follow-up protocol to fetch the records themselves. The approach that underlies
our protocol is to encode the database as one or more polynomials and then
manipulate these polynomials using the client’s query so as to obtain a new
polynomial whose roots are the indices of the matching records. This represen-
tation is well suited for conjunction queries, since it allows us to use techniques
similar to the Kissner-Song protocol for (multi-)set intersection [11].

In our protocol, the three parties consist of a client with a query, a proxy that
has an inverted index for the database, and a server that prepared the inverted
index during a pre-processing step and now keeps only the keys that were used
to create this inverted index. Specifically, the server keeps some “hashing keys”
and the secret key for a SWHE scheme. For every attribute-value pair (a, v) in
the database, the inverted index contains a record (tg,Enc(A(x))) where tg is a
tag, computed as tg = Hash(“a = v”), and A(x) is a polynomial whose roots are
exactly the records indices r that contain this attribute-value pair.

An example query supported by our protocol is:

SELECT � FROM db WHERE a1 = v1 AND · · · AND at = vt.

Given this query, the client (with oblivious help from the server) computes the
tags tgi = Hash(“ai = vi”) for i = 1, . . . , t and sends them to the proxy. The
proxy fetches the corresponding encrypted polynomials Ai(x) from the inverted
index, chooses random polynomials Ri(x) of “appropriate degrees” and com-
putes the encrypted polynomial B(x) =

∑t
i=1 Ri(x)Ai(x). The proxy returns

the encrypted B to the client, who again uses oblivious help from the server
to decrypt B, and then factors it to find its roots, which are the indices of the
matching records (with high probability).

One drawback of this protocol is that the proxy can tell when two different
queries share the same attribute-value pair (since the client will send the same
tag in both). In Section 3.3, we show that using quadratic-homomorphic encryp-
tion, we can mitigate this drawback somewhat, providing a privacy/bandwidth
tradeoff that the client can tune to its needs.

Bandwidth reduction and other optimizations. Another drawback of the proto-
col above is that the degree of the encrypted polynomial B returned by the
proxy (which determines the size of the response) depends on the largest num-
ber of records that match any of the attribute-value pairs in the query. For ex-
ample, if the client query was “SELECT � FROM db WHERE gender=‘male’ AND

zipcode=12345,” the response size will be at least as large as the number of
males in the database, even if there are only a few people with zipcode 12345.
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In Section 3.2, we describe how to reduce this degree (and bandwidth) by
observing that the minimum-degree polynomial that encodes the intersection is
the gcd of the Ai’s. We show that the somewhat homomorphic properties of the
cryptosystem can be used to approximate the gcd. Our discussion here will lead
to a storage/homomorphism tradeoff. We present additional optimizations in
Section 3.3. In Section 3.4 we show that we can take advantage of homomorphic
batching [6,14]) to further speed up the computation.

Implementation and performance results. We implemented our three-party pro-
tocol using both the additive homomorphic Paillier cryptosystem [12] and a
variant of Brakerski’s system [1] that supports a single multiplicative homomor-
phism. Our implementation, described in Section 4, shows that the use of mul-
tiplicative homomorphisms greatly improves performance and bandwidth over
the strictly additive implementation using Paillier.

2 Preliminaries

2.1 Homomorphic Encryption

Fix a particular plaintext space P which is a ring (e.g., P = F2). Let C be
a class of arithmetic circuits over the plaintext space P . A somewhat homo-
morphic (public-key) encryption relative to C is specified by the procedures
KeyGen,Enc,Dec (for key generation, encryption, and decryption, respectively)
and the additional procedure Eval that takes a circuit from C and one ciphertext
per input to that circuit, and returns one ciphertext per output of that circuit.

The security requirement is the usual notion of semantic security [9]: it should
be hard to distinguish between the encryption of any two adversarially-chosen
messages, even if the public key is known to the adversary. The functionality
requirement for homomorphic schemes [5] is that for every circuit π ∈ C and
every set of inputs to π, if we choose at random the keys, then encrypt all the
inputs, then run the Eval procedure on these ciphertexts and decrypt the result,
we will get the same thing as evaluating π on this set of inputs (except perhaps
with negligible probability). An important property of SWHE schemes is circuit
privacy, which means that even the holder of the secret key cannot learn from
the evaluated ciphertext anything about the circuit, beyond the output.

In this work we use “low degree” somewhat homomorphic encryption, namely
homomorphic encryption schemes relative to the class of low degree polynomials.
While our basic protocol requires only additive homomorphism, some of our
optimizations require that the scheme support polynomials of higher degree.

2.2 Polynomial Arithmetic and Set-Intersection

We provide a brief overview of the techniques underlying the Kissner-Song set-
intersection protocol [11]. Our setting is different than that considered in [11],
hence also our use of these techniques is somewhat different. Roughly, Kissner
and Song considered the case where each party has a set and they want to
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compute the intersection of all their sets. In our case we have one party holding
all the sets (the server), and another party that determines which of these sets
should participate in the intersection (the client).

The idea behind the Kissner-Song protocol is to fix a large field F and represent
a set S ⊂ F by a polynomial AS that has zeros in all the elements of S, that is
AS(x) =

∏
s∈S(x−s). To compute the intersection of many sets Si, we construct

a polynomial B whose zeros are the intersection of these sets. Clearly, if some
point s ∈ F is contained in all the sets Si, then ASi(s) = 0 for all i, and therefore,
if we compute B as a linear combination of the ASi ’s, then also B(s) = 0. On
the other hand, if ASi(s) �= 0 for some i and B is a random linear combination
of the ASi ’s, then with high probability B(s) �= 0.

The Kissner-Song approach is therefore to choose the field F sufficiently larger
than the “universe” U of valid points (e.g., we have Si ⊆ U � F), then take
B to be a random linear combination of the ASi ’s, and show that with high
probability, the only roots of B that come from U are the ones corresponding
to the intersection of the Si’s. The following lemma is easy to prove using the
above arguments:

Lemma 1. Fix a finite field F and a “universe” U ⊂ F, let S1, . . . , St ⊆ U be
subsets of the universe and for each Si, let ASi(x) =

∏
s∈Si

(x− s).

(i) Let ρ1, . . . , ρt−1 be random scalars in F, let A′(x) = ASt +
∑

i<t ρiASi(x),
and denote the set of roots of A′ by SA′ . Then Pr[SA′ ∩ U =

⋂
i Si] ≥

1− |U |/|F|.
(ii) Let R1, R2 be random polynomials in F[x] of some given degrees d1, d2 ≥ 0.

Let B(x) = A1(x)R1(x) + A2(x)R2(x), and SB be the set of roots of B.
Then Pr[SB ∩ U = S1 ∩ S2] ≥ 1− |U |/|F|.

The harder part is to show that the random linear combination B does not leak
information on the ASi ’s beyond their intersection. For this to hold, the coeffi-
cients of the linear combination cannot be scalars in F, they must be themselves
polynomials of high-enough degree. Specifically, we use the following lemma
which is a slight generalization of [11, Lemma 1]:

Lemma 2. Fix a finite field F and two co-prime polynomials A1(x), A2(x) ∈
F[x], of degrees d1 = deg(A1) and d2 = deg(A2). Also, fix some integer D1 ≥
d1 − 1, and let D2 = d2 +D1 − d1. Next, choose uniformly at random a degree-
D2 polynomial R1(x) ∈ F[x] and a degree-D1 polynomial R2(x) ∈ F[x] and set
B(x) = A1(x) ·R1(x)+A2(x) ·R2(x). Then, B(x) is distributed uniformly among
all the polynomials of degree d1 +D2 = D1 + d2 over F.

Proof. Omitted due to space constraints. See appendix of the full version. ��

Corollary 1. Fix a finite field F and two polynomials A1(x), A2(x) ∈ F[x], with
degrees d1 and d2, respectively. Let G(x) = gcd(A1(x), A2(x)). Also fix some
integer D1 ≥ d1 − 1, and let D2 = d2 + D1 − d1. Then choosing uniformly
at random a degree-D2 polynomial R1(x) ∈ F[x] and a degree-D1 polynomial
R2(x) ∈ F[x] and setting B(x) = A1(x) · R1(x) + A2(x) · R2(x), the polynomial
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B(x) is distributed uniformly among all the polynomials of degree d1+D2 over F
which are divisible by G(x).

Proof. Follows by applying Lemma 2 to the co-prime polynomials A′
1(x) =

A1(x)/G(x) and A′
2(x) = A2(x)/G(x). ��

Intersection of two sets. If AS1(x), AS2(x) are polynomials that represent sets
S1, S2, respectively, then gcd(AS1 , AS2) is the polynomial that represents their
intersection. In this case, Corollary 1 says that setting B = AS1R1 +AS2R2 for
R1, R2 of “appropriate degrees” yields a random multiple of G(x) that leaks “no
information” about A1, A2 beyond their intersection and the sum of their sizes.1

Intersection of many sets. In this setting, we are given the polynomials ASi ,
i = 1, 2, . . . , t, with di = deg(ASi). Without loss of generality, let dt be the
largest degree. We first choose random scalars, ρi ∈ F for i = 2, . . . , t, and
compute the degree-dt polynomial A′(x) = ASt(x) +

∑
2≤i<t ρiASi(x). Then we

choose two random polynomials R1(x) of degree dt−1 and R′(x) of degree d1−1
and set B(x) = AS1(x)R1(x) +A′(x)R′(x).

Clearly gcd(AS1 , AS2 , . . . , ASt) divides gcd(AS1 , A
′). Also Lemma 1 (applied

to U = S1 and S′
i = Si ∩ S1) implies that with probability at least 1 − d1/|F|

we have gcd(AS1 , A
′) = gcd(AS1 , AS2 , . . . , ASt). It follows from Corollary 1 that

when the size of F is super-polynomially larger than d1, the distribution of B(x)
is statistically close to uniform over the degree-(d1+dt−1) polynomials divisible
by gcd(AS1 , AS2 , . . . , ASt).

Reducing the degree. To reduce the degree of the resulting polynomials, in-
stead of using A′(x) =

∑
i ρiASi(x), we compute the polynomial A′′(x) =

A′(x) mod AS1(x) of degree d1 − 1. Choosing at random R1(x) of degree d1 − 1
and R′′(x) of degree d1, we set B(x) = A1(x)R1(x) + A′′(x)R′′(x). Correctness
and secrecy follow from the observation that since A′′(x) = A′(x) mod AS1(x),
gcd(AS1 , A

′′) = gcd(AS1 , A
′).

3 The Three-Party Protocol

In this section, we describe the three-party setting that we adopt in this paper
(which is similar to the “Isolated-Box” architecture in [4]). In this architecture,
in addition to the client and server there is a third party, a proxy, that holds an
“encrypted” inverted index of the database records. For each attribute-value pair
in the database, the proxy holds a tag that identifies the pair, along with a set
of record indices that contain the pair. Specifically, for each attribute-value pair
in the database (e.g., “name=Joe”), the inverted index contains the following:〈

PRFs(“name=Joe”), encrypted-set-of-record-indices
〉

(1)

1 We can pad to a pre-determined degree to hide the information about the sizes.
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where the PRF key s is held by the server and the set of record indices contains
all the records where the attribute “name” has value “Joe.”

When the client wants to fetch the records with name=Joe, it engages in
a protocol for oblivious-PRF-evaluation with the server and learns the tag
PRFs(“name=Joe”). It then engages in a protocol with the proxy to learn the
set of indices corresponding to this tag. To make a conjunction query, the client
sends multiple tags to the proxy and at the end of the protocol, learns the records
in the intersection of all the sets.

3.1 Our Basic 3-Party Protocol

The task of computing conjunctions is closely related to set intersection. Indeed,
an attribute-value pair (e.g., “name=Joe”) implicitly defines a set of records that
contains this pair. The proxy needs to send the intersection of all these sets to
the client, without learning anything about the sets themselves.

Using the technique of Kissner and Song described in Section 2.2, we represent
each set as a polynomial whose roots are the elements of that set. Thus, in
the row of the inverted index with tag PRFs(“name=Joe”), we do not store the
set of indices S containing this attribute-value pair, but rather the polynomial
AS(x) =

∏
s∈S(x−s), encrypted using our SWHE scheme. Note that the SWHE

scheme is used to encrypt each coefficient of the polynomial AS . To issue a
conjunctive query (say, “name=Joe” and “age=28”), the client does the following:

1. Use oblivious-PRF-evaluation to obtain from the server the tags tg1, . . . , tgt
corresponding to each of the attribute-value pairs. The client sends all the
tags to the proxy.

2. The proxy collects the encrypted polynomials Ai corresponding to the tags
tgi and then computes a polynomial B(x) as a “random linear combination”
of the Ai(x)’s:
(i) Letting di = deg(Ai) and assuming that the Ai’s are ordered by de-

gree (d1 ≤ d2 ≤ · · · ≤ dt), the proxy first chooses random scalars
ρ2, . . . , ρt−1 and computes the degree-dt polynomial A′(x) = At +∑

2≤i<t ρiAi(x).
(ii) Then the proxy chooses two random polynomials R1(x) of degree dt−1

and R′(x) of degree d1 − 1 and sets B(x) = A1(x)R1(x) +A′(x)R′(x).
The proxy uses the additive homomorphism of the scheme to compute
the encrypted coefficients of the polynomial B from the encrypted co-
efficients of the Ai’s and the plaintext ρi, R1 and R′. The proxy sends
the encrypted B(x) to the client.

3. The client and server engage in another protocol to decrypt B(x) (en-
crypted under the server’s key). At the conclusion of this protocol, the client
knows B(x) and the server knows nothing.

4. The client factors B(x) and finds its roots, which are the indices of the
records that the client is interested in. While B(x) may have superfluous
roots, we use a large-enough space so that with high probability these roots
are identified as invalid and discarded.
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Once the client knows the indices of the records that match its query, it can use
PIR/ORAM protocols to fetch the encrypted records, then engage in another
oblivious decryption protocol with the server to decrypt them.

Security. Secrecy against an honest-but-curious proxy is ensured by the fact
that the tags do not leak to the proxy anything about the attribute-value pairs
that were used to generate them (because the tag-generation function is pseudo-
random), and the encrypted polynomials do not leak anything due to the se-
mantic security of the SWHE cryptosystem. Note that our security model only
ensures privacy for a single query. If the client issues multiple queries then the
proxy may learn relations between these queries. We briefly discuss multiple
queries in Section 3.3.

Secrecy against an honest-but-curious client follows from Corollary 1 and the
circuit-privacy property of the SWHE scheme. Specifically, Corollary 1 implies
that the polynomial B by itself does not leak anything about the Ai’s beyond
their intersection (and the size d1 + dt), and circuit-privacy of the cryptosystem
means that the evaluated ciphertext encrypting B does not leak anything else.

3.2 Reducing Communication via Modular Reduction

The communication complexity of the basic solution above is determined by
the degree of the polynomial B, which is tied to the size of the largest set in
the intersection (e.g., the highest degree dt). Using some more homomorphic
operations, we can make the degree of B as low as 2d1−1, namely it can be tied
to the size of the smallest set S1 rather than the largest set St.

To this end, we use the optimization from Section 2.2, where instead of using
A′(x) = At(x)+

∑
2≤i<t ρiAi(x), the proxy uses A′′(x) = A′ mod A1(x). We note

that given the encrypted coefficients of both the polynomial A′(x) of degree dt
and the monic polynomial A1(x) of degree d1, we can homomorphically reduce
A′ modulo A1 as long as our SWHE scheme supports formulas of degree dt−d1.
To see this, notice that given the encryption Enc(α′

dt
) of the top coefficient of A′,

we can reduce the degree of A′ by one by setting A′′ = A′ −α′
dt
·A1(x) · xdt−d1 .

Clearly the degree of A′ is one less than that of A′ and it satisfies A′′ ≡ A′

(mod A1).
However, reducing modulo A1 can be done using more limited homomorphism

if the proxy is given not just the encryption ofA1 but also some other ciphertexts.
For example, suppose the proxy is given the encryption Enc(xi mod A1) for i =
d1 + 1, d1 + 2, d1 + 3, . . . , dt. Then given the encryptions of all the coefficients
of A′, Enc(α′

0), . . . ,Enc(α
′
dt
), the proxy computes the encryption of the reduced

polynomial as Enc(A′ mod A1) = Enc(
∑dt

i=0 α
′
i(x

i mod A1)). Since the proxy has
the encryptions of all the α′

i’s and the (xi mod A1)’s, then it is enough if our
SWHE scheme supports only quadratic formulas, such as [7,1].

The above two procedures for computing polynomial modular reduction rep-
resent two extremes on the storage/homomorphism tradeoff. Perhaps a better
tradeoff can be obtained by storing only logarithmically many encrypted poly-
nomials corresponding to A1, and using a SWHE scheme supporting formulas
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of degree O(log dt). Denoting Δ = dt − d1, the proxy is given the encryptions

Enc(xd1+2i mod A1) for i = 0, 1, . . . , �logΔ�. Given these encryptions and the
encryptions of the coefficients of A′, reducing A′ modulo A1 homomorphically
can be done in �logΔ� steps. See appendix of full version for more details.

3.3 Other Optimizations and Variations

Returning two polynomials. The most expensive operation that the client per-
forms in our protocol is factoring the polynomial B. Even with the bandwidth
reduction trick from above, its degree is still twice as large as the degree of the
smallest Ai, which can be much higher than the degree of the gcd of the Ai’s.

A simple trick that can be used here is to have the proxy send to the client
two encrypted polynomials. Namely, after the proxy computes the polynomial
A′ in Step 2(i), it repeats Step 2(ii) twice, that is, choose polynomials R1, R

′

and S1, S
′ and set B(x) = A1(x)R1(x) + A′(x)R′(x) and C(x) = A1(x)S1(x) +

A′(x)S′(x). The proxy sends the encrypted B and C to the client, who engages in
an oblivious decryption protocol with the server to decrypt both. Then the client
computes the gcd of the two polynomials B and C, and with high probability
this polynomial is the gcd of all the Ai’s, which hopefully has much lower degree
than B,C themselves.

Obscuring relations between different queries. One problem with the basic
solution above is that the client sends to the proxy all the tags tgi =
PRFs(attri = valuei), so the proxy can tell when a given tgi is used in multiple
queries. This problem can be mitigated by adding spurious tags to the request,
but without changing the result of the final intersection. The idea is to have the
client send to the proxy pairs (tgi, si) where tgi is a tag for an attribute-value pair
and si is an encryption of a bit σi ∈ {0, 1}. By using a quadratic-homomorphic
encryption scheme (such as [7]), the proxy can choose its randomizers Ri(x) and
compute an encryption of the polynomial B(x) =

∑
iRi(x) · (σi · Ai(x)). The

client will send some spurious tags tgi with σi = 0, thus obscuring the tags that
it is really interested in, but without changing the result of the intersection.

3.4 Speedups via Batching

One appealing optimization that applies to the protocol in this paper is to use
“batch homomorphic encryption” where a single ciphertext represents a vector
of encrypted values and a single homomorphic operation on two such ciphertexts
applies the homomorphic operation component-wise to the entire vector. This
way, for the cost of a single homomorphic operation we get to compute on an
entire vector of encrypted plaintexts. This is a cryptographic analogue of the
Single Instruction Multiple Data (SIMD) architecture and is supported by recent
fully homomorphic encryption systems [1,14,2,6].

We take advantage of batching in our context by splitting the database into
a few small partial databases and running the same query against all parts
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in parallel. When using the techniques from [14,2,6] (for the ring-LWE-based
homomorphic encryption) we can pack in each ciphertext � different plaintext
elements (where � is typically in the range of 500-10,000). We can then break an
r-record database into � smaller databases, each with ≈ r/� records.

In the three-party setting, with each tag tgi = PRFs(“attri = vali”), we keep
encryptions of � different polynomials, one for each part of the database. These
are placed in the � “plaintext slots” of the ciphertexts, so the number of cipher-
texts that needs to be kept is only as large as the degree of the largest of these
� polynomials. (If the records are split between the parts uniformly, then we
expect this degree to be roughly a factor of � smaller than it would be if we keep
everything as a single database.) A client query will still be processed in the
exact same way as in the previous sections, but now the client will get back from
the proxy not a single encrypted polynomial B(x) but � different polynomials
Bj(x), one for each of plaintext slot. The client gets the decryption of all these
Bi’s from the server, factors them all, and takes the union of their roots to be
the set of records that match the query.

4 Implementing the Three-Party Protocol

We implemented the basic three-party protocol from Section 3 using both the
Paillier cryptosystem [12] and a variant of Brakerski’s leveled homomorphic sys-
tem [1]. Because the Paillier cryptosystem only supports additive homomor-
phism, we can only support the basic protocol, without the batching (Section 3.4)
and modular reduction optimizations (Section 3.2). In contrast, Brakerski’s lev-
eled homomorphic scheme supports a bounded number of homomorphic addi-
tions and multiplications. To demonstrate the effectiveness of our optimizations
we conducted a set of experiments with batching and modular reduction us-
ing Brakerski’s cryptosystem. Since most of our described optimizations pertain
specifically to the problem of oblivious set intersection, we focus our experimen-
tal analysis on this portion of the three-party protocol.

In this section, we show that support for batching (Section 3.4) in Brakerski’s
system is critical for evaluating large queries. Specifically, for large queries, the
Paillier system becomes intractable, leaving the Brakerski system as the only
suitable option. We also demonstrate that the modular reduction optimization
(Section 3.2) yields substantial reductions in both computation time and network
bandwidth on queries where there is a large disparity in the sizes of the record
sets corresponding to the tags. In one case, we show a 4X improvement in both
processing time and bandwidth using modular reduction.

4.1 Homomorphic Encryption Schemes

Paillier cryptosystem. Recall that the Paillier cryptosystem works over Z∗
n2 for

an RSA-modulus n of unknown factorization. The scheme has plaintext space
P = Zn and ciphertext space Z∗

n2 . The scheme is additively homomorphic, with
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Table 1. Parameters used to achieve 128-bit security in the Brakerski system. The
false positive rate is fixed at 10−3.

Experiment Ring Modulus
Φm

Plaintext Slots
ϕ(m)

Plaintext
Modulus p

Ciphertext
Modulus q

NoMR m = 5939 ϕ(m) = 5938 p = 1000032577 log2 q = 181
MR, MRNoKS m = 7867 ϕ(m) = 7866 p = 1000021573 log2 q = 238

homomorphic addition implemented by multiplying the corresponding cipher-
texts in Z∗

n2 . Similarly, we can homomorphically multiply a ciphertext c ∈ Z∗
n2

by a constant a ∈ Zn by computing ca mod n2.

Brakerski’s leveled homomorphic cryptosystem. We also use the ring-LWE-based
variant of Brakerski’s scale-invariant homomorphic cryptosystem [1]. Specifi-
cally, our implementation operates over polynomial rings modulo a cyclotomic
polynomial. Let Φm(x) denote the mth cyclotomic polynomial. Then, we work
over the ring R = Z[x]/Φm(x). Specifically, we take our plaintext space to be
P = Rp = Zp[x]/Φm(x) and our ciphertext space to be Rq = Zq[x]/Φm(x) for
some q > p. In this scheme, our secret keys and ciphertexts are vectors of ele-
ments in Rq. Homomorphic addition is implemented by adding the corresponding
ciphertexts. We can multiply a ciphertext c by a constant a ∈ Rp by computing
ac. Finally, homomorphic multiplication is performed using a tensor product.
Note that when we homomorphically multiply two ciphertexts, the resulting
ciphertext is encrypted under a tensored secret key. Using a technique called
key-switching, we can transform the product ciphertext into a regular ciphertext
encrypted under the original secret key. We refer readers to [1] for further details.

As noted in Section 3.4, one of the main advantages of using a ring-LWE-
based homomorphic scheme is the fact that we can pack multiple plaintext mes-
sages into one ciphertext using a technique called batching. To use batching we
partition a database with r records into � separate databases, each containing
approximately r/� records. Correspondingly, the the degrees of the polynomials
in each database are reduced roughly by a factor of �. In our implementation,
� ≥ 5000, so this translates to a substantial improvement in performance.

We now consider a choice for the plaintext modulus p for use in the Brak-
erski scheme. From Lemma 1, we have that the probability of a false positive
(mistaking an element not in the intersection to be in the intersection) is given
by |U | / |Fp|. If we tolerate a false positive rate of at most 0 < λ < 1, then we
require that |Fp| ≥ 1

λ |U | =
r
λ , where r is the number of records in the database.

Additionally, to maximize the number of plaintext slots, we choose p such that
p = 1 (mod m). To summarize, we choose our plaintext modulus p such that
p = 1 (mod m) and p ≥ r

λ .

4.2 Experimental Setup

We implemented the three-party protocol using both the Paillier and Brak-
erski cryptosystems as the underlying homomorphic encryption scheme. Our
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implementation was done in C++ using the NTL library over GMP. Our code
was compiled using g++ 4.6.3 on Ubuntu 12.04. We ran all timing experiments
on cluster machines with multicore AMDOpteron processors running at 2.1 GHz.
The machines had 512 KB of cache and 96 GB of available memory. All of our
experiments were conducted in a single-threaded, single-processor environment.
Memory usage during the computation generally stayed below 10 GB.

In the Paillier-based scheme, we used a 1024-bit RSA modulus for all of our
experiments. For the Brakerski system, we chose parameters m, p, q to obtain
128-bit security and a false positive rate of λ = 10−3. See appendix of full ver-
sion for derivation of parameters. Since the Brakerski system supports both the
batching and modular reduction optimizations described in Section 3.4 and Sec-
tion 3.2, respectively, we considered three different experimental setups to assess
the viability of these optimizations. Below, we describe each of our experiments.
The parameters used in our SWHE scheme for each setup are given in Table 1.

NoMR: Brakerski scheme without modular reduction. In the NoMR setup, we just
used the batching capabilities of the Brakerski system. Note that this setup only
required homomorphic addition, and not homomorphic multiplication, and thus,
allowed us to use smaller parameters in the Brakerski system.

MR: Brakerski scheme with modular reduction. In the MR setup, we considered
the modular reduction optimization from Section 3.2. In the final step of the
three-party protocol, the proxy computes the polynomial B(x) = A1(x)R1(x) +
A′(x)R′(x) where deg(A1) ≤ deg(A′). When we perform modular reduction, we
compute A′(x) (mod A1(x)) followed by B(x) (mod A1(x)). This optimization
reduces the degree of the polynomial B(x) that the proxy sends to the client as
well as the cost of the computation of B(x). To perform this optimization, the
SWHE scheme must support at least one multiplication, thus requiring larger pa-
rameters for security. Consequently, each homomorphic operation takes longer,
but since we are performing fewer operations overall, the modular reduction can
yield substantial gains for certain queries. Due to the cost of homomorphic mul-
tiplications, we just consider the case of doing a single multiply.

MRNoKS: Brakerski scheme with modular reduction but without key switching.
When we homomorphically multiply two ciphertexts in the Brakerski system, we
obtain a tensored ciphertext (e.g., a higher-dimensional ciphertext) encrypted
under a tensored secret key. Normally, we perform a key-switching operation
that transforms the tensored ciphertext into a new ciphertext encrypted under
the normal secret key. If left unchecked, the length of the ciphertexts grows expo-
nentially with the number of successive multiplications. Thus, the key-switching
procedure is important for constraining the length of the ciphertexts. In our
application, we perform a single multiplication, and so the key-switching proce-
dure may be unnecessary. Since the key-switching operation has non-negligible
cost, we can achieve improved performance at the expense of slightly longer
ciphertexts (and thus, increased bandwidth) by not performing the key switch.
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Fig. 1. Timing tests on balanced queries using the Paillier cryptosystem and the three
setups of the Brakerski cryptosystem described in Section 4.2. All queries were con-
ducted over a database consisting of 106 records. Each query consisted of five tags;
the approximate number of records associated with each tag is indicated on the plot
above. Note that the running time with Paillier became too large when the database
had more than 2,000 records per tag and as a result the Paillier line stops at 2,000.

Query type. In each of our experiments, we operated over a database with 106

records and performed queries consisting of five tags. Let d1 ≤ d2 ≤ · · · ≤ d5
denote the number of elements associated with each tag tg1, . . . , tg5. We profiled
our system on two different sets of queries: balanced queries and unbalanced
queries. In a balanced query, the number of elements associated with each tag
was approximately the same: d1 ≈ d2 ≈ · · · ≈ d5.

In an unbalanced query, the number of elements associated with each tag
varies significantly. Specifically, d1 is at most 5% of d5. As discussed in Section 1,
queries like these where we compute an intersection of a large set with a much
smaller set are very common and so, it is important that we can perform such
queries efficiently. For each query, we measured the computation time as well as
the total network bandwidth required by each of our setups. Note that due to
the poor scalability of the Paillier system, we were not able to perform the full
set of experiments using the Paillier cryptosystem.

4.3 Experimental Results

Balanced queries. In the first set of experiments, we considered the run-time
and bandwidth requirements for performing balanced queries. In particular, we
constructed a database with 106 records and where each tag in the database was
associated with approximately d records (for d ranging from 100 to 200,000).
We executed these queries on the four different setups described above (Paillier,
NoMR, MR, and MRNoKS). Our timing and bandwidth measurements are sum-
marized in Fig. 1 and Fig. 2. Because the query execution time dominated the
cost of the computation, we just present the cost of performing the query.

We compare the computational cost and network bandwidth required by each
of our setups described in Section 4.2 for evaluating balanced queries. From



Private Database Queries Using Somewhat Homomorphic Encryption 115

20 200 2000 20000 200000

Ba
nd

w
id

th
 (M

B)

Approximate Number of Records Associated with Each Tag

70

60

50

40

30

20

10

0

MR: With Modular Reduc�on (Brakerski)
Paillier: Paillier System

MRNoKS: With Modular Reduc�on without Key Switching (Brakerski)

NoMR: No Modular Reduc�on (Brakerski)

Fig. 2. Bandwidth measurements on balanced queries using the Paillier cryptosystem
and the three different setups of the Brakerski cryptosystem. Same setup as in Fig. 1.

Fig. 1, we see that the Paillier system is faster for small queries involving sets
of several hundred records. This is due to the simplicity and low computational
overhead of the Paillier cryptosystem compared to Brakerski’s leveled homomor-
phic cryptosystem. However, the run time scales quadratically with the size of the
underlying sets, so for queries with over 2,000 elements, the Paillier system be-
comes completely impractical. While the performance using Brakerski’s system
also scales quadratically with the number of records, batching allows us to split

the main database D into � slices, each with approximately |D|
� records. Thus,

we were able to reduce the degree of the polynomials we needed to multiply by
a factor of approximately � > 5000. In turn, batching allows for approximately
a factor of � increase in the number of records the system could handle. Using
Brakerski’s system, we are able to handle queries for tags consisting of 200,000
records. These results also indicate that in terms of both bandwidth and compu-
tation time, the modular reduction optimization from Section 3.2 is ineffective
when we have balanced queries. This is because the modular reduction optimiza-
tion is designed for cases where there is a large disparity between the sizes of
the smallest and largest sets. When the size of each set is approximately equal,
the larger parameters needed to support the modular reduction optimization
coupled with the computational cost of performing the optimization resulted in
worse performance overall. Thus, for balanced queries, it is advantageous to just
use the Brakerski system without additional optimizations.

Unbalanced queries. We also considered the case where the underlying sets are
unbalanced, that is, cases where the smallest set contains at most 5% of the
number of records in the largest set. Due to the poor scalability of the Paillier
system, we only performed the queries using our three Brakerski setups. Our
results are summarized in Fig. 3 and Fig. 4.

When working with unbalanced queries, the modular reduction optimization
(with or without key switching) reduces the necessary bandwidth. Despite the
fact that each individual ciphertext is larger when we perform modular reduction
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Fig. 3. Timing tests on unbalanced queries using the three different setups of the Brak-
erski system (described in Section 4.2). All queries were conducted over a database
consisting of 106 records. Each query consisted of five tags; the number of records
associated with each tag is shown in parenthesis in the corresponding graphs.
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Fig. 4. Bandwidth measurements on unbalanced queries using the three different setups
of the Brakerski system. Same setup as in Fig. 3.

(due to the larger parameters in the Brakerski system), the polynomials also
have much lower degree (degree given by 2d1 − 1 rather than d1 + d5 − 1). The
larger the difference between d1 and d5, the more substantial the bandwidth
reduction. Furthermore, performing modular reduction also translated to faster
query processing. Recall that in the last step of the proxy computation, the
proxy multiplies a polynomial of degree d5−1 with one of degree d1−1. If we use
modular reduction, the multiplication is instead performed on two polynomials
of degree d1 and d1 − 1. From our experiments, we see that when d1 = 10,000
and d5 = 200,000 (Query 2), the MRNoKS setup is about 2.7 times faster. When
this gap is even larger with d1 = 2,500 and d5 = 350,000 (Query 3), we observe
that the MRNoKS setup is almost 4.7 times faster than the NoMR system. Even
with key switching in this case (Query 3), modular reduction still reduces the
run time by a factor of 2.6. In both MR and MRNoKS, the bandwidth on this
very unbalanced query is reduced by more than a factor of 4 compared to the
baseline without the modular reduction optimization.
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To summarize, performing the modular reduction optimization is greatly ben-
eficial, both in terms of computation time as well as in terms of network band-
width, when there is a large difference between the sizes of the underlying sets.
As we have demonstrated, it is possible to achieve over a 4X improvement in both
computation time and network bandwidth on certain queries, making modular
reduction a very viable optimization in practice.

5 Conclusion

This paper presents new protocols and tools that can be used to construct a
private database query system supporting a rich set of queries. We showed how
a polynomial representation of the database allows for efficient evaluation of pri-
vate conjunction queries. The basic schemes only require an additively homomor-
phic system like Paillier, but we showed that significant performance improve-
ments can be obtained using a stronger homomorphic system that supports both
homomorphic additions and a few homomorphic multiplications. Our experi-
ments quantify this improvement showing a real-world example where lattice-
based homomorphic systems can outperform their factoring-based counterparts.
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Abstract. We present the hash function BLAKE2, an improved version
of the SHA-3 finalist BLAKE optimized for speed in software. Target
applications include cloud storage, intrusion detection, or version control
systems. BLAKE2 comes in two main flavors: BLAKE2b is optimized
for 64-bit platforms, and BLAKE2s for smaller architectures. On 64-
bit platforms, BLAKE2 is often faster than MD5, yet provides security
similar to that of SHA-3: up to 256-bit collision resistance, immunity
to length extension, indifferentiability from a random oracle, etc. We
specify parallel versions BLAKE2bp and BLAKE2sp that are up to 4
and 8 times faster, by taking advantage of SIMD and/or multiple cores.
BLAKE2 reduces the RAM requirements of BLAKE down to 168 bytes,
making it smaller than any of the five SHA-3 finalists, and 32% smaller
than BLAKE. Finally, BLAKE2 provides a comprehensive support for
tree-hashing as well as keyed hashing (be it in sequential or tree mode).

1 Introduction

The SHA-3 Competition succeeded in selecting a hash function that comple-
ments SHA-2 and is much faster than SHA-2 in hardware [1]. There is nev-
ertheless a demand for fast software hashing for applications such as integrity
checking and deduplication in filesystems and cloud storage, host-based intrusion
detection, version control systems, or secure boot schemes. These applications
sometimes hash a few large messages, but more often a lot of short ones, and
the performance of the hash directly affects the user experience.

Many systems use faster algorithms like MD5, SHA-1, or a custom function
to meet their speed requirements, even though those functions may be insecure.
MD5 is famously vulnerable to collision and length-extension attacks [2, 3], but
it is 2.53 times as fast as SHA-256 on an Intel Ivy Bridge and 2.98 times as fast
as SHA-256 on a Qualcomm Krait CPU.

Despite MD5’s significant security flaws, it continues to be among the most
widely-used algorithms for file identification and data integrity. To choose just
a handful of examples, the OpenStack cloud storage system [4], the popular

M. Jacobson et al. (Eds.): ACNS 2013, LNCS 7954, pp. 119–135, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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version control system Perforce, and the recent object storage system used in-
ternally in AOL [5] all rely on MD5 for data integrity. The venerable md5sum

unix tool remains one of the most widely-used tools for data integrity checking.
The Sun/Oracle ZFS filesystem includes the option of using SHA-256 for data
integrity, but the default configuration is to instead use a non-cryptographic
256-bit checksum, for performance reasons. The Tahoe-LAFS distributed stor-
age system uses SHA-256 for data integrity, but is investigating a faster hash
function [6].

Some SHA-3 finalists outperform SHA-2 in software: for example, on Ivy
Bridge BLAKE-512 is 1.41 times as fast as SHA-512, and BLAKE-256 is 1.70
times as fast as SHA-256. BLAKE-512 reaches 5.76 cycles per byte, or approxi-
mately 579 mebibytes per second, against 411 for SHA-512, on a CPU clocked at
3.5GHz. Some other SHA-3 submissions are competitive in speed with BLAKE
and Skein, but these have been less analyzed and generally inspire less confidence
(e.g., due to distinguishers on the compression function).
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BLAKE2b BLAKE2s MD5 SHA−1 SHA−256 SHA−512 SHA3−256 SHA3−512

cycles per byte speed on Intel Sandy Bridge
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Fig. 1. Speed comparison of various popular hash functions, taken from eBACS’s “hy-
dra7” measurements. SHA-3 and BLAKE2 have no known security issues. SHA-1,
MD5, SHA-256, and SHA-512 are susceptible to length-extension. SHA-1 and MD5
are vulnerable to collisions. MD5 is vulnerable to cheap chosen-prefix collisions.

BLAKE thus appears to be a good candidate for fast software hashing. Its
security was evaluated by NIST in the SHA-3 process as having a “very large se-
curity margin”, and the cryptanalysis published on BLAKE was noted as having
“a great deal of depth” (see §4).

But as observed by Preneel [7], its design “reflects the state of the art in
October 2008”; since then, and after extensive cryptanalysis, we have a bet-
ter understanding of BLAKE’s security and efficiency properties. We therefore
introduce BLAKE2, an improved BLAKE with the following properties:
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– Faster than MD5 on 64-bit Intel platforms
– 32% less RAM required than BLAKE
– Direct support, with no overhead, of
• Parallelism for many-times faster hashing on multicore or SIMD CPUs
• Tree hashing for incremental update or verification of large files
• Prefix-MAC for authentication that is simpler and faster than HMAC
• Personalization for defining a unique hash function for each application

– Minimal padding, faster and simpler to implement

Fig. 1 presents our results on the Sandy Bridge, and compares them against
other common hash functions, and the SHA-3 winner Keccak.

The rest of this paper is structured as follows: §2 describes how BLAKE2
differs from BLAKE, §3 discusses its efficiency on various platforms and reports
preliminary benchmarks, and §4 discusses its security.

2 Description of BLAKE2

The BLAKE2 family consists of two main algorithms:

– BLAKE2b is optimized for 64-bit platforms — including NEON-enabled
ARMs — and produces digests of any size between 1 and 64 bytes.

– BLAKE2s is optimized for 8- to 32-bit platforms, and produces digests of
any size between 1 and 32 bytes.

Both are designed to offer security similar to that of an ideal function producing
digests of same length. Each one is portable to any CPU, but can be up to
twice as fast when used on the CPU size for which it is optimized; for example,
on a Tegra 2 (32-bit ARMv7-based SoC) BLAKE2s is expected to be about
twice as fast as BLAKE2b, whereas on an AMD A10-5800K (64-bit, Piledriver
microarchitecture), BLAKE2b is expected to be more than 1.5 times as fast as
BLAKE2s.

Since BLAKE2 is very similar to BLAKE, we first describe the changes intro-
duced with BLAKE2. We refer to https://blake2.net for the full version of
the BLAKE2 paper, or https://131002.net/blake for a complete specification
of BLAKE.

2.1 Fewer Rounds

BLAKE2b does 12 rounds and BLAKE2s does 10 rounds, against 16 and 14
respectively for BLAKE. Based on the security analysis performed so far, and
on reasonable assumptions on future progress, it is unlikely that 16 and 14 rounds
are meaningfully more secure than 12 and 10 rounds (as discussed in §4). Recall
that the initial BLAKE submission [8] had 14 and 10 rounds, respectively, and
that the later increase [9] was motivated by the high speed of BLAKE (i.e., it
could afford a few extra rounds for the sake of conservativeness), rather than by
cryptanalysis results.

This change gives a direct speed-up of about 25% and 29%, respectively, on
long inputs. Speed on short inputs also significantly improves, though by a lower
ratio, due to the overhead of initialization and finalization.

https://blake2.net
https://131002.net/blake
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2.2 Rotations Optimized for Speed

BLAKE is a so-called ARX algorithm, that is, it is based on a sequence of xors,
modular additions, and word rotations.

The core function (G) of BLAKE-512 performs four 64-bit word rotations of
respectively 32, 25, 16, and 11 bits. BLAKE2b replaces 25 with 24, and 11 with
63:

– Using a 24-bit rotation allows SSSE3-capable CPUs to perform two rotations
in parallel with a single SIMD instruction (namely, pshufb), whereas two
shifts plus a logical OR are required for a rotation of 25 bits. This reduces
the arithmetic cost of the G function, in recent Intel CPUs, from 18 single
cycle instructions to 16 instructions, a 12% decrease.

– A 63-bit rotation can be implemented as an addition (doubling) and a shift
followed by a logical OR. This provides a slight speed-up on platforms where
addition and shift can be realized in parallel but not two shifts (i.e., some
recent Intel CPUs). Additionally, since a rotation right by 63 is equal to a
rotation left by 1, this may be slightly faster in some architectures where 1
is treated as a special case.

No platform suffers from these changes. For an in-depth analysis of optimized
implementations of rotations, we refer to a previous work by two co-designers of
BLAKE2 [10].

Past experiments by the BLAKE designers as well as third parties suggest
that known differential attacks are unlikely to get significantly better (cf. §4).

2.3 Minimal Padding and Finalization Flags

BLAKE2 pads the last data block if and only if necessary, with null bytes. If
the data length is a multiple of the block length, no padding byte is added. This
implies that if the message length is a multiple of the block length, no padding
byte is added. The padding thus does not include the message length, as in
BLAKE, MD5, or SHA-2.

To avoid weaknesses, e.g. exploiting fixed points, BLAKE2 introduces final-
ization flags f0 and f1, as auxiliary inputs to the compression function:

– The security functionality of the padding is transferred to a finalization flag
f0, a word set to ff...ff if the block processed is the last, and to 00...00

otherwise. The flag f0 is 64-bit for BLAKE2b, and 32-bit for BLAKE2s.
– A second finalization flag f1 is used to signal the last node of a layer in tree-

hashing modes (see §§2.10). When processing the last block—that is, when
f0 is ff...ff—the flag f1 is also set to ff...ff if the node considered is
the last, and to 00...00 otherwise.

The finalization flags are processed by the compression function as described
in §2.4.

BLAKE2s thus supports hashing of data of at most 264 − 1 bytes, that is,
almost 16 exbibytes (the amount of memory addressable by 64-bit processors).
BLAKE2b’s upper bound of 2128 − 1 bytes ought to be enough for anybody.
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2.4 Fewer Constants

Whereas BLAKE used 8 word constants as IV plus 16 word constants for use in
the compression function, BLAKE2 uses a total of 8 word constants, instead of
24. This saves 128 ROM bytes and 128 RAM bytes in BLAKE2b implementa-
tions, and 64 ROM bytes and 64 RAM bytes in BLAKE2s implementations.

The compression function initialization phase is modified to:⎛⎜⎜⎝
v0 v1 v2 v3
v4 v5 v6 v7
v8 v9 v10 v11
v12 v13 v14 v15

⎞⎟⎟⎠←
⎛⎜⎜⎝

h0 h1 h2 h3

h4 h5 h6 h7

IV0 IV1 IV2 IV3

t0 ⊕ IV4 t1 ⊕ IV5 f0 ⊕ IV6 f1 ⊕ IV7

⎞⎟⎟⎠
Note the introduction of finalization flags f0 and f1, in place of BLAKE’s re-
dundant counter.

The G functions of BLAKE2b (left) and BLAKE2s (right) are defined as:

a← a+ b+mσr(2i)

d← (d⊕ a) ≫ 32

c← c+ d

b← (b⊕ c) ≫ 24

a← a+ b+mσr(2i+1)

d← (d⊕ a) ≫ 16

c← c+ d

b← (b⊕ c) ≫ 63

a← a+ b+mσr(2i)

d← (d⊕ a) ≫ 16

c← c+ d

b← (b⊕ c) ≫ 12

a← a+ b+mσr(2i+1)

d← (d⊕ a) ≫ 8

c← c+ d

b← (b⊕ c) ≫ 7
Note the aforementioned change of rotation counts.

Omitting the constants in G gives an algorithm similar to the (unattacked)
BLAZE toy version1. Constants in G initially aimed to guarantee early prop-
agation of carries, but it turned out that the benefits (if any) are not worth
the performance penalty, as observed by a number of cryptanalysts. This change
saves two xors and two loads per G, that is, 16% of the total arithmetic (addition
and xor) instructions.

2.5 Little-Endian

BLAKE, like SHA-1 and SHA-2, parses data blocks in the big-endian byte or-
der. Like MD5, BLAKE2 is little-endian, because the large majority of target
platforms is little-endian (AMD and Intel desktop processors, most mainstream
ARM systems). Switching to little-endian may provide a slight speed-up, and
often simplifies implementations.

Note that in BLAKE, the counter t is composed of two words t0 and t1,
where t0 holds the least significant bits of the integer encoded. This little-endian
convention is preserved in BLAKE2.

1 See https://131002.net/blake/toyblake.pdf

https://131002.net/blake/toyblake.pdf
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2.6 Counter in Bytes

The counter t counts bytes rather than bits. This simplifies implementations and
reduces the risk of error, since target applications measure data volumes in bytes
rather than bits.

Note that BLAKE supported messages of arbitrary bit size for the sole purpose
of conforming to NIST’s requirements. However, as discussed on the SHA-3
mailing list, there is no evidence of an actual need to support this. As observed
during the first months of the competition, the support of arbitrary bit sizes
was the origin of several bugs in reference implementations (including that of
BLAKE).

2.7 Salt Processing

BLAKE’s predecessor LAKE [11] introduced the built-in support for a salt, to
simplify the use of randomized hashing within digital signature schemes (al-
though the RMX transform [12] can be used with arbitrary hash functions).

In BLAKE2 the salt is processed as a one-time input to the hash function,
through the IV, rather than as an input to each compression function. This
simplifies the compression function, and saves a few instructions as well as a
few bytes in RAM, since the salt does not have to be stored anymore. Using
salt-independent compression functions has only negligible practical impact on
security, as discussed in §4.

2.8 Parameter Block

The parameter block of BLAKE2 is xored with the IV prior to the processing
of the first data block. It encodes parameters for secure tree hashing, as well as
key length (in keyed mode) and digest length.

The parameters are described below, and the block structure is shown in
Tables 1 and 2:

– General parameters:
• Digest byte length (1 byte): an integer in [1, 64] for BLAKE2b, in
[1, 32] for BLAKE2s
• Key byte length (1 byte): an integer in [0, 64] for BLAKE2b, in [0, 32]
for BLAKE2s (set to 0 if no key is used)
• Salt (16 or 8 bytes): an arbitrary string of 16 bytes for BLAKE2b, and
8 bytes for BLAKE2s (set to all-NULL by default)
• Personalization (16 or 8 bytes): an arbitrary string of 16 bytes for
BLAKE2b, and 8 bytes for BLAKE2s (set to all-NULL by default)

– Tree hashing parameters:
• Fanout (1 byte): an integer in [0, 255] (set to 0 if unlimited, and to 1
only in sequential mode)
• Maximal depth (1 byte): an integer in [1, 255] (set to 255 if unlimited,
and to 1 only in sequential mode)
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Table 1. BLAKE2b parameter block structure (offsets in bytes)

Offset 0 1 2 3

0
Digest
length

Key length Fanout Depth

4 Leaf length

8
Node offset

12

16 Node depth Inner length RFU

20
24 RFU
28

32
. . . Salt
44

48
. . . Personalization
60

• Leaf maximal byte length (4 bytes): an integer in [0, 232− 1], that is,
up to 4 GiB (set to 0 if unlimited, or in sequential mode)
• Node offset (8 or 6 bytes): an integer in [0, 264− 1] for BLAKE2b, and
in [0, 248 − 1] for BLAKE2s (set to 0 for the first, leftmost, leaf, or in
sequential mode)
• Node depth (1 byte): an integer in [0, 255] (set to 0 for the leaves, or
in sequential mode)
• Inner hash byte length (1 byte): an integer in [0, 64] for BLAKE2b,
and in [0, 32] for BLAKE2s (set to 0 in sequential mode)

This is 50 bytes in total for BLAKE2b, and 32 bytes for BLAKE2s. Any bytes
left are reserved for future and/or application-specific use, and are NULL. Values
spanning more than one byte are written in little-endian. Note that tree hashing
may be keyed, in which case leaf instances hash the key followed by a number
of bytes equal to (at most) the maximal leaf length.

Table 2. BLAKE2s parameter block structure (offsets in bytes)

Offset 0 1 2 3

0
Digest
length

Key length Fanout Depth

4 Leaf length

8 Node offset

12 Node offset (cont.) Node depth Inner length

16
Salt

20

24
Personalization

28
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2.9 Keyed Hashing (MAC and PRF)

When keyed (that is, when the field key length is non-zero), BLAKE2 sets the
first data block to the key padded with zeros, the second data block to the first
block of the message, the third block to the second block of the message, etc.
Note that the padded key is treated as arbitrary data, therefore:

– The counter t includes the 64 (or 128) bytes of the key block, regardless of
the key length.

– When hashing the empty message with a key, BLAKE2b and BLAKE2s
make only one call to the compression function.

The main application of keyed BLAKE2 is as a message authentication code
(MAC): BLAKE2 can be used securely in prefix-MAC mode, thanks to the
indifferentiability property inherited from BLAKE [13]. Prefix-MAC is faster
than HMAC, as it saves at least one call to the compression function. Keyed
BLAKE2 can also be used to instantiate PRFs, for example within the PBKDF2
password hashing scheme.

2.10 Tree Hashing

The parameter block supports arbitrary tree hashing modes, be it binary or
ternary trees, arbitrary-depth updatable tree hashing or fixed-depth parallel
hashing, etc. Note that, unlike other functions, BLAKE2 does not restrict the
leaf length and the fanout to be powers of 2.

Basic mechanism. Informally, tree hashing processes chunks of data of “leaf
length” bytes independently of each other, then combines the respective hashes
using a tree structure wherein each node takes as input the concatenation of
“fanout” hashes. The “node offset” and “node depth” parameters ensure that
each invocation to the hash function (leaf of internal node) uses a different hash
function. The finalization flag f1 signals when a hash invocation is the last one
at a given depth (where “last” is with respect to the node offset counter, for
both leaves and intermediate nodes). The flag f1 can only be non-zero for the
last block compressed within a hash invocation, and the root node always has
f1 set to ff...ff.

The tree hashing mechanism is illustrated on Figures 2 and 3, which show
layout of trees given different parameters and different input lengths. On those
figures, octagons represent leaves (i.e., instances of the hash function process-
ing input data), double-lined nodes (including leaves) are the last nodes of a
layer, and thus have the flag f1 set). Labels “i:j” indicate a node’s depth i and
offset j.

We refer to [14] for a comprehensive overview of secure tree hashing
constructions.

Message parsing. Unless specified otherwise, we recommend that data be parsed
as contiguous blocks: for example, if leaf length is 1024 bytes, then the first 1024-
byte data block is processed by the leaf with offset 0, the subsequent 1024-byte
data block is processed by the leaf with offset 1, etc.
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(b) Hashing 5 blocks: the tree has depth 4.

Fig. 2. Layouts of tree hashing with fanout 2, and maximal depth at least 4

Special cases. We highlight some special cases of tree hashing:

– Unlimited fanout: When the fanout is unlimited (parameter set to 0),
then the root node hashes the concatenation of as many leaves are required
to process the message. That is, the depth of the tree is always 2, regardless
of the maximal depth parameter. Nevertheless, changing the maximal depth
parameter changes the final hash value returned. We thus recommend to set
the depth parameter to 2.

– Dealing with saturated trees: If a tree hashing instance has fanout f ≥ 2,
maximal depth d ≥ 2, and leaf maximal length � ≥ 1 bytes, then up to fd−1 ·�
can be processed within a single tree. If more bytes have to be hashed, the
fanout of the root node is extended to hash as many digests as necessary
to respect the depth limit. This mechanism is illustrated on Figure 4. Note
that if the maximal depth is 2, then the value does not affect the layout of
the tree, which is identical to that of a tree hash with unlimited fanout.

Generic tree parameters. Tree parameters supported by the parameter block
allow for a wide range of implementation trade-offs, for example to efficiently
support updatable hashing, which is typically an advantage when hashing many
(small) chunks of data.

Although optimal performance will be reached by choosing the parameters
specific to one’s application, we specify the following parameters for a generic
tree mode: binary tree (i.e., fanout 2), unlimited depth, and leaves of 4KiB (the
typical size of a memory page).

Updatable hashing example. Assume one has to provide a digest of a 1-tebibyte
filesystem disk image that is updated every day. Instead of recomputing the
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Fig. 3. Layouts of tree hashing with fanout 4, and maximal depth at least 3
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Fig. 4. Tree hashing with maximal depth 3, fanout 2, but a root with larger fanout
due to the reach of the maximal depth

digest by reading all the 240 bytes, one can use our generic tree mode to imple-
ment an updatable hashing scheme:

1. Apply the generic tree mode, and store the 240/4096 = 228 hashes from the
leaves as well as the 228 − 2 intermediate hashes

2. When a leaf is changed, update the final digest by recomputing the 28 in-
termediate hashes

If BLAKE2b is used with intermediate hashes of 32 bytes, and that it hashes
at a rate of 500 mebibytes per second, then step 1 takes approximately 35 min-
utes and generates about 16 gibibytes of intermediate data, whereas step 2 is
instantaneous.

Note however that much less data may be stored: For many applications
it is preferable to only store the intermediate hashes for larger pieces of data
(without increasing the leaf size), which reduces memory requirement by only
storing “higher” intermediate values. For example, storing intermediate values
for 4MiB chunks instead of all 4KiB leaves reduces the storage to only 16MiB.
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Indeed, using 4 KiB leaves allows applications with different piece sizes (as long
as they are powers-of-two of at least 4 KiB) to produce the same root hash,
while allowing them to make different granularity vs. storage trade-offs.

2.11 Parallel Hashing: BLAKE2sp and BLAKE2bp

We specify 2 parallel hash functions (that is, with depth 2 and unlimited leaf
length):

– BLAKE2bp runs 4 instances of BLAKE2b in parallel
– BLAKE2sp runs 8 instances of BLAKE2s in parallel

These functions use a different parsing rule than the default one in §§2.10: The
first instance (node offset 0) hashes the message composed of the concatenation
of all message blocks of index zero modulo 4; the second instance (node offset
1) hashes blocks of index 1 modulo 4, etc. Note that when the leaf length is
unlimited, parsing the input as contiguous blocks would require the knowledge
of the input length before any parallel operation, which is undesirable (e.g. when
hashing a stream of data of undefined length, or a file received over a network).

When hashing one single large file, and when incrementability is not required,
such parallel modes with unlimited leaf length seem the most appropriate, since

– They minimize the computation overhead by doing only one non-leaf call to
the sequential hash function

– They maximize the usage of the CPU by keeping multiple cores and instruc-
tion pipelines busy simultaneously

– They require realistic bandwidth and memory

Within a parallel hash, the same parameter block, except for the node offset, is
used for all 4 or 8 instances of the sequential hash.

3 Performance

BLAKE2 is much faster than BLAKE, mainly due to its reduced number of
rounds. On long messages, the BLAKE2b and BLAKE2s versions are expected
to be approximately 25% and 29% faster, ignoring any savings from the absence
of constants, optimized rotations, or little-endian conversion. The parallel ver-
sions BLAKE2bp and BLAKE2sp are expected to be 4 and 8 times faster than
BLAKE2b and BLAKE2s on long messages, when implemented with multiple
threads on a CPU with 4 or more cores (as most desktop and server processors:
AMD FX-8150, Intel Core i5-2400S, etc.). Parallel hashing also benefits from
advanced CPU technologies, as previously observed [10, §5.2].

Public domain C and C# code of BLAKE2 is available on
https://blake2.net. We are developing a tool b2sum similar to, and
aiming to replace, md5sum.

https://blake2.net
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3.1 Why BLAKE2 Is Fast in Software

BLAKE2, along with its parallel variant, can take advantage of the following
architectural features, or combinations thereof:

Instruction-level parallelism. Most modern processors are superscalar, that is,
able to run several instructions per cycle through pipelining, out-of-order execu-
tion, and other related techniques. BLAKE2 has a natural instruction parallelism
of 4 instructions within the G function; processors that are able to handle more
instruction-level parallelism can do so in BLAKE2bp, by interleaving indepen-
dent compression function calls. Examples of processors with notorious amount
of instruction parallelism are Intel’s Core 2, i7, and Itanium or AMD’s K10,
Bulldozer, and Piledriver.

SIMD instructions. Many modern processors contain vector units, which en-
able SIMD processing of data. Again, BLAKE2 can take advantage of vector
units not only in its G function, but also in tree modes (such as the mode
proposed in §§2.11), by running several compression instances within vector reg-
isters. Microarchitectures with SIMD capabilities are found in recent Intel and
AMD CPUs, NEON-extended ARM-based SoC, PowerPC and Cell CPUs.

Multiple cores. Limits in both semiconductor manufacturing processes, as well as
instruction-level parallelism have driven CPUmanufacturers towards yet another
kind of coarse-grained parallelism, where multiple independent CPUs are placed
inside the same die, and enable the programmer to get thread-level parallelism.
While sequential BLAKE2 does not take advantage of this, the parallel mode
described in §§2.11, and other tree modes, can run each intermediate hashing in
its own thread. Candidate processors for this approach are recent Intel and AMD
chips, the IBM Cell, and recent ARM, UltraSPARC and Loongson models.

3.2 64-Bit CPUs

We have submitted optimized BLAKE2 implementations to eBACS [15], that
take advantage of the AVX and XOP instruction sets. Table 3 reports the tim-
ings obtained in two key architectures: Intel’s Sandy Bridge (hydra7) and AMD’s
Bulldozer (hydra6). The full set of results is available at
http://bench.cr.yp.to/results-hash.html.

Table 3. Speed, in cycles per byte, of BLAKE2 in sequential mode

Microarchitecture
BLAKE2b BLAKE2s

Long 1536 64 Long 1536 64

Sandy Bridge 3.32 3.81 9.00 5.34 5.35 5.50
Bulldozer 5.29 5.30 11.95 8.20 8.21 7.91

http://bench.cr.yp.to/results-hash.html
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Compared to the best known timings for BLAKE [10],

– On Sandy Bridge, BLAKE2b is 71.99% faster than BLAKE-512, and BLAKE2s
is 40.26% faster than BLAKE-256,

– On Bulldozer, BLAKE2b is 30.25% faster than BLAKE-512, and BLAKE2s
is 43.78% faster than BLAKE-256.

Due to the lack of native rotation instructions on SIMD registers, the speedup
of BLAKE2b is greater on the Intel processors, which benefit not only from the
round reduction, but also from the easier-to-implement rotations.

On short messages, the speed advantage of the improved padding on BLAKE2
is quite noticeable. On Sandy Bridge, no other cryptographic hash function mea-
sured in eBACS2 (including MD5 and MD4) is faster than BLAKE2s on 64-byte
messages, while BLAKE2b is roughly as fast as MD4.

Like BLAKE, BLAKE2 will benefit from the AVX2 instruction set, which
will appear in the upcoming Haswell microarchitecture by Intel. The analysis
performed in [10, §4] for BLAKE applies to BLAKE2 as well, except for the
constants, which reduce the number of instructions per compression function:
techniques such as parallelized message loading or message caching can thus be
applied to BLAKE2b and BLAKE2s. Adapting the estimates in [10, §§4.4], one
obtains a lower bound of 2.62 cycles per byte for BLAKE2b on AVX2-enabled
CPUs. Another bound can be defined for implementations on Haswell not using
SIMD, but rather exploiting the additional integer execution port: this enables
4 parallel arithmetic operations and 3 parallel rotations per cycle, leading to a
lower bound of (10/4+ 4/3)× 4× 2× 12/128 = 2.87 cycles per byte. It remains
unclear whether SIMD implementations will be faster than non-SIMD ones, on
Haswell.

Compared to Keccak’s SHA-3 final submission, BLAKE2 does quite well on
64-bit hardware. On Sandy Bridge, the 512-bit Keccak[r = 576, c = 1024] hashes
at 20.46 cycles per byte, while the 256-bit Keccak[r = 1088, c = 512] hashes at
10.87 cycles per byte.

Keccak is, however, a very versatile design. By lowering the capacity from 4n
to 2n, where n is the output bit length, one achieves n/2-bit security for both
collisions and second preimages [16], but also higher speed. We estimate that a
512-bit Keccak[r = 1088, c = 512] would hash at about 10 cycles per byte on
high-end Intel and AMD CPUs, and a 256-bit Keccak[r = 1344, c = 256] would
hash at roughly 8 cycles per byte. This parametrization would put Keccak at
a performance level superior to SHA-2, but at a substantial cost in second-
preimage resistance. BLAKE2 does not require such tradeoffs, and still offers
much higher speed.

3.3 Low-End Platforms

A typical implementation of BLAKE-256 in embedded software stores in RAM
at least the chaining value (32 bytes), the message (64 bytes), the constants

2 http://bench.cr.yp.to/results-hash.html#amd64-hydra7

http://bench.cr.yp.to/results-hash.html#amd64-hydra7
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(64 bytes), the permutation internal state (64 bytes), the counter (8 bytes), and
the salt, if used (16 bytes); that is, 232 bytes, and 248 with a salt. BLAKE2s
reduces these figures to 168 bytes—recall that the salt doesn’t have to be stored
anymore—that is, a gain of respectively 28% and 32%. Similarly, BLAKE2b only
requires 336 bytes of RAM, against 464 or 496 for BLAKE-512.

3.4 Hardware

Hardware directly benefit from the 29% and 25% speed-up in sequential mode,
due to the round reduction, for any message length. Parallelism is straightforward
to implement by replicating the architecture of the sequential hash. BLAKE2
enjoys the same degrees of freedom as BLAKE to implement various space-time
tradeoffs (horizontal and vertical folding, pipelining, etc.). In addition, parallel
hashing provides another dimension for trade-offs in hardware architectures:
depending on the system properties (e.g. how many input bits can be read per
cycle), one may choose between, for example, BLAKE2sp based on 8 high-latency
compact cores, or BLAKE2s based on a single low-latency unrolled core.

4 Security

BLAKE2 builds on the high confidence built by BLAKE in the SHA-3 compe-
tition. Although BLAKE2 performs fewer rounds than BLAKE, this does not
imply lower security (it does imply a lower security margin), as explained below.

4.1 BLAKE Legacy

The security of BLAKE2 is closely related to that of BLAKE, since they rely
on a similar core permutation originally used in Bernstein’s ChaCha stream
cipher [17] (itself a variant of Salsa20 [18], co-winner in the eSTREAM project3).

Since 2009, at least 14 research papers have described cryptanalysis results
on reduced versions of BLAKE. The most advanced attacks on the BLAKE
as hash function—as opposed to its building blocks—are preimage attacks on
2.5 rounds by Ji and Liangyu, with respective complexities 2241 and 2481 for
BLAKE-256 and BLAKE-512 [19]. Most research actually considered reduced
versions of the compression function or core permutation of BLAKE, regardless
of the constraints imposed by the IV. The most recent results of this type are
the following

– A distinguisher on 6 rounds of the permutation of BLAKE-256, with com-
plexity 2456, by Dunkelman and Khovratovich [20];

– A boomerang distinguisher on 8 rounds of the core permutation of BLAKE-
512, with complexity 2242, by Biryukov, Nikolic, and Roy [21] (recent work
questions the correctness of this result [22]).

3 See http://www.ecrypt.eu.org/stream/

http://www.ecrypt.eu.org/stream/
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The exact attacks as described in research papers may not directly apply to
BLAKE2, due to the changes of rotation counts (typically, differential charac-
teristics for BLAKE do not apply to BLAKE2). Nevertheless, we expect attacks
on reduced BLAKE with n rounds to adapt to BLAKE2 with n rounds, though
with slightly different complexities.

4.2 Implications of BLAKE2 Tweaks

We have argued that the reduced number of rounds and the optimized rotations
are unlikely to meaningfully reduce the security of BLAKE2, compared to that
of BLAKE. We summarize the security implications of other tweaks:

Salt-independent compressions. BLAKE2 salts the hash function in the IV,
rather than each compression. This preserves the uniqueness of the hash func-
tion for any distinct salt, but facilitates multicollision attacks relying on offline
precomputations (see [23,24]). However, this leaves fewer “controlled” bits in the
initial state of the compression function, which complicates the finding of fixed
points.

Many valid IVs. Due to the high number of valid parameter blocks, BLAKE2
admits many valid initial chaining values. For example, if an attacker has an
oracle that returns collisions for random chaining values and messages, she is
more likely to succeed in attacking the hash function because she has many
valid targets, rather than a valid one. However, such a scenario assumes that
(free-start) collisions can be found efficiently, that is, that the hash function is
already broken. Note that the best collision-like results on BLAKE are near-
collisions for the compression function with 4 reordered rounds [25, 26].

Simplified padding. The new padding does not include the message length of the
message, unlike BLAKE. However, it is easy to see that the length is indirectly
encoded through the counter, and that the padding preserves the unambiguous
encoding of the initial padding. That is, the padding simplification does not
affect the security of the hash function. Nevertheless, it may be desirable to
have a formal proof.
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Abstract. A combiner for collision-resistant hash functions takes two
functions as input and implements a hash function with the guarantee
that it is collision-resistant if one of the functions is. It has been shown
that such a combiner cannot have short output (Pietrzak, Crypto 2008);
that is, its output length is lower bounded by roughly 2n if the ingoing
functions output n-bit hash values. In this paper, we present two novel
definitions for hash function combiners that allow to bypass the lower
bound: the first is an extended semi-black-box definition. The second
is a new game-based, fully black-box definition which allows to better
analyze combiners in idealized settings such as the random-oracle model
or indifferentiability framework (Maurer, Renner, and Holenstein, TCC
2004). We then present a new combiner which is robust for pseudoran-
dom functions (in the traditional sense), which does not increase the
output length of its underlying functions and which is collision-resistant
in the indifferentiability setting. Our combiner is particularly relevant
in practical scenarios, where security proofs are often given in idealized
models, and our combiner, in the same idealized model, yields strong
security guarantees while remaining short.

Keywords: hash functions, combiners, collision resistance, multi-
property combiner.

1 Introduction

A Story. Once upon a time little Cryptess was walking through her favorite
forest. As usual she was thinking about a hard problem and thus did not pay
much attention on where she was going. It thus came that she suddenly found
herself on a beautiful glade that she had never seen before. In its center she could
make out what seemed to be a fairy flapping her wings in a welcoming pattern.
Little Cryptess slowly approached the fairy and politely asked “Hello little one,
who are you?” The fairy responded “I am the fairy Cryptophia and since you
have found my magical glade, I grant you one wish.” Little Cryptess did not take
long to come up with a wish: “Can you build me a hash-function combiner that
while being robust for collision resistance does not increase the output length of
the hash functions?” “Of course I can”, said the fairy. “Here it is. But beware,

M. Jacobson et al. (Eds.): ACNS 2013, LNCS 7954, pp. 136–153, 2013.
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it is a magical combiner. Given access to two hash functions H1 and H2 and a
message M it returns H1(M) if and only if H1 is ‘more’ collision-resistant than
H2. Else it returns H2(M)”. Cryptess thought for a moment and then replied
“I am sorry Cryptohia, but your combiner is utterly useless. It is not robust for
collision resistance after all. Assume I give it access to two uniformly random
functions R1 and R2 and I am given an oracle that computes collisions for the
combiner. As the oracle will only provide collisions for R1 no efficient reduction
can compute collisions for R2. This, as you should know, violates the definition
of robustness and thus your combiner is useless to me.” With this she turned
around and went home.

Hash-Function Combiners. Hash functions are an important cryptographic prim-
itive but, as with many primitives, efficient constructions used in practice are
based on heuristics [40,34,8]. As history has shown, with time, it is not unlikely
that cryptanalysists find plausible attacks [45,43,42,44,19,3,14] and it is thus a
natural question to ask whether we can hedge against the failure of an imple-
mented hash function.

A hash-function combiner is a construction which, given access to two or
more hash functions, itself implements a hash function that, however, comes
with certain guarantees. A combiner is called robust for some property π if it
guarantees to satisfy property π provided that sufficiently many input functions
do. The simplest version (and the one usually used in practice) is a combiner
which takes two hash functions as input and hedges against the failure of one of
them, i.e., it obeys π if either of the input functions does. This will also be the
variant that we examine more closely in this paper. A practical example of the
application of hash-function combiners are the original versions of the TLS and
SSL protocols [24,20].

Assume CH1,H2 is a hash-function combiner given access to two hash functions
H1 and H2, then robustness for property π is usually defined via a reductionist
approach. That is, the combiner is called robust for π if there exists a reduction
P such that if P is given access to any (breaking-)oracle B that breaks π on the
combiner with non-negligible probability, then PB,H1,H2 must in turn break π
on both input hash functions (H1 and H2) with non-negligible probability.

There are two folklore combiners for hash functions. The concatenation com-
biner CH1,H2

‖ (M) := H1(M)||H2(M) is, amongst others, robust for collision

resistance (it should be difficult to find two distinct messages that hash to
the same value). It is easy to see that a collision on the combiner directly
yields collisions for both input functions. In other words, for a message pair
(M,M ′) with M �= M ′ it holds that CH1,H2(M) = CH1,H2(M ′) if and only if
H1(M) = H1(M

′) and H2(M) = H2(M
′). The concatenation combiner is, how-

ever, not robust for pseudorandomness (no efficient distinguisher that is only
given black-box access should be able to distinguish between the hash function
and a randomly chosen function with the same domain and codomain). On the

other hand, the exclusive-or combiner CH1,H2

⊕ (M) := H1(M) ⊕ H2(M) which
computes the bitwise exclusive-or on the outputs of the two hash functions is ro-
bust for pseudorandomness if instantiated with two independent hash functions.
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However, it is not robust for collision resistance, nor even collision-resistant pre-
serving. Hash-function combiners that are robust for multiple properties, in par-
ticular for collision resistance and pseudorandomness together, have been studied
by Fischlin et al. [21,22].

Short Combiners. If we assume that H1 and H2 take on values in {0, 1}n then
the concatenation combiner doubles the output length, whereas the exclusive-or
combiner does not. Furthermore, it is a common property that all combiners
robust for collision resistance share: their output length is in the order of the
sum of the output lengths of the input hash functions.

This observation lead to the question whether short hash-function combiners
(combiners with an output length significantly shorter than that of the concate-
nation combiner) that are robust for collision resistance exist [12]. It has been
shown that this is not the case, i.e., there exists a lower bound on the output
length for combiners that are robust for collision resistance as well as for related
properties [12,13,36,37,30] where the lower bound is roughly the output length
achieved by the concatenation combiner.1

Cryptophia’s Magical Combiner. Cryptess rejected Cryptophia’s magical com-
biner on the grounds that it is not robust for collision resistance. Indeed, she
was right, as the combiner only evaluates one of the two functions a collision
on the combiner cannot possibly yield information about collisions for the other
function. On the other hand, the robustness definition is usually only given
for black-box combiners, i.e., combiners that only get black-box access to the
hash functions; Cryptophia’s magical combiner is, however, clearly not black-
box. Nevertheless, what this shows is that the robustness definition requires the
combiner, in some sense, to be stronger than both input hash functions which
in turn leads to the lower bound on the output-length of combiners for collision
resistance. This, however, goes against the intuition of what a combiner should
capture: it should be at least as strong as the stronger of the two functions, but
not necessarily stronger.

Contributions and Outline. In this paper we examine the current definition of
robust combiners and the reason why it is necessary for combiners that are
robust for collision resistance to satisfy a lower bound on their output-length
(Section 3). In Section 3.2, we extend the definition (in a semi black-box way) in
order to better capture the intuition: a combiner does only need to be as strong
as the strongest input function and not necessarily stronger. We then present
a new game-based definition for combiners (Section 3.3) which also allows to
bypass the lower bounds while still being fully black-box. This second notion

1 A recent framework by Baecher et al. [4] allows to precisely characterize reductions
(and thus separation results) in terms of the level of black-boxness used by the con-
struction and the reduction. In terms of the impossibility result for short combiners
it can be shown that the ruled-out reductions are of the type NNN meaning that it
holds even if the construction or the accompanying security reduction were using
non-black-box techniques. See the full-version of this work [31] for further details.
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is tailored to analyze combiners in idealized models such as the random oracle
model (ROM; [7]) or the indifferentiability framework introduced by Maurer,
Renner and Holenstein [28,17] giving guarantees of the form: the combiner has
property π if one of the input functions is ideal even if the other function is
completely under the control of the adversary and possibly even based on the
first function. We go on to present a new construction for a combiner which we
analyze in this new model (Section 4). The combiner does not increase the output
length of its ingoing functions while guaranteeing collision resistance (and related
properties) provided that one of the two input functions is indifferentiable from
a random oracle (assuming ideal compression functions). Finally, we show that
our combiner is robust for pseudorandomness under the “traditional” definition
of robustness without needing to assume independence (as is the case for the
“standard” xor-combiner). This yields the first multi-property combiner with
short output length, which is robust for pseudorandomness and which gives
additional guarantees about collision resistance and related properties such as
pre-image resistance or target collision resistance.

2 Preliminaries

Lower-case letters, such as n ∈ N, usually represent natural numbers and by 1n

we denote the unary representation of n. Upper-case letters in standard typeface,
like M , stand for bit-strings which we usually call messages. By {0, 1}n we
denote the set of all bit-strings M of length |M | = n, while {0, 1}∗ denotes
the set of all bit-strings. For bit-strings X,Y ∈ {0, 1}∗ we denote with X ||Y
their concatenation and with X ⊕ Y the bit-wise exclusive-or (XOR) operation.
If X is a set then by M ← X we mean that M is chosen uniformly from X .
If X is a distribution then M ← X denotes that M is chosen according to the
distribution.

If A is an algorithm (often also called adversary) that has black-box access
to one or more oracles O1, ...,Oz we denote this by adding them in superscript,
i.e., AO1,...,Oz . By X ← A(M) we denote that algorithm A on input M outputs
value X . Throughout this paper we assume 1n to be a security parameter and we
call an algorithm efficient if it runs in polynomial time in the security parameter.

If X is a random variable, Pr[X = x] denotes the probability that X takes
on value x. By H∞ (X) we denote the min-entropy of variable X , defined as

H∞ (X) := min
x∈Supp(X)

log(1/Pr[X = x])

where the probability is over X . The (average) conditional min-entropy of ran-
dom variable X conditioned on variable Z is defined (in the style of [1]) as

H̃∞ (X |Z) := min
A

log(1/Pr[X = A(Z)])

where the probability is over X and Z and the random coins of A (which has
no efficiency bounds).
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2.1 Hash Functions and their Properties

Formally, a hash functionH is defined as a family of functions together with a key
generation algorithm HKGen that picks one of the functions to be used. That
is, a hash function (family) is a pair of efficient algorithms H = (HKGen, H)
where HKGen(1n) is a probabilistic algorithm that takes as input the security
parameter 1n and outputs a key k, while deterministic algorithm Hk(M) :=
H(k,M) takes a key k and message M ∈ {0, 1}∗ as input and outputs a hash
value Hk(M) ∈ {0, 1}n. Note that we will drop the subscript and simply write
H(M) whenever the key is clear from context.

Collision Resistance and Related Properties. A hash function H is called
collision-resistant (cr) if no efficient adversary can find two distinct messages
(M,M ′) such that Hk(M) = Hk(M

′). More formally, a hash function is called
collision-resistant, if for any efficient adversary A there exists a negligible func-
tion negl such that:

Advcr
H(A) := Pr

[
k← HKGen(1n);

(M,M ′)← A(k)
:
M �= M ′ ∧
Hk(M) = Hk(M

′)

]
≤ negl(n)

where the probability is over the choice of key and A’s internal coin tosses.
Two closely related properties are second pre-image resistance (spr) and target

collision resistance (tcr) (see [41] for an overview of several variants of these
notions). Here the adversary’s task is not to find an arbitrary collision but a
specific one, in case of second pre-image resistance the target message is sampled
according to a distributionM whereas for target collision resistance the target
message is specified by a first-round adversary.2

Finally, we consider another variant of second pre-image resistance called pre-
image resistance (also often referred to as one-wayness). In the pre-image resis-
tance experiment a message M is again chosen according to some distribution
M. Given only the resulting hash value Hk(M) (and not message M) and key
k, the adversary’s task is to find a corresponding pre-image M ′, i.e., a message
M ′ such that Hk(M) = Hk(M

′).

Pseudorandomness and Message Authentication Codes. Besides colli-
sion resistance and its variants, hash functions are often assumed to be pseu-
dorandom (or a pseudorandom function; prf) or secure message authentication
codes. Here the adversary is not given access to the hash function’s key but only
to a black-box implementing the hash function, i.e., the key is kept private at all
times. A hash function H is called pseudorandom if no efficient adversary can
tell whether it is given black-box access to the hash function H or to a random

2 Note that target collision resistant hash functions are also known as universal one-
way hash functions [33].
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function f with the same domain and range. More formally, for any efficient
adversary A there exists a negligible function negl such that:

Advprf
A (A) :=

∣∣Prk [AHk(1n) = 1
]
− Prf

[
Af (1n) = 1

]∣∣ ≤ negl(n)

The probability is over the adversary’s random coins and the choice of key in
the first part and the choice of function in the second, respectively.

A hash function is called a secure message authentication code (mac) if no
adversary given only black-box access to a hash oracle can find a message and
corresponding hash value (without querying the oracle on the corresponding
message) with noticeable probability. The probability is over the choice of key k
and the adversary’s internal coin tosses.

Random Oracles and Indifferentiability. Many security proofs are given in
the random oracle model (ROM; [7]) where hash functions are modeled as ideal,
i.e., as truly random functions (e.g., [16,5,6,11]). While random oracles have no
structure at all hash functions, on the other hand, are usually built from a fixed-
length compression function and some iteration scheme defining how arbitrarily
long messages are hashed [29,18,40,27,8].

The indifferentiability notion introduced by Maurer, Renner and Holenstein
in [28] can be seen as a generalization of indistinguishability that allows to better
analyze constructions—such as hash functions—where internal state is publicly
available. Coron et al. [17] applied the notion to hash functions and proved sev-
eral hash constructions to be indifferentiable from a random oracle. The com-
position theorem for indifferentiability allows to reduce the security of a scheme
in the random oracle model to the security of the compression function, in case
the random oracle is implemented by a hash construction that is indifferentiable
from a random oracle. As a compression function is a much more graspable object
than a random oracle, indifferentiability has become an accepted design crite-
rion for hash functions; indeed, many candidates to the SHA-3 competition [35],
including the winner Keccak [8] enjoy proofs of indifferentiability [15,2,32,9,10].

3 A Novel Definition of Combiners for Hash Functions

3.1 Black-Box Combiners for Hash Functions

Combiners for hash functions are traditionally defined in the following fashion
(see, for example, [12,37] for a version of this definition for collision resistance):
a hash-function combiner robust for property π (e.g., collision resistance) is a
construction that given black-box access to two hash functions H1 andH2 imple-
ments a hash function which obeys property π as long asH1 orH2 obeys property
π. Formally, a hash-function combiner C := (CKGen, C,P), robust for property
π, is a triple of efficient algorithms, where CKGen(1n,HKGen1,HKGen2)
generates keys for hash functions H1 and H2 and possibly some additional key
kC for the combiner. Algorithm C is an efficient deterministic algorithm that on
input keys kH1 , kH2 , kC and M ∈ {0, 1}∗ returns a hash value CkH1 ,kH2 ,kC

(M)
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in target domain {0, 1}n. We will usually simply write CH1,H2(M). Algorithm
P is a security reduction, i.e., P is a probabilistic polynomial-time oracle Turing
machine that given access to a (breaking-)oracle B that breaks property π on
the combiner (for example, samples collisions) breaks property π on both hash
functions H1 and H2. Note that B may be inefficient.

The classical combiner for collision resistance (and related properties) is the
concatenation combiner defined as

CH1,H2

|| (M) := H1(M)||H2(M) .

Obviously, any collision on the combiner C|| directly yields collisions for hash
functions H1 and H2. The same applies for second pre-image resistance, target
collision resistance and pre-image resistance. This combiner is, however, trivially
not robust for pseudorandomness. The traditional combiner for pseudorandom-
ness is the exclusive-or combiner

CH1,H2

⊕ (M) := H1(M)⊕H2(M)

although one has to make the additional assumption that the two functions are
independent. Under this assumption the combiner is robust for pseudorandom-
ness, message authentication codes and indifferentiability [23,26]. Without this
additional assumption it is, however, not even pseudorandomness preserving.
Take two (keyed) random oracles H1, H2 : {0, 1}∗ → {0, 1}n where H2 is defined
as H2 := H1⊕1n. Individually, these two functions are information-theoretically
indistinguishable from random functions. The XOR-combiner would, however,
implement the constant 1n-function. The exclusive-or combiner is also not ro-
bust for collision resistance, even assuming independent functions, as a collision
on the combiner does not require collisions under both input functions.

Short Combiners for Collision Resistance. A crucial difference between
the two classical combiners (apart from being robust for different properties) is
that the concatenation combiner doubles the output length, i.e., if the two input
hash functions have range {0, 1}n, then the concatenation combiner outputs
hash values in {0, 1}2n while the exclusive-or combiner only outputs bit-strings
of length n. A natural question to ask is: can we do better? That is, does a
secure combiner for collision resistance, which has a significantly shorter output
length than the concatenation combiner, exist? This question was first posed by
Boneh and Boyen in [12] and has since been answered negatively [12,13,36,37]:
combiners, robust for collision resistance, with significantly shorter output length
than the concatenation combiner do not exist. Recently, a similar result was
proved for second pre-image resistance, target collision resistance and pre-image
resistance [30].

Let us quickly sketch the proof idea for collision-resistance. Assume we have a
combiner for two hash functions with range {0, 1}n. If the combiner compresses
its output to below 2n bits, then by the pigeonhole principle, there must exist
collisions that result from compression rather than from collisions on the origi-
nal hash functions. This allows to show the existence of an adversary which only
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samples such collisions that result from compression (note that the breaking
oracle does not need to be efficient and can, thus, search for such a collision).
Naturally, these collisions do not help any security reduction P in finding colli-
sions on the input hash functions. For example, assume the input hash functions
are random oracles: then, a collision on the combiner which solely results from
compression does not provide any help in finding a collision for one of the random
oracles. This allows to show that no security reduction can exist if the combiner
compresses. Hence, combiners with short output-length do not exist.

3.2 Extending the Traditional Definition

In the introduction we saw that Cryptophia’s magical combiner is not robust
for collision resistance under the traditional definition of robustness. In the fol-
lowing we extend the traditional definition of combiners for collision-resistant
hash functions such that it also captures the “magical” combiner. To this end,
we need to relax the requirements on the security reduction P while ensuring
that, in doing so, we won’t label any insecure combiners “secure”. The idea is
to call a combiner robust for some property π if the advantage of any efficient
adversary against the combiner is upper-bounded by the maximal advantage of
any efficient adversary against any of the two input hash functions. That is, the
combiner needs to be at least as strong as the better of the two functions, but
not necessarily stronger.

To formalize the idea, we need a notion of the maximum advantage of any
adversary against some property π.

Definition 1. Let t ∈ N be a natural number and n be a security parameter.
The maximum t-advantage AdvMaxt

π against property π on hash function H is
defined as the maximum advantage of any adversary running in time t against
property π on hash function H:

AdvMaxt
π(H, 1n) := max

A
AdvπA(H, 1n) s.t. A runs in time t

We now present an extension to the current black-box definition of robust com-
biners for hash functions. We extend the original definition such that all robust
combiners remain robust under the new definition but we relax the requirements
on the security reduction such that the combiner does not need to be stronger
than any of the input functions.

Definition 2 (extension). Let n be a security parameter. Let C := (CKGen, C)
be a combiner for hash functions H1 and H2 as defined earlier. Let π be a prop-
erty on hash functions. We say C is a robust combiner for property π if C is
robust under the original definition, or if for all t ∈ N:

AdvMaxt
π(C, 1n) ≤ min

(
AdvMaxt

π(H1, 1
n),AdvMaxt

π(H2, 1
n)
)

Note that any combiner that is robust for some property π under the traditional
definition is also robust under our new definition. The introduced loophole, how-
ever, allows a combiner to be robust even if no security reduction P exists. In this
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case, the combiner must guarantee that the advantage for any adversary running
in time t against property π on either H1 or H2 denotes an upper-bound on the
advantage of any adversary running in time t against the combiner.

Discussion. The extended definition captures the security of the “magical” (non
black-box) combiner. However, being a semi-black-box notion, it seems difficult
to design an actual (non-magical) combiner exploiting the loophole offered by
this notion. In the following section we build upon the ideas developed so far and
present a fully black-box model which also allows to circumvent the lower bound
on the output length. For this, we strengthen the assumption on the “input
functions” requesting that one of the functions is ideal. Knowing that one of the
functions is ideal then allows us to model that the combiner should be as strong
as the ideal function, while it can “ignore” the second function.

3.3 Secure Combiners in Idealized Models

In this section we use a different and more practical approach to bypass the lower
bound. We present a novel game-based security notion for black-box combiners
that is tailored to be used in the idealized random oracle setting. Being black-
box makes it easy to design combiners for this new notion and assuming, to a
certain extend, idealized functions allows us to bypass the lower bound. In short,
a combiner proven secure in our new notion provides the guarantee that it has
a certain property as long as one of the two functions is ideal even in case the
other function is highly dependent upon the first; this is modeled by giving the
adversary full control over the second function.

Ideally Secure CombinerCA

HR
A , st ←− A1(1

n)

R, k ←− sample RO and keys3

return AR,HR
A

2 (st, k) breaks π for

combiner CR,HR
A or CHR

A ,R

Fig. 1. Security of Combiners in Idealized Settings

We say that a combiner C is
ideally secure for some property
π if no adversary can win the
ideally secure combiner game
(see Figure 1). For this we
consider a two-stage adversary
A = (A1,A2), where A1 out-
puts some state st and a de-
scription of an efficient function
that can contain special oracle
gates to call a random oracle. Then a random oracle R and a key k for the com-
biner are sampled. We say the adversary wins the game if A2 breaks property
π on combiner C initialized with the random oracle and the function output by

A1: that is, A2 breaks property π on either combiner CR,HR
A or on combiner

CHR
A ,R (note the different order of oracles).

3 In the Ideally Secure Combiner game (and in following security games) the random
oracle is sampled such that its domain and range matches allowed hash functions
and the keys are sampled using the key generation algorithm of combiner C.
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Definition 3. A combiner C is called ideally secure for property π if no efficient
adversary A = (A1,A2) can win the Ideally Secure Combiner game (Figure 1)
with non-negligible advantage.

The security guarantees given in this model are that the combiner has property π
as long as one of the two functions is a random oracle. Furthermore, security may
be reduced to the security of compression functions, when analyzing the security
in the indifferentiability model [28]. We find this notion particularly useful from
a practical point of view as many security proofs are only given in the random
oracle model (to name a few [16,5,6,11]) and a combiner proven secure under
our new notion allows us to hedge against the failure of the instantiation of the
random oracle in the corresponding scheme. Furthermore, while our new notion
makes stronger assumptions about the ingoing hash functions it allows to bypass
the restrictions given by the traditional definition. As these stronger assumptions
are, however, frequently needed in security proofs for practical constructions,
we do not loose anything by also applying the very same assumptions in the
examinations of combiners to be used in these schemes. On the other hand,
there is lots to gain.

Further note that our new notion is far from trivial to fulfill although we
know that one of the two functions is ideal to begin with. Take the exclusive-or
combiner (compare Section 3.1) as an example. If one of the functions can depend
on the other, most, if not all properties are easily breakable. Let, for example,
adversary A1 output function HR

A (M) := R(M). In this setting the exclusive-or
combiner would implement the constant zero function C⊕(M) = R(M)⊕R(M)
which is, of course, not collision-resistant or pseudorandom.

Remark 1. Recently, Ristenpart et al. [39] gave the somewhat surprising result
that the indifferentiability composition theorem does not hold in general but
only in what they call single-stage settings. A game is called single-stage if we
can assume a single global adversary. Note that this applies to all but one of
the security games considered in this paper (see Figures 1 and 2), as we usually
allow adversaries to pass on their current state without any restrictions. For the
exception, Lemma 2, it can be shown that it falls into the class of secure-1-pass-
games in the terminology of [25]. The authors in [25] study multi-stage games
for which indifferentiability (with certain additions) suffices to allow composi-
tion. For games falling into their class of secure-1-pass-games no additions are
needed and thus plain indifferentiability is sufficient to allow composition. The
idea, why access to the underlying compression function does not yield any ad-
vantage is that all “interesting” random oracle evaluations (notably, R(m⊕ k3),
cf. Figure 3) have a block-length of exactly 1. Thus, length extension attacks
via the computation of inner compression function evaluations do not yield any
advantage over directly computing the full hash value.

4 A Short Multi-property Combiner for Hash Functions

In this section we present a new black-box combiner for two hash functions that
does not increase the output length. The combiner is robust for pseudorandom-
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ness (under the traditional definition of robust combiners) without needing to
assume independence of the input functions (cf. Section 3.1). Further, it is ide-
ally secure (cf. Definition 3) for collision resistance, second pre-image resistance,
target collision resistance and pre-image resistance, that is, it holds these prop-
erties if one of the hash functions is instantiated with a random oracle or if
one of the functions is indifferentiable from a random oracle (assuming an ideal
compression function, also see remark at end of last the section).

Our construction is based on the exclusive-or combiner where each message
block is preprocessed. To ease on notation, we will not explicitly model the key
generation stage for hash functions but implicitly assume that the functions are
chosen from a family of functions (i.e., the key is implicit in the hash function).

Construction 1. Let H1, H2 : {0, 1}∗ → {0, 1}n be two hash functions and
m1|| . . . ||m� := M ||pad(M) be a message from the joint domain of both hash
functions padded to a multiple of the block length n. The combiner is given by

CH1,H2(M) := GH1,H2

1 (M)⊕GH1,H2

2 (M)

where G1 and G2 are stateless and deterministic constructions given by

GH1,H2

1 (M) := H1

(
m̃1

1‖ . . . ‖ m̃1
�

)
GH1,H2

2 (M) := H2

(
m̃2

1 ‖ . . . ‖ m̃2
�

)
with preprocessed blocks

m̃1
j := H2(1 ‖ mj ⊕ k1)⊕mj ⊕ k2 ⊕H1(1 ‖ mj ⊕ k3)

m̃2
j := H1(0 ‖ mj ⊕ k4)⊕mj ⊕ k5 ⊕H2(0 ‖ mj ⊕ k6)

for j := 1, . . . , � and for independently chosen keys ki ∈ {0, 1}n for i = 1, ..., 6.

Let us examine the combiner more closely before proving its security. First notice
that the combiner is symmetric, that is, it makes no difference if functionsH1 and
H2 are interchanged. Function G1(M) can be thought of as simply calling hash
function H1 on some preprocessed input. If the original input m1|| . . . ||m� :=
M ||pad(M) consisted of � blocks, then the preprocessed input also consists of �
blocks. Each block mi is preprocessed independently and becomes

H2(1 ‖ mi ⊕ k1)⊕mi ⊕ k2 ⊕H1(1 ‖ mi ⊕ k3) .

The idea behind this construction is that the outer most hash function in G1

(i.e., H1(·)) cannot, given its input, guess (or rather compute) the input that
is going into the outer most hash function in G2, i.e., H2(·). This will become
more evident when we prove security for various properties. Furthermore, note
that we achieve domain separation between the calls to functions within G1 and
G2 (i.e., calls to H1 and H2 are prefixed by 1 for G1 and by 0 for G2).

Finally, we want to note that the combiner can be efficiently implemented.
If we take as measure the number of hash block evaluations then the combiner
increases the number of evaluations by a factor of 3. However, in contrast to
other multi-property combiners [21,22] it is completely parallelizable as each
block is preprocessed independently of others.
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FindPreImageA

R, k1, . . . k6 ←− sample RO and keys

H
R
A , st,X ←− A1(1

n
)

τ ←− X

M ←− AR,HR
A

2 (st, CR,HR
A (τ), k1, . . . , k6)

return (CR,HR
A (M) = CR,HR

A (τ))

FindCollisionA

R, k1, . . . k6 ←− sample RO and keys

H
R
A , st ←− A1(1

n
)

(M,M ′) ←− AR,HR
A

2 (st, k1, . . . , k6)

return (CR,HR
A (M) = CR,HR

A (M ′))

Fig. 2. Security Games

4.1 Security Analysis

We will first show that the combiner is pre-image resistant if one of its input
functions is a random oracle. Remember that the basic XOR-combiner is not
necessarily pre-image resistant even if instantiated with two random oracles (see
Sections 3.1 and 3.3). We give the security experiments necessary for the follow-
ing proofs in Figure 2.

Proposition 1. Construction 1 is ideally secure for pre-image resistance (ow).
That is, for any efficient adversary A which outputs efficiently sampleable dis-
tributions X with super-logarithmic min-entropy (H∞ (X ) ∈ ω(n)) it holds that
its advantage in the FindPreImage game is bound by

AdvFindPreImage
A (1n) ≤ qA · 2−H∞(X )

where qA denotes an upper-bound on the number of combiner evaluations.

We prove Proposition 1 via an intermediate result about the preprocessed mes-
sage blocks m̃b

j (cf. Construction 1). These we regard as “preprocessing func-
tions” of the form {0, 1}n → {0, 1}n with oracle access to hash functions H1

and H2, parameterized by keys k1, k2, k3, taking message blocks m ∈ {0, 1}n
as input and outputting a preprocessed message block; we write m̃H1,H2

k1,k2,k3
(m).

We show that these pre-processed message blocks are, in fact, random variables
with min-entropy n bits over the choice of random oracle and keys k1, k2, k3. By
applying the union bound, we can then argue that if an efficient adversary with
access to the random oracle and keys k1, . . . , k3 can choose message m it can at
most reduce the entropy to n −O (logn) bits, where the logarithmic reduction
is bound by the number of random oracle evaluations.

Lemma 1. The preprocessed blocks m̃H1,H2

k1,k2,k3
(·) in Construction 1 are random

variables with min-entropy n; that is, if Hb := R for b ∈ {1, 2} is a random
oracle, then it holds for all message blocks m ∈ {0, 1}n and functions H2−b+1

with restrictions as in Construction 1 that

H̃∞
(
m̃H1,H2

k1,k2,k3
(m)|m, k1, k2, k3

)
= n (1)

where the probability is over the choice of random oracle R and keys k1, . . . , k3.



148 A. Mittelbach

DistR,k1,k2,k3
A (m)

m′ ←− AR(1n,m⊕ k3)

return R(m⊕ k1)⊕m⊕ k2 ⊕m′

Fig. 3. Adv. Controlled Distribution

To prove Lemma 1 we consider
the following distribution (see Fig-
ure 3). The distribution is parameter-
ized by an (efficient) algorithm A, a
random oracle from the function space
{0, 1}∗ → {0, 1}n and uniformly and
independently chosen keys k1, k2, k3 from {0, 1}n. To compute the mapping for
message m, adversary A receives value m⊕ k3 and outputs a message m′. Value
R(m⊕ k1)⊕m⊕ k2 ⊕m′ is returned as sample.

Proof (of Lemma 1). In the adversarial distribution (Figure 3), the adversary can
be regarded as the adversarially created function HR

A (·) in Construction 1. Thus,
we have that the min-entropy of the adversarial distribution (instantiated with

any efficient adversary A) is an upper bound for the min-entropy of m̃H1,H2

k1,k2,k3
:

H̃∞

(
m̃H1,H2

k1,k2,k3
(m)|m, k1, k2, k3

)
≥ H̃∞

(
DistR,k1,k2k3

A (m)|m, k1, k2, k3

)
As the keys are chosen uniformly at random from {0, 1}n and in particular

independently of the random oracle, we know that for every message m value
R(m⊕ k1) is uniformly distributed and thus:

H̃∞ (R(m⊕ k1)⊕m⊕ k2|m, k1, k2, k3) = n

To estimate the min-entropy of distribution DistR,k1,k2k3
A (·) we thus need to

analyze the effect of value m′ as output by adversary A on input m ⊕ k3. In
order to output m′ such that the min-entropy of

H̃∞ (R(m⊕ k1)⊕m⊕ k2 ⊕m′|m, k1, k2, k3) (2)

is less than n bits, adversary A itself must have sufficient information on R(m⊕
k1) ⊕ m ⊕ k2 given its sole input m ⊕ k3. To model, that A has access to the
random oracle, we add its list of queries to the conditions. Let qry(AR(m⊕ k3))
denote the query-answer pairs of A to the random oracle on input m⊕ k3. Note
that this is a random variable over the coins of A and the random oracle R.
Then, we can formalize the uncertainty of A about value R(m⊕ k1)⊕m⊕ k2 by

H̃∞
(
R(m⊕ k1)⊕m⊕ k2|m⊕ k3, qry(AR(m⊕ k3))

)
(3)

It is easily seen that this denotes an upper bound for

H̃∞
(
R(m⊕ k1)⊕ k2|m, qry(AR(m))

)
(4)

where we removed the distortion of m by k3 on the conditions, which in turn
allows us to remove messagem from the conditioned side. Note that values k2 and
R(m⊕k1) are uniformly distributed and independent (k2 is chosen independently
ofR and similarlym and k1 are chosen independently ofR). Thus we can analyze
the two terms going into the exclusive-or operation individually; that is,

H̃∞
(
k2 ⊕R(m⊕ k1)|m, qry(AR(m))

)
≥

max
(
H̃∞

(
k2|m, qry(AR(m))

)
, H̃∞

(
R(m⊕ k1)|m, qry(AR(m))

))
(5)
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As m is independent of keys k1 and k2 we have that both terms in the max-
operation have n bits of entropy and thus

H̃∞
(
k2 ⊕R(m⊕ k1)|m, qry(AR(m))

)
= n. (6)

Thus, adversary A cannot output m′ such that the entropy in (2) is reduced. ��

By an application of the union bound it follows that for any message m that
is generated by an efficient adversary AH1,H2(k1, k2, k3) which is given the keys

and that has oracle access to the hash functions, the min-entropy of m̃H1,H2

k1,k2,k3
(m)

is at most reduced by logarithmically (in n) many bits (see full version [31] for
details).

Lemma 2. Let the setup be as in Lemma 1. Then, for all efficient adversaries
A it holds that

H̃∞
(
m̃H1,H2

k1,k2,k3
(m)|m← AH1,H2(1n, k1, k2, k3), k1, k2, k3

)
≥ n−O(log q) (7)

where q is an upper bound on random oracle evaluations by H2−b+1 and adver-
sary A. The probability is over the choice of keys k1, k2, k3, random oracle R and
A’s internal coin tosses.

Remark 2. We have examined Lemma 1 in the random oracle model using the
information theoretic min-entropy notion. We can also analyze it in the privately
keyed standard model assuming a pseudorandom function instead of a random
oracle. For this we need to switch to a computational version of entropy such as
HILL entropy (see [38] for an introduction). The proof works analogously.

We now prove Proposition 1 by showing that the advantage of any adversary in
winning the FindPreImage game is bounded by qA · 2−H∞(X ) where qA is the
number of combiner evaluations. Let us first examine the FindPreImage game.
In a first step, a random oracleR is sampled from the space of all functions of the
form {0, 1}∗ → {0, 1}n together with keys k1, . . . , k6. Adversary A1 is then given
the security parameter and it outputs a target distribution X , some state st, and
a description of a hash function HR

A which can contain special gates to evaluate
random oracle R (note that A1 does not get access to R while constructing
HR

A and that distribution X must have super-logarithmic min-entropy given
state st). In a next step a target message τ is sampled from distribution X .
Then, adversary A2 is given keys k1, . . . , k6 and and hash value CR,HR

A (τ) and
is given oracle access to R and HR

A . It wins if it outputs a message M which,

under the combiner, yields value CR,HR
A (τ), i.e.: CR,HR

A (M) = CR,HR
A (τ).

Proof (Proposition 1). Let us examine the preprocessed message blocks going

into G
R,HR

A
2 (cf. Construction 1) for some message m1, . . . ,m� := M‖PAD(M).

Each block is of the form

R(0 ‖ mi ⊕ k4)⊕mi ⊕ k5 ⊕HR
A (0 ‖ mi ⊕ k6) (8)
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By Lemma 2 we can assume each of these blocks to be a random variable with
min-entropy n bits (note that the factor log(q) of Lemma 2 is implicit in the
number of random oracle queries by the adversary) and thus the combined blocks
(via concatenation) to be a random variable of also at least n bits. The same

necessarily holds for for the blocks going into G
R,HR

A
1 . Furthermore, by achieving

domain separation for the random oracle calls (prefixing the input with 0 and

1, respectively) within G
R,HR

A
1 (·) and G

R,HR
A

2 (·), we can assume the random
variables for blocks of G1 to be independent of those for blocks of G2.

If Un and U ′
n are independent random variables from the message space to

{0, 1}n with min-entropy n bits, then we can write the combiner CR,HR
A as

CR,HR
A (M) := R(Un(M))⊕HR

A (U ′
n(M))

Hence, the probability for any message M to be mapped to CR,HR
A (τ) under

the combiner is 2−n. As one possible pre-image (namely τ) is contained in the
support of distribution X , the best strategy for an adversary is to sample mes-
sages from X , which allows us to upper bound the advantage of an adversary
winning in the FindPreImage game by

AdvFindPreImage
A (1n) ≤ qA · 2−H∞(X )

where qA denotes the number of combiner queries by adversary A2. ��

For second pre-image and target collision resistance it suffices to slightly change
the FindPreImage game to adapt it to the specifics in the examined property.

Collision resistance is examined using the FindCollision game (see Figure 2).
We show that the advantage of any efficient adversary is bound by q2A · 2−(n+1)

where qA denotes the number of combiner evaluations. In short we show that
as the inputs to the outer hash functions in G1 and G2 have entropy at least
n − O (log q) bits, the problem of finding collisions can be rewritten as finding
collisions for

R(Un(M))⊕R(Un(M
′)) = HR

A (U ′
n(M))⊕HR

A (U ′
n(M))

where Un and U ′
n are again independent random variables mapping from {0, 1}∗

to {0, 1}n and having n bits of min-entropy (again the logarithmic factor is
hidden in the number of Un evaluations by the adversary). We refer to the full
version [31] for details.

4.2 Pseudorandomness

Finally, we show that our combiner is robust for pseudorandomness and ideally
secure for message authentication codes. For pseudorandomness we can directly
show robustness in the standard model (that is, without assuming a random
oracle). We want to stress that, in contrast to the exclusive-or combiner, we do
not need to assume that the two ingoing functions H1 and H2 are independent
(cf. Section 3.1).
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Proposition 2. The combiner given in construction 1 is robust for pseudoran-
domness.

Proof (sketch). We have already argued that we can analyze Lemma 1 and
Lemma 2 also in the standard model, using computational analogues of entropy
(see remark following Lemma 2). Thus, assuming that H1 is pseudorandom,

Lemma 2 yields that the input to GH1,H2

1 (M) := H1(M̃) has sufficiently high
computational min-entropy and hence G1 is pseudorandom. Due to the symmet-
ric design of the combiner, this also yields that GH1,H2

2 is pseudorandom if H2 is
pseudorandom. Note, that due to the domain separation, the inputs to the outer
hash evaluations in G1 and G2 are independent and thus the further analysis
can be reduced to the analysis of the exclusive-or combiner which we know to
be robust for pseudorandom functions assuming independent inputs. ��
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Abstract. Xoring the output of k permutations, k ≥ 2 is a very simple
way to construct pseudo-random functions (PRF) from pseudo-random
permutations (PRP). Moreover such construction has many applications
in cryptography (see [2,3,4,5] for example). Therefore it is interesting
both from a theoretical and from a practical point of view, to get precise
security results for this construction. In this paper, we will describe the
best attacks that we have found on the Xor of k random n-bit to n-
bit permutations. When k = 2, we will get an attack of computational
complexity O(2n). This result was already stated in [2]. On the contrary,
for k ≥ 3, our analysis is new. We will see that the best known attacks
require much more than 2n computations when not all of the 2n outputs
are given, or when the function is changed on a few points. We obtain
like this a new and very simple design that can be very useful when a
security larger than 2n is wanted, for example when n is very small.

Keywords: Pseudorandom functions, pseudorandom permutations,
Luby-Rackoff backwards, generic attacks.

1 Introduction

The problem of converting pseudorandom permutations (PRP) into pseudoran-
dom functions (PRF) named “Luby-Rackoff backwards” was first considered in
[3]. This problem is obvious if we are interested in an assymptotical security
model (since a PRP is then a PRF), but not if we are interested in achieving
more optimal and concrete security bounds. More precisely, the loss of security
when regarding a PRP as a PRF comes from the “birthday attack” which can
distinguish a random permutation from a random function of n bits to n bits,
in 2

n
2 operations and 2

n
2 queries. In [5] (Theorem 2 p.474), it has been proved

that the Xor of k PRP gives a PRF with security at least in O(2
k

k+1n). (For

k = 2 this gives O(2
2
3n)). Moreover in [2], it has been proved that the Xor of

two PRP gives a PRF with security at least in O(2n/n
2
3 ) and at most in O(2n),

which is much better than the birthday bound in O(2
n
2 ). Similarly in [8], it has

been proved that in fact the security is at least in (and therefore exactly in)
O(2n) for this problem to distinguish the Xor of two PRP from a PRF . An
interesting question is “Can we hope to get even better bound than O(2n) with
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c© Springer-Verlag Berlin Heidelberg 2013
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more than two Xor, particularly if not all the 2n inputs/outputs are given to the
cryptanalysis ?” In this paper, we will study this question. Let Fk denote the
Xor of k random permutations. Let Gk denote the function Fk except on a few
secret (or public) points xi where G(xi) is random (for example it can be only
the point 0). We will distinguish 4 kinds of attack scenarios:

1. The adversary has access to the full codebook of Fk, i.e. exactly all the 2n

pairs of function input and function output.
2. The adversary has access to almost, but not all, the entire codebook of Fk,

i.e. to m pairs with m � 2n and m < 2n.
3. The adversary wants to attack Gk (instead of Fk) and he has access to the

full codebook of Gk.
Moreover, in these scenarios 2 and 3 we will also assume that the adversary
has access to a generator of such functions Fk (or Gk), i.e. has access to μ
such functions and he wants to distinguish these μ functions from μ random
independent functions.

4. Finally, in scenario 4, we will be as in scenario 2 except that:
a. The adversary has access to only one function Fk (not a generator).
b. We look in this scenario 4 for the best Advantage that the adversary can
get even if this mathematical value is  1 (and therefore cannot be used to
distinguish).

To analyze these scenarios, we will introduce what we call “stable” attacks and
“unstable” attacks. An attack will be called “stable” if the attack is still valid
with a similar complexity when a few points of the functions are changed to truly
random values. We will present the best “stable” and “unstable” attacks that we
have found on the Xor of k functions, k ≥ 2 when we study a generator of such
functions (not only one such function). We will see that in Scenario 1, the best
security bound is indeed in O(2n), but in Scenario 2 and 3, the best attacks have
an even greater complexity. So it gives candidate schemes to build PRF from
PRP in a still very simple way and with potentially even better security. Since
building PRF from PRP has many applications (see [2,3,4]), we think that these
results are really interesting both from theoretical and from practical point of
view.

The paper is organised as follows. We will analyse Scenario 1 in section 2,
Scenario 2 in section 3 and 4, Scenario 3 in section 5 and Scenario 4 in sections
6 and 7. Then we will analyse the case where the k Xor are done on only one
permutation (instead of k independant permutations) in section 8. Some other
variants and open problems are presented in section 9. Finally, the results ob-
tained are summarized in section 10. We have decided to present in Appendices
the computation of all the mean values and standard deviations needed.

2 Scenario 1 on f1 ⊕ f2 ⊕ . . . ⊕ fk with O(2n)
Computations

Notations: In all this paper we will denote In = {0, 1}n. Fn will be the set of
all applications from In to In, and Bn the set of all permutations from In to
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In. So |In| = 2n, |Fn| = 2n·2
n

, and |Bn| = (2n)!. x ∈R A will mean that x is
randomly chosen in A, with a uniform distribution.

Aim: In this section we want to distinguish f ⊕ g, with f, g ∈R Bn from
h ∈R Fn.

Attack. We analyze a function G, we want to know if G = f ⊕ g, f, g ∈R Bn,
or if G = h, h ∈R Fn. If we have access to all the 2n values G(x), then we can
compute T = ⊕2n

i=1G(i). If G = f ⊕ g, then with probability 1, we have T = 0.
(Proof: If f is a permutation we have ⊕2n

i=1f(i) = ⊕2n

i=1i = 0 and similarly
⊕2n

i=1g(i) = 0, so ⊕2n

i=1f(i) ⊕ g(i) = 0). If G = h, h ∈R Fn, then we have T = 0
with probability 1

2n . Therefore, by computing T , we can distinguish f⊕g from h
with a very good probability. This attack is in O(2n) computations, with O(2n)
input/output values.

Aim with k ≥ 3: We want to distinguish f1 ⊕ f2 ⊕ . . .⊕ fk,
with f1, f2, . . . , fk ∈R Bn from h ∈R Fn.

h
f1 f2 · · · fk

Fig. 1. Our attack distinguish between a function and the xor of k permutations

Attack. We use exactly the same attack: by computing T , we can distinguish
f1 ⊕ f2 ⊕ . . .⊕ fk from h with a very good probability. This attack is in O(2n)
computations, with O(2n) input/output values.

Therefore, it seems that 2n is the best security result that we can get with k
Xor of permutations, for all k. However we can notice that if instead of having
f1 ⊕ f2 ⊕ . . .⊕ fk, we use a function G such that G = f1 ⊕ f2 ⊕ . . .⊕ fk except
on a few points (or even except only on 0), and on these few points the output
of G is truly random, then the above attack fails. We will say that this attack is
“unstable”. More precisely, we will define “stable” attacks as follows:

Definition. We want to distinguish a function G of Fn (generated by a func-
tion generator) from truly random functions f ∈R Fn with an attack A. Let
P (n) be a polynomial in n and x1, . . . xφ be φ points randomly chosen in In with
φ ≤ P (n). Let Φ = {x1, . . . xφ}. Let G′ = G on all the points of Fn − Φ and
G′(xi) be truly random on all xi ∈ Φ. Then if for each such sets Φ the attack A
is polynomial (in n) against G′, we will say that this attack is stable on G.

Remark: It is possible to store a few random points with O(n) random bits,
i.e. polynomial in n, but to store a random function of Fn, we need n ·2n random
bits, i.e. not polynomial in n. To avoid an “unstable” attack on G, we have to
change the design of G only on a few points. However to avoid a “stable” attack
on G, the design of G must be deeply changed.
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3 Scenario 2 on f ⊕ g with O(22n) Computations

Aim: we want to distinguish a generator A of functions f ⊕ g, with f, g ∈R Bn,
from a generator B of functions h, with h ∈R Fn; i.e. we can have access to
more than one test function G, these G functions are generated from A or from
B and we have to distinguish these two cases with a non negligible probability.
Moreover for each G function, we have access to all the inputs/outputs, except
a few points. (Or alternatively, from generator A, G = f ⊕ g except on a few
points).

Attack. We will count the number N of collisions on the functions G. There-
fore if we have access to m inputs/outputs for G, G(xi) = yi for 1 ≤ i ≤ m, N
is the number of (i, j), 1 ≤ i < j ≤ m such that G(xi) = G(xj). (In our attack
we will generally choose m � 2n but we will not need m = 2n.)

Case of Random Functions. We know that for a random function of Fn,

we have E(N) = m(m−1)
2·2n and σ(N) = O( m√

2n
) where E(N) denotes the mean

value of N , and σ(N) denotes the standard deviation of N . (See Appendix A
for the proof of these results). Therefore, for a generator with μ such functions,

E(N) =
μ ·m(m− 1)

2 · 2n and σ(N) = O(

√
μ ·m√
2n

)

(Since if X1, . . . , Xn are n independent events with E(Xi) = E and σ(Xi) = σ,
we have E(X1+ . . .+Xn) = nE and σ(X1+ . . . Xn) =

√
nσ. Here the generator

generates independent functions h1, . . . hn).
Case of f ⊕ g. We know that if G = f ⊕ g, with f, g ∈R Bn, we have

E(N) =
m(m− 1)

2
· 1

2n − 1
and σ(N) = O(

m√
2n

), (see Appendix B for the

proof of these results). Therefore, for a generator with μ such functions,

E(N) =
μ ·m(m− 1)

2
· 1

2n − 1

(This shows that we have in average slightly more collisions with f⊕g than with
h), and

σ(N) = O(

√
μm√
2n

)

From Bienayme-Tchebichev theorem we know that we will be able to distinguish
h from f ⊕ g with a good probability when

σ(N)h << |E(N)h − E(N)f⊕g|

and
σ(N)f⊕g << |E(N)h − E(N)f⊕g|

(This is a sufficient condition to distinguish h from f ⊕ g.)
Here these conditions give:

√
μm√
2n

<<
μ ·m(m− 1)

2 · 22n



158 J. Patarin

For m � 2n, this gives: μ ≥ 2n and the complexity of this attack is in O(μ ·m)
computations, i.e. in O(22n).

Conclusion: This is a “stable attack” on f ⊕ g with O(22n) computations
(see section 5 to see why this attack is “stable”).

Remark: This is the best “stable” generic attack on f⊕g that we have found.

4 Scenario 2 on f1 ⊕ f2 ⊕ . . . ⊕ fk with O(2(2k−2)n)
Computations

Aim: we want to distinguish a generator A of functions f1 ⊕ f2 ⊕ . . .⊕ fk, with
f1, . . . fk ∈R Bn from a generator B of functions h ∈R Fn. We assume that we
have access to m inputs/outputs values for each function G, with m �= 2n (but
m � 2n if we want), i.e. we look for a stable attack (the attack will still be valid
if a few inputs/outputs of G are changed).

Remark: Section 3 was a special case of section 4 with k = 2.
Attack. We will count the number N of collisions on all the functions G.

Therefore, if we have access to m inputs/outputs for each function G, N is the
number of (i, j), i < j, such that: G(xi) = G(xj).

Case of Random Functions. We have seen in Section 3 (and in Appendix
B) that for a random function of Fn, we have:

E(N) =
m(m− 1)

2 · 2n and σ(N) = O(
m√
2n

)

Therefore, for a generator with μ such functions,

E(N) =
μ ·m(m− 1)

2 · 2n and σ(N) = O(

√
μ ·m√
2n

)

Case of f1 ⊕ f2 ⊕ . . . ⊕ fk. We know that if G = f1 ⊕ f2 ⊕ . . . ⊕ fk, with
f1, f2, . . . fk ∈R Bn, we have

E(N) =
m(m− 1)

2
· 1

2n
[
1 +

(−1)k
(2n − 1)k−1

]
and σ(N) = O( m√

2n
), (Proof: see Appendix C). Therefore, for a generator with

μ such functions,

E(N) =
μ ·m(m− 1)

2
· 1

2n
[
1 +

(−1)k
(2n − 1)k−1

]
and σ(N) = O(

√
μm√
2n

)

From Bienayme-Tchebichev theorem we know that we will be able to distinguish
h from f1 ⊕ f2 ⊕ . . .⊕ fk with a good probability when

σ(N)h << |E(N)h − E(N)f1⊕...⊕fk |

and
σ(N)f1⊕...⊕fk << |E(N)h − E(N)f1⊕...⊕fk |
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(This is a sufficient condition to distinguish h from f1 ⊕ . . .⊕ fk).
Here these conditions give:

√
μm√
2n

<<
μ ·m2

2kn

For m � 2n, this gives: μ ≥ 2(2k−3)n and therefore the complexity of this attack
is in O(μ ·m) computations, i.e. in O(2(2k−2)n).

5 Analysis of Scenario 3

Let G∗ be perfectly random on ϕ points, and G∗(x) = f1(x)⊕f2(x)⊕ . . .⊕fk(x),
with f1, . . . , fk ∈R Bn, on the 2n − ϕ other points. Let φ be the set of the ϕ
special points. Let assume that we know G∗ on m points xi, such that ϕ′ of
these point are in Φ and m − ϕ′ are not in Φ, ϕ′ ≤ ϕ. Let N be the number of
collisions G∗(xi) = G∗(xj), with i < j. We have: N = N1 +N2 +N3 with

N1= number of collisions with xi /∈ φ and xj /∈ φ, i < j.
N2= number of collisions with xi /∈ φ and xj ∈ φ, i < j.
N3= number of collisions with xi ∈ φ and xj ∈ φ, i < j.
We have E(N) = E(N1) +E(N2) +E(N3). From Theorem 1 of Appendix C,

we have:

E(N1) =
(m− ϕ′)(m− ϕ′ − 1)

2
· 1

2n
[1 +

(−1)k
(2n − 2)k−1

]

Moreover, E(N2) =
ϕ′(m−ϕ′)

2n and E(N3) =
ϕ′(ϕ′−1)

2·2n . Therefore

E(N) =
m(m− 1)

2
· 1

2n
+

(m− ϕ′)(m− ϕ′ − 1)

2
· 1

2n
(−1)k

(2n − 1)k−1

So if m � 2n and ϕ << 2n, we have ϕ′ << 2n and

|E(N)G∗ − E(N)f∈RFn | �
1

2 · (2n − 1)k−2

Therefore this attack by counting N for G∗ will work with the same complexity
as the attack by counting N on f1(x)⊕ f2(x)⊕ . . .⊕ fk(x) as long as ϕ << 2n,
so we say that this attack is “stable”. (This also means that “scenario 3” and
“scenario 2” have the same conplexity).

6 Scenario 4: Best Known Advantage on a Single f ⊕ g
with m < 2n

Let h be the single function of Fn that we want to study. h can be h ∈R Fn, or
h can be h = f ⊕ g with f, g ∈R Bn. We assume that we know h on m points xi:
h(xi) = yi, ∀i, 1 ≤ i ≤ m. Let N be the number of collisions on these m points,
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i.e. N is the number of (i, j), 1 ≤ i < j ≤ m such that: yi = yj .
First case: m 

√
2n. Let φ be this attack:

• if N = 0 then φ outputs 0.
• if N �= 0 (i.e. N ≥ 1) then φ outputs 1.
Let p1 = Prh∈RFn(φ(h) = 1), and p∗1 = Prf,g∈RBn(φ(f ⊕ g) = 1). If m  

√
2n,

p1 � m(m−1)
2.2n , and p∗1 �

m(m−1)
2.2n (1+ 1

2n ) (cf Appendix B). Therefore, if m 
√
2n,

Adv(φ) = |p1−p∗1| �
m(m−1)
2.22n . This shows that ifm 

√
2n, the Advantage, Advm

to distinguish h ∈R Fn from f ⊕ g, f, g ∈R Bn is at least in O(m(m−1)
22n ). (This

value is  1 and therefore too small to distinguish).
Remark. When m = 1, m = 2 and m = 3, the exact values for Advm are given
in [9]. More precisely in [9], it is shown that Adv1 = 0, Adv2 = 1

2n(2n−1) �
1

22n ,

Adv3 = 1
22n (

3.22n−12.2n+4
(2n−1)(2n−2) ) �

3
22n .

Second case:
√
2n  m 2n. Let Ψ be this attack:

• if N ≥ m(m−1)
2.2n , then Ψ outputs 1.

• if N < m(m−1)
2.2n , then Ψ outputs 0.

(Ψ is a “2-point” attack). If (f, g) ∈R Bn we haveE(N) = m(m−1)
2.(2n−1) �

m(m−1)
2.2n (1+

1
2n ) and σ(N) � m√

2
√
2n

(cf Appendix B). If
√
2n  m  2n, then the distri-

bution of N is similar to the Gaussian distribution of density 1√
2πσ

e−
(x−E(N))2

2σ2 .

Therefore we have: Adv(Ψ) = O(ΔE(N)
σ ), Adv(Ψ) = O( m

2
3n
2
). This shows that if

√
2n  m 2n, the Advantage to distinguish h ∈R Fn from f ⊕ g, f, g ∈R Bn

is at least O( m

2
3n
2
). (This value is  1, this is why in scenarios 2 and 3 we used

a generator of functions).

7 Scenario 4: Best Known Advantage on f1 ⊕f2 ⊕ . . .⊕fk

with m < 2n

First case: m  
√
2n. Let φ be the attack φ seen in section 6. Let p1 =

Prh∈RFn(φ(h) = 1) as in section 6. let p∗1(k) = Prf1,...,fk∈RBn(φ(f1 ⊕ f2 ⊕
. . . fk) = 1). If m  

√
2n, p1 � m(m−1)

2.2n and p∗1(k) �
m(m−1)

2.2n (1 + (−1)k

(2n−1)k−1 ) (cf

Appendix C). Therefore if m  
√
2n, Adv(φ) = |p1 − p∗1(k)| �

m(m−1)
2.2kn . This

shows that if m  
√
2n, the Advantage, Advm to distinguish h ∈R Fn from

f1 ⊕ f2 ⊕ . . .⊕ fk, f1, . . . , fk ∈R Bn, is at least O(m(m−1)
2kn ).

Second case:
√
2n  m 2n. Let Ψ be the attack Ψ seen in section 6. If h ∈R

Fn we have E(N) = m(m−1)
2.2n . If f1, . . . , fk ∈R Bn we have E(N) = m(m−1)

2.2n (1 +
(−1)k

(2n−1)k−1 ) and σ(N) � m√
2
√
2n

(cf Appendix C). If
√
2n  m 2n, then the dis-

tribution ofN is similar to the Gaussian distribution of density 1√
2πσ

e−
(x−E(N))2

2σ2 .

Therefore we have: Adv(Ψ) = O(ΔE(N)
σ ), Adv(Ψ) = O( m

2(k− 1
2
)n
). This shows that

if
√
2n  m  2n, the Advantage to distinguish h ∈R Fn from f ⊕ . . . ⊕ fk,
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f, . . . , fk ∈R Bn is at least O( m

2(k− 1
2
)n
). (This value is 1, this is why in scenarios

2 and 3 we used a generator of functions).

8 A Simple Variant of the Schemes with Only One
Permutation

Variant with 2 Xor
Instead of G = f1 ⊕ f2, f1, f2 ∈R Bn, we can study G′(x) = f(x‖0) ⊕ f(x‖1),
with f ∈R Bn and x ∈ In−1. This variant was already introduced in [2]. There
are many common results between G and G′ but also a few differences. It is
possible to prove that our attacks (stable and unstable) on G are also valid on
G′ with similar properties. The (unstable) attack of Section 2 in O(2n) is also
valid for G′, since ⊕2n

x=1G
′(x) = ⊕2n

i=1i = 0, and the number of collisions for the
(stable) attacks of Section 3 will be similar for G and G′.

A Specific Attack on G′

There is however a specific attack on G′ that do not exist on G since ∀x ∈
In, G

′(x) �= 0. Therefore, if we know m outputs yi of G, we can test if ∀i, 1 ≤ i ≤
m, yi �= 0 (#). The probability of this event is 1 on G′ and (1− 1

2n )
m � e−

m
2n

on f ∈R Fn. Therefore if
m
2n is not close to 0, we can distinguish f ∈R Fn from G′

with a good probability. We will call A this attack. Like the attack on ⊕2n

i=1G(i),
this attack A requires O(2n) queries and O(2n) computations. (This attack was
already described in [2].) However unlike the attack on ⊕2n

i=1G(i), this attack A
does not requires m = 2n, but only to have m

2n not close to 0.
Stability of the Attack

Let G′
φ be the function G′,except on φ randomly and secretly chosen points xi,

and on these points G′
φ is perfectly random. The probability of (#) is 1 on G′,

is (1 − 1
2n )

φ � e
φ
2n � 1 − φ

2n on G′
φ and is � e−

m
2n on f ∈R Fn. Therefore,

if φ is ≤ P (n) and if m � 2n, with p(n) a polynomial in n, the probability of
(#) is about 1 on G′

φ, and is about 1
e on f ∈R Fn, so this attack A is still able

to distinguish G′
φ from f ∈R Fn. Therefore A is ”stable” with our definition of

”stable”.
Variant with ≥ 3 Xor

With 3 Xor, instead of G(x) = (f1⊕ f2⊕ f3)(x), if x �= 0, with f1, f2, f3 ∈R Bn,
and G(0) random, we can study G′(x) = f(x‖00)⊕ f(x‖01)⊕ f(x‖10), if x �= 0,
with f ∈R Bn and x ∈ In−2, G

′(0) random. Now G′(x) can have the value 0,
and as with f ⊕ g⊕h, f, g, h ∈ Bn with this design the best known attacks have
complexity greater than O(2n). More generally, with k Xor, instead of using k
random permutations of Bn, we can use only one. From a theoretical point of
view the analysis, attacks and results will be similar if the number of Xor is ≥ 3
(cf Appendices D and E), but from a practical point of view these variants may
be sometime a bit better since they use only one random permutation of Bn.
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9 Other Variants and Open Problems

Let assume, for example, that we want to build a pseudo-random function of Fn

from two random permutations of Bn. We have

|Bn|2 =
(
(2n)!

)2 � (
(2n)

2n · e−2n
√
2π · 2n

)2 � 22n·2
n

e−2·2n(2π · 2n)

Here we use Stirling formula and |Fn| = (2n)2
n

= 2n·2
n

. So |Bn|2 ≥ |Fn| and
therefore, from an information theoretic point of view, we may imagine to trans-
form a random element of B2

n in a pseudo-random element of Fn with a security
bound much better than O(2n). In fact, if we have a very small probability that
the transformation fails, i.e. gives no element of Fn, then we may even hope to
get a perfectly random element of Fn when the construction works.

Remark. A similar problem arise when we want to transform for example a
perfectly random integer x of [1, 11] into a perfectly random integer y of [1, 2].
We can decide that if x ∈ {1, 2, 3, 4, 5} then y = 1, and if x ∈ {6, 7, 8, 9, 10} then
y = 2, and if x = 11, then no output y is given. Then when an output y is given,
y is perfectly random in [1, 2].

It may be interesting to design a similar transformation from B2
n to Fn, i.e.

with a high probability the construction will give an output, and when it gives an
output, this output will be a perfectly random element of Fn. However, we want
to perform only O(n) operations (or polynomial in n) to get the output (as (f1⊕
g2)(x) where only 2 operations are needed), not O(2n). Therefore, this problem
may have no solution. However, it may exist some designs with better security
results than our constructions with the same number of operations. In any case,
it is an interesting and open question to evaluate the best possible designs when
only O(n) (or a polynomial in n) operations are possible to evaluate G(x). Of
course another open question is: Are our generic attacks the best possible attacks
on our constructions (with k Xor and a few random points)?

10 Summary of the Results

– k denotes the number of Xor: f1 ⊕ f2 ⊕ . . .⊕ fk.
– In “scenario 1” we present the number of computations required in a CPA-2

(Adaptive chosen plaintext attack) to distinguish f1 ⊕ f2 ⊕ . . . ⊕ fk (with
f1, . . . , fk ∈R Bn) from a truly random function h ∈R Fn when the ad-
versary has access to the full codebook. This number is proved to be at

Table 1. Best known attacks for the Xor of k permutations

k Scenario 1 Scenario 2 and 3 Scenario 4, m �
√
2n Scenario 4,

√
2n � m � 2n

2 2n ≤ 22n Adv ≥ O(m(m−1)

22n
) Adv ≥ O( m

2
3n
2
)

3 2n ≤ 24n Adv ≥ O(m(m−1)

23n
) Adv ≥ O( m

2
5n
2
)

4 2n ≤ 26n Adv ≥ O(m(m−1)

24n
) Adv ≥ O( m

2
7n
2
)

k 2n ≤ 2(2k−2)n Adv ≥ O(m(m−1)

2kn ) Adv ≥ O( m

2
(k− 1

2
)n
)
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least in O(2n/n
2
3 ) (security results of [2]) at least in O(2n) (security results

of [8]), and at most in O(2n) (“unstable” attack of Section 2) when all the
2n inputs/outputs are given), and therefore exactly in O(2n).

– “Scenario 2” is like “scenario 1” except that we have access tom input/output
pairs, with m � 2n but m < 2n, and that we use a generator of such
functions.

– In “scenario 3” we present the number of computations required in a CPA-
2 (Adaptive chosen plaintext attack) to distinguish G from a truly random
function h ∈R Fn whereG is equal to f1⊕f2⊕. . .⊕fk (with f1, . . . , fk ∈R Bn)
on all the points except on a few points xi where G(xi) is random. (For ex-
ample it can be only on the point 0). Moreover, we use a generator of such
functions G.
“≤” denotes the fact that we give here the best known attack. We see that
in scenarios 2 and 3 the number of computations can be much larger than
in scenario 1.Therefore the design of G can be very efficient in some appli-
cations.

– In Scenario 4 we present the best Advantage that we have found when we
try to attack in CPA-2 a single f1 ⊕ f2 ⊕ . . . ⊕ fk with m queries, (not a
generator), with

√
2n  m 2n. (These values for Adv are always 1, this

is why in Scenarios 2 and 3 we needed more than one function to distinguish).
“≥” denotes the fact that we give here the best known advantage, but better
Advantage may exist.

With the variant of section 8 (i.e. with only one permutation), the results ob-
tained are the same as for f1 ⊕ f2 ⊕ . . .⊕ fk except for k = 2.

Table 2. Best known attacks for the variant of section 8 (i.e. k Xor on only one
permutation)

k Scenario 1 Scenario 2 and 3 Scenario 4, m �
√
2n Scenario 4,

√
2n � m � 2n

2 2n 2n Adv ≥ O( m
2n

) Adv ≥ O( m
2n

)

3 2n ≤ 24n Adv ≥ O(m(m−1)

23n
) Adv ≥ O( m

2
5n
2
)

4 2n ≤ 26n Adv ≥ O(m(m−1)

24n
) Adv ≥ O( m

2
7n
2
)

k 2n ≤ 2(2k−2)n Adv ≥ O(m(m−1)

2kn ) Adv ≥ O( m

2
(k− 1

2
)n
)

11 Conclusion

In this paper, we have designed new schemes to build PRF from PRP. On these
schemes we use k Xor instead of two, on all the points except a few, and on
these few points, we have a truly random output. On these new schemes, we
have shown that the best known generic attacks have a complexity much larger
than O(2n). Therefore these schemes might be very useful when we want to
generate random functions from random permutations with a small value of n
and a high security (security in 280 for example and n < 80).
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Appendices

A Mean Value and Standard Deviation of Collisions on
Random Functions

Aim. Let f be a random function from In to In. We assume that we know f
on m distinct points xi: ∀i, 1 ≤ i ≤ m, f(xi) = yi. Let N be the number of
collisions on these values yi. We want to evaluate E(N) (the mean value of N
when f ∈R Fn) and σ(N) (the standard deviation of N whenf ∈R Fn).

Computation of E(N). Let δi j = 1⇔ f(xi) = f(xj) and δi j = 0⇔ δi j �= 1.
We have N =

∑
i<j δi j . Therefore, E(N) =

∑
i<j E(δi j). Moreover

E(δi j) = Pr i�=j
f∈RBn

(
f(xi) = f(xj)

)
=

1

2n

Therefore E(N) = m(m−1)
2·2n .

Computation of σ(N).

