
John Favaro
Maurizio Morisio (Eds.)

 123

LN
CS

 7
92

5

13th International Conference on Software Reuse, ICSR  2013
Pisa, Italy, June 2013
Proceedings

Safe and Secure
Software Reuse



Lecture Notes in Computer Science 7925
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



John Favaro Maurizio Morisio (Eds.)

Safe and Secure
Software Reuse
13th International Conference on Software Reuse, ICSR 2013
Pisa, Italy, June 18-20, 2013
Proceedings

13



Volume Editors

John Favaro
Intecs SpA
Via Umberto Forti 5, 56121, Pisa, Italy
E-mail: john.favaro@intecs.it

Maurizio Morisio
Politecnico di Torino, DAUIN
Corso Duca degli Abruzzi 24, 10129 Torino, Italy
E-mail: maurizio.morisio@polito.it

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-38976-4 e-ISBN 978-3-642-38977-1
DOI 10.1007/978-3-642-38977-1
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013940198

CR Subject Classification (1998): D.2.13, D.2, D.3, D.1, D.3.3, K.6

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

For over two decades the International Conference on Software Reuse (ICSR)
has been the premier event in the field of software reuse research and technol-
ogy. The theme of ICSR 2013 was “Safe and Secure Reuse.” Although reuse
has been routinely practiced in many domains for several decades, its take-up
has been slow in mission-critical domains owing to real and perceived problems
in guaranteeing safety and security. However, this is changing as practitioners
and researchers in these domains are seeking to reap the economic and quality
benefits of systematic reuse.

In the automotive domain, the AUTOSAR architecture promises to deliver
wide-scale component reuse, and the recent ISO 26262 standard for the safety of
automotive electronic systems defines an explicit scheme for component reuse.
In the aeronautics and space domains, standards efforts are seeking approaches
for component level certification. Keynote speaker John McDermid of the Uni-
versity of York spoke on the important topic of certification – noting that while
code production costs only amount to around 5-10% of the development costs,
verification and validation in support of certification is circa 50% of the costs
– in his talk on “Safe Reuse: Certification of Software Product Lines in Civil
Aerospace.”

Builders of mission-critical systems everywhere are looking to COTS to save
on costs, but need to ensure the safety and security of those systems. The co-
located Third International Workshop on Security and Dependability in Re-
source Constrained Embedded Systems focused on the combination of model-
driven engineering with reusable pattern-based representation of security and
dependability solutions, whereas the co-located International Workshop on Criti-
cal Software Component Reusability and Certification Across Domains narrowed
the focus to the emerging area of compositional certification of component-based
systems.

Despite the special focus on mission-critical reuse in this edition of the con-
ference, the foundational issues in software reuse that are the lifeblood of ICSR
were fully represented. Keynote speaker Ivar Jacobson, one of the founding fa-
thers of much of software reuse as it is practiced today, recounted his work in
the Software Engineering Method and Theory (SEMAT) community – where
a kernel of essential software development elements has been distilled that is
effectively a reusable methodology base – in his talk on “Creating Your Reuse
Method from Reusable Practices and a Method Kernel.” The co-located Interna-
tional Workshop on Designing Reusable Components and Measuring Reusability
addressed issues that lie at the very core of software reuse practice.



VI Preface

The goal of ICSR is not only to present the most recent advances in the
area of software reuse but also to promote an intensive and continuous exchange
among researchers and practitioners. The panel discussion led by General Chair
Martin Griss on “Software Reuse: Is Research Delivering for Industry?” attested
to the vibrancy of the software reuse community today.

June 2013 John Favaro
Maurizio Morisio



Organization

Organizing Committee

General Chair

Martin Griss Carnegie Mellon University, Silicon Valley
Campus, USA

Program Co-chairs

John Favaro Intecs, Italy
Maurizio Morisio Politecnico di Torino, Italy

Local Co-chairs

Giuseppe Lami CNR, Italy
Paolo Panaroni Intecs, Italy

Workshop Chair

Davide Falessi Fraunhofer, CESE, USA

Tutorials Chair

Marco Torchiano Politecnico di Torino, Italy

Demonstration and Tools Chair

Olaf Kath ikv++, Germany

Doctoral Symposium Chair

Ibrahim Habli University of York, UK

Industry Chair

Bin Hu AT&T, China

Panels Chair

George A. Papadopoulos University of Cyprus, Republic of Cyprus

Publicity Chair

Eduardo Almeida Federal University of Bahia and Fraunhofer
Project Center (FPC) for Software and
Systems Engineering, Brazil



VIII Organization

Web Chair

Antonio Vetro’ Politecnico di Torino, Italy

Corporate Donations Chair – Europe

Juan Llorens Universidad Carlos III de Madrid, Spain

Corporate Donations Chair – North America

Okan Yilmaz SS8 Networks, USA

Corporate Donations Chair – Asia

Kyo Kang POSTECH, South Korea

Corporate Donations Chair – South America

Vinicius Garcia Federal University of Pernambuco, Brazil

Program Committee

Anabel Fraga Carlos III University of Madrid, Spain
Jeffrey Poulin Lockheed Martin, USA
Claudia Werner UFRJ, Brazil
Dirk Muthig Lufthansa Systems, Germany
Marco Torchiano Politecnico di Torino, Italy
Federico Tomassetti Politecnico di Torino, Italy
Hassan Gomaa George Mason University, USA
Jaejoon Lee Lancaster University, UK
Xin Peng Fudan University, China
Birgit Geppert Avaya, USA
Lothar Hotz HITeC e.V. / University of Hamburg, Germany
Bill Frakes Virginia Tech, USA
Murali Sitaraman Clemson University, USA
Reidar Conradi Norwegian University of Science and

Technology (NTNU), Norway
Paris Avgeriou University of Groningen, The Netherlands
Davide Falessi Fraunhofer CESE, Maryland (USA)
Rafael Capilla Universidad Rey Juan Carlos, Madrid, Spain
Maria-Isabel Sanchez-Segura Carlos III University of Spain
George Papadopoulos University of Cyprus
Ibrahim Habli University of York, UK
Wolfgang Pree Universität Salzburg, Austria
Oliver Hummel University of Mannheim, Germany
Eduardo Almeida Federal University of Bahia and Fraunhofer

Project Center (FPC) for Software and
Systems Engineering, Brazil



Organization IX

Ivica Crnkovic Mälardalen University, Sweden
Ali Mili NJIT, USA
Jan Bosch Chalmers University, Sweden
Leonardo Murta UFF, Brazil
Stan Jarzabek National University of Singapore
Michal Smialek Warsaw University of Technology, Poland
Sven Apel University of Passau, Germany
Kyo Kang POSTECH, Korea
Cristina Gacek City University London, UK
Andreas Winter Carl von Ossietzky University, Germany
Christa Schwanninger Siemens AG, Germany
Jason Hallstrom Clemson University, USA
Uwe Zdun University of Vienna , Austria
Ted Biggerstaff Software Generators, LLC, USA
Michael Shin Texas Tech University, USA
Patricia Rodriguez-Dapena SoftWcare SL, Spain
Patricia Lago Vrije Universiteit Amsterdam, The Netherlands
Rainer Koschke University of Bremen, Germany
Alberto Sillitti Free University of Bolzano, Italy
Tullio Vardanega University of Padua, Italy
Markus Voelter Independent, Germany
Okan Yilmaz SS8 Networks, USA
Gregory Kulczycki Battelle Memorial Institute, USA
Hong Mei Institute of Software, Peking University, China
Christian Bunse FH Stralsund, Germany
Rick Rabiser Christian Doppler Laboratory for Automated

Software Engineering, Johannes Kepler
University, Austria

Helene Waeselynck LAAS-CNRS, France
Rob Van Ommering Philips Research, The Netherlands
Sholom Cohen SEI, USA
Hakan Erdogmus Kalemun Research Inc., Canada
Klaus Schmid University of Hildesheim, Germany
Paolo Falcarin University of East London, UK
Judith Stafford Tufts University, USA
Ebrahim Bagheri National Research Council Canada



X Organization

Sponsors

 



Table of Contents

Feature Modeling and Variability Analysis

Validating Consistency between a Feature Model and Its
Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Duc Minh Le, Hyesun Lee, Kyo Chul Kang, and Lee Keun

Mechanisms to Handle Structural Variability in MATLAB/Simulink
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Andrea Leitner, Wolfgang Ebner, and Christian Kreiner

An Analysis of Variability Modeling Concepts: Expressiveness vs.
Analyzability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Holger Eichelberger, Christian Kröher, and Klaus Schmid

Reuse and Testing

Towards Test Case Reuse: A Study of Redundancies in Android
Platform Test Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Suriya Priya R. Asaithambi and Stan Jarzabek

An Assessment of Test-Driven Reuse: Promises and Pitfalls . . . . . . . . . . . 65
Mehrdad Nurolahzade, Robert J. Walker, and Frank Maurer

Improving the Runtime-Processing of Test Cases for Component
Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Dominic Seiffert and Oliver Hummel

Architecture and Reuse

REARM: A Reuse-Based Economic Model for Software Reference
Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Silverio Mart́ınez-Fernández, Claudia P. Ayala, Xavier Franch, and
Helena Martins Marques

Cross-Domain Reuse: Lessons Learned in a Multi-project Trajectory . . . . 113
Silvia Mazzini, John Favaro, and Tullio Vardanega

Automatic Analysis of Software Architectures with Variability . . . . . . . . . 127
Gustavo G. Pascual, Mónica Pinto, and Lidia Fuentes

On Software Reference Architectures and Their Application to the
Space Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Marco Panunzio and Tullio Vardanega



XII Table of Contents

Analysis for Reuse

Automated Analysis in Feature Modelling and Product
Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

David Benavides, Alexander Felfernig, José A. Galindo, and
Florian Reinfrank

Configurable Software Product Lines – Supporting Heterogeneous
Configuration Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Elder Cirilo, Uirá Kulesza, Alessandro Garcia, Don Cowan,
Paulo Alencar, and Carlos Lucena

Extracting Models from ISO 26262 for Reusable Safety Assurance . . . . . . 192
Yaping Luo, Mark van den Brand, Luc Engelen, John Favaro,
Martijn Klabbers, and Giovanni Sartori

Assessing Software Quality through Web Comment Search and
Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Yanzhen Zou, Changsheng Liu, Yong Jin, and Bing Xie

Consistency among Domain Analysts in Selecting Domain Documents
and Creating Vocabularies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

Chaitanya Nemmallapudi, William B. Frakes, and
Reghu Anguswamy

Mining Cohesive Domain Topics from Source Code . . . . . . . . . . . . . . . . . . . 239
Bing Xie, Meng Li, Jing Jin, Junfeng Zhao, and Yanzhen Zou

Reuse and Patterns

Mining Instances of Structural Design Patterns from Class Diagrams
Based on Sub-patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

Dongjin Yu, Zhiqing Liu, and Jianlin Ge

Patterns for Use Case Context and Content . . . . . . . . . . . . . . . . . . . . . . . . . 267
Marinos Georgiades and Andreas Andreou

Short Papers

A Common Representation for Reuse Assistants . . . . . . . . . . . . . . . . . . . . . 283
Fábio P. Basso, Cláudia Maria Lima Werner,
Raquel Mainardi Pillat, and Toacy Cavalcante Oliveira

A Knowware Based Infrastructure for Rule Based Control Systems in
Smart Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Yangyang Lu, Ge Li, Zhi Jin, Xueyuan Xing, and Yiyang Hao



Table of Contents XIII

An Action-Stack Based Selective-Undo Method in Feature Model
Customization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

Li Long, Zhao Haiyan, Zhang Wei, and Wang Weichao

Feature Location in a Collection of Software Product Variants Using
Formal Concept Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

Ra’Fat AL-Msie’deen, Abdelhak Seriai, Marianne Huchard,
Christelle Urtado, Sylvain Vauttier, and Hamzeh Eyal Salman

A Language for Building Verified Software Components . . . . . . . . . . . . . . . 308
Gregory Kulczycki, Murali Sitaraman, Joan Krone,
Joseph E. Hollingsworth, William F. Ogden,
Bruce W. Weide, Paolo Bucci, Charles T. Cook,
Svetlana V. Drachova-Strang, Blair Durkee, Heather Harton,
Wayne Heym, Dustin Hoffman, Hampton Smith,
Yu-Shan Sun, Aditi Tagore, Nighat Yasmin, and
Diego Zaccai

Emerging Ideas and Trends

Estimating the Economic Value of Reusable Green ICT Practices . . . . . . 315
Qing Gu and Patricia Lago

Composition and Self-Adaptation of Service-Based Systems with
Feature Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

Javier Cubo, Nadia Gamez, Lidia Fuentes, and Ernesto Pimentel

Leveraging Reuse-Related Maturity Issues for Achieving Higher
Maturity and Capability Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

Luigi Buglione, Giuseppe Lami, Christiane Gresse von Wangenheim,
Fergal Mc Caffery, and Jean Carlo Rossa Hauck

Appendix: ICSR 2013 Workshop Summaries . . . . . . . . . . . . . . . . . . . . . . . . . 356
Davide Falessi

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361



J. Favaro and M. Morisio (Eds.): ICSR 2013, LNCS 7925, pp. 1–16, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Validating Consistency between a Feature Model 
 and Its Implementation 

Duc Minh Le1, Hyesun Lee1, Kyo Chul Kang1, and Lee Keun2 

1 Division of IT Convergence Engineering, POSTECH, Pohang, Republic of Korea 
{lemduc,compial,kck}@postech.ac.kr 
2 Samsung Electronics Co. Ltd., Republic of Korea 

gskeun.lee@samsung.com 

Abstract. Consistency across different lifecycle artifacts is an important issue 
in software engineering. In software product line engineering, validating 
consistency becomes even more complicated because product line assets have 
embedded variabilities. Commonality and variability (C&V) of a software 
product line (SPL) are usually captured using a feature model. Then, they are 
embedded into an implementation (i.e., asset code) using various techniques 
including preprocessor directives. However, the product line asset code often 
evolves without properly updating other lifecycle artifacts including the 
variability model, and verification of the consistency of C&V across different 
product line assets is a major challenge. In this paper, an approach to validating 
the consistency between C&V expressed in a feature model and C&V 
embedded in an implementation is proposed. With this approach, product line 
engineers can have a method for maintaining consistency of C&V across SPL 
assets systematically. This method has been applied to the flash memory 
software product line at Samsung Electronics Co. Ltd. and improvements have 
been made over the years based on the feedback. 

Keywords: Feature model, variability, consistency, preprocessing directive. 

1 Introduction 

Software product line engineering (SPLE) is an effective paradigm for developing 
products sharing a large set of common features. In SPLE, engineers create a family 
of products by identifying commonality and variability (C&V), creating assets with 
variation points and variants based on C&V, and instantiating and integrating these 
assets to develop products. Feature modeling [1] is a popular method in SPLE for 
capturing C&V of the products of a product line because it is an efficient communica-
tion medium between customers and developers. A feature model is usually used in 
the analysis phase to capture features (services, functions, platforms, etc.) that need to 
be provided by or interfaced with the products of a product line. The information 
captured by the feature model is then used to define variation points and variants of 
product line assets including architectures and components. 

Several methods are available for embedding features into software product line 
(SPL) implementations. Annotative methods (also called preprocessor directives)  



2 D.M. Le et al. 

[2, 3, 4, 5] allow developers to include or remove code segments based on the  
selection of features. Component-based compositional methods [2, 5], or recently, 
feature-oriented programming [6] attempts to implement features as cohesive compo-
sitional units. The industrial community tends to use simple and proven approaches, 
hence annotative approaches are more popular in practice. For instance, C/C++  
preprocessing directives are widely used in the automotive industry [2]. 

The annotative approach is easy to learn and allows fine-grained implementation of 
variation points. However, it tends to make source code complex; thus, SPL assets are 
difficult to maintain and evolve. In addition, it is very hard to understand complex 
dependencies between preprocessing directives (i.e., variation points and variants)  
in asset code. Thus, a systematic method for modeling and understanding complex  
dependencies between variation points is needed. When a feature model is derived 
from these variation points, it can be used for analyzing and understanding the  
dependencies. The asset code (with variation points and variants) can be maintained 
and evolved along with the feature model which is much easier to understand  
the dependencies between variation points and is often used for configuration  
management in SPL. 

A feature model is used to model structural/compositional relationships between 
features such as inclusion, generalization, optionality, and mutual exclusion [1], 
which must be realized in the asset implementation. While implementing the  
variability in the code, developers often make mistakes. Table 1 presents two different 
examples implementing an alternative group of a feature model. The loose structure  
in Table 1 shows an example of inconsistency between a feature model and its  
implementation. 

Table 1. Implementation of alternative features 

Feature Model 
Implementation 

Loose structure Tight structure 
 

 
 

#if A 
#endif 
#if B 
#endif 

#if A 
#elif B 
#else 
   #error 
#endif 

In the example, features A and B are alternatives; one and only one feature must be 
selected in the implementation. If a developer uses the loose structure to implement 
the alternative group, then the alternative group is realized as an Optional variation 
point. Although the implementation still realizes all the configurations required by the 
alternative group, the developer has created a variation point that is not consistent 
with the feature model. The variability expressed in the feature model was not em-
bedded into software correctly as variation points, and both A and B, or neither of 
these two, can be included in a product. 

Maintaining consistency between a feature model and its implementation is one of 
the most difficult tasks in SPLE. It becomes even more complex when there is  
constant evolution of a product line, which is a typical case. In industry, implementa-
tion code often evolves ahead of, or independently from, the evolution of the feature 



 Validating Consistency between a Feature Model and Its Implementation 3 

model. In order to manage the assets of a product line, synchronizing evolution of  
the feature model with that of the asset code as well as periodically validating the  
consistency between the two artifacts are needed. 

There have been several studies on checking consistency of C&V across SPL arti-
facts. Vierhauser [7] reported their results of applying the DOPLER approach [8] for 
incrementally checking the consistency between a variability model (a decision model 
in this case) and its implementation. Based on a decision model, they defined a num-
ber of constraints (e.g. attributes of a feature must not be empty), and then validated 
the consistency between these constraints and SPL implementations. However, in 
reality implementation often evolves separately from variability models, and the ap-
proach did not address this type of scenario. Satyananda [9] provided a formal ap-
proach to verifying the consistency between a feature model and a description model 
of SPL architecture. However, their approach does not include the checking of the 
consistency between the feature model and its implementations. 

To address the above issues, a method for validating the consistency between va-
riability expressed in a feature model and variability embedded in its implementation 
(as variation points and variants) is proposed in this paper. This research aims to an-
swer two research questions. The first one is how to extract a feature model from 
variation points and variants embedded in source code. The second question is how to 
validate that the extracted feature model is consistent with the original one. Variabili-
ty expressed by a feature model needs to be reflected correctly in its implementation. 

The assumptions of this research are that: 1) a feature model already exists; and 2) 
the asset code was implemented based on the feature model, using C preprocessor 
macros. Note that in the method only service/design features (of a feature model) that 
are directly mapped to variation points in the implementation are considered; check-
ing consistency between features that are not explicitly mapped to the code (e.g., fea-
tures for business requirements or quality attributes) and implementation is not in the 
scope of the paper. Both the feature model and its implementation may evolve, and 
we like to evolve their variability consistently.  

There are SPL support tools (such as Gears [10], pure::variants [11]) available in 
the market to assist developers to develop and manage SPLs systematically. Our  
research, however, does not make assumptions about usage of those tools in devel-
opment/maintenance of SPLs because of the following reasons. First, as detailed 
technologies used in commercial tools are not open, it is difficult to use their variabili-
ty management technologies for general research and use. Second, analyzing pro-
grams without knowledge of the technologies used is a great impediment to properly 
managing variability and evolution. 

The remainder of this paper is organized as follows. Section 2 provides back-
ground knowledge associated with this research. Section 3 provides details on how to 
recover a feature model from code, and how to compare the recovered feature model 
with the original one. Related works and discussions of the method are presented  
in Sections 4. 



4 D.M. Le et al. 

2 Background 

2.1 Features and Feature Models 

Since feature modeling was first introduced in FODA [1], there have been many ex-
tensions/variants [9, 12, 13]. Our research follows FODA and considers all the model 
primitives defined in it: features, feature relationships, and feature attributes. Fig. 1 is 
the feature model of a Memory Management module of MicroC/OS-II [14]. 

“Features are key distinctive characteristics of a product” [1]. A feature model 
represents structural/conceptual relationships between features of a family of products 
as an AND/OR graph. A feature may be decomposed or refined into a set of features, 
of which some may be mandatory, optional, or alternative. A feature model may also 
contain additional dependencies. Two common dependency types are require and 
exclude. A feature may have attributes whose values may be set for a product. Each 
attribute has its own name and a value range. (In this paper, attributes of features will 
not be represented in a feature model, to avoid complexity as was done in FODA.) 

 

Fig. 1. The feature model of a Memory Management module of MicroC/OS-II 

2.2 Embedding Features into Implementation 

In this section, we explain the usage of preprocessing directive techniques to embed 
variability in the source code. Among preprocessing directive techniques, C prepro-
cessor technique is a popular one. In C, the preprocessor handles directives, such as 
macro variable definition (i.e., #define), conditional inclusion (i.e., #if), and source 
file inclusion (i.e., #include), and automates the removal of irrelevant parts keeping 
only relevant parts during the pre-compilation stage. 

Conditional inclusion is used to define the inclusion or exclusion of code segments 
based on the value of “macro variable” or “macro expression”. It allows developers to 
embed variability into source code by creating variation points. The mechanism is 
used to encapsulate multi-implementations (i.e., variants) or to parameterize variants, 
and then to select or to instantiate appropriate code segments later following configu-
ration decisions. Typically, a software engineer defines the value of macro variable as 
1/0 or TRUE/FALSE to indicate whether or not the associated feature is selected. 



 Validating Consistency between a Feature Model and Its Implementation 5 

The #include directive is used to include the entire text of a file into the position of 
the directive. Using this directive, developers can implement variants in separate files, 
and then include them later. This study also considers the #error directive, which is 
used to stop compilation when the configuration is invalid. 

3 The Proposed Method 

The proposed method contains two main phases: reverse engineering a feature model 
from source code and validating it against an analysis feature model. 

The purpose of the reverse engineering phase is to address the first research ques-
tion. This phase focuses on analyzing variation points embedded in source code and 
recovering a feature model from them semi-automatically (i.e., expert’s decisions are 
required at some points in the recovering process). In addition, the proposed method 
provides algorithms for recovering the feature model that is “structurally similar” to 
the original one (i.e., the analysis feature model) as much as possible for cognitive 
reasons. This is very important, because from one set of variation points, engineers 
may derive many valid but structurally different feature models [12]. Recovering the 
feature model that is structurally close to the original one will greatly help maintainers 
understand differences while a product line evolves. 

In the validation phase, the second research question is addressed by comparing the 
recovered feature model with the original one based on two properties of feature 
models: “configurability” (i.e., semantic consistency) and “structure” (i.e., syntactic 
consistency). In [13, 15], the set of feature configurations that a feature model permits 
is defined as “the semantics of the feature model.” However, in our perspective, only 
semantic consistency is insufficient; Syntactic consistency is also an important prop-
erty while comparing two feature models. The structure of a feature model is a repre-
sentation of a domain as perceived by domain experts and engineers like to maintain 
it throughout the evolution of a product line. Also, the syntactic consistency should be 
reflected in the implementation to narrow the cognitive gap between a feature model 
and its implementation. Therefore, even if the semantic consistency is satisfied, engi-
neers still need to be concerned about the syntactic consistency between the original 
feature model and the recovered one. 

3.1 Reverse Engineering Phase 

An overview of artifacts and activities of the reverse engineering phase is shown in 
Fig. 2. Each of the activities is explained in the following subsections. 

A. Extracting Variability Information 
1) Parsing Code 
In this section, rules for extracting the following three types of dependencies are  
defined.  

The first type is dependencies between code segments and macro expressions. The 
notation “!” is used to denote the negation of an expression, and “&&” and “||” are 
used to represent the conjunction and disjunction of expressions. The notation “►” is 
used to denote a mapping between a variation point VP (i.e., a macro expression) and 
a variant V (i.e., a code segment) which is called VP-V “dependencies” in short  



6 D.M. Le et al. 

(e.g. A ► CS1). This mean
only if the macro expression
to extract dependencies betw

 

The second type is depend
macro dependencies. They 
notation “=>” is used to de
left side is true, then the exp

The third type is depend
tural dependencies. They ca
the code segment on the lef
of it is also included. 

The rules to extract these
Rule 1: If a code segment
selection depends on the co
the directives (as shown in T

A. Extracting

Information 

B. Extracting

s that the code segment CS1 is included in a product if 
n A is evaluated to TRUE. VP-V dependencies can be u
ween macro expressions, which are explained as follow

 

Fig. 2. Reverse Engineering phase 

dencies between two macro expressions, which are cal
are “imply” relationships between macro expressions. T
enote “imply”, which means that if the expression on 
pression on the right side is also true.  
encies between two code segments, which are called str
an be represented by “imply” relationships, which mean
ft side is included, then the code segment on the right s

e dependencies from the code are as follows: 
t (CS) is nested inside conditional inclusion directives,
onjunction (denoted by “&&”) of all macro expressions
Table 2). 

g Variability 

g a Feature Model 

and 
used 
s. 

lled 
The 
the 

ruc-
ns if 
side 

, its 
s of 



 Validating Consistency between a Feature Model and Its Implementation 7 

Rule 1 permits transformation of nested directives to semantically equivalent  
logical expressions, and therefore, the same VP-V mapping can be extracted  
from different macro structures that are semantically equivalent. For example, 
“A&&B&&C►CS” is derived from different macro structures in Table 3. 

Table 2. Rule 1 example 

Implementation Obtained VP-V Dependencies 
#ifdef (or #if) A 
    CS1 
  #ifdef (or #if) B  
      CS2 
  #endif 
#endif 

A ► CS1 
A&&B ► CS2 

 

Table 3. Semantically equivalent but different macro structures 

structure 1 structure 2 structure 3 

 

 

 

 
Rule 2: Within an if-elif-else structure, a #elif directive can be transformed to the 
conjunction of its expression and negations of all expressions above the #elif di-
rective, and a #else directive can be transformed to the conjunction of negations of all 
the expressions above the #else directive (as shown in Table 4). 

Table 4. Rule 2 example 

Implementation Obtained VP-V Dependencies 
#if A 
    CS1 
#elif B 
  CS2 
#else 
  CS3 
#endif 

A ► CS1 
!A&&B ► CS2 
!A&&!B ► CS3 
 

 
Rule 3: If there is an #error directive in a conditional inclusion, then the logical  
expression that makes preprocessor meet the #error directive implies False. 

Table 5. Rule 3 example 

Implementation Obtained Expression 
#if A&&B 
  #error 
#endif 

A&&B => False 



8 D.M. Le et al. 

The #error directive is usually used with conditional inclusion directives to stop the 
compiler if the condition occurs. Therefore, developers use it to describe an invalid 
configuration. Table 5 is an example of applying Rule 3. The expression “A&&B => 
False” can be transformed to “A=>!B” and “B=>!A” (mutual exclusion dependencies) 
which are macro dependencies. 
 
Implicit dependencies between macros can be found following the program structure. 
Rule 4 is for extracting the program structure. 
Rule 4: Call dependencies of methods and inclusion relationships of files  
(represented by #include directives) are retrieved as “imply” relationships.  

A call dependency indicates that a method needs other methods in order to operate 
correctly, and therefore an “imply” relationship is defined. In the same manner, based 
on a file inclusion relationship, an “imply” relationship is defined. Methods and files 
that contain preprocessing directives are only considered in the analysis in order  
to reduce the computation time. Dependencies extracted using this rule are called  
structural dependencies. 

2) Experts’ Involvement 
According to Rules 1 and 2, logical expressions in VP-V dependencies are conjunc-
tions of macro variables. If there is a disjunction (denoted by “||”) in a macro expres-
sion, it is treated as one macro variable (i.e., mapped to a feature later). For example, 
with a VP-V mapping “A&&B&&(C||D) ► CS”, a new macro variable “X” is  
introduced and defined as X ≡ (C||D), and then the mapping is converted to 
“A&&B&&X ► CS”. In this way, every expression in VP-V dependencies is  
converted to conjunctive logical expressions. 

Although the VP-V dependencies between code segments and macro expressions 
have been extracted, dependencies between macro variables are not explicit. Due to 
diverse styles of implementing variability in the code, it is difficult to identify all 
macro dependencies only from VP-V dependencies; Expert’s involvement is required. 
For example, if “A requires B” was implemented using a macro expression “A&&B”, 
there is no clue to identifying the relationship from the macro. Hence, these types of 
ambiguous expressions need to be clarified by domain experts. Rule 5 is about this 
experts’ involvement. 

 
Rule 5:  
- If the logical expression of a VP-V dependency contains a single macro variable,  
the code segment is considered as the implementation of the macro variable, and the 
macro name (which is the name of a feature) is used to represent the code segment. 
- If the logical expression of a VP-V dependency is formed by conjunction of macro 
variables, a domain expert chooses which macro variable(s) is implemented by the 
code segment. The expert can select more than one macro variable(s). Then, VP of the 
VP-V dependencies is changed to conjunction of the selected macro variables, and the 
other macro variable(s) (that is not selected) becomes an “implied macro variable(s)” 
that are required by the selected macro variables. 



 Validating Consistency between a Feature Model and Its Implementation 9 

For examples, with “A&&B&&C ► CS”, if the domain expert indicates that CS is 
the implementation of A, then the mapping is transformed to “A ► CS”, and two 
macro dependencies “A => B” and “A => C” (i.e., B and C are implied by A) are 
identified. If the expert decides that both A and B are implemented by CS, then the 
mapping is changed to “A&&B ► CS” and one macro dependency “A&&B => C” 
(i.e., A&&B implies C) is derived. 

3) Refining and Classifying 
If a macro variable has a corresponding feature name of the original feature model, it 
will be evaluated to 0 (i.e., false, not selected) or 1 (i.e., true, selected) according to 
the selection of the feature. To reduce the complexity of macro expressions, each 
comparative expression of macro variables, that is evaluated to a logical value de-
pending on the selection status of the associated features, is simplified to a macro 
variable. For example, “A > 0” is evaluated to true if A is selected, and false,  
otherwise; therefore it will be simplified to “A”. Finally, after refining all macro de-
pendencies and structural dependencies, these dependencies are classified into two 
categories: implication (e.g., A=>B) and exclusion (e.g., A=>!B). 

B. Extracting a Feature Model. 
1) Building an Implication Graph. 
An implication graph [12] is built based on extracted implications. Nodes denote ma-
cro variables/macro expressions/files/functions and edges are the implication relation-
ships between them. Then, a mapping table between the nodes and corresponding 
features is used for creating an implication graph of features. Table 7 is an example of 
such a mapping table. 

Table 6. Feature mapping table 

Feature Corresponding node
Partition Management OS_MEM_EN 
Argument Checking OS_ARG_CHK_EN 
Critical Section Access OS_CRITICAL_METHOD  
Partition Creation OSMemCreate() (function) 
Memory Management os_mem.c (file) 

2) Extracting a Feature Hierarchy. 
A feature model has the following characteristic: If a feature is selected, so is its par-
ent. With this characteristic, the hierarchy information of a feature model can be de-
rived from an implication graph. However, there can be more than one semantically 
equivalent but structurally different feature models that can be derived from one im-
plication graph. We would like to derive a feature model that is most structurally 
close to the original model so the cognitive gap between two models becomes narrow 
and understanding differences becomes easier than otherwise. To do this, the original 
feature model is used as the reference to extract an appropriate hierarchical structure 
from the implication graph. 

An implication graph is a weightless directed graph. In our method, each edge is 
given a weight based on the original feature model and then a spanning tree is ex-
tracted from it. An edge connecting two features that are near to each other in the 



10 D.M. Le et al. 

original feature model is gi
that are further away. Edge
“U” (means unknown), and
ning tree, it is highly likely
monds' algorithm (also call
minimum branching in the i

Fig. 3. The recovere

In Fig. 3, solid-line-rectan
dashed-line-rectangles repr
Weights are given to the ed
Fig. 1. Not all of macro v
line has evolved or becaus
lines in Fig. 3 show a featu
algorithm. Other edges (i.e
dependencies between featu

Annotative approaches p
level of granularity. Howev
code segments related to a 
create many require depend
this case, the recovered fe
dependencies. To address 
model using the following g
“If many features are asso
cies, the complexity of a fe
feature with the nearest com
cal Section Access” and “
children of “Partition Mana

3) Adding Exclusions. 
The recovered feature mod
dependencies. Based on the
(in the Refining and Classif
cies between features are 
each other, they form an a
dependencies in the recover

ven a smaller weight than an edge connecting two featu
es that do not appear in the original model are annotated
d given the largest weight. By finding the minimum sp
y to get a feature model most close to the original one. 
led Chu–Liu/Edmonds' algorithm) [16] is used to find 
implication graph. 

 

ed feature hierarchy of a Memory Management module 

ngles represent features derived from files/methods, 
resent features mapped from macro variables/expressio
dges of the implication graph based on the feature mode
variables have corresponding features because the prod
se they are implementation of feature attributes. The b
ure model hierarchy that was derived using the Edmon
., dashed arrows) in the implication graph become requ
ures. 
provide a mechanism for expressing variability at a f
ver, this can also be a disadvantage; with a large proj
feature tend to be scattered across asset code, which m

dencies between the scattered feature and other features
eature model becomes complex because of many requ

this problem, we can re-organize the recovered feat
guidelines which is based on a previous work by Lee [1
ciated with a common feature through require depend

feature model can be reduced by associating the comm
mmon parent of its related features.” For example, “Cr
Argument Checking” in Fig. 3 can be moved upward

agement”. 

del so far contains parent-child relationships and requ
e exclusion dependencies extracted from macro expressi
fying section), alternative groups and/or exclude depend
recovered. If features that have the same parent excl
alternative group. Otherwise, exclusions become excl
red feature model. 

ures 
d by 
pan-
Ed-
the 

and 
ons. 
el in 
duct 
bold 
nd’s 
uire 

fine 
ect, 

may 
s. In 
uire 
ture 
17]: 
den-
mon 
riti-
d as 

uire 
ions 
den-
lude 
lude 



 Validating Consistency between a Feature Model and Its Implementation 11 

4) Adding Missing Mandatory Features. 
Several annotative methods such as ASADAL [18] contain keywords that describe 
mandatory features. Although C preprocessing directives are effective in embedding 
variability, they do not provide any mechanism for denoting mandatory features. 
Hence, some mandatory features, especially abstract container features that are not 
implemented, are absent from the recovered feature model. Therefore, the recovered 
feature model does not fully represent the hierarchical structure of the original one. 

To make the recovered feature model even more close to the original one, missing 
mandatory features are added to the recovered feature model based on the original 
one. The basic idea is to add missing intermediate mandatory features between parent 
and child features of the recovered feature model. After adding the features, the  
hierarchy of the recovered feature model becomes closer to that of the original one 
without changing relative positions between the existing features. 

3.2 Validation Phase 

In the second phase, consistency between the recovered feature model (RFM) and the 
original feature model (OFM) is verified. The RFM represents variability embedded 
in the implementation, and thus, differences between OFM and RFM indicate differ-
ences between the analysis feature model and its implementation. This research  
focuses on two types of consistency: semantic consistency and syntactic consistency. 

A. Semantic Consistency 
Semantic consistency is evaluated based on configuration comparison that shows the 
differences between configuration sets expressed by two feature models. In the pro-
posed method, validation of semantic consistency is based on the work done by Thum 
[19]. Their work has the following advantages. First, it covers all possible cases that 
can happen in configuration comparison: equivalence, generalization, specialization, 
and arbitrary cases. In addition, it does not require that two feature models have the 
same feature set as required by [20]. This is essential property in our research because 
two feature sets may be different due to the evolution of the product line. Details of 
se-mantic comparison are in the original paper [20].  

Equivalent case is the only case, in which the OFM and the RFM are semantically 
consistent. Otherwise, the SPL artifacts (feature model and/or implementation) need 
to be reengineered. 

B. Syntactic Consistency 
As mentioned in Section 1, using only semantic consistency is insufficient when validat-
ing consistency between two feature models. Without structure comparison (i.e., syntac-
tic consistency), it is difficult to determine where to revise the feature model and/or the 
asset code when semantic inconsistency occurs. Therefore, analysis of the syntactic 
consistency of two feature models is essential. Syntactic consistency  
facilitates tracing between the variability model (i.e., feature model OFM) and its  
 



12 D.M. Le et al. 

implementation in terms of variation points and variants RFM, thus improving maintai-
nability and evolvability of product line assets. In the reverse engineering phase, an 
RFM was transformed based on the structure of an OFM, which increases the  
structural similarity between two feature models and narrows down the cognitive gap. 

When syntactic inconsistency happens, we first (1) determine how two models are 
syntactically different (i.e., syntactic gap, which may cause a cognitive gap between 
two models) and then (2) determine the most efficient way to transform one model to 
the other. EMF Compare [21], a generic model comparison tool, is used to perform 
these activities. Owing to the flexibility of this tool, its match algorithm can be mod-
ified as needed. In addition, the comparison result is presented as a model that can be 
manipulated for our purpose. 

It is assumed that feature names of two feature models are consistent and two fea-
tures of two models are same if and only if their names are same (feature renaming 
can be addressed easily with a feature mapping table). Based on this, two types of 
structural changes of feature models are defined: basic and compound edit operations. 

1) Basic Edit Operations 
The comparison result from EMF is generic; it is described by a differences model 
[21] that contains basic edit operations such as addition, removal, and modification of 
model elements, attributes and references. To make the result more meaningful in the 
context of feature modeling, the generic result from EMF Compare is transformed to 
detailed edit operations on feature models. 

Unlike other works on comparing the hierarchy of feature models [22, 23], which 
do not fully cover basic edit operations on feature relationships, this research takes 
into account all the information of feature models (i.e., hierarchical structure, feature  
dependencies, and feature attributes). 

In this research, basic edit operations are categorized into three main types: Add, 
Remove, and Modify, of three model elements: features, feature dependencies (i.e., 
require, exclude) and feature attributes. Modify operation on a feature is specialized 
to Move (i.e., change location of a feature) and Update (i.e., change the type of a  
feature). Table 8 includes a summary of the basic edit operations. 

2) Compound Edit Operations 
In previous researches [22, 23], the researchers identified elementary edit operations. 
However, some of them tend to be executed together to perform a meaningful  
compound operation. One example of a compound edit operation is breaking an alter-
native group to exclude dependencies. It contains several basic edit operations such as 
moving features and adding new dependencies. To make feature model editing more 
efficient, compound edit operations are defined as shown in Table 9. These compound 
operations are found to be sufficient in the cases we applied our method to. However, 
other operations can be added as needed. 

The first two compound edit operations aim at restructuring a feature model with-
out changing require and exclude dependencies between features. If a feature is 
moved across a feature model, its original parent-child relationship is transformed to a 
require dependency. This is defined as a compound edit operation “Composed-of -> 
Require” which will perform moving a feature to a new location and adding a require 
dependency between the feature and its original parent. The compound edit operation 
 



 Validating Consistency between a Feature Model and Its Implementation 13 

Table 7. Basic edit operations 

  Feature Feature dependency Attribute 

  Add (f1, f2): Add feature f1 under 
feature f2 

AddDep(f1, f2, t): Add a 
new feature dependency of 
type t (r-require, e- ex-
clude) between feature f1 
and feature f2  

AddAtt(f, a, vr): 
Add new attribute 
a with value range 
vr to feature f 

Remove Remove (f): Remove feature f from the 
feature model, and connect the children 
of it to its parent 

RemoveDep(f1, f2, t): 
Remove an existing fea-
ture dependency of type t 
(r-require, e-exclude) 
between feature f1 and 
feature f2 

RemoveAtt(f, a): 
Remove attribute a 
from feature f 

Modify Update (f, t ): change the type of 
feature f to type t (m-mandatory, o-
optional, a-alternative) 

None UpdateAttValue 
(f, a, vr): Change 
the value range of 
attribute a to new 
value range vr Move (f1, f2): Move existing feature f1 

to under feature f2 

Table 8. Compound Edit Operations 

 

“Alternative -> Exclude Dependency” is also related to changing a feature hierarchy. 
If a child of an alternative group is moved, the alternative group is broken into fea-
tures with exclude dependencies between each pair. The last compound edit operation 
“Feature <- -> Attribute” is for transforming a feature to an attribute, or vice versa. 
While an SPL evolves, features may be changed to feature attributes, or vice versa. 

4 Discussion 

4.1 Related Work 

On recovering variability models (i.e., feature models) from implementation, Yang 
[24] proposed a method for recovering a feature model from multiple legacy applica-
tions in the same domain, whereas we extracted a feature model from an SPL  
implementation with embedded variability and also addressed evolution of this SPL 



14 D.M. Le et al. 

implementation. Czarnecki [12] proposed a method for creating a feature model from 
a set of propositional formulae not from source code. In their paper, the authors indi-
cated that reverse engineering a feature model from source code is one possible  
application in the future. She [25, 26] recovered feature models of Linux, eCos kernel, 
and FreeBSD based mostly on software configuration files. However, there is no  
discussion on how to extract feature dependencies from the implementation code. 

In [27], Kastern et al. proposed a method for parsing C preprocessor code that is 
very close to our method of extracting macro dependencies. They introduced a tool 
called TypeChef that supports parsing of C preprocessor code with variability-aware 
function. We have tried to use this tool with MicroC/OS-II code, but the program did 
not return parsing result. According to Kastner et al.’s report, they expect that “all 
features are Boolean and limit presence conditions to propositional formulas”. The 
tool evaluates constraints (i.e., “#if FeatureA > 0”) only if “the corresponding macros 
are defined with #defined within the source, and do not accept numeric constrains 
over features provided as open command-line parameters”. In MicroC-OS II, devel-
opers mostly used numerical comparisons in variation points without including #de-
fine directives before they use. This is why TypeChef cannot parse the MicroC/OS-II 
code. Although the authors provided a solution to convert countable parameters with 
Boolean flags, we decided to develop a parser for our research so that source code 
does not need to be modified to adapt to the requirements of TypeChef. 

Related to the validation of consistency between two feature models, previous 
works such as Schobbens’s [13, 15] considered only semantic consistency between 
two feature models. Thum [19] presented an algorithm that determines changes of the 
configuration set while modifying a feature model. We used their work to determine 
semantic differences between two feature models. Greenwood [28] referred to three 
aspects when comparing a feature model “designed” by domain experts and a feature 
model created automatically from requirements documents, which included feature 
similarity, structural similarity, and relationship similarity. However, they only intro-
duced brief definitions without a concrete method. In [12], Czarnecki et al. also men-
tioned about semantics of feature model other than configuration semantics, which 
they call ontological semantics (same as syntactic consistency in this research). They 
emphasized the importance of analyzing ontological semantics, but did not mention 
how to do that. Xing and others [22, 23] described feature hierarchy comparison, but 
they only discussed parent-child relationships. They did not provide a full set of edit 
operations and did not consider compound edit operations. 

4.2 Limitations and Future Research 

Experts’ involvement in the reverse engineering phase may be a drawback to the sca-
lability of our method. In this manual step, a domain expert needs to inspect every 
complex VP-V dependencies. This is a time-consuming task, especially while analyz-
ing large-scale systems. If developers follow programming conventions or use specif-
ic notations to indicate relationships between features and code segments, additional 
derivation rules can be defined to minimize domain experts’ involvement. 

Support tools for the method have been developed and integrated into VULCAN 
[29]. However, some steps of the method are conducted by external tools  



 Validating Consistency between a Feature Model and Its Implementation 15 

(e.g., semantic comparison is conducted using FeatureIDE [19]), and data structures 
of these external tools are different from that of VULCAN. We will integrate all the 
functions into VULCAN in a near future. 

The proposed method has been demonstrated using MicroC/OS-II. It has also been 
applied to a subsystem of the flash memory product line at Samsung Electronics Co. 
Ltd. and improvements have been made over the years based on the feedback we 
received. (Due to the limitation of space, the result will be reported in a separate pa-
per.) In the future, the method will be applied to the entire flash memory product line 
at Samsung Electronics Co. Ltd. and the findings will be reported in a separate  
paper. Furthermore, extending the method to support other variability mechanisms  
(e.g., aspect-orientation) in addition to the annotative approach is also planned. 

4.3 Conclusion 

SPLE is a paradigm for achieving high productivity and high quality of software.  
Currently, there are many proposed methods and support tools for helping software 
engineers create and manage SPLs efficiently. However, many software engineering 
problems often occur because engineers do not strictly follow prescribed processes. This 
research addressed a problem where a feature model and its implementation evolve 
independently without synchronization, which is typical in industry. A systematic me-
thod has been introduced to help software engineers validate the semantic and syntactic 
consistency between C&V expressed in a feature model and C&V embedded in its im-
plementation based on directives. While product lines evolve, the method will help 
software engineers maintain product line assets effectively and efficiently. The method 
has been experimented with various product lines (including MicroC/OS-II and Flash 
Memory Software product line) and shown promising results. 

References 

1. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-Oriented Do-
main Analysis (FODA) Feasibility Study. Technical report, CMU/SEI-90-TR-21 (1990) 

2. Kästner, C., Apel, S.: Integrating Compositional and Annotative Approaches for Product 
Line Engineering. In: McGPLE Workshop, pp. 35–40 (2008) 

3. Mengi, C., Fuß, C., Zimmermann, R., Aktas, I.: Model-Driven Support for Source Code 
Variability in Automotive Software Engineering. In: 1st MAPLE Workshop, pp. 44–50 
(2009) 

4. Beuche, D., Papajewski, H., Schröder-Preikschatb, W.: Variability management with fea-
ture models. Science of Computer Programming - Special Issue: Software Variability 
Management 53(3), 333–352 (2004) 

5. Gacek, C., Anastasopoules, M.: Implementing Product Line Variabilities. ACM SIGSOFT 
Software Engineering Notes 26(3), 109–117 (2001) 

6. Mezini, M., Ostermann, K.: Variability Management with Feature-Oriented Programming 
and Aspects. In: 12th ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, pp. 127–136 (2004) 

7. Vierhauser, M., Grünbacher, P., Egyed, A., Rabiser, R., Heider, W.: Flexible and Scalable 
Consistency Checking on Product Line Variability Models. In: 25th International Confe-
rence on Automated Software Engineering (ASE), pp. 63–72 (2010) 



16 D.M. Le et al. 

8. Dungana, D., Rabiser, R., Grünbacher, P., Neumayer, T.: Integrated Tool Support for 
Software Product Line Engineering. In: ASE 2007, pp. 533–534 (2007) 

9. Satyananda, T.K., Lee, D., Kang, S.: Formal Verification of Consistency between Feature 
Model and Software Architecture in Software Product Line. In: ASE 2007, pp. 63–72 
(2007) 

10. Gears, http://www.biglever.com/solution/product.html 
11. pure::variants, http://www.pure-systems.com 
12. Czarnecki, K., Wasowski, A.: Feature Diagrams and Logics: There and Back Again.  

In: 11th International Software Product Line Conference (SPLC), pp. 23–34 (2007) 
13. Schobbens, P.-Y., et al.: Feature Diagrams: A Survey and a Formal Semantics. In: RE 

2006 Proc. 14th IEEE International Requirements Engineering Conference, pp. 139–148 
(2006) 

14. Labrosse, J.J.: MicroC/OS-II, The Real-Time Kernel, 2nd edn., Newnes, UK (2002) 
15. Schobbens, P.-Y., Heymans, P., Trigaux, J.-C.: Generic Semantics of Feature Diagrams. 

Journal: Computer Networks 51(2), 456–479 (2007) 
16. Edmonds, J.: Optimum Branchings. J. Res. Nat. Bur. Standards 71B, 233–240 (1967) 
17. Lee, K., Kang, K.C., Lee, J.: Concepts and Guidelines of Feature Modeling for Product 

Line Software Engineering. In: Gacek, C. (ed.) ICSR 2002. LNCS, vol. 2319, pp. 62–77. 
Springer, Heidelberg (2002) 

18. Asadal Case Tool, http://selab.postech.ac.kr/asadal/ 
19. Thum, T., Batory, D., Kästner, C.: Reasoning about Edits to Feature Models. In: 31st  

International Conference on Software Engineering (ICSE), pp. 254–264 (2009) 
20. Janota, M., Kiniry, J.: Reasoning about Feature Models in Higher-Order Logic. In: SPLC 

2007, pp. 13–22 (2007) 
21. Brun, C., Pierantonio, A.: Model Differences in the Eclipse Modelling Framework. 

UPGRADE The European J. for the Informatics Professional 9(2), 29–34 (2008) 
22. Xing, Z.: Model Comparison with GenericDiff. In: ASE 2010, pp. 135–138 (2010) 
23. Xue, Y., Xing, Z., Jarzabek, S.: Understanding Feature Evolution in a Family of Product 

Variants. In: 17th Working Conference on Reverse Engineering (WCRE), pp. 109–118 
(2010) 

24. Yang, Y., Peng, X., Zhao, W.: Domain Feature Model Recovery from Multiple Applica-
tions Using Data Access Semantics and Formal Concept Analysis. In: 16th WCRE,  
pp. 215–224 (2009) 

25. She, S., Lotufo, R., Berger, T., Wøsowski, A., Czarnecki, K.: Reverse Engineering Feature 
Models. In: 33rd ICSE, pp. 109–118 (2011) 

26. She, S., Lotufo, R., Berger, T., Wøsowski, A., Czarnecki, K.: The Variability Model of the 
Linux Kernel. In: 4th VAMOS (2010) 

27. Kästner, C., Giarrusso, P.G., Rendel, T., Erdweg, S., Ostermann, K., Berger, T.: Variabili-
ty-Aware Parsing in the Presence of Lexical Macros and Conditional Compilation. In: 26th 
OOPSLA, pp. 805–824 (2011) 

28. Greenwood, P., Chitchyan, R., Noppen, J., Rashid, A.: Comparing Feature Models: An Ini-
tial Impression. In: Workshop on Empirical Evaluation of Software Composition Tech-
niques (2010) 

29. Lee, H., Yang, J.-S., Kang, K.C.: VULCAN: Architecture-Model-Based Workbench for 
Product Line Engineering. In: 16th SPLC, vol. 2, pp. 260–264 (2012) 



Mechanisms to Handle Structural Variability

in MATLAB/Simulink Models

Andrea Leitner1, Wolfgang Ebner1, and Christian Kreiner2

1 Virtual Vehicle Research Center
2 Graz University of Technology

Abstract. Systematically postponing variability binding is an impor-
tant design concept in Software Product Line Engineering in order to
increase flexibility. One major challenge is the technical implementa-
tion of respective binding mechanisms in different tool environments and
artifacts.

This work proposes variability and binding mechanisms for model-
based development with Matlab/Simulink. The aim is the explicit rep-
resentation of variability in order to support the development of generic
architectures, and the binding of variability in development models be-
fore code generation. This means that it should not only be possible to
describe variability, but also to derive concrete system models from the
generic platform.

We extend the pure::variants Connector for Simulink proposed by
pure-systems GmbH and Daimler AG, which provides basic variabil-
ity mechanisms. Based on common variability scenarios identified in in-
dustry, 3-layered templates are used to abstract the variability imple-
mentation. This abstraction simplifies the platform development process
and hides variability mechanisms from the developers. Additionally, we
introduce an approach to derive concrete system models by removing
variability information and disabled functionality from the model.

Keywords: Software product line engineering, Model configuration
binding time, Model-based development.

1 Introduction and Motivation

This work describes experiences and research outcomes from our current project.
The overall aim of the HybConS1 project is the implementation of a generic
software architecture for hybrid control units (HCU) of Hybrid Electric Vehi-
cles (HEV) [1]. A hybrid electric vehicle basically consists of at least one elec-
tric motor and some other kind of energy source, usually a combustion engine.
The main advantages are significant improvements in vehicle performance, en-
ergy utilization efficiency, and polluting emissions. Hybrid electric vehicles may
vary in different drivetrain configurations (e.g. mild hybrid or full hybrid), dif-
ferent mechanical components (e.g. different types of transmissions), different

1 http://www.iti.tugraz.at/hybcons

J. Favaro and M. Morisio (Eds.): ICSR 2013, LNCS 7925, pp. 17–31, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.iti.tugraz.at/hybcons


18 A. Leitner, W. Ebner, and C. Kreiner

software-supported functionalities (e.g. pure electric drive), different supported
markets (different legal constraints) and more. Software should support various
drivetrain configurations and their respective software functions resulting in a
generic control software with commonalities as well as variabilities. Generic in
our understanding does not mean to provide all possible solutions, but a defined
set of relevant ones. This motivates the use of a software product line (SPL)
approach.

The main advantage of software product lines in this context is the possibility
to systematically postpone binding and thus, increase flexibility. The binding
time indicates when the decision for a specific variant has to be taken at lat-
est [2]. Theoretically, each possible point in time during the product lifecycle
can be a potential binding time. Practically this is infeasible, because of the re-
sulting high complexity and due to technical restrictions. Technical restrictions
are caused by the unavailability of binding mechanisms for different tools or
language implementations, respectively.

Currently, the representation of variability in Simulink models is possible only
partly. The pure::variants Connector for Simulink provides special blocks, which
can be used to describe variability in Simulink. Nevertheless, these blocks are
very low level, making their use cumbersome in real world projects, because
variability usually does not only occur on statement level. In order to improve
the development process, we identified typical variability scenarios and provide
variability templates for their representation. What is completely missing with
existing means is the possibility to reduce a variant-rich model to a specific
system model by removing unnecessary information. Being able to generate spe-
cific model instances can be helpful in customer communication in order to not
reveal all possible implementations. Another, more technical reason is the inde-
pendence of code generators. Most code generators are not able to cope with
variability information or only to a very limited extent, since they are not part
of the original language definition. This is also true for the interoperability with
other tools, e.g. architecture analysis. One possibility to handle this problem is
the transformation to a model without these language extensions [3].

This work has two main contributions: First, we can improve the represen-
tation of variant-rich models by the use of an additional layer of abstraction.
This is realized by the concept of variability mechanism templates, which ease
the description of typical variability scenarios. The second contribution is the
implementation of a binding mechanism for model-based development with Mat-
lab/Simulink, which enables the instantiation of concrete product models from
a variant-rich development platform model. This corresponds to the transforma-
tion of a variant-rich model into a model without variability. In the following,
we refer to this binding time as ModelConfigurationTime [4].

The paper is structured as follows: Section 2 discusses related aspects from re-
cent literature. Section 3 gives some basic technical background information on
variability representations. Section 4 describes the variability mechanism tem-
plates with its 3 layers in detail. Section 5 shows the implementation of model con-
figuration binding. Section 6 describes how these variability mechanism



Structural Variability in MATLAB/Simulink Models 19

templates can be used in practice. Section 7 gives a small example and Section
8 gives an outlook on possible future work and finally concludes the paper.

2 Related Work

There are many classifications for variability binding times in current literature.
The simplest is the classification in compile time, link-time and start-up time [2].
A similar approach is the separation of system configuration into 3 main steps:
Compiling, linking, loading. Before, during and after each of these steps variants
can be bound. Examples for binding mechanisms before compilation time are
code generation, aspect oriented programming and model driven approaches.

For configuration at compile time, precompiler macros and conditional com-
pilation may be distinguished. Precompiler macros are actually evaluated before
compilation. In the case of conditional compilation commands are given via pa-
rameters. Variant configurations at link time can be implemented e.g. by the
use of a Makefile. Depending on the given parameter, certain compilations and
linkages are performed. A configuration file can represent all files that have
to be loaded together and thus realize different variants at load time. At run-
time, components may register their interfaces and access points in a central
registry [5].

Krueger [6] gives a good summary and overview of different binding times and
their corresponding mechanisms.

Another classification focused on automotive embedded systems has been in-
troduced by Fritsch et al. [7]. The authors distinguish between 4 different binding
times: Programming, Integration, Assembly and Run Time.

Czarnecki et al. [8] describe an approach for negative variability. They propose
to connect feature models to model templates which are used to instantiate
template instances based on a concrete feature selection. The model templates
are unions of all possible model elements. We follow a very similar approach.

Haugen et al. [9] describe a separated language approach for specifying vari-
ability in domain-specific language models. They propose a Common Variability
Language (CVL) and corresponding variability resolution mechanisms embed-
ded in the OMG2 metamodel stack. This allows for the description of variability
in potentially all MOF-based languages, including UML, as well as MOF- and
UML profile-based domain-specific languages. Although this represents a gen-
eral purpose, clean approach for handling variability and providing a single point
of control, it is not applicable for the representation of variability in Simulink-
based implementations because the Simulink metamodel is proprietary and not
publicly available.

Schulze et al. [10] introduce a concept to explicitly separate functionality and
variability handling mechanisms in Simulink models. They provide a concept to
improve the representation of structural variability (e.g. optional or alternative
implementations). Therefore, they introduce so called variable function modules.

2 http://www.omg.org/mof/

http://www.omg.org/mof/


20 A. Leitner, W. Ebner, and C. Kreiner

Several function modules can be connected to a variation point and are selected
depending on the variation point value.

Trujillo et al. [11] provide variability mechanisms for SysML3 in a tool environ-
ment consisting of BigLever Gears4 for variability description and IBM Rational
Rhapsody for system modeling. Stereotypes represent the variation points in
the system model. Each variable element is annotated with a condition. Product
derivation following this concept works as follows: All model elements which are
not annotated by a variation point stereotype are included in the final product
model. For all other model elements, the condition is evaluated and if it holds,
the element will be part of the resulting model.

Since Matlab R2011 there is integrated variant management support5 in
Simulink. With this environment it is possible to represent alternative subsys-
tems and models in Simulink models. The selection of the active alternative is
based on conditions which can be defined on Model Variants or Variant Sub-
systems, respectively. Conditions consist of variables which are defined in the
workspace. Optional behavior can be represented by Enabled subsystems. Con-
trary to our approach it is only possible to use different variants for simulation,
but not to reduce the model to a specific variant. Additionally, we use variation
points, which can be connected to an external feature model.

3 Background Information and Context

Separation of concerns is an often used approach in order to handle complexity
in system development and also for variability representations. A common way
of separation is the distinction between a problem and a solution space. They are
defined as follows: “The set of all valid system specifications in a domain (e.g.
valid feature combinations) is referred to as the problem space and the set of all
concrete systems in the domain is referred as to as the solution space” [12]. In
other words, the problem space contains the explicit description of variability and
the solution space corresponds to respective variability mechanisms provided by
different system implementations. Figure 1 illustrates this distinction together
with configuration links between the two spaces.

Another reason for the use of two spaces is the separation of variability from
the system implementation. First, abstraction enables the configuration of prod-
ucts by sales persons without detailed technical knowledge. This requires a vari-
ability description consisting of all possible system configurations together with
its constraints. Once this knowledge has been encoded in a variability model
concrete systems can easily be derived from the family representation. Second,
technical realizations are exchangeable. In concrete, a technology independent
variability model can be used to configure different technical realizations of the
same system. This could be artifacts from different development stages (e.g.
requirements, implementation, tests) or implementations for different platforms.

3 www.omgsysml.org/
4 http://www.biglever.com/
5 http://www.mathworks.de/help/toolbox/simulink/ug/bskmec9.html

www.omgsysml.org/
http://www.biglever.com/
http://www.mathworks.de/help/toolbox/simulink/ug/bskmec9.html


Structural Variability in MATLAB/Simulink Models 21

Problem space Solution space

Configuration knowledge

Variability description Variability mechanism
possible system 
specifications Variation points

Fig. 1. Distinction between a problem space containing the explicit variability
representation and the solution space containing variability mechanisms

3.1 Variability Description

Over the years, several distinct modeling paradigms have emerged in order to
solve specific problems. The most important ones are as follows:

Feature-oriented modeling uses features to describe commonalities and vari-
abilities of systems. A feature can be defined as “a prominent and distinctive
user visible characteristic of a system” [13]. The big advantage of this kind of
abstraction is that it can be understood by both, customers and developers
[14].

Kang et al. [15] first proposed the use of features to represent the problem
domain with the concept of Feature-Oriented Domain Analysis (FODA). A
feature model consists of a hierarchical representation called feature diagram
and composition rules, such as mutual exclusion (excludes) and mutual de-
pendency (requires). Commonality can be described in terms of mandatory
features and variability in terms of optional or variant features [16].

Domain-specific modeling uses domain-specific languages for the specifica-
tion of domain concepts [17]. “A domain-specific language (DSL) is a pro-
gramming language or executable specification language that offers, through
appropriate notations and abstractions, expressive power focused on, and
usually restricted to, a particular problem domain” [18]. Domain-specific
languages provide better solutions for a smaller set of problems. This nar-
rower problem space provides higher expressiveness [19], and can be used to
generate products directly from these high level specifications [17].

The main distinction is the use of creative construction for domain-specific lan-
guages, and the use of a certain configuration space for feature models [20]. This
means that they are applicable to different types of variability.

3.2 Variability Mechanisms

One important part of the variability mechanism is the concept of variation
points. Variation points indicate where variation can occur and thus can be
regarded as delayed design decisions [21]. They provide several possible variants
which can be chosen for a concrete product. At the moment a specific variant



22 A. Leitner, W. Ebner, and C. Kreiner

is selected, the variation point is said to be bound. The binding time is defined
as “the point in time when the decision upon selection of a variant must be
made” [2]. In many modeling or development environment design decision can
be identified and intentionally left open. More precisely, variation points are
described explicit.

There are two different strategies to represent variability in the solution space.

– negative variability [22,23,24]: the artifacts contain both, common and vari-
able parts. Parts which are not required in the current selection are removed
from the artifact. The main challenge is to ensure correct behavior after
removing parts and to avoid unconnected elements.

– positive variability [22]: This strategy starts with a minimal core where op-
tional elements can be added. A common approach here is the modularization
in single units (e.g. components). The units are composed to build the con-
crete system. Main challenges are the definition of common interfaces and
cross-cutting features.

The remainder of this paper focuses on negative variability. In the automotive
domain, model-based development with Matlab/Simulink is very common. The
current work is based on the pure::variants Connector for Simulink [25], devel-
oped by pure-systems GmbH and Daimler AG. This framework provides basic
variability support for our tool environment consisting of two parts: a Simulink
part and a pure::variants part. The Simulink part provides a blockset (Simulink
library) which is divided into two categories:Control Blocks (e.g. VAR Constant)
and Variability Mechanisms (e.g. VAR Switch, VAR Model). Variability mecha-
nisms provide no special functionality in this framework. They only indicate the
existence of variability. The actual configuration is only possible with variation
points which are assigned to Control blocks.

Variation points define and incorporate all possible values for variation. One of
these variations can be selected at a time. In order to enable the consistent con-
trol of variability, one variation point can be assigned to various Control blocks.
Variation points are the connection points to pure::variants which are used by
the Control Blocks and configured by pure::variants. The pure::variants counter-
part uses a variability model, which is based on a pure::variants Family model to
represent the variation points. The two parts communicate bidirectionally. The
pure::variants import functionality reads the variation points and builds a vari-
ability model. Valid selections can be propagated back to the Simulink model by
a transformation. Current selections can be used for simulation, but variability
information and unused model parts are still part of the model.

3.3 Beyond Existing Technology

Summarized, the pure::variants Connector for Simulink provides basic vari-
ability representation mechanisms and control blocks. They can be used to
represent variability in Simulink and bind variability at code generation time
or for simulation.