V (N) = V
(∑
i<j

δi j
)
=

∑
i<j

V (δi j) +
∑

i<j, k<l,
(i,j)�=(k,l)

Cov(δi j , δk l)
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where Cov(δi j , δk l) denotes the covariance of (δi j , δk l):

Cov(δi j , δk l) = E(δi j · δk l)− E(δi j)E(δk l)

We have:

V (δi j) = E(δ2i j)− E(δi j)
2 =

1

2n
− 1

22n

We now have to evaluate E(δi j · δk l).
Case 1: i, j, k, l are pairwise distinct. Then

E(δi j · δk l) = Prf∈RBn

(
f(xi) = f(xj) and f(xk) = f(xl)

)
=

1

22n

Case 2: In i, j, k, l, we have exactly 3 distinct values. For example i = k.
Then

E(δi j · δk l) = Prf∈RBn

(
f(xi) = f(xj) = f(xl)

)
=

1

22n

Therefore all the covariance are 0 and we have:

V (N) =
m(m− 1)

2

( 1

2n
− 1

22n
)

and σ(N) =
√
V (N) = O(

m√
2n

)

B Mean Value and Standard Deviation of Collisions on
f ⊕ g, f, g ∈R Bn

Aim. Let G = f⊕g, with f, g ∈R Bn. We assume that we know G on m distinct
points xi: ∀i, 1 ≤ i ≤ m, G(xi) = yi. Let N be the number of collisions on these
m values yi. We want to evaluate E(N) (the mean value of N when f, g ∈R Bn)
and σ(N) (the standard deviation of N when f, g ∈R Bn).

Computation of E(N). Let δi j = 1⇔ G(xi) = G(xj) and δi j = 0⇔ δi j �=
1. We have N =

∑
i<j δi j. Therefore, E(N) =

∑
i<j E(δi j). Moreover

E(δi j) = Pr i�=j,
f,g∈RBn

(
g(xi)⊕ g(xj) = f(xi)⊕ f(xj)

)
When f is fixed, f ∈ Bn, f(xi)⊕ f(xj) is a value different from 0. Therefore the
probability when g ∈R Bn that g(xi) ⊕ g(xj) = f(xi) ⊕ f(xj) is exactly 1

2n−1 .
So

E(δi j) =
1

2n − 1
and E(N) =

m(m− 1)

2
· 1

2n − 1

Computation of σ(N).

V (N) = V
(∑
i<j

δi j
)
=

∑
i<j

V (δi j) +
∑

i<j, k<l
(i,j)�=(k,l)

Cov(δi j , δk l) (∗)

where Cov(δi j , δk l) denotes the covariance of (δi j , δk l):

Cov(δi j , δk l) = E(δi j · δk l)− E(δi j)E(δk l)
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We have:

V (δi j) = E(δ2i j)− E(δi j)
2 =

1

2n − 1
− 1

(2n − 1)2

We now have to evaluate E(δi j · δk l)
Case 1: i, j, k, l are pairwise distinct. Then

E(δi j · δk l) = Prf,g∈RBn

(
g(xi)⊕ g(xj) = f(xi)⊕ f(xj)
g(xk)⊕ g(xl) = f(xk)⊕ f(xl)

)
When f(xi), f(xj), f(xk), f(xl), g(xj), g(xl) are fixed, g(xi) and g(xk) are fixed
with

g(xi) = g(xj)⊕ f(xi)⊕ f(xj) and g(xk) = g(xl)⊕ f(xk)⊕ f(xl)

(and these conditions may be compatible or not with g being a permutation). If
we did not have these two equalities, for g(xi) we would have (2n − 2) possibil-
ities (g(xi) /∈ {g(xj), g(xl)}), and for g(xk) we would have (2n − 3) possibilities
(g(xk) /∈ {g(xi), g(xj), g(xl)}. So,

E(δi j · δk l) ≤
1

(2n − 2)(2n − 3)

Therefore

E(δi j · δk l)− E(δi j)E(δk l) ≤
1

(2n − 2)(2n − 3)
− 1

(2n − 1)2

≤ 3 · 2n
(2n − 1)2(2n − 2)(2n − 3)

≤ O(
1

23n
)

Case 2: in i, j, k, l, we have exactly 3 distinct values. For example i = k. Then

E(δi j · δk l) = Prf,g∈Bn(f(xi)⊕ g(xi) = f(xj)⊕ g(xj) = f(xl)⊕ g(xl))

When f(xi), f(xj), f(xl), g(xi) are fixed, g(xj) and g(xl) are fixed with{
g(xj) = f(xi)⊕ g(xi)⊕ f(xj)
g(xl) = f(xi)⊕ g(xi)⊕ f(xl)

(and these conditions may be compatible or not with g being a permutation). If
we did not have these two equalities, for g(xj) we would have (2n−1) possibilities
(g(xj) �= g(xi)) and for g(xl), we would have (2n − 2) possibilities (g(xl) /∈
{g(xi), g(xj)}). So

E(δi j · δk l) ≤
1

(2n − 1)(2n − 2)

Therefore

E(δi j · δk l)− E(δi j)E(δk l) ≤
1

(2n − 1)(2n − 2)
− 1

(2n − 1)2
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≤ 1

(2n − 1)2(2n − 2)
≤ O(

1

23n
)

So from (∗) we get

V (N) ≤ m(m− 1)

2

( 1

2n − 1
− 1

(2n − 1)2
)
+O(

m4

23n
)

So

V (N) ≤ O(
m2

2n
) +O(

m4

23n
)

Since m ≤ 2n, V (N) ≤ O(m
2

2n ) and therefore σ(N) ≤ O( m√
2n
).

C Mean Value and Standard Deviation of Collisions on
f1 ⊕ f2 ⊕ . . . ⊕ fk

Theorem 1 Let G = f1⊕ f2⊕ . . .⊕ fk, f, g ∈R Bn, with f1, f2, . . . , , fk ∈R Bn.
Let assume that we know G on m distinct points xi: ∀i, 1 ≤ i ≤ m, G(xi) = yi.
Let Nk be the number of collisions on these m points: Nk = the number of (i, j),
1 ≤ i < j ≤ m such that yi = yj. Then

E(Nk) =
m(m− 1)

2
· 1

2n
[
1 +

(−1)k
(2n − 1)k−1

]
where E(Nk) denotes the mean value of Nk when f1, f2, . . . , fk are randomly
chosen in Bn.

To prove this theorem we will first need a lemma.

Lemma 1. If xi �= xj , we have

if ϕ �= 0, P rf∈Bn

(
f(xi)⊕ f(xj) = ϕ) =

1

2n − 1

and if ϕ = 0, P rf∈Bn

(
f(xi)⊕ f(xj) = ϕ) = 0

Proof of Lemma 1
If ϕ = 0, f(xi) �= f(xj) since f is a permutation. If ϕ �= 0, when f(xi) is fixed,
f(xj) is fixed to the value of ϕ⊕f(xi), so instead of having 2n−1 possible values
for f(xj) we have one when f(xi) is fixed.

Proof of Theorem 1
Let δi j = 1⇔ G(xi) = G(xj) and δi j = 0⇔ δi j �= 1. We have Nk =

∑
i<j δ

k
i j ,

so E(Nk) =
∑

i<j E(δki j). We will compute E(δki j) by induction on k.

E(δki j) = Prf1,...,fk∈RBn

[
f1(xi)⊕ . . .⊕ fk(xi) = f1(xj)⊕ . . .⊕ fk(xj)

]
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So from Lemma 1 above,

E(δki j) =
1

2n − 1
Prf1,...,fk−1∈RBn

[
f1(xi)⊕. . .⊕fk−1(xi) �= f1(xj)⊕. . .⊕fk−1(xj)

]
E(δki j) =

1

2n − 1

[
1− E(δk−1

i j )
]

(∗)

If k = 1 we have E(δ1i j) = Prf1∈Bn(f1(xi) = f1(xj)) = 0 (∗∗) (since f1 is
a permutation and xi �= xj). Now from (∗) and (∗∗) we get immediately by
induction on k that

E(δki j) =
1

2n
[
1 +

(−1)k
(2n − 1)k−1

]
and therefore,

E(Nk) =
m(m− 1)

2
E(δki j) =

m(m− 1)

2
· 1

2n
[
1 +

(−1)k
(2n − 1)k−1

]
as claimed. Moreover the standard deviation can be computed exactly as in
Appendix B, or alternatively by using the fact that G = f1 ⊕ f2 ⊕ ψ where ψ is
a function independant of f1 ⊕ f2. We get the same result: σ(Nk) ≤ O( m√

2n
).

Remark. This result is not surprising: by Xoring k permutations, k ≥ 3
instead of 2, we expect to obtain a better or at least as good pseudorandom
permutation. Since we have seen that σ(N) for k = 2 and σ(N) for a random
function are less than or equal to O( m√

2n
), it is natural that for k ≥ 3 we also

have the same result σ(N) ≤ O( m√
2n

).

D Mean Value of Collisions on f(x‖α)⊕f(x‖β), f ∈R Bn

Let G′(x) = f(x‖α) ⊕ f(x‖β), f ∈R Bn, with α �= β. We assume that we know
G′ on m distinct points xi: ∀i, 1 ≤ i ≤ m, G′(xi) = yi. Let N be the number
of collisions on these m values yi. We want to evaluate E(N), the mean value
of N when f ∈R Bn. Let δij = 1 ⇔ G′(xi) = G′(xj) and δij = 0 ⇔ δij �= 1.
We have N =

∑
i<j δij . Therefore E(N) =

∑
i<j E(δij). Moreover E(δij) =

Prf∈RBn(f(xi‖α)⊕f(xi‖β)⊕f(xj‖α) = f(xj‖β)). So E(δij) = Prf∈RBn(f(a)⊕
f(b) ⊕ f(c) = f(d)) where a, b, c, d are pairwise distinct. When f(a), f(b) and
f(b) are fixed, then f(d) can have any value /∈ {f(a), f(b), f(c)} with probability
exactly 1

2n−3 (and f(d) ∈ {f(a), f(b), f(c)} with probability 0). Moreover f(a)⊕
f(b)⊕f(c) ∈ {f(a), f(b), f(c)} is not possible since f is a permutation. Therefore

E(δij) =
1

2n−3 and E(N) = m(m−1)
2.(2n−3) �

m(m−1)
2.2n (1 + 3

2n ).

E Mean Value of Collisions on
f(x‖α1) ⊕ . . . ⊕ f(x‖αk), f ∈R Bn

Let G′
k(x) = f(x‖α1) ⊕ . . . ⊕ f(x‖αk), f ∈R Bn, with α1, α2, . . . αk pairwise

distinct. We assume that we know G′
k on m distinct points xi: ∀i, 1 ≤ i ≤
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m, G′
k(xi) = yi. Let Nk be the number of collisions on these m values yi. We

want to evaluate E(Nk), the mean value of N when f ∈R Bn. Let δij = 1 ⇔
G′

k(xi) = G′
k(xj) and δij = 0 ⇔ δij �= 1. We have Nk =

∑
i<j δij . Therefore

E(Nk) =
∑

i<j E(δij). Let pk = E(δij) = Prf∈RBn(f(xi‖α1)⊕ . . .⊕ f(xi‖αk) =
f(xj‖α1)⊕ . . .⊕ f(xj‖αk)) = Prf∈RBn(f(a1)⊕ f(a2)⊕ . . .⊕ f(a2k−1) = f(a2k))
where a1, a2, . . . , a2k are pairwise distinct. When f(a1), . . . f(a2k−1) are fixed,
then f(a2k) can have any value /∈ {f(a1), . . . , f(a2k−1)} with probability exactly

1
2n−(2k−1) (and f(a2k) ∈ {f(a1), . . . , f(a2k−1)} with probability 0). Therefore

we have: pk = (1 − (2k − 1)pk−1).
1

2n−(2k−1) (∗) (since ∀i, 1 ≤ i ≤ 2k − 1 we

have the probability exactly 1−pk−1 that f(a1)⊕ f(a2)⊕ . . . f(a2k−1) = f(ai)).
For example, from p1 = 0 (since f is a bijection), we get from (∗): p2 = 1

2n−3

(as already found in Appendix D), and then p3 = (1 − 5p2).
1

2n−5 = 1
2n (1 −

15
22n−8.2n+15 ). More generally, from (∗) and p2 = 1

2n−3 , we get easily by induction
that:
pk = 1

2n

[
1 + (−1)k.3.5.7...(2k−1)

2(k−1)n(1− 3
2n )(1− 5

2n )...(1− 2k−1
2n )

]
. Therefore E(Nk) = m(m−1)

2 pk =

m(m−1)
2.2n

[
1 +O( 1

2(k−1)n )
]
, with O( 1

2(k−1)n ) =
(−1)k.3.5.7...(2k−1)

2(k−1)n(1− 3
2n )(1− 5

2n )...(1− 2k−1
2n )

.
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Abstract. In this paper, generic attacks are presented against hash
functions that are constructed by a hashing mode instantiating a Feistel
or generalized Feistel networks with an SP-round function. It is observed
that the omission of the network twist in the last round can be a weakness
against preimage attacks. The first target is a standard Feistel network
with an SP round function. Up to 11 rounds can be attacked in generic
if a condition on a key schedule function is satisfied. The second target
is a 4-branch type-2 generalized Feistel network with an SP round func-
tion. Up to 15 rounds can be attacked in generic. These generic attacks
are then applied to hashing modes of ISO standard ciphers Camellia-128
without FL and whitening layers and CLEFIA-128.

Keywords: Feistel, generalized Feistel, SP round function, hashing
modes, meet-in-the-middle attack, preimage attack, Camellia, CLEFIA.

1 Introduction

Designing secure and efficient symmetric-key primitives is a long-term challenge
in the cryptographic community. One of the most successful designs is AES [7,28].
Since then, many designs use an AES-based transformation as a core of their
algorithms. An unique design philosophy of AES is the omission of the diffusion
called MixColumns in the last round. The purpose of this design is making the
encryption and decryption algorithms symmetric, while it does not lower the
provable security bound against differential and linear cryptanalysis. However,
the omission impacts to the security for other cryptanalytic approaches. Dunkel-
man and Keller discussed its impact in [8]. Sasaki also showed that the omission
could be exploited by an attacker in several hashing modes [21].

Another widely used design approach is the Feistel network, which was firstly
used in DES [5], and the generalized Feistel network (GFN) [29]. The computa-
tion structures of Feistel network and 4-branch type-2 GFN are shown in Fig. 1.
In the Feistel network, the data is separated into the left and right halves L‖R,
and then R is updated by R ⊕ F (k, L), where F is called a round function
and k represents a subkey. Finally, the left and right halves are exchanged, i.e.,
R⊕F (k, L)‖L. The ciphertext is computed by iterating this transformation sev-
eral times. As shown in Fig. 1, several designs omit the network twist in the last

M. Jacobson et al. (Eds.): ACNS 2013, LNCS 7954, pp. 170–185, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Round 
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Network twist is omitted in the last round

Fig. 1. Left: sketch of Feistel network, Right: sketch of 4-branch type-2 GFN

round, for example, DES [5] and ISO standard ciphers Camellia [2,12], CLEFIA
[27,13], and HIGHT [10,12]. The omission of the last network twist makes the
encryption and decryption algorithms symmetric.

Here, we raise a simple question; What is the impact of omitting the last
network twist in the Feistel network and GFN with respect to the security? This
paper answers this question by showing an attack against Feistel based hash
functions that works more efficiently when the last network twist is omitted.

One may say that analyzing hash functions constructed by a Feistel cipher,
especially for dedicated algorithms such as Camellia and CLEFIA, is meaningless
unless someone develops a system that actually implements their hashing modes.
However, we believe such analysis is important from the following reason.

Non-cryptographic experts do not always tell cryptographers which hash
function algorithm they implemented. Such information is sometimes
never opened. Thus, it is important for cryptographers to prepare for the
potential use by non-experts. Hashing modes based on an n-bit block-
cipher, e.g. the Matyas-Meyer-Oseas (MMO) mode [16, Algorithm 9.41],
is internationally standardized by ISO [11]. Camellia and CLEFIA are
also internationally standardized by ISO [12,13]. MMO-Camellia and
MMO-CLEFIA are important candidates for the potential use by non-
experts because giving a guideline of good technology to non-experts is
one of the purposes of the standardization.

So far, several researchers have studied the security of Feistel functions. Knud-
sen and Rijmen showed a collision attack for 7 rounds in the MMO mode
[15]. Sasaki and Yasuda analyzed the Feistel network with an Substitution-
Permutation (SP) round function. They showed a collision attack for a half
of the state for 11 rounds in the MMO mode [24]. The attack was later im-
proved and implemented on reduced-round Camellia [23]. Moon et al. presented
preimage attacks on Feistel network, GFN, and Misty network with an SP round
function [17]. They attacked 6 rounds of a Feistel-SP function and 9 rounds of
a 4-branch type-2 GFN-SP function.

Our Contributions. In this paper, we present meet-in-the-middle (MitM)
preimage attacks against hash functions that are constructed by the MMO or
other Preneel-Govaerts-Vandewalle (PGV) modes [20] instantiating a Feistel or
4-branch Type-2 GFN ciphers with an SP-round function. Regarding the Feistel
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network, 11 rounds can be attacked when an attacker can control several bits of
the last round subkey by choosing the first round subkey. Regarding 4-branch
type-2 GFN, 15 rounds can be attacked when the relation between the first-
round and the last-round subkeys is random. If the last network twist is not
omitted. the number of attacked rounds is 6 and 10 for the Feistel and 4-branch
type-2 GFN, respectively,

The MitM attack separates the target algorithm into two parts called forward
chunk and backward chunk so that each chunk includes several bits which are
independent of the other chunk. Such bits are called free bits. So far, there are
two types of the MitM attacks. One is setting the free bits in the key and the
other is setting the free bits in the internal state. In this paper, we take the
second approach.1 Note that, during the computation of one chunk, all previous
work treat the free bits for the other chunk as unknown.

Our attacks are based on the following two ideas. Note that these ideas are
not specific for SP-round functions.

1. The omission of the last network twist can be exploited by the splice-and-cut
technique [3]. When the last and then first rounds are computed in this order,
the input value to the round function do not change. Therefore, if the subkey
values are identical, the impact of these two rounds cancel each other. The
same situation also occurs between the second last and the second rounds.
In the hash function, the key value can be chosen by the attacker and thus
the round-shrink can be caused deliberately. Note that the cancellation of
the round function was exploited by Gauravaram et al. [9]. Our discovery
is that the cancellation gives more impacts when the last network twist is
omitted.

2. During the computation of one chunk, free bits for the other chunk do not
have to be completely independent as long as they linearly relate to the
computation. Therefore, for the computation of each chunk, we trace how
the free bits for the other chunk relate rather than treat them as unknown
immediately. Our attack on 4-branch type-2 GFN traces the linearity over
10 rounds, and thus the idea works efficiently.

We apply these techniques to block-ciphers Camellia-128 without the FL and
whitening layers and CLEFIA-128 in hashing modes. Camellia is a Feistel-SP
cipher but its P-layer does not satisfy the maximum branch number. Thus, the
attack can be extended compared to the generic case. We show an attack up to 13
rounds of Camellia-128 hashing modes. CLEFIA adopts 4-branch Type-2 GFN
but uses two different diffusion matrices for the diffusion switching mechanism
[25,26]. This increases the security and thus the attack becomes worse than the
generic case. We show an attack up to 12 rounds of CLEFIA-128 hashing modes.

1 Setting free bits in the key is impossible without defining a key schedule algorithm.
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2 Preliminaries

2.1 Specification of Camellia

Camellia was jointly designed by NTT and Mitsubishi Electric Corporation. It
is widely standardized or recommended, e.g., ISO [12], NESSIE [19], and CRYP-
TREC [6]. This paper attacks Camellia-128, where both of the key and block
sizes are 128 bits. We attack a weak variant of Camellia-128 where computations
called FL and whitening layers are omitted.

LetM andK be a 128-bit plaintext and a secret key, respectively. Eighteen 64-
bit round keys k0, . . . , k17 are generated from K. Let XL

r and XR
r (0 ≤ r ≤ 18)

be left and right 64-bits of the internal state in each round. The plaintext is
loaded into XL

0 ‖XR
0 . Then, XL

r = XR
r−1 ⊕ F (XL

r−1, kr−1) and XR
r = XL

r−1 for
1 ≤ r ≤ 17 is computed up to the second last round. In the last round, The
ciphertext XL

18‖XR
18 is computed by XL

18 = XL
17 and XR

18 = XR
17 ⊕ F (XL

17, k17),
namely, the last network twist is omitted.

The key schedule takes a 128-bit key K as input and firstly produces another
128-bit value KA. We later analyze subkey values k0, k1, k11, and k12. These
subkeys are defined as k0‖k1 = KA, k11 is the right half of (KA ≪ 60), and k12
is the left half of (K ≪ 94).

The round function consists of a 64-bit subkey addition, S-box transformation,
and a diffusion called P-layer. The size of each S-box is 8 bits, and thus 8 S-boxes
are applied. Let (z0‖z1‖ · · · ‖z7) be 64-bit values input to the P-layer. The output
(z′0‖z′1‖ · · · ‖z′7) is computed as follows. Here, z[s, t, u, · · · ] means zs⊕zt⊕zu⊕· · · .
The branch number of P is only 5. This is different from the case of an MDS
matrix multiplication.

z′0 = z[0, 2, 3, 5, 6, 7], z′2 = z[0, 1, 2, 4, 5, 7], z′4 = z[0, 1, 5, 6, 7], z′6 = z[2, 3, 4, 5, 7],

z′1 = z[0, 1, 3, 4, 6, 7], z′3 = z[1, 2, 3, 4, 5, 6], z′5 = z[1, 2, 4, 6, 7], z′7 = z[0, 3, 4, 5, 6].

2.2 Specification of CLEFIA

CLEFIA is a block-cipher proposed at FSE 2007 by Shirai et al. [27]. It is stan-
dardized by ISO [13] as a lightweight cipher. In this paper, we attack CLEFIA-
128, where both of the block size and the key size are 128 bits. It adopts the
type-2 generalized Feistel structure with 4 branches and consists of 18 rounds.
Two round functions FL and FR consist of a 32-bit subkey addition, an S-box
transformation, and a multiplication by an MDS matrix. The size of each S-box
is 8 bits, and thus 4 S-boxes are applied in each of the left and right functions.
MDS matrices for the left and right functions are different.

Let M and K be a 128-bit plaintext and a secret key, respectively. Thirty-
six 32-bit subkeys k0, . . . , k35 and four 32-bit whitening keys wk0, wk1, wk2, wk3
are generated from K. Let X0

r ‖X1
r‖X2

r‖X3
r (0 ≤ r ≤ 18) be an input internal

state in each round. The plaintext is loaded into X0
0‖X1

0‖X2
0‖X3

0 . Then, the
second and fourth words are updated by the pre-whitening operation, i.e., X1

0 ←
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X1
0 ⊕wk0 and X3

0 ← X3
0 ⊕wk1. Then, internal state is updated by the following

computation up to the second last round (for 1 ≤ r ≤ 17);

X0
r = X3

r−1 ⊕ FR(X2
r−1, k2r−1), X1

r = X0
r−1,

X2
r = X1

r−1 ⊕ FL(X0
r−1, k2r−2), X3

r = X2
r−1.

In the last round, X0
18‖X1

18‖X2
18‖X3

18 is computed by X0
18 = X0

17, X
1
18 = X1

17 ⊕
FL(X0

17, k34), X
2
18 = X2

17, X
3
18 = X3

17 ⊕ FR(X2
17, k35), namely, the last net-

work twist is omitted. Finally, the second and fourth words are updated by
the post-whitening operation, i.e., X1

18 ← X1
18⊕wk2 and X3

18 ← X3
18⊕wk3, and

X0
18‖X1

18‖X2
18‖X3

18 is output as the ciphertext.

2.3 Feistel and 4-Branch Type-2 GFN with an SP Round Function

In this paper, we firstly analyze generic Feistel and 4-Branch Type-2 GFN struc-
tures with an SP round function. Analyzing such generic structure can be seen
many papers [4,14,17,23,24,26]. These structures are generally represented by
several parameters i.e., the block size N , the S-box size c, and the number of
S-boxes in each round b. The attack strategy and efficiency depends on these pa-
rameters. In this paper, to make a comparison of attacks against Camellia and
CLEFIA clear, we fix the parameters to (N, c, b) = (128, 8, 8) for the standard
Feistel and (N, c, b) = (128, 8, 4) for 4-branch type-2 GFN.

An SP round function consists of three operations: subkey addition, S-layer,
and P-layer. In the subkey addition, a subkey is XORed to the state. In the
S-layer, b S-boxes with the size of c bits are applied. In the P-layer, a linear
computation whose branch number is b+1 is performed. An MDS multiplication
is an example of the operation. We assume that all round functions are identical.
We also assume that whitening operations are not performed.

Hereafter we use the notations Si and Pi for the standard Feistel to represent
the state immediately after the S-layer and P-layer in round i, respectively.
For 4-branch type-2 GFN, we use the notations SL

i , S
R
i , P

L
i , and PR

i to further
distinguish the left and right round functions.

2.4 Domain Extension and Hashing Modes

Main targets of this paper are compression functions which are constructed by
PGV modes with a Feistel-SP or GFN-SP cipher. For simplicity, we explain the
attack on the compression function constructed by the Davies-Meyer mode [16,
Algorithm 9.42] or MMO mode, in which the compression function output is
computed by an XOR of plaintext and ciphertext.

Suppose that the compression function is constructed by the Davies-Meyer
mode and the hash function is constructed by the narrow-pipe Merkle-Damg̊ard
domain extension. It is well known that a pseudo-preimage attack on the com-
pression function with a complexity of 2x can be converted to a preimage attack
on the hash function with a complexity of 2((x+N)/2)+1 [16, Fact 9.99]. If the
MMO mode is adopted, the attack is converted to a second preimage attack on
the hash function with the same complexity.
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3 Preimage Attacks on Feistel-SP and GFN-SP Functions

3.1 Attacks on 11-round Feistel-SP Compression Function

The attack is a MitM attack with the splice-and-cut [3], initial structure [22],
and indirect-partial matching [1]. This attack only can work if a condition on the
key schedule function is satisfied. (Later we show the condition can be satisfied
for 13-round Camellia-128.) The attacked rounds are from round 0 to round 10.

The attacker firstly searches for a key value satisfying the condition. Then,
for the fixed key value, the MitM attack is performed. During the MitM attack,
4 rounds will be shrunken when we analyze the last and first rounds sequentially
with the splice-and-cut technique. The valid pair can be identified by efficiently
matching the results from two chunks with skipping several rounds.

1-round Initial Structure Plus 2 Rounds (Rounds 6 to 8). The attack
starts from round 7 by constructing the initial structure. The detailed construc-
tion is given in Fig. 2. Throughout this paper, free bytes for the forward chunk
and values depending of them are shown in blue, while free bytes for the back-
ward chunk and values depending of them are shown in red. Grey bytes are
fixed during the MitM attack. In the computation for each chunk, free bytes
of the other chunk are regarded as unknown value which are shown with blank
squares. Although one of the technical contributions of this paper is tracing lin-
ear relations of free bytes for the other chunk, this technique does not lead to
any advantage for the case of a generic Feistel-SP. Hence, in this attack, to make
the attack simple, we do not trace linear relations.

The computation for each chunk starts from choosing the value of the free
bytes. The free bytes for the forward chunk and backward chunk are the last
three bytes of XL

7 and the first three bytes of XL
7 , respectively. Because P

is a linear operation, the impact from the free bytes for each chunk, denoted
by P 0−2

7 and P 5−7
7 can be computed independently, i.e., P 0−2

7 = P
(
S(XL

7 [0]⊕
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k7[0])‖S(XL
7 [1]⊕k7[1])‖S(XL

7 [2]⊕k7[2])‖0‖0‖0‖0‖0
)
and P 5−7

7 = P
(
0‖0‖0‖0‖0‖

S(XL
7 [5]⊕k7[5])‖S(XL

7 [6]⊕k7[6])‖S(XL
7 [7]⊕k7[7])

)
. Therefore, two chunks can

be computed independently. In Fig. 2, one round computation is added for both
chunks after the 1-round initial structure.

4-round Shrink (Rounds 9, 10, 0, and 1). We continue the forward chunk
after Fig. 2. The next 4 rounds are given in Fig. 3. The splice-and-cut technique
is used, namely, after we obtain XL

11‖XR
11 we obtain the values of XL

0 ‖XR
0 by

taking an XOR with the hash value denoted by HL‖HR. The analysis for these 4
rounds does not use the property of an SP-round function. Therefore, we describe
the round function in a more generic form.

With a straight-forward method, the forward chunk cannot continue even two
rounds because the unknown three bytes at XL

9 makes all bytes of XL
10 unknown

and all bytes of XR
11 unknown. However, we observe that, with the help of the

omission of the network twist after round 10, we can cancel the round function
output in round 10, F (XL

10⊕k10), by the one in round 0, F (XL
0 ⊕k0), with setting

k0 = k10 ⊕HL. This is because F (XL
0 ⊕ k0) = F ((XL

10 ⊕HL)⊕ (k10 ⊕HL)) =
F (XL

10 ⊕ k10). Then, we can preserve the known bytes of XL
9 in XL

1 . Moreover,
because XL

1 and XL
9 have the relation HR, we can cancel the impact of round 9

with the one in round 1 by setting k1 = k9 ⊕HR.
In the end, after 4 rounds, XL

2 and XR
2 become XR

9 ⊕ HL and XL
9 ⊕ HR,

respectively. This is stronger than just skipping 4 rounds because the unknown
bytes (XL

9 ) are moved to the right half of the state (XR
2 ) which is not used to

update the next round.
We set two N/2-bit conditions on the key. If the output of the key schedule

function is uniformly distributed, satisfying this condition will take the same cost
as the brute-force preimage attack. However, satisfying this condition is often
possible because the key schedule function is usually light. For example, if some
bits of the secret key are used as subkeys e.g. DES [5] and XTEA [18], satisfying
the condition is trivial. Moreover, in some ciphers, the last-round subkey can be
directly generated from the secret key for achieving on-the-fly key generation for
decryption, e.g. HIGHT [10]. In such a case, the condition is easily satisfied.

4-round Match (Rounds 2 to 5). The remaining 4 rounds are shown in
Fig. 4. If we compute 2 rounds in backwards, all bytes become unknown due to
the three unknown bytes of XR

6 . Hence, the direct match cannot be applied.
We observe that the computation over three rounds denoted by bold lines

in Fig. 4 is linear. The equation is S5 ← P−1(P (S3) ⊕ XR
3 ⊕ XL

6 ). By apply-
ing a linear transformation, this part can be converted into a partial match. A
simplified description of these computations is given in Fig. 5. The transformed
equation is S5 ← S3 ⊕ P−1(XR

3 ) ⊕ P−1(XL
6 ). Note that the attacker knows all

values of XR
3 and XL

6 . Hence, P
−1(XR

3 ) and P−1(XL
6 ) can be computed in each

chunk independently of the other chunk. In more details, in the forward chunk,
we compute S3 ⊕ P−1(XR

3 ) and store them in a table. In the backward chunk,
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we compute S5⊕P−1(XL
6 ) and check the match. Because 2 bytes are overlapped

between these values, 2-byte match can be performed.

Attack Procedure. The attack procedure for a target HL‖HR is as follows.

1. Find a key value K such that k0 = k10⊕HL and k1 = k9⊕HR are satisfied.
2. For all choices of the ten fixed-byte values, XL

7 [3, 4] and t7, do as follows.
3. Choose three free bytes for the forward chunk, XL

7 [5, 6, 7], and compute the
value of S3 ⊕ P−1(XR

3 ). Store the results in a table.
4. Choose three free bytes for the backward chunk, XL

7 [0, 1, 2], compute the
value of S5 ⊕ P−1(XL

6 ), and check if the same value exists in the table with
respect to the 3rd and 4th bytes.

5. If the match is found, check the match of all bits with the corresponding free
bytes for both chunks. If all bits match, output it as a pseudo-preimage.

The complexity for Step 1 depends on the key schedule function. Let Tkey be the
complexity of Step 1. Step 2 iterates the following steps 280 times. For each value
of Step 2, Step 3 is iterated 224 times, and requires 224 amount of memory. Step 4
is also iterated 224 times. The sum of the complexities for Steps 3 and 4 is about
224 11-round compression function computations. Strictly speaking, the attacker
does not have to compute the shrunken 4 rounds. Here, we ignore its impact.
After Step 4, 224+24−16 = 232 values will remain. These values are examined in
Step 5 that requires 232 11-round compression function computations. Finally,
this 232 computations are iterated by 280 times due to Step 2, which results in
2112 11-round compression function computations. Note that, for a fixed key,
all output values of the compression function cannot be produced. Hence, the
success probability of the attack is 1− 1/e ≈ 0.63. Note that the attack can be
iterated as long as several key values satisfying the conditions are available.

In summary, the total computational complexity is Tkey + 2112 computations
and the memory requirement is 224 internal-state values. Suppose that Tkey is
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much smaller than 2112 11-round computations. Then, the attack is converted
to the preimage attack or the second preimage attack on the hash function with
a complexity of 2((112+128)/2)+1 = 2121 computations.

Let us discuss the comparison with the case where the last network twist is
not omitted. In this case, the cancellation property cannot be exploited in the
MitM attack. We focus on the identical pattern of the known byte positions
between (XL

9 , X
R
9 ) and (XL

3 , X
R
3 ). This indicates that if we remove rounds 9,

10, 0, 1, and 2, in total 5 rounds, the MitM attack can work. Hence, the number
of attacked rounds is 6, which is significantly smaller than the case without the
last network twist.

3.2 Attacks on 15-round Type-2 GFN-SP Compression Function

2-round Initial Structure Plus 2 Rounds (Rounds 9 to 12). The attack
starts from round 10 by constructing a 2-round initial structure. The detailed
construction is given in Fig. 6. Hereafter, yellow bytes represent the ones that
are linearly dependent of free bytes for the other chunk.

Inside the 2-round initial structure, we need to ensure that the impact from
two chunks do not mix. Here, we explain the computation of each chunk.

Forward Chunk: The free byte for the forward chunk (blue) is X0
10[3]. In

round 10, Because P is linear, the impact from X0
10[3] denoted by PL3

10 is
independently computed from the backward chunk i.e., PL3

10 = P
(
0‖0‖0‖

S(X0
10[3]⊕ k20[3])

)
. In round 11, suppose that the value of PL3

11 is indepen-
dent of the backward chunk. Then, the output of round 11 is computed by
simply computing the round function.

Backward Chunk: The free bytes for the forward chunk (red) are X1
12[2] and

X1
12[3]. We only choose 1-byte (256) possibilities for these two bytes so that

PL3
11 in round 11 can be a fixed value. In details, we first choose the value

of SL
11[2] and then choose the corresponding SL

11[3] that makes PL3
11 be a

predetermined fixed value. The value of SL
11[3] depends on the specifica-

tion of P . In general, we can have unique candidate of SL
11[3] due to the
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linearity of P . After we choose SL
11[2], S

L
11[3], we compute X1

12[2], X
1
12[3] by

XORing k22[2], k22[3]. In round 10, PL0−2
10 can be computed independently

of the forward chunk as explained before. In the end, X1
10 can be computed

independently of the forward chunk.

In Fig. 6, one round computation is added for both chunks after the 2-round
initial structure. Note that X2

13[2, 3] is linearly affected by the free bytes for the
backward chunk, X1

12[2, 3]. Similarly, X3
9 [3] is linearly affected by the free byte

for the forward chunk, X0
10[3].

4-round Shrink (Rounds 13, 14, 0 to 2). 4 rounds after Fig. 6 is shown in
Fig. 7. After we obtain X0

15‖ · · · ‖X3
15, we obtain X0

0‖ · · · ‖X3
0 by taking an XOR

with the hash value H0‖ · · · ‖H3. The analysis does not use the property of an
SP-round function, thus the round function is described in a more generic form.

We observe that, with the help of the omission of the network twist after
round 14, we can cancel the round function output in round 14, F (X0

14 ⊕ k28)
and F (X2

14 ⊕ k29), by the ones in round 0, F (X0
0 ⊕ k0) and F (X2

0 ⊕ k1), with
setting k0 = k28 ⊕ H0 and k1 = k29 ⊕ H2. Then, we can preserve the known
bytes. Moreover, because X0

1 and X2
13 have the relation H3, we can cancel the

impact of F (X2
13 ⊕ k27) in round 13 by setting k2 = k27 ⊕H3.

Similar to the attack on the Feistel network in Sect. 3.1, byte positions affected
by the other chunk moved from the input side to the output side of the round
function. This helps the attacker in subsequent rounds. Note that X1

2 [2, 3] is still
only linearly affected by the free bytes for the backward chunk.

Different from the attack on a Feistel network, we only set three N/4-bit
conditions on the subkeys. These 3N/4-bit relations can be satisfied by the brute
force search with a complexity of 23N/4 key schedule function.

7-round Match (Rounds 3 to 9). The remaining 7 rounds are shown in Fig. 8.
If we compute 3 rounds in backwards and 4 rounds in forwards, the direct match
cannot be applied. We then use the linear computation over three rounds denoted
by bold lines in Fig. 8. The equation is SR

8 ← p−1(P (SL
6 )⊕X1

6⊕X0
9 ). A simplified

description is given in the top of Fig. 9. By applying a linear transformation,
this part can be converted into a partial match. The transformed equation is
SR
8 ← SL

6 ⊕ P−1(X1
6 ) ⊕ P−1(X0

9 ). X
1
6 consists of the values dependent of the

forward chunk and the free bytes for the backward chunk, X1
12. This is shown

in the middle of Fig. 9. Then, we further apply a transformation as the bottom
of Fig. 9, and perform the 3-byte match. In more details, in the forward chunk,
we compute P−1(X1

6 ) and store them in a table. In the backward chunk, we
compute SR

8 ⊕P−1(S0
9)⊕SL

6 ⊕P−1(X1
12) and check the match. Because 3 bytes

are overlapped, 3-byte match can be performed.

Attack Summary. Due to the limited space, if omit the detailed attack
procedure. In summary, the total computational complexity is 2120 15-round
computations and 296 key-schedule computations. The memory requirement is
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28 internal state. The attack is converted to the preimage or the second preim-
age attack on the hash function with a complexity of 2((120+128)/2)+1 = 2125

computations. Similarly to Sect. 3.1, the success probability is 0.63. The attack
can be iterated as long as several key values are available.

Let us discuss the comparison with the case where the last network twist is
not omitted. Known byte positions between (X0

14, . . . , X
3
14) and (X0

4 , . . . , X
3
4 )

are identical. Therefore if we remove rounds 14, 0, 1, 2, and 3, in total 5 rounds,
the MitM attack can work. Hence, the number of attacked rounds is 10, which
is significantly smaller than the case without the last network twist.

4 Application to 13-round Weakened Camellia-128

We analyze hashing modes of Camellia-128 without the FL and whitening layers.
Because the P-layer of Camellia does not satisfy the maximum branch number,
the attack is extended by 2 rounds compared to the generic case.

2-round Initial Structure. 2-round initial structure can be constructed by
exploiting a small branch number of the Camellia’s P-layer. 4 rounds, from round
7 to 10, are shown in Fig. 10. The initial structure is located in round 8 and 9.

The forward chunk starts from a single free byte of XL
8 [7]. During round 8, it

affects the single byte of S8[7]. For the output value of P in rounds 8 and 9, the
impact from the first 7 bytes denoted by P 0−6

8 , P 0−6
9 can be independently com-

puted of the impact from the 7th bytes denoted by P 7
8 , P

7
9 . S8[7] gives influence

to 6 bytes of XL
8 [0, 1, 2, 4, 5, 6]. The important point here is that XL

9 [7], which
is later used as a free variable for the backward chunk, is not affected by XL

8 [7].
XL

8 [7] also affects to a single byte of XR
9 [7]. We later show that this byte is not



Preimage Attacks on Feistel-SP Functions 181

k7

P

S7

k8

P

S8

k9

P

S9

X7
L X7

R

X8
L X8

R

X9
L X9

R

ba
ck

w
or

d
fo

rw
or

d

X10
L X10

R

k10

P

X11
L X11

R

S10

t8

t9

P8
0-6

P8
7

P9
7

P9
0-6

in
iti

al
 s

tr
uc

tu
re

Fig. 10. Initial structure for Camellia

k2 F

k3 P

S3

k5
P

S5

X2
L X2

R

X3
L X3

R

X5
L X5

R

ba
ck

w
or

d
ch

un
k

fo
rw

or
d

ch
un

k

X6
L X6

R

k6
P

X7
L X7

R

S6

k4
P

X4
L X4

RS4

Fig. 11. Matching procedure for
Camellia

affected by the free byte of the backward chunk. Computations during round 9
and round 10 are straight-forward.

The backward chunk starts from a single free byte of XR
10[7]. During round

9, it affects the single byte of S9[7]. Then, S9[7] gives influence to 6 bytes of
XR

9 [0, 1, 2, 4, 5, 6]. It surely does not affect to XR
9 [7], which is the free byte for

the forward chunk. XR
10[7] also affects to XL

9 [7]. As mentioned in the previous
paragraph, XL

9 [7] is not affected by the forward chunk. Thus, no contradiction
occurs. Computations during round 8 and round 7 are straight-forward.

Matching Procedure. The 4-round shrink (round 11 to round 12 and round 0
to round 1) exploiting the omission of the last network twist is exactly the same
as the attack on a generic case in Sect. 3.1. After 4 rounds, XL

2 and XR
2 become

XR
11 ⊕HL and XL

11 ⊕HR, respectively.
We match the results of two chunks in the remaining 5 rounds (round 2 to

round 6). These rounds are described in Fig. 11. The form of the match is
the same as Fig. 4, hence we omit the details. The equation for the match is
written as S5 = S3 ⊕ P−1(XR

3 ) ⊕ P−1(XL
6 ⊕ XL

8 [7]), thus S5 ⊕ P−1(XL
6 ) =

S3 ⊕ P−1(XR
3 ⊕ XL

8 [7]). 2 bytes of the left-hand-side and 7 bytes of the right-
hand-side can be independently computed, and we can match 1 byte of them.

Analysis of the Key Schedule. For the 4-round shrink, we need to satisfy
two conditions of subkeys; k0 = k12 ⊕ HL and k1 = k11 ⊕ HR. According to
the specification, k0‖k1 = KA, k11 is the right half of (KA ≪ 60), and k12 is
the left half of (K ≪ 94). Our strategy is choosing KA so that the condition
k1 = k11 ⊕ HR is deterministically satisfied, and satisfy k0 = k12 ⊕ HL with
probability 2−64. The details of the analysis is as follows. See its illustration in
Fig. 12. The goal is finding 264 128-bit values KA that satisfy k1 = k11 ⊕HR,
where k1 is the right half of KA, and k11 is the right half of (KA ≪ 60). For
simplicity, we assume HR = 0 in below. This is trivially extended for any HR.
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Fig. 12. Analysis of Camellia key schedule function. Each cell represents 4 bits.

1. Choose a 64-bit value of the right half of KA so that the most significant 4
bits and the the least significant 4 bits are identical.

2. Copy the remaining 60 bits of k1 to the corresponding bits of k11. These also
fix 60 bits of KA.

3. The remaining 4 bits of KA can be any value. In other words, we obtain 24

key values KA that satisfy k1 = k11.
4. Finally, we have 60-bit choices for the value of the right half of KA fixed at

Step 1. Thus, we can find 24 · 260 = 264 values of KA that satisfy k1 = k11.

From 264 values of KA with k1 = k11 ⊕HR, we will find one that also satisfies
k0 = k12 ⊕HL. Note that the success probability of the key search is 0.63, and
we cannot expect more than 1 key.

Summary. We first search for a key value satisfying two conditions for the 4-
round shrink. This is done with a complexity of 264 key schedule function. We
then start the MitM attack. Both of the forward and backward chunks include
1 free byte, and we match 1 byte of the results from two chunks. Hence, the
pseudo-preimage is found faster than the brute force attack by a factor of 28,
which is 2120 computations. The success probability is about 0.632 ≈ 0.40 due
to the key search phase and the MitM phase. If it succeeds, the pseudo-preimage
is converted to the preimage or the second preimage attack on a hash function
with a complexity of 2125.

5 Application to 12-round CLEFIA-128

Because F functions are different between the left half and the right half in CLE-
FIA, the number of attacked rounds is reduced by 3 compared to a generic case.
Instead, conditions for subkeys is reduced from 3N/4 to N/4 bits. Interestingly,
the whitening operations do not impact to the attack very much.

2-round Initial Structure. The construction of the initial structure is basi-
cally the same as the one in Fig. 6. However, because the number of attacked
rounds changes, we change the starting position of the backward chunk from the
left half to the right half. We also increase the number of free bytes from 1 to
2. The detailed construction for 4 rounds, from round 6 to round 9, is shown in
Fig. 13. Due to the similarity to Fig. 6, we omit the detailed explanation.
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in the same function.

4-round Shrink. The cancellation only occurs if the F function in consecutive
two rounds are identical. Hence, we only make the cancellation between FR in
round 11 and FR in round 0 by setting an N/4-bit condition k1 = k21⊕H2. This
makes 32 bits of X0

2 unknown, and the number of attacked rounds is reduced
compared to a generic 4-branch type-2 GFN.

Matching Procedure. Again, the different F functions in the left half and
the right half prevent the efficient matching over 2 P-layers. Hence, we use the
indirect-partial matching technique [1], which enables us to match 4 bytes of the
state. Due to the limited space, we omit the figure, but it can be derived in the
same way as other attacks.

Summary. We first search for a key value satisfying N/4-bit condition for the
4-round shrink. This is done with a complexity of 232 key schedule function.
Note that several keys satisfying the condition can be generated by iterating the
procedure. We then start the MitM attack. Both of the forward and backward
chunks include 2 free bytes, and we match 4 bytes of the results from two chunks.
Hence, the pseudo-preimage is found faster than the brute force attack by a
factor of 216, which is 2112 computations. Because several keys are available,
the success probability can become close to 1. Finally, the pseudo-preimage is
converted to the preimage or the second preimage attack on a hash function
with a complexity of 2121.

6 Concluding Remarks

In this paper, we analyzed hash functions constructed by a generic Feistel and
4-branch type-2 GFN with an SP function. We showed that the omission of the
last network twist can be utilized in the MitM preimage attack. Our attacks can
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work up to 11 rounds and 15 rounds for a Feistel-SP and 4-branch type-2 GFN-
SP functions respectively under several conditions of the subkey relations. We
then applied our attacks to hashing modes of Camellia-128 and CLEFIA-128.

References

1. Aoki, K., Guo, J., Matusiewicz, K., Sasaki, Y., Wang, L.: Preimages for step-
reduced SHA-2. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
578–597. Springer, Heidelberg (2009)

2. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms - Design
and Analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp.
39–56. Springer, Heidelberg (2001)

3. Aoki, K., Sasaki, Y.: Preimage Attacks on One-Block MD4, 63-Step MD5 and
More. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381,
pp. 103–119. Springer, Heidelberg (2009)

4. Bogdanov, A., Shibutani, K.: Double SP-Functions: Enhanced Generalized Feistel
Networks. In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011. LNCS, vol. 6812, pp.
106–119. Springer, Heidelberg (2011)

5. Coppersmith, D.: The data encryption standard (DES) and its strength against
attacks. IBM Journal of Research and Development 38(3), 243–250 (1994)

6. Cryptography Research and Evaluation Committees (CRYPTREC). e-Government
recommended ciphers list (2003)

7. Daemen, J., Rijmen, V.: The design of Rijndeal: AES – the Advanced Encryption
Standard (AES). Springer (2002)

8. Dunkelman, O., Keller, N.: The effects of the omission of last round’s MixColumns
on AES. Inf. Process. Lett. 110(8-9), 304–308 (2010)

9. Gauravaram, P., Leurent, G., Mendel, F., Naya-Plasencia, M., Peyrin, T., Rech-
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Abstract. We present a direct construction for signcryption Key En-
capsulation Mechanism (KEM) without random oracles under standard
complexity assumptions. Chosen-ciphertext security is proven in the
standard model under the DBDH assumption, and unforgeability is proven
in the standard model under the CDH assumption. The proof technique
allows us to achieve strong unforgeability from the weakly unforgeable
Waters signature. The validity of the ciphertext of our signcryption KEM
can be verified publicly, without knowledge of the decryption key.

Keywords: Signcryption,KEM, StandardModel, StandardAssumption.

1 Introduction

Signcryption [25] provides confidentiality and non-repudiation simultaneously
for the messages sent over an insecure channel, at lower costs of computation
and communication than those required in both signature-then-encryption (StE)
and encryption-then-signature (EtS) approaches. Thus, protocols based on sign-
cryption are considerably more efficient than those traditional approaches that
combine both encryption and signature. One may apply signcryption to obtain
a performance-enhanced protocol which contributes to the practical and engi-
neering side of real-world applications [20,21,12,22,11].

For long messages, it is quite inefficient in the real-life applications to apply
signcryption directly. Inspired by traditional hybrid encryption techniques, Dent
[9] generalized the KEM paradigm to the signcryption setting by proposing new
security criteria and a construction for the signcryption KEM (SC-KEM) to
provide in KEM the authentication service. Such a construction combines the
convenience of a signcryption with the efficiency of a symmetric-key system [8].
By using such a construction, a random session key is first encapsulated by a
signcryption KEM, then the data (plaintext) is encrypted by the session key,
and finally two ciphertexts are both sent over an insecure channel.
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1.1 The State of the Art

Dent [9,10] introduced the concept of signcryption KEM which includes an au-
thentication in KEM by constructing two signcryption KEM schemes with in-
sider security and outsider security, respectively. A signcryption scheme is out-
sider secure if it is secure against attacks made by any third party, i.e., attacks
made by an entity who is neither the sender nor the receiver. This is a weaker no-
tion of security than has been traditionally dealt with by signcryption schemes,
a notion known as insider security. Actually, the work [10] improved the model
in [9] (which only covers outsider security) by providing a signcryption KEM
with insider security such that the resultant scheme is secure against attacks
against the confidentiality of the message made by any third party and from
forgery attacks made by any person except the sender.

However, insider security proposed by Dent [10] is only considered for au-
thenticity. In other words, the model in [10] allows an attacker to recover the
symmetric key generated by signcryption KEM during the attacks. Compara-
tively, the stronger notion named full insider security [2,23] protects the sender’s
authenticity even against the receiver, and the receiver’s privacy even against
the sender, at the same time.

Recently, Tan proposed in [23] a signcryption KEM with full insider security.
Much different from those schemes [9,10], Tan’s SC-KEM is proven secure in the
standard model whose security does not rely on random oracles. Another sign-
cryption KEM in the standard model was presented in [18] which is shown more
efficient than Tan’s scheme in terms of computational cost and communication
overhead.

1.2 Motivation

Concrete constructions for signcryption KEM are evaluated according to the
following perspectives: (1) the complexity assumptions on which security of the
construction is based; (2) the expansion of a single ciphertext; (3) the operational
assumption of setting up the construction practically; and other interesting fea-
tures (e.g., public verifiability of the ciphertext).

All existing constructions of SC-KEM need the recipient’s private keys to
verify the validity of the ciphertexts. Hence these schemes can not be used in
applications where a ciphertext need to be validated by any third party that
knows the public key of the sender as in usual signature scheme. As a techni-
cally higher standard, public verifiability of ciphertexts enables any member of
the public to independently fully verify the accuracy of a ciphertext [1,14]. Addi-
tionally, the constructions in [9] and [10] are proven secure in the random oracle
model that serves as a heuristic. Although those in [18] and [23] are without
random oracles, yet they utilize standard signatures as building blocks, thus we
can’t reduce the computation and the size of a single ciphertext fewer than the
underlying signature, and the readers may refer to section 4 for more details on
the sizes of standard model based signatures; on the other hand, the construction
in [18] is based on non-standard GHDH assumption [16]. For all, the question of
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constructing a signcryption KEM that is secure under the standard assumptions
without random oracles (and achieving public verifiability) remains open.

1.3 Our Contributions

In this paper we provide an elegant construction for SC-KEM to give a positive
answer to the question. Our signcryption KEM achieves the following desirable
features simultaneously, compared with the previous constructions.

1. Full Insider Security (FIS): Our SC-KEM is proven secure in the standard
model with respect to insider adversaries.

2. Standard Complexity Assumptions : Security of our SC-KEM relies on the
well-established DBDH and the CDH assumptions. Prior to our work, the
SC-KEM scheme [18] requires non-standard assumption (i.e., the Gap Hashed
Diffie-Hellman assumption [16]) to prove security in the standard model.

3. Small Ciphertext Expansion: The ciphertext of our SC-KEM consists of three
elements of G. It outperforms all known standard model-based constructions
(that use strongly unforgeable signatures as building block) because accord-
ing to the state of the art [19] a strongly unforgeable signature contains at
least 3 group elements since each Waters signature, the only known signature
secure under CDH assumption without random oracles, has two group ele-
ments. Our construction is also comparable to, though not quite as efficient
as, the Dent signcryption KEM schemes [9,10] in the random oracle model.

4. Additional Interesting Features : On one hand, our construction enjoys simple
setup operation since it only needs one key generation algorithm to generate
the keys of both the sender and the receiver. Whereas, two different key
generation algorithms are required in [18] and [23] respectively to generate
the key pairs of the sender and the receiver. Thus, the setup process of these
SC-KEM schemes is more complicate than that of ours. On the other hand,
in the standard model based SC-KEM schemes in [18,23] only the receiver
has the capability of verifying the correctness of a ciphertext as the private
key of the receiver is required in verifying operation; whereas in our SC-KEM
scheme, a given ciphertext can get checked for validity solely based on the
knowledge of the public keys of the parties.

2 Preliminaries

2.1 Bilinear Group

Consider the following setting: Let G and GT be two multiplicative cyclic groups
of prime order p; the group action on G, GT can be computed efficiently; g is
a generator of G; e : G × G → GT is an efficiently computable map with the
following properties [3,4,24]: Bilinear: for all u, v ∈ G and a, b ∈ Zp, e(u

a, vb) =
e(u, v)ab; Efficiently computable: e(u, v) is efficiently computable for any input
pair (u, v) ∈ G × G; Non-degenerate: e(g, g) �= 1. We say that G is a bilinear
group if it satisfies these requirements.
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2.2 Complexity Assumptions

Definition 1 (DBDH). Let a, b, c and z be random from Zp, g the genera-
tor of G of prime order p. The (t, ε)-DBDH assumption says that there is no
algorithm A that can distinguish the tuple (ga, gb, gc, e(g, g)abc) from the tuple
(ga, gb, gc, e(g, g)z) in time t with advantage ε, where the advantage of A is de-
fined as the probability

AdvDBDH
A =

∣∣Pr[A(ga, gb, gc, e(g, g)abc) = 1]− Pr[A(ga, gb, gc, e(g, g)z) = 1]
∣∣ .

Definition 2 (CDH). In a bilinear group G, the computational Diffie-Hellman
problem is: given (g, ga, gb) ∈ G3 for some (randomly chosen) a, b ∈R Zp , to find
gab ∈ G. The success probability of an algorithm A in solving the CDH problem
on G is defined as

AdvCDH
A

def
= Pr

[
A(g, ga, gb) = gab : a, b

R←−Zp

]
.

The probability is over the random choice of g from G, of a, b from Zp, and the
coin tosses of A. A (t, ε)-breaks the CDH problem on G if A runs in time at
most t, and AdvcdhA is at least ε.

2.3 Collision Resistant Hash Function

Definition 3 (CRHF). Let H = {Hk} be a hash family of functions Hk :
{0, 1}∗ → {0, 1}n indexed by k. We say that algorithm A (t, εcr)-breaks the
collision-resistance of H if

Pr[A(k) = (x, x′) : Hk(x) = Hk(x
′), x �= x′] ≥ εcr,

where the probability is over the random choice of k and the random bits of A.
H is (t, εcr)-collision-resistant if no t-time adversary has advantage at least εcr
in breaking the collision-resistance of H.

2.4 Definition of Signcryption KEM

Definition 4 (SC-KEM). A signcryption KEM consists of three algorithms:

KeyGen(1λ): key generation algorithm, on input a security parameter λ, out-
puts the sender’s public/private key pair (pks, sks) and the receiver’s pub-
lic/private key pair (pkr , skr). We write (pk, sk) = KeyGen(1λ).

KeyEnc(sks, pkr): key encapsulation algorithm, on input the sender’s private key
sks and the receiver’s public key pkr, outputs a symmetric key K which may
be used in the subsequent data encapsulation mechanism, and a ciphertext C
which is an encapsulation of the key K. We write (K,C) = KeyEnc(sks, pkr).

KeyDec(pks, skr, C): key decapsulation algorithm, on input the sender’s public
key pks, the receiver’s private key skr and the encapsulation C of some
symmetric key K, outputs either the symmetric key K or the error symbol
⊥ in case the ciphertext is not valid. We write K = KeyDec(pks, skr, C).

Correctness requires that for all public/private key pair (pks, sks), (pkr, skr) it
follows K = KeyDec(pks, skr, C) for all (K,C) = KeyEnc(sks, pkr).
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2.5 Security Model of SC-KEM

We borrow the following models which are commonly used in the literature
[9,10,18,23]. The paper focuses on the direct construction for SC-KEM without
random oracles under standard complexity assumptions, in the security models.

Confidentiality. The attack model [18,23] of confidentiality for a signcryp-
tion KEM is defined in the following game, termed the IND-CCA2 game, played
between a hypothetical challenger C and a two-phase attacker A.

- Setup: On input a given security parameter λ, the challenger C runs the key
generation algorithm KeyGen(1λ) to produce the sender’s key pair (pk�s , sk

�
s)

and the receiver’s key pair (pk�r , sk
�
r ), and sends (pk�s , sk

�
s ) and pk�r to the

attacker A, while keeping sk�r secret.
- Phase 1: During this phase, A may make the polynomially bounded queries
of key decapsulation. In a key decapsulation query, A submits to the chal-
lenger C a ciphertext C associated with the sender’s public key pks for
key decapsulation. Herein, the public key pks may be generated by A as
it wishes. The challenger C performs key decapsulation operation for A in
the algorithm KeyDec by using the private key sk�r and then sends the result
K = KeyDec(pks, sk

�
r , C) or ⊥ (if C is not valid) to A.

- Challenge: At the end of Phase 1, C performs the algorithm KeyEnc by
using the private key sk�s and the public key pk�r , and obtains the result
(K�

0 , C
�) = KeyEnc(sk�s , pk

�
r ). C also chooses a random bit b ∈ {0, 1} and a

random symmetric key K�
1 with the requirement that K�

1 and K�
0 are of the

same length. Lastly, C gives A the tuple (K�
b , C

�) as the challenge.
- Phase 2: During this phase, A may make the queries as in Phase 1, while
differently we do not allow A to query the key decapsulation for the cipher-
text C� under the the sender’s public key pk�s .

- Guess: Eventually, A outputs a bit b′, and it wins the game if b = b′.

The advantage of the adversaryA is defined as the probability AdvIND
A = |2Pr[b = b′]− 1|.

Definition 5 (Confidentiality). We say A (t, qd, ε)-breaks the IND-CCA2 se-
curity of the signcryption KEM, if A wins the IND-CCA2 game with the advan-
tage ε in time t after making qd key decapsulation queries. A signcryption KEM
is said to achieve the IND-CCA2 security if no polynomially bounded adversary
has a non-negligible advantage in winning the IND-CCA2 game.

Unforgeability. The notion of strongly existential unforgeability for a signcryp-
tion KEM [18,23] is defined by the SUF game, played between a hypothetical
challenger C and an attacker F below. For a given security parameter λ:

- Setup: The challenger C runs the key generation algorithm KeyGen(1λ) (de-
fined in definition 4) to produce the sender’s key pair (pk�s , sk

�
s ) and the

receiver’s key pair (pk�r , sk
�
r), and sends pk�s and (pk�r , sk

�
r ) to the attacker

F , while keeping sk�s secret.
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- Attack: During this phase, F may make the polynomially bounded queries
of key encapsulation. In a key encapsulation query, the challenger C per-
forms key encapsulation operation for F in the algorithm KeyEnc by using
the private key sk�s and the public key pk�r , obtains the result (K,C) =
KeyEnc(sk�s , pk

�
r ), and sends C to F .

- Forgery: Eventually, the attacker F outputs a ciphertext C� with the re-
quirement that C� is not one of the outputs of the key encapsulation queries.
F wins the game if C� is valid, i.e., KeyDec(pk�s , sk

�
r , C

�) �= ⊥.

The advantage of F is defined as the probability of success in winning the game:
AdvSUFF = Pr[Win].

Definition 6 (Unforgeability). We say the signcryption KEM is (t, qe, ε)-
forgeable if F wins the SUF game with the advantage ε in time t after making
qe key encapsulation queries. A signcryption KEM achieves strongly existential
unforgeability if no polynomially-bounded adversary can win the SUF game with
non-negligible advantage.

Definition 7 (Public Verifiability). We say the signcryption KEM has public
verifiability of ciphertexts if any member of the public can independently fully
verify the accuracy of a ciphertext without relying on any secret information.

3 The Proposed Signcryption KEM

Let G be a group of prime order p, for which there exists an efficiently com-
putable bilinear map into G. The size of the group is determined by the security
parameter. Additionally, let e : G × G → GT denote the bilinear map and g be
the corresponding generator, along with u′, u1, u2, . . ., un, f , h, v, w ∈ G. Let
G : {0, 1}∗ → {0, 1}n, H : {0, 1}∗ → Zp be two collision resistant hash functions.
Our construction is described as follows.

KeyGen(1λ): A probabilistic polynomial-time sender/receiver key generation
algorithm, chooses xs, xr ∈R Zp, sets sks = xs, pks = gxs , skr = xr , pkr =
gxr , and outputs the public/private key pair (pks, sks) for the sender and
the public/private key pair (pkr, skr) for the receiver.

keyEnc(sks, pkr):

1. Randomly choose k, � ∈R Zp.
2. Compute K = e(h, pkr)

k, σ1 = gk, σ2 = g�, t1 = G(σ1, pks, pkr),
3. Let T ⊂ {1, 2, . . . , n} be the set of indices such that t1[i] = 1 where t1[i]

is the i-th bit of t1.

4. Compute t2 = H(σ1, σ2, pks, pkr), σ3 = fxs ·
(
u′ ∏

i∈T
ui

)�

(vt2w)
k
.

5. Let C = (σ1, σ2, σ3) and return (K,C).

Different from the constructions in [18,23], a ciphertext C of our SC-KEM
scheme is only composed of three elements in G.

KeyDec(pks, skr, C):
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1. Compute t1 = G(σ1, pks, pkr), t2 = H(σ1, σ2, pks, pkr).
2. If

e(g, σ3) = e(f, pks) · e
(
σ2, u

′
∏
i∈T

ui

)
· e

(
σ1, v

t2w
)
,

return
K = e(σ1, h

xr);

otherwise return ⊥.

It can be verified easily that the construction satisfies the correctness. Note that
unlike previous SC-KEM constructions, the validity of the ciphertext of ours can
get checked by anyone who only knows the public keys.

4 Comparisons

Prior to proving the security of our construction, we compare in this section our
SC-KEM with the SC-KEM schemes in the literature [9,10,23,18]. Table 1 shows
the comparisons.

The schemes in [18] and [23] need strongly unforgeable signatures as building
block. Without random oracles, several signature schemes can be shown to be
strongly unforgeable under relatively strong or standard assumptions.

Gennaro, Halevi, and Rabin [13], and Cramer and Shoup [7] constructed
strongly unforgeable signatures based on the Strong-RSA assumption, and the
signatures are composed of one element in Zn (n is the RSA modulus) [13],
and one element in Zn and two elements in a group G (n is the RSA modulus,
|G| ≥ 160) [7], respectively; Boneh and Boyen [3] constructed a strongly unforge-
able signature based on the Strong-Diffie-Hellman assumption, and the signature
consists of an element in G and an element in Zp; Boneh, Shen, and Waters [5]
constructed a strongly unforgeable signature based on the standard computa-
tional Diffie-Hellman assumption, and the signature contains two elements in G
and an element in Zp; Kang et al. [15] constructed a short signature scheme based
on the computational Diffie-Hellman assumption, and the signature is composed
of an element in G and an element in Zp.

We also notice that there are several generic transformations proposed to
convert weak unforgeability into strong unforgeability. According to the shortest
generic transformation [19] so far, in terms of signature size expansion, the trans-
formation increases the resulting signature by one group element. For example,
when we use the transformation to convert the Waters signature, the only known
signature secure under standard CDH assumption without random oracles, into
a strongly unforgeable one, the resultant signature contains three elements in G.

The idea behind our SC-KEM construction is to combine the technique in
the Waters signatures [24] with that in transforming identity-based encryption
to CCA-secure public key encryption [6,17]. Different from the previous SC-
KEM methods, we present a direct construction which does not rely on the
use of any strongly unforgeable signature scheme. All known constructions for
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Table 1. Comparisons of SC-KEM Schemes

S/R KG Size ROM/Standard model SA PV FIS
Dent[9] 1A 1|G| ROM CDH NO NO
Dent[10] 1A 2|Zq| ROM GDH NO NO
Tan[23] 2A 3|G|+ |sig| Standard DDH+SUF NO YES
Li[18] 2A 2|G|+ |sig| Standard GHDH +SUF NO YES
Ours 1A 3|G| Standard DBDH+CDH YES YES

S/R KG: Sender/Receiver Key Generation Algorithms; Size: Ciphertext Expansion
Size; 1A: the key generation algorithm generates the public/private key pairs for both
the sender and the receiver; 2A: two separate key generation algorithms are required,
one for the sender, another for the receiver; |G|, |sig|: the bit lengths of the represen-
tation for elements in the underlying group G, and for the signature generated by the
underlying signature scheme, respectively (and |sig| ≥ |G|+ |Zp| according to the state
of the art on standard model based signatures); SA: Security Assumption; PV: Public
Verifiability; FIS: Full Insider Security; GDH: Gap Diffie-Hellman; SUF: Strong Un-
forgeability of the underlying signature scheme; GHDH: Gap Hashed Diffie-Hellman.

SC-KEM schemes in the standard model are ‘generic’: they involve running a
standard strongly unforgeable signature scheme and are thus not very efficient
in ciphertext expansion as well as the computational performance.

5 Proving The Security

5.1 Confidentiality

Theorem 1. If there exists an adversary A that can (t, qd, ε)-break the IND-
CCA2 security of our SC-KEM (qd is the total number of the key decapsu-
lation queries), then one can construct an algorithm B that (t′, ε′)-breaks the
DBDH problem assuming that H is (t, εcr)-collision resistant, where Te, Tp are
the running-time of the exponentiation in G and the pairing respectively, and

ε′ ≥ ε

2
− εcr −

qd
p
, t′ ≤ t+O(6 · qd + n+ 12)Te +O(6 · qd)Tp, (1)

Proof. Our idea of the proof is to utilize the adversary A that (t, qd, ε)-breaks
the IND-CCA2 security of our signcryption KEM, to construct an algorithm B
that first simulates the environment of the IND-CCA2 game, and then uses the
output of A to solve the DBDH problem.

Assume that algorithm B is given as input a random 5 tuple (g, ga, gb, gc, Z)
where Z = e(g, g)abc or e(g, g)z for a, b, c, z randomly chosen from Zp. Algorithm
B’s goal is to output 1 if Z = e(g, g)abc and 0 otherwise. B does the following to
achieve the goal.

Setup. B randomly chooses α0, α1, α2, . . ., αn, αv, αw, βv, s, γ and xs from
Zp, then sets

σ�
2 = gs, u′ = gα0 , u1 = gα1 , u2 = gα2 , . . . , un = gαn , h = gb, f = gγ , v = gαvhβv ,
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t�2 = H(gc, gs, pk�s , pk
�
r), w = gαwh−βvt

�
2 , pk�s = gxs , sk�s = xs, pk

�
r = ga.

Finally B gives A the parameters u′, u1, u2, . . ., un, f , h, v, w and keys pk�s ,
sk�s , pk

�
r .

All the parameters and keys we give here have the same distribution as those
used in our construction. Thus, B provides a perfect simulation in this phase.

Phase 1. WhenA submits a query (pks, C = (σ1, σ2, σ3)) for key decapsulation,
B responds as follows:
1. Compute t1 = G(σ1, pks, pk

�
r ), t2 = H(σ1, σ2, pks, pk

�
r).

2. Check

e(g, σ3)
?
= e(f, pks) · e

(
σ2, u

′
∏
i∈T

ui

)
· e(σ1, v

t2w), (2)

if not, return ⊥.
3. If t2 = t�2, abort (this event is denoted as CRFail); otherwise randomly

choose r from Zp and compute

D1 = (ga)
−αv·t2+αw

βv(t2−t�
2
) · (vt2w)r = ha · (ha)

− βv(t2−t�2)

βv(t2−t�
2
) · (ga)−

αv ·t2+αw
βv(t2−t�

2
) · (vt2w)r

= ha ·
(
gαv·t2+αwhβv(t2−t�2)

)− a
βv(t2−t�2) · (vt2w)r

= ha · (vt2w)−
a

βv(t2−t�
2
) · (vt2w)r = ha · (vt2w)r−

a
βv(t2−t�

2
) ,

D2 = gr · (ga)−
1

βv(t2−t�2) = g
r− a

βv(t2−t�2) .

Let η = r − a
βv(t2−t�2)

, we have D1 = ha · (vt2w)η , D2 = gη.

4. Compute

Δ = σ3 · (pks)−γ · (σ2)
−α0−

∑
i∈T

αi

. (3)

Since C = (σ1, σ2, σ3) can pass the verification equation (2), we have

pks = gx, σ1 = gk, σ2 = g�, σ3 = fx ·
(
u′

∏
i∈T

ui

)�

(vt2w)k,

for some x, k, � ∈ Zp. Thus, we know that

Δ = σ3 · (pks)−γ · (σ2)
−α0−

∑
i∈T

αi

= σ3 · (gx)−γ ·
(
g�
)−α0−

∑
i∈T

αi

= σ3 · (gγ)−x ·
(
u′ ∏

i∈T
ui

)−�

= fx ·
(
u′ ∏

i∈T
ui

)�

(vt2w)k · (f)−x ·
(
u′ ∏

i∈T
ui

)−�

= (vt2w)k.

5. Return

K =
e(σ1, D1)

e(D2, Δ)
.

Note that K is correct because

e(σ1, D1) = e (σ1, h
a · (vt2w)η) = e (σ1, h

a) · e
(
gk, (vt2w)η

)
= K · e

(
gη, (vt2w)k

)
= K · e(D2, Δ).

(4)
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Challenge. In this phase, B generates the challenge ciphertext for the adversary
A as follows.
1. Set σ�

1 = gc and compute t�1 = G(σ�
1 , pk

�
s , pk

�
r );

2. Compute σ�
3 = (gγ)xs ·

(
u′ ∏

i∈T �

ui

)s

· (gc)αv ·t�2+αw ;

3. Set K�
0 = Z, C� = (σ�

1 , σ
�
2 , σ

�
3);

4. Choose a random bit θ ∈ {0, 1} and a random key K�
1 ∈ GT ;

5. Return (K�
θ , C

�) as the challenge.
The ciphertext C� is valid and can pass the Equation (2) since

σ�
3 = (gγ)xs ·

(
u′ ∏

i∈T �

ui

)s

· (gc)αv ·t�2+αw = fxs ·
(
u′ ∏

i∈T �

ui

)s

· (gαv·t�2+αw)c

= fxs ·
(
u′ ∏

i∈T �

ui

)s

·
(
(gαv · hβv )t

�
2 · (gαw · h−βvt

�
2 )
)c

= fxs ·
(
u′ ∏

i∈T �

ui

)s

·
(
vt

�
2w

)c
.

Phase 2. B responds to the queries of A as it does in Phase 1, except denying
to answer the query of the challenge ciphertext C� w.r.t. pk�s .

Guess. Eventually A outputs a bit θ′ as its guess for θ.

Algorithm B outputs 1 if θ′ = θ (denoted by ASuc), and 0 if θ′ �= θ.
Analysis. In the following, we analyze B’s probability of success in solving the
Decisional Bilinear Diffie-Hellman problem. We first present the following claim.

Claim. Pr [CRFail] ≤ εcr +
qd
p , where qd is the number of the key decapsulation

queries made by A.

Proof. For any valid ciphertext C = (σ1, σ2, σ3), event CRFail happens only when
one of the following two events takes place:

1. Event CR, (σ1, σ2, pks, pk
�
r ) �= (σ�

1 , σ
�
2 , pk

�
s , pk

�
r) ∧ t2 = t�2;

2. Event Fail, (σ1, σ2, pks, pk
�
r ) = (σ�

1 , σ
�
2 , pk

�
s , pk

�
r).

Actually, event Fail can’t happen in Phase 2 because if (σ1, σ2, pks, pk
�
r) =

(σ�
1 , σ

�
2 , pk

�
s , pk

�
r ) and C = (σ1, σ2, σ3) is valid (which can be verified by Equation

(2)), then σ3 = σ�
3 must hold. However, the challenge ciphertext (σ�

1 , σ
�
2 , σ

�
3)

with respect to (pk�s , pk
�
r) is not allowed to be queried. Thus we know (pks, C =

(σ1, σ2, σ3)) can’t be queried as well in Phase 2. Therefore, event Fail may
happen in Phase 1, but must not happen in Phase 2.

The adversary cannot know the challenge ciphertext in Phase 1 because it is
information-theoretically hidden in Phase 1. Then, the eventA submits a cipher-
text identical to the challenge one with the same sender’s public key happens
with probability at most 1

p . And event Fail happens with probability at most qd
p

for the qd queries in Phase 1, i.e., Pr[Fail] ≤ qd
p .

Event CR, (σ1, σ2, pks, pk
�
r ) �= (σ�

1 , σ
�
2 , pk

�
s , pk

�
r ) ∧ t2 = t�2, implies B finds a

collision for H by utilizing A. Therefore, Pr [CR] ≤ εcr.
Thus, we know B’s abortion probability is bounded by Pr [CRFail] = Pr [CR]+

Pr [Fail] ≤ εcr +
qd
p . �
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Now we can compute the probability that B in the above game outputs 1
given Z with either Z = e(g, g)abc or Z = e(g, g)z where a, b, c, z are randomly
chosen from Zp. Let ASuc be the event that the adversaryA succeeds in guessing
θ (i.e., θ′ = θ).

Due to the simulation, it follows that if Z = e(g, g)abc then the challenge
ciphertext C� = (σ�

1 , σ
�
2 , σ

�
3) is a valid key encapsulation of K�

0 = Z under
(sk�s , pk

�
r ). Therefore, B provides a perfect simulation unless event CRFail hap-

pens. Namely, A’s view is identical to that in the real attack game unless event
CRFail happens. So we have the following result.

Pr
[
B(ga, gb, gc, Z = e(g, g)abc) = 1

]
= Pr

[
(ASuc|Z = e(g, g)abc)

∧
(¬CRFail)

]
≥ Pr

[
ASuc|Z = e(g, g)abc

]
− Pr [CRFail] ≥ Pr

[
θ = θ′|Z = e(g, g)abc

]
− εcr − qd

p

=
AdvIND

A +1
2 − εcr − qd

p = ε+1
2 − εcr − qd

p .

(5)
If Z = e(g, g)z, then the challenge ciphertext C� = (σ�

1 , σ
�
2 , σ

�
3) is an invalid

key encapsulation of K�
0 = Z under (sk�s , pk

�
r). In this case, both K�

0 = Z and
K�

1 are random. Therefore, A succeeds in guessing θ with probability at most 1
2 .

Thus, we have

Pr
[
B(ga, gb, gc, Z = e(g, g)z) = 1

]
= Pr [(ASuc|Z = e(g, g)z)

∧
(¬CRFail)]

≤ Pr [ASuc|Z = e(g, g)z] = Pr [θ = θ′|Z = e(g, g)z] = 1
2 .

(6)

Combining Equation (5) and Equation (6), we conclude that

ε′ = AdvDBDH
B =

∣∣Pr[A(ga, gb, gc, e(g, g)abc) = 1]− Pr[A(ga, gb, gc, e(g, g)z) = 1]
∣∣

≥ ε+1
2 − εcr − qd

p −
1
2 = ε

2 − εcr − qd
p .

Finally, for the running-time of B, we mainly take into account the running-
time t of A, the exponentiations and the pairings in the key decapsulation
queries, and the exponentiation of generating the parameters. This takes time
at most t+O(6 ·qd+n+12)Te+O(6 ·qd)Tp, where Te is the running-time of the
exponentiation in G, Tp is the running-time of the pairing, and qd is the number
of key decapsulation queries.

5.2 Unforgeability

Our signcryption KEM satisfies strong unforgeability as defined in definition
6. The following theorem formally proves its unforgeability. Note that we can
conclude that the proposed construction is asymptotically unforgeable under
the CDH assumption if the underlying hash function is collision resistant, as the
Waters signature [24] itself can be reduced to the CDH assumption.

Theorem 2 (Unforgeability). Our signcryption KEM is (t, qs, ε)-strongly un-
forgeable assuming the Waters signature is (t + O(qs), qs, ε/2)-existentially un-
forgeable, the CDH assumption (t + O(qs), (ε − εcr)/2qs)-holds in G, and H is
(t, εcr)-collision resistant.
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Proof. The SUF game defines the strong unforgeability for signcryption KEM,
and is played by an adversary and the challenger. Suppose there is an adversary
A which can win the SUF game in time t with probability ε. A is first equipped
with the public parameters and the keys pk�s , pk

�
r , sk

�
r . A can make qs key en-

capsulation queries and will be given Σ = {Ci = (σi1, σi2, σi3)|i = 1, 2, . . . , qs}
on these queries. Let Σ1 = {σi1|i = 1, 2, . . . , qs}, and let C∗ = (σ∗

1 , σ
∗
2 , σ

∗
3) be

the forgery A eventually produces. As C∗ /∈ Σ, we can then distinguish between
two types of forgeries:

Type I. A forgery where σ∗
1 /∈ Σ1. In this case we denote the adversary as type

I forger AI.
Type II. A forgery where σ∗

1 = σl1 and σ∗
2 �= σl2 for some l ∈ {1, 2, ..., qs}. In

this case we denote the adversary as type II forger AII.

Note that if σ∗
1 = σl1 and σ∗

2 = σl2, then σ∗
3 = σl3 because given (pk�s , pk

�
r),

σ∗
1 and σ∗

2 (resp., σl1 and σl2) uniquely determines σ∗
3 (resp., σl3) that implies

C∗(= Cl) is not a valid forgery.
A successful adversary A must output a forgery of either Type I or Type

II. We will show that a Type I forger AI can be used to break the existential
unforgeability of the Waters signature, and a Type II forger AII can be used to
solve the CDH problem if H is collision resistant. The simulator can flip a coin at
the beginning of the simulation to guess which type of forgery the adversary will
produce and set up the simulation appropriately. In both cases the simulation is
perfect. We start by describing how to use a Type II forgery which is the more
interesting case.

Type II Forgery. Suppose AII is a Type II adversary which (t, qs, ε)-breaks
strong unforgeability of our signcryption KEM, producing a Type II forgery.
We construct an adversary BII that can (t, 1

qs
(ε− εcr))-break the Computa-

tional Diffie-Hellman problem if the hash function is (t, εcr)-collision resis-
tant.
Suppose BII is given (g, ga, gb) associated with the bilinear group parameters
pp = (G,GT , e, g) and its goal is to output gab. To utilize the forger AII, the
simulator BII simulates the environment of the SUF game.

Setup. BII generates the parameters, the public key of the sender, and the
private/public key pair of the receiver.
1. Randomly choose α0, α1, . . ., αn, αv, αw, xs, s, γ and xr from Zp.
2. Set

u′ = gα0 , u1 = gα1 , u2 = gα2 , . . . , un = gαn , f = gb, h = gγ , v = gαvf,

pk�r = gxr , sk�r = xr, pk
�
s = gxs , t�2 = H(ga, gs, pk�s , pk

�
r), w = gαwf−t�2 .

3. Give AII the parameters u′, u1, u2, . . ., un, f , h, v, w and the keys
pk�s , sk

�
r , pk

�
r .

Encapsulation Queries. Suppose AII issues qs key encapsulation queries.
BII first picks up j� ∈ {1, 2, . . . , qs} randomly, then responds to the i-th
query as follows (i = 1, 2, ..., qs):
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1. If i �= j�, select k, η randomly from Zp, and return Ci = (σi1, σi2, σi3)
where σi1 = gk, σi2 = gη, t1 = G(gk, pk�s , pk

�
r ), t2 = H(gk, gη, pk�s , pk

�
r )

and

σi3 = (gb)xs ·
(
u′

∏
i∈T

ui

)η

· (vt2 · w)k;

2. If i = j�, return Ci = (σj�1, σj�2, σj�3) where σj�1 = ga, σj�2 = gs,
t�1 = G(ga, pk�s , pk

�
r ),

σj�3 = (gb)xs ·
(
u′

∏
i∈T �

ui

)s

· (ga)αvt
�
2+αw .

3. Update Σ = Σ
⋃
{Ci} ( where we let Σ be initially empty).

Indeed, the ciphertext Cj� = (σj�1, σj�2, σj�3) is valid because σj�1 = ga,
σj�2 = gs,

σj�3 = (gb)xs ·
(
u′ ∏

i∈T �

ui

)s

· (ga)αvt
�
2+αw

= (gb)xs ·
(
u′ ∏

i∈T �

ui

)s

·
(
(gαvf)t

�
2 · (gαwf−t�2 )

)a
= (gb)xs ·

(
u′ ∏

i∈T �

ui

)s

·
(
vt

�
2 · w

)a
.

(7)

Output. In this phase, AII eventually outputs its forgery C∗ = (σ∗
1 , σ

∗
2 , σ

∗
3)

of Type II (implying σ∗
1 ∈ Σ1), BII does the following to extract gab for

solving the CDH problem.
1. If (σ∗

1 = σj�1 and σ∗
2 �= σj�2), compute t�1 = G(σ∗

1 , pk
�
s , pk

�
r ), t2 =

H(σ∗
1 , σ

∗
2 , pk

�
s , pk

�
r ).

2. If t2 = t�2, abort (we denote this as event ColF); otherwise compute

Δ =
σ∗
3

(gb)xs ·(σ∗
2 )

α0+
∑

i∈T �
αi

·(σ∗
1 )

αw+t2αv

. (8)

3. Return (Δ)
1

t2−t�2 .
As C∗ = (σ∗

1 , σ
∗
2 , σ

∗
3) is a valid forgery, we have, for some � ∈ Zp:

σ∗
1 = ga, σ∗

2 = g�, σ∗
3 = (gb)xs ·

(
u′

∏
i∈T �

ui

)�

· (vt2w)a,

Δ =
σ∗
3

(gb)xs ·(σ∗
2 )

α0+
∑

i∈T �
αi

·(σ∗
1 )

αw+t2αv

=
(gb)xs ·

(
u′ ∏

i∈T �
ui

)�

·(vt2w)a

(gb)xs ·(σ∗
2 )

α0+
∑

i∈T �
αi

·(σ∗
1 )

αw+t2αv

=
(gb)xs ·

(
g
α0+

∑
i∈T �

αi
)�

·
(
(gαv ·f)t2 ·(gαwf−t�2 )

)a

(gb)xs ·(σ∗
2 )

α0+
∑

i∈T �
αi

·(σ∗
1 )

αw+t2αv

= (gαvt2+αwft2−t�2 )a

(σ∗
1 )

αw+t2αv =
(σ∗

1 )
αw+t2αv ·(fa)t2−t�2

(σ∗
1 )

αw+t2αv = (gab)t2−t�2 .
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Thus, Δ
1

t2−t�2 = gab. Namely, when AII outputs a valid forgery C∗ of Type
II (denoted as event ASuc), BII can successfully solve the CDH problem if
σ∗
1 = σj�1 and event ColF doesn’t happen.

Since j� is information theoretically hidden from AII, both event ASuc and
event ColF are independent from event σ∗

1 = σj�1. Then we have Pr[σ∗
1 =

σj�1] ≥ 1
qs
, and

Pr[gab ← B(g, ga, gb)] = Pr[ASuc
∧
¬ColF

∧
σ∗
1 = σj�1]

= Pr[ASuc
∧
¬ColF] · Pr[σ∗

1 = σj�1]

≥ Pr[ASuc
∧

¬ColF]
qs

≥ Pr[ASuc]−Pr[ColF]
qs

= ε−Pr[ColF]
qs

If event ColF happens, we get a collision of H . Thus Pr[ColF] ≤ εcr. From
Equation (5.2), we have

Pr[gab ← B(g, ga, gb)] ≥ ε− εcr
qs

.

The running time of BII is close to that of AII except (4qs + 12) · Te in
simulation where Te is the running time of the exponentiation in G.

Type I Forgery. Suppose AI is a Type I forger which (t, qs, ε)-breaks the
strong unforgeability of our signcryption KEM, producing a Type I forgery.
We can construct an adversary BI that (t, ε)-breaks (existential unforgeabil-

ity of) the Waters signature of the form

(
gr, gα2

(
u′ ∏

i∈M
ui

)r)
. Refer to [24]

for more details on the Waters signatures.
Suppose BI is given a public key g1 = ga along with the parameters pp =
(G,GT , e, g, u

′, u1, u2, . . . , un, g2, G) and a signing oracle Ow that returns
the Waters signatures on requested messages. Its goal is to output a Waters
signature on some fresh message which is not among BI’s chosen messages.
To utilize AI, the adversary BI simulates the environment of the SUF game.

Setup. In this phase, BI generates the remaining parameters and the public
key of the sender and the private/public key pair of the receiver.
1. Randomly choose αv, αw, γ and xr from Zp.
2. Set f = g2, h = gγ , v = gαv , w = gαw , pk�r = gxr , sk�r = xr, pk�s =

g1.
3. Give AI the parameters u′, u1, u2, . . ., un, f , h, v, w and the keys

pk�s , sk
�
r , pk

�
r .

Encapsulation Queries. When AI makes key encapsulation queries, BI
simulates the encapsulation oracle as follows:
1. Select k randomly from Zp, and compute σ1 = gk.
2. Submit M = (gk, pk�s , pk

�
r) to the oracleOw and obtain the signature

(σw1, σw2) on M .
3. Set t2 = H(gk, σw1, pk

�
s , pk

�
r ), σ1 = gk, σ2 = σw1.

4. Return C = (σ1, σ2, σ3) where σ3 = σw2 ·(σ1)
αvt2+αw = σw2 ·(vt2w)k.

5. Update M = M
⋃
{M} ( where we let M be initially empty).
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Output. Eventually AI outputs its forgery C∗ = (σ∗
1 , σ

∗
2 , σ

∗
3) of Type I

(namely, σ∗
1 is not included in any (σ1, σ2, σ3) returned by the encap-

sulation oracle), BI does the following to obtain a new forgery for the
Waters signature:
1. Set M� = (σ∗

1 , pk
�
s , pk

�
r ) and t∗2 = H(σ∗

1 , σ
∗
2 , pk

�
s , pk

�
r );

2. Compute σ�
w2 = σ∗

3 ·(σ∗
1)

−αvt
∗
2−αw , and return (M�, (σ�

w1 = σ∗
2 , σ

�
w2)).

Note that M� /∈M as σ∗
1 is not included in any (σ1, σ2, σ3) returned by the

encapsulation oracle. Meanwhile, (σ�
w1 = σ∗

2 , σ
�
w2) is a valid forgery of the

Waters signature because, for k = logg σ
∗
1 and � = logg σ

∗
2 , we have

σ�
w2 = σ∗

3 · (σ∗
1)

−αvt
∗
2−αw = σ∗

3 · (vt
∗
2w)−k = ga2 · (u′

∏
i∈T �

ui)
�,

where T � ⊂ {1, 2, . . . , n} is the set of indices such that G(M�)[i] = 1, and
G(M�)[i] is the i-th bit of G(M�).
The probability of BI’s success in forging a Waters signature is the same as
that of AI’s success in outputting a forgery of Type I. The running times of
AI and BI are almost the same except for 2qs exponentiation computations
in simulation. �
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Abstract. Sequential aggregate signature (SAS) is a special type of
public-key signature that allows a signer to add his signature into a pre-
vious aggregate signature in sequential order. In this case, since many
public keys are used and many signatures are employed and compressed,
it is important to reduce the sizes of signatures and public keys. Re-
cently, Lee et al. proposed an efficient SAS scheme with short public
keys and proved its security without random oracles under static as-
sumptions. In this paper, we propose an improved SAS scheme that has
a shorter signature size compared with that of Lee et al.’s SAS scheme.
Our SAS scheme is also secure without random oracles under static as-
sumptions. To achieve the improvement, we devise a new public-key sig-
nature scheme that supports multi-users and public re-randomization.
Compared with the SAS scheme of Lee et al., our SAS scheme employs
new techniques which allow us to reduce the size of signatures by increas-
ing the size of the public keys (obviously, since signature compression is
at the heart of aggregate signature this is a further step in understanding
the aggregation capability of such schemes).

1 Introduction

Aggregate signature is a relatively new type of public-key signature (PKS) that
allows a signer to aggregate different signatures generated by different signers on
different messages into a short aggregate signature [6]. Aggregate signature has
many applications like signing certificate chains, proxy signing, secure routing
protocols, and more. After the introduction of aggregate signature by Boneh,
Gentry, Lynn, and Shacham [6], many aggregate signature schemes were pro-
posed by using bilinear groups [1, 2, 4, 6, 10, 11, 13, 15, 17, 21] and trapdoor per-
mutations [7,18,20]. However, the security of many aggregate signature schemes
was proven in the random oracle model. The random oracle model was very
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successful to prove the security of practical schemes, but the security proof in
the random oracle model is not entirely sound [8] and schemes in the standard
model are needed. Standard model solutions for the cases of sequential aggregate
signature (introduced in [18]) [13,15,17,21] (where signatures are aggregated in
a sequence, as in applications like certification chains), and synchronized aggre-
gate signature (where all signers share a synchronized same value, as introduced
by [10]) [1] were given.

A sequential aggregate signature (SAS) scheme without random oracle as-
sumption is what we concentrate on here, such a scheme was first proposed by
Lu et al. [17], but the public-key size of this scheme is too large since the scheme
is based on the PKS scheme of Waters [22]. In public-key based aggregate sig-
nature, reducing the size of public keys is very important since a verifier should
retrieve all the public keys of signers to check the validity of the aggregate sig-
nature, and needless to say the size of the aggregated signature is important
as well. The importance of constructing a SAS scheme with short public keys
was addressed by Lu et al. [17], but they left it as an interesting open prob-
lem. Schröder proposed the first SAS scheme with short public keys based on
the Camenisch-Lysyanskaya (CL) signature scheme [21], but it is only secure
under the interactive LRSW assumption. Recently, Lee et al. [15] proposed an-
other SAS scheme with short public keys based on the identity-based encryption
(IBE) scheme of Lewko and Waters [16] and proved its security without random
oracles under static assumptions.

1.1 Our Contributions

In this paper, we revisit the SAS scheme of Lee et al. [15] and propose an
improved SAS scheme with shorter signature size. The proposed SAS scheme
trades off signature for public-key size since the signature size of our SAS scheme
is shorter than that of Lee et al.’s SAS scheme by two group elements but the
public-key size of our SAS scheme is longer by two group elements. To construct
the SAS scheme with shorter signature size that supports sequential aggregation,
we first propose a new PKS scheme and prove its security without random
oracles under static assumptions. Additionally, we propose a multi-signature
(MS) scheme with shorter signature size and shorter public parameters and
prove its security without random oracles under static assumptions.

We suggest new ideas, and technically speaking, we construct a PKS scheme
that supports multi-users and public re-randomization for a SAS scheme with
shorter signature size. We start the construction from the PKS scheme derived
from the IBE scheme of Lewko and Waters [16] (as was done earlier). However,
this directly converted PKS scheme does not support multi-users and public re-
randomization as pointed out by Lee et al. [15] since the elements g, u, h ∈ G
cannot be published in the public key. Lee et al. solved this problem by modifying
the verification algorithm of the PKS scheme, but the size of signatures increased
by two group elements. In this paper, we solve this obstacle in a different way and
publish gw

cg
1 , uwcu

1 , hwch
1 ∈ G in the public key instead of publishing g, u, h ∈ G

to maintain the same size of signatures (loosely speaking, we lift the verification
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parameters to the exponent). However, note that this method increases the size
of public keys by two group elements compared with that of Lee et al.’s scheme
since additional group elements should be published in the public key to make
public gw

cg
1 , uwcu

1 , hwch
1 .

1.2 Related Work

Aggregate Signature. The concept of aggregate signatures was introduced
by Boneh et al. [6], and they proposed the first aggregate signature scheme in
bilinear groups. Their aggregate signature scheme is the only unique one that
supports full aggregation, but the security is proven in the random oracle model
and the verification algorithm requires l number of pairing where l is the number
of signers in the aggregate signature. To remedy this situation, other types of
aggregate signatures were introduced.

Lysyanskaya et al. [18] introduced the concept of sequential aggregate signa-
ture (SAS) and proposed a SAS scheme in trapdoor permutations. Lu et al. [17]
proposed the first SAS scheme without random oracles, but the size of public
keys is very large. To reduce the size of public keys, SAS schemes with short
public key was proposed [13, 15, 21]. Recently, SAS schemes that do not require
a verifier to check the validity of the previous signature were proposed [7, 9].
Boldyreva et al. [4] proposed an identity-based sequential aggregate signature
scheme in bilinear groups and proved its security under an interactive assump-
tion. Recently Gerbush et al. [11] proposed a modified identity-based sequential
aggregate signature scheme in composite order bilinear groups and proved its
security in the random oracle model under static assumptions.

Gentry and Ramzan [10] introduced the concept of synchronized aggregate sig-
nature and proposed an identity-based synchronized aggregate signature scheme
in the random oracle model. Ahn et al. [1] proposed an synchronized aggre-
gate signature scheme and proved its security without random oracles. Recently,
Lee et al. [13] proposed a synchronized aggregate signature scheme with shorter
aggregate signatures based on the CL signature and proved its security in the
random oracle model.

Multi-signature. The concept of multi-signature (MS) was introduced by
Itakura and Nakamura [12]. MS is a special type of aggregate signatures where
all signers generate signatures for the same message. Micali et al. [19] defined
the first formal security model of MS and proposed a MS scheme based on
the Schnorr signature. Boldyreva defined a general security model for multi-
signatures and proposed a MS scheme in bilinear groups that is secure in the
random oracle model [3]. Lu et al. [17] proposed the first MS scheme that is
secure without random oracles by modifying their SAS scheme. Recently, Lee
et al. [15] proposed a MS scheme with short public parameters and proved its
security without random oracles.
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2 Preliminaries

In this section, we define asymmetric bilinear groups and introduce complexity
assumptions in this bilinear groups.

2.1 Asymmetric Bilinear Groups

Let G, Ĝ and GT be multiplicative cyclic groups of prime order p. Let g, ĝ be
generators ofG, Ĝ. The bilinear map e : G×Ĝ→ GT has the following properties:

1. Bilinearity: ∀u ∈ G, ∀v̂ ∈ Ĝ and ∀a, b ∈ Zp, e(u
a, v̂b) = e(u, v̂)ab.

2. Non-degeneracy: ∃g, ĝ such that e(g, ĝ) has order p, that is, e(g, ĝ) is a gen-
erator of GT .

We say that G, Ĝ,GT are bilinear groups with no efficiently computable isomor-
phisms if the group operations in G, Ĝ, and GT as well as the bilinear map e are
all efficiently computable, but there are no efficiently computable isomorphisms
between G and Ĝ.

2.2 Complexity Assumptions

We employ three static assumptions in prime order (asymmetric) bilinear groups.
Assumptions 1 and 2 were introduced by Lewko and Waters [16], while Assump-
tion 3 has been used extensively.

Assumption 1 (LW1). Let (p,G, Ĝ,GT , e) be a description of the asymmet-
ric bilinear group of prime order p with the security parameter λ. Let g, ĝ be
generators of G, Ĝ respectively. The assumption is that if the challenge values

D = ((p,G, Ĝ,GT , e), g, g
b, ĝ, ĝa, ĝb, ĝab

2

, ĝb
2

, ĝb
3

, ĝc, ĝac, ĝbc, ĝb
2c, ĝb

3c) and T

are given, no PPT algorithm B can distinguish T = T0 = ĝab
2c from T = T1 =

ĝd with more than a negligible advantage. The advantage of B is defined as
AdvA1

B (λ) =
∣∣Pr[B(D,T0) = 0] − Pr[B(D,T1) = 0]

∣∣ where the probability is
taken over the random choice of a, b, c, d ∈ Zp.

Assumption 2 (LW2). Let (p,G, Ĝ,GT , e) be a description of the asymmetric

bilinear group of prime order p. Let g, ĝ be generators of G, Ĝ respectively. The
assumption is that if the challenge values

D = ((p,G, Ĝ,GT , e), g, g
a, gb, gc, ĝ, ĝa, ĝa

2

, ĝbx, ĝabx, ĝa
2x) and T

are given, no PPT algorithm B can distinguish T = T0 = gbc from T = T1 =
gd with more than a negligible advantage. The advantage of B is defined as
AdvA2

B (λ) =
∣∣Pr[B(D,T0) = 0] − Pr[B(D,T1) = 0]

∣∣ where the probability is
taken over the random choice of a, b, c, x, d ∈ Zp.
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Assumption 3 (Decisional Bilinear Diffie-Hellman). Let (p,G, Ĝ,GT , e)
be a description of the asymmetric bilinear group of prime order p. Let g, ĝ be
generators of G, Ĝ respectively. The assumption is that if the challenge values

D = ((p,G, Ĝ,GT , e), g, g
a, gb, gc, ĝ, ĝa, ĝb, ĝc) and T

are given, no PPT algorithm B can distinguish T = T0 = e(g, ĝ)abc from
T = T1 = e(g, ĝ)d with more than a negligible advantage. The advantage of
B is defined as AdvA3

B (λ) =
∣∣Pr[B(D,T0) = 0] − Pr[B(D,T1) = 0]

∣∣ where the
probability is taken over the random choice of a, b, c, d ∈ Zp.

3 Public-Key Signature

In this section, we propose an efficient public-key signature (PKS) scheme with
short public keys that supports multi-users and public re-randomization, and
prove its security without random oracles under static assumption.

3.1 Construction

To construct a PKS scheme with short public keys that supports multi-users
and public re-randomization, we can derive a PKS scheme with short public
keys from the IBE scheme in prime order groups of Lewko and Waters [16]
by applying the transformation of Naor [5] and representing the signature in
G to reduce the size of signatures. However, this PKS scheme does not support
multi-users and public re-randomization since the elements g, u, h ∈ G cannot be
published in the public key. Lee et al. [15] solved this problem by re-randomizing
the verification elements of the signature verification algorithm, but the number
of signatures increased by two group elements, and our main issue here is further
compression of the signature size.

To this end, we present another solution for the above problem that allows
the elements g, u, h to be safely published in the public key. In the PKS scheme
of Lewko and Waters [16], if g, u, h ∈ G are published in the public key, then the
simulator of the security proof can easily distinguish normal verification compo-
nents from semi-functional verification components of the signature verification
algorithm for a forged signature without the help of an adversary. Thus the simu-
lator of Lewko and Waters sets the CDH value into the elements g, u, h to prevent
the simulator from creating these elements. Our idea for solving this problem is
to lift the published values into the exponent and publish gw

cg
1 , uwcu

1 , hwch
1 that

are additionally multiplied with random elements instead of directly publishing
g, u, h. In this case, the simulator can create these elements since the random
exponents cg, cu, ch can be used to cancel out the CDH value embedded in the
elements g, u, h. Additionally, the simulator cannot distinguish the changes of
verification components for the forged signature because of the added elements
w

cg
1 , wcu

1 , wch
1 . This solution does not increase the number of group elements in

the signatures, rather it increases the number of public keys since additional
elements w

cg
2 , wcg , wcu

2 , wcu , wch
2 , wch should be published.
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Our PKS scheme in prime order bilinear groups is described as follows:

PKS.KeyGen(1λ): This algorithm first generates the asymmetric bilinear

groups G, Ĝ of prime order p of bit size Θ(λ). It chooses random elements

g, w ∈ G and ĝ ∈ Ĝ. Next, it selects random exponents ν, φ1, φ2 ∈ Zp and
sets τ = φ1 + νφ2. It also selects random exponents α, x, y ∈ Zp and sets

u = gx, h = gy, û = ĝx, ĥ = ĝy, w1 = wφ1 , w2 = wφ2 . It outputs a private
key SK = (α, x, y) and a public key by selecting random values cg, cu, ch ∈ Zp

as

PK =
(
gw

cg
1 , w

cg
2 , wcg , uwcu

1 , wcu
2 , wcu , hwch

1 , wch
2 , wch , w1, w2, w,

ĝ, ĝν , ĝ−τ , û, ûν , û−τ , ĥ, ĥν , ĥ−τ , Λ = e(g, ĝ), Ω = e(g, ĝ)α
)
.

PKS.Sign(M,SK): This algorithm takes as input a message M ∈ Zp and a pri-
vate key SK = (α, x, y). It selects random exponents r, c1, c2 ∈ Zp and outputs
a signature as

σ =
(
W1,1 = (gw

cg
1 )α((uwcu

1 )M (hwch
1 ))rwc1

1 ,

W1,2 = (w
cg
2 )α((wcu

2 )Mwch
2 )rwc1

2 , W1,3 = (wcg )α((wcu )Mwch)rwc1 ,

W2,1 = (gw
cg
1 )rwc2

1 , W2,2 = (w
cg
2 )rwc2

2 , W2,3 = (wcg )rwc2
)
.

PKS.Verify(σ,M,PK): This algorithm takes as input a signature σ on a mes-
sage M ∈ Zp under a public key PK. It chooses a random exponent t ∈ Zp and
computes verification components as

V1,1 = ĝt, V1,2 = (ĝν)t, V1,3 = (ĝ−τ )t,

V2,1 = (ûM ĥ)t, V2,2 = ((ûν)M ĥν)t, V2,3 = ((û−τ )M ĥ−τ )t.

Next, it verifies that
∏3

i=1 e(W1,i, V1,i) ·
∏3

i=1 e(W2,i, V2,i)
−1 ?

= Ωt. If this equa-
tion holds, then it outputs 1. Otherwise, it outputs 0.

If we implicitly sets c̃1 = cgα + (cuM + ch)r + c1, c̃2 = cgr + c2, then the
signature is restated as the following form

W1,1 = gα(uMh)rwc̃1
1 , W1,2 = wc̃1

2 , W1,3 = wc̃1 ,

W2,1 = grwc̃2
1 , W2,2 = wc̃2

2 , W2,3 = wc̃2 .

3.2 Security Analysis

We prove the security of our PKS scheme without random oracles under static
assumptions. To prove the security, we use the dual system encryption technique
of Lewko and Waters [16]. The dual system encryption technique was originally
developed to prove the full-model security of IBE and its extensions, but it also
can be used to prove the security of PKS by using the transformation of Naor [5].
Recently Lee et al. [15] proved the security of their PKS scheme by using the dual
system encryption technique, and Gerbush et al. [11] developed the dual form
signature technique that is a variation of the dual system encryption technique
to prove the security of theirs PKS schemes.
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Theorem 1. The above PKS scheme is existentially unforgeable under a chosen
message attack if Assumptions 1, 2, and 3 hold.

Proof. Before proving the security, we first define two additional algorithms for
semi-functional types. For the semi-functionality, we set f = gyf , f̂ = ĝyf where
yf is a random exponent in Zp.
PKS.SignSF. The semi-functional signing algorithm first creates a normal sig-
nature using the private key. Let (W ′

1,1, . . . ,W
′
2,3) be the normal signature of a

message M with random exponents r, c1, c2 ∈ Zp. It selects random exponents
sk, zk ∈ Zp and outputs a semi-functional signature as

σ =
(
W1,1 = W ′

1,1 · (f−ν)skzk , W1,2 = W ′
1,2 · f skzk , W1,3 = W ′

1,3,

W2,1 = W ′
2,1 · (f−ν)sk , W2,2 = W ′

2,2 · f sk , W2,3 = W ′
2,3

)
.

PKS.VerifySF. The semi-functional verification algorithm first creates a nor-
mal verification components using the public key. Let (V ′

1,1, . . . , V
′
2,3) be the nor-

mal verification components with a random exponent t ∈ Zp. It chooses random
exponents sc, zc ∈ Zp and computes semi-functional verification components as

V1,1 = V ′
1,1, V1,2 = V ′

1,2 · f̂ sc , V1,3 = V ′
1,3 · (f̂−φ2)sc ,

V2,1 = V ′
2,1, V2,2 = V ′

2,2 · f̂ sczc , V2,3 = V ′
2,3 · (f̂−φ2)sczc .

Next, it verifies that
∏3

i=1 e(W1,i, V1,i) ·
∏3

i=1 e(W2,i, V2,i)
−1 ?

= Ωt. If this equa-
tion holds, then it outputs 1. Otherwise, it outputs 0.

If the semi-functional verification algorithm is used to verify a semi-functional
signature, then an additional random element e(f, f̂)sksc(zk−zc) is left in the left
part of the above verification equation. If zk = zc, then the semi-functional ver-
ification algorithm succeeds. In this case, we say that the signature is nominally
semi-functional.

The security proof uses a sequence of games G0,G1,G2,G3: The first game
G0 will be the original security game and the last game G3 will be a game such
that an adversary A has no advantage. Formally, the hybrid games are defined
as follows:
Game G0. This game is the original security game. In this game, the signatures
that are given to A are normal and the challenger use the normal verification
algorithm PKS.Verify to check the validity of the forged signature of A. Note
that A can forge a normal signature or a semi-functional signature to win this
game since normal or semi-functional signatures are always verified in the normal
verification algorithm.
Game G1. This game is almost identical to G0 except that the challenger use
the semi-functional verification algorithm PKS.VerifySF to check the validity
of the forged signature of A. Note that A should forge a normal signature to
win this game since semi-functional signatures cannot be verified in the semi-
functional verification algorithm.
Game G2. This game is the same as the G1 except that the signatures that
are given to A will be semi-functional. At this moment, the signatures are
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semi-functional and the challenger use the semi-functional verification algorithm
PKS.VerifySF to check the validity of the forged signature. Suppose that A
makes at most q signature queries. For the security proof, we define a sequence
of hybrid games G1,0, . . . ,G1,k, . . . ,G1,q where G1,0 = G1. In G1,k, a normal
signature is given to A for all j-th signature queries such that j > k and a
semi-functional signature is given to A for all j-th signature queries such that
j ≤ k. It is obvious that G1,q is equal to G2.
Game G3. This final game differs from G2 in that the challenger always rejects
the forged signature of A by replacing the element Ω in the verification equation
to a random element. Therefore, the advantage of this game is zero since A
cannot win this game.

To prove the security using the dual system encryption technique, we should
show that it is hard for A to forge a normal signature and a semi-functional
signature. At first, from the indistinguishability between G0 and G1, we obtain
that A can forge a normal signature with a non-negligible probability while he
cannot forge a semi-functional signature when only normal signatures are given
to A. To finish the proof, we additionally should show that it is hard for A to
forge a normal signature. From the indistinguishability between G1 and G2, we
obtain that the probability of A to forge a normal signature does not change
when the signatures given to A are changed from a normal type to a semi-
functional type. Finally, from the indistinguishability between G2 and G3, we
obtain that it is hard for A to forge a normal signature when only semi-functional
signatures are given to the adversary. Therefore, we have the unforgeability of
the adversary through the indistinguishability of hybrid games. ��

Lemma 1. If Assumption 1 holds, then no polynomial-time adversary can dis-
tinguish between G0 and G1 with non-negligible advantage.

Lemma 2. If Assumption 2 holds, then no polynomial-time adversary can dis-
tinguish between G1 and G2 with non-negligible advantage.

Lemma 3. If Assumption 3 holds, then no polynomial-time adversary can dis-
tinguish between G2 and G3 with non-negligible advantage.

The proof of Lemma 1 is given in Appendix A and the proofs of other lemmas
are given in the full version of this paper [14].

4 Sequential Aggregate Signature

In this section, we propose an efficient sequential aggregate signature (SAS)
scheme with short public keys and prove its security without random oracles.

4.1 Definitions

The concept of SAS was introduced by Lysyanskaya et al. [18]. In SAS, all signers
first generate public keys and private keys, and then publishes their public keys.
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To generate a sequential aggregate signature, a signer may receive an aggregate-
so-far from a previous signer, and creates a new aggregate signature by adding
his signature to the aggregate-so-far in sequential order. After that, the signer
may send the aggregate signature to a next signer. A verifier can check the
validity of the aggregate signature by using the pubic keys of all signers in the
aggregate signature. A SAS scheme is formally defined as follows:

Definition 1 (Sequential Aggregate Signature). A sequential aggregate
signature (SAS) scheme consists of four PPT algorithms Setup, KeyGen, Ag-
gSign, and AggVerify, which are defined as follows:

Setup(1λ). The setup algorithm takes as input a security parameter 1λ and
outputs public parameters PP .

KeyGen(PP ). The key generation algorithm takes as input the public param-
eters PP , and outputs a public key PK and a private key SK.

AggSign(AS′,M,PK,M, SK). The aggregate signing algorithm takes as input
an aggregate-so-far AS′ on messages M = (M1, . . . ,Ml) under public keys
PK = (PK1, . . . , PKl), a message M , and a private key SK, and outputs
a new aggregate signature AS.

AggVerify(AS,M,PK). The aggregate verification algorithm takes as input
an aggregate signature AS on messages M = (M1, . . . ,Ml) under public
keys PK = (PK1, . . . , PKl), and outputs either 1 or 0 depending on the
validity of the sequential aggregate signature.

The correctness requirement is that for each PP output by Setup,
for all (PK, SK) output by KeyGen, any M , we have that
AggVerify(AggSign(AS′,M′,PK′,M, SK),M′||M,PK′||PK) = 1 where
AS′ is a valid aggregate-so-far signature on messages M′ under public keys
PK′.

The security model of SAS was defined by Lysyanskaya et al. [18], but we
use the security model of Lu et al. [17] that requires for an adversary to register
key-pair of other signers except the target signer. The security model of SAS is
formally defined as follows:

Definition 2 (Security). The security notion of existential unforgeability un-
der a chosen message attack is defined in terms of the following experiment
between a challenger C and a PPT adversary A:
1. Setup: C first initializes a certification list CL as empty. Next, it runs Setup

to obtain public parameters PP and KeyGen to obtain a key pair (PK, SK),
and gives PK to A.

2. Certification Query: A adaptively requests the certification of a public key
by providing a key pair (PK, SK). Then C adds the key pair (PK, SK) to
CL if the key pair is a valid one.

3. Signature Query: A adaptively requests a sequential aggregate signature
(by providing an aggregate-so-far AS′ on messages M′ under public keys
PK′), on a message M to sign under the challenge public key PK, and
receives a sequential aggregate signature AS.
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4. Output: Finally (after a sequence of the above queries), A outputs a forged
sequential aggregate signature AS∗ on messages M∗ under public keys PK∗.
C outputs 1 if the forged signature satisfies the following three conditions, or
outputs 0 otherwise: 1) AggVerify(AS∗,M∗,PK∗) = 1, 2) The challenge
public key PK must exists in PK∗ and each public key in PK∗ except the
challenge public key must be in CL, and 3) The corresponding message M
in M∗ of the challenge public key PK must not have been queried by A to
the sequential aggregate signing oracle.

The advantage of A is defined as AdvSAS
A = Pr[C = 1] where the probability is

taken over all the randomness of the experiment. A SAS scheme is existentially
unforgeable under a chosen message attack if all PPT adversaries have at most
a negligible advantage in the above experiment.

4.2 Construction

To construct a SAS scheme from a PKS scheme, the PKS scheme should support
multi-users by sharing some elements among all signers and the randomness of
signatures should be sequentially aggregated to a single value. We can employ
the randomness reuse method of Lu et al. [17] to aggregate the randomness of sig-
natures. To apply the randomness reuse method, we should re-randomize the ag-
gregate signature to prevent a forgery attack. Thus we build on the PKS scheme
of the previous section that supports multi-users and public re-randomization to
construct a SAS scheme.

The SAS scheme in prime order bilinear groups is described as follows:

SAS.Setup(1λ): This algorithm first generates the asymmetric bilinear groups

G, Ĝ of prime order p of bit size Θ(λ). It chooses random elements g, w ∈ G and

ĝ ∈ Ĝ. Next, it selects random exponents ν, φ1, φ2 ∈ Zp and sets τ = φ1 + νφ2,
w1 = wφ1 , w2 = wφ2 . It publishes public parameters by selecting a random value
cg ∈ Zp as

PP =
(
gw

cg
1 , w

cg
2 , wcg , w1, w2, w, ĝ, ĝν , ĝ−τ , Λ = e(g, ĝ)

)
.

SAS.KeyGen(PP ): This algorithm takes as input the public parameters PP .

It selects random exponents α, x, y ∈ Zp and sets û = ĝx, ĥ = ĝy. It outputs a
private key SK = (α, x, y) and a public key by selecting random values c′u, c

′
h ∈

Zp as

PK =
(
uwcu

1 = (gw
cg
1 )xw

c′u
1 , wcu

2 = (w
cg
2 )xw

c′u
2 , wcu = (wcg )xw

c′u
2 ,

hwch
1 = (gw

cg
1 )yw

c′u
1 , wch

2 = (w
cg
2 )yw

c′u
2 , wch = (wcg )yw

c′u
2 ,

û, ûν = (ĝν)x, û−τ = (ĝ−τ )x, ĥ, ĥν = (ĝν)y , ĥ−τ = (ĝ−τ )y, Ω = Λα
)
.

SAS.AggSign(AS′,M′,PK′,M, SK): This algorithm takes as input an aggregate-
so-far AS′ = (S′

1,1, . . . , S
′
2,3) on messages M′ = (M1, . . . ,Ml−1) under pub-

lic keys PK′ = (PK1, . . . , PKl−1) where PKi = (uiw
cu,i

1 , . . . , Ωi), a message
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M ∈ Zp, a private key SK = (α, x, y) with PK = (uwcu
1 , . . . , Ω) and PP . It

first checks the validity of AS′ by calling SAS.AggVerify(AS′,M′,PK′). If
AS′ is not valid, then it halts. If the public key PK of SK does already exist in
PK′, then it halts. Next, it selects random exponents r, c1, c2 ∈ Zp and outputs
an aggregate signature as

AS =
(
S1,1 = S′

1,1(gw
cg
1 )α(S′

2,1)
xM+y ·

l−1∏
i=1

((uiw
cu,i
1 )Mi (hiw

ch,i
1 ))r((uwcu

1 )M (hw
ch
1 ))rw

c1
1 ,

S1,2 = S′
1,2(w

cg
2 )α(S′

2,2)
xM+y ·

l−1∏
i=1

((w
cu,i
2 )Mi (w

ch,i
2 ))r((wcu

2 )Mw
ch
2 )rw

c1
2 ,

S1,3 = S′
1,3(w

cg )α(S′
2,3)

xM+y ·
l−1∏
i=1

((wcu,i )Mi (wch,i ))r((wcu )Mwch)rwc1 ,

S2,1 = S′
2,1 · (gwcg

1 )rw
c2
1 , S2,2 = S′

2,2 · (wcg
2 )rw

c2
2 , S2,3 = S′

2,3 · (wcg )rwc2
)
.

SAS.AggVerify(AS,M,PK): This algorithm takes as input a sequential ag-
gregate signature AS on messages M = (M1, . . . ,Ml) under public keys PK =
(PK1, . . . , PKl) where PKi = (uiw

cu,i

1 , . . . , Ωi). It first checks that any pub-
lic key does not appear twice in PK and that any public key in PK has been
certified. If these checks fail, then it outputs 0. If l = 0, then it outputs 1 if
S1 = S2 = 1, 0 otherwise. It chooses a random exponent t ∈ Zp and computes
verification components as

C1,1 = ĝt, C1,2 = (ĝν)t, C1,3 = (ĝ−τ )t,

C2,1 =
l∏

i=1

(ûMi

i ĥi)
t, C2,2 =

l∏
i=1

((ûν
i )

Mi ĥν
i )

t, C2,3 =
l∏

i=1

((û−τ
i )Mi ĥ−τ

i )t.

Next, it verifies that
∏3

i=1 e(S1,i, C1,i) ·
∏3

i=1 e(S2,i, C2,i)
−1 ?

=
∏l

i=1 Ω
t
i . If this

equation holds, then it outputs 1. Otherwise, it outputs 0.

4.3 Security Analysis

Theorem 2. The above SAS scheme is existentially unforgeable under a chosen
message attack if the PKS scheme is existentially unforgeable under a chosen
message attack.

Proof. Suppose there exists an adversary A that forges the above SAS
scheme with non-negligible advantage ε. A simulator B that forges
the PKS scheme is first given: a challenge public key PKPKS =
(gw

cg
1 , w

cg
2 , wcg , uwcu

1 , . . . , wch , w1, w2, w, ĝ, ĝ
ν , ĝ−τ , û, . . . , ĥ−τ , Λ,Ω). Then B

that interacts with A is described as follows:
Setup: B first constructs PP = (gw

cg
1 , w

cg
2 , wcg , w1, w2, w, ĝ, ĝ

ν , ĝ−τ , Λ) and

PK∗ = (uwcu
1 , . . . , wch , û, . . . , ĥ−τ , Ω) from PKPKS . Next, it initializes a certi-

fication list CL as an empty one and gives PP and PK∗ to A.
Queries: A may adaptively requests certification queries or sequential aggregate
signature queries. If A requests the certification of a public key by providing
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a public key PKi = (uiw
cu,i

1 , . . . , Ωi) and its private key SKi = (αi, xi, yi),
then B checks the private key and adds the key pair (PKi, SKi) to CL. If A
requests a sequential aggregate signature by providing an aggregate-so-far AS′

on messages M′ = (M1, . . . ,Ml−1) under public keys PK′ = (PK1, . . . , PKl−1),
and a messageM to sign under the challenge private key of PK∗, then B proceeds
the aggregate signature query as follows:

1. It first checks that the signature AS′ is valid and that each public key in
PK′ exits in CL.

2. It queries its signing oracle that simulates PKS.Sign on the message M for
the challenge public key PK∗ and obtains a signature σ.

3. For each 1 ≤ i ≤ l − 1, it constructs an aggregate signature on message
Mi using SAS.AggSign since it knows the private key that corresponds
to PKi. The result signature is an aggregate signature for messages M′||M
under public keys PK′||PK∗ since this scheme does not check the order of
aggregation. It gives the result signature AS to A.

Output: Finally, A outputs a forged aggregate signature AS∗ = (S∗
1,1, . . . , S

∗
2,3)

on messages M∗ = (M1, . . . ,Ml) under public keys PK∗ = (PK1, . . . , PKl) for
some l. Without loss of generality, we assume that PK1 = PK∗. B proceeds as
follows:

1. B first checks the validity of AS∗ by using SAS.AggVerify. Additionally,
the forged signature should not be trivial: the challenge public key PK∗

must be in PK∗, and the message M1 must not be queried by A to the
signature query oracle.

2. For each 2 ≤ i ≤ l, it parses PKi = (uiw
cu,i

1 , . . . , Ωi) from PK∗, and it
retrieves the private key SKi = (αi, xi, yi) of PKi from CL. It then computes

W1,1 = S∗
1,1

l∏
i=2

(
gαj (S∗

2,1)
xiMi+yi

)−1
, W1,2 = S∗

1,2

l∏
i=2

(
(S∗

2,2)
xiMi+yi

)−1
,

W1,3 = S∗
1,3

l∏
i=2

(
(S∗

2,3)
xiMi+yi

)−1
, W2,1 = S∗

2,1, W2,2 = S∗
2,2, W2,3 = S∗

2,3.

3. It outputs σ = (W1,1, . . . ,W2,3) as a non-trivial forgery of the PKS scheme
since it did not make a signing query on M1.

The public parameters and the public key are correctly distributed, and the se-
quential aggregate signatures are also correctly distributed since this scheme does
not check the order of aggregation. The result signature σ = (W1,1, . . . ,W2,3) of
the simulator is a valid PKS signature on the message M1 under the public key
PK∗ since it satisfies the following equation:

3∏
i=1

e(W1,i, V1,i) ·
3∏

i=1

e(W2,i, V2,i)
−1

= e(S∗
1,1, ĝ

t) · e(S∗
1,2, ĝ

νt) · e(S∗
1,4, ĝ

−τt) · e(
l∏

i=2

gαi , ĝt)−1·
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e(S∗
2,1,

l∏
i=2

(ûMi

i ĥi)
t)−1 · e(S∗

2,2,

l∏
i=2

(ûMi

i ĥi)
νt)−1 · e(S∗

2,3,

l∏
i=2

(ûMi

i ĥi)
−τt)−1·

e(S∗
2,1, (û

M1 ĥ)t)−1 · e(S∗
2,2, (û

M1 ĥ)νt)−1 · e(S∗
2,3, (û

M1 ĥ)−τt)−1

= e(S∗
1,1, C1,1) · e(S∗

1,2, C1,2) · e(S∗
1,3, C1,3) · e(

l∏
i=2

gαi , ĝt)−1·

e(S∗
2,1,

l∏
i=1

(ûMi

i ĥi)
t)−1 · e(S∗

2,2,
l∏

i=1

(ûMi

i ĥi)
νt)−1 · e(S∗

2,3,
l∏

i=1

(ûMi

i ĥi)
−τt)−1·

=

3∏
i=1

e(S∗
1,i, C1,i) ·

3∏
i=1

e(S∗
2,i, C2,i)

−1 · e(
l∏

i=2

gαi , ĝt)−1 =

l∏
i=1

Ωt
i ·

l∏
i=2

Ω−t
i = Ωt

1

where δi = xiMi + yi and s̃2 =
∑l

i=2(xiMi + yi)s1 + s2. This completes our
proof.

4.4 Discussions

Multi-signature. A MS scheme can be easily constructed from our SAS scheme
by moving some group elements in the public key to the public parameters. This
scheme is also secure without random oracles under static assumptions and the
signature size of this scheme is shorter than that of Lee et al.’s MS scheme [15].

5 Conclusion

In this paper, we improved the SAS scheme of Lee et al. [15] by reducing the size
of aggregate signatures and similarly proved its security without random oracles
under static assumptions. To reduce the size of signatures, we first devised a PKS
scheme that supports multi-users and public re-randomization and proved its
security using the dual system encryption technique. The proposed SAS scheme
of this paper trades off signature size against public-key size compared with the
scheme of Lee et al. since the signature size of our scheme decreases by two group
elements but the public-key size increases by two group elements (but signatures
are many and a public key is published once). Our techniques include lifting and
randomization of verification parameters used in the previous scheme.
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A Security Proofs of Lemmas

A.1 The Proof of Lemma 1

The proof of this lemma is almost similar to the proof of Lemma 1 in [16] ex-
cept that the public key is generated differently and the proof is employed in
the PKS setting. Suppose there exists an adversary A that distinguishes be-
tween G0 and G1 with non-negligible advantage. A simulator B1 that solves
Assumption 1 using A is given: a challenge tuple D = ((p,G, Ĝ,GT , e),

k, kb, k̂, k̂a, k̂b, k̂ab
2

, k̂b
2

, k̂b
3

, k̂c, k̂ac, k̂bc, k̂b
2c, k̂b

3c) and T where T = T0 = k̂ab
2c

or T = T1 = k̂ab
2c+d. Then B1 that interacts with A is described as follows: B1

first chooses random exponents φ2, A,B, α ∈ Zp, random values yg, yu, yh, yw ∈
Zp. It computes w1 = wφ1 = (kb)yw , w2 = wφ2 = kywφ2 , w = kyw by implicitly
setting φ1 = b. It implicitly sets cg = −b/yw + c′g, cu = −bA/yw + c′u, ch =
−bB/yw+ c′h, ν = a, τ = b+aφ2 and publishes a public key by selecting random
values c′g, c

′
u, c

′
h ∈ Zp as

gw
cg
1 = kygw

c′g
1 , w

cg
2 = (kb)−b2w

c′g
2 , wcg = (kb)−1wc′g ,

uwcu
1 = kyuw

c′u
1 , wcu

2 = (kb)−b2Aw
c′u
2 , wcu = (kb)−Awc′u ,

hwch
1 = kyhw

c′h
1 , wch

2 = (kb)−b2Bw
c′h
2 , wch = (kb)−Bwc′h , w1, w2, w,

ĝ = k̂b
2

k̂yg , ĝν = k̂ab
2

(k̂a)yg , ĝ−τ = (k̂b
3

(k̂b)yg(k̂ab
2

)b2(k̂a)ygb2)−1,

û = (k̂b
2

)Ak̂yu , ûν = (k̂ab
2

)A(k̂a)yu , û−τ = ((k̂b
3

)A(k̂b)yu(k̂ab
2

)Ab2(k̂a)yub2)−1,

ĥ = (k̂b
2

)B k̂yh , ĥν = (k̂ab
2

)B(k̂a)yh , ĥ−τ = ((k̂b
3

)B(k̂b)yh(k̂ab
2

)Bb2(k̂a)yhb2)−1,

Λ = e(kb
3

, k̂b) · e(kb2 , k̂)2yg · e(k, k̂)y2
g , Ω = Λα.

It implicitly sets g = kb
2

kyg , u = (kb
2

)Akyu , h = (kb
2

)Bkyh , but it cannot create

these elements since kb
2

is not given. Additionally, it sets f = k, f̂ = k̂ for
the semi-functional signature and verification. A adaptively requests a signature
for a message M . To response this sign query, B1 first selects random exponents
r, c′1, c

′
2 ∈ Zp. It implicitly sets c1 = −b(α+(AM+B)r)/yw+c′1, c2 = −br1/yw+

c′2 and creates a normal signature as

W1,1 = kygα+(yuM+yh)r(w1)
c′1 , W1,2 = (W1,3)

φ2 , W1,3 = (kb)−(α+(AM+B)r)wc′1 ,

W2,1 = kygr(w1)
c′2 , W2,2 = (W2,3)

φ2 , W2,3 = (kb)−rwc′2 .
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Finally, A outputs a forged signature σ∗ = (W ∗
1,1, . . . ,W

∗
2,3) on a message M∗

fromA. To verify the forged signature, B1 first chooses a random exponent t ∈ Zp

and computes verification components by implicitly setting t = c as

V1,1 = k̂b
2c(k̂c)yg , V1,2 = T (k̂ac)yg , V1,3 = ((k̂b

3c)(k̂bc)yg (T )φ2(k̂ac)ygφ2)−1,

V2,1 = (k̂b
2c)AM∗+B(k̂c)yuM

∗+yh , V2,2 = (T )AM∗+B(k̂ac)yuM
∗+yh ,

V2,3 =
(
(k̂b

3c)AM∗+B(k̂bc)yuM
∗+yh(T )φ2(AM∗+B)(k̂ac)φ2(yuM

∗+yh)
)−1

.

Next, it verifies that
∏3

i=1 e(W
∗
1,i, V1,i) ·

∏3
i=1 e(W

∗
2,i, V2,i)

−1 ?
= Ωt. If this equa-

tion holds, then it outputs 0. Otherwise, it outputs 1.

To finish this proof, we show that the distribution of the simulation is correct.
We first show that the distribution using D,T0 = k̂ab

2c is the same as G0. The
public key is correctly distributed as

gw
cg
1 = (kb

2

kyg )(kbyw)−b/yw+c′g = kygw
c′g
1 ,

uwcu
1 = (kb

2Akyu)(kbyw)−bA/yw+c′u = kyuw
c′u
1 ,

hwch
1 = (kb

2Bkyh)(kbyw)−bB/yw+c′h = kyhw
c′h
1 .

The simulator cannot create g, u, h since kb
2

is not given in the assumption,
but it can create gw

cg
1 , uwcu

1 , hwch
1 since cg, cu, ch can be used to cancel out kb

2

.
The signature and the verification components are also correctly distributed
since these are similar to the simulation in [16]. We next show that the dis-

tribution of the simulation using D,T1 = k̂ab
2c+d is the same as G1. We only

consider the distribution of the verification components since T is only used
in the verification components. The difference between T0 and T1 is that T1

additionally has k̂d. Thus V1,2, V1,3, V2,2, V2,3 that have T in the simulation addi-

tionally have k̂d, (k̂d)φ2 , (k̂d)AM∗+B, (k̂d)φ2(AM∗+B) respectively. If we implicitly
set sc = d, zc = AM∗ +B, then the verification components of the forged signa-
ture are semi-functional since A and B are information-theoretically hidden to
the adversary.
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Threshold cryptography is very useful for both distributing trust and increasing robust-
ness in systems that perform high-value operations, such as certificate authorities (CAs)
or private-key generators in identity-based encryption (IBE) systems.

Desirable efficiency properties in a threshold system include: (1) efficient local com-
putation by the trustees; (2) a minimal amount of interaction—i.e., one broadcast mes-
sage from each party—when performing the privileged operations; and (3) key sizes and
public operations that are independent of the number of trustees. For example, while it
might require several parties to sign a message, it is best if the signature can be verified
without even being aware that it was produced in a distributed manner.

Over the years many elegant and rather efficient threshold systems have been
developed. To name just a few representative works, there are simple variants of the El-
Gamal cryptosystem, Canetti and Goldwasser’s [13] version of the CCA-secure Cramer-
Shoup cryptosystem [17], and Shoup’s [35] version of the RSA signature scheme. These
systems, along with almost all others in the literature, are based on number-theoretic
problems related to either integer factorization or the discrete logarithm problem in
cyclic groups. As is now well-known, Shor’s algorithm [34] would unfortunately ren-
der all these schemes insecure in a “post-quantum” world with large-scale quantum
computers.

Lattice-based cryptography. Recently, lattices have been recognized as a viable foun-
dation for quantum-resistant cryptography, and the past few years have seen the
rapid growth of many rich lattice-based systems. A fruitful line of research, start-
ing from the work of Gentry, Peikert and Vaikuntanathan (GPV) [22], has resulted
in secure lattice-based hash-and-sign signatures and (hierarchical) identity-based en-
cryption schemes [15,1], along with many more applications (e.g., [23,10,9,2]). All
these schemes rely at heart on two nontrivial algorithms: the key-generation algorithm
produces a lattice Λ together with a certain kind of “strong” trapdoor (e.g., a short
basis of Λ) [3,6], while the signing/key-extraction algorithms use the trapdoor to ran-
domly sample a short vector from a discrete Gaussian distribution over a certain coset
Λ + c, which is determined by the message or identity [22]. Initially, both tasks were
rather complicated algorithmically, and in particular the Gaussian sampling algorithm
involved several adaptive iterations, so it was unclear whether either task could be ef-
ficiently and securely distributed among several parties. Recently, however, both key
generation and Gaussian sampling have been simplified and made more efficient and
parallel [30,25]. This is the starting point for our work.

Our results. We give threshold protocols for the main nontrivial operations in lattice-
based signature and (H)IBE schemes, namely: (1) generating a lattice Λ together with
a strong trapdoor of the kind recently proposed in [25], (2) sampling from a discrete
Gaussian distribution over a desired coset of Λ, and (3) delegating a trapdoor for a
higher-dimensional extension of Λ. Since these are the only secret-key operations used
in the signature and (H)IBE schemes of [22,15,1,25] and several other related works,
our protocols can be plugged directly into all those schemes to distribute the signing
algorithms and the (H)IBE private-key generators. In the full version of this paper we
show how this is (straightforwardly) done for the simplest of these applications, namely,
the GPV signature and IBE schemes [22]; other applications work similarly.
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Our protocols have several desirable properties:

– They provide information-theoretic (i.e., statistical) security for adaptive cor-
ruptions. By information-theoretic security, we mean that the security of the
key-generation and sampling protocols themselves relies on no computational
assumption—instead, the application alone determines the assumption (usually, the
Short Integer Solution assumption [4,26] for digital signatures, and Learning With
Errors [32] for identity-based encryption). We work in a version of the universal
composability (UC) framework [12], specialized to the threshold setting, and as a
result also get strong security guarantees for protocols under arbitrary composition.

– They work for an optimal threshold of h = t+ 1 for semi-honest adversaries, and
h = 2t+1 for active (malicious) adversaries. (Recall that h is the number of honest
parties needed to successfully execute the protocol, and the robustness threshold t
is an upper bound on the number of dishonest parties.)

– The public key and trapdoor “quality” (i.e., the width of the discrete Gaussian that
can be sampled using the trapdoor; smaller width means higher quality) are essen-
tially the same as in the standalone setting. In particular, their sizes are independent
of the number of trustees; the individual shares of the trapdoor are the same size as
the trapdoor itself; and the protocols work for the same lattice parameters as in the
standalone setting, up to small constant factors.

– They have noninteractive and very efficient online phases (corresponding to the
signing or key-extraction operations), assuming either (1) a setup phase in which
certain shares are distributed by a trusted party (e.g., as part of key generation), or
(2) the parties themselves perform a sufficient amount of interactive precomputation
in an offline phase (without relying on any trusted party).

Regarding the final item, the trusted setup model is the one used by Canetti and Gold-
wasser [13] for constructing threshold chosen ciphertext-secure threshold cryptosys-
tems: as part of the key-generation process, a trusted party also distributes shares of
some appropriately distributed secrets to the parties, which they can later use to per-
form an a priori bounded number of noninteractive threshold operations. Or, in lieu of
a trusted party, the players can perform some interactive precomputation (offline, be-
fore the desired coset is known) to generate the needed randomness. The downside is
that this precomputation is somewhat expensive, since the only solution we have for
one important step (namely, sampling shares of a Gaussian-distributed value over Z)
is to use somewhat generic information-theoretic multiparty computation tools. On the
plus side, the circuit for this sampling task is rather shallow, with depth just slightly
super-constant ω(1), so the round complexity of the precomputation is not very high.
We emphasize that the expensive precomputation is executed offline, before the appli-
cations decides which lattice cosets will be sampled from, and that the online protocols
remain efficient and non-interactive.

Our protocols rely on the very simple form of the new type of strong trapdoor re-
cently proposed in [25], and the parallel and offline nature of recent standalone Gaus-
sian sampling algorithms [30,25].1 A key technical challenge is that the security of the

1 In particular, it appears very difficult to implement, in a noninteractive threshold fashion, iter-
ative sampling algorithms like those from [24,22] which use the classical trapdoor notion of a
short basis.
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sampling algorithms from [30,25] crucially relies on the secrecy of some intermediate
random variables known as “perturbations.” However, in order to obtain a noninter-
active protocol we need the parties to publicly reveal certain information about these
perturbations. Fortunately, we can show that the leaked information is indeed simulat-
able, and so security is unharmed. See Section 3 and in particular Lemma 1 for further
details.

Open problems. In addition to simple, non-interactive protocols for discrete Gaussian
sampling with trusted setup, the full version of this paper provides protocols that avoid
both trusted setup and online interaction. These protocols are designed as follows: first,
we give efficient protocols that use (offline) access to a functionality FSampZ, which
produces shares of Gaussian-distributed values over the integers Z (see Section 4 and
the full version for details). Then, we show how to instantiateFSampZ using a (somewhat
inefficient) interactive protocol using generic MPC techniques. It remains an interesting
open problem to design protocols without trusted setup whose offline precomputation is
efficient and/or non-interactive as well. An efficient realization of FSampZ would yield
such a solution, but there may be other routes as well.

Another intriguing problem is to give a simple and noninteractive threshold protocol
for inverting the LWE function gA(s, e) = stA + et mod q (for short error vector e)
using a shared trapdoor. We find it surprising that, while in the standalone setting this
inversion task is conceptually and algorithmically much simpler than Gaussian sam-
pling, we have not yet been able to find a simple threshold protocol for it.2 Such a
protocol could, for example, be useful for obtaining threshold analogues of the chosen
ciphertext-secure cryptosystems from [29,25], without going through a generic IBE-to-
CCA transformation [8].

Related work in threshold lattice cryptography. A few works have considered lattice
cryptography in the threshold setting. For encryption schemes, Bendlin and Damgård [7]
gave a threshold version of Regev’s CPA-secure encryption scheme based on the learn-
ing with errors (LWE) problem [32]. Related work by Myers et al. [27] described thresh-
old decryption for fully homomorphic cryptosystems. Xie et al. [36] gave a threshold
CCA-secure encryption scheme from any lossy trapdoor function (and hence from lat-
tices/LWE [31]), though its public key and encryption runtime grow at least linearly
with the number of trustees. For signatures, Feng et al. [21] gave a threshold signature
scheme where signing proceeds sequentially through each trustee, making the scheme
highly interactive; also, the scheme is based on NTRUSign, which has been broken [28].
Cayrel et al. [16] gave a lattice-based threshold ring signature scheme, in which at
least t trustees are needed to create an anonymous signature. In that system, each trustee
has its own public key, and verification time grows linearly with the number of trustees.
In summary, lattice-based threshold schemes to date have either been concerned with
distributing the decryption operation in public-key cryptosystems, and/or have lacked
key efficiency properties typically asked of threshold systems (which our protocols do

2 We note that it is possible to give a threshold protocol using a combination of Gaussian sam-
pling and trapdoor delegation [15,25], but it is obviously no simpler than Gaussian sampling
alone.
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enjoy). Also, other important applications such as (H)IBE have yet to be realized in a
threshold manner.

Organization. The remainder of the paper is organized as follows. In Section 2 we recall
the relevant background on lattices, secret sharing, and the UC framework. In Section 3
we review the standalone key-generation and discrete Gaussian sampling algorithms of
[25], present our functionalities for these algorithms in the threshold setting, and show
how these functionalities can be implemented efficiently and noninteractively using
trusted setup. We additionally provide a functionality and protocol for trapdoor delega-
tion. In Section 4 we remove the trusted setup assumption and show how to implement
the key generation functionality. Due to space restrictions, we refer to the full version
for implementations of the Gaussian sampling functionalities using offline interaction
instead of trusted setup. The full version also details a simple example application of
our protocols, namely, a threshold version of the GPV signature scheme [22] realizing
the threshold signature functionality of [5].

2 Preliminaries

We denote the reals by R and the integers by Z. For a positive integer �, we let [�] =
{1, . . . , �}. A symmetric real matrix Σ is positive definite, written Σ > 0, if ztΣz > 0
for all nonzero z. Positive definiteness defines a partial ordering on real matrices: we say
that X > Y if X−Y > 0. We say that X is a square root of a positive definite matrix
Σ, written X =

√
Σ, if XXt = Σ. The largest singular value (also called spectral

norm or operator norm) of a real matrix X is defined as s1(X) = maxu 	=0‖Xu‖/‖u‖.
For convenience, we sometime write a scalar s to mean the scaled identity matrix sI,
whose dimension will be clear from context.

2.1 Lattices and Gaussians

A lattice Λ is a discrete additive subgroup of Rm for some m ≥ 0. In this work we are
only concerned with full-rank integer lattices, which are subgroups of Zm with finite
index. Most recent cryptographic applications use a particular family of so-called q-ary
integer lattices, which contain qZm as a sublattice for some integer q, which in this
work will always be bounded by poly(n). For positive integers n and q, let A ∈ Zn×m

q

be arbitrary, and define the full-rank m-dimensional q-ary lattice

Λ⊥(A) = {z ∈ Zm : Az = 0 mod q}.

For any u ∈ Zn
q admitting an integral solution x ∈ Zm to Ax = u mod q, define the

coset (or shifted lattice)

Λ⊥
u (A) = Λ⊥(A) + x = {z ∈ Zm : Az = u mod q}.

We define the Gaussian function ρ : Rm → (0, 1] as ρ(x) = exp(−π〈x,x〉) =
exp(−π‖x‖2). Generalizing to any nonsingular B ∈ Rm×m, we define the Gaussian
function with parameter B as

ρB(x) := ρ(B−1x) = exp
(
−π · xtΣ−1x

)
,
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where Σ = BBt > 0. Because ρB is distinguished only up to Σ, we usually refer
to it as ρ√Σ , and refer to Σ as its covariance matrix. For a lattice coset Λ + c and
covariance matrix Σ > 0, the discrete Gaussian distribution DΛ+c,

√
Σ is defined to

assign probability proportional to ρ√Σ(x) to each x ∈ Λ+ c, and zero elsewhere. That
is, DΛ+c,

√
Σ(x) := ρ√Σ(x)/ρ

√
Σ(Λ + c). A discrete Gaussian is said to be spherical

with parameter s > 0 if its covariance matrix is s2I.
In some of our proofs we use the notion of the smoothing parameter ηε(Λ) of a lattice

Λ [26], generalized to arbitrary covariances. For reasons associated with the smoothing
parameter, throughout the paper we often attach a factor ωn = ωn(n) = ω(

√
logn)

to Gaussian parameters
√
Σ (or ω2

n to covariance matrices Σ), which represents an
arbitrary fixed function that grows asymptotically faster than

√
logn. In exposition we

usually omit reference to these factors, but we always retain them where needed in
formal expressions. The full version gives further background on lattices and Gaussians.

2.2 The GPV Schemes

As mentioned in the introduction, the two non-trivial algorithmic steps of many lattice-
based cryptographic schemes are generating a lattice Λ = Λ⊥(A) together with a strong
trapdoor R, and sampling from discrete Gaussian distributions over a given coset of
Λ. In Section 3, we give functionalities and protocols for these tasks in the threshold
setting.

Here we briefly recall the well-known GPV signature scheme from [22], which uses
these operations (GenTrap and SampleD), and serves as an immediate application of
the present work. The scheme is parametrized by a security parameter n, modulus q,
and message space M, and it uses a hash function H : M → Zn

q which is modeled
as a random oracle. At a high level, GenTrap(n, q,m) (for sufficiently large m) gen-
erates a matrix A ∈ Zn×m

q with distribution statistically close to uniform, together
with a trapdoor R. Using these, SampleD(A,R,u, s) generates a Gaussian sample (for
any sufficiently large parameter s) over the lattice coset Λ⊥

u (A). The signature scheme
consists of the following three algorithms:

– KeyGen(1n): Let (A,R)← GenTrap(n, q,m) and output verification key vk = A
and signing key sk = R.

– Sign(sk, μ ∈ M): If (μ, σ) is already in local storage, output signature σ. Other-
wise, let x← SampleD(A,R, H(μ), s), store (μ, σ), and output signature σ = x.

– Verify(vk, μ, σ = x): If Ax = H(m) and x is sufficiently short, then accept;
otherwise, reject.

See [22] for the proof of (strong) unforgeability under worst-case lattice assumptions.
Another immediate application of the present work is the identity-based encryption
(IBE) scheme of [22], where vk and sk above are the master public and secret keys,
respectively, and signatures on identities are the secret keys for individual identities.

2.3 Secret Sharing

In this work we need to distribute secret lattice vectors among � players so that any
sufficiently large number of players can reconstruct the secret, but no group of t < � or
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fewer players collectively get any information about the secret. Because a lattice Λ is an
infinite additive group (and in particular is not a field), it is not immediately amenable
to standard secret-sharing techniques like those of [33]. There is a rich theory of secret
sharing for arbitrary additive groups and modules, e.g., [19,20]. We refer to the full
version of this paper for secret sharing details, and simply note here that a variant of the
Shamir secret sharing scheme has the desired properties.

Our notation is as follows: Let G be any finite abelian (additive) group. We denote
player i’s share of some value v ∈ G by �v�i, and the tuple of all such shares by �v�.

2.4 UC Framework

We frame our results in the Universal Composability (UC) framework [12,11]. In the
UC framework, security is defined by considering a probabilistic polynomial-time (PPT)
machine Z , called the environment. In coordination with an adversary that may corrupt
some of the players, Z chooses inputs and observes the outputs of a protocol executed
in one of two worlds: a “real” world in which the parties interact with each other in
some specified protocol π while a dummy adversaryA (controlled by Z) corrupts play-
ers and controls their interactions with honest players, and an “ideal” world in which
the players interact directly with a functionality F, while a simulator S (communicat-
ing with Z) corrupts players and controls their interactions with F. The views of the
environment in these executions are respectively denoted REALπ,A,Z and IDEALF,S,Z ,
and the protocol is said to realize the functionality if these two views are indistinguish-
able. In this work we are concerned solely with statistical indistinguishability (which is

stronger than the computational analogue), denoted by the relation
s≈.

Definition 1. We say that a protocol π statistically realizes a functionality F (or alter-
natively, is a UC-secure implementation of F) if for any probabilistic polynomial-time
(PPT) adversary A, there exists a PPT simulator S such that for all PPT environments

Z , we have IDEALF,S,Z
s≈ REALπ,A,Z .

What makes this definition so strong and useful is the general composition theorem [12],
which (informally) states that any UC-secure protocol remains secure under concurrent
general composition. This allows for the modular design of functionalities and protocols
which can be composed to produce secure higher-level protocols.

UC framework for threshold protocols. We consider a specialized case of the UC frame-
work that is appropriate for modeling threshold protocols. All of our functionalities are
called with a session ID of the form sid = (P , sid′), where P is a set of � parties
representing the individual trustees in the threshold protocol. We prove security against
t-limited adversaries, which may adaptively corrupt a bounded number t of the parties
over the entire lifetime of a protocol. Corruptions can occur before or after any invoked
protocol/functionality command, but not during its execution. At the time of corruption,
the entire view of the player to that point (and beyond) is revealed to the adversary; in
particular, we do not assume secure erasures. For robustness, we additionally require
that when the environment issues a command to a functionality/protocol, it always does
so for at least h honest parties in the same round.
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In the case of semi-honest corruptions, namely when corrupted parties reveal their
protocol traffic to the adversary but always execute the protocol faithfully, we prove
security for t < |P|/2 and h = t + 1. In the case of malicious corruptions, namely
when corrupted parties send messages on behalf of the adversary that are not necessar-
ily consistent with the protocol, we prove security for t < |P|/3 and h = 2t+1. These
parameters come directly from the secrecy and robustness guarantees of the secret shar-
ing scheme described in Section 2.3.

Many of our protocols require the parties to maintain and use consistent local states,
corresponding to certain shared random variables that are consumed by the protocols.
We note that synchronizing their local states may be nontrivial, if not every party is
involved with executing every command. For this reason we assume some mechanism
for coordinating local state, such as those like hashing suggested in [13], which deals
with similar synchronization issues.

3 Threshold KeyGen, Gaussian Sampling, and Delegation

In this section, we present UC functionalities and protocols for generating a lattice with
a shared trapdoor, for sampling from a coset of that lattice, and for securely delegating
a trapdoor of a higher-dimensional extension of the lattice. As an example application
of these functionalities, we describe threshold variants of the GPV signature and IBE
schemes [22] in the full version. Other signature and (H)IBE schemes (e.g., [15,1,25])
can be adapted similarly (where delegation is needed for HIBE).

In Section 3.1 we recall the recent standalone (non-threshold) key generation and
discrete Gaussian sampling algorithms of [25], which form the basis of our protocols.
In Section 3.2 we present the two main functionalities FKG (key generation) and FGS

(Gaussian sampling) corresponding to the standalone algorithms. We also define two
lower-level “helper” functionalitiesFPerturb and FCorrect, and show how they can be real-
ized noninteractively using either trusted setup or offline precomputation. In Section 3.3
we give an efficient noninteractive protocol that realizesFGS using access toFPerturb and
FCorrect. In Section 3.4 we give a functionality and protocol for trapdoor delegation.

Since key generation tends to be rare in applications, FKG can be realized using
trusted setup; alternatively, later in Section 4 we realizeFKG without trusted setup using
some lower-level functionalities described there. We additionally realize FPerturb and
FCorrect with these and other lower-level functionalities in the full version of the paper.

3.1 Trapdoors and Standalone Algorithms

We recall the notion of a (strong) lattice trapdoor and associated algorithms recently
introduced by Micciancio and Peikert [25]; see that paper for full details and proofs.
Let n and q be positive integers and k = �lg q�. Define the “gadget” vector g =
(1, 2, 4, . . . , 2k−1) ∈ Zk

q and matrix G := In⊗gt ∈ Zn×nk
q , the direct sum of n copies

of gt. The k-dimensional lattice Λ⊥(gt) ⊂ Zk , and hence also the nk-dimensional lat-
tice Λ⊥(G), has smoothing parameter bounded by sg · ωn, where sg ≤

√
5 is a known

constant. There are efficient algorithms that, given any desired syndrome u ∈ Zq , sam-
ple from a discrete Gaussian distribution over the coset Λ⊥

u (g
t) for any given parameter
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s ≥ sg · ωn. Since Λ⊥(G) ⊂ Znk is the direct sum of n copies of Λ⊥(gt), discrete
Gaussian sampling over a desired coset Λ⊥

u (G) (with parameter s ≥ sg · ωn) can be
done by concatenating n independent samples over appropriate cosets of Λ⊥(gt).

Definition 2 ([25]). Let m ≥ nk be an integer and define m̄ = m−nk. For A ∈ Zn×m
q ,

we say that R ∈ Zm̄×nk
q is a trapdoor for A with tag H∗ ∈ Zn×n

q if A [RI ] = H∗ ·G.
The quality of the trapdoor is defined to be the spectral norm s1(R).

Note that H∗ is uniquely determined and efficiently computable from R, because G
contains the n-by-n identity as a submatrix. Note also that if R is a trapdoor for A with
tag H∗, then it is also a trapdoor for AH := A− [0 | HG] with tag H∗ −H ∈ Zn×n

q .
The key-generation algorithm of [25] produces a parity-check matrix A ∈ Zn×m

q

together with a trapdoor R having desired tag H∗. It does so by choosing (or being
given) a uniformly random Ā ∈ Zn×m̄

q and a random R ∈ Zm̄×nk having small s1(R),
and outputs A = [Ā | H∗ ·G− ĀR]. For sufficiently large m ≥ Cn lg q (where C is a
universal constant) and appropriate distribution of R, the output matrix A is uniformly
random, up to negl(n) statistical distance.

The discrete Gaussian sampling algorithm of [25] is an instance of the “convolution”
approach from [30]. It works in two phases:

1. In the offline “perturbation” phase, it takes as input a parity-check matrix A, a
trapdoor R for A with some tag H∗ ∈ Zn×n

q , and a Gaussian parameter s ≥
Cs1(R) (where C is some universal constant). It chooses Gaussian perturbation
vectors p ∈ Zm (one for each future call to the online sampling step) having non-
spherical covariance Σp that depends only on s and the trapdoor R.

2. In the online “syndrome correction” phase, it is given a syndrome u ∈ Zn
q and a tag

H ∈ Zn×n
q . As long as H∗ −H ∈ Zn×n

q is invertible, it chooses z ∈ Znk having
Gaussian distribution with parameter sg · ωn over an appropriate coset of Λ⊥(G),
and outputs x = p + [RI ] z ∈ Λ⊥

u (AH), where p is a fresh perturbation from the
offline step.

Informally, the perturbation covariance Σp of p is carefully designed to cancel out the
trapdoor-revealing covariance of y = [RI ] z, so that their sum has a (public) spheri-
cal Gaussian distribution. More formally, the output x has distribution within negl(n)
statistical distance of DΛ⊥

u (AH),s·ωn
, and in particular does not reveal any information

about the trapdoor R (aside from an upper bound s on s1(R), which is public).
We emphasize that for security, it is essential that none of the intermediate valuesp, z

or y = [RI ] z be revealed, otherwise they could be correlated with x to leak information
about the trapdoor R that could lead to an attack like the one given in [28].

3.2 Functionalities for Threshold Sampling

Ideal functionalities for threshold key generation and discrete Gaussian sampling are
specified in Figure 1 and Figure 2, respectively; they internally execute the standalone
algorithms described above.
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Functionality FKG

Generate: Upon receiving (gen, sid, Ā ∈ Zn×m̄
q ,H∗ ∈ Zn×n

q , z) from at least h honest
parties in P :

– Choose R ← Dm̄×nk
Z,z·ωn

, and compute a sharing �R� over Zq . Let A = [Ā | H∗ ·
G− ĀR].

– Send (gen, sid,A, �R�i) to each party i in P , and (gen, sid,A,H∗, z) to the ad-
versary.

Fig. 1. Key generation functionality

To realize FKG in the trusted setup model (as used in [13]) we can simply let the
trusted party play the role of FKG, because key generation is a one-time setup. Without
trusted setup, we give in Section 4 a simple and efficient protocol that realizes FKG

using a simple integer-sampling functionalityFSampZ. This in turn can be realized using
general-purpose multiparty computation tools.

Functionality FGS

Initialize: Upon receiving (init, sid,A, �R�i,H∗, s, B) from at least h honest parties i in
P :

– Reconstruct R and store sid, A, R, H∗, s, and B.
– Send (init, sid) to each party in P , and (init, sid,A,H∗, s, B) to the adversary.

Sample: Upon receiving (sample, sid,H ∈ Zn×n
q ,u ∈ Zn

q ) from at least h honest parties
in P , if H∗ − H ∈ Zn×n

q is invertible and fewer than B calls to sample have already
been made:

– Sample x ← DΛ⊥
u (AH),s·ωn

using the algorithm from [25] with trapdoor R.
– Send (sample, sid,x) to all parties in P , and (sample, sid,H,u,x) to the adver-

sary.

Fig. 2. Gaussian sampling functionality

We realize FGS in Section 3.3. For modularity, the following subsections first define
two lower-level functionalitiesFPerturb andFCorrect (Figures 3 and 4), which respectively
generate the perturbation and syndrome-correction components of the standalone sam-
pling algorithm. We describe how these helper functionalities can be realized efficiently
and noninteractively using trusted setup, and the full version of this paper realizes them
without trusted setup. The FGS, FPerturb, and FCorrect functionalities are all initialized
with a bound B on the number of Gaussian samples that they will produce in their life-
times. This is so that the trusted setup/offline precomputation phases of our protocols
can prepare sufficient randomness to support noninteractive online phases. (If the bound
B is reached, then the parties can just initialize new copies of FGS, FPerturb, FCorrect.)

Perturbation. Our perturbation functionality FPerturb (Figure 3) corresponds to the of-
fline perturbation phase of the standalone sampling algorithm. The perturb command
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does not take any inputs, so it (and any realization) can be invoked offline, before the
result is needed. With trusted setup, the functionality can be realized trivially by just
precomputing and distributing (shares of) B samples in the initialization phase, which
the parties then draw from in the online phase. Without trusted setup FPerturb can be
realized relatively efficiently using FSampZ and some standard low-level MPC function-
alities (for multiplication and blinding).

Note that FPerturb distributes shares �p�i of a perturbation p to the players, which
themselves do not reveal any information about p to the adversary, just as in the stan-
dalone Gaussian sampling algorithm. However, in order for the perturbation to be use-
ful in the later online syndrome-correction phase, the parties will need to know (and so
FPerturb reveals) some partial information about p, namely, the syndromes w̄ = [Ā |
−ĀR] ·p ∈ Zn

q and w = [0 | G] ·p ∈ Zn
q . This is the main significant difference with

the standalone setting, in which these same syndromes are calculated internally but
never revealed. Informally, Lemma 1 below shows that the syndromes are uniformly
random (up to negligible error), and hence can be simulated without knowing p. Fur-
thermore, p will still be a usable perturbation even after w̄,w are revealed, because it
has an appropriate (non-spherical) Gaussian parameter which sufficiently exceeds the
smoothing parameter of the lattice coset to which it belongs. (This fact will be used
later in the proof of security for our FGS realization.)

Functionality FPerturb

Initialize: Upon receiving (init, sid,A−H∗ = [Ā | −ĀR], �R�i, s, B) from at least h
honest parties i in P :

– Reconstruct R to compute covariance matrix Σp = s2 − s2g [
R
I ] [R

t I ] and store
sid, A−H∗ , and Σp.

– Send (init, sid) to all parties in P , and (init, sid,A−H∗ , s, B) to the adversary.
Perturb: Upon receiving (perturb, sid) from at least h honest parties in P , if fewer than B

calls to perturb have already been made:
– Choose p ← D

Zm,
√

Σp·ωn
.

– Compute w̄ = A−H∗ · p ∈ Zn
q and w = [0 | G] · p ∈ Zn

q .
– Send (perturb, sid, w̄,w) to the adversary, and receive back shares �p�i ∈ Zm

q for
each currently corrupted party i in P .

– Generate a uniformly random sharing �p� consistent with the received shares.
– Send (perturb, sid, �p�i, w̄,w) to each party i in P .

Fig. 3. Perturbation functionality

Lemma 1. Let Ā ∈ Zn×m̄
q be uniformly random for m̄ = m−nk ≥ n lg q+ω(logn),

and let

B =

[
Ā −ĀR

G

]
= (Ā⊕G)

[
I −R

I

]
∈ Z2n×(m̄+nk)

q

(where⊕ denotes the direct sum). Then with all but negl(n) probability over the choice
of Ā, we have ηε(Λ⊥(B)) ≤

√
5(s1(R) + 1) · ωn for some ε = negl(n).
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In particular, for p← D
Zm,
√

Σp
where

√
Σp ≥ 6(s1(R)+ 1) ·ωn ≥ 2ηε(Λ

⊥(B)),

the syndrome u = [ w̄w ] = Bp ∈ Z2n
q is negl(n)-far from uniform, and the conditional

distribution of p given u is D
Λ⊥

u (B),
√

Σp
.

Proof. By [25, Lemma 2.4], we have ηε′(Λ⊥(Ā)) ≤ 2 · ωn (with overwhelming proba-
bility) for some ε′ = negl(n). Also as shown in [25], we have ηε′(Λ⊥(G)) ≤

√
5 · ωn.

This implies that
ηε(Λ

⊥(Ā⊕G)) ≤
√
5 · ωn

where (1 + ε) = (1 + ε′)2, and in particular ε = negl(n).
Since T =

[
I −R

I

]
is unimodular with inverse T−1 = [ I R

I ], it is easy to verify that
Λ⊥(B) = T−1 · Λ⊥(Ā⊕G), and hence

ηε(Λ
⊥(B)) ≤ s1(T

−1) · ηε(Λ⊥(Ā⊕G)) ≤
√
5(s1(R) + 1) · ωn.

Syndrome Correction. Our syndrome correction functionality FCorrect (Figure 4) cor-
responds to the syndrome-correction step of the standalone sampling algorithm. Be-
cause its output y must lie in a certain coset Λ⊥

v (A), where v depends on the desired
syndrome u, the functionality must be invoked online. As indicated in the overview, the
standalone algorithm samples z ← Λ⊥

v (G) and defines y = [RI ] z. The functionality
does the same, but outputs only shares of y to their respective owners. This ensures that
no information about y is revealed to the adversary. (Note that the input v itself is not
revealed in the standalone algorithm, but in our setting v is determined solely by public
information like the tags H∗,H and the syndromes w̄,w of the perturbation p.)

Functionality FCorrect

Initialize: Upon receiving (init, sid, �R�i, B) from at least h honest parties i in P :
– Reconstruct R and store sid, R, and B.
– Send (init, sid) to all parties in P , and (init, sid,B) to the adversary.

Correct: Upon receiving (correct, sid,v) from at least h honest parties in P , if fewer than
B calls to correct have already been made:

– Sample z ← DΛ⊥
v (G),sg·ωn

and compute y = [RI ] z.

– Send (correct, sid,v) to the adversary, receive shares �y�i ∈ Zm
q for each cor-

rupted party i, and generate a uniformly random sharing �y� consistent with these
shares.

– Send (correct, sid, �y�i) to each party i in P .

Fig. 4. Syndrome correction functionality

Realizing FCorrect with a noninteractive protocol relies crucially on the parallel and
offline nature of the corresponding step of sampling a coset of Λ⊥(G) in the algorithm
of [25]. In particular, we use the fact that without knowing v in advance, that algorithm
can precompute partial samples for each of the q = poly(n) scalar values v ∈ Zq ,
and then linearly combine n such partial samples to answer a query for a full syndrome
v ∈ Zn

q .
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In the trusted setup model, the protocol realizing FCorrect is as follows.

1. In the offline phase, a trusted party uses the trapdoor R (with tag H∗) to distribute
shares as follows. For each j ∈ [n] and v ∈ Zq , the party initializes queues Qi

j,v

for each party i, does the following B times, and then gives each of the resulting
queues Qi

j,v to party i.
– Sample zj,v ← DΛ⊥

v (gt),sg·ωn
.

– Compute yj,v = [RI ] (ej⊗zj,v), where ej ∈ Zn denotes the jth standard basis
vector. Note that

AH · yj,v = (H∗ −H)G · (ej ⊗ zj,v) = (H∗ −H)(v · ej),

where as always, AH = A− [0 | HG] for any H ∈ Zn×n
q .

– Generate a sharing for yj,v, and add �yj,v�
i to queue Qi

j,v for each party i ∈ P .
2. In the online phase, upon receiving (correct, sid,v), each party i dequeues an entry

�yj,vj �
i from Qj,vj for each j ∈ [n], and locally outputs �y�i =

∑
j∈[n]�yj,vj �

i.

Note that by linearity and the secret-sharing homomorphism, the shares �y�i re-
combine to some y = [RI ] z ∈ Zm for some Gaussian-distributed z of parameter
sg · ωn, such that AH · y = (H∗ −H) · v ∈ Zn

q .

The full version gives an efficient protocol for FCorrect, without trusted setup. It popu-
lates the local queues Qi

j,v in the offline phase in a distributed manner, using the shares
of R together with access to FSampZ and standard share-blinding FBlind and multiplica-
tion FMult functionalities. In short, it samples (shares of) the values zj,v from the coset
Λ⊥
v (g

t) using FSampZ, the homomorphic properties of secret sharing, and FBlind. Then
using FMult it computes (shares of) yj,v = [RI ] (ej ⊗ zj,v).

Legal Uses of the Functionalities. Putting the key-generation and Gaussian sampling
operations into separate functionalities FKG and FGS, and realizing FGS using these
helper functionalities, aids modularity and simplifies the analysis of our protocols. How-
ever, as a side effect it also raises a technical issue in the UC framework, since environ-
ments can in general provide functionalities with arbitrary inputs, even on behalf of
honest users. The issue is that FGS, FPerturb, and FCorrect are all designed to be initial-
ized with some common, valid state—namely, shares of a trapdoor R for a matrix A as
produced by FKG on valid inputs—but it might be expensive or impossible for the cor-
responding protocols to check the consistency and validity of those shares. Moreover,
such checks would be unnecessary in the usual case where an application protocol, such
as a threshold signature scheme, initializes the functionalities as intended.3

Therefore, we prove UC security for a restricted class of environments Z that always
initialize our functionalities with valid arguments. In particular, environments in Z
can instruct parties to instantiate FKG only with arguments Ā, z corresponding to a
statistically secure instantiation of the trapdoor generator from [25]. Similarly,FGS (and

3 This issue is not limited to our setting, and can arise anytime the key-generation and secret-key
operations of a threshold scheme are put into separate functionalities. We note that using “joint
state” [14] does not appear to resolve the issue, because it only allows multiple instances of
the same protocol to securely share some joint state.
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FDelTrap) can be initialized only with a matrix A, tag H∗, and shares of a trapdoor R
matching those of a prior call to the gen command of FKG, and with a sufficiently large
Gaussian parameter s ≥ Cs1 ·ωn, where s1 is a high-probability upper bound on s1(R)
for the trapdoor R generated by FKG. (The functionalities FPerturb and FCorrect are not
intended for direct use by applications, but for proving the security of their realizations
we also require that they be initialized using a prior output of FKG.) These restrictions
are all described more formally in the full version of the paper.

We emphasize that these restrictions on the environment are not actually limiting in
any meaningful way, since our functionalities are only intended to serve as subroutines
in higher-level applications. As long as an application protocol obeys the above condi-
tions in its use ofFKG andFGS (andFDelTrap), the UC framework’s composition theorem
will still hold for the application itself, without any restriction on the environment.

3.3 Gaussian Sampling Protocol

Figure 5 defines a protocol πGS that realizes the Gaussian sampling functionality FGS

in the (FPerturb,FCorrect)-hybrid model. Its sample command simply makes one call to
each of the main commands of FPerturb and FCorrect, adjusting the requested syndrome
as necessary to ensure that the syndrome of the final output is the desired one. (This
is done exactly as in the standalone algorithm.) The shares of the perturbation p and
syndrome-correction term y are then added locally and announced, allowing the play-
ers to reconstruct the final output x = p + y. The security of πGS is formalized in
Theorem 1, and proved via the simulator SGS in Figure 6.

An essential point is that given the helper functionalities, the protocol πGS is com-
pletely noninteractive, i.e., no messages are exchanged among the parties, except when
broadcasting their shares of the final output. Similarly, recall that our realizations of
FPerturb andFCorrect are also noninteractive, either when using trusted setup or offline pre-
computation. In other words, in the fully realized sampling protocol, where the helper
functionalities are replaced by their respective realizations, the parties can sample from
any desired coset using only local computation, plus one broadcast of the final output
shares. We emphasize that this kind of noninteractivity is nontrivial, because the number
of possible cosets is exponentially large.

Theorem 1. Protocol πGS statistically realizes FGS in the (FPerturb, FCorrect)-hybrid
model for t-limited environments in Z .

Proof (sketch). Essentially, the simulator SGS in Figure 6 just maintains consistent shar-
ings of p = 0 and y = x for each call to sample, and releases player i’s shares of these
values (on behalf of FPerturb and FCorrect) upon corruption of player i. The fact that p
and y in SGS are from incorrect distributions is not detectable (even statistically) by the
environment Z , because it sees at most t shares of each, and the shares are consistent
with announced shares of x = p+ y.

The only other significant issues relate to (1) the syndromes w̄,w output publicly by
FPerturb in the (FPerturb,FCorrect)-hybrid world, versus the simulator’s choices of those
values (on behalf of FPerturb) in the ideal world; and (2) the distribution (conditioned
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Protocol πGS in the (FPerturb, FCorrect)-hybrid model

Initialize: On input (init, sid,A, �R�i,H∗, s, B), party i stores H∗, calls
FPerturb(init, sid,A−H∗ , �R�i, s, B) and FCorrect(init, sid, �R�i, B), and outputs
(init, sid).

Sample: On input (sample, sid,H,u), if H∗ −H ∈ Zn×n
q is invertible, and if fewer than

B calls to sample have already been made, then party i does:
– Call FPerturb(perturb, sid) and receive (perturb, sid, �p�i, w̄,w).
– Compute v = (H∗ −H)−1(u− w̄)−w ∈ Zn

q .
– Call FCorrect(correct, sid,v) and receive (correct, sid, �y�i).
– Broadcast �x�i = �p�i + �y�i and reconstruct x = p+ y.
– Output (sample, sid,x).

Fig. 5. Gaussian sampling protocol

Simulator SGS

Initialize: Upon receiving (init, sid,A,H∗, s,B) from FGS, reveal to Z (init, sid) as out-
puts of both FPerturb and FCorrect to each currently corrupted party and any party that is
corrupted in the future.

Sample: Upon receiving (sample, sid,H,u,x) from FGS:
– Choose uniform and independent w̄,w ∈ Zn

q and compute v = (H∗ −H)−1(u−
w̄)−w ∈ Zn

q .
– On behalf of FPerturb, send (perturb, sid, w̄,w) to Z and receive back shares �p�i

for each currently corrupted party i in P . Generate a uniformly random sharing
�p� of p = 0 consistent with these shares. Send (perturb, sid, �p�i, w̄,w) to each
corrupted party i in P on behalf of FPerturb.

– On behalf of FCorrect, send (correct, sid,v) to Z and receive back shares �y�i for
each currently corrupted party i in P . Generate a uniformly random sharing �y�
of y = x consistent with these shares. Send (correct, sid, �y�i) to each corrupted
party i in P on behalf of FCorrect.

– Broadcast �x�i = �p�i + �y�i on behalf of each honest party i.
Corruption: When Z requests to corrupt party i, for each previous call to sample, reveal

the corresponding messages (perturb, sid, �p�i, w̄,w) and (correct, sid, �y�i) to party
i on behalf of FPerturb and FCorrect, respectively.

Fig. 6. Simulator for πGS

on any fixed w̄,w) of the final output x in both worlds. For item (1), as proved in
Lemma 1, in the hybrid world the syndromes w̄,w are jointly uniform and independent
(up to negligible statistical distance) over the choice of p by FPerturb, just as they are
when produced by the simulator. Moreover, conditioned on any fixed values of w̄,w,
the distribution of p in the hybrid world is a discrete Gaussian with covariance Σp

over a certain lattice coset Λ⊥
u (B), and the actual value of p from this distribution is

perfectly hidden by the secret-sharing scheme.
For item (2), the above facts imply that in the hybrid world, x = p+y has spherical

discrete Gaussian distribution DΛ⊥
u (AH),s, just as the output x of FGS does in the ideal
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world (up to negligible statistical error in both cases). The proof is almost word-for-
word identical to that of the “convolution lemma” from [25], which guarantees the
correctness of the standalone sampling algorithm (as run by FGS in the ideal world).
The only slight difference is that in the hybrid world, p’s distribution (conditioned on
any fixed values of w̄,w) is a discrete Gaussian with parameter

√
Σp over a fixed coset

of Λ⊥(B), instead of over Zm as in the standalone algorithm. Fortunately, Lemma 1
says that

√
Σp ≥ 2ηε(Λ

⊥(B)), and this is enough to adapt the proof from [25] to the
different distribution of p.

Finally, by the homomorphic properties of secret sharing, the shares �p�i + �y�i

announced by the honest parties are jointly distributed exactly as a fresh sharing of x as
produced by the simulator. We conclude that the hybrid and real views are statistically
indistinguishable, as desired.

3.4 Trapdoor Delegation

Here we sketch a straightforward use of the above protocols to do distributed trapdoor
delegation, which is used in hierarchical IBE schemes. Due to space restrictions, we
leave the formal definition of a trapdoor delegation functionality, protocol, and proof of
security to the full version of the paper.

The functionality FDelTrap corresponds to the algorithm DelTrap in [25] for dele-
gating a lattice trapdoor. That algorithm works as follows: given a trapdoor R for
some A ∈ Zn×m

q , and an extension A′ = [AH|A1] ∈ Zn×(m+nk)
q (where AH =

A − [0 | HG] as always) and tag H′ ∈ Zn×n
q , it outputs a trapdoor R′ for A′ with

tag H′, where the distribution of R′ is Gaussian (and in particular is independent of
R). It does this simply by sampling Gaussian columns of R′ to satisfy the relation
AH ·R′ = H′ ·G −A1. In the threshold setting, where the parties have a sharing of
the trapdoorR, a distributed protocol for this process is trivial in theFGS-hybrid model:
the parties simply use FGS to sample the columns of R′, using the public columns of
H′ ·G−A1 as the desired syndromes.

4 Key Generation without Trusted Setup

Here we show how to implement the key-generation functionality FKG without any
trusted setup, instead using access to two low-level functionalities FBlind and FSampZ.
Informally, FBlind takes shares of some value and returns to each party a fresh sharing
of the same value, andFSampZ distributes shares of a discrete Gaussian-distributed value
over the integer lattice Z (or equivalently,Zh×w for some h,w ≥ 1). The full definitions
of these functionalities, which we use for realizing other functionalities without trusted
setup, are given in the full version of the paper along with descriptions of interactive
protocols realizing them offline. A simplified version of FSampZ that is sufficient for
realizing FKG is given in Figure 7.

The protocol πKG realizing FKG in the (FSampZ,FBlind)-hybrid model is straight-
forward given the homomorphic properties of the secret-sharing scheme and the sim-
ple operation of the standalone trapdoor generator, which just multiplies a public uni-
form matrix Ā with a secret Gaussian-distributed matrix R. The parties get shares
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Functionality FSampZ

Sample: Upon receiving (sample, sid, h× w, z, d) from at least h honest parties in P :
– Sample X ← Dh×w

Z,z·ωn
and generate a fresh sharing �X� over Zqd .

– Send (sample, sid, �X�i) to each party i in P and (sample, sid, h×w, z, d) to the
adversary.

Fig. 7. Integer sampling functionality

of a Gaussian-distributed trapdoor R using FSampZ, then announce blinded shares of
A1 = −ĀR mod q and reconstruct A1 to determine the public key A = [Ā | A1].
The blinding is needed so that the announced shares reveal only A1, and not anything
more about the honest parties’ shares �R�i themselves. The formal protocol πKG is
given in Figure 8.

Protocol πKG in the (FSampZ,FBlind)-hybrid model

Generate: On input (gen, sid, Ā ∈ Zn×m̄
q ,H∗ ∈ Zn×n

q , z), party i does:
– Call FSampZ(sample, sid, m̄× nk, z, 1) and receive (sample, sid, �R�i).
– Call FBlind(blind, sid,−Ā�R�i) and receive (blind, sid, �A1�

i).
– Broadcast �A1�

i and reconstruct A1 = −ĀR from the announced shares.
– Output (gen, sid,A = [Ā | H∗ ·G+A1], �R�i).

Fig. 8. Key generation protocol

The announced (blinded) shares −Ā�R�i form a uniformly random (and indepen-
dent of the honest parties’ outputs �R�i) sharing of A1 = −ĀR. This is the heart of
the security analysis; a simulator for demonstrating security is given in the full version.

Theorem 2. Protocol πKG statistically realizes FKG in the (FSampZ,FBlind)-hybrid
model for t-limited environments in Z .
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Abstract. A group encryption scheme allows anyone to form a ciphertext for a
given group member while keeping the receiver’s identity private. At the same
time, the encryptor is capable of proving that some (anonymous) group member
is able to decrypt the ciphertext and, optionally, that the corresponding plaintext
satisfies some a priori relation (to prevent sending bogus messages). Finally, in
case of a dispute, the identity of the intended receiver can be recovered by a
designated authority. In this paper, we abstract a generic approach to construct
group encryption schemes. We also introduce several new implementation tricks.
As a result, we obtain group encryption schemes that significantly improve the
state of the art. Both interactive and non-interactive constructions are considered.

Keywords: Group encryption, Canetti-Halevi-Katz paradigm, homomorphic en-
cryption, structure-preserving signatures, (non)-interactive zero-knowledge.

1 Introduction

Basically, group signature schemes [7] allow a registered group member to conceal her
identity when issuing digital signatures. However, any group signature can be opened
by a designated group authority to reveal the signature’s originator. In a dual way, group
encryption schemes [12] provide revocable anonymity to the ciphertext’s receiver. More
specifically, a group encryption scheme is a public-key encryption scheme augmented
with special properties: (1) the receiver’s identity is hidden among the set of group
members, (2) an opening authority is able to uncover the receiver’s identity if need be,
and (3) the ciphertext’s originator is able to convince a verifier that (3-a) the ciphertext
can be decrypted by a group member, (3-b) the opening authority can open the cipher-
text and revoke the anonymity, and (3-c) the corresponding plaintext satisfies some a
priori relation.

The additional features enjoyed by group encryption schemes make them suitable
for a number of privacy-aware applications. One of them resides in secure oblivious
retriever storage where anonymous credentials may move between computing elements
(computer, mobile unit, etc. . . ). Asynchronous transfer, which does not require the pres-
ence of all devices (subject to the transfer) at the same time, may resort to an untrusted
server for storing temporarily the encrypted credentials. Group encryption can be em-
ployed in implementing such a storage server where it is guaranteed that (1) the server
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stores well formed encrypted credentials; (2) the credentials have a legitimate anony-
mous retriever (3) if necessary, an authority is able to pin down the identity of the
retriever. Further scenarios where group encryption can be utilized are described in
[12,6].

Related Work. The concept of group encryption was first formalized by Kiayias, Tsiou-
nis, and Yung [12]. They also provide a modular design to build such schemes along
with a concrete instantiation. Their realization achieves a ciphertext size of 2.4 kB and
a well-formedness proof of approximately 70 kB for an 80-bit security level and a 2−50

soundness error. The main criticism to the proposal lies in entailing interaction with
the verifier in order to prove the validity of the ciphertext. In fact, interaction can be
cumbersome in situations where the encryptor needs to run the proof several times with
different verifiers, as this would require remembering all the random coins used to form
the ciphertext.

This shortcoming was addressed in subsequent works. First, Qin et al. [15] suggested
a closely related primitive with non-interactive proofs of well-formedness of the cipher-
text using the random oracle idealization. Then, Cathalo, Libert, and Yung [6] provided
the first non-interactive realization of group encryption in the standard model. Their
ciphertext and proof are also significantly shorter than those of [12] (the ciphertext
size is 1.25 kB and the proof size is 16.125 kB for a 128-bit security level). However,
the dark side of this non-interactive proposal resides in the expensive cost of the proof
verification (several thousands of pairings) due to the recourse to Groth-Sahai [11]’s
system.

To summarize the state of the art in group encryption, there is on the one hand an
interactive proposal with a rather consequent size of the ciphertext and its proof of well-
formedness, but which has the merit of having an efficient verification of this proof, and
on the other hand, there is a non-interactive realization which significantly reduces the
size of the ciphertext and its validity proof, but which is characterized by its computa-
tionally demanding proof verification.

It would be nice to combine the best of the two works and come up with a scheme
with short ciphertexts and proofs, and where both the interactive and non-interactive
setting are efficiently supported. This is the main contribution of this paper.

Contributions and Underlying Ideas. We propose a new design strategy for group en-
cryption which significantly improves the performance. Two main ideas underlay our
constructions.

First, instead of assembling highly secure components, we start with weaker — and
so more efficient — primitives to get a group encryption scheme secure in a weak sense.
The so-obtained scheme is next converted with a generic transform into a fully-secure
group encryption scheme. In addition to efficiency, starting with weaker components
also brings diversity and permits to develop further schemes, under various security
assumptions. As a by-product, we show that the transform used to upgrade the security
in group encryption applies to tag-based encryption and allows also to uplift the security
in this primitive while preserving the verifiability properties.

Second, we encrypt only an alias of the receiver’s public key in order to realize
the opening functionality, leading consequently to important extra savings in both size



Toward Practical Group Encryption 239

and computation. In fact, the prior works [12,6] include in the ciphertext an encryption
(using the opening authority’s public key) of the receiver’s public key in order to im-
plement the opening function. Since a public key often consists of a vector of group
elements, [12,6] use a chosen ciphertext secure encryption to encrypt each component
of the key. We remark that such an operation is unnecessary as the public keys are all
maintained in a public database. Therefore, encrypting only an alias of the key (which
will be recorded along with the key in the database) is enough for this functionality. The
opening authority needs then to execute the extra step of looking up the database for the
key corresponding to the alias, however we note that resorting to the opening function
is only done in case of disputes and occurs thus rarely.

Our new generic construction accepts many practical instantiations which support
both interactive and non-interactive validity proofs. For instance, we get for a 128-bit
security level, a concrete realization in the standard model with a ciphertext size of 0.4
kB, an interactive proof of 1 kB, a non-interactive proof of 2 kB which requires 325
pairing evaluations (vs. 3895 in [6]) for the verification.

Finally, we note that due to space constraints, all technical details, proofs, and ana-
lyzes of our results, are deferred to the long version [2].

2 Group Encryption: Syntax and Security Model

In this section, we review the formal definition of group encryption, as introduced
in [12]. We also present the corresponding security notions.

It is useful to introduce some notation. For a two-party protocol between A and
B, we represent its execution as 〈outputA | outputB〉 ← 〈A(inputA), B(inputB)〉-
(common-input). The security properties are described through experiments where
the adversary is given access to oracles. We write Aoracle(·) to denote that adversary
A has access to oracle oracle(·). When a query is not allowed, we use the symbol ¬:
Aoracle¬(some query)(·).

2.1 Syntax

A group encryption scheme consists of the following algorithms/protocols:

setup(1κ). On input a security parameter κ, this probabilistic algorithm generates the
public parameters param of the scheme. Although not always explicitly mentioned,
param will serve as an input to all the algorithms/protocols that follow.

(Gr,R, sampleR). This tuple of algorithms is part of the setup procedure and is
needed for verifiability; i.e., proving that the decryption of a certain ciphertext sat-
isfies a given relation. In this sense, Gr generates the key pair (pkR, skR) of the
relation R from a security parameter. Similarly to [12,6], skR can be empty if
the relation R is publicly sampleable (e.g., the Diffie-Hellman relation in bilinear
groups). On input the key pair of the relation R, algorithm sampleR produces a
pair (x,w) consisting of an instance x and a witness w for the relation R. The
polynomial-time testing procedureR(x,w) returns 1 iff (x,w) belongs to the rela-
tion based on the public parameter pkR.
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keygenE(param). This probabilistic algorithm outputs the key pair (pkE, skE) of
the entity E in the system; E can either be the group manager GM who manages
the set of receivers (group members), or the opening authority OA that recovers the
receiver’s identity from a given ciphertext, or a group member User who receives
ciphertexts.

join = 〈JUser(param),GM(skGM)〉(pkGM). This is an interactive protocol between
GM and the potential joining group member JUser. The latter sends her public key
pk to GM and prospectively proves the correctness of her key, whereas GM issues
(at the end) a certificate certpk that marks the effectiveness of the user’s member-
ship. GM stores additionally the pair (pk , certpk ) in a public directory database .

encrypt(pkGM, pkOA, pk , w, L). On input the respective public keys pkGM and pkOA

of GM and OA, the (certified) public key pk of the receiver, this algorithm encrypts
the witness w to produce a ciphertext ψ for a certain label L (which specifies the
“context” of the encryption).

prove = 〈P(w, coinsψ),V(param)〉(pkGM, pkOA, pkR, x, ψ, L). This is an interac-
tive protocol between a sender P (acting as the prover) who has generated the
ciphertext ψ and any verifier V ; in this protocol, the sender uses the random coins
used to produce ψ in order to prove that there is a group member whose key is
registered in database and who is capable of decrypting ψ, under label L, and re-
covering a witness w such that (x,w) ∈ R. At the end of the protocol, the verifier
outputs 1 if the proof is accepted, and 0 otherwise.

decrypt(sk , ψ, L). On input the private key sk of the group user, this algorithm de-
crypts the ciphertext ψ, under label L, and outputs the witness w (or a failure sym-
bol ⊥).

open(skOA, ψ, L). On input the private key skOA of OA and a ciphertext ψ with cor-
responding label L, this algorithm outputs the public key pk under which ψ was
created.

Remark 1. The verifiability of encryption is optional; if it is not desired, the relationR
can be set to the trivial relation that includes any string of fixed size as a witness.

2.2 Security Model

In addition to correctness, we require the following properties in a group encryption
scheme.

Soundness. In a soundness attack, the adversary creates adaptively the intended group
of receivers communicating with the genuine group manager. The adversary is suc-
cessful if it can produce a ciphertext ψ and a corresponding proof of validity w.r.t. a
relation R with a chosen pkR such that (1) ψ is invalid, or (2) opening ψ results in
an invalid public key or a value which is not equal to the public key of any group
member. We adhere to the same formal definition of [12,6]. This definition involves an
oracle reg(skGM, ·) that simulates the group manager GM and maintains a repository
database that comprises the registered public keys along with their certificates. The
space of valid ciphertexts is denoted by Lx,L,pkR,pkGM,pkOA,pk

ciphertext and is given by{
encrypt(pkGM, pkOA, pk , w, L) : (x,w) ∈ R and pk ∈ database

}
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The space of valid public keys is denoted by LparamPK . A group encryption scheme satis-
fies soundness if for any polynomial-time adversaryA, the experiment below returns 1
with negligible probability.

Experiment Expsoundness
A (κ)

1. param ← setup(1κ);
2. (pkGM, skGM) ← keygenGM(1

κ, param); (pkOA, skOA) ← keygenOA(1
κ, param);

3. (aux , pkR, x, ψ, L) ← Areg(skGM,·)(param , pkGM, pkOA, skOA);
4. 〈done | out〉 ← 〈A(aux ),V(param)〉(pkGM, pkOA, pkR, x, ψ,L);
5. If (out = 0) return 0;
6. pk ← open(skOA, ψ, L);

7. If (pk /∈ database) or (pk /∈ Lparam
PK ) or (ψ /∈ Lx,L,pkR,pkGM,pkOA,pk

ciphertext ) return 1
else return 0.

Message Security. The message security captures the property that an adversary can-
not learn any information whatsoever on a message from an encryption of it. Strong
security guarantees require that this holds true even when the adversary has adaptive
access to a decryption oracle. For group encryption, it is also assumed that the adver-
sary may control the group manager and the opening authority, and that he has access
to the prove oracle in the challenge phase. We let IND-CCA denote the corresponding
security notion. There is a weaker notion, denoted IND-sl-wCCA, where the adversary
commits to the target label beforehand (selective-label attacks) and is not allowed to
issue decryption queries involving the target label (weak chosen-ciphertext attacks).

Formally, a group encryption scheme meets the IND-sl-wCCA notion if the success
probability of any polynomial-time adversary A to distinguish among encryptions of
a chosen message and of a random message is at most negligibly better (in security
parameter κ) than 1/2 in the experiment that follows. In this experiment we use the
following notation (similar to that in [12,6].

– decrypt¬(·,L)(sk , ·): is a stateless decryption oracle which is restricted not to de-
crypt ciphertexts w.r.t. the label L.

– CHb
ror(1

κ, pk , w, L): is a real-or random challenge oracle that is only queried once.
It returns ψ, coinsψ such that ψ ← encrypt(pkGM, pkOA, pk , certpk , w, L) if b =
1, and ψ ← encrypt(pkGM, pkOA, pk , certpk , w

′, L) otherwise, where w′ is a
random plaintext chosen uniformly in the space of messages of length 1κ. In both
cases coinsψ denote the random coins used to produce ψ.

– provebP,P′(pkGM, pkOA, pkR, x, L, ψ): this a stateful oracle that the adversary can
query on multiple occasions. If b = 1, it runs the real prover P (of the prove

procedure) using the private inputs w, coinsψ, pk , certpk to produce a real proof
(the common input being pkGM, pkOA, pkR, x, L, ψ). If b = 0, the oracle runs a
simulator P ′ on the same common input pkGM, pkOA, pkR, x, L, ψ, but which is
deprived from the private input w, coinsψ (P ′ may have access to pk , certpk ), to
generate a simulated proof. As pointed in [12,6], designing an efficient simulator
P ′ is part of proving the security.
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Experiment ExpIND-sl-wCCA
A (κ)

1. param ← setup(1κ);
2. (aux , pkGM, pkOA, L)← A(param);
3. 〈pk , sk , certpk | aux , pk , certpk 〉 ← 〈JUser(param),A(aux )〉(pkGM);

4. (aux , x, w, pkR)← Adecrypt¬(·,L)(sk ,·)(aux );  Find stage

5. If (x,w) /∈ R then abort;

6. b
R←− {0, 1}; (ψ, coinsψ)← CHb

ror(1
κ, pk , w, L);

7. b� ← AprovebP,P′(pkGM,pkOA,pkR,x,L,ψ),decrypt¬(·,L)(sk ,·)(aux , ψ);  Guess

stage

8. If (b = b�) return 1 else return 0.

To get the full IND-CCA security level, the above experiment is modified in a way such
that:

(i) the adversary is required to select the target label L only at the end of its find
stage, and

(ii) the adversary is no longer restricted in its decryption queries (with the sole excep-
tion of the pair (ψ,L) in its guess stage) — in particular, the adversary is allowed
to issue decryption queries including the target label L.

Anonymity. The notion of anonymity is described in an analogous way and comes with
similar variations. The goal of the adversary is now to distinguish among two possible
receivers given the encryption of a same witness under two different public keys. Of
course, the adversary does not control the opening authority (and so is given the public
opening key pkOA).

The formal definition of selective-label anonymity against weak chosen-ciphertext
attacks (in short, ANO-sl-wCCA) follows. The notion of ANO-sl-wCCA is met if the
success probability of any polynomial-time adversary A is at most negligibly better
than 1/2. The formal definition of ANO-CCA (anonymity against chosen-ciphertext at-
tacks) is obtained by modifying the experiment as for the IND-CCA notion (see above).
Similarly to [12,6], we introduce the following notations:

– open¬(·,L)(skOA, ·): is a stateless opening oracle, for the key pkOA, which is re-
stricted not to open ciphertexts w.r.t. the label L.

– CHb
anon(pkGM, pkOA, pk0, pk1, w, L): is a challenge oracle that is queried once.

It returns ψ, coinsψ such that ψ ← encrypt(pkGM, pkOA, pk b, certb, w, L) and
coinsψ denote the coins used to produce ψ.

– User(pkGM): is a stateful oracle that simulates two executions of JUser to introduce
two honest users in the group. It uses a string keys where the outputs of the two
executions are written.

Experiment ExpANO-sl-wCCA
A (κ)

1. param ← setup(1κ); (pkOA, skOA) ← keygenOA(1
κ, param);
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2. (aux , pkGM, L) ← A(param);aux ← AUser(pkGM),open¬(·,L)(skOA,·)(aux , pkOA);
If keys �= (pk0, sk0, certpk0

, pk1, sk1, certpk1) return 0;

3. (aux , x, w, pkR) ← Aopen¬(·,L)(skOA,·), decrypt¬(·,L)(sk0,·), decrypt¬(·,L)(sk1,·)(aux );
4. If (x,w) /∈ R return 0;

5. b
R←− {0, 1}; (ψ, coinsψ) ← CHb

anon(pkGM, pkOA, pk0, pk1, w, L);

6. b� ← AproveP ,open¬(·,L)(skOA,·), decrypt¬(·,L)(sk0,·), decrypt¬(·,L)(sk1,·)(aux , ψ);
7. If (b = b�) return 1 else return 0.

3 Building Group Encryption Schemes

In this section we present our new strategy to build efficient group encryption schemes.
We start by providing a construction which achieves “weak” security properties from
“weakly secure” components. Next, we use a technique evocative of the Canetti-Halevi-
Katz transformation to upgrade the security of the resulting construction into full-
fledged CCA security.

In the rest of this paper, and in order to avoid confusion, we use a dot notation to refer
the different components; for instance, Γ.encrypt() refers to the encryption algorithm
of public-key scheme Γ , Σ.pk to the public key of signature scheme Σ, etc.

3.1 A Generic Construction

Our construction for group encryption departs from the specific constructions in [12,6]
in encrypting only an alias to the public key (computed using a function H) instead
of encrypting the entire public key. As will become apparent, such a change drastically
reduces the cost and size of the resulting encryption. Moreover, and similarly to [6], it
does not include the commitment on the public key (and potentially on its certificate) in
the ciphertext.

Let ΓUser = (keygen, encrypt, decrypt) and ΓOA = (keygen, encrypt,
decrypt) be two public-key encryption schemes with labels. Let further Σ =
(keygen, sign, verify) be a signature scheme. We assume that the message space
of Σ includes the public-key space of ΓUser. Finally, let H denote a collision-resistant
function from the public key space of ΓUser to the message space of ΓOA.

The properties required for H to guarantee an efficient prove algorithm/protocol
are described in the next section. Actually, even the collision-resistance property can
be weakened as we will see later since GM has some control over the public keys she
certifies, and therefore may proceed to simple measures in case a collision occurs.

setup(1κ). This algorithm invokes the setup algorithms for the building blocks
(namely, ΓUser, ΓOA, and Σ), and outputs param . The public parameters param
are input to all the subsequent algorithms/protocols and further include the descrip-
tion of a relationR along with a key pair (pkR, skR) necessary for sampling pairs
(x,w) where (x,w) ∈ R and w belongs to the message space of ΓUser. Finally,
setup outputs also a description of a collision-resistant function H which maps
elements from the public key space of ΓUser into elements in the message space of
ΓOA.
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keygenGM(1
κ). This algorithm invokes Σ.keygen(1κ) and outputs (pkGM, skGM) =

(Σ.pk , Σ.sk).
keygenOA(1

κ). This algorithm invokes ΓOA.keygen(1κ) and outputs (pkOA, skOA) =
(ΓOA.pk , ΓOA.sk ).

keygenUser(1
κ). This algorithm invokes ΓUser.keygen(1κ) and outputs (pkUser,

skUser) = (ΓUser.pk , ΓUser.sk) as a key pair for the group member User.
join = 〈JUser,GM(skGM)〉(pkGM). The potential joining group member JUser wish-

ing to join the group sends her public key pkUser (obtained after calling keygenUser)
to GM, and the latter replies with the certificate certpkUser

= Σ.signΣ.sk(pkUser).
GM then stores (pkUser, H(pkUser), certpkUser

) in a public directory database . (We
stress that for any two different pkUser and pk ′

User, the values of H(pkUser) and
H(pk ′

User) will be different.)
encrypt(pkGM, pkOA, pkUser, w, L). This algorithm first produces an encryption ψ1

using ΓUser on w with the public key pkUser under label L, and then encrypts
H(pkUser) in ψ2 using ΓOA under label L with public key pkOA. The ciphertext
consists of the pair (ψ1, ψ2).

prove = 〈P(w, coinsΨ ),V(param)〉(pkGM, pkOA, pkR, x, ψ, L). P who created the
ciphertext ψ = (ψ1, ψ2) uses the coins used to produce ψ in order to prove to V :

– knowledge of the message underlying ψ1 and that it forms a witness for the
instance x w.r.t. the relationR;

– knowledge of the decryption of ψ2 and that it corresponds to the value of the
function H on the public key under which ψ1 is created;

– knowledge of a certificate on the public key used to create ψ1.
These proofs are detailed in Section 4.

decrypt(skUser, ψ, L). This algorithm parses ψ as (ψ1, ψ2), invokes ΓUser.decrypt
on (ψ1, L), and outputs the result of this decryption, say w, if (x,w) ∈ R, and ⊥
otherwise.

open(skOA, ψ, L). This algorithm parses ψ as (ψ1, ψ2), invokes ΓOA.decrypt on
(ψ2, L), then looks up database for the preimage w.r.t. H of such a decryption,
and outputs the result of this search.

Theorem 1. The construction of § 3.1 yields a group encryption scheme with

1. IND-sl-wCCA message security if ΓUser is a tag-based encryption scheme having
indistinguishability of encryptions under selective-tag weak chosen-ciphertext at-
tacks, and prove is zero knowledge.

2. ANO-sl-wCCA anonymity if ΓUser is a tag-based encryption scheme having in-
distinguishability of keys under selective-tag weak chosen-ciphertext attacks, ΓOA

is a tag-based encryption scheme having indistinguishability of encryptions under
selective-tag weak chosen-ciphertext attacks, and prove is zero knowledge.

3. soundness if the proof underlying prove is sound and the used certification scheme
is EUF-CMA secure. ��

3.2 A Canetti-Halevi-Katz Like Paradigm for Group Encryption

Canetti, Halevi, and Katz [4] provide a method that transforms any selective-
identity chosen-plaintext secure identity-based scheme into one with full-fledged
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chosen-ciphertext security. The transformation, referred to as the CHK transform, con-
sists in signing the ciphertext, result of encryption with the weakly secure identity-
based encryption scheme, using a one-time signature scheme, wherein the “identity” is
given by the verification key. Concurrently, MacKenzie, Reiter, and Yang [14] present a
method for converting a weakly chosen-ciphertext secure tag-based encryption scheme
to a fully secure public-key encryption scheme. Finally, Kiltz [13] combines the ideas
of [4,14,3] in order to derive chosen-ciphertext secure public-key encryption schemes
from selective-tag weakly chosen-ciphertext secure tag-based encryption schemes us-
ing one-time signatures.

Interestingly and analogously to [13], we can now turn a weakly secure group en-
cryption scheme as per Theorem 1 into a group encryption scheme with full message
security (i.e., IND-CCA) and full anonymity (i.e., ANO-CCA). Let GE� be a group en-
cryption satisfying the notions of IND-sl-wCCA and ANO-sl-wCCA. Given GE�, we
construct a group encryption scheme GE meeting the strong notions of IND-CCA and
ANO-CCA as depicted in Fig. 1. The conversion uses a one-time signature scheme
S = (keygen, sign, verify).

Theorem 2. The group encryption scheme GE obtained from the conversion in Fig. 1
has IND-CCA message-security and ANO-CCA anonymity if GE� is IND-sl-wCCA and
ANO-sl-wCCA, and S is a strongly secure one-time signature scheme. ��

GE .encrypt(pkGM, pkOA, pkUser, w, L)

1. (S.pk ,S.sk) ← S.keygen(1κ);
2. ψ� ← GE�.encrypt(pkGM, pkOA,

pkUser, w,S.pk);
3. σ ← S.sign(S.sk , ψ�‖L);
4. Return ψ ← (ψ�,S.pk , σ).

GE .decrypt(skUser, ψ, L)

1. Parse ψ as (ψ�,S.pk , σ);
2. If S.verify(S.pk, ψ�‖L) =⊥ then

return ⊥;
3. Else return GE�.decrypt(skUser, ψ

�,
S.pk).

Fig. 1. Conversion

Remark 2. This transformation can be also used to upgrade the security in TBE (from
sl-wCCA to full CCA indistinguishability and anonymity). In [13], Kiltz suggests to
achieve this task via a CCA secure public key encryption (PKE): first derive a CCA
secure PKE from an sl-wCCA secure TBE, then identify the pair “(message,tag)” in the
TBE by the message “message‖tag” in the PKE.
Our transform has the merit of preserving the algebraic structure of the message to
be encrypted. This impacts positively the verifiability of the encryption; i.e., proving
knowledge of the message underlying the CCA encryption is as efficient as proving
knowledge of the message underlying its sl-wCCA encryption.
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4 Efficient Instantiations

The sender of the message, in the construction provided in the previous section, is
compelled to provide the following proof in the prove procedure:

PoK = {(pk , certpk , w) : certpk = Σ.signΣ.sk (pk ) ∧
ψ1 = ΓUser.encryptpk (w) ∧
ψ2 = ΓOA.encryptpkOA

(H(pk )) ∧
(x,w) ∈ R
} (ψ1, ψ2, Σ.pk , pkOA, x)

where the private input of the prover are the coins used to form ψ1, ψ2 in addition to
pk , certpk , and m.

According to whether we want to provide an interactive or a non-interactive prove
procedure, the components underlying the construction have to satisfy different condi-
tions:

Non-interactive Setting. We can provide a non-interactive zero knowledge (NIZK)
prove if the language defined by this procedure is compatible with the Groth-Sahai
proof system [11]. In fact, [11] provides efficient NIZK or NIWI proofs for a num-
ber of languages that cover pairing-product equations, multi-scalar multiplication, and
quadratic equations.
In this case, the common reference string (CRS) needs to be part of the setup algo-
rithm. Besides, the private input of the prover has to consist of only group elements.
Moreover, the building blocks, namely Σ, ΓUser, ΓOA, H , andR need to perform only
group or pairing (if bilinear groups are involved) operations on this private input. For
example, we can consider structure-preserving signatures [9,8,1] for the certification
scheme Σ, Kiltz’[13] or Cash et al.’s [5] (described in Fig. 3) encryption schemes for
both ΓUser or ΓOA, the discrete logarithm or the Diffie-Hellman relation forR, and any
function H performing group or pairing operations on the input. Note however that the
statements underlying prove that consist of pairing-product equations need to be of
special form in order to accept zero knowledge proofs (otherwise prove will be only
witness-indistinguishable).

Interactive Setting. While having a number of useful properties, non-interactive proofs
built from Groth-Sahai’s proof system suffer the high verification cost due to the pair-
ing evaluations in the verification. Therefore, it would judicious to support the con-
struction in the previous section with an interactive variant of prove. This will decree
different conditions on the building blocks. The essence of these conditions consists
in manipulating the private input, which has to comprise only group elements, through
homomorphic maps.

The rest of this section is organized as follows. Subsection 1 will introduce formally
the classes of the different components Σ, ΓUser, ΓOA, H , and R that will lead to an
efficient interactive prove. Subsection 2 describes explicitly the interactive prove pro-
tocol in case the building blocks are instantiated from the previously presented classes.
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Finally, we provide a concrete realization of group encryption in Subsection 3 and com-
pare the resulting performances with those of the prior proposals [12,6].

4.1 Building Blocks

Definition 1 (The class S of certification schemes). S is the set of all digital signatures
Σ for which there exists a pair of efficient algorithms, convert and retrieve, where
convert inputs a verification key vk , a key pk (to be certified), and a valid signature
certpk (w.r.t. vk ) on pk , and outputs a tuple (S,R) such that:

1. R is information theoretically independent from certpk and pk . I.e. There exists an
algorithm simulate that inputs a verification key vk from the verification key space
and outputs a string statistically indistinguishable from R.

2. There exists an algorithm compute that on the input vk and R, computes a descrip-
tion of a map F : (GS , ∗S)× (Gpk , ∗pk)→ (GF , ◦F ):

– where (GS, ∗S) and (Gpk , ∗pk) are groups and GF is a set equipped with the
binary operation ◦F ,

– ∀(S, pk ), (S′, pk ′) ∈ (GS , ∗S) × (Gpk , ∗pk ) : F (S ∗S S′, pk ∗pk pk ′) =
F (S, pk ) ◦F F (S′, pk ′).

and an I such that F (S, pk ) = I .
3. The retrieve algorithm inputs a candidate tuple (S,R, pk) (satisfying the above

conditions) and vk , and outputs a key p̃k and a valid certificate c̃ert
p̃k

on it w.r.t.
vk .

Informally, this class includes signature schemes where the signature on a given mes-
sage can be converted into a “simulatable” part (denoted by R in the definition) that
does not reveal any information about the signature or the message to be signed (de-
noted by pk ), and a “vital” part (denoted by S) such that S and pk form a preimage,
by a homomorphic map F , of some quantity I computed only from R and the pub-
lic parameters. The last condition dictated by the retrieve algorithm guarantees the
non-triviality of the map F ; given (S,R, pk) satisfying F (S, pk) = I (I computed as
prescribed by the definition), one can come up with a pair of a message and a valid
signature on it w.r.t. the same verification key.

Definition 2 (The class R of relations).R is the set of relationsR such that there exists
an algorithm which inputs an instance x from the set of instances Gx (in addition to
the public parameters) and outputs a description of a map FR : (Gw, ∗w)→ (GR, ◦R)
where:

– Gw is the set of witnesses that is a group for ∗w, and GR is a set equipped with the
binary operation ◦R,

– ∀w,w′ ∈ Gw, : FR(w ∗w w′) = FR(w) ◦R FR(w′).

and an IR such that FR(w) = IR ⇔ (x,w) ∈ R.

Examples of such functions include the discrete logarithm or the Diffie-Hellman (in bi-
linear groups) functions. Likewise, one can prove knowledge of a witness correspond-
ing to a given instance thanks to the homomorphic property of FR.



248 L. El Aimani and M. Joye

Definition 3 (The class E1 of encryption schemes). E1 is the set of tag-based encryp-
tion (TBE) schemes Γ that have the following properties:

1. The message space Gw and the public key space Gpk are groups with respect to ∗w
and ∗pk respectively.

2. Let w ∈ Gw be a message and e its encryption with respect to a tag t under a
public key pk . On the common input pk , w, e, and t, there exists an efficient zero
knowledge proof of w being the decryption of e with respect to the key pk and
the tag t. The private input of the prover is the randomness used to produce the
encryption e.

3. Given an encryption e of some message under some public key w.r.t. a given tag t,
there exists an efficient algorithm compute which inputs e and outputs a public key
pk ′ ∈ Gpk , a message w′, and its encryption e′ = Γ.encryptpk ′(w′, t), under the
key pk ′ w.r.t. the same tag t, such that:

– The probability distributions of the random variables pk ′ ∈ Gpk and w′ ∈
Gw are indistinguishable from uniform, where the probability is taken over the
ciphertext e, the tag t, and the random coins of compute.

– One can define a group operation ◦e on the set

E = {e′ : (pk ′, w′, e′)← Γ.compute(e, t)}

such that Γ.encryptpk ′∗pkpk
(w′ ∗w w, t) = e′ ◦e e, where w and pk are the

message and public key underlying the encryption e respectively. Moreover,
given the randomnesses used to produce e and e′, one can deduce (using only
the public parameters) the randomness used to produce e′ ◦e e on w′ ∗w w
under the key pk ′ ∗pk pk .

The class E1 informally comprises encryption schemes that possess efficient proofs
of correctness of decryption (i.e. proofs that a given ciphertext correctly decrypts to
a given message) in addition to being homomorphic w.r.t. both the message and the
public key. This might seem restrictive at a first glance, however, it turns out that the
ElGamal-based family of encryption schemes satisfy nicely the properties required in
the above definition. We note as an illustration the tag-based variant of the modified
Cramer-Shoup scheme [5] described in Fig. 3.

Definition 4 (The class H of functions). H is the set of functions H : Gpk → GH such
that:

– Gpk is a group w.r.t. some binary operation ∗pk , and GH is a set equipped with a
binary operation ∗H .

– ∀pk , pk ′ ∈ GH : H(pk ∗pk pk ′) = H(pk ) ∗H H(pk ′).

It is natural to require that H(pk ) for some public key pk in database identifies pk
uniquely; i.e. there are no different pk and pk ′ in database that map to the same value
by the function H . In this sense, requiring H to be collision-resistant seems natural,
however we remark that in our application of group encryption, GM has some control
over the public keys she certifies, and therefore may proceed to simple measures (see
[2, Appendix E.3]) in case a collision occurs.
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Definition 5 (The class E2 of encryption schemes). E2 is the set of tag-based encryp-
tion schemes Γ that have the following properties:

1. The message space is a group GH w.r.t. some binary operation ∗H and the cipher-
text space C is a set equipped with some binary operation ◦c.

2. Let h ∈ GH be a message and e its encryption with respect to a given key pk and
a given tag t. On the common input pk , t, h, and e, there exists an efficient zero
knowledge proof of h being the decryption of e with respect to t under the key pk .
The private input of the prover is the randomness used to produce the encryption e.

3. ∀h, h′ ∈ GH , ∀pk , ∀t : Γ.encryptpk (h ∗H h′, t) = Γ.encryptpk (h, t) ◦c
Γ.encryptpk (h

′, t). Moreover, given the randomness used to encrypt h in
Γ.encryptpk (h, t) and h′ in Γ.encryptpk (h

′, t), one can deduce (using only
the public parameters) the randomness used to produce Γ.encryptpk (h, t) ◦c
Γ.encryptpk (h

′, t) on h ∗H h′.

Examples of encryption schemes in the above class include Kiltz’ [13] and Cash et al.’s
[5] (described in Fig. 3) tag-based encryption schemes.

4.2 The prove Protocol

In this paragraph, we instantiate the construction in Section 3 with the following con-
stituents:

1. A signature schemeΣ from Class S with key pair (skGM, pkGM), and corresponding
function
F : (GS , ∗S)× (Gpk , ∗pk )→ (F (GS ×Gpk ), ◦F ).

2. An encryption schemeΓ1 from Class E1 with public key space (Gpk , ∗pk), message
space (Gw, ∗w), and with ciphertext subset (E , ◦e) (as defined in Definition 3).

3. A relationR from Class R with instance space Gx and witness space (Gw, ∗w).
4. A function H from Class H with domain (Gpk , ∗pk) and codomain (GH , ∗H).
5. An encryption scheme Γ2 from Class E2 with key pair (skOA, pkOA), message

space (GH , ∗H), and ciphertext space (C, ◦c).

Theorem 3. The prove protocol depicted in Fig. 2 is an efficient zero knowledge proof
of knowledge with the special soundness property. ��

Theorem 4. The construction in Section 3 is sound if the prove protocol satisfies the
special soundness property, and the used certification scheme is EUF-CMA secure. ��

4.3 A Concrete Realization

In this subsection, we consider bilinear groups with e : G1 × G2 → GT . Moreover,
we instantiate this system with the Λsxdh setting which refers to the case of asymmetric
pairings for which the DDH assumption holds in both G1 and G2.

We instantiate the construction in Section 3 with the following bricks:

1. The signature scheme from [1]. The scheme signs messages in G4
2.
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Prover P Verifier V
Compute IR as in Def 2

(S,R) ← convert(pkGM, pk , certpk )
(pk ′, w′, e′1) ← Γ1.compute(e1)

S′ R←− GS

f ′ = F (S′, pk ′)
f ′
R = FR(w′)
h′ = H(pk ′)
e′2 = Γ2.encryptpkOA

(h′)

R, f ′, e′1, f
′
R, e′2−−−−−−−−−−−→

Compute I as in Def 1
b←−−−−−−−−−−− b

R←− {0, 1}�

zS = S′ ∗S Sb, zpk = pk ′ ∗pk pkb

−−−−−−−−−−−→
zw = w′ ∗w wb, zh = h′ ∗H hb

−−−−−−−−−−−→
PoK1{e′1 ◦e eb1 = Γ.encryptzpk

(zw, t)}
←−−−−−−−−−−→

PoK2{e′2 ◦c eb2 = Γ.encryptpkOA
(zh, t)}

←−−−−−−−−−−→
Accept if:
F (zS, zpk ) = f ′ ◦F Ib,
FR(zw) = f ′

R ◦R IbR,
H(zpk) = zh,
PoK1 and PoK2 are valid.

Fig. 2. Proof system for membership to the language {(w, pk , certpk ) : e1 =
Γ1.encryptpk (w, t) ∧ e2 = Γ2.encryptpkOA

(H(pk), t) ∧ certpk =
Σ.signskGM

(pk) ∧ (x,w) ∈ R} Common input: (e1, e2, t, x, pkOA, pkGM) and
Private input: (w, pk , certpk ) and randomness used to produce e1 and e2.

2. The encryption scheme described in Fig. 3 to instantiate both ΓUser and ΓOA. The
message space of both ΓUser and ΓOA is the group G2.

3. The relationR : (x = [X,Y ], w) ∈ R ⇔ e(X,Y ) = e(g, w), where g is a known
generator of G1.

4. The function H mapping an element (X1, . . . , X4) ∈ G4
2 to

∏4
i=1 X

ai

i , where
a1, . . . , a4 are public elements in Zd (d is order of G2). The collision-resistance of
H is analyzed in the full version of the paper.

5. The one-time signature from [10].

We summarize in this chart the performances of our realization compared to those of
[12] and [6]. (IP stands for interactive proof, whereas NIP stands for non-interactive
proof).
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[Setup] Choose a group (G, ·) generated by g with prime order d.

[Keygen] Choose x1, x̃1, x2, x̃2
R←− Zd then compute

Xi ← gxi and X̃i ← gx̃i for i = 1, 2

set pk ← {Xi, X̃i}i=1,2 and sk ← {xi, x̃i}i=1,2.
[Encrypt] For a message m ∈ G and a tag t ∈ Zd:

choose r
R←− Zd,

compute c1 ← gr, c2 ← (Xt
1X̃1)

r , c3 ← (Xt
2X̃2)

r , and c4 = mXr
1 ,

set the ciphertext to (c1, c2, c3, c4).
[Decrypt] Given a ciphertext c = (c1, c2, c3, c4) and a tag t:

check that c2 = ctx1+x̃1
1 and that c3 = ctx2+x̃2

1

if it is not the case, return ⊥, otherwise:
compute the plaintext as m ← c4c

−x1
1 .

Fig. 3. TBE variant of the Modified Cramer-Shoup [5]

[12] [6] Our scheme
Ciphertext (kB) 2.5 1.25 0.4
IP size (kB) 70 − 1
# of pairings in IP 0 − 14
NIP size (kB) − 16.125 2
# of pairings in NIP − 3895 325

Fig. 4. Comparison
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Abstract. This work studies the security of next generation air traffic
surveillance technology based on Automatic Dependent Surveillance –
Broadcast (ADS-B). ADS-B is already supported by a majority of inter-
national aircraft and will become mandatory in 2020 for most airspaces
worldwide. While it is known that ADS-B might be susceptible to dif-
ferent spoofing attacks, the complexity and impact of launching these
attacks has been debated controversially by the air traffic control com-
munity. Yet, the literature remains unclear on the requirements of launch-
ing ADS-B attacks in real-world environments, and on the constraints
which affect their feasibility. In this paper, we take a scientific approach
to systematically evaluate realistic ADS-B attacks. Our objective is to
shed light on the practicability of different threats and to quantify the
main factors that impact the success of such attacks. Our results reveal
some bad news: attacks on ADS-B can be inexpensive and highly suc-
cessful. Using a controlled experimental design, we offer insights from
a real-world feasibility analysis that leads to the conclusion that any
safety-critical air traffic decision process should not rely exclusively on
the ADS-B system.

Keywords: NextGen, ADS-B, Attacks, Security, Threats, Air Safety.

1 Introduction

Air traffic control (ATC) systems face large challenges in modern civil aviation.
Controllers have to separate an increasing number of aircraft in their airspace.
The European Organisation for the Safety of Air Navigation (EUROCONTROL)
predicts almost a doubling of instrument flight rules (IFR) movements between
2009 and 2030 [1], which means higher air traffic density and therefore higher
separation complexity. At the same time, civil aviation faces an increasing risk
of terrorist or other attacks, necessitating protection.

To reliably meet separation minima, i.e. to manage the distances of aircraft
to each other, controllers need accurate information about position, velocity
and heading of all aircraft in their airspace. This information is retrieved from
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different sources such as flight progress strips, direct radio communications with
the pilot and – most importantly – radar systems [2].

Conventional radar systems can be classified in primary surveillance radars
(PSR) or secondary surveillance radars (SSR). PSRs are independent and do
not require cooperation of aircraft. They transmit high-frequency signals that
are reflected by the target. By receiving and evaluating the resulting echoes, the
range, angular direction, velocity and even the size and shape of a target can be
determined [3]. To meet higher demands in accuracy, SSR relies on transponders
in aircraft, which respond to interrogations by ground stations. The responses
contain the precise altitude and other information such as identification codes or
information about technical problems. While SSR is still independent, it requires
cooperation from the aircraft to function properly.

Driven by the ever growing air traffic volume and the shortcomings of PSR
and SSR (mainly accuracy and cost), several efforts are underway to develop
a new air traffic surveillance system that relies on satellite based navigation
systems (NextGen in the US and SESAR in Europe [4,5]). The automatic de-
pendent surveillance broadcast system (ADS-B) represents the most prominent
system that has been mandated by EUROCONTROL in Europe and the FAA in
America. In ADS-B, aircraft continuously determine their own position based on
on-board navigational systems (e.g. GPS) and periodically broadcast it to sur-
rounding ground sensors and aircraft. In contrast to PSR and SSR, the ADS-B
system is not independent and requires full cooperation of the aircraft.

ADS-B support will be mandatory by 2020 in most airspaces in the world.
Countries such as Australia and Canada have already started deploying ADS-
B ground sensors at a nation-wide scale. By now, most airlines have reacted
to this mandate and updated their aircraft with ADS-B capabilities. However,
most aircraft manufacturers target a complete equipage by 2020.

ADS-B has evolved out of technologies whose development dates back to
World War II. Back then, the designers did not have a modern adversarial model
in mind. This deficiency led to a lack of modern security mechanisms and makes
the air-ground data link vulnerable to multiple attacks. Even though the secu-
rity threats and vulnerabilities of ADS-B have been identified and discussed by
air navigation safety organizations [6,7] and open literature [8,9] for years, the
common belief is still that existing vulnerabilities are difficult to exploit because
doing so requires high-end equipment and precise positioning of the attacker.
Recent research on security of ADS-B considers the difficulty to launch message
injection and deletion attacks to be medium to hard [10,11] because the attacker
must craft and transmit valid ADS-B messages.

In 2010, the FAA released the findings of its security certification and ac-
creditation procedures [6]. This report includes comments from various entities,
including the U.S. Department of Defense, expressing concerns that parties could
monitor transmissions, that broadcasts could be used to target and harm air-
craft, and that timing signals could be subject to interruption. However, the FAA
concludes that ”using ADS-B data does not subject an aircraft to any increased
risk compared to the risk that is experienced today”.
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(a) ADS-B System Architecture [10]

ADS-B

1090 ES

Mode 3/A Mode C Mode S

UAT

ICAO Annex 10 Volume 4 RTCA DO-282B

RTCA DO-260B

RTCA DO-242A

(b) Specification hierarchy of ADS-B

Fig. 1. ADS-B Overview

These statements, however, mostly rely on qualitative and subjective assess-
ments of the authors or of interviewed people. Considering the technical progress
made in the past decades, such as the availability of low-cost software-defined
radios, the above statement might underestimate the capabilities of a realistic
wireless adversary.

Only recent publications at the computer security events Black Hat 2012
[12] and DEF CON 2012 [13] took practical feasibility of attacks with modern
equipment into account. While these publications brought the ADS-B security
issues to a wider attention, they did not offer much insights in the threat model.

Hence, the goal of this paper is to take a scientific approach to systematically
evaluate the sophisticated ADS-B attacks, in particular those that result in ma-
licious manipulation of radar screens based on injecting ghost aircraft, modifying
an aircrafts position, or deleting the presence of an existing aircraft. To provide
basic means for the development of countermeasures based on a realistic wireless
adversary, we identify constraints an attacker faces under the special conditions
of ADS-B. Instead of considering the limits for individual attacks, we break the
attacks down into a few basic attack primitives and theoretically derive limits on
placement and timing given by the large distances, message formats, and signal
propagation characteristics.

Since ADS-B will only be globally deployed and adopted in 2020, the impact
of the analyzed attacks on real-world air traffic safety can only be speculated
today. Nevertheless, we hope that the insights of this paper will serve responsible
authorities to better asses the security risks related to attacks on ADS-B and to
be considered in the ongoing deployment and wide-scale adoption of ADS-B.

2 Background on ADS-B

The automatic dependent surveillance broadcast system (ADS-B) is a new para-
digm to monitor the airspace and the FAA refers to ADS-B as the satellite-based
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successor of radar [4]. An overview of the ADS-B system architecture is shown in
Figure 1a. In ADS-B, every aircraft computes its own position via on-board GPS
and broadcasts it in periodic position messages. These messages are recorded by
ground sensor stations and other aircraft in proximity. The broadcasted mes-
sages may also contain other fields like velocity, identification, intent, urgency
code, and uncertainty level. Each ADS-B equipped aircraft or vehicle automati-
cally starts determining and broadcasting its position and velocity when moving.
Depending on the equipment class, the aircraft additionally broadcasts intent in-
formation once it enters the en route airspace. Receiving subsystems are used to
monitor ground traffic and detect conflicts when moving on the runway. In en
route airspaces, aircraft and ground sensors use ADS-B for situational awareness.

2.1 1090 ES Data Link

The ADS-B specification mainly describes the function of broadcasting infor-
mation. Two standards are proposed as data link. The first alternative is the
Universal Access Transceiver (UAT). UAT is specifically designed for ADS-B
and other aviation services (e.g. traffic information broadcasting service) to over-
come constraints of legacy systems. It establishes a channel with a data rate of
1Mbps and operates at 978MHz. Because UAT requires aircraft to be equipped
with new hardware (transceivers), the FAA decided to use UAT only in general
aviation1 which is also practice in Europe [6].

For scheduled air transportation, ADS-B uses a mechanism of SSR Mode S, so
called extended squitter, to broadcast the aircraft’s state vector on the 1090MHz
channel. This combination of ADS-B and Mode S Extended Squitter is also
referred to as 1090ES ADS-B (see Figure 1b). Typically, the ADS-B function
is directly included into Mode S transponders. As 1090ES ADS-B is the major
data link for scheduled air transportation, we focus our security investigations
in this work on this standard and do not consider UAT any further.

3 Attacks on 1090ES ADS-B

As there are no cryptographic mechanisms implemented in the ADS-B protocol,
messages can be trivially injected, modified or deleted by an attacker who has
full control over the wireless channel in a Dolev-Yao [14] manner. However, as
shown later, there are several hurdles to overcome for real-world attackers.

3.1 Passive Attacks

An inherent characteristic of wireless networks is the broadcast nature of RF
communication. Since ADS-B messages are not encrypted, they can be recorded
by an adversary and misused to obtain unique identifiers of aircraft as well as
accurate position trajectories. Besides commercially available ADS-B receivers2,

1 General aviation refers to all civil flights not belonging to scheduled air transports.
2 http://www.kinetic-avionics.co.uk/

http://www.kinetic-avionics.co.uk/
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Table 3. Example information about an aircraft provided by ADS-B and publicly
available sources

Call sign XYZ

ICAO ID XYZ

Country XYZ

Position XYZ

Altitude 37700,ft

Heading 144°
Speed 395 kn

Climbing rate 896 ft/m

(a) ADS-B

Flight No. XYZ

Owner XYZ

Start XYZ

Destination XYZ

Scheduled arrival 19:25

Aircraft Model Airbus A320-214

Seats 126-168

Engine CFM56-5B4/P

(b) Publicly available sources

there are even services available on the Internet3 which provide digitized live
ADS-B data to the public. For more sophisticated traffic analyses, there is e.g.
a Mode S and ADS-B capable open-source GNU Radio module4 available. We
extended this receiver to eavesdrop and analyze ADS-B traffic and signals.

The FAA argues in [6] that using ADS-B data does not subject an aircraft to
any increased risk compared to the risk that is experienced today without ADS-
B. Yet, privacy concerns are addressed partially by an identifier-based mecha-
nism that provides pseudonymity for ADS-B communication. Furthermore, par-
ticular active attacks rely on the knowledge derived by passive eavesdropping
of ADS-B messages, i.e. eavesdropping is often the first step involved in active
attacks. By combining ADS-B provided data with other publicly available data
sources (e.g. official databases provided by aviation authorities), attackers can
retrieve enough information to launch targeted attacks. Table 3 shows informa-
tion on a random aircraft retrieved from ADS-B and publicly available sources.

To get an idea of how much information an attacker could retrieve from eaves-
dropping ADS-B traffic, we conducted a one week measurement. The receiver
was placed on top of a four-storied office building in an urban environment with
an airport nearby.

In this week, we have seen 18545 flights of 3041 different aircraft from different
countries. Some of these aircraft crossed our reception range in up to 10 flights
in one day on their flights back and forth between national airports. On average,
each aircraft was visible for roughly 10 minutes. We observed nearly every kind
of aircraft ranging from light (< 7031kg) to heavy aircraft (> 136078kg), high
vortex, high performance (> 5 g acceleration) and high speed (> 400kn) aircraft,
gliders and rotorcraft. By doing long-term measurements over large areas, at-
tackers can derive statistics about persons, airlines or companies. For instance,
detailed statistics about destinations, delays or fleet can be used to maintain
useful datasets about competitors and their business activities. In addition, we
were able to create the Received Signal Strengh (RSS) map shown in Figure 2a

3 http://www.flightradar24.com/
4 https://www.cgran.org/wiki/gr-air-modes

http://www.flightradar24.com/
https://www.cgran.org/wiki/gr-air-modes
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(a) RSS-based heat map of all position re-
ports (map is randomized)
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Fig. 2. Signal strength and range of our measurements

with our dataset. RSS profiling-based localization techniques (see e.g. [15] for
details) or multilateration can be used to locate aircraft, even if they conceal
their position as in case of military aircraft.

Our measurements conclude that the reception quality and range with low
cost equipment is remarkable. By positioning our receiver on the roof of a seven-
floor building in another experiment on a day with optimal clear weather, we
were able to receive messages over distances of up to a maximum of 450 km
(compare Figure 2b). This shows that it is easily feasible to monitor the ADS-B
traffic of hundreds of aircraft at the same time with a single low-cost receiver.

3.2 Active Attacks

While passive attacks are mainly affecting privacy and might not result in severe
risks for air-traffic safety, this section focuses on our main threat model, which
is an active attacker. In the following we describe active attacks that may result
in severe threats to air traffic safety including attacks on air traffic monitors and
automated assisting systems like collision avoidance (TCAS) and pilots.

It is important to keep in mind that we consider ADS-B only, i.e. not in
combination with other surveillance technologies. More complex attack scenar-
ios which include combined attacks on several technologies simultaneously are
imaginable but beyond the scope of this paper. Furthermore they would require
detailed knowledge of the actual implementations of surveillance systems, which
are apparently kept under tight wraps by the respective authorities.

Attacker Model: The following active attacks are based on three basic attack
primitives: message injection, message deletion and message modification. For
now, we assume that the attacker has full control over the wireless communication
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channel and is able to inject, delete and modify any ADS-B message. Functional
and timing requirements will be derived in Section 5.
Ghost Aircraft Injection: Based on fake message injection, ADS-B messages
of a non-existing (ghost) aircraft are broadcasted on the ADS-B communication
channel. This attack was presented conceptually in [9,10,11]. Target of this at-
tack could be any legitimate ADS-B receiver. The ghost aircraft should have
realistic properties (position, velocity, ID) in order to be indistinguishable from
real aircraft without additional information sources. On the ground, air traffic
controllers could be confused or distracted by ghost aircraft. Ghost aircraft could
appear as both, taxiing and flying aircraft and combined with poor visibility, this
could force controllers to deny landings or instruct aircraft to change their al-
titude and/or course unnecessarily. In the air, on-board ADS-B-based collision
avoidance systems offer attackers a simple way to distract pilots. Again, with
poor visibility, pilots primarily make decisions based on their instruments what
makes them vulnerable to malicious interference. Deep knowledge about the be-
havior of collision avoidance systems and a systematic injection of ghost aircraft
enable attackers to force collision avoidance systems to instruct pilots to change
their course, velocity and/or altitude almost arbitrarily. The injection of ghost
aircraft would not directly result in a crash since pilots still make their own de-
cisions. But due to the increased situational complexity, this attack could result
in life threatening decisions made by confused pilots and controllers.

Ghost Aircraft Flooding: Based on the same techniques as the previous at-
tack, i.e. message injection, ghost aircraft flooding is the injection of multiple
aircraft simultaneously [10]. This attack aims primarily at a denial of service of
the controller’s surveillance system. Contrary to single ghost aircraft injections,
this attack is obvious. By using realistic ghost aircraft, the presence of ghost
and real aircraft are hard to distinguish for controllers. The impact of flooding
an airborne aircraft with ghost aircraft is unclear, since no tests with collision
avoidance systems are reported so far and the detailed implementation of ADS-
B-based collision avoidance systems is not publicly available. On the ground,
both, airport and airspace surveillance systems can be a target. By covering the
airport or airspace with ghost aircraft, management of runways or airborne air-
craft is impossible without the support of other surveillance technologies.

Virtual Trajectory Modification: This new attack aims at modifying the tra-
jectory of an existing aircraft, which broadcasts correct ADS-B position reports.
The attack can be implemented in two ways: by combining message deletion
and injection or directly via message modification technique. The former variant
deletes all position reports of the target aircraft and replays them slightly modi-
fied. The latter variant modifies the position reports in the air. This attack bene-
fits from inaccuracies of other surveillance technologies like primary surveillance
radar (PSR), since a tolerant data fusion with e.g. ADS-B and PSR provided
data might not reveal these slight inconsistencies. With a smooth takeover, this
attack might remain undetected and could lead to wrong instructions by air
traffic controllers or delayed reactions of collision avoidance systems.
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False Alarm Attack: Similar to the virtual trajectory modification, the at-
tacker deletes and re-injects or modifies messages of a real aircraft in order to
indicate a fake alarm. Like Mode S, ADS-B provides mechanisms to indicate
emergencies or unlawful interferences such as aircraft hijacking. Such an attack
results in confusion and focuses the attention of responsible persons on the tar-
get aircraft. Furthermore it may initiate other processes such as the denial of the
permission to land or penalty charges for airlines. The detection of this deception
on higher levels than the physical layer is hard, since e.g. voice radio must be
considered to be untrustworthy in case of a hijacked aircraft.

Ground Station Flooding: Continuous jamming attacks on a ground sensor
or aircraft result in high losses and deletion of messages. ADS-B-based ATC
cannot provide service any more due to failure of communications. The threat
of this attack is well-known [9,11,10] and considered to be of low difficulty. This
attack would force ATC to switch to other, less efficient or less accurate surveil-
lance and control methods. Especially in high density areas (e.g. around major
international airports), a sudden failure of the surveillance or collision avoidance
systems is described as devastating by controllers and could result in confusion
and human failure with fatal consequences. ATC would have to redirect aircraft
blindly into other airspaces via voice radio – assuming that voice radio is not
attacked as well. If the attacker is strong enough to also jam the communication
between aircraft, collision avoidance systems would fail. As history has shown,
without the support of collision avoidance systems, collisions are likely to hap-
pen. Especially in climbing or descending phases since pilots might miss nearby
aircraft due to their limited perspective.

Aircraft Disappearance: Failure of collision avoidance systems and confusion
at ground sensors when correlating several data sources can be caused by deleting
all messages of a target aircraft with message deletion techniques. By doing so,
the attacker prevents aircraft from being detected by ADS-B ground stations or
other aircraft. This attack is similar to ground station flooding but more subtle,
since the absence of a single aircraft is – if detected – more likely due to failure
of avionics than of ground station hardware. If detected, this attack could force
the target aircraft to land for safety checks. In case of the attack remaining un-
detected, the aircraft is not protected by ADS-B-based systems such as collision
avoidance, what could have fatal consequences.

Aircraft Spoofing: In order to spoof and outflank surveillance facilities, the
ICAO 24bit address may be spoofed. This can be achieved through combin-
ing message deletion and message injection. In addition, the ICAO address in
transponders can be reprogrammed by any person who is able to access the
cockpit. Masquerading as a friendly aircraft reduces causes for alarm when an
unexpected aircraft is detected by other surveillance technologies like PSR.

4 Implementation, Demonstration and Results

This section demonstrates the ghost aircraft injection, ghost aircraft flooding,
ground station flooding and virtual trajectory modification attacks with COTS
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Fig. 3. Experimental setup with additional safety precautions. The attacker’s target is
an SBS-3 ADS-B receiver which is connected to an isolated antenna and the attacker’s
signal output. Just in case of a signal leakage, the attacker uses an additional receiver
to detect the leakage and terminate the attack immediately.

hardware. Within a controlled environment, we were able to launch these attacks
in a realistic manner.

4.1 Safety Precautions and Hardware Setup

Due to the criticality of this topic and the legal requirements concerning usage
of wireless channels, a safe and yet realistic practical evaluation of the above
attacks poses special challenges. At first and most important, all experiments
must not affect real systems in any way. It must be ensured that none of the
attacker’s signals can be perceived by a real system. At the same time, a re-
alistic evaluation requires that the attacker’s signal underlies realistic channel
characteristics including noise and ADS-B traffic from other aircraft.

To fulfill both requirements, we used in consultation with the respective reg-
ulatory authority the experimental setup depicted in Figure 3. The target of our
attacks was an SBS-3 ADS-B receiver which receives real ADS-B messages via
an antenna and forwards them to a PC running a special radar-style visualiza-
tion software (Kinetic Avionic’s BaseStation). The attacker consists out of an
off-the-shelf Linux-based PC and an Ettus’ USRP N210 SDR (A). To ensure that
the attacker’s signals do not interfere with real communications, we connected a
60 dB RF isolator ahead of the antenna which attenuates signals unidirectionally
in the direction of the antenna. By additionally reducing the transmission power
of the attacker’s USRP to the least possible value, the signal emitted by the
antenna should be imperceptible by any other receivers than our SBS-3 receiver.

As an additional safety precaution, the attacker’s PC is connected to a second
USRP N210 (M) which runs a GNU Radio-based ADS-B receiver. For the case
of an unexpected leakage of the attacker’s messages, this receiver is programmed
such that it terminates all attacks immediately on reception of a message sent
by the attacker. In order to enhance the sensitivity of this safety monitor, we
disabled the check for valid CRC checksums.
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Fig. 4. Ghost aircraft with ICAO 24-bit ID 0xC0FFEE (north east)

4.2 Implementation

We used the SDR USRP N210 to inject and receive ADS-B messages and to
generate jamming signals. The USRP is connected to a host computer that gen-
erates samples and sends the digitalized signal data to the USRP via Ethernet.
Then, the USRP shifts the software-generated signal from the baseband to the
desired frequency using digital up converters, converts the digital to an analog
signal and emits it. Together with the open-source software development toolkit
for software radios, GNU Radio, the USRP provides a suitable foundation for
our implementations at low-cost ($1800-$2500).

For our attacks, we implemented a signal generator block which enables us
to generate arbitrary pulse position modulated messages including the preamble
according to [16]. A script written in Python generates arbitrary messages and
passes them to the signal generator. It generates IQ-samples that are transported
to the USRP via Ethernet. A jammer for message deletion attacks is realized
with a Gaussian noise waveform generator that covers the full downlink channel
of Mode S. For eavesdropping on messages, we extended the open-source GNU
Radio Mode S receiver module5 such that it stores the decoded ADS-B messages
plus signal properties (RSSI, SNR, . . . ) to a database. To inject realistic ADS-B
messages, we implemented a library that simulates arbitrary flights. It calculates
the trajectory and all required ADS-B messages at the requested rates.

So as not to decrease the implementation complexity for attacks, we skip fur-
ther implementation details and will not disclose any part of our source code.

4.3 Results

Ghost Aircraft Injection: Our implementation simulates a flight of an air-
craft with a fake identity from a starting coordinate to a target coordinate at

5 https://www.cgran.org/wiki/gr-air-modes

https://www.cgran.org/wiki/gr-air-modes
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a given velocity and altitude. The aircraft disappears after arrival. During the
ghost flight, the software generates the respective ADS-B position and velocity
reports, each with a rate of 2Hz, and identification reports at 0.2Hz, i.e. once in
5 seconds. As Figure 4 illustrates, the radar software of SBS-3 shows our injected
ghost aircraft flying inconspicuously from the airport in north east to the airport
in south-west at an altitude of ∼16400 ft and a velocity of ∼400kn. Except in
its obviously fake identifier, the ghost aircraft does not differ from real aircraft.

Ghost Aircraft Flooding: The ghost aircraft flooding implementation gener-
ates a given number of ghost aircraft using the ghost aircraft injection imple-
mentation but with random (yet realistic) parameters. The starting and target
coordinates of each ghost aircraft are set to random coordinates within a target
area. The altitude and ground speed are selected randomly from a range be-
tween 16400 and 32800 ft and 200 and 600kts respectively. When starting the
attack, all generated ghost aircraft perform simulated random flights back and
forth between their start and destination coordinates while sending out the same
messages with the same rates as in the ghost aircraft injection above. As Figure
5b shows, this attack results in a complete loss of situational awareness. Due to
the random distribution, it is difficult and time-consuming to determine whether
an aircraft is real or not. One notable effect of this attack was the freezing of the
BaseStation-Software for several minutes due to the heavy workload caused by
the high number injected aircraft. Some SSR implementations detect the sudden
appearance of targets as a failure of the system and initiate a reboot-procedure,
what equals a failure of the system for several minutes. It would be easy for an
attacker to cause such a failure if ADS-B receivers are implemented similarly.

Ground Station Flooding: In this experiment, the attacker emits a contin-
uous white noise jamming waveform. This waveform interferences at the SBS-3
resulting in complete deletion of all messages. By executing the attack, the noise
level is significantly increased. As Figure 5a shows, a successful reception and
demodulation of messages on the 1090MHz channel is not possible any more,
resulting in a complete denial of service.

Virtual Trajectory Modification: We implemented the virtual trajectory
modification attack with the combination of the message deletion and mes-
sage injection attack techniques. First, the attacker deletes all messages at the
ground sensor by generating constant interference as in the previous ground
station flooding attack. At the same time, the attacker uses an additional ADS-
B receiver to capture and forward all but the target aircraft’s messages. The
forwarded messages are transmitted at a higher power than the interference.
Except for the injected position updates of the modified aircraft trajectory, all
aircraft position updates reflect the correct position. The result of this attack
was an authentic radar screen (similar to Figure 4) while the trajectory of the
target aircraft was modified from the start of our attack. Without any other
sources of information, it is hardly possible to recognize this modification since
we implemented a smooth takeover.
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(a) Ghost Aircraft Flooding: 100 ran-
domly distribution ghost aircraft appear
in the specified area and fly back and forth
between two random coordinates.

(b) Ground Station Flooding: By emitting
white noise, all ADS-B messages sent by
aircraft in range are destroyed what re-
sults in an empty radar screen.

Fig. 5. Snapshots of Kinetic Avionic’s BaseStation under Ghost Aircraft Flooding and
Ground Station Flooding attacks.

5 Feasibility and Requirements Analysis

This section provides a better understanding of the actual threat of the eaves-
dropping, injection, deletion, and modification attack primitives by analyzing
their actual requirements under a realistic attacker model. In particular, we an-
alyze the timing, positioning and signal power constraints for the attacker and
derive practical bounds for these parameters.

5.1 Passive Attacks

The attacker’s reception range must include the position of all target aircraft to
perform passive attacks. The range depends on the received signal-to-noise ratio
(SNR) at the attacker and must satisfy PPA/NA > δ, where PPA is the received
signal power of the aircraft’s signal at the attacker, NA the noise floor of the
attacker’s receiver, and δ the minimum SNR to correctly decode a message. High
gain antennas and a sensitive receiver which is capable of decoding messages with
very low SNR can increase the reception range. Another important factor is the
position of the receiver. Our experiments showed that obstacles and geographic
conditions can reduce the range significantly. Figure 2b illustrates the strong
dependency of the range from environmental conditions. A high building at an
azimuth of 305° resulted in a massive reduction of the reception range in this
direction.
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5.2 Active Attacks

All active attacks presented in Section 3 use either message injection, message
deletion, message modification, or combinations of these as basic attack mecha-
nisms. This section analyzes the limits of these attack primitives. Especially the
signal power, timing and positioning constraints are considered.

Message Injection: Since no authentication is required at message level in
ADS-B, injecting false messages requires an attacker to implement a transmitter
that generates correctly modulated signals in the right message format. Hence,
the requirement for a successful message injection attack at ground sensor node
G is PAG/NG > δ, where PAG represents the received power at the ground
sensor G emitted by the attacker A, NG the noise floor at the ground sensor
and δ the required minimal SNR to correctly demodulate the signal. For ADS-B
receivers that use omni-directional antennas, false messages may be injected from
any location as the receiver is not able to discriminate false position messages
based on the incoming angle of arrival. However, even when rotating directional
antennas are used (e.g. SSR antennas), injecting false messages from a different
angle is possible because directional antennas usually have significant side-lobes
and will receive the signal even when it does not arrive at the main lobe [17].
The same holds for message deletion and modification attacks.

For attacks that require numerous message injections, the number of messages
to be injected is limited by the bandwidth of the channel. The number of in-
jected ghost aircraft is limited by the bandwidth as follows. For 1090ES ADS-B,
each message transmission lasts 120μs. Assuming each of the n ghost aircraft
sends on average m messages per second, n is limited by n ≤ 1 s/(m · 120μs). If
each aircraft broadcasts its position and velocity with a rate of 2Hz each and
identification once in 5 s, n has an upper bound of 1984. We successfully tested
the ghost aircraft flooding attack with this configuration and it turned out that
the bottleneck of this attack is indeed the bandwidth of the ADS-B channel.

Message Deletion: This attack can be realized in two ways: by means of de-
structive or constructive interference. With destructive interference, the attacker
attempts to annihilate the signal at the sensor by transmitting the inverse of the
signal from the legitimate node. As the received signal by the sensor is the
superposition of both signals, the resulting signal is erased or at least highly
attenuated. This type of interference requires very precise timing and synchro-
nization with the carrier phase and frequency in order to achieve the desired
annihilation [18]. This synchronization is hardly achievable with moving aircraft
and we will not consider it in this work.

Constructive interference is much easier to achieve as the synchronization
requirements are less strict. With constructive interference, the aircraft’s signal
will experience a higher level of bit errors. The checksum parity field of the
extended squitter allows the correction of at most 5 bit errors in a message.
Messages with more than 5 bit errors are not correctable anymore and have to
be discarded by ground sensors. The requirement for constructive interference
at a ground sensor G is
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Fig. 6. Attacker Scenario

Table 4. Time offsets for deletion decision in
message deletion attacks

Deletion decision field Time offset tD
ICAO address 40 μs
identification 96 μs
position 96 μs
emergency code 51 μs
positioning integrity (NIC p) 48 μs
positioning accuracy (NAC p) 83 μs

PPG

PAG +NG
< β, (1)

where PPG is the received signal power of the aircraft P ’s legitimate message and
β the threshold for the minimal required SNR to decode messages correctly. The
factor β is highly dependent on the signal waveform used by the attacker and
how well the receiver is able to suppress this kind of interference with appropriate
filters. For a waveform with a white Gaussian distribution with zero mean, the
interference can be viewed as noise and β is equal to δ.

To delete all messages on the channel, requirement (1) is sufficient. However, if
the attacker aims at deleting messages selectively, additional timing requirements
are given. To delete selected messages, the attacker must continuously listen to
the medium, interpret incoming messages, and interfere only with the desired
messages before they are completely received at the ground sensor. This form
of reactive jamming requires stringent timing in order to hit the message at the
receiver. In the following, we derive the timing and placement requirements for
this type of selective message deletion.

Let dGP denote the distance between ground sensor (G) and aircraft (P), dGA

the distance between ground sensor and attacker (A), dAP the distance between
attacker and aircraft, and α the angle between the attacker A and the aircraft
P as seen from the ground station G (see Figure 6). Signal propagation speed is
assumed to be the speed of light c. The respective signal propagation times tGP ,
tGA and tAP are then given by

tGP =
dGP

c
tGA =

dGA

c
tAP =

dAP

c
Let further tD denote the time offset of the message portion, which is used by
the reactive jammer to decide whether it should jam or not, to the first pulse of
the preamble. For instance, when an attacker relies on the ICAO 24bit address
of an extended squitter, tD is 40μs6. A list of different values of tD for possible
deletion decision fields is given in Table 4. Finally, tR denotes the reaction time
of the attacker, i.e. the hardware switching time between the moment when the
decision to delete the message is made until the actual interference is emitted
by the attacker. Selective message deletion attacks are then feasible if and only

6 8μs preamble + 5μs downlink format + 3μs capability field + 24μs ICAO address.
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(a) Depending on dGP and dAP . Constant
parameters are tmsg = 120μs, tD = 40μs
and tR = 0μs (worst case)

(b) Depending on the angle α between
attacker and aircraft at the ground sta-
tion. Messages are selected by the at-
tacker based on their ICAO 24 bit ID (⇒
dR = 20.09 km)

Fig. 7. Upper bound of the distance dGA (in km) between ground station and attacker
for message deletion attacks

if tR < tmsg − tD + tGP − tAP − tGA − 5μs holds, where tmsg is the message
transmission time (120 μs in this case) and the 5 μs subtracted on the right-
hand side results from the minimum of 5 wrong bits required to destroy the
messages successfully (due to the CRC). Otherwise, the injected interference
would arrive too late at the ground sensor and the intended deletion of the
message would fail. Due to this, the attacker’s position is contrained by dGA <
dGP − dAP + (tmsg − tD − tR − 5μs) · c. The graph shown in Figure 7a shows
an upper bound for dGA when deleting messages based on the aircraft address
(tD = 40μs) and for a reaction time of zero (worst case). This result shows
that this attack always benefits from far distances between ground station and
aircraft and short distances between attacker and ground station.

However, the attacker has a clear advantage because he can adjust his posi-
tion such that the angle α is optimal to him. Assume for example an attacker
that is positioned close to an airport. Since all aircraft will land and start along
the same direction, he may optimize his attack range without the need to re-
duce its distance to the ground station. For the attacker’s reaction and distance
requirements in relation to the angle α, we use the law of cosines and get

dGA <
dR · dGP +

d2
R

2

dR + dGP · (1 − cosα)
(2)

where dR = (tmsg − tD − tR− 5μs) · c. Figure 7b shows an upper bound for dGA

when deleting messages based on the aircraft address and with zero reaction
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delay (tR = 0). The curves represent an upper bound on dGA for different angles
α and fixed distances dGP = 100, 50 and 10km.

As we see, as long as the attacker is within a radius of about 10 km around
the ground station, he may successfully launch the message deletion attack in-
dependent of α and the distance of the aircraft to the ground station. For larger
distances between the attacker and the ground station, the attacker is better off
being in the same direction of the aircraft as seen from the ground station.

Clearly, selective message deletion requires fast reaction times tR at the at-
tacker in the order of a few microseconds. However, Wilhelm et al. have shown
that it is possible to achieve fast jamming reaction times in the order of a few μs
with commercial off-the-shelf SDRs such as USRP2 [19]. Considering message
rates and using further traffic analysis to predict the emission of messages may
relax these constraints on the reaction time to a certain degree at the cost of
higher detection complexity.

Message Modification: The goal of message modification attacks is to mod-
ify a message while it is being transmitted over the air. There are two possible
techniques to manipulate messages during transmission — overshadowing and
bit-flipping. When overshadowing, the attacker’s signal is of such high power
relative to the legitimate transmission that the original message (or parts of it)
appears as noise. With bit-flipping, the attacker superimposes the radio signal
such that one or several bits are converted from one to zero or vice versa. Bit
flipping requires precise synchronization to the carrier phase and frequency and
is hence extremely difficult to achieve for moving targets like aircraft and is
therefore not considered in this work [18].

To overshadow the signal of a legitimate aircraft transmitter, PAG/PPG > γ
must hold, where γ is a fixed threshold value defining the minimum signal-to-
interference ratio (SIR) at which the attacker’s signal is decoded without error.

The timing and distance requirements are slightly more strict than for the
message deletion attack. Let tM denote the offset of the message portion to be
modified to the last bit of the field that is used by the attacker to decide whether
it should modify the actual message or not. For instance, when an attacker wants
to modify the sixteenth bit of the message data (ME) field based on the ICAO
24bit address in the aircraft address (AA) field, tM is 16μs since the ME field
is directly after the AA field. On-the-fly modification attacks are then feasible if
and only if the following constraint on the attacker’s reaction time is satisfied:

tR < tM +
dGA + dGP −

√
d2GA + d2GP − 2 dGA dGP cosα

c
(3)

Otherwise, the injected modification signal arrives too late at the aircraft and
the intended modification of the message fails. Due to this, we can formulate the
following constraint on the attacker’s position:

dGA <
dGP + c

2 · (tM − tR)

1 + dGP ·(1−cosα)
c·(tM−tR)

. (4)

Since a CRC checksum is used to detect transmission errors, the CRC must
be further modified by the attacker in any case to preserve the validity of the
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message. This does not pose a challenge since all transmitted bits are known to
the attacker and he is therefore able to calculate the new CRC of the modified
message and modify the CRC as well.

An additional timing challenge lies in the estimation of the signal propagation
delays tGP , tAP , and tAG. The attacker needs to precisely estimate these delays
such that its overshadowing signal arrives at the correct time of the bits to
be modified. An overall estimation precision below 1 μs is necessary to inject
its modified bit sequence at the correct message position at the ground sensor.
This synchronization is however easy to achieve since the exact positions of the
aircraft are known to the attacker from the received ADS-B messages.

To summarize this section, the following statements can be concluded from
this section. While message eavesdropping and message injection are only con-
strained by signal power, the message deletion and message modification attacks
have additional constraints with regard to timing and position. Nevertheless, we
have shown that these constraints are not major hurdles. An attacker can launch
these attacks with low-cost software radio equipment at distances of up to ten
km to the ground station independent on the aircraft constellation in the sky. By
carefully positioning itself with the correct angle, an attacker may even increase
its attack range beyond 100 km from the ground station.

6 Related Work on ADS-B Security

While the aviation community already expressed reservations about the lack of
security mechanisms7, research on ADS-B security as found in the open literature
has focused on the identification of vulnerabilities and subjective risk analysis.
This section provides a summary of open literature on ADS-B security.

Korzel and Andrisani already identified potential threats resulting from un-
verified ADS-B reports in 2004 [8]. They proposed verification and validation
techniques to verify the reported state of an aircraft, signal conformance in terms
of the reported position vs. true physical position and intent conformance. They
use a suite of Kalman filters to estimate the state of an aircraft and multilatera-
tion to compare signal properties with the reported position. The focus of their
work is however not on security aspects and no concrete adversarial model is con-
sidered by the authors. In addition, they do not investigate particular threats
resulting from the lack of security mechanisms.

In 2007, Valovage discusses several enhancements to ADS-B including security
services such as authentication and confidentiality with cryptographic methods
[20]. They propose an authentication scheme in terms of pre-shared keys and
cryptographic hash sums.

In 2009, Wood interviewed six professionals affiliated with the aviation com-
munity [21]. Based on their subjective assessments, they conducted a security
risk analysis. The work is focused on three central aspects: comparing the ADS-B
network design to government and commercial industry network security stan-
dards, identifying several similarities and differences between the introduced

7 http://www.airsport-corp.com/adsb2.htm

http://www.airsport-corp.com/adsb2.htm
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ADS-B network and industry standard computer networks. They also analyzed
the behavior of ADS-B when faced with common computer network threats such
as denial of service, session hijacking, and network eavesdropping attacks. They
offer a brief analysis of threats and vulnerabilities concerning confidentiality, in-
tegrity and availability of ADS-B. In contrast to our work, the assessments of
threats are based on the subjective experience of the interviewed people. Hence,
there is no systematic evaluation and feasibility analysis of these threats from a
technical perspective.

Sampigethaya et al. identified several attacks in 2010 and proposed solutions
based on cooperative groups of aircraft to mitigate threats to airborne surveil-
lance [9,22]. Furthermore, they designed a security simulation concept and sim-
ulation tool which allows users to model and quantify the impact of ADS-B
exploits. However, they do not provide any statements about the feasibility of
attacks on the ADS-B data link. The overall objective of attackers in their model
is to degrade accuracy and performance, while more sophisticated attacks are
not at the focus of their analysis. In 2010, Purton et al. performed an analysis
of the threats, opportunities, weaknesses and strengths (TOWS analysis) of the
ADS-B system [11]. They identified several threats to different communication
links (GPS, propagation path, ground infrastructure), rated their likelihood and
severity, and derived strategic actions. They only provide qualitative judgments
about likelihood and severity based on the high-level assessments of the authors.
Again, no detailed technical investigations are made to provide realistic state-
ments on feasibility of specific attacks. The primary objective of McCallie et al. in
their work in 2011 was to establish a taxonomy to classify attacks on ground sta-
tions and aircraft based on ADS-B message injection, jamming and interception
[10]. Additionally, they provided valuable security recommendations, which re-
quest more transparency of security certifications and accreditation procedures,
and a complete security analysis of the whole NextGen system design. They
motivate the integration of security as an additional objective in SSR develop-
ment and an adequate education on security aspects to the aviation community.
Attacks are considered to be of low difficulty only if specialized hardware and
software are readily available. Compared to their work, we see our contribution
as an important step forward in understanding the severity of the threats.

7 Conclusion

ADS-B is an air-traffic surveillance technology that will become mandatory for
regulating airspace in 2020. One of the main objectives of this technology is to
increase the safety of the worldwide air traffic by increasing the aircraft posi-
tioning accuracy. The main objective of this work was to investigate practical
attacks against ADS-B and to offer insights from a real-world evaluation. We
believe that by providing these insights, this work will help ATC and regula-
tion authorities to realistically assess the risks that this technology will pose
when fully operational. We conclude that without appropriate countermeasures,
critical air traffic management decision processes should not rely on ADS-B de-
rived data. Finally, we hope that the rule makers and regulators involved in the
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ADS-B standardization process will recognize the criticality of the described
threats and include security as one of its key requirements in future releases.
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Abstract. iOS is Apple’s mobile operating system, which is used on
iPhone, iPad and iPod touch. Any third-party applications developed for
iOS devices are required to go through Apple’s application vetting pro-
cess and appear on the official iTunes App Store upon approval. When an
application is downloaded from the store and installed on an iOS device,
it is given a limited set of privileges, which are enforced by iOS applica-
tion sandbox. Although details of the vetting process and the sandbox
are kept as black box by Apple, it was generally believed that these iOS
security mechanisms are effective in defending against malwares.

In this paper, we propose a generic attack vector that enables third-
party applications to launch attacks on non-jailbroken iOS devices. Fol-
lowing this generic attack mechanism, we are able to construct multiple
proof-of-concept attacks, such as cracking device PIN and taking snap-
shots without user’s awareness. Our applications embedded with the at-
tack codes have passed Apple’s vetting process and work as intended
on non-jailbroken devices. Our proof-of-concept attacks have shown that
Apple’s vetting process and iOS sandbox have weaknesses which can be
exploited by third-party applications. We further provide corresponding
mitigation strategies for both vetting and sandbox mechanisms, in order
to defend against the proposed attack vector.

1 Introduction

Digital mobile devices, such as smartphones and tablets, have been increasingly
used for personal and business purposes in recent years. iOS from Apple is one
of the most popular mobile operating systems in terms of the number of users.
By Jan 2013, 500 millions of iOS devices had been sold worldwide and Apple’s
iTunes App Store contained over 800,000 iOS third-party applications, which
had been downloaded for more than 40 billion times [1].

Third-party applications are pervasively installed on iOS devices as they pro-
vide various functions that significantly extend the usability of the mobile de-
vices. On the other hand, these third-party applications pose potential threats
to personal and business data stored on the devices. Thus, Apple adopts various
security measures on its iOS platform to protect the device from malicious third-
party applications. Among these security measures, Apple’s application vetting

M. Jacobson et al. (Eds.): ACNS 2013, LNCS 7954, pp. 272–289, 2013.
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process and the iOS application sandbox are considered as the fundamental
mechanisms that protect users from security and privacy exploits.

Each iOS third-party application is required to go through a vetting process
before it is published on the official iTunes App Store, which is the only source
of obtaining applications without jailbreaking an iOS device. Although details
of the vetting process are kept secret, it is generally regarded as highly effective
since no harmful malware on non-jailbroken devices has been reported on iTunes
App Store [2,3]. Only graywares, which stealthily collect sensitive user data,
were found on iTunes Store. These graywares were immediately removed from
the store upon discovery [4].

When an application is downloaded and installed on an iOS device, it is given
a limited set of privileges [5], which are enforced by the application sandbox.
With the sandbox restrictions, an application cannot access files and folders of
other applications. In order to access the required user data or control system
hardware (e.g. Bluetooth or WiFi), applications need to call respective iOS APIs
which are hooked by the sandbox so that validations of these API invocations
are performed dynamically. The sandbox mechanism serves as the last line of
defense which restricts malicious applications from accessing privileged system
services, abusing user data or exploiting resources of other applications.

Due to the closed-source nature of iOS platform, the implementation details
of security mechanisms used by iOS (including vetting process and application
sandbox) are not officially documented. As a result, to our best knowledge, there
is no systematic security analysis conducted for iOS platform, which has been
generally believed as one of the most secure commodity operating systems [6].

In this paper, we make the first attempt in constructing generic attacks on
iOS platform. Existing ad hoc attacks usually require root privilege [7,8,9] and
thus work only on jailbroken iOS devices. In contrast, our attacks are intended
to work on non-jailbroken iOS devices, which are protected by both vetting
process and application sandbox. Thus, we propose an attack vector which in-
clude two attack stages: 1) In the first stage, malicious applications which are
embedded with attack codes need to pass Apple’s vetting process in order to
appear in the official iTunes App Store; 2) In the second stage, after users have
downloaded these applications onto their iOS devices, the attack codes need to
bypass the restriction of the iOS sandbox in order to perform malicious function-
alities. We realize both attack stages by exploiting the weaknesses of the vetting
process and the iOS sandbox. With the proposed generic attack vector, we im-
plement seven proof-of-concept attacks, such as cracking device PIN and taking
screenshots without user’s awareness, which impose serious threats to the security
and privacy of iOS users. Most of our attacks implemented work on both iOS 5
and iOS 6. We implement multiple iOS applications and embed our attack codes
into these applications, which are then submitted to the iTunes App Store. These
applications with attack codes have passed the vetting process and all our attacks
work effectively on non-jailbroken iOS devices1. Our proof-of-concept attacks and

1 Due to privacy concerns, we embedded secret triggers in our applications so that pub-
lic users will not be affected by the attack codes in these applications.
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further validation experiments indicate that the current vetting process and iOS
sandbox have vulnerabilities that can be exploited by malicious third-party ap-
plications to escalate their privileges and launch serious attacks on non-jailbroken
iOS devices.

In order to defend against the proposed attacks, we further discuss several
mitigation methods which could enhance both vetting process and iOS applica-
tion sandbox. Some of these methods utilize existing iOS security features, thus
can be conveniently implemented and deployed on the current iOS platform.
We have notified Apple all of our findings and shared all our attack codes with
Apple’s product security team. By the time this paper was accepted, Apple is
still in the progress of addressing the security issues we have discovered.

In summary, this paper makes the following contributions:

– We provide a generic attack vector which exploits the weaknesses of both
vetting process and iOS application sandbox. The attack vector consists of
two attack stages and can be used to construct serious attacks that work on
non-jailbroken iOS devices.

– We implement seven proof-of-concept attacks with the attack vector pro-
posed. We embed these attack codes into multiple applications we imple-
mented and all the applications are able to pass the vetting process and
appear on official iTunes Store.

– We suggest several mitigation methods to defend against our attacks. These
methods include improvements on both the vetting process and the applica-
tion sandbox, which can be deployed on the iOS platform conveniently.

2 Background and Threat Model

2.1 iOS Platform Overview

iOS platform follows a closed-source model, where source code of the underlying
architecture and implementation details of its security mechanisms are not avail-
able to the public. Though it is debatable whether such obscurity provides better
security, iOS has been generally believed as one of the most secure commodity
operating systems [6]. Unlike other mobile platforms, third-party applications
on iOS are given a more restricted set of privileges [5]. In addition, any third-
party application developed for iOS must go through Apple’s application vetting
process before it is published on the official iTunes App Store. While some users
and developers favor to have such restrictions for better security, others prefer to
have more controls over the device for additional functionalities, such as allow-
ing to install pirated software and allowing applications to change the themes
of the device. To attain such extended privileges, an iOS device needs to be
jailbroken. Jailbreaking is a process of installing modified kernel patches which
allow a user to have root access of the device so that any unsigned third-party
applications can run on it. Although jailbreaking is legal [10], it violates Apple’s
End User License Agreement and voids the warranties of the purchased devices.
Jailbreaking is also known to expose to potential security attacks [7,8].
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Application Vetting Process. Without jailbreaking a device, the only way
of installing a third-party application on iOS is via the official iTunes App Store.
Any application that is submitted to iTunes Store needs to be reviewed by Apple
before it is published on the store. This review process is known as Apple’s appli-
cation vetting process. The vetting covers several aspects, including detection of
malware, detection of copyright violations, and quality inspection of submitted
applications. Although the vetting process is kept secret by Apple, it is gener-
ally regarded as highly effective as no harmful malware has been reported on
iTunes Store [3,2]. Only grayware (which stealthily collects user data) had been
reported and was removed from the store upon reporting [4,3].

Application Sandbox. iOS utilizes another security measure – application
sandbox – to restrict privileges of third-party applications running on a device.
The sandbox is implemented as a set of fine-grained access controls, enforced at
the kernel level. Under the sandbox restrictions, an application cannot access files
and folders of other applications. In order to access user data or control system
hardware, applications also need to call respective Application Programming
Interfaces (APIs) provided on iOS. These APIs are hooked by the sandbox so
that validations of API invocations can be performed dynamically. The sandbox
serves as the last line of security defense which limits malicious applications from
accessing system services or exploiting resources of other applications.

iOS Frameworks and APIs. To facilitate development of third-party ap-
plications, a collection of frameworks are provided in Cocoa Touch [11], which
include both public frameworks and private frameworks. Public frameworks are
application libraries officially provided to third-party developers while private
frameworks are intended only for Apple’s internal developers. Each framework
provides a set of APIs with which applications can access required system re-
sources and services. Similar to frameworks, APIs can also be categorized into
public APIs and private APIs.

Public APIs allow third-party applications to access a limited set of user in-
formation and control hardware of iOS devices, such as camera, Bluetooth and
WiFi. In contrast, private APIs are the APIs that are meant to be used by Ap-
ple’s internal developers. Private APIs may exist in both public and private
frameworks. Though not officially documented, private APIs include various
functions which could be used by a third-party application to escalate its re-
stricted privileges. Thus, Apple explicitly forbids third-party developers from
using private APIs and rejects applications once the use of private APIs is de-
tected. On the other hand, private APIs can still be used by applications that are
designed to run on jailbroken devices. Such applications are available through
Cydia [12], which is an unofficial application market built for jailbroken iOS
devices.

2.2 Threat Model

In this paper, we are interested in finding out the possible attacks which can be
performed by third-party applications on non-jailbroken iOS devices, as illus-



276 J. Han et al.

trated in Figure 1. The success of such attacks depends on two major factors:
1) whether the corresponding malicious applications can pass Apple’s vetting
process and appear in the official iTunes App Store; and 2) whether malicious
function calls can bypass the restriction of the iOS sandbox. We embed all our
proof-of-concept attack codes in the applications we develop, which have passed
Apple’s vetting process and have been digitally signed by Apple. Thus, our at-
tacks embedded in these applications are able to work on both jailbroken and
non-jailbroken iOS devices.

A’ A A

A A A

A’

Submit

Approve to appear

Download

A’

?

A’

Fig. 1. Threat model

3 Generic Attack Vector

As introduced in Section 2, iOS private APIs exist in both private frameworks
and part of public frameworks. When used by third-party applications, private
APIs may provide additional privileges to the applications and thus are explicitly
forbidden by the vetting process. We choose to utilize private APIs to construct
our attacks which perform various malicious functionalities. In this section, we
first present two ways of dynamically invoking private APIs which enable the
malicious applications to pass the vetting process without being detected. Such
dynamic loading mechanisms guarantee the success of the first stage in the pro-
posed attack vector. For the second attack stage, in order to identify useful
private APIs that are not restricted by iOS application sandbox, we manually
analyze and test each iOS framework. Utilizing the useful private APIs we iden-
tified, we manage to implement multiple serious attacks that cover a wide range
of privileged functionalities. These attacks can be embedded in any third-party
applications, and they work effectively on non-jailbroken iOS devices.

Although our attack vector includes two stages, these two stages are not
isolated – what private API needs to be utilized decides the way of its dynamic
invocation. Thus, in the following, we first use SMS-sending and PIN-cracking
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attacks as two examples to explain the underlying mechanisms of the entire
attack vector. We then introduce other attacks we implemented utilizing the
same attack vector and discuss the implications of these attacks.

3.1 Attacks via Dynamically Loaded Frameworks

When implementing a third-party iOS application that uses private APIs, the
normal process is to link the corresponding framework statically (in the applica-
tion’s Xcode [13] project), and import the framework headers in the application’s
source code. For example, if a developer wants to send SMS programmatically
in his application, CoreTelephony.framework needs to be linked, and CTMessage-

Center.h needs to be imported in the application code. After preparing those
preconditions, the SMS-sending private API can then be called as follows:

[[CTMessageCenter sharedMessageCenter]

sendSMSWithText:@"A testing SMS"

serviceCenter:nil

toAddress:@"+19876543210"];

In the above code, the static method sharedMessageCenter returns an instance of
CTMessageCenter class, and then invokes the private API call “sendSMSWithText:

serviceCenter:toAddress:”, which performs the SMS-sending functionality on iOS
5. Third-party application can utilize this method to send premium-rate SMS,
and the sent SMS will not even appear in the SMS outbox (more precisely, it
does not appear in the default iOS Message application2). Thus, a user would
be totally unaware of such malicious behavior until the user receives his next
phone bill.

However, this standard way of invoking private APIs can be easily detected
by the vetting process, even though only the executable binary of the compiled
application is submitted for vetting. One way of detecting this API call is to sim-
ply use string matching (e.g., “grep”) on the binary, as the name of the function
call appears in the binary’s objc methname segment (and also other segments).
Moreover, the framework name and class name also appear in the binary as im-
ported symbols. In this example SMS-sending code, although CoreTelephony is a
public framework, CTMessageCenter.h is a private header (i.e., CTMessageCenter is
a private class); thus, importing it in the source code can be detected by per-
forming static analysis on the application’s binary file. In order to pass Apple’s
vetting process, the application cannot link the framework statically.

To avoid being detected, the framework has to be loaded dynamically and the
required classes and methods need to be located dynamically. In our attacks,
we utilize Objective-C runtime classes and methods to achieve this goal. The
example SMS attack code that illustrates the dynamic loading mechanism is
given as follows:

2 Another way of sending SMS programmatically on iOS 5 is to utilize MFMessageCom-

poseViewController. However, this method is easy to be noticed as the SMS sent would
appear in the default Message application.
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1: NSBundle *b = [NSBundle bundleWithPath:@"/System/Library

/Frameworks/CoreTelephony.framework"];

2: [b load];

3: Class c = NSClassFromString(@"CTMessageCenter");

4: id mc = [c performSelector:NSSelectorFromString(@"sharedMessage

Center")];

5: // call "sendSMSWithText:serviceCenter:toAddress:" dynamically

by utilizing NSInvocation

...

In the above code, the first two lines are used to load the CoreTelephony frame-
work dynamically, without linking this framework in the application’s source
code. The path of this library is fixed on every iOS device, which is under the
/System/Library/Frameworks/ folder. Note that not only public frameworks can be
loaded dynamically, private frameworks (which is under /System/Library/Private-

Frameworks/) can also be loaded dynamically using the same method. According
to our experiments, Apple’s sandbox does not check the parameter of [NSBundle
load] to forbid accessing these frameworks under /System/Library folder.

NSClassFromString at the third line is a function which can locate the corre-
sponding class in memory by passing it the class name, which is similar to the
“Class.forName()” method in Java reflection. At the fourth line, the sharedMessage-

Center method is called via “performSelector:”. At last, in order to call a method
with more than 2 parameters (which is “sendSMSWithText:serviceCenter:toAddress:”
in this case), the NSInvocation class is utilized.