Structural Variability in MATLAB/Simulink Models 23

In order to improve the usability of this existing framework, we propose the
use of variability mechanism templates for alternative as well as for optional
functionality. These templates use existing technology, but provide an abstrac-
tion to hide variability mechanisms from the developer. Additionally, we pro-
pose a transformation which removes variability-related information and disabled
functionality from the Simulink model.

4 Variability Mechanism Templates

Typical application scenarios present important requirements for an efficient im-
plementation of variability mechanisms. Together with developers we identified
two different variability scenarios which are likely to occur in a common indus-
trial development setting. They perfectly fit with xor and optional constraints
from feature-oriented modeling.

Alternative implementation means that one of several subsystem implemen-
tations has to be chosen to be part of a concrete product. This is a common
scenario, because especially in the automotive domain several aspects of the
overall system do have an influence on the software. Changing settings in
other parts of the system often cause changes in software as well. Different
system settings can be supported by providing alternative implementations.

Optional implementations are part of only some product variants, because
functionality is often only possible for some system settings. This case re-
quires a mechanism to enable or disable single parts of the implementation
depending on the current system configuration.

The proposed work extends the existing pure::variants Connector for Simulink
as follows: Additionally to the Control Block and Variability mechanism block-
sets, we provide a blockset called Variability Template Blocks including two tem-
plate blocks inspired by the application scenarios described above. Both template
blocks implement the same 3-layered structure as illustrated in Figure 2. The
topmost level represents the user-visible block. This block can be used and con-
figured by the system developer for a specific application as will be described
later on. We use the existing pure::variants variation point concept in order to
control variability mechanisms in the middle layer. The actual varying system
implementation is encapsulated on the lowest layer.

This layered structure does not only improve the development of new models.
It also supports refactoring of existing models, which is an important aspect in
platform development in order to support domain evolution.

4.1 The 3-Layered Structure in Detail

This section describes the implementation, usage, and binding of the two vari-
ability templates. In general, each block has only one output signal, either a
single signal or a bus signal. A bus signal is a collection of different signals,
which graphically appears as one signal in a model.



24 A. Leitner, W. Ebner, and C. Kreiner

User-visible modeling
block incorporating variability

(Simulink subsystem)

Variability mechanism
layer 

(dedicated to variability only)

Subsystem 
implementation
(application specific)

Fig. 2. 3-layered structure of a variability template block

User-Visible Subsystem for Simulink. Variability mechanism blocks on this
user-visible layer are not much different from usual Simulink blocks, except their
different coloring which indicates variability. The encapsulation of variability re-
duces complexity for the developer, because not all possible variants are modeled
on this layer and thus are hidden from the developer. The developer only has
the information that there is variability.

Variability Mechanism Layer. The variability mechanism layer encapsulates
the implementation of variability mechanisms for the two templates.

Alternative Implementations. Figure 3 illustrates the variability mecha-
nisms for alternative implementations. For simplicity, we require alternative
implementations to have the same interface. The pure::variants Connector for
Simulink provides a VAR Multiport Switch and a VAR Const block exactly for
this scenario. The VAR Multiport Switch consists of a configuration port and
several data ports. Depending on the configuration port input, exactly one of
the data ports is connected to the outport. The configuration port is connected
to the VAR Const block, which in turn is triggered by a variation point.

One advantage of this design is the possibility to simulate variant-rich models,
because exactly one signal is connected to the output port and therefore, used in
the simulation run. The simulation configuration depends either on the currently
selected variation point value or uses the default configuration.

Optional Implementations. Figure 4 illustrates the variability template block
for optional behavior. Simulink provides a Trigger block for exactly this purpose.
This trigger is connected to a VAR Const block with an attached variation point.
Depending on the selected variation point variation, the subsystem is either
enabled or disabled.



Structural Variability in MATLAB/Simulink Models 25

1

In1

In1

Subsystem1

Subsystem2

1
VAR_Constant

In1
1

Out1

Out

Out
VAR_Alt

1 In1

Subsystem1
In1

Out 1
Out1

Fig. 3. Middle layer of the variability template for alternative implementations (left),
bound for variant 1 (right)

VAR_opt
VAR_Constant

1 In1

Opt_Subsystem
In1

Out 1
Out1

1 In1

Opt_Subsystem
In1

Out

1
Out1

a) enabled

1
In1

b) disabled

1
Out1

Fig. 4. Middle layer of the variability template for optional implementations (left),
result for enabled subsystem (right - a) and disabled subsystem (right - b)

Subsystem Implementation. This layer represents the actual implementation
as it would be without variability information.

5 Binding at Model Configuration Time

The pure::variants Connector for Simulink supports two binding times for
Simulink models: Binding at Simulation and Code Generation Time. Simula-
tion time binding means that the currently selected variation point settings
specify the model variant used for the simulation run. If the code generator re-
moves parts of the model based on the current selection, we talk about Code
Generation Binding.

In this section, we introduce a third binding time which removes parts of the
model before code generation directly in the model. Variability information as
well as disabled functionality has to be removed in order to represent a concrete
system model. This concept, called binding at Model Configuration Time, is also
based on the variability template blocks. Variability template blocks are easily
identifiable and have a standardized structure which facilitates the detection
and deletion of parts. Of course, elements can not be removed from the original
domain model. Therefore, the domain model containing variability is copied



26 A. Leitner, W. Ebner, and C. Kreiner

first. Further processing steps are then applied on this copy. Processing works
as follows:

1. Identification of variability mechanism blocks based on the templates
described above.

2. Retrieving the current selection. For an optional implementation, it has to
be determined whether or not it is enabled. For alternative implementations,
the currently selected implementation has to be determined.

3. Remove variability information. All the variability information can be re-
moved from the model. Since this information is encapsulated in layer 2,
this layer can be removed completely.

4. If an implementation (layer 3) should be part of the resulting model, it has
to be redirected to layer 1, otherwise it can be deleted as well.

Code generation binding time is supported by additionally using the general
pure::variants Connector for Simulink variability mechanism blocks.

5.1 Binding Alternative Variability Templates

Alternative implementations require the same interface. Therefore, there is no
need to adapt any signals when removing unselected implementations.

5.2 Binding Optional Variability Templates

The main issue in case of optional variability is the handling of signals. Therefore,
we require the optional subsystem to support a specific structure. This means
that the output port has to be connected to a BusCreator. BusCreators are used
to collect different signals in a signal bus. If the subsystem is disabled and the
signal should be disabled as well, it will be removed from the BusCreator. The
modeler has to ensure that this signal is not used in the resulting model. More
concretely, blocks which use this signal need to be disabled consistently with
this block. The input signals are simply deleted for this subsystem. There is
either a branch, where the signal is distributed to several blocks or the signal is
calculated in the precedent subsystem. In both cases the signal can be deleted
until its last usage.

6 Working with Variability Mechanism Templates

Variability mechanism template blocks can either be used to develop models from
scratch or to refactor existing models. Development from scratch here means
that a template is added before the implementation of optional or alternative
functionality. Refactoring refers to the conversion of existing implementations
into an optional or alternative subsystem, respectively.



Structural Variability in MATLAB/Simulink Models 27

6.1 Using Alternatives Variability Templates

Template blocks need to be configured for the current context first. For al-
ternative variability templates the number of input signals and the number of
alternatives has to be adjusted and a variation point has to be connected. The
user manually enters the number of input signals. The number of alternatives
can automatically be determined by the number of variation point values of
the assigned variation point. Using this information, the alternative subsystem
templates will be created and the VAR MultiPort Switch will be configured
automatically.

Already existing implementations can be marked and converted into an al-
ternative variability template block. In this case, a variation point with equal
or more variation point variants than selected alternative subsystem implemen-
tations has to be assigned. If the number of alternatives matches exactly, the
placeholders in the middle layer are simply substituted by the concrete imple-
mentations. In case there are more variation point variants the correspond-
ing number of placeholders has to be added. It is not possible to have more
alternatives than variation point variants.

6.2 Using Optionals Variability Templates

The configuration of an optional variability template is similar to alternative
templates. First, the number of input signals for the optional implementation
has to be selected. The block will be adapted accordingly. In a second step, a
variation point has to be assigned and the triggering variation point value has
to be selected. This means it has to be decided which variation point value is
used to enable the subsystem.

Refactoring a subsystem in order to be optional is simple. In this case a varia-
tion point has to be connected and the block simply substitutes the placeholder
block in the middle layer of the template with the actual implementation.

7 Sample Application Scenarios

This section describes two application scenarios and how the implementation
looks like for one specific subsystem.

1. Switch between full and mild hybrid setting
Full hybrid describes a setting with the ability to drive purely electrical,
whereas in a mild hybrid setting the electric motor is used in addition to the
combustion engine.

Purpose of scenario:
In a platform providing both scenarios it is useful to instantiate a concrete
control software and configure the co-simulation framework accordingly.



28 A. Leitner, W. Ebner, and C. Kreiner

Variability description:
The control software contains two optional modi which are deactivated in
a mild hybrid setting. A full hybrid topology provides e.g. an EDrive func-
tionality which simply means to drive purely electrical (without combustion
engine). In this example, we completely remove such modi from the Simulink
model if they are disabled.

2. Alternative transmissions (automatic, manual)
Vehicles may be equipped with different types of transmissions. We consider
automatic and manual transmissions here. For manual transmissions, the
driver specifies the current gear, whereas for an automatic transmission, the
gear is specified by a control unit.

Purpose of scenario:
For automatic transmissions the hybrid control unit specifies the current gear
based on the driver request. One goal is the selection of gears in a way that
optimizes the drivetrain efficiency. Therefore, the ideal gear together with
the ideal split of engine torque and electric motor torque can be specified
by the system. In case of manual transmissions, the HCU can only specify
the torque splitting between electric motor and engine for the requested gear.

Variability description:
Automatic transmissions require a modus, which calculates and specifies the
current gear, the engine torque and the electric motor torque. An alternative
implementation of this modus optimizes torque splitting based on the gear
requested by the driver. This means, two alternative implementation are
required in the Simulink model.

Figure 5 illustrates a sample subsystem with four partly variable subsystems.
On the user-visible layer, there is no variability information except the different
color of subsystems including variability. Only on variability mechanism layer,
variability is implemented. The developer does not need to care about how to
implement variability. For optional or alternative variability scenarios the re-
spective template can be selected. This simplifies the implementation. The lay-
ered structure hides variability information from the user and thus reduces the
complexity of the model.

8 Conclusions, Limitations, and Future Work

This work enhances the variability representation mechanisms in Simulink and
enables binding at Model Configuration Time. It improves the usability of ex-
isting variability mechanisms for Simulink by introducing another layer of ab-
straction and an additional binding time. The proposed concept has been im-
plemented in the context of the automotive domain, where Matlab/Simulink
is a common development environment, but is applicable in other domains as
well. The definition of templates and the layered structure could be transfered
to other technologies as well.



Structural Variability in MATLAB/Simulink Models 29

Start/Stop

Recuperation

E-Drive

VP
Mild/Full hybrid

VP
Transmission

alternat
ive

optional

alternative

Shift assist

Impl Mild Hybrid

Impl Full Hybrid

VP

E-Drive

VP

Impl Automatic

Impl Manual

VP

user-visible layer variability mechanism layer

Fig. 5. Implementation of a subsystem including variability using variability
mechanism templates

One main drawback is the fact that the user is responsible for ensuring the
consistency of the resulting model. In future work an automatic model check
could be provided in order to show if an invalid model could be the result of
product derivation.

The set of variability mechanism template blocks can be extended with ad-
ditional application scenarios by including the respective block in the block set
and implementing binding mechanisms.

Acknowledgments. The authors would like to acknowledge the financial
support of the “COMET K2 - Competence Centres for Excellent Technolo-
gies Programme” of the Austrian Federal Ministry for Transport, Innovation
and Technology (BMVIT), the Austrian Federal Ministry of Economy, Family
and Youth (BMWFJ), the Austrian Research Promotion Agency (FFG), the
Province of Styria and the Styrian Business Promotion Agency (SFG).

We would like to express our thanks to our supporting industrial project
partner, AVL List GmbH.

Furthermore, we gratefully thank Danilo Beuche and pure-systems GmbH for
their support.

References

1. Ehsani, M., Gao, Y., Emadi, A.: Modern Electric, Hybrid Electric, and Fuel Cell
Vehicles: Fundamentals, Theory, and Design, 2nd edn. CRC Press (2010)

2. van der Linden, F.J., Schmid, K., Rommes, E.: Software Product Lines in Action:
The Best Industrial Practice in Product Line Engineering. Springer, Berlin (2007)



30 A. Leitner, W. Ebner, and C. Kreiner

3. Voelter, M.: Language and IDE Modularization, Extension and Composition with
MPS. Technical report (2011)

4. Beuche, D., Weiland, J.: Managing Flexibility: Modeling Binding-Times in
Simulink. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA 2009.
LNCS, vol. 5562, pp. 289–300. Springer, Heidelberg (2009)

5. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foun-
dations, Principles and Techniques. Springer (2005)

6. Krueger, C.W.: Towards a Taxonomy for Software Product Lines. In: van der
Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp. 323–331. Springer, Heidelberg
(2004)

7. Fritsch, C., Lehn, A., Strohm, D.T.: Evaluating Variability Implementation Mech-
anisms. In: Proceedings of International Workshop on Product Line Engineering,
pp. 59–64 (2002)

8. Czarnecki, K., Antkiewicz, M.: Mapping Features to Models: A Template Approach
Based on Superimposed Variants. In: Glück, R., Lowry, M. (eds.) GPCE 2005.
LNCS, vol. 3676, pp. 422–437. Springer, Heidelberg (2005)

9. Haugen, O., Moller-Pedersen, B., Oldevik, J., Olsen, G., Svendsen, A.: Adding
Standardized Variability to Domain Specific Languages. In: Proc. of the 12th In-
ternational Software Product Line Conference, pp. 139–148 (2008)

10. Schulze, M., Weiland, J., Beuche, D.: Automotive model-driven development and
the challenge of variability. In: Proceedings of the 16th International Software
Product Line Conference, SPLC 2012, vol. 1, pp. 207–214. ACM, New York (2012)

11. Trujillo, S., Garate, J.M., Lopez-Herrejon, R.E., Mendialdua, X., Rosado, A.,
Egyed, A., Krueger, C.W., de Sosa, J.: Coping with variability in model-based sys-
tems engineering: an experience in green energy. In: Kühne, T., Selic, B., Gervais,
M.-P., Terrier, F. (eds.) ECMFA 2010. LNCS, vol. 6138, pp. 293–304. Springer,
Heidelberg (2010)

12. Czarnecki, K.: Generative Programming: Principles and Techniques of Software
Engineering Based on Automated Configuration and Fragment-Based Component
Models. PhD thesis, Technical University of Ilmenau (October 1998)

13. Lee, K., Kang, K.C., Lee, J.J.: Concepts and Guidelines of Feature Modeling
for Product Line Software Engineering. In: Gacek, C. (ed.) ICSR 2002. LNCS,
vol. 2319, pp. 62–77. Springer, Heidelberg (2002)

14. Kang, K.C., Lee, J., Donohoe, P.: Feature-Oriented Project Line Engineering. IEEE
Software 19(4), 58–65 (2002)

15. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical report, Carnegie-
Mellon University Software Engineering Institute (November 1990)

16. Svahnberg, M., van Gurp, J., Bosch, J.: A taxonomy of variability realization tech-
niques: Research Articles. Softw. Pract. Exper. 35(8), 705–754 (2005)

17. Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling: Enabling Full Code Genera-
tion. Wiley-IEEE Computer Society Press (March 2008)

18. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an annotated
bibliography. SIGPLAN Not. 35(6), 26–36 (2000)

19. Czarnecki, K.: Overview of Generative Software Development. In: Banâtre, J.-P.,
Fradet, P., Giavitto, J.-L., Michel, O. (eds.) UPP 2004. LNCS, vol. 3566, pp. 326–
341. Springer, Heidelberg (2005)

20. Voelter, M., Groher, I.: Product line implementation using aspect-oriented and
model-driven software development. In: Proceedings of the 11th International Soft-
ware Product Line Conference, SPLC 2007, pp. 233–242. IEEE Computer Society,
Washington, DC (2007)



Structural Variability in MATLAB/Simulink Models 31

21. Bosch, J., Florijn, G., Greefhorst, D., Kuusela, J., Obbink, H., Pohl, K.: Variability
Issues in Software Product Lines. In: van der Linden, F.J. (ed.) PFE 2002. LNCS,
vol. 2290, pp. 13–21. Springer, Heidelberg (2002)

22. Groher, I., Voelter, M.: Expressing Feature-Based Variability in Structural Models.
In: Workshop on Managing Variability for Software Product Lines (2007)

23. Gomaa, H., Olimpiew, E.M.: Managing variability in reusable requirement mod-
els for software product lines. In: Mei, H. (ed.) ICSR 2008. LNCS, vol. 5030,
pp. 182–185. Springer, Heidelberg (2008)

24. Zhang, H., Jarzabek, S.: XVCL: A mechanism for handling variants in software
product lines. Science of Computer Programming, 381–407 (2004)

25. Dziobek, C., Loew, J., Przystas, W., Weiland, J.: Functional Variants Handling in
Simulink Models. Technical report, Daimler AG (2008)



J. Favaro and M. Morisio (Eds.): ICSR 2013, LNCS 7925, pp. 32–48, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

An Analysis of Variability Modeling Concepts:  
Expressiveness vs. Analyzability 

Holger Eichelberger, Christian Kröher, and Klaus Schmid 

Software Systems Engineering, University of Hildesheim 
Marienburger Platz 22, 31141 Hildesheim, Germany 

{eichelberger,kroeher,schmid}@sse.uni-hildesheim.de 

Abstract. Variability modeling is a core activity of software product line engi-
neering. Over the years, many different approaches to variability modeling have 
been proposed. Typically, the individual approaches have been designed with-
out a detailed justification on why certain modeling concepts should be used. 
This yields a rather unfunded selection of modeling approaches in practice, e.g., 
selecting approaches that provide higher modeling concepts than actually 
needed, but less analyses capabilities than required. Thus, we propose that the 
focus of an analysis should not be to determine the best modeling language, but 
rather to provide a characterization on when to use what kind of approach. In 
particular, the selection of one approach for a specific situation should be driven 
from the required modeling concepts (expressiveness) and the required analy-
zability. 

In this paper, we propose a classification of core concepts of variability mod-
eling based on expressiveness and analyzability. We discuss the methodology for 
and the classification of variability modeling concepts illustrated by a running 
example. The contribution of this paper is a modeling approach-independent 
classification of variability modeling concepts and their dependencies to provide 
a systematic and rationale basis to anyone designing, standardizing, implement-
ing or selecting a specific variability modeling approach.  

1 Introduction 

Variability management is at the heart of software product line engineering. Over 
time, many different variability modeling approaches as well as extensions have been 
proposed. Currently, the dominating family of approaches is Feature Modeling (FM) 
[8], which was introduced in [26]. Further techniques include Decision Modeling 
approaches (DM) [42, 39], Orthogonal Variability Modeling (OVM) [34] or the 
PLUS approach [23]. Today, many variations of these basic approaches exist. For 
example, Chen et al. list 33 refined approaches for FM, DM, and OVM in [12], Bena-
vides et al. discuss the capabilities of 42 FM approaches in [6] and Schmid et al. 
compare five different DM approaches in [40]. More recently, some authors argue 
that Domain-Specific Languages (DSLs) should be combined with FM [44, 46], or 
that languages themselves should be customizable [28]. Thus, there is still considera-
ble variation in approaches to variability modeling. Nevertheless, attempts exist to 
standardize variability modeling, e.g., the Common Variability Language (CVL) [32]. 



 An Analysis of Variability Modeling Concepts: Expressiveness vs. Analyzability 33 

Given this diversity of variability modeling concepts, it is difficult for a domain 
engineer to select the most appropriate concepts for a particular setting, for tool de-
velopers to select appropriate concepts for their tools and for standardization bodies to 
determine the appropriate capabilities of their languages. We recognized the need for 
such research in a recent project1, where we aimed to create a sophisticated and cus-
tomized variability management approach for service-based systems, and noticed the 
lack of guidance and support for this. Thus, we carried out the analysis described in 
this paper, which will overcome the above difficulties in terms of answering questions 
like which concepts should be included and which not in a specific setting. 

In order to support the development of variability languages, we will present a 
classification of variability modeling concepts along two dimensions: expressiveness 
(the range of supported modeling concepts) and analyzability (the capability of de-
termining implied properties of a model such as consistency or satisfiability). While 
this tradeoff is well-known in computer language design, it has not yet been made 
explicit for variability modeling languages. The contribution of this paper is a syste-
matic classification, which a) categorizes existing variability modeling concepts on a 
meta-language level, b) describes dependencies among modeling concepts c) covers 
the range of concepts from basic variability modeling to more advanced variability 
modeling concepts and d) provides support for selecting the most appropriate model-
ing concepts by domain engineers, tool developers or standardization organizations. 

This paper is organized as follows: in Section 2 we discuss related work. In Section 
3, we introduce our categorization for variability modeling concepts. Section 4 de-
scribes a running example, which we use as illustration throughout the paper. The 
main contribution is given in Section 5, where we will describe our classification. 
Finally, in Section 6 we will conclude and provide an outlook on future work. 

2 Related Work 

Several analyses on variability modeling have been published. However, they do not 
provide a comprehensive overview of modeling concepts across all families of model-
ing approaches to classify expressiveness and analyzability. Existing work can be 
classified into two classes: in-depth analysis within one family and broad analyses 
ranging across multiple families. We will structure this section accordingly. 

In-depth analyses are performed for a single family of modeling approaches. 
Schobbens et al. [41] survey different Feature Diagram (FD) variants to generalize the 
various syntaxes and to provide a common formal semantics. One aim of that work is 
to improve the definition, understanding, comparison and reliable implementation of 
FD languages [p. 139, 41]. The contribution of our approach is similar, but as op-
posed to analyzing a specific family thoroughly, we focus on a comprehensive classi-
fication that covers all basic approaches on a meta-level. 

Schmid et al. [40] compare multiple aspects of five different DM approaches, rang-
ing from modeling capabilities to product derivation support and analyze their com-
monalities and variabilities. In contrast, we focus here solely on modeling capabilities 
and provide an approach-independent discussion of expressiveness and analyzability.  

                                                           
1 EU-funded project INDENICA, http://www.indenica.eu 



34 H. Eichelberger, C. Kröher, and K. Schmid 

Benavides et al. [6] review FM languages and operations for automated analysis of 
42 different FM approaches. The authors discuss both, FM modeling concepts and 
analysis operations in isolation, i.e., they neglect the dependencies among modeling 
concepts, their expressiveness and the analyzability. In our work, these dependencies 
are a major criterion for structuring and systematically selecting modeling concepts. 

Classen et al. [13] compare the definition of the term “feature” in eight different 
FM approaches. In contrast to our work, the authors do not focus on any aspects re-
garding modeling capabilities, etc., but develop general definitions to lay down the 
foundations for a general approach to automated feature interaction detection.  

Broad analyses are performed across families of modeling approaches. Berger  
et al. [8] provide a recent empirical study on the use of variability modeling ap-
proaches, tools and perceived problems in industry. However, the authors analyze the 
used units of variability such as features, but do not detail the underlying modeling 
concepts. Chen et al. [12] surveyed variability management approaches including FM, 
DM and OVM to derive a chronological overview of their evolution. The authors 
derive key drivers for the evolution connecting the approaches to some extent. How-
ever, details on these connections are not given in [12]. In contrast, we make these 
connections explicit in terms of different classes of expressiveness and analyzability. 

Czarnecki et al. [15] compare multiple aspects of DM and FM concepts in general, 
ranging from historical origins to semantic richness and tool support. In contrast, we 
focus on an approach-independent classification, i.e., not on specific approaches, but 
on generic concepts and their influence on expressiveness and analyzability. 

Istoan et al. [24] classify variability modelling concepts with respect to the support 
of modelling both variability and assets. While we focus exclusively on the modelling 
of variability (as opposed to its implementation), we discuss essential aspects of va-
riability modeling such as expressiveness and analyzability in much more detail. 

Voelter and Visser [46] point out that (basic) FM lack in concepts such as multiple 
instances and references among features. The authors suggest using DSLs to over-
come these limits by combining FM with DSLs. However, we focus on conservative 
approaches in this paper. Thus, we will exclude DSLs from our analysis. 

In summary, significant work on comparing variability modeling approaches is 
available. However, to our knowledge this work is the first one, which provides a 
comprehensive classification that spans across all families of variability modeling 
approaches. We characterize the considered approaches on an approach-independent 
meta-language level. The focus of this paper is on the identification of the dependen-
cies among modeling concepts in variability modeling as well as their analyzability. 

3 Categorization Approach 

In this section we describe our approach to categorize variability modeling concepts. 
First, we identify the scope of our work, introduce then the applied terminology, and 
finally derive the construction of our classification schema. 



 An Analysis of Variability Modeling Concepts: Expressiveness vs. Analyzability 35 

3.1 Scope 

The analysis provided in this paper characterizes different classes of variability mod-
eling concepts, their properties and dependencies. As we focus on variability model-
ing, concepts for realizing variability are out of scope. We exclude modeling concepts 
which support development in the large as they do not influence the expressiveness of 
variability modeling per-se. Examples are composition, as in Multi-Software Product 
Line (MSPL) scenarios [21], modularization, e.g., using interfaces in variability mod-
eling for distributed development [38], or defaults for the support of variability in 
ecosystems [11]. Further, we focus only on the underlying modeling concepts, i.e., we 
exclude syntactic sugar, and unify various techniques that can be considered as aliases 
or can be interpreted as a combination of multiple basic concepts. 

While some authors propose DSLs in variability modeling [27, 44, 46], we take a 
narrow point of view and consider only traditional variability modeling approaches. 

3.2 Terminology 

We introduce in this section the basic terminology used in the remainder of this paper 
for discussing variability modeling concepts in an approach-independent way. The 
terminology we introduce here is not really new. However, we summarize it here for 
clarity as some terms are sometimes used with a somewhat different meaning. 

The problem space contains elements describing what the systems in a given do-
main must do. The problem space can be characterized by activities of domain model-
ing. In contrast, the solution space details how the elements in the problem space can 
be realized, e.g., by an architecture model. These definitions follow the “classical” 
terminology such as in [26]. A variability model defines the configuration space of a 
product line as a particular view on the problem space. Variabilities are implemented 
as part of the artifacts in the solution space. The configuration space is defined by 
configurable elements, each representing a variability. A specific configuration of 
these elements defines the instantiation of the represented generic software artifacts. 

For describing the configuration space, individual approaches provide a set of con-
cepts to model configurable elements in an approach-specific way such as in the dif-
ferent forms of FM or DM approaches [15]. Further, a variability modeling approach 
usually provides a constraint language to restrict valid combinations of configurable 
elements. This enables a more precise specification of the configuration space. These 
restrictions guarantee that the configuration of products that can be derived from the 
variability model yield valid product configurations. A product configuration is valid 
only if the selected element combination does not violate any constraints. A valid 
configuration is expected to correspond to a valid product in the product line.  

Variability modeling concepts can be compared in different ways, as discussed in 
Section 2. We characterize variability modeling concepts in two dimensions, namely: 

• Expressiveness - the range of supported modeling concepts for describing confi-
gurable elements and constraints. 

• Analyzability - the capability of determining derived properties by computational 
methods. An example would be model satisfiability, e.g., to identify whether there 
exists a valid configuration of the model.  



36 H. Eichelberger, C. Kröher, and K. Schmid 

In fact, these two dimensions are neither totally distinct nor orthogonal, but they 
represent a pragmatic categorization of the knowledge of current approaches in litera-
ture. Further, expressiveness and analyzability are two dependent dimensions as an 
extension of capabilities in one dimension, leads to a reduction on the other dimen-
sion. This is a well-known characteristic of logic languages in general. We will focus 
here on the specific characteristics relevant to variability modeling languages. 

3.3 Classification Schema 

In this section, we describe the schema we use for classifying variability modeling 
concepts in an approach-independent way. For this purpose, we describe the two di-
mensions of our classification in more detail and specify the classes of modeling con-
cepts we will analyze in the remainder of this paper.  

It is well-known that variability modeling approaches differ in terms of their ex-
pressiveness. More precisely, they differ in terms of modeling concepts and the capa-
bilities of defining constraints. For defining constraints often a logical language is 
used, which will provide different ranges of expressiveness, depending on the con-
tained constructs. This implies that the space of variability modeling approaches can 
be described by specifying its configurable elements (modeling concepts) on the one 
hand and its constraint language on the other hand.  

In principle, the various possible modeling concepts can be constructed and com-
bined in many different ways by arbitrarily selecting a set of configurable elements 
and a constraint language. However, often there exist dependencies among those con-
cepts. We will use the expressiveness dimension as the primary criterion for structur-
ing our discussion of these dependencies. As the entire expressiveness space cannot 
be discussed in a comprehensive way in this paper, we will select prominent combina-
tions. For selecting these combinations we carefully reviewed modeling concepts 
from well-known approaches, which are applied in practice and grouped them into 
classes. Each class can clearly be distinguished and represents a minimal required set 
of concepts for specifying configurable elements and constraints. The classes are: 1) 
Basic (pure Boolean) variability modeling, 2) Cardinality-based variability modeling, 
3) Non-Boolean variability modeling, and 4) Configuration references. While the 
latter can be interpreted as a special case (configuration references can be applied to 
each of the other classes), we will discuss this concept as an individual class as it 
provides a true increment in expressiveness (cf. Section 5.4). In fact, some classes 
may further be decomposed into subclasses representing specific groups of approach-
es. However, there are already publications which discuss individual subclasses, such 
as [41] for feature diagrams, a possible subclass of basic variability modeling. In this 
paper we do not replicate such subclasses but aim at a more general overview. 

It is interesting to note that the resulting sequence of combinations follows roughly 
the historical development of variability modeling languages, especially as it is seen 
in the area of FM. We will discuss the analyzability dimension for each of the se-
lected combinations in an exemplary way. Further, we will illustrate the modeling 
concepts of each class using a running example, relate the class to example approach-
es in literature and discuss when and how to apply the concepts of the individual 
classes.  

 



 An Analysis of Variability Modeling Concepts: Expressiveness vs. Analyzability 37 

 

Fig. 1. Running example as a basic variability model 

4 Running Example 

In this section, we introduce the example, which we will use as a basis for discussing 
the different classes of variability modeling concepts in Section 5. The example is 
drawn from the area of service-oriented computing, as our initial motivation for this 
work originated in this domain. The example centers on modeling the instantiation 
and deployment of a content-sharing application. 

A content-sharing application allows its users to upload, annotate, release and 
share content of various types. Individual applications differ with respect to: 

• The supported Content-Type such as text, video, etc. 
• The hosting infrastructure, which consists of a web Container and an underlying 

Database. A user may choose the desired instances out of several implementations. 
• The deployment target, which may either be a private or a public Cloud environ-

ment or a Traditional environment like a hosted server. 

Throughout this paper, we will use this running example to illustrate the expressive-
ness of each class. As we will need slightly different versions of this example to illu-
strate the different classes, we will describe for each class also some extensions of the 
basic scenario that particularly require the descriptiveness of this class. The individual 
extensions will be considered as cumulative. 

For illustrating the running example, we will mostly use a graphical notation as 
known from FM, although FM is only a single family of approaches. We selected the 
FM notation to support understandability and readability as it is probably the most 
wide-spread and best-known graphical notation in variability modeling. Fig. 1 shows 
an example of the notation we will use and also provides a legend. 

Application

Content-Type Container Database

Target platform

Text Video Audio 3D BLOB Tomcat JBossIIS MySQLAmazon S3Azure SQL

Content-Sharing

CloudTraditional

private public

Eucalyptus Amazon Azure

requires

excludes
Composition rules:
Traditional requires MySQL, Cloud excludes MySQL, 
Eucalyptusrequires Amazon S3, 
Amazon requires Amazon S3, Azure requires Azure SQL

Legend:
mandatory
optional
alternative
dependency



38 H. Eichelberger, C. Kröher, and K. Schmid 

5 Classification of Variability Modeling Concepts 

In this section, we identify several classes of variability modeling concepts and dis-
cuss their properties. As introduced in Section 3, we will structure the presentation of 
the classification by four prominent combinations. Each subsection is structured into a 
description of the modeling concepts, a discussion of the resulting analyzability,  
example approaches from literature, a discussion of the running example and a sum-
mary. Finally, we will summarize the results and give an overview of our classifica-
tion to support the selection of the most appropriate class for a particular setting. 

5.1 Basic Variability Modeling 

The simplest class of variability modeling concepts, we will discuss, are purely Boo-
lean configurable elements with restricted capabilities in constraining the configura-
tion space. This class corresponds to basic variability modeling approaches such as 
FDs introduced in the Feature-Oriented Domain Analysis (FODA) approach [26].  

Expressiveness - Modeling Concepts. The class of basic variability modeling exclu-
sively provides Boolean configurable elements. These elements basically represent 
single configuration options that can either be selected or not, i.e., the configuration of 
a Boolean element either yields true (selected) or false (not selected). 

Expressiveness – Constraints. The definition of constraints allows restricting the 
configuration space. The capabilities for describing constraints on the level of basic 
variability modeling may correspond to arbitrary Boolean formula. In approaches like 
basic FM, these restrictions are represented by relations, such as requires, excludes, 
alternatives, and options. In such FM approaches, these relations yield decomposition 
hierarchies of configurable elements and can be represented by a subset of proposi-
tional logic ( , , ¬), e.g., as shown in [41]. 

Analyzability. The analysis operations on purely Boolean variability models, as de-
scribed in [31], can be roughly categorized into operations for correctness checking, 
e.g., if the derivation of valid configurations is possible, and configuration support, 
such as validation of specific configurations. These analysis operations are typically 
performed using SAT-solvers or BDD-solvers [6]. This requires the translation of a 
model into propositional formulae, for SAT-solvers even Conjunctive Normal Form 
(CNF) is required [6]. While satisfiability in general is NP-complete [14], decision 
problems that include only binary constraints using a subset of propositional logic ( , 

, ¬) can be analyzed efficiently [31]. Examples of analysis operations, which can be 
performed using SAT-solvers, include consistency checking in general, the detection 
of dead or common elements, and the computation of valid configurations. 

Example Approaches: Feature diagrams (FDs), introduced in the FODA approach 
[26]2, are one specific example for this class. All approaches discussed by Schobbens 

                                                           
2 We are aware of a non-Boolean variability in FODA, stated by the constraint horsepower > 

100. However, this is neither discussed in detail, nor do any other non-Boolean elements or 
expressions exist in FODA. As a result FODA is treated commonly as a Boolean approach.  



 An Analysis of Variability Modeling Concepts: Expressiveness vs. Analyzability 39 

et al. in [41] belong to this class. Decision modeling approaches, if their supported 
data types would be restricted to Boolean, would also fall into this class [20]. 

Running Example. Fig. 1 depicts the running example that was introduced in Section 
4. We selected a FM notation to support understandability and readability as dis-
cussed in Section 4. Of course, this is only one specific representation.  

The content-sharing application consists of an Application part and a Target 
Platform part, which are further decomposed. The Content-Type is decomposed into 
optional features, i.e., each content type as well as arbitrary combinations may be se-
lected. For the web Container and the underlying Database one may choose exactly 
one alternative. The Target Platform part is either a Traditional platform or a 
Cloud, the latter one is decomposed into Private and Public clouds. The composition 
rules restrict the set of valid applications, e.g., the Traditional Platform requires the 
MySQL database while MySQL must not be selected for Cloud platforms. Additionally, we 
visualized the composition rules as graphical dependencies (this is possible in this 
example as we did not need the full expressiveness of Boolean formulae). 

Summary. The class of basic variability modeling concepts corresponds to Boolean 
logic. Thus, it is possible to model variability in terms of selectable elements each 
representing exactly one variant. These elements can be further restricted by means of 
requires, excludes, optional or alternative elements. The analyzability of basic varia-
bility modeling concepts includes operations ranging from correctness checking to 
configuration support [31]. These operations can be performed efficiently on models 
including only binary constraints. The combination of multiple optional elements may 
simulate multiple selections to some extent. However, it is not possible to define a 
specific number of valid simultaneous selections, e.g., in terms of cardinalities. This 
will be possible in the next class, which we will discuss in the following section. 

5.2 Cardinality-Based Variability Modeling 

In this section, we discuss the class of cardinality-based variability modeling con-
cepts. Cardinalities enhance basic variability modeling concepts by explicit specifica-
tions of the number of configurable elements, which can be selected in a configura-
tion. This corresponds to approaches like cardinality-based FM as described in [17]. 
However, we need to differentiate bounded and unbounded cardinality. Bounded car-
dinality defines both, lower and upper boundary as specific positive integer values. 
Unbounded cardinality allows unspecified (infinite) boundaries. In the extreme case, 
the upper boundary may not be concretized by further constraints and, thus, remain 
unbounded until analysis. Thus, this may lead to infinite configuration spaces, with 
corresponding consequences for analyzability as we will discuss below. 

Expressiveness - Modeling Concepts. This class exclusively provides configurable 
elements of Boolean type. The expressiveness increases due to the introduction of 
cardinalities. In literature on cardinality-based FM usually a distinction is made  
 



40 H. Eichelberger, C. Kröher, and K. Schmid 

 

Fig. 2. Example using cardinality-based variability modeling 

between feature cardinality and group cardinality [17]. Feature cardinality describes 
that a feature can be present multiple times, while group cardinality describes that a 
certain, restricted number of elements can be selected from a group of features. In our 
work, only the first is considered as a form of cardinality, as the second can be ex-
pressed as constraints. In the case of bounded cardinality, the advantage is mostly in 
the ease of use, e.g., Batory [4] uses a choose-operation instead of defining each poss-
ible element combination explicitly. In the unbounded case a new class of expressive-
ness is achieved, which we define as cardinality-based variability modeling. 

Expressiveness – Constraints. The capabilities for describing constraints in this class 
extend the capabilities of basic variability modeling concepts by explicitly defining 
multiple selections (representing group cardinalities). This type of dependency re-
quires multiple clauses and can be represented in full propositional logic ( , , ¬, , 

) [29]. For the more interesting case of multiple instances, we need to introduce 
operations such as restrictions on the number of instances [17]. In the bounded case, 
we can always map this on propositional logic [4]. In the unbounded case, at least 
basic quantifiers ( , ) are required to express constraints over the possibly infinite 
configuration space [2]. However, as done in most actual work, quantifiers (over final 
sets) may also be provided in the bounded case as a convenient notation. 

Analyzability. The complexity of analyzing cardinality-based variability models with 
bounded cardinality rises due to multiple clauses in a single constraint and the availa-
bility of full propositional logic. Thus, the complexity in this class is NP-complete 
[14]. However, such models can be translated into Boolean formulas as described in 
[31] and, thus, can be analyzed, for example, by SAT-solvers or BDD-solvers [6]. In 
the case of unbounded cardinality we need to take into account the need to express 
quantification. This goes beyond the capabilities of, for example, SAT-solvers or 
BDD-solvers in the general case. The analyses on a model including unbounded car-
dinality are undecidable [35]. However, for specific configurations that define the 
number of instances, the operation on pure Boolean models can be used.  

Example Approaches. Czarnecki et al. introduce a cardinality-based approach to FM 
[17]. In this approach, cardinalities can be assigned to both solitary features and fea-
ture groups. Riebisch et al. extend FDs with UML multiplicity [37]. However, this 
approach only focuses on group cardinality. The OVM approach [34] also provides 
cardinalities for the definition of the number of possible variants for a variation point. 

Running Example. Fig. 2 shows a fragment of the extended running example using a 
cardinality-based FM approach. Content-Type is now modeled as a (feature) group 

Application

Content-Type

Text Video Audio 3D BLOB

<1-*> …

…

…



 An Analysis of Variability Modeling Concepts: Expressiveness vs. Analyzability 41 

and further specified by a cardinality, which restricts the number of selected options 
for a valid configuration. We use the <n-m> notation (n defines the lower bound and m 
the upper bound) to indicate cardinalities. In Fig. 2 at least one Content-Type but at 
most five types must be selected. If Content-Type would not have sub-types, the 
upper bound (*) would indicate unbounded cardinality. 

Summary. This class extends the class of basic variability modeling concepts by 
supporting the definition of cardinalities for Boolean configurable elements. Thus, it 
is possible to explicitly define how many instances of a specific element or of a group 
of elements can be selected in a specific configuration simultaneously. This requires 
multiple clauses within a single constraint and full propositional logic. Deciding satis-
fiability for such models that include bounded cardinalities is NP-complete [14], thus, 
these models can be analyzed [6, 31]. In case of unbounded cardinality, the satisfiabil-
ity of a model is undecidable, while the satisfiability of a complete configuration  
remains decidable [35]. However, it is not possible to restrict the cardinality of an 
element based on the value of another element. This requires relational operators, 
which leads us directly to the class of non-Boolean variability modeling concepts. 

5.3 Non-boolean Variability Modeling 

In this section, we introduce the class of non-Boolean variability modeling concepts. 
This class recently has gained significant interest in the context of FM [6] as it is very 
relevant to many practical applications [33]. This also corresponds to most approach-
es based on DM as described in [39]. Variability in this class can also be described in 
terms of non-Boolean types such as integer, string, etc. The capabilities for describing 
constraints are extended with respect to the supported types. This extension also 
enables the definition of constraints among cardinalities. These additional capabilities 
lead to the need for more sophisticated analysis approaches. 

Expressiveness - Modeling Concepts. This class provides Boolean and non-Boolean 
elements. The set of available non-Boolean types depends on the specific modeling 
approach. In general, the configuration of non-Boolean elements amounts to the as-
signment of any type-compliant value. Thus, the definition of non-Boolean elements 
either requires the specification of a type (which implicitly defines the set of possible 
values) or the exact (range of) values that the element may assume.  

Expressiveness – Constraints. The capabilities for describing constraints in this class 
go beyond the capabilities of cardinality-based variability modeling. However, the 
capabilities depend on the non-Boolean types that a specific modeling approach sup-
ports. For example, the restriction of integer elements requires relational operators 
while the restriction of string elements requires string operators such as a substring-
operation or regular expressions. Antkiewicz and Czarnecki [2] also provide arithmet-
ic operators for calculating values in constraints. 

Analyzability. While the complexity of pure Boolean decision problems (including 
bounded cardinality) is NP-complete [14], non-Boolean decision problems are  
 



42 H. Eichelberger, C. Kröher, and K. Schmid 

 

Fig. 3. Example using non-Boolean variability modeling 

undecidable [33]. Undecidability of the non-Boolean variability models is due to the 
possible infinite space of the non-Boolean variabilities. In this context, reasoning is 
often implemented by translating the problems into Constraint Satisfaction Problems 
(CSP) and to use CSP solvers [47, 50]. 

Example Approaches. Non-Boolean elements and expressions are basic modeling 
elements in most DM approaches [19, 30, 39, 42]. Different FM approaches exist that 
support similar extensions and the definition of constraints among them [4, 5, 7, 17, 
18, 27, 43, 48]. In addition, modeling languages in practical approaches like KConfig 
[1] and eCos [45] require non-Boolean elements and expressions. Berger et al. [9] 
show that these modeling constructs can be mapped to modeling concepts in FM. 

Running Example. Fig. 3 depicts a fragment of the extended running example with a 
non-Boolean extension. Here, additional (non-Boolean) attributes can be assigned to a 
feature like the integer-attribute Bitrate of the Video feature. A non-Boolean con-
straint relates Tomcat to a maximum video bitrate of 128 kBit/s. 

Summary. This class extends the capabilities for defining both, configuration spaces 
and constraints, by additional types of modeling elements and constraint operators. 
The types that are actually supported depend on the specific approach. In general, this 
class enables the definition of fine-grained variability in terms of ranges of values. In 
addition, these ranges as well as the value combinations can be restricted by con-
straints. This includes the restriction of cardinalities, which was not possible in the 
previous class as the necessary operators in the constraint language were not present. 
However, the analyzability of variability models, which include non-Boolean ele-
ments, decreases due to the increasing complexity of possible combinations.  

Non-Boolean variability modeling can also be used to introduce restrictions on 
cardinalities, however, this is often treated independently (i.e., often in non-Boolean 
approaches no restrictions on cardinalities can be expressed).  

5.4 Configuration References 

Using the modeling concepts discussed so far, it is not possible to reference individual 
configurable elements or parts of a variability model. While this may not seem like a 
big deal, it actually is a powerful tool, depending on the precise semantics of the ref-
erences. References can be used to define shared configurations or to even configure 
networks of configurable elements, which is not possible with other concepts  
 

Application

Content-Type

Text Audio 3D BLOB

<1-*>
…

Tomcat ^ Video.bitrate≤ 128

Video
Bitrate: int

Container

Tomcat JBossIIS



 An Analysis of Variability Modeling Concepts: Expressiveness vs. Analyzability 43 

 

Fig. 4. Example with configuration references 

introduced so far. In this section, we will discuss configuration references as a class 
of modeling concepts, which may extend each of the classes discussed before.  

Expressiveness - Modeling Concepts. A configuration reference is a link from a 
configurable element A to a configurable element B, specifying that A becomes a 
synonym for B. Of course, this is most useful, if some hierarchy or grouping as dis-
cussed in Section 5.1 is available as then a single reference may denote a number of 
configurable elements simultaneously. 

Expressiveness – Constraints. Configuration references extend the capabilities of 
underlying variability modeling concepts in a natural way: Constraints defined for a 
referred configurable element apply when the element is configured from a referring 
element. In addition, the constraint language can provide an operator for reference 
equality, i.e., to distinguish between individual and shared referenced objects.  

Analyzability. This class does not impact the analyzability of underlying variability 
modeling concepts as references can be treated as synonyms. However, these syn-
onyms must be resolved before applying the analyses operations discussed above, or 
specialized tools are required, which support configuration references. For example, 
the Alloy Constraints Analyzer (Alcoa) [25] provides analysis operations for models 
of finite space including references [3], such as validation and suggestions on errors.  

Example Approaches. Bak et al. provide two different forms of configuration  
references in their Class Feature Relationships (Clafer) approach [3], namely feature 
references to (possibly shared) feature instances as well as (exclusive) references to 
containment features. Further, Clafer provides feature refinement (inheritance) which 
is of particular benefit in combination with configuration references (polymorphism). 
At first glance, it seems like inheritance might lead to a further class of expressive-
ness. We believe that the semantic essence of inheritance in variability modeling can 
be expressed by alternative selections defining the subtypes as well as requires-
dependencies, which enforce the propagation of configurable elements along the inhe-
ritance hierarchy. However, we are not aware of work, which gives a formal proof of 
this. In the Compositional Variability Management framework [36], Reiser introduces 
configuration links between (sub-)feature models to allow the configuration of a fea-
ture of a target model depending on the given configuration of a source model. 
Boucher et al. support custom variability types in their Text-based Variability Lan-
guage [10], which are linked from features by configuration references. 

Application

Content-Type Container

Tomcat JBossIIS3D BLOB

<1-*>

Container Container

…

…

…



44 H. Eichelberger, C. Kröher, and K. Schmid 

Table 1. Classification overview 

  Expressiveness
Analyzability 

  Modeling Concepts Constraints

  

Pu
re

 B
oo

le
an

 
el

em
en

ts
 

C
ar

di
na

lit
ie

s 

T
yp

ed
 

el
em

en
ts

, 
 

e.
g.

, i
nt

eg
er

 

R
ef

er
en

ci
ng

 
m

od
el

 
el

em
en

ts
 

Pr
op

os
iti

on
al

 
lo

gi
c 

Q
ua

nt
if

ie
rs

 

T
yp

e-
sp

ec
if

ic
 

op
er

at
or

s 

T
yp

e 
op

er
at

or
s 

M
od

el
 

C
on

fi
gu

ra
-

tio
n 

Basic Variability Modeling x    x    x x 
Cardinality-based 
Variability Modeling 

bounded x x   x    x x 
unbounded x x   x x    x 

Non-Boolean Variability Modeling x x x  x x x   x 
Configuration References * * * x * * * x * x 

 

Running Example. The Container of the Application represents the configuration 
of the web container serving the content-sharing application. Let us assume that either 
the application container or a separate container should be used for individual con-
tent-types, e.g., to enable load balancing. In Fig. 4, two configuration references ena-
ble either shared or individual configuration of a Container for 3D and BLOB. In Fig. 
4, we apply an extended FM notation similar to [46], i.e., we denote configuration 
references as feature attributes in light grey (and highlight them by arrows). 

Summary. Configuration references enable arbitrary links among configurable ele-
ments, which may be shared or used as individuals and, thus, significantly extend the 
expressiveness dimension. The analyzability depends on the analyzability of those 
concepts, to which configuration references are applied. In turn, configuration refer-
ences do not impact the analyzability. Further, some tools are available, which can 
deal with references in most situations rather effectively. 

5.5 Summary 

In Table 1, we summarize the results of our classification. The rows depict the classes 
discussed above explicitly distinguishing between bounded and unbounded cardinali-
ties. Further, the specific characteristics of configuration references depend on the 
capabilities of the extended class as indicated by stars (*). The columns represent the 
two dimensions of our classification, expressiveness and analyzability.  

Table 1 illustrates the differences among the different classes, in particular the tra-
deoff between expressiveness and analyzability. Basic variability modeling provides 
only Boolean elements and limited concepts to express constraints but enables analy-
sis of the model itself and derived configurations. While adding individual concepts, 
i.e., increasing the expressiveness dimension, the capabilities to analyze the model 
may decrease. A clear loss of analysis capabilities happens when unlimited cardinali-
ties and related logical quantors become modeling concepts as this leads to undecida-
bility. However, the validity of configurations can still be determined. Configuration 
references increase expressiveness but do not impact analyzability. 

Practitioners can use Table 1 as a basis for understanding the tradeoffs involved in 
choosing certain modeling concepts in a particular setting. Based on our results, one may 



 An Analysis of Variability Modeling Concepts: Expressiveness vs. Analyzability 45 

select one of the identified classes, identify the enabled modeling and constraint concepts 
and derive the resulting restrictions on model analysis. Or one can start with the desired 
level of analyzability and derive the possible concepts from the expressiveness dimen-
sion. Recently, we applied our classification when selecting a variability modeling ap-
proach for a project in the logistics domain. The specific setting requires Boolean options 
(basic variability modeling), multiple selection of workflows (unbounded cardinalities) 
and specification of rack sizes (non-Boolean), but no configuration references. Using 
Table 1 we determined for that approach that the analyzability of the models becomes 
undecidable while configurations can still be validated. 

6 Conclusion 

Existing work on analyzing and comparing variability modeling approaches either go 
in depth within one family or provide a broad overview across families of approaches. 
In contrast, we presented a new comprehensive classification of variability modeling 
concepts that spans across all basic families of variability modeling approaches. 

Our classification characterizes the capabilities of variability modeling in two di-
mensions, expressiveness and analyzability. Based on this classification, we discussed 
four prominent classes ranging from basic variability modeling to the use of refer-
ences. Thereby, we relied on existing knowledge regarding modeling concepts and 
analysis methods. However, so far this knowledge was distributed over various publi-
cations, which typically focus on certain modeling approach, e.g., FM. The particular 
contribution of this paper is the consolidation of that knowledge and the systematic 
organization into classes on a technology-independent meta-language layer.  

Our classification enables domain engineers, tool developers or standardization  
panels to compare concepts and capabilities in variability modeling in an approach-
independent way. For each class we discussed the limitations, which arise from the 
specific expressiveness and analyzability in a systematic manner. In the summary 
discussion we illustrated how to apply our classification.  

In the future, we will investigate the customization of variability modeling lan-
guages. We expect that tailored variability modeling languages and related tooling 
will better fit the needs of domain experts and application engineers than monolithic 
general-purpose variability modeling languages. We are convinced that our classifica-
tion is a solid foundation for tailoring and configuring variability modeling languages. 

Acknowledgments. This work was partially supported by the INDENICA project, 
funded by the European Commission grant 257483, area Internet of Services, Soft-
ware & Virtualisation (ICT-2009.1.2) in the 7th framework programme. 

References 

1. KConfig Language (2012), http://kernel.org/doc/Documentation/ 
kbuild/kconfig-language.txt 

2. Antkiewicz, M., Czarnecki, K.: Feature Plugin: Feature modeling plug-in for Eclipse.  
In: Eclipse Technology eXchange Workshop (2004) 



46 H. Eichelberger, C. Kröher, and K. Schmid 

3. Bąk, K., Czarnecki, K., Wąsowski, A.: Feature and Meta-models in Clafer: Mixed, Specia-
lized, and Coupled. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS, 
vol. 6563, pp. 102–122. Springer, Heidelberg (2011) 

4. Batory, D.: Feature Models, Grammars, and Propositional Formulas. In: Obbink, H., Pohl, 
K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005) 

5. Benavides, D., Ruiz-Cortés, A., Trinidad, P.: Automated Reasoning on Feature Models.  
In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 491–503. 
Springer, Heidelberg (2005) 

6. Benavides, D., Segura, S., Ruiz-Cortes, A.: Automated Analysis of Feature Models 20 
Years Later: A Literature Review. Information Systems 35, 615–636 (2010) 

7. Benavides, D., Trinidad, P., Ruiz-Cortes, A.: Using Constraint Programming to Reason  
on Feature Models. In: Intl. Conf. Software Engineering and Knowledge Engineering,  
pp. 677–682 (2005) 

8. Berger, T., Rublack, R., Nair, D., Atlee, J., Becker, M., Czarnecki, K., Wasowski, A.: A 
Survey of Variability Modeling in Industrial Practice. In: Intl. WS on Variability Model-
ling of Software-intensive Systems, pp. 7:1-7:8 (2012) 

9. Berger, T., She, S., Lotufo, R., Wasowski, A., Czarnecki, K.: Variability Modeling in the 
Real: A Perspective from the Operating Systems Domain. In: Intl. Conference on Auto-
mated Software Engineering, pp. 73–82 (2010) 

10. Boucher, Q., Classen, A., Faber, P., Heymans, P.: Introducing TVL, a Text-Based Feature 
Modelling Language. In: Intl. WS on Variability Modelling of Software-intensive Sys-
tems, pp. 159–162 (2010) 

11. Brummermann, H., Keunecke, M., Schmid, K.: Formalizing distributed evolution of varia-
bility in information system ecosystems. In: Intl. WS on Variability Modelling of Soft-
ware-intensive Systems, pp. 11–19 (2012) 

12. Chen, L., Ali Babar, M., Ali, N.: Variability Management in Software Product Lines: A 
Systematic Review. In: Intl. Conf. Software Product Lines, pp. 81–90 (2009) 

13. Classen, A., Heymans, P., Schobbens, P.-Y.: What’s in a Feature: a Requirements Engi-
neering Perspective. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, 
pp. 16–30. Springer, Heidelberg (2008) 

14. Cook, S.A.: The Complexity of Theorem-Proving Procedures. In: Symp. on the Theory of 
Computing, pp. 151–158 (1971) 

15. Czarnecki, K., Grünbacher, P., Rabiser, R., Schmid, K., Wasowski, A.: Cool Features and 
Tough Decisions: A Comparison of Variability Modeling Approaches. In: Intl. WS on  
Variability Modelling of Software-intensive Systems, pp. 173–182 (2012) 

16. Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing Cardinality-Based Feature Models 
and their Specialization. Softw. Process Improv. Pract. 10, 7–29 (2005) 

17. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged Configuration Through Specialization 
and Multi-Level Configuration of Feature Models. Softw. Process Improv. Pract. 10(2), 
143–169 (2005) 

18. Czarnecki, K., Kim, P.: Cardinality-Based Feature Modeling and Constraints: A Progress 
Report. In: Symp. on Object-Oriented Programming Systems, Languages, and Applica-
tions, pp. 16–20 (2005) 

19. Dhungana, D., Grünbacher, P., Rabiser, R.: The DOPLER Meta-Tool for Decision-
Oriented Variability Modeling: A Multiple Case Study. J. Automated Software Engineer-
ing 18, 77–114 (2011) 

20. El-Sharkawy, S., Dederichs, S., Schmid, K.: From feature models to decision models and 
back again: An analysis based on formal transformations. In: Intl. Conf. Software Product 
Lines, vol. 1, pp. 126–135 (2012) 



 An Analysis of Variability Modeling Concepts: Expressiveness vs. Analyzability 47 

21. El-Sharkawy, S., Kröher, C., Schmid, K.: Supporting heterogeneous compositional multi 
software product lines. In: Intl. Conf. Software Product Lines, vol. 2, pp. 25:1-25:4 (2011) 

22. European Software Institute, IKV++ Technologies.MASTER: Model-driven Architecture 
inSTrumentation, Enhancement and Refinement, IST-2001-34600, MASTER D1.1 (2002) 

23. Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to Pattern-
Based Software Architectures. Addison Wesley (2004) 

24. Istoan, P., Klein, J., Perouin, G., Jezequel, J.-M.: A Metamodel-based Classification of  
Variability Modeling Approaches. In: VARiability for You Workshop, pp. 23–32 (2011) 

25. Jackson, D., Schechter, I., Shlyahter, H.: Alcoa: The Alloy Constraint Analyzer. In: Intl. 
Conf. Software Engineering, pp. 730–733 (2000) 

26. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-Oriented Domain Analysis 
(FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21 ESD-90-TR-222 (1990) 

27. Kang, K., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: A Feature-Oriented Reuse 
Method with Domain-Specific Reference Architecture. Ann. Softw. Eng. 5, 143–168 
(1998) 

28. Liebig, J., Daniel, R., Apel, S.: Feature-oriented language families: A case study. In: Intl. 
Workshop on Variability Modelling of Software-intensive Systems, pp. 11:1-11:8 (2012) 

29. Mannion, M.: Using First-Order Logic for Product Line Model Validation. In: Chastek, 
G.J. (ed.) SPLC 2002. LNCS, vol. 2379, pp. 176–202. Springer, Heidelberg (2002) 

30. Mansell, J.X., Sellier, D.: Decision Model and Flexible Component Definition Based on 
XML Technology. In: van der Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp. 466–472. 
Springer, Heidelberg (2004) 

31. Mendonça, M., Wasowski, A., Czarnecki, K.: SAT-based Analysis of Feature Models is 
Easy. In: Intl. Conf. Software Product Lines, pp. 231–240 (2009) 

32. Object Management Group, Inc. (OMG). Common Variability Language (CVL), OMG in-
itial submission. Available on request (2010) 

33. Passos, L., Novakovic, M., Xiong, Y., Berger, T., Czarnecki, K., Wasowski, A.: A Study 
of Non-Boolean Constraints in Variability Models of an Embedded Operating System. In: 
Intl. WS on Feature-Oriented Software Development (2011) 

34. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foundations, 
Principles, and Techniques. Springer (2005) 

35. Queralt, A., Artale, A., Calvanese, D., Teniente, E.: OCL-Lite: Finite reasoning on 
UML/OCL conceptual schemas. J. Data Knowledge Engineering 73, 1–22 (2012) 

36. Reiser, M.-O.: Core Concepts of the Compositional Variability Management Framework 
(CVM). Technical Report 2009/16, Technische Universität Berlin (2009) 

37. Riebisch, M., Böllert, K., Streitferdt, D., Philippow, I.: Extending Feature Diagrams with 
UML Multiplicity. In: Conf. on Integrated Design and Process Technology (2002) 

38. Schmid, K.: Variability modeling for distributed development - a comparison of estab-
lished practice. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS, vol. 6287, pp. 151–165. 
Springer, Heidelberg (2010) 

39. Schmid, K., John, I.: A Customizable Approach To Full-Life Cycle Variability Manage-
ment. Sci. Comput. Program. 53(3), 259–284 (2004) 

40. Schmid, K., Rabiser, R., Grünbacher, P.: A Comparison of Decision Modeling Approaches 
in Product Lines. In: Intl. WS on Variability Modelling of Software-intensive Systems, pp. 
119–126 (2011) 

41. Schobbens, P.-Y., Heymans, P., Trigaux, J.-C.: Feature Diagrams: A Survey and a Formal 
Semantics. In: Intl. Conf. Requirements Engineering, pp. 139–148 (2006) 

42. Software Productivity Consortium Services Corporation, Technical Report SPC-92019-
CMC.Reuse-Driven Software Processes Guidebook, Version 02.00.03 (November 1993) 



48 H. Eichelberger, C. Kröher, and K. Schmid 

43. Streitferdt, D., Riebisch, M., Philippow, I.: Details of Formalized Relations in  
Feature Models Using OCL. In: Intl. Conf. the Engineering of Computer Based Systems, 
pp. 45–54 (2003) 

44. van Deursen, A., Klint, P.: Domain-Specific Language Design Requires Feature Descrip-
tions. JCIT 10, 1–17 (2002) 

45. Veer, B., Dallaway, J.: The eCos Component Writer’s Guide (2001), 
http://ecos.sourceware.org/docs-latest/cdl-guide/cdl-guide.html 

46. Voelter, M., Visser, E.: Product Line Engineering using Domain-Specific Languages.  
In: Intl. Conf. Software Product Lines, pp. 70–79 (2011) 

47. White, J., Dougherty, B., Schmidt, D.C., Benavides, D.: Automated Reasoning for Multi-
step Software Product-line Configuration Problems. In: Intl. Conf. Software Product Lines, 
pp. 11–20 (2009) 

48. White, J., Doughtery, B., Schmidt, D.: Selecting Highly Optimal Architectural Feature 
Sets with Filtered Cartesian Flattening. J. Systems and Software 82(8), 1268–1284 (2009) 

49. White, J., Hill, J., Gray, J., Tambe, S., Gokhale, A., Schmidt, D.: Improving Domain-
Specific Language Reuse with Software Product Line Techniques. IEEE Softw. 26, 47–53 
(2009) 

50. White, J., Schmidt, D.C., Wuchner, E., Nechypurenko, A.: Automating Product-Line Va-
riant Selection for Mobile Devices. In: Intl. Conf. Software Product Lines, pp. 129–140 
(2007) 



J. Favaro and M. Morisio (Eds.): ICSR 2013, LNCS 7925, pp. 49–64, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

 Towards Test Case Reuse: A Study of Redundancies  
in Android Platform Test Libraries 

Suriya Priya R. Asaithambi and Stan Jarzabek 

School of Computing,  
National University, Singapore 

{suriya,stan}@comp.nus.edu.sg 

Abstract. Similar software systems have similar test cases. We find much re-
dundancy even within test cases of a single system. In this paper, we describe 
the results of similarity analysis performed on Android platform framework 
project’s test case libraries. The results confirm our hypothesis that reuse of test 
cases can boost productivity at least as much as reuse of code.  We identified 
repetition patterns in Android platform framework test case libraries that can be 
represented in generic form for further reuse using variability techniques 
adopted from Software Product Line (SPL). By exploiting similarity among test 
cases, we can design generic test case libraries that are much smaller, easier to 
develop/evolve than existing test case libraries. In this paper, we present quan-
titative and qualitative findings from our study of Android platform framework 
test case libraries. We discuss typical patterns of repetitions and illustrate an ex-
ample of how they can be treated with variability technique ‘XML-based Va-
riant Configuration Language (XVCL)’.  

Keywords: Reusability, Android platform framework, Software Product Line 
Testing, Clone Detection, Unit Test, Integration Test. 

1 Introduction 

With much development effort spent on testing, approaches for test automation have 
received much attention in research. Test cases are textually similar codes or scripts 
with appropriate parametric variations. Additionally, test cases often mirror software 
under test, thus a similarity in software reflects as similarities among test cases. Test 
case similarities create an opportunity to reduce the effort to both develop and main-
tain test libraries: Suppose that for each large enough group of similar test cases we 
design a ‘generic adaptable test case’, from which all test case instances in that group 
can be automatically derived. This would allow us to reduce the size and cognitive 
complexity of test libraries. Instead of working at the level of individual test cases, we 
would work with a smaller number of generic test cases – a much simpler task.  

In this paper, we explore test case reuse with Android platform framework test li-
braries as our case study. First, we conducted similarity analysis of Android platform 
framework test case libraries to assess the degree of redundancies, and investigated 
the potential benefit of test case reuse. Then, we identified patterns of repetitions 



50 S.P.R. Asaithambi and S. Jarzabek 

among test cases that are potential candidates for reuse. Finally, we outlined generic 
representations for such repetition patterns as a practical way to realize the concept of 
test case reuse. In our study, we used XVCL, a variability technique (explained later 
in section 5) to manage code reuse developed in SPL research for our reuse proposal.   

In our previous work [1], we presented the importance of having a generic adapt-
able test cases for SPL. In this paper, we present quantitative and qualitative findings 
from studying Android platform framework test case libraries. We have studied unit 
test cases and integration test cases of the Android platform framework open source 
repository. Our study confirms high rates of redundancies that create opportunities to 
boost testing productivity using reuse-based approaches to build test case libraries. 
We present a solution that can treat test case redundancies at meta-level, complement-
ing plus extending the power of programming language and testing framework sup-
port. 

The rest of the paper is organized as follows. Details of the methodical study we 
conducted are explained in section 2. Section 3 reports test clone analysis from the 
study. Section 4 is an executive summary of study followed by section 5 explaining a 
possible XVCL approach for generic adaptable test case design. Related work is pre-
sented in section 6. Threats to validity are documented in section 7 and experiences 
gained from study are presented in Section 8 as conclusion of this paper. 

1.1 Background and Motivation 

A test clone refers to identical or near identical fragments of test case codes. Test 
clones are often present in test cases related to similar features of a software system 
under testing. Large granular test clones signify reuse opportunity. The essence of 
Software Product Line (SPL) [2] approach is to systematically analyze commonalities 
and differences in a family of software products, and build so-called SPL core assets 
from which products can be developed and maintained in reuse-based, cost-effective 
way [3, 4]. Software product line testing (SPLT) [5] refers to approaches that support 
reuse of test cases such as generic adaptable test case design outlined in the introduc-
tion.  Test cases forms an important part of SPL core assets. Further, testing of core 
assets is considered critical because a fault within certain functionality can spread 
over thousands of products that reuse this functionality. Thus, it is important to pri-
oritize and thoroughly test SPL core assets by taking advantage of reusability. Smith 
et al [6] describes how open source tools could be specifically tailored for mobile 
software engineering to avoid duplication. 

Android is the first free, open source, and fully customizable mobile platform that 
includes an operating system (OS), middleware and key mobile applications. Android 
SDK provides the tools and APIs necessary to develop applications on the Android 
platform [7],[5]. Android platform spans across different hardware makers (Sony, 
HTC, Samsung, Google, etc.), applications (i.e., native application, mobile web appli-
cation) and computing devices (i.e., smart phone, tablet). Android faces variability 
management challenges in areas of functionalities, memory management, power con-
sumption, screen, display densities, and relevant test automation calls for new reuse 
based techniques. The exponential growth of the platform poses unique challenges for 



Towards Test Case Reuse: A Study of Redundancies in Android Platform Test Libraries 51 

variability management, reuse at all fronts, efficient quality assurance and quality 
control procedures, of which testing are an integral part. New software engineering 
approaches are required for testing Android’s  device complexity [8].  Android is a 
massive SPL, in which effective testing strategies play a key role in ensuring the qual-
ity of this famous mobile platform.  

Let us assume that a particular component of Android platform framework con-
tains 12 variant features that may be different in different Android powered device 
installations. Then we might have as many as 212 = 4096 combinations of these vari-
ant features in various Android powered device installations. (In practice, only some 
of those combinations are legal.). The above simple example shows that even a small 
number of variant features can results in a combinatorial explosion of test cases 
needed for validation. Combinatorial explosion of test case libraries is caused by the 
need to test individual variant features. This overwhelming number of test cases 
needed can be reduced if we could exploit the fact that test cases for different product 
variants are similar, in the same way as respective products are similar.  

2 Study Overview 

Android was launched in 2003, as a way to advance open standards for mobile devic-
es. Android’s architecture naturally promotes component reuse. Platform releases are 
frequent, introducing new features such as account synchronization, improved media-
playing performance, and more geo location support. Complexities in testing and 
fragmentation concerns are new research challenges. Following the guidelines from 
‘Software Engineering Research Methodology Guidelines for Case Studies’ [9] , our 
study comprised of five major process steps: 

1. Systematic case study design: We defined key objectives and execution plan. 
2. Data collection: We collected data from Android GIT source code repositories. We 

carefully segregated test cases and analyzed those using Clone Miner and Clone 
analyzer tools. We studied similarities using various filter criteria.  

3. Analysis: We collected test clones, grouped them and attempted interpreting the 
possible causes. 

4. Report: We organized new found insights and emerging findings in a summary. 
5. Proposal: We proposed a solution that can treat test clone, complementing and ex-

tending the power of programming language and testing framework support. 

Objectives. The objective of our study is to identify, understand and classify the na-
ture of redundancy in test case libraries. We hope that this study would guide in de-
signing of generic adaptable test cases, simplifying test case libraries, and enabling 
test cases reuse and automation.  

─ Objective #1: To identify, and analyze, similarities found in the ‘Android Platform 
Framework Test Case Libraries’. 

─ Objective #2: To analyze and classify the findings to come up with insights that 
would help in design of generic adaptable test cases.  



52 S.P.R. Asaithambi and S. Jarzabek 

Tool. We use Clone Miner (CM) and Clone Analyzer (CA) tool [10] for our study. 
CM/CA finds clones in subject software system(s) and also allows us to filter clones 
that are of interest in our study. CM/CA, helps us find both simple and large similari-
ties.  Simple clones (similar code fragments) are possibly part of a bigger design-
level replicated program structures (e.g., files or directories). CM/CA uses token-
based techniques to find simple clones and data mining to find higher level structural 
similarities. 

Method. Our case study was carried out in the following steps: (1) Setting up the 
clone miner and clone analyzer tool (2) Checking out the Android base platform code 
repositories from GIT server and separating test artifacts directories for further inves-
tigation (3) Conducting similarity investigation using clone miner and analyzer tool 
(4) Analyzing the investigation findings further (5) Reporting the findings, challenges 
and research findings that will be useful in answering the original research questions 
defined.  

Scope of Test Cases. We studied ‘Android platform framework test case libraries’, a 
collection of unit and integration test cases for Android Platform. As our goal is to 
reuse test cases, we scoped our study to single language; we focused on Java, exclud-
ing C++ and C test case libraries. 

3 Test Clone Analysis and Discussion  

3.1 Data Collection 

After initial analysis of Android code repository, we selected platform project and 
further focused on framework project for the study among four hundred over similar 
projects from the GIT servers (Shows the focused platform in Fig. 1). It provides 
common platform services related to kernel interactions.  
GIT repository path is: 
https://Android.googlesource.com/platform/frameworks 
 

 
Fig. 1. Android Projects 

 

OS Kernel 

Device: Core functions of device platform provided by system, security,
graphics, multimedia and communication components 

Service: Service centric functions that are provided by application en-
gines and server assisted components 

Framework: Open API framework that consist if an application frame-
work and functions exported by underlying layers 

Device Applications Service Applications Web/Flash Applications

Our focus on  
Test Case  
Libraries 



Towards Test Case Reuse: A Study of Redundancies in Android Platform Test Libraries 53 

3.2 Test Case Characteristics 

Our study collected all unit and integration test cases, found in the public repository. 
This would provide insights on ‘White Box Testing’.   

Android Platform: 
Total Android Framework Code Base Size ~17 GB;   
Total 26767 Files; 9300824 LOC ~9300KLOC 
Study focus - Framework: 
Framework Codes = 2.23 GB On Disk; 
Test Files In Framework Project: 1012  
Selected Test Files For Study: 1007 Java Files (Unit /Integration/UI Tests); 12+MB;  

3.3 Types of Test Clones 

When writing similar test cases, testers often use copy-paste-modify technique (even 
though in some situations programming language mechanisms such as inheritance or 
parameterization might yield a more elegant unified solution). Most test clones we 
observed seem to result from this approach. In this study, we classified test clones 
based on clone type as shown in Table 1 below:  

Table 1. Classification Based on Token Size and Test Clone Type 

TEST CLONES 
(SIMILAR 
TOKENS) 

SIMPLE PARAMETRIC COMPLEX 
Identical Test Clones Parametric Test Clones  Reordered/Intervened 

/Gapped Test Clones 

 
Our study assumes the following definitions: test clones are fragments of conti-

guous code having considerable size and significant similarity. Token is our unit of 
measure that refers to test code such as keyword, variable name, constant and opera-
tors. In our study we consider clones of minimum token length 30. The identical test 
clone is the simplest type, where the two or more test case portions match exactly, 
except for the line breaks and white spaces. Parametric test clones are test 
case sections that match except for a one-to-one correspondence between candidates 
for parameters such as variables, constants, macro names, and structure member 
names. This apart, there are reordered test clones and intertwined test clones. In 
a reordered test clone, the exact or parametric matching lines of the test codes are re-
ordered, whereas in an Intertwined test clone, these lines are intertwined with each 
other. In gapped test clone, the differences between the matching test case sec-
tions cannot be parametric and form gaps of non similarities. Example for parametric 
test clone is presented in Table 2 below. 

Table 2. Parametric Test Clones 

public boolean matches 
 (Object matched) { 
   if (!(matched instanceof  
           AccessibilityEvent)) { 
         return false;     } 
 . . . } 

public boolean matches 
 (Object argument) { 
   if (!(argument instanceof Uri)){  
        return false;     } 
  . . .  
} 



54 S.P.R. Asaithambi and S. Jarzabek 

3.4 Similarity Analysis 

First, we grouped test cases based on test clone types. Then, we performed more  
detailed study on similarities within each group, and attempted to record typical  
examples. In this section, we illustrate similarity groups with simple examples, and 
explanation. Although the examples are not equally distributed, each group of test 
clone indicates few possible causes for redundancies.  
 
GROUP1: Simple and Parametric Test Clones. This group of clones comprises of 
test cases that are exact copies or parametric copies of each other. A test method is a 
single executable test case that may share a common set-up and tear-down method for 
test fixtures (data). Simple test clones are contiguous segments of exact similar test 
codes such as test methods, or fragments of test method implementation. Parametric 
test clone are syntactically identical fragments or test classes or test methods except 
for variations in parameters, return types, identifiers, literals, types, whitespace, layout 
and comments. One of the key causes for parametric test clone is the lack of methodi-
cal reuse among common ‘Test Fixtures’. Redundancy is also observed to have oc-
curred from lack of appropriate creational test case design patterns.   

─ Functional Similarity: The objective of test cases is to verify specific functional 
requirements. Many functions are designed symmetrical across the screen. For ex-
ample hand gestures such as, swipe left or swipe right, pinch zoom in or out. De-
pending on selected activity, the input data set may be different, but the function 
calls tested are similar. Thus test methods contain similar method calls for different 
input sets. This gets reflected as test clones. For example, Table 3 shows a test case 
checking if a touch gesture used to grab screen works properly. Depending on se-
lected item being hyperlink or UI action, different event activity is being asserted.    

Table 3. Simple Clones Based On Functional Similarity 

public class    
  GridTouchSetSelectionTest  
    extends  Activity 
    InstrumentationTestCase 
    <GridSimple> { 
 private GridSimple mActivity; 
 private GridView mGridView; 
 ... 
 @LargeTest 
 public void testSetSelection()  
  { 
   TouchUtils. 
   dragQuarterScreenDown( this); 
 TouchUtils. 
   dragQuarterScreenUp( this); 
 //... LARGE IDENTICAL CLONE.... 
 assertTrue( "..." , found); 
 } 
 ... 
} 

public class    
  ListSetSelectionTest 
    extends  Activity 
    InstrumentationTestCase 
    < ListSimple> { 
 private ListSimple mActivity; 
 private ListView mListView; 
 ... 
 @LargeTest 
 public void testSetSelection()  
  { 
   TouchUtils. 
   dragQuarterScreenDown( this); 
 TouchUtils. 
   dragQuarterScreenUp( this); 
 //... LARGE IDENTICAL CLONE.... 
 assertTrue( "..." , found); 
 } 
 ... 
} 



Towards Test Case Reuse: A Study of Redundancies in Android Platform Test Libraries 55 

─ Collection/Data Structure Management: Test stubs and drivers are components of 
reusable test fixtures. Test fixtures manage complex data structures and collections. 
When the test context is similar, the data structure/collection processing codes are 
also similar. Processing includes memory management and life-cycle methods such 
as data setup, data tear-down and verification/assertion causing identical test 
clones. For example, in Table 4, let us consider test case in media framework tar-
geted for media thumbnails. The unit test class MediaItemThumbnailTest 
comprises of seven identical clones shown in table below that processes, validates 
and recycles test data. Failing to use best practices, that indetifies similar data 
structures and organizes related life-cycle methods as reusable components is like-
ly the cause for such test clones. 

Table 4. Collection/DataStructure Processing Clones 

   //. . . 
   for ( int i = 0; i < thumbNailBmp.length; i++) { 
            validateThumbnail(thumbNailBmp[i], outWidth, outHeight); 
            thumbNailBmp[i] = null; 
        } 
   //. . . 

─ Exception management: In situations where test cases make invocation to me-
thods that perform similar functions, similar exceptions are thrown. Thus the test 
cases have redundant exception managing try-catch block clones. For example, in 
file WindowManagerPermissionTests, every call to the IWindowManag-
er interface should throw SecurityException. Thus try-catch blocks are re-
dundant inside the test case as shown in Table 5. 

Table 5. Redundant clause try – catch- blocks 

    //. . . 
   try { 
            mWm.updateRotation(true, false); 
            fail(". . ."); 
        } catch (SecurityException e) { 
            // expected 
        } catch (RemoteException e) { 
            fail(". . ."); 
        } 
   //. . .

Test Case Set Up/ Tear Down or Fixture Parameters Test cases are usually run by a test 
runner class that loads the test case class; set ups needful data or fixtures, runs, and tears down 
each test. Thus majority of the redundancy in test cases are found in set up and tear down 
methods.  In RecurrenceProcessorTest that test recurrence event for the calendar 
feature, there are fifteen test clone methods with slight variation in test fixture values as shown 
in Table 6. 

 



56 S.P.R. Asaithambi and S. Jarzabek 

Table 6. TestData Redundancy 

 //. . . 
@SmallTest 
public void testMonthlyXX() throws Exception { 
        verifyRecurrence( "20110703T100000" ,  
           "FREQ=MONTHLY;BYDAY=SA,SU;BYSETPOS=2,-2" , 
            null /* rdate */ , null /* exrule */, null /* exdate */, 
            "20110701T000000" , "20110931T235959", 
            new String[]{ "20110703T100000" , "20110730T100000" , 
                "20110807T100000" , "20110827T100000" , 
                "20110904T100000" , "20110924T100000"  } ); 
    } 
   //. . .

─ Mock Objects Parameters: To facilitate dependency injection in testing, Android 
provides classes that create mock system objects such as Context objects, Con-
tentProvider objects, ContentResolver objects, and Service objects. 
Test cases provide mock Intent objects. Testers use these mocks both to isolate 
tests from the rest of the system and to facilitate dependency injection for testing. 
These classes are found in the packages Android.test and Andro-
id.test.mock. Mock objects isolate tests from a running system by stubbing 
out or overriding normal operations. Redundancies found in such mock object life 
cycle management. 

─ Activity / Service Parameters: Activity testing is dependent on the Android 
instrumentation framework. Activities have a complex lifecycle based on callback 
methods; these can't be invoked directly except by instrumentation. The activity 
testing API base class is InstrumentationTestCase, which provides in-
strumentation to the test case subclasses we use for activities. Android provides a 
testing framework for Service objects that can run them in isolation and pro-
vides mock objects. The test case class for Service objects is ServiceTest-
Case. Since the Service class assumes that it is separate from its clients, we can 
test a Service object without using instrumentation. Parametric clones found in 
such Activity and Service objects based tests. 

─ UI Parameters: UI testing ensures that the framework returns the correct UI output 
in response to a sequence of user actions on a device, such as entering keyboard 
input or pressing toolbars, menus, dialogs, images, and other UI controls. Func-
tional or black-box UI testing does not require testers to know the internal imple-
mentation details of the app, only its expected output when a user performs a  
specific action or enters a specific input. The Android SDK provides tools to sup-
port automated, functional UI testing using UIAutomator and TestRunner.  

GROUP 2: Reordered/Intervened/Gapped Test Clones. Contiguous segments of 
parametric test case clones that have intervened code portions that cannot be parame-
tric. Our study also found similarities spread across files. However no directory level 
similarities were observed. 



Towards Test Case Reuse: A Study of Redundancies in Android Platform Test Libraries 57 

─ Device and Configuration: The study reveals that repetitive test codes belonging 
to the devices and configuration were found highlighting similarities across files 
and directories. Closer examination reveals presence of design and architectural 
similarities. Let us take a simple example of testing permission. There are key 
permissions to be tested on activities, package managers, windows mangers, ser-
vice managers, SMS (Short Message Service) managers and vibration services. So 
there are intervened test clones present. Below Fig. 2 shows the file listing of inter-
est.  

 

Fig. 2. Permission Test Cases 

─  Template: In general test cases had class level and package level templates. Class 
level structures include set up, tests and tear down. Package level includes groups 
of test classes as test suites. Owing to the similarity in the domain, similarities are 
found in the class level and package level templates as shown in Fig. 3. 

 

Fig. 3. Template Similarity between two test case files 

File Gapped Clones: Using clustering technique based on clone length and coverage 
metrics CA/CM tool was able to observe file level clones. For example Download-

ManagerBaseTest shown in Fig. 4, is a file level gapped test clone found in two 
different directories. They have minor contextual differences. However they are ma-
naged as two duplicated gapped clones.  

 

 



58 S.P.R. Asaithambi and S. Jarzabek 

 

Fig. 4. File Gapped Clone Occurrences 

─ Call Sequence: Being a component based SPL architecture; Android’s complex 
functionalities get broken down into smaller activities. While testing such complex 
functionalities, clones emerge in terms of group of assertion statements being 
called and the sequence in which they are called. An example is shown in Fig. 5. 

 

Fig. 5. Call Sequence Similarity for two different test cases setting up activity 

4 Quantitative Analysis 

A summary of our study findings is shown in Table 7. Two key observations from our 
study are: (1) At least 53% of test files contain some form of redundancy. (2) At least 
79% of test methods comprised of some form of redundancy.  

Table 7. Summary of Clone Analysis 

Attribute Measure 
Total Directories Analyzed 224 Directories 
Total Test Files (Java Classes) Analyzed 1007 Files 
Total Methods Analyzed 9728 methods 
% Methods Containing Simple Test Clones 79% 
% Files Containing Simple Test Clones 53% 
Average Length of Test Clone  53 Tokens 
Maximum Length Of Test Clone Found 1290 Tokens 
Minimum Length Of Test Clone Found  30 Tokens  
Simple Test Clone Class 2407  Files  
Simple Test Clone Methods 7731 Methods  
Parametric Test Clone Found Within File 779 Instances 
Parametric Test Clone Found Across Files 335Instances 
Complex Test File Clones Within Directory 12 Files 
Complex Test File Clones Across Directories 11 Files 



Towards Test Case Reuse: A Study of Redundancies in Android Platform Test Libraries 59 

4.1 Similarity Discussion 

The following discussion summarizes the study findings against our originally set 
research objectives. 

Objective #1. To identify, and analyze, similarities found in the ‘Android platform 
framework test case libraries’. Around 53% of test files have some form of redundan-
cy. Test clones vary in type, complexity, token length, and variations. From the study 
we observe that there could be various reasons for the cause of test clones. Typical 
examples such as test smells, lack of design and parametric combinatory of test data 
need be addressed using appropriate reuse techniques. In our study, Group1 test clone 
examples such as exception management & UI parameters, along with Group 2 find-
ings confirm absence of reuse techniques to manage test case libraries at the  
programming language level. For example, exception management test clones are 
limitations owing to non-runtime exception structure of Java. Thus our study confirms 
the need to access for a meta-level variant management of test case libraries proposal. 

Objective #2. To analyze and classify the findings to come up with insights that 
would help in design of generic adaptable test cases. Removing clones at the lan-
guage level requires changes to the test case libraries.  In existing Android system, 
test clones are tolerated in spite of their negative effect on maintenance, to avoid the 
risk of breaking a running test while trying to remove them. Different techniques can 
be used to realize reuse based evolution of test case libraries. We had discussed the 
issues of managing test case libraries at programming language level in previous sec-
tions. For existing test case redundancy issues, we may still rely on regular mainten-
ance approaches such as test smell identification, refactoring, test case design patterns 
and library based reuse. However, new methodical reuse approaches are to be ex-
plored for managing planned future redundancies.   

In the next section, we propose a technique for test clone treatment with mixed-
strategy approach. Here test case libraries can be built and maintained with a genera-
tive technique, applied on top of exiting test case libraries. The technique is unique, 
generic, but in adaptable form. The core functionality of test cases still exits as An-
droid Test Cases, but generic test case designs to unify similarities are delegated to 
XVCL. We hope this technique will aid the tester design better managed generic 
adaptable test cases that can generate test cases specific to different target Android 
devices. 

5 Towards Generic Test Cases 

While designing unit and integration test cases, reuse comes handy by using pro-
gramming language mechanisms such as inheritance, shared libraries, object composi-
tion, and component packaging. One technique that is useful would be meta-
generative approach called XVCL. We illustrate generic test case design with XVCL, 
a variability management technique developed and applied in SPL research. . XVCL 
[10] is a static meta-programming language and tool, a modern incarnation of Bas-
sett’s frames [11]. We introduce the concepts of the solution, using test clones found 
in the Android test case libraries as an example. Fig. 6 outlines the solution. 



60 S.P.R. Asaithambi and S. Jarzabek 

 

Fig. 6. Generic Adaptable Test Case Design 

Similar test structures – test methods, test classes, or test patterns - are represented 
generically and organized into ‘generic adaptable test cases’. Specifics of each test 
case are described separately in an SPC, as deltas from the generic test case. XVCL 
Processor generates specific test cases from the generic test case according to SPC.  
By varying the SPC, we can use the same generic test case as a template to generate 
required specific test cases. The following example shows how a generic test case, 
together with the appropriate SPC, is used to generate the multiple test cases. Let  
us consider the test package for creation views in com.Android.bidi. The test 
involves four possible layouts and two sides for each layout as show in Fig. 7. 

 

 

Fig. 7. Feature diagram for view layout test cases 

We use two XVCL variables called layoutName and sideName to represent a 
class name and layout call constants. The generic test case representation comprises 
of an SPC and an XVCL component BiDiTest, shown in Fig. 8. XVCL variables 
‘layoutName’ and ‘sideName’ are assigned values in <set> commands, in 
SPC. XVCL Processor interprets SPC and interprets any XVCL commands found on 
the way, and emitting Java code accordingly. In our example, test case named BiDi-
testGridLayoutRight is generated. The remaining test cases in this group can be 
generated from their respective SPCs. The SPC can also contain a generation loop to 
emit all test cases in a group from a single SPC.   

Tests View Layout 

GridLayout LinearLayout RelativeLayout TableLayout 

Right Left Right Left Right Left Right Left 

Test Case 

Specification ( SPC) 

Generic  

Adaptable Test Cases XVCL Processor 

Specific Test Cases 

For Different An-

droid Devices  



Towards Test Case Reuse: A Study of Redundancies in Android Platform Test Libraries 61 

 

Fig. 8. Deriving class of BiDitestGridLayoutRight from a generic BiDiTest 

5.1 Discussion 

Our example is simple, but the principle of operation is general, meaning that for any 
group of test cases displaying substantial similarity, we can build a generic adaptable 
test case in XVCL. In particular, for any type of clones described in our analysis, 
there is a clear pattern of the corresponding XVCL generic solution possible. The 
generic test case design described here is language-independent therefore can be 
seamlessly applied across multiple programming language constructs. Thus Android 
platform framework comprising of Java, C++ and C test cases can be seamlessly ma-
naged by XVCL. Test case generation rules are 100% transparent to a tester, who 
retains full control over fine-tuning the generated test case code. 

6 Related Work 

The related work focusing on aspects such SPLT and reuse based testing approaches 
in mobile context. Software product line testing (SPLT) [5] approaches, support reuse 
by employing test assets that are commonly maintained as generic core assets and 
modified as necessary to the tested product dynamically. Smith et al [6] indicates 
research efforts as to how open source tools could be specifically tailored for mobile 
software engineering to avoid duplicating early in context of the end to end test assets, 
automated or otherwise. 

SPC 
<set layoutName = GridLayout /> 
<set sideName = Right /> 
<adapt BiDiTest /> 

BiDiTest Frame 
public class BiDiTest@layoutName@sideName extends Fragment { 
  public View onCreateView( 
   LayoutInflater inflater, ViewGroup container, 
   Bundle savedInstanceState) { 
    return inflater.inflate(R.layout.@layoutName@sideName, 
            container, false); 
    } 
} 

Generate BiDi Test Case  
public class BiDiTestGridLayoutRight extends Fragment { 
  public View onCreateView( 
   LayoutInflater inflater, ViewGroup container, 
   Bundle savedInstanceState) { 
    return inflater.inflate(R.layout.GridLayoutRight, 
            container, false); 
    } 
} 

XVCL Processor



62 S.P.R. Asaithambi and S. Jarzabek 

Bezerra et al [12] present a systematic review on the existent proposals concerning 
mobile middleware product lines and their variability management techniques. The 
proposal suggests use of dynamic-AOP, feature model and ontology combined with 
intelligent agents. However there is no implementation to substantiate the practical 
applicability of identified proposals. White et al [13] implemented a constraint solver 
based on a rule engine tool that takes product line architecture requirements and re-
source available of a particular mobile device as inputs and outputs optimal variants 
that could be deployed.  The initial experiment of the variant selection tool Scatter 
seems positive. However, there is a variety of assumption and constraints on how the 
tool is being utilized. 

Many techniques and tools for clone detection, elimination, and removal have been 
described in the literature, and some of this literature addresses the problem of apply-
ing these techniques and tools to software systems written in a variety of languages. 
NA Kraft et al [14] describe an approach for cross-language clone detection. The 
work has been implemented in .Net platform and proved to detect clones from C# and 
VB codes. . While work published so far focuses on SPLT and mobile challenges, 
Android being a recent platform, has received very less attention from research com-
munity. 

7 Threats to Validity 

This study comprises several steps, combining two research methodologies: the ex-
ploratory study and the evaluation based on a tool experiment. There are several 
threats to validity: the selection of the study repository, the interpretation of test 
clones as found by the tool, the use of proper metrics and experimental setups for 
evaluation. Our study does not claim to have generalized all possible test clone occur-
rences. There could be more causes for the test clones than those being listed in the 
analysis section. We have attempted to observe and classify as much different groups 
of test clones possible, based on our past study experiences from other clones using 
the same tool. We have sought clone expert opinions on the findings where possible 
to counter the threat. Gapped test clones are human interpreted and recorded and so it 
is possible that another researcher would have identified a different list of important 
prioritization factors. However the list proposed in our study is further reviewed, eva-
luated and thus validated within the scope of our study. 

8 Conclusion 

In the paper, we described the results of similarity analysis performed on the Android 
platform framework test case libraries. Our results confirmed the hypothesis that 
reuse of test cases can boost productivity at least as much as reuse of code: around 
half of exiting test case files are found to have some form of redundancy. Most re-
dundant test clones we found are either identical or parametric in nature. Our study 
also uncovered some instances of gapped test clones. We identified repetitive patterns 
in Android platform framework test cases that could be represented in generic form 



Towards Test Case Reuse: A Study of Redundancies in Android Platform Test Libraries 63 

for reuse with variability techniques used in SPL. The goal of generic adaptable test 
case design is to identify redundancy, at the test case level and avoid counter-
productive test duplications. By exploiting similarity among test cases, we can design 
generic test case libraries that are much smaller, easier to develop and evolve, than 
existing test case libraries. We illustrated a simple example on how template unfriend-
ly gapped test clones can be treated using variability technique of XVCL. In this 
study, we focused on similar test cases found in an Android installation on a single 
device. We plan to extend our study to explore test case reuse across different Andro-
id versions and installations. 

8.1 Future Work 

Using the observations and findings from studying the Android platform framework 
test case libraries, we want to construct "generic adaptable test cases" to counter 
test case libraries explosion problem. Our future work will focus on traceability and 
effort reduction via systematic reuse of generic adaptable test cases by taking advan-
tage of common aspects and predicted variability.  

Acknowledgements. We wish to thank Hamid Abdul Basit (School of Science and 
Engineering, Lahore University of Management Sciences, Pakistan) for providing tool 
Clone Miner and Clone Analyzer and related support.  

References 

1. Asaithambi, S.P.R., Jarzabek, S.: Generic adaptable test cases for software product line 
testing: software product line. In: Proceedings of the 3rd Annual Conference on Systems, 
Programming, and Applications: Software for Humanity, pp. 33–36. ACM, New York 
(2012), http://doi.acm.org.libproxy1.nus.edu.sg/ 
10.1145/2384716.2384733, 978-1-4503-1563-0 

2. Pohl, K., Böckle, G., Linden, F.V.D.: Software Product Line Engineering: Foundations, 
Principles, and Techniques. Birkhäuser (2005), 9783540243724 

3. McGregor, J.D.: Testing a Software Product Line. Software Engineering Institute (2001), 
http://repository.cmu.edu/sei/630 

4. McGregor, J.D.: Testing a Software Product Line. In: Borba, P., Cavalcanti, A., Sampaio, 
A., Woodcook, J. (eds.) PSSE 2007. LNCS, vol. 6153, pp. 104–140. Springer, Heidelberg 
(2010), http://www.springerlink.com.libproxy1.nus.edu.sg/ 
content/63526l72267k3311/abstract/ 

5. Muccini, H., Di Francesco, A., Esposito, P.: Software testing of mobile applications: Chal-
lenges and future research directions. In: 2012 7th International Workshop on Automation 
of Software Test (AST), pp. 29–35 (2012) 

6. Smith, L., Laird, C.: Android: open-source scripting for testing and automation.  
Dr. Dobb’s J. 26(3), 99–102 (2001),  
http://dl.acm.org.libproxy1.nus.edu.sg/ 
citation.cfm?id=544544.544553 

7. Burnette, E.: Hello, Android: Introducing Google’s Mobile Development Platform, ch. 2. 
Pragmatic Bookshelf (2009), 1934356492, 9781934356494 



64 S.P.R. Asaithambi and S. Jarzabek 

8. Hu, C., Neamtiu, I.: Automating GUI testing for Android applications. In: Proceedings of 
the 6th International Workshop on Automation of Software Test, pp. 77–83. ACM, New 
York (2011), http://doi.acm.org.libproxy1.nus.edu.sg/ 
10.1145/1982595.1982612, 978-1-4503-0592-1 

9. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in 
software engineering. Empirical Software Engineering 14(2), 131–164 (2009), 
http://link.springer.com.libproxy1.nus.edu.sg/article/ 
10.1007/s10664-008-9102-8 

10. Basit, H.A., Jarzabek, S.: A Data Mining Approach for Detecting Higher-Level Clones in 
Software. IEEE Transactions on Software Engineering 35(4), 497–514 (2009) 

11. Jarzabek, S., et al.: XVCL: XML-based variant configuration language. In: Proceedings of 
the 25th International Conference on Software Engineering, pp. 810–811 (2003) 

12. Bezerra, Y.M., Pereira, T.A.B., da Silveira, G.E.: A Systematic Review of Software Prod-
uct Lines Applied to Mobile Middleware. In: Sixth International Conference on Informa-
tion Technology: New Generations, ITNG 2009, pp. 1024–1029 (2009) 

13. White, J., et al.: Automating Product-Line Variant Selection for Mobile Devices. In: 11th 
International Software Product Line Conference, SPLC 2007., pp. 129–140 (2007) 

14. Kraft, N., Bonds, B., Smith, R.: Cross-language clone detection. In: Proceedings of the 
20th International Conference on Software Engineering and Knowledge Engineering, 
SEKE (2008) 



An Assessment of Test-Driven Reuse:
Promises and Pitfalls

Mehrdad Nurolahzade, Robert J. Walker, and Frank Maurer

Department of Computer Science
University of Calgary

Calgary, Alberta, Canada
{mnurolah,walker,frank.maurer}@ucalgary.ca

Abstract. Test-driven reuse (TDR) proposes to find reusable source code through
the provision of test cases describing the functionality of interest to a developer.
Proponents claim that their TDR approaches work well. This paper presents the
results of an experiment to evaluate the ability of state-of-the-art TDR tools to
locate reusable source code for realistic tasks. We find that non-trivial function-
ality, like that needed in the daily tasks of developers, can largely not be retrieved
by these approaches. We provide an analysis of the shortcomings and underlying
problems in the existing approaches, and a discussion of potential solutions.

1 Introduction

Recent research considers locating and reusing source code by leveraging test cases [5,
13, 8]. Such test-driven reuse (TDR) is a reasonable proposition in development prac-
tices where test cases are written prior to implementing the functionality under test—
called test-driven development (TDD)—such as in several agile development method-
ologies [e.g., 1]. While the TDR literature reports good results, it is not clear how the
approaches compare, nor whether the results generalize to realistic TDD scenarios.

In TDR, the developer starts from test cases to indicate what they seek. The test cases
are typically interpreted by automated TDR approaches as precise specifications to be
satisfied by the located source code. And therein lies the crux of the potential problem:
in test-driven development, the developer may have at best a fuzzy notion (initially) of
the functionality she wants—TDD is inherently iterative. If a TDR approach places too
much weight on the details of the test cases written (such as the particular names of
types and methods), it is unlikely to find appropriate source code nor source code that
can be trivially transformed to become a perfect match for those test cases.

The evaluation of TDR tools to-date [5, 13, 8] has been performed using a collection
of classic tasks commonly used in the software reuse literature. Most of these tasks in-
volve common data structures and functions, for which the developer can be expected
to use the standard domain-specific vocabulary. We claim that these tasks are not repre-
sentative of the daily requirements of developers performing TDD, where a developer
cannot be expected to know of a standard domain-specific vocabulary.

To evaluate the existing test-driven reuse tools, we conducted an experiment with
a set of trial tasks discovered from the daily development activities of developers.

J. Favaro and M. Morisio (Eds.): ICSR 2013, LNCS 7925, pp. 65–80, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



66 M. Nurolahzade, R.J. Walker, and F. Maurer

We found that known solutions for such tasks are largely not retrieved by the existing
TDR approaches, but instead, these approaches tend to recommend irrelevant source
code. We analyze the published descriptions of the approaches and details of the re-
turned solutions to identify the problems underlying this failure.

The rest of this paper is organized as follows. An overview of related work in TDR
is provided in Section 2. We describe our experiment in Section 3. Results from the
experiment and additional discussion are presented in Section 4.

2 Related Work

The reuse of source code through copying and modifying has a long history. While this
approach of pragmatic software reuse can be abused, a growing body of evidence exists
that it is a standard industrial practice, that it can be performed in a disciplined and
principled manner, and that the use of pragmatic reuse and pre-planned reuse techniques
could be coordinated to complement each other [for an overview, see 2].

A number of techniques have been used for indicating desired functionality for reuse,
including signature matching [10], and specification matching [6]. Signature matching
and specification matching both place a high burden on the developer to provide pre-
cise input; both approaches either will fail to retrieve pertinent source code if exact but
inappropriate details are provided, or will retrieve an excessive number of results, de-
manding laborious examination by the developer. We note that both approaches mention
the possibility of more approximate matching strategies.

Podgurski and Pierce [12] proposed behaviour sampling, an approach to retrieve
reusable components using searcher-supplied samples of input/output for desired op-
erations. As a pre-filtering step, behaviour sampling uses signature matching to limit
the components to be tested, resulting in the same potential drawbacks. Podgurski and
Pierce proposed two extensions to the classic form of behaviour sampling to over-
come its limitations. Test-driven reuse realizes one of these extensions that permits the
searcher to provide the retrieval criteria through a programmed acceptance test.

Three approaches to test-driven reuse have appeared in the literature: Code Con-
jurer [4, 5], CodeGenie [8], and S6 [13]. The prototype tool for each approach operates
on source code written in the Java programming language.

Code Conjurer and CodeGenie are JUnit1-based implementations of test-driven reuse.
The plug-in to the integrated development environment (IDE) provided by each of the
tools automatically extracts operation signatures from the searcher-supplied JUnit test
code. Search is then performed via a source code search engine and results are presented
to the searcher for inspection in the IDE. The Merobase and Sourcerer [9] code search
engines power Code Conjurer and CodeGenie searches respectively. CodeGenie further
assists the searcher in slicing the source code to be reused; however, unlike Code Con-
jurer, the current implementation of CodeGenie can only be used to search for a single
missing method, and not an entire class [8].

S6 complements the use of behaviour sampling with other forms of semantic spec-
ifications. It implements the abstract data type extension proposed by Podgurski and
Pierce to handle object-oriented programming. Unlike Code Conjurer and CodeGenie,

1 JUnit is an automated testing framework for Java code.



An Assessment of Test-Driven Reuse: Promises and Pitfalls 67

S6 does not utilize JUnit test code as a query language, but requires that the searcher
provide the interactions of a class’s methods through its web user interface. S6 attempts
a small set of limited transformations on candidate source code, in an attempt at re-
laxing the constraints imposed by literal interpretation of the input query. S6 can use a
local repository or remote code search engine like Google Code Search as the codebase
searched through for candidate source code. Similar to Code Conjurer and CodeGenie,
S6 depends on being able to find an appropriate initial result set.

All three approaches initially filter the repository on the basis of lexical or syntactic
similarity with the supplied test case/query specification. All three claim to then execute
the test case on each of the filtered results to assess semantic similarity as well; this acts
solely to further constrain the set of potential matches.

3 Experiment

Our research question is “Do existing TDR tools recommend relevant source code for
which minimal effort should be needed to integrate with an existing project?” In par-
ticular, we consider whether each tool is able to recommend known source code that
solves a task, given modified forms of the existing test cases—taken from the same
codebase—that exercise that source code. Section 3.1 describes how we selected tasks.
Section 3.2 describes our experimental method. To improve the construct validity of
our measurements, we had other developers assess a sample of our suitability assess-
ments, and compared them with our own; we detail our and the external assessments of
suitability in Section 3.3.

3.1 Task Selection

We located the 10 programming tasks in Table 1 for this experiment. We explain below
our methodology for obtaining these.

Sources of Tasks. As the existing TDR tools all operate on Java source code, we focused
on Java-oriented sources of information. We first examined material designed for devel-
oper education, including Oracle’s Java Tutorial (http://docs.oracle.com/javase/tutorial).
Such tutorials are usually developed by experienced developers to teach other develop-
ers what they should know about a language or technology because they are likely to
come across tasks that would require that knowledge. In a similar fashion, we looked in
source code example catalogues including java2s (http://www.java2s.com), which fea-
tures thousands of code snippets demonstrating common programming tasks and us-
age of popular application programming interfaces (APIs). These two sources represent
material designed for consumption by developers. To find what kinds of problems de-
velopers seek help to solve, we also looked at popular developer forums: Oracle Dis-
cussion Forums (https://forums.oracle.com/forums/category.jspa?categoryID=285) and
JavaRanch (http://www.javaranch.com).

Locating Known Solutions and Their Test Cases. After locating descriptions of perti-
nent tasks, we sought existing implementations relevant to those tasks on the internet

http://docs.oracle.com/javase/tutorial
http://www.java2s.com
https://forums.oracle.com/forums/category.jspa?categoryID=285
http://www.javaranch.com


68 M. Nurolahzade, R.J. Walker, and F. Maurer

Table 1. Brief task descriptions

Task Description

1 A Base64 coder/decoder that can Base64 encode/decode simple text (String type) and
binary data (byte array); should ignore invalid characters in the input; should return null
when it is given invalid binary data.

2 A date utility method that computes the number of days between two dates.

3 A HTML to text converter that receives the HTML code as a String object and returns
the extracted text in another String object.

4 A credit card number validator that can handle major credit card types (e.g., Visa and
Amex); determines if the given credit card number and type is a valid combination.

5 A bag data structure for storing items of type String; it should provide the five major
operations: add, remove, size, count, and toString.

6 An XML comparison class that compares two XML strings and verifies if they are sim-
ilar (contain the same elements and attributes) or identical (contain the same elements
and attributes in the same order).

7 An IP address filter that verifies if an IP address is allowed by a set of inclusion and exclu-
sion filters; subnet masks (like 127.0.1.0/24, 127.0.1/24, 172.16.25.∗ or 127.∗.∗.∗)
can be used to define ranges; it determines if an IP is allowed by the filters or not.

8 A SQL injection filter that identifies and removes possible malicious injections to simple
SELECT statements; it returns the sanitized version of the supplied SQL statement;
removes database comments (e.g., −−, #, and ∗) and patterns like INSERT, DROP,
and ALTER.

9 A text analyzer that generates a map of unique words in a piece of text along with their
frequency of appearance; allows for case-sensitive processing; it returns a Map object
that maps type String to Integer where the key is the unique word and the value is the
frequency of the word appearance.

10 A command line parser with short (e.g., −v) and long (e.g. −−verbose) options sup-
port; it allows for options with values (e.g. −d 2, −−debug 2, −−debug=2); data
types (e.g. Boolean, Integer, String, etc.) can be explicitly defined for options; it al-
lows for locale-specific commands.

through code search engines, discarding search results that did not also come with JU-
nit test cases. After locating pertinent candidates we checked that both the solution and
the test cases that exercised the solution existed in the repositories of the tools. Dis-
similarity of the tools’ underlying repositories made it difficult to select targets that
simultaneously existed in all three repositories. Therefore, we settled for targets that
exist in at least two of the three investigated repositories. Task selection and experi-
mentation was performed incrementally over a period of three months; we found this
process to be slow and laborious and thus we limited the investigated tasks to ten.

Coverage of Multiple Units. JUnit tests can cover more than one unit (despite the ap-
parent connection between its name and “unit testing”). For example, an integration test



An Assessment of Test-Driven Reuse: Promises and Pitfalls 69

can cover multiple classes collaborating in a single test case. Ideally, a test-driven reuse
tool should be able to recommend suitable candidates for each missing piece referred to
in a test scenario. Instead, current TDR prototypes have been designed around the idea
that tests drive a single unit of functionality (i.e., a single method or class) at a time. We
aimed our trial test cases to those targeting a single unit of functionality.2

3.2 Experimental Method

The experiment involved, for each identified task, (a) modifying the associated test case
to anonymize the location of the known solution, (b) feeding the modified test case to
the interface of each TDR tool, and (c) examining the resulting recommendations from
each tool in order to assess their suitability to address the task (discussed in Section 3.3).

For simplicity of the study design, we assume that iterative assessment of recom-
mendations and revision of the input test cases can be ignored. We further assume that
a searcher would scan the ranked list of recommendations in order from the first to the
last; however, we only consider the first 10 results, as there is evidence that developers
do not look beyond this point in search results [7].

Anonymization. We wished to minimize experimenter bias by using (modified versions
of) the existing test cases of the solutions. The query for each task then consisted of
the modified JUnit test cases—thereby defining the desired interfaces, vocabulary, and
testing scenarios of the trial tasks.

The test code used in the experiment was anonymized by a four step process: (1) any
package statement is removed; (2) any import statements for types in the same project
are removed (by commenting them out); (3) the set of test methods is minimized, by
ensuring that all required methods for the sought functionality are exercised no less
than once, while removing the rest; and (4) the statements within each test method are
minimized, for cases where multiple conditions are tried, by retaining the first condition
and removing the rest. This process was intended to reduce the test cases to the point
that would resemble the minimal test scenarios developed in a TDD setting.3

Tool-Specific Adjustments. Minor adjustments were made to some test cases in the end
to make them compatible with individual tools. For instance, Code Conjurer does not
fire a search when no object instantiation takes place in the test code, preventing Code
Conjurer from triggering a search when the target feature is implemented through static
methods. To get around this problem, we revised test cases for Tasks 1, 2, and 4 and
replaced static method calls with instance method calls preceded by instantiation of the
unit under test. The example in Figure 1 demonstrates some of the changes made to the
query test class Base64UtilTest used in Task 1 for replacing static method calls with
instance method calls.

Unlike Code Conjurer and Code Genie, S6 comes with a web-based search interface;
a class-level search through the Google or Sourcerer search provider was selected for all

2 In one case, this constraint was not strictly met: the known solution for Task 4 relies on a set
of static properties defined in a helper class CreditCardType.

3 The complete set of known solutions and test cases, and their transformed versions used as
inputs, can be retrieved from: http://tinyurl.com/icsr13.

http://tinyurl.com/icsr13


70 M. Nurolahzade, R.J. Walker, and F. Maurer

@Test public void testEncodeString() {
final String text = ”This is a test”;

// String base64 = Base64Util.encodeString(text);
// String restore = Base64Util.decodeString(base64);

Base64Util util = new Base64Util();
String base64 = util.encodeString(text);
String restore = util.decodeString(base64);
assertEquals(text, restore);

}

Fig. 1. A sample test query illustrating the replacement of static calls

the searches performed through the S6 web interface. As S6 cannot process test code
directly, a conversion process was followed to transform individual test cases into a
form acceptable by the S6 interface (as a “call set”). Minor changes were made in some
transformations due to the limitations imposed by the interface. In the case of Task 1,
we could not provide the three test cases to S6 all at the same time; tests were therefore
provided to the S6 search interface one at a time but S6 did not return results for any of
them. For Task 9, we were not able to exactly reproduce the test case using an S6 call
set. More specifically, we were not able to manipulate the returned java.util.Map object
from the getWordFrequency() call; neither removing the assertions on the returned java.
util.Map object nor using the “user code” feature produced any results. Task 10 involves
the inner class CmdLineParser.Option that made S6 complain about an unknown type;
we replaced the inner class with the type Object in order for the search to be launched.

3.3 Suitability Assessment

Many factors can make unplanned reuse difficult [2]. Two pieces of code of similar
quality might satisfy the same feature set; however, developers are inclined to reuse
the one that requires less adaptation and accommodation—after all, major motivations
for reuse are to save time and effort and to reduce the likelihood of bugs. Therefore,
it is important to present the developer with choices that they are likely to consider as
relevant to their task, suitable for integration in their code, and whose adaptation would
result in a net cost savings. To assess the quality of retrieved results, we thus recorded
two subjective, qualitative measurements: relevance and effort.

Relevance and Effort. Relevance is a measure traditionally used in evaluation of in-
formation retrieval (IR) systems, to indicate how well a retrieved resource meets the
information needs of the user. In the context of this study, relevance measures how
many of the features expected by a trial task are covered by a search result. For TDR,
good relevance is necessary but not sufficient.

Effort is a measure of the work involved to adapt the retrieved source code. Effort is
a compound measurement of size and complexity of the source code to be integrated,
external objects it refers to, and the amount of mismatch it has with the existing devel-
opment context; for our study, the “existing development context” comprised the test
suite used as input to the search.



An Assessment of Test-Driven Reuse: Promises and Pitfalls 71

Two recommendations with the same relevance level may have completely differ-
ent effort levels. For example, one recommendation can be considerably larger, more
complex, or have more external dependencies than an equally relevant one. However,
relevance and effort are not orthogonal. As the relevance starts to decline, the effort
tends to increase; for example, additional effort might be required to add missing fea-
tures. Ultimately the developer will avoid reusing located source code if the adaptation
effort is (apparently) comparable to that of reimplementation.

To account for partial suitability, we adopted 5-point scales of relevance and of effort,
as shown in Tables 2 and 3 respectively. For rating relevance, 1 stands for no/minimal
relevance and 5 stands for complete relevance. For rating efforts, 1 stands for little/no
effort while 5 stands for excessive effort.

Assessments of Suitability. After running the 10 trial tasks against the three test-driven
reuse tools we collected 109 individual recommendation results (out of 300 possible
results), as the number of results was less than our cut-off of 10 for some task/tool
combinations.

There are 25 potential combinations of relevance and effort scores; however, only
some of those combinations are expected to be observed, due to the relationship be-
tween relevance and effort discussed above. Table 4 indicates our classification of each
possible combination, as good (a solution), ok (a near-solution), bad (a non-viable rec-
ommendation), or impossible (left as blank). We deem combinations of fairly low rele-
vance and low effort to be contradictory and hence impossible, since lack of relevance

Table 2. Guidelines for classifying relevance

Level Description

1 There is no meaningful connection between the given task and the recommended code.
I would not reuse this code to finish this task.

2–4 There is a noticeable overlap between the given task and the recommended code. How-
ever, some of the required features of the described functionality are missing or imple-
mented in a different way (the smaller the mismatch, the higher the relevance).

5 The recommended code exactly or closely matches the functionality described in the
task.

Table 3. Guidelines for classifying effort

Level Description

1 This code can be reused to develop the entire functionality described in the task. I may
only need to do one or two very simple adjustments.

2–4 I may or may not choose to reuse the recommended code or its design ideas. However,
to reuse it I would have to refactor it, make modifications to its design, or write new
code for missing features (the fewer the adjustments, the lower the effort).

5 I would not reuse this code to develop the functionality described in the task. It would
require too much effort to build upon this code.



72 M. Nurolahzade, R.J. Walker, and F. Maurer

implies high effort would be needed. In the absence of a good solution, a developer
might consider a near-solution, which is a relevant result that still requires non-trivial
effort to use for the task.

Relevance and effort ratings were assigned to the results following a manual inspec-
tion of the retrieved source code. An attempt was made to integrate the query test cases
with the retrieved code, if possible. To make the tests run, external dependencies of the
source code were resolved and refactorings were performed, if necessary. Ratings were
given based on the effort spent to make the tests run and an estimate of the extent of the
missing features in each case.

External Validation. As relevance and effort are subjective measures, different devel-
opers can disagree on the reuse suitability of a piece of code in a certain context. To
improve construct validity of the experiment, we compared our relevance and effort
ratings with those from five experienced Java developers. Participants consisted of two
graduate students and three industrial developers, all with 3–5 years of industrial ex-
perience in developing Java software. All participants reported that being familiar with
the JUnit framework, having developed unit tests, and having conducted code reviews
in the past. A short training example was used at the start of the session to familiarize
participants with the procedures. A random sample of results (12 out of 109 recommen-
dations) were selected, and provided to each participant for evaluation; each participant
was asked to evaluate the same sample. In a short post-study questionnaire, all partic-
ipants indicated that they have developed code for tasks similar to the ones they were
given in the experiment, confirming that these are realistic tasks.

Participants were given a guide that described the purpose of this experiment and
the rationale behind the relevance and effort scores, along with—for the results in the
sample to be validated—a short description of each task, the test cases, and the source
code retrieved by a tool. Participants were asked to rate each result’s relevance and
effort according to our 5-point scales. Participants were asked to justify their choice
through additional comments, which we used to check that their reasoning conformed to
their numerical ratings. Spearman’s rank correlation coefficient (ρ) was used to measure
the inter-rater reliability of the rankings made by the first author and each participant;
Spearman’s ρ can measure pairwise correlation among raters who use a scale that is
ordered. Table 5 displays the ρ values computed for participants P1 to P5. In all five
cases, there is strong positive correlation between relevance and effort ratings of the
first author and those of the external validators.

Table 4. Quality classes

Relevance
1 2 3 4 5

E
ff

or
t

1 good
2 ok good
3 bad ok ok
4 bad bad bad bad
5 bad bad bad bad bad

Table 5. Inter-rater reliability scores

P1 P2 P3 P4 P5

Relevance 0.86 0.89 0.93 0.84 0.81
Effort 0.72 0.75 0.82 0.74 0.72



An Assessment of Test-Driven Reuse: Promises and Pitfalls 73

4 Results and Discussion

Table 6 summarizes the results of the experiment for each tool/task pairing, indicat-
ing: the number of recommendations returned; how many of these were duplicates; the
ranking by the respective tool of the recommendation that we deemed the best, within
the first 10 results (or fewer if fewer were recommended); and the quality of the best
solution. To be clear, in some cases, the recommendation by a tool that we deemed
best amongst its results, we still assessed as badly suited; the tools’ rankings and our
assessment of quality often did not correlate.

We can see that each of the tools did a poor job at recommending solutions. Code
Conjurer provided a good solution for only one task, and near-solutions for two others;
for five of the remaining tasks only bad recommendations were provided. CodeGenie
provided a good solution for only one task, and a near-solution for one other; no rec-
ommendations were provided for seven out of eight of the remaining tasks, so false
positives were relatively low. S6 only provided a good solution for one task, and no
near-solutions; again, no recommendations were provided for seven out of eight of the
remaining tasks, so false positives were relatively low. For Task 8, none of the tools
provided a recommendation. For Tasks 4–7 & 9, each tool either provided no recom-
mendations or only bad recommendations. In fairness, for task/tool combinations in
which we were unable to verify the presence of the known solution (marked with aster-
isks), the associated repository may not have contained a viable alternative but this only
affects four of the tasks for CodeGenie and none for the other two tools.

Table 7 summarizes our classifications of all recommendations produced by the tools
for the 10 tasks. Code Conjurer has a much larger number of false positive (i.e., bad)

Table 6. Results of the experiment for each tool/task combination. The columns for each tool
indicate: the number of recommendations produced (rec); the number of these that are duplicates
of other recommendations (dup); the ranking by the tool of the recommendation that we deemed
the best within the results (best); and the quality of that best recommendation (qual). In cases
marked with an asterisk, we were not able to verify the presence or absence of the known solution
within the tool’s repository.

Task
Code Conjurer CodeGenie S6

rec dup best qual rec dup best qual rec dup best qual
(#) (#) (rank) (#) (#) (rank) (#) (#) (rank)

1 8 (1) 8 ok *8 (3) 3 good 0
2 9 (1) 1 bad *10 2 ok 10 (6) 1 good
3 10 (1) 3 ok *0 0
4 0 *0 10 (6) 1 bad
5 2 (1) 1 bad *0 0
6 10 (2) 1 bad 2 1 bad 0
7 10 (5) 2 bad 0 0
8 0 *0 0
9 *10 (4) 1 bad 0 0

10 10 (3) 3 good 0 0



74 M. Nurolahzade, R.J. Walker, and F. Maurer

Table 7. Summary of quality classifications for all recommendations. The number of duplicate
recommendations included is shown in parentheses.

Quality Code Conjurer CodeGenie S6

good 4 (3) 3 (2) 10 (6)
ok 3 11 (2) —
bad 62 (15) 6 10 (6)

Total 69 (18) 20 (3) 20 (12)

recommendations than the other two, but all three tools produce many bad recommen-
dations, when they produce any recommendations at all.

The results of our experiment indicate that there is a serious problem at work with the
existing TDR approaches. Could the problem simply be due to implementation weak-
nesses, or is there a more fundamental shortcoming with the underlying ideas? To ad-
dress this question, we first examined similarities between the input test cases and the
results, described below.

4.1 Lexical and Syntactic Matching

From the published literature on the TDR approaches, we recognized the importance
that each places on lexical and (to a lesser extent) syntactic similarity between potential
hits in the repository and the input test case. Specifically, Code Conjurer and CodeGenie
both utilize similarity of type and method names plus similarity of method signatures;
S6 utilizes similarity between user-supplied keywords and potential hits plus similarity
of method signatures. We manually examined each recommendation returned by the
tools to determine if lexical or syntactic similarities existed with the input test case for
each task. We empirically discerned four kinds of matching criteria: type name, method
name, signature, and other keywords.

Table 8 presents the results of our similarity examination. We can see that Code Con-
jurer places great emphasis on type name similarity while S6 ignores it. But ultimately,
every recommendation could be traced to a mostly lexical similarity.

This heavy reliance on lexical/syntactic similarity to the supplied test case, in making
recommendations, yields many false positive results—especially when simple function-
ality is sought. For example, the utility program sought in Task 2 consists of a single
function with two parameters of type java.util.Date and a return value of type int. Code
Conjurer retrieved 9 results all of which match this signature but none of which match
the desired functionality.

Each approach had the greatest success when multiple kinds of similarity occurred
simultaneously; again, this is not surprising since the likelihood that similarities in mul-
tiple dimensions are spurious seems much lower than in few dimensions. Unfortunately,
it appears from the results that simply demanding multiple kinds of lexical/syntactic
similarity simultaneously would lead to limited applicability of these tools. Others have
noted the tradeoff limitations to lexical/syntactic similarity in code search [3].



An Assessment of Test-Driven Reuse: Promises and Pitfalls 75

Table 8. Classification of matches between recommendations and input test cases

Match kind
Code Conjurer CodeGenie S6

High Partial High Partial High Partial
similarity similarity similarity similarity similarity similarity

Type name 62 15
Method name 5 8 1 8 6
Signature 15 8 10 8 20
Other keyword 21 2 20

4.2 Issues with the Approaches

We see several issues that arise not from weaknesses in tool implementation, but more
fundamentally from the ideas behind the TDR approaches.

Signature Matching. The existing test-driven reuse approaches make signature match-
ing a necessary condition to the relevance and matching criteria: a component is consid-
ered only if it offers operations with sufficiently similar signatures to the test conditions
specified in the original test case. However, semantic similarity neither implies nor is
implied by structural similarity. This limits the applicability of the test-driven reuse to
situations in which the design of the feature sought is very simple or known in advance.
A more flexible approach to signature matching could improve recall. For example,
operation argument and return value types, order, or count could be ignored. Unfor-
tunately, this would in turn make the execution of test cases for validating candidate
results difficult. Automated tests can only be run if a match can be established between
missing elements in the tests and those in the retrieved source code. Code Conjurer
retrieved testable results (source code that has sufficiently close signatures for at least
some of the operations) for Tasks 1, 3, and 10, while CodeGenie could achieve the same
goal only for Tasks 1 and 2. S6 tries to take advantage of simple transformations to gen-
erate possible candidates that can pass the tests; however, a candidate is considered for
applying the transformations only if structural dissimilarities are minor. Consequently,
S6 ended up retrieving results for only two of the tasks (Tasks 2 and 4) because candi-
dates retrieved for other tasks did not meet the input criteria of the transformations.

Filtering By Lexical Relevance. Filtering candidate results based on their lexical rel-
evance before other relevance criteria are considered leaves out all potential solutions
that do not match the searcher’s choice of program vocabulary. For example, the date
utility function in Task 2 is named getNumberOfDaysBetweenTwoDates() and is de-
fined in a class named DateUtils. Tokenizing these two names, as is performed by Code
Conjurer and CodeGenie, would give a list of generic words that can be matched with
almost any date utility class. All the 9 classes retrieved by Code Conjurer are named
DateUtils and each has at least one method matching the signature of the method sought
after; however, none of them is a method that computes the distance between two dates.
CodeGenie manages to find an instance of the function for Task 2 that is given the same



76 M. Nurolahzade, R.J. Walker, and F. Maurer

name and is defined in a class with the same name. Other results are false positives
arising from lexical and signature similarities.

Code Conjurer and CodeGenie use terms in the signature of methods as a key com-
ponent of relevance. While S6 uses a supplied keyword list to shrink the candidate
space in which signature matching and transformations are to be performed, the use of
keywords in the search has been limited to lexical matching that in turn results in tool
performance being limited by the searcher’s choice of vocabulary [13, 8]. We designed
our experiment to favour the evaluated tools: we used test code taken from the same
project in order to retrieve the feature under test. Changing the original program vocab-
ulary instead—which would be reasonable in modelling situations where the developer
does not know the needed vocabulary—would have limited lexical relevance, resulting
in even worse performance of the tools.

Automatically Compiling and Running Source Code. The existing test-driven approaches
all attempt to execute the supplied test case on potential matches in the repository. This
has the advantage that additional semantic constraints implied by the supplied test case
can be checked, eliminating false positive matches. Given the large number of false
positives that we obtained from the approaches, it is clear that this idea is not working
as intended; in fact, for Code Conjurer in particular, we believe that test case execution
remains an unimplemented idea, judging from the very large number of false positives.

The retrieved source code has to be runnable in order to execute test cases, but au-
tomatically compiling and running arbitrary source code accumulated in a repository
is no easy task, often because of dependencies on external source code. A number of
heuristics have been proposed by the research community to resolve external dependen-
cies without developer intervention [11]. In the context of our trial, only Task 4 has an
external dependency on the org.apache.commons.lang project, while Tasks 6, 7, and 8
have dependencies to other source code in the same project, and the rest of the tasks can
be compiled using a standard JDK by itself.

Even if source code can be compiled, there is still no guarantee that it can also be
run, as programs can rely on specific runtime environments or resources. For example
a web or mobile component relies on a specific container to run. A database or network
application requires those external resources to offer its services. To the benefit of the
evaluated tools, none of our tasks required an external environment or resources to run.

In a similar fashion, the TDR query test cases may also rely on resources external
to the JUnit program. For example, the original version of the XML utility for Task 6
relied on XML strings loaded from the file system. For the sake of our experiment, we
modified the test4 (Figure 2) to utilize XML strings embedded in the source code, but
there is no a priori reason to expect that the developer will not wish to rely on external
resources in this fashion.

Contextual Facts. Test cases are in fact simple examples demonstrating the use of the
system-under-test. They show helper types that may interact with the system-under-test
in typical scenarios. The existing TDR approaches disregard the elements of this in-
teraction like participating types and the data/control flow between them. They merely

4 We repeated this experiment with the original version of the test case. Code Conjurer and
CodeGenie produced the same result. S6 does not allow using external resources.



An Assessment of Test-Driven Reuse: Promises and Pitfalls 77

import static org.junit.Assert.∗;
import org.junit.Test;
import org.xml.sax.SAXException;

public class TestXmlDiff {
String xml1 = ”<?xml version=\”1.0\” encoding=\”ISO−8859−1\”?><a><b>text1

</b><c>text2</c></a>”;
String xml2 = ”<?xml version=\”1.0\” encoding=\”ISO−8859−1\”?><!−− copy

−−><a><c>text2</c><b>text1</b></a>”;

/∗ @Test public void testDiff() throws XmlException, IOException, SAXException {
DomainsDocument dd1 = DomainsDocument.Factory.parse(new File(”src/test/

resources/instances/test1.xml”));
DomainsDocument dd2 = DomainsDocument.Factory.parse(new File(”src/test/

resources/instances/test2.xml”));
Diff myDiff = new Diff(dd1.toString(), dd2.toString());

} ∗/

@Test public void testDiff() throws IOException, SAXException {
Diff myDiff = new Diff(xml1, xml2);
assertTrue(myDiff.similar());
assertFalse(myDiff.identical());

}
}

Fig. 2. Test case for validating equality and similarity of XML strings (Task 6)

extract lexical and syntactic features of missing elements from the tests while the con-
text in which those elements appear might also help to understand their semantics.

For example, by solely relying on names and signatures, Code Conjurer did not re-
trieve anything related to XML processing for Task 6. Only one of the results out of
the 10 retrieved happened to contain the keyword “xml” that was a statement import-
ing the class org.allcolor.xml.parser.CStringTokenizer. The exception type org.xml.sax.
SAXException thrown by the test method testDiff is part of a well-known API for pro-
cessing XML documents. SAXException is not thrown by any of the resolvable methods
in the test scenario; therefore, the functionality being sought should throw that excep-
tion. Incorporating this additional semantic fact could have helped to improve the rele-
vance of retrieved results.