Although the above code dynamically invokes the private API call, it may
need certain obfuscation in order to avoid the detection from static analysis dur-
ing the vetting process3. The last step of generating the actual attack code is to
obfuscate all the strings appearing in the above example code. There are various
ways of obfuscating strings in the source code. One simple technique is to create
a constant string which includes all 52 letters (both upper and lower cases), 10
digits and common symbols. Then all the strings appeared in the above code can
be generated dynamically at runtime by selecting corresponding positions from
this constant string. Some of our applications utilize this method to obfuscate
strings in the attack codes, and some others adopt a complex obfuscation mech-
anism, which involves bitwise operations and certain memory stack operations
that are more difficult to be detected.

3.2 Attacks via Private C Functions

Information about private Objective-C classes and methods in the Cocoa Touch
frameworks can be obtained from the iOS runtime headers [14], which are gener-
ated using runtime introspection tool such as RuntimeBrowser [15]. An example

3 Actually according to our experiments, obfuscation may not be necessary, as the
vetting process does not seem to check all text segments in the binary. In our ex-
periments, we have tried to embed this SMS-sending code in one application which
does not utilize obfuscation, and the application passed the vetting process.
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of directly utilizing these Objective-C private APIs has been introduced in the
previous subsection. However, Objective-C private classes and methods are not
the only private APIs we are able to use in third-party applications.

When we reverse engineer the binary files of each framework, we find that
there are a number of C functions in these frameworks that can be invoked
by our application, which do not appear in the iOS runtime headers [14] and
cannot be found with RuntimeBrowser [15]. In order to invoke these C functions,
we need to dynamically load the framework binary and locate the function at
runtime. The following code segment is part of our PIN-cracking code, which
illustrates how we realize the dynamic invocation for private C functions.

void *b = dlopen("/System/Library/PrivateFrameworks

/MobileKeyBag.framework/MobileKeyBag", 1);

int (*f)(id, id, id) = dlsym(b, "MKBKeyBagChangeSystemSecret");

...

int r = f(oldpwd, newpwd, pubdict);

...

In the above code segment, we use dlopen() to load the binary file of the pri-
vate framework MobileKeyBag, which returns an opaque handle for this dynamic
library. Utilizing this handle and dlsym(), we are then able to locate the address
where the given symbol MKBKeyBagChangeSystemSecret is loaded into memory.
This address is then casted into a function pointer so that it can be directly
invoked later on in our attack code.

Although the above code segment may look simple, it is actually not easy
to identify which C functions we should invoke to serve for our attack purpose,
especially when only framework binary is given. Even after the C functions are
identified and located, it takes further tedious work to figure out the correct
parameter types and values to pass to the C functions. And in many cases, even
all parameters are correct, these functions may be restricted by iOS sandbox
and thus will not function correctly within third-party applications. To speed
up the manual reverse engineering process when analyzing the given framework
binaries, we build our own static analysis tool (which is based on IDA Pro.[16])
to disassemble the framework binary and obtain assembly instructions that are
relatively easy to read.

By manually analyzing the private framework ManagedConfiguration, we find
out that the changePasscodeFrom:to:outError: method of MCPasscodeManager is used
to reset the password of the iOS device. However, we are not able to directly
invoke this Objective-C method because the device needs to be “unlocked” first
with current device password (possibly due to sandbox restrictions). Thus, we
need to find a way of bypassing such restriction. Digging into the assembly code
of the changePasscodeFrom:to:outError: method, we find out that it eventually in-
vokes the MKBKeyBagChangeSystemSecret C function in MobileKeyBag to reset the
password, which is allowed to be directly invoked under the sandbox restrictions.
Further analysis and experiments are then conducted to figure out the correct
parameters used to invoke MKBKeyBagChangeSystemSecret.



280 J. Han et al.

Our analysis reveals that the MKBKeyBagChangeSystemSecret function accepts
three parameters, all of which have the type of (NSData*). The first param-
eter is the data of the old password, which can be converted from password
string. The second parameter is the data of the new password. The third param-
eter, however, is an NSDictionary containing the “keyboard type” of the current
password, which must be converted into NSData with [NSPropertyListSerialization

dataFromPropertyList:format:errorDescription:]. One simple way of obtaining this NS-
Dictionary data is to utilize the private framework ManagedConfiguration. However,
in our attack code, to minimize the number of frameworks loaded, we utilize
another private C function MKBKeyBagCopySytemSecretBlob4 in MobileKeyBag to
obtain this NSDictionary, which is then passed to MKBKeyBagChangeSystemSecret

as the third parameter.
After this MKBKeyBagChangeSystemSecret function is successfully invoked, the

rest of the attack code is straight forward – we simply use brute force to crack
the password. 4-digit PIN has been widely used to lock iOS devices and has a
password space of 104. When using our application to crack a device PIN on
iPhone 5, it takes 18.2 minutes on the average (of 16 trials on two iPhone 5
devices) to check the whole PIN space (104). This gives an average speed of 9.2
PINs per second. To further speed up the cracking, we build a PIN dictionary
so that common PINs are checked first. If the given PIN is in birthday format
(mmdd/ddmm), it takes about 40 seconds to crack the PIN on average. Note
that since our PIN-cracking attack uses the low level C functions, it will not
trigger the “wrong password” event on the iOS device which is implemented at
higher level (Objective-C functions) in the framework code. Thus, there is no
limit on the number of attempts for our brute force attacks when cracking the
device PIN. It is the same procedure to crack 4-digit PIN and complex password
using our method, but the latter will take much longer time than PIN due to its
large password space.

3.3 Other Implemented Attacks and Implications

The SMS-sending attack and the PIN-cracking attack introduced above explain
how the entire attack vector is constructed. The former uses private Objective-C
functions (Section 3.1), while the latter uses private C functions (Section 3.2).
With the same dynamic invocation mechanisms which are able to bypass the
vetting process, other attacks can also be implemented, as long as we can identify
sensitive private APIs that are overlooked by the iOS sandbox.

We manually analyze the 180+ public and private iOS frameworks and man-
age to identify seven sets of sensitive APIs that are not restricted by iOS sand-
box. Utilizing these APIs and the dynamic invocation mechanisms, we implement
seven attacks, which are listed in Table 1. The corresponding frameworks and

4 Note that it is not a spelling error in this MKBKeyBagCopySytemSecretBlob function. The
key word “System” in this function name is spelled as “Sytem” by Apple’s program-
mers. This detail further shows that in this attack, we utilize a function which Apple
programmers may not expect to be used by third-party applications.
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Table 1. The seven attacks implemented and their applicability

# Attack Name Description iOS 5 iOS 6 iPhone iPad*

1 PIN-cracking Crack and retrieve the PIN of the device. � � � �
2 Call-blocking Block all incoming calls or the calls from � � � –

specified numbers.

3 Snapshot-taking Continuously take snapshots for current � � – �
screen (even the app is at background).

4 Secret-filming** Open camera secretly and take photos or � � � �
videos without the user’s awareness.

5 Tweet-posting Post tweets on Twitter without user’s � � � �
interaction.

6 SMS-sending Send SMS to specified numbers without � – � –

the user’s awareness.

7 Email-sending Send emails using user’s system email � – � �
accounts without the user’s awareness.

* The call-blocking and SMS-sending attacks do not work on iPad, simply because iPad does not
have corresponding functionalities since it is not a phone device.

** This secret-filming attack can be implemented purely with iOS public APIs.

key APIs utilized are listed in Table 2 in the appendix. We embed our attack
codes in multiple applications we develop, and all those applications have passed
Apple’s vetting process and appeared in the official iTunes App Store.

Most of the attacks in Table 1 work on both iOS 5 and iOS 6 (which is the
default iOS version on iPhone 5). The last two attacks (SMS-sending and email-
sending) currently only work on iOS 5, but not iOS 6. The APIs of sending SMS
and emails on iOS 6 have been substantially changed to prevent such attacks
(which will be further analyzed in Section 4).

The severity of most of our attacks would be significantly increased when the
attack code is embedded in an application that can keep running at the back-
ground. Take the snapshot attack as an example. By calling the private API
[UIWindow createScreenIOSurface], an application can capture the current screen
content of the device. When continuously running at the background, this ap-
plication can take snapshots of the device periodically, and send these snapshots
back to the developer’s server for further analysis5. Such snapshot-taking attack
may reveal user’s email content, photos and even bank account information, thus
it should be avoided on any mobile devices.

Similar to the snapshot-taking attack, the call-blocking and PIN-cracking at-
tacks also become more serious when they are used in an application that can
continuously run at the background, which have been verified in our experi-

5 The snapshot attack code is embedded into one of our applications which can keep
running at background utilizing audio playing feature. This application also passed
Apple’s vetting process and it sends out snapshots every 5 seconds once triggered.
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ments. However, the secret-filming attack does not work when in background.
The current implementation of the iOS camera service requires that an applica-
tion utilizing this service be not in the background status. Nevertheless, even if
the secret-filming attack works only when the application is in the foreground, it
is still a serious threat to user privacy. Considering that when a user is playing
a game on the iOS device, and the game secretly opens the cameras and takes
photos periodically without the user’s notice. In our experiments, we have veri-
fied that both front and back cameras can be used, and the sound can be muted
when taking videos or photos programmatically in our applications.

We emphasize that all these attacks are implemented with secret triggers
in the applications that are submitted to iTunes Store. The attacks are only
launched on our testing devices after certain sequences of secret buttons have
been pressed in the applications. However, note that in the application codes,
such triggers are just “if-else” statements. Thus, if the trigger conditions were
replaced with an “if-true” condition, these attacks could be launched on any user
device with such applications. Therefore, the secret triggers used in our proof-of-
concept applications do not affect the conclusions drawn from our experiments.

Besides the seven attacks we have implemented, our attack vector can be used
to construct other attacks as long as there are security sensitive functions on iOS
that are not restricted by iOS sandbox. As each iOS version will include new
functionalities to the platform, each iOS update may introduce new attacks from
malicious third-party applications based on our attack vector.

4 Attack Mitigation

Our proof-of-concept attacks have shown that Apple’s current vetting and sand-
box mechanisms have weaknesses which can be exploited by third-party appli-
cations to escalate their privileges and perform serious attacks on iOS users. In
this section, we first suggest improvements on the vetting process to mitigate the
security threats caused by dynamic invocations. We then propose enhancements
on the iOS sandbox to further defend against our attacks utilizing private APIs.

4.1 Improving Application Vetting Process

Static analysis can be used to determine all the API calls which are not invoked
with reflection (i.e., dynamic invocations), and it can provide the list of frame-
works that are statically linked in the application. Thus, an automated static
analysis is able to detect the standard way of invoking private APIs, as what is
probably being used by Apple in its current vetting process. In addition, we sug-
gest to improve the existing static analysis to detect suspicious applications based
on certain code signatures. For example, one suspicious code signature could be
applications containing any dlopen() or [NSBundle load] invocations whose param-
eters are not constant strings (which match the cases of our attacks). However,
as the static analysis alone is not sufficient to determine whether a suspicious ap-
plication is indeed a malware or not, manual examination and dynamic analysis
should be utilized to examine such suspicious applications.
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In many cases, manual examination may not be able to find malicious behav-
iors of the examined applications, because the malicious functions may not be
preformed for every execution. Instead, they can be designed in the way that
such functions are only triggered when certain conditions have been satisfied.
Examples of such conditions include time triggers or button triggers (as what
have been used in our applications). When a malicious application uses such
trigger strategy, the manual inspection may not find any suspicious behaviors
during the vetting process. Such malicious applications can only be detected by
utilizing fuzz testing [16] (or in the extreme case, using symbolic execution [17]),
where different inputs are used to satisfy every condition of the application code.
Furthermore, in order to determine whether sensitive user data are transferred
out of the device, dynamic taint analysis [18] is an effective approach to serve
this purpose. However, since it is expensive to apply fuzz testing and dynamic
taint analysis on every application, the vetting process may choose to run such
examinations only on selected suspicious applications.

4.2 Enhancement on iOS Sandbox

Dynamic Parameter Inspection. From the perspective of iOS sandbox, a
straightforward defense to our attacks that utilize the dynamic loading functions
(such as [NSBundle load] and dlopen()) is to forbid third-party applications to
invoke these functions. However, it is not practical to completely forbid the
invocation of dynamic loading functions, since frameworks, libraries and many
other resources need to be dynamically loaded for benign purposes at runtime.
Even Apple’s official code, including both framework code and application code
(which is automatically generated by Xcode), utilizes dynamic loading functions
extensively to load resources at runtime. On the other hand, since sensitive APIs
can be hooked by utilizing the application sandbox, the parameters of these APIs
can be checked at runtime. Thus, it is useful if Apple’s sandbox is modified in
the way that the parameter values passed to dynamic loading functions are
examined, and accessing files under a specific folder is forbidden.

One way of implementing this approach is to forbid the third-party applica-
tions to dynamically load any frameworks under “/System/Library/” folder. How-
ever, a sophisticated attacker may be able to completely reverse engineer a given
framework binary, locate all the code regions in the binary that are needed for
launching his attack, and then copy only the needed code regions from the bi-
nary and insert into his application code. In this way, he does not need to
dynamically load framework binaries in his malicious applications. Therefore,
this parameter-inspection approach is not able to completely defend against the
proposed attacks, though it can increase the complexity for the adversary to
construct these attacks.

Privileged IPC Verification. Another technique of enhancing the sandbox is
to dynamically check the privilege of the identity which makes sensitive API calls.
For example, a third-party application should not have the privilege to invoke
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MKBKeyBagChangeSystemSecret API, which is used in our PIN-cracking attack.
Such private APIs should only be invoked by processes or services with the sys-
tem privilege. However, directly restricting the access to private APIs may not
effectively prevent the attacks. By analyzing the implementation of several pri-
vate APIs (in assembly code), we find that the private APIs eventually use inter-
process communication (IPC) methods, which communicate with the system ser-
vice process, to complete the functionalities of the private APIs. For example,
MKBKeyBagChangeSystemSecret API uses perform command() method to communi-
cate with the system service (with service bundle id = “com.apple.mobile.keybagd”).
This means that instead of invoking private APIs, an application can also use
such IPC method to directly send command to the system service process to
perform the same functionality.

In order to defend against such attacks, for each privileged system service,
the recipient of the command (which is the service process itself) needs to check
the sender of the command to verify whether the sender has the valid privilege
to make such IPC. To enable this IPC verification, the system service process
needs to maintain a list of privileged IPC commands which are checked dynami-
cally when an IPC is received. Compared to the parameter-inspection approach,
privileged IPC verification provides better defense against the PIN-cracking, call-
blocking and snapshot-taking attacks as the corresponding privileged functional-
ities should not be used by any third-party applications. However, this approach
alone is not sufficient to mitigate the other four attacks listed in Table 1. For
these four attacks, the corresponding functionalities should be provided to ap-
plications due to usability reasons, but at the same time, it needs to be ensured
that user interactions are involved when these functionalities are performed.

Service Delegation Enhancement. On iOS 6, Apple starts using the XPC
Service, which allows processes to communicate with each other asynchronously
so that it can be used for privilege separation. Originally on iOS 5, the SMS
and email APIs are implemented as “View Controller” classes that are created
and used within a third-party application process. Therefore, applications can
manipulate these view controller classes to send out SMSes and emails program-
matically without users’ interaction. However, on iOS 6, the SMS and email
functionalities are now delegated to another system process utilizing XPC Ser-
vice, which is completely out of the process space of third-party applications.
Thus, a third-party application on iOS 6 is no longer able to send SMSes or
emails programmatically without user’s interaction.

Although currently iOS 6 has not implemented the service delegation mech-
anism for the Twitter service, the tweet-posting attack can be prevented using
this mechanism, as it follows exactly the same service model as SMS and email.
The secret-filming attack, however, cannot be easily mitigated using such ser-
vice delegation. Instead of using a unified user interface, iOS enables third-party
applications to create their own customized user interfaces for taking photos or
videos. If the same service delegation mechanism is applied, then the camera in-
terface will be identical across different applications as it is provided by system
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service. Thus, more precisely, service delegation is able to defend against camera
device abuse, but its implementation may greatly impact user experience.

System Notifiers for Sensitive Functionalities. In order to mitigate the
threat of secret filming, while preserving the functionality and flexibility of using
camera in third-party applications on iOS, one possible solution is to add a
half-transparent system notifier on the screen (e.g., at the upper-right corner),
whenever the camera device is being used. This notifier can be shown using the
XPC mechanism so that the notifier is handled by a system daemon process,
which is outside of the control of third-party applications. In this way, whenever
the camera is being used (either taking photos or taking videos), the system
notifier is shown on the screen to alert the user.

By enhancing the current iOS platform with the 1) privileged IPC verification,
2) comprehensive service delegation, and 3) extended system notifiers, it will be
able to defend against all the seven attacks we construct. Note that since iOS
is a close-source platform, it is extremely difficult (if not impossible) for us to
implement these mitigation methods we proposed, and thus it is one of the
limitations in our work. However, we have shared all our mitigation suggestions
with Apple so that Apple’s product security team may choose some of these
methods to fix the sandbox. From the partial knowledge that is revealed by
our attacks and the mitigation analysis, it may be inferred that the current iOS
sandbox implementation is quite complex and its privilege check is not complete.
Due to its complexity and also its trade-off nature against usability, it may not
be easy to completely fix the iOS sandbox to prevent future attacks.

5 Discussions

On the current iOS platform, when an application plays an audio file (e.g.,
.mp3), normally a music-playing notifier (i.e., the � symbol) is shown in the
status bar on top of the screen. However, this only happens when the applica-
tion is implemented following the standard programming rules, which require
the application code to call [[UIApplication sharedApplication] beginReceivingRemote-

ControlEvents]. This API call registers the application in the system service so
as to receive remote events, such as when a user presses the control buttons on
earphone. In the background running application we implement, however, this
API is not invoked and our application simply calls the basic audio playing APIs
to play a silent music in an infinite loop. As a result, no notifier is shown on the
status bar when our application is running at the background, thus the iOS user
may be totally unaware of the existence of this security threat. In addition to
playing audio, there are other means of enabling background running, such as
VOIP and tracking locations. Thus, besides the system notifier for the camera
functionality (Section 4.2), we suggest to add another system notifier specifically
designed to indicate that an application is running at the background. Upon see-
ing this notifier, a user can force close any background applications that are not
being used. This will not only enhance security but also save device battery.
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The PIN-cracking attack code introduced in Section 3.2 not only can be used
to steal device PIN and send it to an external server, but can also be used to
reset the current PIN to another value so that the legitimate user is not able
to unlock the device. In iOS settings, there is an option to “erase all data on
this device after 10 failed passcode attempts”. If this option is enabled on a
device and our PIN-cracking code resets the PIN, it could make a user panic
if he is unable to unlock the device after several trials of inputting his original
password. Again note that our PIN-cracking attack itself will not trigger the
“wrong password” event on the iOS device and thus, there is no limit on the
number of brute forcing trials for our attack code when cracking the device PIN.

With the attack codes we shared with Apple’s product security team, the
PIN-cracking vulnerability has been fixed in the newly released iOS 6.1 (Jan-
uary 2013). However, other security issues we discovered are still in the process
of being addressed. Note that the conclusions about the vetting process and
sandbox given in this paper are inferences based on observations from our ex-
periments, as the details of the vetting process and sandbox are kept as black
box by Apple. The ground truth may become available to the public when Apple
decides to turn major components of iOS into open source in the future, as what
has been done for Mac OS X [19].

6 Related Work

Spyphone [20] is a prototype application, developed for iOS 3.1.2, which illus-
trates that a wide list of user data can be accessed on iOS by third-party ap-
plications. However, Spyphone does not use any private APIs – it only invokes
public APIs and reads public files to access user data in order to enable itself
to appear in iTunes Store [20], which is completely different from our malicious
applications implemented. In addition, the security enforcement of iOS has been
significantly improved since then so that a large portion of user data that can
be accessed by Spyphone on iOS 3 is forbidden to access since iOS 5.

Malwares, such as iKee [7] and Dutch 5 ransom [8] worms, have been found on
iOS. However, these worms only work on jailbroken iOS devices where an SSH
server is installed with the default root password unchanged. Other iOS malwares
known to the public, such as iSAM created by Damopoulos et al. [9] (which
focuses more on malware propagation methods), also exploit vulnerabilities exist
only on jailbroken iOS devices, which are different from our work.

Felt et al. [3] conduct a survey on the modern mobile malware in the wild,
which encompasses all known iOS, Symbian, and Android malwares that spread
between January 2009 and June 2011. They find that (i) all the 4 iOS malwares
they identified work only on jailbroken iOS devices, and none were listed in the
iTunes App Store; and (ii) only graywares are found on iTunes App Store which
are then removed by Apple. These findings are confirmed by Egele et al. [21],
in which they develop a static analysis tool, PiOS, to detect privacy leakages in
iOS applications. They perform static analysis on more than one thousand third-
party iOS applications and find out that only a few applications are graywares
which stealthily access user data without user’s awareness.
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Extensive researches have been conducted on the other popular mobile plat-
form – Android. Privilege escalation attacks on Android are proposed by [22],
and the defense mechanisms for such attacks are introduced by Bugiel et al. [23].
Enck et al. [24] performs static analysis of Android applications using the decom-
piler they developed. Dynamic taint analysis on third-party Android applications
is performed by TaintDroid [25]. Comprehensive surveys on mobile security are
provided by Becher et al. [26] and Egners et al. [27].

The closest work to our research is the work by Miller [28]. By exploiting the
security flaw he found, he managed to get iOS devices to run unsigned codes
which are dynamically downloaded by his proof-of-concept malicious applica-
tion. Miller’s attack mechanism provides an alternative for the first stage of our
proposed attack vector. However, Apple has removed his application from the
iTunes App Store and released a fix for the security flaw. Thus, our dynamic
invocation used in the first stage, to our best knowledge, is the only way of
bypassing the vetting process. Although our mechanism is not complex, it is a
very effective way of allowing malicious applications appear in the official appli-
cation store. Furthermore, by performing sophisticated analysis on all existing
iOS frameworks, we identify seven sets of sensitive APIs which are not restricted
by iOS sandbox and thus can be utilized by any malicious applications.

7 Conclusion

The original goal of this work is to answer a simple (but not easy) research
question: is there a generic attack vector which enables third-party applications
to launch attacks on non-jailbroken iOS devices? Two pre-conditions need to
be satisfied in answering this question: (i) the third-party application has to
pass the vetting process and appear on the official application store; and (ii) the
corresponding attack codes must break through the restrictions of iOS sandbox
in order to work on non-jailbroken iOS devices.

In this paper, we constructed effective mechanisms which allow any third-
party application to invoke private APIs without being detected by the vetting
process. By utilizing such mechanisms and exploiting the vulnerabilities in the
application sandbox, we implemented seven proof-of-concept attacks which can
cause serious damages to iOS users. Finally, we suggested mitigation mechanisms
to enhance the current vetting process and iOS sandbox. Our paper fills the
gap in the current mobile security literature where most research efforts are
conducted on Android platform. We have shared all our findings with Apple’s
product security team. In January 2013, Apple released iOS 6.1 and fixed the
PIN-cracking vulnerability we discovered in iOS 6.0, while other security issues
presented in this paper still remain unsolved.
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A Details in Attack Implementations

The frameworks and key APIs utilized in our attacks are given in Table 2.

Table 2. The frameworks and key APIs utilized for the seven attacks
implemented

# Attack Frameworks Classes* Functions

1
PIN-

cracking
MobileKeyBag —

MKBKeyBagChangeSystemSecret

MKBKeyBagCopySytemSecretBlob

2
Call-

blocking
CoreTelephony —

CTTelephonyCenterGetDefault

CTTelephonyCenterAddObserver

CTCallCopyAddress

CTCallDisconnect

3
Snapshot

-taking
UIKit

UIWindow

UIImage

createScreenIOSurface

initWithIOSurface:

4
Secret-

filming

AVFoundation

CoreMedia

CoreVideo

AVCaptureDevice

AVCaptureDeviceInput

AVCaptureVideoDataOutput

AVCaptureSession

devices

deviceInputWithDevice:error:

setSampleBufferDelegate:queue:

startRunning

5
Tweet-

posting
Twitter TWTweetComposeViewController

setCompletionHandler:

setInitialText:

send:

6
SMS-

sending
CoreTelephony CTMessageCenter

sharedMessageCenter

sendSMSWithText:serviceCenter:-

toAddress:

7
Email-

sending

Message

AppSupport

MailAccount

CPDistributedMessagingCenter

defaultMailAccountForDelivery

uniqueId

centerNamed:

sendMessageAndReceiveReplyNam-

e:userInfo:error:

* The symbol of “—” in the Class field indicates that the corresponding attack does
not utilize any Objective-C classes, but only utilizes private C functions.

http://nakedsecurity.sophos.com/2011/11/08/apples-app-store-security-compromised/
http://nakedsecurity.sophos.com/2011/11/08/apples-app-store-security-compromised/
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Abstract. Maximizing the battery lifetime of wireless sensor nodes and
equipping them with elliptic curve cryptography is a challenge that re-
quires new energy-saving architectures. In this paper, we present an ar-
chitecture that drops a hardware accelerator between CPU and RAM.
Thus neither the CPU nor the data memory need to be modified. In
a detailed comparison with a software-only and a dedicated hardware
architecture, we show that the drop-in concept is smaller than the ded-
icated hardware module, while achieving similarly fast runtimes. Most
interesting for micro-chip manufacturers is that only 4 kGE of chip area
need to be committed for the dedicated drop-in accelerator.

Keywords: MSP430, ASIC, Hardware, Software, Elliptic Curve Cryp-
tography, Wireless Sensor Nodes.

1 Introduction

Privacy, authenticity, and confidentiality pose three of the most challenging cur-
rent demands on wireless sensor networks. To solve those requirements the use of
cryptography is essential. Unfortunately, it is hardly possible to solve this chal-
lenge using only symmetric cyphers. The most promising solutions are based on
asymmetric cryptography, in particular Elliptic Curve Cryptography (ECC).

Efficiently implementing ECC is a complex task, especially when a designer
also needs to be aware of the capabilities of the entities of a sensor network: A
sensor node usually comes with a microprocessor, a sensor (e.g., for humidity),
a wireless communication interface (e.g., IEEE 802.15.4 [16], ZigBee [31]), and
a battery, which should keep the sensor-node alive for a lifetime (some years)
within a hostile environment. This means that a solution to the initial require-
ments should be light-weight and efficient. For maximizing the battery live and
keeping the price of a sensor node at a minimum, ECC has to be implemented
with care. To realize the scope of the difficulty, be aware that within the time
required for a single elliptic-curve point multiplication, several hundreds of sym-
metric encryptions and decryptions can be preformed. Thus ECC has a major
impact on both communication latency and energy consumption.

M. Jacobson et al. (Eds.): ACNS 2013, LNCS 7954, pp. 290–306, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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A lot of research has been focused on efficiently and securely implement-
ing ECC. The research is performed based on three different approaches: one
is based on efficiently implementing ECC in software, one is based on adding
dedicated hardware, and one is a combination of the two preceding approaches.
Several papers discuss the use of assembly optimizations [12], instruction-set ex-
tensions [6,10], and dedicated ECC hardware designs [19,20]. The drawback of
those techniques are the relatively low performance, the requirement to change
the microprocessor, and the potential waste of precious chip area, respectively.
As CPU vendors usually do not give away the source code of microprocessors,
but obfuscated code instead, adding new instructions is a troublesome task.
Dedicated hardware modules provide locally optimized solutions, but ignore the
existence of already available hardware modules. Our paper fills this gap.

Our contribution. In this paper, we perform a fair comparison (common algo-
rithms, technologies, tools) of three different hardware architectures, all capable
of performing ECC. Using an openMSP430 at the core, we present (i) an area
and speed-optimized software solution, (ii) a dedicated hardware module, and
most importantly (iii) a novel ECC ‘drop-in’ architecture. For the drop-in archi-
tecture, a lightweight ECC accelerator is placed right between the CPU and its
data memory. It requires less chip area than a dedicated hardware module, while
being similarly fast. Compared to the optimized software solution, the energy
consumption is reduced by a factor of 28, which certainly will make a major
impact on the lifetime of a wireless sensor node. The drop-in concept is also
most interesting for micro-chip manufacturers as only 4 kGE of dedicated chip
area need to be committed for the drop-in accelerator.

The paper is structured as follows. Section 2 gives a short introduction on how
to securely implement ECC and Section 3 discusses different architectures for
ECC. The most promising architectures are then implemented within Sections 4–
6 and compared within Section 7. Conclusions are drawn within Section 8.

2 A Short Introduction to ECC

Elliptic curves, used for cryptography, are built on top of finite fields. As finite
field, one can either choose a prime field or a binary extension field. Prime fields
are fast in software as they are based on integers and integer multipliers are
available in nearly all (embedded) microprocessors. Binary-extension fields on
the other hand are built on polynomials, which when implemented in hardware
do not have the drawback of carry propagation. However, in software a multipli-
cation of two polynomials has to be realized using branches, which are vulnerable
to side-channel attacks.

The for us most interesting standardized elliptic curves [1,2,23] are all based
on the Weierstrass equation: y2+ a1xy+ a3y = x3 + a2x

2+ a4x+ a6. Depending
on whether prime or binary-extension fields are used, this equation is simplified
to y2 = x3 + ax + b or y2 + xy = x3 + ax2 + b, respectively. Also the formulas
used to perform point additions and doublings depend on the used finite field.
For further information, the reader is referred to standard literature on elliptic
curves [3,13].
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Table 1. ECC formulas used within this paper

Finite-field operations per key bit
Formula Field Registers Add/Subtract Square Multiply

Hutter et al. [15] Fp 7 + 3 = 10 17 4 12
López and Dahab [22] F2m 5 + 3 = 8 3 5 6

For the following comparison, it is important that all implementations are
based on a common methodology. For the constant-runtime software implemen-
tations, the integer and polynomial arithmetic has been separated from the
reduction operation. The reduction is performed using only simple shift and
addition operations. Thereby advantage was taken of the used prime and
irreducible polynomial. To perform an inversion in constant time, an exponentia-
tion, based on Fermat’s little theorem (aq−2 ≡ a−1 mod (q)) is used. For binary-
extension fields an optimized inversion algorithm based on Itoh and Tsujii [17]
is used.

More important than the used finite field is that ECC implementations are
vulnerable to side-channel attacks [7]. Attackers can use runtime information,
power consumption profiles, or induce faults to recover the secret key. This is
a significant problem for the easily accessible wireless sensor nodes that usually
are deployed within unsafe environments. Thus, a methodology must be utilized
that minimizes the potential threats.

In this paper we take advantage of differential addition formulas optimized for
Montgomery ladders. Table 1 gives a short summary of the used formulas. By
using a Montgomery ladder, the underlying finite-field operations are indepen-
dently performed from the used private scalar. Thus a key-independent constant
runtime is achievable under the assumption that all finite-field operations are
performed in constant time (which they are). The formulas are also lightweight.
Only 7/5 registers are required during the point double-and-add operations. For
the recovery of the y-coordinate another two registers are needed which store
the original base point. Another register that stores the private scalar is also
included in all comparisons within this paper.

To further increase the resistance against power-analysis attacks one would use
Randomized Projective Coordinates [5] and to resist fault attacks, perform point
verifications before and after each point multiplication. In practice the resistance
against those attacks is verified by performing real-world evaluations. As those
evaluations would go beyond the scope of this paper, they have not (yet) been
done. However, the algorithms and methodologies used for our implementations
are applicable to build real-world secure hardware.

3 Architectures

The decision regarding the best architecture is most important for a final design
as it greatly influences area, runtime, power, and energy characteristics. Only
by considering all requirements and the system as a whole, a global optimum
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Fig. 1. Microprocessor-based architectures

can be found. By optimizing a single (e.g., ECC) component it is probable to
reach a local optimum only. Figure 1 shows four different architectures which
are based on microprocessors, as microprocessors are the central component in
all currently available sensor nodes. The ECC-independent components, such as
the wireless interface and the actual sensor, are considered to be constants and
therefore independent from the used architecture.

(a) The most straight-forward solution is to perform and optimize ECC in soft-
ware1. The hardware designer only has to make sure that the data memory is
sufficiently large and the assembly-optimized ECC code is placed within the pro-
gram memory. The microprocessor (CPU) is then used to execute the code. In
Figure 1, the program memory is simplified as ROM and the data memory as
RAM. As ECC is very resource demanding and a software-only solution is in most
cases insufficiently slow, one could add a memory-mapped ECC co-processor.

(b) Co-processors have already been extensively studied and optimized in related
work [19,20]. However, comparing area and power results of designs that use
different technologies and tools is inaccurate. Therefore, Section 5 presents an
ECC co-processor on-par with related work.

The drawback of so-called ECC slaves is that they waste chip area by having
their own memory. A solution in which the global RAM is reused is preferable.
Even when area-efficient RAM macros are used, practical evaluations show that
one RAM macro with more entries is smaller than two RAM macros with fewer
entries (c.f. 128×8-bit: 2,073GE vs. 256×8-bit: 2,897GE). An ECC accelerator
without RAM, which only performs finite-field operations would be a solution.
Unfortunately, for this solution the CPU has to manually move operands from
the RAM to the ECC slave and vice versa, thus wasting potential performance.

(c) An ECC circuit which, like the CPU, is capable of accessing the global data
memory by itself solves that problem: an ECC bus master. This assumes that
the used microprocessor must support a multi-master scenario, which embedded

1 Section 4 discusses this solution.
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Table 2. HW synthesis of openMSP430 [24]

Functional Blocks Chip-Area [GE]

openMSP430 7,801
Execution unit 5,536
Register file 2,709
ALU 693

Multiplier 1,826

openMSP430 w/o Multiplier 5,958

Algorithm 1. Accessing the 16-
bit memory-mapped multiplier
1: MOV R4, &MPY

2: MOV R5, &OP2

3: NOP

4: MOV @RESLO, R6

5: MOV @RESHI, R7

light-weight microprocessors usually do not. Also, the required arbiter can have
a significant impact on the total chip area.

(d) A more sophisticated concept is to unite the ECC master with the arbiter.
This within the context of ECC novel concept “drops” an ECC accelerator right
between the CPU and the data memory. From the viewpoint of the CPU it
behaves as simple ECC slave and does not hinder any access to the data memory.
From the viewpoint of the drop-in module, direct access to the data memory is
possible. Advantageous is also that neither the CPU (compared to instruction-
set extensions) nor the data-memory need to be modified. Section 6 discusses
this solution in more detail.

Tools. For this paper we use the 130nm low-leakage ASIC technology by UMC
with the Faraday design libraries in combination with area-efficient single-port
register-based RAM macros. For hardware synthesis Cadence RTL Compiler
v08.10, for place-and-route and power simulation Cadence First Encounter
v08.10, and for simulation Cadence NCSim v08.20 are used. In this technology,
one gate equivalent is equal to 5.12μm2. All evaluations are performed at 1MHz
and can easily be synthesized to exceed an operating frequency of 50–100MHz.

4 ECC on openMSP430

At the core of all previously discussed hardware designs is a microprocessor.
The selection of an appropriate microprocessor crucially influences the final run-
time, chip area, power, and energy results. The MSP430 [27] developed by Texas
Instruments, is considered to be a role model when it comes to low-cost and low-
power applications. It is currently already used for the sensor-node platforms
BEAN, COOKIES, EPIC mode, PowWow, Shimmer, TelosB, T-Mote Sky, and
XM1000, just to name a few. The MSP430 is a 16-bit RISC processor with a
Von Neumann architecture. This is important for saving data memory, as con-
stants do not have to be loaded to the expensive RAM before they are used. The
MSP430 comes with 16 16-bit registers, where R0 is the program counter, R1 is
the stack pointer, R2 is the status register, and R3 is the constant-generator reg-
ister. So only 12 registers (R4–R15) are useable as general-purpose registers. The
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Algorithm 2. ACC ← ACC + (A[0]×B[2]) + (A[1]×B[1]) + (A[2]×B[0]).

1: ADD #4 , OPB

2: MOV @OPA+, &MPY

3: MOV @OPB , &OP2

4: DECD OPB

5: MOV @OPA+, &MAC

6: MOV @OPB , &OP2

7: DECD OPB

8: ADD @SUMEXT, ACC2

9: MOV @OPA , &MAC

10: MOV @OPB , &OP2

11: SUB #4 , OPA

12: ADD @RESLO , ACC0

13: ADDC @RESHI , ACC1

14: ADDC @SUMEXT, ACC2

15: MOV ACC0 , 4(DEST)

16: CLR ACC0

MSP430 comes with only 27 instructions, from which none is a multiplication
instruction. To perform a 16-bit integer multiplication, the MSP430 optionally
has a memory-mapped multiplier. This will be discussed in detail later.

4.1 openMSP430

As our desired goal is a microprocessor-based hardware design, we need a hard-
ware model of the MSP430. Olivier Girard programmed a synthesizable Verilog
clone of the MSP430, called openMSP430 [24]. This clone fully supports the in-
struction set of the original MSP430 (with nearly identical timings), interrupts,
and power-saving modes. It optionally comes with a 16× 16-bit hardware mul-
tiplier, watchdog, timer, and GPIOs. A first evaluation of this core is depicted
in Table 2. An openMSP430 without data or program memory (which will be
chosen appropriately) requires 7,801GE. Most of this chip area is spent on the
execution unit (71%), and the hardware multiplier (23%). Without the multi-
plier, which is not necessary for binary-field based ECC, the openMSP430 only
requires 5,958GE.

4.2 Integer Arithmetic

In order to perform a 16-bit integer multiplication, four memory accesses are
necessary. Algorithm 1 shows the assembly code necessary to multiply R4 with
R5 and to store the product in R6 and R7. The code shown in Algorithm 1 needs
4 + 4 + 1 + 2 + 2 = 13 cycles to complete.

As multiple words are needed to represent integers within the used finite
field, the multi-precision product-scanning multiplication technique of Comba [4]
is used. Algorithm 2 sketches the used methodology. Three registers are used
to hold pointers to the operands (OPA and OPB) and the result (DEST), three
registers for the accumulator (ACC0-2) and three registers to hold addresses of
the memory-mapped multiplier (RESLO, RESHI, and SUMEXT). In order to avoid
loading the product after each multiplication, multiply-accumulate operations
are performed directly within the memory-mapped multiplier. The overflowing
bit stored within the SUMEXT register needs to be loaded within line 8. After line
14, the accumulated product resides within the registers ACC0-2. This technique
has already been presented by Gouvêa and López [8].
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Algorithm 3. 64× 1-bit polyno-
mial multiplication

1: RLA B0

2: JNC +10

3: XOR A0, C0

4: XOR A1, C1

5: XOR A2, C2

6: XOR A3, C3

7: JMP +12

8: XOR #0, C0

9: XOR #0, C1

10: XOR #0, C2

11: XOR #0, C3

12: NOP

13: NOP

Table 3. Comparison with related work

Curve Type ROM RAM Runtime
[Bytes] [Bytes] [kCycles]

Gouvêa et al. [9] and Szczechowiak et al. [26]

secp160r1 [9] Fp 23,300 2,800 2,528
sect163k1 [9] F2m 27,800 3,600 2,032

Custom [26] Fp 31,300 2,900 5,898
sect163k1 [26] F2m 32,100 2,800 8,519

ours on MSP430

secp160r1 Fp 4,230 282 5,721
sect163r2 F2m 4,126 294 7,447

4.3 Polynomial Arithmetic

As the MSP430 lacks a carry-less multiplier, a polynomial multiplication has
been implemented using branch operations. Algorithm 3 shows a 64×1-bit poly-
nomial multiplication which was used to build a 64× 32-bit multiplication. The
64 × 32-bit multiplication can be performed without the use of a single, costly
memory load or store operation. Using the methodology of Karatsuba and Ofman
a three-way split of a single 192-bit multiplication to 6 64-bit multiplications has
been performed. On the MSP430 a 64 × 32-bit polynomial multiplication takes
383 cycles and a 192-bit polynomial multiplication takes 6,089cycles. For con-
stant runtime, lines 8-13 in Algorithm 3 perform dummy operations. Without the
dummy operations, a speedup of 23% is possible on average. For comparison, a
192-bit integer multiplication takes 2,254 cycles and therefore is 2.7 times faster.
Gouvêa et al. [9] report an assembly optimized implementation for sect163k1
which only needs 3,907 cycles, but their implementation is not safe from timing
attacks.

4.4 Software Results

Four standardized elliptic curves providing security-levels of 80–96 bits have been
implemented. secp192r1 and sect163r2 are chosen because they are the small-
est elliptic curves within the NIST standard [2,23], still providing a sufficient
level of security. secp160r1 has been chosen because it is popularly used within
related work. As c2tnb191v1 [1] provides a similar security level as secp192r1
(95 vs 96 bits) it can be used for comparison.

Note that Table 3 shows the runtimes of our software implementation, simu-
lated on a cycle-accurate model of the MSP430, while Table 4 shows the slightly
better runtimes for an openMSP430. In Appendix A a detailed comparison of
all software implementations is depicted.

In literature many speed-optimized ECC implementations for the MSP430
have been reported [9,21,26,28] (cf. Table 3). Because of the extentsively per-
formed assembler optimization, our software implementation outperforms the
related work of Szczechowiak et al. [26] that also requires larger memories. The
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Table 4. Synthesized software implementations of ECC on the openMSP430

Curve Type Security ROM RAM ROM RAM Area Runtime Power Energy
[Bits] [Bytes] [Bytes] [GE] [GE] [GE] [kCycles] [μW] [μJ]

secp160r1 Fp 80 4,230 282 5,907 3,175 16,638 5,445 55.9 304.3
secp192r1 Fp 96 4,846 322 6,173 3,400 17,128 8,650 53.9 466.7

sect163r2 F2m 81 4,126 294 5,737 3,275 14,167 7,217 49.1 354.3
c2tnb191v1 F2m 95 3,994 310 5,735 3,375 14,014 8,376 55.4 463.8

fastest (ECDSA) implementation was done by Gouvêa et al. [9] in 2012. Com-
pared to our implementations, they report twofold faster runtimes at the expense
of 7 times larger program and 12 times larger data memories. As we synthesize
the program memory and choose appropriately large RAM macros, their imple-
mentation would result in a significantly larger hardware design, compared to
ours.

Table 4 shows the measured chip area, runtime, power, and energy results
for the four implemented elliptic curves. The biggest impact of up to 60% on
the total chip area is due to the size of the program memory and data memory.
For the elliptic curves over F2m the integer multiplier has been removed. The
binary-field-based ECC implementations are about 16% smaller and similarly
fast, compared to the prime-field-based ECC implementations. For sect163r2
the used 176-bit polynomial multiplier which is based on the 192-bit multiplica-
tion algorithm discussed before, renders the runtime results inferior compared
to secp160r1.

The elliptic curve requiring the least amount of energy is secp160r1 (303.3μJ).
However, the biggest potential for hardware optimizations (cf. [29]) lies within
binary-field based elliptic curves (354.3μJ). Therefore sect163r2 alias NIST
B-163 has been selected for the following hardware implementations.

5 Stand-Alone ECC Hardware

The dedicated hardware design used for this paper (cf. Figure 2) is strongly
related to the works of Kumar and Paar [19] and Lee et al. [20], but uses a
different memory architecture. As register-based memory is most expensive, it
is replaced by latches, which are 27% smaller in the used 130nm technology. As
latches are not synchronous, the depicted circuit only works because a common
Work register is placed before the latches. At the positive clock level, activated
via the clock gate (CG), the latch inherits the contents stored within the Work

register. A single multiplexer is used to select the content of a latch which is
then used as operand OpA for the datapath. The datapath consists of an MSB-
first digit-serial multiplier, an adder, and optionally a squaring unit. For the
multiplication, an operand is split into W -bit sized parts which are stored in
OpB. d of the W bits are then concurrently handled within the multiplication
circuit. Dependent on the desired speed grade, it is possible to increase the size
of d, or to use a dedicated squaring circuit. For interfacing the module with
an external W -bit wide bus, the existing multiplexers are reused. For memory
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storing operations, W of the N -bit wide bus are overridden by the externally
driven bus signal.

5.1 Stand-Alone ECC Hardware Results

A complete ECC coprocessor including datapath, controlpath, memory, private
scalar, modifiable base point, and resulting point with recovered y-coordinate
needs at least 11,778GE and up to 341,835cycles. Table 5 summarizes our results
for different d parameters. Adding a dedicated 1-cycle squaring unit only costs
884GE (7.5%) of additional hardware, but improves the runtime by a factor of
approximately two. The most energy-efficient circuit is using d = 2. The circuit
with the best scaled area-runtime product (SARP) is using d = 4.

Compared to related work [14,19,20,25,30], our designs are smaller or faster
and therefore provide a better area-time product. In terms of power and energy,
which are highly dependent on the used technology, our results are similar to
related work.

The chip area shown in Table 5 does not include the area needed by the
MSP430 (5,958GE), its data memory (8×16-bit RAM – 1,443GE), and its pro-
gram memory (354bytes – 801GE). So all our dedicated ECC hardware designs
need additional 8,202GE of hardware in order to provide the full functionality
of an MSP430.

The major drawback of the ECC hardware module is the inefficient data mem-
ory. Unfortunately, there are no efficient RAM macros with a 163-bit interface.
Even though latches are used, the memory requires 6,924GE, or 59% of the total
hardware area. A comparable register-based RAM macro with 8× 163 = 1, 467
bits requires only 2,600GE. That is 62% less. For the drop-in concept discussed
in the next section, such an area-efficient RAM macro is used.
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Table 5. Synthesis results of the dedicated ECC hardware design without MSP430

Design Technology Area Runtime Power Energy SARP
[nm] [GE] [kCycles] [μW] [μJ]

d = 1 w/o squ. 130 11,778 341,835 63.3 21.6 5.2
d = 1 w/ squ. 130 12,662 174,025 71.5 12.4 2.8
d = 2 w/ squ. 130 13,307 93,997 78.4 7.4 1.6
d = 4 w/ squ. 130 14,552 53,489 140.1 7.5 1.0

Kumar and Paar [19] d = 1 350 15,094 376,864 788.0 297.0 7.3
Hein et al. [14] 180 11,904 296,299 101.9 30.2 4.5
Lee et al. [20] d = 1 130 12,506 302,457 32.4 9.8 4.9
Lee et al. [20] d = 5 130 20,316 83,375 48.9 4.1 2.2

6 Drop-in Concept

The drop-in concept has some similarities with instruction-set extensions. The
drawback of ISE is that the HW designer needs to be able to modify both the
controlpath and the datapath of the used processor, as well as the corresponding
software toolchain. A different solution, based on a memory mapped carry-less
multiply-accumulate unit has similarly large access times as the already existing
integer multiply-accumulate unit of the MSP430. Therefore, it would only make
a minor impact on the ECC runtime.

The drop-in concept provides full advantage even when the hardware designer
is not able to modify the used microprocessor. Performance similar to dedicated
ECC hardware is achievable and the verification and validation process regarding
the used microprocessor does not have to be redone. The drop-in concept is
also flexible: A hardware designer can shift control logic between the program
memory and the dedicated hardware module. In this paper the drop-in module
is designed to efficiently perform finite-field arithmetic (addition, squaring, and
multiplication) only. The finite-field inverse as well as the point-multiplication
algorithm are implemented in software.

As interface, the drop-in module provides three address, a command, and a
status register. Before each operation, the address registers are written with two
source and a destination memory address, and the operation is started by writing
the command register. The status register is then polled to check whether the
operation has been finished. Actually, experiments showed that waiting at the
beginning of the finite-field operations for the previous operations to finish is
more performant. In this way the CPU and the drop-in module can partly work
in parallel.

6.1 Drop-in Architecture

Figure 3 shows the architecture of the drop-in module. The data-bus is depicted
in red and orange, the address bus in blue. The drop-in module consists of a
lightweight arbiter, controlpath, and datapath. If both the CPU and the drop-in
module want to access the data memory, the currently pending operation within
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Fig. 3. Drop-in module for Elliptic Curve Cryptography

the drop-in module is put on hold and the CPU is given access to the data
memory. Therefore the drop-in module needs to be specially prepared for the
case in which it is put on hold. For our ECC design, only 7 1-bit registers are
necessary to provide this functionality. As a side note, the openMSP430 does
not support to have delayed memory access.

The datapath within the drop-in module is very similar to the datapath of the
dedicated ECC hardware module. Figure 4 shows that only two N -bit registers
and a W -bit register are necessary for an MSB-first digit-serial multiplier. In
each cycle, the N bits of OpA are multiplied with d bits of OpB, which are added
to a d-bit shifted intermediate product, stored within the N -bit Work register.
The (N+d)-bit sum is then reduced and used to update the Work register. At the
beginning of the algorithm, Work is initialized with zero and OpA is initialized
with the value stored within the data memory. The W -bit chunks of OpB are
loaded on-demand, as it is shown within Figure 5 (d). When the multiplication
is finished, the result within Work is stored back to the data memory.

Optionally, a dedicated squaring unit can be used. In our implementation
(Figure 5 (a)), OpA is loaded from the data memory, the squaring is performed
within a single cycle, and the result is stored back to the data memory. The
datapath of the addition is not shown in Figure 4 as it only is a simple XOR-
gate. For the finite-field addition (Figure 5 (b)) three times �N/W � memory
operations are necessary.

If at any moment, the CPU needs to do some (real-time) interrupt handling
and needs access to the data memory, the operation in progress within the drop-
in module is simply halted and continued when the data memory bus is free to
use (Figure 5 (c)).
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6.2 Drop-in Concept Hardware Results

Similar to before, the drop-in module was evaluated for different configurations
(cf. Table 6). Independent of the size of the digit-serial multiplier and the avail-
ability of a squaring unit, the size of the CPU (5,715GE), the program memory
(1,426bytes – 2,635GE), and the data memory (222 bytes – 2,875GE) are con-
stant. The drop-in module only needs between 4,114GE and 6,760GE in chip
area.

This is the most interesting number for microchip manufacturers. As not every
customer actually needs ECC, they want to leave out unnecessary components,
as they produce unnecessary costs. On the other hand, customers that require
performant ECC can take advantage of the drop-in ECC module. Compared
to a dedicated ECC hardware module, which requires 12–15kGE, the drop-in
module requires only a fraction of it: 35%.

6.3 Related Work

In 2009, Guo and Schaumont [11] identified the data bus as potential bottleneck
for ECC designs. Cause of that, they add the necessary data memory to the
dedicated ECC accelerator to keep the number of necessary bus accesses at a
minimum. Thus their ECC accelerator becomes more like a dedicated hardware
module. As it is an FPGA design, a comparison with our work is impracticable.

Most comparable to our drop-in concept is the work of Koschuch et al. [18].
They implemented a memory-less ECC accelerator and used a DMA controller
for efficiently accessing the data memory. Their architecture is best comparable
with the previously discussed architecture (c). Their DMA controller is 1,029GE
large, their ECC accelerator is 11,618GE large, and their total design for F2191

requires 29,491GE. For a scalar multiplication, they require 1,416kCycles. Thus
their design is slower and larger than our drop-in designs.
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Table 6. Synthesis results of all ECC hardware architectures at 1MHz for sect163r2

Design Module Chiparea Runtime Power Energy
[GE] [GE] [Cycles] [μW] [μJ]

Architecture (a) – Software-only implementation

openMSP430 w/o mult. - 14,167 7,216,905 49.1 354.3

Architecture (b) – Dedicated ECC Hardware Accelerator

d = 1 w/o squ. 11,778 19,980 342,724 93.8 32.1
d = 1 w/ squ. 12,662 20,864 174,910 112.9 19.7
d = 2 w/ squ. 13,307 21,509 94,882 152.4 14.5
d = 4 w/ squ. 14,552 22,754 54,376 181.7 9.9

Architecture (d) – Drop-in Module Based

d = 1 w/o squ. 4,114 15,282 467,370 66.1 30.9
d = 1 w/ squ. 4,895 16,121 303,202 77.6 23.5
d = 2 w/ squ. 5,512 16,738 224,222 73.6 16.5
d = 4 w/ squ. 6,760 17,986 182,130 70.0 12.8

7 Comparison of Implemented Architectures

In the previous sections, architectures (a) - a plain software implementation,
(b) - a dedicated ECC hardware module, and (d) - a drop-in module - have
been presented and discussed in connection with the appropriate related work.
Thereby all implementations are on-par with related work or outperform related
work. Most important however is the comparison of the three implemented ar-
chitectures (a,b,d) with each other.

Table 6 shows the area, runtime, power, and energy values of all architectures.
The column ‘Module’ gives the area for the dedicated ECC hardware blocks,
while ‘Chiparea’ accumulates the program memory, the data memory, the mi-
croprocessor, and the special hardware module. The runtimes of architecture
(b) now include the calling overhead needed to trigger and poll the dedicated
hardware module. In comparison to Table 5, the area and power values now also
include the RAM, ROM, and CPU.

The smallest of all implementations is the plain software implementation (a)
needing only 14,167GE. Both the drop-in solution (d) (15,282GE) and the ded-
icated hardware solution (b) (19,980GE) are larger. However, those solutions
are up to 132 times faster and up to 36 times more energy efficient. Thus ar-
chitecture (a) can be considered as fall-back solution, but is practically to slow
for most relevant applications. The runtime is nearly one second at a common
sensors-node frequency of 8Mhz.

Thus the question is whether architecture (b) or (d) is better. The drop-in
concept (d) is 22% smaller and requires 50% less power. On the other hand,
architecture (b) is faster. The comparison is visualized in Figure 6, which prints
the chiparea values versus the runtimes. The dashed lines indicate constant area-
runtime products. After investigating the results in detail, our conclusion is that
both architectures (b) and (d) have the very right of existence. However, if the
application requires that a point multiplication is finished within, e.g., 30ms
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(@ 8MHz), architecture (d) based on the drop-in concept with d = 2 is the
smallest and therefore best solution.

8 Conclusion

This work proofs that the drop-in concept is a viable alternative to previously
existing plain software and dedicated hardware solutions. Both the presented
software-only and the presented dedicated hardware solution enable a fair com-
parison using a common side-channel aware methodology and identical tools.
The software implementation is (supposed to be) side-channel secure and needs
7–12 times less memory compared to latest related work. The hardware imple-
mentation is more area-efficient compared to related work, because a specially
designed data memory is used. However, a plain hardware implementation is
not aware of the versatile MSP430, which is usually available in wireless sensor
nodes. Hereby the drop-in concept provides a novel solution which actually is
smaller than the hardware module based architecture, while being similarly fast,
and requiring 36 times less energy than the dedicated software solution. This
makes the newly presented drop-in concept a great solution for microchip and
sensor-node manufacturers.
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Cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp.
292–302. Springer, Heidelberg (1999)

6. Eberle, H., Wander, A., Gura, N., Chang-Shantz, S., Gupta, V.: Architectural
Extensions for Elliptic Curve Cryptography over GF(2m) on 8-bit Microprocessors.
In: IEEE International Conference on Application-specific Systems, Architectures
and Processors, pp. 343–349. IEEE Computer Society (2005)

7. Fan, J., Verbauwhede, I.: An Updated Survey on Secure ECC Implementations:
Attacks, Countermeasures and Cost. In: Naccache, D. (ed.) Quisquater Festschrift.
LNCS, vol. 6805, pp. 265–282. Springer, Heidelberg (2012)
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9. Gouvêa, C.P.L., Oliveira, L., López, J.: Efficient Software Implementation of
Public-Key Cryptography on Sensor Networks Using the MSP430X Microcon-
troller. Journal of Cryptographic Engineering 2, 19–29 (2012)
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A Implementation Runtimes

Table 7 lists the constant key-independent runtimes of all implementations
done for this paper. Architectures (b) and (d) implemented the elliptic curve
sect163r2.

We distinguish between runtimes for the original MSP430 and the open-
MSP430. The runtimes of the openMSP430 are better, because several instruc-
tions of the openMSP430 perform the same operation in less cycles than the
original MSP430. In average, the openMSP430 is 5% faster for the prime field
based elliptic curves (secp160r1, secp192r1) and 3% faster for the binary field
based elliptic curves (sect163r2, c2tnb191v1).

Table 7. Runtimes for finite-field addition/subtraction (ADD), squaring (SQU), mul-
tiplication (MUL), inversion (INV), and point-multiplication (P-MUL) operations

Implementation ADD SQU MUL INV P-MUL
[Cycles] [Cycles] [Cycles] [Cycles] [Cycles]

(a) MSP430 secp160r1 163 1,905 1,905 327,366 5,721,420
(a) MSP430 secp192r1 191 2,559 2,559 526568 9,100,128
(a) MSP430 sect163r2 109 852 6,604 199,815 7,446,677
(a) MSP430 c2tnb191v1 118 778 6,566 229,297 8,610,906

(a) openMSP430 secp160r1 161 1,808 1,808 310,812 5,445,010
(a) openMSP430 secp192r1 189 2,426 2,426 499,331 8,650,455
(a) openMSP430 sect163r2 107 781 6,446 186,653 7,216,905
(a) openMSP430 c2tnb191v1 116 725 6,420 217,209 8,376,138

(b) HW d = 1 w/o squ 2 174 174 29,754 341,835
(b) HW d = 1 2 1 174 1,728 174,025
(b) HW d = 2 2 1 93 999 93,997
(b) HW d = 4 2 1 52 630 53,489

(d) drop-in d = 1 w/o squ 40 208 208 36,419 467,370
(d) drop-in d = 1 40 38 208 9,963 303,202
(d) drop-in d = 2 40 38 128 9,227 224,222
(d) drop-in d = 4 40 38 80 8,843 182,130
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Beyond Full Disk Encryption: Protection on Security-
Enhanced Commodity Processors* 

Michael Henson and Stephen Taylor 
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Abstract.  Modern computer systems exhibit a major weakness in that code and 
data are stored in the clear, unencrypted, within random access memory.  As a 
result, numerous vulnerabilities exist at every level of the software stack.  These 
vulnerabilities have been exploited to gather confidential information (e.g. en-
cryption keys) and inject malicious code to overcome access controls and other 
protections.  Full memory encryption (FME) would mitigate the vulnerabilities 
but the CPU-memory bottleneck presents a significant challenge to designing a 
usable system with acceptable overheads.  Recently, security hardware, includ-
ing encryption engines, has been integrated on-chip within commodity proces-
sors such as the Intel i7, AMD bulldozer, and multiple ARM variants.  This  
paper describes on-going work to develop and measure a clean-slate operating 
system – Bear – that leverages on-chip encryption to provide confidentiality of 
code and data.  While Bear operates on multiple platforms, memory encryption 
work is focused on the Freescale i.MX535 (ARM Cortex A8) using its inte-
grated encryption engine.  

Keywords:  Memory encryption, data in use, security-enhanced commodity 
processors, secure microkernel, mobile platform security. 

1 Background and Threat Model 

Current operating system designs have sought to utilize a static base of trust and ex-
tend trust into software through deliberate layering [Arbaugh et al. 1997]. Modern 
computer systems, even those protected by full disk encryption (FDE) [Brink 2009], 
exhibit a major weakness in that code and data are stored in the clear, unencrypted, 
within memory.  These sensitive details are not only available to applications; they are 
known to persist in multiple unexpected locations (kernel and application), for longer 
than traditionally thought, even after an application exits [Chow et al. 2004], [Dunn et 
al. 2012], [Tang et al. 2012]. Unfortunately, this invalidates basic security assump-
tions rendering it possible to gather confidential information, including encryption 
keys, passwords, and other sensitive information that can be used to undermine trust 
[Halderman et al. 2008], [Boileau 2006], [Steil 2005], [Henson and Taylor, 2012]. To 
exacerbate the problem, memory vulnerabilities extend to every level of the software 
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stack and the opportunities for exploitation extend well beyond physical attack to 
include remote attacks over the Internet: techniques have evolved that allow malicious 
code to be injected into device drivers, operating system kernels, and user processes.  

To exploit memory vulnerabilities, numerous attack vectors have been developed. 
In a cold boot attack, for example, memory is frozen using a refrigerant and then re-
moved from the computer. It is then quickly placed into a specially designed system 
that reads out its content, targeting encryption keys and other sensitive information.  
This particular attack has recently been shown to be applicable to smart phone devices 
as well as traditional desktops via the forensic recovery of scrambled telephones 
(FROST) operating system [Muller et al. 2012].  Besides capturing the encryption 
key, FROST was used to capture other code and data to include photos, websites  
visited, e-mails, contact lists, networking credentials and complete ELF binaries. 
Another particularly effective attack, bus-snooping/injecting, allows information to be 
captured or inserted via the bus lines between system components [Boileau 2006].  

The threat model for this work involves an adversary gaining physical access to a 
computer system with sufficient resources and motivation (e.g. criminal and point of 
sale systems or government sponsored attacker and mobile military systems) to pur-
sue the vulnerabilities mentioned above.  For example, the smart phone of a diplomat 
may be confiscated for a period of time while transiting through airport security.  
Methods of physical access may be used to capture memory and/or disk contents for 
offline analysis with the sole purpose of the attack being data exfiltration.  In another 
example, an unmanned aerial system (UAS) might be captured and control programs 
reverse engineered to enable the attack of other similar systems.  

In contrast to research on intrusion detection, our research group is focused on ex-
ploring methods to increase attacker workload, undermining surveillance, forensics 
and persistence while reducing the attack surface.  This paper focuses on one such 
method -- memory encryption – explored within the context of a modern microkernel.  

2  Related Work 

In effect, the increasing adoption of full disk encryption (FDE) has pushed the vulne-
rabilities associated with persistent data on disk down into the next level of the mem-
ory hierarchy, which has proven equally vulnerable.  The key concept by which vul-
nerabilities were mitigated on disk was encryption: encrypting the disk provided con-
fidentiality preventing access to sensitive information. By migrating the same solution 
down into RAM, it may be possible to circumvent similar attacks at this  
lower level of the memory hierarchy. This constrains the boundary available to an 
attack to lie at the processor itself, presenting a barrier that, in most cases, cannot be 
defeated without mechanical or electrical destruction of the processor chip.  Attacks 
on the device are possible, for example, by etching away the chip walls with acid to 
reveal internal bus lines, or electromagnetic and differential power analyses [Pope 
2008], [Kocher et al. 1999]. These approaches clearly increase the attacker workload 
by at least an order of magnitude, require expert knowledge, and cannot be exploited 
remotely over a network [Suh et al. 2007]. Moreover, while tamper resistant  
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mechanisms are already available that significantly increase the barrier to entry  
[Chari et al. 1999], protecting circuits from invasive and side-channel attacks is an 
open research area.  

Although the concept of memory encryption has been actively researched for over 
three decades, it has yet to be used at the core of operating system designs to provide 
confidentiality of code and data [Henson and Taylor 2012].  The literature on memory 
encryption is largely concerned with three core approaches based on hardware  
enhancements [Lie et al. 2000], [Rogers et al. 2005], [Su et al. 2009], operating  
system enhancements [Chhabra et al. 2011], [Chen et al. 2008], [Peterson 2010], and 
specialized industrial applications [Dallas 1997], [Arnold and Doorn 2004], [Steil and 
Domke 2008]. Unfortunately, almost all of the hardware and operating system  
enhancements have only been implemented through simulation or emulation, and as a 
result, the claims have yet to be validated and quantified on practical systems.   
The few processors that implement memory encryption are characterized by low 
speeds and small addressable memory (<=16 bits) at use in low throughput (e.g. 
point-of-sale, set top TV access, etc.) applications or specialized gaming systems. 

Recently, security hardware, including encryption engines, has been integrated 
within commodity processors such as the Intel i7, AMD bulldozer, and multiple ARM 
variants; however, systems developers have yet to embrace these specialized, often 
vendor-specific, features [Vasudevan et al. 2011]. Little practical experimentation has 
been conducted and the improvements in security and performance have yet to be 
quantified [Henson and Taylor 2012].  While this new hardware has not been used to 
protect an entire system, there are examples of its use to protect particular applica-
tions.  Several papers have highlighted approaches to mitigate attacks on FDE.  For 
example, Tresor [Muller et al. 2011], aims to protect the FDE key by storing it only 
inside the CPU and performing encryption/decryption within that boundary.  Unfortu-
nately, this technique is inadequate since it is possible to recover the key via a DMA 
injection attack on unprotected memory [Blass and Robertson 2012]. In another  
example, memory vulnerabilities were used to undermine the memory encryption 
protections of the Xbox 360.  In the original Xbox, the key was stored in plaintext and 
transmitted across the southbridge bus.  The key was captured in a bus-snooping  
attack, which led to compromise of the gaming system and to the subsequent growth 
of the Xbox mod-chip industry [Steil 2005].  In the updated Xbox 360, memory  
encryption is used to protect against such attacks; however, it appears that the process 
stack is not encrypted and this has led to another successful compromise [Steil and 
Domke 2008].   

Unfortunately, little work has been performed to explore the trade space of using 
security enhanced commodity processors to implement full memory encryption 
(FME): encrypting all components of a process – stack, heap, code and data. Al-
though more recent processors make memory encryption less costly, it remains un-
clear if FME is viable for everyday use or is limited to constrained tactical applica-
tions.  In past ME work, overhead has been measured at the coarse granularity of an 
entire process without regard to process sub-components.  The relationship between 
the overhead costs and security gains for encrypting particular process components 
needs to be understood (e.g. is there a particular component that can be protected with 
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low overhead yet holds high value code/data).  This work is the first to implement ME 
on a commodity processor, thereby allowing investigation of the low-level implemen-
tation details and the cost/security tradeoffs at sub-process component granularity.      

Memory vulnerabilities are common in systems ranging from servers and standard 
desktops to mobile computing devices (e.g. smart phones, tablets, laptops, etc.).  
However, usage patterns toward the mobile end of the spectrum may exacerbate the 
situation since many users of smart phones rarely reboot these systems maintaining 
them in an “always on” fashion [Karlson et al. 2009]. In fact, in a study of the Andro-
id operating system, 6 out of 14 applications permanently maintained their passwords 
in RAM. Additionally, mobile devices are more likely to be lost or stolen providing 
physical access to possible adversaries.  In NYC, for example, 49% of the population 
has experienced mobile phone theft and/or loss [Tang et al. 2012]. Mobile devices, 
such as Android based smart phones, are beginning to be used in forward deployed 
military areas.  These phones are loaded with information such as local maps, objec-
tives, and blue force tracker (friendly unit) locations.  Unfortunately, these phones 
(and other devices such as remotely piloted airframes with similar embedded proces-
sors) could easily fall into enemy hands.  In fact, a recent U.S. Air Force  
document entitled Air Force Cyber Vision 2025 highlights the need for trust-based 
techniques to protect captured mobile devices in adversarial territory against reverse 
engineering efforts [United 2012]. While ME should be considered for both standard 
desktop and mobile devices, the work described here targets the ARM Cortex A8 
which is common to many smart phones and tablets, including Apple’s iPhone 3GS 
and 4, iPad first generation, iPod touch 3rd and 4th generations, and Samsung Galaxy 
Tablet to name a few.   

3 Approach  

The approach described in this paper is to implement memory encryption within a 
clean-slate microkernel design – Bear – leveraging security-enhanced commodity 
processors to ensure that code and data never appear in the clear outside the proces-
sor chip boundary as shown in Figure 1.  The motivation for a “from scratch” kernel 
rests on the desire to conduct experiments in the context of a minimalist, secure mi-
crokernel. The design separates core functions into protected layers typical of modern 
microkernel designs such as MINIX [Tannenbaum and Woodhull 2006].  Monolithic 
operating systems, such as Linux and Windows, contain millions of lines of code and 
have a large runtime footprint providing ample opportunity for exploitation. In addi-
tion, they rarely enforce protections and allow device drivers direct access to kernel-
space. In contrast, the Bear system used in this research involves approximately 3000 
lines of code, with a runtime footprint of less than 50Kbytes on the ARM A8, making 
it an ideal platform to explore the tradeoffs involved in memory encryption in the 
presence of a small attack surface. All potentially compromised device drivers are 
executed in user-space, where they are non-deterministically regenerated to refresh 
trust and undermine persistence. Versions of the system operate on 64-bit Intel X86-
based multi-core blade servers and ARM M3, A8, and A9 processors. On 64-bit  
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systems MULTICs style protections are strictly enforced through paging structures to 
increase attacker workload; these added protection techniques are not used in the 
experiments described here in order to quantify the baseline overheads independently. 

 

Fig. 1. General Approach for Memory Encryption 

Hardware. ARM licenses the design of the basic processor (e.g. the A8) while vari-
ous vendors build them with additional functionality.  The exploration of memory 
encryption described here is focused on Freescale’s i.MX535 applications processor. 
Critical components of the processor for this research include the internal RAM 
(iRAM-128 KB + 16 KB “secure”), symmetric asymmetric hashing and random acce-
lerator (SAHARA), L1/L2 cache (32KB Harvard L1, 256KB L2), and the NEON 
single instruction multiple data (SIMD) coprocessor.  These components are common 
to other ARM processors that include security hardware. Most of the techniques in the 
memory encryption literature targeting hardware involve modifying the fetch-decode-
execute (FDE) engine to include decryption (fetch-decrypt-decode-execute) while 
adding encryption acceleration and internal storage space.  Without specialized FDDE 
hardware, data can not be decrypted and placed directly into caches and execution 
pipelines.  This results in a requirement for significant internal space in which to store 
and operate on sensitive, plaintext information.  

SAHARA implements AES, DES and 3DES encryption, MD5, SHA-1, SHA-224, 
and SHA-256 hashing and hardware based (ring oscillator) random number genera-
tion.  It also provides its own DMA controller with an AHB bus interface to reduce 
the interaction/burden on the primary CPU.  For AES encryption, SAHARA includes 
electronic codebook (ECB), cipher-block chaining (CBC), counter (CTR) and counter 
with CBC-MAC (CCM) modes of operation.  Descriptors are used to notify 
SAHARA of blocks of memory (internal or external) for encryption/decryption.  
Internal (secure) registers are cleared after a descriptor chain has completed  
processing to provide for usage by multiple, mutually distrusting processes.  Comple-
tion of encryption/decryption is signaled via an interrupt. The encryption-decryption 
unit (EDU), is controlled via a descriptor chain, consisting of six 32-bit words.  Each 
bit or group of bits (generally 2-3) are selected to enable the hardware module  
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(e.g., encryption, authentication, random number generation), algorithm (e.g. RSA, 
DES), mode of operation (e.g. electronic codebook, cipher block chaining) and other 
details. A security API was developed to hide proprietary Freescale encryption details 
and is responsible for building the appropriate descriptor chain in the latest prototype. 
For example, the following function call:   

EDU(‘E’, 0x000001A0, 0xF8000000, 0x70000000, 0xF801FFFD); 

causes the encryption unit to encrypt (E=encrypt, D=decrypt) a process block of 416 
bytes -- the current size of a process descriptor and stack -- from iRAM at location 
0xF8000000, placing the result in external RAM (eRAM) at location 0x70000000.  

For simplicity, a 128-bit AES symmetric key is downloaded via JTAG into iRAM 
and used for all process encryption. In practice an out-of-channel or standard key 
distribution scheme would be used in a full system implementation [Mel and Baker 
2001].  Several other techniques for key management are described in the memory 
encryption literature.  For example, one scheme generates a new random key at sys-
tem reset; this key is used to encrypt processes, which are initially stored in plaintext 
[Chen et al. 2008]. Other work describes the method by which programs are delivered 
encrypted.  Programs developed externally are encrypted using a public key.  The 
private key, stored inside the processor, is used to decrypt the program in iRAM. The 
program is then re-encrypted with a randomly generated symmetric key to improve 
encryption performance.  Regardless of the key generation and escrow techniques 
used, the keys are never available in eRAM.  In the work described in this paper, there 
is space for storage of many keys whereas several of the approaches to protecting 
FDE schemes rely on internal registers (e.g. SSE, debug, etc.) limiting storage to a 
small number of keys [Muller et al. 2011], [Muller et al. 2012].  

 
Static Encrypted Processes. The initial memory encryption proof-of-concept was 
implemented on the ARM A8 processor, using the Freescale SAHARA encryption 
engine, with the MMU and cache disabled. In this method, only the code is encrypted, 
using 128-bit AES symmetric-key encryption, and stored on disk as part of the ex-
ecutable binary. Other process components (data, stack, heap) are never encrypted as 
they remain within the protected iRAM. A small bootloader stored in internal ROM is 
responsible for initializing the hardware and loading the microkernel over the JTAG 
interface directly into iRAM. Next, a shell is bootstrapped using the on-board USART 
connection to allow programs to be executed. User processes are added to the sche-
duling queue and executed from iRAM. The microkernel then begins execution by 
decrypting the user process code and storing it into iRAM. This technique, referred to 
as static encrypted processes, only performs decryption once at code loading and is 
relevant to embedded systems where processes fit entirely within iRAM [Henson and 
Taylor 2013]. Measurements detailed in Section 4 quantify the overhead of this ap-
proach. Other than the one-time initial decryption cost (dependent upon the size of the 
process code), there is little evidence of overhead using this method.  Since embedded 
processors are continually increasing on-chip memory, this technique represents an 
increasingly practical, low-overhead approach to memory encryption. 
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Dynamic Encrypted Processes. A more general case, dynamic encrypted processes, 
occurs where there is sufficient memory pressure (i.e. processes + data are larger than 
available iRAM) to force processes back to eRAM during execution. Process compo-
nents include code, data (global/static), stack and heap, and iRAM buffers are created 
for each.  The prototype allows swapping of encrypted processes to eRAM.  Process 
segments are stored in eRAM in encrypted form and brought into iRAM, decrypted, 
and executed on-demand. Segments are re-encrypted before being sent back to eRAM 
with the exception of code, which does not change. In the absence of an enabled 
MMU, this movement of code and data required some virtual memory management 
(e.g. updating of stack pointers, addresses, program counters, jump addresses, etc.) 
where all segments of a given type correspond to a single internal buffer.  This man-
agement was taken care of via modifications to the process creation, context switch-
ing and heap allocation routines.  Figure 2 illustrates how the prototype encrypts the 
process control block (PCB) and stack (as one chunk); dynamically allocated memory 
and code are encrypted separately. The process context switch provides a natural 
point at which to perform decryption of these segments. Since the prototype does  
not utilize a paging mechanism, there is no similar point at which to intercede in  
accesses to global/static data, which are solely controlled by the compiler.  Therefore,  
global/static data currently remains in iRAM.  

 

Fig. 2. Dynamic Encrypted Processes – Cache Disabled 

The PCB-stack and code segments are of predetermined sizes while the size of the 
heap segments are not known a-priori.  Depending on the size of the allocated seg-
ment, two alternative approaches are available.  If it is small enough to fit within 
iRAM (after taking into consideration the space occupied by the kernel and other 
segments) then the whole segment is decrypted and placed within the internal data 
buffer in a similar fashion to the code and PCB-stack.  However, if the segment is too 
large, then decryption of data on-demand at the size appropriate to the application (or 
smallest size possible) is used.   
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For a strenuous test of worst-case heap performance, a radix-2, in-place fast Fouri-
er transform (FFT) based on the Tukey-Cooley algorithm was used to gauge the over-
head [Press et al. 1992]. The smallest size for decryption in AES is a block of 16 
Bytes.  Since the data in each component of the FFT (real and imaginary part) take up 
one word each (4 Bytes), additional overhead is introduced in order to align the 
smaller data with the algorithm requirements.  Whereas the unprotected version im-
plements a simple swap of two of the real and imaginary components, the protected 
version must determine the appropriate 16 Byte aligned address to decrypt into the 
internal buffers for each component.  Then the proper half of the 16 Bytes must be 
identified after which the swap is performed in iRAM, data re-encrypted and stored 
back to eRAM. 

4 Measurement 

Since the performance degradation of memory encryption results in less likelihood of 
its use, it is an extremely important factor in the comparison of different schemes.  
First, the cost of decryption was quantified in terms of total number of cycles for ge-
neric data blocks, using the Cortex A8 performance monitors.  Next, the total number 
of cycles required for executing the unprotected system running two simple user 
processes was measured.  Finally, the total number of cycles for protecting the various 
process segments of the two user processes was measured independently, allowing for 
the calculation of accumulated overhead (i.e. slowdown).  The system runs at 800 
MHz, which is used to determine the cycles-per-bit cost of decryption commonly 
provided in the literature.  Each measurement of the context switching segments 
(PCB-stack and code) is based on averaging the number of cycles for 1000 context 
switches.  The heap data encryption is tested with a single run of the FFT program 
using a large (128 KB) array. 

 
Static Encrypted Processes. To quantify decryption speed, generic data was used as 
the data itself is of no consequence to decryption overhead. The average number of 
cycles for decrypting chunks of eRAM ranging from 16 Bytes (the smallest size poss-
ible) to 128 KB was measured in order to determine performance of the EDU in AES 
128 mode.  These results are directly applicable to the implemented static encrypted 
processes: Recall that the cost for protecting processes in that technique is the one-
time cost of decryption of code.  The results of the decryption tests are shown in Ta-
ble 1 below. The overhead associated with initializing the EDU (key expansion, etc.) 
is approximately 8096 cycles (as shown in the first row of the table). For the other 
rows, the cycles per bit cost of decryption is calculated by dividing the approximate 
cycles by the number of bits decrypted.  For example, decrypting a chunk at the smal-
lest possible size of 16 Bytes results in a cost of approximately 71.5 cycles per bit 
(9152 cycles/16*8).  As the decryption chunk increases the overhead remains constant 
so that the measure of cycles per bit decreases (better performance).  This trend is 
shown graphically in Figure 3 below.  After 4KB, the improvement in cycles per bit is 
reduced dramatically.  The ARM Cortex A8 architecture supports page sizes of 4 KB, 
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64 KB, 1 MB, and 16 MB.  These measurements suggest that decryption overhead 
may be about the same whether 4 KB or larger page sizes are selected in future im-
plementations. They also suggest that any granularity less than 4KB (e.g. a cache line 
of 64 Bytes) is sub-optimal.    

Table 1. Overhead for Decryption of Various Sizes (Chunks) of Memory 

Data Size in Bytes Average Cycles Std Dev Cycles per bit 

Overhead 8096 40 N/A 

16  9152 65 71.5 

32 9664 60.9 37.7 

64       (Cache line) 10496 384.5 20.5 

128 11712 55.4 11.4 

256 14208 590.7 6.9 

512 19776 376.3 4.8 

1024 30080 577.2 3.7 

2048 50688 578.2 3.1 

4096  (Page size) 91776 578.7 2.8 

8192 181632 401.8 2.77 

16384 355584 716.8 2.71 

32768 702720 566.2 2.68 

65536 1397184 560.3 2.66 

131072 2785792 658.7 2.66 

 
ARM processors are targeted for operations in constrained space and power envi-

ronments.  It is likely because of this that the performance of the EDU on the Cortex 
A8 is slow relative to figures presented in the memory encryption literature (which 
tends to target X86 processors). In AEGIS [Suh et al. 2007], a single AES unit is es-
timated at 86,655 gates.  Yet, AEGIS is demonstrated with an OR1200 soft core in 
FPGA with a total size of approximately 60,000 gates (meaning the AES unit is 144% 
of the original core size). Recall that encryption hardware has been added to other 
processors such as Intel’s i5 and i7 and AMD bulldozer chipsets.  Intel’s advanced 
encryption standard-new instructions (AES-NI) provide a significant speedup over 
both software and ARM hardware-enhanced encryption. The authors of this paper ran 
an implementation of TrueCrypt’s encryption algorithm benchmark test on a Mac-
Book Pro with an Intel i7 dual-core, 2.66 GHz CPU.  Using a 5 MB buffer in RAM, 
the throughput averages 202 MB/s without AES-NI support, and 1 GB/s with it – 
approximately 119 cycles for 64 Bytes.  This represents an improvement of 88 times 
over the 10,496 cycles measured on the i.MX535 (as shown above).  While x86 based 
processors do not tend to include user accessible iRAM, the combination of improved 
decryption performance and large caches in those systems might enable some form of 
memory encryption protection.  Intel has recently filed a patent for processors incor-
porating memory encryption, perhaps indicating a move toward support in commodity 
processors [Gueron et al. 2013]. 
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Fig. 3. Graph of Cycles/bit Vs. Number of Bytes Decrypted (64 B through 32 KB) 

Dynamic Encrypted Processes. The measurements for protecting the PCB-stack and 
code are shown below in Table 2.  The system schedules two simple processes in a 
round-robin fashion and for these measurements the scheduling quantum was set to 
200 milliseconds, resulting in approximately 300 context switches per minute.  The 
process behavior has nothing to do with the costs of protection since the costs are 
incurred during the context switch, not process execution. As in previous experi-
ments, all measurements are averaged over 1000 context switches. The unprotected 
context switch routine averages approximately 20 microseconds as shown in the first 
row of the table.  The overhead for protecting the segments is fairly large: a factor of 
approximately 2.9 to protect the PCB-stack and 3.4 times for both the PCB-stack and 
code when compared to the unprotected context. However, this cost is only incurred 
on average 300 times per minute.  Thus the total overhead per minute is about 14,700 
microseconds (.0147 seconds) giving ~1.5 seconds of overhead after 100 minutes of 
execution.  This indicates that context and code protection are viable even without the 
benefit of the MMU and cache.  While the size of the context and code were fixed for 
these experiments (416 and 672 Bytes respectively) the results from Table 1 suggest 
that larger component sizes (e.g. 4 KB page size) would more effectively hide the cost 
of the EDU initialization overhead.  

Table 2.  Overhead for PCB-Stack and Code Protection 

Component within 

Context Switch 

Average Cycles Std Dev Execution Time @ 

800 MHz 

Overhead 

Unprotected 16064 70 20 us N/A 

PCB-Stack  47296 682 59 us 2.9 

Code  23800 400 30 us 1.5 

PCB-Stack & Code 54976 856 69 us 3.4 

 
Table 3 shows the overhead of decryption of data in the FFT problem with 128 KB 

arrays holding the real and imaginary data components. Since 128 KB was too large 
to fit into iRAM, on-demand decryption was implemented at the size that most close-
ly approximates data accesses (16 Bytes). The cycles per bit cost of decryption is 
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large at the 16 Byte size (~71.5). In summary, about 17.2 billion cycles were required 
to execute the unprotected FFT.  Providing encryption protection during the bit rever-
sal (first half of the FFT) only requires an additional 3.2 billion cycles (20.4 billion 
cycles total).  Encrypting all data for the entire FFT operation requires approximately 
20 billion additional cycles (37.2 billion cycles total): resulting in a slow down of 
approximately 2.2 times over the unprotected execution.  Memory accesses in the 
FFT problem are pathological, providing a thorough (worst-case) evaluation of our 
memory encryption approach.   

Table 3. Overhead for Data Protection in FFT Function 

FFT Data Structure @ 

128 KB 

Average Cycles Std Dev Execution Time @ 

800 MHz 

Overhead 

Unprotected 17269347514 70 21.6 s N/A 

Bit Reversal Only 20438649003 682 25.5 s 1.2 

Fully Protected 37197691328 400 46.5 s 2.2 

 
In reality, most mobile processor packages include SIMD cores, such as the NEON 

processor to optimize algorithms like the FFT.  Mobile system use tends to be charac-
terized by applications such as chat, e-mail, and those displaying spatial/temporal 
locality (e.g. photo viewing).  It is reasonable to believe that the performance on these 
more typical workloads will be considerably improved even without optimization of 
the on-demand decryption techniques used in this work. 

It is important to understand the performance characteristics of the worst-case (on-
demand decryption) scenario where decryption overhead is added directly to memory 
access time.  It was anticipated that performing memory encryption without the bene-
fit of the MMU and cache (including prefetching etc.) would yield excessively large 
overheads.  While this was the case for the FFT data-structure access, PCB-stack and 
code protection were surprisingly efficient.  Further, the slowdown for the FFT (2.2x) 
is considerably less than that reported in the simulation results of a similar technique 
that took advantage of caching mechanisms but lacked encryption hardware.  In that 
work, slowdowns of 2.53x and 8.5x were measured when utilizing a 4 KB page with a 
256 KB and 64 KB L2 cache respectively [Chen et al. 2008]. 

While the use of MMU/cache will make the system more closely approximate 
those of smart-phones, there are many examples where the techniques already devel-
oped in this work could be applicable.  For example, many devices at the lower end of 
the embedded spectrum, including the large number of smart electric meters recently 
deployed, tend not to include MMU’s [McLaughlin et al. 2010].  

5 Future Work 

A valuable next step is to take advantage of the ARM Cortex A8’s MMU and cache.  
However, effectively modifying the fetch-decode-execute cycle requires a way to 
decrypt pages brought on-chip before they are loaded into the cache.  The A8 archi-
tecture includes a built-in preload engine (PLE) that can be used to move data to and 
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from the L2 cache under software control [ARM]. This engine will be used to load the 
cache with decrypted data and instructions, with iRAM continuing to act as a work-
space and extension to L1/L2 cache.  Additionally, the NEON SIMD coprocessor is 
tightly coupled with the L2 cache, which may provide another method for update.  
Enabling the cache (and other optimization mechanisms such as prefetching) should 
provide significant improvement over the current decrypt-on-demand prototype.  

While there are many current requirements for a from-scratch microkernel (espe-
cially in the military), this work can be expanded to incorporate currently popular 
operating systems.  A Bear microvisor, quite similar to the microkernel, has already 
been developed.  Efforts are currently under way to enable the NetBSD (5.0.1) operat-
ing system to boot on top of the microvisor, protecting it with Bear’s security me-
chanisms.  After experimenting with MMU-enabled memory encryption, the tech-
niques will be added to the microvisor’s capabilities. The microvisor can then be used 
on future ARM hardware (supporting virtualization) to boot mobile operating systems 
(e.g. Android). 

6 Conclusions  

This paper describes a clean-slate operating system design that leverages security-
enhanced commodity processors to ensure that code and data never appear in the 
clear outside the processor chip boundary.  By utilizing the SAHARA security hard-
ware of the Freescale i.MX535 processor, the system provides memory encryption 
with various granularities of a process.  The current work utilizes on-demand decryp-
tion whereby the overhead for decrypting code and data is added directly to the fetch-
decode cost.  In this way, an upper bound on the overhead associated with memory 
encryption is established. The experimental overhead associated with the protection of 
process PCB-stack and code is surprisingly small.  

Few operating system developers have taken advantage of the new security hard-
ware available in many commodity processors.  There are various projects that utilize 
some aspects of this hardware, for example, to protect the key in FDE. Since sensitive 
data is left in memory for relatively long periods of time, it is logical to conclude that 
the protections afforded “data at rest” on disk should also apply to memory.  By forc-
ing an attacker to rely on brute-force attacks against encrypted memory (or other rela-
tively difficult attacks on the chip itself) we seek to increase attacker workload 
enough to dissuade or delay the attack, allowing for mission completion (or protection 
of user information).  The overhead displayed in the work described here suggests this 
protection is feasible today with security-enhanced commodity processors. While the 
concept of memory encryption has existed for over three decades, there are still no 
general-purpose, commercial-off-the-shelf solutions integrated with secure operating 
systems. Unfortunately, while full disk encryption seems to be the state-of-the art, it is 
insufficient for the protection of systems holding sensitive information.  
 
Notice.The U.S. Government is authorized to reproduce and distribute reprints  
for Governmental purposes notwithstanding any copyright notation thereon. The 
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Abstract. In 2011, Waters presented a ciphertext-policy attribute-
based encryption protocol that uses bilinear pairings to provide con-
trol access mechanisms, where the set of user’s attributes is specified by
means of a linear secret sharing scheme. Some of the applications foreseen
for this protocol lie in the context of mobile devices such a smartphones
and tablets, which in a majority of instances are powered by an ARM pro-
cessor supporting the NEON vector set of instructions. In this paper we
present the design of a software cryptographic library that implements
a 127-bit security level attribute-based encryption scheme over mobile
devices equipped with a 1.4GHz Exynos 4 Cortex-A9 processor and a
developing board that hosts a 1.7 GHz Exynos 5 Cortex-A15 processor.
For the latter platform and taking advantage of the inherent parallelism
of the NEON vector instructions, our library computes a single optimal
pairing over a Barreto-Naehrig curve approximately 2 times faster than
the best timings previously reported on ARM platforms at this level of
security. Further, using a 6-attribute access formula our library is able
to encrypt/decrypt a text/ciphertext in less than 7.5mS and 15.67mS,
respectively.

Keywords: Atribute based-encryption, pairing-based protocols,
Barreto-Naehrig curves, elliptic curve scalar multiplication, ARM
processor.

1 Introduction

It was long assumed that the task of computing a single bilinear pairing was
rather expensive, so much so that when assessing the complexity of a given
protocol, a designer could safely ignore the computational cost of all the other
cryptographic components included in it. Nevertheless, in the last few years we
have witnessed a dramatic reduction in the timing required to calculate a single
pairing, which has had the side effect that the computation of the other ancil-
lary functions associated to pairing-based protocols have acquired a renewed im-
portance. Some examples of these auxiliary blocks include, fixed/variable point
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scalar multiplication for elliptic curves defined over finite fields and their ex-
tensions, the projection of arbitrary strings to a random point in those ellip-
tic curves, exponentiation in field extensions, etc. Furthermore, as pointed out
in [15], several pairing-based protocols admit further optimizations, such as the
computation of fixed-argument pairings and products of pairings.

Unfortunately as of today, very few works have analyzed in detail the complex-
ity and overall computational weight of non-pairing cryptographic operations in
a given protocol. This lack of research in the implementation of pairing-based
protocols is especially acute for mobile platforms such as the ones using ARM
processors.

An important number of major IT players such as Apple, Samsung, Sony, to
name just a few, have adopted the ARM Cortex family of processors for powering
their tablets, smartphones and other mobile devices. A majority of those devices
support the vector set of instructions NEON. In spite of their ever increasing
popularity, it is only until recently that some research works have studied the
implementation of cryptographic primitives over ARM processor platforms.

Among the research papers reporting pairing implementations in the ARM
Cortex family of processors are [1] and [10]. In [1], authors propose the idea
that affine coordinates could be more attractive than the projective ones when
implementing pairings in constrained devices, whereas the software library of [10]
reports the current record in the computation of a single asymmetric pairing at
the 128, 224 and 320-bit security levels. As for the implementation of pairing-
based protocols on mobile devices, the only work that we are aware of is [2],
where the authors described the design of an attribute-based encryption scheme
able to preserve the confidentiality of the medical electronic records generated
within a hospital environment.

In this work we present the design of a software library that implements Wa-
ters’ attribute-based encryption scheme [16], over a set of mobile device platforms
equipped with the latest models of the ARM Cortex family of processors and
the vectorized set of instructions NEON. Our library was specifically tailored
for computing optimal pairings over Barreto-Naehrig curves at the 127-bit secu-
rity level. When executed on a developing board that hosts a 1.7 GHz Exynos
5 Cortex-A15 processor, our software computes a single optimal pairing in ap-
proximately 5.84M clock cycles, which is about two times less than the estimated
cycling count reported in [10] for a single pairing computation over a TI 1.2GHz
OMAP 4460 Cortex-A9 processor.

Our library also implements single/multi-pairing computations with fixed/-
variable input points, as well as other auxiliary functions associated with most
pairing-based protocols such as scalar multiplication and the projection of
arbitrary strings to elliptic curve points defined over extension finite fields,
among others. In particular, when executed on the Cortex-A15 processor
mentioned above and when using an access formula composed of six attributes,
our library computes the encryption/decryption primitives of Waters’
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attributed-based encryption protocol in less than 12.75M clock cycles and 26.64M
clock cycles, roughly equivalent to 7.5mS and 15.67mS, respectively.1

2 Mathematical Background

Let p be a prime, and let E be an elliptic curve defined over the finite field Fp.
Let r be a prime with r | #E(Fp) and gcd(r, p) = 1. The embedding degree k
is defined as the smallest positive integer such that r | (pk − 1). In this paper,
only the Barreto-Naehrig (BN) pairing-friendly family of elliptic curves [4] was
considered for pairing implementation. All BN curves have embedding degree
k = 12 and they are defined by the equation E : y2 = x3 + b, b ∈ F∗

p, where the
characteristic p of the prime field, the group order r, an the trace of Frobenius
t are parametrized as,

p(z) = 36z4 + 36z3 + 24z2 + 6z + 1; (1)

r(z) = 36z4 + 36z3 + 18z2 + 6z + 1;

t(z) = 6z2 + 1,

where z ∈ Z, is an arbitrary integer known as the BN parameter, such that
p(z) and r(z) are prime numbers. BN curves admit a sextic degree twist curve,
defined as Ẽ(Fp2) : Y 2 = X3+ b/ξ, where ξ ∈ Fp2 is neither a square nor a cube
in Fp2 .

Let π : (x, y) &→ (xp, yp) be the p-th power Frobenius endomorphism. The
trace of the Frobenius is defined as t = p + 1 −#E(Fp). Let G1 = {P ∈ E[r] :
π(P ) = P} = E(Fp)[r], where G1 is the 1-eigenspace of π acting on E[r]. Let

Ψ : Ẽ → E be the associated twisting isomorphism. Let Q̃ ∈ Ẽ(Fp2) be a point

of order r; then Q = Ψ(Q̃) �∈ E(Fp). The group G2 = 〈Q〉 is the p-eigenspace of π
acting on E[r]. Let GT denote the order-r subgroup of F∗

p12 . The bilinear pairing
studied in this paper is defined as the non-degenerate map âopt : G2×G1 → GT ,
corresponding to the optimal ate pairing given as:

âopt : G2 ×G1 → GT (2)

(Q,P ) &→ [fs,Q(P ) · �(s)Q,π(Q)(P ) ·

�(s)Q+π(Q),π2(Q)(P )](p
12−1)/r

where fs,Q is a Miller function of length s = 6z+2, which is a rational function
in F̄p(E) with divisor div(fs,R) = s[R] − [sR] − (s − 1)[O], while �Q1,Q2 is the
line equation given by the point addition of Q1 ∈ G2 and Q2 ∈ G2. Algorithm 1
computes the optimal pairing as defined in Eq. (2).

1 An open source code of our software library is available at
http://sandia.cs.cinvestav.mx/index.php?n=Site.NEONabe

 http://sandia.cs.cinvestav.mx/index.php?n=Site.NEONabe
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Algorithm 1. Optimal ate pairing

Require: P ∈ G1, Q ∈ G2

Ensure: g = âopt(Q,P )

1: Write s = 6z+2 as s =
∑l−1

i=0, si ∈ {−1, 0, 1}

2: T ← Q, f ← 1
3: for i = l − 2 → 0 do
4: f ← f2 · �T,T (P ), T ← 2T
5: if si = 1 then
6: f ← f · �T,Q(P ), T ← T + Q

7: else if si = −1 then
8: f ← f · �T,−Q(P ), T ← T − Q
9: end if
10: end for
11: Q1 ← π(Q), Q2 ← π2(Q)
12: f ← f · �T,Q1(P ), T ← T + Q1, f ←

f · �T,−Q2(P ), T ← T − Q2

13: g ← f(p12−1)/r

14: return g

3 Tower Extension Field Arithmetic

Efficient arithmetic over extension finite fields is a necessary requirement in
the development of high-performance pairing-based schemes. In this work, we
represent Fp12 using the same tower extension employed in [3], namely, we first
construct a quadratic extension, which is followed by a quadratic and cubic
extensions of it and finally by a quadratic one, using the following irreducible
binomials,

– Fp2 = Fp[u]/(u
2 − β), where β = −1

– Fp4 = Fp2 [V ]/(V 2 − ξ), where ξ = u+ 1
– Fp6 = Fp2 [V ]/(V 3 − ξ), where ξ = u+ 1
– Fp12 = Fp6 [W ]/(W 2 − V ) or Fp4 [T ]/(T 3 − V )

Furthermore, as in [3] we selected z = −(262 + 255 + 1), which using Eq. 1
yields a prime p ≡ 3 mod 4. This allows for a faster arithmetic over Fp2 , since
the multiplication by the constant β reduces to a simple subtraction. For the
computation of the pairing final exponentiation, cyclotomic subgroup arithmetic
GΦ6(Fp2) [9] was extensively used.

Algorithm 2. Montgomery product

Require: prime p, p′, r = 2k and ã, b̃ ∈ Fp

Ensure: c̃ = MontPr(ã, b̃)

1: t ← ã · b̃
2: u ← (t + (t · p′ mod r) · p)/r
3: if u > p then
4: return u − p
5: else
6: return u
7: end if

3.1 Field Multiplication Over Fp

The single most important base field arithmetic operation is modular multipli-
cation, which is defined as c = a · b mod p, with a, b, c ∈ Fp. Since in general
BN primes are not suitable for fast reductions, this operation was performed via
the Montgomery multiplication algorithm. The Montgomery product is defined
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as, c̃ = ã · b̃ · r−1 mod p, where ã, b̃ ∈ Fp are given as, ã = a · r mod p and

b̃ = b ·r mod p, respectively. This formulation allows trading the costly division
by p with divisions by r, where r = 2k with k − 1 < |p| < k. If required, the
modular product c, can be easily recovered using c = c̃ ·r−1 mod p. Algorithm 2
shows the classical version of the Montgomery product, which expects as input
parameter an integer p′ that can be precomputed before hand using Bezout’s
identity for two co-prime integers, namely, r · r−1 − p · p′ = 1.

In our library both, the Separated Operand Scanning (SOS) and the Coarsely
Integrated Operand Scanning (CIOS) multi-precision Montgomery product vari-
ants as described in [13] were implemented. The SOS method computes first the
integer product t = a · b, followed by the Montgomery reduction step that calcu-
lates u such that u = (t+m ·p)/r, where m = t ·p′ (mod r). In this case r = 2wn,
where w is the wordsize of the processor and n = [('log2 p(+ 1)/w]. The CIOS
method interleaves the calculations corresponding to the integer product with
the ones required for getting u. Since in both methods, the reduction is imple-
mented word by word, then the operation m = t · p′ mod r can be performed
replacing p′ by p′0 = p′ mod 2ω, which redounds in a more efficient computation.
According to [13], the CIOS variant is more efficient than the SOS one. Never-
theless, the later method allows lazy reduction, which was the reason why we
implemented both variants.

3.2 Extension Field Arithmetic Computational Cost

Let us denote by (a,m, s, i) and (ã, m̃, s̃, ĩ) the computational cost of the addi-
tion, multiplication, squaring and inversion operations over Fp and Fp2 , respec-
tively. The field arithmetic procedures used in this work extensively exploits lazy
reduction, which closely resembles the approaches adopted in [3,10]. Let m̃E , s̃E
and r̃E denote integer multiplication, integer squaring and reduction over Fp2 ,
respectively, where m̃ = m̃E + r̃E and s̃ = s̃E + r̃E . The rationale behind the
costs given in Table 1, can be summarized as follows.

The cost of reductions over Fp2 is twice the cost of reduction over Fp, i.e., r̃E =
2rE . At a field extension Fpd , d = 2i3j , i, j ∈ Z+; the product c = a·b, a, b, c ∈ Fpd

can be computed with 3i6j integer multiplications and 2i3j reductions modulo p
(Theorem 1 of [3]). Field inversion was based on the procedure described in [10].
In the case of the quadratic and twelfth field extensions Fp2 and Fp12 , field
squaring was computed using the complex method at a cost of 2 multiplications.
The inversion of an elementA = a0+a1u ∈ Fp2 was obtained through the identity
(a0+a1u)

−1 = (a0−a1u)/(a
2
0−βa21). In Fp4 the squaring was implemented at a

cost of 3s̃. This operation is required for computing squarings in the cyclotomic
group GΦ6(Fp2), having a cost of 3 squarings over Fp4 . The asymmetric squaring
formula for cubic extensions of [5] was used in the field Fp6 at a cost of 2m̃+3s̃.
Inversion in Fp6 has a computational complexity of 9m̃+3s̃+ i [11]. Notice that
mξ stands for a multiplication by the constant ξ.
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Table 1. Computational cost of the tower extension field arithmetic

Field Addition Multiplication Squaring Inversion

Fp2 ã = 2a m̃ = 3mE +
2rE + 8a+mβ

s̃ = 2mE +
2rE + 3a

ĩ = 2mE +rE +2m+
2a + i

Fp4 2ã 3s̃+mξ + 4ã

Fp6 3ã 6m̃E + 3r̃E +
2mξ + 24ã

2m̃+3s̃+2mξ+
9ã

9m̃E + 3s̃E + 7r̃E +
4mξ + 10ã + ĩ

Fp12 6ã 18m̃E + 6r̃E +
7mξ + 96ã

12m̃E + 6r̃E +
6mξ + 63ã

25m̃E +9s̃E +16r̃E+
13mξ +79ã+ ĩ

GΦ6(Fp2) 9s̃+ 4mξ + 30ã 3ã

3.3 Field Arithmetic Implementation Using NEON

The performance of a field arithmetic library is strongly influenced by the pro-
cessor micro-architecture features, the size of the operands and the algorithms
and programming techniques associated to them. In our case, the size of the
operands is of 254 bits, which conveniently allows the usage of lazy reduction.
The word size in the ARM processors is of 32 bits and the processors considered
in this work include the NEON vector set of instructions.

Algorithm 3. Computing double integer product with NEON
Require: a = (a0, a1), b = (b0, b1), c = (c0, c1) and d = (d0, d1)
Ensure: F = a · b, G = c · d
1: F ← 0, G ← 0
2: for i = 0 → 1 do
3: C1 ← 0, C2 ← 0
4: for j = 0 → 1 do
5: (C1, S1) ← Fi+j + aj · bi + C1, (C2, S2) ← Gi+j + cj · di + C2,
6: Fi+j = S1, Gi+j = S2

7: end for
8: Fi+n = C1, Gi+n = C2

9: end for
10: return F,G

NEON is a 128-bit Single Instruction Multiple Data (SIMD) architecture ex-
tension for the ARM Cortex family of processors. NEON architecture has 32
registers of 64 bits (doubleword), which can be viewed as 16 registers of 128 bits
(quadword). Our library mostly made use of two intrinsic instructions:

uint64x2 t vmull u32 (uint32x2 t, uint32x2 t);
uint64x2 t vmlal u32 (uint64x2 t, uint32x2 t, uint32x2 t).

The first one performs two 32-bit integer multiplications storing the correspond-
ing result into two 64-bit registers. The second one performs a multiplication
that is accumulated with the addition of a 64-bit scalar. Algorithm 3 illustrates
the usage of NEON for computing the double integer product F = a ·b, G = c ·d.
This is the core operation for the SOS Montgomery multiplication variant. Each
field element a, b, c, d is represented with two 32-bit words. Figure 1 depicts the
NEON dataflow of this algorithm.
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Fig. 1. NEON Implementation of Algorithm 3

Algorithm 4. NEON multiplication over Fp2

Require: A = a0 + a1u, B = b0 + b1u ∈ Fp2

Ensure: C = A · B ∈ Fp2

1: s ← a0 + a1

2: t ← b0 + b1
3: (d0, d1) ← muleNEON (s, t, a0, b0)
4: d2 ← mul256(a1, b1)
5: d0 ← d0 − d1 − d2

6: d1 ← d1 − d2

7: (c1, c0) ← redNEON (d0, d1)
8: return C = c0 + c1u

Because of their ability to perform two multiplications at once, NEON instruc-
tions are very useful for accelerating arithmetic computations. However, data load-
ing and storing is in general costly since the NEON registers have to be fed by
storing data into consecutive 32-bit ARM registers. Hence, in order to take a real
advantage of NEON, load/store instructions should be avoided as much as possi-
ble, which is easier to accomplish if the arithmetic algorithms are specified with
little data dependency among the multiplier operands. In the case of Fp2 arith-
metic, two independent multiplications over Fp were implemented using NEON
as follows. Let us consider |p| = 254 bits and define the following three func-
tions:mulNEON ,muleNEON and redNEON . The first one performs two indepen-
dent multiplications in Fp using the CIOS method, i.e. given a, b, c, d, f, g ∈ Fp,
define mulNEON as (f, g) ← mulNEON(a, b, c, d) where f = a · b mod p and
g = c ·dmod p. The second functionmuleNEON performs two integer multiplica-
tions: (F,G)← muleNEON(a, b, c, d), with a, b, c, d ∈ Fp, F = a · b and G = c · d,
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Algorithm 5. NEON Squaring over Fp2

Require: A = a0 + a1u ∈ Fp2

Ensure: C = A2 ∈ Fp2

1: c0 ← a0 − a1

2: c2 ← a0 + a1

3: (c1, c0) ← mulNEON (a0, a1, c0, c2)
4: c1 ← 2c1
5: return C = c0 + c1u

where |G| = |F | = 508 bits. Finally, the third function redNEON implements the
Montgomery reduction defined as (f, g)← redNEON (F,G), where f, g ∈ Fp and
|G| = |F | = 512 bits. Making use of the aforementioned functions, Algorithms 4
and 5 compute a multiplication and a squaring in Fp2 , respectively. Notice that In
step 4 of Alg. 4 the function mul256 stands for a single integer multiplication.

4 Elliptic Curve Arithmetic

Elliptic curve points were represented using projective Jacobian coordinates,
where a BN elliptic curve E is given as Y 2 = X3 +BZ6. A point (X1 : Y1 : Z1)
in E corresponds to the affine point (X1/Z

2
1 , Y1/Z

3
1), with Z1 �= 0. The point at

infinity O is represented as (1, 1, 0), whereas the additive inverse of (X1 : Y1 : Z1)
is (X1 : −Y1 : Z1).

Algorithm 6. Point doubling with Jacobian coordinates
Require: P = (X1 : Y1 : Z1) ∈ G1

Ensure: 2P = (X3 : Y3 : Z3) ∈ G1

1: (t1, t4) ← mulNEON (Y1, Y1, 3X1, X1)
2: (t2, t3) ← mulNEON (4X1, t1, 4t1, 2t1)
3: (X3, Z3) ← mulNEON (t4, t4, 2Y1, Z1)
4: X3 ← X3 − 2t2
5: Y3 ← t4 · (t2 − X3) − t3
6: return (X3 : Y3 : Z3)

Algorithm 7. Mixed point addition
Require: P = (X1 : Y1 : Z1) and Q = (X2 : Y2 : 1) ∈ G1

Ensure: R = P + Q = (X3 : Y3 : Z3) ∈ G1

1: t1 ← Z2
1

2: (t2, t3) ← mulNEON (Z1, t1, X2, t1)
3: t5 ← t3 − X1

4: (t4, t7) ← mulNEON (Y2, t2, t5, t5)
5: (t8, t9) ← mulNEON (t7, t5, t7, X1)
6: t6 ← t4 − Y1

7: (X3, Z3) ← mulNEON (t6, t6, Z1, t5)
8: X3 ← X3 − (t8 + 2t9)
9: (Y3, t0) ← mulNEON (t6, t9 − X3, Y1, t8)
10: Y3 ← Y3 − t0
11: return (X3 : Y3 : Z3)

Point Doubling. Given P = (X1 : Y1 : Z1), the point 2P = (X3 : Y3 : Z3)
can be calculated with 4 squarings and 3 multiplications according to the next
sequence of operations,
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t1 ← Y 2
1 , t2 ← 4X1 · t1, t3 ← 8t21, t4 ← 3X2

1 ,
X3 ← t24 − 2t2, Y3 ← t4 · (t2 −X3)− t3, Z3 ← 2Y1 · Z1

Mixed Point Addition. Let P = (X1 : Y1 : Z1) with Z1 �= 0 and Q = (X2 :
Y2 : 1), for P �= ±Q, the addition R = P +Q = (X3 : Y3 : Z3) can be obtained
at a cost of 3 squarings and 8 multiplications according to the next sequence,

t1 ← Z2
1 , t2 ← Z1 · t1, t3 ← X2 · t1, t4 ← Y2 · t2, t5 ← t3 −X1,
t6 ← t4 − Y1, t7 ← t25, t8 ← t7 · t5, t9 ← X1 · t7,

X3 ← t26 − (t8 + 2t9), Y3 ← t6 · (t9 −X3)− Y1 · t8, Z3 ← Z1 · t5

Taking advantage of the inherent parallelism of the above sequences, a NEON
implementation of the point addition and point doubling operations is shown in
Algorithms 6 and 7, respectively.

4.1 Efficient Techniques for Computing Scalar Multiplication

The elliptic curve scalar multiplication operation computes the multiple R =
[�]P , with � ∈ Zr, P,R ∈ E(Fp), which corresponds to the point resulting of
adding P to itself � times. The average cost of computing [�]P by a random
n−bit scalar � using the customary double-and-add method is of about, nD+ n

2A,
where A is the cost of a point addition, and D is the cost of a point doubling.

The customary method to speed up this operation reduces the Hamming
weight of the scalar � by representing it in its non-adjacent form (NAF). The
technique can be easily extended to the w-NAF representation, namely, � =∑n−1

i=0 �i2
i, |�i| ≤ 2w−1, and at most one of any w consecutive digits is non-zero,

with �n−1 �= 0, where the length n is at most one bit larger than the bitsize of
the scalar n and the resulting Hamming weight is approximately 1/(w+1). The
estimated cost of the scalar multiplication reduces to, nD+ n

ω+1A, plus the cost

of the precomputation of the multiples Pi = [i]P, for i ∈ [1, 3, . . . , 2w−1−1]. Due
to this exponential penalty, in most applications a rather conservative value of
w ∈ [3, 5] is selected.

When the point P is fixed, some form of the comb method is usually pre-
ferred. Given an w-window size and a known-point P , one can pre-compute for
all of the possible bit strings (aw−1, . . . , a0) the following 2w multiples of P :
[aw−1, . . . , a2, a1, a0]P = aw−12

(w−1)dP + . . . + a22
2dP + a12

dP + a0P. Then,
the scalar � is scanned column-wise by recoding it into d blocks each one with
a bit length of w bits, where d = |r|/w. The computational and storage costs of
the comb method is of d(A+D), and a look-up table of 2w points, respectively.
Notice that the storage cost can be reduced to a half by using a signed repre-
sentation of the scalar �. A further speedup in the computation of the scalar
multiplication can be achieved if there exists an efficient-computable endomor-
phism ψ over E/Fp such that ψ(P ) = λP [8]. In the case of BN curves, given a
cube root of unity β ∈ Fp, one has that the mapping ψ : E1 → E1 defined as,
(x, y)→ (βx, y) and O → O, is an endomorphism over Fp with a characteristic
polynomial given as λ2 + λ ≡ −1 mod r, λ = 36z4 − 1. The scalar � can be
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rewritten as � ≡ �0 + �1λ mod r, where |�i| < |
√
r|, which allows to compute

the scalar multiplication as, [�]P = [�0]P + [�1]ψ(P ), at an approximate cost of[
D + (2w−2 − 1)A

]
+

[
n

w+1A+ n
2D

]
.

In the case that the scalar multiplication in G2, i.e. the computation of the
multiple S = [�]Q, with � ∈ Zr, Q,S ∈ E(Fp2), is of interest, one can take
advantage of the Frobenius endomorphism to extend the two-dimensional GLV
method to a four dimension version using the GS approach [7]. Let E be a BN
elliptic curve over Fp with embedding degree k = 12 and let Ẽ(Fp2) be the sixth
degree twist of E. Let πp be the Frobenius operator in E, then ψ = φ−1πpφ is

an endomorphism on Ẽ such that ψ : Ẽ(Fp2) → Ẽ(Fp2). Then for Q ∈ Ẽ(Fp2),
it holds that ψk(Q) = Q, ψ(Q) = pQ, and ψ satisfies ψ4 − ψ2 + 1 = 0. Since
p ≡ t − 1 mod r, the scalar � can be decomposed as � = �0 + �1λ + �2λ

2 + �3λ
3

with λ = t−1 and |�i| ≈ |r|/4, which allows to compute the scalar multiplication
in G2, as, [�]Q = [�0]Q + [�1]ψ(Q) + [�2]ψ

2(Q) + [�3]ψ
3(Q), at an approximate

cost of
[
D + (2w−2 − 1)A

]
+

[
n

w+1A+ n
4D

]
.

Likewise, in the case of the exponentiation in GT , the operation fe with
f ∈ GT , e ∈ Zr can then be accomplished by rewriting the exponent e in base
p as, e = e0 + e1 · p+ e2 · p2 + e3 · p3, with |ei| ≈ |r|/4, followed by the compu-

tation, fe = fe0 · fep1 · fep
2

2 · fep
3

3 . Notice that the Frobenius mapping ep
i

for
i = 0, . . . , 3, has a negligible computational cost. Notice also that the identity
fp = fλ = f6x2

, holds.

5 Bilinear Pairing Arithmetic

In this section we briefly describe the Miller’s loop and final exponentiation
computations as well as the algorithm utilized to perform multi-pairing
computations.

Miller Loop. The main operations of Algorithm 1 are the evaluation of the
tangent line �T,T and the doubling of the point T ; as well as the secant line
evaluation and the computation of the point addition T + P . The most efficient
way to perform above operations is through the usage of standard projective
coordinates, where the projective point (X1 : Y1 : Z1) in the elliptic curve E
corresponds to the affine point (X1/Z1, Y1/Z1). Given the curve Ẽ/Fp2 defined

as Ẽ : y2 = x3 + b′ whose projective form is Y 2Z = X3 + bZ3, one can calculate
2T = (X3 : Y3 : Z3) ∈ E′(Fp2) using the formulas [3]:

X3 = X1Y1

2 (Y 2
1 − 9b′Z2

1)

Y3 =
[
1
2 (Y

2
1 + 9b′Z2

1 )
]2 − 27b′2Z4

1

Z3 = 2Y 3
1 Z1

whereas the line �T,T evaluated on P = (xP , yP ) ∈ E(Fp) is given as,

�T,T (P ) = −2Y1Z1yP + 3X2
1xPw + (3b′Z2

1 − Y 2
1 )w

3 ∈ Fp12
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In the same way, given the points T = (X1, Y1, Z1), Q = (X2, Y2, 1) ∈ E′(Fp2)
and P = (xP , yP ) ∈ E(Fp) one can calculate the point addition R = T + Q =
(X3, Y3, Z3) and �T,Q(P ) as [3]:

�T,Q(P ) = λyP − θxPw + (θX2 − λY2)w
3,

X3 = λ(λ3 + Z1θ
2 − 2X1λ

2)
Y3 = θ(3X1λ

2 − λ3 − Z1θ
2)− Y1λ

3

Z3 = Z1λ
3

where θ = Y1 − Y2Z1 and λ = X1 −X2Z1.
Another important aspect of the Miller’s algorithm is the multiplication of

the Miller variable f by the line (either tangent or secant) evaluation. However,
the evaluation of the lines �Q,Q and �T,Q produce a sparse element in the group
F∗
p12 with half of its coefficients having a zero value, which motivates the idea

that any product of f ∈ Fp12 with �Q,Q or �T,Q should be performed using a
procedure specially tailored for computing sparse multiplications.

Final Exponentiation. The exponent e = (pk − 1)/r in the BN final
exponentiation can be broken into two parts as,

(p12 − 1)/r = [(p12 − 1)/Φ12(p)] · [Φ12(p)/r],

where Φ12(p) = p4− p2 +1 denotes the twelfth cyclotomic polynomial evaluated

in p. Computing the map f &→ f (p12−1)/Φ12(p) is relatively inexpensive, cost-
ing only a few multiplications, inversions, and inexpensive p-th exponentiations
in Fp12 . Raising to the power d = Φ12(p)/r = (p4 − p2 + 1)/r is considered
more difficult. This part was computed using a multiple d′ of d where r � d as
discussed in [6], which allowed a lower number of operations. Using the BN pa-
rameter z, the exponentiation of gd

′(z) requires the calculation of the following
addition chain,

fz &→ f2z &→ f4z &→ f6z &→ f6z2 &→ f12z2 &→ f12z3

,

which requires 3 exponentiations by z, 3 squarings an one multiplication over
Fp12 . Finally, given the variables a = g12z

3 · g6z2 · g6z and b = a · (g2z)−1, the

exponentiation of gd
′(z) is calculated as follows:

gd
′(z) =

[
a · g6z2 · g

]
· [b]p · [a]p

2

·
[
b · g−1

]p3

∈ F×
p12

Since g ∈ GΦ6(Fp2), the cost of gd
′(z) is 3 Frobenius operators, 3 exponentiations

by z, 10 multiplications in Fp12 and 3 squarings in GΦ6(Fp2). It should be noted
that we use the Karabina compressed squaring formulas [12] for performing the
exponentiation-by-z step.

Multipairing. Products of pairings are computations required in Waters’
attribute-based protocol. For this operation, one can make use of the pairing
bilinear property to group pairings sharing one of the input parameters. If all
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the pairings share a common input point, then one can exchange n pairing
products by n− 1 point additions and a single pairing using the identity,

n−1∏
i=0

e(Q,Pi) = e(Q,
n−1∑
i=0

Pi),

If a product of pairings is still needed, and the previous method was already
exploited, there is still room for obtaining significant speedups. For instance,
one can compute this product by performing a multi-pairing (or simultaneous
product of pairings), by exploiting the well-known techniques employed in the
multi-exponentiation setting. In essence, in a multipairing computation not only
the costly final exponentiation step can be shared, but also, one can share both
the Miller variable f, and the squaring computations performed in the step 4 of
Algorithm 1. A further performance improvement can be achieved if the point
Q in G2 is known in advance, since in this case one can pre-compute some of the
operations involved in the line evaluations. In particular, the cost of computing
the line evaluated at the point P ∈ G1 given as, ��,�(P ) = l0yP + l1xPw + l2w

3,
reduces to two scalar multiplications since l0, l1, l2, can be precomputed offline.

6 Attribute Based-Encryption

Attribute-Based Encryption (ABE) is a relatively new encryption scheme where
an identity is seen as a set of attributes. In this scheme a user can access to
some resources only if she had a set of privileges (called attributes) satisfying
a control access policy previously defined. The policy is described through a
boolean formula, which can be represented by an access structure and can be
implemented using a linear secret-sharing scheme (LSSS) [14, 16]. The LSSS
structure is described by the pair (M,ρ), where M ∈ Fr is an u × t matrix,
where u, t are the number of required attributes and the access policy threshold,
respectively; whereas ρ is a label function that according to the policy links each
row of the matrix M to an attribute. For the sake of efficiency and as Scott did
in [15], we reformulate the protocol from its original symmetric setting to an
asymmetric one where some scheme parameters are conveniently defined in G1

whereas others are in G2. The ABE scheme is made up of four algorithms [16]:
Setup, Encrypt, Key Generation and Decrypt, as described next.

Setup. This algorithm takes as input the security parameter λ and the set of
U attributes. The security parameter becomes the main criterion to select the
groups G1 and G2 of order r and the generators P ∈ G1 and Q ∈ G2. The
points H1, . . . , HU ∈ G1 are generated from the attribute universe and two ran-
dom integers a, α ∈ Fr, are chosen at random. The public key is published as,
PK = {P,Q, e(Q,P )α, [a]P,H1, . . . , HU}. Additionally, the authority establishes
MSK = [α]P as her master secret key. This algorithm has a cost of one pair-
ing, two scalar multiplications and U MapToPoint functions. Notice that it is
assumed that the elements P , Q, [a]P and e(Q,P )α are all known in advance.
On the contrary, the points H1, . . . HU were not considered as fixed points since
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the attribute universe has a variable length, a fact that is also reflected in the
storage cost.

Encrypt. The algorithm for encryption takes as input the public key PK, the
messageM to be encrypted, and the LSSS access structure (M,ρ), whereM ∈ Fr

is an u×t matrix as described above. The algorithm starts by randomly selecting
a column vector v = (s, y2, . . . , yt)

T ∈ Fn
r that will be used to securely share the

secret exponent s. For i = 1 to u, it calculates λi = Mi · v where Mi is the 1× t
vector corresponding to the i-th row of M . The scalars r1, . . . , ru ∈ Fr are also
randomly chosen. Then, the cipher CT is published as follows:

CT =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C =Me(Q,P )αs, C′ = [s]Q,

(C1 = [λ1]([a]P )− [r1]Hρ(1), D1 = [r1]Q),
...

(Cu = [λu]([a]P )− [ru]Hρ(u), Du = [ru]Q),

which is sent along with the LSSS access structure (M,ρ).
The comb method was applied to compute scalar multiplications involving

the fixed points Q, P and [a]P . In the same way, one can apply a variation of
this method to obtain the powering of e(Q,P )α by the exponent s. The GLV
method was used to compute scalar multiplications with the points Hi ∈ G1.
Hence the cost of encryption is one multiplication and one fixed exponentiation
in GT , u fixed point multiplications in G1, u + 1 fixed point multiplications in
G2 and u point multiplication in G1.

Key Generation. This algorithm takes as input the master secret key MSK =
αP and a set of attributes S. First the algorithm selects a random number t ∈ Fr,
then it generates the attribute-based private key as follows,

SK = {K = [α]P + [t]([a]P ), L = [t]Q, ∀x ∈ S Kx = [t]Hx }
Let N be the number of attributes on S, since the points aP and Q are known,
the cost of this algorithm is one fixed point multiplication in G1, one fixed point
in G2 and N point multiplications in G1. For the first two scalar multiplications
the comb method was used, and the GLV method for the rest.

Decrypt. This algorithm takes as inputs the cipher CT with the access structure
(M,ρ) and the private key SK for a set S. Suppose S satisfies the access structure
and define I ⊂ {1, 2, . . . , u} as I = {i : ρ(i) ∈ S}. Let {ωi ∈ Z}i∈I be the set
of constants such that if λi is a valid share of a secret s according to M , then∑

i∈I ωiλi = Δs with Δ ∈ Fr. The decryption algorithm first computes:(
e(L,

∑
i∈I

[ωi]Ci)
∏
i∈I

e(Di, [ωi]Kρ(i))

) 1
Δ

/e(C′,K) = e(P,Q)−αs, (3)

Followed by the multiplication of this value by C as defined in Eq. (3). If S
satisfies the access structure this should recover the messageM.
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The variable Δ guarantees low size constants ωi, i.e., | ωi |< 64 bits, which
allows us to perform the scalar multiplications involving these constants using a
w-NAF method. We called this operation short scalar multiplication. Let N < u
be the number of elements of I, then the computational cost of Eq. (3) is of
2N short multiplications in G1, an N + 2 multipairing computation, N point
additions in G1 and one exponentiation in GT which can be computed using
the GS method. Also, since L ∈ G2 is a known point, its lines evaluations were
precomputed.

Table 2. Clock cycle comparison for Single pairing computations

Work Processor 103 clock cycles for 254 bits

ã m̃ s̃ ĩ ML FE Pairing

[1] Tegra 2a 1.42 8.18 5.20 26.61 26, 320 24, 690 51, 010

[10] Apple A5b 0.25 3.48 2.88 19.19 8, 338 5, 483 13, 821
TI OMAPc 0.16 3.37 2.53 16.86 8, 231 5, 258 13, 489

(ASM) 0.12 2.95 2.48 16.60 7, 376 4, 510 11, 886

This Work Tegra 2a 0.17 3.41 2.41 39.25 8, 313 5, 269 13, 582

Exynosd 0.17 3.42 2.41 39.21 8, 348 4, 607 13, 618
(NEON) 0.16 2.29 2.00 60.37 5, 758 3, 794 9, 477
Exynose 0.14 1.36 0.86 29.01 3, 388 2, 353 5, 838

a. NVidia Tegra 2 (ARM v7) Cortex-A9 a 1.0 GHz (C)

b. iPad 2 (ARM v7) Apple A5 Cortex-A9 a 1.0 GHz (C)

c. Galaxy Nexus (ARM v7) TI OMAP 4460 Cortex-A9 a 1.2 GHz (Two versions: C and ASM)

d. Galaxy Note (ARM v7) Exynos 4 Cortex-A9 a 1.4 GHz (Two versions: C and NEON)

e. Arndaleboard (ARM v7) Exynos 5 Cortex-A15 a 1.7 GHz (NEON)

7 Implementation Results

This section presents the main implementation results classified into three sub-
sections: bilinear pairings, scalar multiplication and the ABE scheme timings.

7.1 Pairing Timings

Let us recall that (ã, m̃, s̃, ĩ) denote the computational cost of the addition,
multiplication, squaring and inversion operations over Fp2 . These field arithmetic
operations are used to perform a single pairing computation, a task that as it
was described in section 5, can be split into two main parts: the Miller Loop
(ML) and the Final Exponentiation (FE).

Using above definitions, Table 2 presents a comparison against the works [1]
and [10] In [1] a pairing library that employs affine coordinates was presented,
whereas [10] reports an assembler optimized pairing library using standard
projective coordinates.



336 A. Helena Sánchez and F. Rodŕıguez-Henŕıquez

7.2 Costs of the Scalar Multiplication and Field Exponentiation

Table 3 shows the timings obtained for the computation of scalar multiplication in
the groupsG1 and G2, and the field exponentiation in the groupGT . The compu-
tation of the scalar multiplication using the w-NAF approach was only utilized for
small 64-bit scalars, with w = 3. The comb method was the choice for computing
fixed point scalar multiplication with a window size of w = 8. We stress that the
w-NAF was used in combination with both the GLV and GS methods.2

Table 3. Scalar mult. and exponentiation timings (in 103 clock cycles)

Processor G1 Mult. G2 Mult. GT Exp.
w-NAF GLV Comb w-NAF GS Comb w-NAF GS Comb

Tegra 2 779 1977 626 2059 4190 1745 2643 5998 2727

Exynos 4 785 1973 627 2096 4189 1742 2633 4777 2155
(NEON) 676 1698 556 1493 2933 1214 1827 4102 1863

Exynos 5 337 822 251 797 1571 636 1125 2522 1121

Table 4. ABE scheme with 6 attributes (Timings in 103 clock cycles)

Processor Key Encryption Decryption Decryption
Generation (Δ = 1) (Δ > 1)

Tegra 2 18,340 31,830 63,870 74,140

Exynos 4 18,270 29,480 63,810 73,930

Exynos 4 (NEON) 15,333 24,167 43,980 50,808

Exynos 5 7,617 12,748 26,638 31,161

7.3 Attribute-Based Encryption Costs

We could not compare our ABE scheme timings against [2], because this work
only implements the decryption algorithm and it does not present the exact
timings. Table 4 reports the timings obtained when a 6-attribute policy is em-
ployed in the three main primitives of the ABE protocol, namely, key generation,
encryption and decryption that were discussed in section 6. Note that for the
decryption algorithm we present the cases when Δ = 1 and Δ > 1 (see Eq. 3).

8 Conclusion

We presented a cryptographic library that implements Waters’ attribute en-
cryption scheme in mobile devices operated with ARM processors. The main
primitives developed were bilinear pairings and scalar multiplications in differ-
ent flavors. Our library uses four different scalar multiplications according to the

2 A description of the w-NAF GLS and GS methods for computing scalar
multiplications was given in subsection 4.1.
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group, scalar size and the type of the point (either fixed or variable), providing a
127 bits security level and achieving record timings for the computation of a sin-
gle bilinear pairing at this level of security when implemented on the Exynos-5
Cortex-A15 processor.

A key factor that helps us to achieve faster timings than previously reported
works was the usage of the NEON technology that allows a better exploitation
of the inherent parallelism present in several field and elliptic curve arithmetic
operations. It is illustrative to analyze the Exynos-4 scalar multiplication tim-
ings shown in Table 3. where NEON produces savings of about 14%, 30% and
15% in the computations over the G1,G2 and GT groups, respectively. Notice
that the significant better performance of NEON in the computations over G2

are a consequence of the rich parallelism extracted for the field squaring and
multiplication over Fp2 as it was explained in Section 4.

Another interesting aspect to remark is the performance comparison of our
work against [1] for the single pairing computation at the 127 bit security level.
As shown in Table 2, without using NEON, the two libraries perform essentially
the same when implemented in the Tegra 2 and Apple A5 processors, respec-
tively. However, taking advantage of NEON, our library outperforms the library
in [1] by approximately 20% when implemented in the Exynos 4 and TI OMAP
processors, respectively. Moreover, when implemented in the Exynos 5 proces-
sor, our library is a bit more than two times faster than the software in [1].
We conclude that the Cortex A-15 micro-architecture and its improved NEON
unit, provide a significantly better performance for cryptographic application
implementations.
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Abstract. We describe, and implement, a maliciously secure protocol
for two-party computation in a parallel computational model. Our pro-
tocol is based on Yao’s garbled circuit and an efficient OT extension.
The implementation is done using CUDA and yields fast results for
maliciously secure two-party computation in a financially feasible and
practical setting by using a consumer grade CPU and GPU. Our pro-
tocol further uses some novel constructions in order to combine garbled
circuits and an OT extension in a parallel and maliciously secure setting.

1 Introduction

Secure two-party computation (2PC) is the area of cryptography concerned with
two mutually distrusting parties who wish to securely compute an arbitrary
function on their joint and private input without leaking any information. The
area was introduced in 1982 by Yao [25], specifically for the semi honest case
where both parties are assumed to follow the prescribed protocol. Yao showed
how to construct such a protocol using a technique referred to as the garbled
circuit approach. Later, a solution in the malicious setting, where one of the
parties might deviate from the prescribed protocol in an arbitrary manner, was
given in [4]. Another approach for malicious security, called the cut-and-choose
approach, involves running several instances of garbled circuits in parallel, with
some random instances being completely revealed to verify that the other party
has behaved honestly. Efficient 2PC and secure multi-party computation (MPC)
have many practical applications. The first case of this is described in [2], where
MPC was used for deciding the price of a national sugar beet auction in Denmark.
Other applications for 2PC and MPC include voting, anonymous identification,
privacy preserving database queries etc.

Recently a lot of research has gone into making 2PC efficient enough to be
practical, cf. [7,13,15,18,19,21]. Most previous approaches have focused on doing
this in a sequential model [13,15,18]. However, the recent evolution of processors
seems to indicate a convergence of speed, whereas the amount of cores in proces-
sors seem to increase. Thus, constructing algorithms and cryptographic protocols
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that work well in a parallel model will be paramount for hardware based effi-
ciency increases in the future, which is why we take the parallel approach to
increase the speed of 2PC.

Previous work in “parallel cryptography” started with [22], where a cluster of
either CPUs or GPUs was used to execute 3072 semi honest protocols for 1-out-
of-2 oblivious transfer (OT) followed by gate garbling/degarbling in parallel.1

In [12] 512 cores of a cluster was used to do OT along with circuit garbling
in parallel to achieve malicious security using the cut-and-choose approach. In
this manner they managed to use the inherit parallelism of the cut-and-choose
approach to achieve very fast and maliciously secure 2PC. Any other work taking
a parallel approach to cryptography that we know of focuses either on attacks e.g.
[24] or simultaneous applications of more primitive cryptographic computations
e.g. [20].

Contributions. Our main contribution is a careful implementation, along with a
general protocol, for maliciously secure 2PC using a Same Instruction, Multiple
Data (SIMD), or Parallel Random Access Model (PRAM) computation device.
Our protocol is UC secure in the Random Oracle Model (ROM),OT-hybrid model
and based on Yao’s garbled circuit approach [25] along with the OT extension
(See Section 2) of [18] and a few novel ideas. Computationally our protocol
relies solely on symmetric primitives, except for a few seed OTs used in the OT
extension which only need to be done once for each pair of parties. Furthermore,
our protocol is of constant round complexity and, assuming access to enough
cores, computationally bounded only by the number of layers in the circuit to
be computed and the block size of a hash function. Using a NVIDIA GPU as
our SIMD device, we make several experiments and show that our approach is
orders of magnitude more efficient on current consumer hardware than any other
protocol based on garbled circuits. Finally, we show that this approach is the
fastest yet documented assuming a “practical”, yet malicious, setting.2

Notation.We let ‖ denote string concatenation and let r[i] be the i’th element of a
string r. We let � be the statistical security parameter and κ be the computational
security parameter. In particular we letH(·) denote a hash function with a digest
of κ bits (in our implementation this will be 160 bits). We assume that Alice
is the circuit constructor and Bob is the circuit evaluator and we will use their
names and roles interchangeably.

Overview. Section 2 introduces the idea of parallel implementations and the
overall structure of our computation device of choice; the GPU. In Section 3
we go through the overall structure of our protocol. Later, in Section 4 we go

1 1-out-of-2 OT is the protocol where the first party, Alice, gives as input two bit-
strings (x0, x1), and the second party, Bob, inputs a bit b. Bob learns xb but gets no
information on x1−b and Alice gets no information on b.