Searching for a Specific Implementation. Code Conjurer and CodeGenie managed to
retrieve relevant results for Task 1 in which a Base64 encoder/decoder is sought. The
class name, base64 is the name of a well-known algorithm. The method names encode
and decode are common choices for a utility class offering such services. However,
the Base64 encoder/decoder described in the tests extends the common variation of
this algorithm and adds a few constraints. When decoding Base64 character sequences,
it should detect and ignore invalid sequences and simply return NULL. Therefore, our



78 M. Nurolahzade, R.J. Walker, and F. Maurer

Task 1 is slightly different from most of the Base64 encoder/decoders available on the
internet. None of the recommendations by Code Conjurer and CodeGenie offers the
special behaviour expected. S6 fails to retrieve any results for the very same task. We
speculate that it has retrieved various implementations of the Base64 algorithm through
its initial keyword search, but not exactly the variation described in the tests; as none of
them could pass the tests, they were all discarded in the end.

Most of the tasks reported by proponents of test-driven reuse approaches seek com-
mon variations of well-known algorithms and data structures. Using lexical and signa-
ture relevance criteria would yield multiple instances of such programs that can possibly
pass the tests. However, similar to the example given above, if a variant were sought,
relying on common terms and operation signatures would not suffice.

4.3 Threats to Validity

The primary question regarding generalizability of our study is the representativeness
of the tasks. We took task ideas from the discussions in the Java developer community
websites, and from code example catalogues commonly used as a reference by Java de-
velopers. Developers evidently find these features worthwhile to discuss and learn from,
and not so easy to develop or to find. In addition, our five external evaluators consisting
of three industrial developers and two graduate students found the tasks familiar in the
sense that they had previously developed similar functionality. The number of trial tasks
is another limiting factor of our study. However, it is comparable to the average number
of tasks used in the evaluations in the TDR literature [5, 8, 13].

The modifications we made to the trial test cases in our study also threatens the va-
lidity of our study. Anonymization was performed to ensure that the facts in the test
cases, other than the identity of the target project, could still contribute to identification
of the solution. Test case refinement was done to remove test cases that exercised fea-
tures beyond the scope of the study tasks. Neither anonymization nor refinement should
negatively affect the retrieval capacity of the tools. To find the best strategy to overcome
the tools’ limitations, we experimented with different alternatives and compared results
in each case. The alternative that yielded better results was chosen over others.

Test-driven reuse is a repetitive process. Searchers might reformulate their queries
based on the current results in a way that may result in finding better results. This
brings up the question of whether having a static query set is the right way to evaluate a
code search tool. We deliberately ignored this issue by giving the tools the best possible
queries by providing them with the test cases developed for the same code. We consid-
ered different existing variations of the features, and chose the ones that came with a
reasonable test suite. This should have biased the results in favour of the tools.

Code relevance and effort categorization are subjective, and thus may differ from
one developer to the next. It is often easy to say that one source code recommenda-
tion is more suitable than another, but the quantification of this difference is somewhat
arbitrary. While our categorization of the relevance and effort of each recommenda-
tion represents our best judgment, a random subset of our categorizations was inde-
pendently evaluated by experienced Java developers. The strong positive correlation
between raters suggests our categorization of the results is reasonable.



An Assessment of Test-Driven Reuse: Promises and Pitfalls 79

Considering only the top 10 results for evaluating a retrieval algorithm might be
overly restrictive, despite evidence that developers generally do not investigate more
than the first 10 results [7]. However, in our experiment, the tools provided fewer than
10 recommendations in 22 out of the 30 cases. Therefore, we have considered all the
results collected by the tools in more than 70% of the cases.

4.4 Precision versus Accuracy

The measures we used in our evaluation are qualitative and imprecise. Nevertheless, the
results suffice to demonstrate that the approaches work poorly for these examples, and
point to the need to address their underlying designs. Thus the results do provide accu-
racy: our criteria for rating the results are sufficiently well defined that our participants’
ratings agreed to a degree that is quantitatively demonstrable.

The greater precision that would be obtained by using quantitative measures is not
warranted—measuring degrees of “poor performance” would not provide us with a
deeper understanding of the cause of the failure of these approaches. Only with an
acceptable level of performance is it worthwhile to invest in precise measurements.

5 Conclusion

As test-driven development has gained in industrial popularity, the prospect of utilizing
test cases as the basis for software reuse has become tantalizing: test cases can express
a rich variety of structure and semantics that automated reuse tools can potentially uti-
lize. However, the practice of test-driven development implies that the test cases that
are written cannot be too heavily depended on as the absolute truth regarding the func-
tionality that is sought.

We have performed an experiment on the three state-of-the-art tools for test-driven
reuse, in which we found realistic, non-trivial tasks in developer forums, and for which
a known solution existed in the tools’ repositories. We used existing test cases that
exercised the known solution as the basis of the input to the tools. All the tools failed
in most cases to locate relevant source code that would be simple to reuse, and often
recommended irrelevant source code.

One may posit that it is unrealistic to expect any TDR approach to not depend on
the presence of specific names. If one works in a context where domain vocabulary is
well-established (within a specific organization, or while utilizing a specific applica-
tion programming interface [3]), this dependency could even be reasonable. However,
we have illustrated that these approaches still do not suffice to find uncommon varia-
tions of functionality in the presence of a common vocabulary. Furthermore, we believe
that demanding this limitation is defeatist: the desire to find useful functionality in the
absence of known vocabulary is industrially reasonable and should not be dismissed.

We remain convinced of the value of the idea of TDR. To overcome the problems we
have identified, alternative approaches need to be more flexible in recommending solu-
tions, recognizing the inability of the developer to know exact vocabulary and that such
vocabulary will often fail to suffice in locating a desired variation on common function-
ality. Other aspects of the rich information available in test cases could be leveraged to



80 M. Nurolahzade, R.J. Walker, and F. Maurer

reduce the dependency on specific names, which would allow TDR to become a more
general purpose and hence more generally useful approach. We are currently investi-
gating alternative solutions to achieve this.

Acknowledgments. We thank Steven Reiss, Oliver Hummel, Werner Janjic, and Sushil
Barjracharya for assisting us with their tools, and Brad Cossette, Rylan Cottrell, Soha
Makady, and Valeh Hosseinzadeh Nasser for helpful suggestions in editing this paper.
This work was supported by scholarships and grants from NSERC and IBM.

References

[1] Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd edn.
Addison-Wesley Professional (2004)

[2] Holmes, R., Walker, R.: Systematizing pragmatic software reuse. ACM Trans. Softw. Eng.
Methodol. 21(4), 20/1–20/44 (2012)

[3] Holmes, R., et al.: Approximate structural context matching: An approach to recommend
relevant examples. IEEE Trans. Softw. Eng. 32(12), 952–970 (2006)

[4] Hummel, O., Atkinson, C.: Supporting agile reuse through extreme harvesting. In: Con-
cas, G., Damiani, E., Scotto, M., Succi, G. (eds.) XP 2007. LNCS, vol. 4536, pp. 28–37.
Springer, Heidelberg (2007)

[5] Hummel, O., et al.: Code Conjurer: Pulling reusable software out of thin air. IEEE
Softw. 25(5), 45–52 (2008)

[6] Jeng, J.-J., Cheng, B.: Specification matching for software reuse: A foundation. In: Proc.
ACM Symp. Softw. Reusabil., pp. 97–105 (1995)

[7] Joachims, T., et al.: Accurately interpreting clickthrough data as implicit feedback. In: Proc.
ACM SIGIR Int. Conf. Info. Retrieval, pp. 154–161 (2005)

[8] Lemos, O., et al.: A test-driven approach to code search and its application to the reuse of
auxiliary functionality. Info. Softw. Technol. 53(4), 294–306 (2011)

[9] Linstead, E., et al.: Sourcerer: Mining and searching internet-scale software repositories.
Data Min. Knowl. Discov. 18(2), 300–336 (2009)

[10] Zaremski, A., Wing, J.: Signature matching: A key to reuse. In: Proc. ACM Int. Symp.
Foundations Softw. Eng., pp. 182–190 (1993)

[11] Ossher, J., et al.: Automated dependency resolution for open source software. In: Proc.
Working Conf. Min. Softw. Repos., pp. 130–140 (2010)

[12] Podgurski, A., Pierce, L.: Behavior sampling: A technique for automated retrieval of
reusable components. In: Proc. Int. Conf. Softw. Eng., pp. 349–361 (1992)

[13] Reiss, S.: Semantics-based code search. In: Proc. Int. Conf. Softw. Eng., pp. 243–253 (2009)



Improving the Runtime-Processing of Test Cases

for Component Adaptation

Dominic Seiffert1 and Oliver Hummel2

1 University of Mannheim, Germany
seiffert@informatik.uni-mannheim.de

http://score.informatik.uni-mannheim.de
2 Karlsruhe Institute of Technology, Germany

hummel@kit.edu

http://sdq.ipd.kit.edu/

Abstract. Reusing existing code instead of reinventing it is considered
a good development practice. However, current software search engines
often deliver merely somewhat similar results that usually need to be
adapted when they should be integrated into an existing system. Since
adaptation is a tedious and error-prone activity it has been the tar-
get of automation approaches for numerous years, but only recently the
use of test-driven adaptation, based on ordinary JUnit test cases, was
able to provide a working prototype for this purpose. Unfortunately, the
adaptater creation lacks acceptable runtime behavior because it is based
on a brute force algorithm, which significantly hinders the usability of
test-driven adaptation in a test-driven reuse context where numerous,
potentially complex candidates need to be adapted. Hence, in this pa-
per, we present an optimized algorithm for this purpose that works in
a branch-and-bound manner and demonstrate its capability by an “in-
vitro” evaluation.

Keywords: signature matching, object adaptation, automated adapter
generation, tool support.

1 Introduction

1.1 Reuse

In the 1960s McIlroy [22] proposed his vision of a market place for buying
reusable software artifacts that could be simply plugged together to form com-
plex applications. Ever since the composition of systems from reusable com-
ponents or services has been a hallmark of a more engineering-like approach
to software development. Beyond the use of common libraries and frameworks,
however, reuse remains still complicated since syntactically not matching build-
ing blocks, i.e. components or services, are rather the rule than the exception.
In order to overcome these mismatches, the ability to create adapters for mis-
matching building blocks has a high importance. However, since adaptation is
an error-prone and tedious task it has been the target of numerous automation

J. Favaro and M. Morisio (Eds.): ICSR 2013, LNCS 7925, pp. 81–96, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://score.informatik.uni-mannheim.de
http://sdq.ipd.kit.edu/


82 D. Seiffert and O. Hummel

attempts in recent years as we will discuss in the section on previous work later.
Most of these previous approaches were based on formal description techniques
and never produced a practically working tool, most likely due to fundamental
problems caused by the halting problem and the complex description techniques
required. Only recently, the idea of using test cases [15] for checking the fea-
sibility of automatically created adapters paved the way towards a practically
usable solution for this challenge. As of today this solution is unfortunately still
based on a brute force approach that needs to check all theoretically possible
adaptations against the test case to eventually identify a working mapping of
operations and parameters in the adapter.

This paper contributes and evaluates an accelerated version of this fully auto-
mated adapter generation approach that is able to decrease runtime considerably.
This is clearly the basis for better scalability and usability, e.g. for recent test-
driven software reuse approaches [17]. Its remainder is structured as follows: First
we will give a short introduction to test-driven development and its extension
test-driven reuse. Then follows an introduction and motivation to adaptation
and an overview of previous work from other authors. Then, the naive adapta-
tion approach is introduced briefly in section no. 3 followed a comparison with
the new approach by an “in-vitro” evaluation in section 4. Finally, we summarize
the results and give an outlook on future work in section no. 5.

1.2 Test-Driven Reuse

The basic development cycle of test-driven development [3] is based on a maxim
that originates from Extreme Programming [4]: “Design a little, test a little,
program a little”, i.e. writing the test case happens before (re)writing the code
for the unit under test. Test-driven reuse [17] [16] goes one step further, as the
interface of the unit under test is extracted automatically from the test case and
used as input for a software search. The received syntactic information can then
be used with a recent component search engine like Merobase [13] or Sourcerer
[2] to find potential reuse candidates that can then also be tested automatically
in a subsequent step.

Unfortunately, test cases can get quite large and therefore provide a lot of
syntactic information for the desired component. In such a case, or when simply
no exact match is available, even modern software search engines often deliver
only similar results that usually do not fully match syntactically. Such a syntactic
mismatch, however, does not necessarily imply a semantic mismatch as well.
Nevertheless, in order to overcome such syntactic mismatches, usually the need
for adaptation arises as we will discuss in the next section.

1.3 Adaptation

According to Becker et al. [5] “Software Component Adaptation is the sequence
of the steps required to bridge a component mismatch.” Thereby a component
mismatch can occur on different levels, as technical or signature mismatches, for
instance. In this paper we focus on signature mismatches and thereby aim to



Improving the Runtime-Processing of Test Cases for Component Adaptation 83

adapt Java objects on primitive type level. In the context of adaptation, objects
are an even bigger challenge than components as they include state, identity and
inheritance [7] which are usually immaterial for components or services.

Adaptation itself clearly has a long tradition (not only) in object oriented
programming. In 1994, the Gang of Four recognized it as so important that the
basic approach made its way into the well-known GoF design pattern catalog
as the Adapter Pattern [12]. As this pattern still holds great importance in the
context of object oriented programming and reuse today, we will summarize it
briefly in the following. The pattern comes in two forms, namely a static and a
dynamic variant. As we focus on adapting Java objects we will neglect the static
variant since it is based on multiple inheritance which is not supported by Java.
Figure 1 illustrates the adaptation problem where a Client relies on some Target
interface. However, the Client would like to use the functionality provided by
the Adaptee behind a different interface. Thus, an interposed adapter object is
necessary that provides the interface required by the client and also translates
the messaging between Client and Adaptee. In the best case the Client should
not recognize that he is communicating with the Adaptee only indirectly, or in
other words, the adapter is supposed to be fully transparent.

depends on

forwards to

Client
<<interface>>

Target

+request()

Adapter

+request()

Adaptee

+specificRequest()

Fig. 1. Gang of Four Adapter Pattern

Let us assume that the request method of the Target interface is a method
that encapsulates the exact same functionality as the specificRequest method by
the Adaptee. We further assume that both methods expect 4 integer parameters,
but we do not know the order in which the specificRequest method expects them.
Thus, it would be a task of the assigned developer to check the factorial of 4
possible parameter mappings and to wire them into the adapter.

This simple example already shows that adaptation can easily become a very
time consuming and error-prone task. That automatic adaptation is something
developers have an actual need for, can for example be underlined by a query
adapter* on the Merobase component search engine, that delivers 91,926 results.



84 D. Seiffert and O. Hummel

Other motivating examples on the interoperability in Java based computer alge-
bra software can be found, for instance, in [20]. Furthermore, Kell [18] provides a
comprehensive overview on numerous adaptation techniques that have been de-
veloped in recent years. Thus, we can conclude that there is obviously a practical
need for highly automated tool support in adapter creation.

Our goal is hence to provide a fully automated adapter generation solution
for Java objects improving previous work [15] in terms of runtime and memory
usage. Thereby, although different mismatch types exist, as further explained by
[5, page 197], in this work we focus on mismatches caused by deviating method
names and parameter ordering. Our ongoing research [27] is concerned with the
solution of the other mismatch types, which shall get integrated later. We will
explain previous works in automating software adaptation and the test-driven
adaptation approach that is the basis for this work in the following sections.

2 Previous Work

To our knowledge there have been numerous attempts to automate software
adaptation, however, there has no fully automated approach been published in
literature until very recently. Those approaches that actually have been existing
for a longer time, usually only partially automate the adaptation creation or re-
quire some (semi-)formal adapter description to be able to establish an adapter
at all. This obviously forms an additional overhead for the users of the approach
compared to using simple test cases. For instance, Bracciali et al. [8] present
a methodology that enriches component interfaces with behavioral descriptions
and uses a high-level notation for expressing adapter specifications to automat-
ically generate concrete adapters. These high-level notations are more complex
to write than simple test cases and therefore already create an additional over-
head in the context of adaptation and reuse. The same applies for Autili et al.́s
approach [1] where a high level behavioral description for each component plus
a specification of the component interactions is required as manually defined
input for automatically deriving a composition code for a component-based sys-
tem. This specification and high level description are an overhead compared to
test cases. Canal et al. [9] provide an approach that takes behavioral interfaces
of components to be adapted and an adaptation contract as input for a tool that
automatically generates adapter protocols only. Again, the adaptation contract
is based on a formal language and thus an additional overhead to master. Mar-
tin et al. [21] propose the automatic generation of adaptation contracts from the
behavioral description of services. Future work should generate adapters from
these contracts, but so far their approach takes more time for adapter contract
generation the bigger the incompatibilies between the services get, which means
a possible long waiting period. Bertolino et al. [6] present with Strawberry an
interesting method, concerning orchestration in the context of web services that
automatically derives an automaton from a web-service signature that models
its behavior protocol with a combination of synthesis and testing techniques.
Unfortunately, as a case study shows, testing takes long time and is therefore



Improving the Runtime-Processing of Test Cases for Component Adaptation 85

more usable for offline-analysis. Nita et al. [24] propose a tool called Twinning
that allows programmers to maintain differences from an existing base program
in terms of code level mappings. The prototype uses an iterative approach where
type errors thrown during compilation should help to identify the next piece of
code to address in the mapping of the adapter. Only recently, Kell [19] intro-
duced Cake, a rule based language for describing relations between the interfaces
of binary components that also allows adapting complex object structures. How-
ever, it is still neccessary to learn a language for manually defining the rules and
the approach heavily depends on the knowledge of the programmer, as the pro-
grammer should understand the interface he is coding against, whereby debug
informations is intended to help gaining that understanding.

As we see, there is no fully automated adaptation approach existing yet and
relatively complex formal description languages are widely used for specifying
the internal wiring of the adapter manually. Merely the approach developed in
our group in recent years is able to work fully autonomously, based on simple
unit tests that enable the testing environment to figure out the internal adapter
wiring automatically.

3 Automating Adaptation

In this section we start with a simple adaptation challenge for a component
performing arithmetic operations. The required interface extracted of the client
(the test case) is shown on the left-hand side and the one provided by the adaptee
SimpleMath on the right-hand side. The naming of the methods indicates the
solution for the method mappings already, as shown by the arrows. At a first
glance the equal method names indicate that a direct mapping is possible. But
it is not, as SimpleAdaptee expects the parameters x and y in inverse order for
each method to deliver the results as expected.

Calculator

+pow(int x, int y) : int
+sub(int x, int y) : int
+div(int x, int y) : int

SimpleMath

+power(int y, int x) : int
+subtract(int y, int x) : int
+modulo(int y, int x) : int
+divide(int y, int x) : int

Fig. 2. An exemplary adaptation challenge

Starting with the first step of test-driven reuse resp. development, the test
case for the Calculator is provided in listing 1.1. There, in line no. 11, a new
Calculator object is declared and initialized. Lines 12 to 14 check for the semantic
fitness the Calculator expects.



86 D. Seiffert and O. Hummel

Listing 1.1. JUnit testcase example

1
2 package t e s t c a s e s ;
3
4 import j u n i t . framework . TestCase ;
5
6 import adapter . Ca l cu l a to r ;
7
8 pub l i c c l a s s SimpleTest extends j u n i t . framework . TestCase {
9

10 pub l i c void testMethod ( ) {
11 Ca l cu l a to r c a l c u l a t o r = new Ca l cu l a to r ( ) ;
12 a s s e r tEqua l s (2 , c a l c u l a t o r . pow(2 , 1) ) ;
13 a s s e r tEqua l s (2 , c a l c u l a t o r . sub (4 , 2) ) ;
14 a s s e r tEqua l s (5 , c a l c u l a t o r . d iv (10 , 2 ) ) ;
15 }
16 }

The attempt to compile this code will obviously yield an error, since the
Calculator object does not exist yet. This problem is solved by an internal parser
of the adaptation tool which is part of a so called TestCoordinator that parses
the interface to test out of the testcase file and creates a temporary adapter file
adapter.Calculator, as specified in the import in line 6.

The concrete adapter file for each test run is only temporary since the method
and parameter mappings for the adaptee change during for each test run so that
it would be a significant overhead to create a new adapter each time the mappings
change. Thus, the wirings are managed by a so called Permutator instance which
stands between the adapter and the adaptee. This instance is able to change its
wirings dynamically on request. When the processing has come to a successful
end, the result is automatically hardwired into the final adapter which has the
correct wirings fixed then. More information on this idea can be found in [14].

3.1 Naive Approach

In this section we briefly explain the processing of the naive approach [15] which
is based on a brute force assessment. In the first step all possible adapters are cre-
ated. This step can be further subdivided: First, as illustrated by the algorithm
in listing 1.2, signature matches are established for each method of the inter-
face extracted out of the test case, and each method provided by the adaptee.
Thereby signatures do match, if the return type and the number and respective
types of parameters are equal.

Listing 1.2. Discovering feasible method mappings

f o r each method in the adapter
i n i t i a l i z e empty L i s t listm o f method mappings
f o r each method in the cand idate
i f s i g n a t u r e s do match
add method mapping to listm

end i f
end for

end for

After the algorithm in listing 1.2 has been executed, listm contains the fol-
lowing entries, whereby the right arrow is used to indicate a “is forwarded to”
relation:



Improving the Runtime-Processing of Test Cases for Component Adaptation 87

pow −> power + sub t rac t + d iv id e + modulo
sub −> power + sub t rac t + d iv id e + modulo
div −> power + sub t rac t + d iv id e + modulo

After these mappings have been established, they are combined according to
the next algorithm in listing no. 1.3. For the sake of practicality, no method of
the candidate may appear twice in an adapter combination.

Listing 1.3. Combine Mappings

i n i t i a l i z e empty L i s t list1 o f combinations
f o r each method in the adapter
i n i t i a l i z e empty L i s t list2 o f combinations
f o r each mapping in the listm
f o r each entry in l i s t 1 or once i f empty
i f cand idate method not used in l i s t 2 so f a r

add method mapping to l i s t 2
end for

end for
l i s t 1 = l i s t 2

end for

Three of six feasible combinations (one per line) as obtained from the algo-
rithm above are for instance:

1 . div −> div ide , sub −> subtrac t , pow −> power
2 . div −> subtrac t , sub −> power , pow −> d iv i d e
3 . div −> power , pow −> div ide , pow −> sub t ra c t

Next, we consider parameter mappings for each method. That is, the mappings
above have to be combined with the feasible parameter permutations which can
be derived in the next two stages of the permutation creation process. In the
first stage, each method needs to identify which of its parameter can be matched
on which parameter in the candidate method, as demonstrated by the div → div
mapping:

div ( i n t x , i n t y ) →
d iv i d e ( i n t y , i n t x )

This y i e l d s to :

x −> y ( i n t −> i n t )
x −> x ( i n t −> i n t )
y −> x ( i n t −> i n t )
y −> y ( i n t −> i n t )

This list is combined under the constraint that no parameter is used twice
per method adaptation.

Finally, in the last step, all possible combinations are created, i.e. method
adaptations are combined with their appropriate parameter permutations.
Thereby the notation (1) as the first and (2) as the second permutation step
is used. One possible adapter combination (out of the set of all possible adapter
combinations) is (pow → power (2), sub → subtract (2), div→ modulo (1)) for
instance.

Obviously, the set of adapter combinations can get quite large for many pos-
sible method and parameter mappings.



88 D. Seiffert and O. Hummel

In the last step each combination is tested for its semantic fitness in a brute
force manner one after the other.

3.2 Optimized Approach

The main novel ideas of the new approach are, first, to avoid calculating large
permutation tables for the parameter permutations. This is realized by adapting
an algorithm from Rosen [26] that allows us to calculate the next permutation
step with the knowledge of the former step and some other spare info. There-
fore a wrapper instance is assigned for each method of the extracted interface,
and the wrapper instance holds a reference to the currently assigned adaptee
method match. This wrapper instance controls the permutation processing for
that match. We use a tree representation as provided in figure 3 to illustrate the
approach in the following. The three levels of the tree represent method map-
pings, the nodes permutation steps. The dashed node connections remind us that
these paths i.e. combinations will be calculated on demand only. For illustration
reasons we assume that (pow → power, sub → subtract, div → modulo) are the
first method mappings to start with, each initialized with the first permutation
step, which leads to combination (pow → power (1), sub → subtract (1), div →
modulo (1))

Root

(1)

(1)

(1) (2)

(2)

(1) (2)

(2)

(1)

(1) (2)

(2)

(1) (2)

pow → power

sub → subtract

div → division

Fig. 3. Initialization of the new approach

The second idea is, that we use the semantics delivered by the test file, i.e. the
expected results for each call, to approach the expected solution(s) of the test
file in a branch-and-bound manner. For instance, as the testing process starts
with (pow → power (1), sub → subtract (1), div→ modulo (1)) in our example,
the test run already fails for the first position as shown by figure 4 on page 90.
Thus, combinations that have the failing mapping set on the first position can
be neglected (branched) as shown by figures 5 to 8, and combination (pow →
power (2), sub → subtract (1), div → modulo (1)) is chosen next. The brute
force approach would have continued with any arbitrary combination according
to its storage structure instead.



Improving the Runtime-Processing of Test Cases for Component Adaptation 89

The processing continues as shown by figures 9 to 10 and reaches the adapter
combination (pow → power (2), sub → subtract (2), div→ modulo (1)) in figure
11. The first two mappings are tested successfully in the test run, but the third
mapping div → mod (1) fails. Therefore the two successful mappings specify a
bound as they are remembered for the next test run, i.e. their current permu-
tation steps are kept fixed whereas the mapping on third position div → mod
(1) is incremented from permutation step 1 to 2. That is, the combination (pow
→ power (2), sub → subtract (2), div→ modulo (2)) in figure 13 is tested next.
Since the third mapping fails again, but no more permutation step is available,
this mapping needs to find another method match which is available by div →
div. After changing the method match the processing continues as illustrated by
figures 14 to 17.

In the given example the third mapping was able to change its method map-
ping as illustrated by figure 14 and 15. But if a situation occurs where this is not
possible, backtracking to an earlier position needs to happen. For instance, given
a combination (a → b (1), c → d(2), e → f(2)) where the first two positions are
tested successfully but the third mapping is wrong for a test run, and e cannot
find another match, backtracking happens back to the second position. Thereby
the permutation step for the second mapping would be incremented and the
next combination to search for is (a → b (1), c → d(3), e �= f). If we assume
that no third permutation step is available for the second position, backtracking
happens to the first position. This means (a → b (1) , c �= d, e �= f) would be
the combination to search for.

4 Evaluation

In this section we present a comparison between the naive algorithm and the
new approach by the following two criteria, and also discuss the question if
the current approach has the potential to adapt components than we can find
in the “wild”:

1. method invocations
2. time

The first criterion method invocations states the frequency of how often an
actual adaptee method is invoked during the whole testing process. This is an
important criterion since a method invocation eats up sifnificant time during
processing. The second criterion,execution time, was measured on an Intel(R)
Core(TM) i5 CPU M480 2.67GHZ machine with 4 GB RAM.

For a detailed listing of all JUnit test and adaptee files, we briefly present in
the following, please see our homepage1 again for details.

For the sake of completeness we provide the correct adapter-adaptee method
mappings for the test files in table 1 on page 93. The first column states the
test case and its extracted methods to test. The third column shows possible

1 http://oliverhummel.com/adaptation/tool.zip

http://oliverhummel.com/adaptation/tool.zip


90 D. Seiffert and O. Hummel

Root

(1)

(1)

f

(1) (2)

(2)

(1) (2)

(2)

(1)

(1) (2)

(2)

→

(1) (2)

pow → power

sub → subtract

div → modulo

Fig. 4. Combination no. 1

Root

(1)

(1)

(1)

back

(2)

(2)

(1) (2)

(2)

(1)

(1) (2)

(2)

→

(1) (2)

pow → power

sub → subtract

div → modulo

Fig. 5. Backtracking

Root

(1)

(1)

back

(1) (2)

(2)

(1) (2)

(2)

(1)

(1) (2)

(2)

→

(1) (2)

pow → power

sub → subtract

div → modulo

Fig. 6. Skipping comb. no. 2

Root

(1)

back

(1)

(1) (2)

(2)

(1) (2)

(2)

(1)

(1) (2)

(2)

→

(1) (2)

pow → power

sub → subtract

div → modulo

Fig. 7. Skipping comb. no. 3 and 4

Root

(1)

(1)

(1) (2)

(2)

(1) (2)

(2)

(1)

(1) (2)

(2)

→

(1) (2)f

pow → power

sub → subtract

div → modulo

Fig. 8. Testing comb. no. 5

Root

(1)

(1)

(1) (2)

(2)

(1) (2)

(2)

(1)

(1)

back

(2)

(2)

→

(1) (2)

pow → power

sub → subtract

div → modulo

Fig. 9. Backtracking

Root

(1)

(1)

(1) (2)

(2)

(1) (2)

(2)

(1)

back

(1) (2)

(2)

→

(1) (2)

pow → power

sub → subtract

div → modulo

Fig. 10. Skipping comb. no. 6

Root

(1)

(1)

(1) (2)

(2)

(1) (2)

(2)

(1)

(1) (2)

(2)

→

(1) (2)f

pow → power

sub → subtract

div → modulo

Fig. 11. Testing comb. no. 7



Improving the Runtime-Processing of Test Cases for Component Adaptation 91

Root

(1)

(1)

(1) (2)

(2)

(1) (2)

(2)

(1)

(1) (2)

(2)

→

(1)

back

(2)

pow → power

sub → subtract

div → modulo

Fig. 12. Backtracking

Root

(1)

(1)

(1) (2)

(2)

(1) (2)

(2)

(1)

(1) (2)

(2)

→

(1) (2) f

pow → power

sub → subtract

div → modulo

Fig. 13. Testing comb. no. 8

Root

(1)

(1)

(1) (2)

(2)

(1) (2)

(2)

(1)

(1) (2)

(2)

→

(1) (2)f

pow → pow

sub → sub

div → div

Fig. 14. Changing method and testing con-
fig no. 15

Root

(1)

(1)

(1) (2)

(2)

(1) (2)

(2)

(1)

(1) (2)

(2)

→

(1)

back

(2)

pow → pow

sub → sub

div → div

Fig. 15. Backtracking

Root

(1)

(1)

(1) (2)

(2)

(1) (2)

(2)

(1)

(1) (2)

(2)

(1) (2)

pow → pow

sub → sub

div → div

Fig. 16. Success with config
no. 16

mappings on the adaptee’s methods. The fourth column states the number of
possible permutation steps for each mapping, that is, a method with three pa-
rameters provides 3! possible permutation steps. This corresponds exactly with
the number of possible method invocations. The last row shows the worst case
for all mappings, i.e. the limit of possible steps (method invocations) to run
through in order to find the correct mappings. For instance, the MatrixTest, in
the upper part of table table 1, has a limit of 48 possible permutation steps
(method invocations) to run through. Thereby, MatrixTest sets some values
on three matrix objects and does a matrix multiplication then. The method
multiply(Matrix):Matrix provides and delivers a self-referencing type. The
former implementation and the new implementation can handle such a situation



92 D. Seiffert and O. Hummel

automatically, i.e. adaptation for self-referencing types is supported by our tool,
through maintaining references to instances, as further explained in [14]. This
idea is similar to the “Identity Map” pattern suggested by Fowler [11] for keeping
track of object instances loaded from a database.

The CalculatorTest, in the middle part in table 1, searches for calculation and
parameter changing methods.

The test files Test5 . . .Test8, in the lower part, are especially interesting
for runtime reasons because they provide a lot of possible permutations steps
and therefore a lot of possible method invocations to run through. To be more
precise, the test methods in Test5 . . .Test8 expect numbers (as Strings) to be
returned by the adaptee in an ascending order, whereas the adaptee, played by
SimpleAdaptee, returns them unordered if the adaptee’s method is invoked with
the parameter ordering by the test case. Thus, the naive algorithm has to run
through a lot of combinations to find the correct wirings.

4.1 Results

The results are presented in table 2 where the first column of each table contains
the JUnit test files. The second column shows the results of the new approach in
comparison with the naive approach shown in the third column. The fourth col-
umn shows what is saved by the new approach compared to the naive approach.
No results are available for Test7 and Test8 when using the naive approach, since
execution time simply takes too long.

Obviously, the new approach is much faster than the naive approach [15], as for
instance, the brute force approach takes more than 155,500 method invocations
for Test6, which leads to a waiting period of approximately 48 minutes on our
system, whereas the new approach takes only 810 method invocations, what takes
less than a second. The difference for the CalculatorTest is much smaller with
about 49 seconds (6,609 method invocations) for the naive approach and about
1 second (341 method invocations) for the new approach. For the MatrixTest
the difference concerning execution time is negligible because both approaches
take less than a second, with 129 respectively 55 method invocations.

4.2 Discussion

Our current approach shows acceptable runtime behavior and thus a promising
scalability. Currently the adaptation processing is possible if primitive or self-
referencing types are provided by the adaptee’s methods. Furthermore, methods
with different names and different parameter names and parameter orders can
be adapted. Thus, there are still some more complex adaptation challenges open,
which are currently under research [27], and whose solutions should be integrated
later. These challenges are identified by the following signature mismatch types
[5, page 197] that we briefly want to list:

1. Naming of Exceptions.
2. Typing of Methods, Parameters and Exceptions.



Improving the Runtime-Processing of Test Cases for Component Adaptation 93

Table 1. Mappings overview

MatrixTest → MatrixAdaptee Possible permutation steps

set → set 3! = 6
get → get 2! = 2
multiply → add + sub + mult + mulitply 1! + 1! + 1! + 1! = 4

Limit of possible steps 6*2*4 = 48

Calculator → CalculatorAdaptee Possible permutation steps

sub → doNothing5 + sub 3! + 3! = 12
add → doNothing4 + add 2! + 2! = 4
checkIt → checkStorage + crash + getStorage + test 0 + 0 + 0 + 0 = 0
getVariable → checkStorage + crash + getStorage +test 0 + 0 + 0 + 0 = 0
testThis → testIt + doNothing2 1! + 1! = 2
noParam → checkStorage + crash + getStorage + test 0 + 0 + 0 + 0 = 0
getAnotherCalculator → getAnother + doNothing1 1! + 1! = 2
changeVariable → changeStorage + doNothing3 4! + 4! = 48

Limit of possible steps 12 * 4 * 2 * 48 = 4,608

Test5 → SimpleAdaptee Possible permutation steps

permutate5 → fiveParams 5! = 120
permutate6 → sixParams 6! = 720

Limit of possible steps 5! ∗ 6! = 86, 400

Test6 → SimpleAdaptee Possible permutation steps

permutate3 → threeParams 3! = 6
permutate5 → fiveParams 5! = 120
permutate6 → sixParams 6! = 720

Limit of possible steps 3! ∗ 5! ∗ 6! = 518, 400

Test7 → SimpleAdaptee Possible permutation steps

permutate4 → fourParams 4! = 24
permutate5 → fiveParams 5! = 120
permutate6 → sixParams 6! = 720

Limit of possible steps 4! ∗ 5! ∗ 6! = 2, 073, 600

Test8 → SimpleAdaptee Possible permutation steps

permutate3 → threeParams 3! = 6
permutate4 → fourParams 4! = 24
permutate5 → fiveParams 5! = 120
permutate6 → sixParams 6! = 720

Limit of possible steps 3! ∗ 4! ∗ 5! ∗ 6! = 12, 441, 600

3. Structuring of Complex Types.
4. Numbering of parameters.

If we compare our approach with the techniques and approaches presented in
the previous work on page 84 we see that we have presented the basis for an
automated adaptation approach that involves the least overhead for human
developers so far, as the semantic descriptions used for adapter creation in our
case are ordinary test cases that are usually created during software development



94 D. Seiffert and O. Hummel

Table 2. Evaluation Results

Number of method invocations

Testcase brute force approach new approach saving (%)

MatrixTest 129 invocations 55 invocations 57.4
CalculatorTest 6,609 invocations 341 invocations 94.5
Test5 42,591 invocations 176 invocations 99.6
Test6 155,500 invocations 810 invocations 99.5
Test7 - 846 invocations -
Test8 - 889 invocations -

Time

Testcase brute force approach new approach saving (%)

MatrixTest 312 ms 92 ms 70.5
CalculatorTest ≈ 49 sec 1,119 ms 97.7
Test5 15 min 398 ms 99.9
Test6 48 min 892 ms 99.9
Test7 - 1,125 ms -
Test8 - 1,203 ms -

anyway. Clearly, the evaluation in its current form is only a proof of concept and
thus a first step as it only deals with rather artificial examples. However, it
is currently only intended to demonstrate the improvements concerning speed,
which it does. Especially the examples Test5 and Test6 require a large number
of possible method invocations on an adaptee instance.

5 Outlook and Future Work

Although we are able to adapt Java objects on a subset of signatures mismatch-
ing types [5, page 197] (which are the ordering of parameters and the naming
of methods and parameters), there are still open research challenges beyond
supporting these missing mismatch types: Currently, we are considering other
research areas such as schema [25] or ontology mapping [10], in order to further
improve the mapping performance of our approach based on heuristics from
natural language processing. Another question is whether numerous partially
matched candidates can also be addressed by one adapter, that is, we are at-
tempting to call more than one adaptee from one adapter (which than becomes
rather a facade [12]) or even try to adapt an ensemble of classes at once. Impor-
tant future work thus includes covering some additional adaptation challenges,
a comprehensive evaluation with numerous arbitrary “real-world” adaptation
challenges, e.g. retrieved from common open-source repositories and last but not
least an integration of our tool into a common development environment such
as Eclipse or into a tool like Code-Conjurer [16] so that speed and applicability
of test-driven reuse can be further improved.



Improving the Runtime-Processing of Test Cases for Component Adaptation 95

6 Conclusion

In this paper we have presented an approach that speeds up the automatic
adaptation of Java objects based on ordinary (JUnit) test cases. Our solution
integrates seamlessly and without additional overhead into common test-driven
software development processes where test cases are supposed to be created be-
fore production code is written and thus simplifies so-called test-driven reuse
[17] in this context. For this purpose, we have explained how the partial seman-
tic description of desired functionality contained in test cases can be used as a
starting point for adapter creation. Furthermore, we have presented an efficient
algorithm that can be used for implementing the “matchmaking” between an in-
terface specified by a test case and a reuse candidate at hand (i.e. the adaptee),
and made available a tool that demonstrates the approach in practice. We be-
lieve that it nicely complements recent research efforts for improving software
reuse through powerful software search engines for source code, components and
services and in fact, we intend towards further improving the adaptation capa-
bilities for this context.

References

1. Autili, M., Inverardi, P., Navarra, A., Tivoli, M.: Synthesis: A tool for automatically
assembling correct and distributed component-based systems. In: Proceedings of
the 29th International Conference on Software Engineering, pp. 784–787 (2007)

2. Bajracharya, S., Ossher, J., Lopes, C.: Sourcerer: An internet-scale software reposi-
tory. In: Workshop on Search-Driven Development-Users, Infrastructure, Tools and
Evaluation. SUITE 2009, pp. 1–4. ICSE (2009)

3. Beck, K.: Test-Driven Development by Example. Addison-Wesley (2003)
4. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd

edn. Addison-Wesley Professional (2004)
5. Becker, S., Brogi, A., Gorton, I., Overhage, S., Romanovsky, A., Tivoli, M.: To-

wards an engineering approach to component adaption. In: Reussner, R., Stafford,
J.A., Ren, X.-M. (eds.) Architecting Systems with Trustworthy Components.
LNCS, vol. 3938, pp. 193–215. Springer, Heidelberg (2006)

6. Bertolino, A., Inverardi, P., Pelliccione, P., Tivoli, M.: Automatic synthesis of be-
havior protocols for composable web-services. In: ESEC/SIGSOFTFSE, pp. 141–
150 (2009)

7. Booch, G.: Object-oriented development. IEEE Transactions on Software Engi-
neering 12(2), 211–221 (1986)

8. Bracciali, A., Brogi, A., Canal, C.: A formal approach to component adaptation.
Journal of Systems and Software 74, 45–54 (2005)

9. Canal, C., Poizat, P., Salauen, G.: Model-based adaptation of behavioral mismatch-
ing components. IEEE Transactions on Software Engineering 34, 546–563 (2008)

10. Euzenat, J., Shvaiko, P.: Ontology Matching, 1st edn. Springer Publishing Com-
pany, Incorporated (2010)

11. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley
(2003)

12. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1995)



96 D. Seiffert and O. Hummel

13. Hummel, O.: Semantic Component Retrival in Software Engineering. Phd thesis,
Fakueltaet fuer Mathematik und Informatik, Universitaet Mannheim (2008)

14. Hummel, O., Atkinson, C.: The managed adapter pattern: Facilitating glue code
generation for component reuse. In: Edwards, S.H., Kulczycki, G. (eds.) ICSR 2009.
LNCS, vol. 5791, pp. 211–224. Springer, Heidelberg (2009)

15. Hummel, O., Atkinson, C.: Automated creation and assessment of component
adapters with test cases. In: Grunske, L., Reussner, R., Plasil, F. (eds.) CBSE
2010. LNCS, vol. 6092, pp. 166–181. Springer, Heidelberg (2010)

16. Hummel, O., Janjic, W., Atkinson, C.: Code conjurer: Pulling reusable software
out of thin air. IEEE Computer 25, 45–52 (2008)

17. Hummel, O., Janjic, W.: Test-driven reuse: Key to improving precision of search
engines for software reuse. In: Sim, S.E., Gallardo-Valencia, R.E. (eds.) Finding
Code on the Web for Remix and Reuse, vol. 1. Springer (2013)

18. Kell, S.: A survey of practical software adaptation techniques. Journal of Universal
Computer Science 14, 2110–2157 (2008)

19. Kell, S.: Component adaptation and assembly using interface relations. In: Pro-
ceedings of the ACM International Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA 2010, pp. 322–340. ACM, New
York (2010) ISBN 978-1-4503-0203-6

20. Kredel, H.: Fostering the interoperability in java-based computer algegra systems.
In: International Conference on Advanced Information Networking and Applica-
tions Workshops, vol. 26, pp. 443–447 (2012)

21. Martin, J.A., Pimentel, E.: Automatic generation of adaptation contracts. In: Pro-
ceedings of the 7th International Workshop on the FOCLASA 2008. Electronic
Notes in Theoretical Computer Science, pp. 115–131 (2009)

22. McIlroy, M.D.: In software-engineering: Report of a conference sponsored by the
nato science commitee, germisch, germany. In: Mass-Produced Software Compo-
nents (1968)

23. Meyer, B.: Applying design by contract. IEEE Computer Society Press 25, 40–51
(1992)

24. Nita, M., Notkin, D.: Using twinning to adapt programs to alternative apis. In:
2010 ACM/IEEE 32nd International Conference on Software Engineering, vol. 1,
pp. 205–214 (May 2010)

25. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
The VLDB Journal 10, 334–350 (2001) ISSN 1066-8888

26. Rosen, K.H.: Discrete Mathematics and Its Applications, 2nd edn. McGraw-Hill
(1991)

27. Seiffert, D.: Automating the wrapping of software building blocks with test cases.
In: Proceedings of the 17th International Doctoral Symposium on Components and
Architecture, pp. 19–24 (2012)



J. Favaro and M. Morisio (Eds.): ICSR 2013, LNCS 7925, pp. 97–112, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

REARM: A Reuse-Based Economic Model  
for Software Reference Architectures 

Silverio Martínez-Fernández1, Claudia P. Ayala1, Xavier Franch1,  
and Helena Martins Marques2 

1 GESSI Research Group, Universitat Politècnica de Catalunya, Barcelona, Spain 
{smartinez,cayala,franch}@essi.upc.edu 

2 everis, Barcelona, Spain 
hmartinm@everis.com 

Abstract. To remain competitive, organizations are challenged to make in-
formed and feasible value-driven design decisions in order to ensure the quality 
of their software systems. However, there is a lack of support for evaluating the 
economic impact of these decisions with regard to software reference architec-
tures. This damages the communication among architects and management, 
which can result in poor decisions. This paper aims at ameliorating this problem 
by presenting a pragmatic preliminary economic model to perform cost-benefit 
analysis on the adoption of software reference architectures as a key asset for 
optimizing architectural decision-making. The model is based on existing val-
ue-based metrics and economics-driven models used in other areas. A prelimi-
nary validation based on a retrospective study showed the ability of the model 
to support a cost-benefit analysis presented to the management of an IT consult-
ing company. This validation involved a cost-benefit analysis related to reuse 
and maintenance; other qualities will be integrated as our research progresses. 

Keywords: Software architecture, reference architecture, economic model,  
architecture evaluation, cost-benefit analysis, quality attributes. 

1 Introduction and Motivation 

Nowadays, the size and complexity of software systems, together with critical time-
to-market needs, demand new software engineering approaches to software develop-
ment. One of these approaches is the use of software reference architectures (RA), 
which are becoming widely studied and adopted in research and practice [3][19]. 

As defined by Bass et al. [5], an RA is “a reference model mapped onto software 
elements (that cooperatively implement the functionality defined in the reference 
model) and the data flows between them”. An RA encompasses the knowledge about 
how to design concrete software architectures (SA) of systems of a given domain; it 
must address the business rules, architectural styles, best practices of software devel-
opment, and the software elements that support development of systems [28]. 

The motivations behind RAs are: to systematically reuse knowledge and software 
elements when developing concrete SA for new systems and thereby harvest potential 



98 S. Martínez-Fernández et al. 

savings through reduced cycle times, cost, risk and increased quality [11]; to help 
with the evolution of a set of systems that stem from the same RA [18]; and to ensure 
standardization and interoperability [3]. 

However, although the adoption of an RA might have plenty of benefits for an or-
ganization, it also implies several challenges, among them the need for an initial in-
vestment [18]. Hence, in order to use RAs, organizations face a fundamental question: 
“Is it worth to invest on the adoption of an RA?” 

Thus, organizations need to ensure the feasibility of adopting an RA by assessing 
their goals, the resources they can invest and the expected benefits. In spite of this 
need, there is a lack of research methods for economics-driven RA evaluation [29]. 
Besides, there is a shortage of economic models to “precisely evaluate the benefit of 
‘architecture projects’ - those that aim to improve one or more quality attributes of a 
system” [8]. Thus, the adoption of RAs is usually made without evaluating their eco-
nomic impact. To make informed decisions, it becomes necessary to make a business 
case in order to know how many instantiations (i.e., applications) are necessary before 
savings pay off for the up-front investment in building an RA. 

The goal of this paper is to present a pragmatic preliminary economic model to 
perform cost-benefit analysis on the adoption of RAs as a key asset for optimizing 
architectural decision-making (referred to as REARM, REference ARchitecture Mod-
el). This goal is of interest for researchers for the need of formulating accurate models 
and practitioners for the opportunity of making more informed decision-making about 
whether to implement the strategic move to RA adoption. Due to the aforementioned 
lack of research in this specific area, we have aimed at adopting and adapting existing 
results in related areas, from classical software reuse to product line engineering.  

It is worth mentioning that the paper has its origin in an ongoing action-research 
[36] initiative among our research group and everis, a multinational consulting com-
pany based in Spain. The architecture group of everis experienced the inability to 
calculate the return on investment (ROI) derived from RAs that they create for organ-
izations. The model stemming from this collaboration is currently under formative 
evaluation [36], but results so far are already triggering change in some development 
processes in the organization (e.g., bug reporting). As part of the collaboration, we 
had the chance to provide an initial validation of the economic model. It comprises a 
retrospective evaluation of an RA created by everis for the IT department of a public 
administration center in Spain. 

2 Background and Related Work 

Current research on RA evaluation consists of analysis methods [2][17][21] that in-
volve the analysis of risks, non-risks, benefits and trade-offs. Although they facilitate 
the analysis of those aspects based on the most important and critical scenarios, they 
have little support to analyze the cost and benefits of RAs based on economics. 

Introducing an RA into an organization involves making a decision of a greater de-
gree than only considering the aforementioned aspects, since it should not only in-
clude quality, but it should also include productivity issues. Whereas architectural 



 REARM: A Reuse-Based Economic Model for Software Reference Architectures 99 

quality is usually estimated in relation to eliciting implicit and explicit requirements 
of the different stakeholders affected by the development of the system, productivity 
is actually measured in terms of effort, cost, and economic benefits. Nevertheless, 
both views are necessary to achieve a comprehensive analysis of the system. 

Up to our knowledge, there is no specific economic model for estimating whether 
it is worth or not to invest in an RA for an organization. Due to the lack of research in 
this specific area, we have aimed at adopting and adapting existing results in related 
areas: economic models for software product lines (SPL), cost-benefit analysis me-
thods for SAs, and more generic metrics about cost savings. 

Economic Models for Software Product Lines and Software Reuse. The terms RA 
and product line architecture (PLA) are sometimes used indistinctly inside the SPL 
engineering context, in which the term RA is used to refer to “a core architecture that 
captures the high-level design for the applications of the SPL” [33, p. 124] or “just 
one asset, albeit an important one, in the SPL’s asset base” [9, p. 12]. 

However, out of the SPL context, RA and PLA are considered different types of ar-
tifacts [3][12][19][28]. In Fig. 1 we show the main similarities and differences: 

• PLAs are RAs whereas not all RAs are PLAs [3], i.e. PLAs are one type of RAs 
[19]. PLAs are just one asset of SPL [9, p. 12]. 

• RAs are more generic and abstract than PLAs that are more complete architectures 
[3][19]. Hence, “RAs can be designed with an intended scope of a single organiza-
tion or multiple organizations that share a certain property” [3] whereas PLAs are 
produced for a single organization [19]. 

• RAs provide standardized solutions for a broader domain (i.e., “spectrum of sys-
tems in a technology or application domain” [19]) whereas PLAs provide standar-
dized solutions for a smaller subset of the software systems of a domain [28] (i.e., 
“group of systems that are part of a product line” [19]). Therefore, PLAs give a co-
herent and more congruent view of the products in a project (i.e., possible to track 
the status of) [12] whereas by means of RAs it is more difficult to obtain congru-
ence [3], since they can only provide guidelines for applications’ development. 

• PLAs specifically address points of variability and more formal specification in 
order to ensure clear and precise behavior specifications at well-specified extension 
points [3]. In contrast, RAs have less focus on capturing variation points 
[3][12][28]. Although variability is not typically addressed by RAs in a systematic 
manner, it is also a key fact for RAs [18], and it can be treated as a quality 
attribute, rather than explicitly as ‘features’ and ‘decisions’ [18]. 

• RAs include “the reuse of knowledge about software development in a given do-
main, in particular with regard to architectural design” [28] and dictate the patterns 
and principles to implement, i.e. “what the design should be” [12]. Conversely, 
PLAs specifically indicate deviations, i.e. “what the design is” [12]. 

• RAs include architectural knowledge and the instantiation of this architectural 
knowledge (i.e., reference model) into software elements [5]. In this sense, both 
RAs and PLAs are “a superset, a tool box, with every possible architecture element 
described, which can be used in the design of a product architecture” [12]. 



100 S. Martínez-Fernández et al. 

 

Fig. 1. Similarities and differences between RAs, PLAs, and SPLs 

Although we also consider that RA and PLA are different, some perceived benefits 
of RA (e.g., cost saving from reusing software elements) and cost-benefit factors 
(e.g., common software costs, unique development costs) are applicable to both, since 
both have reuse as their core strategy. For this reason, we studied the applicability of 
some economic models originally conceived for SPL to RAs. Below, we summarize 
our results with respect to cost and benefit factors. To see more models, the reader is 
referred to [1], in which Ali et al. surveyed twelve economic models for SPL, and to 
[16][27] in which the authors surveyed economic models for software reuse. 

Cost and Benefit Factors of Economic Models. SIMPLE [10], Poulin’s model [34], 
and COPLIMO [7] are some of the most widespread economic models for SPLs. 

SIMPLE [10] comprises a set of seven cost factors: 

• Corg, upfront investments to establish a SPL infrastructure. 
• Ccab, the cost to build reusable assets of the SPL. 
• Cunique, the cost to develop unique parts of products in a SPL. 
• Creuse, the cost of reusing reusable assets in a product inside the SPL. 
• Ccabu, the cost to evolve the core asset in a SPL. 
• Cprod, the cost to build a product in a stand-alone fashion. 
• Cevo, the cost to evolve a product in a stand-alone fashion. 

These cost factors and benefit functions can be used to construct equations that can 
answer a number of questions such as whether the SPL approach is the best option for 

Core Asset
Development

(including
PLA)

Management

Product
development

reference model domain engineering application engineering

Sp
ec

tr
um

/s
et

 o
f a

pp
lic

at
io

ns

Su
bs

et
ap

pl
ic

at
io

ns
Su

bs
et

nWhat the design SHOULD be
• Knowledge, in particular 

with regard to 
architectural design

• Architectural styles
• Best practices of

software development

Varia-
bility

REFERENCE
ARCHITECTURE

SOFTWARE
PRODUCT

LINE

What the design IS
• Domain knowledge
• Business rules
• Domain terminology 
• Software elements

Instantiation
• Guidelines

more abstract more specialized

more
congruence

less
congruence



 REARM: A Reuse-Based Economic Model for Software Reference Architectures 101 

development and what is the ROI for this approach. Ganesan et al. extended SIMPLE 
by considering infrastructure degeneration over time [20].  

On the other hand, Poulin [34] and Boehm et al. [7] base their reuse-based models 
in two parameters: RCR and RCWR. 

• RCR (Relative Cost of Reuse). Assuming that the cost to develop a reusable asset 
equals one unit of effort, RCR is the portion of this effort that it takes to reuse a 
reusable asset without modification (black-box reuse). 

• RCWR (Relative Cost of Writing for Reuse). Assuming that the cost to develop a 
new asset for one-time use equals one unit of effort, RCWR is the portion of this 
effort that it takes to write a similar “reusable” asset. 

For those cases in which there are difficulties to obtain historical data of building and 
evolving products in a stand-alone fashion (Cprod, Cevo), we consider more adequate 
the use of RCR and RCWR (see Section 4.1, step 2). 

Finally, we must note two models (Schmid [37], InCoME [30]) that integrate cost 
and investment models in different layers, which make them more comprehensive. 

Value of Software Architecture Design Decisions. There exist a few economics-
based SA analysis methods that drive the decision-making process during SA review 
and design. In this direction, CBAM [22] is a useful method for prioritizing architec-
tural decisions that bring higher value. In addition, Ozkaya et al. proposed an eco-
nomic valuation of architectural patterns [32]. 

These approaches help to find the optimal set of decisions that maximizes the ROI 
[15]. They pursue to solve the same problem of this paper, but their scope is broader 
and general for any kind of SA decision and do not reflect fundamental characteristics 
of adopting an RA. Therefore, their applicability for studying the ROI of RA adoption 
would require more effort, since specific cost-benefit factors for architecture-centric 
reuse are not considered. Hence, they are not the most convenient approaches for 
making the business case of adopting an RA and calculating its payback time. 

Generic Software Metrics. There exist several approaches that propose metrics for 
estimating cost savings in software development and maintenance. Metrics as depen-
dency structure matrices (DSM) have been applied to assist architecture-level analy-
sis, such as value of modular designs, and they have proven to be particularly  
insightful for validating the future value of architecting modular systems [8]. Mac-
Cormack et al. extracted coupling metrics from an architecture DSM view for infer-
ring the likelihood of change propagation and, hence, future maintenance costs [25]. 
Baldwin et al. presented a generic expression for evaluating the option to redesign a 
module also based on DSMs [4]. 

In addition, the concept of technical debt (either architecture-focused [31] or code-
based [24]) is a way to measure unexpected rework costs due to expediting the deli-
very of stakeholder value in short. 



102 S. Martínez-Fernández et al. 

Summary. Although there is a lack of research in evaluating the economic viability 
of RA adoption, there is a strong base of research in related areas. The most important 
related area is economic models that identify cost and benefit factors for PLA adop-
tion. Although there is a significant amount of research is this direction, it falls short 
in: 

• Validation in industry. “Very few [economic models for SPL] actually have been 
used as a basis for further development or adopted in industry” [23]. Thus, “there is 
a clear need for many more empirical studies to validate existing models” [1]. 

• Easy adoption of models in industry by identifying realistic metrics to collect and 
report. “It is difficult for the practitioners to evaluate the usability and usefulness of 
a proposed solution [economic model for SPL] for application in industry” [23]. 
Not guidelines exist to fully operationalize the models in practice [37]. 

Economics-driven SA analysis methods do not specifically aim at making an invest-
ment analysis of the adoption of an architecture-centric program. RA adoption is a 
subarea inside their generic decision-making context. 

At a lower level, more simple metrics like DSM, could also be adequate for calcu-
lation the cost and benefit factors of RA adoption and make more complete models. 

This state of the art drove us to the formulation of an economic model for RAs, 
which is currently on its formative stage. The formulation of the model aims to: 

• Adapt cost and benefit factors from SPL models that are easy-to-apply by industry. 
The goal is to provide guidelines to fully operationalize the model in practice. 

• Fill the gap of RA economics inside the SA decision-making context. 
• Look for generic software metrics that can quantify new cost and benefit factors. 

3 Industrial Context 

The architecture group of everis is an initiative to manage architectural knowledge, 
best practices and lessons learned from previous experiences; and to provide efficient 
solutions to a better cost, flexibility and agility to the demands of client organizations.  

This architecture group offers solutions for big businesses (e.g., banks, insurance 
companies, public administration and service, and industrial organizations) that offer 
a wide spectrum of services to their clients. Often, already existing commercial pack-
ages are not completely aligned with the business needs of these organizations, there-
by requiring custom development and maintenance of applications. In this scenario, 
everis foster the use RAs for managing a wide spectrum of applications. 

The architecture group of everis experienced the inability to calculate the ROI de-
rived from RAs that they create for organizations. The purpose of our research is to 
create a method for extracting costs and benefits of RAs based on data that they were 
already collected. 



 REARM: A Reuse-Based Economic Model for Software Reference Architectures 103 

4 An Economic Model for Reference Architectures 

4.1 Method for Formulating the Economic Model 

An RA cost-benefit analysis should be based on giving an economic value to its activ-
ities. We designed our economic model through the three following steps: 

1. Identify the costs and benefits stemming from the use of an RA. Although cost 
modeling is already a mature field within software engineering, benefits have tradi-
tionally been far more elusive to quantify [8]. For this reason, it is necessary to 
identify the RA quality attributes that bring more benefit to the development and 
maintenance of applications, and the costs of constructing these applications [22]. 
These attributes may vary depending on the architecturally-significant require-
ments coming from the applications based on the RA. It is crucial to involve rele-
vant stakeholders to ensure the trustworthiness of the collected information [38]. 

The outputs of this step are, therefore, the costs factors of adopting an RA and 
the list of quality attributes in which the RA brings more benefit. 

2. Adopt metrics that quantify the costs and benefits identified in the first step in 
order to convert them into a monetary value. The metrics to quantify them may 
vary depending on the data available in the organization involved. 

The output of this step is providing guidelines for collecting simple metrics 
that make possible to calculate the cost and benefits factors in practice. 

3. Make the business case for the adoption of the RA. Add the costs and benefits 
calculated in the second step to the formula for calculating the ROI (proposed by 
Boehm [6]), where the benefits are the improvements of applications quality 
attributes, and the costs are the expenses in constructing the systems and the RA. 

The output of this step is a business case that captures the reasoning for adopt-
ing an RA. The RA business case analysis involves determining the relative finan-
cial costs, benefits, and ROI across its life-cycle. 

 ROI = Benefits - Costs
Costs  (1) 

4.2 Execution of the Method for Formulating the Economic Model 

The action-research collaboration with everis provided us the opportunity of imple-
menting this general-purpose method in a particular case. 

Step 1. We conducted a survey involving project managers, architects and developers 
of 9 organizations in Europe (7 from Spain) [26]. The survey pointed out that the 
main perceived economic benefits on the use of RAs were: (1) an increased value 
from the improvement of quality attributes, since their reused architectural knowledge 
is incrementally improved with previous successful experiences from its application 
domain; (2) cost savings in the development and maintenance of systems due to the 
reuse of software elements and the adoption of best practices of software development 
that increase the productivity of developers. Therefore, RAs bring most of the benefit 



104 S. Martínez-Fernández et al. 

because of the improvement of reusability and maintainability quality attributes. One 
of the reasons why RAs were adopted in these organizations is that the most impor-
tant architecturally-significant requirement was reusability. Thus, we decided to focus 
our cost-benefit analysis over reusability and maintainability. 

We found that some of the potential metrics to be used were not as pragmatic as 
the organization needed. In other words, the organization should have been invested 
extra time which was not an option. Furthermore, we faced the problem that some of 
the required data to apply the proposed metrics was not previously registered by the 
organization. Thus, we stressed the emphasis on formulating a practical model that 
incrementally deals with diverse cost-benefit aspects.   

We identified six cost-benefit factors for RA adoption. We started the formulation 
of factors by adopting Poulin’s method for measuring code reuse [34][35]. We 
adapted Poulin’s model because it has been applied in industry, offers parameters to 
operationalize it, and we could feed it with available data in everis (see Step 2 below). 
We adopted its benefit factors (DCA, SCA) published in [35]. Conversely, we consid-
er more appropriate for RAs to adopt the cost factors defined for SPL (CSWdev_costs, 
CSWservice_costs) in [35], instead of the additional development costs [34]. 

To complete the model we add the unique development costs of applications. Also, 
with the help of the propagation cost metric [25], we also consider necessary changes 
to reusable elements (which are not considered by Poulin’s method) and, therefore, 
evolution. These two new factors include parameters to operationalize them. 

The former three factors are for development and the latter ones for maintenance: 

• DCA (Development Cost Avoidance). It is the benefit from reusing RA’s software 
modules in applications compared to building the applications independently. 

• UDC (Unique Development Costs). It is the cost to develop the unique parts of an 
application that are not already implemented in the modules of the RA. UDC is 
equivalent to Creuse+Cunique. 

• CSWD (Common Software Development costs). It is the cost of the initial invest-
ment, i.e., developing an RA. CSWD is equivalent to Corg+Ccab. 

• SCA (Service Cost Avoidance). It is the benefit of modifying reused code once. 
• CSWS (Common Software Service costs). It is the cost of fixing bugs in the (reus-

able) RA modules. CSWS calculates the cost of changes due to bugs in Ccabu. 
• CSWE (Common Software Evolution costs). It is the cost of changing or adding 

functionalities to the RA modules. CSWE calculates the cost of evolutions in Ccabu. 
Therefore, CSWS+CSWE are equivalent to Ccabu. 

Putting everything together, given a number n of applications built in top of the RA, 
and a number m of RA modules changed as it evolves, the benefits and costs of adopt-
ing an RA are defined as: 

 Benefits= ∑ DCAi+SCAi
n
i=1  (2) 

 Costs=CSWD+CSWS+ ∑ UDCi
n
i=1 + ∑ CSWEj

m
j=1  (3) 

Step 2. We divide the second step in two activities: checking the data available in 
practice and guide the information extraction from this data. 



 REARM: A Reuse-Based Economic Model for Software Reference Architectures 105 

Data commonly available in practice that should be collected. The data that typically 
is available in order to calculate the aforementioned costs and benefits are effort and 
software metrics [26]. It allows converting cost-benefit factors into a monetary value. 

On the one hand, the invested effort from the tracked activities allows the calcula-
tion of costs. We distinguish between three types of activities: training, development 
and maintenance. JIRA1 and Redmine2 are tools that support keeping track of activi-
ties and their invested time. Keeping track of activities is common in practice for 
project management and auditing. Activity tracking is also known as tickets [8]. 

On the other hand, software metrics help to analyze the benefits that can be found 
in the source code. For example, since the cost of applications’ development is lower 
because of the reuse of RA, we estimate the cost avoidance of reusing its LOC. Sonar3 
offers tool support for obtaining general software metrics such as LOC, dependencies 
between modules, technical debt [24], and percentages of tests and rules compliance. 

Software development is a naturally low-validity environment and reliable expert 
intuition can only be acquired in a high-validity environment. As stated by Erdogmus 
and Favaro [14], the adoption of practices like time tracking and tools to collect data 
is the basis for moving software development from its usual low-validity environ-
ment, to a high-validity environment. 

Table 1. Basic parameters in order to feed the factors of Table 2 

 Description of the parameters (adapted for the RA context) 

RCR Relative Cost of Reuse: effort that it takes to reuse a component without modifica-
tion versus writing it new one-at-a-time [34] 

RCWR Relative Cost of Writing for Reuse: effort that it takes to write a reusable compo-
nent versus writing it for one-time use only [34] 

ER Error Rate: the historical error rate in new software developed by your organization, 
in errors per thousand lines of code [34] 

EC Error Cost: your organization’s historical cost to fix errors after releasing new soft-
ware to the customer, in euros per error [34] 

NMSI New Module Source Instruction: the LOC that the changed or new module has, 
which can be the average of previous ones 

PC Propagation Cost: the percentage of code affected in the RA when performing evo-
lutions (i.e., changing modules) [25] 

CPKL Cost per KLOC: the historical cost to develop a KLOC of new software in your 
organization [34] 

USI Unique Source Instructions: the amount of unique software (i.e., not reused) that 
was written or modified for an application 

RSI Reused Source Instructions: it is the total LOC of the RA’s modules that are reused 
in an application. It supports variability. In other words, reuse of RA might not be 
complete but partial, since different applications can reused different RA’s modules. 
Therefore RSI depend on each application [34]. 

TSI Total Source Instructions: it is the total LOC of the RA that can be reused [34]. 

                                                           
1 JIRA, http://www.atlassian.com/es/software/jira/overview 
2 Redmine, http://www.redmine.org/ 
3 Sonar, http://www.sonarsource.org/ 



106 S. Martínez-Fernández et al. 

Table 2. Cost-benefit factors to calculate the ROI of adopting an RA in an organization 

 Description of the cost-benefit factors (adapted for the RA context) 

DCA Development Cost Avoidance: the benefits from reusing RA’s modules [34] 
DCA = RSI * (1-RCR) * CPKL 

CSWD Common Software Development costs: the costs to develop the RA [35] 
CSWD = RCWR * TSI * CPKL 

UDC Unique Development Costs: the costs to develop the unique part of an application 
UDC = USI*CPKL 

SCA Service Cost Avoidance: benefits from maintaining only once RA’s modules [34] 
SCA = RSI * ER * EC 

CSWS Common Software Maintenance costs: cost of fixing bugs in reusable modules [35] 
CSWS = TSI * ER * EC 

CSWE Common Software Evolution costs: the costs of changing or adding a new functio-
nality and maintaining it to the RA 
CSWE = evolution development + evolution maintenance + propagation = 
(NMSI*RCWR*CPKL)+(NMSI*ER*EC)+(TSI*CPKL*PC) 

 
We experienced difficulties collecting historical data (as in [20]), especially for the 

“before” state of adopting an RA. We noted that Cprod and Cevo were seldom available 
since the “before” state did not exist. For this reason, we use RCR and RCWR. 

Using commonly available data in practice to quantify the costs and benefits. In 
Table 1, we present ten basic parameters that are required for calculating the six cost-
benefit factors of the Step 1. Table 2 shows the formulas to calculate this six cost-
benefit factors as well as parameters that are needed for these calculations. 
 
Step 3. As final step, we can use calculated factors in order to calculate the ROI: 

 ROI = 
∑ DCAi+SCAi

n
i=1 -[CSWD+CSWS+ ∑ UDCi

n
i=1 + ∑ CSWEj

m
j=1 ]

CSWD+CSWS+ ∑ UDCi
n
i=1 + ∑ CSWEj

m
j=1

 (4) 

We also suggest using these cost-benefit factors to make a business case for calculat-
ing the ROI of building an RA vs. building the applications independently. Table 3 
shows an example of business case and how to calculate the cost and benefits for 
three years since the RA adoption. The parameters n1, n2, n3 indicate the number of 
applications developed per year respectively, and m the number of evolved modules. 

Table 3. Example of design of a business case with the cost-benefit factors of the model 

 Year 1 Year 2 Year 3 
Total benefit n1*(DCA+SCA) n2*(DCA+SCA) n3*(DCA+SCA) 

Total cost CSWD+ 
n1*UDC+CSWS*1

/5 
n2*UDC+ 

CSWS*2/5+m*CSWE 
n3*UDC+ 

CSWS*2/5+m*CSWE 

 
As Boehm points out [6], two additional factors may be important in business case 
analysis: unquantifiable benefits, and uncertainties and risk. 

First, the economic model that we propose promotes benefits in reusability and main-
tainability. However, other quality attributes, such as security, could be as relevant as 



 REARM: A Reuse-Based Economic Model for Software Reference Architectures 107 

those for this analysis, even when they may be difficult to quantify. This other benefits 
should also been taken into account when adopting and RA. Unquantifiable benefits are 
also considered as “flexibility” in TEI4, the economic model of Forrester. 

Second, to adjust cost and benefits to risk, they can be multiplied by percentages 
that generally increase the costs and reduce the benefits (assuming the worst case). 
For instance, TEI propose to multiple costs by values that range from 98% to 150% 
and benefits by values between 50% and 110%.  

5 Preliminary Validation 

To assess the feasibility of the economic model, we conducted a retrospective analysis 
of a particular case. We calculated the costs and benefits (and hence the ROI) of an 
RA adoption driven by everis in the IT department of a public organization. 

By the time we performed the validation, the public organization had already: (1) 
adopted an RA, (2) created an application using the RA –which we consider “exem-
plar” application–, and (3) fixed errors discovered in the RA software elements that 
were reused by the application. 

The validation consisted of 4 parts. First, a post-mortem analysis in which our 
challenge was to extract the parameters of Table 1 from already collected data. The 
values that we got are shown in Table 4. 

Table 4. Values of the basic parameters in the study 

RCR RCWR ER EC NMSI PC CPKL USI RSI TSI 

0,064 1,243 2,879 
err./kLOC 

7,02 
hours/err.

1.526 
LOC/module

9,7 % 75,22 
hours/kLOC

2.885
LOC

8.364 
LOC 

41.189 
LOC* 

* In TSI, 9.231 LOC were refactored from previous project. So, 31.958 were new. 

 
Recommended values for RCR range from 0,03 and 0,25, and for RCWR from 1 to 

2,2 [34]. Therefore, with the values that we got in the study, we can see that both 
RCR and RCWR are low for RAs. A low RCR could show the trend of moving the 
complexity to the architecture in order to simplify the development of applications. 
We can also see this trend comparing the code of the RA software elements with the 
code of applications. RA code present higher values for complexity metrics such as 
coupling and cohesion. A reason why RCWR is low could be that RA architectural 
knowledge speeds up the development. 

Second, with the data of Table 4, we had real data to calculate (see Table 5): 

• CSWD, the RA initial investment, which lasted 6 months. 
• DCA, the benefit of reusing RA code in the exemplar application development. 
• SCA, the cost from fixing the errors of the reused code in the exemplar application. 
• UDC, the cost of developing the application. 

                                                           
4 Total Economic Impact, http://www.forrester.com/marketing/product/ 
 consulting/tei.html 



108 S. Martínez-Fernández et al. 

The above costs were accurately computed because everis keeps track of activities 
with their invested time. Third, it was necessary to estimate the rest of factors: 

• CSWS, the cost of fixing all bugs in RA code. Since we knew the SCA for the 
exemplar application and the percentage of reuse, we calculated the error rate and 
error cost, which we used to estimate CSWS. 

• CSWE, the cost of: (1) changing or developing a module with new functionality, 
(2) fixing its bugs, (3) making changes in the rest of the RA to integrate it. 

Table 5. Values of the cost-benefit factors in the study* 

DCA CSWD UDC SCA CSWS CSWE 

589 hours 2.988 hours 217 hours 169 hours 832 hours 474 hours 

* Values in bold are real data. Values in italic are estimated. 

 
Fourth, we made the business case analysis with two different scenarios: 

Scenario 1. Is it worth to invest on the adoption of an RA? We constructed a business 
case for 3 years starting when the organization decided to adopt the RA, in order to 
calculate the ROI. For the first 8 months of those 3 years, we have real data about the 
RA development and the exemplar RA-based application. To estimate the costs and 
benefits for the rest of these 3 years, we conducted some additional interviews to the 
involved stakeholders. Stakeholders were carefully selected according to their know-
ledge and experience to increase the degree of confidence on the data gathered. After 
these interviews, we made the following assumptions: 

• Future applications will have similar characteristics and complexity as the exem-
plar one. 

• The public organization will develop 8 applications per year. Since the RA creation 
lasted 6 months, the first year they will develop just 4 applications.  

• The totality of CSWS is computed proportionally starting the seventh month. 
• A module is evolved (with new functionality) or added to the RA every year since 

the second year. 
 
Under these assumptions, the costs and benefits in hours for the future can be  
calculated as shown in Table 3. They can be converted into a monetary value by mul-
tiplying them by an hourly rate. Assuming a rate of 30' per hour for an application 
developer (which affects to DCA, SCA, UDC) and a rate of 40€ per hour for a devel-
oper and maintainer of the architecture (which affects to CSWD, CSWM, CSWE), 
Fig. 2 summarizes financial results for first three years of the RA. This organization 
will realize a ROI within 2 years through gains in systematic reuse. 

Scenario 2. How many instantiations (i.e., applications) are necessary before savings 
pay off for the up-front investment in building an RA? In this scenario we calculated 
how many applications need to be build based on the RA to have a positive ROI. Fig. 
3 shows the ROI due to developing and maintaining applications based on an RA 
rather than in a stand-alone fashion. 



 REARM: A Reuse-Based Economic Model for Software Reference Architectures 109 

 

Fig. 2. Summary financial results 

 

Fig. 3. ROI of developing and maintaining RA-based applications vs. stand-alone fashion 

As Fig. 3 shows, after building 7 applications, savings pay off for the up-front in-
vestment in the RA. It must be noted that the exemplar application is small and only 
20% of the RA is being reused (RSI/TSI). On the other hand, the application has a 
high reuse percentage of 74% (RSI/USI+RSI). The higher these percentages are (like-
ly in medium to large applications), the greater the benefit from the RA is. 

Moreover, applications are introduced into the market earlier from the seventh 
month on. This is due to the effort avoidance of 589 hours (DCA) of reusing the RA. 

To sum up, this study illustrates the potential way in which an organization can 
evaluate the value of RA adoption. We calculated a three-year ROI of 42% with a 
payback period of 16,5 months and 7 applications. 

-200.000

-150.000

-100.000

-50.000

0

50.000

100.000

150.000

200.000

Year 1 Year 2 Year 3Eu
ro

s

Time

Return on Investment

Total cost

Total benefit

Cumulative cash flow

-16

-11

-6

-1

4

9

14

19

24

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

6000

7000

1,5 4,5 7,5 10,5 13,5 16,5 19,5 22,5 25,5 28,5 31,5 34,5

N
um

be
r o

f a
pp

lic
at

io
ns

Co
st

s
H

ou
rs

Be
ne

fit
s

Months

Return on Investment

Hours Number of Applications



110 S. Martínez-Fernández et al. 

6 Discussion 

Once we applied the economic model and calculated the ROI, a last question remains: 
How accurate are these calculations and the obtained quantitative data? If the  
economic model is applied with existing data (as we have done in Section 5), the 
calculation of the ROI reaches a high degree of correctness, since the data that feeds 
the model is trustworthy. The metrics coming from code analysis (e.g., size in LOC) 
do not reflect any error. Also, we saw that time tracking is reliable. During data col-
lection we found invested time in activities in two different sources: JIRA, which is  
optionally used by the project team and keeps the invested time of the project’s activi-
ties; and a mandatory corporate financial tool, which is used by the financial depart-
ment. This data differ in 8,75%, being lower internally time tracking of the project. 
The reason could be that JIRA does not include other activities out of the scope of  
the project like traveling. To adjust the calculations to this risk, we have always con-
sidered the worst case (i.e., greater costs). 

Contrary, when the economic model is used to predict the ROI of a completely 
new RA adoption in an organization, there is not real data since it does not exist yet. 
In this case, the accuracy totally depends on expert intuition and historical data. His-
torical data can be scarce in small and medium organizations; especially considering 
that reuse of architectures is still a research area in progress. In addition, historical 
data must be continuously updated, since some values of effort-related parameters 
(such as RCR) are expected to decrease each time a developer instantiates the RA. 

As a final remark, the construction of an economic model from the data available 
in software companies is yet-another-instance of research question which needs to 
balance soundness with applicability. The awareness of this problem by the software 
engineering community is increasing and even dedicated events are being organized 
(See CESI 2013 @ ICSE, http://www.essi.upc.edu/~franch/cesi2013/).   

7 Conclusions and Next Steps 

Architecture improvements are extremely difficult to evaluate in an analytic and 
quantitative way, contrary to business efficacy (sales, marketing, and manufacturing) 
[8]. Methods and models for changing this state of the practice are demanded. 

This paper has opened the path on the area of using economic models for RA as-
sessment. We think that this area has a significant impact not just for researchers but 
also for practitioners in software development and organization’s executives. We 
presented REARM, an economic model to translate measured or estimated data (i.e., 
metrics) into monetary terms (i.e., cost-benefit analysis). Then, we use them as the 
basis for analyzing the economic value of an RA (i.e., valuation) that is adapted by an 
organization in the pursuit of its business strategies. Thus, our work aligns with Er-
dogmus et al. vision on economic activities in software industry, that fall into 4 levels: 
metrics, cost-benefit analysis, valuation and business strategy [13]. 

We have conducted a preliminary validation to calculate the ROI of adopting an 
RA in a real organization. This organization will realize a return on their investment 
within two years through gains in systematic reuse and applications maintainability. 
The method presented is generic enough to be used when other quality attributes are 



 REARM: A Reuse-Based Economic Model for Software Reference Architectures 111 

prioritized by relevant stakeholders. The presented economic model allows quantify-
ing the value that an RA of Type 2 or 4 (those designed with an intended scope of a 
single organization) [3] brings to an organization. Its strongest points are: 

• It translates RA costs and benefits into monetary values, which can be considered 
an innovative approach in RA research and practice. 

• The integration of different metrics from existing models that complement each 
other evaluating several RA-relevant aspects. 

• It provides guidelines for easily collecting and reporting data for practitioners, and 
for using it to make a business case. 

• The model has been applied in a public organization and validated with real data. 
 

On the other hand, potential weaknesses of this approach are: 
 

• It does not consider RA’s software elements degeneration over time [20]. 
• The risk increases when neither real nor historical data are available. 

As future work, we plan to enrich the economic model by: (1) adding more metrics 
(such as technical debt [24], degeneration over time [20], risk metrics, homogeneity 
metrics [10]), and (2) validating it for bigger applications and in more organizations. 

Acknowledgements. This work has been supported by “Cátedra everis” and the 
Spanish project TIN2010-19130-C02-00. We would also like to thank all participants 
of the data collection process for their kindly cooperation. 

References 

1. Ali, M., Babar, M., Schmid, K.: A comparative survey of economic models for software 
product lines. In: Software Engineering and Advanced Applications, pp. 275–278 (2009) 

2. Angelov, S., Trienekens, J.J.M., Grefen, P.: Towards a method for the evaluation of refer-
ence architectures: Experiences from a case. In: Morrison, R., Balasubramaniam, D., Falk-
ner, K. (eds.) ECSA 2008. LNCS, vol. 5292, pp. 225–240. Springer, Heidelberg (2008) 

3. Angelov, S., Grefen, P., Greefhorst, D.: A framework for analysis and design of software 
reference architectures. Information and Software Technology 54(4), 417–431 (2012) 

4. Baldwin, C.Y., Clark, K.B.: Design Rules: The Power of Modularity. MIT Press (1999) 
5. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-W (2003) 
6. Biffl, S., Aurum, A., Boehm, B., Erdogmus, H., Grünbacher, P.: Value-Based Software 

Engineering. Springer (2005) 
7. Boehm, B., Brown, A., Madachy, R., Yang, Y.: A software product line life cycle cost es-

timation model. In: Empirical Software Engineering, pp. 156–164 (2004) 
8. Carriere, J., Kazman, R., Ozkaya, I.: A cost-benefit framework for making architectural 

decisions in a business context. In: ICSE, vol. 2, pp. 149–157 (2010) 
9. Clements, P., Northrop, L.: Software Product Lines. Addison-Wesley (2002) 

10. Clements, P., McGregor, J., Cohen, S.: The structured intuitive model for product line 
economics (SIMPLE). Tech. rep., DTIC Document (2005) 

11. Cloutier, R., Muller, G., Verma, D., Nilchiani, R., Hole, E., Bone, M.: The concept of ref-
erence architectures. Systems Engineering 13(1), 14–27 (2010) 

12. Eklund, U., Jonsson, N., Bosch, J., Eriksson, A.: A reference architecture template for 
software-intensive embedded systems. In: WICSA/ECSA (2012) 



112 S. Martínez-Fernández et al. 

13. Erdogmus, H., Favaro, J., Strigel, W.: Return on investment. IEEE Software 21(3) (2004) 
14. Erdogmus, H., Favaro, J.: The Value Proposition for Agility–A Dual Perspective (2012), 

http://www.infoq.com/presentations/Agility-Value 
15. Falessi, D., Kruchten, P., Cantone, G.: Issues in applying empirical software engineering 

to software architecture. In: Oquendo, F. (ed.) ECSA 2007. LNCS, vol. 4758, pp. 257–262. 
Springer, Heidelberg (2007) 

16. Frakes, W., Terry, C.: Software reuse: metrics and models. Comput. Surv. 28(2) (1996) 
17. Gallagher, B.P.: Using the architecture tradeoff analysis method to evaluate a reference ar-

chitecture: A case study. Technical Report CMU/SEI (2000) 
18. Galster, M., Avgeriou, P.: Empirically-grounded reference architectures: a proposal. In: 

Proceedings of the Joint ACM SIGSOFT Conference QoSA/ISARCS (2011) 
19. Galster, M., Avgeriou, P., Tofan, D.: Constraints for the design of variability intensive ser-

vice-oriented reference architectures an industrial case study. IST 55(2), 428–441 (2013) 
20. Ganesan, D., Muthig, D., Yoshimura, K.: Predicting return-on-investment for product line 

generations. In: SPLC, pp. 13–24 (2006) 
21. Graaf, B., van Dijk, H., van Deursen, A.: Evaluating an embedded software reference ar-

chitecture. In: CSMR, pp. 354–363 (2005) 
22. Kazman, R., Asundi, J., Klien, M.: Making architecture design decisions: An economic 

approach. Tech. rep., DTIC Document (2002) 
23. Khurum, M., Gorschek, T., Petersson, K.: Systematic review of solutions proposed for 

product line economics. In: Decision Support Software Intensive Product Management 
(2008) 

24. Letouzey, J.: The sqale method for evaluating technical debt. In: MTD@ICSE (2012) 
25. MacCormack, A., Rusnak, J., Baldwin, C.: Exploring the duality between product and or-

ganizational architectures. Harvard Business School Research Paper (08-039) (2011) 
26. Martínez-Fernández, S., Ayala, C., Franch, X., Ameller, D.: A Framework for Software 

Reference Architecture Analysis and Review. In: ESELAW@CIbSE (in press, 2013) 
27. Mili, A., Chmiel, S., Gottumukkala, R., Zhang, L.: An integrated cost model for software 

reuse. In: ICSE, pp. 157–166 (2000) 
28. Nakagawa, E.Y., Oliveira Antonino, P., Becker, M.: Reference architecture and product 

line architecture: A subtle but critical difference. In: Crnkovic, I., Gruhn, V., Book, M. 
(eds.) ECSA 2011. LNCS, vol. 6903, pp. 207–211. Springer, Heidelberg (2011) 

29. Nakagawa, E.: Reference architectures and variability: current status and future perspec-
tives. In: Proceedings of the WICSA/ECSA, pp. 159–162 (2012) 

30. Nóbrega, J., Almeida, E., Meira, S.: Income: Integrated cost model for product line engi-
neering. In: SEAA, pp. 27–34 (2008) 

31. Nord, R., Ozkaya, I., Kruchten, P., Gonzalez-Rojas, M.: In search of a metric for managing 
architectural technical debt. In: WICSA/ECSA, pp. 91–100 (2012) 

32. Ozkaya, I., Kazman, R., Klein, M.: Quality-attribute based economic valuation of architec-
tural patterns. In: ESC (2007) 

33. Pohl, K., Bockle, G., Van Der Linden, F.: Software product line engineering, vol. 10 
(2005) 

34. Poulin, J.: Measuring Software Reuse. Addison-Wesley, Reading (1997) 
35. Poulin, J.: The economics of product line development. International Journal of Applied 

Software Technology 3, 15–28 (1997) 
36. Robson, C.: Real world research, vol. 2. Blackwell Oxford (2002) 
37. Schmid, K.: An initial model of product line economics. In: van der Linden, F.J. (ed.) 

PFE-4 2001. LNCS, vol. 2290, pp. 38–50. Springer, Heidelberg (2002) 
38. van Solingen, R.: Measuring the ROI of software process improvement. IEEE Soft-

ware 21(3), 32–38 (2004) 



J. Favaro and M. Morisio (Eds.): ICSR 2013, LNCS 7925, pp. 113–126, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Cross-Domain Reuse: 
Lessons Learned in a Multi-project Trajectory 

Silvia Mazzini1, John Favaro1, and Tullio Vardanega2
 

1 Intecs S.p.A. 
via Umberto Forti 5, 56121 Pisa, Italy 

{silvia.mazzini,john.favaro}@intecs.it 
2 University of Padova 

Department of Mathematics 
via Trieste 63, 35121 Padova, Italy 

tullio.vardanega@math.unipd.it 

Abstract. Systematic reuse has been traditionally associated with a single 
domain, in which domain analysis leads to a single domain terminology, 
domain architecture, and intra-domain reuse. The product line movement is an 
example of that trend. Although reuse of small artifacts has always worked 
across domains, systematic reuse of more substantial artifacts across domains 
has not been much explored. In recent years, there has been an interest 
especially in large European industrial research cooperation programs, to 
facilitate reuse across disparate domains, to derive the known economic and 
technological benefits. Progress is being made, but significant challenges 
remain. Lessons learned in the definition and elaboration of a cross-domain 
reference architecture over the trajectory of three large projects are described. 

1 Introduction 

The promise of systematic reuse has been fulfilled in many respects, with a flourish-
ing product line community adopting a domain engineering approach to software 
development, in domains ranging from consumer products such as television sets to 
large infrastructure such as telecommunications systems. In Europe in particular, 
however, in the large co-financed industrial research programs, especially ARTEMIS 
[19], there has been a significant push toward seeking systematic cross-domain reuse, 
to pursue both technological and economic benefits. This is in keeping with the Euro-
pean Union’s desire to have its financed R&D activities deliver the maximum impact 
across the largest possible segment of its industrial sectors. 

However, this new ambition creates significant challenges. The reuse of low-level 
components is inherently cross-domain in the sense that it is naturally domain-
independent by virtue of being far removed from the end application needs. But the 
kind of high-level reuse implied by cross-domain systematic reuse is different: what 
worked in a single domain may not work across domains. 

This paper reports on lessons learned in pursuing a cross-domain reuse vision in a 
large and encompassing research program that progressed along two parallel and 



114 S. Mazzini, J. Favaro, and T. Vardanega 

complementary lines and over three large projects. One line of research took place as 
part of an initiative launched by the European Space Agency (ESA) intended to guide 
the development of on-board software for satellites across all of its software supply 
chain, using the component-based approach described in [16]. The other line of re-
search occurred within an ARTEMIS project for the realization of a model-based, 
component-oriented approach to the development of embedded real time software 
systems across the domains of telecommunications, space, and railways [15]. 

2 Phase 1: Single-Domain Basis in COrDeT-1 

COrDeT-1 was a preliminary study launched by ESA in the context of an initiative 
for space avionics standardization. The overall goal of the project was to facilitate the 
achievement of systematic reuse over space applications. The rationale behind that 
effort was the observation that satellite missions often share significant characteristics 
with high reuse potential. COrDeT-1 was determinant in the experience discussed in 
this paper because fundamental decisions about the approach taken to achieve syste-
matic reuse were taken in it. ESA decided to adopt domain engineering techniques to 
achieve a design architecture for future reuse in preference to building a library of 
potential reusable code, a more frequent choice in other, similar initiatives. 

Our first proposal was to adopt an approach that is closely associated the domain 
engineering process: generative reuse [8]. Generative reuse is achieved by encoding 
domain knowledge and relevant system building knowledge into a domain specific 
specification language [1]. New systems are created by writing specifications using 
modeling languages according to an approach where an automated engine translates 
the specification into code for the new system in a target language. 

We were particularly attracted to the generative approach because the Object Man-
agement Group (OMG) has developed its own initiative for a generative, model-based 
approach called Model-Driven Architecture (MDA) [2]. The MDA concept allows 
developers to produce models of the application and business logic and generate code 
for a target platform by means of transformations. Instead of writing platform-specific 
code in some high-level language, developers focus on developing models that are 
specific to the application domain but independent of the platform. In this way, MDA 
raises the level of abstraction in software development. 

Historically, however, generative reuse had been considered to be a mutually ex-
clusive alternative to a component based approach, the other major paradigm in reuse 
[5]. In our experience, architectural decisions had a strong impact on reusability in 
general, and especially on the non-functional properties of high integrity software as 
found in space applications; we therefore strongly felt that it was important to define a 
reference architecture [3] for our application domains. 

A reference architecture is essentially an agreed basis and a kind of template solu-
tion for the domain, and embodies the lessons learned in that domain in the form of 
patterns, principles, best practices, functional elements, and interfaces. (An important 
defining characteristic of a reference architecture is that conformance to that architec-
ture can be ascertained.) But as mentioned earlier, a reference architecture carries 



 Cross-Domain Reuse:Lessons Learned in a Multi-project Trajectory 115 

with it a strong flavour of component orientation. Thus, one important goal of the 
study was to successfully combine the generative, model-based approach with the 
elements of a component-based approach implied by a generic reference architecture.  

The principles of a reference architecture and component based approach implied 
one last basic principle: to make reuse practical and effective, many of the compo-
nents in the reference architecture need to offer some degree of variability. Jacobson 
et al. [6] described seven variability mechanisms for providing variation points in a 
product line: inheritance, uses, extension points, parameterization, configuration of 
alternative components, template instantiation and generation. Bosch [7] described 
five variability mechanisms: inheritance, extensions, configuration, template instan-
tiation and generation. Our own work on variability in the COrDeT-1 project culmi-
nated instead in the definition of a system-level feature oriented domain analysis  
methodology [9]. 

The four main principles of model-based, component-based, generic reference ar-
chitecture, and variability modeling were elaborated into the scheme shown in Fig. 1, 
in which the model-based orientation is represented by its generative capability in the 
“Generate” arrow. 

 

Fig. 1. Systematic reuse principles in COrDeT-1 



116 S. Mazzini, J. Favaro, and T. Vardanega 

Further concepts than the cited principles appear in the scheme outlined above. 
This is so because of lessons we learned from previous experience in the ASSERT 
project (Automated proof-based System and Software Engineering for Real-Time 
systems) from the Sixth Framework Program of the European Commission [14]. We 
came to realize that these other concepts proceed from the four main principles enu-
merated above, that is: 

• Architectural Styles and Patterns. An important aspect of a reference architecture 
is the ability to capture different architectural perspectives and partitioning strate-
gies. Different kinds of problems lend themselves to different styles, idioms or pa-
radigms of design, analysis and implementation. An architectural style captures 
common computation and communication paradigms used to address a particular 
class of programming problems. For example, we found the layered system to be a 
central architectural style in the space domain. At a lower level of abstraction than 
style, architectural patterns include N-tier client-server architectures, agent-based 
architectures, and service oriented architectures. 

• Platform Architectures. Platform architectures are middleware software layers on 
which the application and components for implementation of an application can be 
developed. Middleware typically provides standardized communication between 
components. In particular it facilitates distribution of applications and services. A 
platform architecture provides various services such as transactions, scheduling, 
concurrency, messaging and naming. One of the key goals of the definition of our 
reference architecture was to define an appropriate middleware layer to provide an 
execution environment for reusable software components. This was also a conse-
quence of the model-based approach, because it introduced the concept of platform 
independent models (PIM) and platform specific models (PSM). 

• Component Model. The component approach necessitated the adoption of a com-
ponent model. The definition and scoping of a reference architecture determines 
the requirements imposed on the component model and the set of middleware ser-
vices to be considered. Given the large differences between supported applications, 
ranging from simple to extremely complex, an assessment must be performed for 
the generic architecture to incorporate state-of-the-art component models that 
match the needs of intended systems. State-of-the-art components are typically 
deployed into a so-called container which manages their lifecycle and provides 
various services for them. Our particular interpretation and use of the container 
concept for managing high integrity non-functional characteristics turned out to be 
a major contribution of our approach to the state of the art. 

• Computational Model. The computational model for a software system defines 
abstract system entities representing computations, data exchange between compu-
tations, and their temporal and concurrency properties. Based on the computational 
model, space and temporal properties of a piece of software can be derived, which 
is essential in our high-integrity environment. In order to reuse software compo-
nents across different systems, the computational models of these systems must be 
the same or at least compatible – an interesting challenge in its own right. 



 Cross-Domain Reuse:Lessons Learned in a Multi-project Trajectory 117 

• Standards. The last key concept in our schema was not strictly related to the four 
fundamental principles, but acquired an outsized and unexpected importance later 
in the cross-domain context. First, design to interfaces is an emerging reuse prac-
tice [12], whereby all external dependencies must be defined using widely accepted 
interface standards as much as possible. Secondly, we stipulated that the design it-
self be defined using widely accepted standards as much as possible, in order to be 
compatible with existing real world solutions, tools and techniques, and to make 
models reusable assets. In this respect UML and the related OMG standards, such 
as MOF and XMI, represent the most mature, widespread used and tool supported 
candidates for the specification of the reference modeling language. Finally, we re-
quired that the reference architecture also try to incorporate and reflect software 
engineering standards such as those of IEEE. 

All the concepts described above became the basis for the domain engineering ap-
proach in the space domain, as well as for exploring cross-domain engineering in the 
next project. It proved to be remarkably resilient. 

3 Phase 2: Cross-Domain Realization in the CHESS Project 

This section describes the experience acquired with the CHESS (Composition with 
Guarantees for High-integrity Embedded Software Components Assembly) 
ARTEMIS JU Call 2008 project [24]. The project aimed at promoting the adoption of 
component-based development and Model Driven Engineering to support the devel-
opment of real-time embedded systems across several domains of interest, namely 
telecom, space and railways. Thus, the project provided an opportunity to implement 
and to extend into multiple domains the basic principles that had been identified in 
COrDeT-1. However, building on the experience gained in the ASSERT project 
[15], CHESS added two more distinct pillars: 

• separation of concerns between functional and non-functional properties of soft-
ware components; 

• correct-by-construction automated derivation of platform independent user models 
into platform-specific implementations with high-integrity runtime guarantees. 

CHESS involved a significant elaboration of the component model hypothesized but 
not defined in detail in COrDeT-1. The CHESS Component Model extends traditional 
component models by explicitly separating functional from non-functional aspects. 
Components are modelled in a dedicated view, in which the designer describes only 
their functional aspects. A distinct design view permits to annotate the component 
description with the declaration of the desired non-functional attributes. This has the 
advantage that for certain types of non-functional properties (e.g. real time), the sepa-
ration of concerns makes it possible to reuse the same functional specification with 
different non-functional annotations. This capability turned out to have extremely 
positive implications for functional reuse, consequently with large potential for cross-
domain application. 



118 S. Mazzini, J. Favaro, and T. Vardanega 

Non-functional properties are analyzed and verified for individual components in 
isolation and are retained after the component is assembled with other components 
and deployed to the target system, thereby assuring the composability of non-
functional properties of components. Properties of components can be used to derive 
the properties of the overall system, therefore contributing to the compositionality of 
non-functional properties of components. In this way the system can be built as an 
assembly of reused components, where both functional and non-functional concerns 
can be adequately taken into consideration at design time. 

The declarative specification of non-functional attributes of components (for in-
stance the real time activation pattern of a given provided operation) is used in 
CHESS for the automated generation of the container, to be regarded as a component 
wrapper responsible for the realization of the non-functional attributes declared for 
the component to be wrapped. As a consequence, in the CHESS approach compo-
nents at design level encompass functional concerns only; in particular, they are devo-
id of any constructs pertaining to tasking and specific computational model concerns. 

 

Fig. 2. Components, containers, and connectors in the CHESS Component Model [20] 

Components (and containers) in CHESS are independent of communication con-
cerns, which are handled by the dedicated connector. The existence of specific prop-
erties about the binding between two components in the design model (for instance 
regarding safety protocols to be adopted in the communication) is used to generate the 
connector, which manages the interaction between the components – which is actually 
a mediated communication between their containers. The use of connectors ensures 
that components and containers do not require any adaptation under different binding 
requirements and deployment specifications (see Fig. 2). 

The CHESS component specification, as defined at user level in terms of function-
al behaviour and non-functional property specification, is therefore completely plat-
form-independent (hence it represents the Platform Independent Model or PIM). 
However the definition of containers and connectors is platform specific (it resides in 
the Platform Specific Model or PSM); in particular it is bound to: 

• the semantic constraints of the specific computational model supported by the tar-
get platform; 

• the adoption of a specific programming model; 
• the specific run-time services offered by the execution platform. 



 Cross-Domain Reuse:Lessons Learned in a Multi-project Trajectory 119 

A synthesis of the essential elements of the CHESS approach is depicted in Fig. 3. It 
is worth noting that the CHESS approach has large potential for cross-domain reuse in 
so far as the principal dependence on domain-specific needs rests with the Execution 
Platform and all that must strictly conform to it (which may include middleware libra-
ries as well as connector and container bindings to them). 

Separation of concerns is supported in CHESS both at specification (PIM) and im-
plementation (PSM) level: the former, by way of user design views to address distinct 
design concerns; the latter by the platform-specific implementations which are  
derived by transformation engines as a correct-by-construction product. 

 

Fig. 3. CHESS approach [23] 

Operationally it is the CHESS toolchain that guarantees the implementation of the 
correct by construction paradigm by supporting: 

• analysis and verification of non-functional properties (e.g. upon the target compu-
tational model); 

• propagation of the results back to the model; 
• consistent and property-preserving automated generation of code and deployment 

on the target execution platform.  

Here property preservation means that the non-functional properties statically as-
sumed in the PIM and PSM models, and verified by the analysis, are preserved in the 
generated code and monitored at run-time. The monitoring at run-time allows the 



120 S. Mazzini, J. Favaro, and T. Vardanega 

notification of any events that violate the guarantees proved at model level and their 
treatment in accord with the applicable system level policies. 

As a result, the development process investigated in the CHESS project supports 
the definition of reusable functional components that may be decorated with different 
non-functional property specifications so as to target different implementations and 
different platform-specific middleware across multiple domains. 

The specificity of the different implementations on different targets can be easily 
accommodated by advanced use of model based generative techniques. Interestingly, 
this claim held true in the experiments that were performed within all the industrial 
domains covered in CHESS. 

The final, overall cross-domain CHESS vision is illustrated in Fig. 4: the genera-
tive techniques were successfully implemented for different middleware and  
platforms in the three domains of telecommunications, space, and railways. The au-
tomotive domain was “monitored” over the course of the project by experts within the 
domain from within the consortium, although implementation resources were only 
employed in the first three domains. 

 

Fig. 4. Overall cross-domain CHESS approach 

A comparative evaluation with respect to the main principles elaborated in the 
original single-domain COrDeT-1 vision yielded the following observations when 
cross-domain aspects were considered in CHESS: 

• The CHESS Component Model turned out to be useful across all domains. In fact, 
the contents of a single component (that is, its functional implementation) appeared 
to be much less reusable across domains than the container and connector model  



 Cross-Domain Reuse:Lessons Learned in a Multi-project Trajectory 121 

itself, which worked well in all domains. That made it possible to share component 
assembly solutions across domains, where the respective contents had to change 
according to the applications within the domains. It was a great challenge to identi-
fy non-functional properties that had a single-domain utility, but which could also 
be usefully generalized across domains. 

• The computational model turned out to be extremely useful. The Ravenscar Com-
putational Model (RCM) is a language-agnostic conceptual concurrency model  
inspired by the Ravenscar Profile of the Ada programming language [21]. The ra-
tionale for the Ravenscar Profile is to provide a restricted tasking model suited for 
the development of high-integrity real-time systems. The model was successfully 
adopted across all the CHESS domains. 

• The middleware concept to support the platform architecture turned out to be fun-
damental in all domains considered, but there was much more of a problem of find-
ing a solution at the proper level of abstraction, because in the different domains 
the middleware solutions adopted vary considerably, or even for some large com-
panies (e.g. Thales) proprietary solutions exist. 

• The heavy use of standards postulated in COrDeT-1 turned out to be very useful in 
a cross-domain context. The modeling language adopted by CHESS is a profile of 
the OMG UML, MARTE and SysML, providing a standard common design lan-
guage that is appropriate across domains. Tool support from the Eclipse EMF 
turned out to be the de facto standard framework for development of the CHESS 
tool chain. 

4 Phase 3: Consolidation in the COrDeT-2 Project 

The experience gained in the COrDeT-1 and CHESS projects came to its culmination 
in the COrDeT-2 project [17] of the European Space Agency. 

 

Fig. 5. COrDeT-2 approach to software reference architecture [22] 



122 S. Mazzini, J. Favaro

In the context of the init
vious section, which was th
FAIRE working group, wit
Space Industry [25]. Build
cepts of the On-Board Sof
dated by other studies, of w

There was a strong over
CHESS, making it possibl
CHESS to be brought to fru
is depicted in Fig. 5. 

The main result of COr
its precursor work into a re
a conceptually simple, str
simplicity was that it made
contrast, where domain-spe
DeT-2 is shown in Fig. 6. 

 

Fig. 6. COrDeT

The OBSW-RA has thre
component model. The ess
dent. Furthermore, all com
functional concerns. Within
suitable for reuse across di

o, and T. Vardanega 

tiative for space avionics standardization mentioned in p
he origin of COrDeT-1, ESA organized then the SAVO
th representative participation from across all the Europ
ding on COrDeT-1, SAVOIR-FAIRE elaborated the c
ftware Reference Architecture (OBSW-RA), later cons

which the most recent was the COrDeT-2 project. 
rlap in the technological research teams of this project 
le for the reference architecture vision of COrDeT-2 
uition. The COrDeT-2 approach to a reference architect

rDeT-2 was the incorporation of the salient elements
eference architecture that consolidated the main ideas i
raightforward, and elegant form. A major effect of 
e it very clear where cross-domain aspects reside and
ecific variability resides. The OBSW-RA defined by C

T-2 On Board Software Reference Architecture [22] 

e layers. At the top is the component layer, which hosts 
sential elements of this layer are entirely domain indep
mponents developed within this layer are free from n
n the intended context of space software development, i
ifferent project participants; but it is also suitable for 

pre-
OIR-
pean 
con-
soli-

and 
and 
ture 

s of  
into  
this  

d, in 
COr-

 

the 
pen-
non-
it is 
the 



 Cross-Domain Reuse:Lessons Learned in a Multi-project Trajectory 123 

development of applications that can be reused across domains. This top layer of the 
OBSW-RA precisely corresponds to the CHESS PIM. 

The bottom layer (called the “execution platform layer” in COrDeT-2) is where all 
of the domain specific concerns are addressed. This is done in the form of “provided 
services”. The platform layer is able to expand to accommodate whatever domain-
specific services are desired, while the upper layers can remain thin. The figure pro-
vides an illustrative example, with three major groups of services that are essential to 
space missions: Monitoring and Control (M&C), Avionics Spacecraft Onboard Inter-
face Services (SOIS), and hardware-specific mission-neutral services (which are often 
termed Basic Software). 

• M&C services are specific to the satellite domain and, for example, may imple-
ment a standard such as the Packet Utilisation Standard [17]; 

• Avionics (SOIS) services are specific to the avionics domain and operate within 
the context of the standardized SOIS service architecture; 

• Hardware-specific mission-neutral services are those which are common to any 
embedded software domain (e.g. tasking, I/O management). 

The ability to concentrate most domain-specific concerns in the platform layer was an 
important result of the work.  

The middle layer (called the “interaction layer” in COrDeT-2) is where the con-
tainers and connectors (which transparently encapsulate components) operate. They 
keep the components free of the relevant concerns and bind them to the platform ser-
vices (often domain-dependent) that are needed to ensure the resources’ needed for 
their execution. 

• Containers (as conceived in CHESS) are domain-independent artifacts in COrDeT-
2, which however are specific to families of computational models. 

• Connectors (likewise introduced in CHESS) are also domain-independent artifacts, 
which however rely on a platform-specific middleware that they can use to provide 
distribution transparency to component binding. 

5 Discussion and Conclusions 

An important result of COrDeT-2 was that the principal large industrial participants – 
Astrium and Thales Alenia Space, along with the European Space Agency itself – 
came to fully embrace the approach represented by the first three principles of the 
original COrDeT-1 project and carried through CHESS – that is, a reference architec-
ture that is both model-based and component-based. (The fourth principle of variabili-
ty modeling likewise received thorough attention but was treated in a more technical 
and pragmatic than theoretical fashion). This is remarkable given the understandable 
reluctance of large entities to adopt potentially disruptive approaches. 

The merits of this approach to reference architecture have been confirmed else-
where. The AUTOSAR initiative [4] in particular has developed a reference architec-
ture that shares very similar characteristics.  



124 S. Mazzini, J. Favaro, and T. Vardanega 

In AUTOSAR there is a component layer, which hosts components that are free 
from concerns about the underlying platform.  

The bottom layer in AUTOSAR is known as the Basic Software, and encapsulates 
specific services in much the same way as the very bottom layer of the COrDeT-2 
reference architecture does, captured by the “Run Time Kernel layer” box in Fig. 6, 
offering basic communication, memory access, and operating system kernel services. 

The interaction layer is where there is some similarity but also divergences  
between COrDeT-2 and AUTOSAR. The Virtual Functional Bus of AUTOSAR cor-
responds to some degree to the component/connector paradigm of COrDeT-2. The 
middleware is represented in the Runtime Environment. But there is no concept of 
container in AUTOSAR for separating out non-functional concerns. This has the  
ramification that the AUTOSAR software component designer must specify non-
functional concerns such as timing within the software components, for example in 
the specification of so-called runnables (which may have periodic or sporadic charac-
teristics): this carries obviously negative consequences on functional reusability as  
the reuse of AUTOSAR components can only happen for identical non-functional 
conditions since any change in them may require algorithmic modifications. 

Other non-functional concerns such as resources required (e.g. non-volatile memo-
ry) are likewise requested within the specification of the software components. There-
fore, although it can be fairly said that the software components in AUTOSAR are to 
a great extent platform-independent, they do not separate non-functional concerns as 
cleanly as the COrDeT-2 container approach. Indeed, this has proven to be a compli-
cating factor as a number of initiatives [11] have been undertaken to improve the 
handling of non-functional aspects, and tended to tie the software components of 
AUTOSAR to automotive domain-specific non-functional characteristics. 

Despite the above difficulties and on the spin of its positive potential, the 
AUTOSAR community has also begun to realize that the adopted approach to a refer-
ence architecture is potentially usable across domains, and has launched an initiative 
called Derived Applications [13] to expand AUTOSAR into other domains. We can 
take this notion to be yet another confirmation that the approach that was conceived in 
COrDeT-1, elaborated in CHESS, and consolidated in COrDeT-2 – which we consid-
er to encompass the AUTOSAR intent – is a powerful facilitator of systematic cross-
domain reuse. Interestingly, the CONCERTO (“Guaranteed Component Assembly 
with Round Trip Analysis for Energy Efficient High-integrity Multi-core Systems”) 
project has been recently selected by the ARTEMIS JU program office1 to continue 
this promising line of investigation, carrying it toward further industrial domains. 

 
Acknowledgements. The authors acknowledge the foundational work carried out by 
Marco Panunzio as part of his PhD and post-doc activities as an essential enabling 
factor to the achievements of the CHESS and COrDeT-2 projects. Stefano Puri con-
tributed valuable clarifications to a number of issues addressed in the text. Special 
thanks to the consortia and funding authorities of the COrDeT-1 (ESA), CHESS 
(ARTEMIS JTI), and COrDeT-2 (ESA) projects, as well as the SAVOIR-FARE 
working group participants, whose successful collaboration produced the results de-
scribed in this paper. 

                                                           
1 http://www.artemis-ia.eu/programcall/index/view/?programcall=5 



 Cross-Domain Reuse:Lessons Learned in a Multi-project Trajectory 125 

References 

1. Frakes, W., Kang, K.: Software Reuse Research: Status and Future Directions. IEEE 
Transactions on Software Engineering 31(7) (July 2005) 

2. Object Management Group, Model Driven Architecture,  
http://www.omg.org/mda/ 

3. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Merson, P., Nord, R., 
Stafford, J.: Documenting Software Architectures: Views and Beyond, 2nd edn. Addison-
Wesley, Boston (2010) ISBN 0-321-55268-7 

4. AUTOSAR: Automotive Open System Architecture, http://www.autosar.org/ 
5. Szyperski, C., Gruntz, D., Murer, S.: Component Software- Beyond Object-Oriented pro-

gramming, 2nd edn. Addison-Wesley/ACM Press (2002) 
6. Jacobson, I., Griss, M., Jonsson, P.: Software Reuse: Architecture, Process and Organiza-

tion for Business Success. Addison-Wesley-Longman (May 1997) 
7. Bosch, J.: Design & Use of Software Architectures: Adopting and Evolving a Product Line 

Approach. Addison-Wesley (2000) 
8. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Applica-

tions. Addison-Wesley (2000) 
9. Favaro, J., Mazzini, S.: Extending FeauRSEB with Cocepts from Systems Engienering.  

In: Edwards, S.H., Kulczycki, G. (eds.) ICSR 2009. LNCS, vol. 5791, pp. 41–50. Springer, 
Heidelberg (2009) 

10. Angelov, S., Grefen, P., Greefhorst, D.: A Classification of Software Reference Architec-
tures: Analyzing Their Success and Effectiveness. In: Joint Working IEEE/IFIP Confe-
rence on Software Architecture and European Conference on Software Architecture, 
WICSA/ECSA (2009) 

11. TIMMO-2-Use, http://www.timmo-2-use.org/ 
12. Gamma, E., et al.: Design Patterns: Elements of Reusable Object-Oriented Software.  

Addison-Wesley (1994) 
13. AUTOSAR Consortium, Development Partnership AUTOSAR to extend scope of applica-

tions to non-automotive areas (November 16, 2011), http://www.autosar.org 
14. Mazzini, S., Puri, S., Vardanega, T.: An MDE Methodology for the Development of High 

Integrity Systems. In: Proc. of the Design, Automation & Test in Europe (DATE) Confe-
rence (2009) 

15. Vardanega, T.: Property Preservation and Composition with Guarantees: From ASSERT to 
CHESS. In: Proc. of the 12th IEEE International Symposium on Ob-
ject/Component/Service-Oriented Real-Time Distributed Computing, pp. 125–132 (2009) 

16. Panunzio, M., Vardanega, T.: A Component Model Fit for Embedded Real-Time Systems. 
Submitted to: ACM Transactions in Embedded Computing Systems: Special Issue on Ri-
gorous Embedded Systems Design 

17. CorDeT2, ESA/ESTEC Contract No. 4000100991, Report 6, On-Board Software Refer-
ence Architecture Specification (December 2012) 

18. Telemetry and Telecommand packet utilization standard (PUS), ECSS-E-70-41A 
19. ARTEMIS Joint Undertaking for R&D in Embedded Systems,  

http://www.artemis-ju.eu 
20. CHESS Consortium, CHESS Modeling Language and Editor V1.0.2, Project Deliverable, 

(March 31, 2010) 
 



126 S. Mazzini, J. Favaro, and T. Vardanega 

21. Burns, A., Dobbing, B., Romanski, G.: The Ravenscar Tasking Profile for High  
Integrity Real-Time Programs. In: Asplund, L. (ed.) Ada-Europe 1998. LNCS, vol. 1411, 
pp. 263–275. Springer, Heidelberg (1998) 

22. Rodriguez, A., Alaña, E., Ferrero, F., et al.: COrDeT-2 R6 – On-Board Software Reference 
Architecture Specification, GMVAD 20566/12 Issue v2.1 (December 11, 2012) 

23. CHESS Consortium, Technology-neutral specification of property-preserving run-time  
environment, V1.0, Project Deliverable, (January 31, 2011) 

24. CHESS Project Web Site, http://www.chess-project.org 
25. SAVOIR-FAIRE Working Group: Space on-board software reference architecture.  

Proceedings of DASIA Conference, Budapest (May 2010) 
 
 



Automatic Analysis of Software Architectures

with Variability�

Gustavo G. Pascual, Mónica Pinto, and Lidia Fuentes

Departamento de Lenguajes y Ciencias de la Computación
University of Málaga, Spain, CAOSD group

{gustavo,pinto,lff}@lcc.uma.es

http://caosd.lcc.uma.es

Abstract. Software Product Line Engineering is successfully applied
in the development of families of related products. Basically, it allows
reusing the software artifacts that are common to all the products, and
adding/removing the variable ones. There are two alternatives to man-
age variability, one that models the commonalities and variabilities sep-
arately from the software product line architecture (SPLA), using, for
instance, feature models (FM), and another one that models the variabil-
ity as part of the SPLA. These two alternatives have both benefits and
limitations. Our approach picks the best of both alternatives and, on the
one hand, models variability as part of the SPLA (as in the second alter-
native), but, on the other hand, maps the SPLA with variability into an
FM, generating an Architectural FM. By doing this our approach takes
advantage of the FM tools and formal reasoning (as in the first alterna-
tive) to provide the automatic support that it is not available in other
SPLA with variability approaches to: (i) check the consistency of archi-
tectural variability specifications, (ii) generate valid architectural config-
urations, and (iii) reason about variability at the architectural level.

1 Introduction

Software Product Line Engineering (SPLE) is being successfully applied in the
specification and implementation of families of related products. There are two
distinguishable phase in SPLE, the domain engineering and the application en-
gineering phases[1]. In the domain engineering phase, the SPL architect defines
domain specific commonalities and variabilities, as well as the software architec-
ture of the family of products (SPLA - Software Product-Line Architecture). In
the application engineering phase, the customer specifies a list of characteristics
that are required for a givenproduct, and an SPLEprocess generates custom-made
software architecture configurations that meet the input requirements. So, how to
specify variabilities and commonalities, and how to describe the SPLA in order to
facilitate future generation of software products are the central activities of SPLE.

� Work supported by Projects TIN2008-01942, P09-TIC-5231 and INTER-TRUST
FP7-317731.

J. Favaro and M. Morisio (Eds.): ICSR 2013, LNCS 7925, pp. 127–143, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://caosd.lcc.uma.es


128 G.G. Pascual, M. Pinto, and L. Fuentes

One alternative tomanage variability in an SPL is to specify the variabilities and
commonalities separately from the SPLA, by using a variability language or for-
malism. Different variability languages can be used, such as Feature Models (FM)
and Orthogonal Variability Management (OVM) [2]. Among the existing propos-
als that take this approach, we find that the majority of them use FMs [3], which
model variability bymeans of high-level features that are close to the requirements
specification. As another alternative, there is plenty of work that propose defining
variability as part of the software architecturalmodel, focusing on the reuse of those
software artifacts that are common to all the architectural configurations, and on
the addition and/or removal of the variable architectural elements. These works
primarily use UML profiles or extensions of architecture description languages [3].
They can be considered architecture-centric approaches, where the SPLA mod-
els both the base structure of the family member products and the conditions un-
der which their software artifacts can vary (i.e. the architectural variation points).
These two alternatives have both benefits and limitations and, as shown in [3], they
are equally popular. In this recent study, 97 papers reporting variability manage-
ment approaches were surveyed, where 33% of them propose specifying variability
as part of the SPLA, and another 33% propose the use of FMs (the main represen-
tative of the first alternative).

One of the main benefits of specifying variability separately from the SPLA,
using, for example FMs, is that existing approaches are generally well-supported
by tools that make it possible to formally reason about variability and to manage
the product generation phase easily and with the guarantee of a formal basis. The
main drawback is that an additional process is required to derive architectural
configurations that meet an FM configuration. In this sense, the VML language
in [4], VSpecs links in CVL [5], just to name a few, are mechanisms that connect
the variability specification to the SPLA. Regarding the second alternative, one
important benefit of using UML profiles is that UML is well known by all SPL
practitioners, including those in the industry, which makes the adoption of an
SPLE process easier. Another benefit is that architecture variability is directly
managed using the architectural artifacts, i.e., components/connectors. However,
the drawback is that the tool support that is needed for consistently managing
architectural variability is a long way from being mature enough to be equivalent
to the support already provided by existing FM tools1 (i.e., first alternative).
This makes the management of architecture variability in architecture-centric
SPLE processes error prone and difficult to employ in large SPLs.

Specifically, we have identified several challenges that an SPLA with vari-
ability approach must address in order to help the Software Architect (SArch):
(C1) analysis of the correctness and consistency of the SPLA with variability;
(C2) derivation of correct and minimal architectural configurations, and (C3)
reasoning about the variability degree of the SPLA by helping the SArch to
answer questions like: “What is the impact of adding/deleting a component in

1 Hydra (http://caosd.lcc.uma.es/spl/hydra/), FaMa (http://www.isa.us.es/
fama), S.P.L.O.T. (http://www.splot-research.org), and FeatureIDE
(http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/)

http://caosd.lcc.uma.es/spl/hydra/
http://www.isa.us.es/fama
http://www.isa.us.es/fama
http://www.splot-research.org
http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/


Automatic Analysis of Software Architectures with Variability 129

product configurations?”; “How can an architectural constraint affect product
configurations?”, or “How many configurations fulfill a given subset of input
constraints?”. As shown in the following sections, these tasks are not properly
supported by tools in the current SPLA with variability approaches.

In this paper we propose to address the aforementioned limitations of SPLA
with variability approaches, picking the best of both alternatives. Thus, in our
approach, the SArch first models the SPLA with variability using a UML pro-
file (ADOM [6]). This means that the common components and connections
to be reused for all product configurations, the architectural variation points,
and the constraints that determine how the family of products can vary, are all
specified at the architectural level. Then, in order to reason about the consis-
tency and other properties of the SPLA architecture with variability, and about
product configurations, we use FMs. Specifically, we propose mapping the SPLA
with variability into an FM, defining an Architectural Feature Model (AFM).
In this way, our approach takes advantage of the FM tools but, instead of high-
level features, our FM tree contains architectural artifacts (i.e. components and
connectors). It is important to highlight here that the SArch does not have to
manipulate the AFM at all. Instead, he/she only has to interpret the results of
the FM tool, which will be provided in terms of architectural artifacts. The util-
ity of an AFM has already been explored in [7,8], as part of a refactoring process
that specifies the variability of a list of related products that had been previously
developed by the authors without using an SPL approach. Also, in [9] authors
generate an FM from a design model with variability, the considered features
being the package, class and operation, although this cannot be considered a
pure AFM as it is closer to a design feature model.

Following this introduction, the paper is organised as follows. Section 2 com-
pares related work with our approach, while Section 3 focuses on the motivation
for our work. The modelling of SAs with variability is described in Section 4
using a running example, and the mapping from an SA to an AFM is detailed
in Section 5. Section 6 shows the advantages of using the AFMs to check the
consistency of architectural models with variability. In Section 7 we evaluate our
approach and, finally, Section 8 presents the conclusions and on-going work.

2 Related Work

In this section, we focus on SPLE approaches that are comparable to our work.
We have analysed several proposals focusing on the three challenges (labeled
as C1-C3 in Table 1) that we have identified in the introduction as important
to be addressed by SPLA with variability approaches. We have organised the
different approaches into several groups. The first group is shown in the first
rows of Table 1 ([10,11,12,13,14]) and just focus on the variability modelling.
They do not address any of the challenges we have identified and, thus, their
applicability is mainly descriptive, being only appropriate for SPL architecture
description [16].

A second group of approaches are those that provide support for product
derivation (C2) but do not provide any kind of support for variability



130 G.G. Pascual, M. Pinto, and L. Fuentes

Table 1. Related Work Classification

Approach Variability
Modelling

C1. Consistency analy-
sis

C2. Product deriva-
tion Support

C3. Variability
reasoning

Razavian [10], Gomaa [11],
Clauss [12]

UML Stereo-
types

No No No

Δ-MontiArc [13] ADL extension No No No

PL-AspectualACME [14] ADL extension No No No

Jézéquel [9] Ecore models
weaving

No Yes (FM) Manual

Oliveira Junior [15] Tables, use
cases, class
models

No Yes (Variability Im-
plementation Model)

Manual

Acher [7] Refactored Fea-
ture Model

Yes (Manual FM Compari-
son by Software Architect)

Yes (FM) Manual (com-
pare two FMs)

Ziadi [16] UML Profile Yes (OCL constraints) Yes (UML Model
Transformation)

Manual (Deci-
sion model)

Parra [8] Aspect and Fea-
ture metamodels

Yes (FM constraints + As-
pect dependencies)

Yes (Weaving) Manual at meta-
model level

Our approach UML Stereo-
types

Yes (FM constraints) Yes (FM) Automatic

reasoning (C1). Moreover, the feature selection criteria to reason about variabil-
ity (C3) is manual. In [9] authors propose to add variability to an Ecore/EMOF
metamodel using aspect-oriented modelling techniques, but no checking about
architectural consistency is performed. They also propose a product derivation
mechanism that uses transformation techniques to generate a design FM (being
the package, class and operation the considered features) from the metamodel
with variability (fulfill C2). Regarding C3, the SArch could reason about the
variability of the design FM, but since the features considered are package, class
and method, the connection with the source metamodel is lost. In the second
work of this group, the variability is modeled using a set of variability mod-
els (tables, use cases and class models) [15]. The product derivation is led by a
manually defined table that includes fields such as the affected class/component,
variability implementation mechanisms and strategy. The applicability of these
approaches is clearly different from ours since: (1) there are no automatic mech-
anisms for reasoning about architectural variability (not C1); (2) the selection
of a FM configuration is performed manually by the domain engineer (not C3),
and (3) these approaches are only suitable for detailed design-time.

The rest of approaches in Table 1 provide some kind of support for both vari-
ability reasoning (C1) and for product derivation (C2). As in previous ones, the
feature selection criteria (C3) is manual. In [7] FMs are used to reverse engi-
neer the variability of an existing system by recovering an FM from the actual
architecture. There are important differences between this work and our work.
The first of them is that variability is not explicitly represented in their SAs,
and thus their main motivation is to define a process to be able to “capture”
and model the variability of existing related products by means of FMs. In order
to do that, and similarly to the work in [17], an architectural FM is automati-
cally extracted by means of the legacy code exploration. Also, the SArch must
manually specify another FM, which need to be manually reconciled with the
automated FM to obtain an AFM compatible with both the SA view and the
actual architecture. In our approach, the SArch must specify the SA with vari-
ability and then the rest of the process, including the generation of the AFM,
is completely automatic. We guarantee that our mapping is consistent meaning



Automatic Analysis of Software Architectures with Variability 131

that all the variability expressed in the SA is consistently propagated to the
generated AFM. In [16], the variability is modelled using a UML profile and,
then, a decision model is manually specified which guides the derivation process
based on transformation of UML models. However, in this approach, the support
for variability reasoning is very limited (only 2 OCL restrictions to avoid basic
inconsistencies) and the product derivation is performed manually. Finally, [8]
defines variability with a feature metamodel, which governs the composition be-
tween aspects and software components. They make a combined analysis of the
inter-feature constraints of the feature metamodel and the dependencies between
the corresponding aspect models, in order to generate correct assembled prod-
ucts by means of model weaving implemented as model transformations. So,
none of the presented approaches (nor similar ones [3]) address adequately the
challenges C1-C3 posed in this paper, and, thus, their applicability is limited.

3 Our Approach - Challenges

Figure 1 shows an overview of our SPLE process. The first step is the spec-
ification of the SPLA with variability (box (1)) using UML stereotypes. Since
there is no standard profile for modelling variability in UML, we have chosen the
ADOM profile that provides all the elements identified in the literature as being
necessary to model variability at the architectural level. We would like to stress
that the validity of our approach does not depend on the use of a particular UML
Profile, so any other profiles for modelling variability at the architectural level
could have been used. This SPLA with variability is the input for our mapping
algorithm (box (2)) that generates an AFM, which is one of the main contribu-
tions of our approach (Section 5). An AFM is a feature tree with mandatory and
optional features representing components and connectors, and a set of cross-
tree constraints expressing dependencies between features, which in our case are
architectural artifacts. Using the generated AFM and the existing tool support
for FM our approach addresses the identified challenges:

C1. Automatic Analysis of the Consistency of an SPLA with Variabil-
ity. In SPLE architecture-centric approaches, the SArch manually defines the
architectural variability and some constraints between architectural artifacts,
so it is possible that he/she may introduce some inconsistencies. The challenge
is to provide the SArch with tool support to make the automatic checking of
architectural variability inconsistencies possible. In our process, we detect and
solve some of these inconsistencies during the mapping process. Also, by using
FM tools (box (3)) it is possible to detect some anomalies in the AFM, which
could mean that the variability has not been defined well at the architectural
level (Section 6). The SArch can then check the generated configurations from
an architectural point of view, refining them if they are not correct (box (4)).

C2. Automatic Derivation of Correct Architectural Configurations. In
order to generate a product configuration, the SArch specifies the optional el-
ements (product requirements) that must be present in the derived product.



132 G.G. Pascual, M. Pinto, and L. Fuentes

�������	
���������	��

�����������������

�

Mapping to Architectural 
Feature Model (AFM)

�

���

������	��	�

���

������������

����

�

������ ��	

�

��!�����	��!���

��!�����	��!���

�����

�"#��!
�	�!	$�����������	��������	��!���
�!%��&

������'�	��������

�

���	�����!
�	�!	$��

�����(��'�(�)�($!	

�

���	�����!
�	�!	$�������

���������	(��'�(�)�($!	

�

�*#���($!	����'�	���
�+#���������&����$	�

'�������	�

��($!	�(��'�	��� ��	����(��'�	���

,������	$��

����!	���

!�����	��	

Fig. 1. Overview of our approach

Thus, it is necessary to provide tool support to generate valid and minimal
configurations that fulfill the product requirements. One of the interesting ap-
plicabilities of our approach is that it allows the automatic derivation of valid
architectural configurations using existing FM tools, without any model trans-
formation. SArchs can use standard tools to specify the SPLA, such as UML
editors, but with the important advantage of having the possibility to generate
correct configurations by using existing FM product derivation tools (box (5)).
Furthermore, FM tools guarantee that the generated configuration is minimal
in terms of the number of features, components and connectors in our case.