2 We refer to “practical” as either financially feasible for a consumer and/or having a
liberal statistical security parameter.
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through the ideas used to make our protocol suitable in the SIMD model. Then,
in Section 5 we discuss the implementation details and finally in Section 6 we
review our results.

2 Background

Parallel Approach. In our approach we assume access to a massive parallel
computation device which is capable of executing the same instruction on each
processor in parallel, but on different pieces of data. Our protocol does not
make any assumption on whether such a device has access to shared memory
between the processors, or only access to local memory. This applies completely
for write privileges, but also for read privileges with only a constant memory
usage penalty.

We decided to implement our protocol using the GPU, the motivation being
that GPUs are part of practically all mid- to high-end consumer computers.
Furthermore, using the GPU eliminates the security problems from outsourcing
the computation to a non-local cluster. Also, assuming access to a local cluster
seems to be an unrealistic assumption for general practical applications. Using
gaming consoles or multi-cores CPUs might also be an option. However, even
the latest and best of these have orders of magnitude processors less than the
latest GPUs.

Our implementation is done using the CUDA framework which is an extension
to C and C++ that allows using NVIDIA GPUs for general computational tasks.
This is done by making CUDA programs. Such a program does not purely run
on the GPU. It consists of both general C classes, which run on the CPU, and
CUDA classes which run on the GPU since the GPU can not communicate
directly with the Operating System (OS).

In order to motivate our specific implementation choices it is necessary to
describe a general CUDA enabled GPU: Each GPU consists of several (up to
192) streaming multiprocessors (SM), each of these again contains between 8 and
192 streaming processors (SP), depending on the architecture of the GPU. Each
of the SPs within a given SM always performs the same operations at a given
point in time, but on different pieces of data. Furthermore, each of these SMs
contains 64 KB of shared memory along with a few kilobytes of constant cache,
which all of the SPs within the given SM must share. For storage of variables
each SM contains 64K 32-bit registers which is shared amongst all the SPs. Thus
all the threads being executed by a given SM must share all these resources.

We now introduce some notation and concepts which are used in the general
purpose GPU community and which we will also use in this paper; a GPU is
called a device and the non-GPU parts of a computer is called the host. This
means that the CPU, RAM, hard drive etc., are part of the host. The code
written for the host will be used to interact with the OS, that is, it will do all the
IO operations needed by the CUDA program. The host code is also responsible
for copying the data to and from the device, along with launching code on the
device. Each procedure running on a device without interaction with the host
is called a kernel. Before launching a kernel the host code should complete all
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needed IO and copy all the data needed by the kernel to the device’s RAM. The
RAM of the device is referred to as global memory. After a kernel has terminated
the host can copy the results from the global memory of the device to its own
memory, before it launches another kernel.

A kernel is more than just a procedure of code, it also contains specifications
of how many times in parallel the code should be executed and any type of
synchronization needed between the parallel executions. A kernel consists of
code which is executed in a grid. A grid is a 2-dimensional matrix of blocks.
Each block is a 3-dimensional matrix of threads. Each thread is executed once
and takes up one SP during its execution. When all the threads, of all the blocks
in the grid, have been executed the kernel terminates. The threads in each block
are executed in warps, which is a sequence of 32 threads. Thus, the threads
must be partitioned into blocks in multiples of the warp size, and contain no
branching. The threads can then be executed completely independently and in
arbitrary order.

Furthermore, to achieve the fastest execution time one should coalescence the
data in global memory. That is, to “sort” the data such that the word thread
1 needs is located next to the word thread 2 needs and so on. This makes it
possible to load these 32 words for the warp in one go, thus limiting the usage of
bandwidth, and in turn significantly increasing the speed of the program. This
advice on memory organisation is also relevant for the data in the shared memory.
Finally, it is a well known fact [3] that the bottleneck for most applications of the
massive parallelism offered by CUDA is the memory bandwidth, thus it should
always be a goal to limit the frequency of which a program access data in the
global memory.

Maliciously Secure Garbled Circuits. For completeness we now sketch how
a generic garbled circuit is constructed. We are given a Boolean circuit descrip-
tion, C, of the Boolean function we wish to compute, f , from which we construct
a garbled circuit, GC. For simplicity we assume that each gate consists of two
input wires and one output wire. However, we allow the output wire to split into
two or more if the output of a given gate is needed as input to more than one
other gate. Each wire in C has a unique label, and we give the corresponding
wire in GC the same label. Each wire w has two keys associated, k0w and k1w,
which are independent uniformly random bitstrings. Here k0w represents the bit
0 and k1w represents the bit 1. If the bit on wire w in C is 0, then the value
on wire w in GC will be k0w, otherwise it will be k1w. Each gate in GC consists
of a garbled computation table. This table is used to find the correct value of
the output wire given the correct keys for the input wires. For a gate of C call
the left input wire l, the right input wire r and the output wire o. Assume the
functionality of the gate is given by G(σ, υ) = ρ where σ, υ, ρ ∈ {0, 1}, then
the garbled computation table is a random permutation of the four ciphertexts

Cσ,υ = Ekσ
l

(
Ekυ

r
(kρo)

)
= Ekσ

l

(
Ekυ

r

(
k
G(σ,υ)
o

))
for all four possible input pairs,

(σ, υ), using some symmetric encryption function, Ekey(·). I.e., the entries in the
garbled computation table consists of “double encryptions” of the output wire’s
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values, where the keys for each double encryption corresponds to exactly one
combination of the input wires’ values. The encryption algorithm is constructed
such that given kσl and kυr it is possible to recognize and correctly decrypt Cσ,υ,
but it is not possible to learn any information about the remaining three encryp-
tions.

Optimized Garbled Circuits. To determine which entry in the garbled computa-
tion table is the correct one to decrypt we use permutation bits [21]. The idea is
to associate a permutation bit, πi ∈ {0, 1}, with each wire, i, in GC. The value
on i is then defined as kbi ‖ ci where ci = πi⊕b with b being the bit wire i should
represent. We call ci the external value. The garbled computation table is then[

cl, cr : E
Gid‖cl‖cr
k
bl
l ,kbr

r

(
kG(bl,br)
o ‖ co

)]1,1
l=0,r=0

,

where cl = πl ⊕ bl, cr = πr ⊕ br, and co = πo ⊕G(bl, br), sorted on cl‖cr. This
means that given the keys of the input wires the evaluator can decide which
entry he needs to decrypt, without learning anything about the bits the wires
represent. The encryption function for the keys in the garbled computation table
is defined as follows:

Es
kl,kr

(ko) = ko ⊕KDF|ko|(kl, kr, s),

where KDF|ko|(kl, kr, s) is a key derivation function with an output of |ko| bits,
independent of the two input keys, kl and kr in isolation, and which depends
on the value of some salt, s. As we assume the ROM, we are able to specify the
KDF as follows:

KDF|ko|(kl, kr, s) = H(kl ‖ kr ‖ s) .

This means that the encryption function essentially can be reduced to a single
invocation of a robust hash function with output length κ (assuming κ ≥ |ko|).

We further include the optimization from [11] which will make it possible to
evaluate all the XOR gates in the circuit for “free”. Free here means that no
garbled computation table needs to be constructed or transmitted. The trick
is to have a global key Δ, which is a uniformly random bitstring of the same
length as the wire keys, and then let k1i = k0i ⊕Δ for all wires i. Regarding the
external values, this implies that πi ⊕ 1 = πi ⊕ 0 ⊕ 1. So, in order to compute
an XOR gate simply compute XOR of the keys of the two input wires of the
gate, that is ko ‖ co = kl ⊕ kr ‖ cl ⊕ cr. Finally, we also eliminate a row of the
garbled computation table using the approach of [17]. The trick is to let one of
the output keys be the result of the KDF on one input key pair. This key pair
is the one where the external values are 0, i.e., cl = 0 and cr = 0. I.e.:

kG(πl⊕0,πr⊕0)
o ‖ co = KDFκ+1

(
kπl⊕0
l , kπr⊕0

r , Gid ‖ 0 ‖ 0
)
.

Depending on the type of gate, this again uniquely specifies the permutation bit
of the output wire as co = πo⊕G (πl ⊕ 0, πr ⊕ 0). The other output key is given



344 T.K. Frederiksen and J.B. Nielsen

using Δ. The three remaining entries in the garbled computation table are then
the appropriate encryptions of these two output keys.

Optimized Approaches to Cut-and-Choose Malicious Security. In general OT is
an expensive primitive, and if the evaluator has a large input to the circuit
this can contribute significantly to the execution time of the whole protocol.
However, the amount of “actual” OTs we need to complete can be significantly
reduced by using an OT extension: Beaver showed in [1] that given a number
of OTs it is possible to “extend” these to give a polynomial number of random
OTs which can easily be changed to specific OTs. Thus, making it possible to
do a few OTs once, and extend these almost indefinitely. The idea of an OT
extension has been optimized even further in [8] and [18] to yield significant
practical advantages. Our protocol uses a slightly modified version of the OT
extension presented in [18].

The cut-and-choose approach in itself is unfortunately not enough to make a
semi honestly secure protocol maliciously secure. In fact, several problems arise
from using cut-and-choose to get security against a malicious adversary, these
problems can be categorized as follows:

1. “Consistency of input bits”; both parties need to use the same input in all the
cut-and-choose instances to ensure that the majority of the garbled circuit
evaluations are consistent and that a corrupt evaluator does not learn the
output of the function on different inputs.

2. “Selective failure attack”; we must make sure that both the keys the con-
structor inputs in the OT phase are correct, to avoid giving away a partic-
ular bit values of the evaluator’s input, depending on failure or not of the
evaluation.

Letting |x| be the size of the constructor’s input and � the statistical security
parameter then the first problem can be solved using O(|x| · �2) commitments
to verify consistency in all possible cut-and-choose cases [13]. A more efficient
approach is to construct a Diffie-Hellman pseudo random synthesizer, which
limits the complexity to O(|x| · �) symmetric and asymmetric operations and
also solves the selective failure attack [15]. Yet another solution is based on
claw-free functions [23].

The selective failure problem can also be solved using different techniques.
In [13] it is shown how to do this using a circuit extension which increases the
amount of input bits of the evaluator by a factor �. In [23] the problem is solved
using a special version OT, known as comitting OT.

Our solution is different; we solve the problem of the consistency in the con-
structor’s input bits by using a circuit extension and the consistency of the eval-
uator by extending each OT by a factor � using the random oracle. The selective
failure attack is handled by a novel combination of the OT extension and the
use of the free-XOR approach in the garbled circuit. We use these constructions
to achieve parallel scalability.
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3 High Level Description

We now describe the overall structure of our protocol. For simplicity we assume
that only the evaluator is supposed to receive output from the computation. If
we wish to compute a circuit where the constructor should also receive output
then the circuit extension approach of [13], or the signed output approach of [23],
will work directly in our protocol and be scalable in parallel.

Abstractly our protocol can be described as follows:

1. Given a statistical security parameter, �, such that the probability of a total
breakdown is at most 2−�, along with a Boolean circuit C, the constructor
extends the circuit to get a new circuit, C′, that includes a consistency
check. Using the description C′, the constructor constructs �′ = 3.22 · � GCs
in parallel.3

2. The constructor then hashes each of the �′ GCs along with the keys for the
evaluator’s output, and sends the digests to the evaluator. These digests
makes it possible to avoid sending half of the garbled computation tables as
mentioned in [5]. This ends the garbling phase.

3. The constructor then sends both of the keys of the evaluator’s output wires
to the evaluator.

4. The constructor and evaluator engage in OT in order for the evaluator to
learn the keys corresponding to his input for all �′ circuits. We call this the
OT phase.
(a) The constructor and evaluator complete a modified OT extension which

is a 1-out-of-2 OTs of random bitstrings.
(b) For each of these OTs the constructor extends the two random outputs

to a �′ · κ “random” bitstring. The first representing the 0-keys of the �′

garbled circuits and the other the 1-keys.
(c) Similarly the evaluator extends his output of each OT to a �′·κ “random”

bitstring, representing either the 0 or 1 keys of the �′ garbled circuits
depending on his choice in the OT.

(d) From the circuit generation the constructor will have a 0 and 1 key for
each wire in each GC. The constructor then XORs each of the “random”
bitstrings she learned from the modified OT extension with the appro-
priate keys from the circuit generation and sends all these differences to
the evaluator.

(e) The evaluator uses these bitstrings to find the correct input keys for the
GCs by a simple XOR operation.

5. The parties then select �′/2 circuits for verification (using a coin-tossing
protocol) and the constructor sends the random seeds used to generate these
circuits to the evaluator. We call this and the following three steps for the
cut-and-choose phase.

6. Using the seeds the evaluator regenerates the circuits’ garbled computation
tables along with the keys of the output wires and verifies that they are

3 The constant increase in the amount of GCs stems from the fact that cut-and-choose
of � circuits only corresponds to statistical security of 2−0.311� [15].
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correct by hashing them and checking equality with the digests he has already
received in Step 2. He also uses the seeds to generate the input keys for
the GCs. He uses these keys, the differences he received in the OT phase,
along with his outputs from the OT phase, to reconstructs both the 0 and
1 keys and uses these values to verify that the constructor sent the correct
differences in the OT phase.

7. After these checks the constructor sends the input keys in correspondence
with her input, along with the garbled computation tables of the �′/2 circuits
for which the evaluator was not given the seeds.

8. The evaluator then hashes the garbled computation tables of these circuits
and verifies them against the hash digests he received in Step 2. He then
degarbles the circuits to achieve the output keys along with their respective
external values. In the end he then checks consistency of these outputs. We
call this the evaluation phase.

9. If all checks pass, then the evaluator maps the output keys to their corre-
sponding bits and take the majority of the decrypted outputs of the �′/2
circuits to be the overall output of the protocol.

4 Specific Details

The Garbled Circuit. First of all, we modify the circuit of the function we wish
to compute in order to embed a consistency check for the constructor’s in-
put. Assume the function we wish to compute is defined by f as f(x, y) =
(f1(x, y), f2(x, y)) with |x| = τa, |y| = τb and f1(x, y) being the (possibly
empty) output the constructor is supposed to learn and f2(x, y) being the out-
put the evaluator is supposed to learn. We now define a new function f ′ as
f ′((x, s), (y, r)) = (f1(x, y), (f2(x, y), t)) where s ∈R {0, 1}�, r ∈R {0, 1}τa+�

and t ∈ {0, 1}�. To compute t define a matrix M ∈ {0, 1}�×τa where the i’th
row is the first τa bits of r << i where << denotes the bitwise left shift, i.e.
Mi,j = r[i+j]. Using this matrix the computation of t is defined as t = (M·x)⊕s,
assuming all binary vectors are in column form.

With this modification the new function computes the same as the original,
but requires � extra random bits of input from the constructor and τa + � extra
random bits from the evaluator. However, the new function returns � extra bits
to the evaluator. These � extra bits will work as digest bits and can be used to
check that the constructor is consistent with her inputs to the GCs by verifying
that they are the same in all the garbled circuits which are evaluated.

This augmentation works since the new function computes, besides the origi-
nal functionality, a family of universal hash functions where the auxiliary input
from both parties defines a particular hash function from this family. The aux-
iliary output of the augmented function is then the digest of the constructor’s
input in this universal hash function. The proof that the augmentation is indeed
a family of universal hash functions was shown in [16]. Thus this gives statistical
security 2−� when augmenting the function with an � bit digest.

We turn this new function, f ′, into a circuit description which we then parse.
The parsing consists of finding all the gates which can be computed using only



Fast and Maliciously Secure Two-Party Computation Using the GPU 347

the input wires, calling this set of gates for layer 0. We then find all the gates,
not in layer 0, that can be computed using only the input wires and the output
wires of the gates in layer 0, calling this layer for layer 1. We continue in this
manner until all gates have been assigned a unique layer. The interesting thing
to notice here is that we now have a partition of the gates in such a manner
that all gates in a single layer can be constructed or evaluated in parallel, in an
arbitrary order, only requiring that gates at lower levels have been constructed or
evaluated beforehand. Thus, given the keys of the input wires we can construct
the garbled computation tables of the gates in layer 0 in an arbitrary order.
Moreover, the heavy part of these computations, encryption, can be done in
a SIMD manner. The only part of the construction that varies, depending on
the type of gate, is which entries in the garbled computation table that should
represent a 0-key and which that should represent a 1-key. Notice, however,
since we implement the free XOR approach this problem is eliminated, as we
can simply multiply the global key with the output of the given gate and always
XOR this into the garbled computation table entry which is already representing
a 0-key. Still, using the free XOR approach gives another problem, that is the
need to further partition each layer into sets of XOR gates and non-XOR gates,
in order to achieve complete SIMD or to keep the amount of layers and instead
execute each layer like it only consists of XOR gates and execute it like only
consists of non-XOR gates and only use the relevant result of each of the gates.

Finally, it should be noted that the global key we choose needs to be the same
for all the gates in one GC, but different for each of the GCs we make to allow
opening in cut-and-choose. Keeping these changes, and this way to parallelize
in mind, the protocol for construction is the same as the optimized protocol for
generic GC generation previously described, repeated �′ times.

The evaluation proceeds in almost the same manner as in the generic garbled
circuit evaluation. However, we still use the same paradigm for parallelization
as in the construction phase; we degarble each gate in a given layer, in all the
�′/2 circuits, in parallel. Finally, having degarbled all gates, and thus found the
keys on the output wires. The evaluator uses the output keys previously received
by the constructor to find the bits of his output. The evaluator then checks for
a selective failure attack by verifying that each of the � digest bits, on all of
the �′/2 circuits, has the same values. If that is not the case then the evaluator
outputs failure. Finally, the evaluator takes the majority of the outputs to be
his outputs.

The Modified OT Extension. We use the approach from [18] for the core of our
modified OT extension. However, we make a few changes to reduce as many
operations as possible to parallel computable hashes of short bitstrings.

Assuming the existence of random oracles and a secure implementation of a
κ-bit 1-out-of-2 OT as an ideal resource, the protocol is UC secure against a
malicious adversary. For the rest of this section we let τ be the amount of bits
in the evaluator’s input for the augmented circuit, i.e. τ = τb + τa + �.
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Define the evaluator’s (Bob’s) input to the augmented circuit as a bitstring
of y′ = y ‖ r of τ bits, where y is his original input. Define H(·) to be a hash
function with κ bits output. The modified OT extension goes as follows:

1. Bob chooses
⌈
8
3κ

⌉
pairs of seeds, each consisting of κ random bits. That is,

for each i = 1, . . .
⌈
8
3κ

⌉
let (l0i , l1i ) ∈R {0, 1}κ × {0, 1}κ be the i’th seed

pair.
2. Alice now samples

⌈
8
3κ

⌉
random bits, x1, . . . , x� 8

3κ� ∈R {0, 1}.
3. Alice and Bob then run

⌈
8
3κ

⌉
OTs where, for i = 1, . . . ,

⌈
8
3κ

⌉
, Bob offers

(l0i , l1i ) and Alice selects xi, and receives lxi

i .
4. Now, for each of the i = 1, . . . ,

⌈
8
3κ

⌉
pairs of random bits Bob computes

the following two vectors of τ bits, using idi,j as a unique ID:

L0
i = H

(
idi,0‖l0i

)
‖H

(
idi,1‖l0i

)
‖ . . . ‖H

(
idi,τ/κ ‖ l0i

)
,

L1
i = H

(
idi,0‖l1i

)
‖H

(
idi,1‖l1i

)
‖ . . . ‖H

(
idi,τ/κ ‖ l1i

)
.

5. Now, in the same manner Alice extends each of her outputs of the OT from
their original length of κ bits, into strings of τ bits. Thus, Alice computes
Lxi

i = H(idi,0‖lxi

i ) ‖H(idi,1‖lxi

i ) ‖ . . . ‖H
(
idi,τ/κ ‖ lxi

i

)
.

6. Now, for each i = 1, . . . ,
⌈
8
3κ

⌉
Bob computes a bitstring, λi = L0

i ⊕ L1
i ⊕ y′,

and sends these to Alice.
7. For each i = 1, . . . ,

⌈
8
3κ

⌉
Alice computes a bitstring as follows

L′xi

i = Lxi

i ⊕ (xi · λi) = L0
i ⊕ (xi · y′).

8. Alice then picks a uniformly random permutation π :
{
1, . . . ,

⌈
8
3κ

⌉ }
→

{
1,

. . . ,
⌈
8
3κ

⌉ }
where, for all i, π(π(i)) = i, and sends these to Bob. Furthermore,

define S(π) = {i|i ≤ π(i)}, that is, for each pair, the smallest index is in
S(π).

9. Now, for all the
⌊
4
3κ

⌋
indexes i ∈ S(π) do the following:

(a) Alice computes di = xi ⊕ xπ(i) and sends these to Bob.

(b) Alice and Bob both compute Zi =
(
L′xi

i ⊕ L′xπ(i)

π(i)

)
. This is possible for

Bob since di uniquely determines the way to compute Zi, i.e. if he should
XOR L0

i with y′.
10. For all i ∈ S(π), Alice and Bob concatenate Zi and evaluate equality using

the protocol for equality of [18], modified for parallel computation (see the
full version of this article), and abort if they are not equal.

11. For each i = 1, . . . ,
⌊
4
3κ

⌋
and for each j = 1, . . . , τ Alice defines Kj to be

the string consisting of the j’th bits from all the strings L′xi

i , i.e. Kj =

L′x1

1 [j]‖L′x2

2 [j]‖ . . . ‖L′
x' 43 κ(
' 4

3κ(
[j]. This means that she gets τ keys consisting

of
⌊
4
3κ

⌋
bits.

12. Now, for each i = 1, . . . ,
⌊
4
3κ

⌋
and for each j = 1, . . . , τ Bob sets Mj to

be the string consisting of the j’th bits from all the strings L0
i , i.e. Mj =

L0
2[j]‖L0

2[j]‖ . . . ‖L0

' 43κ([j].



Fast and Maliciously Secure Two-Party Computation Using the GPU 349

13. Alice lets ΓA be the string consisting of all the bits xi for i ∈ S(π), i.e.
ΓA = x1‖x2‖ . . . ‖x� 4

3κ�.

14. Bob now computes Yj = H(Mj) and achieves (Y0, . . . , Yτ ). He then extends
each of these to �′ random values. That is, for each i = 1, . . . , �′ he computes
Y i
j = H(idi,j‖Yj).

15. Alice computes X0
j = H(Kj) and X1

j = H(Kj⊕ΓA) and achieves ((X0
1 , X

1
1 ),

. . . , (X0
τ , X

1
τ )). She then extends each of these pairs to pairs of �′ random

values. Specifically for each i = 1, . . . , �′ she computes the following:(
X0,i

j , X1,i
j

)
=

(
H
(
idi,j‖X0

j

)
,H

(
idi,j‖X1

j

))
.

If the parties have been honest it should be the case, that for each i = 1, . . . , �′

and j = 1, . . . , τ we have Y
y′[j],i
j = X

y′[j],i
j .

Fitting It Together. After completing the modified OT extension Bob has τ · �′
keys of length κ. However, these keys are not consistent with the random keys
used for the �′ circuits. So, for each of the τ · �′ pairs of keys Alice has, she
computes the difference between the keys she achieved as a result of the modified
OT extension and the actual keys to the given GCs. That, is for each i = 1, . . . , �′

and each j = 1, . . . , τ she computes δ0,ij = X0,i
j ⊕k0,ij and δ1,ij = X1,i

j ⊕k1,ij where

k0,ij is the 0-key and k1,ij is the 1-key for the particular wire, j, in the particular
GC, i. Alice then sends all the pairs of δs to Bob. For each pair, Bob can only
know one X value, that is, either X0,i

j or X1,i
j , because of the hiding property

of the OT. This means that Bob can compute exactly his choice of key, but not
the other. This follows from the security of the free-XOR approach, along with
the power of the random oracle for constructing X0,i

j and X1,i
j , i.e. they work

as one-time-pads for the keys. Thus, we get a linking between the modified OT
extension and the GCs.

Finally, Alice also computes a digest of each of her outputs from the OT phase
and sends these to Bob. That is, for each i = 1, . . . , �′ and each j = 1, . . . , τ she
computes and sends χ0,i

j = H(X0,i
j ) along with χ1,i

j = H(X1,i
j ) to Bob.

After the cut-and-choose phase Bob will know the following bitstrings for each
of his input wires in �′/2 of the GCs:

– Both the keys for the current input wire, i.e. k0, k1 = k0 ⊕Δ.
– Exactly one output of the OT phase, Xb, for his input bit, b, on the current

wire.
– Both the difference bitstrings for the current input wire, i.e. δ0 and δ1.
– A digest for both the possible outcomes of the OT phase, i.e. χ0 = H(X0),

χ1 = H(X1).

To verify that δ0 and δ1 are correct he computes

δ′b = kb ⊕Xb, X ′¬b
= δb ⊕ δ¬b ⊕Δ, χ′¬b

= H(X ′¬b
) .
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He accepts if and only if δ′b = δb and χ′¬b = χ¬b. The intuition of why the check
on χ′¬b

is sufficient for the key k¬b is as follows: If δ¬b is incorrect then X ′¬b �=
X¬b, in which case, with overwhelming probability, H(X ′¬b

) �= H(X¬b). Now,
since Alice does not know which �′/2 GCs Bob will pick as check circuits, she
cannot guess in which of the δ bitstrings she can cheat without being detected.
Furthermore, as Bob can check both δ0 and δ1, she does not learn anything
about his input choices either. In conclusion this little trick prevents a selective
failure attack from the constructor.

Parallel Complexity. First see that many of the computationally heavy calcula-
tions in the protocol are hashes. Next, notice that these hashes are of “small”
bitstrings, bounded by O(κ). Now by our approach to parallelization of the gar-
bling and degarbling process we notice that the complexity becomes bounded
by the length of the input to the KDF and the depth of the circuit to securely
compute. Thus, assuming access to enough parallel processors the garbling and
degarbling time will be bounded by O(κ · d) where d is the depth of the circuit
to garble.

Regarding the modified OT extension notice that all the hashes to be com-
puted in a given step of the modified OT extension can be done independently of
each other, and thus in parallel. Looking at these steps from each party’s point
of view, we see that Step 4 is the step requiring the most computations for Bob.
Assume w.l.o.g. that τ > κ then if Bob has access to p ≤

⌈
8
3κ

⌉
· τ processors

the amount of bits he needs to hash sequentially in the SIMD parallel model is
O(τ · κ2/p). If he has access to more processors then the amount of bits to hash
sequentially is only O(κ). For Alice the greatest amount of hashes are computed
in Step 15. If she has access to p ≤ τ processors then the amount of bits she
needs to hash sequentially in said model is O(τ · κ/p). If she has access to more
processors, then the amount of bits to hash is only O(κ). In conclusion, the over-
all parallel computational complexity of the protocol is O(κ · d), not including
the seed OTs.

Finally, note that the communication complexity needed for this protocol
is asymptotically the same as for the OT extension described in [18], that is
O(κ · (κ+ τ)) = O(κ · (κ+ � · τ)) bits, both for Alice, Bob and in total.

5 Implementation

We now describe how we constructed our implementation in CUDA in order
to achieve high efficiency, based on the knowledge of the device hardware and
scheduling. It should be noted that we use SHA-1 with 160 bits digest and 512
bits blocks as our hash function.

Garbling. First, notice that we will have a case of SIMD for every circuit in �′.
Thus, it is obvious to have each thread in a warp processing a distinct circuit
and thus having the blocks be 1-dimensional, consisting of a constant amount
of warps. This structure will give us both high block occupancy, and no more
than �′ threads in each block. We chose to have blocks consist of 32 threads since
preliminary tests showed this to be a good choice.
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Next we notice that all gates within a single layer can be computed in arbitrary
order, thus it is obvious to have one grid dimension be the amount of gates in each
layer. Furthermore, as we cannot know which order the blocks will be computed
in, we will need to have an iteration of kernel launches, one launch for each layer
in the circuit, in order to have the output keys of the previous layer computed
and ready for computing the next layer.

Regarding memory management, we first copy the seeds onto the device, and
then compute the global keys for all the circuits and the 0 keys for all the
input wires in all the circuits, using a unique seed for each circuit. This is done
by hashing the seed along with a unique ID in order to get a “random” key
(remember we assume the ROM). Afterwards, using the generated keys, we
initiate a loop of kernel launches in order to compute each layer of keys and
garbled computation table entries in each circuit. Between all these launches, all
the currently computed keys, along with the global keys, remain in the global
memory of the device so they can be used by the next kernels. Furthermore,
we keep all the currently computed garbled computation tables on the device so
that all the results can be copied to the host as a batch after all the kernels have
finished. In order to save memory we only store the 0-key for each wire, since
the 1-key can be efficient computed by simply XORing it with the appropriate
global key for a given circuit.

Finally notice that the structure of the kernel for degarbling is the same as
for garbling. The only difference is that before the initial launch the garbled
computation table for the whole circuit is copied from the host into the global
memory along with the initial input keys, one key for each of the 2τ input wires,
and a description of the circuit.

Memory Coalescing. We memory coalesced all the data we used, both in the
global memory and in the shared memory. As both keys and garbled computation
table entries consists of 160 bits (the digest size of SHA-1), i.e. five 32-bit words,
we stored all data in segments of 32 · 5 = 160 words. The first entry is the first
word of thread 1, the second entry is the first word of thread 2, and so on up
to entry 33, which then contains the second word of thread 1, entry 34 contains
the second word of thread 2 and so on. Thus, all data access is coalesced in a
multiple of the warp size.

The Modified OT Extension. Unlike the generation and evaluation of the
GCs, the modified OT extension involves many phases, several of which are
depended on the previous phases and results from interacting with the other
party. This means that we cannot have a single kernel, or even a single kernel
function, in order to complete all the steps of the protocol for each party.

Like we did for the GCs we have coalesced all memory in blocks of 32 words.
We also make segments, which consists of 5 · 32 = 160 words, such that each
segment hold a coalesced hash values or a small κ bit data array, for 32 threads.
For this reason we again construct kernels to use blocks of 32 threads.

Using this choice, no coalescence conversion needs to be done to use the data
from the modified OT extension with our implementation of GCs. Furthermore,
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this choice will still keep an efficient and scalable organisation of the memory.
Also, as all the data we use for computations here is completely independent, we
get the possibility of only launching a single kernel for each step of the protocol
in order to avoid kernel launch overhead, resulting from the iterative launching
of kernels.

The kernels needed in Step 4 and 5, and Step 14 and 15, are almost the same
so we only include a description of Step 4 and 5.

Step 4 and 5. Step 4, involves hashing 2 ·
⌈
8
3κ

⌉
seeds τ/κ times. In order to avoid

redundant data copying of L0
i and L1

i to the device when we need to construct
λi, we compute parts of all the three vectors, L0

i , L
1
i and λi, in each thread. That

is, we include Step 6 in the kernel. To save memory usage and bandwidth we
let all the 32 threads of a single block use the same pair of seeds, thus we make
each thread in a block compute 160 bits of each of the three vectors L0

i , L
1
i and

λi for the same i. Next, one dimension of the grid is responsible for computing
all τ bits of the three vectors, L0

i , L
1
i and λi, and thus contains

⌈
τ

32·κ
⌉
threads.

The other dimension of the grid is responsible for doing this for each of the
⌈
8
3κ

⌉
vectors that need to be computed. Step 5 proceeds in the same manner, except
each block only uses a single seed and each thread only computes a single digest.

6 Experimental Results and Conclusions

For benchmarking our implementation we used the circuit for oblivious 128-
bit AES encryption. This circuit is used as benchmark in many previous works
including [6,7,15,18]. What makes this circuit a good benchmark is its relatively
random structure, its relatively large size, along with its interesting usage for
oblivious encryption.

To get the most diverse results we ran our experiments with several different
statistical security parameters from 2−9 to 2−119. We ran the experiments on two
consumer grade desktop computers connected directly by a cross-over cable. At
the time of writing each of these machines had a purchase price of less than $1600.

Fig. 1. Timings in milliseconds for both Alice and Bob under different statistical se-
curity parameters when computing oblivious 128 bit AES
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Table 1. Timing comparison of secure two party computation protocols evaluating
oblivious 128 bit AES. d is the depth of the circuit to be computed.

Security � Model Rounds Time (s) Equipment

[7] Semi honest - ROM O(1) 0.20 Desktop

This work Malicious 2−9 ROM O(1) 0.30 Desktop w. GPU

This work Malicious 2−29 ROM O(1) 0.83 Desktop w. GPU

[12] Malicious 2−80 SM O(1) 1.4 Cluster, 512 nodes

[18] Malicious 2−58 ROM O(d) 1.6 Desktop

This work Malicious 2−59 ROM O(1) 1.8 Desktop w. GPU

This work Malicious 2−79 ROM O(1) 2.7 Desktop w. GPU

[12] Malicious 2−80 SM O(1) 115 Cluster, 1 node

Both machines had similar specifications: an Intel Ivy Bridge i7 3.5 GHz quad-
core processor, 8 GB DDR3 RAM, an Intel series-520 180 GB SSD drive, an MSI
Z77 motherboard with gigabit LAN and an MSI GPU with an NVIDIA GTX 670
chip and 2 GB GDDR5 RAM. The machines ran the latest version (at the time)
of Linux Mint with all updates installed. The experiments were repeated 30 times
each and no front end applications were running on either of the machines. These
results are summarized in Table. 2 and visualized in Fig. 1. These timings include
every aspect of the protocol including loading circuit description and randomness
along with communication between the host and device and communication
between the parties. However, in the same manner as done in [18] the timing
of seed OTs have not been included as this is a computation that practically
only is needed once between two parties and thus will get amortized out in a
practical context. From these timings we see that the bottleneck of the protocol
is the communication complexity. This becomes increasingly obvious the higher
the statistical security parameter is.

We believe that our protocol approach along with the implementation yield
the best practical results for maliciously secure two-party computation. This is
so since the faster timings of [12] is achieved using a large grid with an estimated
purchase price of at least $129,168 per party4 which might not be feasible in the
majority of use cases. It should further be noted that their only timings are for
statistical security 2−80 and that we do not expect a lower security parameter
to yield a significant increase in speed due to their approach in parallelization
which uses one core per garbled circuit. I.e. they would not be able to utilize
more than 28 or 94 cores per player if using statistical security 2−9 respectively
2−29. Thus using a less conservative statistical security parameter it seems highly
plausible that our protocol implementation will match the pricey grid computer
implementation of [12].

Next notice that the approach of [18] achieves a slightly faster result for a
conservative statistical security parameter. However, their round complexity is
asymptotically greater than ours which could yield performance issues if the
protocol were to be executed on the Internet since several packet transmission

4 Price estimate of a Sun Blade X3-2B with 256 nodes.
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Table 2. Timing in milliseconds when computing oblivious 128 bit AES under different
statistical security parameters. Communication is on LAN using a cross-over cable.

� 9 19 59

Alice Bob Alice Bob Alice Bob

IO 4.29 ±
0.0370

4.83 ±
0.357

4.56 ±
0.0290

5.10 ±
0.477

5.75 ±
0.00432

6.35 ±
0.573

OT (total) 37.1 ±
8.48

24.4 ±
5.86

39.0 ±
9.33

24.6 ±
6.01

42.9 ±
9.27

24.2 ±
5.61

OT (comm.) 31.5 ±
8.47

17.3 ±
5.92

32.6 ±
9.32

17.4 ±
5.92

32.8 ±
9.29

15.9 ±
5.66

OT (comp.) 5.55 ±
0.154

7.05 ±
0.408

6.40 ±
0.0468

7.18 ±
0.383

10.1 ±
0.371

8.35 ±
0.317

GC (total.) 230 ±
0.844

235 ±
6.10

441 ±
1.44

434 ±
6.14

1543 ±
5.81

1466 ±
7.36

GC (comm.) 194 ±
0.704

182 ±
6.06

366 ±
2.52

327 ±
6.06

1207 ±
3.25

1080 ±
6.76

GC (comp.) 35.7 ±
0.376

53.2 ±
0.626

75.1 ±
2.36

107 ±
0.732

336 ±
3.45

386 ±
3.32

Total 271 ±
8.38

265 ±
8.27

484 ±
9.55

464 ±
9.62

1591 ±
10.9

1497 ±
9.81

(execution) 300 539 1833

must be initialized several times during the execution. Furthermore, their timings
are based on amortization of 54 instances (or 27 if one is happy with statistical
security 2−55). Finally, by an artifact of their approach choosing a lower security
parameter will not give significant performance improvements. In particular, a
factor 2 in execution time seems to be the absolute maximal time improvement
possible by an arbitrary reduction of the statistical security.

In conclusion, we have showed that the construction of a parallel protocol for
2PC in the SIMD parallel model with implementation on the GPU can yield
very positive results.
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Abstract. We provide software implementation timings for pairings
over composite-order and prime-order elliptic curves. Composite orders
must be large enough to be infeasible to factor. In the literature, pro-
tocols use orders which are product of 2 up to 5 large prime numbers.
Our contribution is three-fold. First, we extend the results of Lenstra
concerning the RSA modulus sizes to multi-prime modulus, for various
security levels. We then implement a Tate pairing over a composite or-
der supersingular curve and an optimal ate pairing over a prime-order
Barreto-Naehrig curve, both at the 128-bit security level. Thirdly we use
our implementation timings to deduce the total cost of the homomorphic
encryption scheme of Boneh, Goh and Nissim and its translation by Free-
man in the prime-order setting. We also compare the efficiency of the un-
bounded Hierarchical Identity Based Encryption protocol of Lewko and
Waters and its translation by Lewko in the prime order setting. Our re-
sults strengthen the previously observed inefficiency of composite-order
bilinear groups and advocate the use of prime-order group whenever
possible in protocol design.

Keywords: Tate pairing, optimal ate pairing, software implementation,
composite-order group, supersingular elliptic curve, Barreto-Naehrig
curve.

1 Introduction

Bilinear structures of composite-order groups provide new possibilities for cryp-
tosystems. In 2005, Boneh, Goh and Nissim [7] introduced the first public-key
homomorphic encryption scheme using composite-order groups equipped with
a pairing. The scheme permits several homomorphic additions and one multi-
plication on few bits. The security relies on the subgroup decision assumption.
They applied this tool to on-line voting and universally verifiable computation.
Decryption time grows exponentially w. r. t. the input size so this approach
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for homomorphic encryption is not yet very practical for large data but the idea
was developed for other interests. In the last seven years, many cryptographic
schemes were built using composite-order groups. In 2005, a Hierarchical Iden-
tity Based Encryption (HIBE) was proposed by Boneh, Boyen and Goh [6]. It
relies on the �-bilinear Diffie-Hellman exponent assumption. In 2009, Waters in-
troduced the Dual System Encryption method [25], resulting in very interesting
properties for security proofs. In 2011, Lewko and Waters published a HIBE re-
lying on the subgroup decision assumption. HIBE has become very practical in
the sense that the maximal hierarchy depth is not static i.e. can be augmented
without resetting all the system parameters.

The subgroup decision assumption is that given a group G of composite order
p1p2 = N (e.g. an RSA modulus), it is hard do decide whether a given element
g ∈ G is in the subgroup of order p1 without knowing p1 and p2. N must be
infeasible to factor to achieve this hardness. This results in very large parameter
sizes, e.g. log2 N = 3072 or 3248 for a 128-bit security level, according to NIST
or ECRYPT II recommendations. Moreover, the pairing computation is much
slower in this setting but exact performances were not given yet. To reduce
the parameter sizes, Freeman [11] proposed to use a copy of the (e.g. 256-bit)
same prime-order group instead of a group whose order (of e.g. 3072 bits) has
two or more distinct primes. His paper provides conversions of protocols and
in particular of the BGN scheme, from the composite-order to the prime-order
setting. Then Lewko at Eurocrypt 2012 [19] provided a generic conversion. These
conversions achieve much smaller parameter sizes but have a drawback: they
need not only one but several pairings. More precisely, Lewko’s conversion for
the HIBE scheme needs at least 2n pairings over a prime order group (of e.g.
256-bit) instead of one pairing over a n-prime composite order group (of e.g.
3072-bit).

The translated protocols remain interesting because it is commonly assumed
that a pairing is much slower over a composite-order than over a prime-order
elliptic curve. An overhead factor around 50 (at an estimate attributed to Scott)
was given in [11, §1] for a 80-bit security level. A detailed and precise comparison
would be interesting and useful to protocol designers and application developers.

The Number Field Sieve (NFS) algorithm is the fastest method to factor a
two-prime modulus. Lenstra studied carefully its complexity and made recom-
mendations. Lenstra stated that at a 128-bit security level, an RSA modulus
can have no more than 3 prime factors of the same size, 4 factors at a 192-
bit level and 5 at a 256-bit level [17, §4]. We complete his work to obtain the
modulus sizes with more than two prime factors, at these three security levels.
We then find supersingular elliptic curves of such orders and benchmark a Tate
paring over these curves. We also implemented an optimal ate pairing over a
prime-order Barreto-Naehrig curve, considered as the fastest pairing (at least
in software). With these timings, we are able to estimate the total cost of the
protocols in composite-order and prime-order settings. We then compare the
BGN protocol [7] in the two settings and do the same for the unbounded HIBE
protocol of Lewko and Waters [20] and its translation [19, §B].
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Organization of the Paper. Section 2 presents our results on the modulus sizes
with more than two prime factors, at the 128, 192 and 256-bit security level. In
Sec. 3, we present the possibilities to construct pairing-friendly elliptic curves of
composite order and our choice for the implementation. We develop a theoretical
estimation of each pairing in Sec. 4. Our implementation results are presented
in Sec. 5.

2 Parameter Sizes

In this section, we extend Lenstra’s estimates [17] to RSA modulus sizes with up
to 8 prime factors. We present in Tab. 1 the usual key length recommendations
from http://www.keylength.com. The NIST recommendations are the less con-
servative ones. A modulus of length 3072 is recommended to achieve a security
level equivalent to a 128 bit symmetric key. The ECRYPT II recommendations
are comparable: 3248 bit modulus are suggested.

Table 1. Cryptographic key length recommendations, January 2013. All key sizes are
provided in bits. These are the minimal sizes for security.

Method Date
Sym-

Asymmetric
Discrete Log Elliptic Hash

metric Key Group curve function

Lenstra / Verheul 2076 129 6790–5888 230 6790 245 257

Lenstra Updated 2090 128 4440–6974 256 4440 256 256

ECRYPT II (EU) 2031–2040 128 3248 256 3248 256 256

NIST (US) > 2030 128 3072 256 3072 256 256

FNISA (France) > 2020 128 4096 200 4096 256 256

NSA (US) – 128 – – – 256 256

RFC3766 – 128 3253 256 3253 242 –

We consider the Number Field Sieve attack (NFS, see e.g. [18] for an overview)
whose complexity is given by [17, §3.1]:

L[N ] = exp(1.923(logN)1/3(log logN)2/3) (NFS) (1)

and the Elliptic Curve Method (ECM) that depends on the modulus size and
on the size of the smallest prime pi in the modulus. This attack is less efficient
for a modulus of only two prime factors but become competitive for more prime
factors. We consider that all the prime factors pi have the same size. The ECM
complexity is [17, §4]

E[N, pi] = (log2 N)2 exp(
√
2(log pi)

1/2(log log pi)
1/2) (ECM). (2)

It is assumed in [17, §3.1] that a k-bit RSA modulus offers the same computa-
tional security as a symmetric cryptosystem of d-bit security and speed compa-
rable to singe DES if L[2k] = 50·2d−56 ·L[2512] . The author argues that speed-up

http://www.keylength.com
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in symmetric implementation affects slightly the complexity thus is not taken
into account. We used this formula to compute Tab. 2. These assumptions may
be considered controversial, anyone can consider more conservative ones thus
obtain slightly different results.

The first line in Tab. 2 appears in [17, Tab. 1]. The threshold between NFS
and ECM is represented through bold font. We do not consider security levels
under 128 bits. For a 128-bit security level, a modulus of 3224 bits with two
prime factors (of 1612 bits) is enough to prevent the NFS attack and the attack
with ECM is much slower. This attack becomes significantly more efficient than
the NFS one against a modulus with 5 prime factors (each of the same size). A
modulus of 4040 bits instead of 3224 bits must be considered. For 8 primes in the
modulus, the size is almost doubled: 6344 bits instead of 3224 bits and each prime
factor is 793-bit long. Table 2 could be used by protocol designers to set the size of
the security parameter λ. Our Tab. 2 can also be used when setting the parameter
sizes for protocols (or security proofs) relying on the Φ-hiding assumption. In
2010 at Crypto, Kiltz, O’Neill and Smith [15] used this assumption to obtain
a nice result about RSA-OAEP. Then at Africacrypt in 2011, Herrmann [13]
explained new results about the security of this assumption. We emphasize that
setting the security parameter λ in protocols is not completely straightforward
if the modulus contains more than 3 prime factors.

Table 2. RSA-Multi-Prime modulus size from 2 (see [17, Tab. 1]) up to 8 prime factors

Equiv. AES-128 AES-192 AES-256

Nb of min max min max min max
primes log pi logN log pi logN log pi logN log pi logN log pi logN log pi logN

2 1322 2644 1612 3224 3449 6898 3959 7918 6920 13840 7694 15388

3 882 2646 1075 3225 2299 6897 2640 7920 4614 13842 5129 15387

4 694 2776 815 3260 1725 6900 1980 7920 3460 13840 3847 15388

5 687 3435 808 4040 1484 7420 1654 8270 2768 13840 3078 15390

6 682 4092 802 4812 1476 8856 1646 9876 2544 15264 2760 16560

7 677 4739 797 5579 1470 10290 1639 11473 2535 17745 2752 19264

8 673 5384 793 6344 1464 11712 1633 13064 2528 20224 2744 21952

3 Composite-Order Elliptic Curves

For a detailed introduction to pairings, see e.g. [14, Ch. IX]. Let E be an elliptic
curve defined over a prime field Fp. A pairing is a bilinear, non-degenerate and
efficient map e : G1 × G2 → GT . From an algebraic point of view, G1 and G2

are two necessarily distinct subgroups of E(Fp), of same order n. If n | #E(Fp)
then G1 ⊂ E(Fp), this is the common setup. Let k be the smallest integer
such that n | pk − 1, k is the embedding degree. Then G2 ⊂ E(Fpk) and GT ⊂
F∗
pk .For supersingular or some of the k = 1 curves, an efficient isomorphism

is available from G1 into G2. This gives a symmetric pairing and we can use
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the notation G1 = G2 to implicitly denote the use of the isomorphism in the
pairing computation. In the remaining of this section, we will use the algebraic
interpretation of G1 and G2. In other words, we will assume that they are two
distinct subgroups of E, of same order n. The target group GT is the order-n
(multiplicative) subgroup of F∗

pk . G1 and G2 have to be strong enough against
a generic attack to a discrete logarithm problem. The third group GT is more
vulnerable because computing a discrete logarithm in a finite field is easier with
the index calculus attack. Its size has to be enlarged.

Finding optimal pairing-friendly elliptic curves is an active field of research
(see the survey [10]). At a 128-bit security level, the optimal choice would be to
construct an elliptic curve whose order is a prime of 256 bits and over a prime
finite field of the same size. For an embedding degree k = 12, an element in
the third group is 3072 bit long in order to match the NIST recommendations.
Such optimal pairing-friendly curves exist [3] (Barreto-Naehrig (BN) curves),
but have a special form: the parameters p (defining the finite field), n (elliptic
curve order) and t (trace) are given by degree 4 polynomials. We have p(x) =
36x4+36x3+24x2+6x+1, n(x) = 36x4+36x3+18x2+6x+1 and t(x) = 6x2+1.

3.1 Issues in Composite-Order Elliptic Curve Generation

For our particular purpose, the pairing-friendly elliptic curve order has to contain
a composite-order modulus N . Hence the order is chosen before the other curve
parameters and no special form can be imposed to N . For example, finding
such an elliptic curve over a non-prime field (e.g. in characteristic 2 or 3) is
completely infeasible at the moment. As for BN curves, all the complete pairing-
friendly elliptic curve families in the survey [10], defined by polynomials, are not
convenient.

Secondly, the parameter sizes of composite-order elliptic curves are not opti-
mal. The curve order should be hN with h a cofactor as small as possible. Due
to the Hasse bound, the size of p (defining Fp) is the same as the size of hN . This
means that the prime field Fp already achieves the recommended size (say, 3072)
to avoid an index calculus attack. Consequently, an embedding degree k = 1 is
enough. As G1 and G2 are distinct, an embedding degree of 1 means that both
G1 and G2 are subgroups of E(Fp), then N2 | E(Fp) and log2 p � 2 log2 N .
This mean that for a 3072 bit modulus N , p will have more than 6144 bits. Such
curves exist, for example see [16, §6] or more recently [8]. The elliptic curve point
coordinates are more than 6144 bit long.

Tate pairing computation is described in Alg. 2. It consists in a Miller loop
over the considered elliptic curve group order. A final exponentiation in F∗

pk

at the end is performed to obtain a unique pairing value. Optimal ate pair-
ing computation on a BN curve is detailed in Alg. 1. Convenient supersingular
curves do not benefit from pairing optimization such as ηT pairing, as the trace
is zero (in large characteristic), or decomposition of the Miller loop length, as
there is no efficiently computable endomorphism over Fp on such curves, except
the scalar multiplication. For ordinary curves with 6 | k and D = 3 (BN curves)
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or 4 | k and D = 1, the complex multiplication induces an easy computable
endomorphism thus permits to reduce the Miller loop length up to a factor 4.

Pairing computation over curves of embedding degree 2 needs multiplications
over Fp and Fp2 with log2 p = 1536. Pairing computation over curves of embed-
ding degree 1 needs multiplications over Fp with log2 p = 3072. Recently in [26] it
was shown that self-pairings on these particular curves may be speed-up thanks
to the distortion map. Zhao et. al. gave efficient formulas of Weil pairing with
denominator elimination thanks to the distortion map, although k = 1 instead
of k = 2. Such ordinary k = 1 curves with efficient endomorphisms are rare. Few
constructions are proposed in [8]. More work is needed to determine in which
cases pairings on these curves are competitive with k = 2 curves.

As mentioned in recent works, some properties (cancelling, projecting) are
achieved with only composite-order elliptic curves or only asymmetric pairings.
More precisely, at Asiacrypt 2012, Seo [23] presented results on the impossibility
of projecting pairings in certain cases. An ordinary composite-order elliptic curve
is the only choice in this case. Such constructions are possible, see e.g. Boneh,
Rubin and Silverberg paper [8] but this seems to be the worst case in terms of
parameter sizes and efficiency.

3.2 Our Choices

If we want to reduce the size of p (hence of G1), we can choose a supersingular
elliptic curve of embedding degree k = 2. This means that G1 ⊂ E(Fp), G2 �
E(Fp) and both G1 and G2 are subgroups of E(Fp2).

G1 and G2 ⊂ E(Fp2) N2 | #E(Fp2)
|

G1 ⊂ E(Fp) N | #E(Fp), N2 � #E(Fp)

A supersingular elliptic curve of given subgroup order and embedding degree 2
is easy to construct:

1. Let N be a composite-order modulus.
2. Find the smallest integer h, 4 | h, such that hN − 1 is prime.
3. Let p = hN − 1. The elliptic curve E(Fp) : y

2 = x3 − x is supersingular, of
order hN = p+ 1 and embedding degree 2.

As p = 3 mod 4, −1 is not a square in Fp. If Fp2 = Fp[Z]/(Z2 + 1), a distor-
tion map is available: φ : E(Fp2) → E(Fp2), (x, y) &→ (−x, Zy). In particular,
φ(G1) = G2 and the pairing is symmetric. As mentioned above, the improved
pairing variant denoted ηT is not possible as this supersingular curve has trace 0
(#E(Fp) = p+1). We implemented a Tate pairing on this curve. The parameter
sizes for a security level equivalent to AES-128 are summarized in Tab. 3. We
assume that the points on the elliptic curves are in compressed representation.

4 Theoretical Estimation

In this section we will estimate the number of multiplications over the base field
for each pairing in Tab. 3.
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Table 3. Parameter sizes for prime order and composite order pairing-friendly elliptic
curves, minimum and maximum in theory, according to Tab. 2

Elliptic curve, size of G1 size of elts in G1 emb. size of size of elts in GT

order order log2 N log2 p deg. elts in G2 k log2 p
min – max min – max k min – max

BN, prime order 256 256 – 269 12 512 – 538 3072 – 3224
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rv
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Prime order 256 1322 – 1612

2
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ts

in
G

1

2644 – 3224
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2 primes 2644 – 3224 � 2646 – � 3226 � 5292 – � 6452
3 primes 2646 – 3225 � 2648 – � 3227 � 5296 – � 6454
4 primes 2776 – 3260 � 2778 – � 3262 � 5556 – � 6524
5 primes 3435 – 4040 � 3437 – � 4042 � 6874 – � 8084
6 primes 4092 – 4812 � 4094 – � 4814 � 8188 – � 9628
7 primes 4739 – 5579 � 4741 – � 5581 � 9482 – � 11162
8 primes 5384 – 6344 � 5386 – � 6346 � 10772 – � 12692

4.1 Prime Order BN Curve

We aim to implement a state of the art optimal ate pairing on a BN curve.
We use various techniques described e.g. in [21,5]. A careful operation count
is detailed in Alg. 1 since it may be of independent interest. We use the finite
field arithmetic described in [9] and [12] for speeding up the pairing final ex-
ponentiation and exponentiations in GT . Operation counts in Tab. 4 describe
our choices according to recommendations made in [9]. The arithmetic oper-
ations in Fp are denoted Mp for a multiplication, Sp for a square, Ip for an
inversion and HW denotes the Hamming weight. We build the extensions as
Fp2 = Fp[X ]/(X2−α), Fp6 = Fp2 [Y ]/(Y 3−β), Fp12 = Fp6 [Z]/(Z2−γ). Mα, Mβ

andMγ denote resp. a multiplication by α, β and γ, performed with few additions
if α, β and γ are well chosen. For exponentiation in Fpk , SΦ6(p2) denotes the im-
proved squaring formula from [12]. Details are provided in Alg. 1 which computes

eOptAte(P, ψ6(Q)) = f
p12−1

r with f = f6x+2,ψ6(Q)(P ) · �[6x+2]ψ6(Q),πp(ψ6(Q))(P ) ·
�[6x+2]ψ6(Q)+πp(ψ6(Q)),−π2

p(ψ6(Q))(P ) with ψ6 the sextic twist map, πp the p-power

Frobenius and πp2 the p2-power Frobenius.

Table 4. Approximation of arithmetic operations in finite field extensions

Mp12 = 3Mp6 + 5Ap6 + 1Mγ →54Mp Sp12 = 2Mp6 + 4Ap6 + 2Mγ →36Mp

Mp6 = 6Mp2 + 13Ap2 + 2Mβ →18Mp Sp6 = 2Mp2 + 3Sp2 + 10Ap2 + 2Mβ →12Mp

Mp2 = 3Mp + 5Ap + 1Mα →3Mp Sp2 = 2Mp + 4Ap + 2Mα →2Mp

4.2 Supersingular Curve

A Tate pairing may not benefit from the previous optimizations. We can still
simplify the Miller loop thanks to the even embedding degree (k = 2). The
denominators cancel in the final exponentiation thus we can remove them in the
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Algorithm 1. Optimal ate pairing eOptAte(P, ψ6(Q))
p12−1

n on a BN curve

Input: E(Fp), P (xP , yP ) ∈ E(Fp)[n], Q(xQ, yQ) ∈ E
′
(Fp2)[n], t, x

Output: eOptAte(P,ψ6(Q)) ∈ µn ⊂ F∗
p12

1 R(XR : YR : ZR) ← (xQ : yQ : 1); f ← 1; s ← 6x+ 2
2 for m ← �log2(s)� − 1, . . . , 0 do
3 (R, �) ← g(R,P ) 6Mp2 + 5Sp2 + 4Mp = 32Mp

4 f ← f2 · � Sp12 + 13Mp2 = 36 + 39 = 75Mp

5 if sm = 1 then
6 (R, �) ← h(R,Q,P ) 10Mp2 + 3Sp2 + 4Mp = 40Mp

7 f ← f · � 13Mp2 = 39Mp

8 Q1 ← πp(Q) Mp2 = 3Mp

9 Q2 ← πp2(Q) 2Mp

10 (R, �) ← h(R,Q1, P ) 6Mp2 + 5Sp2 + 4Mp = 32Mp

11 f ← f · � 13Mp2 = 39Mp

12 (R, �) ← h(R,Q2, P ) 6Mp2 + 5Sp2 + 4Mp = 32Mp

13 f ← f · � 13Mp2 = 39Mp

l. 8 to l. 13: 147Mp

Miller Loop: 147Mp + log2(6x+ 2) · 107Mp +HW(6x+ 2) · 79Mp

14 f ← fp6−1 3Mp6 + 2Sp6 + 10Mp2 + 3Sp2 + 2Mp + 2Sp + Ip = 118Mp + Ip

15 f ← fp2+1 10Mp +Mp12 = 64Mp

16 if x < 0 then

17 a ← f6|x|−5 log2(6x+ 5)SΦ6(p2)
+HW(6x+ 5)Mp12

18 else (fp6 = f−1)

19 a ← (fp6)6x+5

20 b ← ap 5Mp2 = 15Mp

21 b ← ab Mp12 = 54Mp

22 Compute fp, fp2 and fp3 5Mp2 + 10Mp + 5Mp2 = 40Mp

23 c ← b · (fp)2 · fp2 SΦ6(p2)
+ 2Mp12 = 126Mp

24 c ← c6x
2+1 log2(6x

2 + 1)SΦ6(p2)
+HW(6x2 + 1)Mp12

25 f ← fp3 · c · b · (fp · f)9 · a · f4 7Mp12 + 5SΦ6(p2)
= 468Mp

Exponentiation f ← f (p6−1)(p2+1)(p4−p2+1)/n:

(885+18 log2(6x+5)+54HW(6x+5)+18 log2(6x
2+1)+54HW(6x2+1))Mp+Ip

26 return f

computations. Details are provided in Alg. 2 with ψ2 the distortion map from
G1 into G2.

The algorithm for a supersingular elliptic curve of composite order is the same
as Alg. 2. In addition, we take n = N the modulus, hence log2 n = 3072 for
example. By construction, the cofactor h will be as small as possible, resulting
in very cheap final exponentiation, e.g. log2 h = 12. We detail in Tab. 5 the
different estimations for a pairing computation.
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Algorithm 2. Tate pairing eTate(P, ψ2(Q))
p2−1

n on a supersingular curve

Input: E(Fp) : y
2 = x3 + ax, P (xP , yP ), Q(xQ, yQ) ∈ E(Fp)[n], n

Output: eTate(P,ψ2(Q)) ∈ µn ⊂ F∗
p2

1 R(XR : YR : ZR) ← (xP : yP : 1); f ← 1; for m ← �log2(n)� − 1, . . . , 0 do
2 (R, �) ← g(R,Q) 8Mp + 6Sp

3 f ← f2 · � Sp2 +Mp2 = 5Mp

4 if nm = 1 then
5 (R, �) ← h(R,P,Q) 11Mp + 3Sp

6 f ← f · � Mp2 = 3Mp

Miller loop: log2 n · (13Mp + 6Sp) + HW(n) · (14Mp + 3Sp)
7 f ← fp−1 2Mp + Ip

8 f ← f (p+1)/n = fh log2 h Sp2 +HW(h)Mp2

9 return f Final exp.: log2 h Sp2 +HW(h)Mp2 + 2Mp + Ip

Table 5. Estimations for pairings on prime-order and composite-order elliptic curves,
assuming that for a composite-order supersingular curve, log2 N is as in Tab. 2,
HW(N) = log2 N/2, log2 h = 12 and HW(h) = 5, and for a BN curve, log2 n =
log2 p = 256, HW(x) = 4,HW(6x+ 5) = 10,HW(6x2 + 1) = 33.

Curve Pairing
nb Miller loop Final exp. (+ Ip)

primes min – max min – max

BN opt. ate 1 7204 Mp 6669 Mp

su
p
er
si
n
g
u
la
r
(S
sC

)

Tate

1 4224Mp + 1728Sp 3730Mp – 4745Mp

2 52880Mp + 19830Sp– 64480Mp + 24180Sp

3 52920Mp + 19845Sp– 64500Mp + 24187Sp

4 55520Mp + 20820Sp– 65200Mp + 24450Sp

5 68700Mp + 25762Sp– 80800Mp + 30300Sp 41Mp + Ip
6 81840Mp + 30690Sp– 96240Mp + 36090Sp

7 94780Mp + 35542Sp–111580Mp + 41842Sp

8 107680Mp + 40380Sp–126880Mp + 47580Sp

5 Implementation Results

We implemented in C the above pairings (Tab. 3), we compiled with gcc 4.4.3 and
ran the software implementation on a 2.6 GHz Intel Celeron 64 bits PC with 1 GB
RAM and Ubuntu 10.04.4 LTS OS. The developed code is part of a proprietary
library, the LibCryptoLCH developed at Thales Communications & Security
(France). The finite field arithmetic uses the Montgomery representation and
the modular multiplication is written in x86-64 assembly language. Our timings
are competitive compared to others proprietary generic libraries such as the one
used at Microsoft Research [1]. The Authors in [1] develop a C library then add
different optimized assembly part of code for x86 or ARMv7 processors. They run
their library on a x86-64, Intel Core2 E6600 @ 2.4 GHz, Windows 7 (64-bit) and
on a ARM, dual-core Cortex A9 @ 1GHz, Windows device. They obtain a pairing
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on average at 55.19 ms (ARM) and 6.31 ms (x86-64) in projective coordinates
and 51.01 ms (ARM) and 5.92 ms (x86-64) in affine coordinates, over a BN curve
of 254 bit prime order group. Our timings are slightly slower than other state-of-
the-art ones can be ([21,2]) because our software is not optimized for a particular
sparse prime number which might result in very specific and optimized modular
reduction.

Results are presented in Fig. 1. We did not plot our timings on a BN curve
as the spots would be on the x axis because of the scale. We present in Tab. 6
our results for a BN curve, a prime-order and a composite two-prime order
supersingular curve. The first line shows our results of an implementation of
an optimal ate pairing on a Barreto-Naehrig curve, see for example [24,5,21]
on how to implement it efficiently. We choose a quite sparse but still random
parameter x = 0x580000000000100d resulting in quite sparse prime order and
prime field. Our modular reduction is not optimized for this value. Our extension
field is optimized for towers built with binomials with small coefficients. For
instance the first extension is built as Fp2 � Fp[X ]/(X2 + 1) as p ≡ 3 mod 4
which allows a fast reduction mod X2+1 in the Karatsuba multiplication. The
second extension is built as Fp12 � Fp2 [Y ]/(Y 6 − 2) resulting in fast polynomial
reduction too. Our implementation perform a pairing in 5.05 ms in average which
is comparable to the 5.73 ms over an x86-64 Intel Core2 E6600 of the Microsoft
Research Team [1, Tab.2].

Table 6. Timings for exponentiation in milliseconds (ms), Ate and Tate pairings on
prime order n and composite order n = n1 · · ·ni elliptic curves for different security
levels

Pairing log2 n log2 ni log2 p
k· Miller F.

Pairing
Exp. gpi Exp. Exp. gpi

log2 p Loop Exp. G1 G1 G2 GT GT

BN,o.ate 256 – 256 3072 2.35 2.70 5.05 0.55 – 1.91 5.16 –
269 – 269 3228 3.22 3.80 7.29 0.77 – 2.56 5.98 –

(1), Tate 256 – 1536 3072 19.70 20.50 40.20 8.30 – – 2.20 –
(2), Tate 1024 512 1036 3072 56.88 0.10 56.98 24.38 13.12 – 7.81 3.9
(2), Tate 2048 1024 2059 4118 392.50 0.40 392.90 172.5 86.25 – 50.63 25.8
(2), Tate 3072 1536 3083 6166 1295.6 0.7 1296.3 586.2 301.8 – 166.10 81.9
(3), Tate 3072 1024 3083 6166 1275.6 0.7 1276.3 556.9 222.5 – 174.88 60.1

For this 128-bit security level, a pairing on an elliptic curve of composite order
with two primes is 254 times slower than over a prime-order elliptic curve (1.27
s compared to 5.05 ms). The Miller loop is very expensive, indeed it runs over
N without any possible significant optimization as explained in Sec. 3.1. The
final exponentiation is very cheap because it consists in f (p−1)h = (fp · f−1)h

computed with one inversion, one multiplication, one Frobenius map and one
very small exponentiation (h is only a dozen bits) in Fp2 .

5.1 Application to BGN Cryptosystem

In 2005, Boneh, Goh and Nissim published in [7] a somewhat homomorphic en-
cryption scheme which can add several times different ciphertexts, perform one
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Fig. 1. Execution time (s) on average for a scalar multiplication on E(Fp), an expo-
nentiation in µN ⊂ Fp2 and a Tate pairing over a composite-order supersingular curve

multiplication then continue to add ciphertexts. Freeman proposed a conversion
to a prime-order setting in [11]. We compare the two settings. Our results show
that the whole protocol is much slower on a composite-order elliptic curve, as
presented in Tab. 7. Due to lack of space, we briefly present our results, a de-
tailed version of the protocol in the two settings is available in the online full
version1. We assumed that to compute several pairings on the same curve, we
compute each Miller loop, then multiply the outputs and apply a single final
exponentiation. There are four distinct products of two or three pairings in the
second protocol.

The arithmetic on the composite-order elliptic curve E(Fp) is more than 3
times slower than in GT ⊂ Fp2 , this means that the encryptions and exponen-
tiations for decryption in GT are more efficient. The converse is observed over
a prime-order elliptic curve. This protocol over an optimal prime-order elliptic
curve is dramatically faster than over a composite-order elliptic curve. More pre-
cisely, the exponentiation in the decryption step is 161 times faster in G1, 57
times faster in G2 and 2 times faster in GT over a prime-order elliptic curve than
over a composite-order one.

5.2 Application to Hierarchical Identity Based Encryption

In this section, we detail and implement the Hierarchical Identity Based En-
cryption (HIBE in the following) of Lewko and Waters published at Eurocrypt
2011 [20] and compare it with its translation in the prime-order setting due
to Lewko [19]. Due to lack of space, we don’t recall the protocol here. For a

1 http://eprint.iacr.org/2013/218.

http://eprint.iacr.org/2013/218
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Table 7. Timings for the BGN protocol over a composite order elliptic curve and its
equivalent over a prime order elliptic curve for a security level equivalent to AES-128.
We don’t consider a discrete log computation because this is not the scope of our paper,
see e.g. [4] for efficient DL computation in this particular setting.

Operation Composite-order E.C. [7, §3] Prime-order E.C. [11, §5]
Encrypt or Add 1 exp. in G1 1300 ms 1 exp. in G1 and G2 3.8 ms

Decrypt Cp1 ∈ G1 645 ms
π1: 4 exp. in G1 4.0 ms
π2: 4 exp. in G2 11.2 ms

Multiply
1 pairing

3364 ms
1 exp. in G1 and G2

119.8 ms
+ 1 exp. in GT + 4×(3 pairings)

Encrypt
1 exp. in GT 409 ms

1 exp. in G1 and G2
87.8 ms

or Add + 4×(2 pairings)

Decrypt (without DL) Cp1 ∈ GT 204 ms πt(C) 16 exp. in GT 108.8 ms

Table 8. Lewko and Waters HIBE scheme over a composite order bilinear group

Operation
Randomness

Computation
Timing j = 3

complexity Tab. 6

Setup
N = p1p2p3, 5 elts

1 pairing 1.27 s∈ G1(p1), 1 elt ∈ ZN

KeyGen 3j − 1 elts in ZN 7j exp. in G1 11.55 s

Encrypt j + 1 elts ∈ ZN
4 + 4j exp. in G1,

8.96 s
1 exp. in GT

Delegate
3j + 2 elts in ZN 7(j + 1) exp. in G1 15.40 s

j → j + 1

Decryption – 4j pairings 5.08 s

brief description on the scheme, see our full online version and for the complete
description, see [20]. We present our implementation results in Tab. 8.

We also studied the Lewko HIBE translation in prime order bilinear group.
We only consider in Tab. 9 the Setup, Encrypt, KeyGen, Delegate and Decrypt
steps written only from practical point of view, with m = 6. For a complete
description of the scheme with m = 10 for the security proof, see [19, §B.3]
and [19, §2.2] for notations. Moreover the scheme in [19] is described with a
symmetric pairing. We apply the protocol to an asymmetric pairing to improve
its practical efficiency. There are two possible approaches. We can set the secret
keys in G1 and the ciphertexts in G2 to optimise the needs in secured memory
which can be quite expensive in constrained devices. Or we can set in G2 the
secrets keys (with double secured memory) and set in G1 the ciphertexts to
improve the bandwidth. We will choose this second option.

Vectors of group elements are considered and denoted v = (v1, . . . , vm) ∈ Fm
r

(with r the subgroup prime order of an elliptic curve), and for g1 ∈ G1 (recall that
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this is an elliptic curve and not a finite field despite the multiplicative notation),
gv1 = (gv11 , gv21 , . . . , gvm1 ) ∈ Gm

1 . Moreover, for any a ∈ Fr and v,w ∈ Fm
r ,

we have: gav1 = (gav11 , gav21 , . . . , gavm1 ), gv+w
1 = (gv1+w1

1 , gv2+w2
1 , . . . , gvm+wm

1 ) .
The corresponding pairing is defined as follows, with e a one dimensional bilinear
pairing: em(gv1 , g

w
2 ) =

∏m
i=1 e(g

vi
1 , gwi

2 ) = e(g1, g2)
v·w ∈ GT ⊂ F∗

pk . The pairing
em costs m pairings e. More precisely, as em is a product of m pairings, it costs
m Miller loops then one final exponentiation if we set e to be a (variant of a)
Tate pairing.

Setup(λ → PP, MSK). The setup algorithm takes in the security parameter λ
and chooses a bilinear groupG1 of sufficiently large prime order r and a generator
g1; G2 of same prime order r with a generator g2 and finally GT of same order
r. Let gT = e(g1, g2) be a generator of GT . Let e : G1 × G2 → GT denote the
bilinear map. We set m = 6. Hence

em = e6 : G6
1 ×G6

2 → GT

(gv1 , g
w
2 ) &→

∏6
i=1 e(g

vi
1 , gwi

2 )

The algorithm samples random dual orthonormal bases, (D,D∗) ← Dual(Fm
r ).

Let d1, . . . ,d6 denote the elements of D and d∗
1, . . . ,d

∗
6 denote the elements of

D∗. They satisfy the property di · d∗
i = ψ ∈ F∗

r ∀i and di · d∗
j = 0 ( mod r)

for i �= j. It also chooses random exponents α1, α2, θ, σ, γ, ξ ∈ Fr. The public
parameters are

PP =
{
G1, G2, GT , r, e(g1, g2)

α1d1·d∗
1 , e(g1, g2)

α2d2·d∗
2 , gd1

1 , . . . , gd6
1

}
, (3)

and the master secret key is

MSK =
{
α1, α2, g

d∗
1

2 , g
d∗
2

2 , g
γd∗

1
2 , g

ξd∗
2

2 , g
θd∗

3
2 , g

θd∗
4

2 , g
σd∗

5
2 , g

σd∗
6

2

}
. (4)

KeyGen((I1, . . . , Ij), MSK, PP)→ SKI . The key generation algorithm chooses
uniformly at random values ri1, r

i
2 ∈ Fr for 1 	 i 	 j. It also chooses ran-

dom values y1, . . . , yj ∈ Fr and w1, . . . , wj ∈ Fr s. t. y1 + y2 + . . . + yj =
α1 and w1 + w2 + . . . + wj = α2. For each 1 	 i 	 j it computes Ki :=

g
yid

∗
1+wid

∗
2+ri1Iiθd

∗
3−ri1θd

∗
4+ri2Iiσd

∗
5−ri2σd

∗
6

2 ∈ G2. The secret key is:

SKI :=
{
g
γd∗

1
2 , g

ξd∗
2

2 , g
θd∗

3
2 , g

θd∗
4

2 , g
σd∗

5
2 , g

σd∗
6

2 ,K1, . . . ,Kj ∈ G2

}
. (5)

Encrypt(M, (I1, . . . , Ij), PP), → CT. The encryption algorithm chooses s1, s2
and ti1, t

i
2 for 1 	 i 	 j uniformly randomly from Fr. It computes

C0 := Me(g1, g2)
α1s1d1·d∗

1e(g1, g2)
α2s2d2·d∗

2 ∈ GT (6)

(note that e(g1, g2)
α1d1·d∗

1 and e(g1, g2)
α2d2·d∗

2 are in PP). It computes also

Ci := g
s1d1+s2d2+ti1d3+Iit

i
1d4+ti2d5+Iti2d6

1 (7)

for 1 	 i 	 j. The ciphertext is CT := {C0 ∈ GT , C1, . . . , Cj ∈ G1}.
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Delegate(PP, SKI , Ij+1) → SKI|Ij+1
. The delegation algorithm chooses ran-

dom values ωi
1, ω

i
2 ∈ Fr for 1 	 i 	 j + 1. It also chooses random values

y
′

1, . . . , y
′

j ∈ Fr and w
′

1, . . . , w
′

j ∈ Fr s.t. y
′

1+y
′

2+. . .+y
′

j+1 = 0 and w
′

1+w
′

2+. . .+

w
′

j+1 = 0. It takes in a secret key SKI with elements denoted as above. It com-

putes K
′

i := Ki · gy
′
iγd

∗
1+w

′
iξd

∗
2+ωi

1Iiθd
∗
3−ωi

1θd
∗
4+ωi

2Iiσd
∗
5−ωi

2σd
∗
6

2 ∈ G2 for 1 	 i 	 j

and Kj+1 := g
y
′
j+1γd

∗
1+w

′
j+1ξd

∗
2+ωj+1

1 Ij+1θd
∗
3−ωj+1

1 θd∗
4+ωj+1

2 Ij+1σd
∗
5−ωj+1

2 σd∗
6

2 ∈ G2.
SKI|Ij+1

is formed as{
g
γd∗

1
2 , g

ξd∗
2

2 , g
θd∗

3
2 , g

θd∗
4

2 , g
σd∗

5
2 , g

σd∗
6

2 ( from SKI), K
′

1, . . . ,K
′

j,Kj+1 ∈ G2

}
. (8)

Decryption(CT, SKI) → M. Assuming (I1, . . . , Ij) is a prefix of (I1, . . . , I�),
the decryption algorithm computes B :=

∏j
i=1 em(C0,Ki) . The message is then

computed as M = C0/B.

Table 9. Lewko HIBE scheme translation over prime order bilinear group

Operation
Randomness

Computation
Timing Tab. 6

complexity j = 3,m = 6

Setup
r, 2m2 elts in Fr for 1 pairing e, 2 exp. in GT , m

2

127 ms
(D,D∗), 6 elts ∈ Fr exp. in G1, m(m+ 2) exp. in G2

KeyGen 2j + 2(j − 1) elts ∈ Fr
j ·m2 exp. in G2,

206 ms
some mult. in Fp and G2

Encrypt 2 + 2j elts in Fr
j ·m2 exp. in G1, 2 exp.

70 ms
in GT , some mult. in Fp

Delegate
2(j + 1) + 2j elts in Fr (j + 1)m2 exp. in G2 80 ms

j → j + 1

Decryption – j ·m pairings e 45.0 ms

Each step is summarized in Tab. 9. We chose a hierarchy depth of j = 3.
We can say that this instantiation (Tab. 9) is 10 times more efficient than with
a composite-order elliptic curve (Tab 8) for Setup, 56 times for KeyGen, 128
times for Encrypt, 192 times for Delegate and 112 times for Decryption. In
other words, the important operations of delegation, encryption and decryption
are more than hundred times faster over a prime-order bilinear curve with an
asymmetric pairing compared to a composite-order supersingular curve with a
symmetric pairing.

6 Conclusion

We studied well-known protocols based on composite-order or prime-order el-
liptic curves. We justified the sizes of the composite orders when more than
two primes are present in the modulus. We analyzed the Number Field Sieve
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complexity and the Elliptic Curve Method to find the size bounds. We then
compared the cost of the homomorphic encryption scheme of Boneh, Goh and
Nissim over a composite-order and the corresponding scheme over a prime-order
pairing-friendly elliptic curve given by Freeman. In the former case, a pairing
took 3 s, compared to 13 ms in the latter case. Even with 12 pairings instead of
one in the Multiply step of the protocol, the prime-order translation remained
28 times faster. We also compared the unbounded HIBE protocol of Waters
and Lewko and its translation given by Lewko. The prime-order setting is be-
tween 10 times to 192 times faster than the composite-order setting. Despite
useful properties of bilinear composite-order structures to design new protocols,
the resulting schemes are not very competitive compared to protocols relying on
other assumptions which in particular, need prime-order bilinear structures with
asymmetric pairings. Some special protocols need extra properties such as can-
celling and projecting pairings. Only composite-order groups or supersingular
curves achieve these properties.

We recommend to avoid composite-order groups whenever possible. Moreover,
we did not investigate multi-exponentiation techniques to compute simultane-
ously several pairings on the same elliptic curve, neither did we use the Frobenius
map to decompose exponents when performing exponentiation in Fp12 . Hence
some speed-ups are still available for protocols in the prime-order setting.
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Abstract. At the end of 2011, Google released version 4.0 of its Android
operating system for smartphones. For the first time, Android smart-
phone owners were supplied with a disk encryption feature that transpar-
ently encrypts user partitions. On the downside, encrypted smartphones
are a nightmare for IT forensics and law enforcement, because brute
force appears to be the only option to recover encrypted data by techni-
cal means. However, RAM contents are necessarily left unencrypted and,
as we show, they can be acquired from live systems with physical access
only. To this end, we present the data recovery tool Frost (Forensic
Recovery of Scrambled Telephones). Using Galaxy Nexus devices from
Samsung as an example, we show that it is possible to perform cold boot
attacks against Android smartphones and to retrieve valuable informa-
tion from RAM. This information includes personal messages, photos,
passwords and the encryption key. Since smartphones get switched off
only seldom, and since the tools that we provide must not be installed
before the attack, our method can be applied in real cases.

1 Introduction

In 2011, 83 percent of the American adults had a cell phone from which 42 per-
cent had a phone that can be classified as a smartphone [1]. Android is today
the most common smartphone platform, followed by iOS, Blackberry OS, and
Windows Phone. Since most consumers use their smartphones for both business
and personal applications, missing devices often contain personal and corporate
data. For example, the survey The Lost Smartphone Problem [2] on 439 U.S.
organizations objectively determined that in a 12-month period 142,708 out of
3,297,569 employee smartphones were lost or stolen, i.e., 4.3 percent per year.
5,034 of these smartphones were known to be subject to theft, while the oth-
ers were “missing”. Only 9,298 smartphones were recovered within the time of
the study. Results like those make clear that people must take precautions to
secure their smartphones against physical loss. The most popular method to
protect data against physical loss is encrypting it with AES. Android, for ex-
ample, enables users to encrypt their user partition with AES since version 4.0,
which was released in October 2011. However, encryption technologies are am-
bivalent as they also enable criminals to hide digital evidence, so that encrypted
smartphones have a serious impact on digital forensics.

M. Jacobson et al. (Eds.): ACNS 2013, LNCS 7954, pp. 373–388, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Contributions. In this paper, we aim at recovering valuable information from
encrypted smartphones. Roughly speaking, we analyze the characteristics of the
remanence effect [3] on smartphones, prove that Android’s boot sequence enable
us to perform cold boot attacks [4], and show that valuable information can be
retrieved from RAM. To this end, we present our recovery tool Frost (Forensic
Recovery of Scrambled Telephones). Frost can be loaded to a smartphone after
we got physical access to it, and without the need to have user privileges before.
We carried out our experiments exemplarily for Galaxy Nexus devices. In detail,
our contributions are:

1. Evaluation of the Remanence Effect : We analyze the characteristics of the
remanence effect on smartphones for the first time. According to previous
results on PCs, the decay of bits in RAM correlates with both the operating
temperature of a device and its time without power. However, contradictory
to previous results, we show that the remanence interval on smartphones
is shorter. 50% of all bits are decayed after 2-4s, depending on the device
temperature.

2. Cold Boot Attacks : The bootloader of Galaxy Nexus devices (and many other
Android-driven smartphones) can be unlocked with physical access only. Un-
locking the bootloader does not destroy RAM contents, but it requires us to
reboot the smartphone. According to our results about the remanence effect,
we can reboot a smartphone quickly while preserving a significant amount
of RAM. After rebooting a Galaxy Nexus device, unlocking its bootloader,
and booting up our recovery tool, we were still able to recover much sensitive
information. Among others, we recovered emails, photos, contacts, calendar
entries, WiFi credentials, and even the disk encryption key.

3. Breaking Disk Encryption: If a bootloader is already unlocked before we gain
access to a device, we can break disk encryption. The keys that we recover
from RAM then allow us to decrypt the user partition. However, if a boot-
loader is locked, we need to unlock it first in order to boot Frost, and the
unlocking procedure wipes the user partition (but preserves RAM contents).
Since bootloaders of Galaxy Nexus devices are locked by default, and since
we conjecture that most people do not unlock them, disk encryption can
mostly not be broken in real cases. In addition we integrated a brute force
option that breaks disk encryption for short PINs.

The fact that user partitions are wiped out when unlocking the bootloader is a
serious limitation of our method. Forensic experts from law enforcement might
not be allowed to delete a user partition in order to retrieve digital evidence from
RAM. Any data on disk would irretrievably be lost. However, this depends on the
actual case and the respective legislation of the country. In any event, criminals
do not care about this fact and it is therefore important to discuss the attack
vector “RAM” irrespectively of its forensic application. With Frost, we are
always able to acquire memory dumps from switched-on Galaxy Nexus devices,
and we conjecture that our attack can be extended to a wider range of devices
with the tools that we provide. A tutorial, a photo series, source codes, and
precompiled binaries of our project are available at www1.cs.fau.de/frost/.



FROST 375

2 Background Information

We now provide necessary background information about the encryption support
in Android 4.0 and subsequent versions (Sect. 2.1). We then give information
about the remanence effect, and about cold boot attacks on PCs (Sect. 2.2).
Finally, we give details about our device under test, namely the Samsung Galaxy
Nexus (Sect. 2.3).

2.1 Disk Encryption Since Android 4.0

With Android 4.0, support for AES-based disk encryption was introduced. While
third party apps that extend the functionality of Android smartphones are pri-
marily written in Java, disk encryption resides entirely in system space and is
written in C. Android’s encryption feature builds upon dm-crypt, which has been
available in Linux kernels for years. Dm-crypt relies on the device-mapper infras-
tructure and the Crypto API of the Linux kernel. It provides a flexible way to
encrypt block devices by creating a virtual encryption layer on top of all kinds
of abstract block devices, including real devices, logical partitions, loop devices,
and swap partitions. Writing to a mapped device gets encrypted and reading
from it gets decrypted. Although dm-crypt is suitable for full disk encryption
(FDE), Android does not encrypt full disks but only user partitions.

Dm-crypt is kept modular and supports different ciphers and modes of oper-
ation, including AES, Twofish and Serpent, as well as CBC and XTS. Android
4.0 makes use of the cipher mode aes-cbc-essiv:sha256 with 128-bit keys [5].
The AES-128 data encryption key (DEK) is encrypted with an AES-128 key
encryption key (KEK), which is in turn derived from the user PIN through
the password-based key derivation function 2 (PBKDF2) [6]. Using two different
keys, namely the DEK and the KEK, renders cumbersome reencryption in the
case of PIN changes unnecessary. The encrypted DEK as well as the initialization
vector (IV) for PBKDF2 are random numbers taken from /dev/urandom. These
values are stored inside a crypto footer of the disk. The crypto footer can either
be an own partition or it can be placed at the last 16 kilobytes of an encrypted
partition. The crypto footer becomes important for our implementation because
it holds necessary information to decrypt encrypted partitions.

Unlike iOS, which automatically activates disk encryption when a PIN is set,
Android’s encryption is disabled by default. Activating it manually takes up to
an hour for the initial process and cannot be undone. Furthermore, it can only be
activated if PIN-locks or passwords are in use. In Android, PINs consist of 4 to
16 numeric characters, and passwords consists of 4 to 16 alphanumeric characters
with at least one letter. New screen locking mechanisms like pattern-locks and
face recognition are less secure, and so Google forbids them in combination with
disk encryption. Pattern-locks, for example, can be broken by Smudge Attacks [7],
and face recognition can simply be tricked by showing a photo of the smartphone
owner [8].
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2.2 Remanence Effect and Cold Boot Attacks

Adversaries with physical access to their target can perform cold boot attacks
against encrypted PCs. Cold boot attacks have become publicly known in 2008,
when Halderman et al. [4] proved that the remanence effect can be exploited
to recover disk encryption keys from RAM. The remanence effect, however, has
already been known since decades and is neither specific to encryption keys nor
to memory chips of PCs [3,9]. The remanence effect says that contents of volatile
memory fade away gradually over time, rather than disappearing immediately
after power is cut. It also says that low temperatures slow down the fading
process. Anderson and Kuhn first outlined attacks exploiting the remanence
effect of cooled down memory chips [10]. In applied cryptography, the remanence
effect is also used as a timing source [11], and as an entropy source [12].

On PCs, secret keys can be traced in RAM after a reboot from malicious USB
drives, due to the remanence effect. Above that, cooled down RAM chips can
physically be replugged into another PC. The replug variant is more generic than
the reboot variant, because it works irrespectively of BIOS and boot sequence
settings. With a recovered secret key, adversaries can decrypt the hard disk
and eventually access all data. Cold boot attacks are generic and constitute a
threat to all disk encryption solutions. However, it has not been reported yet if,
and how, cold boot attacks are applicable against ARM-based devices such as
smartphones and tablets. According to Halderman et al., by cooling down RAM
chips the remanence interval is extended from 30 seconds up to ten minutes.
According to our results, the remanence interval on smartphones is much shorter
(see Sect. 3.2). An interesting question at the beginning was if we can obtain a
physical RAM dump from smartphones at all? Unlike x86 PCs, Android devices
have soldered RAM chips that we cannot unplug, and no bootable USB ports.
Hence, we had to find another way to boot system code. The popular trend
towards open bootloaders in recent Android devices opened more avenues for
attack. Galaxy Nexus devices (and many other Android-driven smartphones)
have now bootloaders that can be manipulated with physical access only.

2.3 Samsung Galaxy Nexus

For our purpose, we have chosen the Galaxy Nexus from Samsung because it was
the first device with Android 4.0 and consequently, it was the first Android-based
smartphone with encryption support. Moreover, it is an official Google phone,
meaning that it comes with an official Android version from Google which is not
modified by the phone manufacturer. Official Google releases are most amenable
for an in-depth security analysis, and flaws can be generalized best to a wider
class of devices.

The Galaxy Nexus family comes with an OMAP4 chip from Texas Instruments
(4460) which has a Cortex-A9 CPU implementing ARMv7. The partition layout
of an encrypted Galaxy Nexus device is given in Fig. 1. Most of the thirteen par-
titions can be ignored for our purpose, except userdata, metadata and recovery.
The userdata partition contains the encrypted filesystem, the metadata parti-
tion is the crypto footer that holds necessary information for decryption, and
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block device partition name description

/dev/block/mmcblk0p1 xloader bootloader code
/dev/block/mmcblk0p2 sbl bootloader code
/dev/block/mmcblk0p3 efs static information like IMEI
/dev/block/mmcblk0p4 param boot parameters
/dev/block/mmcblk0p5 misc system settings like carrier ID
/dev/block/mmcblk0p6 dgs unknown (zero filled on all devices)
/dev/block/mmcblk0p7 boot boot code
/dev/block/mmcblk0p8 recovery recovery image
/dev/block/mmcblk0p9 radio radio firmware (GSM)
/dev/block/mmcblk0p10 system Android operating system
/dev/block/mmcblk0p11 cache cache (e.g., for user apps)
/dev/block/mmcblk0p12 userdata user data (encrypted)
/dev/block/mmcblk0p13 metadata crypto footer

Fig. 1. Partition layout of an encrypted Samsung Galaxy Nexus device

the recovery partition is a partition that holds a second bootable Linux. The
recovery partition is different from the main Android system (which is stored on
the system partition). It can be compared best with a rescue system of ordinary
PCs and allows basic operations on the hard disk without booting into full An-
droid. The recovery partition plays a vital role in our cold boot attack, because
we make use of it to boot our own system code.

3 Cold Boot Attacks on Galaxy Nexus Smartphones

We now give an evaluation about the remanence effect on Galaxy Nexus devices
and probe the effectiveness of cold boot attacks. To this end, we rely on our
recovery tool Frost; we describe the technical details of Frost in Sect. 4. We
now describe how Frost can be booted (Sect. 3.1). Based on Frost, we then
examine how the operating temperature of a Galaxy Nexus device correlates
with the decay of bits (Sect. 3.2). Afterwards, we have a look at personal data
that we can gain from RAM when the phone is encrypted (Sect. 3.3). Finally,
we have a look to the special case when bootloaders are already unlocked before
accessing the phone (Sect. 3.4). If so, we can break Android’s encryption feature
entirely and decrypt all data on the phone.

3.1 Booting the Frost Recovery Image

The question we answer in this section is, how do we reboot a smartphone and
run Frost if physical access to it has just been gained? An important point at
the beginning is to ensure that the device has sufficient power for a live analysis.
Otherwise, it must be charged, because once an encrypted device loses power, all
possibilities other than brute force are lost to gain data from it. After charging,
the device must be cooled down in order to increase the remanence interval (see
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Sect. 3.2). As a rule of thumb, we experienced good results when putting the
device into a −15◦C freezer for 60 minutes. Before that, it should be packed up
in a freezer bag in order to protect it against water condensation.

After the phone has been charged and cooled down, we can reboot it. Since
the Galaxy Nexus device has no reset button (like most other smartphones), we
have to reboot it by unplugging the battery briefly. Shutting the device down
from the lock screen is too slow and valuable information in RAM would get lost.
In order to boot up the device quickly after reinserting the battery, the power
button must already been held before removing the battery. The entire process
has to happen so quickly that the phone is without power only for a few hundred
milliseconds. Once a smartphone is up again, the risk of losing RAM contents
is defeated, because neither unlocking the bootloader nor booting into Frost
destroys any important memory lines according to our tests.

Additionally, the buttons volume up and volume down must be held during
boot to enter the fastboot mode. Once the phone is in fastboot mode, it can
be connected to a PC via USB. First, we assume the bootloader is locked. If
so, we have to run fastboot oem unlock first. This command requires us to
confirm the following warning on the phone: “To prevent unauthorized access to
your personal data, unlocking the bootloader will also delete all personal data
from your phone”. Once we confirm this warning, the encrypted user partition
gets wiped. However, “all personal data” is not deleted from the phone – RAM
contents are preserved.

Next, Frost must be booted. This can be done in two different ways. Ei-
ther we run fastboot flash recovery frost.img to install it persistently on
the recovery partition, or we run fastboot boot <kernel> [ramdisk] to start
Frost temporarily. The latter is interesting for forensic investigations in the
case that the bootloader was already unlocked, because it then prevents the
forensic examiner from modifying the state of the phone (which might be illegal
depending on the case and/or country). However, if the bootloader must get un-
locked first, the state of the phone must be modified anyway. In that case, either
the first or the second command can be used interchangeable. Again, criminals
most likely do not care about changing the phone state, and thus it is important
to discuss both attack vectors, irrespectively of their forensic applicability.

After installing Frost to the recovery partition of a phone, the recovery mode
option must be selected from the phone’s boot menu in order to launch Frost.
With the help of Frost, personal data and even encryption keys can now be
recovered (see Sect. 3.3 and Sect. 3.4). We strongly recommend to practice the
entire procedure several times before carrying it out in real cases. The time of
battery removal is critical and the entire procedure must happen quickly (see
Sect. 3.2).

3.2 The Remanence Effect

We now analyze the remanence effect of RAM on Galaxy Nexus devices. That is,
we analyze the number of decayed bits in RAM after power is cut, in dependence
of the operating temperature of a phone and the time of battery removal. Earlier
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ε 0.5− 1s 1− 2s 3− 4s 5− 6s

5− 10 ◦C 0 (0%) 2 (0%) 1911 ( 5%) 8327 (25%) 24181 (73%)
10− 15 ◦C 0 (0%) 976 (2%) 2792 ( 8%) 18083 (55%) 25041 (76%)
15− 20 ◦C 0 (0%) 497 (1%) 4575 (13%) 20095 (61%) 25433 (77%)
20− 25 ◦C 0 (0%) 421 (1%) 16461 (50%) 23983 (73%) 27845 (84%)
25− 30 ◦C 1 (0%) 2204 (6%) 16177 (49%) 27454 (83%) 28661 (87%)

Fig. 2. Number of bit flipping errors per physical page (in total and percentage) in
dependence of the phone temperature and the time of battery removal

in our investigations, we recognized that the chance to recover personal data with
Frost increases considerably if the phone is cold. We then experimented with
putting the phone into a fridge and into a freezer, and we got even better success
rates. In the following we give exact benchmarks for this effect.

Fig. 2 lists the bit error rate of memory pages as a function of the device
temperature and the time without power before reboot. To determine the device
temperature we utilized an infrared thermometer and pointed it to the exactly
same position on the phone’s motherboard each test run. To cool down the phone,
we put it into a -15 ◦C freezer. 25–30 ◦C is the normal operating temperature of
a Galaxy Nexus, 20–25 ◦C is reached after 10 minutes, 15–20 ◦C after 20 minutes,
10–15 ◦C after 40 minutes, and 5–10 ◦C after 60 minutes inside the freezer. In
several test cases, we never observed damage to the phone when putting it into
the freezer for 60 minutes or less (longer periods have not been tested).

To determine the bit error rate, we used Frost to fill memory pages at fixed
physical addresses entirely with 0xff. The page size in Android is 4, 096 and so
we filled each page with 4, 096 ·8 = 32, 768 bits. After booting into Frost, as de-
scribed in Sect. 3.1, we reconsidered the pages that we recently filled and counted
the bits that were now zero. By this means, we got the total number of decayed
bits and we were able to estimate the overall bit error rate, as listed in Fig. 2.
Note that the highest possible bit error rate is 87.5%, and not 100%, because
the passive state of 50% of RAM lines is 0xc0, and not 0x00. We reproduced our
test for different physical addresses, and all pages exhibited the same behavior.

The most inaccurate measures in our test set-up are the times that a device
is without power. According to Sect. 3.1, for rebooting a Galaxy Nexus quickly
the battery must be removed manually. Milliseconds are crucial for the number
of decayed bits, but the mechanic task of battery removal cannot be handled ex-
actly. Therefore, with ε we define the quickest unplugging/replugging procedure
that we “were able to perform”; we claim this was consistently below 500 ms.
Moreover, we define four intervals up to six seconds, and say that we replugged
the battery “somewhen” within these intervals. We explain inconsistencies of our
results given in Fig. 2 and 3 mostly with inaccurate timings.

In Fig. 3, we visualized the data set from Fig. 2. It becomes clear that the bit
error rate of RAM increases with both the temperature and the time without
power. For example, at a temperature of approximately 25 ◦C we have a bit
error rate of 50% after two seconds, whereas the corresponding bit error rate at
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Fig. 3. Bit error ratio (y-axis) in dependence of time (x-axis) and temperatures. The
bit error rate decreases with both lower temperatures and shorter times without power.

Fig. 4. A Droid-bitmap in RAM of a Galaxy Nexus device after 0, ε, 0.5s, 1s, 2s, 4s,
and 6s without power. The cold boot attacks have been deployed at room temperature.

temperatures around 10 ◦C is only 5%. Hence, besides replugging the battery
quickly, putting a device into a freezer increases the chance to recover personal
data from RAM notably.

In Fig. 4, we visualized the remanence effect on Galaxy Nexus devices by
visualizing decayed bits as a series of Droid bitmaps. For this series, we used
4096-byte bitmaps that exactly fit into one physical page. We used bitmaps
rather than JPEGs to visualize bit errors, because using JPEGs entire blocks
get destroyed rather than single pixels. We then increased the interval that the
phone was without power during boot successively from ε to 6 seconds. Whenever
the bitmap header got destroyed, we fixed it manually in order to display the
image. Fig. 4 graphically shows the remanence effect and the distribution of bit
errors. It also shows that the passive state of the first half of a physical RAM
page is 0x00, while the passive state of the second half is 0xc0.

In contrast to Halderman et al., who considered the remanence effect on PCs,
we cannot cool down RAM chips below 0◦C without risking serious damage to the
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phone’s hardware. Particularly the display and the battery are likely to suffer
damage from temperatures below 0◦C. Nevertheless, for temperatures above
0◦C our experiments reveal shorter remanence intervals than those identified by
Halderman et al. [4]. But, as we see in the next section, the shorter remanence
intervals still enable us to perform cold boot attacks against smartphones.

3.3 Recovery of Personal Data

We now investigate which data we can forensically recover from encrypted smart-
phones through cold boot attacks. Specifically, we are after personal data and
digital evidence such as address book contacts, documents, messages, photos,
and calendar entries. For our main case, we set up a Galaxy Nexus as personal
phone and used it for everyday communications over a week. We then took a
photo and did a phone call immediately before the attack. Our goal was to
recover as much personal data from the entire week as possible, and the time
before the attack in particular. To this end, we attacked the phone by means of
Frost and took a memory dump. The memory dump of our test case was near
optimal, i.e., we cooled down the phone below 10◦C and replugged the battery
so quickly that we had a bit error ratio of about 0% according to Fig. 2. Hence,
we conjecture we recovered nearly everything that was available in RAM.

We then examined the memory dump with known system utilities like strings
and hexdump, and made use of data recovery programs like PhotoRec. Besides
photos, PhotoRec can recover websites, text files, databases, sound files, source
codes, and binary programs from raw memory images. From the memory dump,
we were able to recover 68 JPEG and 199 PNG pictures, 36 OGG tracks, 295
HTML and 386 XML files, 215 SQlite databases, 28 ZIP and 105 JAR archives,
1214 ELF binaries, 485 JAVA source codes, and 6, 331 text files.

We then analyzed all recovered data sets thoroughly. While most PNG images
that we recovered were system images and logos (and hence, of no interest for
us) many JPEG files were personal photos. We were able to recover both the pic-
ture that was recently taken and older pictures. We were surprised when we even
recovered pictures that were taken with another smartphone weeks before the at-
tack. The reason was that these pictures got synchronized in the background via
Dropbox (a common filehoster). For the photo we took immediately before the
attack, we could recover two variants, a small thumbnail and a high-resolution
variant. For the other photos, we could only retrieve the small thumbnail.

As stated above, most PNG images that we recovered were system files, but
also the Wikipedia and Wikimedia logos were available. Indeed, we surfed to
wikipedia.org in the week before the attack, and it was one of the webpages
we accessed last, but we did not access it immediately before the attack. Even
though, we could also trace its HTML source in RAM. Moreover, we found
residues of other webpages in RAM, too. Besides that, we found personal text
files and recent emails in RAM. And we found the entire chat-history of What-
sApp (a popular messenger). We also explicitly searched for names of our contact
list, and we found each name to be present in RAM several times. Near the mem-
ory locations where we identified a name, we found respective phone numbers,
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Personal information fully recovered partly recovered not recovered

Address book contacts �
Calendar entries �
Emails and messaging �
GPS coordinates �
High resolution pictures �
Recent phone calls �
Thumbnail pictures �
Web browsing history �
WhatsApp history �
WiFi credentials �
Fig. 5. Set of personal information that we exemplarily searched for. Most of the data
we search for could at least partly be recovered.

email addresses, and other contact details. We also found the remaining entries
of our contact list that we did not explicitly search for, indicating that the entire
address book is in RAM. Additionally, we recovered dates like birthdays from
Jorte Calendar, indicating that also the calendar is in RAM. Interestingly, we
even found plaintext passwords. Actually, we did search for the SSID of our de-
partment WiFi and we could easily locate the according username and password
in plaintext. We did not enter the password right before the attack but days
before; the password is probably loaded into RAM each time before connecting
to the WiFi.

Overall, we recovered dozens of personal information from RAM with known
recovery tools and common system utilities. However, we could not locate all
information that we were looking for. We tried to find the call history, i.e., we
wanted to find out which number has been dialed last, but we were not success-
ful. Likely, this information is in RAM but we failed to identify the respective
memory structure. We also failed to recover GPS coordinates when we wanted to
construct a movement profile. However, we are confident that more information
can be retrieved from RAM with more efforts in the future. Fig. 5 summarizes
our results.

3.4 Recovery of the Disk Encryption Key

Apart from personal data, we were also able to recover the disk encryption keys
(given that no or only a few bits were decayed). However, on devices where the
bootloader is locked, the bootloader must get unlocked first (see Sect. 3.1). On cur-
rent Galaxy Nexus devices, the unlocking process deletes the userdata and cache
partition. We verified that Google actually wipes the userdata and cache parti-
tion, meaning that these partitions get zero-filled. As a consequence, it becomes
pointless to retrieve encryption keys from RAM, although this is still possible.

Since the wiping process is induced by the telephone software rather than the
PC, it cannot easily be bypassed. And since the bootloader of a new Galaxy
Nexus is locked by default, we conjecture that most Galaxy Nexus devices have



FROST 383

locked bootloaders. However, it is generally a device-dependent property whether
a bootloader is locked or unlocked by default, and whether partitions get wiped
during unlocking or not. The first series of Galaxy Nexus devices, did not delete
user partitions when unlocking the bootloader [13]. Later versions of the Galaxy
Nexus apparently delete userdata partitions but do not wipe them if the phone
is not encrypted [14]. Other devices, like the Samsung Galaxy SII, are shipped
with unlocked bootloaders even by default [15], such that unlocking is never
necessary.

If we find a bootloader to be unlocked, then Frost can even be applied to
break disk encryption, i.e., to decrypt the entire user partition. In that case, it
is pointless to discuss which personal data apart from the key can be recovered
from RAM (see Sect. 3.3), because we have access to the entire disk. We built
necessary key recovery and decryption tools into Frost. In short, we go over
all physical memory pages in order to trace AES key schedules. For details, see
Sect. 4.

To conclude, for all Android-based smartphones with an unlocked bootloader,
or those that can get unlocked without wiping the user partition, we can perform
cold boot attacks on the disk encryption key. For all other devices, we can “only”
perform cold boot attacks to retrieve valuable information from RAM.

4 Implementation of the Frost Recovery Image

We now present details on the implementation of the Frost recovery image.
Technically, Frost is a set of recovery tools that we developed and compounded
together into an easy-to-use GUI. Notably, Frost displays a GUI that allows
forensic examiners to acquire full memory dumps, to recover encryption keys
directly on the phone, to unlock the encrypted user partition with recently re-
covered keys, and to crack weak PINs with brute force. We come back to these
points in the subsequent sections.

4.1 Linux Kernel Module and GUI

The centerpiece of Frost are its loadable Linux kernel modules (LKMs). Ac-
cessing physical memory requires system level privileges, and to gain system
level privileges we load LKMs. As a basis for our recovery image, we chose the
recovery image from ClockworkMod, which is a known provider for custom An-
droid ROMs. We integrated our Frost LKM, as well as user mode utilities and
third party tools, into the ClockwordMod recovery image and modified it’s GUI
such that forensic data recovery can be operated comfortably. Users can choose
between one of the following options in the Frost GUI:

– Telephone encryption state: To check the encryption state of the phone, we
try to mount the userdata partition and check whether that succeeds.

– Key recovery: This option searches for AES keys (see Sect. 4.2). On success,
the recovered key is displayed to the user and saved internally for later use.
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– RAM dump via USB : This option saves a full memory dump of the smart-
phone to the PC for offline analysis.

– Crack 4-digit PINs : Performs brute force attacks against weak PINs (see
Sect. 4.3). Recovered PINs and keys are displayed and the key is saved for
later use.

– Decrypt and mount data: Decrypts the user partition with recently recovered
keys.

The key recovery mode optimized for Galaxy Nexus devices finishes in about 9s.
To create a full memory dump of 700 MB (which is the RAM size of a Galaxy
Nexus) takes 3m 9s. To load memory dumps to the PC, we make use of the
LiME module [16]. LiME parses a kernel structure to learn physical memory
addresses and each physical page is then transferred over TCP to the computer.
Alternatively, LiME allows to save physical memory dumps to user partitions,
but this is not an option in Frost because we assume user partitions are en-
crypted. To decrypt the userdata partition, we integrated a statically linked
ARM binary of the dmsetup utility [17]. This option becomes available only if
one of the key recovery methods or the brute force approach were successful, i.e.,
if the decryption key is known.

A precompiled version of the Frost recovery image for Galaxy Nexus devices
is on our website (http://www1.cs.fau.de/frost). Above that, we provide the
code of the Frost LKM and our user mode utilities as open source, such that
similar images can easily be built for a wider class of devices. You may use these
components independently of the recovery image.

4.2 AES Key Recovery

Our key recovery algorithm in Frost is based on the known utility aeskeyfind [4].
Aeskeyfind searches for AES keys in a given memory image from x86 PCs by
identifying AES key schedule patterns in RAM. Contrary to aeskeyfind, Frost
is implemented for ARM and searches for AES keys on-the-fly, i.e., directly on
the phone. In comparison to x86, the endianness of key bytes in ARM is reversed,
for example, such that exisiting algorithms had to be adapted. Our optimized
code recovers AES keys in less than 10 seconds directly on the phone (whereas
aeskeyfind requires always about 10 minutes). An exemplary Frost output is
given in Fig. 6.

Our key recovery LKM basically supports two search modes: quick search and
full search. Quick search is highly optimized for Galaxy Nexus devices and looks
for AES keys at certain RAM addresses. In detail, we have chosen the address
space 0xc5000000 to 0xd0000000 because all our tests revealed that AES key
schedules are placed in this range. In quick search mode, the recovery process
finishes within seconds. This mode, however, might fail on other devices because
the search space might be too specific. Therefore, we implemented the full search
mode that considers the entire physical RAM. The full search mode uses a sliding
window mechanism that looks at each physical RAM page twice. In quick search
mode, AES key schedules which are spread over multiple pages, are missed. In
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adb> insmod frost.ko fullsearch=0 ; dmesg

key-32: 4ee35476397b76905828a89f3d9b872f
: ccb6671af6eebffe94ea1bc87c0948e4

key-32: 4ee35476397b76905828a89f3d9b872f
: ccb6671af6eebffe94ea1bc87c0948e4

key-16: bcdbc55cf809cb5989e58a40ecbb7164
key-16: bcdbc55cf809cb5989e58a40ecbb7164

Summarizing 4 keys found.

Fig. 6. Keys recovered with the Frost
LKM

adb> ./crackpin

magic: D0B5B1C4
encdek: 3c4ac402c6095ed46cf4f1e2281a1f3e
salt: 19043211840adfde95110c7f99263d6c

>> KEK: 2165534cc66099714a8226753d70b576
>> IV: 05cb47cf3a98d77e563bb4cfcde791aa
>> DEK: bcdbc55cf809cb5989e58a40ecbb7164
>> PIN: [2323]

Fig. 7. Key and PIN recovered with
brute fore

practice, however, this is unlikely; in 50 test cases, we never observed an AES
key schedule that was spread over two pages (the page size in Android is 4096
bytes).

If neither the quick search mode nor the full search mode succeeds, the memory
image is too noisy, meaning that too many bits decayed during cold booting (see
Sect 3.2). As stated above, our key recovery algorithm is based on the utility
aeskindfind. Aeskeyfind discards key candidates as soon as a given threshold
of bits is reached that are not in line with a typical key schedule structure. If
this threshold is too high, pseudo keys are identified from irrelevant memory
regions. But if the threshold is too low, the recovery algorithm becomes prone
to decayed bits from cold booting. As a tradeoff value that is based on results of
our experiments, we have chosen 64 as default threshold in Frost. That means,
64 out of 1280 bits can be disturbed per key schedule at maximum. In other
words, the bit error ratio is not allowed to exceed 5% to be able to identify key
schedules in Frost.

To overcome the situation that no key bits can be recovered due to noisy
images, we implemented a third search mode. During our RAM analysis, we
recognized that AES keys are typically present in memory five times : once in
the context of an AES forward schedule, once in the context of an AES back-
ward schedule, and three times as a stand-alone bit sequence. Stand-alone bit
sequences are commonly hard to identify as keys, because keys themselves have
no structure. Only their corresponding key schedules have a structure. To exploit
these occurrences, we implemented a search mode that is less generic but offers
good results in practice: Rather than searching for key schedule patterns, we look
after “magic strings” that appear near the desired key. From several test runs
we know fixed offsets from magic strings to key locations. Given these offsets are
correct, we can recover key bits independently of key schedules. However, this
procedure is optimized for Galaxy Nexus devices and specific Android versions;
offsets may change in upcoming releases.

The key recovery code of Frost was developed and tested on Galaxy Nexus
devices, but it works for other Android-based smartphones, too. It is a part of
our project which is platform-independent, meaning that it even runs on non-



386 T. Müller and M. Spreitzenbarth

Android systems. For example, we have successfully tested parts of our module
on a PandaBoard with Ubuntu. In general, Frost’s key recovery code can be
used on all ARM devices where you have a Linux shell with root access.

4.3 PIN Cracking through Brute Force

PINs are still the most frequent screen lock in use today. But long PINs are too
inconvenient for most people that work on their phones on a daily basis, because
they must be entered for each interaction with the device, e.g., for giving a call,
for writing a message, and for taking a photo. Consequently, people commonly
use short PINs of only 4-8 digits. That is a concern, because in Android the screen
lock PIN necessarily equals the PIN that is used to derive the disk encryption key.
Consequently, besides cold boot attacks, short PINs are another weak point of
Android’s encryption feature. (Note that we find the restriction that encryption
passwords must equal screen lock PINs in Android unnecessary and dangerous.
In practice, it is more time consuming to crack a visual PIN prompt than to
perform automated brute force attacks against encrypted filesystems.)

In 2012, Cannon and Bradford [18] presented details about Android’s encryp-
tion system and gave instructions on how to break it with brute force attacks
against the PIN. They published their findings in form of a Python script that
breaks Android encryption offline, meaning that it runs on an x86 PC after the
userdata and metadata partition have been retrieved “somehow”. Basically, we
reimplemented their Python script in C and cross-compiled it for the ARM archi-
tecture, so that we can perform efficient attacks directly on the phone, without
the need to download the user partition. To this end, we cross-compiled the Po-
larSSL library for Android, an open source library similar to OpenSSL which
is more light-weight and easier to use and integrate. We then statically linked
our PIN cracking program with the PolarSSL library, because Android does not
support dynamic linking. Both the source code and the statically linked binary
are available on our webpage; an exemplary output of it is given in Fig. 7.

PINs with four digits are cracked within 2m 58s at maximum, i.e., in one and
a half minute on average. Although we only implemented the important 4-digit
case yet, we can estimate that 5-digit PINs are cracked in about 15m, 6-digit
PINs in 2h 30m, and 7-digit PINs in about 25h.

5 Future Work and Conclusions

To defeat physical access attacks, disk encryption has become an essential secu-
rity mechanism for mobile devices. Virtually all PC operating systems support
disk encryption since years, and smartphones now provide encryption, too. How-
ever, when losing an Android-based smartphone, chances are to lose valuable
information even though encryption was used. The remanence effect shows up
on smartphones, and as we have proven, it can be exploited with cold boot
attacks to retrieve personal data. We believe that our study about Android’s en-
cryption is important for two reasons: First, it reveals a significant security gap
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that users should be aware of. Since smartphones are switched off only seldom,
the severity of this gap is more concerning than on PCs. Second, we provide
the recovery utility Frost which allows law enforcement to recover data from
encrypted smartphones comfortably.

We have several plans for future improvements of Frost. First, we want to
make our recovery image available for more Android devices than just the Galaxy
Nexus. We already provide device independent system utilities like the Frost
LKM and the PIN cracking program on our webpage, so that forensic examiners
can compose recovery images for other devices also on their own. We provide
appropriate howtos and source codes of our project for that. From an academic
point of view, it is more important to analyze Android’s memory structures in-
depth in future. For example, we were not able to recover GPS coordinates and
the list of recent phone calls yet, but we believe that this information is present
in RAM.

To conclude, we have proven that smartphones can be attacked by cold boot
attacks. To this end, we have shown that on Galaxy Nexus devices low tem-
peratures raise the success rate of cold boot attacks (remanence effect). We
also presented Frost, a tool that recovers personal data from encrypted smart-
phones. The biggest limitation of Frost to date, however, is that it requires
an unlocked bootloader for breaking encryption entirely. Recovering the disk en-
cryption key is always possible, but searching for it becomes pointless when the
bootloader was locked (because the user partition gets wiped during unlocking).
Nevertheless, personal data can always be recovered from RAM.

Countermeasures against cold boot attacks are difficult. On x86 PCs, solutions
like TRESOR and TreVisor [19,20] perform encryption on CPU registers only,
thereby thwarting attempts to reveal sensitive key material from RAM. However,
such solutions are limited to encryption keys and cannot protect RAM contents
in general. Protecting all information in RAM is assumed to be infeasible, which
in turn proves the severity of tools like Frost.
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Abstract. Atmel’s CryptoMemory devices are non-volatile memories
with cryptographically secured access control. Recently, the authentica-
tion mechanism of these devices have been shown to be severely vulnera-
ble. More precisely, to recover the secret key the published attack requires
only two to six days of computation on a cluster involving 200 CPU cores.
In this work, we identified and applied theoretical improvements to this
attack and mapped it to a reconfigurable computing cluster, known as
RIVYERA. Our solution provides significantly higher performance ex-
ceeding the previous implementation by a factor of 7.27, revealing the
secret key obtained from the internal state in 0.55 days on average using
only 30 authentication frames.

1 Introduction

In 2002 Atmel introduced a secure memory device with authentication called
CryptoMemory [2,13] which is basically an Electrically Erasable Programmable
Read-Only Memory (EEPROM) augmented with a secure access control unit.

Due to the low cost and simplicity of deployment the device is employed in a
wide range of commercial products, e.g., as key storage of the HDCP system in
NVIDIA’s graphic cards [16], Labgear’s digital satellite receivers [15], Microsoft’s
Zune Player [7] and SanDisk’s Sansa Connect [9] using the CryptoMemory as
part of their DRM system implementation. Further examples of CryptoMemory
deployment are printer and printer cartridge manufacturers like Dell, Ricoh,
Xerox, and Samsung [14]. Furthermore, Atmel’s CryptoMemory is placed in
authentication tokens from Digitrade [6] and Datakey Electronics [1].

The specification of the Atmel cipher was kept secret till ACM CCS 2010
where Garcia et al. presented their findings obtained from reverse engineer-
ing [8]. They also showed significant weaknesses by analyzing the authentication
protocol. One year later Biryukov et al. published a more efficient method which
– with a probability of 50% – is capable of extracting the secret key from 30
authentication recordings [4]. This attack runs on a computing cluster with 200
Central Processing Unit (CPU) cores and needs two to six days to recover the se-
cret. Another attack based on power side-channels has also been reported in [3].
This attack lasting a few minutes, however, needs physical access to the device
and a special side-channel measurement setup to extract the secret key from
about 100 power traces.

M. Jacobson et al. (Eds.): ACNS 2013, LNCS 7954, pp. 389–404, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Our contribution: In this work, we improve and map the best known crypt-
analytic attack on CryptoMemory devices published in [4] to special-purpose
hardware, namely the RIVYERA S3-5000 reconfigurable computing cluster [17].
Our improvement of the cryptanalytic setup in addition to our hardware-based
implementation leads to a speedup factor of 7.27 compared to the previously re-
ported results. In short, our implementation is able to extract the internal state
of the cipher from 30 authentication frames within 0.55 days on average which
impressively demonstrates that none of the products mentioned above can be
considered as secure. Given a cluster such as RIVYERA, our attack configura-
tion is also a power-efficient solution. For a run with 30 frames, the hardware
cluster consumes 8.6KWh instead of 245.76KWh the CPU cluster per attacked
device.

Outline: In Section 2 we provide preliminary information on CryptoMemory,
previously published attacks and RIVYERA. Improvements of the attack are
presented in Section 3. Section 4 and 5 deals with our implementation archi-
tectures before we compare our results in Section 6 with those of a CPU-based
implementation. Finally, our conclusions are given by Section 7.

2 Background

In this section we briefly restate the required background of our work. The
section includes specification of the targeted cipher, the underlying protocol, the
attack of [4], and our computing cluster.

2.1 CryptoMemory Stream Cipher

The cipher state consists of four shift registers - the left, middle, right and
feedback register.

Definition 1. The state S = (l,m, r, f) is an element of F117
2 and consists of:

Left Register: l = (l0, l1 . . . , l6) ∈ (F5
2)

7

Middle Register: m = (m0,m1 . . . ,m6) ∈ (F7
2)

7

Right Register: r = (r0, r1 . . . , r4) ∈ (F5
2)

5

Feedback Register: f = (f0, f1) ∈ (F4
2)

2

For every cipher tick, the input a ∈ F8
2 is processed during the transition of S

to the successor state S′. The state transition is executed in three steps. First,
the input values a and f are merged and XORed to several bits in the l, m, and
r registers. Second, the left, middle, and right registers are shifted to the right
and their feedback value is calculated with the help of a bitwise left rotation
and modular addition. Third, the f register is shifted to the left and the new
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calculated cipher output nibble becomes the new first element of f . Figure 1
provides an overview of the cipher operation. The core operations of the cipher
are given by the following definitions:

Definition 2. The bitwise left rotation operator L : Fn
2 → Fn

2 is defined by:

L(x0x1 . . . xn−1) = (x1 . . . xn−1x0)

.

Definition 3. Let ⊕ be a bitwise XOR operator Fn
2 × Fn

2 → Fn
2 .

Definition 4. The modular addition operator 
 : Fn
2 × Fn

2 → Fn
2 is defined as:

x
 y =

{
x+ y( mod 2n − 1) if x = y = 0 or x+ y �= 0 ( mod 2n − 1)

2n − 1 otherwise

Definition 5. Let a and b be defined as: a ∈ F8
2 and b = a⊕ f0f1. Further, the

successor state S′ = (l′,m′, r′, f ′) is defined as follows:

l′0 := l3 
 L(l6), l′3 := l2 ⊕ b3b4b5b6b7, l′i+1 := li i ∈ {0, 1, 3, 4, 5}
m′

0 := m5 
 L(m6), m′
5 := m4 ⊕ b4b5b6b7b0b1b2, m′

j+1 := mj j ∈ {0, 1, 2, 3, 5}
r′0 := r2 
 r4, r′2 := r1 ⊕ b0b1b2b3b4, r′k+1 := rk k ∈ {0, 2, 3}
f ′
0 := f1, f ′

1 := output(S′)

� � � � � � � � � � � � � � � � � � � � �
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Fig. 1. The CryptoMemory keystream generator [4]

Definition 6. The cipher output function is defined as follows while i is a bit-
selector:

output(S′)i =

{
lki = (l′0 ⊕ l′4)i+1, if m′

0,i+3 = 0

rki = (r′0 ⊕ r′3)i+1, if m′
0,i+3 = 1 i ∈ {0, . . . , 3}
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Definition 7. Let suc be the state transition function with input a, S and out-
put S′ = suc(a, S). Further, sucn(a, S) is defined as multiple application of suc
transforming S into its n-th successor state.

suc1(a, S) := suc(a, S)

sucn(a, S) := sucn−1(a, suc(a, S)) for n > 1

2.2 Mutual Authentication Protocol

Apart from the authentication between reader and memory, the authentication
protocol is used to initialize the CryptoMemory device and requires the exchange
of three messages. The first one contains a nonce nt ∈ (F8

2)
8 sent from the

memory to the reader. The second message consists of another nonce nr ∈ (F8
2)

8

and a calculated authenticator ar ∈ (F4
2)

16 sent from reader to the memory
device. As the last message, the memory device calculates its authenticator at ∈
(F4

2)
16 and sends it to the reader. Figure 2 depicts the protocol from which the

resulting tuple (nr, nt, ar, and at) is defined as an authentication frame.

nt−−−−−−−−−−−−→
Memory

nr,ar←−−−−−−−−−−−− Reader
at−−−−−−−−−−−−→

Fig. 2. The authentication protocol [4]

The authenticators ar and at are made by concatenating output nibbles of
specific cipher states.

S0 := 0

Si+1 := suc(nri, suc
3(nt2i+1, suc

3(nt2i, Si))) i ∈ {0, . . . , 3}
Si+5 := suc(nri+4, suc

3(k2i+1, suc
3(k2i, Si+4))) i ∈ {0, . . . , 3}

S9 := suc5(0, S8), S10 := suc(0, S9), Si := suc6(0, Si−1) i ∈ {11, 13, . . . , 23}
Si := suc(0, Si−1) i ∈ {12, 14, . . . , 24}, Si := suc(0, Si−1) i ∈ {25, 26, . . . , 38}
ari := output(Si+9) i ∈ {0, 1, . . . , 15}
at0 := 15, at1 := 15, ati := output(Si+23) i ∈ {2, 3, . . . , 15}
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2.3 A Probabilistic Attack on CryptoMemory

This section introduces the published attack by Biryukov et al. [4] which re-
quires knowledge of some eavesdropped authentication frames to reconstruct
the cipher state S8 and S4. Then a meet-in-the-middle attack is applied to ex-
tract the secret key k from the cipher states. The reconstruction of S8 is the
most computationally intensive part and is based on three phases. We start with
the generation of state candidates for the right register r. Based on these given
candidates we similarly obtain state hypotheses for the left register l. As the
third step, we finally compute candidates matching the middle register m for
each given left-right register tuple.

Right Register. The attack is based on an exhaustive search for all possible S24

states of the right register r and uses a correlation test to filter invalid guesses.
This is performed by guessing r, calculating the register output for 16 consecutive
ticks and counting the equivalent bits to ar14, ar15, ati for i = 2, . . . 15. If the
sum of coincident bits is below a certain threshold Tr, the candidate is discarded.
These steps are repeated until all candidates for r are checked.

Left Register. The next step is to recover the left register and is repeated for
each remaining candidate of r. First, lki is defined as the intermediate output
of l and lS0 = {l0, l1, l2, l3, l4, l5, l6} as the starting point for the calculation. In
fact, some bits of lk are known - in particular the cipher output bits that cannot
be created by the right register.

Combining the state update function and the state output function, this re-
sults in the following equations for the first six output nibbles of the left register:

lk1 = (l3 
 L(l6))⊕ l3, lk2 = (l2 
 L(l5))⊕ l2, lk3 = (l1 
 L(l4))⊕ l1,

lk4 = (l0 
 L(l3))⊕ l0, lk5 = (l7 
 L(l2))⊕ l7, lk6 = (l8 
 L(l1))⊕ l8.

The equations above show that lki depends only on two variables. Based on
these equations the following sets are defined which hold tuples of li and lj.

H0 = {l3, l6}, H1 = {l2, l5}, H2 = {l1, l4}, H3 = {l0, l3},
H4 = {l7, l2}, H5 = {l8, l1}, H6 = {l9, l0}.

With the known parts of lki, Hi can be reduced to only those that match the
aforementioned equations. The cardinality of each set strongly depends on the
number of known bits in lki. Let NH(lki) be the number of known bits in lki.
Note that register cells are used in more than one set. For example, l3 is part of
H0 and H3.

H0,3 = H0 ∩H3 = {l3}, H1,4 = H1 ∩H4 = {l2},
H2,5 = H2 ∩H5 = {l1}, H3,6 = H3 ∩H6 = {l0}
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Hi and Hi+3 can be further reduced by keeping only tuples that consist in
l3−i and create the intersection set Hi,i+3. Additionally, H0, H3, and H6 are
combined toH0,3,6 = {l0, l3, l6} to do a similar reduction by keeping only possible
intersection values.

A yet unresolved problem is to choose a good starting point S0 to maximize
the reduction effect. A solution to this problem Ψ(i) can be obtained from

Ψ(i) =
∑

j∈{1,3,4,8}
NH(lki+j) for 1 ≤ i ≤ 7.

This function considers the reduction effect on A = {l0, l1, l3, l4, l6} of a chosen
starting state S0. Let J = argmax1≤i≤7 Ψ(i); then, the optimal starting point is
S24+J to have the maximum reduction effect on A.

Theorem 1. If A is defined as A = {l0, l1, l3, l4, l6} then {lk0, lk1, lk3, lk4, lk7,
lk8, lk11, lk15} depend only on A, {lk−1} on {l5} and A, and {lk5, lk12} on A
and l2 for any chosen starting point lS0 .

Theorem 1 points out that some register cells exist with more impact on the
output stream than others. Hence, the best starting point is the one with the
most known bits in A. The proof of Theorem 1 can be found in [5]. Note that
Ψ(i) is defined over 1 ≤ i ≤ 7 and if J = 7, only lki up to i = 8 can be used
for the reduction. Due to the fact that J can be at minimum 1, the (lk−1, lk5)
tuple can be combined with H1 similar to the intersection set H0,3,6 for further
reduction.

After the reduction steps, the remaining set H1 and A are combined to re-
construct all possible internal states S24+J of the left register. In order to cover
all lki the created candidates are clocked forward and finally backward from lS0

to the original state S24. Keep in mind for this step that l0 and l1 has to be
XORed with their corresponding feedback byte to get the original values. For
further reduction all restored candidates are filtered with the same correlation
test as that of the right register but using Tl as the chosen threshold.

Middle Register. The most time-consuming part is the recovery of the middle
register that we mapped to hardware as explained in Section 5. Assume that
possible candidate pairs for the left and the right register have been generated
according to the two steps expressed before. These candidates represent the state
S24. The following steps are then performed for each candidate pair.

Let mki be the output bits of the middle register. Some bits of mki can be
restored with the help of rki and lki. Note that mki are the four right most bits
of mj . Due to that, information about m0, m7, m8, . . . , m21 is extracted. In
order to use all gathered information about the middle register cells the attack
starts from the state S30.

Depending on the output and update function the following equations are
extracted:

mk7 = m7 
 L(m0), mki = mi 
 L(mi−1) i ∈ {8, . . . , 15}.
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Similar to the reconstruction of the left register, all possible tuples for the middle
register cells of state S30 are grouped together to form the sets Qi. For example,
Q0 holds all tuples of m7 and m0 that are able to create mk7. In comparison to
the reconstruction of the left register, there are some known bits of mi that do
not depend on other register cells. The cardinality of Qi also correlates with the
number of known bits in mki+7, mi+7, and mi+6.

Q0 = {m7,m0}, Q1 = {m8,m7}, Q2 = {m9,m8}, Q3 = {m10,m9},
Q4 = {m11,m10}, Q5 = {m12,m11}, Q6 = {m13,m12}, Q7 = {m14,m13},
Q8 = {m15,m14}

Figure 3 shows which information is used by each Qi. It is shown that all gained
information is used in the sets and which relations they have. In the following
it is explained how these relations are used to minimize the number of possible
S30 candidates.

��� ��� ��� �� ���� ����� ���

��	 ������ ��� ��
 ������ ���

��� ��� �		

���������	���


����

Fig. 3. This diagram shows in which data set which information is processed, struc-
tured by the candidate state of the middle register

Qi andQi+1 can be shrunk by keeping only tuples that exist in the intersection
set Qi,i+1 with the same pattern value mj . To maximize the reduction effect a
good starting point needs to be chosen again. Let I = argmin0≤i≤8 |Qi| where
|Qi| is the cardinality of Qi. Then, the reduction process is started from QI =
{mj,mk} with k = 0 or k = j − 1. In other words, each Qi is compared with
Qi+1 for I ≤ i ≤ 7. Qi is also compared with Qi−1 for 1 ≤ i ≤ I.

Q0,1 = Q0 ∩Q1 = {m7}, Q1,2 = Q1 ∩Q2 = {m8}, Q2,3 = Q2 ∩Q3 = {m9},
Q3,4 = Q3 ∩Q4 = {m10}, Q4,5 = Q4 ∩Q5 = {m11}, Q5,6 = Q5 ∩Q6 = {m12},
Q6,7 = Q6 ∩Q7 = {m13}, Q7,8 = Q7 ∩Q8 = {m14}

Now, the reduced Qi sets are combined to fill the middle register cells six downto
three of state S30. This partially filled register is checked immediately by

mk14 = (m14 ⊕ bS36)
 L(m13 ⊕ bS35) = (m8 
 L(m7))
 L(m7 
 L(m0)),

mk15 = (m15 ⊕ bS37)
 L(m14 ⊕ bS36) = (m9 
 L(m8))
 L(m8 
 L(m7)).
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This verification is performed by calculating m13, m14 and m15 from m0, m7,
m8, andm9. Then the new calculated values are XORed with their feedback byte
and it is checked if the tuple (m14, m13) is included in Q7 and if the tuple (m15,
m14) is a part of Q8. If this is not the case, the partial candidate is discarded
and register cells 3 to 6 are filled with the next combination. Otherwise, cell 2
to 0 are filled from Q3, Q4, and Q5 in the same way like cell 3 and 4 to complete
the register candidate of state S30. In order to get full cipher candidates of the
same state the middle register is clocked backwards to state S24.

As the final step of the state recovering process, the complete internal state
S24 = (l,m, r, f) is clocked backwards to state S8 and the corresponding output
is compared with ar13 to ar0. This final step usually filters all invalid candidates.
A correct state S8 of a frame only persists if it was previously not discarded by
the correlation tests performed on the right and left register candidates.

2.4 RIVYERA Special-Purpose Hardware Cluster

In this work we employ the reconfigurable RIVYERA computing cluster system
which is specially designed to process cryptanalytic tasks. The Redesign of the In-
credibly Versatile Yet Energy-efficient, Reconfigurable Architecture (RIVYERA)
cluster is populated with 128 Spartan-3 XC3S5000 Field Programmable Gate Ar-
rays (FPGAs) distributed over 16 card modules. The modules are plugged into
a backplane that provides a systolic ring bus interconnect for high-performance
communication. Additionally, a host PC is attached to the ring bus via PCI Ex-
press and both systems are installed in a 19” rackmount system [10, 11, 18, 19].

3 Advanced Candidate Filtering

The attack described previously creates candidates for each register sequentially.
The candidates for the left register are chosen from the output stream of a right
register candidate, and the middle register candidates are based on the output
stream of a left and a right register candidate. The output function of the left and
the right register is a simple XOR. The XOR operation of the binary complement
x0 and x1 of an arbitrary x0 and x1 results in the same output y.

The update function of both register acts as following:

l3 
 L(l6) = l0 r2 
 r4 = r0 (1)

l3 
 L(l6) = l0 when l3 �= L(l6) r2 
 r4 = r0 when r2 �= r4 (2)

The probability that the condition in Equation (2) is not given for a register is
1
32 . To create the output stream the right register candidate is clocked 16 times.
So the probability that the condition is not met during this time is (1− 1

32 )
16 =

0.6017. Summarizing the previous facts leads to a 60% chance that r as well as
r produce the same output stream. In case r passes the correlation test, r passes
the correlation test as well. This behavior also occurs for left register candidates.
Due to the fact that the left register candidates are only based on the cipher
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output stream and the right register output stream, r and r produce the same
left register candidate list. The middle register candidates are also based only
on the output streams lk and rk which means that the tuples (l, r), (l, r), (l, r)
and (l, r) produces the same middle register candidate list, when the conditions
in Equation (2) are satisfied during register output generation.

The attack performs inverted cipher ticks for a register candidate triple
(l,m, r) and checks whether it matches to the known ari nibbles. For an in-
verted cipher tick a modular subtraction is necessary which is defined as follows:

Definition 8. The modular subtraction operator � : Fn
2 × Fn

2 → Fn
2 is defined

as:

x� y =

{
x− y( mod 2n − 1) if x �= y

2n − 1 or 0 otherwise

Note that the modular subtraction is non-injective. In case of x = y, the result
of the modular subtraction can be 0 or 2n− 1. The attack, should consider both
cases; in the later steps the wrong guess will be filtered out when not matching
with ari.