C3. Support for Reasoning about an SPLA with Variability. The chal-
lenge here is to provide the SArch with tool support to explore the variability
possibilities. Most FM tools provide the possibility of generating “partially”
derived products by instantiating only a subset of the variation points. Our ap-
proach takes advantage of this characteristic of FM tools in order to reason about
the software architecture (SA) with variability, by allowing the SArch to partially
instantiate the AFM (box (7)). For instance, by selecting or un-selecting a com-
ponent the SArch can analyse the impact of having that component in the final
configuration. Moreover, it makes it easier to analyse how the software product
line changes when a new architectural constraint is incorporated into the design.
Another example may be to obtain information about how many configurations
fulfill a given subset of input constraints. The benefit of our approach is that
this reasoning about the SA can be automatically performed by combining the
use of existing FM tools with the AFM generated by our algorithm.

4 Modelling the Software Architecture with Variability

As discussed in previous section, the first step in our approach is modelling the
SPLA with variability. In order to do that, we use UML 2.0 and the ADOM
UML Profile (see Table 2). Any approach that includes these concepts can be
the source model of our mapping process, and can then benefit from our work.

Figure 2 shows the SA with variability of our case study, a RemoteAssis-
tant application, which aims at providing technical support to remote clients,
which communicate with the technician using different communication mecha-
nisms. Variability is modelled by (a) providing different component realizations



Automatic Analysis of Software Architectures with Variability 133

Table 2. ADOM Architectural Modelling Stereotypes

Stereotypes Description

Variation point Indicates that a component can be realized by different variants. Its cardinality defines the mini-
mum/maximum number of variants that can be simultaneously selected.

Variant Each one of the alternative realizations of a variation point.

Optional single Applied to a component, connector, variation point or attribute, indicates that the architectural
element is optional. In case it is selected, it can be included only once.

Requires When an architectural element A requires an architectural element B, it means that in case A is
selected in the configuration, B should be selected too.

Excludes When an architectural element A excludes an architectural element B, it means that in case A is
selected in the configuration, B should not be selected.

Fig. 2. Architectural Model of a “RemoteAssistant” application with variability

using variation point and variant stereotypes; (b) defining optional architec-
tural elements; (c) adding attributes to the components (parameterization) and
(d) introducing constraints among architectural elements. Connectors have been
modelled using the ball-and-socket notation for legibility reasons.

Component attributes can be boolean, integer, real or enumerate values,
among others. We support the definition of OCL constraints in the compo-
nent attributes to limit the minimum and maximum values for that attribute
and take advantage of the extended FMs’ support for specifying allowed ranges
of values. For instance, remote desktop variants have (resolutionX, resolutionY

and colorDepth) attributes . The first ones are integers in the [640, 1920] and
[480, 1080] ranges respectively, and the last one can take the values 16 and
32 (ColorDepth enumeration). Similarly, instant messaging variants contain two
boolean attributes (audio and video), which enable/disable voice/video chat.

Constraints among architectural elements are specified using the requires and
excludes stereotypes. For instance, as shown in the figure, including the Logging

component implies including also the Encryption component. Moreover, in order to
generate consistent architectures, a connector has be removed if the components
it connects are not selected. To this end, a requires constraint is specified from
the connector to the optional components that communicate through it. On the
other hand, if we want to avoid certain components from getting disconnected
from the rest of components of the architecture, a similar cross-tree constraint



134 G.G. Pascual, M. Pinto, and L. Fuentes

can be added in the opposite way (from the component to the connector). For
legibility reasons, these constraints are omitted from Figure 2.

5 Mapping the Software Architecture to the AFM

In this section we describe the mapping algorithm that we have defined to au-
tomatically transform the variability of our SA into an AFM. The mapping has
been split into several steps. First, the components of the architecture are in-
troduced in the AFM calling Algorithm 1 (the output is Figure 3). Second, the
connectors are mapped calling Algorithm 2 (the output is Figure 4). Finally, the
constraints defined by the SA are also added to the AFM calling Algorithm 3
(Figure 5). These algorithms are detailed in the following subsections.

5.1 Mapping the Components of the Architecture

All the information about the components of the SA is added to the AFM by Al-
gorithm 1, under a feature called Components (line 1), which is a child of the root
feature (line 3). Mandatory components are always included in every valid con-
figuration of the architecture, unlike the optional ones, which have the optional
stereotype. Therefore, mandatory components are added as mandatory features
in the AFM while the optional components are added as optional features (lines
6-10). For instance, in Figure 3, we can see some mandatory features such as
AssistantManager or ComplaintManager that represent the mandatory components,
while other features (RemoteControl, Logging, etc.) are optional.

Next, the attributes of the component are mapped. In attributed FMs, at-
tributes are added to the FM adding annotations to the features. Therefore,
we add annotations to the features which model the parameterized components.
First, we distinguish whether the attribute is of an enumerated type. In that case,
an annotation containing the list of values of the enumerated type is created.
If the attribute is not of an enumerated type (e.g. integer, double...) then the
lower and upper bounds are extracted from the OCL constraints related to the
attribute, creating then the appropriate annotation. Figure 3 shows examples
of both kinds of annotations. Concretely, an annotation for the enumerated at-
tribute colorDepth and the integer attributes resolutionX and resolutionY are shown.

On the other hand, we have to take into account whether the component is
a variation point, which is distinguished with the variation point stereotype. If
true, we evaluate its cardinality. Attributed FMs support two kinds of groups:
(1) alternative groups, in which only one feature of the group can be selected and
(2) or groups, in which one or more features (up to all the features of the group)
can be selected. Thus, due to the limitation of the attributed FMs, we can only
support the cases where minimum cardinality is 1 and maximum cardinality is
either 1 or equals to the number of variants that can realize the variation point.
Then, once the group is created, all the variants, together with their attributes,
are added to the group as children of their variation point. In Figure 3 we can see
that the RemoteDesktop feature, which represents the RemoteDesktop component,



Automatic Analysis of Software Architectures with Variability 135

Algorithm 1. MapComponents : Maps the components to the AFM.
Input: The architecture (Architecture) and the architectural feature model (Fmodel).
Output: The architectural feature model populated with components features (Fmodel)
1: fcomponents ← CreateFeature(′′Components′′)
2: froot ← GetRoot(Fmodel)
3: Fmodel ← AddMandatoryFeature(Fmodel, froot, fcomponents)
4: for all c in Components / variant /∈ Stereotypes(c) do
5: fc ← CreateFeature(c)
6: if optional ∈ Stereotypes(c) then
7: Fmodel ← AddOptionalFeature(Fmodel, fcomponents, fc)
8: else
9: Fmodel ← AddMandatoryFeature(Fmodel, fcomponents, fc)
10: end if
11: fc ← MapAttributes(fc , c)
12: if variation point ∈ Stereotypes(c) then
13: vp ← V ariationPoint(c)
14: if MaximumCardinality(vp) = 1 then
15: fg ← CreateAlternativeGroup()
16: else
17: fg ← CreateORGroup()
18: end if
19: for all v ∈ V ariants(vp) do
20: fv ← CreateFeature(v)
21: fv ← MapAttributes(fv , v)
22: fg ← AddFeatureToGroup(fg, fv)
23: end for
24: Fmodel ← AddGroup(Fmodel, fc, fg)
25: end if
26: Fmodel ← AddFeature(Fmodel, fcomponents, fc)
27: end for

has a alternative group as child with two different members, which represent the
two variants specified in the SA for the component, while the InstantMessaging

feature has an OR group as child because the variants of the InstantMessaging

component are not mutually exclusive.

5.2 Mapping the Connectors of the Architecture

The next step in our algorithm is mapping the connectors. This process is
performed by Algorithm 2, and an excerpt of the part of the AFM contain-
ing this information can be seen in Figure 4. All the features are children of the

���������	


		�	���������� ��������	����

��� ���


������-����� ������� ������������	�.�	�����		�����

����� /���� 0����

�������� ��������


�������� ��0���� ���0����

��	�������/����1234!!"4345��	�������6���� 1724!!"8#45 $�������������1"79%#5

���������1&��	�9����5

 ��������1&��	�9����5

Fig. 3. Excerpt of the Components part of the AFM



136 G.G. Pascual, M. Pinto, and L. Fuentes

Algorithm 2. MapConnectors : Maps the connectors to the AFM
Input: The architecture (Architecture) and the architectural feature model (Fmodel).
Output: The architectural feature model with the connectors mapped (Fmodel)
1: fconnectors ← CreateFeature(′′Connectors′′)
2: froot ← GetRoot(Fmodel)
3: Fmodel ← AddMandatoryFeature(Fmodel, froot, fconnectors)
4: for all cc in Connectors(Architecture) do
5: fcc ← CreateFeature(cc)
6: if optional ∈ Stereotypes(cc) then
7: Fmodel ← AddOptionalFeature(Fmodel, fconnectors, fcc)
8: else
9: Fmodel ← AddMandatoryFeature(Fmodel, fconnectors, fcc)
10: end if
11: [ps, pt] ← GetPorts(cc)
12: [cs, ct] ← GetPortsComponents(ps, pt)
13: if optional ∈ (Stereotypes(cs) ∪ Stereotypes(ct)) and optional /∈ Stereotypes(cc) then
14: NotifyOptionalityInconsistency(cc)
15: end if
16: constraints ← GetConstraints(Architecture)
17: if optional ∈ (Stereotypes(cs) and requires(cc, cs) /∈ constraints then
18: NotifyConstraintInconsistency(cc, cs)
19: end if
20: if optional ∈ (Stereotypes(ct) and requires(cc, ct) /∈ constraints then
21: NotifyConstraintInconsistency(cc, ct)
22: end if
23: end for

Connectors feature, added as a child of the root feature. A new feature is created
for each connector of the architecture. Connectors with the optional stereotype
are added as optional features, while the rest are added as mandatory features.
Next, stereotypes are checked in order to detect inconsistencies in the specifica-
tion of the variability. For instance, an inconsistent architectural configuration
would exist if a mandatory connector is specified between two components where
one or both of them are optional. Then, a configuration with the unwired con-
nector selected would be valid according to the specifications, but not consistent.
Concretely, lines 13-14 check this inconsistency, notifying it to the SA in case the
optional stereotype is missing from the connector’s variability specifications. Ac-
tually, the selection of a connector should imply adding both source and target
components to the configuration. Therefore, for each optional component that
is connected through a connector, a requires association should be added to the
variability specifications. This is checked in our algorithm in lines 16-22.

�����	
���

������ �����
��

�����
��������
��
������� �����
�������
�����
��

���� ���� ��	���
������

���������
��
������� ������
��
���������

Fig. 4. Excerpt of the Connectors part of the AFM



Automatic Analysis of Software Architectures with Variability 137

5.3 Mapping the Constraints among Architectural Elements

The last step is mapping the constraints specified among architectural elements,
specified by defining associations stereotyped as requires or excludes. For in-
stance, a connector that connects optional components will require the selec-
tion of those optional components. Algorithm 3 shows how these constraints
are mapped to cross-tree constraints in the AFM. For each architectural con-
straint, the features related to the source and target architectural elements are
extracted from the feature model. Then, a cross-tree constraint equivalent to the
architectural constraint is added to the AFM. Some of the cross-tree constraints
specified for the case study are shown in Figure 5. The cross-tree constraint 1
is the result of mapping the architectural constraint between components which
has been specified in the architectural model. On the other hand, constraints 2-5
model associations between connectors and their related components.

Algorithm 3. MapConstraints : Maps the architectural constraints
Input: The architectural constraints (Constraints) and the architectural feature model (Fmodel).
Output: The architectural feature model with the mapped constraints (Fmodel)
1: for all c ∈ Constraints do
2: [sc, st] ← GetConstraintElements(c)
3: fs ← GetFeature(Fmodel , sc)
4: ft ← GetFeature(Fmodel, st)
5: if Stereotype(c) = requires then
6: Fmodel ← AddRequiresConstraint(fs , ft)
7: else
8: Fmodel ← AddExcludesConstraint(fs, ft)
9: end if
10: end for

Logging REQUIRES Encryption

IEncryption REQUIRES RemoteDesktop

1

4

IRDesktop REQUIRES RemoteDesktop

ILog REQUIRES Logging

2

5

IEncryption REQUIRES Encryption3

Fig. 5. Excerpt of the cross-tree constraints of the RemoteAssistant AFM

6 Reasoning about the Architectural Model Variability

6.1 Checking Consistency

The mapping algorithm ensures that the AFM does not allow the generation
of products that comply with the variability specifications but are inconsistent
from an architectural point of view. Specifically, as shown in Section 5.2, the
algorithm that maps the connectors prevents the system from reaching con-
figurations where connectors are selected but not the components whose ports
are connected using them. However, there are other mistakes in the variability
specification that, although do not lead to inconsistent configurations, can be a
symptom of variability anomalies. We propose to detect them using FM tools
applied to our AFM. For this, we extend previous results [18] that identify FM
anomalies, and adapt them to the architectural viewpoint, mainly by relating



138 G.G. Pascual, M. Pinto, and L. Fuentes

the AFM anomalies with the possible mistakes introduced by the SArch. Once
these mistakes has been detected, the SArch is notified in order to refine the
architectural model (box 4 of Figure 1).

Dead Features. Dead features are features that, due to cross-tree constraints,
cannot appear in any valid configuration of the FM. These features can be de-
tected easily using FM tools such as S.P.L.O.T.. In our approach, a dead feature
can appear due to a variability constraint defined by the SArch. For instance,
assuming that the SArch would have defined the constraint AssistantManager ex-

cludes InstantMessaging in the architectural model of Figure 2, since the Assistant-

Manager component is mandatory, InstantMessaging would never be selected in a
valid configuration, resulting in a dead feature.

False Optional Features. A false optional feature is a feature that, despite
being optional, is included in every valid configuration of the FM. As it happened
with the dead features, this anomaly can only be introduced due to cross-tree
constraints. When we translate this FM anomaly to an architectural level, we
can conclude that false optional features are related to components or connectors
with the optional stereotype which should be, in fact, mandatory, because it is
impossible to get a valid architectural configuration in which that component or
connector is not present. For instance, a mandatory connector that connects an
optional component would lead to a false optional feature because a cross-tree
constraint where the connector, which is mandatory, requires the component,
would be introduced, resulting in the component being mandatory despite it has
been modelled as optional.

Wrong Group Cardinality. The cardinality of a group is the range (min-
imum and maximum number) of features that can be selected from a group
simultaneously. The cardinality is wrong if there are constraints that make the
features of the group mutually exclusive. For instance, if there is an OR-group
G = {FeatureA, FeatureB, FeatureC} and a cross-tree constraint such as Fea-
tureA excludes FeatureC, the real cardinality of the group is 1..2 instead of 1..3.
It is not possible to get this kind of anomaly unless variability restrictions lead-
ing to it are introduced manually by the SArch. Theses mistakes are notified to
the SArch because they reduce the degree of variability in a way that probably
contradict the behaviour expected by the SArch.

Redundancy. Redundancy is introduced in a FM when the same information
is specified in different ways. Redundancy itself does not necessarily represent
a problem. Although it can decrease the maintainability of the FM, this is not
relevant in our approach because the AFM is not intended to be managed by the
SArch. However, redundancy is notified because removing them it is possible to
simplify the architectural variability specifications.

6.2 Derivation of Minimal Architectural Configuration

One of the main benefits of FMs is the availability of tools for automatically derive
valid configurations. One of these tools is Hydra, which allows generating



Automatic Analysis of Software Architectures with Variability 139

minimal configurations of an FM, where the minimal configuration can be defined
as the configurationwhich includes the least feature count. This configuration rep-
resents, on the other hand, the configuration with the lowest amount of architec-
tural elements. Applying Hydra to the FM of our case study, the results shown that
theminimal configuration consists of 11 features,which represents an architectural
configuration with 4 components (AssistantManager, ClientDatabase, SupportRequest-
Manager and either EmailManager or SMSManager) and 3 connectors (IReqMgr, IPull
and IPush). When architectural configurations are derived either manually, or by
model transformations is not so easy to assure they indeed generate minimal ar-
chitectural configurations, and that they are correct.

6.3 Reasoning about the Variability Degree

One of the most important points when designing systems with variability is
evaluating the degree of variability because it allows the SArch to determine if the
variability specifications result as expected. However, current tools for modelling
architectural variability lack this support. For instance, there are no tools for
calculating the number of valid architectural configurations when variability is
added to the architecture. However, it is very straightforward to calculate the
number of valid configurations of a FM using any of the existing FM tools. In
our approach, the architectural variability is totally mapped into the AFM and,
therefore, we can take advantage of the FM tools in order to exactly know the
number of valid architectural configurations [19] [20], by executing the following
operations over the AFMs:

Number of Products. It allows the SArch to know the flexibility of the archi-
tecture that he/she is specifying, reducing or increasing it as necessary.

Filtering Products. The SArch can apply filters to the variability specifica-
tion, forcing the presence (or absence) of certain components or connectors.
Therefore, it is possible to answer questions such as ”‘Is it possible to generate
a valid product with instant messaging and encryption simultaneously?”’, ”‘How
many configurations allow having VNC and Gtalk enabled at the same time?”’
or ”‘How many/which valid configurations are added or removed if a concrete
component/connector/stereotype is added or removed?”’.

List of Products. It is possible to get all the solutions of the AFM, which are all
the valid and consistent configurations of the SA. Moreover, this operation can
be combined with filtering, allowing the SArch to get the list of configurations
that meet his/her concrete requirements.

Commonality. The SArch can assess what is the percentage of architectural
configurations in which a concrete component or connector appears.

Product Is Valid?. The SArch can check if a manually constructed architec-
tural configuration satisfies the architectural variability specifications.



140 G.G. Pascual, M. Pinto, and L. Fuentes

7 Evaluation

In this section we evaluate our approach by: (1) showing the correctness of the
mapping algorithm, the central part of our proposal; (2) evaluate if the mapping
algorithm scales well when the number of components and connectors increases,
and (3) discuss the potential of the analysis of the variability degree performed
with FM tools. The rest of the proposal is based on the capabilities of the FM
tools, whose results have been proven by third.

7.1 Mapping Algorithm Correctness

Ensuring that the mapping algorithm is correct is necessary to provide validity
to the reasoning mechanisms that can be applied to the AFM. The architectural
variability represented by the AFM is correct if:

1. The variability of the architectural elements has not been modified. Therefore
(a) each mandatory architectural element should be mapped to a feature or
set of features that are common to every AFM valid configuration; (b) each
optional architectural element should not be mapped as a core feature/set of
features; (c) the cardinality of the variation points should not be affected by
the mapping process and (d) the constraints between architectural elements
should be mapped as equivalent constraints between AFM features.

2. Every valid AFM configuration represent a consistent architectural configu-
ration. In other words, it implies that all valid but inconsistent configurations
that can be obtained taking into account the architectural model variability
specifications have been removed (and, consequently, the variability specifi-
cations have been refined) during the mapping process.

The first condition is accomplished because, in our mapping algorithm, (a) each
mandatory architectural element is mapped to a mandatory feature; (b) optional
architectural elements are mapped to optional features; (c) variants are linked
to variation points as a child group of features where the cardinality matches
the one defined in the architectural model and (d) this 1-to-1 mapping between
architectural elements and features allow us to directly translate the variability
constraints of the architectural model to similar cross-tree constraints between
the related AFM features. The second condition is satisfied because Algorithm 2
ensures that it is not possible to generate valid AFMs configurations which lead
to loose connectors. Although the refinement process continues after the mapping
process has been completed, the anomalies detected in this stage are not related
to consistency but to possible mistakes that unintentionally modify the expected
variability of the SA.

7.2 Scalability

On the one hand, the complexity of the mapping algorithm increases linearly
with the number of architectural elements and constraints among them, because



Automatic Analysis of Software Architectures with Variability 141

it mainly traverses these lists of elements. Therefore, the algorithm is highly
scalable, especially taking into account that it is applied at design stage of the
software development life cycle.

7.3 Variability Degree

We have applied our mapping algorithm to the case study presented in this pa-
per, as well as to the CongressAssistant case study, which is available in [21],
and to the case study presented by Razavian in [10]. We have calculated the
number of features, configurations and constraints of the generated AFMs. The
results, which have been obtained using the Hydra tool, are shown in Table 3.
Note that the number of configurations shown in the table does not take into
account the different values for the component attributes, but the addition/dele-
tion of architectural elements. This information cannot be obtained using the
approaches presented in Section 3, since they do not provide any kind of sup-
port for assessing the degree of variability. Once the SArch knows the number
of valid configurations, it is possible for him/her to evaluate if there is less or
more variability than expected, and also to get a list of the valid configurations,
checking if any configuration should be removed. In case that a configuration has
to be removed, it could be done modifying the variability stereotypes or specify-
ing additional architectural constraints. The idea is not that the SArch explores
each one of the possible configuration (normally thousands of them), but that
he reasons about a subset of them, that fulfill concrete product requirements.

Table 3. Evaluation of Variability

Case Study Features Constraints Configurations
This paper 29 13 1062

CongressAssistant 41 20 2496

Ravazian case study 34 0 32

8 Conclusion and Future Work

In this paper we have presented an approach to model and reason about vari-
ability at the architectural level. The contributions of our approach are twofold.
First, we define a mapping process that automatically transforms a SA with
variability into an AFM. This allows the use of the existing tool support for FM
to reason about the variability of architectural elements – i.e. components, con-
nectors and attributes. Second, due to the formal semantics of FM and its tool
support, we have defined an inconsistencies checking process that allows identi-
fying and correcting variability inconsistencies at the architectural level. As part
of our on-going work we are using the generated AFMs in different applicability
scenarios, such as runtime reconfiguration of mobile applications.



142 G.G. Pascual, M. Pinto, and L. Fuentes

References

1. Klaus Pohl, G.B., van der Linden, F.: Software Product Line Engineering. Springer,
Heidelberg (2005)

2. Czarnecki, K., et al.: Cool features and tough decisions: a comparison of variability
modeling approaches. In: Proceedings of VaMoS 2012, pp. 173–182. ACM (2012)

3. Chen, L., Babar, M.A.: A systematic review of evaluation of variability manage-
ment approaches in software product lines. Information and Software Technol-
ogy 53(4), 344–362 (2011)

4. Loughran, N., Sánchez, P., Garcia, A., Fuentes, L.: Language support for managing
variability in architectural models. In: Pautasso, C., Tanter, É. (eds.) SC 2008.
LNCS, vol. 4954, pp. 36–51. Springer, Heidelberg (2008)

5. Common Variability Language (CVL),
http://www.omgwiki.org/variability/doku.php

6. Reinhartz-Berger, I., Sturm, A.: Comprehensibility of uml-based software product
line specifications. Empirical Software Engineering, 1–36 (2012)

7. Acher, M., Cleve, A., Collet, P., Merle, P., Duchien, L., Lahire, P.: Reverse engi-
neering architectural feature models. In: Crnkovic, I., Gruhn, V., Book, M. (eds.)
ECSA 2011. LNCS, vol. 6903, pp. 220–235. Springer, Heidelberg (2011)

8. Parra, C., Cleve, A., Blanc, X., Duchien, L.: Feature-based composition of software
architectures. Software Architecture, 230–245 (2010)

9. Morin, B., Perrouin, G., Lahire, P., Barais, O., Vanwormhoudt, G., Jézéquel, J.-
M.: Weaving variability into domain metamodels. In: Schürr, A., Selic, B. (eds.)
MODELS 2009. LNCS, vol. 5795, pp. 690–705. Springer, Heidelberg (2009)

10. Razavian, M., Khosravi, R.: Modeling variability in the component and connec-
tor view of architecture using uml. In: IEEE/ACS International Conference on
Computer Systems and Applications, AICCSA 2008, pp. 801–809 (April 2008)

11. Gomaa, H.: Designing software product lines with uml 2.0: From use cases to
pattern-based software architectures. Reuse of Off-the-Shelf Components, 440
(2006)

12. Clauss, M.: Generic Modeling using UML extensions for variability. In: Proceedings
of OOPSLA Workshop on Domain-specific Visual Languages, Tampa, FL, USA,
pp. 11–18 (2001)

13. Haber, A., et al.: Delta-oriented architectural variability using monticore. In: Pro-
ceedings of the 5th European Conference on Software Architecture: Companion
Volume, pp. 6:1–6:10. ACM, New York (2011)

14. Adachi Barbosa, E., Batista, T., Garcia, A., Silva, E.: PL-AspectualACME: an
aspect-oriented adl for software product lines. In: Crnkovic, I., Gruhn, V., Book,
M. (eds.) ECSA 2011. LNCS, vol. 6903, pp. 139–146. Springer, Heidelberg (2011)

15. Junior, E.A.O., et al.: Systematic management of variability in uml-based software
product lines. Journal of Universal Computer Science 16(17), 2374–2393 (2010)

16. Ziadi, T., Jézéquel, J.M.: Product Line Engineering with the UML: Deriving Prod-
ucts. In: Pohl, K. (ed.) Software Product Lines, pp. 557–586. Springer (2006)

17. Pashov, I., Riebisch, M.: Using feature modeling for program comprehension and
software architecture recovery. In: 11th IEEE International Conference on the En-
gineering of Computer-Based Systems, pp. 406–417 (May 2004)

18. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models
20 years later: A literature review. Information Systems 35(6), 615–636 (2010)

19. Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated reasoning on feature
models. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520,
pp. 491–503. Springer, Heidelberg (2005)

http://www.omgwiki.org/variability/doku.php


Automatic Analysis of Software Architectures with Variability 143

20. Segura, S., et al.: Betty: benchmarking and testing on the automated analysis of
feature models. In: Proceedings of VAMOS 2012, pp. 63–71. ACM (2012)

21. Pascual, G.G., Pinto, M., Fuentes, L.: Run-time adaptation of mobile applications
using genetic algorithms (submitted, 2013)

A Appendix: Summary of Algorithms Functions

The functions that are used in the algorithms presented along the paper have
names that are self-descriptive. Anyway, in order to improve the understanding of
the algorithms, we include this appendix where the behaviour of those functions
is briefly described.

Table 4. Summary of functions used in the algorithms

Function Description

IsEnumerated Returns true if the type of an attribute is enumerated.
CreateEnumeratedAnnotation Creates an enumeration for an enumerated attribute (e.g.

MEMORY SIZE in {256, 512, 1024, 2048})
CreateBoundedAnnotation Creates an enumeration for a non-enumerated attribute with lower

and upper bounds (e.g. PRIORITY in {1, 10})
GetBounds Extracts the values of the OCL constraints expressing the

lower and upper bound for the value of an attribute (eg.
GetBounds(”BATTERY >= 60 AND BATTERY <= 90”) =
[60, 90])

GetPorts Returns the source and target ports of a component.
GetPortComponents Returns the components which owns the specified ports.
GetConstraints Returns the constraints among architectural elements, which are

modelled as associations stereotypes with requires or excludes.
NotifyConstraintInconsistency Notifies to the software architect that a requires association between

two architectural elements is missing.
NotifyOptionalityInconsistency Notifies to the software architect that a mandatory architectural ele-

ment should be optional in order to prevent the system from reaching
inconsistent architectural configurations.

GetConstraintElements Returns the source and target architectural elements of an architec-
tural constraint (e.g. GetConstraintElements(”A requires B”) =
”[A,B]”)

AddRequiresConstraint Add a cross-tree constraint to the AFM with the syntax FeatureA
REQUIRES FeatureB

AddExcludesConstraint Add a cross-tree constraint to the AFM with the syntax FeatureA
EXCLUDES FeatureB



On Software Reference Architectures
and Their Application to the Space Domain

Marco Panunzio� and Tullio Vardanega

University of Padova
Department of Mathematics

via Trieste 63, 35121 Padova, Italy
{panunzio,tullio.vardanega}@math.unipd.it

Abstract. In high-integrity systems a rising portion of software assets and
development activities address quality and conformance issues in several non-
functional dimensions. For those systems the software architecture acquires a
prominent role: it does in fact express the framework that hosts the required func-
tionalities, while the principles and guarantees that underpin its definition assure
the desired non-functional quality on the software product. A software reference
architecture holds for a set of systems and prescribes the form that concrete soft-
ware architectures have to have for those systems. The software reference ar-
chitecture can thus be seen as a generic software architecture, whose assets are
recognized by domain stakeholders as befitting the construction of a given class
of systems, for which they have been proven to meet the applicable industrial
needs and technical requirements. This paper discusses the rationale for the un-
derstanding and definition of a software reference architecture and present its use
in an initiative promoted by the European Space Agency for its future satellite
systems.

1 Introduction

High-integrity systems must fulfil stringent requirements in a number of non-functional
dimensions, such as timing predictability, dependability, and, more recently, security
[16]. For those systems, the software architecture becomes the cornerstone for realizing
a software product that provides all the required functionality while fulfilling all the
non-functional requirements.

A software reference architecture may be regarded as a software architecture that ap-
plies to the realization of a certain class of software systems. It is fixed after a thorough
domain analysis and becomes a solution recognized by the domain stakeholders for the
fulfillment of the industrial needs of interest in that domain.

The work presented in this paper was prompted by an initiative undertaken by the
European Space Agency (ESA), to promote the establishment of a software reference
architecture for use among its industrial suppliers in the development of the on-board
software of their future satellite systems. This paper discusses why the concepts of soft-
ware architecture and the software reference architecture were central to that effort and

� This author is now with Thales Alenia Space - France.

J. Favaro and M. Morisio (Eds.): ICSR 2013, LNCS 7925, pp. 144–159, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



On Software Reference Architectures and Their Application to the Space Domain 145

formed a solid basis on which the industrial needs of interest to the domain stakeholders
could demonstrably be met. It provides a comprehensive articulation of the principles
that guided that initiative, narrated by authors who were directly involved in it from its
outset, with the full concurrence of all the relevant industrial actors.

The remainder of the paper is organized as follows: section 2 discusses the role of
software architecture in high-integrity software development, and argues why it is cru-
cial to the satisfaction of the governance of the industrial domain; section 3 illustrates
the consequences ensuing from elevating a software architecture in an industrial domain
to the status of reference architecture for that domain; section 4 outlines the context of
the European space market, discusses the industrial needs placed on future missions
of ESA, and relates them to the definition of a software reference architecture for that
context; section 5 presents the cornerstones on which the ESA software reference ar-
chitecture was built; and finally, section 6 draws some conclusions.

2 The Role of the Software Architecture

One disconcerting situation in the software engineering practice is the exceedingly in-
formal and liberal interpretation of the concept of software architecture. A brilliant
exercise carried out by the Software Engineering Institute [22] testifies this confusion,
which is patently at odds with the centrality of that concept for the discipline.

The main misconception is that software architecture is often liberally used as a syn-
onym of software design. Software design instead is just one of the concerns addressed
by the software architecture, whose overarching role is to govern the software and the
process by which it will be built and operated. More importantly, the software archi-
tecture deals with the principles guiding the design and evolution of a software system.
This aspect is central and precedes in importance software design.

The definition of architecture given in the IEEE 1471 standard, later adopted and
approved by ISO/IEC as ISO 42010 [12], was singled out as the reference for this
work, as the best and most authoritative one: ”The fundamental organization of a system
embodied in its components, their relationships to each other, and to the environment,
and the principles guiding its design and evolution”.

This definition helps singling out the concerns that are addressed by the software
architecture [17], which figure 1 captures diagrammatically with a numbering that we
will use later for tracing the proposed solution to the corresponding concerns:

– Software decomposition: the organization of the software in terms of parts, so that
every individual part has its own architectural cohesiveness and the interactions
between parts are minimized so as to reduce coupling;

– Externally visible attributes of software ”components”: the attributes of those soft-
ware parts ("components" in our case) that are externally visible. They represent
features or needs specific to the component that can influence other parts of the
software or its overall properties. The other internal attributes shall remain invisi-
ble to the outside with no influence on the software architecture;

– Relationship between software ”components”: how components relate to one an-
other to provide services and fulfil needs;



146 M. Panunzio and T. Vardanega

Fig. 1. The concerns addressed by the software architecture and those outside its perimeter

– Non-functional concerns: the abstraction level where most non-functional concerns
are best addressed;

– External interfaces: the way the software interacts with the external environment
(e.g. by commanding sensors or actuators, or serving external interrupts);

– Principles for the development and evolution of the software: the software design
process fixes the rules for its development and provides means to perform software
maintenance and evolution and dictates the supported form of reuse;

– The rules in place to warrant the consistent relationship between all the above
concerns: every software system descends (at least implicitly) from some software
architecture [12] ; however, to establish a software architecture that truly supports
the given goals, a methodology must be defined that underpins the development
approach and warrants consistency for all the aspects mentioned above.

Interestingly, the following aspects are not of pertinence to a software architecture:

– Detailed design, which is the refinement of the software decomposition performed
at architectural level by providing the internal organization of components;

– Algorithm design, which is the design of the algorithmic behaviour of the software
to fulfill the functional requirements;

– Software implementation, which is the activity for the implementation of software;
– Hardware architecture, which is addressed completely outside of the the software

architecture concerns and yet needs to present a description of its essential char-
acteristics, constraints and limitations to the latter, especially for those hardware
aspects that concern communication and feasibility analysis.

3 The Concept of Reference Architecture

Much like for "software architecture", also the concept of reference architecture misses
a single agreed definition. The gloss that makes the most hits is probably that provided



On Software Reference Architectures and Their Application to the Space Domain 147

by the "Rational Unified Process" (RUP) [13]: "a predefined architectural pattern, or
set of patterns, possibly partially or completely instantiated, designed, and proven for
use in particular business and technical contexts, together with supporting artefact to
enable their use. Often, these artefacts are harvested from previous projects." Though
generic, the cited definition includes interesting aspects, which deserve discussion.

First, we should clarify the difference between a software architecture and a soft-
ware reference architecture. The software reference architecture prescribes the form of
the concrete software architectures for a set of systems for which it was developed. Ar-
guably, the reference architecture is a form of "generic" software architecture, which
prescribes the founding principles, the underlying methodology and the architectural
practices that were recognized by the domain stakeholders as the best solution to the
construction of a certain class of software systems. The architecture of one target soft-
ware system can then be considered as an "instantiation" to the specific system needs
of the software reference architecture.

The other interesting element in the citation is that a reference architecture is "proven
for use in particular business and technical contexts". This observation underlines:

1. the importance of the elicitation of the industrial needs and technical requirements
from which the reference architecture emanate;

2. the need for validation in use as well as for some quantifiable evaluation of the
reference architecture. Validation demonstrates empirically that software architec-
tures resulting from application of the software reference architecture to concrete
systems satisfactorily fulfill all the industrial needs that originated it. Evaluation
ascertains the goodness of the reference architecture by analysing to what extent it
satisfies the industrial needs, and can be facilitated by appropriate methodological
support, for example the Architecture Tradeoff Analysis Method [11] (though it
would require some adaptation to apply to the level of reference architecture [2]).

There exist multiple kinds of reference architectures. Angelov et al. [1] propose a char-
acterisation in terms of context, goal and design. The context dimension discriminates:
where the reference architecture will be used (i.e., within a single organization or mul-
tiple organizations), who defines it (i.e., user organizations, software organizations,
research centres, standardization bodies), when is it defined (a preliminary reference
architecture is defined before an implementation of it exists, or classical when experi-
ence on the application on the target class of systems has already been acquired). The
goal dimension describes the main usage of the reference architecture: it may be a stan-
dardization of existing software architectures, or a facilitation for the design of concrete
architectures (by providing guidelines, methodologies and patterns of the software ar-
chitecture). The design dimension describes the main design choices of the reference
architecture: what is described (components, interfaces, protocols, guidelines, etc.), the
abstraction level of the description (concrete, semi-concrete, or abstract; corresponding
to decreasing levels of dependence with technological and implementation decisions)
and the level of formality of the description (informal, semi-formal, formal).



148 M. Panunzio and T. Vardanega

4 An Application Case

European space industry has entered an economic climate in which the funding availed
to future missions is tightly capped. To win the day, proponents are therefore compelled
to take on increasingly more ambitious scientific challenges. The resulting growth in
complexity is thus plainly at odds with capped budgets.

One of the major consequences of this situation is that the activities that contribute
the most to the value added of the mission, i.e., mission analysis and system engi-
neering, will play an even bigger role in the overall economy of the project, with a
proportional increase of the time and cost invested on them.

This situation calls for a rise in the cost-effectiveness of software development, to
increase the ”value” of the software product delivered with a given budget. The best
way to succeed in this challenge is to increase the efficiency of software development
by singling out the recurring costs and abating them as much as possible.

It is therefore necessary to first understand where this can be done, i.e., to identify
which factors can be intervened on and with what degree of freedom; and subsequently,
to investigate the definition of a solution.

The European Space Agency (ESA) has recently decided to cope with this emerging
scenario with the definition, realization and adoption of a software reference architec-
ture for the development of on-board software for satellites.

4.1 Domain Analysis

A typical satellite system includes two main constituent parts: the payload and the ser-
vice module (also known as bus, or platform) [10]. The payload part comprises the
instruments necessary for the scientific mission (telescopes, spectrometers, detectors,
etc..). The service module is used to govern the satellite position, orientation and ma-
noeuvres, communicate with ground, and ensure that the thermal and power needs are
satisfied; for this reason the service module is equipped with various sensors (gyro-
scopes, Earth sensors, magnetometers, thermistors, etc...), actuators (reaction wheels,
thrusters, heaters, etc..) and other equipment (e.g., solar arrays, batteries).

The satellite payload is mission-specific: hence, it will differ in form and instruments
from one mission to another. Conversely, the service module may present a recurrent
structure (i.e., shape and decomposition in subsystems) in several missions.

The on-board software of a satellite conceptually mirrors the same (physical) separa-
tion of the satellite structures. Accordingly, the on-board software can be conceptually
split in two parts: the payload software and the platform software. Also in this case, the
payload software is vastly – if not completely – different from one mission to the other;
the platform software may instead assume a recurrent organization, which in software
engineering parlance, is the software architecture.

The platform software comprises a set of traditional functional contents: the Atti-
tude and Orbit Control System (AOCS) or a Guidance, Navigation and Control (GNC)
system [15] of a deep-space mission; the Data Handling System (DHS); the thermal
management; the power management; etc.. Additionally it may require the inclusion
of more advanced functions that realize the functional requirements of future missions,
such as advanced autonomy and planning or formation flying.



On Software Reference Architectures and Their Application to the Space Domain 149

On-board software for satellites can be classified as high-integrity software; its real-
ization is therefore subject to stringent requirements at both process and product level
in dimensions such as: time and space predictability, safety, dependability, security. As
a consequence, the output of the various stages of the development process are strictly
regulated by domain-specific standards (such as ECSS-E-ST-40C [8] on software devel-
opment and ECSS-Q-ST-80C [9] on software product quality). Moreover, the software
product is subject to extensive verification and validation campaigns to to determine
that it performs as expected while fulfilling all non-functional requirements.

The software architecture can come of use especially under cost-reduction constraints,
as it (i) expresses the architectural framework that can best host the required functional
contents, and (ii) enforces conformance to architectural properties and methodological
principles that most contribute to the attainment of the required product quality.

The European space domain is strongly influenced by the historical structure of the
industrial market, which used to be dominated by Astrium and Thales Alenia Space. For
various reasons those two competitors adopted different concepts, methodologies and
technologies for on-board software development, resulting in distant production styles
and strategies: at the present state, a software supplier can competitively bid as a sub-
contractor only in a single supply chain, with adverse effects on the market economy.
Whereas new and smaller prime contractors have lately made their way into the Euro-
pean space market, their role is less relevant to this discussion, as they operate within
business conditions that currently favor opportunistic solutions over consolidation.

The ESA software reference architecture is also expected to respond to this rupture.
Furthermore, the novel approach shall be able to accommodate and control the incre-
mental and iterative development models that are inherent to the space domain. The
on-board software is not simply a product to be released at the end of the development:
incremental releases of it are needed to perform additive hardware/software integration
and validation activities, in strict schedule coordination with other satellite development
teams. Iterations are determined by the rectification, improvement and eventual final-
ization of system and software requirements experienced by every project, with carried
risk of destructive backtracks of design and implementation decisions.

4.2 Industrial Needs

The ESA initiative for the definition of a software reference architecture is a harmo-
nization of methodologies and technologies around the Agency charter, seeking to earn
relevant benefits for all involved stakeholders: ESA as the procurement agency, soft-
ware prime contractors and software suppliers. Not surprisingly, a very similar strategy
was taken by NASA [6], which recommended investing on software architecture in gen-
eral and software reference architectures in particular to cope with their needs for future
missions. Under ESA sponsorship, one of the authors of this work devoted his entire
PhD project [17] to all the essential challenges of this initiative. Much of the theoret-
ical, methodological and technological results of that effort were first spun-in by ESA
after clearance by a working group comprised of experts from ESA, software primes
and suppliers, and then consolidated in the ESA-funded COrDeT-2 study project1.

1 http://cordet.gmv.com

http://cordet.gmv.com


150 M. Panunzio and T. Vardanega

The first input to the definition of the reference architecture consisted in gathering
all the industrial needs that ESA or other stakeholders set as strategic goals.

Table 1 outlines the industrial needs. Some of those needs are common to all software
domains; a few others are in common or similar to the needs of other high-integrity
domains; a sizeable subset of them are instead specific to the European space domain.

Table 1. The main industrial needs of the European space domain. Type C denotes a need com-
mon to all software domains; type HI a need similar or common to other high-integrity domains;
for type DS the need is domain specific.

ID Industrial need Type
IN-01 Reduced software development schedule C
IN-02 Higher cost-effectiveness of software development C
IN-03 Support for incremental and parallel software development C
IN-04 Multi-team development and product policy HI/DS
IN-05 Quality of the software product HI
IN-06 Lower effort intensiveness of Verification and Validation HI
IN-07 Role of software suppliers DS
IN-08 Mitigation of the impact of late requirement definition or change HI
IN-09 Simplification and harmonization of Fault Detection Isolation and Recovery DS
IN-10 Lower effort for flight maintenance DS
IN-11 Future needs HI/DS

IN-01: Reduced Software Development Schedule. Future projects require software to
be developed in a shorter schedule. The definition and finalization of software require-
ments occur later in the project schedule than in the past as the mission definition and
system engineering phases take longer because of their greater economic incidence to
the final value added. As the release of the product is usually tied to astronomical events
which determine the launch window or other external factors (for example, the procure-
ment of the launcher vehicle), the implementation activities, including software devel-
opment, are compressed within the residual time toward the tail-end of development.

Moreover, staggered incremental releases of the on-board software are required so
that electrical integration and HW/SW integration tests can be performed incrementally
and the relevant workmanship is more efficiently deployed.

For all these reasons, although the software itself only accounts for a modest fraction
of the total cost of the satellite, delayed software releases may have inordinately costly
impact on the overall project schedule.

Even though the reasons that generate this industrial need are specific to the space
domain, the call for reduced development schedule and shorter time-to-market is com-
mon to all software domains.

IN-02: Higher Cost-Effectiveness of Software Development. Not only will the software
development budget not rise in the foreseeable future but it may instead decline in
favour of other cost elements. Yet, the performance and complexity of core functions of
the satellite platform may grow in response to end-user demands, while new complex
functions may also be required (i.e., formation flying, advanced autonomy, etc.).



On Software Reference Architectures and Their Application to the Space Domain 151

This need is common to all software domains; the means to fulfill it shall be specific
to the space domain and in accord with all the other industrial needs.

IN-03: Support for Incremental and Parallel Software Development. The novel ap-
proach shall accommodate different system and software development practices and
also support common, established needs.

The on-board software is built incrementally (cf. [14]), gradually adding more func-
tionalities to an early initial release that enable electrical and avionic integration tests.
On-board software is also built in parallel development, whereby distinct teams, pos-
sibly under different organizations, develop parts of the software system. The novel
development approach shall not get in the way of the desired development model and
instead help facilitate cross-team and cross-organization dialogue.

This industrial need may also apply to other high-integrity domains.

IN-04: Multi-team Development and Product Policy. Easy and clear-cut decomposi-
tion of the software product to facilitate subcontracting is crucial to the geopolitical
economy of the European space domain. This need originates from the geographical
return policy sanctioned in the ESA charter, which requires to ”ensure that all Member
States participate in an equitable manner, having regard to their financial contribution,
in implementing the European space programme”. Multiple demands descend from this
need: (1) enforcement of subcontracting schemes to software primes or software sup-
pliers only; (2) subcontracting of distinct processing units to different companies (also
part of IN-03), including the responsibility for the deployed software; (3) subcontract-
ing from software primes to software suppliers by enabling the maximum flexibility in
the choice of the subcontractor, in order to maximize the adherence of the bid to the
contingent needs originated by the geographical return policy.

This industrial need is specific to the space domain in Europe.

IN-05: Quality of the Software Product. The quality of the on-board software (in both
functional and non-functional terms) shall be no less than attained with current prac-
tices. The novel development approach shall therefore center on a well-defined devel-
opment process and qualified methodologies and technologies.

This industrial need is common to all other high-integrity domains.

IN-06: Lower Effort Intensiveness of Verification and Validation. In the space domain,
no different from other embedded systems industry where correctness of operation is
paramount and depends to a large extent on correct hardware-software interaction, Veri-
fication and Validation (V&V) activities are by far the largest and most labour-intensive
contributor to the software development cost. The new development approach shall
therefore strive to contain the labour intensiveness of V&V.

This industrial need is common to all high-integrity domains.

IN-07: Role of Software Suppliers. The market structure of space industry in Europe
promoted a diversification of concepts, methodologies and technologies for software the
development to the extent that a software supplier can only competitively bid in a single
supply chain. ESA wish to allow suppliers to extend their competitiveness, without the
need to adapt the software they produce to the specific development policies of each



152 M. Panunzio and T. Vardanega

prime. However, since the amount of ESA satellite projects is limited, the market is not
big enough to sustain the presence of several software suppliers. Therefore, a significant
change in the market players cannot be realistically expected, but rather a change in the
focus of their business activities.

This is a space-specific need that stems from the limitations of the European market.

IN-08: Mitigation of the Impact of Late Requirement Definition or Change. New soft-
ware requirements or changes to them may occur during development. In the space
business the most typical causes of this instability include: late finalization of system
design; modifications in the operational strategy; late clarification of system-level con-
tingency or mission management needs. Software modification may also be required to
compensate for hardware problems found during system integration. The compression
of the software development schedule (as in IN-01) is expected to exacerbate this risk.

Unstable software requirements can disrupt the software development schedule by
causing longer time-to-release and occurring when fundamental decisions on software
architecture and software design have already been fixed. The novel approach shall be
able to mitigate the effects of those hazards.

This industrial need may also hold in other high-integrity domains.

IN-09: Simplification and Harmonization of Fault Detection Isolation and Recovery.
Fault Detection, Isolation and Recovery (FDIR) is a system function that handles con-
tingencies that threaten system integrity or its operational objectives. A simplification
and hopefully harmonization of the FDIR approach is highly desired as all too often it
is tackled in ad-hoc manners that cause massive integration and verification difficulties.

FDIR is problematic in two principal respects: (i) the software element of the FDIR
often is attributed to the system team and therefore escapes the visibility, the under-
standing and the control of the software development team; (ii) FDIR is the software
part whose design and finalization occurs later in the development, so that the pres-
sure to integrate it in the software system may cause costly retrofits. These difficulties
threaten the attainment of a sound separation of concerns in software development.
FDIR is present in all missions and is one of the most important contributors to the
complexity of the overall on-board software.

The novel approach should aim at providing a clean separation between the FDIR
strategy (that is the policy to be realized to fulfil the applicable system and software
requirements) and the mechanisms to realize it. Such a separation is also expected to
mitigate the effects of late definition of FDIR requirements (which are part of IN-08).

This industrial need is space specific.

IN-10: Lower Effort for Flight Maintenance. Software flight maintenance is part of
the specificity of the space domain. In contrast to similar domains (like civil avionics,
or automotive) where it is always possible to physically access the system to perform
maintenance operations, after satellite launch, all software maintenance operations have
to be performed remotely. Remote software maintenance may be required to adjust
configuration parameters, to upload a software patch to mitigate the consequences of
faulty hardware, or to correct software bugs. The need to replace in-flight parts of the
on-board software is thus inherent to the domain.



On Software Reference Architectures and Their Application to the Space Domain 153

Flight maintenance contributes to the operational costs of the satellite (hence to oper-
ation budget as opposed to development costs). Reduction of the effort for maintenance
operations, as well as a harmonization of the maintenance strategy will decrease the
operational cost of maintenance.

In-flight maintenance operations often require a reboot of the on-board software after
the upload of a new software image. Reboot constitutes a hazard for the spacecraft, as
in that time span it cannot process ground commands. Problems occurring during boot-
strap may thus compromise the spacecraft mission or leave the operational team with
crippled means to communicate and operate the spacecraft for further troubleshooting.
It is therefore highly desirable to minimize the risk of in-flight maintenance operations
by updating parts of the software without having to reboot the processor unit.

Another interesting maintenance scenario occurs when managing a constellation of
satellites. In general every satellite of a constellation is initially launched with the same
on-board software. During operation however, different patches may be applied to dis-
tinct satellites, so that their on-board software evolves separately and starts to diverge.
Easy recording of the evolution, annotation of the justification for the modification and
tracing of the modifications to each version of the on-board software would decrease
the maintenance effort through the whole software life cycle.

IN-11: Future Needs. As the novel development approach is targeting future ESA
missions, it shall also accommodate support for future software needs. This need is
necessarily loose and open ended and follows from the long-ranging goal of the ESA
initiative. The most important needs that were identified include: (a) ensuring that the
proposed approach shall not be undermined by the shift in hardware technology that
may result from, e.g., the advent of multicore processors; (b) allowing the execution of
software of different levels of safety in the same processor board.

5 A Software Reference Architecture for Space Applications

It is now in order to summarize the central concepts on which the proposed definition
of software reference architecture is based.

The starting point was the derivation of high-level technical requirements from the
industrial needs discussed in section 4.2: those were retained as the technical objec-
tives to be achieved by the software reference architecture. Two overarching goals were
added to the founding principles of the proposed software reference architecture:

– composability, that is achieved when the properties (in the form of assume/guaran-
tee tuples) of individual components are preserved on component composition and
deployment on the target system;

– compositionality, that is achieved when the properties of the system as a whole can
be derived (economically and conclusively) as a function of the properties of its
constituting components.

This work seeks to attain those two properties in the form of composition with guaran-
tees [24], whereby they can be (1) assured by static analysis, (2) guaranteed throughout
implementation, and (3) actively preserved at run time.

The proposed approach was centred on four primary constituents [18]:



154 M. Panunzio and T. Vardanega

1. a component model [4], to design the software as a composition of individually
verifiable and reusable software units;

2. a computational model [23], to relate the design entities of the component model,
their execution needs and their non-functional properties for concurrency, time and
space, to a framework of analysis techniques which ensures that the architectural
description is statically analyzable in the dimensions of interest;

3. a programming model, which consists in a tailored subset of a programming lan-
guage and a set of code archetypes, and is used to ensure that the implementation of
the design entities conforms with the semantics, the assumptions and the constraints
of the computational model;

4. a conforming execution platform, which is in charge of preserving at run time the
system and software properties asserted by static analysis and it is able to notify
and react to possible violations of them.

In order to increase the industrial applicability of the approach, and as a response to in-
dustrial needs of the space domain, the formulation of the approach further included: (a)
a development process centred on Model-Driven Engineering (MDE) [21]; (b) the pro-
visions for domain-specific aspects, which complement the approach, yet are consistent
to all its underlying principles.

Fig. 2. The goals set for this work and the constituents of the software reference architecture that
facilitates their achievement. Square brackets capture the concerns of the software architecture
addressed by each individual constituent with the nomenclature shown in figure 1.



On Software Reference Architectures and Their Application to the Space Domain 155

Figure 2 recapitulates the goals of our approach and the constituents that needed
for their achievements. They collectively form the authors’ interpretation of software
reference architecture, as originally formulated in [17] and subsequently adopted by
the ESA initiative. The same figure depicts which concerns of the software architecture
are addressed by each constituent (cf. fig. 1).

Compositionality is earned at the level of the computational model and component
model, as it depends on the adopted body of analysis theories as well as how the archi-
tectural entities in use relate to them. Composability is earned at the level of the com-
ponent model. Composability and compositionality, augmented with property preser-
vation [24] (i.e., preservation of the analyzed properties at run time), together lead to
the achievement of composition with guarantees.

It is thus interesting to observe that, our choice of essential constituents carries an
original interpretation of a software reference architecture that achieves properties of
vital interest to space stakeholders, and it does so by construction.

5.1 Realization and Validation

As mentioned in section 4.2, ESA funded the COrDeT-2 study project to finalize the
definition and prototype realization of the software reference architecture. The compo-
nent model developed in [19] was adopted as the first constituent of it, together with an
implementation built on top of a domain-specific metamodel (short-named "SCM" for
"Space Component Model"), equipped with a specialised graphical editor based on the
Obeo Designer framework2.

In a true example of separation of concerns, the designer specifies the on-board soft-
ware as a set of collaborating components which comprise functional concerns only.
It later annotates those components with non-functional requirements, which are then
only declaratively specified. Those non-functional requirements are implemented by
containers, and connectors: the former are wrappers taking care of the tasking and syn-
chronization needs of the component; the latter take care of interaction and communi-
cation needs (mainly logical and physical distribution of components, data encoding).
Containers and connectors are collectively termed "Interaction Layer" in COrDeT-2.
Their form depends on the chosen computational model and the associated program-
ming model. In COrDeT-2, in line with preceding studies, the Ravenscar Computa-
tional Model [3] was adopted. Thanks to this choice, containers and connectors can be
automatically generated following defined property-preserving code patterns [20].

The execution platform of the approach conforms to the description given in section
5. It comprises space-specific services, such as those specified in the "Packet Utiliza-
tion Standard" [7], which are used for commandability and observability of the on-board
software from ground. The component model offers domain-specific extensions so as
to allow the configuration of those space-specific concerns, without breaking the prin-
ciples or the methodology of the domain-neutral part of the component model.

COrDeT-2 validated the definition and implementation of the reference architecture
against an ESA Earth Observation mission reference case3.

2 http://www.obeodesigner.com
3 http://cordet.gmv.com/activity3.htm

http://www.obeodesigner.com
http://cordet.gmv.com/activity3.htm


156 M. Panunzio and T. Vardanega

In parallel to COrDeT-2, ESA launched the OSRAc study ("On-board software ref-
erence architecture consolidation"4) with focus on domain engineering, to gather re-
current solutions and architectural best practices for the functional contents of platform
on-board software. OSRAc was to define how to develop reusable software for them us-
ing the software reference architecture. The software primes are involved in that study
too, to assess the proceedings against a sizeable set of reference missions of interest to
ESA and to the French national space agency (CNES).

5.2 Apportionment of Industrial Needs

It is now in order to examine how the software reference architecture as a whole fulfils
the industrial needs presented in section 4.2. Table 2 recalls the industrial needs and
relates to each of them the architectural constituent, discussed earlier in section 5, that
specifically addresses it. Industrial need IN-11 is excluded from the list, as it fell out-
side of the scope of that phase of the investigation. Another ESA-funded study project
(SISTORA5) separately addressed those issues; its results will be taken into account in
subsequent iterations on the software reference architecture definition.

Table 2. The industrial needs and the constituent of the software reference architecture addressing
them. Legend: [CM: Component model; CPM: Computational Model; PM: Programming model;
EP: Execution platform; MDE: Model-driven engineering]

ID Industrial need Addressed by
IN-01 Reduced software development schedule CM, MDE
IN-02 Higher cost-effectiveness of software development CM, PM, MDE
IN-03 Support for incremental and parallel software development CM, MDE
IN-04 Multi-team development and product policy CM
IN-05 Quality of the software product CM, CPM, PM
IN-06 Lower effort intensiveness of Verification and Validation CPM, PM, MDE
IN-07 Role of software suppliers CM
IN-08 Mitigation of the impact of late requirement definition or change CM, MDE
IN-09 Simplification and harmonization of FDIR CM, EP, MDE
IN-10 Lower effort for flight maintenance CM, PM, EP

The adoption of our component model tailored with domain-specific aspects, and
the automation capabilities of MDE (for code generation) serve the purpose of coping
with the reduced development schedule for future projects (IN-01). Those same con-
stituents, together with the programming model, are used to increase cost-effectiveness
of the development. Our component model supports the specification of non-functional
concerns related to tasking, synchronization and communication, separately from the
functional concerns and their realization is entirely delegated to code generation [20].

4 http://www.congrex.nl/11c22/docs/11C22_ADCSS/
10--implementation-stragy--the-sw-perspective.pdf

5 http://congrexprojects.com/docs/
12c25_2310/sa1025_jung.pdf?sfvrsn=2

http://www.congrex.nl/11c22/docs/11C22_ADCSS/10---implementation-stragy---the-sw-perspective.pdf
http://www.congrex.nl/11c22/docs/11C22_ADCSS/10---implementation-stragy---the-sw-perspective.pdf
http://congrexprojects.com/docs/12c25_2310/sa1025_jung.pdf?sfvrsn=2
http://congrexprojects.com/docs/12c25_2310/sa1025_jung.pdf?sfvrsn=2


On Software Reference Architectures and Their Application to the Space Domain 157

The proposed component model [19] facilitates incremental development (part of IN-
03) and the mitigation of the impact of late requirement changes (IN-08). In doing so,
it requires the use of a set of progressively more defined entities: component types, for
the relationship of individual components to the rest of the software system; component
implementations, for the concrete realization of components amenable to reuse; compo-
nent instances, to relate to other components for the fulfilment of functional needs and
for the declaration of non-functional properties and deployment directives. The ensu-
ing design flow, together with the capability of supporting iterations provided by early
model-based analysis, help mitigate the need and impact of late modifications.

As regards parallel development (from IN-03) and decomposition of software to ful-
fil contingent needs imposed by the the geographical return policy (IN-04), the pro-
posed component model supports parallel development by requiring the definition of
well-defined interfaces as part of software decomposition. Component implementations
are the subcontracting units of the approach. Implementation constraints (in terms of
resource consumption bounds) can be set on component implementations prior to out-
sourcing their realization to suppliers. In that manner the software integrator can better
master complex supply chains.

Quality of the software product (IN-05) is achieved by adopting the component
model, which informs the design by imposing the design methodology that underpins
it; adopting a computational model and a conforming programming model provides for
static analyzability of the software product, with the confidence of consistency between
analysis and implementation.

The V&V effort is lowered by the use of model-based analysis and code generation.
The former permits to converge faster to a system behaviour that fulfills the required
non-functional requirements. The latter permits – thanks to the adoption of the pro-
gramming model – the production of the complete code for tasking, synchronization,
communication and interfaces between components. Another important advantage con-
sists in the automated generation of all the test cases needed to confirm the correctness
of the generated code, delivering the software engineers from the burden of writing this
error-prone part of the software and its associated test suites.

The realization of a component implementation in our component model can be del-
egated to a software supplier, which can focus on the implementation of functional con-
tents only (as non-functional concerns are dealt only by the software integrator) without
needing to adapt the component to the practices of the different software integrator (as
required by IN-07); the software integrator can then easily integrate the implemented
component in the software system.

A set of mechanisms for the realization of Fault Detection Isolation and Recovery
(FDIR) policies are provided by the execution platform. A set of patterns for their use is
provided in the domain-specific part of the component model and the code to use them
can be automatically generated. The code that implements FDIR concerns is then kept
separated from functional code, thus also increasing the reuse potential of components.
This contributes to the fulfilment of IN-09.

Finally, the effort for flight maintenance (IN-10) is potentially reduced in our ap-
proach by reasoning in terms of components or their constituents instead of memory
regions, which earns us better control on the abstraction and granularity of the software



158 M. Panunzio and T. Vardanega

to uplink. Moreover, with support from the execution platform, it will be possible to
reload and re-start individual components at run time, without needing to reboot the
whole software from an updated software image (which is the current state of practice).

6 Conclusions

This paper reported on the motivation and proceedings of an initiative undertaken by
the European Space Agency for the development of a software reference architecture
for the on-board software of their future satellite systems. This paper is intended an as
enunciation of guiding principles that propose a specific understanding of the concept of
software reference architecture and trace its constituents to the industrial needs captured
by the relevant domain stakeholders. The reference architecture is being extensively
validated in a number of ESA-funded studies with promising results; however only
medium-term efforts, much longer than the horizon covered by this work can gather
conclusive evidence for or against the proposed approach.

While the reference architecture was a response to needs of the space domain, its
stipulation is centred on core domain-neutral concepts and accommodates room for
domain-specific extensions or specialization, making it attractive for domains other
than space. As an evident confirmation of it, the 4-constituent reference architecture
was also successfully adopted by the CHESS project6, which targeted the industrial
needs of telecommunication and railway domains in addition to those of space industry.
Each domain covered in CHESS used the same shared component model [19] (extended
with domain-specific concerns), and were able to adopt a programming model and ex-
ecution platform that fit their domain-specific needs. Some of the CHESS results are
summarised in [5].

Acknowledgements. The views presented in this paper are the authors’ only and do
not necessarily engage those of the European Space Agency. This work was supported
by the Networking/Partnering Initiative of ESA/ESTEC and by the CHESS project,
ARTEMIS JU grant nr. 216682.

References

1. Angelov, S., Grefen, P., Greefhorst, D.: A Classification of Software Reference Architec-
tures: Analyzing Their Success and Effectiveness. In: IEEE/IFIP Conference on Software
Architecture and European Conference on Software Architecture, WICSA/ECSA (2009)

2. Barbacci, M., Clements, P., Lattanze, A., Northrop, L., Wood, W.: Using the Architecture
Tradeoff Analysis Method (ATAM) to Evaluate the Software Architecture for a Product Line
of Avionics Systems: A Case Study. Tech. rep., SEI, Carnegie Mellon University (2003)

3. Burns, A., Dobbing, B., Vardanega, T.: Guide for the Use of the Ada Ravenscar Profile in
High Integrity Systems. Technical Report YCS-2003-348, University of York (2003)

4. Chaudron, M., Crnkovic, I.: Component-based software engineering. In: van Vliet, H. (ed.)
Software Engineering: Principles and Practice, ch. 18, Wiley (2008)

6 http://www.chess-project.org/

http://www.chess-project.org/


On Software Reference Architectures and Their Application to the Space Domain 159

5. Cicchetti, A., Ciccozzi, F., Mazzini, S., Panunzio, M., Puri, S., Vardanega, T., Zovi, A.:
CHESS: A Model-Driven Engineering Tool Environment for Aiding the Development of
Complex Industrial Systems. In: 27th Int’l Conference on Automated Software Engineering
(ASE 2012), pp. 362–365. IEEE/ACM (September 2012) ISBN: 978-1-4503-1204-2

6. Dvorak, D. (ed.): NASA Study on Flight Software Complexity. Tech. rep., Commissioned by
the NASA Office of Chief Engineer (2009)

7. European Cooperation for Space Standardization: Space Engineering - Ground systems and
operations - Telemetry and telecommand packet utilization, ECSS-E-70-41A (2003)

8. European Cooperation for Space Standardization: Space engineering - Software, ECSS-E-
ST-40C (2009)

9. European Cooperation for Space Standardization: Space product assurance - Software prod-
uct assurance, ECSS-Q-ST-80C (2009)

10. Fortescue, P., Swinerd, G., Stark, J. (eds.): Spacecraft Systems Engineering, 4th edn. Wiley
(2011) ISBN: 978-0470750124

11. Gallagher, B.: Using the Architecture Tradeoff Analysis Method to Evaluate a Reference
Architecture: A Case Study. Tech. rep., SEI, Carnegie Mellon University (2000)

12. ISO/IEC/(IEEE): Systems and Software engineering - Recomended practice for architectural
description of software-intensive systems. ISO/IEC 42010 (IEEE Std) 1471-2000 (2007)

13. Kruchten, P.: The Rational Unified Process: An Introduction, 2nd edn. Addison-Wesley
(2000)

14. Larman, C., Basili, V.R.: Iterative and incremental development: A brief history. Com-
puter 36, 47–56 (2003)

15. Lin, C.F.: Modern Navigation, Guidance, And Control Processing. Prentice Hall (1991)
ISBN: 978-0135962305

16. Malan, R., Bredemeyer, D.: Defining Non-Functional Requirements. Tech. rep., Bredemeyer
Consulting (2001),
http://www.bredemeyer.com/pdf_files/NonFunctReq.PDF

17. Panunzio, M.: Definition, realization and evaluation of software reference architecture for
use in space application. Ph.D. thesis, University of Bologna, Italy (July 2011),
http://www.informatica.unibo.it/ricerca/
technical-report/2011/UBLCS-2011-07

18. Panunzio, M., Vardanega, T.: On Component-Based Development and High-Integrity Real-
Time Systems. In: Proc. of the 15th International Conference on Embedded and Real-Time
Computing Systems and Applications (2009)

19. Panunzio, M., Vardanega, T.: A Component Model for On-board Software Applications. In:
Proc. of the 36th Euromicro Conference on Software Engineering and Advanced Applica-
tions, pp. 57–64. IEEE (2010)

20. Panunzio, M., Vardanega, T.: Ada Ravenscar Code Archetypes for Component-Based Devel-
opment. In: Brorsson, M., Pinho, L.M. (eds.) Ada-Europe 2012. LNCS, vol. 7308, pp. 1–17.
Springer, Heidelberg (2012)

21. Schmidt, D.C.: Model-Driven Engineering. IEEE Computer 39(2), 25–31 (2006)
22. Software Engineering Institute (editor): Defining Software Architecture - Modern, Classic,

and Bibliographic Definitions, SEI - Carnegie Mellon (2010),
http://www.sei.cmu.edu/architecture/start/definitions.cfm

23. Vardanega, T.: Development of On-Board Embedded Real-Time Systems: An Engineering
Approach. Tech. Rep. ESA STR-260, European Space Agency (1999)

24. Vardanega, T.: Property Preservation and Composition with Guarantees: From ASSERT to
CHESS. In: Proc. of the 12th IEEE International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing, pp. 125–132 (2009)

http://www.bredemeyer.com/pdf_files/NonFunctReq.PDF
http://www.informatica.unibo.it/ricerca/technical-report/2011/UBLCS-2011-07
http://www.informatica.unibo.it/ricerca/technical-report/2011/UBLCS-2011-07
http://www.sei.cmu.edu/architecture/start/definitions.cfm


Automated Analysis in Feature Modelling

and Product Configuration

David Benavides1, Alexander Felfernig2, José A. Galindo1,
and Florian Reinfrank2

1 University of Seville
Av. de la Reina Mercedes S/N, 41012 Seville, Spain

{benavides,jagalindo}@us.es
2 Institute for Software Technology

Graz University of Technology
Inffeldgasse 16b/II

Graz, Austria
{afelfern,freinfra}@tugraz.at

Abstract. The automated analysis of feature models is one of the thriv-
ing topics of research in the software product line and variability manage-
ment communities that has attracted more attention in the last years.
A recent literature review reported that more than 30 analysis opera-
tions have been identified and different analysis mechanisms have been
proposed. Product configuration is a well established research field with
more than 30 years of successful applications in different industrial do-
mains. Our hypothesis, that is not really new, is that these two inde-
pendent areas of research have interesting synergies that have not been
fully explored. To try to explore the potential synergies systematically, in
this paper we provide a rapid review to bring together these previously
disparate streams of work. We define a set of research questions and give
a preliminary answer to some of them. We conclude that there are many
research opportunities in the synergy of these independent areas.

Keywords: Software Product Lines, Feature Models, Product Config-
uration, Rapid Review, Knowledge-based Systems.

1 Introduction

Variability modelling and management is a key issue in software product line
engineering. Feature models are one of the most used mechanisms to model
the variability within a software product line. A feature model consists of a set
of features and a set of relationships that connect features. It is arranged in
a tree–like structure with additional cross-tree constraints. There are different
feature model dialects identified in the literature [53] which include basic feature
models, cardinality based feature models and extended feature models using
feature attributes.

J. Favaro and M. Morisio (Eds.): ICSR 2013, LNCS 7925, pp. 160–175, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Automated Analysis in Feature Modelling and Product Configuration 161

Figure 1 shows an example feature model using the most well known modelling
elements1. The model illustrates how features are connected to specify a software
product line in the mobile phone domain. We assume that the software loaded in
the phone is determined by the features that it supports. According to the model,
all phones must include features supporting calls, and displaying information in
either basic, colour or high resolution screens. Furthermore, it is possible to
optionally include support for GPS and multimedia elements such as camera,
MP3 player or both of them.

Mobile Phone

Calls GPS

ColourBasic

Screen Media

Camera MP3

Mandatory

Optional

Alternative

Or

Requires

Excludes

High resolution

Fig. 1. A sample feature model

The automated analysis of feature models is one of the areas of research that
have attracted more attention in the last two decades [8]. It can be defined as the
computer–aided extraction of information from feature models. The analysis is
performed by means of analysis operations which take several inputs and provide
an output. As input we have a feature model with optionally some additional
information such as a set of features to be selected or deselected. As output it
is possible to find numbers, set of features and others depending on the kind
of analysis operation. An example of a feature model analysis operation would
be counting the number of possible products represented by the feature model.
In the example of Figure 1 the number of products is 14. 30 different analysis
operations have been surveyed [8] including operations for model consistency,
error detection, explanations, and feature model configuration capabilities. The
general analysis process is shown in Figure 2 where a feature model is trans-
lated to a logical representation and using some technique (e.g. logical solvers or
specific algorithms) the analysis operations are performed.

The configuration of feature models can be defined as the process of selecting
and deselecting features in a feature model until reaching a full configuration,
i.e. a configuration where no additional decision on the feature model needs to
be made to have all the information to configure a given software product of
the software product line. The configuration of feature models is no more than

1 This Figure has been taken from [8].



162 D. Benavides et al.

Fig. 2. Process for the automated analysis of feature models taken from [8]

an analysis operation where the input is a feature model with a set of decisions
on the state of a given set of features (a feature can be selected, deselected or
undecided) and the output is the feature model together with the new states of
the features.

Product configuration is an independent area of research from software
product line engineering that has a long history as an application of Artificial In-
telligence technologies [43,23,52]. The first paper on product configuration was
published back in 1978 [36]. Similar to feature model based configuration, prod-
uct configuration can be interpreted as the process of partially or completely in-
stantiating component types and related attributes with concrete components and
attribute values [52] in a way that preserves the consistency with a predefined set
of constraints (restrictions). Configuration technologies are typically applied in
complex product domains such as telecommunication [23], automotive [34], and
digital equipment [7,19].

Although product configuration is a well established area of research with
numerous industrial applications, the synergies between feature model configu-
ration and product configuration have been rarely explored. Our hypothesis, that
can be easily formulated from the previous descriptions, is that feature model and
product configuration have a lot of potential synergies that can be explored and
exploited. In this paper, we show first steps to explore those synergies towards a
more systematic literature review to fully gather the spread knowledge from the
different areas to start a cross fertilization process to benefit both communities
from the independent results.

This hypothesis of existing synergy potentials is not really new. In the past,
there have been already some attempts to connect these two areas [6,39] and
the importance of such a connection has been explored in the last years within
the software product line community. As an example, there have been 2 in-
vited keynotes in recent workshops of the software product line conference by
well known researchers from the configuration area (see [16,47]). Also, a recent



Automated Analysis in Feature Modelling and Product Configuration 163

contribution to a workshop in the product configuration area proposes a re-
search roadmap to try to connect these two areas and revealed the importance
of surveying the literature to find synergies [31]. In this paper, in difference with
respect to previous work, we give a first step forward to complete a systematic
literature review to bring together these previously disparate streams of work
and we provide first answers to some research questions. Thus, we define a set
of research questions and give a preliminary answer to some of them which start
opening research opportunities.

Although in a systematic literature review a well established method is re-
quired [10], we do not present such a systematic method in this paper. We rather
use a rapid review approach which is also a very common method in evidence-
based research in areas such as medicine [27]. A rapid review is a method to
provide an assessment of what is already known in a given research field. In
contrast to literature reviews, it does not need a tedious and time–consuming
method trying to be “quick but not dirty” [27]. In this sense, it can serve as a
first step towards a more systematic literature review. It is fair to recognize that
this rapid literature review has an important bias due to the fact that there is
a good amount of the surveyed references that are works done by the authors.
However, we still think it is valuable to show these results since the authors have
been working independently in the surveyed areas namely, automated analysis of
feature models and product configuration. In any case, this bias is also addressed
adding a good amount of references to other existing work.

In the following section we discuss research questions related to the further
development of both research fields. Thereafter – in Section 3 – we try to provide
first answers to the posed questions.

2 Research Questions

The goal of this review is to provide first answers to the following research ques-
tions (RQ 1–4). Some of them have been already answered in a recent literature
review about the automated analysis of feature models [8]. The main goal here is
to investigate how these questions have been addressed in the product configura-
tion field and see the similarities, differences and discover research opportunities.
We will try to answer these questions always comparing how different activities
are performed in the feature modelling field and how they are addressed in the
product configuration field. Although there are also other potential research
questions to be addressed we selected these 4 mainly because they cover impor-
tant parts of the engineering process such as modelling (RQ1), implementation
and design (RQ2–3), quality assurance (RQ4).

RQ1: How are the different modelling approaches related? There are different
dialects of feature models as described in [53]. In contrast, how are configuration
problems modelled? Can a feature model configuration problem be represented
as a configuration problem? Are there modelling elements in product configura-
tion that are not used in feature models? And the opposite? Are there approaches
to standardize configuration knowledge representations and how can these rep-
resentations be exploited in the context of feature model development?



164 D. Benavides et al.

RQ2: Which are the automated mechanisms proposed? There are mainly three
basic reasoning approaches used when automatically analysing feature models
[8]: propositional logic based analysis, constraint programming based analysis
and description logic based analysis. Are those paradigms also used in product
configuration? Are there any special techniques developed in that field that could
be used in feature model configuration?

RQ3: Are there similar operations? In feature models, 30 different analysis
operations have been recently reported [8]. How similar are the operations in
configuration problems? In product configuration it is well known that one of the
main important tasks is the user support which includes providing explanations
when a erroneous configuration step is reached. Are there special mechanisms
developed in the product configuration community that could be used in feature
model configurations?

RQ4: Which are the functional and performance mechanisms used? In feature
models, there are some proposals to perform functional and performance testing
of analysis tools [56,54,55,57]. The challenge is how to assess the quality of feature
model analysis tools in terms of functionality (is the analysis tool doing what
is supposed to do?) and performance (is the analysis tool performing well?).
Are there also functional and performance testing mechanisms described in the
product configuration literature? How are the different mechanisms related?

3 Preliminary Results

To provide a preliminary answer to the research questions of Section 2 we
searched papers in academic databases guided from our previous experience in
the field. In this section we give a first answer to some of the research questions
by quoting and explaining some of the papers studied to show the potential
synergy between the two areas.

3.1 RQ1: How Are the Different Modelling Approaches Related?

From our rapid review we have detected that the existing research on product
configuration does not have a well established or standard language to define con-
figuration problems. There have been attempts to use domain-specific languages
for product configuration, for example, on the basis of the Unified Modeling Lan-
guage (UML) [15]. Furthermore, ontology based configuration knowledge repre-
sentations [60] and description logics based representations have been developed
[18,40]. These representations are either not supporting the needed expressivity
(for an in-depth analysis of description logic based knowledge representations
see [18]) or are not based on a formal semantics (UML is based on a semi-formal
definition, the same holds for the ontology specified in [60]). In other cases, con-
figuration problems are formally defined on the basis of logic-based approaches
which are often not accessible for domain experts and even developers. In this
sense, it is easy to find configuration problems described in description logic,
constraints or propositional logic (see Section 3.2) but there is still a need for



Automated Analysis in Feature Modelling and Product Configuration 165

a standardized representation with a clear underlying formal semantics. There
have been some general standardization efforts in constraint representations [45]
but not specifically in the product configuration domain. Also, there have been
some efforts to clearly define configuration tasks [43].

In contrast, configuration problems in software product lines are mainly mod-
elled using any of the following families of notations: decision-based modelling
notations or feature model–based notations [12]. There are also other notations
such as OVM [49] or COVAMOF [59] but these are less common in the liter-
ature. There is even a current effort to define a common variability modeling
language (CVL) [24] which could also serve as a basis for the definition of con-
figuration problems. There exist different dialects of feature models as described
in [53] and also some textual syntax of feature models like TVL [11]. In addition,
formal semantics of feature model dialects have been reported [13,53].

We will now try to answer the following sub question: can a feature model
configuration problem be represented as a configuration problem? To do so, we
provide the following definitions adapted from the discussions in Section 1 and
from any general definition of a configuration problem that can be found in the
literature. Note that this definition can be exploited for the representation of
basic configuration problems which do not include complex connection structures
and component hierarchies [23,38]. However, it is a good basis for having a
common representation for both, basic configuration problems and feature model
configuration problems.

Definition 1 (Feature Model Configuration Problem). A feature model
configuration problem is defined by the tuple (F,D,C) where F = {f1, f2, ..., fn}
is a set of features fi. Furthermore, D= {dom(f1), dom(f2), ..., dom(fn)} is the
set of corresponding feature domains where dom(fi) = {true, false}. Finally, C
= CR ∪ CF is a set of constraints restricting the possible configurations which
can be derived from the feature model. In this context, CR = {c1, c2, ..., ck}
represents a set of user requirements (e.g. selection or deselection of features)
and CF = {ck+1, ck+2, ..., cm} represents a set of feature model constraints.

The hypotheses here is that any relationship defined in a feature model dialect
can be translated to a constraint in a Constraint Satisfaction Problem (CSP)(see
[5] for an introduction on CSP).

Definition 2 (Feature Model Configuration). A feature model configura-
tion for a given feature model configuration problem is a complete assignment of
the variables fi ∈ F . Such a configuration is consistent if the constraints ci ∈ C
are consistent with the given variable assignment. Furthermore, a feature model
configuration is valid, if it is consistent and complete, i.e. it does not violate
any constraint defined in the feature configuration problem and all the variables
have an assigned value.

Results.We conjecture that a feature model configuration problem in particular
and any software product line configuration problem in general could be seen as
a special case of a product configuration problem.



166 D. Benavides et al.

In configuration problems not only boolean constraints are used as in most
of the cases of feature model configuration problems. In product configuration
problems there is no standard language to describe configuration problems while
in software product lines there is de facto standard which are feature models
and an effort to a standardized notation such as CVL. These more established
notations in software product line engineering could inspire product configura-
tion researchers to identify ways to share, disseminate, and model configuration
problems. On the other hand there are also challenges with respect to prod-
uct domains (e.g., telecommunication switches [23]) where complex connection
structures and related (aggregation) constraints have to be specified (see, e.g.,
[18]). We want to emphasize that a detailed analysis of needed extensions of
existing feature model representations is a major challenge for future research if
feature models want to be adopted as a sort of standard language in the product
configuration field.

3.2 RQ2: Which Are the Automated Mechanisms Proposed?

There are mainly three categories of mechanisms used for the automated analysis
of feature models [8]: propositional logic based analysis, constraint programming
based analysis, and description logic based analysis. In a survey on product con-
figuration in 19982, Sabin et al. [52] divided the existing paradigms on product
configuration as the following: rule-based reasoning and model-based approaches.
In the former, rules of the form if condition then action are used to represent con-
figuration knowledge. According to [52], this kind of configuration systems have
maintenance problems. In model-based configuration systems, the assumption is
that the configuration knowledge is expressed in an explicit language in terms
of a model. Among the approaches in model–based configuration problems, de-
scription logics and constraint–based approaches are presented [52].

Results. Among constraint based approaches there are some based on so–called
conditional constraint satisfaction problems (CCSP) [26], dynamic constraint
satisfaction problems(DCSP) [42], and generative constraint satisfaction prob-
lems (GCSP) [23,38]. There are also some proposals to combine description logics
and constraint satisfaction problems [35]. Furthermore, we have found papers in
the product configuration literature that use binary decisions diagrams (BDD)
to represent and solve configuration problems [9,4,28] and also proposals which
combine CSPs with BDD techniques to obtain better product configurators [61].

A product configuration problem is interactive if the configuration process
is performed interactively, i.e. the user makes selections and the system has to
provide feedback to the user as soon as possible. In such scenarios the response
time of the systems is crucial. It is desirable to guarantee a given response
time. In this sense, there is a branch of research on product configuration that
deals with the off-line compilation of configuration problems for a later on-line
configuration process. An off–line compilation of a configuration problem is a

2 It is interesting to note that we have not found any more recent review on product
configuration.



Automated Analysis in Feature Modelling and Product Configuration 167

process where the configuration problem is translated to a given representation
that ensures a good response time. In the best case, the compilation will deliver
a backtrack-free configurator. Once the compilation is performed, the system
can be used for an on-line configuration process. There are several proposals in
the literature of product configuration using compilation techniques, some are
based on translation the configuration process into a BDD representation [33,29]
and others are based on transforming a configuration problem into an automata
[14,50].

Although there have been some efforts to use efficient techniques for feature
model analysis [41], in general, these techniques have been rarely studied in the
feature model analysis literature and there is significant work to be done to
include those techniques in the feature model analysis field.

3.3 RQ3: Are There Similar Analysis Operations?

An analysis operations over a feature model, as stated in Section 1, is an op-
eration that takes a feature model as input and returns a result as output. An
analysis operation over a configuration model would be the same but taking as
input a configuration model. In feature models, 30 different analysis operations
have been recently reported [8] and it is common to find more and more papers
describing some new operations or a sort of redefinition of them (e.g. [44]).

Results. In the product configuration field, it is not common to find new op-
erations besides the basic ones like propagate a configuration decision, provide
feedback to the user in terms of explanations or maintain the consistency of
the configuration knowledge base. This could be the case because in software
product line models such as feature models, a very important aspect is the con-
nection of the variability model with other software artefacts like code, software
components, test cases or UML diagrams among others. It would be necessary
to have a catalogue of operations in product configuration similar to the one
found in feature model analysis [8] to explore if there are operations in one side
or the other that could be used as well as existing techniques to automate them.

A special case of analysis operations are the so-called explanations. In the
feature model analysis field an explanation is defined as an operation of analysis
that not only provides a result but also an explanation of why or why not a
given result is provided [64]. There are some proposals to explain why a feature
model is inconsistent, why a feature is dead or why a feature is false optional
[63]. Also, there are some proposals to explain why a given configuration is
erroneous with respect to a given feature model [66,65]. Most of these approaches
are based on Reiter’s theory of diagnosis [51] which means that the method is
complete and provides an explanation which is minimal. A minimal explanation
is the one that explain a given analysis result with the minimum number of
elements. For instance, given a flawed configuration with a set of selected features
and a set of deselected features, an explanation could be used to determine the
changes to be made in the configuration to repair it [65]. It would be possible
to say that all the selections or deselections have to be changed, but usually the



168 D. Benavides et al.

interesting information is to know the minimum changes required to repair the
flawed configuration.

In product configuration it is well known that the methods based on Reiter’s
theory of diagnosis are computationally hard to solve. To face this problem,
there are several proposals in the product configuration literature to provide
faster explanations that either preserve minimality (in terms of the number of
needed repair actions) [17,32,48] or focus on the determination of personalized
repairs which are also minimal but are not necessarily minimal cardinality repairs
[46,20,22].

From this discussion it seems clear that explanation mechanisms for feature
model analysis have to be synchronized with respect to existing product config-
uration mechanisms.

3.4 RQ4: Which Are the Functional an Performance Mechanisms
Used?

Developing and maintaining feature model analysis tools is difficult and costly
as any other software system due to its complexity and changeability [56]. As
any other software tool, a feature model analysis tool has to use functional
testing mechanisms to detect bugs in the development and evolution process. In
product configuration, tools for providing configuration capabilities are known as
configurators. Configurators suffer from the same problems that feature model
analysis tools, i.e. they are difficult to develop and maintain and most of the
configuration operations are computationally hard to tract.

Results. In the feature model analysis literature we have found specific func-
tional testing mechanisms to detect bugs in analysis tools [56,54]. The basic idea
is to have an automated test data generator that can generate a feature model
together with its represented set of products by means of so-called metamorphic
relations. Once we have a feature model and its set of products, this test input
can serve as an oracle to see if the expected output of an analysis tool is correct
with respect to the test data. The conceptual underpinning of this idea is that
most of the analysis operations could be calculated once the set of products
represented by the feature model is available. This is a black box testing tech-
nique that has been shown to be useful in detecting bugs in some feature model
analysis tool like FaMa3 and SPLOT 4 [56].

Besides functional testing mechanisms for feature model analysis tools, per-
formance is also an additional problem to be taken into account when assuring
the quality of this kind of tools. Most of the feature model analysis operations
are known to be computationally complex to perform [53] and this is especially
important when analysis operations are used for feature model interactive con-
figuration. Most of the times, feature model analysis tools have been tested for
performance evaluation using random inputs [8], i.e. a set of random feature
models are generated to stress the analysis tools to see how they perform when

3 www.isa.us.es/fama
4 www.splot-research.org/

www.isa.us.es/fama
www.splot-research.org/


Automated Analysis in Feature Modelling and Product Configuration 169

increasing the size of the models or the percentage of modelling elements like
cross-tree constraints. Although this mechanisms are useful to be used to get
averages (e.g. in terms of time or memory consumption) there are some propos-
als to provide mechanisms to build hard feature models in pessimistic situations
[55,57]. The idea is to define the problem of looking for hard feature models as
an optimization problem. A tool is build to generate hard feature models using
metaheuristic algorithms like evolutionary search to explore the space and try
to guide the tool to find hard feature model instances for a given tool for a given
operation. For instance, the tool can be used to find feature models with between
100 and 200 features with 10% of cross-tree constraints that take more than 5
minutes in detecting the set of dead features which could be considered as an
non affordable time constraint.

There are some similar approaches in the product configuration literature to
what has been done in feature model analysis. For instance, a configurator can
be performance tested by using real configuration models (a.k.a configuration
benchmarks [1]) or by using randomly generated configuration models [62]. On
the other hand, we found a work providing a technique for white-box testing of
configuration systems [21]. However, we have not found any approach to system-
atically perform functional testing of configurators using metamorphic relations
as we found for feature model analysis tools. Similarly, we have not found tech-
niques to systematically search for difficult configuration problems as proposed
for hard feature models.

3.5 Summary of Findings

Figure 3 provides a first overview5 of existing related research in the fields of
variability models (putting special attention to feature model related results)
and product configuration and how they can be used in the other area. Next,
we explain the results from our literature review detecting opportunities for
cross–fertilization either from feature model analysis to product configuration or
backwards.

Feature model analysis can contribute to product configuration in:
– Defining a standard configuration language similar to some of the existing

variability languages in the software product line community like any variant
of feature models [53], CVL [24] or TVL [11] and providing formal syntax
and semantics to the standard configuration language as it has been done in
feature models [13,53].

– Providing a historical catalogue of configuration operations similar to what
has been reported in the feature model analysis literature [8]. In the fea-
ture model literature more than 30 analysis operations exists. Finding a
similar catalogue in the product configuration field remains as a challenge.
Having such a catalogue can help to summarize the results in the product

5 Due to the fact that we are reporting first results of our ongoing research, we do not
claim for completeness with regard to this overview.



170 D. Benavides et al.

Variability models⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Modelling

⎧
⎪⎪⎨

⎪⎪⎩

• standard common variability language (CVL) [24]
• different feature modelling dialects [53]
• textual variability languages like TVL [11]
• formal syntax and semantics [13,53]

Operations
{• catalogue of analysis operations [8]

Quality assurance

{ • functional testing by means of metamorphic relations [56]
• performance testing by means of metaheuristic search [57]

Product configuration
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Modelling

⎧
⎪⎪⎨

⎪⎪⎩

• UML/OCL-based representations [15]
• semantic web and description logics based representations [18,40]
• standardization efforts in constraint representations [45]
• definition of configuration tasks [43]

Automated support

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

• Different forms of constraint satisfaction problems
DCSP[26], CCSP [42] or GCSP[23,38]
• combination of descripton logics and CSP [35]
• off-line compilation techniques for interactive
configuration [33,29,14,50]
• explanation mechanisms [25,17,32,46,48,20,22]

Quality assurance

{• configuration benchmark [1]
• white–box testing techniques [21]

Fig. 3. Summary of potential synergies

configuration field and ease the adoption of the results by the feature model
community.

– Providing more elaborated mechanisms for functional and performance test-
ing of configurators like the ones reported for feature model analysis tools
either for functional testing using an automated test data generator [56] or
using metaheuristic techniques for finding difficult configuration instances
for a given configurator [55,57].

Product configuration can contribute to feature model analysis in:
– Exploring similar automated mechanisms to perform analysis operations us-

ing existing approaches like DCSP [26], CCSP [42] or GCSP [23,38]. Also
combinations of different paradigms depending on the kind of the operation
like description logics and CSP [35].

– Adapting off-line compilation techniques for interactive configuration re-
mains as a challenge in feature model configuration tools in order to provide
back–track free feature model configurators [33,29,14,50].

– Reusing explanations mechanisms [25,17,32,46,48,20,22] since the known
feature model explanation mechanisms mostly rely on Reiter’s theory of
diagnosis.



Automated Analysis in Feature Modelling and Product Configuration 171

4 Conclusions and Future Work

Feature model analysis and product configuration has a lot more in common
than what has been reported until now. We think that the cross–fertilization
of these two independent areas is a mandatory step for the next years at least
in the software product line and variability management communities. In this
paper, we have reported a rapid literature review that put this fact in evidence
and give concrete research opportunities.

To better explore the results of one and other communities a more exhaus-
tive literature review specially in the field of product configuration seems to be
desirable and this paper is a first step forward.

Other research questions remained can be related to other engineering task
such as maintenance or requirement analysis. In this sense, we have found in the
recent variability management related venues papers about reverse engineering
of variability models [2,3,30,37,58,67]. Exploring if similar problems haven been
addressed in the configuration literature remains as part of our future work.

Acknowledgements. We would like to thank Sergio Segura for giving some
comments on a previous version of this paper. This work was supported, in part,
by the European Commission (FEDER), the Spanish Government under project
SETI (TIN2009-07366) – by the Andalusian Government under project THEOS
(TIC-5906), and the Austrian Research Promotion Agency under the project
ICONE (827587).

References

1. Configuration Benchmarks Library,
http://www.itu.dk/research/cla/externals/clib

2. Acher, M., Baudry, B., Heymans, P., Cleve, A., Hainaut, J.: Support for reverse
engineering and maintaining feature models. In: Proceedings of the Seventh Inter-
national Workshop on Variability Modelling of Software-intensive Systems, p. 20.
ACM (2013)

3. Acher, M., Cleve, A., Perrouin, G., Heymans, P., Vanbeneden, C., Collet, P., Lahire,
P.: On extracting feature models from product descriptions. In: Proceedings of
the Sixth International Workshop on Variability Modeling of Software-Intensive
Systems, VaMoS 2012, pp. 45–54. ACM, New York (2012)

4. Andersen, H.R., Hadzic, T., Pisinger, D.: Interactive cost configuration over deci-
sion diagrams. J. Artif. Intell. Res (JAIR) 37, 99–139 (2010)

5. Apt, K.R.: Principles of Constraint Programming. Cambridge University Press,
Cambridge (2003)

6. Asikainen, T., Männistö, T., Soininen, T.: Kumbang: A domain ontology for mod-
elling variability in software product families. Advanced Engineering Informat-
ics 21(1), 23–40 (2007)

7. Barker, V., OConnor, D., Bachant, J., Soloway, E.: Expert systems for configu-
ration at digital: Xcon and beyond. Communications of the ACM 32(3), 298–318
(1989)

http://www.itu.dk/research/cla/externals/clib


172 D. Benavides et al.

8. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models
20 years later: a literature review. Information Systems 35(6), 615–636 (2010)

9. Bouquet, F., Jegou, P.: Using obdds to handle dynamic constraints. Information
Processing Letters 62(3), 111–120 (1997)

10. Brereton, P., Kitchenham, B., Budgen, D., Turner, M., Khalil, M.: Lessons from
applying the systematic literature review process within the software engineering
domain. Journal of Systems and Software 80(4), 571–583 (2007)

11. Classen, A., Boucher, Q., Heymans, P.: A text-based approach to feature modelling:
Syntax and semantics of tvl. Sci. Comput. Program. 76(12), 1130–1143 (2011)

12. Czarnecki, K., Grünbacher, P., Rabiser, R., Schmid, K., Wasowski, A.: Cool fea-
tures and tough decisions: a comparison of variability modeling approaches. In:
VaMoS, pp. 173–182 (2012)

13. Durán, A., Benavides, D., Segura, S., Trinidad, P., Ruiz-Cortés, A.: Flame: Fama
formal framework (v 1.0). Technical Report ISA–12–TR–02, Seville, Spain (March
2012)

14. Fargier, H., Vilarem, M.-C.: Compiling csps into tree-driven automata for interac-
tive solving. Constraints 9, 263–287 (2004)

15. Felfernig, A.: Standardized configuration knowledge representations as technolog-
ical foundation for mass customization. IEEE Transactions on Engineering Man-
agement 54(1), 41–56 (2007)

16. Felfernig, A.: Intelligent techniques for software product line engineering. In:
Proccedings of the 2nd International Workshop on Formal Methods and
Analysis in Software Product Line Engineering, FMSPLE at SPLC (2011),
www.iese.fraunhofer.de/en/events/fmsple2012.html

17. Felfernig, A., Friedrich, G., Jannach, D., Stumptner, M.: Consistency-based Di-
agnosis of configuration knowledge bases. Artificial Intelligence 152(2), 213–234
(2004)

18. Felfernig, A., Friedrich, G., Jannach, D., Stumptner, M., Zanker, M.: Configura-
tion Knowledge Representations for Semantic Web Applications. Artificial Intelli-
gence in Engineering, Design, Analysis and Manufacturing (AIEDAM) 17(2), 31–50
(2003)

19. Felfernig, A., Friedrich, G., Jannach, D., Zanker, M.: Web-based configuration of
virtual private networks with multiple suppliers. In: Proceedings of 7th Interna-
tional Conference on Artificial Intelligence in Design (AID 2002), Cambridge, UK,
pp. 41–62 (2002)

20. Felfernig, A., Friedrich, G., Schubert, M., Mandl, M., Mairitsch, M., Teppan, E.:
Plausible repairs for inconsistent requirements. In: IJCAI, pp. 791–796 (2009)

21. Felfernig, A., Isak, K., Kruggel, T.: Testing knowledge-based recommender systems.
OEGAI Journal 4, 12–18 (2005)

22. Felfernig, A., Schubert, M., Zehentner, C.: An Efficient Diagnosis Algorithm for In-
consistent Constraint Sets. Artificial Intelligence for Engineering Design, Analysis,
and Manufacturing (AIEDAM) 25(2), 175–184 (2011)

23. Fleischanderl, G., Friedrich, G., Haselboeck, A., Schreiner, H., Stumptner, M.:
Configuring large systems using generative constraint satisfaction. IEEE Intelligent
Systems 13(4), 59–68 (1998)

24. Fleurey, F., Haugen, Ø., Møller-Pedersen, B., Olsen, G.K., Svendsen, A., Zhang,
X.: A generic language and tool for variability modeling. Technical Report A13505,
SINTEF, Oslo, Norway (2009)

25. Gedikli, F., Ge, M., Jannach, D.: Explaining online recommendations using per-
sonalized tag clouds. I-com 10(1), 3–10 (2011)

www.iese.fraunhofer.de/en/events/fmsple2012.html


Automated Analysis in Feature Modelling and Product Configuration 173

26. Gelle, E., Faltings, B.: Solving mixed and conditional constraint satisfaction prob-
lems. Constraints 8, 107–141 (2003)

27. Grant, M.J., Booth, A.: A typology of reviews: an analysis of 14 review types and
associated methodologies. Health Information and Libraries Journal 26(2), 91–108
(2009)

28. Hadzic, T., Andersen, H.R.: A bdd-based polytime algorithm for cost-bounded
interactive configuration. In: Proceedings of the 21st National Conference on Ar-
tificial Intelligence, AAAI 2006, vol. 1, pp. 62–67. AAAI Press (2006)

29. Hadzic, T., Subbarayan, S., Jensen, R.M., Andersen, H.R., Møller, J., Hulgaard,
H.: Fast backtrack-free product configuration using a precompiled solution space
representation. In: Proceedings of the International Conference on Economic, Tech-
nical and Organisational Aspects of Product Configuration Systems, pp. 131–138
(2004)

30. Haslinger, E., Lopez-Herrejon, R., Egyed, A.: Reverse engineering feature models
from programs’ feature sets. In: 18th Working Conference on Reverse Engineering,
WCRE 2011, Limerick, Ireland, October 17-20, pp. 308–312 (2011)

31. Hubaux, A., Jannach, D., Drescher, C., Murta, F., Männistö, T., Czarnecki, K.,
Heymans, P., Nguyen, N., Zanker, M.: Unifying software and product configuration:
A research roadmap. In: Proceedings of the Configuration Workshop at ECAI
(2012)

32. Jannach, D., Liegl, J.: Conflict-directed relaxation of constraints in content-based
recommender systems. In: Ali, M., Dapoigny, R. (eds.) IEA/AIE 2006. LNCS
(LNAI), vol. 4031, pp. 819–829. Springer, Heidelberg (2006)

33. Jensen, R.M.: Clab: A c++ library for fast backtrack-free interactive product con-
figuration. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, p. 816. Springer, Hei-
delberg (2004)

34. Juengst, E., Heinrich, M.: Using resource balancing to configure modular systems.
IEEE Intelligent Systems 13(4), 50–58 (1998)

35. Junker, U., Mailharro, D.: The logic of ilog (j)configurator: Combining constraint
programming with a description logic. In: Proceedings of the IJCAI-2003 Config-
uration Workshop, pp. 13–20 (2003)

36. Liguori, F., Schreiber, F.: The software configurator: an aid to the industrial pro-
duction of software. In: Proceedings of the IEEE Second International Computer
Software and Applications Conference (COMPSAC), pp. 487–492 (1978)

37. Lopez-Herrejon, R.E., Galindo, J.A., Benavides, D., Segura, S., Egyed, A.: Reverse
engineering feature models with evolutionary algorithms: An exploratory study.
In: Fraser, G., Teixeira de Souza, J. (eds.) SSBSE 2012. LNCS, vol. 7515,
pp. 168–182. Springer, Heidelberg (2012)

38. Mailharro, D.: A classification and constraint-based framework for configura-
tion. Artificial Intelligence for Engineering, Design, Analysis and Manufacturing
(AIEDAM) 12(4), 383–397 (1998)

39. Männistö, T., Soininen, T., Sulonen, R.: Product configuration view to software
product families. In: Software Configuration Management Workshop, SCM-2010
(2001)

40. McGuiness, D., Wright, J.: An industrial strength description logics-based config-
urator platform. IEEE Intelligent Systems 13(4), 69–77 (1998)

41. Mendonça, M., Wasowski, A., Czarnecki, K., Cowan, D.: Efficient compilation tech-
niques for large scale feature models. In: Proceedings of the 7th International
Conference on Generative Programming and Component Engineering, GPCE,
pp. 13–22 (2008)



174 D. Benavides et al.

42. Mittal, S., Falkenhainer, B.: Dynamic constraint satisfaction problems. In: AAAI,
pp. 25–32 (1990)

43. Mittal, S., Frayman, F.: Towards a generic model of configuration tasks. In: Pro-
ceedings of 11th International Joint Conference on Artificial Intelligence (IJCAI
1989), Detroit, MI,USA, pp. 1395–1401 (1989)

44. Mohalik, S., Ramesh, S., Millo, J.-V., Krishna, S.N., Narwane, G.K.: Tracing spls
precisely and efficiently. In: Proceedings of the Software Product Line Conference,
SPLC(1), pp. 186–195. ACM (2012)

45. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: Minizinc:
Towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529–543. Springer, Heidelberg (2007)

46. O’Callaghan, B., O’Sullivan, B., Freuder, E.C.: Generating corrective explana-
tions for interactive constraint satisfaction. In: van Beek, P. (ed.) CP 2005. LNCS,
vol. 3709, pp. 445–459. Springer, Heidelberg (2005)

47. O’Sullivan, B.: Tutorial on product configuration. In: ASPL 2008, First Workshop
on Analyses of Software Product Lines at SPLC (2008), www.isa.us.es/aspl08/

48. O’Sullivan, B., Papadopoulos, A., Faltings, B., Pu, P.: Representative explanations
for over-constrained problems. In: AAAI, pp. 323–328 (2007)

49. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer, Heidelberg (2005)

50. Rao, V.N.: Solving constraint satisfaction problems using finite state automata.
In: Proceedings of the Tenth National Conference on Artificial Intelligence, AAAI
1992, pp. 453–458. AAAI Press (1992)

51. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1),
57–95 (1987)

52. Sabin, D., Weigel, R.: Product configuration frameworks - a survey. IEEE Intelli-
gent Systems 13(4), 42–49 (1998)

53. Schobbens, P., Heymans, J.T.P., Bontemps, Y.: Generic semantics of feature dia-
grams. Computer Networks 51(2), 456–479 (2007)

54. Segura, S., Benavides, D., Ruiz-Cortés, A.: Functional testing of feature model
analysis tools: a test suite. IET Software 5(1), 70–82 (2011)

55. Segura, S., Galindo, J., Benavides, D., Parejo, J.A., Ruiz-Cortés, A.: Betty: bench-
marking and testing on the automated analysis of feature models. In: VaMoS, pp.
63–71 (2012)

56. Segura, S., Hierons, R.M., Benavides, D., Ruiz-Cortés, A.: Automated metamor-
phic testing on the analyses of feature models. Information & Software Technol-
ogy 53(3), 245–258 (2011)

57. Segura, S., Parejo, J.A., Hierons, R.M., Benavides, D., Ruiz-Cortés, A.: Ethom: An
evolutionary algorithm for optimized feature models generation (v. 1.1). Technical
Report ISA-2012-TR-01, ETSII. Avda. de la Reina Mercedes s/n, 2 (2012)

58. She, S., Lotufo, R., Berger, T., Wasowski, A., Czarnecki, K.: Reverse engineering
feature models. In: ICSE, pp. 461–470 (2011)

59. Sinnema, M., Deelstra, S., Nijhuis, J., Bosch, J.: COVAMOF: A framework for
modeling variability in software product families. In: Nord, R.L. (ed.) SPLC 2004.
LNCS, vol. 3154, pp. 197–213. Springer, Heidelberg (2004)

60. Soininen, T., Tiihonen, J., Männistö, T., Sulonen, R.: Towards a general ontology
of configuration. Artificial Intelligence in Engineering Design Analysis and Manu-
facturing (AIEDAM) 12(4), 357–372 (1998)

61. Subbarayan, S.: Integrating csp decomposition techniques and bdds for compiling
configuration problems. In: Barták, R., Milano, M. (eds.) CPAIOR 2005. LNCS,
vol. 3524, pp. 351–365. Springer, Heidelberg (2005)

www.isa.us.es/aspl08/


Automated Analysis in Feature Modelling and Product Configuration 175

62. Tiihonen, J., Soininen, T., Niemelä, I., Sulonen, R.: Empirical testing of a weight
constraint rule based configurator. In: Proceedings of the ECAI Configuration
Workshop (2002)

63. Trinidad, P., Benavides, D., Durán, A., Ruiz-Cortés, A., Toro, M.: Automated
error analysis for the agilization of feature modeling. Journal of Systems and Soft-
ware 81(6), 883–896 (2008)

64. Trinidad, P., Ruiz-Cortés, A.: Abductive reasoning and automated analysis of fea-
ture models: How are they connected? In: Proceedings of the Third International
Workshop on Variability Modelling of Software-Intensive Systems, pp. 145–153
(2009)

65. White, J., Benavides, D., Schmidt, D.C., Trinidad, P., Dougherty, B., Ruiz-Cortés,
A.: Automated diagnosis of feature model configurations. Journal of Systems and
Software 83(7), 1094–1107 (2010)

66. White, J., Schmidt, D., Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated
diagnosis of product-line configuration errors in feature models. In: Proceedings of
the Sofware Product Line Conference (2008)

67. Yi, L., Zhang, W., Zhao, H., Jin, Z., Mei, H.: Mining binary constraints in the
construction of feature models. In: 2012 20th IEEE International Requirements
Engineering Conference (RE), pp. 141–150 (September 2012)



Configurable Software Product Lines –

Supporting Heterogeneous Configuration
Knowledge

Elder Cirilo1, Uirá Kulesza2, Alessandro Garcia1, Don Cowan3,
Paulo Alencar3, and Carlos Lucena1

1 Pontifical Catholic University of Rio de Janeiro, Informatics Department,
Rio de Janeiro, Brazil

2 Federal University of Rio Grande do Norte, Computer Science Department,
Natal, Brazil

3 University of Waterloo, David R. Cheriton School of Computer Science ,
Waterloo, Canada

{ecirilo,afgarcia,lucena}@inf.puc-rio.br, uira@dimap.ufrn.br,

dcowan@csg.uwaterloo.ca, palencar@cs.uwaterloo.ca

Abstract. Although different types of enterprise information systems
have been built as configurable software product lines, the growing het-
erogeneity and diversity in system development approaches makes it dif-
ficult to specify the configuration knowledge. In this paper we examine
the deficiencies of current approaches to the specification of configuration
knowledge, and as a solution propose the notion of Domain Knowledge
Modeling Languages (DKMLs). We also present GenArch+, an extensi-
ble tool that supports the creation and composition of DKMLs. We illus-
trate and evaluate the use of DKMLs in four different product lines. Our
quantitative and qualitative assessment suggests that the use of DMKLs
brings improvements for heterogeneous configuration knowledge specifi-
cation.

Keywords: Software Product Lines, Object-Oriented Frameworks,
Configuration Knowledge, Product Derivation

1 Introduction

A variety of enterprise information systems are increasingly being built as con-
figurable software product lines. A software product line (SPL) [18] aims at con-
structing (deriving) customer-specific products from a set of reusable features.
Configurable software product lines [19] are a subclass of software product lines
that are customized as a single product without programming new completion
code. Systematic reuse of features through a configuration approach can poten-
tially lead to significant productivity gains but requires explicit configuration
knowledge. This knowledge states the configuration combinations that do not
violate the valid relations between product line artifacts such as features and

J. Favaro and M. Morisio (Eds.): ICSR 2013, LNCS 7925, pp. 176–191, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Configurable Software Product Lines 177

source code. Consequently, specifying configuration knowledge is as essential as
specifying the base code artifacts.

Therefore the motivation behind this work is the need to improve the spec-
ification of configuration knowledge for enterprise software product lines. The
mainstream development of modern enterprise software requires the convergence
of multiple views and expertise. To deal with each one, participants in the devel-
opment process use language specific to their domain knowledge [12]. Thus, the
implementation of enterprise software product lines reuses a number of different
technologies to address a series of concerns such as business process, state per-
sistency, service orchestration and graphical user interface [7,6]. Framework is
an example of a development technology where software systems are made using
domain-specific constructions.

The main advantage of frameworks is that they offer the opportunity of writ-
ing code by performing smooth implementation steps such as writing XML code
or completing a pre-defined interface. Even though frameworks are often conve-
nient, they can be hard to learn and use. Indeed, one recent study [9] showed that
developers in most cases complained about the difficulty with programming in-
terface role diffusion, subtle precondition or dependency, unclear programming
interface semantics, and undocumented rules. These issues lead to situations
where it is difficult to specify and comprehend the configuration knowledge with-
out proper guidance. We will refer to the existing challenges as the heterogeneous
configuration knowledge problem.

Several different research approaches have been used to produce configurable
product lines [5,3,14]. While they use annotative and model-supported tech-
niques, current approaches suffer from the same problem: they do not support
the specification of configuration knowledge that involves domain-specific con-
structions and programming interfaces that span heterogeneous languages and
file types such as XML and Java. Model-supported techniques [5,3] tend to force
the use of a pre-determined set of general abstractions and mechanisms. Thus,
they do not provide any guidance in specifying the valid set of configurations
that can be applied based on the framework’s programming interfaces. Annota-
tive techniques [14] are limited to the source code level. These techniques are
so restrictive that to reveal the configuration knowledge the developer needs to
investigate both the framework source code and documentation, which is often
incomplete.

In this paper, we identify the shortcomings related to the development of con-
figurable product lines based on frameworks (Section 3) and show how the use of
DKMLs improves the specification of the configuration knowledge (Section 4).
We also present GenArch+, an Eclipse-based plugin that supports the flexible
construction and composition of DKMLs (Section 5). Finally, we evaluate the use
of DKMLs in four different product lines (Section 6). The quantitative and qual-
itative indicators show that the use of DKMLs in conjunction with GenArch+ is
promising. The results provide evidence that framework-based software product
lines can be built and modeled in a more concise and comprehensible fashion
than existing approaches. The evaluation also shows that GenArch+ reduces



178 E. Cirilo et al.

the effort of building and composing new DKMLs, which motivates their use in
mainstream development of enterprise information systems. A motivating exam-
ple is examined in Section 2. Section 7 presents related work and discussions.
Finally, Section 8 concludes this paper.

2 Motivating Example: Product Line Implementation
with Diverse Frameworks

In order to motivate our research into the heterogeneous configuration knowl-
edge problem, we consider a category of web-based enterprise systems which are
implemented using diverse frameworks. The OLIS (Online Intelligent Services)
system is a product line for deriving web-based information systems with sev-
eral end-user features. Some of the features of OLIS are: (i) User Management ;
(ii) Event Announcement ; (iii) Calendar ; and (iv) Weather Service. We consider
a feature as a unit of functionality that satisfies a requirement and provides a
potential configuration option.

OLIS

WeatherCalendar

Event Reminder

<agent>
<capabilities>
  <capability name="eventschedulercap"
    file="....EventScheduler" />
</capabilities>

<beliefs>
<belief name="myself" class="User" exported="true">
  ...
  <assignto ref="eventschedulercap.myself" />
  ...
</belief>
</beliefs>
</agent>

User Agent Definition File

<capability>
<beliefs>
  <beliefref name="myself" 
    exported="true" class="User">
    <abstract />
  </beliefref>
</belief>
</capability>

Event Sechuler Capability Definition File

Spring Application Context File
<beans>
<bean id="WeatherService"
class="br.pucrio.olis.business.service.impl.WeatherServiceImpl">

<constructor-arg ref="WeatherUserServiceDAO" />
<constructor-arg ref="CityDAO" />

</bean>
</beans>

EventAnnouncement Service Implementation

public class WeatherServiceImpl extends 
ObservableBusinessServiceImpl implements WeatherService {

  private CityDAO cityDAO;
  private WeatherUserServiceDAO weatherUserServiceDAO;
  public WeatherServiceImpl(WeatherUserServiceDAO wsDAO,

CityDAO cityDAO) {

}

Jadex Framework

Spring Framework
Agent

Capability

Bean

requires

MapsTo

requires

MapsTo

Event Scheduler

requires

Fig. 1. Illustrative Cases of Configuration Knowledge in OLIS

The OLIS architecture is structured using the Layer architectural pattern. In
this paper, we focus on the configuration knowledge related to the Agent and
Business layers of the OLIS product line. The Agent layer is implemented on
Jadex1 a common goal-oriented framework. Jadex provides a set of abstractions
such as agents, beliefs, goals, plans, capabilities, events and expressions. The
Jadex programming interface relies on Java and an XML schema for specifying
instances of its abstractions. The Business layer was implemented using the
Spring2 framework. Spring provides a service-oriented architecture based on the

1 jadex.informatik.uni-hamburg.de
2 http://www.springsource.org/

jadex.informatik.uni-hamburg.de
http://www.springsource.org/


Configurable Software Product Lines 179

Bean abstraction, which is used to denote Spring-managed objects. The Spring
container manages the object lifecycle by interpreting declarative data exposed in
the form of XML documents defining the classes and properties of the injectable
objects. These documents, called the Spring Application Context, express the
Spring programming interface.

Figure 1 illustrates the usual form of instantiating Spring beans and Jadex
agents and how the configuration knowledge occurs in this architectural style.
Source code is represented using declarations of abstractions expressed in XML
files and procedural code in Java classes. A distinguishing characteristic of
feature-based product lines is the mapping from features to their implementa-
tion. These mappings represent the conditions (also called presence conditions)
that control the inclusion or exclusion of the code assets or their parts. There
exist several such mappings in the OLIS product line. A recurring characteristic
is that they span a diversity of file types such as XML files and Java classes, and
must conform to: (i) the framework’s programming interfaces, and (ii) references
that exist between file types. These requirements make the configuration knowl-
edge of the OLIS product line sufficiently complex to represent the recurring
challenges faced in the development of many configurable enterprise information
systems [13]. Thus, the OLIS product line will be used in the next section to
illustrate the difficulties in representing heterogeneous configuration knowledge.

3 Heterogeneous Configuration Knowledge Issues

The configuration knowledge of configurable product lines is supproted by many
tools (Section 3.1). The limitations of these tools in adequately supporting
the specification and understanding of this knowledge are discussed in Sections
3.2 and 3.3.

3.1 Feature-Based Product Derivation Tools

As discussed in the introduction, there are two main approaches for building
configurable product lines: annotative and model-supported. Two tools repre-
sentative of these different styles are pure::variants [3] and CIDE [14]. Both
tools depart from the assumption that product lines are structured as a set of
features. A feature model is used to represent both the hierarchical arrangement
of the features and the set of constraints that restrict possible combinations of
those features. The product line implementation uses source code configuration.
Presence conditions are the pieces in the configuration knowledge used to evalu-
ate whether specific parts of the source code must be present in a feature model
configuration.

CIDE and pure::variants can be distinguished by the way presence conditions
are specified. CIDE specifies the presence condition in the source code using an
annotative approach similar to #ifdef and #endif statements. CIDE guides the
developer when annotating the source code in that it avoids annotations that do
not respect the language syntax and type system. In contrast, pure::variants is



180 E. Cirilo et al.

based on a modeling approach for structuring the product line. The product line
architecture is represented by one or more object-oriented models, called Family
models. The presence conditions attached to model elements define when an
element must be included or excluded or when a transformation such as template
transformation does not need to be evaluated. In pure::variants, developers are
free to create requires and excludes constraints, which express the interaction
between model elements.

3.2 Mismatch of Domain Knowledge Specification

Creating presence conditions is normally based on the source code [14]. For exam-
ple, in CIDE the mappings illustrated in Figure 1 correspond to annotating the
declaration tag of the WeatherService bean and the WeatherServiceImpl class
with presence conditions in terms of the Weather feature. In pure::variants an
instance of the Class concept can be created in the Family Model to represent the
WeatherService bean where the presence of the concrete WeatherServiceImpl
class is also defined. The configuration of the declaration tag needs to come from
a template file owing to the lack of a proper connection with the source code.

These approaches often lead to a distorted view of the configuration knowl-
edge. The developers are not able to reason locally about configurations. Even
worse, their reasoning is not in terms of framework abstractions and program-
ming interfaces which government the product line implementation. Therefore,
when creating the presence conditions, the developers need to know the required
and dependent source code artifacts. Unfortunately, the optional and required
combination of mappings (given by programming interfaces semantics) is not
specified explicitly in the existing tools. These combinations can only be discov-
ered by investigating the source code or reading the framework documentation.
For example, there is no mechanism that ensures the correspondence of the
mapping from Weather feature to source code with the Spring programming in-
terface semantics (see Figure 1). Consequently, understanding and guaranteeing
the consistency of the configuration knowledge without domain-specific guidance
is normally a tedious and error-prone activity.

3.3 Diffusion and Replication of Presence Conditions

In the example of Section 2, the feature Weather appears in two files (Spring Ap-
plication Context and WeatherServiceImpl class) that realize the same frame-
work abstraction. As a consequence a lack of mechanisms for representing the
configuration knowledge through framework abstractions replicates presence
conditions across the source code. Table 1 is an overview of the degree of fea-
ture crosscutting (diffusion) in four different framework-based product lines.
This metric counts the number of features that crosscut more than one source
code artifact. In the OLIS SPL, for example, there are 7 optional or alternative
features, with 6 of them present in more than 135 of the 270 files that implement



Configurable Software Product Lines 181

the product line. Thus, the features crosscut more than 50% of all source code.
Similarly, a large percentage of crosscutting was found in other product lines, as
also captured in Table 1.

As the size of product line code grows, it might become increasingly difficult
to understand the overall purpose of the configuration knowledge. The number
of artifacts makes it challenging to see how many and which artifacts are im-
plementing a feature and how they interact. The previous example involves the
exhaustive verification of multiple code snippets across heterogeneous artifacts
with reasoning about non-trivial and implicit references.

Table 1. Crosscutting degree in four different product lines

Product Lines
Number of
Features

Number of
Files

Number of Files with
Presence Conditions

Crosscutting
Degree

OLIS 7 270 135 50%

eShop 8 93 49 52%

IPAgent 7 30 16 53%

eCommerce 31 173 47 28%

A workaround to reduce the impact of scattered presence conditions is to use
querying mechanisms [16] that allow the inspection of features across code assets.
Pure::variants provides some querying capabilities that facilitate the inspection
of the product line source code while CIDE [14] supports reasoning about scat-
tered features through a visualization mechanism that appears to amalgamate
the separated concerns. However, these approaches still do not solve the fun-
damental problems discussed previously. The abstraction mismatch and feature
diffusion remain, and require developers to spend additional time performing
non-trivial queries on the product line source code. For these reasons, the prob-
lem should be re-formulated so that the programmers doing product line configu-
ration only work with familiar abstractions. Thus, we argue that to address these
challenges, product line developers need to apply domain-specific mechanisms to
represent the configuration knowledge.

4 Modeling Heterogeneous Configuration Knowledge

In order to improve the specification of configuration knowledge for framework-
based product lines we propose the notion of a domain knowledge modeling
language (DKML). Rather than using general-purpose mechanisms, developers
can rely on a specification that provides domain-specific syntax and guided de-
velopment. The DKMLs explicitly indicate when the mappings from features to
source code conform to a framework’s programming interfaces and constraints.

Figure 2 shows an overview of our model-supported approach for engineer-
ing configurable product lines. The feature model distinguishes both the do-
mains common characteristics and variability. The implementation model is a



182 E. Cirilo et al.

Feature Model

Configuration Model
Presence Conditions

Implementation 
Model

Framework 
DKML

cross-referencecross-reference

cross-reference

Component 
Technology 

DKML

Framework 
DKML

Fig. 2. Approach Overview

specification of the source code in terms of Classes, Folders, Components,
Files and references to Fragments inside a code asset. The domain knowledge
models are meant to avoid the replication and diffusion in the configuration
knowledge specification. Finally, the configuration model contains the presence
conditions, which indicate the existence or non-existence of domain knowledge
model (DKM) elements or event parts in the source code. We use the terms
DKML and DKM to denote the meta- and modeling levels, respectively.

4.1 DKML: Definition and Properties

A DKML is a language designed for specifying the configuration knowledge for a
product line for a specific domain. A DKML consists of an abstract syntax with
relations that must hold between language constructs. As an example, a DKML
for Spring comprises the concept Bean, which contains an arbitrary number of
Injection concepts, which in turn have a relationship with another Bean concept.
A DKM conforming to this abstract syntax, for instance, defines a concrete
Bean (e.g., WeatherService) comprising two Injection elements referring to the
WeatherUserServiceDAO and CityDAO beans. Accordingly, the abstract syntax
captures the abstractions as language concepts and encodes the framework’s
programming interface through relations.

Relations as references between the abstract syntax concepts and the im-
plementation model define how the source code is configured according to the
programming interface. For example, the concrete WeatherService bean from
the previous example needs to refer to an XML tag that declares its dependen-
cies on other beans via instances of the Injection concept. In addition, this bean
refers to its implementation (WeatherServiceImpl). This type of reference is
created for each abstraction, allowing fine-grained control over the source code
configuration.

A DKML addresses the challenges presented in Section 3, as discussed in the
following:



Configurable Software Product Lines 183

Taming Configuration Knowledge Mismatch. With DKMLs the config-
uration knowledge specification moves from generic or low-level languages to
domain-specific languages. That is, the developers are able to create feature
mappings in a more clean and concise form, such as the WeatherService bean
implements the feature Weather. Feature mapping is controlled by the abstract
syntax and relationships, thus guiding the developer in making correct mappings.
References to implementation models identify the source code that implements
the abstractions. Thus, the developers obtain an overview of the product line
implementation in terms of the framework abstractions and programming in-
terfaces with which they are familiar, such as Bean, Agents, Entities, and their
relations.

Reducing and Modularizing Presence Conditions. The use of abstractions
in the design of configuration knowledge also reduces the re-occurrence of the
same presence condition along with the source code, thereby promoting a concise
and modular representation. In the example of Section 2, the presence condition
becomes a mapping relationship between the WeatherService bean and the
feature Weather. References to implementation artifacts which are part of the
Bean concept are used to propagate this condition during configuration of the
source code.

4.2 Example: OLIS Product Line Implementation with DKMLs

We illustrate the use of DKMLs through the OLIS product line. This illustra-
tive example consists of two DKMs (see Figure 3). The first DKM defines the
implementation knowledge of the Agent layer using the dialect proposed by the
Jadex framework. The second DKM represents the knowledge of the Business
layer that was structured using Spring beans.

Spring Configuration Model View

Weather

Event Suggestion

Event Scheduler

Jadex Configuration Model View

Weather

Event Suggestion AND Academic

Event Suggestion AND Travel

Jadex Domain Knowledge Model View Spring Domain Knowledge Model View

Fig. 3. OLIS Domain Knowledge and Configuration Models (partial view)



184 E. Cirilo et al.

Figure 3 shows a partial view of the Jadex DKM for OLIS. There are two
agents in this model. The User agent is a representation of each user in the
system. Each User agent may have five different Capability elements, although
Figure 3 illustrates only two: (i) Event Scheduler; and (ii) Event Announcer.
The Weather agent, in turn, provides the weather information. The Spring DKM
specifies the elements from the Business layer. It contains some Bean elements
implementing OLIS services, which are the WeatherService, AcademicEvent-
Service and TravelEventService. Other elements are integration Beans fol-
lowing the Data Access Object pattern used to link the Business with the Data
layer. Spring Beans that implement the GUI Layer were represented in a separate
model, omitted from this paper.

The configuration model contains the presence conditions. They are charac-
terized as a constraint involving feature expressions and solution space elements.
Figure 3 illustrates, for example, the Weather agent as an implementation of the
Weather feature. In the same model, we can see a mapping between the expres-
sion Event Suggestion AND Academic and the AcademicEventServe bean. We
represent presence conditions in separated views, one for each DKML.

Each DKM element is associated with its implementation through references.
For example, the Bean concept expresses two references: (i) one to a Class ele-
ment, which abstracts the element that implements its behavior; and (ii) another
one to a Fragment element, which abstracts its structure declared in the Spring
Application Context file. The WeatherService bean, for example, contains a
reference to the WeatherServiceImpl class and another one to the Fragment

<bean id="WeatherService"...>. References between different domain models
are also supported. Note that the semantics of all illustrated relations, explicitly
expressed via DKMLs, are not able to be specified using the general-purpose
mechanisms of pure::variants and CIDE, as discussed in Section 3.

5 GenArch+: Product-Line Implementation with
DKMLs

DKMLs must be easy to build and compose with each other without negating
their domain-specific characteristics. Our solution for these two requirements is
the concept of a product line implementation infrastructure based on a domain-
independent schema and parametric polymorphism. The following subsections
describe the key characteristics of GenArch+.

5.1 Domain Knowledge Schema

GenArch+ consists of two distinct layers (see Figure 4). The first layer, do-
main knowledge schema, is a defined minimal set of concepts that serves to give
the second layer, DKMLs, a configuration foundation. This way, DKMLs are
given unambiguous definitions, and can be interpreted by a tool. DKML is the
only language to be manipulated directly by the developer. The domain knowl-
edge schema is used by the meta-modelers. They can determine the universe of



Configurable Software Product Lines 185

Domain Knowledege Schema

Selectable :: Element

String:expression

Reference<element :: Element>

reference: element

Element

String:name

String:id

Injection :: Selectable

beanRef: [1..1] Reference<Bean>

declaration: [1..1]Refenrece<Fragment>

Summarized Spring DKML

Bean :: Selectable

declaration: [1..1] Refenrece<Fragment>

class: [1..1] Reference<Class>

injection: [0..*] Injection

LegendEClass :: Meta-type 

EAttribute : [Cardinality] Reference<EClass>

inheritance

parametric
reference

association EAttribute : [Cardinality] EClass

Agent :: Selectable

file: [1..1] Reference<File>

Summarized Jadex DKML

Goal :: Selectable

declaration: [1..1] Reference<Fragment>

plan: [1..1] Refenrece<Plan>

Belief :: Selectable

declaration: [1..1] Reference<Fragment>

impl: [1..1] Refenrece<Class>

Event :: Selectable

declaration: [1..1] Reference<Fragment>

plan: [1..1] Refenrece<Plan>

Plan :: Selectable

declaration: [1..*] Reference<Fragment>

impl: [1..1] Refenrece<Class>

Capability :: Selectable

file: [1..1] Reference<File>

Fig. 4. Domain Knowledge Representation Schemas

DKMLs as composed of domain abstractions (Element), where some must have
those instances present in every DKM, while others can have those instances
optionally excluded (Selectable). Finally, model elements are also likely to be
related to other elements (Reference).

DKMLs are constructed using inheritance (see Figure 4). Every DKML con-
cept representing a framework abstraction must be a sub-type of Element. When
a concept represents an optional abstraction, it needs to be a sub-type of Se-
lectable (e.g., Agent). Hence, the tool enables the mapping between concept
instances and feature expressions through an expression property. The Refer-
ence element is used to denote all types of relations between framework abstrac-
tions such as Injection and Bean. Typed references are captured via parametric
polymorphism. For example, the beanRef property of the Inject concept only
assumes a reference to model elements that are instances of the bean concept.
It allows the infrastructure to interpret the DKML abstract syntax in domain-
specific ways and guide the developer when creating the configuration knowledge.
Therefore, in spite of its universality, the proposed schema is powerful enough to
express domain-specific structural constraints. Parametric references tie together
a DKML concept instance and a number of instances of other concepts. The in-
frastructure supports the design of metamodels that build models conforming to
the ECore meta-metamodel semantics and the following reference rules:

– 〈∗, Cj , {C1 · · ·Cn}〉 (ForAll) - The concept Cj can incorporate zero or more
references for each type of concept Ci in the set {C1 · · ·Cn}.

– 〈1, Cj , {C1 · · ·Cn}〉 (Mandatory) - The concept Cj must incorporate one
reference for each type of concept Ci in the set {C1 · · ·Cn}.

– 〈?, Cj , {C1 · · ·Cn}〉 (Optional) - The concept Cj can incorporate at least
one reference for each type of concept Ci in the set {C1 · · ·Cn}.