For the modulo subtraction we observe a similar behavior as for the modulo
addition. The condition in Equation (3) is due to the non-injectivity of the
operator.

l0 � l4 = L(l6) r0 � r3 = r4

l0 � l4 = L(l6) when l0 �= l4 r0 � r3 = r4 when r0 �= r3 (3)

Summarizing all these facts leads to the following conclusion. The attack per-
forms inverse cipher ticks for the triple (r,m, l) to check its consistency with the
known ari nibbles. If r, r and l, l exist in the list of candidates, we validate
the triples (l,m, r), (l,m, r), (l,m, r) at the same time. Also, if (l,m, r) is not
the correct internal state, (l,m, r), (l,m, r), and (l,m, r) will not be the correct
one either. Therefore, we can remove l and r from the list of candidates which
generate the same output stream as l and r. For a remaining candidate S8 the
complementary left and right register candidates have to be checked separately if
they are feasible as well. Our experiments have shown that with this additional
filtering the number of right and left register candidates are reduced to 68%.
In total we only process – on average – 46.24% of the original left and right
candidate list.

4 Mapping Components to Hardware

Most parts of the attack will be executed in software and only the most time-
consuming parts are mapped to hardware. In this context, the interfaces between
software and hardware are of major importance to allow a smooth transition
of data in both directions. As a first step we implement the calculations of the
middle register reconstruction process in hardware. The transition from software
to hardware at this point requires only a very limited number of data transfers.
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Moreover, this is indeed the most time-consuming part (about 98.8 % of the
attack time).

Attacking m begins with the reconstruction of Qi and searches for the small-
est set. The subsequent reduction on this step compares possible register cell
candidates. In our hardware implementation we should merge these two steps so
that the generation and reduction of the register cell candidates are performed
at once. In order to check whether mi is part of Qj and Qj+1 it is necessary to
check if (a) mi contains the known bits from the fragmentary middle register
output stream and (b) there must be at least one mi+1 and one mi−1 each of
which contains the fragmentary known bits and is not removed. Each of them
also must be able to create in conjunction with mi an arbitrary mk+1 and mk,
respectively, that each contains the corresponding known bits. If both conditions
are fulfilled, mi is a valid register cell candidate.

Due to our merging technique we do not know which set is the smallest one. So
we always start the generation with Q8 and continue the calculation iteratively
until we have created Q0. With Q0 we perform the generation and reduction
steps again for all sets from Q0 to Q8. During the creation of the sets, either
register cell candidates from previously generated sets are used or the candidates
are generated with the help of the known mki bits as described in Section 5.1.

After generation the valid tuples need to be stored in memory. One problem
is that we do not know in advance how many valid tuples we will receive but we
have to allocate a fixed amount of memory in hardware. So we assume the worst
case memory complexity for the Qi sets: 2

7 ·27 ·14 ·9 bits. This translates to 126
Block Random-Access Memory (BRAM) blocks with 18kB each, but a Spartan-3
5000 only provides 108 BRAMs. Due to the sequential nature of the reduction,
an on-the-fly calculation of the candidates will result in an enormous increase
of time. An alternative method is to store the information of valid tuples in
relation matrices. In a relation matrix the information of the register cell values
is encoded in the position of a special flag which indicates if the register cell
combination is valid or not. The usage of relation matrices reduces the memory
complexity to: 27 · 27 · 9 bits, which needs in total only 9 BRAM blocks to
hold the necessary information. This storage method directly leads to the next
challenge: the efficient reconstruction of register cell values. Obviously, due to
the cell candidate dependencies a bitwise search for each candidate is ineffective.

Finally, the hardware instantiation of an Inverse Cipher Tick (ICT) is not
trivial as well. Each modular subtraction for an ICT is non-injective so for some
values the result is ambiguous and incorrect values need to be sorted out a few
ICTs later. This backtracking behavior complicates a straightforward hardware
implementation using parallelism or pipelining techniques so that we decided to
implement multiple iterative ICT modules instead for maximum performance.

5 Implementation

In this section we give an overview of the hardware implementation of the attack
including advanced candidate filtering. Each of the 128 FPGAs is configured with
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the same configuration. The design contains two independent attack cores to
which a controller forwards data depending on which module is waiting for a new
dataset. Each attack component contains a module to generate Qi tables that
iteratively creates register cell candidates and stores them in the BRAMs. Then,
a module reconstructs complete middle register candidates from the previously
generated relation matrices (Buffered Pipeline) and distributes the candidates to
a free ICT module. The ICT module performs inverse cipher ticks and validates
the candidate by examining its compliance with ari. Figure 4 depicts the top-
level design of our implementation.
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Fig. 4. The top-level design of our hardware implementation

5.1 Generating Qi Tables

The Qi generating module iteratively fills Qi with valid register cell tuples and
starts with Q8. First, the design uses just a counter and the partial reconstructed
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Fig. 5. Design of the Qi generation module
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output stream to reduce the amount of possible candidates form15,m14 andm13.
The possible register cell candidates are then fed into a modular adder that
calculates m21 and m20 which are directly verified by the known bits. Based on
the results, a BRAM block for Q8 is filled with a stream of bits that represents
valid tuples for m15 and m14. After the calculation of Q8 is completed, the
module continues with the calculation of Q7. At this point possible previously
defined candidates for m14 are present in memory and the module repeats these
steps until Q0 is generated. Next it performs the same procedure again in the
reverse direction, i.e., from Q1 to Q8 to achieve a maximum effect reducing the
number of possible register cell candidates. Figure 5 shows an overview of the
structure of the module.

5.2 Buffered Pipeline

The goal of this unit is to efficiently extract complete middle register candidates
from Qi within the BRAM memory. In most cases the relation matrices in mem-
ory are rarely filled and a challenge is to find the bits set in Qi and decode their
corresponding position one after another.

In order to decode the position of a set bit in a block a priority decoder can
be used. However for a large blocksize, e.g., 32-bit, the complexity of the priority
decoder grows enormously requiring a lot of resources. To save the resources we
filter one set bit out of the block and use a simple decoder to extract the position
of this single set bit. The filtering is realized with the following approach:

Let α be a binary block. Instead of using a priority decoder one can calculate
α ∧ (α ⊕ (α − 1)) which contains at most a single one bit and passes this to
a binary decoder. This process can be iteratively repeated by replacing α by
α⊕ (α ∧ (α⊕ (α− 1))). For clarification an example is given in the following:

α = . . . 101001000

α− 1 = . . . 101000111

α⊕ (α− 1) = . . . 000001111

α ∧ (α ⊕ (α− 1)) = . . . 000001000 (decoder input)

This technique always filters the right most set bit from an arbitrary binary
block. In our implementation this filtering process is repeated until each one bit
in a block is appropriately decoded.

5.3 Inverse Cipher Tick

The ICT module is an iterative module which performs inverse cipher ticks until
S8 of a cipher state candidate is reached or a candidate does not generate the
known output nibbles ari. The module starts with the receipt of an incoming
candidate of S24 and forwards it to its First In, First Out (FIFO) unit. A candi-
date coming out of the FIFO is fed into the modular subtractor which calculates
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the right most cells of the three main state registers. Due to the non-injective
property of modular subtraction, the output of the modular subtractor is se-
lected by a special flag (0 by default). A decision unit calculates these flags and
ensures that – in case of multiple ambiguous results – all possible combinations
are considered. Two final modules update the feedback register and validate with
ari. In case of a positive result, the newly generated state is fed into the FIFO
for the next ICT– until either finally S8 is reached or validation fails in a later
step. Figure 6 depicts a block diagram of the ICT module.
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Fig. 6. The internal structure of an ICT module

6 Results

In this section we present the results of our hardware implementation obtained
using Xilinx ISE Foundation 14.3 for synthesis and place and route. The design
with two attack cores of which each contains 17 ICT modules is synthesized and
runs at the frequency of 100MHz. The utilized resources on each Spartan-3 5000
are shown in Table 1.

Essentially, the attack speed strongly depends on the frequency of operation
and the number of attack components and ICT modules per core. The integrated
FIFO component of each module has a data width of 125 bits which results in
the utilization of 4 BRAM primitives on a Spartan-3. The complete hardware
design is limited by BRAM blocks, i.e., a generic design configuration with two
attack cores based on BRAM can only instantiate 7 ICT modules per core. For
a better resource utilization a dedicated LUT-based version of the ICT modules
was generated to instantiate the internal FIFO. This alternative implementation
allows us to instantiate 10 additional ICT modules per core. Table 1 shows the
resource consumptions of both ICT versions on a Spartan-3 5000.

Next we compare the throughput of the CPU-based cluster implementation
in [4] with our hardware implementation on RIVYERA. Note that exact cycle
counts are not available for the implementation given in [4]. Therefore we restrict
our comparison to the data as shown in Table 2.
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Table 1. Resource consumption of a dedicated RAM-based ICT BRAM-based ICT
and for the complete design (two attack components and 17 ICT) on a Spartan-3 5000
FPGA

Resource DRAM ICT BRAM ICT Complete Available

Slices 808 482 28.298 33.280
Lookup Tables (LUTs) 1058 469 45.600 66.560

Slice Registers 460 317 28.199 66.560
BRAM 0 4 103 104

Table 2. Comparison between the RIVYERA and CPU cluster implementation

Aspect RIVYERA CPU

Parallelization 128 FPGAs with 200 CPU cores
2 attack cores
and 17 ICT

Clock Cycles per ICT step 5 27

Clock Frequency [GHz] 0.1 2.26
Candidate Reduction (l/r) 0.4624 1
Total Time [days] 0.55 2+6

2
= 4

Total improvement factor 4
0.55

= 7.27 1
Performance equivalency 1 FPGA ≡ 11.36 CPUs

Power Consumption per Device [KW] 0.65 2.56
Power Consumption per Attack [KWh] 0.65 · 13.23 = 8.6 2.56 · 96 = 245.76
Cost Reduction 28.58 1

In order to determine the attack speed of our solution, we measure the val-
idation time for a left and right register pair. 300 randomly generated frames
are chosen to compute the average time needed for register pair validation. On
average one attack unit is able to check one left/right register candidate tuple
in 0.8 seconds. To have a 50% chance for a successful attack we need 30 frames
similarly as stated in [4]. On average 23 right and 219.527 left register candidates
are generated out of 30 frames what leads to a total running time of the attack
to reconstruct the internal state in about 13 hours (0.55 days).

Apart from performance, the cost for running an attack is of utmost impor-
tance. The CPU-based attack was run on a rented Amazon Elastic Compute
Cloud (EC2) cluster but unfortunately, RIVYERA is not for rent. For a fair
comparison, we therefore compare the running costs of the attack by estimating
the power consumption for both attack implementations. The RIVYERA S-3
5000 takes on average 650W while two Intel Xeon L5640 CPUs including pe-
ripherals approximately demand (60W · 2)+ 40W = 160W [12] for the complete
system. To run the attack in the given time as stated in [4], at least 16 such com-
puting systems are required. The power consumption in Table 2 shows again the
advantage of special-purpose hardware over CPU-based attack clusters.
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Despite the performance improvement with the Spartan-3 5000, we can
achieve even higher performance with later FPGA devices. In particular, the
RIVYERA S6-LX150 which can be equipped with 256 Spartan-6 LX150 offers
by far more logic and performance but was not available in the course of this
work. However, to provide at least estimates, we adapted our design for the
Spartan-6 LX150 on which we can instantiate the double amount of attack cores
with 17 ICT modules each. Additionally, we can run the design at double clock
frequency due to the newer FPGA technology (200MHz) which results in an
additional performance speed-up by factor of four.

7 Conclusion

The hardware implementation presented in this work improves the attack on
CryptoMemory devices by Biryukov et al. [4] by introducing an additional can-
didate filtering step reducing the computation complexity to a half. By mapping
the most time consuming parts to FPGA hardware, our solution runs in total
7.27 times faster than the previously reported results using 30 authentication
frames. This enables the complete recovery of the secret internal state of the
CryptoMemory cipher on average in less than 0.55 days. Finally, our hardware
attack is 28.58 times cheaper considering power consumption compared to [4]
using a CPU-based cluster.

Acknowledgements. The authors would like to thank Alex Biryukov, Ilya
Kizhvatov and Bin Zhang for useful discussions and for their kindness providing
parts of their attack script.
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Abstract. The Google Suggestions service used in Google Search is one
example of an interactivity rich Javascript application. In this paper,
we analyse the timing side channel of Google Suggestions by reverse
engineering the communication model from obfuscated Javascript code.
We consider an attacker who attempts to infer the typing pattern of a
victim. From our experiments involving 11 participants, we found that
for each keypair with at least 20 samples, the mean of the inter-keystroke
timing can be determined with an error of less than 20%.

1 Introduction

Fig. 1. Suggestions for ‘secure’

Rich and complex Javascript (JS) applica-
tions provide sophisticated GUI updates and
fast client-server communications that ap-
proaches the capabilities of traditional desk-
top applications. For example, Google In-
stant [1] and Google Suggestion(GS) [2] al-

low users to view results and suggestions on–the–fly while typing search queries.
The front-end JS communicates using HTTP(s) with the back-end server in
response to various events such as keypress. Figure 1 and Table 1 shows respec-
tively the GS interface and HTTP requests when a user types in the search term
‘secure’. In this paper we explore whether the improved GUI creates a timing
side channel. We hope a detailed study of one application yields insights on the
threats that may apply to the entire class of such applications.

Related work. Similar side channels attack had been demonstrated by Chen et
al. [3] (inferring encrypted JS traffic from packet size) and Song et al [4] (re-
ducing search space of SSH passwords from packet timing). This paper differs
from prior work in the following ways. It is the first to analyse JS timing side
channels and use it to derive typing patterns, which raise a privacy concern as
prior research showed that typing patterns are unique and allows user identifica-
tion [5,6,7,8]. Moreover, personalized typing patterns improves the SSH attacks

M. Jacobson et al. (Eds.): ACNS 2013, LNCS 7954, pp. 405–413, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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Table 1. Query scenarios: (a) Slow typing. (b) Typing correction. (c) Typing s, e, c,
then choosing secure from the suggestions. (d) Fast typing (not handled in this paper)

(a)
GET /s?. . .&q=s&
GET /s?. . .&q=se&
GET /s?. . .&q=sec&
GET /s?. . .&q=secu&
GET /s?. . .&q=secur&
GET /s?. . .&q=secure&

(b)
GET /s?. . .&q=s&
GET /s?. . .&q=se&
GET /s?. . .&q=sev&
GET /s?. . .&q=se&
GET /s?. . .&q=sec&
GET /s?. . .&q=secu&
GET /s?. . .&q=secur&
GET /s?. . .&q=secure&

(c)
GET /s?. . .&q=s&
GET /s?. . .&q=se&
GET /s?. . .&q=sec&

long pause
GET /s?. . .&q=secure&

(d)
GET /s?. . .&q=sec&
GET /s?. . .&q=secur&
GET /s?. . .&q=secure&

by Song et al. [4] and allows imitation attacks [9] on keystroke biometrics sys-
tems [10,7,5,11,12]. JS timing side channels are challenging to analyse because
keystroke and network traffic timing are only loosely correlated. This is because
JS applications (a) are far slower as compared to native binary applications and
(b) typically run in a single threaded co-operative multitasking execution model.

Key results. In the following sections, we study GS’s communication model and
derive a set of techniques to construct a keypair timing model (probability dis-
tribution of keypair intervals) for each pair of keystroke from unencrypted GS
traffic. We conducted a user study on 11 participants to collect their keystrokes
and timings. Results show that if at least 20 samples of each keypair are avail-
able, the recovered mean timing differs from the actual mean by at most 20%.
However, the recovered standard deviation is less accurate: with at least 40 sam-
ples, the maximum difference is 46%. The accuracy improves with the increase
in the pool of samples indicating the effectiveness of long term attacks.

2 Communication Model

Fig. 2. Setup for black-box and white-box testing

Our approach to study the GS
communication model is based
on both black-box testing and
white-box analysis. We used
the setup of Figure 2. The client
under testing connects to the
Google servers in the back-end
through a proxy server. For
blackbox testing, we captured
Google query packets using a
packet sniffer [13] installed on
the client. For whitebox testing,
we hosted a copy1 of the Google
HTML and JS files on another
web server and selectively redirect the proxy server [14] to fetch our copy rather
than from the actual Google server. This allows us to make arbitrary changes to
the scripts for our testing.
1 Retrieved Apr 2012.
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2.1 Approach

Black-box analysis allowed the quick identification of traffic patterns and content.
For example, we quickly found that different network traffic patterns are possible
even for the same query (see Table 1). On the other hand, when we analysed
the timings of the keypress and the packets, we encountered significant difficulty
correlating them. For example, after the user pressed a key, the corresponding
HTTP request can be observed on the network from between approximately 3
ms to over 100 ms later with 2 distinctive frequency peaks at around 7 ms and
45 ms. Whitebox analysis is therefore necessary.

Our approach is to first manipulate the obfuscated source code using the tool
JSBeautifier [15]. The decision to host a separate copy of the script files in Fig-
ure 2 allowed us to make arbitrary changes to the JS source code independently
of the Google servers. Next, we use the console logging feature of Firebug to
pinpoint the code that initiated the HTTP requests. This formed the starting
point for subsequent investigations, where we incrementally assign meaningful
symbols to the variables and functions through (a) monitored calls to standard
functions, and (b) selectively breaking execution and examining the call stack
and variables. Please note that our investigation focuses specifically on the tim-
ing aspects. Hence we did not deobfuscate all the script code involved in GS.
The rest of this section documents our findings.

2.2 Communication Model Obtained

JS uses an event driven execution model [16]. For GS, there are 3 classes of event
handlers of interest. Hpoll is a handler for polling events. The polling is setup
and removed when the query input box receives and loses focus respectively.
Although the specified polling interval is 10 ms, the actual firing interval fluctu-
ates. The reason is likely to be due to other events firing and executing, thereby
delaying the execution of this handler. Hui handles UI events, e.g., keydown,
keypress, keyup, etc. The same handler code fires for different events but with
different closure scope. The handler function for the keydown event, named Hkdui,
is installed during GS code initialization. The GS code includes a mechanism to
defer execution of a function. Hdefer handles the events which are deferred. The
2 key parts to this are the postMessage JS function and an array of deferred
functions (Arrdefer ). At load time, GS setups a message event handler. This
handler fires when a message is posted to it using postMessage. When fired,
it removes the first function from Arrdefer and executes it. If Arrdefer is not
empty, it posts a message to itself and exits. Any JS code deferring execution
calls a wrapper function defer which first pushes the function to defer onto the
bottom of Arrdefer and then post a message to Hdefer.

When a user presses and releases a key, JS fires four events in this order:
keydown, keypress, input, keyup. Under normal circumstances, Hkdui uses the
deferred execution mechanism to invokes a function named Hx to send out the
network traffic. However, it is also possible for Hpoll to run before Hkdui. In such a
case, Hpoll invokes Hx directly (without deferring execution) to send out the query.
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Regardless of the path taken, Hx is executed at most once for each keystroke.
The end result is a race (to execute Hx) between the synchronous mechanism
of Hpoll and the asynchronous mechanism of Hkdui, resulting in the introduction
of a variable delay. The race is won mostly by Hkdui. Another factor affecting the
execution delay is the number of task on each execution path. For example,
the first keypress for GS also updates the UI in preparation for not just the
suggestions of GS, but also the results of Google Instant. This additional code
increases the execution delay by approximately 6 times (∼45 ms).

Listing 1.
trace Hx

if xhrtimer not pending then
xhrm enter

· · ·
exit

end if
end trace

trace TimerEvent
Call xhrm

end trace

procedure xhrm
if unsent_query then

xhri enter
· · ·
send query to Google
· · ·

exit
timeout ← compute_timeout
create TimerEvent

end if
end procedure

A third factor affecting the delay is submis-
sion throttling [17]. Most search engines used
this technology to limit the amount of search
traffic to their website while the user is typ-
ing the query. In the case of GS, regardless
of whether Hpoll or Hkdui won the race, Hx is al-
ways invoked. The role of Hx is to send queries
and receive results from the Google servers.
Listing 1 shows how submission throttling is
implemented in GS when Hx is invoked. The
sending mechanism of GS uses a timer named
xhrtimer. This timer is initially cleared. When
Hx is invoked it checks this timer. If xhrtimer
is cleared, Hx calls a sub function xhrm to send
out the query immediately. Otherwise, it ex-
its without sending any HTTP traffic. When
xhrm runs, it sets up the timer xhrtimer to call
itself (xhrm) again after a timeout value. The
detailed computation of the timeout is out of

the scope of this paper, but on a fast network, this value is 100 ms. After this
timer is set, xhrm will not run again until the timer expires. Any keystrokes typed
during this time accumulate and are sent together in the same HTTP request
when the timer expires. If xhrm runs but does not find any unsent query (that is,
between the previous and current invocation of xhrm, the user did not press any
key), it does not set any new timer. xhrtimer therefore becomes cleared again. If a
new key is now pressed, xhrm will again send it out without delay. The described
process then repeats itself. The implication is that correlation between keystroke
and packet timing is poor whenever xhrm is in timer mode.

3 Recovery of Keypair Timing Model

Section 2 identifies the timeout mechanism and atypical execution path as major
noise contributors. Packet timings thus affected are considered unreliable. Fig-
ure 3 shows that if we discard the unreliable timing, the delay between pressing
of keystroke and sending of packet becomes significantly more consistent. (tks
and tpkt refer to the keystroke and packet timing respectively.) This allows the
recovery of the derived keypair timing model.
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Fig. 3. Noise model

For each keypair, the recov-
ery process involves (a) identi-
fying the corresponding packet-
pairs, (b) determining if each
packet timing is reliable, (c)
choosing packet-pairs where the
earlier timing is reliable, (d) fur-
ther dividing the chosen packet-
pairs into a set where the latter
packet timing is reliable and an-
other set where it is not, (e) com-
puting the mean and variance of

the packet-pair timing model and finally (f) applying a correction to the variance
to obtain the derived keypair timing model. This process requires an assump-
tion of normally distributed timing models which are independent. Prior work [4]
investigating keypair timing model found the normal distribution to be a rea-
sonable approximation. In step (d), the size of the first set (reliable latter packet
timing) is denoted by No. The size of the complementary set is denoted by Nu.
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Fig. 4. Different scenarios for the building of DTMkey
from TMpkt

In step (e), depending on
the values of No and Nu, there
can be 4 different scenarios,
3 of which are shown in fig-
ure 4. TMkey denotes the key-
pair timing model, TMpkt de-
notes the packet-pair timing
model, and DTMkey denotes the
derived keypair timing model,
which is an approximation of
TMkey obtained by applying a
variance correction to TMpkt.
In type 1 scenarios, Nu = 0.

The mean and variance are calculated directly from the observed intervals.
For type 2, Nu < No. The timeout translates to a cutoff time beyond which

certain intervals are not observed. The peak though is still visible. We first
estimate the median from Nu and the observable parts of the distribution. We
next obtain the mean which is equal to the median. We estimated the missing
part of the distribution by reflecting the observable part about the mean. From
the reconstructed distribution, we can calculate the variance.

For type 3, Nu ≥ No. The peak is not visible. Our aim is to fit a normal
distribution (with unknown mean x̄ and std. deviation s) based on the interval
observations on the right tail. Let l denote the cutoff time (timeout + a small
allowance). x̄, s, l, α are related by l = x̄+ αs, where α is a multiplier s.t. for a
standard normal distributed random variable X , Pr(X > α) = No/(No +Nu).
The curve fitting iterates over a possible list of values for x̄, and computes the
corresponding s. The values providing the best fit (least squares) is chosen.
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In type 4 scenarios, No = 0. The mean of the keypair timing is far less than
the timeout, resulting in no interval observations. Hence it is not plotted in
Figure 4. To recover the timing for a keypair such as c1 − c2 where ci denotes
a key pressed, we need to have the parameters of another 2 distributions: the
keypair c2 − c3 and the triplet c1 − c2 − c3. The latter 2 distributions would be
observable if there exists c3 such that c2 − c3 is much longer than the timeout.

Given two independent normally distributed random variables X and Y , the
random variable Z = X+Y is also normal [18] with mean z̄ = x̄+ȳ and standard
deviation sz =

√
s2x + s2y. The relation between c1 − c2, c2 − c3 and c1 − c2 − c3

is analogous to that of X , Y and Z. Therefore, if we let Z and Y represent the
distribution for c1− c2− c3 and c2− c3 respectively, we can obtain the mean and
standard deviation of the unobservable c1 − c2 from X .
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Fig. 5. Difference in the p.d.f. of TMkey compared to
the corresponding p.d.f. of TMpkt

In step (f) we need to ap-
ply a correction to the vari-
ance but not the mean. This
is because there is residual
noise even after accounting
for the timeout and atypical
execution path. This noise af-
fects both timing observations
of a packet-pair. It cancels
out for the interval mean, but
adds to the variance. Figure 5
shows this effect for a keypair.
To compute the required vari-
ance correction, we use a sim-

ple heuristic. A Monte Carlo simulation based on the model of Section 2 com-
putes the observed variance for a set of variances. The differences are stored in
a table and looked up whenever a correction is needed.

4 User Study

To verify the theory of Section 3, we conducted a user study. 11 participants
are asked to install a plugin on their browser which captures the keystroke tim-
ings of GS queries. The duration of the study ranges from 32 to 49 days. Users
are allowed to inspect and delete any sensitive entries in the capture log be-
fore submission. Towards the end of the study, users with too few queries were
given a chance to go through a Q&A worksheet using Google to find the an-
swers. This is so that they get more opportunities in using Google search. The
collected keystrokes are anonymised and post processed to retain only English
alphabets and the SPACE char. Queries with BACKSPACE are broken up. The
resulting logs are consolidated on a single machine running Ubuntu 11.10 (AMD
Athlon(tm) 64 X2 Dual Core Processor 4000+ 2110 MHz with 3 GB RAM). The
keystrokes in each query are injected programmatically using the uinput [19] in-
terface and the corresponding query packets are collected.
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Table 2. Statistics of user study. Q: total num-
ber of queries by user. KS: total keystrokes
typed. KP: total keypairs typed. TP: total 3
char sequence. KPobs: sum of No for all keypairs.
TPobs: sum of No for all triplets. Nsig : total
number of keypair/triplets for which No ≥ 10.
This is also the number of recovered p.d.f.

S/N Q KS KP TP KPobs TPobs Nsig

1 502 3114 2612 2110 642 487 6
2 421 2666 2245 1824 682 506 7
3 1206 6607 5401 4195 2447 1715 93
4 688 4243 3555 2867 601 403 6
5 593 3604 3011 2418 1368 993 34
6 774 4592 3818 3044 1752 1284 58
7 405 2517 2112 1707 733 561 8
8 696 4610 3914 3218 1181 893 29
9 327 2163 1836 1509 270 185 1
10 1041 6042 5001 3960 2359 1697 96
11 700 3964 3264 2564 1233 853 29

The outcome of the user study
is shown in Table 2. There is a
positive correlation between the
number of queries submitted and
the number of p.d.f. (last column)
recovered in DTMkey for each par-
ticipant. This suggests that long
term collection of queries would
recover far more p.d.f. than our
user study. The outcome of the
methods for type 1 to type 2
are shown in Figure 6. Relatively
fewer samples were collected for
type 3 and type 4 due to the
low probability of finding observa-
tions at the tail and finding both
triplet and keypair accounts. The
outcome for these methods are
omitted due to brevity of space.
Generally, the mean can be recov-

ered accurately although larger observations tend to result in more accuracy. The
variance, on the other hand, is less accurate, particularly for fewer observations.
Like the mean, however, the accuracy improves as the observations increases.
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Fig. 6. Recovery of p.d.f. from various types of packet observations

4.1 The Optimal Timeout

Given that the current timeout value of 100ms allows the derivation of DTMkey
(from TMpkt), we also investigated the possible countermeasures. These counter-
measures are equally applicable to any JS application with rich interactivity that
wishes to deny potential adversary the opportunity for UI events harvesting. We
conducted a Monte Carlo simulation using the set of keystroke data collected
from the user study. We varied the GS timeout and computed the simulated
packet timing based on the noise model and the findings of Section 2.
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Fig. 7. Variation of the total recovered keypair or
triplets for all users given a particular timeout
setting

Figure 7 shows the varia-
tion of the count of recov-
ered keypairs and triplets vs
the timeout. Choosing a time-
out figure of 200-250 ms elim-
inates most observations, but
the responsiveness is more
than halved. Given that in
Listing 1, xhrm exits timeout
mode whenever there is no
keystroke activity in the pre-
vious timeout cycle, an alter-
native is to increase the num-

ber of timeout cycles to 3 while keeping the timeout unchanged at 100 ms. This
eliminates all observable intervals without affecting the responsiveness.

5 Limitations

In our study, the keypair timing model is based on keydown-keydown intervals.
Many biometric authentication techniques use such intervals [10,11,5]. Our work
therefore affects such systems. However, biometric authentication is not limited
to just keydown-keydown metrics. Keydown-keyup, keyup-keydown and even
keypress pressure are examples of alternatives. For the first 2, active attacks
injecting malicious Javascript code can capture both keydown and keyup, but
this is not investigated in this paper. Keypress pressure however, cannot be
measured by Javascript applications and are therefore unaffected.

The keystroke injection part of the user study was done on a dedicated ma-
chine. We therefore did not model the additional execution delay that may result
if the machine is also running multiple compute intensive processes concurrently.

The description of GS [2] indicated that it may behave differently in different
geographical locations. We did not manage to isolate any geographically specific
code during our investigations. This is either due to our limitations or different
source code was delivered to different locations. Our findings therefore apply only
to geographical locations with similar settings as our evaluation environment.

6 Conclusions

In this paper, we investigated the recovery of personalized keystroke timing in-
formation using GS. We found that it is possible to construct a user’s typing
pattern from the timing of the queries sent over the network. This is of con-
cern because the availability of typing pattern is a prerequisite for (a) achieving
the best outcome in timing side channel attacks and (b) imitation attacks on
keystroke biometrics. It can also be used to identify users. This suggests that logs
recording network traffic of interactive Javascript applications should be consid-
ered confidential and handled accordingly. Otherwise, the operators of search
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engines as well as proxy server administrators can mine the typing pattern of
their users from the traffic logs. We suggest that designers consider alternative
options such as multiple timeout cycles to shut down the leak effectively.
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Abstract. In distance-bounding protocols, verifiers use a clock to mea-
sure the time elapsed in challenge-response rounds, thus upper-bounding
their distance to the prover. This should prevent man-in-the-middle
(MITM) relay attacks. Distance-bounding protocols may aim to prevent
several attacks, amongst which terrorist fraud, where a dishonest prover
helps the adversary to authenticate, but without passing data that al-
lows the adversary to later authenticate on its own. Two definitions of
terrorist-fraud resistance exist: a very strong notion due to Dürholz et
al. [6] (which we call SimTF security), and a weaker, fuzzier notion due to
Avoine et al. [1]. Recent work [7] indicates that the classical countermea-
sures to terrorist fraud, though intuitively sound, do not grant SimTF
security. Two questions are posed in [7]: (1) Is SimTF security achiev-
able? and (2) Can we find a definition of terrorist-fraud resistance which
both captures the intuition behind it and enables efficient constructions?

We answer both questions affirmatively. For (1) we show the first prov-
ably SimTF secure distance-bounding scheme in the literature, though
superior terrorist-fraud resistance comes here at the cost of security.
For (2) we provide a game-based definition for terrorist-fraud resistance
(called GameTF security) that captures the intuition suggested in [1], is
formalized in the style of [6], and is strong enough for practical appli-
cations. We also prove that the SimTF-insecure [7] Swiss-Knife protocol
is GameTF-secure. We argue that high-risk scenarios require a stronger
security level, closer to SimTF security. Our SimTF secure scheme is also
strSimTF secure.

1 Introduction

Authentication protocols, run between a prover and a verifier, allow the verifier
to either accept the prover as legitimate or reject it if it is illegitimate. Authen-
tication is used in e.g. public transport, Passive Keyless and Start (PKES) sys-
tems, and personal identification. Secure authentication schemes must prevent
impersonation attacks, i.e. the verifier must always reject illegitimate provers.
However, security models in authentication do not usually capture man-in-the-
middle (MITM) relay attacks, where an adversary authenticates by just forward-
ing data between the prover and verifier. Such attacks, called mafia fraud [4],
have been implemented in various application scenarios like Bluetooth [15,9],
smart- and RFID cards [5,10,13], e-Passports [12], e-voting [16], and PKES [8].

M. Jacobson et al. (Eds.): ACNS 2013, LNCS 7954, pp. 414–431, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Introduced in [3], distance bounding detects mafia fraud, or rather, the delay
caused by relays in the MITM adversary. Here the verifier uses a clock to upper-
bound its (communication) distance to the prover, by measuring the time elapsed
between sending a challenge and receiving the response. If the roundtrip time
is at most equal to a threshold tmax, the response is in time, presumably sent
by a prover in the verifier’s proximity. Thus, tmax denotes a maximum trusted
distance to the verifier, which can be a few millimeters, some centimeters, or
more. Time measurements are usually round-based; most protocols consist of
rounds (or phases [6]), which are either lazy (slow) —if the clock is not used—
or time-critical (fast) —if the clock measures time-of-flight. The digital-analog
system in [17] ensures that distance-bounding protocols can be implemented
in practice, detecting pure relays for up to 41 cm. Many distance-bounding
protocols are designed for resource-constrained devices, e.g. RFID tags.

In this paper we focus on one of the four main goals of distance-bounding
protocols, namely terrorist fraud resistance. Terrorist fraud is an attack where
the MITM adversary is helped by a dishonest prover to authenticate (but this
help should not allow the adversary to authenticate later). For example, simply
passing the secret key is prohibited, but revealing some secret information which
can be used in a single execution is admissible. Two previous frameworks [1,6]
define this attack differently. This controversy is unfortunately not unique in
the area of distance bounding, where, though the intuition behind the security
model has been known for decades, the formalization of it is still debatable. No
previous definition of terrorist-fraud resistance seems quite “right”, being either
too weak or too strong, depending on the (limitations of the) adversary’s power.
Essentially, there are two main model features which limit the adversary’s power:
its interaction with the prover (should it be just in slow, or also in fast phases?),
and the restriction on the prover do to help. Both existing frameworks [1,6] allow
the prover and adversary to interact only in lazy phases (however, we argue that
restriction is unnecessary and artificial). Furthermore, while [1] greatly restrict
the prover and dismiss most attacks (provers may only forward data that leaves
the secret key statistically hidden [2]), the model of [6] allows the prover to
forward almost any data, thus excluding very few attacks (the prover can even
send bits of the key if the adversary can use them more in the session where the
prover helps than in later sessions). We argue that, while the former model allows
very efficient constructions, it is too weak in the sense that it might not prevent
real attacks. Yet, the latter notion is too strong in the sense that it is not attained
by schemes employing classical (and intuitively effective) countermeasures to
terrorist fraud.1.

1 Concretely, the attack in [7] is aimed at the protocols of Reid et al. [18] and the
Swiss-Knife protocol [14]. In fact, slightly modified versions of these protocols are
used, since the circular dependency between the secret key and the time-critical
responses in the original schemes makes it hard to prove mafia and impersonation
resistance. In [7] a single instance of the secret key sk is replaced in each protocol by
another key sk∗. Yet, the terrorist attack in [7] works against the original, as well as
the modified schemes.
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Contributions. In this paper we answer the following questions, posed by [7]:

1. Can the definition of Dürholz et al. actually be achieved?
2. Can we “rightly” define terrorist-fraud resistance, such that we capture the

intuition and enable efficient constructions?

We mainly focus on (2), but we also answer question (1) affirmatively. We prove
that the challenging notion of [6] (which we call SimTF security, because it uses
a simulation-based definition) is achievable. Yet, in order to attain SimTF secu-
rity, our protocol (the first SimTF secure scheme in the literature) becomes more
vulnerable to other attacks. This may indicate that SimTF security cannot be
achieved efficiently. Our scheme modifies the Swiss-Knife protocol [14], introduc-
ing a “back door” for the simulator, which can authenticate either by learning
the long-term secret (from the adversary’s state) or by luck (the verifier accepts
an incorrect authentication string with some probability). Our scheme inherits
the mafia and distance-fraud resistance of the Swiss-Knife protocol, which many
protocols lack [7], but due to the “back door” for proving SimTF with decreased
security levels.

In answer to (2) we propose a sufficiently strong, game-based notion of terrorist-
fraud resistance, called GameTF-security. We start from the intuition of [1], but
formalize it as in [6], striving towards a unified security framework. A proto-
col is GameTF-secure if any adversary authenticating with the prover’s help can
authenticate unaided with better-than-mafia-fraud probability. This notion also
captures the intuition of terrorist-fraud resistance: it requires that the infor-
mation gained from the prover during the terrorist attack (which constitutes
the terrorist adversary’s state) will not lead, once the prover stops helping, to
an authentication probability higher than for a mafia adversary. Note that the
mafia-fraud success probability is a natural lower bound for the unaided adver-
sary, since, once the prover stops helping, the adversary finds itself exactly in
the MITM mafia scenario, with only its state to give it any advantage. This
notion captures the exact intuition behind terrorist fraud and indeed, we can
prove that the SimTF insecure, modified Swiss-Knife protocol [7], is GameTF
secure (as intuition indicates it should be).

Our GameTF notion is strong enough for, e.g., public transport ticketing mech-
anisms. Yet, terrorist fraud affects high-security applications like e-Passports and
e-voting much more (see discussion in Section 5); thus stronger definitions are
needed. We propose a natural extension of SimTF-security, where adversaries
also access the prover online, during the authentication attempt (excepting
relay scheduling, of course). Our strong simulation-based terrorist-fraud model
(strSimTF) is stronger than SimTF security, but also achievable: in fact, our
SimTF-secure scheme is also strSimTF-secure.

For completeness, we also give a full security diagram featuring our notions
and SimTF security. Interestingly, our strSimTF and GameTFmodels are indepen-
dent of each other; however, a scheme that is strSimTF-secure and mafia-fraud
resistant is also GameTF-secure. We also show that, though our GameTF defini-
tion resembles the notion in [1], it does not imply mafia-fraud resistance (as [1]
argues). The full diagram appears in Fig. 3.
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2 Preliminaries

We first review the terminology of [6], particularly terrorist fraud (SimTF) resis-
tance. The setting we consider is that of a single prover T and a single verifier
R, sharing a secret key sk generated by an algorithm Kg.2 In the RFID setting,
the provers are RFID tags and the verifier is a reader ; this is the terminology
used in [6]. The reader has a clock and stores sk in an internal database. The
interaction between T and R, i.e. the protocol, is run in phases, which are either
time-critical (if R measures roundtrip times, matching them against a threshold
tmax), or lazy (if the clock is not used). The following timing parameters are
considered: the number Nc of time-critical phases; the threshold roundtrip time
tmax; the number Tmax of time-critical phases that may exceed tmax; and the
number Emax of time-critical phases with erroneous responses3.

In [6], T and R interact in sessions, indexed by session id’s sid and associated
with transcripts containing all the exchanged messages in sid. For mafia and
terrorist fraud, sessions are run between 2 out of these 3 parties: the tag T , the
reader R, and a MITM adversary A. In reader-tag sessions, A observes honest
prover-verifier interaction. In adversary-tag sessions, A interacts with the honest
T , impersonating a reader. In reader-adversary sessions, A impersonates the
prover to R. In reader-tag sessions, A may not interfere with the protocol run;
to run a MITM attack, A opens parallel reader-adversary and adversary-tag
sessions. We quantify the adversary in terms of its runtime t and the number of
sessions it runs, i.e. qobs reader-tag, qR reader-adversary, and qT adversary-tag
sessions. The advantage ε of A is its success probability (see below).

As in [6], we denote messages i to j exchanged in session sid by Πsid[i . . . j],
whileΠsid[1 . . . ] denotes all the messages exchanged in sid. An abstract, universal
clock variable clock (distinct from the reader’s local clock) keeps track of the
order in which messages are sent. The integer clock(sid, k) is assigned to the
k-th protocol message, which is delivered in session sid to an honest party. This
party’s reply is associated with clock(sid, k + 1) = clock(sid, k) + 1 (i.e. clock is
augmented by 1). If the adversary opens two parallel sessions, then clock(sid, k) <
clock(sid∗, k) if A sends the k-th message in session sid∗ after the k-th message
in session sid.

Mafia fraud. In [6], each attack is defined by restricting the adversary’s inter-
actions to a number of allowed tainted phases. In mafia fraud, a phase is tainted
if pure relaying takes place (in reality this is detected by the clock). The adver-
sary can taint at most Tmax rounds, thus accounting for expected transmission
delays; in practice, Tmax should be very low. More formally [6]:

2 Though distance bounding is usually run in a symmetric setting, our results extend
to public-key settings too.

3 The values Tmax and Emax are not classical parameters in distance bounding, but
were introduced in [6] to account for unreliable time-critical transmissions. Also
note that Dürholz et al. use a misnomer (also often found in the literature) in talking
about identification rather than authentication schemes: indeed, the protocols output
an accept/reject bit, not an identity.
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Definition 1 (Tainted Time-Critical Phase, [6]). A time-critical phase
Πsid[k . . . k + 2� − 1] = (mk, . . . ,mk+2�−1) for k, � ≥ 1 of a reader-adversary
session sid, with the k-th message being received by the adversary, is tainted by
the phase Πsid∗ [k . . . k+2�− 1] = (m∗

k, . . . ,m
∗
k+2�−1) of an adversary-tag session

sid∗ if for all i = 0, 1, . . . , �− 1 we have:

(mk, . . . ,mk+2�−1) = (m∗
k, . . . ,m

∗
k+2�−1),

clock(sid, k + 2i) < clock(sid∗, k + 2i),

and clock(sid, k + 2i+ 1) > clock(sid∗, k + 2i+ 1).

Insight: pure relay. The definition excludes only pure relay: exact messages
sent in the same order between sessions; thus an adversary who receives from R
some input challenge bit b is allowed to flip this bit and relay it to the prover,
then relaying the response. In practice, this method can be used against protocols
where the computation for one input bit (say b = 1) is easier than for the
other; in this case, A can fool the clock by using the faster computation. Since
communication is usually very fast in distance bounding, computation delays are
very significant. Dürholz et al. restrict mafia adversaries only minimally: they
assume that the reader’s clock only detects same-message relays between parties.

Definition 2 (Mafia Fraud Resistance). For a distance-bounding authen-
tication scheme ID with parameters (tmax, Tmax, Emax, Nc), a (t, qR, qT , qobs)-
mafia-fraud adversary A wins against ID if the verifier accepts in a reader-
adversary session sid such that any adversary-tag session sid∗ taints at most
Tmax time-critical phases of sid. Let Advmafia

ID (A) denote the probability that A
wins.

We say ID is mafia-fraud resistant if any efficient mafia-fraud adversary has at
most a negligible advantage to win.

The SimTF notion. In the terrorist fraud resistance notion in [6] (here called
SimTF-security), the adversary may not interact with the prover during time-
critical phases at all. This is reflected in the definition below, which states that
if A and the malicious T ′ interact, the phase is tainted.

Definition 3 (Tainted Time-Critical Phase (SimTF)). A time-critical phase
Πsid[k . . . k+2�− 1] = (mk, . . . ,mk+2�−1) for k, � ≥ 1 of a reader-adversary ses-
sion sid, with the k-th message being received by A, is tainted if there exists a
session sid′ between A and T ′ such that, for some i,

clock(sid, k) < clock(sid′, i) < clock(sid, k + 2�− 1).

SimTF security is defined in terms of a simulator: once an adversary A authenti-
cates in a reader-adversary session, its transcripts and randomness (i.e. the view
viewA of A) are passed to a simulator S which must authenticate, by only using
viewA, with at least as much probability. Thus, if the adversary requests (a part
of) the secret key, this information is passed on to the simulator.
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Definition 4 (SimTF security, [6]). Let ID be an authentication scheme for
parameters (tmax, Tmax, Emax, Nc). Let A be a (t, qR, q′T )-SimTF adversary, S be
an algorithm with runtime tS , and T ′ be an algorithm with runtime t′. Let

AdvterrorID (A,S, T ′) = pA − pS

where pA is the probability that R accepts in one of the qR reader-adversary
sessions sid such that at most Tmax time-critical phases of sid are tainted, and pS
is the probability that, given viewA, S authenticates to R in one of qR subsequent
executions.

Insight: SimTF. In [1], the active adversary succeeds if: it authenticates with
the prover’s aid; and it authenticates (at all) without it. In fact, the prover’s
secret must be information-theoretically hidden. This model excludes nearly any
information-exchange with the adversary, even if the data does not directly help
authentication. As most attacks are ruled out, this definition is rather weak.

By contrast, SimTF security focuses on exactly how much the prover’s in-
formation helps the simulator. Excluded are only attacks where prover data,
contained in A’s state, is directly used by S. Thus, even if the simulator’s au-
thentication probability is significant, but not as large as the adversary’s, the
attack is valid. This definition is very broad, enabling syntactic attacks like the
one in [7] against the scheme of Reid et al.

3 Flavors of Terrorist Fraud

In this section, we introduce two possible definitions of terrorist-fraud resistance.
The first (called GameTF security, see Section 3.1) is a game-based definition cap-
turing the intuition behind a basic terrorist-fraud attack in a manner compatible
with the model of Dürholz et al. [6]. This notion is sufficient for many practical
applications, e.g. logistics or ticketing in public transport. Our second notion
(strSimTF security, see Section 3.2) extends, in a natural way, the simulation-
based SimTF definition in [6]; this definition is extremely strong, and should be
used only in high-risk applications like e-Passports or e-voting. In what follows
we briefly explain our motivations for introducing the two notions, referring to
previous models of terrorist-fraud resistance, and sketching our own approach
towards defining terrorist-fraud attacks.

We discuss mainly two modeling aspects in defining terrorist fraud: (1) the
adversary-prover interaction; and (2) the restriction on how much a prover can
help. Both terrorist-fraud models in the literature [1,6] seem to agree on how
to handle (1), but fundamentally disagree on how to define (2). We first discuss
point (2). In this matter, Avoine et al. [1] demand that the prover’s aid gives the
adversary “no further advantage” to authenticate, requiring statistically-hiding
properties for the prover’s secret key. As discussed in Section 1 this restricts the
prover very much, and thus attacks where partial key-related information is given
are ruled out. By contrast, SimTF security [6] only rules out attacks where the
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information received from the prover can be used as effectively during the prover-
aided session and later. We agree with the intuition of Avoine et al. that the
adversary should have no “further advantage”, but note that the behavior of the
adversary after the prover has stopped helping it is that of a mafia fraud attacker
who also retains some state information, i.e. what the prover has forwarded it
before. Thus, our GameTF notion considers a pair of adversaries: a first, terrorist
adversary (aided by the prover); and a second, mafia-fraud adversary sharing
state with the first adversary.

We also re-consider the traditional adversary-prover interaction restriction to
lazy phases (point (1) above), which seems to assume that time-critical interac-
tions would be detected by the verifier’s clock. We disagree: the clock can only
detect queries to the prover if the messages have a relay scheduling, i.e. a MITM
adversary receives input from the reader, then sends input to the tag; upon re-
ceiving output from the tag, it sends some output (the same, or different) to
the reader. This is not the same as pure relay as defined for mafia fraud, see
Definition 1, since in pure relay, the input and output messages must be the
same. Thus, we may allow such adversary-prover interactions. We discuss also
why we should allow them; and why we cannot allow the adversary even more
freedom, e.g. by using Definition 1.

Why we should allow it. Consider a distance-bounding protocol where the
dishonest T ′ and R share, at the end of the lazy phases, pseudo-random strings
T 0, T 1, such that T 0 ⊕ T 1 = sk∗, where sk∗ is a secret key (a part of sk or an
independent key). This is how terrorist fraud resistance is usually achieved.

Now assume that R generates challenges as follows: it first draws a random
c1 for the first round, then runs a PRF (with key sk) on input c1 to generate a
string s with |s| ≥ Nc. Then R sets challenges c2, . . . cNc for the other rounds
bitwise to the bits of s. That is, c2 is set to the most significant bit of s, c3, to the
following bit, etc. Such a protocol does not exist in the literature; nevertheless,
our model should rule out such dependency of challenges.

In each time-critical phase of the protocol, R sends a challenge bit ci and
expects a bit from T ci (i.e. either T 0 or T 1). At the end of the lazy phases, T ′

has computed responses T 0 and T 1. When the terrorist adversary A receives
challenge c1 from R, it sends a random bit r to R, then forwards c1 to T ′.
Now T ′ computes c2, . . . cNc and sends the appropriate responses to A (without
revealing any information about sk∗). The adversary wins with probability 1

2
(the probability that r = T c1).

Why this is all we can do. Mafia fraud adversaries may use relay scheduling
if at least one relayed message is not the exact one A received from the honest
party. We cannot allow this for terrorist fraud, since the dishonest prover may
adapt its response in order to bypass our definition. For instance, instead of
sending the correct response r for each round, it just sends 1 ⊕ r, that is, the
flipped bit. Then A just flips the bit back and sends it to the verifier.

Consequently, we redefine tainted phases as follows:
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Definition 5 (Tainted Time-Critical Phase (strSimTF)). A time-critical
phase Πsid[k . . . k+2�−1] = (mk, . . . ,mk+2�−1) for k, � ≥ 1 of a reader-adversary
session sid, with the k-th message being received by the adversary, is tainted if
there exists an adversary-tag session sid∗ and messages (m∗

k, . . . ,m
∗
k+2�−1) such

that for all i = 0, 1, . . . , �− 1 we have:

clock(sid, k + 2i) < clock(sid∗, k + 2i),

and clock(sid, k + 2i+ 1) > clock(sid∗, k + 2i+ 1).

3.1 GameTF Security

Our game-based terrorist fraud resistance GameTF follows the intuition of [1].
The key difference between this and SimTF security is that GameTF security
rules out attacks if the attacker gains any advantage to authenticate later (even
if this advantage is smaller than the adversary’s success probability). Thus, we
match the unaided adversary’s success against a MITM attack (mafia fraud).

We consider a simulator-free two-step game, with two adversaries A and A∗

sharing view viewA, as defined in the SimTF security model.4 Now A can interact
with the dishonest T ′ during lazy and time-critical phases as described above
(we use the notion of tainted phases in Definition 5). The second adversary A∗

(sharing state, or view, with A) runs a mafia fraud interaction with R in the
presence of the prover (who is this time honest). Thus, A∗ models the adversary
after the prover stops helping: A∗ must authenticate in a MITM attack, using
viewA. In SimTF security, the simulator is passive and just uses viewA to au-
thenticate; however, in GameTF, A∗ runs an active mafia-fraud interaction and
uses viewA. We say that A is helpful to A∗ if A∗ authenticates with better than
mafia-fraud success probability (i.e. viewA shouldn’t help A∗ at all).

We sketch the differences between SimTF and GameTF security in Fig. 1. Also
note that in SimTF security, A queries T ′ in at most Tmax time-critical phases
(tainting them). However, the GameTF adversary A may query T ′ in each time-
critical phase, tainting it only if it uses relay scheduling.

Of A and A∗, the former is the terrorist adversary. Its attack is invalid if
there exists A∗ such that A is helpful to A∗, i.e. we rule out attacks where A
learns information useful for later authentication. Schemes are GameTF secure
if every terrorist adversary A either (i) wins with negligible probability; or (ii)
there exists an adversary A∗ to which A is helpful. Let A run in time t, using
qobs reader-tag, qR resp. reader-adversary, and qT ′ adversary-tag sessions —the
latter subject to Definition 5; its success probability is denoted ε.

When A stops, it forwards viewA to A∗. Then A∗ runs a mafia-fraud inter-
action with T (we omit the apostrophe as T is now honest). W.l.o.g., let A∗

run in time t∗ ≤ 3t (A∗ runs A at most twice internally, with the same queries
as A), and let A∗ run at most qobs reader-tag, qR reader-adversary, and qR
adversary-tag sessions (since A’s queries to T ′ deviate from protocol, we give
A∗ one adversary-tag session for each reader-adversary session). Let A∗ win
w.p. ε∗. We now define helpful terrorist adversaries and GameTF security.

4 Note that any other state information is computable from viewA, for higher runtimes.
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R A T ′ R A∗ T ′

lazy←−−−−−− phase−−−−−−→ lazy←−−−−−− phase−−−−−−→ lazy←−−−−−− phase−−−−−−→ lazy←−−−−−− phase−−−−−−→
time-crit.←−−−−−− phase−−−−−−→ time-crit.←−−−−−− phase−−−−−−→ time-crit.←−−−−−− phase−−−−−−→

Win w.p. PA−−−−−−−−−−−−−→ Win w.p. ε−−−−−−−−−−−−−→
⇓ ⇓

viewA viewA
⇓ ⇓

R S R A∗ T
←−−−−−−−−−−−−→ ←−−−−−−−−−−−−→ ←−−−−−−−−−−−−→

Win w.p. PS−−−−−−−−−−−−−→ Win w.p. ε∗−−−−−−−−−−−−−→

SimTF Security: GameTF Security:

PS ≥ PA ε non-negl. or ε∗ > Advmafia
ID

Fig. 1. Simulation and game-based security models

Definition 6. For an authentication scheme ID with parameters (tmax, Tmax,
Emax, Nc), let A be a (t, qobs, qR, qT ′) adversary running a strSimTF interaction
with R and T ′, and let st = viewA denote its state. We say that A is helpful
to an adversary A∗ with input st, runtime at most 3t, running at most qobs, qR,
and qT = qR sessions in a mafia-fraud interaction with R and T , and winning
with probability ε∗ (taken over viewA and the coins of A∗) if:

ε∗ > Advmafia
ID ,

where Advmafia
ID denotes the mafia fraud resistance of ID for a (t, qobs, qR, qT )-

mafia adversary.

Definition 7 (GameTF Security). A distance-bounding authentication scheme
ID with parameters (tmax, Tmax, Emax, Nc) is (t, qobs, qR, qT ′ , ε)-GameTF secure
if for all (t, qobs, qR, qT ′) adversaries A running a strSimTF interaction, one of
the following statements hold:

– The probability that A wins is upper bounded by ε;
– There exists an adversary A∗ such that A is helpful to A∗ as defined above.

A scheme ID is GameTF secure if it is (t, qobs, qR, qT ′ , ε)-GameTF secure for
negligible ε.

The Swiss-Knife protocol. This section concerns the Swiss-Knife protocol
of [14], modified as in [7], which we depict in Fig. 2. We use the modified version
since it is mafia-fraud resistant, noting that both the original and the modified
versions are SimTF-insecure [7]. Despite the attack of [6], however, the scheme
prevents known terrorist attacks. In fact, we can prove its GameTF-security,
confirming intuition; in particular, the syntactic attack in [7] is ruled out because
the prover’s help gives the adversary a significant advantage. For our GameTF
proof, we use the scheme’s mafia fraud resistance. In the protocol, PRF denotes a
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pseudorandom function, IDR and IDT are reader and tag identifiers, and const
is a publicly known constant. The difference to the original scheme is the use of
an independent key sk∗ instead of re-using sk.

R(sk, sk∗, IDR) T (sk, sk∗, IDT )
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

First Lazy Phase

pick NR ← {0, 1}∗ pick NT ← {0, 1}∗
NR−−−−−−−−−−−−−−→

a ← PRF(sk, const||NR||NT )
NT←−−−−−−−−−−−−−−

T 0||T 1 ← a||(a⊕ sk∗)

Time-Critical Phases
for i = 1, . . . , Nc

pick Ri ← {0, 1}
Clock: Start

Ri−−−−−−−−−−−−−−→

TRi
i←−−−−−−−−−−−−−−

Clock: Stop, store TRi
i ,Δt

Second Lazy Phase

V ← PRF(sk, R1|| . . . ||RNc ||IDT ||NR||NT )
V,R1, . . . , RNc←−−−−−−−−−−−−−−

Check ID in database
Compute T 0, T 1

Compute: errR = |{| i : faulty Ri}
errT = |{| i : correct Ri ∧ faulty Ti}
errt = |{| i : correct Ri ∧Δt > tmax}
If errR + errT + errt ≥ T , Reject.

W ← PRF(NT )
W−−−−−−−−−−−−−−→

Check W .

Fig. 2. The Modified Swiss-Knife protocol of [7]

Proposition 1 (GameTF Security). Let ID be the protocol in Fig. 2 with
parameters (tmax, Nc). This scheme is (t, qobs, qR, qT ′ , ε)-GameTF secure, for ε ≥
Advmafia

ID .

Proof. Assume towards contradiction that the scheme is not (t, qobs, qR, qT ′ , ε)-
GameTF resistant. Then there exists a (t, qobs, qR, qT ′) adversary A such that:
(i) A wins with probability ε > Advmafia

ID ; and (ii) for all (3t, qobs, qR, qR)-
adversaries A∗, initialized with viewA, running a mafia fraud interaction with R
and T , the success probability ε∗ of A∗ is such that ε∗ ≥ Advmafia

ID .
We construct, for each A as in (i) and (ii), an A∗ with input viewA, winning

in the attack above with probability ε∗ ≥ ε. Thus, if A wins w.p. ε > Advmafia
ID

(as in (i)), our A∗ follows the specifications of Definition 6 and wins w.p. ε∗ =
ε > Advmafia

ID (contradicting point (ii)). Thus, an adversary A for which points
(i) and (ii) both hold does not exist.
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We describe A∗. For each session A runs with R, A∗ runs parallel sessions
with R and resp. T , relaying the lazy phase and running time-critical phases as
follows. In the verifier-adversary session sid, A∗ runs A internally, branching out
in two executions, so that: if A taints a phase, so does A∗ (both succeed w.p. 1
and have 1 less phase to taint); if A refuses to respond to challenge αi =: α,
then A∗ uses a Go-Early strategy (see Proposition 3), querying T with challenge
ᾱ = α⊕1 (both A and A∗ know the same response), and A∗ guesses the response
if queried with challenge α in session sid: this gives A and A∗ equal probability
to win; finally, if A forwards responses r0 (for a 0 challenge) and r1 (for a 1
challenge) for this round, A∗ uses the Go-Early strategy, challenging T with
α ∈ {0, 1}, and receiving Rα

i . Then A∗ sets Rᾱ
i = Rα

i ⊕ r0 ⊕ r1; given challenge
c ∈ {0, 1} in sid, A∗ responds with Rc

i . There are four cases:

– Both values r0 and r1 are correct. Then both A and A∗ win w.p. 1.
– Both r0 and r1 are incorrect. Now A loses the phase and A∗ wins w.p. 1.
– Either r0 or r1 is incorrect. Now A wins the round w.p. 1

2 . As A∗ runs the
Go-Early strategy for challenge α ∈ {0, 1}, it knows the correct Rα

i , but the
wrong Rᾱ

i (as r0⊕ r1 is incorrect), and wins the phase w.p. 1
2 . If they answer

wrongly, both adversaries subtract 1 from Emax.

Thus, A∗ wins with at least as high probability as A in each time-critical phase.
Thus,A’s success probability ε equals that ofA∗, i.e. ε∗. Furthermore, the param-
eters ofA∗ are as required. Now if there exists an adversaryA with ε > Advmafia

ID ,
then A∗ succeeds with probability ε∗ > Advmafia

ID . Thus, A is helpful to A∗, con-
tradicting our assumption. Since the scheme is mafia fraud resistant, it is also
GameTF secure. ��

3.2 strSimTF Security

Terrorist fraud is a very strong attack. If the incentive is high (e.g. breaking
e-Passport security), then dishonest provers may be willing to forward some
secret information to ensure the adversary’s success. However, SimTF security
(while strong) restricts the adversary unnecessarily by not allowing it to query
the prover in time-critical rounds.

We obtain our strSimTF notion by simply switching the tainted-phase defini-
tion from Definition 3 to Definition 5, and then use Definition 4. The strSimTF
adversary is stronger: we show in Theorem 1 that there exist SimTF-secure
schemes that are strSimTF-insecure. We also show in Section 4 that strSimTF se-
curity is achievable; this is a non-trivial statement, since the recent results of [7]
cast a doubt whether any existing protocol is provably SimTF-secure (they are
thus also strSimTF-insecure). Our construction relies on the Swiss-Knife proto-
col, but we introduce a back door for the simulator to authenticate.

3.3 Relating the Notions

Our full security diagram in Fig. 3 fully relates the notions. Due to space reasons,
we only sketch the proofs in the Appendix.
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Theorem 1 (Relations between notions). SimTF, strSimTF, GameTF secu-
rity, and mafia-fraud resistance are related as in Fig. 3. Arrows between notions
indicate that security against one notion implies security against the other.

Fig. 3. Full security diagram. The “+” sign beside (7) indicates property composition.

4 Terrorist Fraud Resistant Construction

4.1 The Protocol

Our SimTF- and strSimTF-secure protocol relies on the (modified) Swiss-Knife
protocol in Fig. 2, which thwarts MITM attacks by a second authentication
phase. We make the following changes: (1) we add a bit to the authentication
string, now denoted 0||I in Fig. 4 (an honest prover always sends 0||I, but by
sending 1||I, a dishonest prover or an adversary may switch the flag a for R, see
the following point); (2) we add a flag a for R denoting whether the protocol
runs normally (more or less as in the Swiss-Knife protocol) or exceptionally,
such that during the time-critical phases, the verifier just expects T to echo the
challenges (also see below). In our proof the simulator will try to make R run
the protocol exceptionally, thus bypassing authentication.

Now, if the prover’s first protocol response is a string of the form 1||I,NT , R
accepts 1||I as valid lazy authentication (continuing the protocol) with probabil-
ity min{1, 2−#1(I⊕sk′)+Tmax+Emax}; in this case the flag a is set to 1. We denote
by #1(I⊕ sk′) the Hamming distance between I and sk′; thus, if the first bit is a
1, the rest of the string I should be close to sk′ (an adversary can’t just receive
an honest 0||I and flip the first bit). The probability is tailored to fit the SimTF
definition, where the simulator recovers some bits of sk′ from a successful ad-
versary; the bound also accounts for A’s tainted and erroneous-response rounds
(see the SimTF proof). The flag a and our second authentication method (using
1||I responses, with I close to sk′) are artifices enabling us to prove SimTF and
resp. strSimTF security. Once the flag is flipped, any party in R’s proximity can
authenticate, since the reader expects T to just echo the time-critical challenges.
However, mafia fraud attackers cannot make use of this, as honest provers never
send 1||sk′ (but rather a string 0||I, where I is output by PRF) —for mafia
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and impersonation security we only lose a term qR · 2−(2−log2 3)Nc+Tmax+Emax ,
accounting for the probability of guessing a close-enough authentication string.

For the second lazy authentication phase, T runs a different PRF than before
(namely, F ) on the session transcript, denoted τID. In Simulator mode (i.e. if
a = 1), the string P is not checked. See the full protocol in Fig. 4.

R(sk, sk′) T (sk, sk′)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lazy Phase
pick NR ← {0, 1}∗ pick NT ← {0, 1}∗

NR−−−−−−−−−−−−−−→
let I ||R0 ← PRF(sk, NR||NT )

let R1 = R0 ⊕ sk′
0||I,NT←−−−−−−−−−−−−−−

let I ||R0 ← PRF(sk, NR||NT )
R1 ← R0 ⊕ sk′

if receiving 0||I , check I

(else, if receiving 1||I then
accept invalid I with probability

min{1, 2−#1(I⊕sk′)+Tmax+Emax}
and then set a = 1, else a = 0)

If reject, then halt.
set cnt := 0, err := 0

pick α ← {0, 1}|sk′|
Time-Critical Phases

for i = 1, . . . , Nc

Clock: Start
αi−−−−−−−−−−−−−−→
Rαi

i←−−−−−−−−−−−−−−
Clock: Stop, output Δti

set err ← err + 1 if Rαi
i does not match

(for a = 1 also accept αi as valid answer)

set cnt ← cnt + 1 if Δti > tmax

end of time-critical phase

Final Authentication

Compute P ← F (sk, τID)
P←−−−−−−−

output b = 1 if: cnt ≤ Tmax; err ≤ Emax; and ((a = 1) ∨ (P verifies)); Else output b = 0

Fig. 4. SimTF secure distance-bounding protocol

4.2 Security

Here we prove our scheme SimTF- and strSimTF-secure, under the assumption
that reader-adversary sessions are executed sequentially. Note that not every
SimTF-secure scheme is also strSimTF-secure, see also Section 3.3. We also state
the scheme’s full distance-bounding properties, but omit the proofs for space
reasons.
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Theorem 2 (SimTF Security). Let ID be the distance-bounding authentication
scheme in Fig. 4 with parameters (tmax, Tmax, Emax, Nc). For any (t, qR, qT ′)-
SimTF adversary A against the scheme, mounting a sequential attack, there ex-
ists a tS-simulator S with tS = 2t+O(nqR) such that we have

AdvSimTF
ID (A,S, T ) ≤ 0.

Proof. We describe the simulator S. Given viewA, including A’s randomness,
S internally runs A stepwise with viewA, repeating the same strategy for each
of its qR sessions sid(as many sessions as A). Namely, S checks if A sends 1||I
and succeeds; if so, S sets sk′′ = I for sid. Else, if A uses 0||I, the simulator
constructs sk′′ as follows: each time A expects αi in the next time-critical phase,
S branches into two executions, once sending α0

i = 0 and the other time α1
i = 1

to A. It waits for A to answer in both branches, or query T ′ (tainting a branch).
As we consider sequential executions only, there are no other options. If A taints
or refuses one query, S picks sk′′i at random; else it sets sk′′i = R0

i ⊕ R1
i . The

simulator returns to its main execution and resumes the simulation with the
correct αi. When A stops, S has predictions sk′′i for each bit of sk′i. If A succeeds
in some sid with 0||C, then there are four cases for each guessed bit sk′′i :

– The adversary taints the phase or refuses to answer both challenges. Then S’s
guessing strategy is good: by comparing the term #1(I ⊕ sk′)−Tmax−Emax

(i.e. the number of bits S needs to predict) to the number of phases A needs
to pass, we see that S gets a “wild card” for each of the at most Tmax tainted
phases. If A taints the phase in both branches, it succeeds for one round;
however S then “gains” 1.5 bits by deducting one wild card off Tmax and
guessing a bit of sk′ with probability 1

2 . Thus S has an advantage over A. If,
however, A taints exactly one branch and always responds correctly in the
other (it always wins the round), then S gets half a bit from sk′i correctly
(for the untainted branch, which occurs w.p. 1

2 ), and another half a bit from
the tainted branch (A cannot taint another round later). On average S gets
thus as many bits as is A’s success probability.

– If A returns correct R0
i , R

1
i , then sk′′i = sk′i, A wins the round, and S gains

a bit.

– Analogously, sk′′i = sk′i if both replies are incorrect (A fails here).

– If exactly one of R0
i and R1

i is correct, then sk′′i is certainly incorrect. But
then A too fails the phase with probability 1

2 . The reasoning from the first
case for Tmax applies to Emax.

Accounting for at most Tmax+Emax tainted and erroneous phases, A authen-
ticates with probability at most 2−#1(sk

′′⊕sk′)+Tmax+Emax . By using sk′′, S also
authenticates with the same probability. Also, if S reuses sk′′ = I for adversary
executions with 1||I, it succeeds with the same probability as A. ��

Proposition 2. Let ID be the protocol in Fig. 4 with parameters (tmax, Tmax,
Emax, Nc). For any (t, qR, qT ′)-strSimTF adversary A against ID, mounting a
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sequential attack, there exists a tS-simulator S with tS = 2t+O(nqR) such that
for any T ′ running in time tT ′

AdvterrorID (A,S, T ) ≤ 0.

Proof. We extend our SimTF proof to account for time-critical queries to T ′, also
for sequential executions. We change S as follows: if A does not interact with T ′

during time-critical phases, the simulator is the same. If A does query T ′, for
each time-critical phase where A interacts with T ′, the simulator branches the
execution for both challenges. If A refuses to forward one response or taints the
phase (with relay scheduling), S guesses the bit in sk′′ as before.

The old proof still stands; indeed, if the phase is not tainted by relaying, then
either A queries T ′ before challenge αi is sent, or T ′ responds after A has replied
to R in this phase. In the former case, T ′ does not know the true challenge, as
in the SimTF scenario. In the latter case, the prover’s response does not help
A, as the responses are pseudorandom and independent of each other, though it
may help the simulator instead (since viewA contains the correct response). ��
Proposition 3 (Mafia Fraud Resistance). Let ID be the scheme in Figure 4
with parameters (tmax, Tmax, Emax, Nc). For any (t, qR, qT , qobs)-mafia-fraud ad-
versary A against the scheme there exist: a (t′, q′)-distinguisher A′ against PRF,
a (t′′, q′′)-distinguisher A′′ against F , and a (t′′′, q′′′)-distinguisher A′′′ (where
t′, t′′, t′′′ = t+O(n) and q′, q′′, q′′′ = qR + qT + qobs) such that:

Advmafia
ID (A) ≤ qR

(
1
2

)Nc−(Tmax+Emax)
+

(
qR + qobs

2

)
· 2−(|NR|+�Nc

2 �−Tmax−Emax)

+

(
qT + qobs

2

)
· 2−(|NT |+�Nc

2 �−Tmax−Emax) +AdvdPRF(A′)

+AdvdF (A′′) + 2Adv
d(D,U)
Kg (A′′′) + qR · 2−(2−log2 3)Nc+Tmax+Emax .

Proposition 4 (Distance Fraud Resistance). Let ID be the scheme in Fig-
ure 4 with parameters (tmax, Tmax, Emax, Nc). Assume also that Kg is run by
either the reader or a trusted third party (not the tag), such that it generates
keys sk, sk′ by drawing them uniformly at random from a distribution D com-
putationally indistinguishable from the uniform random distribution. For any
(t, qR, qT , qobs)-distance-fraud adversary A against ID it holds that,

AdvdistID (A) ≤ qR ·
(
3

4

)Nc−Tmax−Emax

+Adv
d(D,U)
Kg (A′).

Proposition 5 (Impersonation Security). Let ID be the scheme in Figure 4
with parameters (tmax, Tmax, Emax, Nc). For any (t, qR, qT , qobs)-impersonation
adversary A against ID there exist a (t′, q′)-distinguisher A′, resp. a (t′′, q′′)-
distinguisher A′′ against PRF and resp. F (with t′, t′′ = t + O(n) and q′, q′′ =
qR + qT + qobs) such that

Advimp
ID(A) ≤ qR · 2−|I| + qR · 2−(2−log2 3)Nc+Tmax+Emax + qR ·AdvdPRF(A′) +

qR ·AdvdF (A′) +

((
qR + qobs

2

)
· 2−|NR| +

(
qT
2

)
· 2−|NT |

)
· 2−Nc .
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5 Which Model to Use

The abundance of terrorist-fraud resistance definitions in the literature proves
that, though this topic is crucial to distance-bounding authentication, no clear
solution has been found for it. Even our present work does not give one, but
rather two definitions of terrorist-fraud resistance, and proves that, though many
existent schemes in the literature fail to achieve one notion (strSimTF security),
they do attain the other. Which definition is better? That is a question which
cannot be answered in an unequivocal way.

Simulation-based models, like SimTF and strSimTF security, formalize
terrorist-fraud resistance in a very strong way, allowing the prover to help the
adversary as long as the gained help cannot be used by a simulator given the ad-
versary’s view only. This is the case for the SimTF notion of [6], which we extend
to better capture the attack. These strong notions should be used in high-risk
applications, like e-voting or e-Passports, where the strongest possible security
is desirable. Indeed both SimTF and strSimTF security can be achieved, e.g. by
our scheme.

However, simulation-based security is too strong for resource-constrained de-
vices, as it does not enable efficient protocols. In such scenarios, our game-based
GameTF model is more appropriate, capturing the intuition of terrorist fraud
resistance, but enabling more efficient schemes e.g. [14].
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A Full Proofs of Security Diagram

Proof (sketch). For the proofs of (8) and (9) we use the strategy in [6], reusing
their counterexample to prove (8). The counterexample for (9) is the scheme in
(10). Finally (1) follows trivially from the strSimTF definition. The proofs are
out of order, as we group similar proofs together.

Our separation for (2) relies on our scheme in Fig. 4, modified to run 2Nc time-
critical rounds such that R reveals the even-indexed challenges in advance, send-
ing them masked with pseudorandom bits during odd-indexed rounds. However,
in odd-indexed rounds, the prover must just echo the challenge.The modified
scheme preserves the properties of the original one. Though distance fraud ad-
versaries can predict even-indexed challenges, they must guess the odd-indexed
ones. Mafia fraud adversaries trivially echo odd-indexed responses, but learn
nothing about the encrypted even-indexed challenges. Finally, the SimTF se-
curity proof still stands since the odd-indexed rounds are trivial for both A
and S. However, a strSimTF adversary echoes odd-indexed challenges, using its
time-critical interactions to forward the encrypted challenges in advance (thus
receiving also the even-indexed challenges). Since no key information is leaked,
the simulator cannot authenticate.

http://www.cl.cam.ac.uk/gh275/relay.pdf
http://eprint.iacr.org/2007/244.pdf
http://eprint.iacr.org/2009/422.pdf
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We prove (7) similarly to Proposition 1: let ID be a mafia-fraud and strSimTF-
secure scheme, and assume it is not GameTF resistant. Assume that there exists a
(t, qobs, qR, qT ′)-adversary A interacting in a strSimTF way such that: (i) A wins
with non-negligible probability ε; (ii) all (3t, qobs, qR, qR) adversaries A∗ using
viewA in a mafia fraud interaction wins w.p. at most Advmafia

ID . By strSimTF
security, for adversary A there exists a simulator S, which, given viewA, wins
with probability pS ≥ ε. Now A∗ run S as a black box on viewA, and wins
w.p. pS ≥ ε. Following point (ii), A∗ must win w.p. at most Advmafia

ID ; thus ε ≤
pS ≤ Advmafia

ID . Then Advmafia
ID is non-negligible, contradicting the assumption

that ID is mafia-fraud resistant.
For (8) we use the Hancke-Kuhn protocol [11] except that R0, R1 are computed

as: R0||R1 ← PRF(sk, NR||NT ). The mafia fraud resistance of this scheme can
be found in [7]; however, a GameTF adversary can query T ′ for R0||R1 in some
session sid, giving no help for future authentication. Similarly, Mafia� strSimTF.

For (11) we use a trick from [6], changing the protocol in Fig. 2 to allow
an adversary to change a flag that makes R run in a special mode, expecting
the conjugated response values, rather than the originals. Now a mafia adver-
sary passes the challenges to T , but flips the responses. However, a GameTF-
adversary cannot use this trick, as relay scheduling taints the phase (even if the
bits are flipped). We use the same trick for (5). In strSimTF security, S must win
with the same probability as A. The helpfulness of GameTF adversaries depends
though on mafia fraud resistance. If mafia fraud adversaries authenticate easily,
any adversary is unhelpful, even one for which there exists a simulator as in
strSimTF security. We modify the scheme in Figure 4 as in (11), thus making
Advmafia

i d = 1, for the (still) strSimTF-secure scheme. However, the protocol is
GameTF insecure: an adversaryA receiving sk′ from T ′: (i) wins with probability
1; (ii) all adversaries A∗ with input viewA, win w.p. at most 1 = Advmafia

ID . The
same strategy proves (3), by replacing strSimTF with SimTF security, and (4)
follows from (6) and (2).

For (6), we change the scheme in Fig. 2 to allow a dishonest prover to generate
and send the adversary a particular cheating lazy-phase response, making R run
a special mode, where the challenges are predictable, but only by a prover.
This breaks strSimTF security, enabling the prover to help the adversary and
then forward the correct challenges; however, a simulator is unable to learn the
responses, even if it knows the challenges. By contrast, if a GameTF adversary
uses the cheat, it is helpful to an adversary who can then use the Go-Early
strategy to learn the correct responses. ��
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Abstract. Mobile smart devices and services have become an integral
part of our daily life. In this context there are many compelling scenarios
for mobile device users to share resources. A popular example is tether-
ing. However, sharing resources also raises privacy and security issues.

In this paper, we present CrowdShare, a complete framework and
its (Android) implementation for secure and private resource sharing
among nearby devices. CrowdShare provides pseudonymity for users, ac-
countability of resource usage, and the possibility of specifying access
control in terms of social network relationships. Further, CrowdShare pre-
serves secure connectivity between nearby devices even in the absence of
the mobile infrastructure. We have implemented CrowdShare on Android
devices and report good performance results.

1 Introduction

The popularity of inexpensive communication services like Skype, Gtalk, and
WhatsApp is increasing rapidly. They allow people to communicate with almost
the same ease as with phone calls and Short Message Service (SMS) messages,
but at a significantly lower cost to the users. However, the pre-requisite to all
such services is Internet access, which can be quite difficult to obtain in certain
situations. First, Internet access can be expensive while traveling abroad. As a
result, tethering, the process of sharing Internet connectivity from one device
by turning it into a wireless access point that other devices can connect to, has
gained popularity. Some devices provide tethering as part of their base function-
ality, while other third party applications like JoikuSpot [9] and OpenGarden [1]
can enable tethering. Second, in some situations Internet connectivity may be
impossible like in the aftermath of a disaster or while visiting rural areas with
little network coverage or when organizing demonstrations against totalitarian
regimes. In such situations, ad-hoc mesh networks among mobile devices can

M. Jacobson et al. (Eds.): ACNS 2013, LNCS 7954, pp. 432–440, 2013.
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provide similar communication or data exchange services. For example, the Ser-
val [2] project aims to preserve connectivity between mobile devices by providing
MeshSMS and Call services even in the absence of the mobile support infras-
tructure; Nokia Instant Community [11] allows mobile devices to form an ad-hoc
network to exchange messages or share content.

Naturally any such service that allows the resources of some users (providers)
to be used by other users (consumers) has to identify potential security and
privacy threats and provide solutions to address them. In particular, providers
need to have convenient means to specify suitable access control. Access con-
trol may be specified in terms of membership in a service (as is done by the
community-based WiFi sharing service Fon). Another natural basis to specify
access control is to share internet connectivity to “friends of friends”, e.g., for
visitors of an organization or guests at a party. Consumers need some level of
privacy which has to be balanced against the providers’ need for accountability
so that providers would have evidence of resource usage by consumers.

Our Goal and Contribution. In this paper we present CrowdShare: a service
design and its (Android) implementation that allows users to share connectivity.
CrowdShare distinguishes itself from other tethering and mesh networking ap-
plications through incorporating a security architecture with privacy-preserving
access control based on social relationships, pseudonymity for users, and ac-
countability of usage. Although CrowdShare focuses on connectivity sharing,
the architecture is generic and can be applied to resource sharing in general.

In summary our contribution is design and integrated implementation of a
complete generic framework for secure resource sharing among nearby devices by
incorporating a security architecture into existing technologies for mesh
networking, tethering, and social network interfaces.

2 System Model and Requirement Analysis

System Model. The system model of the CrowdShare system is depicted in
Fig. 1. It consists of a trusted CrowdShare server S, a social network server N,
and a set of users U . S admits the users to join the CrowdShare service, while N
provides information about friend relationships among users. Each user Ui ∈ U
possesses a mobile platform which runs the CrowdShare application and enables
communication of different users via the mesh network. A user Ui can play
one of the following roles: (i) resource provider P, (ii) resource consumer C,
or (iii) forwarding node F. P has access to (a set of) resources R and shares
access to them with other users (e.g., Internet bandwidth, media files, or location
information). P can restrict the access to his resources either to any Ui, or to a
subset of users F ⊂ U , who are in a social relation with P in the social network
(e.g., friends or friends of friends). C does not have direct access to R or R might
be available but expensive, hence it consumes resources provided by P via the
mesh network. Forwarding nodes F forward messages in the mesh network such
that P and C can be connected over multiple hops.



434 N. Asokan et al.

��������

��������	

�������	


���	
���� ��������

��������	
�������	

���������������	���

���������	����������������������	
����	�

������� �������

������� �������

�������

Fig. 1. CrowdShare system model

Threat Model and Security Requirements. CrowdShare and its infrastruc-
ture could be subject to several attacks. Our threat model does not cover any
attacks against the operating system of the mobile device or any outside com-
ponent, e.g., a remote server. Instead we concentrate on the attacks that users
perform against the service itself. We focus on protecting against semi-honest
adversaries that modify the CrowdShare service in order to learn sensitive infor-
mation or get unauthorized access to services. We identify the following threats
for CrowdSharewhich motivate the need for the respective security requirements.

1. Man-in-the-middle Attacks ⇒ Channel Protection. Devices in the
ad-hoc mesh network should not be able to act as man-in-the middle that
eavesdrops on or modifies messages that are routed through them. This
motivates channel protection.

2. Framing Attacks ⇒ Accountability. C could use P’s resources for illegal
purposes. For instance, in the case of Internet sharing C could download a
pirated song, leading the copyright owner of the song to accuse P of unautho-
rized use. In case of such violations, P needs the ability to give evidence that
the resource was requested by a particular C. This motivates accountability.

3. User Identification ⇒ Pseudonymity. It should not be possible for a
user to learn personally identifiable information such as the phone number
or the email address of another user. This motivates pseudonymity.

4. Unauthorized Usage ⇒ Access Control. C should not be able to use
P’s resources without its consent. This motivates access control, i.e., P can
attach a policy to the shared resource that needs to be fulfilled by C.

3 CrowdShare Protocols and Services

3.1 CrowdShare Protocols

Registration. The purpose of registration is to figure out a real user identity
and to issue pseudonymous certificates which will be used by the CrowdShare

community members for subsequent communication.
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User U Server S

N ′ ?
= N

Store CertU , TU

Store CertU , SKU

σ ← Sign(SKS ;PKU , IDU )

TU

N (sent over SMS)

N ′, PKU

CertU

N ∈R {0, 1}μ

Establish a secure connection using CertS

CertS

(SKU , PKU ) ← GenKey()

Mobile Platform (Provider P or Consumer C)

Trigger registration

SKS

CertU = (PKU , IDU , σ)

Fig. 2. Registration protocol

The registration protocol is depicted in Fig. 2. Fist, the user U ∈ U establishes
a secure channel to the server S using the certificate CertS of S that is provided
together with the CrowdShare application. Next, U sends the user’s phone num-
ber TU to S, who generates a one time password (OTP) N and sends it over the
short message service (SMS) back to U. In turn, U generates an asymmetric key
pair (SKU ,PKU ), and sends PKU to S together with N ′ = N . Next, S verifies if
the received N ’ matches N sent over SMS, generates a user certificate CertU for
this user, stores CertU together with TU and returns CertU to U. The received
CertU is stored together with SKU for future use.

The user’s identity is verified, because S has the assurance that the submitted
phone number belongs to the user, as he was able to receive the OTP N . S keeps
the mapping between certificates and phone numbers secret and reveals it only
to authorized entities, e.g., in case of a subpoena.

Provider Discovery. The goal of the provider discovery protocol is to discover
a resource provider P which can share its resources with resource consumer C.
The corresponding protocol is shown in Fig. 3. It is initiated when the resource
request cannot be served locally (e.g., the request of the web-browser for the
network connectivity cannot be served due to unavailable network connection).

First, C ∈ U connects to a potential resource provider P ∈ U (using mesh
networking services) and establishes a secure (i.e., authentic and confidential)
channel to it based on CertC and CertP (i.e., certificates obtained during regis-
tration). Next, C sends the resource request over the established channel along
with the description of the resource R. If R is available, P responds with policy
which specifies conditions for resource sharing. Particularly, policy may allow
resource sharing with friends (or friends of friends) only, or require execution
of the accountability protocol in order to protect P from framing attacks. If
required by policy, P and C additionally use Friend-of-Friend Finder service
(cf. §3.2) to identify friend relationships and execute the accountability protocol.
If all conditions are met, P is added to a set of suitable provider candidates P .

The protocol repeats n times to populate P with n candidates, where n is
a configurable system parameter. The best candidate P∗ ∈ P is selected for
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Resource Cosumer C Resource Provider Candidate P

SKC , CertC SKP , CertP

Establish a secure channel based on CertC , CertP

ResReq(R)

ResResponse(policy)
Check if R available

Execute Friends of Friends Finder protocol

Execute Accountability protocol

Fig. 3. Provider discovery protocol

resource sharing, while others are kept as back-ups. The availability of every
P ∈ P is monitored through listening to heart beat messages transmitted on a
regular base. If any of them disappear, a new round of the provider discovery
protocol is triggered to find a new candidate.

Accountability. Accountability is achieved by having C sign a resource quota
request RQR that contains PKC , the type of the resource R, and the resource
leasing time τ . The resulting signature σRQR is sent to P∗, verified, and stored
as an evidence.

Data Channel. A data channel is used for the delivery of the resource R from
P∗ to C. To provide confidentiality and authenticity to the data channel, we use
standard techniques for setting up virtual private network (VPN) connections.
Depending on the type of the shared resource, the VPN connection is either
between C and P∗ or S (e.g., between C and S for Internet connectivity sharing).

3.2 Friends-of-Friends Finder (FoF Finder) Service

The following server-aided approach allows to determine if two users P and C,
are mutual friends or friends of friends in an existing social network.

During registration, each user authorizes S to access his friend list from the
social network server N and to map the social network identifiers of the user’s
friends (and friends of friends) to their CrowdSharemembership certificates. This
mapping is sent to the registering device. During provider discovery, P checks if
the certificate of C belongs to one of his friends or friends of friends by comparing
the certificate identifier of C with identifiers in the friends database.

The server-aided solution requires each user to learn about entities in his social
graph at hop lengths > 1, e.g., the number of friends of friends he has or their
certificates which serve as pseudonyms. Depending on how users have set the
visibility of their friend relations in the social network, this may be information
that was otherwise not available to users.



CrowdShare: Secure Mobile Resource Sharing 437

As an alternative, we also allow P and C to determine common friends by run-
ning a private set intersection (PSI) protocol directly between them. The input
to PSI is a set of “capabilities” that serve as proof of the friend relationship in
the social network. We use a social network application as a generic secret distri-
bution channel to exchange capabilities among friends. Due to space limitations
we do not describe this approach in detail. The interested reader is referred to
our technical report [4].

4 Security Considerations

In the following we provide an informal security analysis that demonstrates that
the security requirements of §2 are fulfilled.

Channel Protection. For channel protection, all protocols are executed over
a secure (i.e., confidential and mutually authenticated) channel. Particularly,
the registration protocol runs over a channel where the server S is authenticated
based on the server certificate CertS , while the user is authenticated by verifying
user’s phone number. The provider discovery and accountability protocols run
over the secure channel established based on mutually exchanged certificates
between P and C. The resource delivery is protected by a data channel established
between C and P or C and S. The former is used in use cases which are not
sensitive to eavesdropping by P, e.g., in case of file sharing (a file originating
from P is already known to P). The latter is applied in case if P is a subject for
confidentiality requirement, e.g., when sharing Internet connectivity (to ensure
P cannot eavesdrop or manipulate traffic downloaded by C).

Pseudonymity. Pseudonymity is fulfilled by deploying pseudonymous user cer-
tificates which do not include any user specific information. The only entity which
can map certificates to user identities is the server S, which is trusted to keep
this information confidential.

Accountability. Accountability is satisfied by deploying an accountability
service which protects P from framing attacks. The signed resource quota re-
quest submitted during the accountability protocol can be used by P as evi-
dence toward possible misuse by C. Further, the signature can be mapped to
a user identity with the help of the server S, which keeps the mapping be-
tween pseudonymous user certificates and user phone numbers. Hence, the real
user identity can be traced back in case of illegal usage (e.g., accessing illegal
content).

Access Control. We use two access control mechanisms: (i) membership-based
access control which allows users to deny non-members access to resources of
members, and (ii) social-relationship-based access control which allows users to
grant access to friends or friends of friends.
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5 Implementation

In this section we describe the implementation of the trusted server S and the
mobile device which integrates functionality of the resource consumer C, resource
provider P, and a relay device F in one.

Server. The server S provides the following main functionalities: (i) registra-
tion of new CrowdShare community members and (ii) a database that includes
persistent information from other services (e.g., mapping from user identities to
certificates). The functionality of S is implemented in Java 1.5 and stores objects
in MySQL using the Hibernate framework. The implementation has 5 188 lines
of Java code (LoC).

Mobile Platform. Our implementation targets Android-based devices. We
used Google’s Nexus One and the HTC Desire smartphones with Cyanogenmod
7.0 images for our development. The code is written in Java (for the API level
10) and makes use of a Bouncy Castle crypto library v. 147 (written in Java).
For the implementation of cryptographic primitives, we used RSA 1024 and
AES 128. We used standard SSL for the establishment of the secure channel
used in provider discovery and OpenVPN (from the Cyanogenmod image) for
the protection of the data channel. Our Android app has a modular design.
Particularly, MeshNetwork is implemented as a separate component with well-
defined interfaces which can be replaced when necessary or re-used in other
applications. The overall implementation excluding the MeshNetwork component
has 9 441 LoC.

We adapted the implementation of the Serval open source project [6] for
the instantiation of the MeshNetwork component. Serval allows mobile devices
to establish mesh networking on top of ad-hoc WiFi connections. It integrates
BATMAN [10], a proactive distance vector routing protocol for wireless mesh
networks. Further, it supports voice calls and text messages between mesh modes
(hence, this functionality is also inherited by our implementation), but it does
not provide Internet connectivity sharing and does not address possible security
threats, which are our main focus.

Generally, stock Android devices cannot be configured to operate in WiFi
ad-hoc mode without root access. Root access is required for loading a WiFi
driver, configuring it to operate in ad-hoc mode and for configuring IP settings.
However, root access is not required for the usage of our FoF Finder service.
To support this claim, we implemented a simple (one-hop) tethering app which
uses FoF Finder service for access control. The app uses Bluetooth to run FoF

Finder protocols and WiFi for tethering and does not require root privileges.

6 Performance Evaluation

For our performance tests we used a HTC Desire device as a resource provider P
and Nexus One devices for the resource consumer C and the relaying node F.
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Multihop Re-transmissions. Fig. 4 illustrates the performance with and
without multihop re-transmissions. To perform this test, we sent a ping packet
to a remote server (www.google.de) and estimated the delay of the received re-
sponse. The test was done for the direct Internet connection (i.e., no mesh re-
transmissions are required), as well as for 1 hop and 2 hop indirect connections1.
We sent 200 ping packets for each case. The delay increases with rising hop counts
in the multi hop connection, which is reasonable, as each additional hop imposes
additional packet delay due to re-transmissions. Further, the context switch be-
tween 3G and WiFi transmissions also adds overhead. The several peaks for the
2 hop tethering are imposed by packet loss and subsequent re-transmissions re-
quired to perform packet delivery successfully. To summarize, a hop count of 2
introduces a little delay in the range of milliseconds, which is acceptable.

Fig. 4. Performance with and without multihop re-transmissions

7 Related work

VENETA [3] is a mobile social networking platform that, among other features,
allows decentralized SMS-messaging via Bluetooth (up to 3 hops) and privacy-
preserving matching of common entries in the users’ address books using private
set intersection. The combination of privacy-preserving profile matching and es-
tablishment of a secure channel was considered recently in [13]. Their solution
allows a user to establish a shared key with another user only if their profiles
match in a pre-determined set of attributes. Privacy-preserving discovery of com-
mon social contacts was considered in [5], where friends issue mutual certificates
for their friendship relation. Our setting is different to all these works as we want
to perform access control based on relationships in an existing social network.

1 Our tests were limited by the number of available devices.
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A number of projects developed ad hoc communication and resource sharing
on top of mesh networks like Serval [6] and OpenGarden [1]. SCAMPI [12] pro-
vides generic discovery and a routing framework for opportunistic networks for
developing versatile applications and services on top of it. Ad hoc communica-
tion has also found use cases in extreme situations where normal infrastructures
are inaccessible, e.g., mines [7] and disaster-recovery scenarios [8]. In addition,
we focus on privacy and security.
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Abstract. We propose and implement a cryptographically end-to-end
verifiable (E2E) remote voting system for absentee voters and report on
its deployment in a binding municipal election in Takoma Park, Mary-
land. Remotegrity is a hybrid mail/internet extension to the Scantegrity
in-person voting system, enabling secure, electronic return of vote-by-
mail ballots. It provides voters with the ability to detect unauthorized
modifications to their cast ballots made by either malicious client soft-
ware, or a corrupt election authority—two threats not previously studied
in combination. Not only can the voter detect such changes, they can
prove it to a third party without giving up ballot secrecy.

1 Introductory Remarks

In 2009, the city of Takoma Park in Maryland, United States, became the first
election authority (EA) to use a cryptographically end-to-end verifiable (E2E)
voting system in a public election [4]. This system, Scantegrity II [7], allows vot-
ers to verify their votes were counted correctly, while maintaining ballot secrecy.
Scantegrity also provides a dispute resolution mechanism: in the event either the
voter or the EA behaves maliciously, parties that follow the protocol should be
able to prove their honesty to a third party (such as a democracy watch group).
These integrity and dispute resolution protections afforded by the in-person na-
ture of Scantegrity II, however, do not immediately extend to absentee voters
submitting ballots by mail or online.

Shifting from in-person to remote voting introduces new threats, including
the possibility of malicious software on the voter’s computer making unautho-
rized (and potentially undetected) modifications to ballot selections. Although
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this threat has been well studied in isolation, a major complication arises when
simultaneously considering the problem of dispute resolution: a malicious EA
caught cheating could spuriously blame the voters’ clients for the malfeasance.

In this paper we tackle the problem of protecting against malicious software
on the voter’s computer while simultaneously offering a dispute resolution proce-
dure. To that end we present Remotegrity, a remote voting extension for Scant-
egrity designed to extend similar protections to absentee voters as those of voters
attending the polling place. We propose the Remotegrity protocol and describe
an implementation which was fielded in Takoma Park’s municipal election in
November 2011.

Contributions. The main contributions of this paper include:

1. The Remotegrity protocol, a remote voting system providing voters with the
ability to detect and prove unauthorized changes made to their ballots by
malicious client software or a corrupt election authority,

2. An implementation and case study of Remotegrity in a municipal election,
3. Lessons learned from the real-world deployment of voting systems research.

2 Background

Absentee Voting. A reality of elections is that a certain portion of the elec-
torate will be unable to physically attend a polling place during the election
period, e.g., due to illness, travel, or residing out of the district. Four common
methods for enfranchising absentees exist. Early voting is most appropriate for
travellers but does not assist the ill or non-resident. Vote-by-proxy breaches bal-
lot secrecy and is not generally used in public-sector elections. Hosting a polling
place abroad is suitable when a large contingency of absentees are local to the
area, such as a military base or embassy in a large foreign city. It is less suitable
for small-scale, e.g., municipal-level, elections.

Most EAs use both early voting and a fourth method: remote voting. Remote
voting could be either (i) available only to voters demonstrating a need, (ii)
available to any voter, or (iii) mandatory for all voters. In the United States,
there are respectively 27, 21, and 2 states/capital districts in these categories at
the time of writing.1 In addition 33 offer early voting.

The primary method for delivering and receiving ballots from remote voters in
the United States is the postal system. Vote-by-mail enables threats not present
in polling place voting: ballots could be mailed to the wrong address or lost before
being received by voters; voters can demonstrate how they vote for payment or
be coerced into voting a certain way; there may not be a strong mechanism to
authenticate that a ballot was filled out by the intended voter (or distinguish
a real ballot from impersonated fake ballots); ballots could be lost, delayed, or
tampered with during their return to EA; and there are only weak guarantees
of ballot secrecy from the election officials receiving the ballots.

1 Absentee and Early Voting. National Conference of State Legislators, 4 Sept 2012.
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Online Voting. Of the issues with vote-by-mail, the most significant is arguably
that ballots are not always received in time—19% of mail-in ballots cast in the
2008 US election were not received in time to be counted. In response, election
officials are interested in enabling electronic channels, such as email, fax, or
the internet for voters to receive and return ballots. In addition to subsuming
most of the issues with postal ballots, online voting introduces several of its
own. Malware on a voter’s computer may undetectably alter the voter’s choices.
Email and fax do not provide secure transport for ballots, and while websites
can, this requires the assumption that voters can correctly authenticate the
server (e.g., voters do not fall prey to phishing, SSL-stripping, or man-in-the-
middle attacks with illegitimately obtained certificates [10]). The EA servers
may be made inaccessible through a denial-of-service attack. Most importantly, a
compromise of the server could allow all cast ballots to be undetectably modified.

Hybrid Internet/Mail Voting. The delay introduced by the postal system
can be partially addressed by utilizing an electronic channel only for ballot re-
ceipt, or ballot return. In many U.S. counties and states, blank ballots can be
downloaded and submitted by mail.2 Conversely, ballots are received by mail and
submitted online in Remotegrity. Given that the date a voter receives a blank
ballot is a soft deadline, whereas the date the EA must receive the returned
ballot is a hard deadline, it is arguably preferable to use the electronic channel
for ballot return. Further, this enables voters to experience the full campaign
before voting, and better addresses the human tendency toward procrastination.
The primary concern with electronic return is security; something most com-
mercial systems do not fully address. Remotegrity is an electronic-return voting
system designed to provide secure and reliable transport, even in the presence
of client-side malware, server compromise, or a corrupt EA.

End-to-End Verifiability. The use of cryptographic techniques to provide a
verifiable tally while maintaining strong voter privacy has developed substan-
tially since first proposed by Chaum in 1981 [5]. E2E polling place systems like
Prêt à Voter [9] and Scantegrity [7] have been refined and are suitable for govern-
mental elections [4,3]. E2E internet voting systems like Helios [1] and SCV [23]
have been tested in binding student and organizational elections [2]. Helios is
not designed to provide strong integrity when a voter’s computer is malicious,
and proof-of-concept vote-stealing malware has been proposed [14].

Client-side vulnerabilities can be addressed through a technique called code-
voting, proposed by Chaum in 2001 [6]. With code-voting, voter choices are
denoted with a set of random codes distributed to the voter out-of-band. Without
knowledge of the codes, malicious devices cannot sensibly modify voter choices.
Many proposals have refined this approach [16,18,17,24,19,26,15,25]. While these
systems protect the voter from client-side vulnerabilities, they do not protect
against a malicious EA (which knows all the codes), nor do they provide dispute
resolution (see below). Remotegrity extends the code voting approach to satisfy
these additional security properties.

2 http://www.fvap.gov/resources/media/evswfactsheet.pdf

http://www.fvap.gov/resources/media/evswfactsheet.pdf
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The literature also addresses the tangential problem of coercion-resistance in
the unsupervised, remote voting setting. This line of research originated with
Juels et al. [20]. Recent improvements include more efficient tallying [27] and
the use of panic passwords [12]. These systems all assume the voter votes on a
trusted machine. By contrast, code voting does not address coercion. Addressing
both threats simultaneously is an open problem.

Dispute Resolution. One less obvious property an E2E voting system should
provide is dispute-freeness [21] (or accountability [22]). If the verification of some
aspect of the election fails, implying an error or fraud, the voter should be
able to demonstrate that it failed and which entity is responsible. With online
voting, the EA cannot assume accountability for the state of voters’ computers.
If vote verification fails, the EA must ensure that it is not incorrectly blamed for
compromised voter machines. Likewise, voters want assurance that a malicious
EA cannot modify ballots and blame the voters’ computers if the modification
is detected. It is also important that voters or political parties cannot easily
fabricate false evidence that an election has been compromised, casting doubt
on the final tally.

3 Remotegrity

Overview. Remotegrity is not a full voting system. Rather, it is a component
that is combined with a traditional E2E paper ballot system like Scantegrity or
Prêt à Voter to provide integrity to the process of ballot delivery. Even when
ballots are submitted from an untrusted computer over an untrusted network
to an untrusted EA, voters can have the same assurance that their vote will be
counted correctly as they would if they cast their ballot in-person.

It utilizes two primary security mechanisms. The first is code voting which
prevents malicious devices from sensibly modifying voter selections. However this
is not sufficient as a fully corrupt EA could determine the set of codes and modify
voter selections reliably. The second mechanism we use is that of providing each
voter with a lock-in code placed under a scratch-off surface. The lock-in code is
posted on the election website by the voter to indicate that his or her vote is
correctly recorded. The scratch-off surface operates as a tamper-evident seal. If
a malicious EA locks in a ballot entry that does not reflect the voter’s selections,
the scratch-off surface still covers the code providing physical evidence of EA
malfeasance.

3.1 Cryptographic Preliminaries

Remotegrity utilizes a distributed key generation protocol DKG to generate
threshold shares of a secret seed s amongst a set of trustees (e.g., party of-
ficials or election observers); a pseudo-random generator, PRG(s), to expand
the seed into psuedo-randomness; and a cryptographic commitment function,
Comm(m, r), that is hiding and binding for message m and randomness r (for
brevity, we denote a randomized commitment to m as �m�).
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Fig. 1. Remotegrity ballot package. Left: marked Scantegrity II ballot showing a vote
for candidate 3. Right: Remotegrity authorization card showing the AuthSerial and
AckCode as well as an AuthCode and the LockCode as scratched off by the voter during
the ballot casting protocol.

As in Scantegrity, we assume trustees can use a semi-trusted ‘blackbox’ com-
putation to generate election values. This computation is not assumed to be
correct, but it is assumed to keep all inputs and intermediate values private.
No private state is ever stored; trustees always regenerate the state from their
shares. The trade-off between the practicality offered by this model and the
strong cryptographic guarantees of using a multiparty computation have been
discussed elsewhere [13]. Finally we assume the existence of an append-only
broadcast channel, called a bulletin board (BB).

3.2 Protocol

Voters receive a ballot package by mail which contains two parts, as shown in
Figure 1. The first is a paper ballot, similar or identical to the ones used for
polling place voting. In this section, we will consider composing Remotegrity
with Scantegrity II ballots. Scantegrity II ballots consist of a serial number,
VoteSerial, and a set of short confirmation codes, 〈VoteCode1,VoteCode2, . . .〉.
There is one code per candidate and the codes are randomly assigned to candi-
dates and ballots. Two voters will, with high probability, receive different codes,
invariant to whether they voted for the same candidate or different candidates.
The codes are printed with invisible ink and revealed when the voter marks a
particular candidate with a special pen (we describe how we modified the sys-
tem to avoid having to mail pens to each voter in Section 4). For simplicity,
we assume a single contest ballot in our description; extension to multi-contest
ballots is trivial.
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Ballot Casting

Each voter performs the following steps:

1. The voter enters the ballot and authorization card serial numbers
〈VoteSerial,AuthSerial〉 into the voting platform’s user interface. The voting
platform checks that neither serial number was previously posted to the BB.

2. Using the ballot, the voter selects the VoteCode appearing next their chosen
candidate. Using the authorization card, the voter selects an AuthCode at
random and to scratch-off. The voter enters the following information into
the voting platform, which is posted by the platform to the BB:

〈VoteCode,AuthCode〉.

Upon receiving a new BB Entry, the trustees do the following:

3. The trustees check AuthCode. If it has not been used in a previously signed
BB Entry and it contains valid codes, the trustees append AckCode and sign
the tuple. The BB entry now reads:

〈VoteSerial,VoteCode,AuthSerial,AuthCode,AckCode,Sig(%)〉,
where Sig(%) denotes a digital signature on all preceding elements in the tuple.
If it does not contain valid codes, it marks it as invalid and signs it.

Upon receiving acknowledgement from the trustees, the voter does the following:

4. The voter checks that no modifications have been made to the BB Entry.
The voter verifies AckCode and the signature. If correct, the voter submits
LockCode. The BB Entry is now finalized as:

〈VoteSerial,VoteCode,AuthSerial,AuthCode,AckCode,Sig(%), LockCode〉.

After the election closes, the trustees do the following:

5. For the tuples containing a correct LockCode, the trustees input
〈VoteSerial,VoteCode〉 to the vote tallying system (e.g., Scantegrity’s BB).

Protocol 1. The vote casting procedure in Remotegrity

The second part of the ballot package is the Remotegrity authorization card.
The card consists of a serial number, a set of authentication codes under scratch-
off (denoted with a grey box), a short acknowledgement code, and a lock-in code
under scratch-off. With e.g., four authentication codes, the authorization card
is denoted as:〈

AuthSerial, AuthCode1 , AuthCode2 , AuthCode3 , AuthCode4 , AckCode, LockCode

〉
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Election Set-up

Prior to the election, all trustees do the following with a blackbox computation:

1. The trustees use DKG to derive threshold shares of a master secret.
2. The trustees use PRG to expand the master secret into a sufficient number of

random codes for two authorization cards per voter.
3. For each authorization card, the trustees publish on the BB the serial number

and a commitment (again using PRG for the randomness) to each code on the
card:

〈AuthSerial, �AuthCode1�, �AuthCode2�, . . . , �AckCode�, �LockCode�〉

After the pre-election commitments are published, the EA does:

4. The EA prints the authorization cards, potentially printing more than needed
and allowing a random print audit of a fraction of the cards.

5. Each eligible absentee voter is assigned and mailed a Scantegrity bal-
lot and an authorization card. The EA retains the binding between the
voter ID, VoteSerial, and AuthSerial. For each ballot, it at least publishes:
〈VoteSerial,AuthSerial〉. The EA can also publish which voter received which
VoteSerial without compromising ballot secrecy. In either case, the number of
these tuples should match the number of absentee voters.

After the election closes, an authorized set of trustees open all the commitments
to authorization card codes.

Protocol 2. The trustee and EA procedures in Remotegrity

Serials are assigned sequentially and all codes are assigned random; the length
of the codes should provide resistance from repeated guessing (while “short”
codes only resist a single guess). The purpose of each code is not likely apparent
from inspection but each code and scratch-off surface plays an integral part in
preventing certain attacks; thus we will explain the protocol concurrently to a
security analysis. The vote casting process is described in Protocol 1, and how
the codes are derived by the EA is described in Protocol 2.

Remotegrity protocol serves a single function: to allow voters to verify that
their Scantegrity ballot, 〈VoteSerial,VoteCode〉, is correctly posted to Scant-
egrity’s BB. If voters could post 〈VoteSerial,VoteCode〉 without interference from
a client-side malware or a malicious EA, Remotegrity would not be required.
The codes and features of the Remotegrity authorization card and vote casting
protocol can be split into two sets. The first set contains the mechanisms for
addressing a malicious voting platform: a single AuthCode and AckCode. The
second set contains mechanisms for detecting malicious EA actions: multiple
AuthCode’s, LockCode, scratch-off surfaces, and the trustees signature.
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Validating Ballot Codes. The protocol assumes that the EA can determine if
a VoteCode for a given VoteSerial is valid: one of the VoteCode’s appearing on the
ballot. To provide certain assurances, Remotegrity uses the fact that a guessed
VoteCode will, with high probability, be invalid. Scantegrity has its own dispute
resolution process, which can determine precisely this. Assuming the systems
are governed by the same set of trustees, they can work in an online fashion to
validate the VoteCode in Remotegrity ballots as they are submitted. An alterna-
tive approach is append a short message authentication code to each VoteCode,
which will be stripped off when the accepted and locked-in Remotegrity bal-
lots are posted to Scantegrity’s BB. This allows validation of the codes without
requiring that all the confirmation codes be online and accessible to the trustees.

Initial BB Check. In the first step of Protocol 1, the voter checks if her
VoteSerial has already been voted. If the VoteSerial appears but has been rejected
by the EA for having an invalid AuthCode, the voter can ignore the entry and
proceed to vote with an actual AuthCode. If the VoteSerial has been voted and
accepted by the EA (i.e., with a published AckCode and signature), it must have
been posted by an insider with knowledge of the correct authorization code or
the EA signed off on something invalid. In either case, the voter can demonstrate
that no authorization codes have been scratched off on her card, which is publicly
linked to the serial number of the ballot, and thus the EA is accountable for the
wrongfully accepted ballot.

Malicious Voting Client. Provided the VoteSerial is not on the BB, we first
consider the case where the EA is honest but the voter uses a malicious voting
client. Since only the voter and the EA know the values of the codes on the
ballot and authorization card, the voting client cannot cast a ballot without the
voter’s involvement or repeatedly guessing VoteCode and AuthCode pairs. Since
VoteCode is short (e.g., 2 characters), AuthCode should be of a length sufficient
for protection from repeated guessing (e.g., 12 characters).

When the voter enters VoteCode and AuthCode, the computer could keep
AuthCode and modify VoteCode. It could further simulate the voter’s view of
the BB to make it appear that the BB Entry was not modified. To provide detec-
tion, the voter can rely on receiving back AckCode. Since the voting client does
not know the VoteCode on the ballot corresponding to its preferred candidate,
at best it can chose a VoteCode randomly. With moderately high (since the code
is short) probability, the EA will reject the BB Entry and not post AckCode. The
voting client will then have to guess AckCode which will also fail with moderate
probability. Since receiving a wrong AckCode code suggests the computer is ma-
licious, the client has only one chance to guess and thus AckCode can be short.
Diligent voters can check the BB from a secondary device to detect modifica-
tions, even in the unlikely case that the computer issues a correct guess. If such
detection occurs, the voter will not lock-in the ballot. Like AuthCode, LockCode
should be of a length sufficient for protection from repeated guessing.



Remotegrity: Design and Use of an E2E Verifiable Remote Voting 449

Malicious EA. We now consider a malicious EA. First, a point of clarification: a
malicious EA could be comprised of colluding trustees who reconstruct the codes,
the officials who print the authorization cards, or the officials who mail them.
Since the EA is ultimately accountable for all of these officials, the Remotegrity
protocol protects against all of them without distinguishing which exact official
is responsible.

A malicious EA knows all of the codes on the voter’s authorization card,
however it cannot undetectably use a code unless it is assured the voter has
scratched it off. Assume an EA generated/modified BB Entry is locked-in on the
BB. If the voter did not try and lock something in, LockCode is still sealed and
the voter can hold the EA accountable. If the voter has scratched-off LockCode,
it must be the case that the voter’s correct BB Entry did appear at some point on
the BB and was accepted and signed by the EA. The EA cannot apply LockCode
to any BB Entry other than the one intended by the voter without signing a new
BB Entry. However, signing a new BB Entry requires the entry to have an unused
AuthCode. Therefore, if the EA waits for the voter to submit LockCode and
immediately fabricates a new BB Entry to which it applies LockCode, it would
have to use a previously unused AuthCode and any unused AuthCode would still
be sealed on the voter’s authentication card.

Print Audit. Voters can resolve disputes by demonstrating that codes are
still sealed on the physical ballots and authorization cards they have received.
However, if the EA is forced to correctly commit to the contents of the cards,
many disputes can be resolved without the physical records. In order to check
this consistency, a random selection of authorization cards should be audited
using a publicly verifiable challenge to determine the selection [11]. For full
voter-verifiability, voters could be mailed two authorization cards: one to use
and the one to audit.

3.3 Other Security Properties

Dispute Resolution. We say the EA accepts a BB Entry if it provides an
AckCode and signs the BB Entry. If the EA accepts the BB Entry as cast by the
voter, we call it a true accept. If it accepts a BB Entry that is modified from the
voter’s intent, or a BB Entry it manufactured without the voter’s knowledge or
consent, we call it a false-accept. If the EA rejects a BB Entry with correct values
(e.g., as a denial-of-service), we call it a false reject. Finally, if the EA correctly
rejects a BB Entry containing incorrect codes (e.g., one modified by a malicious
computer, as above), we call it a true reject.

We iterate through all the various issues with each code and how it is resolved
in Table 1. The EA can always force a denial-of-service, which is unsurprising as it
can accomplish this without resorting to manipulating codes. What Remotegrity
does not allow is the EA to fully accept (i.e., accept and lock) any ballot the
voter did not cast without the voter being able to dispute it.

If the voter enters values and does not see them on the BB, he or she tries
again from another computer. All true rejects occur because the EA received
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Table 1. Overview of the dispute resolution process in Remotegrity

Code Issue Blame Resolution

VoteSerial

Missing Device Voter votes from a different device.
False Accept N/A BB Entry belongs to another voter.
False Reject EA Voter retains authentication card and ballot as evi-

dence.
True Reject Device Voter votes from a different device.

VoteCode
False Accept EA Voter attempts to change vote using another Auth-

Code.
False Reject EA Voter retains ballot as evidence.
True Reject Device Voter votes from a different device.

AuthSerial
False Accept EA Publicly apparent since link between VoteSerial and

AuthSerial is public.
False Reject EA Publicly apparent since link between VoteSerial and

AuthSerial is public.
True Reject Device Voter votes from a different device.

AuthCode
False Accept EA Voter retains unscratched AuthCode codes as evi-

dence.
False Reject EA Link between AuthCode and AuthSerial is decommit-

ted after election.
True Reject Device Voter votes from a different device.

AckCode Invalid Device Voter accesses ABB from a different device.

Sig(%) Invalid EA Publicly apparent. Voter can request new signature.

LockCode False Accept EA Voter keeps unscratched LockCode as evidence.
False Reject EA Voter retains authentication card as evidence.
True Reject Device Voter locks-in from a different device.

false values. This happens because of a malicious voting computer or an erring
human. If a voter sees false code(s) displayed on the BB and rejected by the
EA, and knows it was not erroneously entered, he or she can attempt to enter
the code(s) again from another computer. If, in spite of repeated attempts, the
voter always experiences a similar reject, he or she is experiencing a distributed
denial of service attack from voting computers.

A false reject occurs because an EA rejects a correct code claiming that it is
incorrect; that is, the voter sees the correct code on the BB but the EA rejects
it. The correspondence between AuthSerial and VoteSerial is public. Additionally,
commitments to valid codes—all information on an authentication card; the cor-
respondences between VoteCode and VoteSerial (though not between VoteCode
and candidates)— are opened at the end of the election. Because the EA knows
the correct correspondences, the EA is shown to be cheating. A voter may also
experience a reject because of a previous use (not by the voter) of AuthSerial,
VoteSerial, AuthCode, or LockCode or all—this would correspond to a previous
false accept by the EA.

All false accepts are accepts of either (a) invalid codes or (b) valid codes (in
either case, the accept is false because the code was not entered by the voter, but



Remotegrity: Design and Use of an E2E Verifiable Remote Voting 451

can be seen on the BB). Case (a) is immediately apparent when the commitments
for valid codes are opened, in a case converse to that described in false-rejects
above. Because the EA knows an invalid code, its acceptance indicates a cheating
EA and this is proven when the commitments are opened. For Case (b), if the
false acceptance is of the VoteCode, the voter can try to re-enter the VoteCode
from another computer. Because it is a short code, the computer might have
guessed it correctly and used the correct VoteSerial, AuthSerial and AuthCode
entered by the voter. For all other false-accepts—false accepts of LockCode or
AuthCode—as well as repeated false accepts of the VoteCode, the voter should
retain the unscratched-off authorization card and ballot to prove that the EA
is cheating. (Here it is possible that a network of colluding dishonest voting
computers would have guessed a VoteCode correctly and would repeatedly thwart
the voter’s attempt to change an incorrect VoteCode, but the probability is
considered negligible). Note that incorrect correspondences between VoteSerial
and AuthSerial are easily detected as being Case (a).

If the voter does not receive the correct AckCode, he or she attempts to vote
again from another computer. Repeated failure implies an EA attempting a
denial-of-service, assuming that the voter has access to at least one honest com-
puter. This is proven when all the commitments are opened. If the voter receives
an invalid signature, the entry is checked from a different computer. An invalid
signature is apparent to anyone examining the BB.

Ballot Secrecy. No part of Remotegrity is dependent on the voter’s selec-
tion. Secrecy of the voter’s selection is fully subsumed by the Scantegrity system
(or whatever E2E voting system Remotegrity is composed with). In particular,
Scantegrity assumes that the printer can be trusted with knowledge of confir-
mation numbers, and that confirmation numbers printed in invisible ink are not
visible unless exposed.

Physical Attacks on Scratch-Off Surfaces. Remotegrity does assume the
integrity of scratch-off surfaces. If voters can retrieve codes without scratching-
off the surface or can reapply an indistinguishable surface, they could falsely
incriminate an entity for election tampering. The use of invisible ink and scratch-
off is interchangeable. We present the ballots with invisible ink as per the original
Scantegrity proposal, but use scratch-offs with Remotegrity as that is what was
used in the election. Other physical technologies for providing tamper-resistant
sealing of printed codes may be used with Remotegrity.

3.4 Optimizations

We avoid doubling-up the functionality of any of the codes to provide the clearest
mapping between each code and the security functionality it serves. However
to reduce the number of codes a voter must enter, codes can be combined.
The serial numbers of the ballot and authorization card can be harmonized to
the same value. If VoteCode and AuthCode are unique across all ballots/cards,
serial numbers can be eliminated entirely. Finally, a unique AuthCode-length
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code could be assigned to each candidate, eliminating the need for VoteCode at
all. Note that this results in a fully-modified ballot style. Remotegrity is designed
to interface with an existing type of ballot style, so that vote tallying can be
conducted across all ballots: in-person and absentee together.

4 Deployment

Takoma Park is a municipality, sharing a city line with Washington D.C., with
about 17,000 residents and 11,000 registered voters. The choice of voting sys-
tem is formally made by the City Council, on recommendation by a Board
of Elections (BOE) with 7 members. Ballots for municipal elections are pro-
vided in English and Spanish. Any voter can request to vote with an absentee
ballot.

4.1 Preparations

We began discussion with the BOE in the early part of 2011 toward using Re-
motegrity in the November 2011 election. We attended their monthly board
meetings and made many changes to the protocol based on their feedback.

System Test. The proposed system was tested on June 8, 2011 in the Takoma
Park Community Center. The City announced the test in the city newspaper
and in the senior newsletter. The test was open to anyone, and not restricted
to Takoma Park voters or residents. We provided voters with a survey to fill
out after they had tried the voting system. About 20 individuals participated in
the test—including some BOE members—and about 17 responded to the survey
on Remotegrity. From our perspective, the purpose of the test was to receive
feedback on usability. It also served as an opportunity to educate potential voters
on the system; as a result, we interacted significantly with voters using the
system. We did not use the results as an indication of usability, due to the test’s
informality and small sample size, but the subjective feedback was very useful
in making changes to the user interface and instructions. As one example, we
modified the system so that voters did not need to enter both AuthSerial and
VoteSerial; just AuthSerial.

The test was reported in the media and we presented the results to the BOE
in the June meeting. The BOE outlined a number of concerns, centred around
usability and security (because of the protocol’s use of the internet, and the
problems Washington DC had had with an internet voting trial [28]). In the July
meeting, the Board members communicated to us that they had confidence in
the technology, but they were concerned about the procedures, which appeared
ad hoc, about potential security mishaps, and that the system had not been peer-
reviewed. In this meeting, they communicated that they were leaning towards
not using Remotegrity, but would go ahead with a mail-in Scantegrity ballot.
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System Adaptations. In the August Board meeting, we proposed (to which
they agreed) that the city provide voters with the option to use Remotegrity in
addition to mailing back marked ballots. Only marked ballots would be counted,
but voters using Remotegrity could test/“audit” the system, and, if they chose to
lock-in their vote, could communicate that the system was accurately recording
their vote. Instructions for “voting” and “auditing” would be sent in separate
envelopes in the same package, with appropriate marking, so as not to overwhelm
voters not interested in the audit.

Thus the system we finally used had some major differences with the protocol
described in Section 3.2. Voters were not required to lock-in (this means that,
in practice, an EA changing the vote using another AuthCode belonging to the
voter could not be distinguished from the voter by a third party). Second, the
Remotegrity system included ballots with visible codes (these ballots correspond
to the original version of Scantegrity [8]). This avoids the requirement of mailing
invisible ink development pens, however dispute resolution in the specific case of
a wrong VoteCode is not possible. Third, voters needed to submit marked paper
ballots by mail for votes to be counted; this eliminated any dependence on the
internet, but made it possible for the EA to ignore a mailed-in ballot. However,
the Scantegrity codes of the votes were posted on the election website and voters
could check if their votes made it in the count.

4.2 Implementation and Server Infrastructure

Backend. The backend of the Remotegrity system contains a module, written
in Java, that has similar functionality to the Scantegrity backend. Before the
election, it is responsible for generating the Remotegrity data, commitments,
and PDFs for printing the authorization cards. After the election, it is used to
open the commitments.

Printing the Cards. The BOE anticipated that about 120 absentee voters
would register. Because of the small-scale, around 200 authorization cards were
printed by the Remotegrity team on a regular inkjet printer on card stock, and
scratch-off stickers were applied manually. The back of each card had a printed
overlay of “noise” to obfuscate the possibility of the reading of codes through
the scratch-off surface using a very bright source of light.

Web-interface. The web interface was implemented with PHP and the Smarty
template engine. During the election, the system was hosted in Amazon Elastic
Cloud (EC2). It consisted of a load balancer that served the page over HTTPS3,
two instances of Apache servers (monitored in realtime, with auto-scale op-
tion), and one instance of an Amazon RDS (MySQL). Each server instance was
only granted the right to INSERT data into the database. If needed, additional
webservers could be started from the same image.

3 http://takoma.remotegrity.org

http://takoma.remotegrity.org
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Bulletin Board. Another EC2 instance ran a signing daemon written in Java.
As data received from voters was inserted into the table by the webservers, the
daemon would fetch and digitally sign it in realtime, inserting the signed data
to a different table. This happened independently of the EA deciding to accept
a ballot. Auditors had direct access to the second table.

An offline signing server (OSS) checked the validity of the submitted codes
and was granted access to the AckCode codes corresponding to each possible
AuthCode code. If the ballot submission was well-formed, it would sign it. As
input, the OSS took an XML file containing data signed by the signing dae-
mon, and output in XML an AckCode and signature on the entries it accepted.
Both input and output files were transported to/from the OSS on a flash drive
manually every 4 hours.

Testing. Both, the web interface and the backend of the system that was used
during the pilot were tested by two independent researchers: Marco Ramilli and
Marco Prandini. They found several security issues related to the web-interface,
e.g., visible system path and session control issues. These issues were fixed.

4.3 The Election

Voters were required to return their absentee ballots by mail, which still provides
voters with the ability to verify correct receipt of their ballot (but limits their
ability to respond and correct the ballot if it is not correct). In addition, they
could opt-in to submitting their ballots electronically.

Procedure. Takoma Park election officials mailed two types of paper cards—
a Scantegrity ballot and a Remotegrity authorization card—to each voter.
Both cards were sent to the voter by regular mail in a single package. The
ballots and authorization cards were paired at random and commitments to
〈VoteCode,AuthCode〉 were published. The EA assigned at random a package to
a voter. They put the package into an outer envelope, stuck the voter’s address
on this envelope and wrote down the serial number of the authorization card
next to a voter’s name on a roster (this could help to remove a vote from the
tally if it was intercepted by an unauthorized person and detected by a voter).
Unused packages were later audited.

Result. The Remotegrity BB contains 123 entries which correspond to 119
voters. Only 5 ballots were submitted online, and two of these were not counted
as the corresponding paper ballots were not mailed in. While the number of
voters who used the online system was small, full preparation and a complete
implementation were required to deploy the system.

Post-election. Remotegrity ballots were included in the same tally as Scant-
egrity ballots that were cast during election day. Both aspects of the election
were audited by independent voting system experts selected by Takoma Park
(on recommendation of the Remotegrity/Scantegrity teams). Neal McBurnett
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and Roberto Araujo conducted the audit, which included verifying the Re-
motegrity commitments during the pre- and post-election audit procedures. Neal
McBurnett additionally audited all the unsent absentee packages.

5 Lessons Learned and Concluding Remarks

The design of secure internet voting systems is non-trivial. One of the most
important lessons learned concerns the importance of a good working relation-
ship between the system designers and the election officials. We benefitted from
Takoma Park’s feedback on the user interface. We believe that they, in turn,
came to appreciate some of the more subtle security properties we were at-
tempting to provide, and that their involvement helped to promote an increased
sense of pride and ownership of the outcome. The other important lesson per-
tains to adapting voting research systems for real-world use. For example, most
E2E schemes presuppose the existence of a public append-only bulletin board.
Implementing this, however, proved to be a major technical challenge, which
invariably leads to a relaxation of security properties. Designers of such systems
must be able to adapt accordingly.

In future work, while considering scalability of the system for larger elections,
we do not foresee problems and observe that it is as scalable as vote-by-mail.
Also interesting from the perspective of future work is the problem of rigorous
definitions and property proofs for the protocol, in a model that takes into
account the properties of paper and scratch-off surfaces. Another important open
problem is that of a coercion-resistant version of Remotegrity.

Finally, it was exciting to work with an election jurisdiction that sees merit
in cryptographic election verification. But this was not just a case of early
adoption—Takoma Park had run an E2E election before, and for the first time,
we caught an exciting glimpse into the future of electronic voting in which E2E
verification is the new normal.
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Abstract. This paper studies Tripartite Key Exchange (3KE) which is a spe-
cial case of Group Key Exchange. Though general one-round GKE satisfying
advanced security properties such as forward secrecy and maximal-exposure-
resilience (MEX-resilience) is not known, it can be efficiently constructed with
the help of pairings in the 3KE case. In this paper, we introduce the first
one-round 3KE which is MEX-resilient in the standard model, though existing
one-round 3KE schemes are proved in the random oracle model (ROM), or not
MEX-resilient. Each party broadcasts 4 group elements, and executes 14 pair-
ing operations. Complexity is only three or four times larger in computation and
communication than the existing most efficient MEX-resilient 3KE scheme in the
ROM; thus, our protocol is adequately practical.

Keywords: authenticated key exchange, tripartite key exchange, standard model,
dual-receiver encryption.

1 Introduction

Authenticated Key Exchange (AKE) is a cryptographic primitive to share a common
session key among multiple parties through unauthenticated networks such as the Inter-
net. This work considers the PKI-based setting that each party locally keeps his own
static secret key (SSK) and publish a static public key (SPK) corresponding to the SSK.
Validity of SPKs is guaranteed by a certificate authority. In a key exchange session,
each party generates an ephemeral secret key (ESK) and sends an ephemeral public key
(EPK) corresponding to the ESK. A session key is derived from these keys with a key
derivation function.

In the two-party AKE (2KE) setting, many practical and provably secure AKE proto-
cols have been introduced since [1]. For example, MQV [2] and its variants [3,4,5,6,7,8,9]
achieve one-round schemes from the Diffie-Hellman (DH) assumptions. One-round pro-
tocols mean that parties send their messages independently and simultaneously only
once. On the other hand, in the general group AKE (GKE) setting, to achieve one-round
protocols is not so easy. A known approach [10,11] is that each party broadcasts multi-
ple ciphertexts encrypting a common nonce to all parties, and aggregates nonces with a
key derivation function. These schemes do not satisfy some important security proper-
ties such as forward secrecy. The other approach is using a multilinear map from ideal

M. Jacobson et al. (Eds.): ACNS 2013, LNCS 7954, pp. 458–474, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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lattices [12]. This multilinear map is still a candidate, and the resultant GKE is imprac-
tical. Thus, to construct secure and practical one-round GKE is a challenging problem
in the research area of AKE.

Interestingly, in the three-party AKE (3KE) setting (i.e., a special case of GKE),
secure one-round protocols can be achieved practically thanks to pairings. Joux [13]
firstly proposed one-round (unauthenticated) 3KE by extending the ordinary DH pro-
tocol to 3KE with pairings. After that, several one-round authenticated 3KE schemes
are studied such as [14,15,16]. The security model for GKE in [15,16] (called the MSU
model) captures a very strong security property; that is, even though an adversary can
reveal any non-trivial1 combination of ephemeral secret keys and static secret keys,
any information of the session key is not exposed. We call such a property maximal-
exposure-resilience (MEX-resilience). MEX-resilience implies various important secu-
rity properties for GKE such as forward secrecy and key compromise impersonation
resilience. Unfortunately, the known MEX-resilient one-round 3KE schemes [15,16]
are proved in the random oracle model (ROM).

1.1 Our Contribution

We achieve the first MEX-resilient one-round 3KE scheme in the standard model
(StdM). Our key idea is to utilize dual-receiver encryption (DRE) [17,18]. DRE al-
lows a ciphertext to be decrypted into the same plaintext by two independent receivers.
The situation of DRE is very similar to 3KE; a party tries to share common secret infor-
mation with other two parties. Thus, our basic strategy is that each party broadcasts a
ciphertext of DRE and aggregates three plaintexts by a pseudo-random function. How-
ever, we must carefully consider several special situations of 3KE, which do not occur
in encryption; e.g., the simulator must manage decryption of the challenge ciphertext.
We modify the original DRE to be able to simulate such situations correctly.

Also, we reformulate the MSU model [15,16] for GKE (called the G-CK+ model)
by combining with one of the ‘strongest’ models for 2KE, CK+ model [3,19]. The
G-CK+ model allows adversaries to reveal intermediate computation results of sessions
in addition to the MSU model. Such a reveal capability is also considered in several
security models for 2KE [20,3,8,19]. We prove that our scheme is secure in the G-CK+

model in the StdM under the decisional bilinear DH (DBDH) assumption.

2 Preliminaries

In this section, we recall definitions of building blocks.
Throughout this paper we use the following notations. If M is a set, then by m ∈R M

we denote that m is sampled uniformly from M. IfR is an algorithm, then by y← R(x; r)
we denote that y is output by R on input x and randomness r (if R is deterministic, r is
empty).

1 If both the static key and the ephemeral key of a party in the target session are revealed, the
adversary trivially obtains the session key for any protocol.
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2.1 Bilinear Group

Let G and GT be cyclic groups of prime order p where g is a generator of G. We say
that e : G × G → GT is a bilinear map if for all X, Y ∈ G and a, b ∈ Zp, e(Xa, Yb)
= e(X, Y)ab, and e(g, g) � 1. We say that G is a bilinear group if e, and group operations
in G and GT can be computed efficiently.

2.2 Decisional Bilinear Diffie-Hellman Assumption

Let κ be the security parameter and p be a κ-bit prime. Let G be a bilinear group of a
prime order p with a generator g, and GT be a cyclic group of the prime order p. Let
e : G ×G → GT be a bilinear map.

The DBDH assumption is defined by two experiments, Expdbdh-real(D) and
Expdbdh-rand(D). For a distinguisher D, inputs (g, α = ga, β = gb, γ = gc, δ) are pro-
vided, where (a, b, c) ∈R (Zp)3. δ = gabc

T in Expdbdh-real(D) and δ ∈R G in Expdbdh-rand(D)
where gT = e(g, g). We define advantage

Advdbdh(D) = | Pr[Expdbdh-real
g,p (D) = 1] − Pr[Expdbdh-rand

g,p (D) = 1]|,
where the probability is taken over the choices of a, b, c, δ and the random tape ofD.

Definition 1 (DBDH Assumption). We say that the DBDH assumption in (G,GT )
holds if for all probabilistic polynomial-time (PPT) distinguisher D the advantage
Advdbdh(D) is negligible in security parameter κ.

2.3 Pseudo-random Function

Let κ be a security parameter and F = {Fκ : Domκ × Kspaceκ → Rngκ}κ be a function
family with a family of domains {Domκ}κ, a family of key spaces {Kspaceκ}κ and a
family of ranges {Rngκ}κ.
Definition 2 (Pseudo-Random Function). We say that function family F = {Fκ}κ is
the PRF family, if for any PPT distinguisherD, Advprf = | Pr[DFκ (·) → 1] − Pr[DRFκ(·)
→ 1]| ≤ negl, where RFκ : Domκ → Rngκ is a truly random function.

2.4 Target-Collision Resistant Hash Function

We say a function TCR : Dom→ Rng is a target-collision resistant hash function if the
following condition holds for a security parameter κ: For any PPT adversaryA, Pr[x ∈R

Dom; x′ ← A(x) s.t. x � x′ ∧ TCR(x) = TCR(x′)] ≤ negl.

3 G-CK+ Model

In this section, we introduce a new security model, G-CK+ model, for GKE by
combining the CK+ model [19] for two-party AKE and the MSU model [15,16]
for GKE.

Note that we show a model specified to one-round protocols for simplicity. It can be
trivially extended to any round protocol.
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3.1 Protocol Participants and Initialization

Let U := {U1, . . . ,UN} be a set of potential protocol participants. Each party Ui is
modeled as a PPT Turing machine w.r.t. security parameter κ. For party Ui, we denote
static secret (public) key by S S Ki (S PKi) and ephemeral secret (public) key by ES Ki

(EPKi). Party Ui generates its own keys, S S Ki and S PKi, and the static public key
S PKi is linked with Ui’s identity in some systems like PKI.

3.2 Session

An invocation of a protocol is called a session. We suppose that a session contains n
parties {U j1 , . . . ,U jn}, where 2 ≤ n ≤ N. A session is managed by a tuple (Π, rolei,U j� ,
{U j1 , . . . ,U jn }), where Π is a protocol identifier, rolei is a role identifier, and U j� is a
party identifier. Hereafter, for simplicity, we can suppose that U j� = U� without loss
of generality. If U j is activated with (Π, rolei,U j, {U1, . . . ,Un}, Init), then U j is called
the i-th player. The role of a party in a session is decided by the lexicographic order
of party identities, and rolei � rolei′ for any i and i′ in a session. U j outputs EPKj,
receives EPKj′ from U j′ for j′ = 1, . . . , j − 1, j + 1, . . . , n, and computes the session
key S K.

If U j is the i-th player of a session, the session is identified by sid = (Π, rolei,U j,
{U1, . . . ,Un}, EPKj) or sid = (Π, rolei,U j, {U1, . . . ,Un}, {EPK1, . . . , EPKn}). We say
that U j is the owner of session sid, if the third coordinate of sid is U j. We say that U j

is a peer of session sid, if the third coordinate of sid is not U j. We say that a session
is completed if its owner computes the session key. We say (Π, rolei′ ,U j′ , {U1, . . . ,Un},
{EPK1, . . . , EPKn}) is matching session of (Π, rolei, U j, {U1, . . . , Un}, {EPK1, . . . ,
EPKn}), where i′ � i and j′ � j.

3.3 Adversary

The adversary A, which is modeled as a PPT Turing machine, controls all commu-
nications between parties including session activation and registrations of parties by
performing the following adversary queries.

– Send(U j,message): U j is the receiver. The message has the following form: (Π,
rolei, U j, {U1, . . . ,Un}, Init) for session activation, or (Π, rolei′ , U j′ , {U1, . . . , Un},
EPKj′ ).A obtains the response from U j.

– Establish(U j, S PKj): This query allows A to introduce new parties. In response,
if U j � U (due to the uniqueness of identities) then U j with the static public key
S PKj is added to U. Note that A is not required to prove the possession of the
corresponding secret key S S Kj. If a party is registered by a Establish query issued
byA, then we call the party dishonest. If not, we call the party honest.

To capture exposure of secret information, the adversary A is allowed to issue the
following queries.
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– SessionReveal(sid): The adversaryA obtains the session key S K for the session
sid if the session is completed.

– StateReveal(sid): The adversary A obtains the session state of the owner of ses-
sion sid if the session is not completed (the session key is not established yet).
The session state includes all ephemeral secret keys and intermediate computation
results except for immediately erased information but does not include the static
secret key. Note that the protocol specifies what the session state contains.

– StaticReveal(U j): This query allows the adversaryA to obtain all static secret keys
of the party U j.

– EphemeralReveal(sid): This query allows the adversaryA to obtain all ephemeral
secret keys of the owner of the session sid if the session is not completed (the
session key is not established yet). It is necessary to represent a MEX situation that
an adversary can reveal ESKs but is prevented to obtain other session state such
that the adversary trivially wins.

3.4 Freshness

For the security definition, we need the notion of freshness.

Definition 3 (Freshness). Let sid∗ = (Π, rolei,U j, {U1, . . . , Un}, {EPK1, . . . , EPKn})
be a completed session between honest parties {U1, . . . ,Un}, which is owned by U j. If a

matching session exists, then let sid∗ be a matching session of sid∗. We say session sid∗

is fresh if none of the following conditions hold:

1. The adversaryA issues SessionReveal(sid∗), or SessionReveal(sid∗) for any sid∗

if sid∗ exists,
2. sid∗ exists, and adversaryA makes either of StateReveal(sid∗) or

StateReveal(sid∗),
3. sid∗ does not exist, and adversaryA makes StateReveal(sid∗),
4. adversaryA makes both of StaticReveal(U j) and EphemeralReveal(sid∗),
5. sid∗ exists (the owner of sid∗ is U j′ ), and adversaryA makes both of

StaticReveal(U j′ ) and EphemeralReveal(sid∗),
6. sid∗ does not exist, and adversary A makes StaticReveal(U j′) for any intended

peer U j′ of U j in sid∗.

3.5 Security Experiment

For the security definition, we consider the following security experiment. Initially,
the adversary A is given a set of honest users and makes any sequence of the queries
described above. During the experiment, the adversaryA makes the following query.

– Test(sid∗): Here, sid∗ must be a fresh session. Select random bit b ∈R {0, 1}, and
return the session key held by sid∗ if b = 0, and return a random key if b = 1.

The experiment continues until the adversary A makes a guess b′. The adversary A
wins the game if the test session sid∗ is still fresh and if the guess of the adversary A
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is correct, i.e., b′ = b. The advantage of the adversary A is defined as Advgke
Π (A) =

Pr[A wins] − 1
2 . We define the security as follows.

Definition 4 (G-CK+ Security). We say that a GKE protocol Π is secure in the G-CK+

model if the following conditions hold:

1. If two honest parties complete matching sessions, then, except with negligible
probability, they both compute the same session key.

2. For any PPT adversaryA, Advgke
Π (A) is negligible in security parameter κ for the

test session sid∗.

4 Maximal-Exposure-Resilient One-Round Tripartite Key
Exchange without ROs

In this section, we introduce a new one-round 3KE protocol. We use the technique of
DRE with some modification. Our protocol is G-CK+ secure in the StdM under the
DBDH assumption.

4.1 What Is Barrier to Remove ROs?

All of known 3KE protocols in the ROM use an RO as the key derivation function. For
example, in the simplest variant of the FMSU framework [16] a session key is the output
of an RO as follows: Let κ be a security parameter. Let G and GT be bilinear groups
with pairing e : G ×G → GT of order κ-bit prime p with generators g and gT = e(g, g),
respectively. Party UA, UB and UC own a, b, c ∈R Zp as SSKs and A = ga, B = gb,C =
gc ∈ G as SPKs, and x, y, z ∈R Zp as ESKs and X = gx, Y = gy, Z = gz ∈ G as EPKs,
respectively. Then, parties share 8 combinations of their SSKs and ESKs with pairings
(i.e., gabc

T , gxbc
T , gayc

T , gabz
T , gxyc

T , gxbz
T , gayz

T and gxyz
T ). The session key S K is the output of

RO inputting these shared information.
This structure helps the simulation to keep consistency between SessionReveal and

Send queries in the security proof. The simulator must answer correct session keys
for the SessionReveal query according to EPKs for the Send query. In the ROM, the
simulator can arbitrarily chooses the output of the key derivation function without com-
puting shared information. Thus, if the simulator cannot know the ESK corresponding
to the EPK received from the Send query, he can make the session key consistent by
the simulation of the RO.

Conversely, in the StdM, the simulator must compute all shared information in or-
der to answer the session key to the SessionReveal query correctly. However, MEX
includes exposure of all non-trivial combinations of SSKs and ESKs, and the simulator
must embed an instance of a hard problem into unexposed keys to solve the problem.
For example, we consider the case that the key derivation function in the above FMSU
variant is not RO. If a, y and z are revealed, then the simulator must embed DBDH tuple
(α, β, γ, δ) into X = α, B = β, C = γ, and gxbc

T = δ. Then, the simulator must return the
correct session key for the SessionReveal and Send query though x, b and c are not
known. Such a situation is hard to simulate as it is.
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4.2 Modifying Dual-Receiver Encryption

A promising approach is to use techniques to simulate decryption queries in chosen
ciphertext (CCA) secure encryption. Especially, for the 3KE setting, we need DRE
rather than ordinary public key encryption. We use the KEM version of a CCA secure
DRE [18] (CFZ DRE) to construct our basic protocol; that is, each party encapsulates
a random nonce with DRE and broadcasts it to other parties. The protocol of the CFZ
DRE is as follows:

Public Parameters. Let κ be a security parameter. Let G and GT be bilinear groups
with pairing e : G ×G → GT of order κ-bit prime p with generators g and gT = e(g, g),
respectively. Let TCR : G → Zp be a target collision resistance hash function.

Secret and Public Keys. The secret key of receiver Ui is ski := (xi, yi) ∈R Z
2
p. The public

key of receiver Ui is pki := (Xi = gxi , Yi = gyi).

Encapsulation. Given pk1 and pk2, the sender chooses r ∈R Zp, and computes R = gr,
tag = TCR(R), π1 = (Xtag

1 Y1)r, and π2 = (Xtag
2 Y2)r. The KEM session key is K =

e(X1, X2)r, and the ciphertext is CT = (R, π1, π2).

Decapsulation. Given pk1, pk2, sk1, and CT , the receiver computes tag = TCR(R), and
checks e(g, π1) = e(R, xtag

1 y1) and e(g, π2) = e(R, xtag
2 y2). If not, return ⊥. Otherwise,

return the KEM session key K = e(R, X2)x1 .

In the security proof, the simulator can handle decryption queries by utilizing the
fact that tag∗ corresponding to the challenge ciphertext CT ∗ is different from tags cor-
responding to ciphertexts of decryption queries. Specifically, the simulator embeds a
DBDH tuple (g, α, β, γ, δ) into R∗ = α, π∗1 = α

d1 , π∗2 = α
d2 , X∗1 = β, Y∗1 = β

−tag∗gd1 , X∗2 =
γ, Y∗2 = γ

−tag∗gd2 and K∗ = δ, where d1, d2 ∈R Zp and tag∗ = TCR(R∗). When a cipher-
text CT = (R, π1, π2) is posed, the simulator can return K = e((π1R−d1 )(tag−tag∗)−1

, X∗2) or
K = e((π2R−d2)(tag−tag∗)−1

, X∗1), where tag = TCR(R). Owing to this simulation, we can
simulate the SessionReveal and Send query without knowing secret keys. It is likely
that 3KE could be constructed by setting the ciphertext of the CFZ DRE as the EPK.
However, a simple application of DRE does not correctly work in the 3KE setting.

First, though the adversary is prevented to pose the challenge ciphertext to the de-
cryption oracle in the CCA game of DRE, an adversary can be forward the message,
corresponding to the challenge ciphertext, in the test session for other sessions by Send
query in the G-CK+ model. For example, an adversary specifies UA as the owner of the
test session, and reveals the SSK of UA. Then, the simulator embeds an element in the
DBDH tuple into R∗ of a part of the EPK of UA as the simulation of the CFZ DRE.
The adversary can reuse R∗ as a part of the EPK of UB in another session. In this case,
the simulator must manage the decryption of it, but the original decryption simulation
technique of DRE does not help him because tag = tag∗ = TCR(R∗). Thus, our first
modification is that the way to generate tags is changed to be different in distinct two
sessions even if the challenge ciphertext is reused. Specifically, we make tags depen-
dent on identities of the sender and receivers. That is, if the sender is UA, and receivers
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are UB and UC , then tag = TCR(R,UA,UB,UC). Even if the same R is reused, the tag
is different from tag because the sender is not UA. Note that when R is reused in an-
other session such that the sender is UA, and receivers are UB and UC , the decryption
simulation is not necessary because we can return δ in the DBDH tuple.

Next, we must consider the other problem. To resist exposure of all SSKs, parties
must share a secret state only with their ESKs to be independent with SSKs as gxyz

T in
the simplest variant of the FMSU framework. If each party knows own ESK, such a
secret state can be computed. Unfortunately, in the case that the simulator must embed
an element in the DBDH tuple into R∗ of a part of the EPK of UA in the test session,
the secret state cannot be simulated. If the test session has no matching session, and
an adversary reuses R∗ as EPKs of UB and UC , the simulator must computes the secret
state from R∗. However, the simulator cannot generate it because no ESK is known.
On the other hand, to resist exposure or adversarial generation of all ESKs, parties
must share a secret state only with their SSKs to be independent with ESKs as gabc

T
in the simplest variant of the FMSU framework. A similar case as above occurs; that
is, the simulator cannot generate such a secret state because no SSK is known when
an element in the DBDH tuple is embedded into the SPK of a party and other parties
are established by the adversary. To resolve this problem, our second modification is
that each party generates an additional group element as a part of SPK, and broadcasts
an additional group element as a part of EPK. Secret states corresponding to gabc

T and
gxyz

T are generated with them. This modification allows the simulator to know ESKs and
SSKs to generate secret states even if the simulator embeds an element in the DBDH
tuple into EPK or SPK. In our construction (Section 4.3), EPKs R′A, R′B, R′C and SPKs
ZA, ZB, ZC correspond to the modification.

4.3 Our Construction

Public Parameters. Let κ be a security parameter. Let G and GT be bilinear groups
with pairing e : G ×G → GT of order κ-bit prime p with generators g and gT = e(g, g),
respectively. Let F : {0, 1}∗ ×GT → {0, 1}κ be a pseudo-random function where the key
space for F is GT . Let TCR : G → Zp be a target collision resistance hash function.

Secret and Public Keys. Party UI chooses xI , yI , zI ∈R Zp as the static secret key. Then,
UI computes XI = gxI , YI = gyI and ZI = gzI as the static public key.

Key Exchange. We suppose a session executed by UA, UB and UC .

1. UA chooses rA, r′A ∈R Zp as the ephemeral secret key, and computes RA = grA ,

R′A = gr′A , πAB = (XtagA
B YB)rA , and πAC = (XtagA

C YC)rA as the ephemeral public
key, where tagA = TCR(RA, R′A,UA,UB,UC). Then, UA broadcasts (Π, role1,UA,
{UA,UB,UC}, (RA,R′A, πAB, πAC)) to UB and UC .

2. UB chooses rB, r′B ∈R Zp as the ephemeral secret key, and computes RB = grB ,
R′B = gr′B , πBA = (XtagB

A YA)rB , and πBC = (XtagB
C YC)rB as the ephemeral public

key, where tagB = TCR(RB, R′B,UB,UC ,UA). Then, UA broadcasts (Π, role2,UB,
{UA,UB,UC}, (RB, R′B, πBA, πBC)) to UA and UC .
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3. UC chooses rC , r′C ∈R Zp as the ephemeral secret key, and computes RC = grC ,

R′C = gr′C , πCA = (XtagC
A YA)rC , and πCB = (XtagC

B YB)rC as the ephemeral public
key, where tagC = TCR(RC , R′C ,UC,UA,UB). Then, UC broadcasts (Π, role3,UC ,
{UA,UB,UC}, (RC,R′C , πCA, πCB)) to UA and UB.

4. On receiving (Π, role2,UB, {UA,UB,UC}, (RB,R′B, πBA, πBC)) and (Π, role3,UC , {UA,
UB,UC}, (RC,R′C , πCA, πCB)), UA computes tagB = TCR(RB,R′B,UB,UC , UA) and
tagC = TCR(RC,R′C ,UC ,UA,UB), and verify the following equations.

e(g, πBA) = e(RB, X
tagB
A YA); e(g, πBC) = e(RB, X

tagB
C YC);

e(g, πCA) = e(RC , X
tagC
A YA); e(g, πCB) = e(RC, X

tagC
B YB)

If the verification does not hold, UA aborts. Otherwise, UA computes the following
shared information.

σ1 = e(ZB, ZC)zA ; σ2 = e(XB, XC)rA ;σ3 = e(RB, XC)xA ; σ4 = e(XB,RC)xA ;

σ5 = e(RB, XC)rA ; σ6 = e(XB,RC)rA ;σ7 = e(RB,RC)xA ; σ8 = e(R′B,R
′
C)r′A

Then, UA sets the session transcript ST = (UA, (RA,R′A, πAB, πAC),UB, (RB, R′B, πBA,
πBC), UC , (RC ,R′C, πCA, πCB)). Finally, UA generates the session key S K = Fσ1 (ST)
⊕ · · · ⊕ Fσ8 (ST), and completes the session.

5. On receiving (Π, role1,UA, {UA,UB,UC}, (RA,R′A, πAB, πAC)) and (Π, role3,UC , {UA,
UB,UC}, (RC,R′C , πCA, πCB)), UB computes tagA = TCR(RA,R′A,UA,UB, UC) and
tagC = TCR(RC,R′C ,UC ,UA,UB), and verify the following equations.

e(g, πAB) = e(RA, X
tagA
B YB); e(g, πAC) = e(RA, X

tagA
C YC);

e(g, πCA) = e(RC , X
tagC

A YA); e(g, πCB) = e(RC, X
tagC

B YB)

If the verification does not hold, UB aborts. Otherwise, UB computes the following
shared information.

σ1 = e(ZA, ZC)zB ; σ2 = e(RA, XC)xB ;σ3 = e(XA, XC)rB ; σ4 = e(XA,RC)xB ;

σ5 = e(RA, XC)rB ; σ6 = e(RA,RC)xB ;σ7 = e(XA,RC)rB ; σ8 = e(R′A,R
′
C)r′B

Then, UB sets the session transcript ST = (UA, (RA,R′A, πAB, πAC),UB, (RB, R′B, πBA,
πBC), UC , (RC ,R′C, πCA, πCB)). Finally, UB generates the session key S K = Fσ1 (ST)
⊕ · · · ⊕ Fσ8 (ST), and completes the session.

6. On receiving (Π, role1,UA, {UA,UB,UC}, (RA,R′A, πAB, πAC)) and (Π, role2,UB, {UA,
UB,UC}, (RB,R′B, πBA, πBC)), UC computes tagA = TCR(RA,R′A,UA,UB, UC) and
tagB = TCR(RB,R′B,UB,UC , UA), and verify the following equations.

e(g, πAB) = e(RA, X
tagA
B YB); e(g, πAC) = e(RA, X

tagA
C YC);

e(g, πBA) = e(RB, X
tagB
A YA); e(g, πBC) = e(RB, X

tagB
C YC)

If the verification does not hold, UC aborts. Otherwise, UC computes the following
shared information.

σ1 = e(ZA, ZB)zC ; σ2 = e(RA, XB)xC ;σ3 = e(XA,RB)xC ; σ4 = e(XA, XB)rC ;

σ5 = e(RA,RB)xC ; σ6 = e(RA, XB)rC ;σ7 = e(XA,RB)rC ; σ8 = e(R′A,R
′
B)r′C
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Table 1. Comparison of previous one-round 3KE schemes and our scheme

MEX- Resource Assumption Computation (#parings+ Communication
resilient? #[multi,regular]-exp) complexity

[10] no ROM DDH 0 + [0, 7]† or 0 + [2, 1] 20κ† or 2κ (2560 or 256)
[11] no StdM DDH 0 + [3, 7] 16κ (2048)
[14] no ROM BDH 1 + [0, 3] 4κ (512)

[15,16] yes ROM GBDH 4 + [0, 7] 4κ (512)

Ours yes StdM DBDH 14 + [2, 15] 16κ (2048)
† Since the protocol is asymmetric, the cost for a party is higher than the others.

DDH means the Decisional Diffie-Hellman assumption. BDH means the Bilinear Diffie-
Hellman assumption. DBDH means the Decisional Bilinear Diffie-Hellman assumption.
GBDH means the gap Bilinear Diffie-Hellman assumption. For concreteness the ex-
pected communication complexity for a 128-bit security implementation is also given.
Note that computational costs are estimated without any pre-computation technique.

Then, UC sets the session transcript ST = (UA, (RA,R′A, πAB, πAC),UB, (RB, R′B, πBA,
πBC),UC , (RC,R′C , πCA, πCB)). Finally, UC generates the session key S K = Fσ1 (ST)
⊕ · · · ⊕ Fσ8 (ST), and completes the session.

The session state of a session owned by UI contains ephemeral secret keys (rI , r′I),
shared information (σ1, . . . , σ8), and outputs of PRFs (Fσ1 (ST), . . . , Fσ8 (ST)).

4.4 Efficiency

Our construction needs 2 regular exponentiations and 2 multi exponentiations to gen-
erate a message, 4 regular exponentiations and 8 pairings to verify received messages,
and 8 regular exponentiations and 6 pairings to compute shared information for each
party. The total computational cost for each party is 2 multi exponentiations, 15 regular
exponentiations, and 14 pairings. A message contains 4 group elements in G, and each
party broadcasts the message to two other parties. The total communication complexity
(the message size sent by a party) is 16κ with an elliptic curve.

Table 1 summarizes the efficiency comparison of previous one-round 3KE schemes
and our scheme. Schemes in [10] and [11] are designed for GKE, and we describe
3KE versions of them. The instantiation of [10] in Table 1 is with the ElGamal KEM
as semantically secure public key encryption and the Chevallier-Mames signature [21]
as existentially unforgeable signature. The instantiation of [11] in Table 1 is with the
multiple Cramer-Shoup encryption [22] as CCA secure multiple KEM according to the
generic construction [23].

This table hints that communication complexity grows to achieve security in the
standard model, and computational cost grows to achieve MEX-resilient. Hence, our
scheme is less efficient than existing schemes but still practical because complexity is
only three or four times larger both in computation and communication than [15,16].
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Table 2. Classification of events, when A, B and C are distinct

S S KA ES KA S S KB ES KB S S KC ES KC

E1 r ok ok r/n ok r/n
E2 ok r ok r/n ok r/n
E3 r ok r ok r ok
E4 ok r r ok r ok
E5 r ok ok r/n r ok
E6 ok r ok r/n r ok
E7 r ok r ok ok r/n
E8 ok r r ok ok r/n

“ok” means the static secret key is not revealed, or a partnered instance exists and its
ephemeral secret key is not revealed. “r” means the static or ephemeral secret key may
be revealed. “r/n” means the ephemeral secret key may be revealed if the corresponding
partnered instance exists, or no corresponding partnered instance exists.

5 Security

We show the following theorem.

Theorem 1. If the DBDH assumption holds, and F is a PRF, then our 3KE protocol is
G-CK+-secure.

Proof. In the experiment of G-CK+ security, we suppose that sid∗ is the session identity
for the test session, and that there are N parties and at most � sessions are activated per a
party. Let κ be the security parameter, and letA be a PPT (in κ) adversary. S uc denotes
the event that A wins. We consider eight events in Table 2, that cover all cases of the
behavior ofA.
To finish the proof, we investigate events Ei ∧ S uc (i = 1, . . . , 8) that cover all cases of
event S uc. Due to the space limitation, we only show the full proof of E1 ∧ S uc which
is the most difficult event. Other events can be proved in a similar way.

5.1 Event E1 ∧ Suc

We change the interface of oracle queries and the computation of the session key. These
instances are gradually changed over hybrid experiments, depending on specific sub-
cases. In the last hybrid experiment, the session key in the test session does not contain
information of the bit b. Thus, the adversary clearly only output a random guess. We
denote these hybrid experiments by H0, . . . ,H4, and the advantage of the adversaryA
when participating in experiment Hi by Adv(A,Hi).

Hybrid Experiment H0. This experiment denotes the real experiment for G-CK+ se-
curity and in this experiment the environment forA is as defined in the protocol. Thus,
Adv(A,H0) is the same as the advantage of the real experiment.
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Hybrid Experiment H1. In this experiment, if session identities in two sessions are
identical, the experiment halts.

When randomness in generating EPKs are identical, session identities in two sessions
are also identical. However, such an event occurs with negligible probability. Thus,
|Adv(A,H1) − Adv(A,H0)| ≤ negl.

Hybrid Experiment H2. In this experiment, the experiment selects parties UA, UB

and UC , and integer k ∈ [1, �] randomly in advance. IfA poses Test query to a session
except k-th session of UA whose the intended peers UB and UC , the experiment halts.

Since guess of the test session matches with A’s choice with probability 1/N3�,
Adv(A,H2) ≥ (1/N3�) ·Adv(A, H1). After this experiment, without loss of generality,
we can suppose that the intended peers of the k-th session of UA are UB and UC .

Hybrid Experiment H3. In this experiment, the computation of σ2 in the test session
is changed. Instead of computing σ2 = grA xB xC

T , it is changed as choosing σ2 ← GT

randomly, where we suppose that UB and UC are intended peers of UA in the test
session.

We construct a DBDH distinguisher D from A in H2 or H3. D performs the
following steps.

Init. D receives a DBDH tuple (g, α, β, γ, δ) as a challenge.

Setup. D chooses pseudo-random function F : {0, 1}∗ × GT → {0, 1}κ, and provides
it as a part of the public parameters.

First, D sets the ephemeral public key (R∗A,R
′∗
A, π

∗
AB, π

∗
AC) of k-th session of UA.

D randomly chooses r′A, d1 and d2, and sets R∗A := α, R′∗A := gr′A , π∗AB := αd1 and
π∗AC := αd2 .

Next, D implicitly sets all N parties’ static secret and public keys. Keys of par-
ties except UB and UC are generated as the protocol. If A poses Establish query with
a party identifier and a SPK, then D replaces the preset SPK of the party with the
given SPK. Static public keys of UB and UC ((X∗B, Y

∗
B, Z

∗
B) and (X∗C , Y

∗
C , Z

∗
C)) are set as

X∗B := β, Y∗B := β−tag∗Agd1 , Z∗B := gz∗B , X∗C := γ, Y∗C := γ−tag∗A gd2 , and Z∗C := gz∗C , where
tag∗A = TCR(R∗A,R

′∗
A,UA,UB,UC) and z∗B, z

∗
C ∈R Zp.

Simulation. D maintains the list LS K that contains queries and answers of
SessionReveal.D simulates oracle queries byA as follows.

1. Send(U j1 ,Π, rolei,U j1 , {U j1 ,U j2 ,U j3}, Init):
(a) If j1 = A, j2 = B, j3 = C, i = 1, the session is k-th session of UA, then D

returns (Π, role1,UA, {UA,UB,UC}, (R∗A,R′∗A, π∗AB, π
∗
AC)) and records it.

(b) Otherwise,D computes the ephemeral public key as the protocol, returns it and
records (Π, rolei,U j1 , {U j1 ,U j2 ,U j3 }, (R j1 ,R

′
j1
, π j1 j2 , π j1 j3 )).

2. Send(U j2 ,Π, rolei,U j1 , {U j1 ,U j2 ,U j3}, EPKj1 ) or Send(U j3 ,Π, rolei,U j1 , {U j1 ,U j2 ,
U j3 }, EPKj1 ):
(a) If both (Π, rolei′ ,U j2 , {U j1 ,U j2 ,U j3}, EPKj2 ) and (Π, rolei′′ ,U j3 , {U j1 ,U j2 ,U j3 },

EPKj3 ) are not recorded,D only records (Π, rolei,U j1 , {U j1 ,U j2 ,U j3 }, EPKj1).
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(b) Else if D checks EPKj1 with pairing equations as the protocol, and the
verification is not valid, thenD rejects the session.

(c) Else if ( j2 = A, j1 = C) or ( j3 = A, j1 = B), and the session is the k-th
session of UA, then D sets all σi as follows: σ2 is set as δ. Since D knows
xA, zA, z∗B, z∗C and r′∗A, σ1, σ3, σ4, σ7 and σ8 are computed with these values.
σ5 = e((πBCR−d2

B )(tagB−tagA∗ )−1
, R∗A) where tagB = TCR(RB,R′B,UB, UC , UA)2.

σ6 = e((πCBR−d1
C )(tagC−tagA∗ )−1

,R∗A) where tagC = TCR(RC , R′C ,UC ,UA,UB)3.
D computes the session key S K∗ as the protocol, and records (Π, role1,UA, {UA,
UB, UC}, {EPKA, EPKB, EPKC}), (Π, role2, UB, {UA, UB, UC}, {EPKA, EPKB,
EPKC}) and (Π, role3,UC , {UA, UB, UC}, {EPKA, EPKB, EPKC}) as the
completed session and S K∗ in the list LS K .

(d) Else if j1 = A, j2 = B, j3 = C, the first content of EPKj1 is R∗A, thenD sets all
σi as follows: σ2 is set as δ. SinceD knows xA, zA, z∗B, z∗C and r′∗A, σ1, σ3, σ4,

σ7 and σ8 are computed with these values. σ5 = e((π j2 j3 R−d2
j2

)(tag j2
−tagA∗ )−1

, R∗A)

where tag j2 = TCR(R j2 ,R
′

j2 ,UB,UC ,UA)4.σ6 = e((π j3 j2 R−d1
j3

)(tag j3
−tagA∗ )−1

, R∗A)

where tag j3 = TCR(R j3 ,R
′

j3 ,UC ,UA,UB)5.D computes the session key S K as
the protocol, and records (Π, role1,UA, {UA,UB, UC}, {EPKA, EPKB, EPKC}),
(Π, role2,UB, {UA,UB,UC}, {EPKA, EPKB, EPKC}) and (Π, role3,UC , {UA,UB,
UC}, {EPKA, EPKB, EPKC}) as the completed session and S K in the list LS K .

(e) Else if j2 = B (resp. j3 = B), then D parses EPKj1 into (R j1 ,R
′
j1
, π j1 j2 ,

π j1 j3 ), and sets σi as follows: Since D knows z∗B, rB and r′B, σ1, σ3, σ4,

σ7 and σ8 are computed with these values. σ2 = e((π j1 j2 R−d1
j1

)(tag j1
−tagA∗ )−1

,

X j3 ) (resp. σ2 = e((π j1 j3 R−d1
j1

)(tag j1
−tagA∗ )−1

, X j2)) where tag j1 = TCR(R j1 ,
R′j1 ,U j1 ,UB, U j3 ) (resp. tag j1 = TCR(R j1 ,R

′
j1
,U j1 ,U j3 , UB)). σ5 =

e(R j1 , X j3 )rB (resp. σ5 = e((π j1 j3 · R−d1
j1

)(tag j1
−tagA∗ )−1

, R j3 )) where tag j1 =

TCR(R j1 ,R
′
j1
,U j1 ,U j3 ,UB). σ6 = e((π j1 j2 · R−d1

j1
)(tag j1

−tagA∗ )−1
, R j3) (resp. σ6 =

e(R j1 , X j3 )rB) where tag j1 = TCR(R j1 ,R
′
j1
,U j1 , UB,U j3 ). D computes the ses-

sion key S K as the protocol, and records (Π, rolei, U j1 , {U j1 ,UB, U j3}, {EPKj1 ,
EPKB, EPKj3 }), (Π, rolei′ ,UB, {U j1 ,UB, U j3 }, {EPKj1 , EPKB, EPKj3 }) and
(Π, rolei′′ ,U j3 , {U j1 ,UB, U j3 }, {EPKj1 , EPKB, EPKj3}) (resp. (Π, rolei,U j1 ,
{U j1 ,U j2 ,UB}, {EPKj1 , EPKj2 , EPKB}), (Π, rolei′ , U j2 , {U j1 ,U j2 ,UB}, {EPKj1 ,
EPKj2 , EPKB}) and (Π, rolei′′ ,UB, {U j1 ,U j2 , UB}, {EPKj1 , EPKj2 , EPKB})) as
the completed session and S K in the list LS K

(f) Else if j2 = C (resp. j3 = C), then D parses EPKj1 into (R j1 ,R
′
j1
, π j1 j2 ,

π j1 j3 ), and sets σi as follows: Since D knows z∗C , rC and r′C , σ1, σ3, σ4,

σ7 and σ8 are computed with these values. σ2 = e((π j1 j2 R−d2
j1

)(tag j1
−tagA∗ )−1

,

X j3 ) (resp. σ2 = e((π j1 j3 R−d2
j1

)(tag j1
−tagA∗ )−1

, X j2)) where tag j1 = TCR(R j1 ,
R′j1 ,U j1 ,UC , U j3 ) (resp. tag j1 = TCR(R j1 ,R

′
j1
,U j1 ,U j3 , UC)). σ5 =

2 Even if RB = R∗A, the simulation validly works because tagB � tagA∗ always holds.
3 Even if RC = R∗A, the simulation validly works because tagC � tagA∗ always holds.
4 Even if Rj2 = R∗A, the simulation validly works because tag j2

� tagA∗ always holds.
5 Even if Rj3 = R∗A, the simulation validly works because tag j3

� tagA∗ always holds.
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e(R j1 , X j3 )rC (resp. σ5 = e((π j1 j3 · R−d2
j1

)(tag j1
−tagA∗ )−1

, R j3 )) where tag j1

= TCR(R j1 ,R
′
j1
,U j1 ,U j3 ,UC). σ6 = e((π j1 j2 · R−d2

j1
)(tag j1

−tagA∗ )−1

, R j3 ) (resp.
σ6 = e(R j1 , X j3 )rC ) where tag j1 = TCR(R j1 ,R

′
j1
,U j1 , UC ,U j3 ). D com-

putes the session key S K as the protocol, and records (Π, rolei,U j1 , {U j1 ,UC ,
U j3 }, {EPKj1 , EPKC , EPKj3}), (Π, rolei′ ,UC , {U j1 ,UC , U j3}, {EPKj1 , EPKC ,
EPKj3 }) and (Π, rolei′′ ,U j3 , {U j1 ,UC , U j3 }, {EPKj1 , EPKC , EPKj3 }) (resp.
(Π, rolei,U j1 , {U j1 ,U j2 ,UC}, {EPKj1 , EPKj2 , EPKC}), (Π, rolei′ ,U j2 , {U j1 ,U j2 ,
UC}, {EPKj1 , EPKj2 , EPKC}) and (Π, rolei′′ , UC , {U j1 ,U j2 , UC}, {EPKj1 ,
EPKj2 , EPKC})) as the completed session and S K in the list LS K

(g) Otherwise, D computes the session key S K as the protocol, and records (Π,
rolei,U j1 , {U j1 ,U j2 ,U j3 }, {EPKj1 , EPKj2 , EPKj3}) as the completed session and
S K in the list LS K .

3. Establish(U j, S PKj): D sets U j as a new party and S PKj as the SPK of U j as the
definition. Note that UA, UB and UC are not posed due to the freshness definition.

4. SessionReveal(sid):
(a) If the session sid is not completed,D returns an error message.
(b) Otherwise,D returns the recorded value S K.

5. StateReveal(sid):D answers the ephemeral secret key and intermediate computa-
tion results of sid as the definition. Note that the StateReveal query is not posed to
sid∗ from the freshness definition. Thus,D can avoid to return the ephemeral secret
key corresponding to α.

6. StaticReveal(U j):D answers the static secret key of U j as the definition. Note that
the StaticReveal query is not posed to UB and UC in the event E1. Thus, D can
avoid to return static secret key corresponding to β and γ.

7. EphemeralReveal(sid): D answers the ephemeral secret key of sid as the defini-
tion. Note that the EphemeralReveal query is not posed to sid∗ in the event E1.
Thus,D can avoid to return the ephemeral secret key corresponding to α.

8. Test(sid):D responds to the query as the definition.
9. IfA outputs a guess b′,D outputs b′.

Analysis. The simulation is perfect except that the following event occurs: In Send
query, tag j2 = tag∗A or tag j3 = tag∗A in case 2.(c), and tag j1 = tag∗A in case 2.(d) and
2.(e). If these events occur, since tag j1−tagA∗ = 0, tag j2−tagA∗ = 0 or tag j3−tagA∗ = 0,
σ2, σ5 or σ6 cannot be computed correctly. This event means that A finds a collision
in TCR. Thus, the probability that the event occurs is negligible.

It is easy to see that static public keys of UB and UC are distributed as in H2. Also,
the ephemeral public key of sid∗ is distributed as in H2.

For A, the simulation is same as the experiment H2 if the challenge δ is gabc
T . Oth-

erwise, the simulation is same as the experiment H3. Thus, if the advantage of D is
negligible, then |Adv(A,H3) −Adv(A,H2)| ≤ negl.

Hybrid Experiment H4. In this experiment, the computation of S K in the test ses-
sion is changed. Instead of computing S K = Fσ1 (ST) ⊕ · · · ⊕ Fσ8 (ST), it is changed as
S K = Fσ1 (ST) ⊕ K ⊕ Fσ3 (ST) · · · ⊕ Fσ8 (ST) where K ∈R {0, 1}κ.

We construct a distinguisher D′ between PRF F∗ : {0, 1}∗ × GT → {0, 1}k and a
random function RF fromA in H3 or H4.D′ performs the following steps.
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Setup. D′ sets PRF F = F∗, and provides it as a part of the public parameters. Also,
D′ sets all N parties’ static secret and public keys.

Simulation. D′ maintains the list LS K that contains queries and answers of
SessionReveal.D′ simulates oracle queries byA as follows.

1. Send(U j1 ,Π, rolei,U j1 , {U j1 ,U j2 ,U j3}, Init):D′ computes the ephemeral public key
as the protocol, returns it and records (Π, rolei,U j1 , {U j1 ,U j2 ,U j3 }, (R j1 ,R

′
j1
, π j1 j2 ,

π j1 j3 )).
2. Send(U j2 ,Π, rolei,U j1 , {U j1 ,U j2 ,U j3}, EPKj1 ) or Send(U j3 , Π, rolei,U j1 , {U j1 ,

U j2 , U j3 }, EPKj1 ):
(a) If both (Π, rolei′ ,U j2 , {U j1 ,U j2 ,U j3}, EPKj2 ) and (Π, rolei′′ ,U j3 , {U j1 ,U j2 ,U j3 },

EPKj3 ) are not recorded,D′ only records (Π, rolei,U j1 , {U j1 ,U j2 ,U j3 }, EPKj1).
(b) Else if D′ checks EPKj1 with pairing equations as the protocol, and the

verification is not valid, thenD′ rejects the session.
(c) Else if ( j2 = A, j1 = C) or ( j3 = A, j1 = B), and the session is

the k-th session of UA, then D computes all σi as the protocol. D′ poses
ST to his oracle (i.e., F∗ or a random function RF), obtains K ∈ {0, 1}κ,
computes the session key S K∗ = Fσ1 (ST) ⊕ K ⊕ Fσ3 (ST) · · · ⊕ Fσ8 (ST),
and records (Π, role1, UA, {UA,UB, UC}, {EPKA, EPKB, EPKC}), (Π, role2,
UB, {UA, UB,UC}, {EPKA, EPKB, EPKC}) and (Π, role3,UC , {UA, UB,UC}
{EPKA, EPKB, EPKC}) as the completed session and S K∗ in the list LS K .

(d) Otherwise, D′ computes the session key S K as the protocol, and records
(Π, rolei,U j1 , {U j1 ,U j2 ,U j3 }, {EPKj1 , EPKj2 , EPKj3}) as the completed session
and S K in the list LS K .

3. Establish(U j, S PKj): D sets U j as a new party and S PKj as the SPK of U j as the
definition. Note that UA, UB and UC are not posed due to the freshness definition.

4. SessionReveal(sid):
(a) If the session sid is not completed,D′ returns an error message.
(b) Otherwise,D′ returns the recorded value S K.

5. StateReveal(sid): D′ answers the ephemeral secret key and intermediate
computation results of sid as the definition.

6. StaticReveal(U j):D′ answers the static secret key of U j as the definition.
7. EphemeralReveal(sid): D′ answers the ephemeral secret key of sid as the

definition.
8. Test(sid):D′ responds to the query as the definition.
9. If A outputs a guess b′ = 0, D′ outputs that the oracle is the PRF F∗. Otherwise,
D′ outputs that the oracle is a random function RF.

Analysis. ForA, the simulation byD′ is same as the experiment H3 if the oracle is the
PRF F∗. Otherwise, the simulation by D′ is same as the experiment H4. Thus, if the
advantage ofD′ is negligible, then |Adv(A,H4) − Adv(A,H3)| ≤ negl.

In H4, the session key in the test session is perfectly randomized. Thus, A cannot
obtain any advantage from Test query.

Therefore, Adv(A,H4) = 0, and Pr[E1 ∧ S uc] is negligible.
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Abstract. In this paper, we describe a brand new key exchange pro-
tocol based on a semidirect product of (semi)groups (more specifically,
on extension of a (semi)group by automorphisms), and then focus on
practical instances of this general idea. Our protocol can be based on
any group, in particular on any non-commutative group. One of its spe-
cial cases is the standard Diffie-Hellman protocol, which is based on a
cyclic group. However, when our protocol is used with a non-commutative
(semi)group, it acquires several useful features that make it compare fa-
vorably to the Diffie-Hellman protocol. Here we also suggest a particular
non-commutative semigroup (of matrices) as the platform and show that
security of the relevant protocol is based on a quite different assumption
compared to that of the standard Diffie-Hellman protocol.

1 Introduction

It is rare that the beginning of a whole new area of science can be traced back to
one particular paper. This is the case with public key cryptography; it started
with the seminal paper [2].

The simplest, and original, implementation of the protocol uses the multiplica-
tive group of integers modulo p, where p is prime and g is primitive mod p. A
more general description of the protocol uses an arbitrary finite cyclic group.
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1. Alice and Bob agree on a finite cyclic group G and a generating element g
in G. We will write the group G multiplicatively.

2. Alice picks a random natural number a and sends ga to Bob.
3. Bob picks a random natural number b and sends gb to Alice.
4. Alice computes KA = (gb)a = gba.
5. Bob computes KB = (ga)b = gab.

Since ab = ba, both Alice and Bob are now in possession of the same group
element K = KA = KB which can serve as the shared secret key.

The protocol is considered secure against eavesdroppers if G and g are chosen
properly. The eavesdropper must solve the Diffie-Hellman problem (recover gab

from g, ga and gb) to obtain the shared secret key. This is currently considered
difficult for a “good” choice of parameters (see e.g. [5] for details).

There is an ongoing search for other platforms where the Diffie-Hellman or
similar key exchange could be carried out more efficiently, in particular with
public/private keys of smaller size. This search already gave rise to several inter-
esting directions, including a whole area of elliptic curve cryptography. We also
refer the reader to [6] for a survey of proposed cryptographic primitives based
on non-abelian (= non-commutative) groups. A survey of these efforts is outside
of the scope of the present paper; our goal here is to suggest a new key exchange
protocol based on extension of a (semi)group by automorphisms. Our protocol
can be based on any group, in particular on any non-commutative group. It has
some superficial resemblance to the classical Diffie-Hellman protocol, but there
are several distinctive features that, we believe, give our protocol important ad-
vantages. In particular, even though the parties do compute a large power of a
public element (as in the classical Diffie-Hellman protocol), they do not transmit
the whole result, but rather just part of it.

We also describe in this paper some particular instances of our general pro-
tocol. In particular, we suggest a non-commutative semigroup (of matrices)
as the platform and show that security of the relevant protocol is based on
a quite different assumption compared to that of the standard Diffie-Hellman
protocol.

We mention another, rather different, proposal [8] of a cryptosystem based on
the semidirect product of two groups and yet another, more complex, proposal
of a key agreement based on the semidirect product of two monoids [1]. Both
these proposals are very different from ours. Also, the extended abstract [3],
despite the similarity of the title, has very little overlap with the present paper.
In particular, the key exchange protocol in Section 3 of the present paper is
brand new.

Finally, we note that the basic construction (semidirect product) we use in
this paper can be adopted, with some simple modifications, in other algebraic
systems, e.g. associative rings or Lie rings, and key exchange protocols similar
to ours can be built on those.
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2 Semidirect Products and Extensions by Automorphisms

We include this section to make the exposition more comprehensive. The
reader who is uncomfortable with group-theoretic constructions can skip to
subsection 2.1.

We now recall the definition of a semidirect product:

Definition 1. Let G,H be two groups, let Aut(G) be the group of automor-
phisms of G, and let ρ : H → Aut(G) be a homomorphism. Then the semidirect
product of G and H is the set

Γ = G�ρ H = {(g, h) : g ∈ G, h ∈ H}

with the group operation given by
(g, h)(g′, h′) = (gρ(h

′) · g′, h · h′).
Here gρ(h

′) denotes the image of g under the automorphism ρ(h′), and when we
write a product h · h′ of two morphisms, this means that h is applied first.

In this paper, we focus on a special case of this construction, where the group
H is just a subgroup of the group Aut(G). If H = Aut(G), then the corre-
sponding semidirect product is called the holomorph of the group G. We give
some more details about the holomorph in our Section 2.1, and in Section 3 we
describe a key exchange protocol that uses (as the platform) an extension of a
group G by a cyclic group of automorphisms.

2.1 Extensions by Automorphisms

A particularly simple special case of the semidirect product construction is where
the group H is just a subgroup of the group Aut(G). If H = Aut(G), then the
corresponding semidirect product is called the holomorph of the group G. Thus,
the holomorph of G, usually denoted by Hol(G), is the set of all pairs (g, φ),
where g ∈ G, φ ∈ Aut(G), with the group operation given by (g, φ) · (g′, φ′) =
(φ′(g) · g′, φ · φ′).

It is often more practical to use a subgroup of Aut(G) in this construction,
and this is exactly what we do in Section 3, where we describe a key exchange
protocol that uses (as the platform) an extension of a group G by a cyclic group
of automorphisms.

Remark 1. One can also use this construction if G is not necessarily a group,
but just a semigroup, and/or consider endomorphisms of G, not necessarily au-
tomorphisms. Then the result will be a semigroup; this is what we use in our
Section 6.

3 Key Exchange Protocol

In the simplest implementation of the construction described in our Section 2.1,
one can use just a cyclic subgroup (or a cyclic subsemigroup) of the groupAut(G)
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(respectively, of the semigroup End(G) of endomorphisms) instead of the whole
group of automorphisms of G.

Thus, let G be a (semi)group. An element g ∈ G is chosen and made public as
well as an arbitrary automorphism φ ∈ Aut(G) (or an arbitrary endomorphism
φ ∈ End(G)). Bob chooses a private n ∈ N, while Alice chooses a private m ∈ N.
Both Alice and Bob are going to work with elements of the form (g, φr), where
g ∈ G, r ∈ N. Note that two elements of this form are multiplied as follows:
(g, φr) · (h, φs) = (φs(g) · h, φr+s).

1. Alice computes (g, φ)m = (φm−1(g) · · ·φ2(g) · φ(g) · g, φm) and sends only
the first component of this pair to Bob. Thus, she sends to Bob only the
element a = φm−1(g) · · ·φ2(g) · φ(g) · g of the (semi)group G.

2. Bob computes (g, φ)n = (φn−1(g) · · ·φ2(g) ·φ(g) ·g, φn) and sends only the
first component of this pair to Alice. Thus, he sends to Alice only the
element b = φn−1(g) · · ·φ2(g) · φ(g) · g of the (semi)group G.

3. Alice computes (b, x) · (a, φm) = (φm(b) · a, x · φm). Her key is now KA =
φm(b) ·a. Note that she does not actually “compute” x ·φm because she does
not know the automorphism x = φn; recall that it was not transmitted to
her. But she does not need it to compute KA.

4. Bob computes (a, y)·(b, φn) = (φn(a)·b, y·φn). His key is nowKB = φn(a)·b.
Again, Bob does not actually “compute” y · φn because he does not know
the automorphism y = φm.

5. Since (b, x) · (a, φm) = (a, y) · (b, φn) = (g, φ)m+n, we should have KA =
KB = K, the shared secret key.

Remark 2. Note that, in contrast with the “standard” Diffie-Hellman key ex-
change, correctness here is based on the equality hm · hn = hn · hm = hm+n

rather than on the equality (hm)n = (hn)m = hmn. In the “standard” Diffie-
Hellman set up, our trick would not work because, if the shared key K was just
the product of two openly transmitted elements, then anybody, including the
eavesdropper, could compute K.

4 Computational Cost

From the look of transmitted elements in our protocol in Section 3, it may seem
that the parties have to compute a product of m (respectively, n) elements of
the (semi)group G. However, since the parties actually compute powers of an
element of G, they can use the “square-and-multiply” method, as in the standard
Diffie-Hellman protocol. Then there is a cost of applying an automorphism φ to
an element of G, and also of computing powers of φ. These costs depend, of
course, on a specific platform (semi)group that is used with our protocol. In our
first, “toy” example (Section 5 below), both applying an automorphism φ and
computing its powers amount to exponentiation of elements of G, which can
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be done again by the “square-and-multiply” method. In our main example, in
Section 6, φ is a conjugation, so applying φ amounts to just two multiplications
of elements in G, while computing powers of φ amounts to exponentiation of two
elements of G (namely, of the conjugating element and of its inverse).

Thus, in either instantiation of our protocol considered in this paper, the
cost of computing (g, φ)n is O(log n), just as in the standard Diffie-Hellman
protocol.

5 “Toy Example”: Multiplicative Z∗
p

As one of the simplest instantiations of our protocol, we use here the multiplica-
tive group Z∗

p as the platform group G to illustrate what is going on. In selecting
a prime p, as well as private exponents m,n, one can follow the same guidelines
as in the “standard” Diffie-Hellman.

Selecting the (public) endomorphism φ of the group Z∗
p amounts to selecting

yet another integer k, so that for every h ∈ Z∗
p, one has φ(h) = hk. If k is

relatively prime to p− 1, then φ is actually an automorphism. Below we assume
that k > 1.

Then, for an element g ∈ Z∗
p, we have:

(g, φ)m = (φm−1(g) · · ·φ(g) · φ2(g) · g, φm).

We focus on the first component of the element on the right; easy computation

shows that it is equal to gk
m−1+...+k+1 = g

km−1
k−1 . Thus, if the adversary chooses

a “direct” attack, by trying to recover the private exponent m, he will have to

solve the discrete log problem twice: first to recover km−1
k−1 from g

km−1
k−1 , and then

to recover m from km. (Note that k is public since φ is public.)
On the other hand, the analog of what is called “the Diffie-Hellman problem”

would be to recover the shared key K = g
km+n−1

k−1 from the triple (g, g
km−1
k−1 ,

g
kn−1
k−1 ). Since g and k are public, this is equivalent to recovering gk

m+n

from the
triple (g, gk

m

, gk
n

), i.e., this is exactly the standard Diffie-Hellman problem.
Thus, the bottom line of this example is that the instantiation of our protocol

where the group G is Z∗
p, is not really different from the standard Diffie-Hellman

protocol. In the next section, we describe a more interesting instantiation, where
the (semi)group G is non-commutative.

6 Matrices Over Group Rings and Extensions by Inner
Automorphisms

To begin with, we note that our general protocol in Section 3 can be used
with any non-commutative group G if φ is selected to be a non-trivial inner
automorphism, i.e., conjugation by an element which is not in the center of G.
Furthermore, it can be used with any non-commutative semigroup G as well,
as long as G has some invertible elements; these can be used to produce inner
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automorphisms. A typical example of such a semigroup would be a semigroup
of matrices over some ring.

In the paper [4], the authors have employed matrices over group rings of a
(small) symmetric group as platforms for the (standard) Diffie-Hellman-like key
exchange. In this section, we use these matrix semigroups again and consider
an extension of such a semigroup by an inner automorphism to get a platform
semigroup for our protocol.

Recall that a (semi)group ring R[S] of a (semi)group S over a commutative
ring R is the set of all formal sums ∑

gi∈S

rigi

where ri ∈ R, and all but a finite number of ri are zero.
The sum of two elements in R[G] is defined by⎛⎝∑

gi∈S

aigi

⎞⎠+

⎛⎝∑
gi∈S

bigi

⎞⎠ =
∑
gi∈S

(ai + bi)gi.

The multiplication of two elements in R[G] is defined by using distributivity.
As we have already pointed out, if a (semi)group G is non-commutative and

has non-central invertible elements, then it always has a non-identical inner
automorphism, i.e., conjugation by an element g ∈ G such that g−1hg �= h for
at least some h ∈ G.

Now let G be the semigroup of 3 × 3 matrices over the group ring Z7[A5],
where A5 is the alternating group on 5 elements. Here we use an extension of the
semigroup G by an inner automorphism ϕ

H
, which is conjugation by a matrix

H ∈ GL3(Z7[A5]). Thus, for any matrix M ∈ G and for any integer k ≥ 1,
we have

ϕ
H
(M) = H−1MH ; ϕk

H
(M) = H−kMHk.

Now our general protocol from Section 3 is specialized in this case as follows.

1. Alice and Bob agree on public matrices M ∈ G and H ∈ GL3(Z7[A5]).
Alice selects a private positive integer m, and Bob selects a private positive
integer n.

2. Alice computes (M,ϕ
H
)m = (H−m+1MHm−1 · · ·H−2MH2 ·H−1MH ·M,

ϕm
H
) and sends only the first component of this pair to Bob. Thus, she

sends to Bob only the matrix

A = H−m+1MHm−1 · · ·H−2MH2 ·H−1MH ·M = H−m(HM)m.
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3. Bob computes (M,ϕ
H
)n = (H−n+1MHn−1 · · ·H−2MH2 ·H−1MH ·M, ϕn

H
)

and sends only the first component of this pair to Alice. Thus, he sends
to Alice only the matrix

B = H−n+1MHn−1 · · ·H−2MH2 ·H−1MH ·M = H−n(HM)n.

4. Alice computes (B, x) · (A, ϕm
H
) = (ϕm

H
(B) · A, x · ϕm

H
). Her key is now

KAlice = ϕm
H
(B) ·A = H−(m+n)(HM)m+n. Note that she does not actually

“compute” x · ϕm
H

because she does not know the automorphism x = ϕn
H
;

recall that it was not transmitted to her. But she does not need it to compute
KAlice.

5. Bob computes (A, y) · (B, ϕn
H
) = (ϕn

H
(A) ·B, y ·ϕn

H
). His key is now KBob =

ϕn
H
(A) ·B. Again, Bob does not actually “compute” y · ϕn

H
because he does

not know the automorphism y = ϕm
H
.

6. Since (B, x) · (A, ϕm
H
) = (A, y) · (B, ϕn

H
) = (M, ϕH )m+n, we should have

KAlice = KBob = K, the shared secret key.

7 Security Assumptions and Analysis

In this section, we address the question of security of the particular instantiation
of our protocol described in Section 6.

Recall that the shared secret key in the protocol of Section 6 is

K = ϕm
H
(B) · A = ϕn

H
(A) ·B = H−(m+n)(HM)m+n.

Therefore, our security assumption here is that it is computationally hard to
retrieve the key K = H−(m+n)(HM)m+n from the quadruple
(H, M, H−m(HM)m, H−n(HM)n).

In particular, we have to take care that the matrices H and HM do not com-
mute because otherwise, K is just a product of H−m(HM)m and H−n(HM)n.

A weaker security assumption arises if an eavesdropper tries to recover a pri-
vate exponent from a transmission, i.e., to recover, say, m from H−m(HM)m.
A special case of this problem, where H = I, is the “discrete log” problem
for matrices over Z7[A5], namely: recover m from M and Mm. Even this prob-
lem appears to be hard; it was addressed in [4] in more detail. In particular,
statistical experiments show that for a random matrix M , matrices Mm are
indistinguishable from random.

In order to verify the robustness and security of our protocol, we have ex-
perimentally addressed two questions. The first question is whether or not any
information about the private exponent n is leaked from transmission. That is,
for a random exponent n, how different is the matrix (M,ϕ

H
)n from N , where

N is random? The second point that needs verification is to determine how dif-
ferent the final shared key is from a random matrix. More specifically, if Alice
and Bob choose secret integers m and n respectively, how different is the matrix
(M,ϕH )n+m from (M,ϕH )q, where q is of the same bit size are n+m.
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To perform the first experimental validation we worked over M3(Z7[A5]) and
used random choices of n ∈ [1044, 1055]. We then looked at the two distributions
generated by the first component of (M,ϕ

H
)n and N , where M and N are

random matrices. We need to verify that the two generated distributions are in
fact indistinguishable. To this end we looked at the components of each matrix
and counted the frequency of occurrence of each element of A5. We repeated
this process 500 times and generated a frequency distribution table for the two
distributions.

From the table, we produced Q−Q (quantile) plots of the entries of the two
matrices: the first component of (M,ϕ

H
)n and a random matrix N . Quantile

plots are a quick graphical tool for comparing two distributions. These plots
essentially compare the cumulative distribution functions of two distributions.
If the distributions are identical, the resulting graph will be a straight line.

Fig. 1. Results for Mn vs. N



Public Key Exchange Using Semidirect Product 483

Figure 1 shows the resulting plots for this experiment. These graphs show
that the two distributions are in fact identical, therefore suggesting that no
information about a private exponent n is revealed by transmissions between
Alice and Bob.

The second experiment we carried out was similar to the first one, except in
this case we were comparing the first components of (M,ϕH )n and (M,ϕH )a+b,
where n, a and b are random and all of roughly the same bit size, i.e. all are
integers from [1044, 1055]. This experiment helps address the DDH (decisional
Diffie-Hellman) assumption by comparing the shared secret key to a random key
and ensuring that no information about the former is leaked. See Figure 2 for
the resulting Q − Q plots. These 9 graphs suggest that the two distributions
generated by these keys are in fact indistinguishable.

Fig. 2. Results for Mn vs. Ma+b
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8 Parameters and Key Generation

Private exponents m and n should be of the magnitude of 2t, where t is the
security parameter, to make brute force search infeasible. Thus, m and n are
roughly t bits long.

Public matrix M is selected as a random 3 × 3 matrix over the group ring
Z7[A5], which means that each entry of M is a random element of Z7[A5]. The
latter means that each entry is a sum

∑
gi∈A5

cigi of elements of the group
A5 with coefficients ci selected uniformly randomly from Z7. Thus, although
the bit complexity of the matrix M is fairly high (9 · 3 · 60 = 1620 bits), the
procedure for sampling M is quite efficient. We want to impose one restriction on
the matrix M though. There is a trivialization (sometimes called augmentation)
homomorphism of the group ring that sends every group element to 1. This
homomorphism naturally extends to a homomorphism of the whole semigroup of
matrices. To avoid leaking any information upon applying this homomorphism,
we want the image of every entry of M to be 0. Group ring elements like that
are easy to sample: after sampling a random element

∑
gi∈A5

cigi of Z7[A5], we
select a random coefficient ci and change it, if necessary, to have

∑
i ci = 0.

Note that with this choice of M , applying the trivialization homomorphism
to any of the transmitted matrices in our protocol will produce the zero matrix,
thus not leaking any information. We also note that there are no other homo-
morphisms of the group A5 (which is a finite simple group), except for inner
automorphisms. This will prevent an eavesdropper from learning partial infor-
mation about secret keys by applying homomorphisms to transmitted matrices.

Finally, we need to sample an invertible 3 × 3 matrix H over the group ring
Z7[A5]. There are several techniques for doing this; here we give a brief exposition
of one possible procedure.

We start with an already “somewhat random” matrix, for which it is easy to
compute the inverse. An example of such a matrix is a lower/upper triangular
matrix, with invertible elements on the diagonal:

U =

⎛⎝g1 u1 u2

0 g2 u3

0 0 g3

⎞⎠ .

Here gi are random elements of the group A5, and ui are random elements of
the group ring Z7[A5]. We then take a random product, with 20 factors, of such
random invertible upper and lower triangular matrices, to get our invertible
matrix H .

We note that there is always a concern (also in the standard Diffie-Hellman
protocol) about the order of a public element: if the order is too small, then a
brute force attack may be feasible. In our situation, this concern is significantly
alleviated by the fact that our transmissions are products of powers of two
different matrices rather than powers of a single matrix. Therefore, even if the
order of one of the matrices happens to be small by accident, this does not mean
that the product H−m(HM)m will go into loop of a small size. Furthermore,
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since our matrix M is non-invertible, it does not have an “order”, but rather a
loop: M r = M s for some positive r �= s. The matrices HM and H−m(HM)m

are non-invertible, too, so they do not have an order either, but rather a loop.
Detecting a loop is, in general, computationally much harder than computing
the order of an invertible element.

9 Conclusions

We have presented a brand new key exchange protocol based on extension of a
(semi)group by automorphisms and described some practical instances of this
general idea. Our protocol can be based on any group, in particular on any non-
commutative group. It has some superficial resemblance to the classical Diffie-
Hellman protocol, but there are several distinctive features that, we believe, give
our protocol important advantages:
• Even though the parties do compute a large power of a public element (as

in the classical Diffie-Hellman protocol), they do not transmit the whole result,
but rather just part of it.
• Since the classical Diffie-Hellman protocol is a special case of our proto-

col, breaking our protocol even for any cyclic group would imply breaking the
Diffie-Hellman protocol.
• If the platform (semi)group is not commutative, then we get a new security

assumption. In the simplest case, where the automorphism used for extension
is inner, attacking a private exponent amounts to recovering an integer n from
a product g−nhn, where g, h are public elements of the platform (semi)group.
In the special case where g = 1 this boils down to recovering n from hn, with
public h (“discrete log” problem).
On the other hand, in the particular instantiation of our protocol, which is
based on a non-commutative semigroup extended by an inner automorphism,
recovering the shared secret key from public information is based on a different
security assumption than the classical Diffie-Hellman protocol is. Namely, the
assumption is that it is computationally hard to retrieve the shared secret key
K = h−(m+n)gm+n from the triple of elements (h, h−mgm, h−ngn), assuming
that g and h do not commute.
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Abstract. In this paper, we show identity-based encryption (IBE) and
inner product encryption (IPE) schemes which achieve the maximum-
possible leakage rate 1−o(1). These schemes are secure under the decision
linear (DLIN) assumption in the standard model. Specifically, even if
1−o(1) fraction of each private key is arbitrarily leaked, the IBE scheme
is fully secure and the IPE scheme is selectively secure.

Mentioned results are in the bounded memory leakage model (Akavia
et al., TCC ’09). We show that they naturally extends to the continual
memory leakage model (Brakerski et al., Dodis et al., FOCS ’10). In this
stronger model, the leakage rate becomes 1/2− o(1).

Keywords: IBE, IPE, leakage resilience, DLIN assumption.

1 Introduction

1.1 Background

Leakage-resilient cryptography tries to deal with the question: “Can we do
cryptography with no perfect secrets?”. The question is natural, since gener-
ating and handling secrets is uneasy in practice, and furthermore they can be
leaked by side-channel attacks. Following the research trend, in this paper we
will focus on leakage resilient IBE, and IPE schemes. We will work in the fol-
lowing models of leakage: (1) the bounded memory leakage model of Akavia-
Goldwasser-Vaikuntanathan [3], which allows arbitrary leakage on the private
key for once. This is a basic model of leakage; and (2) the continual memory
leakage model [12, 15], which allows leakage on the private key in many pe-
riod of time. The holder of the key can update his/her key if suspecting any
danger on it.

Recall that in identity-based encryption, first asked by Shamir [26], one can
use arbitrary strings as public keys. The research on IBE is an active and stimu-
lating field of cryptography, and so far IBE schemes have been constructed under
several assumptions: pairing-related assumptions, quadratic residue-related as-
sumptions and lattice-related assumptions. Akavia et al. [3] and Alwen et al. [4,5]
showed that some variants of them are secure against private key leakage attacks.

M. Jacobson et al. (Eds.): ACNS 2013, LNCS 7954, pp. 487–501, 2013.
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The security of these schemes is either analyzed in the random oracle model or
is based on “non-static” assumption in the standard model. In the standard
model, Chow et al. [14] presented a leakage resilient IBE with the leakage rate
1/3 under the DBDH assumption. Here, the leakage rate is defined as

size of leakage permitted

size of private key
.

Also recall that inner product encryption [18] goes beyond IBE by allowing en-
cryption under attribute vectors, while private keys are associated with predicate
vectors. Let u be an encryption attribute vector, and id a predicate vector, then
decryption works correctly if the inner product 〈id, u〉 = 0. IPE implies IBE,
since to test idIBE = id′IBE for some identities idIBE and id′IBE, just check whether
the inner product between vectors id = (1, idIBE) and u = (id′

IBE
,−1) equals 0.

IPE also serves as an important tool for designing encryption scheme supporting
queries on encrypted data [11], and disjunctions, polynomial evaluation [18]. IPE
is a class of functional encryption, which is a very active research field thanks
to their potentially-wide applications.

Recently IPE (and hence IBE) have been realized under the DLIN assumption.
This assumption, first formalized in [9], is very appealing and has been used in
various works. In particular, Okamoto and Takashima [23] showed a general
functional encryption scheme under DLIN. These schemes include IBE and IPE.
Some other IBE schemes under DLIN are in [6, 8, 19]. All of these schemes are
not in any leakage model. Thus in the literature, under the DLIN assumption,

– On IBE: No fully-secure, efficient, leakage-resilient IBE is known to achieve
the maximum-possible leakage rate 1− o(1).

– On IPE: While IPE is considerably examined recently, e.g. via [2, 18, 20,
23, 24], the case of leakage resilient IPE is still poorly understood. To our
knowledge, no leakage resilient IPE scheme is proposed so far.

1.2 Our Contributions

Results on IBE. In this paper, we show the first leakage resilient IBE which
achieves the maximum-possible leakage rate 1−o(1) in the standard model under
a static assumption. That is, it is fully secure under under the DLIN assumption
even if 1 − o(1) fraction of each private key is arbitrarily leaked. Precise values
are in Table 1.

Setting minimal � = 3 in Table 1, we obtain an instantiation with leakage rate
1/2−o(1). The ciphertext overhead is only 6 group elements, and the private key
also consists of only 6 group elements. When � grows, the leakage rate increases,
while ciphertexts and private keys get longer.

Note also in Table 1, the IBE in Lewko et al. [21], while tolerating master key
leakage, has private key leakage rate 1

1+c (1 − o(1)) for c > 0. This rate cannot
reach 1− o(1) simply because c cannot be 0 (see the caption of Table 1).

Technically, from the viewpoint of leakage resilience, our IBE scheme is based
on the leakage resilient public key encryption scheme of Naor and Segev [22].
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Table 1. Leakage resilient IBE in the standard model under static assumptions

IBE Schemes Assumption Ctxt. overhead Priv. key Memory
(group elements) leakg. rate

Chow et al. [14] DBDH |seed|+ 3 3 1/3

Lewko et al. [21] 1, 2, 3 L L 1
1+c1+c3

(1−O(1/L))

Ours (Sect.4) DLIN 2� 2� 1− 3
2�

− o(1)
6 6 1/2− o(1)

Above, c1 = |p1|/|p2|, c3 = |p3|/|p2| for some primes p1, p2, p3, and L ≥ 4, � ≥ 3. The
elements may belong to different groups, but we ignore that for simplicity. Assumptions
1, 2, 3 are some new assumptions in composite bilinear groups (see [21] for details).

From the viewpoint of utilizing trapdoor in security reduction, it is motivated
from the lattice based IBE of Agrawal, Boneh, and Boyen [1]. Perhaps surpris-
ingly, a big difference from [1] is that we achieve the maximum possible leakage
rate 1− o(1), while the counterparts in [1] are not known to be leakage resilient.
In fact, it seems hard to prove them leakage resilient; see Remark 1 below the
proof of Theorem 2, but intuitively, the simulator in DLIN setting has more
freedom than that in lattice.

Results on IPE. Going further, we propose the first leakage resilient IPE
scheme in the literature. The scheme is selectively-secure, under the DLIN as-
sumption, with private key leakage rate 1− 3

2� − o(1). Each private key consists
of 2� group elements, while the ciphertext overhead is of (n+1)� group elements
where n is the length of attributes. Taking � = 3 yields an instantiation with
constant private key size of only 6 group elements, ciphertext overhead of 3n+3
group elements, with leakage rate 1/2− o(1).

The design of our IPE scheme is partially inspired by the work of Agrawal et
al. [2] in the lattice setting. Similarly to the above, the lattice-based scheme is
not known to be leakage resilient.

Extensions to the Continual Memory Leakage Model. Above are works
in which the private keys are leaked, while arbitrarily, but once. Brakerski et
al. [12] and Dodis et al. [15] considered the continual memory leakage (CML)
model , and particularly [12] presented a selectively secure IBE scheme. Yuen
et al. [29] in turn examined the (even more stronger) continual auxiliary input
model, and proposed an IBE scheme fully secure under three static assumptions
in composite order pairing groups (as in [21]).

We show that our above schemes, with slight modifications, can be proved
secure in the CML model of [12]. In particular, in the CML model, we present a
fully secure IBE scheme, and a selectively secure IPE scheme. (Note that the IBE
scheme in [12] is selectively secure, while ours is fully secure.) While selectively
secure, our IPE scheme is apparently the first one in the CML model.

Recently, Yuen et al. [29] considered the continual auxiliary leakage model,
where, roughly speaking, the adversary is given leakage f(sk) where function f
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Table 2. IBE schemes in the CML model

Schemes in CML model Security Memory leakage rate

Brakerski et al. [12] selective 1
2
− o(1)

Our IBE (Sect.6) full 1
2
− o(1)

is computationally uninvertible. (The schemes are in the composite-order pairing
groups.) Hence their setting is different from ours.

Relation of DLIN and Lattice-Based Schemes. The CML-IBE scheme of
Brakerski et al. [12] (under DLIN) can be seen as basing on Cash et al.’s IBE [13]
(using lattices, not proven leakage resilient). The latter IBE is improved to obtain
adaptive security in [1] in lattice setting (not proven leakage resilient). Our IBE
schemes can be seen as [1]’s counterparts in DLIN setting.

Roadmap. Section 4 is for IBE, while Section 5 is for IPE. Section 6 is for IBE
and IPE in the CML model. To illustrate the main ideas, we start with a simple
IBE scheme, which is selectively-secure and leakage-resilient, in Sect.4.1.

2 Preliminaries

Notations. Denote a
$← A as the process of taking a randomly from a set A.

Let |a| be the bit length of the element a, while |A| be the order of the set. Let
q be a prime. We call PG = (G,GT , g, ê : G × G → GT ) a pairing group if G
and GT are cyclic groups of order q. The element g is a generator of G, and the
mapping ê satisfies the following properties: ê(g, g) �= 1, and ê(ga, gb) = ê(g, g)ab.
Vectors and matrices will be in boldface. Let Zm×n

q be the matrices of size m×n
over Zq. For an integer r > 0, the set Rkr(Zm×n

q ) contains matrices of rank

r in Zm×n
q . For a matrix A over Zq, let gA =

(
gA[i,j]

)
, which is a matrix

over G. Also for the matrix A ∈ Zm×n
q , span(A) = {zA : z ∈ Z1×m

q }, while
ker(A) = {x ∈ Zn×1

q : A · x = 0}.
DLIN Assumption. The decision linear assumption, originated in [9], essen-
tially says that given gx1 and gy2 , it’s hard to distinguish gx+y from random, where

x, y
$← Zq, and g1, g2, g

$←G. For our purpose, we will consider the matrix gA

where A ∈ Z3×�
q for � ≥ 3 of rank either 2 or 3. If the DLIN assumption holds,

then given gA, it is hard to tell the rank of A. (See [22, full version] for a more
general result.) More precisely, for any poly-time distinguisher D, the advantage∣∣∣∣∣Pr

[
b′ = b :

A0
$←Rk2(Z3×�

q ),A1
$←Rk3(Z3×�

q ),

b
$←{0, 1}, b′← D(g, gAb)

]
− 1

2

∣∣∣∣∣
is negligible under the DLIN assumption.

Generalized Leftover Hash Lemma. A family of hash function H = {h :
X → Y } is called universal if Pr

h
$← H

[h(x) = h(x′)] = 1/|Y | for all x �= x′ ∈ X .
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Let UY be the uniform distribution on Y . We will make use of the following
lemma.

Lemma 1 (cf. [1]). Let H = {h : X → Y } be a universal hash family. Let
f : X → Z be some function. Then for any random variable T taking values in
X, the statistical distance

Δ
(
(h, h(T ), f(T )); (h,UY , f(T ))

)
≤ 1

2

√
γ(T ) · |Y | · |Z|,

where γ(T ) = maxt Pr[T = t]. In other words, if the right-hand side is negligible,
h(T ) is almost random even given h and the side information f(T ).

3 Definitions for IBE and IPE in the Bounded Leakage
Model

IBE and its Security Definitions. The scheme consists of algorithms (Setup,
Extract, Enc, Dec). Setup generates the public parameters and master key (pp,
msk). The public pp is the input to all other algorithms. Extract, on input msk
and an identity id, returns the private key skid. Enc, on input id and a message
m, returns a ciphertext c, which will be decrypted by an identity holding skid,
yielding m.

We now recap both the leakage-resilient IND-sID-CPA security. Below, 0 <
ρM < 1 stands for the memory leakage rate. Maximum rate means ρM = 1−o(1),
at which we aim.

Definition 1 (Leakage resilient IND-sID-CPA security). An IBE scheme
is IND-sID-CPA secure with leakage rate ρM if any poly-time adversary suc-
ceeds in the following game with probability negligibly close to 1/2. In iden-
tity selection, the adversary decides and sends the target identity id∗ to the
challenger. Then the challenger runs Setup to generate (msk, pp), and sends
pp to the adversary. In private key generation, the challenger runs skid∗ ←
Extract(msk, id∗). In query set 1, the adversary makes queries of the following
types:

– Extract queries id �= id∗: the challenger returns skid = Extract(msk, id) to
the adversary.

– Leakage queries (leaki, id) where id can be id∗, and leaki is some function:
the challenger returns leaki(skid) to the adversary. These queries can be
adaptive, and it is required that the sum of all lengths |leaki(skid)| (i ≥ 1) is
less than ρM |skid|.

– Reveal queries id: if id �= id∗ was in a leakage query, namely skid was
partially leaked, the adversary can even ask for the whole skid.

In challenge phase, the adversary gives equal-length m0,m1 to the challenger,

who computes and sends back c∗ ← Enc(id∗,mb) for b
$← {0, 1}. In query set

2, the adversary issues additional extract queries id with id �= id∗ to which the
challenger answers in the same manner as above. Finally, the adversary outputs
a guess b′ ∈ {0, 1}. It succeeds if b′ = b.
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Definition 2 (Leakage resilient IND-ID-CPA security). An IBE scheme
is IND-ID-CPA secure with leakage rate ρM if any poly-time adversary succeeds
in the following game with probability negligibly close to 1/2. (1) The challenger
runs Setup to generate (msk, pp), and sends pp to the adversary. (2) In query
set 1, the adversary makes queries of the following types:

– Extract queries id. The challenger returns the private key skid = Extract
(msk, id) to the adversary.

– Leakage queries (leaki, id) where leaki is a function. The challenger returns
leaki(skid) to the adversary.

– Reveal queries id: if id was in a leakage query, namely skid was partially
leaked, the adversary can even ask for the whole skid.

In identity selection, the adversary decides and send the target identity id∗ to
the challenger. It is possible that id∗ was appeared at leakage queries above, but
not at reveal or extract queries. Query set 2 is the same as query set 1 above,
except there is no extract or reveal query on id∗. It is required that the sum
of all lengths |leaki(skid)| (i ≥ 1) is less than ρM |skid|. In challenge phase,
the adversary gives equal-length m0,m1 to the challenger, who computes and

sends back c∗ ← Enc(id∗,mb) for b
$← {0, 1}. In query set 3, the adversary

can ask more of extract queries id �= id∗. Finally the adversary outputs a guess
b′ ∈ {0, 1}. It succeeds if b′ = b.

Inner Product Encryption. Consider algorithms (Setup, Extract, Enc, Dec) as
in the IBE case. Here Extract(msk, id) produces a key skid, while Enc(u,m) with
attribute u returns a ciphertext c of the message m. Decryption Dec(id, skid, c)
works correctly if the inner product, defined over some group, between id and
u is 0, namely 〈id, u〉 = 0. Define Predid(u) = true (resp, false) iff 〈id, u〉 = 0
(resp, �= 0).

4 Proposed IBE Schemes under DLIN

4.1 Basic Scheme: Selectively Secure IBE

– Setup: Fix � ≥ 3. The public parameters are pp = (gA0 , gA1 ,B, gD), where

the matrices A0, A1, B
$← Z2×�

q and D
$← Z2×1

q . The master secret key is
msk = (A0,A1). For an identity id ∈ {0, 1}∗, let F(id) = [A0|A1 +H(id) ·
B] ∈ Z2×2�

q , where H : {0, 1}∗ → Zq is a collision-resistant hash function.

– Extract: on input id, return skid = gv where v ∈ Z2�×1
q is a random vector

such that
F(id) · v = D. (1)

It is easy to generate such gv from msk using linear algebra. See Appendix
A for details.
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– Enc: on input id and M ∈ GT , take z
$← Z1×2

q and compute C = gz·F(id), E =

ê(g, g)z·D ·M . Return (C,E) as the ciphertext.
– Dec: On input skid = gv and C = gc, compute K = ê(g, g)c·v and M =

EK−1, using the bi-linearity of ê, and return M . Note that if c = zF(id)
then cv = z(F(id)v) = zD, and the completeness follows.

Trapdoor. Instead of generating A1 as above, suppose that

A1 = A0R
∗ −H(id∗)B

for R∗ $← Z�×�
q and the target identity id∗. Since R∗ is freshly random, A1 is

correctly distributed. The matrix R∗ will be the trapdoor utilized in security
proofs. Then from pp and R∗, we can compute skid = gv for any identity id
(�= id∗) as follows: First randomly choose w ∈ Z�×1

q . Next consider a random

x ∈ Z�×1
q such that

(H(id)−H(id∗))Bx = −A0w+D. (2)

It is easy to compute gx from B, gA0 , gD given in pp. Let v =

[
w −R∗x

x

]
. We

can compute gv by using gx. This v satisfies eq.(1) because

F(id)v = [A0|A0R
∗ + (H(id)−H(id∗))B] ·

[
w −R∗x

x

]
= A0(w −R∗x) + (A0R

∗ + (H(id)−H(id∗))B)x

= A0w + (H(id)−H(id∗))Bx = D

We show that the above v is correctly distributed. The solution space of eq.(1)
has dimension 2�− 2. On the other hand, w is chosen from a space of dimension
�, and the solution of eq.(2) has freedom �− 2 since B ∈ Z2×�

q . Hence the set of
the above v is equal to the solution space of eq.(1), since � + (� − 2) = 2� − 2.
The use of trapdoor is similar to [1] in lattice setting.

Theorem 2. Under the DLIN assumption, the IBE scheme is IND-sID-CPA-
secure, leakage resilient with rate 1− 3

2� −
η

�|q| for η-bit security. The private key

and ciphertext overhead are of 2� group elements.
When � = 3, the private key and ciphertext overhead are of 6 group elements,

with leakage rate 1/2− o(1).

Proof. Let Game0 be the real attack game against the IBE scheme (recalled
in Appendix 3), and Game1 be the same as Game0 except that C∗ in the
challenge ciphertext is randomly chosen. We first show that the two games are
indistinguishable under the DLIN assumption, whose formulation using matri-
ces is in Sect.2. We will temporarily ignore leakage queries. Given an adversaryA
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against the IBE scheme, we build B with input gA telling whether random
A ∈ Z3×�

q is of rank 2 or 3. After A announces the target id∗, B sets up the

public parameter pp = (gA0 , gA1 ,B, gD) as follows: gA0 is the first two rows of

gA. Namely, A0 ∈ Z2×�
q consists of the two rows of A. B chooses B

$← Z2×�
q and

R∗ $← Z�×�
q , and sets A1 = A0R

∗−H(id∗)B. Certainly B can compute gA1 from

gA0 . Note that by the above,

F(id) = [A0|A1 +H(id)B] = [A0|A0R
∗ + (H(id)−H(id∗))B]

so particularly F(id∗) = [A0|A0R
∗]. B chooses v∗ $← Z2�×1

q and setsD = F(id∗)·
v∗ = [A0|A0R

∗] · v∗ so that D ∈ Z2×1
q is uniformly distributed, and B can

compute gD from gA0 . B then simulates A as follows. On extract query id �= id∗,
B computes and returns gv as shown in the trapdoor above. On challenge query

(M0,M1), denote y the third row of A, let b
$← {0, 1}, and return

(C∗, E∗) =
(
g[y|yR

∗], ê(g, g)[y|yR
∗]v∗

Mb

)
.

Finally, A outputs b′. If b′ = b, B bets thatA is of rank 2. Otherwise, it guessesA
is of rank 3. We will show that (C∗, E∗) is the ciphertext in Game0 if rank(A) =
2; while it is in Game1 if rank(A) = 3. First suppose that rank(A) = 2. Then y
is a linear combination of the first two rows of A0, namely y = z∗A0 for some
z∗ ∈ Z1×2

q . Therefore

[y|yR∗] = [z∗A0|z∗A0R
∗] = z∗[A0|A0R

∗] = z∗ · F(id∗),

showing that (C∗, E∗) is the ciphertext in Game0. Now suppose that rank(A) =
3. Then y is random in Z1×�

q . It suffices to prove that d = yR∗ is also random

in Z1×�
q even given A0, U = A0R

∗, y. It is easy to see that

A ·R∗ =

[
U
d

]
.

Therefore, for any d, there exists a unique R∗ such that the above equation
holds because A is of full rank (with all but negligible probability). This means
that d is random since R∗ is random and hence C∗ is random as expected. Thus
Game0 and Game1 are indistinguishable under the DLIN assumption. Let pi
be the success probability Pr[b′ = b] of the adversary A in Gamei for i = 0, 1,
so that |p0 − p1| is computationally negligible. We will show that p1 = 1/2 to
finish the proof. First C∗ is now written as C∗ = gc

∗
for some c∗ ∈ Z1×2�

q .

Then E∗ = ê(g, g)c
∗·v∗

Mb. Let α = c∗ ·v∗, and remember that D = F(id∗) · v∗,
we obtain [

α
D

]
=

[
c∗

F(id∗)

]
v∗.
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In Game1, c
∗ is random because C∗ is random. Hence c∗ is linearly indepen-

dent of the two rows of F(id∗) with overwhelming probability. This means that α
is random even given c∗,D,F(id∗) because v∗ is random. Thus E∗ = ê(g, g)αMb

is random, and hence p1 = 1/2 as claimed. Therefore the advantage of A against
the IBE scheme

∣∣p0 − 1
2

∣∣ = |p0 − p1| is negligible under the DLIN assumption.
Let us now consider leakage resilience. Consider the leakage function f :

Z2�
q → Z encoding of all leakage queries fi, for some set Z (whose order is

decided below). We want to prove that the distributions (c∗, c∗v∗, f(v∗)) and
(c∗,UZq , f(v

∗)) are statistically indistinguishable, which means α = c∗v∗ is ran-
domly distributed conditioned on c∗ = logg C

∗ and the leakage f(v∗).
Now re-consider the games, now with leakage queries. Since the simulator B

for the DLIN assumption can generate v∗, Game0 and Game1 are still indistin-
guishable even given f(v∗). Furthermore, in Game1, c

∗ is random over Z1×2�
q .

Let hc∗(r) = c∗r maps r ∈ Z2�×1
q to Zq. Since Prc∗ [hc∗(r) = hc∗(r

′)] = 1/q
for r �= r′, the function hc∗ is universal. Applying Lemma 1, the statisti-
cal distance of the above distributions is at most 1

2

√
γ(v∗) · q · |Z| in which

γ(v∗) = maxu∈Z2�
q
Pr[v∗ = u].

Now that v∗ is random satisfying F(id∗)v∗ = D, its freedom is 2�− 2. There-
fore γ(v∗) = q2−2� so that we can choose |Z| = q2�−32−2η for η-bit security,
namely the leakage on v∗ can be of (2� − 3)|q| − 2η bits. Therefore the leakage

rate is (2�−3)|q|−2η
2�|q| = 1− 3

2� −
η

�|q| = 1− o(1) as claimed. ��

Remark 1. In the above proof, the algorithm B against DLIN on input gA0

chooses v∗ $← Z2�×1
q and sets D = F(id∗) · v∗ = [A0|A0R

∗] · v∗, so that v∗ is
known to B. In contrast, in the lattice based scheme of [1], the counterpart B
against LWE has input (A0,D), so it cannot choose D, and hence cannot choose
(short vector) v∗ satisfying D = F(id∗) · v∗(mod q). Therefore, it seems hard
to prove the lattice-based scheme leakage resilient.

Remark 2. Above we neglect a technical point in estimating the leakage rate.
Let G be an elliptic curve over Zp for some prime p, so each element in G can be
represented in about |p| bits. Thus private key size is |gv∗ | ≈ 2�|p| bits. Now, the
rate is more precisely |leak(gv∗

)|
|gv∗ | ≈ (2�−3)|q|−2η

2�|p| so that to claim the rate 1− o(1),

we need |q|/|p| ≈ 1. This requirement is satisfied by practical choices of q and p
(e.g., [10, Table 1]). This remark applies as well for estimating the leakage rate
in following sections.

4.2 Fully Secure Scheme under DLIN

For an identity id expressed as a bit sequence id = id[1]|| · · · ||id[m], consider the
KEM in the previous section, yet employing the matrix

F(id) =

[
A0

∣∣∣A′
0 +

m∑
i=1

id[i]Ai

]
∈ Z2×2�

q ,
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where A0,A1, . . . ,Am,A′
0 ∈ Z2×�

q are random matrices employed as the master
secret key. In the public parameters, the matrices are given in the exponents.

Theorem 3. Employing the above F(id), the IBE scheme in Section 4.1 is IND-
ID-CPA-secure under the DLIN assumption, and leakage resilient with rate 1−
3
2� −

η
�|q| for η-bit security. The private key and ciphertext overhead are of 2�

group elements.
When � = 3, the private key and ciphertext overhead are of 6 group elements,

with leakage rate 1/2− o(1).

In the security reduction, we use the artificial abort technique of Waters [28].
(Note that one may also use the technique in [7] to improve the concrete security.
Then the artificial abort technique is not needed either.) We construct a simu-
lator B as follows. B first sets J = 4Q, where Q is the total number of (extract,

leakage, reveal) queries of the adversary. B chooses k
$←{0, . . . ,m} and hi

$← ZJ

for i = 0, 1, . . . ,m. B then constructs the matrices A′
0 and each Ai (excluding

A0) as A
′
0 = A0R0 + (q − kJ + h0)C,Ai = A0Ri + hiC where C← Z2×�

q , and

Ri ← Z�×�
q . Then

F(id) =

[
A0

∣∣∣A0(R0 +

m∑
i=1

id[i]Ri) + (q − kJ + h0 +

m∑
i=1

id[i]hi)C

]

Let α(id) = q−kJ+h0+
∑m

i=1 id[i]hi, B can succeed if α(id∗) = 0 mod q, and for
all extract query id �= id∗, α(id) �= 0 mod q. This probability λ is lower bounded

by λ ≥ 1
(m+1)J

(
1− 2Q

J

)
similarly to [28, Sect.5.2, eq.(1k)]. With probability λ,

F(id∗) =

[
A0

∣∣∣A0(R0 +

m∑
i=1

id∗[i]Ri)

]
,

so that the proof proceeds identically with that of Theorem 2 just by letting
R∗ = R0 +

∑m
i=1 id

∗[i]Ri, except for that we use the artificial abort, and the
following. A does not announce the target id∗ at the beginning of the attack
game in the model of full security. Hence B cannot compute v∗ nor gD as in the
proof of Theorem 2.

1. Therefore B first chooses E ∈ Z�×1
q randomly and consider D ∈ Z2×1

q such

that D = A0E. B computes gD from gA0 and E. Moreover, given D and for
E = (E[1], . . . , E[�])T , we can let the components E[3], . . . ,E[�] free in Zq

since A0 ∈ Z2×�
q is of rank 2.

2. The simulation of queries depends on α(id): There are two cases for each
query id. Firstly, if α(id) �= 0, the corresponding v is set to

v =

[
w− (R0 +

∑m
i=1 id[i]Ri)x

x

]
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in which w is random and x satisfies α(id)Cx = D−A0w. Thus skid = gv

can be computed, and hence extraction, leakage, and reveal queries can be
simulated. In the second case of target identity id = id∗, namely α(id∗) = 0,
B can again compute private key skid∗ = gv

∗
by solving v∗ = (v∗[1], . . . ,

v∗[2�])T satisfying [I� | R∗] · v∗ = E where I� ∈ Z�×�
q is the identity matrix.

It is easy to see that gv
∗
is the private key for id∗ by multiplying A0 from

the left to both hand sides of the above equation. From that equation, we
now have ⎡⎢⎣v∗[1]

...
v∗[�]

⎤⎥⎦ =

⎡⎢⎣E[1]
...

E[�]

⎤⎥⎦−R∗

⎡⎢⎣v∗[�+ 1]
...

v∗[2�]

⎤⎥⎦ .

Since E[3], . . . ,E[�],v∗[� + 1], . . . ,v∗[2�] can be independently random in
Zq, there are q(�−2)+� choices for v∗, so that it is from a space of dimension
2�−2 as expected. The leakage rate for η-bit security 1− 3

2�−
η

�|q| is computed

exactly as in the selective case.

5 Proposed IPE under DLIN

In this section we design the first leakage resilient IPE scheme under the DLIN
assumption with leakage rate 1 − o(1). Several techniques in previous sections
are re-utilized here. Below id = (id1, . . . , idn) ∈ Zn

q . For u = (u1, . . . , un) ∈ Zn
q ,

decryption will work correctly if 〈id, u〉 =
∑n

i=1 idiui = 0 ∈ Zq. The scheme is
as follows.

– Setup: Take Ai,S
$← Z2×�

q and D
$← Z2×1

q , let msk = (A0, . . . ,An), and

mpk = (gA0 , . . . , gAn , gD,S).
– Extractmsk(id): Return gv ∈ G2�×1 where F(id) · v = D for F(id) =

[A0|
∑n

i=1 idiAi].

– Enc(u,M ∈ GT ): Take z
$← Z1×2

q , return C = gz[A0|A1+u1S|···|An+unS] and

E = e(g, g)z·DM.
– Decgv (id, C,E): From C = g[y|y1|···|yn], compute

n∏
i=1

(gyi)idi = g
∑n

i=1 idiyi ,

and hence obtain g[y|
∑n

i=1 idiyi]. Pair that with the private key gv, ob-
taining F = e(g, g)[y|

∑n
i=1 idiyi]·v ∈ GT and finally compute the message

m = E · F−1.

Correctness. Following directly from below equations: [y|
∑n

i=1 idiyi] =
[zA0|z

∑n
i=1 idiAi + 〈id, u〉zS] = [zA0|z

∑n
i=1 idiAi] = zF(id).

Theorem 4. The above IPE scheme is leakage resilient under the DLIN
assumption with leakage rate 1− 3

2� −
η

�|q| for η-bit security.
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The proof will be given in the full version due to the lack of space.

6 Extensions to Continual Leakage

Identity-Based Encryption. To work in the CML model, following [12], we
need to specify the algorithm Update

user
re-newing the private key of users. To

do so, we choose D = 0 working on ker(F(id)). The private key for identity

id ∈ {0, 1}m is g[v1|v2] for vi
$← ker(F(id)). To renew the key, the user takes

S
$← Z2×2

q and returns g[v1|v2]S. The nice effect of D = 0 is that [v1|v2]S is also
in the kernel space ker(F(id)) × ker(F(id)) as required since

F(id)[v1|v2]S = [F(id)v1|F(id)v2]S = 0.

However, due to D = 0, we now have to consider an IBE scheme encrypting one
bit. The scheme is described below, in which the parameter � ≥ 7 (e.g., � = 12
for concreteness) affects the leakage rates. Below, security proofs are postponed
to the full version due to space limit.

The IBE scheme is as follows. In Setup, the public params are pp =

(gA0 , . . . , gAm , gB) for A0
$← Z2×3

q , and A1, . . . , Am, A′
0

$← Z2×(�−3)
q . The mas-

ter secret key is set to msk = (A0, . . . ,Am,A′
0). Extract, for input id ∈ {0, 1}m,

returns skid = gv where v = [v1|v2] in which v1,v2 ∈ Z�×1
q satisfies F(id) ·v1 =

F(id) · v2 = 0 for

F(id) =

[
A0

∣∣∣A′
0 +

m∑
i=1

id[i]Ai

]
∈ Z2×�

q .

Updateuser chooses S
$← Z2×2

q and returns sk′id = g[v1|v2]·S. Enc, encrypting μ ∈
{0, 1}, takes c

$← span(F(id)) = {zF(id) : z ∈ Z1×2
q } if μ = 0; otherwise

c
$← Z1×�

q , and returns the ciphertext gc. Dec, decrypting gc, computes ê(g, g)c·v

and if the result is ê(g, g)0, then returns μ = 0, else returns μ = 1.

Theorem 5. The above IBE scheme is IND-ID-CPA-secure in the CML model
under the DLIN assumption, with memory leakage rate 1/2− o(1).

Inner Product Encryption. The scheme is as follows. Setup takes A1≤i≤n,

S
$← Z2×(�−3)

q , A0
$← Z2×3

q , and lets msk = (A0, . . . ,An), mpk = (gA0 , . . . ,

gAn ,S). Extractmsk(id) returns g
v = g[v1|v2] ∈ G�×2 where with j = 1, 2,

F(id) · vj =

[
A0

∣∣∣ n∑
i=1

idiAi

]
· vj = 0.

Updateuser chooses T
$← Z2×2

q and returns sk′id = g[v1|v2]·T. Algorithm

Enc(u,M ∈ {0, 1}) takes z $← Z1×2
q , and returns
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C = gz[A0|A1+u1S|···|An+unS]

ifM = 0; otherwise choose C
$←G(�−3)n+3. Decgv (id, C = g[y|y1|···|yn]) computes∏n

i=1(g
yi)idi = g

∑n
i=1 idiyi , and hence obtain g[y|

∑n
i=1 idiyi]. Pair that with the

private key gv, obtaining F = e(g, g)[y|
∑n

i=1 idiyi]·v ∈ GT and output M = 0 if
F = e(g, g)0. Otherwise output M = 1.

Theorem 6. The above IPE scheme is IND-sID-CPA-secure in the CML model
under the DLIN assumption, with memory leakage rate 1/2− o(1).
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A Computing gv

We are given F ∈ Z2×2�
q , gD ∈ G2×1 and want to compute gv ∈ G2�×1 where

Fv = D. With all but negligible probability, we can assume that F as gener-
ated in our scheme is of rank 2. Solving the linear equation Fv = D gives us[
I2
∣∣F1

]
v = F2D where I2 is the 2×2 identity matrix, and F1 ∈ Z2×(2�−2),F2 ∈

Z2×2
q depends on F. Now let w = (v[1],v[2])T and w′ = (v[3], . . . ,v[2�])T we

have w+F1w
′ = F2D, so that w′ can be free, and w = F2D−F1w

′. Since gD

is given, we can compute gw, and hence gv as well.
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Abstract. This paper examines “batch zero-knowledge” protocols for
communication- and computation-efficient proofs of propositions com-
posed of many simple predicates. We focus specifically on batch pro-
tocols that use Cramer, Damg̊ard, and Schoenmakers’ proofs of partial
knowledge framework (Crypto 1994) to prove propositions that may be
true even when some of their input predicates are false. Our main re-
sult is a novel system for batch zero-knowledge arguments of knowledge
and equality of k-out-of-n discrete logarithms. Along the way, we pro-
pose the first general definition for batch zero-knowledge proofs and we
revisit Peng and Bao’s batch zero-knowledge proofs of knowledge and
equality of one-out-of-n discrete logarithms (Inscrypt 2008). Our anal-
ysis of the latter protocol uncovers a critical flaw in the security proof,
and we present a practical lattice-based attack to exploit it.

Keywords: Batch proof and verification, zero-knowledge, cryptanalysis,
lattice-based attacks, efficiency.

1 Introduction

An interactive zero-knowledge proof is a conversation between two mutually dis-
trusting parties—a prover and a verifier—in which the prover tries to convince
the verifier that some proposition is true. The prover holds evidence (e.g., an
NP witness) but is unwilling to reveal it to the verifier; the verifier, conversely, is
skeptical of the prover and needs convincing. What makes a zero-knowledge proof
special, therefore, is how much extra information the verifier learns: in a zero-
knowledge proof, the verifier learns nothing beyond the veracity of the prover’s
claim. Zero-knowledge proofs have had profound implications for cryptography
since Goldwasser, Micali, and Rackoff introduced them back in 1985 [20]; indeed,
they are integral to many cryptographic protocols in the literature ranging from
end-to-end verifiable voting schemes [11,25], through to anonymous blacklisting
and reputation systems [2,3,33], protocols for priced symmetric private informa-
tion retrieval [24], threshold ring signatures [34], verifiable mix networks [21,31],
and cryptographic auctions [9], among others.

� An extended version of this paper is available [23].
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Alas, zero-knowledge does not come free. Each application above gives rise to
at least one proposition whose “fan-in” scales with a critical system parameter
(e.g., the global user count [11, 25, 34] or the size of a database [2, 3, 24, 33]).
Take for example a prover and a verifier that share generators g, h and a set of
n pairs of group elements {(gi, hi) = (gxi , hyi) | i ∈ [1, n]

}
from some suitably

chosen group G. The prover wishes to prove a proposition about this entire
batch of predicates, such as “For each i ∈ [1, n], I know xi ∈ Z|G| such that
logg gi = logh hi = xi” or “For some i ∈ [1, n], I know xi ∈ Z|G| such that
logg gi = logh hi = xi”. The first (“AND”) proposition naturally arises, e.g.,
in universally verifiable shuffling protocols for mix networks [31, §2.3], while the
second (“OR”) proposition arises, e.g., in coercion-resistant Internet voting when
each voter must prove that she appears on the election roster [11, §3.5]. In both
cases, the standard zero-knowledge protocols scale linearly with the number of
inputs n: the prover and verifier each compute Θ(n) full-length exponentiations
in G, the verifier sends Θ(1) group elements to the prover, and the prover sends
Θ(n) group elements to the verifier. In 1998, Bellare, Garay, and Rabin [4, 5]
suggested batch verification techniques to reduce verification costs. Their “small
exponents” batch verification test [5, §3.3] reduces the verifier’s computation
cost to just Θ(1) full-length exponentiations and Θ(λn) multiplications in G.
The quantity λ is a soundness parameter ; perhaps λ = 40 or 60 in practice.

Inspired by Bellare et al.’s small-exponent batch test, Peng, Boyd, and Daw-
son [30, §4.1] proposed a four-round batch proof of (complete) knowledge for the
above “AND” proposition. The prover and verifier each compute just Θ(1) full-
length exponentiations and Θ(λn) multiplications in G, the prover sends Θ(1)
group elements to the verifier, and the verifier sends Θ(1) group elements and
Θ(λn) additional bits to the prover. More recently, Peng and Bao [28, §5.1] pro-
posed a four-round batch proof of partial knowledge for the above “OR” propo-
sition, which blends small-exponent batch testing with a special case of Cramer,
Damg̊ard, and Schoenmakers’ proofs of partial knowledge [12]. The prover and
verifier each compute just Θ(1) full-length exponentiations and Θ(λn) multi-
plications in G, and they each send and receive just Θ(1) group elements and
Θ(λn) additional bits. A handful of other papers [8, 15, 21, 24, 29, 31] propose
similar “batch proofs” with similar “sublinear” costs.

Our contributions.
1. We propose a novel system for batch zero-knowledge arguments of knowledge
and equality of k-out-of-n discrete logarithms for fixed k ∈ [1, n]. As special
cases, we obtain batch “AND” proofs (n-out-of-n) and batch “OR” proofs (one-
out-of-n). Our protocol has similar costs to the protocols of Peng et al. [30, §4.1]
and of Peng and Bao [28, §5.1].

2. We present a practical, lattice-based attack on the soundness of Peng and
Bao’s protocol for batch zero-knowledge proofs of knowledge and equality of
one-out-of-n pairs of discrete logatarithms. We provide a fix that uses all-but-k
mercurial commitments [22], a variant of mercurial vector commitments [10]
with a strengthened binding property.
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3. We propose formal definitions for batch zero-knowledge proofs and proofs
of knowledge. Prior treatments of batch proofs have been informal and ad
hoc. Our new definitions address this with a conciseness property describing
the asymptotic performance of a “batch” protocol relative to one formed by
sequential composition of corresponding single-instance protocols.

Outline. We examine Peng and Bao’s [28, §5.1] batch “OR” protocol in §2 and
describe a practical attack on its soundness (the full details of which are in the
extended version of this paper [23, Appendix A]). In §3, we discuss using all-
but-k mercurial commitments [22] to repair Peng and Bao’s protocol. In §4, we
propose our formal definitions for batch zero-knowledge proofs and batch zero-
knowledge proofs of knowledge. Our new batch protocol follows in §5. We list
some potential applications in §6 and conclude in §7.

2 Peng and Bao’s Batch Proof Protocol

The following protocol is due to Peng and Bao [28, §5.1]; they call it “batch
ZK proof and verification of 1-out-of-n equality of logarithms”. The protocol
incorporates Bellare et al.’s small-exponent batch testing [5, §3.3] into both the
proof and verification phases of an otherwise standard sigma protocol for proving
knowledge and equality of one-out-of-n pairs of discrete logarithms. Both the
prover P and verifier V know the same two generators g, h of an order-p group
G and a set of n pairs of group elements {(gi, hi) | i ∈ [1, n]}, but only P knows
an index j ∈ [1, n] and exponent xj ∈ Zp

∗ such that logg gj = logh hj = xj . The
goal of the protocol is for P to convince V that she knows such a (j, xj) pair
without revealing any additional information. For ease of notation below, we
define H = [1, n] \ {j} for the (j, xj) pair that honest P is proving knowledge
of. We also introduce a soundness parameter λ ∈ N, which tunes the cost versus
soundness trade off in small-exponent batch testing.

Protocol 1. (Peng&Bao’sBatch Proof of Partial Knowledge [28, §5.1]).
V1: Choose ti ∈R [0, 2λ − 1] for each i ∈ [1, n]. Send (t1, . . . , tn) to P.

P2: Receive (t1, . . . , tn) from V. Choose r ∈R Zp
∗ and ci ∈R [0, 2λ − 1] for each

i ∈ H . Compute a = gr
∏

i∈H
gciti
i and b = hr

∏
i∈H

hciti
i . Send (a, b) to V.

V3: Receive (a, b) from P. Choose c ∈R [0, 2λ − 1] and send it to P.

P4: Receive c from V. Compute cj = c−
∑

i∈H
ci mod 2λ and v = r−tjcjxj mod

p. Send (c1, . . . , cn, v) to V.

V5: Receive (c1, . . . , cn, v) from P. Output “true” if and only if a
?

= gv
∏n

i=1
gciti
i ,

b
?

= hv
∏n

i=1
hciti

i , and c
?≡
∑n

i=1
ci (mod 2λ), otherwise output “false”.

Some remarks about Protocol 1 are in order. Perhaps surprisingly, we observe
that V speaks before P does. What V sends to P in StepV1 is a list of short expo-
nents for small-exponent batch testing. Step P2 ostensibly forces P to commit to
an index j (such that H = [1, n]\{j}) and to {ci | i ∈ H}; if so, then V choosing
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c ∈R [0, 2λ−1] in StepV3 is equivalent to V choosing the missing cj ∈R [0, 2λ−1]
for P in StepP4, which is exactly what we want for good soundness. It is trivial to
verify that the protocol is complete; i.e., that honest P always convinces honest
V. Theorem 1 in Peng and Bao’s paper [28] states that “Soundness in [the above
protocol] only fails with an overwhelmingly small probability [in the soundness
parameter λ].” Their soundness proof works by computing an upper bound of
1/2λ on the probability that the verification equations hold if logg gj �= logh hj,
given the following two implicit assumptions: 1) P committed to H = [1, n]\ {j}
and to {ci | i ∈ H} in StepP2, and 2) V chose c and (hence, cj) uniformly at
random from [0, 2λ − 1] in StepV3. However, it is easy to see that the pair (a, b)
of “commitments” that P computes and sends to V in StepP2 does not bind her
to using H = [1, n] \ {j}; hence, the first implicit assumption in Peng and Bao’s
soundness proof is not guaranteed to hold when P is dishonest. Dishonest P can
exploit this observation to pass the verification equations even when the claimed
equality of logarithms is false.

We give a high-level description of the attack below; interested readers can
find further details in the extended version of this paper [23, Appendix A].

Overview of the attack. Suppose that P knows several (xj , yj) pairs such that
(gj, hj) = (gxj , hyj ) but xj �≡ yj (mod p) for any of the known pairs. Partition
the interval [1, n] into two sets H and S, where S is a subset of indices for which
P knows the above pair of discrete logarithms and H is a superset of indices for
which she does not. (Note that in some reasonable settings P may know every
such pair.) In Step P2, P computes (a, b) using this new H so that when V sends
c to P in StepV3, P has |S|−1 extra degrees of freedom to compute her response
in StepP4. In particular, to find the missing {cj | j ∈ S} she solves the following
system of two linear equations in k = |S| unknowns:

0 ≡
∑
j∈S

cjtj (xj − yj) (mod p), and (1)

c′ ≡
∑
j∈S

cj (mod 2λ), (2)

where c′ = c−
∑

i∈H
ci mod 2λ. Equation (1) implies

∑
j∈S

cjtjxj ≡
∑

j∈S
cjtjyj

(mod p); hence, if P sets v = r−
∑

j∈S
cjtjxj mod p in StepP4, then (c1, . . . , cn, v)

will satisfy each verification equation in StepV5. Of course, if P just naively solves
the above system of equations and obtains a solution {cj | j ∈ S} containing
cj′ ≥ 2λ for some j′∈ S, then V may notice that P is cheating. Therefore, what P
really wants to do is find a solution to the above system subject to the additional
restriction that 0 ≤ cj < 2λ for all j ∈ S.

A counting argument suggests that such “suitably small” solutions are plen-
tiful whenever k ·λ is “sufficiently large” compared to lg p.1 If X is an instance

1 Recall that k = |S| is a lower bound on the number of exponent pairs that P knows
and that λ is the soundness parameter. Larger values of λ are supposed to result in
better soundness; however, what we find is just the opposite: larger values of λ only
make suitably small solutions more numerous and easier for P to find.
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of the above system induced by some real interaction between P and honest V,
then we heuristically expect the distribution of solutions of X to be uniform
among all possible 〈cj1 , . . . , cjk〉 ∈ (Zp)k; in particular, we expect the proportion
of solutions that are suitably small to be about (2λ/p)k. Now, only pk−1 of the
〈cj1 , . . . , cjk〉 ∈ (Zp)k can satisfy Equation (1), and of these only about pk−1/2λ

can simultaneously satisfy Equation (2). This leads us to conclude that X has
around (pk−1/2λ) (2λ/p) k = (2λ)k−1/p suitably small solutions. In the extended
version of this paper [23, Appendix A], we discuss how P can find one of these
solutions by solving a short vector search problem in a particular lattice of di-
mension k+3. When k is reasonably small, P can use a standard basis reduction
algorithm, such as Lenstra-Lenstra-Lovász (LLL) [27], to find a suitably small
solution quickly. For example, setting λ = 40 and letting lg p ≈ 160, P only
needs to know about k = 5 exponent pairs to find a suitably small solution, on
average.

3 All-but-k Mercurial Commitments

Our attack on Protocol 1 is possible because P can wait until after she sees the
challenge c in StepP4 to choose k > 1 of the ci. If the “commitment” in StepP2
actually bound P to using H = [1, n] \ {j} and {ci | i ∈ H}, then Peng and
Bao’s upper bound of 1/2λ on the protocol’s soundness error would hold. For
a direct fix, we therefore desire a special commitment that will (i) force P to
commit to all but one component of 〈c1, . . . , cn〉 in Step P2 and (ii) let P specify
an arbitrary value for the missing component—without betraying its position—
when she opens the commitment in StepP4. This, informally, is the binding
and hiding guarantees that all-but-k mercurial commitments [22] provide when
k = 1. More generally, an all-but-k mercurial commitment allows P to commit
to an arbitrary subset of n − k components from a length-n vector so that she
is bound to these n− k components but is still free to choose the k unspecified
components prior to opening. V does not learn which components P chose before
committing and which she chose after committing; V does, however, learn the
total number ‘k’ of non-committed components in the opening.

We refer the reader to Henry and Goldberg’s paper [22] for a more comprehen-
sive exposition of all-but-k mercurial commitments, including formal statements
of the security properties. For our own purposes, we use an abridged notation
that abstracts away certain technical details.

Informal definition. An all-but-k mercurial commitment scheme is a 4-tuple
of probabilistic polynomial-time (PPT) algorithms (ABK-Init, ABK-Commit,
ABK-Open, ABK-Verify) that work as follows:

– ABK-Init outputs a common reference string PK for use in the other proto-
cols.

– ABK-CommitPK outputs commitments to vectors in which some subset of
components is as-of-yet unspecified.
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– ABK-OpenPK opens such commitments to fully specified vectors, explicitly
revealing the number of components k not bound by the commitment.

– ABK-VerifyPK verifies the output of ABK-OpenPK, including the validity
of k.

Repairing Peng and Bao’s protocol. Given secure all-but-k mercurial commit-
ments, it is straightforward to protect Protocol 1 from attacks like the one in
§2. In StepP2, P commits to 〈ci | i ∈ H〉 for H = [1, n] \ {j}. After V sends c
to P in StepV3, P computes the missing cj as usual, then opens the above com-
mitment to 〈c1, . . . , cn〉 as part of StepP4, proving as she does so that she chose
only one of the cj after committing in StepP2. Constructing a simulator and
extractor for this augmented protocol is simple (and we give explicit simulator
and extractor constructions for the generalized version in the extended version
of this paper [23, Appendix B]); furthermore, the augmented protocol is still
intuitively a “batch” protocol provided the all-but-k scheme satisfies certain ef-
ficiency requirements. In §5, we let the parameter k vary and thereby generalize
the repaired Peng-Bao protocol to a system for batch zero-knowledge arguments
of knowledge and equality of k-out-of-n discrete logarithms for any k ∈ [1, n].
Our protocol (including the special case just outlined) appears to be the first
such batch protocol for k �= n.

4 Defining Batch Zero-Knowledge Proofs

Several papers (many of which we listed in the introduction [8,15,21,24,29,31])
propose protocols that implement what their respective authors refer to as
“batch zero-knowledge proofs (of knowledge)”. Regrettably, the community has
no agreed upon definition of what constitutes a “batch” zero-knowledge proof.
Prior works, consequently, justify the terminology using ad hoc arguments that
contrast the communication cost (counted in terms of group elements transfers)
and computation cost (counted in terms of full-length exponentiations) of their
protocols with those of the most “obvious” protocols to implement proofs of
the same propositions. (Peng et al. did suggest one definition for batch zero-
knowledge proofs [30, Definition 1]; however, their definition fails to address
asymptotic communication and computation costs, which we believe to be the
key property differentiating the abovementioned “batch” proofs from their “non-
batch” counterparts.) We therefore offer our own, very general definition for
batch zero-knowledge proofs (of knowledge). We model our new definition after
the standard zero-knowledge definitions (specifically, [18, Definition 3] and [6,
Definition 3.1]), but add a new parameterized conciseness criterion that places
asymptotic restrictions on how the communication and the computation costs
of the interaction scale with respect to the size of the proposition under con-
sideration. In particular, our conciseness criterion characterizes the asymptotic
relationship between the number of predicates under consideration, the sound-
ness (or knowledge) error of the proof, and the communication and computation
cost of the resulting interaction.
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Formal model. We model our prover P and verifier V as a pair of interactive
functions and consider the interaction (Px(y),Vx(z)) that occurs when both func-
tions take x = 〈x1, . . . , xn〉 as common input, P takes y = 〈y1, . . . , yn〉 as private
input, and V takes string z as private auxiliary input. In general, some (possibly
trivial) subset of (xi, yi) pairs satisfy a given witness relation R and z encodes
arbitrary prior knowledge of V, such as a set of transcripts from earlier interac-
tions with P. (The transcript of an interaction (Px(·),Vx(z)), which is denoted
by trP,V(x, z), is the string-valued random variable that records V’s inputs and
all correspondence with P up to the end of an interaction.)

We let ϕR be the function that maps pairs of n-tuples (x, y) as above to n-bit
strings in which the ith bit is 1 if and only if (xi, yi) ∈ R. Intuitively, we are inter-
ested in interactions (Px(y),Vx(z)) that implement zero-knowledge proofs of the
proposition p(x, y) induced by R and a given language L in the following sense:
p(x, y) is true if and only if ϕR(x, y) ∈ L. Note that the pair (L,R) uniquely deter-
mines the proposition p, and vice versa. For ease of notation below, we define the
language of n-tuples induced by (L,R) as LR = {x | ∃ y for which ϕR(x, y) ∈ L}.
We parameterize the lengths of the xi and yi in a given interaction by τ ; in par-
ticular, we assume throughout that the xi are all τ bits long and the yi are all
poly(τ) bits long, where poly(·) is some fixed polynomial. Let T = {({0, 1}τ)n |
τ, n ∈ N≥1} denote set of n-tuples of fixed-length strings.

Example. For propositions p(x, y) asserting knowledge and equality of discrete
logarithms, as in the actual protocols we consider in this paper, R = {(xi, yi) =
((gi, hi), yi) ∈ G2 × Zp

∣∣ logg gi = logh hi = yi}. If p(x, y) is the “AND” propo-
sition, then L is the language of strings comprised entirely of 1s; if p(x, y) is
the “OR” proposition, then L is the language of strings with nonzero Hamming
weight. For our own k-out-of-n proofs, L is the language of strings with Ham-
ming weight at least k. Note that in general P is proving partial knowledge of
witnesses for R, with the strings in L reflecting which subsets of witnesses P
might actually know.

We now recall the standard notions of a simulator for verifier V, which we
use to formalize what it means for (Px(y),Vx(z)) to be “zero-knowledge”, and
of a knowledge extractor for P, which we use to formalize what it means for
(Px(y),Vx(z)) to be a “proof of knowledge”.

Definition 1. A probabilistic function SV∗ is a simulator for verifier-language
pair (V∗, LR) if the probability ensembles {trP,V∗(x, z)}x∈LR

and {SV∗(x, z)}x∈LR

are (computationally, statistically, or perfectly [17, Definitions 3,4]) indistinguish-
able, where SV∗(x, z) is the string-valued random variable describing the output
of SV∗ on input (x, z).

An oracle machine for P∗ is a function EP∗
that is endowed with rewinding

black box oracle access to P∗. In other words, EP∗
is able to 1) submit arbitrary

challenges to P∗ and get truthful responses in a single time step, and 2) “rewind”
P∗ to a previous state to get several responses for the same input and random
coin flips but different challenges. (Note that EP∗

is generally not privy to P∗’s
inputs or internal state.)
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Definition 2. Let κ : T → [0, 1] and let q(x) denote the probability that V
outputs “true” in (P∗

x (y),Vx(z)). An oracle machine EP∗
is a knowledge extractor

(with knowledge error κ(·)) for the prover-language pair (P∗, LR) if there exists
a positive polynomial g(·) such that, for all n-tuples x ∈ LR, if q(x) ≥ κ(x)
then, with probability at least q(x)−κ(x)

g(|x|) , EP∗
(x) outputs an n-tuple y′ for which

ϕR(x, y
′) ∈ L.

Given the above definitions, we formally define what it means for a pair of in-
teractive functions to implement a system of batch zero-knowledge proofs or a
system of batch zero-knowledge proofs of knowledge for the language-relation pair
(L,R). What sets our Definition 3 apart from the standard zero-knowledge defi-
nitions is that we include an explicit conciseness condition, which characterizes
the cost of proving ϕR((x1, . . . , xn), (y1, . . . , yn)) ∈ L in terms of the cost of
proving (x1, y1) ∈ R.

For example, consider an interactive protocol A between P and V in which, on
common input x0 ∈ {0, 1}τ , P convinces V that there exists (or, perhaps, that it
“knows”) some y0 such that (x0, y0) ∈ R. Let a0(τ) and a1(τ) respectively denote
the computation cost (for both P and V) and the bidirectional communication
cost of A. Now, consider a second interactive protocol B between P and V in
which, on common input x ∈ ({0, 1}τ)n, P convinces V that there exists (or it
“knows”) some y such that ϕR(x, y) ∈ L. Let b0(τ, n) and b1(τ, n) respectively
denote the computation cost (for both P and V) and the bidirectional commu-
nication cost of B. For a fixed pair of constants α, β ∈ [0, 1], we say that B is
(α, β)-concise if there exists a constant δ > 0 such that, for all ε > 0, we have

b0(τ, n) ∈ O(nαa0(τ) + nβ+εã0(τ)) for some ã0(τ) ∈ o(a0(τ)
1−δ),

and

b1(τ, n) ∈ O(nαa1(τ) + nβ+εã1(τ)) for some ã1(τ) ∈ o(a1(τ)
1−δ).

(That is, the computation cost and communication cost of B grow no faster
than nα times the corresponding cost of A plus at most about nβ times some
function that grows at least polynomially slower than the corresponding cost of
A as τ grows large. The ε and δ factors are present so that we may ignore the
contribution of polylogarithmic terms.) Recalling that α, β ∈ [0, 1], we call B a
batch proof (of knowledge) for (L,R) if it is (α, β)-concise for any α < 1, or, very
roughly, if the cost of the protocol grows slower than n times the cost of A as
we let both n and τ tend to infinity.

Example.

1. Consider Peng et al.’s protocol for proofs of complete knowledge [30, §4.1], our
repaired version of Peng and Bao’s protocol in §3 for proofs of partial knowledge,
and the forthcoming protocol in §5 for proofs of partial knowledge. In each, we
find that a0(τ) ∈ Ω(τ2 lg2 τ) and a1(τ) ∈ Ω(τ) while, for all ε > 0 and for
any soundness parameter λ ∈ N, we find that b0(τ, n) ∈ O(a0(τ) +n1+ελ τ lg2 τ)
and b1(τ, n) ∈ O(a1(τ) + nλ).2 For any fixed δ < 1/2, we have that ã0(τ) =

2 We assume here that multiplication in G requires O(τ lg τ lg lg τ) ∈ O(τ lg2 τ) bit
operations using the Fast Fourier Transform (FFT) [14].
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λ τ lg2 τ ∈ o(a0(τ)
1−δ) and ã1(τ) = λ ∈ o(a1(τ)

1−δ), and therefore each of these
protocols is (0, 1)-concise; moreover, since α = 0 < 1, each protocol satisfies our
conciseness criterion for a batch proof of knowledge.
2. Brands, Demuynck, and De Decker describe a protocol [8, §3.4] to prove that
a given commitment commits to a different value than every other commitment
on a list. As in the previous example, we find that a0(τ) ∈ Ω(τ2 lg2 τ) and
a1(τ) ∈ Ω(τ) but, in this case, we have b0(τ, n) ∈ O(n1/2τ2 lg2 τ) and b1(τ, n) ∈
O(n1/2τ). Thus, letting δ = 1/2 and letting ã0(τ) and ã1(τ) be arbitrary constant
functions, we see that Brands et al.’s protocol is ( 1

2 , 0)-concise; moreover, since
α = 1

2
< 1, it satisfies our conciseness criterion for a batch proof.

Definition 3. (System of batch zero-knowledge proofs (of knowledge)).
Let Λ: N → N be a nondecreasing soundness function and let α, β ∈ [0, 1] be
constants such that α < 1. An interactive protocol (Px(y),Vx(z)) is a system
of (α, β,Λ)-batch zero-knowledge proofs for the language-relation pair (L,R) if
there exists a negligible function ε0 : N → R for which (Px(y),Vx(z)) satisfies
each of the following four conditions.

1. Complete: For any n ∈ N and pair (x, y) such that ϕR(x, y) ∈ L, if y is
input to honest P and x is input to P and honest V, then V outputs “true”.

2. (Unconditionally) sound: For every (possibly malicious) prover P∗, τ ∈ N,
n ∈ N, and x ∈ ({0, 1}τ)n \ LR, if P

∗ and honest V receive x as common
input then, with probability at least 1− ε0(Λ(τ)), V outputs “false”.

3. (General) zero-knowledge: For every (possibly malicious) PPT verifier
V∗, there exists a PPT simulator SV∗ for (V∗, LR).

4. (α,β)-concise: If a0(τ) and a1(τ) respectively denote the computation and
communication cost of (Px(y),Vx(z)) when n is fixed as 1, then there ex-
ists some constant δ > 0 and functions ã0(τ) ∈ o(a0(τ)

1−δ) and ã1(τ) ∈
o(a1(τ)

1−δ) such that, for every ε > 0, we have that
a. for every (possibly malicious) PPT verifier V∗, τ ∈ N, and pair (x, y)

such that ϕR(x, y) ∈ L, if y is input to honest P and x is input to P and
V∗, then P runs in O(nαa0(τ)+nβ+εã0(τ)) time and sends O(nαa1(τ)+
nβ+εã1(τ)) bits to V; and

b. for every (possibly malicious) prover P∗, τ ∈ N, and n-tuple x, if x is
input to P∗ and honest V, then V runs in O(nαa0(τ) + nβ+εã0(τ)) time
and sends O(nαa1(τ) + nβ+εã1(τ)) bits to P∗.

If (Px(y),Vx(z)) additionally satisfies the following condition, then it is a system
of (α, β,Λ)-batch zero-knowledge proofs of knowledge for (L,R).

5. (Unconditionally) knowledge extractable: There exists an oracle ma-
chine E and function κ : T → [0, 1] such that, for every (possibly malicious)
prover P∗, EP∗

is an expected PPT knowledge extractor for (P∗, LR) with
knowledge error κ(·) ≤ ε0(Λ(τ)).

We also consider the following two (standard) relaxations of the above definition.
First, if (Px(y),Vx(z)) satisfies Conditions 1, 2, 4 (and 5) as stated above, but it
only satisfies the weaker Condition 3b as stated below (instead of Condition 3),
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then it is a system of honest-verifier (α, β,Λ)-batch zero-knowledge proofs (of
knowledge) for (L,R).

3b. (Honest-verifier) zero-knowledge: There exists a PPT simulator SV for
(V, LR), where V is the honest verifier.

If there exists a negligible function ε1 : N → R for which (Px(y),Vx(z)) satisfies
Conditions 1, 3[b], and 4 as stated above, but only satisfies the weaker Conditions
2b (and 5b) as stated below, then it is a computationally convincing system
of [honest-verifier] (α, β,Λ)-batch zero-knowledge arguments (of knowledge) for
(L,R).

2b. (Computationally) sound: For every (possibly malicious) PPT prover P∗,
there exists a constant τ0 such that, for every τ > τ0 and n ∈ N, if P∗ and
honest V receive x ∈ ({0, 1}τ)n \LR as common input then, with probability
at least 1− ε0(Λ(τ))− ε1(τ), V outputs “false”.

5b. (Computationally) knowledge extractable: There exists an oracle ma-
chine EP∗

and function κ : T → [0, 1] such that, for every (possibly malicious)
PPT prover P∗, there exists a constant τ0 such that, for every τ > τ0 and
n ∈ N, EP∗

is an expected PPT knowledge extractor for (P∗, LR) with knowl-
edge error κ(·) ≤ ε0(Λ(τ)) + ε1(τ).

5 Batch Proof of Knowledge and Equality of k-out-of-n
Pairs of Discrete Logarithms

Our new protocol draws inspiration from the repaired version of Peng and Bao’s
protocol outlined in §3, but it improves on that protocol by letting k vary in the
all-but-k mercurial commitments, which allows us to prove a more general class
of propositions. More precisely, the new protocol generalizes from a system for
proofs of knowledge and equality of one-out-of-n pairs of discrete logarithms to
a system for arguments of knowledge and equality of k-out-of-n pairs of discrete
logarithms for any k ∈ [1, n]. We defer a formal security analysis of the new proto-
col to the extended version of this paper [23, Appendix B] wherein we prove that,
for any fixed k and soundness parameter λ ∈ N, it is a system for honest-verifier
(0, 1,min{τ, λ})-batch zero-knowledge proofs of knowledge (in the sense of Def-
inition 3). The latter analysis uses efficiency characteristics of the underlying
construction for all-but-k mercurial commitments [22]. Using Henry and Gold-
berg’s all-but-k mercurial commitment scheme [22], which is computationally
binding under the n-Strong Diffie-Hellman assumption [7, §3], yields a system
of honest-verifier batch zero-knowledge arguments. We note that in this partic-
ular instantiation, the prover is assumed to be computationally bounded not in
the bit-length τ but in the security parameter for the all-but-k mercurial com-
mitments. Standard tricks from the literature [19] can relax the honest-verifier
assumption at only a small cost to efficiency. Swapping in unconditionally bind-
ing all-but-k mercurial commitments would yield a system of proofs rather than
arguments.
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Table 1. This table compares the communication cost (in bits) and the computation
cost (in τ -bit multiplications) for four different protocols that each implement honest-
verifier zero-knowledge proofs of knowledge and equality of k-out-of-n pairs of discrete
logarithms for some k in a group with τ -bit order. The “Concise” column indicates
the conciseness of the protocol (in the sense of Definition 3); the “Batch?” column
indicates if the protocol satisfies our definition of a batch proof; the “k-out-of-n”
column lists values of k that the protocol supports; the “Sound?” column indicates
if the protocol achieves overwhelming soundness in the soundness parameter λ. Note
that λ = τ in the protocol by Cramer et al.; for the other protocols, typically λ � τ
and λ is fixed as the smallest value yielding a palatable soundness error.
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Cramer et al. [12] Θ(τ n) Θ(τ n) (1, 0) ✗ k ∈ [1, n] ✓

Peng-Bao [28] Θ(τ + λn) Θ(τ + λn) (0, 1) ✓ k = 1 ✗

Peng et al. [30] Θ(τ + λn) Θ(τ + λn) (0, 1) ✓ k = n ✓

This work Θ(τ + λn) Θ(τ + λn lg n) (0, 1) ✓ k ∈ [1, n] ✓

Table 1 compares the cost of our protocol and those arising from a naive
application of Cramer et al.’s framework [12], Peng and Bao’s protocol [28], and
Peng et al.’s protocol [30]. The latter three protocols are all systems for proofs of
knowledge; ours is a system for arguments of knowledge. Observe that Peng et
al.’s protocol is both sound and a batch protocol, but it only handles the simple
k = n case, and that Peng and Bao’s protocol is a batch protocol and handles
the interesting k = 1 case, but it is not sound. Cramer et al.’s framework is sound
and handles every k ∈ [1, n], but it is not a batch protocol.

5.1 The Protocol

Suppose that ABK = (ABK-Init,ABK-Commit,ABK-Open,ABK-Verify) is a
secure all-but-k mercurial commitment scheme. Fix a soundness parameter λ ∈ N
and use ABK- to generate a common reference string PK. Protocol 2 imple-
ments a system for batch zero-knowledge proofs or arguments of knowledge and
equality of k-out-of-n pairs of discrete logarithms for any pair of nonnegative
integers (k, n) with k ≤ n and n ≤ n0. In the protocol, we use Vn×k

q to denote
the column-wise n × k rectangular Vandermonde matrix with entries reduced
modulo q:

Vn×k
q =

⎡⎢⎢⎢⎢⎢⎣
1 1 1 · · · 1
1 2 22 · · · 2k

1 3 32 · · · 3k

...
...

...
. . .

...
1 n n2 · · · nk

⎤⎥⎥⎥⎥⎥⎦ mod q.

Note that because q is prime with n < q and k ≤ n, every subset of k rows of
Vn×k

q has full rank and thus forms a non-singular (i.e., invertible) square matrix
modulo q. If desired, one could replace Vn×k

q with any other matrix that has this
property when all arithmetic is modulo q.
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The setting for the new protocol is similar to before. Both P and V know the
same two generators g, h of an order-p group G, the above-generated all-but-k
reference string PK, and a set of n ∈ [1, n0] pairs of group elements {(gi, hi) | i ∈
[1, n]}, but only P knows a size-k subset S ⊆ [1, n] of indices and corresponding
set xS = {xj ∈ Zp | j ∈ S} of exponents such that logg gj = logh hj = xj

for all j ∈ S. The goal of the protocol is for P to convince V that she knows
such a (S, xS) pair without revealing any additional information. For ease of
notation below, we let H = [1, n]\S for the (S, xS) pair that honest P is proving
knowledge of.

Intuitively, our k-out-of-n proof replaces the all-but-one mercurial commit-
ment from the repaired Peng-Bao proof with an all-but-k mercurial commitment.
P commits to {ci | i ∈ H} in Step P2, thus assuring V that she can choose at
most k = |S| of the ci after V sends the challenge in StepV3. Rather than chal-
lenge P to produce ci that sum to c modulo q, V challenges P to produce ci
that obey a system of k non-degenerate linear constraints induced by Vn×k

q and
the k free components in 〈c1, . . . , cn〉. V verifies the constraints in StepV5 by
checking if 〈c1, . . . , cn〉 ·Vn×k

q
?≡ 〈c, 0, . . . , 0〉 (mod q); the all-but-k commitment

ensures that P chose all but k of the ci before she received c. This assures V
that c uniquely determined a size-k subset of the ci, although he learns no in-
formation about which subset. From here, P essentially uses Peng et al.’s batch
“AND” proof for the size-k subset she is proving knowledge of, and “simulates”
the proof for the remaining n − k predicates, as in a standard proof of partial
knowledge.

Protocol 2. (Generalized batch proof of partial knowledge).

V1: Choose ti ∈R [0, 2λ − 1] for each i ∈ [1, n]. Send (t1, . . . , tn) to P.

P2: Receive (t1, . . . , tn) from V. Choose r ∈R Zp
∗ and ci ∈R [0, q− 1] for i ∈ H .

Compute a = gr
∏

i∈H
gci ti
i , b = hr

∏
i∈H

hci ti
i , and C ← ABK- PK(〈c1,

. . . , cn〉). Send (a, b, C) to V.

V3: Receive (a, b, C) from P. Choose c ∈R [0, q − 1] and send it to P.

P4: Receive c from V. Solve for c = 〈c1, . . . , cn〉 ∈ Zn
q such that c · Vn×k

q ≡
〈c, 0, . . . , 0〉 (mod q), then compute v = r −

∑
j∈S

cj tj xj mod p and ω ←
ABK- PK(C, k, c). Send (c, v, ω) to V.

V5: Receive (c, v, ω) from P. Output “true” if and only if a
?

= gv
∏n

i=1
gci ti
i , b

?

=

hv
∏n

i=1
hci ti

i , c ·Vn×k
q

?≡ 〈c, 0, . . . , 0〉 (mod q), and ABK- PK(C, c, k, ω) ?

=
“true”; otherwise, output “false”.

As before, some remarks about this protocol are in order. Protocol 2 follows
the same basic recipe as Protocol 1, with V starting the conversation in StepV1
by sending to P a list of short exponents for small-exponent batching. In fact,
one easily sees by inspection that the repaired version of Protocol 1 is just the
special case of Protocol 2 with k fixed to one. (The only difference being that
the former protocol uses q = 2λ−1 since it does not require a prime q to guaran-
tee linearly independent constraints.) Completeness holds trivially by inspection
and constructing a simulator for honest V is equally straightforward. In the ex-
tended version of this paper [23, Appendix B], we prove that using Henry and



514 R. Henry and I. Goldberg

Goldberg’s all-but-k mercurial commitment construction [22] in our protocol
yields a system for honest-verifier (0, 1,min{lg p, λ})-batch zero-knowledge argu-
ments of knowledge of a size-k subset S ⊆ [1, n] of indices and corresponding set
xS = {xj ∈ Zp | j ∈ S} of exponents such that logg gj = logh hj = xj for all
j ∈ S.

6 Applications

In the introduction, we listed the following example applications in which the
need to prove propositions about large batches of predicates naturally arise: cryp-
tographic voting [11, 25], anonymous blacklisting and reputation systems [2, 3],
priced symmetric private information retrieval [24], threshold ring signatures [34],
verifiable mix networks [21, 31], and cryptographic auctions [9]. We now briefly
discuss how our new protocol can directly speed up and extend two such con-
structions from the literature.

Symmetric private information retrieval. Henry, Olumofin, and Goldberg [24]
describe a symmetric variant of Goldberg’s information-theoretic private infor-
mation retrieval protocol [16] that achieves data privacy by having each client
commit to her query using polynomial commitments [26] and then exhibit a zero-
knowledge proof that the committed query is “well formed”. The final step in
their proof—which dominates the computation cost of their enhancements and
contributes considerable communication overhead to the protocol—is a proof of
equality of one-out-of-r pairs of discrete logarithms, where r is the number of
records in the database. The authors suggest small-exponent batch testing to
speed up the verification at the database servers; however, playing the role of
prover in that interaction still accounts for a significant fraction of a client’s
per-query computational expenditure. Simply swapping in our protocol leads to
significant reductions in both the computation overhead and the communication
overhead of their protocol.

Cryptographic voting systems. The JCJ protocol of Juels, Catalano, and Jakob-
sson [25] underlies a number of protocols for coercion-resistant, receipt-free ver-
ifiable Internet voting [1, 11, 35]; indeed, Spycher et al. [32] opine that “[JCJ is]
the only known protocol for remote e-voting that offers individual verifiability
and receipt-freeness simultaneously under somewhat acceptable trust assump-
tions”. The bottleneck operation in JCJ is its vote authorization phase, which
eliminates fake votes and duplicate votes prior to tallying. The computational
cost of both steps grows quadratically in the number of votes cast: JCJ detects
fake votes by having voters attach zero-knowledge proofs (made non-interactive
via the Fiat-Shamir heuristic [13]) that they are on the registered voters roster,
and it detects duplicate votes by employing a pairwise plaintext equivalence test
on each vote. Several papers suggest strategies that can detect duplicate votes
in linear time [1,32,35]; however, eliminating fake votes in linear time appears to
necessitate a weakening the protocol’s security guarantees. In particular, some
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existing schemes have voters prove membership within some smaller anonymity
set rather than the entire roster [11, 32]. Our batch proof of partial knowledge
may help to reduce the cost of this step and thereby allow for significantly larger
anonymity sets; for smaller elections, it might even make the quadratic algorithm
practical.

A second cryptographic operation that frequently arises in end-to-end verifi-
able voting systems is “proofs of re-encryption” of ElGamal ciphertexts: that is,
given two sets of pairs {(gyi ,mi h

yi) | i ∈ [1, n]} and {(gy′
i ,m′

i h
y′
i) | i ∈ [1, n]} of

ElGamal ciphertexts encrypted under public key h = gx, prove that mi = m′
i for

all i ∈ S (where S is a subset of indices suitably defined by the application). Such
proofs work by considering the quotients (mi h

yi)/(m′
i h

y′
i) = (mi/m′

i
)hyi−y′

i and

gyi/gy′
i = gyi−y′

i and noting that logh(mi/m′
i
)hyi−y′

i = logg g
yi−y′

i if and only if
mi = m′

i. Thus, batch proofs of knowledge and equality for k-out-of-n pairs of
discrete logarithms imply batch proofs of re-encryption of k-out-of-n ElGamal
ciphertexts.

7 Conclusion

We have examined “batch zero-knowledge” protocols for communication- and
computation-efficient proofs of propositions composed of many simple predicates.
Our primary contribution is a novel system for batch zero- knowledge arguments
of knowledge and equality of k-out-of-n discrete logarithms for fixed k ∈ [1, n].
We also suggested the first general definitions for batch zero-knowledge proofs and
arguments (of knowledge). Our new definitions introduce a conciseness property
that describes the asymptotic performance of a protocol relative to one formed by
sequential composition of single-instance protocols. Our new argument system
came about when we analyzed and uncovered a critical flaw in the security
proof for Peng and Bao’s [28] batch proofs of knowledge and equality of one-
out-of-n discrete logarithms. A malicious prover can exploit the flaw to cause
unsuspecting verifiers to accept proofs when the claimed equality of logarithms is
false. Fortunately, we showed that the flaw is not fatal: we sketched a fix based
on all-but-k mercurial commitments with k = 1 and then generalized to our
main result by varying k in the repaired protocol. In addition, we illustrated the
usefulness of our new protocol by sketching some example applications where its
adoption could result in noteworthy speedups.

Acknowledgements. We thank Jalaj Uphadyay and Colleen Swanson for help-
ful discussions and the anonymous reviewers for their comments. The first author
is supported by a GO-Bell Graduate Scholarship and by the Natural Sciences
and Engineering Research Council of Canada (NSERC) through a Vanier Canada
Graduate Scholarship. The second author thanks NSERC for further funding this
research through a Discovery Grant and a Discovery Accelerator Supplement.



516 R. Henry and I. Goldberg

References
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Abstract. Direct Anonymous Attestation (DAA) is one of the most complex
cryptographic protocols deployed in practice. It allows an embedded secure
processor known as a Trusted Platform Module (TPM) to attest to the con-
figuration of its host computer without violating the owner’s privacy. DAA
has been standardized by the Trusted Computing Group and ISO/IEC.

The security of the DAA standard and all existing schemes is analyzed
in the random-oracle model. We provide the first constructions of DAA in
the standard model, that is, without relying on random oracles. Our con-
structions use new building blocks, including the first efficient signatures
of knowledge in the standard model, which have many applications beyond
DAA.
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1 Introduction

Direct Anonymous Attestation (DAA) is a protocol for a secure embedded processor
known as a Trusted Platform Module (TPM) to authenticate itself and sign messages
attesting to the state of its host while preserving the privacy of its owner. The first DAA
protocol by Brickell, Camenisch and Chen [10] was standardized in 2004 by the Trusted
Computing Group (TCG) [32] as the TPM 1.2 standard and has since been adopted as an
ISO/IEC standard [28]; millions of TPMs have been shipped with personal computers.

In DAA a party owning a TPM can join a group and then sign messages as a member
of this group. DAA signatures sign pairs of data, a message and a basename, which
can be thought of as the identity of the intended verifier. Two signatures on the same
basename can be linked, that is, they reveal whether they were produced by the same
signer. Apart from this, signatures are anonymous; in particular, signatures on different
basenames (or empty basenames) hide whether they come from the same user.

Many DAA schemes have been proposed, including [11,16,17,18,19,20], improving
both the efficiency of DAA and refining the security model. While the first schemes
were analyzed in a simulation-based model, recent papers have switched to game-based
models. We prove our results in the most recent model of Bernhard et al. [6] who pointed
out shortcomings in the models of some previous papers [10,11,16,17,18,19].
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The novelty of our schemes is that they are in the standard model, where one does
not need to rely on the so-called random-oracle heuristic [3], which was required in all
previous DAA schemes but is problematic in cryptographic theory [13]. It is common
practice nowadays to investigate which schemes can be implemented without random
oracles. Standard-model schemes are generally less efficient than their random-oracle-
based ancestors; we do not intend to improve on the efficiency of earlier DAA schemes
but construct efficient schemes in the standard model.

A Blueprint for DAA. As argued in [6], all existing DAA schemes follow the same
“blueprint” and are constructed from the same building blocks: a Randomizable weakly
Blind Signature (RwBS), a Linkable Indistinguishable Tag (LIT) and a Signature of
Knowledge (SoK). We discuss these concepts in more detail in Sect. 3 and 4. DAA
users hold secret keys, on which they receive a (blind) signature as a certificate from
the issuer when joining a group. A DAA signature consists of this certificate, a LIT on
the basename under the user’s key and a SoK on the message, proving knowledge of a
key corresponding to the certificate and the LIT. Our first standard-model DAA scheme
largely follows this blueprint; for our second scheme we propose an alternative method
of constructing DAA yielding a more efficient scheme.

The security model from [6] operates in two steps: first, the authors discuss pre-DAA
schemes, which are fully functional DAA schemes but without the option for the TPM
to delegate non-security critical operations to its more powerful host computer. Sec-
ondly, they give generic methods to perform such delegation securely given a pre-DAA
scheme. Since their second step is independent of the random-oracle model (ROM), it is
also applicable to our schemes. We therefore restrict ourselves to constructing standard-
model pre-DAA schemes in this paper.

LIT in the Standard Model. A DAA signature contains a deterministic tag on the
basename. This LIT should look random, so tags under different keys are indistinguish-
able, which is trivially achievable by using a random oracle. Like Verifiable Random
Functions (VRF) [30], LITs are much harder to construct in the standard model, in par-
ticular, for large input spaces. LITs are somewhat stronger than VRFs, and we do not
know of any large-domain VRF which yields a LIT. (See the discussion in Sect. 4.2.)

For DAA, we believe it is reasonable to postulate that the number of possible base-
names is polynomial in the security parameter. While the set of messages which users
can sign must be large, the number of possible verifiers (corresponding to basenames)
will be efficiently enumerable.

Overview of our Paper and Contributions. In Sect. 2 we introduce some notation as
well as the (pre-)DAA definition and security notions from [6].

In Sect. 3 we introduce and construct the first efficient signatures of knowledge [14]
without random oracles, which may be of independent interest. SoKs are a generaliza-
tion of digital signatures and use a witness to an NP statement as the signing key. We
build them from Proofs of Knowledge (PoK), of which Groth-Sahai proofs [26] are
the only known efficient standard-model instantiation. While the transformation from
PoK to SoK is almost trivial in the random-oracle model, Groth-Sahai proofs cannot
be used directly since SoKs require strong security properties akin to simulation-sound
extractability [25]. Instead, we revert to a known technique, used by Groth [25], to
overcome this limitation.
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In Sect. 4 we discuss and construct randomizable weakly blind signatures and link-
able indistinguishable tags. In order to construct DAA, these building blocks must be
compatible with each other and the Groth-Sahai-based SoK. The challenges here are
that Groth-Sahai proofs apply only to a limited class of statements and are even more
restrictive in security proofs: the language on which we make proofs is that of pairing-
product equations [25], in which we can only prove knowledge of elements of a bilinear
group. It follows that we have to choose our RwBS and LIT with some care: the RwBS
implicitly used in previous DAA schemes, even those that do not require a random or-
acle directly, are not Groth-Sahai compatible for example. We build on the signature
schemes of Abe et al. [1] and Ghadafi [22] to construct different RwBS schemes. As
the LIT used in previous schemes is only secure in the ROM, we construct a new LIT
based on the VRF by Dodis and Yampolskiy [21].

Using these building blocks, we construct two DAA schemes in Sect. 5 and 6. These
are the first DAA schemes in the standard model. Our first construction relies solely on
existing, non-interactive assumptions. To improve efficiency, our second construction
uses some components from the literature which rely on interactive assumptions.

To evaluate efficiency, we consider the most closely related cryptographic primitive:
dynamic group signatures [4], which do not require linkability and handle tracing dif-
ferently. Our DAA signatures are shorter than Groth’s group signatures [24], which is
currently the most efficient scheme in the standard model. Moreover, our join protocol
involves fewer rounds. See the full version [5] for details.

2 Preliminaries

Notation. A bilinear group is a tupleP = (p,G1,G2,GT , e, P1, P2) where G1,G2 and
GT are groups of prime order p; P1 and P2 are generators of G1 and G2 respectively
and e : G1×G2 → GT is bilinear (i.e. e([x]Q1, [y]Q2) = e(Q1, Q2)

xy for all Q1, Q2, x
and y) and e(P1, P2) generates GT . All group operations are efficiently computable and
[x]P denotes the x-fold composition of an element P with itself. We use asymmetric
bilinear groups (which are more efficient), for which there are no known efficiently
computable homomorphisms from G1 to G2 or vice versa. We let G× := G \ {0G}.

Assumptions. Our constructions rely on the following assumptions from the literature:

SXDH. The DDH assumption holds in both groups G1 and G2.
CDH+ [7]. Given (P1, P2, [a]P1, [b]P1, [a]P2), it is hard to compute [ab]P1. This is

identical to CDH in symmetric bilinear groups.
q-SDH [8]. Given (P1, [x]P1 . . . , [x

q]P1, P2, [x]P2) for x← Z×
p , it is hard to output a

pair (c, [ 1
x+c ]P1) ∈ Zp ×G1 for an arbitrary c ∈ Zp\{−x} .

q-DDHI [2]. Given (Pi, [x]Pi, [x
2]Pi, . . . , [x

q]Pi) where x ← Z×
p it is hard to distin-

guish [ 1x ]Pi from a random element of Gi. Here i can be either 1 or 2.
q-SFP [1]. Given A,B ∈ G1, Ã, B̃, GZ , FZ , GR, FU ∈ G2, and q random tuples

(Zi, Ri, Si, Ti, Ui, Vi,Wi) each satisfying e(A, Ã) = e(Zi, GZ)e(Ri, GR)e(Ti, Si)
and e(B, B̃) = e(Zi, FZ)e(Ui, FU )e(Wi, Vi), it is hard to output a new such tuple
(Z∗, R∗, S∗, T ∗, U∗, V ∗,W ∗) with Z∗ /∈ {Zi}qi=1 ∪ {0G1}.
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DH-LRSW [22]. Given ([x]P2, [y]P2) for random (x, y) ← Z2
p and an oracle that,

on input a Diffie-Hellman pair (M1,M2) of the form ([m]P1, [m]P2) for some
m ∈ Zp, picks a random a ← Zp and outputs a DH-LRSW tuple of the form
([a]P1, [ay]P1, [ay]M1, [ax]P1 + [axy]M1), it is hard to compute a DH-LRSW tu-
ple for ([m′]P1, [m

′]P2) that was never queried to the oracle.

Groth-Sahai Proofs. Groth-Sahai (GS) proofs [26] are non-interactive proofs in the
Common Reference String (CRS) model. We will use GS proofs that are secure under
the SXDH assumption (which, as noted by [23], yields their most efficient instantiation)
and that prove knowledge of a satisfying assignment for a pairing-product equation∏

e(Aj , Yj)
∏

e(Xi, Bi)
∏∏

e(Xi, Yj)
γi,j =

∏
e(G�, H�) (1)

(the variables are underlined, all other values are constants). The language for these
proofs is of the form L := {statement | ∃witness : E(statement,witness) holds }
where E(statement, ·) is a set of pairing-product equations. The GS proof system is
formally defined by a tuple of algorithms

(GSSetup,GSProve,GSVerify,GSExtract,GSSimSetup,GSSimProve) .

GSSetup takes as input the description of a bilinear group P and outputs a binding ref-
erence string crs and an extraction key xk. GSProve takes as input crs, a set of equations
statement and a witness, and outputs a proof Ω for the satisfiability of the equations.
We write GSProveSEC(crs, {witness} : statement ∈ L), where SEC = ZK means the
proofs are zero-knowledge and WI means they are witness-indistinguishable. Given crs,
a set of equations and a proof, GSVerify and outputs 1 if the proof is valid, and else 0.

GSExtract takes as input a binding crs, the extraction key xk and a valid proof Ω,
and outputs the witness used for the proof. GSSimSetup, on input a bilinear group
P , outputs a hiding reference string crsSim and a trapdoor key tr that allows to sim-
ulate proofs. GSSimProve takes crsSim, a statement and the trapdoor tr and produces
a simulated proof ΩSim without a witness. The distributions of strings crs and crsSim

are computationally indistinguishable and simulated proofs are indistinguishable from
proofs output by GSProve. The proof system has prefect completeness, perfect sound-
ness, composable witness-indistinguishability or composable zero-knowledge. We refer
to [26] for the formal definitions.

Direct Anonymous Attestation: The pre-DAA Model. The syntax and security model
for pre-DAA were defined in [6]. A pre-DAA scheme consists of a tuple of algorithms(

Setup,GKg,UKg, 〈Join, Iss〉,GSig,GVf, IdentifyT, IdentifyS, Link
)
.

Setup, on input the security parameter 1λ, outputs public parameters param, which is
an implicit input to all other algorithms. GKg outputs (gmpk, gmsk), a public/secret key
pair for the group manager (issuer), and UKg generates a secret key sk for a user.

〈Join(ski, gmpk), Iss(gmsk, gmpk)〉 are the user- and issuer-side procedures for an in-
teractive protocol by means of which a user joins a group. The user takes a secret
key ski and the issuer’s public key gmpk as input, whereas the issuer has as input a
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key pair (gmpk, gmsk). If completed successfully, the user obtains a group signing
key gsk. We assume w.l.o.g. that gsk contains the issuer’s public key gmpk.

GSig(gski, ski,m, bsn) is the signing algorithm. It takes as input a group signing key
gski, a user secret key ski, a message m and a basename bsn and outputs a DAA
signature σ on the message m under the basename bsn.

GVf(gmpk, σ,m, bsn) is the verification algorithm. It returns 1 if the signature σ is
valid on the message m and the basename bsn w.r.t. gmpk. Otherwise, it returns 0.

IdentifyT(gmpk, T , ski) is a transcript-tracing algorithm. It is mainly used in the secu-
rity model although it could be used to trace dishonest users who reveal their secret
key. This algorithm takes as input gmpk, a transcript T of a join/issue protocol ex-
ecution and a secret key ski. It returns 1 if this transcript could have been produced
by an honest user with secret key ski, and 0 otherwise.

IdentifyS(gmpk, σ,m, bsn, ski) is a signature-tracing algorithm. Like IdentifyT, its use
is in the security model and possibly to trace dishonest users. On inputs gmpk, a
signature σ, a message m, a basename bsn and a secret key ski, it returns 1 iff σ
could have been produced by an honest user with the secret key ski.

Link(gmpk,m0, σ0,m1, σ1, bsn) is the linking algorithm. Its inputs are gmpk, two mes-
sages and signatures m0,m1, σ0, σ1 and a basename bsn. It returns 1 iff both sig-
natures were produced by the same user on their respective messages and under the
non-empty basename bsn.

Security Definitions of pre-DAA. Here we provide an informal description of the dif-
ferent security requirements. The formal definitions can be found in [6].

Correctness: This demands that signatures produced by honest users are accepted by
the verifier, and that the user who produced a valid signature can be traced. More-
over, two signatures by the same user on the same non-empty basename link.

Anonymity: An adversary, who may control the group issuer, cannot distinguish which
of two users of his choice signed a message as long as he cannot trivially decide
this using the linking property.

Traceability: No group of users can create an untraceable signature as long as the is-
suer is honest. (A dishonest issuer could always join untraceable users to his group.)
There are two notions of traceability which deal with untraceable signatures and
signatures that do not link although they should. Since unlike in group signatures,
users do not have public keys corresponding to their secret keys, the group-join
transcript is used to identify the user.

Non-frameability: No adversary, who may even control the group issuer, can frame
an honest user by claiming that this user signed a message he did not sign. There
are again two notions: framing a user by creating a signature that traces to his key,
or one that links to a previous signature created by that user.

3 Efficient Signatures of Knowledge without Random Oracles

Let L be an NP language, defined by a polynomial-time computable relation R as
L = {x | ∃w : (x,w) ∈ R}. We call x a statement in L and w a witness for x
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if (x,w) ∈ R. A signature of knowledge (SoK) for L consists of the following three
algorithms: SoKSetup takes a security parameter 1λ and outputs parameters par. If
(x,w) ∈ R then SoKSign(par, R, x, w,m) outputs a signature σ on the message m
w.r.t. statement x. The signature is verified by SoKVerify(par, R, x,m, σ) outputting
0 or 1. Signatures produced by SoKSign on inputs par output by SoKSetup, and any
(R, x,w,m) such that (x,w) ∈ R should be accepted by SoKVerify. The (game-based)
security definition for SoK, called SimExt security [14] requires the following:

Simulatability: There exists a simulator which can simulate signatures without hav-
ing a witness for the statement. It consists of SoKSimSetup and SoKSimSign: the
former outputs parameters together with a trapdoor tr and the latter outputs signa-
tures on input (par, tr, R, x,m). It is required that no adversary can distinguish the
following two situations: (1) It is given par output by SoKSetup and access to a
SoKSign oracle. (2) It is given par output by SoKSimSetup and an oracle SoKSim
that on input (R, x,w,m) outputs SoKSimSign(par, tr, R, x,m) if (x,w) ∈ R.

Extraction: There exists an algorithm SoKExtract such that if an adversary, given
par← SoKSimSetup and an oracle SoKSim as above, outputs a tuple (R, x,m, σ),
we have: if SoKVerify(par, R, x,m, σ) = 1 and (R, x,w′,m), for any w′, was
never queried to the SoKSim oracle then SoKExtract extracts a witness for x from
σ with overwhelming probability.

Chase and Lysyanskaya [14] offer a generic construction satisfying SimExt security,
but it is inefficient due to the use of general Non-Interactive Zero-Knowledge (NIZK)
proofs. Our construction is based on Groth-Sahai proofs [26] which are efficient NIZK
proofs that do not rely on random oracles but only apply to a restricted language. Our
SoKs are thus for the same language, namely satisfiability of sets of Pairing-Product
Equations (PPE).

If we generate a binding CRS using GSSetup, we can use GSExtract to extract a
witness from a valid proof. However, in order to simulate GS proofs, we need to set
up the CRS via GSSimSetup. In this case proofs become information-theoretically in-
dependent of their witnesses, thus we cannot extract anymore. In order to realize sim-
ulatability and extractability simultaneously, we revert to a well-known trick that was
employed by Groth in the context of PPEs [25]. Our SoK parameters are a binding CRS
and a signature-verification key and a SoK is a proof of the following statement: one
either knows a witness for the original statement or knows a signature on the original
statement and the message to be signed, under the key contained in the parameters.

To simulate SoKs, we can now use the corresponding key to sign the statement and
the message, and use this signature as a witness for the modified statement. Witness
indistinguishability of GS proofs guarantees that simulated SoKs are indistinguishable
from SoKs that use the witness of the original statement. Extractability follows since
from any SoK we can extract a witness for the modified statement. This witness must be
for the original statement, as a signature on a statement/message pair which was never
signed by the SoKSim oracle would be a forgery.

Choosing the Signature Scheme. As we need to prove knowledge of a signature, we
require a scheme whose signatures consist of group elements and whose validity is
verified by evaluating PPEs. An ideal candidate would be the signatures by Waters
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[33], which are secure under the Computational Diffie-Hellman (CDH) assumption,
which is implied by the assumptions required for GS proofs. (Their main drawback is
a long public key, which will result in long parameters for our SoK.) Waters signatures
are defined over symmetric bilinear groups (where G1 = G2). Using the Groth-Sahai
instantiation over these groups, our construction yields SoKs for the same statements
and under the same assumption as GS proofs. To allow for a more general class of
statements, we use the following generalization of Waters signatures to asymmetric
groups from [7]:

Parameter Generation. Given a bilinear group P , to sign messages of the form m =
(m1, . . . ,mN ) ∈ {0, 1}N , choose (Q,U0, . . . , UN)← GN+2

1 .

Key Generation. Choose a secret key sk← Zp and set vk := [sk]P2.

Signing. To sign (m1, . . . ,mN ) using key sk, choose a random r ← Zp and output(
W1 := [sk]Q+ [r](U0 +

∑N
i=1[mi]Ui), W2 := [−r]P1, W3 := [−r]P2

)
.

Verification. Check whether e(W1, P2) e(U0 +
∑N

i=1[mi]Ui,W3) = e(Q, vk) and
e(W2, P2) = e(P1,W3).

This scheme is unforgeable under chosen-message attack under the CDH+ assump-
tion. In order to sign arbitrary messages, we assume a collision-resistant hash function
H : {0, 1}∗ → {0, 1}N (for a suitable N ).

Disjunctions of Pairing-Product Equations. Groth [25] shows how to express dis-
junctions of two sets of PPEs as a new set of PPEs. The idea is the following: introduce
a “selector equation” of the form e(P1, S + T − P2) = 1, which can only be satisfied
if either S or T are different from 0. Setting one of them to 0 will enable us to simulate
one clause of the disjunction. To do so, for every variable Groth introduces an auxiliary
variable and adds an equation.

We choose a more efficient approach inspired by that from [26]. In order to simulate
equations of the form (1), it suffices to replace the constants G� by auxiliary variables
G′

�, as then, setting all variables to 0 is a satisfying assignment for (1). Now it only
remains to ensure that a signer without the trapdoor is forced to set G′

� to G�, which is
done by adding equations e(G� −G′

�, S) = 1, where S can only be set to 0 when the
prover knows a signature under the public key from the CRS.

With this intuition in mind we now define our signature of knowledge of a satisfying
assignment for a set of pairing-product equations. Regarding the Chase-Lysyanskaya
definition, we have fixed the relation R to be the set of all pairs

(
(Ek)

K
k=1, ((Xi)

m
i=1,

(Yj)
n
j=1)

)
such that ((Xi), (Yj)) ∈ Gm

1 ×Gn
2 satisfy Ek for all 1 ≤ k ≤ K .

3.1 A Construction of Signatures of Knowledge without Random Oracles

Setup. On input P , run (crs, xk) ← GSSetup(P) and choose parameters (Q,U0, . . . ,
UN )← GN+2

1 and a key pair for Waters signatures: choose t← Zp and set T := [t]P2.
SoKSetup outputs par := (crs, (Q,U0, . . . , UN , T )), whereas SoKSimSetup addition-
ally outputs (xk, t) as an extraction/simulation trapdoor.
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Signing. Let E := (Ek)
K
k=1 be the set of equations representing the statement w.r.t.

which we sign, where Ek is

n∏
j=1

e(Ak,j , Yj)

m∏
i=1

e(Xi, Bk,i)

m∏
i=1

n∏
j=1

e(Xi, Yj)
γk,i,j =

Mk∏
�=1

e(Gk,�, Hk,�) , (Ek)

and let ((Xi)
m
i=1, (Yj)

n
j=1) be a witness for E. We define a new set of equations E′:

(i) Modified equations. For all 1 ≤ k ≤ K:∏
e(Ak,j , Yj)

∏
e(Xi, Bk,i)

∏
e(G′

k,�,−Hk,�)
∏∏

e(Xi, Yj)
γk,i,j = 1 .

(ii) Selector equations. For all 1 ≤ k ≤ K , 1 ≤ � ≤Mk: e(Gk,�−G′
k,�, T −T ′) = 1.

(iii) Signature-verification equations.

e(W1, P2) e(U0 +
∑N

i=1[hi]Ui,W3) = e(Q, T ′) e(W2, P2) = e(P1,W3)

To sign a message m ∈ {0, 1}∗ under par := (crs, (Q,U0, . . . , UN , T )) for the state-
ment E using witness ((Xi), (Yj)) proceed as follows:

• Set T ′ = W1 = W2 = W3 := 0 and G′
k,� := Gk,�, for all k and �.

• Compute h = (h1, . . . , hN) := H(E‖m) ∈ {0, 1}N , where E is an encoding of
the original equations.

• The SoK is a GS proofΣ of satisfiability of the set of equationsE′, using as witness

(T ′,W1,W2,W3, X1, . . . , Xm, Y1, . . . , Yn, G
′
1,1, . . . , G

′
K,MK

) . (2)

Verification. Under par := (crs, (Q,U0, . . . , UN , T )), to verify a SoK Σ on m for
the statement E, verify that under crs the GS proof Σ is valid on the statement E′ for
the values Ak,j , Bk,i, Gk,�, Hk,� and γk,i,j from the description of E, values T and
(Q,U0, . . . , UN ) from par and h defined asH(E‖m).

Theorem 1. The above is a signature-of-knowledge scheme satisfying SimExt security
for the language of sets of pairing-product equations.

Proof sketch. To simulate a signature without knowing a witness, one uses the trapdoor
t to make a signature (W1,W2,W3) on (h1, . . . , hN ) := H(E‖m), and sets T ′ := T
and all remaining witnesses components Xi = Yj = G′

k,� := 0, which satisfies E′.
Simulatability then follows from witness indistinguishability of GS proofs.

For “Extraction”, consider an adversary that has never queried a signature for a pair
(E,m), but outputs a SoK Σ for it. By soundness of GS proofs, we can extract from
Σ a witness for E′ of the form (2). We must have T ′ �= T , as otherwise (W1,W2,W3)
would be a forgery on (E‖m) (which was never queried to the simulator) by equations
(iii) of E′. Together with equations (ii) of E′, T ′ �= T implies that G′

k,� = Gk,� for all
k, �, and therefore, by (i), ((Xi), (Yj)) is a witness for the original equation E. We have
thus extracted a witness for E. �
To reduce the parameter length, but relying on stronger (“q-type”) assumptions, we
could replace Waters signatures with any of the structure-preserving schemes from [1].
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4 New Building Blocks

4.1 Randomizable Weakly Blind Signatures

Bernhard et al. [6] introduce Randomizable Weakly Blind Signatures (RwBS) as one
of the building blocks for DAA. These are similar to blind signatures [15,31] except
that blindness must hold only against adversaries that never get to see the message they
signed, that is, a signature should not be linkable to its issuing session.

Randomizability means that given a signature, anyone can produce a fresh signature
on the same message. We construct two RwBS that do not rely on random oracles. The
syntax and security definitions for RwBS can be found in [6,5].

Partially Randomizable Weakly Blind Signatures. To work with our SoKs, we re-
quire our scheme to be structure-preserving: the signatures and the messages it signs
must be group elements and the verification equations must be pairing-product equa-
tions. For our first construction we use a standard-model signature scheme based on
non-interactive assumptions by Abe et al. [1], which we call AHO after its authors. Its
security relies on the q-SFP assumption (see Sect. 2). Abe et al. show that six of the
seven group elements which constitute an AHO signature can be randomized. (We are
not aware of a fully randomizable structure-preserving scheme based on non-interactive
assumptions.)

This randomizability is useful, since we show that if the signer is given parts of
a (partial) randomization of a signature he issued earlier, they are independent of the
original signature. When used as a certificate for DAA, we thus only need to hide part of
the certificate in a DAA signature to guarantee anonymity. We therefore further relax the
notion of weak blindness from [6] to partial weak blindness defined w.r.t. a projection
function π. In the security game a signer blindly signs a message chosen by the game.
He is then either given the projection of a (partial) randomization of his signature or of
a signature on another message and should not be able to distinguish the two cases. The
details of this notion and our construction can be found in the full version [5].

Fully Randomizable Weakly Blind Signatures. In order to provide a more efficient
DAA scheme, we construct a RwBS satisfying the original definition of [6]. Our con-
struction uses a fully randomizable signature scheme by Ghadafi [22] called NCL,
which is a structure-preserving variant of CL-signatures [12] based on a variant of the
LRSW assumption [29] (see Sect. 2).

Messages of NCL are of the form ([m]P1, [m]P2) ∈ G1×G2 for some m ∈ Zp. The
secret and verification keys are of the form (x, y) ∈ Z2

p and ([x]P2, [y]P2), respectively.
A message (M1,M2) is signed by choosing a random a← Z×

p and outputting(
A := [a]P1, B := [y]A,C := [ay]M1, D := [x](A+ C)

)
.

The verification equations are A �= 0, e(B,P2) = e(A, Y ), e(C,P2) = e(B,M2),
e(D,P2) = e(A,X) e(C,X) and e(M1, P2) = e(P1,M2). A signature is randomized
by choosing a′ ← Z×

p and setting A′ := [a′]A, B′ := [a′]B, C′ := [a′]C, D′ := [a′]D.
We observe that to compute a signature on a message (M1,M2), only M1 is re-

quired, whereas verification of the signature could be done using M2 only. A first idea
to construct a weakly blind signature from NCL is to define BSRequest as only sending
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Experiment: Expw-f -IND
LIT,A (λ)

• b ← {0, 1}; par ← GlobalSetup(1λ).
• sk0, sk1 ← LITKeyGen(par).
• (m1, . . . ,mq,m

∗, St) ← A1(1
λ).

• For i = 1 to q do
◦ If mi = m∗ then τi := ⊥
◦ Else τi ← LITTag(sk0,mi).

• τ∗ := LITTag(skb,m
∗).

• b∗ ← A2(St, par, f(sk0), τ1, . . . , τq, τ
∗).

• Return 1 if b∗ = b, else 0.

Experiment: Expw-LINK
LIT,A (λ)

• (sk0,m0, sk1,m1, τ) ← A(par).
• Return 1 if and only if :

◦ LITTag(sk0,m0) = τ .
◦ LITTag(sk1,m1) = τ .
◦ Either (sk0 = sk1 and m0 	= m1)

or (sk0 	= sk1 and m0 = m1).

Fig. 1. Security games for indistinguishability (left) and linkability (right) of LIT.

M1. However, in the security proof of weak blindness, the simulator (playing the user)
will not have M2 (otherwise it could break the notion itself) and can therefore not verify
the correctness of the adversary’s signature. We therefore require the signer to provide
a NIZK proof of correctness of the signature.

Moreover, in the reduction of blind-signature unforgeability to unforgeability of
NCL, the simulator (playing the signer) needs the full message (M1,M2) to query its
signing oracle. Therefore, when requesting a signature, the user must provide a NIZK
proof of knowledge of M2. These NIZK proofs use different CRSs (as the reductions
exploit different properties) and are efficiently implemented using Groth-Sahai proofs.

We refer to the full version [5] for the details of our scheme and a security proof.

4.2 Linkable Indistinguishable Tags

The second building block introduced to construct DAA schemes generically in [6]
is a Linkable Indistinguishable Tag (LIT). These tags are similar to MACs, but have
stronger security requirements. LIT schemes are defined w.r.t. a one-way function PK()
such that a tag created with a secret key sk can be verified given PK(sk) rather than sk.
Thus, PK(sk) can be viewed as a public key for the tag. A LIT scheme is defined by the
following algorithms. W.l.o.g. we assume that there is an algorithm GlobalSetup which
generates global parameters par (such as a bilinear group), which all algorithms take as
an (implicit) input.

LITKeyGen(par) takes global parameters par and outputs a secret key sk.

LITTag(sk,m) is deterministic, takes as input a secret key sk and a message m, and
outputs a tag τ .

LITVerify(PK(sk),m, τ) is given the image of sk under PK, a message m and a tag τ
and checks whether τ is a valid tag on the message m w.r.t. sk, outputting 1 or 0.

Security. Besides correctness, [6] defines the notions linkability and indistinguisha-
bility, of which we only require relaxations. A LIT is weakly linkable if the follow-
ing holds: if two tags are identical then they are either w.r.t. the same key and the
same message, or both keys and both messages are different. In particular, two tags
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LITKeyGen(P)

Return sk ← Zp.

LITTag(sk,m)

If m = −sk then return ⊥.

Return τ := [ 1
sk+m ]P1.

LITVerify(PK(sk),m, τ)

If e(τ, PK(sk) + [m]P2) = e(P1, P2)

then return 1, else return 0.

Fig. 2. The WBB-based Linkable Indistinguishable Tag (WBB-LIT).

under different keys on the same message (or under the same key on different mes-
sages) must be different. Weak linkability was used implicitly in [6]. We formalize
it by experiment Expw-LINK

LIT,A (λ) in Fig. 1 and say a LIT scheme is weakly linkable if

Advw-LINK
LIT,A (λ) := Pr[Expw-LINK

LIT,A (λ) = 1] is negligible in λ for any PPT adversaryA.
The LIT f -indistinguishability is defined w.r.t. a one-way function f and states that

no adversary, having access to a LITTag(sk, ·) oracle, can distinguish a tag on a mes-
sage of his choice (for which he did not query the oracle) from a tag produced under a
different random key. This should hold even if the adversary is given the image f(sk)
of the secret key in question. We weaken this property by requiring that the adversary
submit all the oracle queries and announce the message to be challenged on before see-
ing the parameters and the image of the secret key. This is formalized by Expw-f -IND

LIT,A (λ)

in Fig. 1 and we say a LIT scheme is weakly f -indistinguishable if Advw-f -IND
LIT,A (λ) :=∣∣2 · Pr[Expw-f -IND

LIT,A (λ) = 1]− 1
∣∣ is negligible in λ for any PPT adversaryA.

Small Message Spaces. If the size of the message space is polynomial in the security
parameter then f -indistinguishability from [6] is implied by its weak version: assuming
an adversaryA breaking the standard notion, we can construct an adversaryB breaking
the weak notion as follows: Let {m1, . . . ,m�} be the message space, with � = poly(λ).
Then B randomly picks i ← {1, . . . , �} and outputs its queries and the challenge as
(m1, . . . ,mi−1,mi+1, . . . ,m�,m

∗ := mi). With non-negligible probabilityAwill ask
to be challenged on mi, in which case B can simulate all Tag queries and useA to break
weak f -indistinguishability.

A Weak LIT in the Standard Model. The weak Boneh-Boyen signature scheme [8]
was used in [21,2] to construct verifiable random functions [30] for small message
spaces under two variants of the DDHI assumption. The proof of pseudorandomness
uses a technique similar to that for the unforgeability of weak Boneh-Boyen signatures
in [8]: if the queried messages m1, . . . ,mn and the challenge m∗ (whose VRF value is
to be distinguished from random) are known in advance then given a DDHI instance,
we can set up the VRF parameters and the public key so that we can (1) construct the
VRF values on m1, . . . ,mn and (2) use the DDHI challenge to construct a challenge
for m∗. Using the proof strategy for small message spaces discussed above, this suffices
to prove pseudorandomness. We define our LIT as the VRF from [2] and use the first
part of their proof of pseudorandomness of VRFs to prove weak f -indistinguishability
w.r.t. f(sk) := [sk]P1.

Theorem 2. The WBB-LIT in Fig. 2 is a LIT for PK(sk) := [sk]P2. It is weakly link-
able and satisfies weak f -indistinguishability for f(sk) := [sk]P1 if the DDHI assump-
tion holds in group G1.
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Since it is impossible to have τ = LITTag(sk0,m0) = LITTag(sk1,m1) with (sk0 =
sk1 and m0 �= m1) or (sk0 �= sk1 and m0 = m1), weak linkability holds uncondi-
tionally. Weak f -indistinguishability is proved analogously to the pseudorandomness
property of the VRF under the q-DDHI assumption (see [21, Theorem 2]).

LIT vs. VRF. To construct a LIT which is fully indistinguishable and supports large
domains, a natural approach would be to consider large-domain VRFs. There have
been several such schemes in the recent literature, e.g. [9,2,27]. Unfortunately, all of
the aforementioned schemes violate the weak linkability requirement for LITs, as it is
easy to find sk0 �= sk1 and m such that LITTag(sk0,m) = LITTag(sk1,m). While
in the random-oracle model LITs are easy to construct, it is not clear how to construct
fully indistinguishable LITs for large basename spaces without resorting to interactive
assumptions. VRFs are already hard to construct, but due to the subtle linkability re-
quirement, LITs seem even harder.

5 A Generic Construction of pre-DAA in the Standard Model

Our first construction of pre-DAA uses AHO signatures as partially weakly blind sig-
natures, the VRF from [2] given in Fig. 2 as a LIT and Waters signatures [33] implicitly
for the signatures of knowledge, which are themselves Groth-Sahai proofs [26].

The setup algorithm outputs a bilinear group and parameters for the SoK. The issuer
generates an AHO signature key pair as (gmsk, gmpk). To join a group, a user creates
a LIT key sk and sends F1 := [sk]P1 to the issuer, who replies with an AHO signature
cred onF1. To make a DAA signature on a messagem under a basename bsn, a user first
(partially) randomizes his AHO signature cred and then splits it into a public part credP
and a part credH which he will include in the witness for the SoK. Next, he creates a
LIT tag τ := LITTag(sk, bsn) on the basename using his key. He then computes a
signature of knowledge Σ on the message bsn‖m proving knowledge of a LIT key sk
and the hidden part of an AHO signature credH such that the tag and the AHO signature
both verify w.r.t. this key. The DAA signature is σ := (credP , τ, Σ).

We formalize the above. The language of the SoK needs to be a pairing-product
equation as in (1) with witnesses in G1 and G2. Rather than proving knowledge of
sk, the witness will be F1 := [sk]P1 and F2 := [sk]P2. The AHO signature is on F1

rather than sk so F1 is also sufficient to verify it. The signature is split into a public part
credP := (S, T, V,W ) and a hidden part credH = (Z,R,U) (see the full version [5] for
the details). We let BSVerify′(gmpk, F1, (credH , credP )) denote the AHO verification
algorithm of a split signature on F1.

The value F2 is the public key for the LIT from Sect. 4.2, so τ can be verified using
LITVerify(F2, bsn, τ). It remains to prove that (F1, F2) is a Diffie-Hellman pair, that is,
of the form ([sk]P1, [sk]P2). The language of the SoK is thus

L :
{(

(gmpk, credP , bsn, τ), (F1, F2, credH)
)
: e(−P1, F2) e(F1, P2) = 1

∧ BSVerify′(gmpk, F1, (credH , credP )) = 1 ∧ LITVerify(F2, bsn, τ) = 1
}

.

If bsn = ⊥ then the DAA signature is (credP , Σ), where Σ is a SoK for the language
L′ :

{
((gmpk, credP ), (F1, credH)) : BSVerify′(gmpk, F1, (credH , credP )) = 1

}
.
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To verify a DAA signature, one verifies the SoK. To link two signatures under the
same basename, one compares the contained tags τ and returns 1 if they are equal; to
identify a transcript given sk, one checks if the first message by the user is the value
[sk]P1; and to identify a signature, one checks the LIT tag τ using sk and bsn. Our
construction follows closely the blueprint from [6] (except for proving knowledge of a
function of sk and hiding parts of the certificate) and is proven analogously.

6 A More Efficient pre-DAA Scheme in the Standard Model

To construct a truly efficient pre-DAA scheme, we replace the partially randomiz-
able AHO-based partially weak blind signatures by the fully randomizable NCL-based
RwBS; this avoids having to include parts of the certificate in the SoK. In addition, we
replace the SoKs by more efficient Proofs of Knowledge (PoK).

The main obstacle in doing so is that the user secret key sk is used both for the
tag on bsn and (implicitly in the SoK) for the signature on the message m. Suppose
we replaced the SoK of sk by a regular Groth-Sahai proof of knowledge of sk and of
a signature on m. Non-frameability corresponds to a forgery of a signature on m, to
which the notion must be reduced. In the reduction we thus have to extract a signature
from the PoK, and therefore cannot simulate proofs, as GS proofs only allow extraction
or simulation (while SimExt security of SoKs allows both at the same time.) However,
if we do not simulate the PoK then when answering DAA-signing queries, we need to
provide actual tags—for which we do not have the user’s secret key.

We overcome this by using a novel approach: we use a signature scheme which in
the reduction allows us to simulate tags under the same secret key and a tag scheme
which allows us to simulate signatures. We do so by choosing the schemes in a way that
tags of one scheme and signatures of the other scheme have the same form—although
the security requirements are different, and they are based on different assumptions.
In particular, note that the values of the VRF from [2] are essentially “weak” Boneh-
Boyen signatures [8]. (These signatures are only secure against adversaries which make
all signing queries before seeing the public key.) Weak signatures can easily be turned
into standard signatures using a hybrid construction, where one signs a verification
key of a one-time signature and uses the corresponding secret key to sign the actual
message. Unlike for the message space of the LIT (i.e. the basename space), there is no
restriction on the message spaces of the signature schemes (and thus the message space
of our DAA is big enough to sign messages of arbitrary length by hashing them first).

We separate the domains for the messages of the weak signatures and the messages
of the tags by prepending a bit to the messages. In the reduction of non-frameability
to weak signature unforgeability we can then use our (weak) signing oracle to obtain
signatures and simulate the tags: The basename space is polynomial in size and the ver-
ification keys of the one-time signatures can be produced beforehand; we can therefore
make our signature queries on all basenames and on the one-time keys beforehand.

Then, in the proof of anonymity we use the trick the other way round and simulate
signatures using the tag oracle. In the reduction to weak f -indistinguishability of the
tags, we can again make all tag queries (on basenames and one-time verification keys)
upfront. Another advantage of this approach is that, since weak signatures have the form
of LITs, they are unlinkable to the key that produced them, which means that we can
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Setup(1λ)

• (P, crs1, crs2) ← BSSetup(1λ).
• Return param := (P, crs1, crs2).

GKg(param)

• (gmpk, gmsk) ← BSKeyGen(param).
• Return (gmpk, gmsk).

UKg(param)

• ski ← LITKeyGen(P).
• Return ski.

〈Join, Iss〉
• Run (BSRequest,BSIssue) for message

(f1(ski), f2(ski)) ∈ MBS .
• User has input ((f1(ski), f2(ski)), gmpk).
• Issuer has input gmsk.
• User’s output is gski = cred.

GSig(gski, ski,m, bsn)

• cred ← BSRandomize(gski).
• (vkots, skots) ← OTSKeyGen(1λ).
• σw ← BBSign(ski, 1||vkots).
• If bsn 	=⊥

◦ τ ← LITTag(ski, 0||bsn).
◦ ϕ := (gmpk, cred, bsn, τ, vkots, σw) .
◦ Σ ← GSProve

(
crs1, {(f1(ski),
f2(ski))} : ϕ ∈ L

)
.

• Else
◦ τ := ∅; ϕ := (gmpk, cred, vkots, σw).
◦ Σ ← GSProve

(
crs1, {(f1(ski),
f2(ski))} : ϕ ∈ L′).

• σots ← OTSSign(skots, (m, τ, bsn)).
• σ := (cred, τ, σw , vkots, Σ, σots).

GVf(gmpk,m, bsn, σ)

• Parse σ as (cred, τ, σw, vkots, Σ, σots).
• If OTSVerify(vkots, (m, τ, bsn), σots) = 0, return 0.
• If bsn 	=⊥ then

◦ ϕ := (gmpk, cred, bsn, τ, vkots, σw).
◦ Return GSVerify

(
crs1, ϕ ∈ L, Σ

)
.

• If τ = ∅ then
◦ ϕ := (gmpk, cred, vkots, σw).
◦ Return GSVerify

(
crs1, ϕ ∈ L′, Σ

)
.

• Return 0.

IdentifyT(gmpk, ski, T )

• If T is a valid transcript then check if the user message

in Join0=BSRequest0 is (f1(ski), Ω), for some Ω.
• If so return 1, otherwise return 0.

IdentifyS(gmpk, ski,m, bsn, σ)

• Parse σ as (cred, τ, σw, vkots, Σ, σots).
• If BSVerify(gmpk, (f1(ski), f2(ski)), cred) = 0

then return 0.
• If OTSVerify(vkots, (m, τ, bsn), σots) = 0

then return 0.
• Return 1 iff one of the following hold

◦ bsn = ⊥, τ = ∅ and

BBVerify(f2(ski), 1||vkots, σw) = 1.
◦ bsn 	= ⊥, LITVerify(f2(ski), 0||bsn, τ) = 1

and BBVerify(f2(ski), 1||vkots, σw) = 1.

Link(gmpk, σ0,m0, σ1,m1, bsn)

• If bsn =⊥ return 0.
• For b = 0, 1:

If GVf(gmpk,mb, bsn, σb) = 0, return ⊥.

Parse σb as (credb, τb, σwb
, vkotsb , Σb, σotsb

).
• Return 1 if and only if τ0 = τ1.

Fig. 3. An efficient pre-DAA scheme construction in the standard model

even include the weak signatures in the clear in the DAA; we thus only need to prove
knowledge of the secret key.

Our construction is shown in Fig. 3 and uses the LIT scheme from Fig. 2 and the
NCL-based RwBS described in Sect. 4.1. As in the generic scheme, the user group
signing key gsk is a credential (i.e. a blind signature) obtained from the issuer when
joining the group. To make a DAA signature, the user randomizes gsk to cred, chooses
a one-time signature key pair (skots, vkots) and uses his secret key sk to generate a LIT
tag τ on 0‖bsn (if bsn =⊥ then τ := ∅), and a weak signature σw on 1‖vkots. The
user then produces a GS PoK Σ of (f1(sk) := [sk]P1, f2(sk) := [sk]P2) showing well-
formedness, that cred is valid on it and that τ and σw both verify under f2(sk).

The DAA signature is defined as σ := (cred, τ, σw, vkots, Σ, σots), where σots is
a one-time signature produced with skots on the tuple (m, τ, bsn). Note that the one-
time signature also only needs to be weakly unforgeable, as the message (m, τ, bsn) is
known before vkots is chosen. The languages for the GS proofs are defined as follows,
where L′ is used when bsn = ⊥ and L otherwise.
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L :
{(

(gmpk, cred, bsn, τ, vkots, σw), (F1, F2)
)
: e(−P1, F2)e(F1, P2) = 1

∧ BSVerify(gmpk, (F1, F2), cred) = 1 ∧ LITVerify(F2, 0||bsn, τ) = 1

∧ BBVerify(F2, 1||vkots, σw) = 1
}

L′ :
{(

(gmpk, cred, vkots, σw), (F1, F2)
)
: e(−P1, F2)e(F1, P2) = 1

∧ BSVerify(gmpk, (F1, F2), cred) = 1 ∧ BBVerify(F2, 1||vkots, σw) = 1
}

A detailed analysis of the efficiency of the construction can be found in the full version
[5], where we also give a proof of the following.

Theorem 3. If the NCL-based RwBS scheme is unforgeable and weakly blind, the LIT
scheme is weakly linkable and weakly f -indistinguishable, the Groth-Sahai proof sys-
tem is sound and zero-knowledge, and the one-time signature scheme is weakly unforge-
able then the construction in Fig. 3 is a secure pre-DAA scheme.
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Abstract. In 2011, Lindell proposed an efficient commitment scheme,
with a non-interactive opening algorithm, in the Universal Composability
(UC) framework. He recently acknowledged a bug in its security analysis
for the adaptive case. We analyze the proof of the original paper and
propose a simple patch of the scheme. More interestingly, we then mod-
ify it and present a more efficient commitment scheme secure in the UC
framework, with the same level of security as Lindell’s protocol: adap-
tive corruptions, with erasures. The security is proven in the standard
model (with a Common Reference String) under the classical Decisional
Diffie-Hellman assumption. Our proposal is the most efficient UC-secure
commitment proposed to date (in terms of computational workload and
communication complexity).

1 Introduction

Related Work. The Universal Composability (UC) framework introduced by
Canetti [5] is a popular security paradigm. It guarantees that a protocol proven
secure in this framework remains secure even if it is run concurrently with arbi-
trary —even insecure— protocols (whereas classical definitions only guarantee
its security in the stand-alone setting). The UC framework enables one to split
the design of a complex protocol into that of simpler sub-protocols.

Commitment schemes are one of the most important tools in cryptographic
protocols. This is a two-phase protocol between two parties, a committer and
a receiver. In the first commit phase, the committer gives the receiver an in
silico analogue of a sealed envelope containing a value m. In the second opening
phase, the committer reveals m in such a way that the receiver can verify it. As
in the sealed envelope analogy, it is required that a committer cannot change the
committed value (i.e., he should not be able to open to a value different from
the one he committed to), this is called the binding property. It is also required
that the receiver cannot learn anything about m before the opening phase, this
is simply called the hiding property.

The security definition for commitment schemes in the UC framework was pre-
sented by Canetti and Fischlin [7]. A UC-secure commitment scheme achieves
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the binding and hiding properties under any concurrent composition with ar-
bitrary protocols and it was shown, in [7], that it cannot be securely realized
without additional assumptions. The common reference string (CRS) setting is
the most widely used assumption when considering commitment schemes. In this
setting, all parties have access to public information ideally drawn from some
predefined distribution.

From a theoretical viewpoint, UC-secure commitments are an essential build-
ing block to construct more complex UC-secure protocols such as zero-knowledge
protocols [11] and two-party or multi-party computations [9]. Moreover, a UC-
secure commitment scheme provides equivocability (i.e., an algorithm that knows
a secret related to the CRS can generate commitments that can be opened cor-
rectly to any value) and extractability (i.e., another algorithm that knows a secret
related to the CRS can correctly extract the content of any valid commitment
generated by anybody). Therefore, since their introduction, UC-secure commit-
ments have found numerous practical applications in the area of Authenticated
Key Exchange, either in Password Authenticated Key Exchange like [1,8,13], or
the recent generalization to Language Authenticated Key Exchange [2].

Several UC-secure commitment schemes in the CRS model have been pro-
posed. Canetti and Fischlin [7] and Canetti, Lindell, Ostrovsky, and Sahai [9] pro-
posed inefficient non-interactive schemes from general primitives. On the other
hand, Damg̊ard and Nielsen [11], and Camenish and Shoup [4] (among others)
presented interactive constructions from several number-theoretic assumptions.

Lindell [15] has recently presented the first very efficient commitment schemes
proven in the UC framework. They can be viewed as combinations of Cramer-
Shoup encryption schemes and Σ-protocols. He presented two versions, one
proven against static adversaries (static corruptions), while the other can also
handle adaptive corruptions. These two schemes have commitment lengths of
only 4 and 6 group elements respectively, while their total communication com-
plexity amount to 14 and 19 group elements respectively. Their security relies
on the classical Decisional Diffie-Hellman assumption in standard cryptographic
groups. Fischlin, Libert and Manulis [12] shortly after adapted the scheme se-
cure against static corruptions by removing the interaction in the Σ-protocol
using non-interactive Groth-Sahai proofs [14]. This transformation also makes
the scheme secure against adaptive corruptions but at the cost of relying on the
Decisional Linear assumption in symmetric bilinear groups. It thus requires the
use of computationally expensive pairing computations for the receiver and can
only be implemented over groups twice1 as large (rather than the ones that do
not admit pairing computations).

Contributions of the Paper. Recently, Lindell edited the ePrint version of
his paper [16], to signal a bug in the original proof of the protocol design for
adaptive corruptions. While there is no known detail on this bug, we detail on
this paper a possible inconsistency on the binding property of the scheme. In

1 It may be possible to adapt the scheme from [12] to asymmetric bilinear groups using
the instantiation of Groth-Sahai proofs based on the Strong eXternal Diffie-Hellman
assumption but our scheme will nevertheless remain more efficient.
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order to avoid the above concern, we propose a simple patch to Lindell’s scheme
making it secure against adaptive corruptions.

However, our main contribution is on improving both Lindell’s commitment
schemes [15]. As mentioned above, the committer encrypts the value m (en-
coded as a group element) using the Cramer-Shoup encryption scheme [10]. In
the opening phase, he simply reveals the value m and uses a Σ protocol to
give an interactive proof that the message is indeed the one encrypted in the
ciphertext. In Lindell’s schemes, the challenge in the Σ protocol is sent to the
committer using a “dual encryption scheme”. Our improvement consists in not-
ing that the receiver can in fact send this challenge directly without having to
send it encrypted before. With additional modifications of the schemes, we can
present two new protocols secure under the DDH assumption in the UC frame-
work, against static and adaptive corruptions. Both schemes require a smaller
bandwidth and less interactions than the original schemes:

– Static corruptions: the scheme requires the communication of 9 group el-
ements and 3 scalars, where Lindell’s original proposal requires 10 group
elements and 4 scalars. The commit phase is non-interactive and the open-
ing phase needs 3 rounds (instead of 5 in Lindell’s scheme).

– Active corruptions: the scheme requires the communication of 10 group el-
ements and 4 scalars, where Lindell’s original proposal requires 12 group
elements and 6 scalars. The commitment phase needs 3 rounds (instead of 5
in Lindell’s scheme) and the opening phase is non-interactive.

Implemented on suitable elliptic curves over 256-bit finite fields, our schemes
provide a 128-bit security level with a communication complexity reduced to
only 3072 and 3584 bits respectively (see Table 1 for a detailed comparison).
The computational workload of the new schemes has also slightly decreased
compared to Lindell’s original proposal and is significantly better than Fischlin
et al.’s scheme from [12] since the new schemes do not require any expensive
pairing computation and can be implemented in much smaller groups.

Table 1. Efficiency comparison of UC-secure commitment schemes (128-bit security)

Scheme
Communication Round Computation

AdaptivityComplexity (in bits) Complexity Complexity
Commit Decommit Total Commit Decommit exp. pair.

[15, § 3] 1024 2560 3584 1 5 27 - ✗

[15, § 4] 3072 1536 4608 5 1 36 - ✓

[12, § 3] 2560 8192 10752 1 1 41 692 ✓

[12, § 4] 18944 1536 20480 1 1 88 1292 ✓

Fig. 5 1024 2048 3072 1 3 22 - ✗

Fig. 6 2048 1536 3584 3 1 26 - ✓

2 These numbers can be reduced using batching techniques [3] but at the cost of
additional exponentiations.
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Outline of the Paper. We start by reviewing the standard definitions, in Sec-
tion 2. We then present the original Lindell’s commitment schemes in Section 3,
followed by an explanation of a possible inconsistency and a simple correction.

Section 4 focuses on improving the original protocols. We will show how to
reduce both the number of rounds and the number of elements exchanged, in
both schemes. We then provide complete security proofs under the same compu-
tational assumption as for the original schemes, namely the DDH assumption.

2 Definitions

2.1 Commitments

A commitment scheme C is defined by 3 algorithms:

– Setup(1k), where k is the security parameter, generates the global parameters
param of the scheme, implicitly given as input to the other algorithms;

– Commit(m; r) produces a commitment c on the input message m ∈M, using

the random coins r
$← R, and also outputs the opening information w;

– Decommit(c,m;w) decommits the commitment c using the opening informa-
tion w; it outputs the message m, or ⊥ if the opening check fails.

Such a scheme should be both binding, which means that the decommit phase
can successfully open to one value only, and hiding, which means that the commit
phase does not reveal any information about m.

These two properties can be obtained in a perfect, statistical or computa-
tional way, according to the power an adversary would need to break them. But
essentially, a perfectly binding commitment scheme guarantees the uniqueness
of the opening phase. This is achieved by an encryption scheme, which on the
other hand provides the computational hiding property only, under the IND-CPA
security. A perfectly hiding commitment scheme guarantees the perfect secrecy
of m.

Some additional properties are sometimes required. The first is extractability,
for a perfectly binding commitment scheme. The latter admits an indistinguish-
able Setup phase that also generates a trapdoor allowing message extraction from
the commitment. Again, an encryption scheme is an extractable commitment,
where the decryption key is the trapdoor that allows extraction. The second one
is equivocability, for a perfectly hiding commitment scheme. The latter admits
an indistinguishable Setup phase that generates a trapdoor allowing to open a
commitment in any way.

2.2 Universal Composability Framework

The Universal Composability framework was introduced in [5]. The aim of the
following is just to give a brief overview to have some common conventions.

In the context of multi-party computation, one wants several users Pi with
inputs xi to be able to compute a specific function f(x1, . . . , xn) = (y1, . . . , yn)
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without leaking anything except yi to Pi. One can think about Yao’s Millionaires’
problem [18]. Instead of following the classical approach which aims at listing
exhaustively all the expected properties, Canetti did something else and tried to
define how a protocol should ideally work: what are the inputs, and what are the
available outputs. For that, he specified two worlds: the real world, where the
protocol is run with some possible attacks, and the ideal world where everything
would go smoothly, and namely no damage can be done with the protocol. For
a good protocol instantiation, it should be impossible to distinguish, for an
external player, the real world from the ideal one.

In the ideal world there is indeed an incorruptible entity named the ideal func-
tionality, to which players can send their inputs privately, and then receive the
corresponding outputs without any kind of communication between the players.
This way the functionality can be set to be correct, without revealing anything
except what is expected. It is thus perfectly secure. A protocol, in the real world
with real players and thus possibly malicious players, should create executions
that look similar to the ones in the previous world. This is to show that the
communications between the players should not give more information than the
description of the functionality and its outputs.

As a consequence, the formal security proof is performed by showing that for
any external entity, that gives inputs to the honest players and gets the outputs
but that also controls the adversary, the executions in the two above worlds are
indistinguishable. More concretely, in order to prove that a protocol P realizes
an ideal functionality F , we consider an environment Z which can choose inputs
given to all the honest players and receives back the outputs they get, but which
also controls an adversary A. Its goal is to distinguish in which case it is: either
the real world with concrete interactions between the players and the adversary,
or the ideal world in which players simply forward everything to and from the
ideal functionality and the adversary interacts with a simulator S to attack the
ideal functionality. We have to build a simulator S that makes the two views
indistinguishable to the environment: since the combination of the adversary and
the simulator cannot cause any damage against the ideal functionality, this shows
that the adversary cannot cause any damage either against the real protocol.

The main constraint is that the simulator cannot rewind the execution as
often done in classical proofs, since it interacts with an adversary under the
control of the environment: there is no possible rewind in the real word, it is
thus impossible too in the ideal world.

The adversary A has access to the communication but nothing else, and
namely not to the inputs/outputs for the honest players. In case of corruption,
it gets complete access to inputs and the internal memory of the honest player,
and then gets control of it.

2.3 Ideal Functionality of Commitment

The ideal functionality of commitment is presented on Figure 1. It is borrowed
from [6, 15], where a public delayed output is an output first sent to the adver-
sary S that eventually decides if and when the message is actually delivered to
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Fmcom with session identifier sid proceeds as follows, running with parties P1, . . . , Pn,
a parameter 1k, and an adversary S :
– Commit phase: Upon receiving a message (Commit, sid, ssid, Pi, Pj , x) from Pi

where x ∈ {0, 1}polylogk, record the tuple (ssid, Pi, Pj , x) and generate a public de-
layed output (receipt, sid, ssid, Pi, Pj) to Pj . Ignore further Commit-message with
the same (sid, ssid).

– Reveal/decommit phase: Upon receiving a message of the form (reveal, sid, ssid)
from party Pi, if a tuple (ssid, Pi, Pj , x) was previously recorded, then generate
a public delayed output (reveal, sid, ssid, Pi, Pj , x) to Pj . Ignore further reveal-
message with the same (sid, ssid) from Pi.

Fig. 1. Ideal Functionality Fmcom of Commitment

the recipient. In case of corruption of the committer, if this is before the receipt-
message for the receiver, the adversary chooses the committed value, otherwise
it is provided by the ideal functionality, according to the Commit-message.

2.4 Useful Primitives

Hash Function Family. A hash function family H is a family of functions
HK from {0, 1}∗ onto a fix-length output, either a bitstring or Zp. Such a family
is said to be collision-resistant if for any adversary A on a random function
HK

$← H, it is hard to find a collision. More precisely, this means that Pr[HK
$←

H, (m0,m1)← A(HK) : HK(m0) = HK(m1)] should be small.

Pedersen Commitment. The Pedersen commitment [17] is an equivocable
commitment:

– Setup(1k) generates a group G of order p, with two independent generators g
and ζ;

– Commit(m; r), for a message m
$← Zp and random coins r

$← Zp, produces a
commitment c = Ped(m, r) = gmζr, while r is the opening information;

– Decommit(c,m; r) outputs m and r, which opens c into m, and allows the
validity test c ?= gmζr.

This commitment is computationally binding under the discrete logarithm as-
sumption: two different openings (m, r) and (m′, r′) for a commitment c, lead
to the discrete logarithm of ζ in basis g. On the other hand, with this discrete
logarithm value as additional information from the setup, one can equivocate
any dummy commitment, when the input and opening values are known.

Cramer-Shoup Encryption. The Cramer-Shoup encryption scheme [10] is
an IND-CCA version of the ElGamal encryption. By merging the Setup and
KeyGen algorithm into a unique Setup algorithm, we make it into an extractable
commitment scheme CS, where dk is the extraction key, and r is the witness for
the opening.
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– Setup(1k) generates a group G of order p.

– KeyGen(param) generates (g1, g2)
$← G2, dk = (x1, x2, y1, y2, z)

$← Z5
p, and

sets c = gx1
1 gx2

2 , d = gy1

1 gy2

2 , and h = gz1 . It also chooses a Collision-Resistant
hash function HK in a hash family H (or simply second-preimage resistant).
The encryption key is ek = (g1, g2, c, d, h,HK).

– Encrypt(ek,M ; r), for a message M ∈ G and a random scalar r ∈ Zp, the
ciphertext is C = CS(M ; r) = (u = (gr1, g

r
2), e = M · hr, v = (cdω)r), where v

is computed afterwards with ω = HK(u, e).
– Decrypt(dk, C): one first computes ω = HK(u, e) and checks whether the

equality ux1+ωy1

1 · ux2+ωy2

2 = v holds or not. If the equality holds, one com-
putes M = e/(uz

1) and outputs M . Otherwise, one outputs ⊥.

The IND-CCA security can be proven under the DDH assumption and the fact
the hash function used is collision-resistant or simple second-preimage resistant.
This also leads to a non-malleable commitment scheme, that is additionally
extractable when the Setup outputs the decryption key dk.

3 Lindell’s Commitment Protocols

We now have all the tools to review the two original Lindell’s commitment
schemes [15]. The first variant can be found on Figure 2. It only prevents static
corruptions: the adversary can decide to run the protocol on behalf of a player,
with its inputs, from the beginning, but cannot corrupt anybody when the execu-
tion has started. The second variant prevents adaptive corruptions with erasures.

3.1 Description of the Scheme for Adaptive Corruptions

It is presented on Figure 3. The main difference from the static case is to move
some proof from the decommit phase to the commit phase.

3.2 Discussion

Adaptive Corruptions. Lindell has proven both schemes secure under the
DDH assumption, the former in details but a sketch of proof only for the latter.
And actually, as noted by Lindell in the last version of [16], the security against
adaptive corruptions might eventually not be guaranteed.

He indeed proves that no adversary can choose a message x′ beforehand, and
do a valid commit/decommit sequence to x′ where the simulator extraction, at
the end of the commit phase, would output an x different from x′. However this
is not enough as an adversary could still do a valid commit/decommit sequence
to x′ where the simulator extraction at the end of the commit phase would
output an x different from x′. The difference between the two experiments is
how much the adversary controls the value x′: in the former x′ has to be chosen
beforehand, while in the latter x′ is any value different from x.

We describe, on top of Figure 4, such a situation in which the adversary A
plays as Pi, and makes the simulator extract the value x, while in fact committing
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We have a CRS, consisting of (p,G, g1, g2, c, d, h, h1, h2), where G is a group of order
p with generators g1, g2; c, d, h ∈ G are random elements in G and h1 = g1

ρ and
h2 = g2

ρ for a random ρ ∈ Zp.
Intuitively, (p,G, g1, g2, c, d, h) is a Cramer-Shoup encryption key and (p,G, g1, g2,
h1, h2) is the CRS of a dual-mode encryption scheme.
Let G : {0, 1}n → G be an efficiently computable and invertible mapping of a binary
string to the group.

The commit phase. Upon receiving a message (Commit, sid, ssid, Pi, Pj , x), where

x ∈ {0, 1}n−log2(n) and sid, ssid ∈ {0, 1}log2(n)/4, party Pi works as follows:

1. Pi computes m = G(x, sid, ssid, Pi, Pj).

2. Pi picks r
$← Zp and computes C = CS(m; r), we will note ω the hash of the first

three terms.
3. Pi sends (sid, ssid, C) to Pj .
4. Pj stores (sid, ssid, Pi, Pj , C) and outputs (receipt, sid, ssid, Pi, Pj).

Pj ignores any later commitment messages with the same (sid, ssid) from Pi.

The decommit phase. Upon receiving a message (reveal, sid, ssid, Pi, Pj), Pi works
as follows:

1. Pi sends (sid, ssid, x) to Pj .
2. Pj computes m = G(x, sid, ssid, Pi, Pj)

3. (a) Pj picks R,S
$← Zp, a random challenge ε

$← {0, 1}n.
He then sends c′ = (g1

Rg2
S, h1

rh2
SG(ε)) to Pi.

(b) Pi picks s
$← Zp and computes (α, β, γ, δ) = (g1

s, g2
s, hs, (cdω)s).

He then sends (sid, ssid, α, β, γ, δ) to Pj .
(c) Pj now opens c′ by sending (sid, ssid, R, S, ε) to Pi.
(d) Pi checks if this is consistent with c′ otherwise he aborts.

Pi now computes z = s+ εr and sends (sid, ssid, z) to Pj .
(e) Pj outputs (reveal, sid, ssid, Pi, Pj , x) if and only if

gz1 = αu1
ε, g2

z = βu2
ε, hz = γ(e/m)ε, (cdω)z = δvε

Fig. 2. Lindell’s Commitment Protocol, UC-Secure against Static Adversaries

(or actually opening) to another value x′, but that is too late when the simulator
discover the mistake. For the sake of clarity, we only mention the differences
between this situation and the real protocol presented on Figure 3.

Any extraction done on C at the end of the commit phase would lead the
simulator to believe to a commit to x, however the valid decommit outputs x′.
Note however that this attack does not succeed very often since one needs, for
a random ε, that G−1(mD1/ε) exists and can be parsed as (x′, sid, ssid, Pi, Pj).

Static Corruptions. We stress that this possible inconsistency comes from the
move forward of the proof in the commit phase, even before the message x is
strongly committed. The first protocol does not suffer from this issue.
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We have a CRS, consisting of (p,G, g1, g2, c, d, h, h1, h2, ζ, HK), where G is a group
of order p with generators g1, g2; c, d, h ∈ G are random elements in G and h1 = g1

ρ

and h2 = g2
ρ for a random ρ ∈ Zp; HK is randomly drawn from a collision-resistant

hash function family H.
Intuitively, the tuple (p,G, g1, g2, c, d, h,HK) is a Cramer-Shoup encryption key, the
tuple (p,G, g1, g2, h1, h2) is the CRS of a dual-mode encryption scheme, and the tuple
(p,G, g, ζ) = is the CRS of a Pedersen commitment scheme.
Let G : {0, 1}n → G be an efficiently computable and invertible mapping of a binary
string to the group.
The commit phase. Upon receiving a message (Commit, sid, ssid, Pi, Pj , x), where

x ∈ {0, 1}n−log2(n) and sid, ssid ∈ {0, 1}log2(n)/4, party Pi works as follows:

1. Pi computes m = G(x, sid, ssid, Pi, Pj).

2. Pi picks r
$← Zp and computes C = CS(m; r), we will note ω the hash of the first

three terms.
3. Pi picks k1

$← Zp, computes c1p = Ped(HK(C); k1) and sends it to Pj .

4. Pj picks R,S
$← Zp, ε

$← {0, 1}n and sends c′ = (g1
Rg2

S, h1
Rh2

SG(ε)) to Pi.

5. Pi picks s, k2
$← Zp and computes (α, β, γ, δ) = (g1

s, g2
s, hs, (cdω)s).

He then computes and sends c2p = Ped(HK(α, β, γ, δ);k2) to Pj .
6. Pj now opens c′ by sending (R,S, ε) to Pi.
7. Pi checks if this is consistent with c′ otherwise he aborts.
8. Pi now computes z = s+ εr, and erases r, s.

He also opens c1p by sending C, k1 to Pj .
9. Pj verifies the consistency of c1p.

If yes, he stores (sid, ssid, Pi, Pj , c, ε, c
2
p) and outputs (receipt, sid, ssid, Pi, Pj).

He ignores any later commitment messages with the same (sid, ssid) from Pi.

The decommit phase. Upon receiving a message (reveal, sid, ssid, Pi, Pj), Pi works
as follows:

1. Pi sends (x,α, β, γ, δ, k2, z) to Pj .
2. Pj computes m = G(x, sid, ssid, Pi, Pj), and outputs (reveal, sid, ssid, Pi, Pj , x) if

and only if c2p is consistent and:
gz1 = αu1

ε, g2
z = βu2

ε, hz = γ(e/m)ε, (cdω)z = δvε

Fig. 3. Lindell’s Commitment Protocol, UC-Secure against Adaptive Adversaries

3.3 A Simple Patch

In order to avoid the above concern, a simple patch consists in committing
m = G(x, sid, ssid, Pi, Pj) in the second Pedersen commitment c2p. This leads to
the simple change in the protocol presented on the bottom part of Figure 4,
where x is now strongly committed before the proof, and then the previous issue
does not occur anymore.

4 Our Optimization of the Commitments Protocols

We now focus on much more efficient protocols, with the above modification, and
additional ones. We kept the original notations, but as done in [2], we can note
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The commit phase. Upon receiving a message (Commit, sid, ssid, Pi, Pj , x) where

x ∈ {0, 1}n−log2(n) and sid, ssid ∈ {0, 1}log2(n)/4, A works as follows:

5. A picks s, k2
$← Zp, D

$← G and computes (α, β, γ, δ) = (g1
s, g2

s, hsD, (cdω)s).
A then computes and sends c2p = Ped(HK(α, β, γ, δ); k2) to Pj .

8. A checks if G−1(mD1/ε) exists and can be parsed as (x′, sid, ssid, Pi, Pj) for a
random x′. If so, A now computes z = s+ εr, and erases r, s. It also opens c1p by
sending C, k1 to Pj .

The decommit phase. Upon receiving a message (reveal, sid, ssid, Pi, Pj), A works
as follows:

1. A sends (x′, α, β, γ, δ, k2, z) to Pj .
2. Pj computes m′ = G(sid, ssid, Pi, Pj , x), and outputs (reveal, sid, ssid, Pi, Pj , x

′) if
and only if c2p is consistent and:

gz1 = αu1
ε, g2

z = βu2
ε, hz = hs(e′D1/ε)ε = γ(e/m′)ε, (cdω)z = δvε

The commit phase.

5. Pi picks s, k2
$← Zp and computes (α, β, γ, δ) = (g1

s, g2
s, hs, (cdω)s).

He then computes and sends c2p = Ped(m,HK(α, β, γ, δ); k2) to Pj .

Fig. 4. Inconsistent Extraction/Opening and Simple Patch w.r.t. Figure 3

that C is actually a Cramer-Shoup encryption of m, and (α, β, γ, δ) is a partial
Cramer-Shoup encryption of 1 with the same ω as in the first ciphertext: the
double Cramer-Shoup encryption of (m,m′) was denoted by DCS(m,m′; r, s) =
(C1, C2), where

– C1 is a real Cramer-Shoup encryption C1 = CS(m; r) of m for a random

r
$← Zp: C1 = (u1 = (g1

r, g2
r), e1 = m · hr, v1 = (cdω)r), where v1 is

computed afterwards with ω = HK(u1, e1);
– C2 is a partial Cramer-Shoup encryption C2 = PCS(m′;ω, s) of m′ for a ran-

dom s
$← Zp with the above ω value: C2 = (u2 = (g1

s, g2
s), e2 = m′ ·hs, v2 =

(cdω)s), where v2 is computed directly with the above ω = HK(u1, e1).

In addition, when ω is fixed, we have an homomorphic property: if (C1, C2) =
DCS(m,m′; r, s), with a common ω, the component-wise product C1 × C2 =
PCS(m×m′;ω, r+s). In particular, we can see the last tuple (αuε

1, βu
ε
2, γe

ε, δvε)
as C2 × Cε

1 . It should thus be PCS(mε;ω, εr + s) = PCS(mε;ω, z), which is the
final check. We now use these new notations in the following.

4.1 Improvement of the Static Protocol

The improvement presented below consists in noting that the receiver can
directly send the value ε in the decommit phase, without having to send a
commitment first. To allow this, we simply ask the sender to send a Pedersen
commitment of C2 = (α, β, γ, δ) prior to receiving ε. This reduces the number
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We have a CRS, consisting of (p,G, g, g1, g2, c, d, h, ζ, HK), where G is a group of
order p with generators g, ζ, g1, g2; c, d, h ∈ G are random elements in G; HK is
randomly drawn from a collision-resistant hash function family H.
Intuitively (p,G, g1, g2, c, d, h,HK) is a Cramer-Shoup public key and (p,G, g, ζ) is a
CRS for a Pedersen commitment.
Let G : {0, 1}n → G be an efficiently computable and invertible mapping of a binary
string to the group, as before.
The commit phase. Upon receiving a message (Commit, sid, ssid, Pi, Pj , x) where

x ∈ {0, 1}n−log2(n) and sid, ssid ∈ {0, 1}log2(n)/4, party Pi works as follows:

1. Pi computes m = G(x, sid, ssid, Pi, Pj).

2. Pi picks r, s
$← Zp and computes (C1, C2) = DCS(m, 1; r, s).

We note C2 = (α, β, γ, δ).
3. Pi sends (sid, ssid, C1) to Pj .
4. Pj stores (sid, ssid, Pi, Pj , C1) and outputs (receipt, sid, ssid, Pi, Pj).

He ignores any later commitment messages with the same (sid, ssid) from Pi.

The decommit phase. Upon receiving a message (reveal, sid, ssid, Pi, Pj), Pi works
as follows:

1. Pi picks k2
$← Zp, computes c2p = Ped(HK(m,C2, sid, ssid, Pi, Pj); k2).

He then sends (sid, ssid, x, c2p) to Pj .

2. Pj computes m = G(x, sid, ssid, Pi, Pj), picks ε
$← Zp and sends it to Pi.

3. Pi now computes z = s+ εr and sends (sid, ssid, C2, k2, z) to Pj .
4. Pj outputs (reveal, sid, ssid, Pi, Pj , x) if and only if c2p is consistent and

gz1 = αu1
ε, g2

z = βu2
ε, hz = γ(e/m)ε, (cdω)z = δvε

Fig. 5. Our New Commitment Protocol UC-Secure against Static Adversaries

of flows of the decommit phase (from 5 downto 3) and the number of elements
sent by the receiver, (from 2 group elements and 3 scalars down to only 1 scalar,
the challenge), simply increasing the number of elements sent by the sender by
1 group element and 1 scalar (the Pedersen commitment).

4.2 Sketch of Proof of the Static Protocol

For lack of space, we do not give here the full proof of the protocol. One may
note that it is very similar to the one given in [15]. The only change lies in the
decommit phase, where we make the receiver directly send his challenge value ε
rather than encrypting it first. But this change is made possible by the sender
sending a Pedersen commitment c2p of C2 before having seen ε, as in the commit
phase of the adaptive version of our protocol.

The proof can thus be easily adapted from the one given for our adaptive
protocol (see Section 4.4). The only difference is that in the static version, the
sender does not commit to his value C1, so that the simulator cannot change its
mind on the value it gave inside this ciphertext later on. But one can note that
in the proof of the adaptive protocol, this commitment c1p has to be equivocated
only in case of adaptive corruptions (if the latter occur before the adversary has
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sent ε). This yields to the same simulator as in the adaptive case (see Section 4.5)
with the following modifications, when Pi is honest only:

Commit stage: Exactly as in the adaptive case except there is no corruption
to deal with.

Decommit stage: Upon receiving the information that the decommitment
has been performed on x, with (reveal, sid, ssid, Pi, Pj , x) from Fmcom, S first
chooses a random z and computes the ciphertext C3 = PCS(m;ω, z). It
then chooses a random k2, a random C2, computes the associated Pedersen
commitment c2p and simulates the first flow of the decommit phase to Pj .
Upon receiving ε from Pj , it then adapts C2 = C3/C1

ε and uses the trapdoor
for the Pedersen commitment to produce a new value k2 corresponding to
the new value C2. It then simulates the third flow of the decommit phase
to Pj .

4.3 Improvement of the Adaptive Protocol

As for the static version of the protocol, the main improvement presented on
Figure 6 below consists in noting that the receiver can directly send the value ε,
without having to send an encryption before. To allow this, we simply ask the
sender to send his two Pedersen commitments prior to receiving ε.

This reduces, in the commit phase, the number of rounds (from 5 downto 3)
and the number of elements sent by the receiver (from 2 group elements and
3 scalars down to only 1 scalar, the challenge). Contrary to the static version,
there is no additional cost. This is illustrated in Section 5, which sums up the
differences between Lindell’s protocol and ours, in the same setting: UC-security
against adaptive corruption with erasures.

In addition, in order to slightly increase the message space from n − log2(n)
to n, we move the sensitive prefix (sid, ssid, Pi, Pj) into the second Pedersen.

Eventually, in order to definitely exclude the security concerns presented in
Section 3.2, we include the value m to the second Pedersen to prevent the ad-
versary from trying to open his commitment to another value.

4.4 Security Proof

We now provide a full proof, with a sequence of games, that the above protocol
emulates the ideal functionality against adaptive corruptions with erasures. This
sequence starts from the real game, where the adversary interacts with real
players, and ends with the ideal game, where we have built a simulator that
makes the interface between the ideal functionality and the adversary.

As already explained, we denote by C3 = C2C1
ε, the tuple involved in the

last check. It should be a partial encryption of m under randomness z = s+ εr:
C3 = PCS(m;ω, z) where ω is the hash value of the first three terms of C1.

Game G0: This is the real game, in which every flow from the honest players
is generated correctly by the simulator which knows the input x sent by the
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We have a CRS, consisting of (p,G, g, g1, g2, c, d, h, ζ, HK), where G is a group of
order p with generators g, ζ, g1, g2; c, d, h ∈ G are random elements in G; HK is
randomly drawn from a collision-resistant hash function family H.
Intuitively (p,G, g1, g2, c, d, h,HK) is a Cramer-Shoup public key and (p,G, g, ζ) is a
CRS for a Pedersen commitment.
Let G : {0, 1}n → G be an efficiently computable and invertible mapping of a binary
string to the group, as before.
The commit phase. Upon receiving a message (Commit, sid, ssid, Pi, Pj , x), party

Pi works as follows, where x ∈ {0, 1}n and sid, ssid ∈ {0, 1}log2(n)/4:

1. Pi computes m = G(x).

2. Pi picks r, s
$← Zp and computes (C1, C2) = DCS(m, 1; r, s).

We note C2 = (α, β, γ, δ).

3. Pi picks k1, k2
$← Zp.

He computes c1p = Ped(HK(C1); k1), c
2
p = Ped(HK(m,C2, sid, ssid, Pi, Pj); k2).

He sends (c1p, c
2
p) to Pj .

4. Pj picks ε
$← Zp and sends it to Pi.

5. Pi now computes z = s+ εr, and erases r, s.
He also opens c1p by sending (C1, k1) to Pj .

6. Pj verifies the consistency of c1p.
If yes, he stores (sid, ssid, Pi, Pj , C1, ε, c

2
p) and outputs (receipt, sid, ssid, Pi, Pj).

He ignores any later commitment messages with the same (sid, ssid) from Pi.

The decommit phase. Upon receiving a message (reveal, sid, ssid, Pi, Pj), Pi works
as follows:

1. Pi sends (x,C2, k2, z) to Pj .
2. Pj computes m = G(x), and outputs (reveal, sid, ssid, Pi, Pj , x) if and only if c2p is

consistent and:
gz1 = αu1

ε, g2
z = βu2

ε, hz = γ(e/m)ε, (cdω)z = δvε

Fig. 6. Our New Commitment Protocol UC-Secure against Adaptive Adversaries

environment to the sender. There is no use of the ideal functionality for the
moment.

Game G1: In this game, we focus on the simulation of an honest receiver
interacting with a corrupted sender. Executions with an honest sender are still
simulated as before, using the input x. The simulator will generate the CRS
in such a way it knows the Cramer-Shoup decryption key, but ζ is a discrete
logarithm challenge.

Upon receiving the values (c1p, c
2
p) from the adversary, the simulator simply

chooses a challenge ε at random and sends it to the adversary, as Pj would
do with Pi. After receiving the values (C1, k1), the simulator checks the con-
sistency of the Pedersen commitment c1p and aborts in case of failure. It then
uses the Cramer-Shoup decryption key to recover the value m′ sent by the ad-
versary, and computes x′ = G−1(m′). In case of invalid ciphertext, one sets
x′ = ⊥ (an element not in the domain of G). It stores (sid, ssid, Pi, Pj , C1, ε, c

2
p)

and (x′, sid, Pi, Pj) (this will correspond later to the Commit query to the ideal
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functionality, in the ideal game). Upon receiving the values (x,C2, k2, z), the
simulator does as Pj would do in checking the commitment c2p and that C3 =
PCS(mε;ω, z), but accepts x′ as the opening for the commitment.

The only difference with the previous game is that Pi will accept x′, as de-
crypted from C1 = CS(m′ = G(x′); r), for the decommitment instead of the value
x output at the decommitment time, which leads tom = G(x) that matches with
C3 = PCS(mε;ω, z), but that is also contained in c2p together with C2. We will
show that under the binding property of the Pedersen commitment, one neces-
sarily has x′ = x, and thus there is no difference.

Let us assume that x′ �= x in at least one of such executions: for the first one,
we rewind the adversary up to the step 4., and send a new random challenge
ε′. Then the adversary should send the same C1, otherwise one extracts the
discrete logarithm of ζ in basis g or a collision for HK , and the same pair (m,C2)
in the decommit phase for the same reason, but possibly a different z′. Then,
the final checks guarantee that C3 = PCS(mε;ω, z) in the first execution and
C′

3 = PCS(mε′ ;ω, z′) in the second execution. From the homomorphic property:
C2 encrypts (m/m′)ε in the first execution, but (m/m′)ε

′
in the second execution,

which are thus equal. Since ε′ �= ε, this implies that m′ = m. For the same
reason, one can note that if C1 is not a valid ciphertext, C3 cannot be valid
either (for the fixed ω). We stress that the rewind here is just for the proof of
indistinguishability of the two games, but not in the simulation.

In case of corruption of the receiver, one can note that he has no secret.

Game G2: In this game, we start modifying the simulation of an honest sender,
still knowing his input x. For the honest verifier against a corrupted sender, we
still have to know the Cramer-Shoup decryption key to run the same simulation
as in the previous game. But we now need to know the discrete logarithm for
equivocating the Pedersen commitment.

This game is almost the same as the previous one excepted the way the double
Cramer-Shoup ciphertext is generated: (C1, C2) = DCS(m,n; r, s), for a random
n instead of 1. The rest of the commit phase is unchanged.

At the decommit phase, S chooses random coins z and computes C3 =
PCS(m;ω, z), and then “repairs” C2 = C3/C1

ε, and k2 for being able to open c2p
to this new value.

Thanks to the homomorphic property, the repaired C2 is a correct ciphertext
of 1, and the equivocation of the Pedersen commitment guarantees a correct
opening. This game is thus perfectly indistinguishable from the previous one.

In case a corruption of Pi occurs before the decommit phase, the simulator
anticipates the equivocation of c2p.

Game G3: One can note that in the previous game, r is not used anymore to
compute z. One could thus ignore it, unless Pi gets corrupted before ε has been
sent, since we should be able to give it. But in such a case, one can compute
again C1 knowing r and equivocate c1p. We then alter again the way the double
Cramer-Shoup ciphertext is generated: (C1, C2) = DCS(m′, n; r, s), for random
m′ and n. Everything remains unchanged.
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The unique change is thus the ciphertext C1 that encrypts a random m′

instead of m. One can run the IND-CCA security game, in an hybrid way, to
show this game is indistinguishable from the previous one. To this aim, one
has to show that the random coins r are not needed to be known, and that
the challenge ciphertexts are never asked for decryption (where the decryption
key here is replaced by an access to the decryption oracle, hence the IND-CCA
security game). The former point has been discussed above. For the latter, we
have shown that the value actually encrypted in C1 by the corrupted sender is
the value sent at the decommit phase, which would even break the one-wayness
of the encryption. Hence, if such a replay happens, one knows that the decommit
phase will fail.

In case of corruption of Pi before receiving ε, Pedersen commitments only
have been sent, and they can thus be equivocated with correct values (given by
either the ideal functionality or the adversary). In case of corruption of Pi after
having received ε, one does has before, anticipating the equivocation of c2p.

Game G4: This is the ideal game, in which the simulator works as described
below: when Pi is corrupted, one uses the decryption of C1 to send the Commit
query to the ideal functionality, when Pi is honest one can wait for the receipt
and reveal confirmations from the adversary to conclude the simulation of the
real flows.

4.5 Description of the Simulator

Setup. The simulator generates the parameters, knowing the Cramer-Shoup
decryption key and the Pedersen equivocation trapdoor.

When Pi is Honest.

Commit stage: Upon receiving the information that a commitment has been
performed, with (receipt, sid, ssid, Pi, Pj) from Fmcom, S computes (C1, C2) =
DCS(m′, n; r, s), for random m′ and n but then follows as Pi would do. If Pj

is honest too, one just has to send a random ε.

In case of corruption of Pi before receiving ε, one can equivocate c1p, otherwise
one equivocates c2p, as explained below, in both cases using the value given
either by the ideal functionality or the adversary, according to the time of
the corruption.

Decommit stage: Upon receiving the information that the decommitment has
been performed on x, with (reveal, sid, ssid, Pi, Pj , x) from Fmcom, S exploits
the equivocability of the Pedersen commitment: it first chooses a random
z and computes the ciphertext C3 = PCS(m = G(x);ω, z). It then adapts
C2 = C3/C1

ε and uses the trapdoor for the Pedersen commitment to produce
a new value k2 corresponding to the new value C2. It then simulates the
decommit phase to Pj .
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When Pi is Corrupted and Pj is Honest.

Commit stage: Upon receiving (C1, k1) from the adversary, S decrypts the
Cramer-Shoup ciphertext C1 and extracts x from G. If the decryption is
invalid, S sends (Commit, sid, ssid, Pi, Pj ,⊥) to Fmcom. Otherwise, S sends
(Commit, sid, ssid, Pi, Pj , x).

Decommit stage: S acts as a regular honest user Pj from the incoming mes-
sage of A on behalf of Pi. In case of validity, send the query (reveal, sid, ssid).

5 Conclusion

As a conclusion, let us graphically present a comparison of the two protocols.

5.1 The Original Lindell’s Protocol for Adaptive Adversaries

The commit phase

m = G(x, sid, ssid, Pi, Pj)

r
$← Zp, k1

$← Zp, C = CS(m; r)

c1p = Ped(HK(C); k1)
c1p−−−−−−−−→ R,S

$← Zp, ε
$← {0, 1}n

s
$← Zp, k2

$← Zp
c′←−−−−−−−− c′ = (g1

Rg2
S , h1

Rh2
SG(ε))

(α, β, γ, δ) = (g1
s, g2

s, hs, (cdω)s)
c2p = Ped(HK(α, β, γ, δ)); k2)

c2p−−−−−−−−→
Aborts if c′ inconsistent

R,S, ε←−−−−−−−−
z = s+ εr, erases r, s

k1, C−−−−−−−−→ Aborts if c1p inconsistent

The decommit phase

(x, α, β, γ, δ, k2, z)−−−−−−−−−−−−−→ m = G(x, sid, ssid, Pi, Pj) checks c
2
p and whether

gz1 = αu1
ε, g2

z = βu2
ε, hz = γ(e/m)ε, (cdω)z = δvε

5.2 Our Protocol

The commit phase

m = G(x), r
$← Zp, s

$← Zp

(C1, C2) = DCS(m; 1; r, s), k1, k2
$← Zp

c1p = Ped(HK(C1); k1)
c2p = Ped(HK(C2,m, sid, ssid, Pi, Pj); k2)

c1p, c
2
p−−−−−−−−→

ε←−−−−−−−− ε
$← Zp

z = s+ εr, erases r, s
k1, C1−−−−−−−−→ Aborts if c1p inconsistent

The decommit phase

(x,C2, k2, z)−−−−−−−−→ m = G(x), checks c2p and whether
gz1 = αu1

ε, g2
z = βu2

ε, hz = γ(e/m)ε, (cdω)z = δvε
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Sonia Bogos�, Ioana Boureanu, and Serge Vaudenay
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Abstract. Factoring-based public-key cryptosystems have an overall complexity
which is dominated by the key-production algorithm, which requires the
generation of prime numbers. This is most inconvenient in settings where the
key-generation is not an one-off process, e.g., for forwards secrecy. To this end,
we extend the Goldwasser-Micali (GM) cryptosystem to a provably secure sys-
tem, denoted SIS, where the generation of primes is bypassed. By developing
on the correct choice of the parameters of SIS, we align SIS’s security guaran-
tees (i.e., resistance to factoring of moduli, etc.) to those of other well-known
factoring-based cryptosystems. Taking into consideration different possibilities
to implement the fundamental operations, we explicitly compare and contrast
the asymptotic complexity of well-known public-key cryptosystems (e.g., GM
and/or RSA) with that of SIS’s. The latter shows that once we are ready to accept
an increase in the size of the moduli, SIS offers a generally lower asymptotic
complexity than, e.g., GM or even RSA.

1 Introduction

Setting. Several, widely used public-key cryptosystems have a setup phase where prime
numbers are generated and/or primality tests are run. The computational complexity
yielded by the generation of a prime number of length L is generally in O(L4) and –if
optimised– O∼(L3), as we will detail next in this section. Such generations occur, for
instance, in the case of RSA [21] and/or in the Goldwasser-Micali (GM) probabilistic
cryptosystem [7], as each of them defines its operation over Z∗n, for n being a product
of two, distinct large prime numbers generated therein.

Moreover, there exist settings in which the key-generation in asymmetric cryptosys-
tems is not an one-off process, e.g., key agreement with forward secrecy [1], secure del-
egation protocols [18], EKE password-based key exchange [3], zero-knowledge proofs
of knowledge without any setups, where a new commitment key is used at each ses-
sion. Secure delegation protocols [18] are based on homomorphic public-key encryp-
tion schemes and in each of the runs of such a protocol, the keys need to be re-issued
freshly. Hence, the asymptotic complexity of prime-generation for the homomorphic
encryptions used therein [18] (e.g., GM, RSA, Paillier’s encryption, etc.) becomes an
alarming bottleneck of the delegated computation. The scheme that we propose in this
paper is homomorphic and it is aimed at overcoming precisely the shortcoming of such
bottlenecks. In this context, in our comparisons, we focus mostly on (homomorphic)
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schemes that are commonly used in these settings i.e., factoring-based ones, and do not
compare with public-key cryptosystems different in nature. I.e., we do not refer to the
McEliece cryptosystem [17] based on algebraic codes, which may indeed have faster
key-generation procedures; neither do we relate to Diffie-Hellman cryptosystems (e.g.,
EC-based) for which primes are not key-specific. We are interested in systems where the
security gravitates around problems related to primality, e.g., factoring of moduli. More
precisely, we extend and compare with the Goldwasser-Micali (GM) cryptosystem [7].

Comparisons at a Glance. The security of the RSA cryptosystem is based on the in-
teger prime-factorisation problem (i.e., the RSA modulus n should be hard-to-factor).
Thus, a fair security guarantee is to take the length L of the modulus n large enough
to be considered practically hard-to-factor using, e.g., the general number field sieve
(GNFS) factorisation algorithm [14]. Given the complexity of the latter factorisation
for a number of the order 2L and measuring its hardness in the order of 2s (s is a secu-
rity parameter), we conclude that a secure length L for the RSA-generated modulus is
O∼(s3).

The commonplace implementation of the RSA cryptosystem has a complexity of
O(L4) for the setup phase, due to prime-generation numbers. The “schoolbook” mul-
tiplication method of O(L2) can be replaced by “fast multiplication” techniques in the
key-generation process, i.e., by the Karatsuba algorithm [12] in O(Llog2 3) or by meth-
ods [23] based on the Fast Fourier Transform (FFT) in O(L× logL). In the FFT-based
optimisation cases, the complexity of RSA is lowered1 to O∼(L3). Thus, in the best
case of FFT-optimisation, primality-testing based cryptosystems would run in O∼(s9).

The GM cryptosystem is semantically secure under the assumption that the quadratic
residuosity (QR) problem modulo a composite integer n is hard. The QR problem stip-
ulates that, given this modulus n and a number x ∈ Z∗n, when the Jacobi symbol [10]
for x ∈ Z∗n with respect to n is 1, it is difficult to determine whether x is a quadratic
residue modulo n. If the prime-factorisation of n is known, then the QR problem is
easy. In this context of complexity-analysis, it is to be mentioned that the Jacobi sym-
bol [10] itself generally has quadratic complexity, as schoolbook multiplication is most
often used within. We briefly recall the GM scheme somewhat more detailedly. In the
key-generation algorithm, firstly two different (large) prime numbers p and q are inde-
pendently generated and n = pq. Then, a non-residue x is found such that its Legendre

symbol [10] with respect to p and q are equal to−1, i.e.,
(

x
p

)
=

(
x
q

)
=−1, whereas the

Jacobi symbol with respect to n is 1. The public key is defined by the pair (x,n), whereas
the prime factors p and q are kept secret. To encrypt a bit b, an integer y is randomly
picked from Z∗n , i.e., y←U Z∗n, and its encryption is calculated as c = y2xb (mod N).
To decrypt, the secret key (p,q) is used and it is to check whether the encrypted value c

is a quadratic residue, i.e., to solve
(

c
p

)
= (−1)b, in the unknown b.

Contribution. In this paper, we endeavour in extending the GM scheme into a public-
key scheme that bypasses prime-generation procedures. The GM scheme has the same
aforementioned complexity bottlenecks. We show reduction in complexity, from the

1 O∼(t(n)) is equal to O(t(n)× (log t(n))c), for some constant c≥ 0.
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best O∼(s9) to O∼(s4), at the cost of generating larger, composite numbers (where s
is the security parameter). This comes to the special benefit of applications like the
aforementioned, where the overwhelming key-generations repeat at each run.

Structure of the Paper. In Section 2, we present the computational problems relevant to
our cryptosystem and discuss their hardnesses. In Section 3, we describe our cryptosys-
tem denoted SIS. In Section 4, we discuss the necessary conditions for the selection of
parameters and their asymptotic behaviours. In Section 5, we discuss the complexity of
our scheme and compare it to RSA and GM. We provide experimental results that show
that our asymptotic analysis is valid.

2 Preliminaries

We present here some essential background; the computational problems that found the
basis of our security analyses, and results with respect to their hardness.

2.1 Foundations

Let G be an Abelian group. A character χ is a group homomorphism from (G,+) to C∗.
The set of characters over G has a group structure with component-wise multiplication
over C∗. This group is called the dual group Ĝ of G and it is isomorphic with G [10].
Each character will have an order in this group. For all a ∈ G, χ(a) is a λ(G)-th root of
the unity, where λ(G) is the exponent of the group G. A character χ of order 2 is such
that χ(a) ∈ {−1,1}, for all a ∈ G. Let ε be the trivial character, i.e., ε(a) = 1. The set
of characters χ for which χ2 = ε consists of ε and characters of order 2.

Let p ∈ Z be an odd prime. The only character in Z∗p of order 2 is the Legendre
symbol χ(a) = ( a

p ), for any a∈ Z∗p. For the standard properties of the Legendre symbol,
as well as its generalisation to the Jacobi symbol w.r.t. composed numbers, see [10]. For
n = pq with p and q being two different odd primes, there are 3 characters of order 2:
the Legendre symbol ( ·p), the Legendre symbol ( ·q ), and the Jacobi symbol ( ·n ). The
latter is easy to compute, but the former are allegedly hard to compute when the primes
p and q are unknown. We call these former characters hard characters of order 2.

We recall that QRn is a usual notation for the subgroup of Z∗n of all quadratic residues.
We refer to the problem of deciding whether an element of Z∗n is quadratic residue or
not as the QR problem.

The main scope of this paper is to use characters of order 2, in order to design public-
key encryption schemes that elude the generation of prime numbers, thus reducing the
general asymptotic complexity of the usual schemes of the kind.

2.2 Computational Problems

In this paper, we first consider the following combinatorial problem:

CHI Problem (Character Interpolation Problem):
Parameters: a modulus n, x1, . . . ,xt in Z∗n, t elements y1, . . . ,yt ∈ {−1,+1}, all defin-

ing a unique character χ on Z∗n such that χ(xi) = yi for i = 1, . . . , t and t ≥ 1.
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Input: x ∈ Z∗n.
Problem: Find y = χ(x).

An instance of this problem is defined by fixing some parameters and providing a cor-
responding input x. Then, it requires the computation of a character of order 2 for a
number x ∈ Z∗n, given t elements in Z∗n and their respective characters. Note that the
above problem can be generalised to the case of characters of order d, i.e., by replac-
ing the set {−1,+1} with a group of order d. Also, observe the CHI problem can be
immediately rewritten as the MOVA2 problem presented in [19].

We now give a combinatorial problem presented in [20]:

GHI Problem (Group Homomorphism Interpolation Problem):
Parameters: G and H two Abelian groups, S be a subset of G×H, r ≥ 1 such that S

interpolates in a homomorphism between G and H.
Input: r elements x1, . . . ,xr in G.
Problem: Find y1, . . . ,yr ∈H such that there exists a group homomorphism ϕ such that

ϕ(xi) = yi for i = 1, . . . ,r and ϕ(x) = y for all (x,y) ∈ S.

An instance of the above problem demands that once given r numbers lying in G, one
provides r points in H that together with S interpolate in the group homomorphism ϕ.

Obviously, the CHI problem is a specialisation of the GHI problem in which G=Z∗n,
H = {−1,+1}, r = 1, and the homomorphism is unique.

We recall the following theorem:

Lemma 1. (Lemma 4.3 in [20]) Let G and H be two finite Abelian groups, where the
group operation is denoted additively. We denote by d the order of H. Let x1,x2, . . . ,xr ∈
G which span G′. The following properties are equivalent. In this case, we say that
x1,x2, . . . ,xr H-generate G.

– For all y1,y2, . . . ,yr ∈H, there exists at most one group homomorphism Hom : G→
H such that Hom(xi) = yi for all 1≤ i≤ r.

– G′+ dG = G.
– x1 + dG, . . . ,xr + dG span G/dG.

We denote spand(x1, . . . ,xt) = 〈x1, . . . ,xt〉 + dG. Then, saying that {x1, . . . ,xt} H-
generates G for H = {−1,+1} is equivalent to span2(x1, . . . ,xt) = G.

When one can compute discrete logarithms in G = Z∗n, one can easily solve the CHI
problem by solving a linear system. The discrete logarithm is easy when n has only
small prime factors. Therefore, for the CHI problem to be hard, we need that n has
large prime factors. This is the case if n is hard-to-factor. Similarly, when n is easy to
factor, we can easily evaluate the characters in certain subgroups of Z∗n, and therefore
solve the CHI problem. For details, an efficient Karp reduction of the CHI problem to
the factorisation problem is present in [19].

Definition 1 (CHI and QR Hardness Assumptions). Given a probabilistic algorithm
Gen(1s)→ (n,χ, t) such that χ is a character of order 2 in Z∗n, say that the CHI problem
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is hard relative to Gen if for every probabilistic algorithm A which is polynomial in s,
we have∣∣∣∣∣∣Pr

⎡⎣A(x,n,x1, . . . ,xt ,χ(x1), . . . ,χ(xt)) = χ(x)

∣∣∣∣∣∣
Gen(1s)→ (n,χ, t),
x,x1, . . . ,xt ∈U Z∗n,
span2(x1, . . . ,xt) = Z∗n

⎤⎦− 1
2

∣∣∣∣∣∣< negl(s) .

We say that the QR problem is hard relative to Gen if for every probabilistic algorithm
A which is polynomial in s, we have∣∣∣∣∣∣Pr

⎡⎣A(x,n) = 1x∈QRn

∣∣∣∣∣∣
Gen(1s)→ (n),
x ∈U Z∗n,(

x
n

)
= 1

⎤⎦− 1
2

∣∣∣∣∣∣< negl(s) .

Then, we have the following amplification result.

Lemma 2. Given the parameters n, x1, . . . ,xt ,y1, . . . ,yt for an instance of the CHI prob-
lem, i.e., defining a unique χ on Z∗n, if A is a probabilistic algorithm which is polynomial
in s such that ∣∣∣∣Pr [A(x) = χ(x) |x ∈U Z∗n ]−

1
2

∣∣∣∣> θ ,

then one can define an algorithm A ′ calling A a number of 1
2 θ−2 ln 2

ε times such that

Pr
[
A ′(x) = χ(x) |x ∈U Z∗n

]
≥ 1− ε ,

with θ > 0 and ε > 0.

Proof. Let A be a probabilistic algorithm which is polynomial in s. Let

p = Pr [A(x) = χ(x)|x ∈U Z∗n] .

We define the following algorithm A ′(x):
1: initialize c1← 0 and c2← 0
2: for i = 1 to k do
3: pick some random bits b1, . . . ,bt and r ∈U Z∗n
4: set x′ ← xxb1

1 · · ·x
bt
t r2 mod n

5: c1← c1 +A(x′)yb1
1 · · ·y

bt
t

6: pick some random bits b1, . . . ,bt and r ∈U Z∗n
7: set x′ ← xb1

1 · · ·x
bt
t r2 mod n

8: c2← c2 +A(x′)yb1
1 · · ·y

bt
t

9: end for
10: output the sign of c1c2

Since p �= 1
2 , we observe that x′ at step 7 is uniformly distributed in Z∗n and such that

χ(x′) = yb1
1 · · ·y

bt
t . For this, see Lemma 3 given below.
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So, c2 is incremented with probability p and decremented with probability 1− p. Due
to the Chernoff bound [4], the final value of c2 has the sign of p− 1

2 with probability

at least 1− e−2k(p− 1
2 )

2
. Similarly, c1 multiplied by the sign of p− 1

2 will have the sign

of χ(x) with probability at least 1− e−2k(p− 1
2 )

2
. So, the algorithm produces the correct

value of χ(x) with probability at least 1− 2e−2k(p− 1
2 )

2
.

By taking k = 1
2 θ−2 ln 2

ε and since |p− 1
2 |> θ, we attain the required probability of

“success” for the algorithm A ′ thus-wise constructed, where ε is the “error” in the text
of the theorem. ��

Lemma 3 (Lemma 4.16 in [20]). Let G and H be two finite Abelian groups. We denote
by d the order of H, where the group operation is denoted additively. Let x1,x2, . . . ,xr ∈
G. If x1, . . . ,xt H-generate G then by picking r ∈U dG and b1, . . . ,bt ∈U {0, . . . ,d− 1}
then dr+ b1x1 + · · ·+ btxt is uniformly distributed.

Now assume a ppt. algorithm GenGM which generates a modulus n = pq as in the
Goldwasser-Micali cryptosystem [7] and t > 1, i.e., GenGM(1s) → (n). We define
GenCHI(1s)→ (n,( ·p), t), given that we have GenGM(1s)→ (n), p being one of the
two prime factors of n selected at random, and t = 2. We can then see that the hardness
of quadratic residuosity implies the hardness of the CHI problem relative to GenGM .
Formally, this is proven below.

Theorem 1. If the QR problem is hard relative to GenGM, then CHI problem is hard
relative to GenCHI.

Proof. Let A be an adversary against CHI. Let GenQR(1s)→ (n). We pick one of the
two hard characters χ at random. Let

pn = Pr[A(x,n,x1,x2,χ(x1),χ(x2)) = χ(x)|n,span2(x1,x2) = Z∗n] .

over x,x1,x2 ∈U Z∗n and χ. Due to the definition of GenCHI , what we have to prove is
that E(pn) is negligible when the QR problem is hard relative to GenQR.

We construct an adversary B(u,n) against QR as follows. By definition, we have
(u/n) = +1. Then, we pick v ∈U Z∗n until (v/n) = −1 and σ ∈U {−1,+1}. Let χ be
the only hard character of Z∗n of order 2 such that χ(v) = σ. Clearly, χ is a uniformly

distributed hard character. Then, we select bits a,b,c,d until

∣∣∣∣a b
c d

∣∣∣∣ is odd. Finally,

r,r′ ∈U Z∗n. We define x1 = uavbr2 mod n and x2 = ucvd(r′)2 mod n.
The residue u is quadratic if and only if χ(u)=+1. When it is not, then span2(u,v) =

Z∗n. In that case, (x1,x2) is randomly distributed over the pairs such that span2(x1,x2) =
Z∗n. Still in the case that χ(u) = −1, we note that χ(x1) = (−1)aσb, χ(x2) = (−1)cσd .
Let x = uαvβ(r′′)2 mod n with α,β ∈U {0,1} and r′′ ∈U Z∗n. Clearly, x is uniformly
distributed in Z∗n and χ(x) = (−1)ασβ. Thanks to the good distributions, we have

Pr[A(x,n,x1,x2,(−1)aσb,(−1)cσd) = (−1)ασβ|n,χ(u) =−1] = pn .



558 S. Bogos, I. Boureanu, and S. Vaudenay

In the case χ(u)=+1, the inputs to A are independent from α. So, the above probability
becomes 1

2 .
We define

B(u,n) = 1A(x,n,x1,x2,(−1)aσb,(−1)cσd) �=(−1)ασβ .

Clearly, for (u/n) = −1, we have Pr[B(u,n) = 0|n] = pn. For (u/n) = −1, we have
Pr[B(u,n) = 1|n] = 1

2 . So,

Pr[B(u,n) = 1u∈QRn ] =
1
4
+

E(pn)

2
.

Assuming that the QR problem is hard relative to GenQR, we obtain that
∣∣∣E(pn)

2 − 1
4

∣∣∣ is

negligible. Therefore, |E(pn)− 1
2 | is negligible as well. Since this holds for all A , we

deduce that the CHI problem is hard relative to GenCHI . ��

In this paper, we use the CHI problem with χ(·) =
( ·

α
)

over Z∗n, for a factor α of n. For
the CHI problem to be hard, α must be a hard factor of n. So, we tune our parameters
to ensure this. So far, we know no algorithm better than finding α to solve the CHI
problem. So, we believe that our selection method is enough to guaranty security.

3 SIS: A Primeless Public-Key Cryptosystem

Our proposed scheme, denoted SIS, is described below. We assume a security parameter
s. Based on s, other parameters of SIS will be defined, namely t, k, and �. The exact
way to choose these parameters is discussed in Section 4.

3.1 The Core of the Cryptosystem

In Algorithm 1, we describe the key generation procedure of our SIS cryptosystem. As
usual, the procedure runs in the security parameter s. Algorithm 1 generates and uses
within a parameter denoted t, which will have its expression in this security parameter s
made clear in the next section.

This key generation procedure produces a pair (α,n) of integers such that α is an
odd factor of n. We note that the value n is part of the public key, whereas the integer
α is kept secret. Therefore, the Jacobi symbol ( ·α ) is a character of order 2 in Z∗n. Then,
in the generation procedure, t values, x1,x2, . . . ,xt , are randomly picked from Z∗n. Using
the Jacobi symbol ( .

α ), the values yi are computed as ( xi
α ), for all 1 ≤ i ≤ t. If all yi’s

are equal to 1, then all the xi values are dropped and the procedure restarts by choosing
again all these values, in the same fashion. (In any case, this occurrence of re-starting
is rare: it happens with a probability close to 2−t ; there are rare cases where all yi’s are
always 1, i.e., when α is a square.)
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1: Input: Security parameter s.
Output: Public key: (n,x1,x2, . . .xt ,y1,y2, . . .yt); Private key: α.

2: compute t, k, and � depending on s, as per (1) in p. 562 and (2)-(4) in p. 563
3: pick random odd integers αi and βi of size �, i = 1, . . . ,k;
4: compute α = α1×·· ·×αk
5: compute β = β1×·· ·×βk
6: compute n = α ·β
7: pick x1,x2, . . . ,xt ∈U Z∗n
8: compute yi = ( xi

α ) for all 1≤ i≤ t
9: if yi = 1 for all 1≤ i≤ t, then go-to step 3

Algorithm 1. SIS: Key generation

Intuitively, we could expect that taking k = 1 would be the optimal option. We will
see in the analysis in the next section that there is an advantage in taking k larger.

In Algorithm 2 below, we show how to encrypt a bit b using our SIS cryptosystem.

1: Input: a bit b.
Public key: (n,x1,x2, . . .xt ,y1,y2, . . .yt).
Output: the encryption z, z ∈ Z∗n.

2: find yi =−1, i ∈ {1, . . . , t}
3: pick b1,b2, . . . ,bi−1,bi+1, . . . ,bt ∈U
{0,1}

4: compute P = ∏ j �=i y
b j

j

5: if P = (−1)b then bi← 0 else bi← 1.
6: compute z′ = xb1

1 · · ·x
bt
t (mod n)

7: pick r ∈U Z∗n
8: compute z = r2 · z′ (mod n)

Algorithm 2. SIS: Encryption

From the public values yi, the encryption procedure firstly selects t bits such that
∏i ybi

i = (−1)b. The value z = r2× xb1
1 · · ·x

bt
t (mod n) is computed, where the number

r is randomly picked. The result denotes the ciphertext of the bit b. Having got the
ciphertext z and knowing value α, one decrypts z by solving (−1)b = ( z

α ), where ( z
α ) is

the Jacobi symbol of z with respect to α. This is presented in Algorithm 3.

1: Input: the encryption z, z ∈ Z∗n.
Secret key: α.
Output: a bit b.

2: compute ( z
α ).

3: if ( z
α ) = 1 then b = 0 else b = 1 .

Algorithm 3. SIS: Decryption
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Correctness. The SIS encryption scheme is correct, i.e., if z is the encryption of a bit b
as above, then one can decrypt z to b, provided that it knows the secret value α. To see
this, we give the following lemma.

Lemma 4. ( z
α )= (−1)b, where the values z, α, the bit b are honestly computed/selected

as in the SIS cryptosystem.

Proof. From z = r2xb1
1 · · ·x

bt
t (mod n) as in the scheme and α a divisor of n, it follows

that z = r2xb1
1 · · ·x

bt
t (mod α). Using the standard properties for the Legendre symbol,

we obtain that the value ( z
α ) is as follows:

( z
α )= (

r2x
b1
1 ···x

bt
t

α ) = ( r
α )

2( x1
α )b1 · · · ( xt

α )
bt = 1 · yb1

1 yb2
2 · · ·y

bt
t = (−1)b. ��

3.2 Security Analysis

It is clear that to perform a secret key recovery attack, an attacker needs to find the
factor α of n. So, SIS strongly relies on the factoring problem.

Take now the goal of the adversary to be guessing whether b is 0 or 1. We follow
the standard lines in saying that our cryptosystem is IND-CPA secure if for every poly-
nomial adversary A outputting a bit b′, its advantage AdvA(s) = Prα,n,X ,B[b = b′]− 1

2
is negligible in terms of s, where n and α are the modulus used and its secret factor
generated in the scheme, b is the encrypted bit, X and B respectively denote the values
xi and bi that are picked during a run of the scheme.

Let a ppt. algorithm Gen such that Gen(1s)→ (n,χ, t) with χ(·) =
( ·

α
)

as per our
system. Then, the following corollary follows.

Corollary 1. Assuming that the CHI problem is hard relative to Gen, the SIS scheme
is IND-CPA secure.

Proof. It follows from the definition of hardness of the CHI problem in Section 2.2,
Lemma 2 and the construction of the SIS scheme, i.e., the bit that an A is supposed to
output correctly to break IND-CPA security is the character ( z

α), where z is generated
in Algorithm 2 and α is the secret generated at the setup phase. ��

Thus, we reduced the IND-CPA security of the SIS scheme to the hardness of the CHI
problem (which is assumed to be hard). Since the SIS-scheme is homomorphic, it is
clearly not IND-CCA secure.

4 Selection of the Parameters

4.1 The Local Parameter t

Let us assume that the parameters k and � are chosen and we attempt to gauge the right
choice for t. Let s ∈ Z be the security parameter and L = 2k� be the bitlength of n. We
pick the value t such that we obtain the uniqueness of the homomorphism in the GHI
corresponding problem. Namely, we pick t to be greater than the value r specified by
Lemma 1, specialised here for d = 2.
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Theorem 2. (Theorem 4.29 in [20]) Let G, H be some Abelian groups, and d the or-
der of H. The probability Pgen that some elements g1, . . . ,gs ∈U G picked uniformly at
random H-generate G satisfies

Pgen ≥ ∏
q∈Pd

(
1− qkq − 1

(q− 1) ·qs

)
,

where Pd is the set of all prime factors of gcd(#G,d) and kq is the rank of the maximal
q-subgroup of G. (Given a prime q, the q-subgroup of G is the subgroup Aq of elements
whose order are powers of q. The rank kq is the integer such that there exists a unique se-
quence of integers aq,1 ≤ ·· · ≤ aq,kq such that Aq is isomorphic to Zqaq,1 ⊕·· ·⊕Z

q
aq,kq ).

To apply the above theorem to our case, we give the following corollary.

Corollary 2. The probability that {x1, . . . ,xt} in the SIS scheme Z2-generates Z∗n is

Pgen ≥ 1− 2k2−t ,

where k2 is the rank of the group A2 and A2 is the maximal 2-subgroup of Z∗n.

In order to enforce 1−Pgen≤ 2−s, we get a sufficient bound for t: i.e., t ≥ k2+s. Further,
the rank k2 of the 2-subgroup of Z∗n is closely related to ω(n), i.e., the number of distinct
prime factors of n [8]. More precisely the relation is as follows.

Lemma 5. The rank k2 of the 2-subgroup of Z∗n is: ω(n), if n is odd or 4 divides n and
8 does not divide n; ω(n)− 1, if 2 divides n and 4 does not divide n and ω(n)+ 1, if 8
divides n.

Proof. We write n as ∏r
i=1 pαi

i ×2α0 , where pi are different, odd primes. Then, by prop-
erties of Abelian groups, Z∗n is isomorphic with the group ∏r

i=1 Z∗
p

αi
i
×Z∗2α0 . The group

Z∗
p

αi
i

is cyclic of 2-rank equal to 1, for each pi as above. The group Z∗2α0 is: either the

trivial group, hence of 2-rank equal to 0 (if α0 = 0 or α0 = 1); or Z2, hence of 2-rank
equal to 1 (if α0 = 2); or of 2-rank equal to 2 (if α0 > 2). Since the 2-rank of a product
is the sum of the 2-ranks, we compute the 2-rank of Z∗n in terms of r. We conclude with
the fact that ω(n) = r if n is odd and ω(n) = r+ 1, otherwise. ��

So, since n to be generated in the SIS scheme is odd, we conclude as follows:

Corollary 3. For t ≥ω(n)+s, x1, . . . ,xt Z2-generate Z∗n with a probability greater than
or equal to 1− 2−s.

By the Ramanujan-Hardy theorem [8], the average number ω(m) of distinct prime fac-
tors of a random number m is ln(lnm). Further, by the Erdös-Kac theorem [5] says

that ω(m)−ln lnm√
ln lnm

follows the standard normal distribution, for such a random number

m. So, Pr
[
ω(m)> ln lnm+

√
2s. ln2. ln lnm

]
is F(−

√
2s. ln2), where F is the standard

normal cumulative distribution function.
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We can apply the arguments above using the numbers αi and βi that the Key
generation algorithm produces. Namely, first see that ω(n) ≤ Σ2k

i=1(ω(αi) +ω(βi)).
So, we can bound the mean of the variable ω(n) with that expected value 2k× ln
ln�. So,

Pr
[
ω(n)≥ 2k× lnln2�+

√
2s× ln2× 2k× lnln2�

]
≤ F(−

√
2s. ln2) .

Since F(−x) can be approximated with 1√
2π e

−x2
2 /x, then the probability is smaller than

1√
4πs ln2

2−s. Thus, all things considered, we can take:

t =
⌈

2k ln ln2�+
√

2s. ln2.2k. ln ln2�+ s
⌉
. (1)

Hence, t can be taken of the order of
√

s · k · log�+ s. The final estimation of t asymptot-
ically in s will be clear at the end of this section, after we see exactly how k and � vary
in s.

Note: As one can see, one dominant component in the asymptotic expression (1)
of t is the standard deviation of the random variable characterising ω(n), i.e., in the
term

√
2s. ln2.2k. ln ln2�. We ran several experiments with smaller α’s and β’s and we

observed that in practice this standard deviation is in fact smaller than
√

2k× ln(ln(2�))
and even smaller than the value of

√
ln(2k� ln2)2. So, in practice, t could potentially be

taken smaller than the asymptotic approximation proven here.

4.2 The Local Parameters k and �

It can be seen (as developed in Section 3.2) that in order for the CHI problem to be
hard and, separately for key recovery attacks to be impossible, α and β need to be hard
to find.

Let n be a positive integer and let its unique prime decomposition be as follows:
n = n1n2 · · ·nv, with n1 ≥ n2 ≥ . . .≥ nv. In [13], Knuth et al. look at the probability that,
for a random number n, the rth largest of its prime factors, nr, is smaller than nx where
0 < x < 1. We recall some commonplace notations describing this:

– Fr(x) = limN→+∞
Pr(x,N)

N , where Pr(x,N) = #{1≤ n≤ N|nr ≤ Nx};
– ψ(x,y) = P1

(
logy
logx ,x

)
is the de Brujin function [9] and the ratio ψ(x,y)/x can be

interpreted as the probability that an integer chosen at random in the interval [1,x]
has all its prime factors smaller than or equal to y. This function has several approx-
imations [9,13].

– Thus, F1(x) = limN→+∞
ψ(N,Nx)

N = ρ(1/x) where ρ is Dickman’s function. Since
ρ(u)≤ 1

u! , we use a convenient upper bound (F1(x))−1 ≥ 1
x !. In [16], van de Lune

and Wattel provide a numerical table for ρ(u) when u is large.

2 This would be the standard deviation predicted by the Erdös-Kac theorem, if the latter were
applicable directly to an n generated like ours.
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We express our security desiderata (the hardness on n’s factorisation); to do so, we will
use some value x ∈ (0,1). To ease our explanations, we start by recalling the complex-
ities of factoring with elliptic curves, ECM and with the generalised number sieves,
GNFS.

– Given the constants c,ε ∈ R we define a function

CGNFS(L,c,ε) = c× (e

(
3
√

64
9 +ε

)
(ln2L)

1
3 (ln ln2L)

2
3

. The complexity of factoring n with
GNFS [14] is in CGNFS(log2 n,O(1),o(1)). We deduce that we can reasonably take
ε ≈ 0 and c ≈ 2−14. In what follows, CGNFS(L) = CGNFS(L,2−14,0). We take for
granted that CGNFS(1248)≈ 280 [2].

– We define a function CECM(L,c′,ε′) = c′ × e
√

2+ε′
√

ln2L ln ln2L
. The complexity of

factoring a number n with ECM [15] is in CECM(log2 p,O(1),o(1)), where p is the
smallest factor of n. In what follows, CECM(L) =CECM(L,2−14,0) as in CGNFS. So,
even though one would find all factors of n of length smaller than x�, one would
not isolate α.

Now, we impose our conditions to align the security of SIS to the security levels of
factoring moduli in general, in public-key cryptography. First, we impose equation (2).
This equation stipulates that factors of n with no divisors of size less than x� are hard
to find with ECM. There is one such factor in αi, respectively in βi, with probability
1−F1(x). Equation (4) ensures that we have at least k′ of such factors in n and at least
one in α or in β, respectively. Equation (3) means that the product of hard-to-find factors
is also hard to factor with GNFS.

CECM(x�) ≥ 2s (2)

CGNFS(k
′x�) ≥ 2s (3)

k′−1

∑
i=0

(
2k
i

)
F1(x)

2k−i(1−F1(x))
i + 2

k

∑
i=k′

(
k
i

)
F1(x)

2k−i(1−F1(x))
i ≤ 2−s (4)

The latter condition would approximate to
(

2k
k′

)
F1(x)2k−k′+1 + 2F1(x)k ≤ 2−s, where

the second term could be neglected for k′ > k. Practically, using SAGE [22], we derive
the following parameters.

s 80 128 192 256 320 384 448 512
x 0.0561 0.0654 0.0653 0.0652 0.0651 0.0574 0.0585 0.0593
k 1 2 3 4 5 5 6 7
k′ 2 3 4 5 6 6 7 8
� 10978 16553 31080 50143 73204 117776 145499 181116

k′x� 1232 3248 8118 16347 28593 40562 59581 85921
2k� 21956 66212 186480 401144 732040 1177760 1745988 2535624

t 143 247 379 512 648 743 880 1018

We recall that 2k� is the modulus size and that k′x� would be the modulus size for GM
or RSA with equivalent security.
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Interpreting the Optimised Parameters. For instance, with s = 128, the probability that
αi resp. βi is 2x�-smooth is F1(x) ≈ 2−65.3 and the probability that we do not have at
least 3 non-smooth factors out of 2k = 4 is 2−128.0. So, we could count on at least 3
factors with no prime divisor of length lower than x�, i.e., on a hard-to-factor integer of
3x� bits.

On Choosing k. Asymptotically, we can take x ∼ loglog s
logs , k ∼ s

logs , k′ = uk given a

constant u, and � ∼ s2. Clearly, (2)-(3) are satisfied. We have
(

2k
k′

)
≤ 22k. By using

F1(x)−1 ≥ 1
x !, we can show that F1(x)−1 ≥ sO(1), so

(
2k
k′

)
F1(x)2k−k′+1 ≤ 2−s by tuning

u appropriately. This makes sure that (4) is satisfied. So, we have 2k� ∈ O
(
s3(logs)−1

)
.

Since we already showed that t ∈ O(
√

s.k. log�+ s), obtain t ∈ O (s). We recall that
(according to the note on page 562) experiments indicate that this could be a pessimistic
approximation of t and suggest that, in practice, t could be taken smaller.

In contrast, k = 1 and k′ = 2 leads us to x ∈ O
(

logs
s

)
then to 2k� = O

(
s4(logs)−3

)
which is asymptotically larger than before. So, there is an advantage in taking k larger
than 1 (which was maybe not intuitive to begin with).

5 Complexity of the Scheme

5.1 Asymptotic Complexity

In the modulus-generation phase, 2k integers of size � are randomly picked and 2k− 1
multiplications are performed, in order to obtain the value n. These operations are per-
formed in O(2k�+Σi2iCmul(alg, k�

2i )), i = 0,1, . . . , log2 2k− 1, where Cmul(alg, �) de-
notes the complexity of multiplying numbers of � bits using a particular algorithm, i.e.,
Cmul(schoolbook, �)=O(�2), Cmul(Karatsuba, �)=O(�log2 3), Cmul(FFT-optimised, �)=
O(� log�). In the next, “sch.” denotes the schoolbook multiplication and “FFT ” denotes
the FFT-based multiplication algorithm [23].

Thus, the complexity of modulus generation in SIS, O(SIS-Gen), is

O(2k�+Σi2iCmul(alg,
k�
2i )) =

{
O((k�)2), if alg is sch.
O(k� logk�), if alg is FFT.

The choices for the values xi from Z∗n and the computation of the values yi are done
in O(2tk�+ tCJac(alg,2k�)), where CJac(alg,x) denotes the complexity to calculate the
Jacobi symbol on an input of two x-bit integers, using the algorithm alg for the mul-
tiplication needed inside the calculation of the symbol. We know that CJac(alg,L) =
Cmul(alg,L) log L, for L being a size of the inner modulus. Thus,

O(2tk�+ tCJac(alg,2k�)) =

{
O(t× (k�)2 logk�), if alg is sch.
O(t× (k�)(logk�)2), if alg is FFT.

For encryption, one performs at most t +1 multiplications to compute z, which takes
O(tCmul(alg,2k�)). The value P is then computed within a complexity of order O(t).

This gives a total complexity of the order of

{
O(t× (k�)2), if alg is sch.
O(t× (k�) logk�), if alg is FFT.
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For decryption, we need to compute one Jacobi symbol. This implies a complexity

of

{
O((k�)2 logk�), if alg is sch.
O((k�)(logk�)2), if alg is FFT.

By SIS-s, we denote the SIS cryptosystem over the domain {0,1}s, in which –of
course– the encryption and decryption have an overhead factor of s. We do consider
s-bit messages since, while having a security 2s, one would be interested in encrypting
a symmetric key of s bits to use a consistent security level in hybrid encryption.

We would now like to compare our complexity with the complexity of the GM and
RSA schemes. Given the existent optimised implementations of RSA, we will consider
the most expensive multiplication algorithm, e.g., schoolbook multiplication, as well as
the cheapest multiplication one, e.g., FFT-based.

An additional fact to consider in this comparison is that –in general– the key-
generation in public-key cryptosystem is a one-time process, i.e., one generates the keys
once and encrypts/decrypts several times. An exception to this case is, as we mentioned
in the introduction, the context of forwards secrecy and secure delegation of linear alge-
bra computation. In these cases, the secure delegation protocols require re-generation
of each run of the secret/public keys. Outside this setting, it is compelling to consider
separately the case of the complexity of RSA without the key generation and draw a
corresponding comparison with the complexity of the system herein.

Another thing to bare in mind in this comparative study is that the SIS cryptosystem
in its presented form encrypts a single bit. The GM system has also a “bit-by-bit” fash-
ion. So, if we were to compare SIS asymptotically with the RSA that encrypts s bits at
once, then we ought to consider s encryptions of the SIS cryptosystem.

For this comparison, we take the asymptotic values k� ∈ O
(
s3(logs)−1

)
and t ∈

O
(

s
3
2 (logs)−

1
2

)
that we obtained. We consider the GM cryptosystem first. By looking

carefully at the complexity of the GM cryptosystem, one can conclude with Table 1.

Table 1. Asymptotic Complexities in Security Parameter s for GM vs. SIS

key-generation encryption decryption
schoolbook multiplication GM O(s12(logs)−8) O(s6(logs)−4) O(s6(logs)−5)

SIS O(s7(logs)−1) O(s7(logs)−2) O(s6)

FFT-based multiplication GM O(s9(logs)−5) O(s3(logs)−1) O(s3)

SIS O(s4(logs)) O(s4) O(s3 logs)

We consider now the RSA cryptosystem. Let us denote by RSA the instance of RSA
when we have a random full-size e. When we take the public exponent of RSA as a
constant, e.g., e = 216 + 1, we will refer to using RSAe cte..

We wrap the complexity comparison between RSA and SIS-s in Table 2.
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Table 2. Asymptotic Complexities in Security Parameter s for RSAe cte. vs. SIS

key-generation encryption decryption
schoolbook multiplication RSAe cte. O(s12(logs)−8) O(s6(logs)−4) O(s9(logs)−6)

RSA O(s12(logs)−8) O(s9(logs)−6) O(s9(logs)−6)

SIS-s O(s7(logs)−1) O(s8(logs)−2) O(s7)

FFT-based multiplication RSAe cte. O(s9(logs)−5) O(s3(logs)−1) O(s6(logs)−3)

RSA O(s9(logs)−5) O(s6(logs)−3) O(s6(logs)−3)

SIS-s O(s4(logs)) O(s5) O(s4 logs)

5.2 Experimental Results

To assess the correctness of our analysis, we implemented and compared the running
time of RSA and SIS-s. The experimental environment consists of a Linux kernel 3.2.0-
31 that runs on a Intel Xeon 3.33Ghz CPU. The implementation was done in C and for
our large numbers we used the GMP library [6]. The implementations of both SIS-s and
RSA were tested for the same security parameters illustrated in the table from page 563,
namely s varies from 80 to 512.

SIS-s Implementation. Our implementation verifies the asymptotic complexities we
provide in Table 2. In practice, if we compute the slope of the regression line for the
logarithmic running time of key generation, encryption and decryption against logs,
we get 5.7 for the key generation, 6.2 for the encryption and 6.0 for the decryption
algorithm. Indeed these values are slightly smaller than the ones in Table 2 as GMP has
efficient implementations of its operations, e.g., multiplication or computation of the
Jacobi symbol.

Comparing RSA and SIS-s. Besides verifying that the asymptotic complexity of SIS-s
is valid, we are also interested in comparing the running time of RSA and SIS-s for the
generation of the key.

Figure 1 illustrates both the running time (Figure 1a) and the logarithmic running
time (Figure 1b) of the key generation for RSA and SIS-s, where the security parameter
s takes values between 80 and 512. The running time is measured in seconds. For small
values of s, the generation of primes for RSA is faster than our primeless method. But
one may notice that once we increase the value of the security parameter the two plots
intersect at around s = 300 and clearly the key generation of our SIS-s becomes faster
than the one of RSA. This behaviour reinforces our asymptotic study.

We conclude that, by comparison with GM and RSA, SIS exhibits improved asymp-
totic complexities for all procedures, apart from encryption. The result is sustained also
by our experimental results. This would solve the bottlenecks of the execution of secure
delegation of computation and/or key agreement with forward secrecy [1], i.e., of all
settings where the key-generation is not an one-off process.
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Fig. 1. Key generation SIS-s vs. RSA
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6 Conclusions

In this paper, using the same, main idea of relying on hard characters of order 2, we
have extended the Goldwasser-Micali cryptosystem in a way that bypasses completely
the use/generation of prime numbers. In doing so, the resulting scheme has a complexity
asymptotically smaller than the one of standard public-key cryptosystems. This would
yield a considerable speed-up to secure delegation protocols [18] and key agreement
with forward secrecy [1] that use homomorphic encryption schemes, GM included, in
a way where the key-generation is repeated at every run of the protocol.

It is possible to improve the efficiency of our cryptosystem by using characters of
higher order. For instance for characters of order 4, with the quartic residue symbol, the
two participants can encrypt two bits instead of one. In this scenario, participant A is
choosing βi and αi to be Gaussian integers and computes n as ∏i αi · ᾱi ·βi · β̄i, where
γ̄i is simply the complex-conjugate of a Gaussian integer γi. The B participant is now
choosing the values bi from {0,1,2,3}. The correctness and the security proof of this
optimised scheme are maintained (i.e., similar to the case of our cryptosystem, with
reductions to the MOVA4 [19] and a different proof on the distribution spawned by the
values z generated in such a scheme). Also, there exists a generalization of the GM cryp-
tosystem [11] which is using 2k-th power residue symbols. However, the complexity of
a scheme thus-wise optimised is higher than the one herein presented.

Still, using only characters of order 2, our cryptosystem can be extended so that it
directly encrypts more than 1 bit by using algebraic codes. This extension is not the
subject of this paper, being left for future work.

As future work, we would also like to study further the optimisation problem on
our parameters, implied by our computational hardness constraints. It would be inter-
esting to study from closer the standard deviation of ω(n), to find a tighter asymptotic
approximation of t.

Acknowledgements. We would like to thank Hannah Muckenhirn for some input in
the statistical analysis carried out for the completion of Section 4.1.
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Güneysu, Tim 389
Gupta, Payas 405

Habeeb, Maggie 475
Halevi, Shai 102
Han, Jin 272
Henry, Ryan 502
Henson, Michael 307

Ideler, Hugo 19

Joye, Marc 237

Kahrobaei, Delaram 475
Kolesnikov, Vladimir 69
Koupparis, Charalambos 475
Krehbiel, Sara 218
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Schäfer, Matthias 253
Schneider, Thomas 432
Shpilrain, Vladimir 475
Spreitzenbarth, Michael 373
Stein, Richard 53
Stelle, Stanislaus 432
Suzuki, Koutarou 458

Talviste, Riivo 84
Taylor, Stephen 307
Tey, Chee Meng 405
Trieu Phong, Le 487
Tzeng, Wen-Guey 37

Vaudenay, Serge 552
Vergnaud, Damien 534
Vora, Poorvi L. 441

Wang, Frank 102
Weng, Jian 186
Wenger, Erich 290
Wilcox-O’Hearn, Zooko 119
Wild, Alexander 389
Willemson, Jan 84
Winnerlein, Christian 119
Wu, David J. 102

Yan, Qiang 272
Yoneyama, Kazuki 458
Yu, Yu 186
Yuditsky, Yelena 69
Yung, Moti 202
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