186 E. Cirilo et al.

5.2 The GenArch+ Tool

We extend our previous work [5] to support the aggregation of DKMLs. The
abstract syntax of each DKML is specified as an Ecore model implemented by
the Eclipse Modeling Framework (EMF). EMF is a plugin for defining domain-
specific languages and supports standard cross-model reference mechanisms, di-
verse type relationships, and parameterized references. The EMF significantly
facilitates the development of DKML extensions (Section 6). The functionality
of the GenArch+ has two key characteristics:

– Automated Guidance on Configuration Knowledge Specification:
Based on the well-formed rules (ForAll, Mandatory and Optional) and the
ECore meta-metamodel semantics, GenArch+ guides the developers in the
process of creating the references between model elements. GenArch+ is able
to restrict which types of model elements can be part of a reference and forces
the creation of missing elements or even references.

– Automated Product Derivation: GenArch+ achieves automatic prod-
uct derivation using a constraint satisfaction problem representation of the
product line. Model elements are represented as boolean variables that may
assume the values 0 or 1 (selected or not selected). Presence conditions
and references between model elements are expressed as propositional con-
straints. A constraint solver is used to evaluate the constraint satisfaction
problem and infer valid configurations of all models, which is used further to
configure the product line source code. The solver can also be used to verify
the consistency of the configuration knowledge.

6 Evaluation

This section presents the evaluation of DKMLs built for a wide range of
industrial-strength frameworks, which were used in turn to develop four prod-
uct lines. The purpose of our evaluation is two-fold: (i) assess the usefulness of
DKMLs in different scenarios, and (ii) quantify the benefits and drawbacks ofmap-
ping features to framework-provided abstractions, when compared to annotative
(e.g., CIDE) and model-driven (e.g., pure::variants) approaches. Based on the re-
sults, we were able to observe how the use of DKMLs affected the conciseness and
comprehensibility of the heterogeneous configuration knowledge representation
(Section 6.1). We also gathered some insights on the effort required to create new
DKMLs as the corresponding target product lines were built (Section 6.2).

6.1 Analyzing the Configuration Knowledge

We analyzed the use of DKMLs for product lines satisfying the following criteria:
(i) their implementations were based on multiple frameworks, (ii) the frameworks
were developed independently from each other, and (iii) each of them has more
than 30 features. The code size of the product lines ranges from ∼4000 LOC to
∼14600 LOC. The configuration knowledge of the four target product lines were



Configurable Software Product Lines 187

represented (and compared) using three approaches: CIDE, pure::variants, and
GenArch+. The comparison was based on the analysis of structural properties
of the configuration knowledge description.

Quantifying Configuration Knowledge Properties. We used a set of met-
rics to quantify properties of the configuration knowledge that have a direct or
indirect effect on their comprehensibility. The most basic metric is the number of
presence conditions (NPC), which captures the size of the configuration knowl-
edge. This measure can also be used as an initial indicator of replication and
verbosity in the configuration knowledge. Owing to the characteristics of each
tool, we measure NPC in different ways in each of them: (i) in CIDE, we count
the number of annotations in the source code; (ii) in pure::variants, the number
of required constraints involving features in the Family Model plus the number
of configuration statements in the source code; and (iii) in GenArch+, we count
the number of presence conditions in the Configuration Model.

We have also analyzed the extent to which the presence conditions affect mul-
tiple product line artifacts. In order to support this analysis, we have applied the
scattering degree measure [8]. The scattering degree (Scatt) is the number of the
presence conditions in different locations. This metric quantifies the diffusion of
the configuration knowledge. This measure can also be used to predict the effort
required from the developers and maintainers of the configuration knowledge.
Previous empirical evaluation of the crosscutting degree measure showed that
it is a useful indicator of maintenance effort (and lack of fault tolerance) in a
wide range of software engineering tasks [8,11]. The number of places that must
be annotated with presence conditions indicates the effort that developers need
to devote to comprehend and maintain the configuration knowledge. A large
number of presence conditions spanning numerous code artifacts could make
understanding the configuration knowledge difficult and as a consequence make
change and evolution of the product line challenging.

Table 2. Metrics result – Tool x Product Line

Product Lines

Tools OLIS IPAgent eShop EasyC

CIDE
NPC 221 33 203 76
Scatt 163 26 76 65

pure::variants
NPC 221 33 203 76
Scatt 23 14 62 26

GenArch+
NPC 144 20 189 65
Scatt 1 1 1 1

Results. Table 2 summarizes the results for GenArch+ using DKMLs as com-
pared to those results obtained with pure::variants and CIDE. The model-
supported and annotative approaches, respectively implemented by pure::variants
and CIDE, have a higher number of presence conditions. As they are not able to
isolate the framework-provided abstractions, they tend to lead to configuration



188 E. Cirilo et al.

knowledgewith poorermodularity thanGenArch+. In contrast, the use ofDKMLs
helps to reduce the number of presence conditions. The DKMLs require only one
presence condition for all source code instantiating the framework abstraction. Of
course what defines an abstraction is often open to interpretation and the granu-
larity of the abstraction often depends on individual circumstances. For example,
in both eShop and EasyC product lines, many features are related to properties of
entity abstractions, which are a common characteristic of data-centric information
systems (e.g., eBusiness). It leads to a high degree of fine-grained configurations
scattered across different layers. As a consequence, the difference of the NPCmet-
ric from GenArch+ to other approaches moves from ∼50% (OLIS and IPAgent)
to ∼15%, when we compare eShop and EasyC cases. Even though some presence
conditions do not directly map to abstraction instantiations or crosscut different
layers of the information systems, GenArch+ still avoids the intertwining of the
presence conditions with the source code via the Configuration model. The oppo-
site scenario prevails when using pure::variants and CIDE approaches, as we can
observe by analyzing the results of the Scatt metric.

Table 2 summarizes the degree of diffusion observed in the configuration
knowledge in all three cases. Better results were also found when using DKMLs.
The better modularity achieved through the use of DKMLs might improve the
management and traceability of features. They allow developers to focus on
the configuration knowledge rather than having to care about implementation
details. Therefore, it provides some evidence that model-supported approaches
can simplify some of the recurring maintenance tasks, such as the change im-
pact analysis. The use of DKMLs also encourages the design of tools to check
whether refactoring activities [4] preserve the framework programming interface
and constraints. Refactoring is often used when the adoption strategy involve
bootstrapping existing products into a software product line.

6.2 Building Domain Knowledge Modeling Languages

Our experience has shown that, in practice, a single DKML will cover only a small
portion of a product lines features. Thus, multiple DKMLs must be provided
for a real-life software product line. However, developing a new domain-specific
language for each domain can be costly and time-consuming [17]. In certain
circumstances, this might impair the adoption of DKMLs for the development
of configurable software product lines.

Our experience on using GenArch+ provided us with several insights regard-
ing the costs of creating DKMLs. We observed that developing DKMLs on top of
GenArch+ only involves the specification of their meta-models, namely the ab-
stract syntax and the relations between concepts. The “hardest” part of creating
new DKMLs is performed automatically by the EMF plug-in. EMF is respon-
sible for automatically producing a large number of code elements required to
classify the adapter classes, and persistency mechanisms. The Spring domain
knowledge model required that only 2,97% (47) of the total number of lines of
code must be developed manually. In the same way, the Jadex framework only
required the manual specification of 1,89% (55) of the total lines of code to



Configurable Software Product Lines 189

implement its respective DKML. The remaining, 2142 and 2869 lines of code
could be automatically generated.

7 Related Work and Discussion

Recent research has been conducted on modeling languages that abstract frame-
work-based code, product line configuration involving a diversity of file types and
software analysis techniques that are variability-aware. This section highlights
related work in two categories and also present some discussions.

Domain-Specific Modeling Languages and Frameworks. Research re-
lated to domain-specific modeling languages and frameworks is not new. For ex-
ample, Antkiewicz et al. [1] proposed Framework-specific Modeling Languages
(FSMLs) in order to help developers understand and verify framework usage.
FSMLs are related to DKMLs in that both are modeling approaches for repre-
senting the knowledge about framework usage. Fortunately, the strategies pro-
vided by FSMLs to support automatic extraction and round-trip engineering
can be used in our approach to improve DKM construction and maintenance.
GenArch+ draws on this approach, but relies on the pure ECore model as its
meta-metamodel rather than a customized meta-metamodel. This choice allows
GenArch+ to leverage existing modeling languages by loading, editing, and sav-
ing different models conforming to the universal configuration schema. Another
discussion of this subject is the GEMS project. This project emphasizes the
creation of a graphical, guided editor that supports automatic configuration of
models and full code generation. In contrast, our focus is on configurable product
lines, where products are derived as source code configurations. In the case of
multiple models, GEMS requires a composite meta-model to compose the mod-
els, while the GenArch+ approach relies on a generic editor which displays all
models and their regular cross-references.

Code Configuration Involving Diversity of File Types. Hessellund et al.
[12] present SmartEMF as a framework offering consistency checking and edit-
ing guidance of name-based references among multiple domain-specific languages
specified in XML schemas. Besides being focused on the construction of product
lines, one of the main advantages of our approach is that it is agnostic with
respect to the frameworks being used. GenArch+ represents and guides the cre-
ation of mappings from feature to abstraction instances of arbitrary frameworks
as long as there exists a DKML. Elsner et. al. [10] presented an approach and an
infrastructure for constraint checking across configuration file types and multiple
product lines. Similar to our approach, the source code and configuration files
are converted to models, which facilitate the use of constraint languages (e.g.,
OCL, Constraint Programming). Our approach differs from [10] in that we focus
on mainstream code-oriented product line engineering, while they consider the
orchestration of configurations that crosscut multiple product-line assets.

Validation in the Presence of Variability. Recently, researchers have started
to use software analysis techniques that are variability-aware [2,15]. The key



190 E. Cirilo et al.

idea is not to generate and analyze individual products, but to analyze the
whole source code directly with the help of configuration knowledge. There are
several proposals for variability-aware analyses in the literature, including pars-
ing, type checking and dataflow analysis. Unfortunately, framework-based source
code is not able to be processed directly by existing variability-aware analyses.
There is a lack of information about the existence of concepts and their pro-
gramming interface. The use of DKMLs therefore, can be seen as a step to-
wards variability-aware analyses of framework-based configurable product lines.
DKMLs encode the structure of framework programming interfaces, specifying
which concepts may appear, and where and how they are related. They also
define a clear mapping to code instantiating concepts. So now we are able to
automate some analyses such as checking the consistency of the entire product
lines without generating and analyzing individual products.

8 Conclusion

The heterogeneity of configuration knowledge in real-life product lines resem-
bles the recurring challenges faced in the development of enterprise informa-
tion systems. In this paper, we present a model-supported approach to specify
framework-based product lines explicitly. The DKML addresses a number of
challenges, such as: (i) concise and comprehensible specification of the config-
uration knowledge using framework-provided abstractions, (ii) modular reason-
ing about presence conditions; and (iii) guided creation of presence conditions.
The approach is supported by an extensible infrastructure, called GenArch+,
which enables agile implementation of new DKMLs, avoiding the overhead that
could be caused when creating one or more DKMLs. In our evaluation, we have
observed that the effort to reuse and create new DKMLs for a wide set of con-
figurable information systems is worthwhile because of all the benefits. The use
of DKMLs to specify the configuration knowledge relies on framework-provided
abstractions that are already part of the developer mindset, while supporting
improved modularity and brevity.

We expect that product lines based on other infrastructures could benefit
equally well from DKML representation and guidance facilities. In future work,
we intend to apply and evaluate our approach in complex product lines for other
information systems. Extending GenArch+ to provide guidance for refactoring
looks promising. In this case, the concept of refactoring product lines needs to
be extended to consider changes that preserve the observable behavior related to
framework programming interface. The current version of GenArch+, including
illustrative examples, is available at ”www.inf.puc-rio.br/∼ecirilo/genarch”.

References

1. Antkiewicz, M., Czarnecki, K.: Framework-specific modeling languages with round-
trip engineering. In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS
2006. LNCS, vol. 4199, pp. 692–706. Springer, Heidelberg (2006)



Configurable Software Product Lines 191

2. Apel, S., Kästner, C., Grölinger, A., Lengauer, C.: Type safety for feature-oriented
product lines. In: 25th International Conference on Automated Software Engineer-
ing, pp. 251–300 (2010)

3. Beuche, D.: Modeling and building software product lines with pure::variants. In:
12th International Software Product Line Conference, p. 358 (2008)

4. Borba, P., Teixeira, L., Gheyi, R.: A theory of software product line refinement.
In: Cavalcanti, A., Deharbe, D., Gaudel, M.-C., Woodcock, J. (eds.) ICTAC 2010.
LNCS, vol. 6255, pp. 15–43. Springer, Heidelberg (2010)

5. Cirilo, E., Kulesza, U., Lucena, C.: A product derivation tool based on model-
driven techniques and annotations. Journal of Universal Computer Science 14(8),
1344–1367 (2008)

6. Cirilo, E., Kulesza, U., Lucena, C.: Automatic derivation of spring–osgi based web
enterprise applications. In: 11th International Conference on Enterprise Informa-
tion Systems, pp. 228–233 (2009)

7. Cirilo, E., Nunes, I., Kulesza, U., Lucena, C.: Automating the product deriva-
tion process of multi-agent systems product lines. Journal of Systems and Soft-
ware 85(2), 258–276 (2012)

8. Conejero, J., Figueiredo, E., Garcia, A., Hernndez, J., Jurado, E.: Early crosscut-
ting metrics as predictors of software instability. In: 47th International Conference
Objects, Models, Components, Patterns, pp. 136–156 (2009)

9. Daqing, H., Lin, L.: Obstacles in using frameworks and apis: An exploratory study
of programmers’ newsgroup discussions. In: 19th International Conference on Pro-
gram Comprehension, pp. 91–100 (2011)

10. Elsner, C., Ulbrich, P., Lohmann, D., Schröder-Preikschat, W.: Consistent product
line configuration across file type and product line boundaries. In: Bosch, J., Lee,
J. (eds.) SPLC 2010. LNCS, vol. 6287, pp. 181–195. Springer, Heidelberg (2010)

11. Figueiredo, E., Silva, B., Sant’Anna, C., Garcia, A., Whittle, J., Nunes, D.: Cross-
cutting patterns and design stability: An exploratory analysis. In: 17th Interna-
tional Conference on Program Comprehension, pp. 138–147 (2009)

12. Hessellund, A., Czarnecki, K., W ↪asowski, A.: Guided development with multiple
domain-specific languages. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F.
(eds.) MODELS 2007. LNCS, vol. 4735, pp. 46–60. Springer, Heidelberg (2007)

13. Ishida, Y.: Challenge for the spl approach in enterprise software development. Tech-
nical report, NRI Information Technology (2007)

14. Kästner, C., Apel, S., Kuhlemann, M.: Granularity in software product lines. In:
30th International Conference on Software Engineering, pp. 311–320 (2008)

15. Kästner, C., Rhein, A., Erdweg, S., Pusch, J., Apel, S., Rendel, T., Ostermann,
K.: Toward variability-aware testing. In: 4th International Workshop on Feature-
Oriented Software Development, pp. 1–8 (2012)

16. Kimmig, M., Monperrus, M., Mezini, M.: Querying source code with natural lan-
guage. In: 26th International Conference on Automated Software Engineering,
pp. 376–379 (2011)

17. Mernik, M., Heering, J., Sloane, A.: When and how to develop domain-specific
languages. ACM Computing Surveys 37(4), 316–344 (2005)

18. Pohl, K., Böckle, G., Linden, F.: Software Product Line Engineering: Foundations,
Principles, and Techniques. Springer, Heidelberg (2005)

19. Raatikainen, M., Soininen, T., Männistö, T., Mattila, A.: Characterizing config-
urable software product families and their derivation. Software Process: Improve-
ment and Practice 10(1), 41–60 (2005)



Extracting Models from ISO 26262
for Reusable Safety Assurance

Yaping Luo1, Mark van den Brand1, Luc Engelen1, John Favaro2,
Martijn Klabbers1, and Giovanni Sartori2

1 Eindhoven University of Technology
P.O. Box 513, 5600 MB, Eindhoven, The Netherlands

{y.luo2,m.g.j.v.d.brand,l.j.p.engelen,m.d.klabbers}@tue.nl
2 Intecs S.p.A.

via Umberto Forti 5, 56121 Pisa, Italy
{john.favaro,giovanni.sartori}@intecs.it

Abstract. As more and more complex software is deployed in safety-
critical embedded systems, the challenge of assessing the safety of those
systems according to the relevant standards is becoming greater. Due to
the extensive manual work required, validating compliance of these sys-
tems with safety standards is an expensive and time-consuming activity;
furthermore, as products evolve, re-assessment may become necessary.
Therefore, obtaining reusable assurance data for safety assessment or
re-assessment is very desirable. In this paper, we propose a model-based
approach for assuring compliance with safety standards to facilitate reuse
in the assessment, qualification and certification processes, using the au-
tomotive safety standard ISO 26262 as a specific example. Three different
modeling techniques are described: A structure model is introduced to
describe the overall structure of the standard; a rule-based technique is
used for extracting the conceptual model from it; and a mapping to the
software and systems process engineering metamodel provides a descrip-
tion of its processes. Finally, validation in the context of a concrete use
case in the FP7 project OPENCOSS shows that the resulting models of
our approach resemble the industrial models, but that they, inevitably,
require the fine-tuning of domain experts.

Keywords: Safety Assurance Reuse, Safety-Critical Systems, ISO
26262, Conceptual Model, SPEM.

1 Introduction

With the increasing complexity of software-intensive safety-critical embedded
systems, more and more effort is necessary to ensure their safety. A number of
international functional safety standards have been developed to provide devel-
opment guidelines and keep the risk at an acceptable level [7]. Adherence to such
standards is the basis for safety assurance and certification1. However, current
1 In the remainder of this paper, we mention safety assessment only, because the ISO

26262 standard does not require certification by an assessment authority. Further-
more, for the definitions of the safety-related concepts in this paper, we refer to [4].

J. Favaro and M. Morisio (Eds.): ICSR 2013, LNCS 7925, pp. 192–207, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Extracting Models from ISO 26262 for Reusable Safety Assurance 193

safety assessment practices are among the most costly and time consuming tasks
in development of safety-critical embedded systems [13]; moreover, re-assessment
is often needed whenever such systems evolve. Therefore, it is crucial to find an
efficient way to reduce the recurring safety assessment costs. This motivates the
use of models that capture these safety standards and support the reuse of as-
surance artifacts. In some domains (such as the automotive domain), there is no
authority providing an interpretation of the safety standard, and the modeling
process is mainly performed by experts based on manufacturer requirements to
ensure sufficient quality. Thus, the whole process of extracting the models from
the safety standards becomes subjective. Furthermore, when a new version of
the standard is released, the models need to be updated or modified by persons
who may not yet have the competencies. Due to the invisible modeling process,
most of the previous work needs to be redone. Hence, finding an objective way
for creating the models is crucial.

The motivation for safety assurance reuse goes beyond re-assessment within
product evolution. It can be even more valuable across product development
efforts. Sometimes, different systems are developed with similar safety-related
characteristics, and the assurance artifacts used for one system can be reused
(with appropriate modification) in the assurance activities for the other, resulting
in considerable savings. In addition, the assurance artifacts themselves become
more reliable with repeated reuse. Just as systematic software reuse is facilitated
by formal modeling of the software application domain (the “domain model”),
systematic assurance reuse can benefit from formal modeling of the standard
that governs the domain. It is the model of a safety standard that facilitates
systematic reuse in safety assessment.

The idea of modeling standards is not new: modeling of safety standards is
widely used for understanding and communication among engineers and software
developers. Besides the aforementioned challenge concerning the subjectiveness
of the modeling process, there are other significant challenges to confront. First,
standards are invariably represented in natural language, with the resulting in-
evitable manual work of interpretation becoming more costly and less reliable.
It also increases the difficulty of identifying the reusable information from the
safety-related artifacts developed during the safety lifecycle. Second, standards
themselves contain inconsistencies. There are a number of synonyms used in the
standard, which makes it impossible to generate the models from the standards
automatically. Sometimes, standards are even in contradiction with themselves.
Finally, any formal model should support the demonstration of compliance with
the safety standard, both for the development process and for the diverse arti-
facts created during product development. We advocate that standards need to
be universally understandable and expressed in a language that is simple, well
structured, but strict. For this goal, we believe that in the future it should be
possible to transform standards into models automatically, and vice versa.

Work to date has generally involved conceptual modeling of standards for
understanding. A conceptual model for the aeronautic standard DO 178B [2]
is provided in [20] to improve communication and collaboration among safety



194 Y. Luo et al.

engineers and software engineers. In [18], a conceptual model of the generic
standard IEC 61508 [3] for electrical and electronic equipment is proposed for
the development of compliant embedded software. Also, in [14], some research on
process modeling has been done in the context of ISO 26262. All of these studies
refer to compliance with the standards from a specific point of view; moreover,
the modeling process is subjective, which may lead to inconsistencies of the
models after future modifications. Furthermore, the traceability of the source of
the models is not covered: no one knows where the concepts and relations in
the models come from, except the expert who has identified or defined them. To
the best of our knowledge, there does not yet exist a methodology to support
extracting a conceptual model from the standard in an objective fashion, a crucial
step along the way to systematic assurance reuse.

In view of these observations, we present a solution in this paper for creat-
ing models of safety standards in an objective manner, with the ultimate goal
of using the models for demonstrating compliance and enabling reuse of assur-
ance artifacts. As noted earlier, compliance demonstration requires two models:
the conceptual model and the process model. We have developed the so-called
“Snowball” approach for extracting the conceptual model from the standard. It
is a rule based approach that reduces the amount of manual work and provides
traceability between the model and the standard. For the process model, we
use a mapping between the standard and the general process model, providing
another way to reduce the subjectivity of the modeling process. ISO 26262, the
recent standard for functional safety in the automotive domain, is used as a
specific example in this paper; however, this work also forms the basis for facil-
itating a more general mapping between standards in different domains. Since
the Concept Phase, described in Part 3 of the standard, is the starting point of
the development process in ISO 26262, we illustrate our approaches by modeling
this phase.

The rest of the paper is organized as follows: Section 2 reviews the ISO 26262
standard, and describes the proposed modeling approach for enabling safety
assurance reuse in the context of OPENCOSS project. In Section 3, a rule-
based approach is defined for extracting a conceptual model. Section 4 outlines a
process model of the ISO 26262 Concept Phase. Section 5 discusses the validation
of those models. Section 6 introduces the related work of safety assurance reuse.
Finally, Section 7 summarizes our conclusions and future work.

2 Background

2.1 ISO26262

ISO 26262 is a goal-oriented standard for safety-critical systems within the do-
main of road vehicles. It is an adaptation of the generic IEC 61508 standard,
which focuses on Electrical/Electronic (E/E) systems but provides a general de-
sign framework for safety-critical systems [15]. The ISO 26262 standard consists
of ten parts. Part 1 provides the vocabulary; Part 2 introduces management of
functional safety; Part 3 to part 7 are the main parts of standard described using



Extracting Models from ISO 26262 for Reusable Safety Assurance 195

����������	
��


������ ��
���
�
��	
��
������

�
�����������

��
��
���
�	


����
	�	

��������	


Fig. 1. Relation between standard and project

the classic V-model for the different phases of the development process; and part
8 to part 10 are the supporting parts for how to use the standard.

More and more manufacturers in the automotive domain are developing
software-intensive systems in compliance with ISO 26262, but efficient deploy-
ment of this standard requires changes to the development process in specific
projects. Two levels may be distinguished: the safety standard level and the
project level. At the safety standard level, there are safety standards designed
by safety organizations to ensure product safety. At the project level, there are
work products as the outputs from each phase of the product development pro-
cess. The relation between these two levels (Figure 1) is the compliance argument:
it proves that the requirements of process and product at the project level adopt
the recommendations of the ISO 26262 standard. The challenge here is that at
the end of the project or at important milestones, evidence must be provided;
consequently, a mapping between specific project files and work products in the
standard must be made. In summary: there are process and product aspects at
the project level, both of which must adhere to the standard.

ISO 26262 Models. Given its attention to both product and process, a safety
standard effectively provides a reusable guideline for the development of safety-
critical systems; thus, artifacts used in the demonstration of compliance with
this reusable guideline can themselves become reusable. However, an enormous
amount of manual work is normally involved for ensuring compliance with the
standard. To overcome this drawback, a model-based approach is proposed to
reduce costs. The purpose of modeling is a better understanding of a safety
standard. Compare to the textual standards, the models of a safety standard
are machine processable. It provides the predictable, deterministic, repeatable
results for validating, which facilitates the reuse of safety assurance data.

In this paper, three kinds of models are proposed for the safety standards.
The structure model and the conceptual model are introduced to support unam-
biguous understanding of the standard; the process model supports the demon-
stration of compliance of the process of the project with the process described
in the standard. The overview of the resulting model is depicted in Figure 2.



196 Y. Luo et al.

������������	
�������	�	�

������������

�������


�������������	��������	�	�

�
�����������	

���������	�����	
�������	�	�

������������

�������

Fig. 2. Overview of ISO 26262 model

Since it is a challenge to describe the whole standard here, the ISO 26262
structure model (Figure 3) is built mainly according to the table of contents. The
definitions of some main concepts in the structure model are listed as follows:

– Lifecycle: “entirety of phases from concept through decommissioning of the
item.” (ISO 26262 Part 1:1.72)

– Phase: “stage in the safety lifecycle that is specified in a distinct part of ISO
26262.” (ISO 26262 Part 1:1.89)

– Requirements:“a necessary attribute in a system; a statement that identifies
a capability, characteristic, or quality factor of a system in order for it to
have value and utility to a user.” [18]

– Work products: “results of one or more associated requirements of ISO
26262.” (ISO 26262 Part 1:1.142)

�������� ��	
 ��������������

�����
���

� � � �

�

�

����	����


���
����	��

��	 �	�!�


� �

�
�

�

�

��������!�
���

�
�

� �

�

�

Fig. 3. Structure model of ISO 26262

A safety lifecycle is specified in ISO 26262. Each phase in the safety lifecycle
includes a number of clauses. In each clause, there is an Objective and a General
section to give a brief introduction of the purpose of each clause. In the Re-
quirements and Recommendations section, requirements are discussed in detail.
Additionally, the inputs to the clause are listed, while the work products are seen
as the outputs.



Extracting Models from ISO 26262 for Reusable Safety Assurance 197

Table 1. Methods and tools used for each model

Model Extraction method Description method Tool

Structure Model Manual modeling of
the table of content

UML Microsoft Visio 2010

Conceptual Model Snowball approach Ontology Protege and
OWLGrEd

Process Model Mapping between
standard and SPEM

SPEM EPF

Due to the different characteristics and aims of these models, different meth-
ods are chosen to extract and describe these models. Most of the selected de-
scription methods in Table 1 are widely used in industry.

For the conceptual model, we defined the Snowball approach for extraction.
The results are represented as an ontology; then OWLGrEd [8] is used for visual-
ization. The Software & Systems Process Engineering Metamodel (SPEM) [16]
is used for describing our process model, and SPEM supporting tool Eclipse
Process Framework (EPF) [1] is used.

In section 3, the conceptual and process models are explained in detail.

2.2 OPENCOSS

OPENCOSS project [11] is a FP7 large-scale integrated project, which started
since October 2011 with a consortium of seventeen companies from nine coun-
tries. It aims 1) to devise a common certification framework which spans different
vertical markets in the transport sector, such as railway, avionics and automo-
tive industries, and facilitates the reuse of assurance assets within, across, and
between domains, and 2) to establish an open-source platform for safety certifica-
tion infrastructure. The ultimate goal of the project is to bring about substantial
reductions in recurring costs of safety (re-)certification, and at the same time to
increase product safety through the introduction of more systematic certification
practices. Both will boost innovation and system upgrades considerably.

In particular, the core challenge of the OPENCOSS project is to define a com-
mon conceptual and notational framework for specifying certification assets [5].
Using a common conceptual framework for different certification standards al-
lows patterns of certification assessment to be shared, and supports cost-effective
re-certification between different standards. The purpose is to get mutual recog-
nition of and to discuss abstract notions from different domains. This paper
contributes to this purpose by presenting an objective solution for modeling and
analyzing the safety standards.

3 Extracting the Conceptual Model from ISO 26262

This section introduces a rule-based approach for extracting the conceptual
model of the ISO 26262 standard. Since work products are the results of relevant



198 Y. Luo et al.

requirements, the conceptual model extracted from the requirements plays a role
of a guideline for complying to the standard. To obtain this kind of model, most
current work is based on expert experience; consequently, traceability of the
modeling process is ignored in manually creating and maintaining relationships.
We have developed the Snowball approach to address this issue.

3.1 The Snowball Approach

The safety standard contains both high-level requirements, such as those de-
scribed in Objective sections, and low-level requirements, represented in Require-
ments and Recommendation sections. The Snowball approach aims to assist users
of the standard in generating a conceptual model of the standard.

Just like creating the snowman, it involves four steps as follows: First, a basic
model with a number of concepts is created from the high-level requirements.
Second, like rolling a snowball in the snow, the size of basic model becomes
bigger and bigger when processing the low-level requirements according to the
rules. Third, the big snowball is shaped into a “snowman” frame, which is the
conceptual model of the standard and preliminary model for practical use. Fi-
nally, the snowman frame turns to a real snowman after being validated by
domain experts.

Therefore, for reducing the subjectiveness of the process of extracting concep-
tual model from ISO 26262, some rules and steps are prerequisites.

Rules in the Snowball Approach. The conceptual model of the standard
consists of a number of concepts and relations. Therefore, as part of the Snowball
approach, some rules are defined for selecting those concepts and relations. This
not only ensures consistency with the standard, but also supports traceability.

The rules for selecting concepts are as follows:

1. Most concepts arising from the terminology in the standard are originally
assumed to be safety related. We then define several categories for grouping
the concepts according to their (safety-related) purpose, such as process,
product, error, etc. Those concepts that do not belong to any category are
classified as non-safety related. The remaining concepts are selected as safety
related, and are then used in the Snowball approach.

2. Clause titles are not classified as concepts in the conceptual model. Rather,
they represent activities in the safety lifecycle, which will be included in the
process model.

3. Safety related nouns in the high-level requirements are selected as concepts,
such as Item, Functional Safety Requirement, etc.

4. Safety and non-safety related nouns in low-level requirements that have a
clear relationship with the existing concepts are selected as concepts, such
as Functional Requirement, Non-Functional Requirement, etc.



Extracting Models from ISO 26262 for Reusable Safety Assurance 199

The rules for selecting relations are as follows:

1. Verbs between concepts are selected as relations, such as “has”, “is determined
by”, “is resulted in”, “is based on”, etc.

2. If there is no specific verb between concepts, the relations are defined accord-
ing to the prepositions; for instance, in “the boundary of item”, the relation
will be treated as “Item has boundary”.

The rules for refinement and optimization are as follows:

1. All concepts that are instances of more general concepts need to be grouped.
Some concepts can be seen as examples of more general concepts. For
instance, Functional Requirement, Non-Functional Requirement, Functional
Safety Requirement can be grouped into a single concept named
Requirement.

2. Synonyms should be merged. In ISO 26262, seemingly different concepts
sometimes represent a similar idea. For instance, Item and System, Software
Component and Software Unit, Safety Lifecycle Activity and Safety Activity.
Based on their respective definitions in the standard glossary, those concepts
are treated as synonyms.

3. Relations must be precisely defined. Every relation in the ontology must
have a unique name, and each relation must be clearly defined. For instance,
when defining the relation as “has” between Hazard and ASIL, a follow-
ing word is given, like “hasASIL”. It could be used to specify what this
relation is.

���������		


�����	�
	������ ����	��
	����	

�������	��	��
��	���	
��	�
����	��	
���


�����	���
��
��	���	
��	�
����	��	
���


�������	���	�
��	������	��
�����

����
��	
����	���		��	�
��	�����	��	

����
��	
��	���	
��	�
����	��	


�����	���


��
�������

 ����	
!	������

����	��
	����	

���"�����	��	��
�����

 ����	��#���	

Fig. 4. Steps in Snowball approach

Steps in the Snowball Approach. In a concrete application of the approach,
ISO 26262 Part 3 (the Concept Phase) was carefully analyzed manually, which
involved both the high level and low level requirements. As discussed earlier,
there are four main steps in the Snowball approach (Figure 4). In each step, rules
for selecting concepts and relations are implemented. The following illustration
focuses on the Item Definition clause in Part 3.



200 Y. Luo et al.

– Get the basic ball
We start from the objectives in ISO 26262 Part 3 to identify the basic con-
cepts and relations. In this step, rules on concepts and relations are used.
The result of this step is seen as the basic ball in the Snowball approach. A
fragment is shown in Figure 5, where the rectangles represent concepts and
the thick lines represent the inheritance relation between concepts.

������
�		
�

���������	
��������
����

��	��	��
���������	
��������
����

Fig. 5. Basic ball of Item Definition visualized with OWLGrEd

The original basic ball for the Concept Phase of Part 3 consists of 13 concepts
directly descendant from Thing, which is the superclass of all other classes.
The “seeAlso” attribute of each concept records the section number of its
location in standard. In this way, the traceability of the modeling process is
ensured; it also provides support to the user for modification.

������

����	�
������������	�
���������	
�������������

�
�������
�		
���������������
������

��	���	��
�		
���������������
����

�
�����	�
������������	
�		
��������������������

�	���
�		
���������������
����

����
���
�		
���������������
������

������	�
�		
���������������
������

����	�
����
����	�
�		
�������������������
��

������	�
��
�		
���������������
������

�����	�	���� ���	� �������

���
����������� ���	� �������

������ ��!������"	$���	�	���� ���	� �������

���%���&��'�� ���	� �������

��� ��!������"	$���	�	���� ���	� �������

���������	��
���	�
�������

Fig. 6. Big ball of Item Definition visualized with OWLGrEd



Extracting Models from ISO 26262 for Reusable Safety Assurance 201

– Rolling the ball
A careful analysis of the detailed requirements in ISO 26262 Part 3 led us to
add more concepts and relations to the basic ball. As in the first step, rules
on concepts and relations are used. For example, from “the functional and
non-functional requirements of the item”, we could obtain two new concepts
related with the existing concept Item: Functional Requirement and Non-
functional Requirement. The result of this step is seen as the big ball in the
Snowball approach. A fragment is shown in Figure 6, where the thin lines
represent relationships between the concepts. The original big ball for Part
3 consists of 51 concepts directly descendant from Thing.

– Shaping the snow ball
Then, a refinement of the big ball is performed according to the rules on
refinement and optimization. The result of this step becomes the conceptual
model of the standard. Figure 7 shows a fragment of the conceptual model
of ISO 26262 Part 3. The original conceptual model for Part 3 consists of 22
concepts directly descendant from Thing. Many concepts of the big ball are
grouped according to the refinement and optimization rule.

�����
�		
������������������

��	
����
�		
���������������
������

�����������������	������
�		
��������������������

�����
�����
�		
���������������
������

������	��
�		
���������������
������

������

���������������	������
�		
��������������������
���������
��������������	�����

�����	�������

���������������
�		
���������������
����

��� ���!����� ���	� #���$%�

���������	��
���	�
#���$%�

���&������������(	)���	�	����
���	�
#���$%�

���
����������� ���	� #���$%�

�������������(	)���	�	����
���	�
#���$%�

Fig. 7. Conceptual model of Item Definition visualized with OWLGrEd

– Creating the snowman
Finally, domain knowledge is a prerequisite to transform the rough basis of
the snowman into the real snowman. In other words, the conceptual model
needs to be validated by domain experts before being used in practice. The
details of this step will be explained in Section 5.

4 Extracting Process Model from ISO 26262

4.1 ISO 26262 Process Model and SPEM

As mentioned in Section 2, ISO 26262 is based upon a V-Model as a reference
process model for the different phases of product development. Therefore, as



202 Y. Luo et al.

Table 2. Mapping between concepts of ISO 26262 and SPEM

Concepts in ISO 26262 Concepts in SPEM

Development process Process

Part Phase

Clause Activity

Objective Purpose

Requirement and Recommendation Task

General/Content of requirement Description

Work Product Work Product

Note Guideline

mentioned earlier, it is effectively a reusable guideline for practical domain ap-
plications. For describing the process, SPEM has been selected, which is defined
as a meta-model as well as a UML profile by Object Management Group (OMG)
for process modeling.

Since the process described in the standard is more specific, a mapping from
the standard to SPEM is needed. The concept mapping is defined in Table 2.
Compared with the mapping in [6], our aim is to describe a more general process
model; therefore, the mapping only focuses on high-level concepts.

4.2 Process Model of ISO26262 Part 3

In the following, the process model of ISO 26262 Part 3 is created. From the
work breakdown structure view (shown in Figure 8), we can see that Part 3 is
defined as a phase, whereby each clause in Part 3 is defined as an activity. After
an analysis of the requirements, the tasks and their steps as well as the work
products are defined for activities.

For the Item Definition clause in ISO 26262, there are two main requirements.
The definition of tasks in this clause depends on the content of those require-
ments. In Figure 8, there are two tasks defined for this clause. For other clauses,
the requirements are represented in groups, such as in the Initiation of Safety
Lifecycle clause, where there are two requirement groups. In the activity diagram
(Figure 9(a)) we can see that two tasks are defined. Further analysis revealed
that those detailed requirements could be categorized into two groups. Based
on this, two steps have been defined for the Impact analysis and possible safety
lifecycle tailoring task. Therefore, the activities, tasks, and steps in the process
model are defined according to the requirements in different levels. Finally, the
work products are allocated to the relevant activities, tasks, or steps. They are
all assigned to specific roles, such as safety project manager. In Figure 9(b), the
detailed activity diagram shows this relation.



Extracting Models from ISO 26262 for Reusable Safety Assurance 203

Fig. 8. Work Breakdown Structure view of the ISO 26262 Part 3 process model

���������		
��	����
��	����	�	��	




��������	��	

�����	
�	������
�	�
��������
����	�
���������
	������	

���
�	���
�	
	���
	���

��

���

(a) Safety lifecycle initiation activity diagram

(b) Safety lifecycle initiation activity detail diagram

Fig. 9. Activity diagrams for safety lifecycle initiation task

5 Model Validation

Validation focuses on the conceptual and process models. The last step of
Figure 4 depicts the validation of the conceptual model. As noted earlier, an
important goal of the Snowball approach is to achieve objectivity and cost-
effectiveness in the production of the conceptual model, by automating as much
as possible. But to be usable, the model must be valid: in other words, it must
become “a real snowman.”



204 Y. Luo et al.

In a preliminary validation activity, in the context of the OPENCOSS project,
we compared our model with the industrial models that are used for compliance
with ISO 26262 Part 3. Over 90% of the concepts in those models are covered
by our conceptual model. Due to their specific focus, some concepts in indus-
trial models have often been renamed; however, the corresponding concepts in
the standard can still be identified. For example, in one case “Malfunction” was
changed to “Malfunctioning behavior”; in another, “Preliminary architectural as-
sumption” was changed to “Preliminary functional and architectural assump-
tions”; and so forth. Thus, we see that in the implementation of a model, some
concepts are modified according to the specific project context; importantly,
however, traceability is maintained by recording the section number of the con-
cepts’ locations in standard, so that the source of the concepts and relations can
be traced.

The process model is almost identical, except for the special case of the Safety
Element Out Of Context (SEooC). “A Safety Element out of Context (SEooC)
is a safety element for which an item does not exist at the time of the develop-
ment. A SEooC can either be a subsystem, a software component, or a hardware
component.” (ISO 26262 Part 10:10.1) Note that, Item in the ISO 26262 is for
example the car itself. For the SEooC, the initiation of safety lifecycle activity
is skipped and assumptions are made about the Concept Phase, resulting in a
truncated process.

As encouraging as this result was, it is also necessary for the conceptual model
to be validated by domain experts, because semantic alterations might have been
introduced in the conceptual model due to the semi-automated nature of the tech-
niques used. For this purpose, we had the conceptual model examined by two
experts who have deep experience with the teaching and application of the ISO
26262 standard in industrial projects. They found some cases of subtle misinter-
pretation, such as the identification of Item and System as strictly synonymous
in the preliminary conceptual model. In real-world industrial application of the
standard, an Item is nearly always a System, but in some (rare) cases it can
be a Function (e.g. when new functionality is introduced on the same hardware
platform).

In addition to concept classes and names, the relations between them are
examined and validated by the domain experts. Their explicit representation
makes possible inconsistencies emerge quickly. For example, the cardinality of a
relationship between the Safety Goal and Safe State was not clear to the domain
experts: was it 1:1? This would be wrong, because in practice there may be
no safe state in automotive scenarios. In another example, both the Hazardous
Event and Safety Goal concepts had a relationship with an ASIL concept. In
practice, however, it must be ensured that it is always the same ASIL, and this
must be reflected in the model.

Such subtleties can be difficult or impossible for the semi-automated, rule
based techniques of the Snowball approach to identify, partly because they often
do not even emerge out of the standard itself but rather its real-world application.
For this reason, validation by domain experts is likely to remain a necessary final



Extracting Models from ISO 26262 for Reusable Safety Assurance 205

step even after significant improvement in the techniques employed in the Snow-
ball approach. Nevertheless, experience with domain experts confirmed that a
formal representation of the conceptual model is an excellent basis for validation
and the eventual elimination of inconsistencies. Furthermore, the availability of
a semi-automatically generated model reduced by as much as 80% the amount
of time to validate the final model by the domain experts, a significant savings.

Once the general model is validated, it is suitable for practical use in the
context of compliance demonstration: Recalling that compliance is demonstrated
through the relationship between the standard’s model and the project’s model,
and that traceability is provided at both standard and project level, the effects
of modifications at project level can now be traced to the standard level and
the impact on the assurance argument determined and those assurance artifacts
reused that are not affected by the modifications.

6 Related Work

Other work has advocated model based approaches to enabling assurance reuse.
In [10], an approach was proposed for evolutionary chains of evidence to support
evidence reuse. With a specific focus on evidence, they describe the benefits of
using model-driven engineering (MDE) to support compliance with safety stan-
dards. They further argue that MDE could support the interpretation of stan-
dards; specialization of standards to industrial contexts; alignment of standards
to organizational practices; planning for certification, etc. Besides these benefits,
they argue that MDE could also be used for supporting safety assurance reuse
management, such as evidence reuse, safety case reuse etc. Safety-case based
approaches are provided in [19] and [17] for safety compliance and assurance
reuse.

7 Conclusions and Future Work

In this paper, we presented a model-based approach to enabling safety assurance
reuse through objective and cost-efficient modeling of the relevant standards. The
Snowball methodology provides rules for extracting the conceptual model from
a safety standard, thereby reducing the amount of manual work involved. Over
90% of the concepts in the industrial models are covered by our conceptual model.
A better result will be obtained if the domain experts are involved in all the steps
of Snowball approach, but it will be more costly. Besides, the availability of a
semi-automatically generated model reduced by as much as 80% the amount
of time to validate the final model by the domain experts. The process in the
standard is modeled with the OMG SPEM. Although the approach currently
operates only at a very high level, it provides a basis for describing a process
model in the context of the safety standards.

In future work, we will focus on four directions. The first direction is to extend
our methodology so that we can extract models from a collection of interrelated
safety standards. The second direction is a comparative study of those safety



206 Y. Luo et al.

standards through those models. For example, in some domains (such as auto-
motive and avionics) similar systems have been developed according to different
safety standards. This fact could be exploited to reuse safety assurance argu-
ments from one system to the other, which necessarily involves a comparative
study of the two respective standards. A high-level comparison between two
safety standards (ISO 26262 and DO 178B) is outlined in [12]; but the chal-
lenge here is to compare the standards at the lower level in order to support
safety assurance reuse. This could be achieved through conceptual mapping and
process mapping. Another future direction is to define a domain specific meta-
model for the processes found in safety standards, since SPEM is too general to
describe the process model of the safety standards at the lower level. In [6], an
extension for ISO 26262 is described. Still, in the OPENCOSS project, we deal
with more than one standard, and an extension of SPEM is not sufficient. The
last future direction is to use existing Natural Language Processing (NLP) tech-
niques [9] and ontology learning methodologies to improve and further reduce
the amount of manual work involved in a semi-automatic implementation of the
Snowball approach.

Acknowledgements. The research leading to these results has received funding
from the FP7 programme under grant agreement no 289011 (OPENCOSS). We
would like to thank Centro Ricerche Fiat (CRF) and Eric Verhulst for providing
information and feedback on our work.

References

1. Eclipse Process Framework Project, http://www.eclipse.org/epf/
2. DO 178B: Software Considerations in Airborne Systems and Equipment Certifica-

tion (1992)
3. IEC 61508: Functional Safety of Electrical/Electronic/Programmable Electronic

Safety-Related Systems (2010)
4. OPENCOSS: Deliverable D2.2 - High-level requirements, report (2012),

http://www.opencoss-project.eu/node/7
5. OPENCOSS: Deliverable D4.1 - Baseline for the common certification language

(2012), http://www.opencoss-project.eu/node/7
6. Adedjouma, M.: Requirements Engineering Process According to Automotive Stan-

dards in a Model-Driven Framework. Ph.D. thesis, University of Paris-Sud (2012)
7. Armengaud, E., Bourrouilh, Q., Griessnig, G., Martin, H., Reichenpfader, P.: Using

the CESAR Safety Framework for Functional Safety Management in the Context
of ISO 26262, Embedded Real Time Software and Systems (2012)

8. Bārzdiņš, J., Bārzdiņš, G., Čerāns, K., Liepiņš, R., Sproģis, A.: UML style graphical
notation and editor for OWL 2. In: Forbrig, P., Günther, H. (eds.) BIR 2010.
LNBIP, vol. 64, pp. 102–114. Springer, Heidelberg (2010)

9. Chowdhury, G.G.: Natural Language Processing. Annual Review of Information
Science and Technology 37(1), 51–89 (2003)

10. de la Vara, J.L., Nair, S., Verhulst, E., Studzizba, J., Pepek, P., Lambourg, J.,
Sabetzadeh, M.: Towards a Model-Based Evolutionary Chain of Evidence for Com-
pliance with Safety Standards. In: Ortmeier, F., Daniel, P. (eds.) SAFECOMP
Workshops 2012. LNCS, vol. 7613, pp. 64–78. Springer, Heidelberg (2012)

http://www.eclipse.org/epf/
http://www.opencoss-project.eu/node/7
http://www.opencoss-project.eu/node/7


Extracting Models from ISO 26262 for Reusable Safety Assurance 207

11. Espinoza, H., Ruiz, A., Sabetzadeh, M., Panaroni, P.: Challenges for an Open and
Evolutionary Approach to Safety Assurance and Certification of Safety-Critical Sys-
tems. In: 2011 First International Workshop on Software Certification (WoSoCER),
Hiroshima, Japan (2011)

12. Gerlach, M., Hilbrich, R., Weißleder, S.: Can Cars Fly? From Avionics to Auto-
motive: Comparability of Domain Specifc Safety Standards. In: Proceedings of the
Embedded World Conference (March 2011)

13. Jackson, D., Thomas, M., Millet, L.: Software for Dependable Systems: Sufficient
Evidence? The National Academies Press, Washington, D.C. (2007)

14. Krammer, M., Armengaud, E., Bourrouilh, Q.: Method Library Framework for
Safety Standard Compliant Process Tailoring. In: 37th EUROMICRO Conference
on Software Engineering and Advanced Applications, pp. 302–305 (2011)

15. Langheim, J., Guegan, B., Maillet-Contoz, L., Maaziz, K., Zeppa, G., Phillipot, F.,
Boutin, S., Aboutaleb, I., David, P.: System Architecture, Tools and Modelling for
Safety Critical Automotive Applications - The R&D Project SASHA. In: ERTS2
2010, Embedded Real Time Software & Systems, Toulouse, France, pp. 1–8 (2010)

16. OMG: Software and Systems Process Engineering Metamodel Specification (April
2008), http://www.omg.org/spec/SPEM/2.0/

17. Palin, R., Ward, D., Habli, I., Rivett, R.: ISO 26262 Safety Cases: Compliance and
Assurance. In: Proceedings of the 6th IET International Conference on System
Safety (2011)

18. Panesar-Walawege, R.K., Sabetzadeh, M., Briand, L.: Using UML Profiles for
Sector-Specific Tailoring of Safety Evidence Information. In: Jeusfeld, M., Del-
cambre, L., Ling, T.-W. (eds.) ER 2011. LNCS, vol. 6998, pp. 362–378. Springer,
Heidelberg (2011)

19. Ruiz, A., Habli, I., Espinoza, H.: Towards a Case-Based Reasoning Approach for
Safety Assurance Reuse. In: Ortmeier, F., Daniel, P. (eds.) SAFECOMP Workshops
2012. LNCS, vol. 7613, pp. 22–35. Springer, Heidelberg (2012)

20. Zoughbi, G., Briand, L., Labiche, Y.: Modeling Safety and Airworthiness
(RTCA DO-178B) Information: Conceptual Model and UML Profile. Softw. Syst.
Model. 10(3), 337–367 (2011)

http://www.omg.org/spec/SPEM/2.0/


J. Favaro and M. Morisio (Eds.): ICSR 2013, LNCS 7925, pp. 208–223, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Assessing Software Quality through Web Comment 
Search and Analysis 

Yanzhen Zou1,2, Changsheng Liu2, Yong Jin1,2, and Bing Xie1,2,* 

1 Software Institute, School of Electronics Engineering and Computer Science,  
Peking University, Beijing 100871, China 

2 Key Laboratory of High Confidence Software Technologies, Ministry of Education, 
Beijing 100871, China 

{zouyz,liucs09,jinyong11,xiebing}@sei.pku.edu.cn 

Abstract. When reusing software resources appearing on the Internet, develop-
ers often encounter the problem that it is hard to know the quality of candidate 
software. In this case, developers usually want to search and find referable user 
comment on the Internet. To assist this process, we proposed a textual comment 
based software quality assessment approach in this paper. It could search and 
collect the user comments of the software resource on the Internet automatical-
ly. Furthermore, the sentiment polarity (positive or negative) of a comment is 
identified and all the comments are classified into positive or negative collec-
tion. Then the quality aspects which the comment talks about are extracted so as 
to draw out the merits and drawbacks of software resources. With these infor-
mation, developers can do candidate software selection easier and quicker in the 
software repository. To evaluate our approach, we apply our approach on a 
group of open source software. The results show that our approach could 
achieve satisfying precision in software quality assessment. 

1 Introduction 

With the development of the Internet and software reuse, more and more reusable 
software resources are available on the Internet, such as Web Services, JAR packages 
and so on. To reuse these software resources appearing on the Internet, users often 
encounter the problem that it is hard to know the quality of candidate software re-
source since limited quality information are provided [1,2]. 

To deal with this issue, former works about software’s quality mainly focus on 
code analysis [3-6] and architectural analysis [7-9]. For example, Akito Monden et al. 
[10] evaluated software reliability and maintainability by detecting code clones. 
Swapna Gokhale Michael et al. [11] used regression tree models to predict the  
number of faults in a software module based on the software complexity metrics. 
Nevertheless, the cost of using these methods to get quality information might be  
very expensive. It required developers understand its function correctly and input the 
right parameters. Besides, a bunch of numerical values returned by these methods are 
difficult for a novice to understand. On the other hand, some quality aspects are diffi-
cult to be measured by these methods, e.g., the flexibility of software resource. 
                                                           
* Corresponding author. 



 Assessing Software Quality through Web Comment Search and Analysis 209 

In this scenario, we find that former developers’ feedbacks or reviews (collectively 
called comment in this paper) are useful references for new developers to understand 
the quality of software resources. With the development of Web 2.0, increasing num-
ber of developers submit their feedbacks on the Internet. It is partly because some 
developers may post their comments on the Internet through blogs and forums. 
Meanwhile, there are plenty of Open Source Communities, such as SourceForge and 
Seekda, providing feedbacks mechanism on the web. Therefore, more and more de-
velopers are used to utilizing web comments for software resource selection.  

However, developers usually spend a lot of time to find a referable comment on the 
Internet. Firstly, though a large number of web comments provide a good reference 
base, there are so many comments that are useless to developers since they just give a 
simple overall evaluation. For example, the comments “it’s an excellent project” or 
“it’s too bad” provide less useful information if the developer want to know whether 
the API of the component is flexible. Secondly, since only looking through a small 
quantity of comments may lead to aberration, developer usually expect to skim com-
ments as many as possible to get overall evaluation of the quality aspect. For exam-
ple, if a developer wants to know whether Log4j is lightweight and easy to integrate 
into a specific project, he would concern not only who talked about Log4j’s usability 
and flexibility but also how many people have talked about these two quality aspects.  

To deal with these issues, we propose a textual comment based software quality as-
sessment approach in this paper. Comparing with the various existing works, our 
approach provides the following benefits: 

• It implement an Internet based software comments searching tool; 
• It proposes a SVM based approach to identify the sentiment polarity of a comment, 

which is used to classify the comments into positive and negative ones; 
• It extracts the quality aspects which the comments talk about so as to find the me-

rits and drawbacks of software resource; 
• We apply our work to 25 open source software in experiments. The comments 

collection and analysis results could be served as a good reference to help develop-
ers to select proper software resources.  

This paper proceeds as follow. Section 2 describes the details of our approach. Sec-
tion 3 carries some experiments to evaluate our approach. In section 4, we describe 
some related works. Then we conclude this paper in Section 5. 

2 Our Approach 

As shown in Fig. 1, there are two main phases in our approach: Comments Collection 
and Comments Analysis. In Comments Collection, our target is to collect relevant 
user comments about the software resource from the Internet. We implement Google 
based search tool and extract the comment segments from related web pages. Then 
these comments are input the next phase—Comments Analysis. It identifies the  
sentiment polarities of these comments and digs out what aspects these comments  
talk about. As a result, developer could find the merits and drawbacks of the candi-
date software resource. It could serve as a good reference for developers in reusable 
software resource search.  



210 Y. Zou et al. 

 

Fig. 1. Overview of Our Approach 

2.1 Comments Collection 

General web search engine is a useful tool to get information from the Internet, with 
its help people can seek out the resources using some simple keywords. We use 
Google to get the related raw information from the Internet.  

Google Search 
The relativity between the results and the software is a big problem if we only use  
the name of the software as the key word. To construct a better query, we take the 
software name and development context into account, such as programming language, 
brief description, the author and so on. The context information can be described as  
a 5-tuple <name, version, language, description, author>. The name is indispensable 
for the query and the other elements in the vector could be added to the query. The 
more elements we add, the more relevant are the obtained results.  

 

Fig. 2. Target content in the corresponding page 

The results returned from Google are composed by related web page items.  
Each item consists of title, snippet and the corresponding URL etc. The snippet is 
assembled of short sentences extracted from the corresponding page of the URL. For 
example, we search “hibernate java” and one snippet of results is “... forward style, 
Hibernate is the best choice for you. It is an immensely popular object relational 



 Assessing Software Quality through Web Comment Search and Analysis 211 

mapping skeleton for Java enthusiasts. ...”. It indicates that using the snippet alone  
as the software’s comment is obviously not enough. The whole correct part of  
the corresponding page is what we need. For example, the actual part of software 
comment on Hibernate in the corresponding page is shown in Fig. 2. Therefore, we 
need open the corresponding web page and extract the textual comment segment. 

Since the page’s structure is unknown, it’s impossible to use html parser tools  
to get the specific content we need directly. The information we need lay among  
the html tag like <p>, <span>, <div> and <td>, all these information is potentially 
relevant content. We use VSM-based similarity Computation [17] to find which part 
of the page is the most similar to the snippet that Google returned. In VSM, a text is 
represented as a vector <W1, W2 W3 ……, Wk>. Each dimension indicates a term occur-
ring in all the texts. Then TF-IDF weight is chosen to be the value of each dimension. 
As a term ti, its TF metric in text dj is computed as follows: 

, ,L                                (1) 

In formula (1), ni,j is the number of times ti  occures in dj, Lj is the total number of 
terms in dj. IDF metric of ti is computed as follows: log N

                             (2) 

In formula (2), N is the total number of texts, dfi is the number of texts which contain 
term ti. The TF-IDF weight of term ti in text tj is computed as follows: , ,                           (3) 

The similarity of two vectors Vi=<Wi,1,Wi,2,….Wi,k> and Vj=<Wj,1,Wj,2,….Wj,k> is 
computed as follows: , ∑ W , W ,∑ W , ∑ W ,                   (4) 

We use HtmlParser [42] to parse the corresponding page into a DOM tree, then the 
nodes of decorative HTML tags such as <a>, <image>, and <b> are removed. The 
text nodes, such as <table>, <tr>, <td>, <p>, <div> in the tree, and the snippet itself 
will be represented as a vector mentioned above. The specific method of finding the 
correct part of the page is to compute the similarity between the vector of snippet and 
the text node and then select the most similar one as the text needed. 

There are some famous websites which publish and maintain software, such as 
Apache, Maven Repository, SourceForge, Seekda and so forth, from where we can 
find some comment information directly. The information is well organized and, to 
some extent, strictly checked comparing to the other websites.  Therefore, we also 
design a crawler for each specific website. It searches the software within the website 
and then extracts the comments using HtmlParser [42]. Our search engine is extensi-
ble, new Crawler could be added to our approach. 

Comment Extraction 
The text segments returned from Google search engine consist of software description 
text and software comment text. In general, software description tends to describe 



212 Y. Zou et al. 

what the software resource is and how to use it. These software descriptions are 
propagandas from their publishers. They rarely cover the software’s limitations 
and reflect its real quality objectively. Hence, we try to extract comments from 
the search results returned by Google search engine further.  

Relatively, descriptions are objective text information while comments are subjec-
tive text. Identifying whether a text is objective or subjective is a classification prob-
lem, so extracting comments from information returned Google Search Engine could 
use techniques of text classification.  

Currently, machine learning is a mainstream technology to solve this issue. In this 
paper, we try to use Support Vector Machine (SVM) [18, 19] to classify the search 
results into objective text (description information) and subjective text (comment 
information). SVM have been shown to be highly effective at traditional text categori-
zation, generally outperforming Naive Bayes [18]. Selection of feature is the key point 
of SVM, we choose the following four features according to our dataset:  

─ Length of the text (LEN). The comments we get are generally terse and concise, 
the descriptions are relatively longer and comprehensive. 

─ Number of first person pronouns (NFPP). The first person pronouns, I, my, etc, 
exist widely in comments, but they seldom appear in descriptions. So we make a 
first person pronouns list and count the number of words that hit the list of the 
need-to-classify text. 

─ Number of subjective sentiment words (NSWW). Some word or phrases, such 
as awesome, good, bad, cool, etc are colloquial, which exist mostly in com-
ments. So we also make a subjective sentiment words list and count the number 
of words and phrase that hit the list of the need-to-classify text. 

─ Number of sentiment symbol (NSS).There are some symbols like “^-^”, “:-)”, 
“:)” and so forth, which are more likely to appear in comments.  

Before extracting comments, three kinds of preprocessing have been completed in our 
paper which will help to improve the accuracy of analysis, they are Stop Words remove, 
Case-folded and Stemming. Stop words is the name given to words which are filtered 
out prior to, or after, processing of natural language data (text), they reduce the efficien-
cy of natural language processing, so in our system we make a stop word list contain 42 
words. Case-folded means that transferring all the words to capital. Stemming is a 
process to reduce inflected (or sometimes derived) words to their stem, base or root 
form .For example, the stemming result of “depressed”, “depressive”  is “depression”. 

2.2 Comments Analysis 

Since only looking through a small quantity of comments may lead to aberration, 
developer usually expect to skim comments as many as possible to get overall evalua-
tion of the quality aspect. To achieve this target, we analyze the collected software 
comment by which not only give the sentiment polarity of the comment, but also pro-
vide the aspects the comment talks about. 

Sentiment Analysis of the Comment 
After surveying the comments, we found some interesting characteristics: 1) The 
comment is pithy and terse. Programmers tend to directly show their attitudes in 



 Assessing Software Quality through Web Comment Search and Analysis 213 

comments. The comment’s polarity is always shown from the emotion words, such as 
some adjective like “excellent”, “good”, “bad”, etc., or some verbs like “fail to”, “re-
turn NaN “, “like”, etc. The majority of comments are short, a length distribution is 
provided in our experiment. 2）Complex expressions seldom appear in comments. 
Double negation, too-to structure, and rhetorical questions are rarely used in com-
ments which are similar to spoken expressions. 3）Domain-relative. The comment 
indicates what aspect or property the user cares about, such as whether the software is 
easy to use, the documentation is well-organized and in great detail, whether it’s sta-
ble and so on. Some phrases and words frequently appear in comments. 

Based on these experiences, we also want to use machine learning to distinguish 
positive and negative comments. Firstly, we construct an emotion expression dictio-
nary (EED). It consists of positive words and phrases, negative words and phrases, 
function words and privative. The dictionary is extensible. Secondly, four features are 
extracted from the comment, they are as follows: 

─  Number of positive words and phrases( PNUM); 
─  Number of negative words and phrases(NNUM); 
─  Function words(FW); 
─ Distance between positive and negative words or phrases (DIS); 

The DIS features is also used based on the observation that if the distance between 
positive and negative words or phrases is too small, it often has a “neutralization ef-
fect” which means the comment shows no real attitude. Taking the comment “I don’t 
care about whether the jar is good or bad” as an example, the distance of positive 
word “good” and negative word “bad” is only 2 character. Thus, the comment pro-
vides no evaluation about the software. 

When calculating the PNUM and NNUM, the privative should be taken into con-
sideration. When privative occur before positive (or negative) words and phrases, 
NNUM (or PNUM) will be added. This rule can also be applied to some special 
grammar structure, such as “Too-to” or “Far from” structure.  

Finally, SVM is also chosen to be the classifier. Samples with obtained features are 
used to train the classifier. When a new comment comes, the same features extractor 
will be used to extract the features described above. Subsequently, the features are 
analyzed by the trained classifier to obtain the polarity. 

Finding the Merits and Drawbacks of the Software 
As described above, we want to present what aspects the comment talks about further. 
For example, in the comment “Hibernate's documentation is particularly excellent, 
especially for an open source project”, the word “excellent” is in EED, the noun “do-
cumentation” is what “excellent” describe, so “documentation” will be extracted from 
the sentence. 

To understand and measure the quality of software, researchers often built models 
of how quality characteristics relate to one another [20]. McCall quality model [20] 
and ISO 9126 [20, 21] are two famous quality models which have been widely  
discussed. For software reuse, we construct a practical model based on ISO 9126.  
 



214 Y. Zou et al. 

Table 1. Aspects of our quality model 

Aspect Specification 
Documentation 
(DOC) 

Whether the software’s documentation is well organized, detail 
enough, etc. 

Lightweight (LW) Whether the software is lightweight 
Interface (INF) The evaluation of the interface of the software 
Usability (USE) Whether the software is easy to use 
Flexibility (FLX) Whether the software is flexible  
Reliability (REL) Whether the software works stably  
Effectiveness (EFF) Whether the software has a good performance and works effi-

ciently 

 
The aspects of the model are shown in table 1. We also construct an aspect-related 
terms set (ATS) for each aspect. For example, “configuration” is closely related to 
how to use software, so the term configuration is in the ATS of Usability. “GUI” and 
“API” are two types of interface of software, so the terms “GUI” and “API” are in the 
ATS of “Interface (INF)”. 

In the experiments, most of the software comments can be divided into three types:  

─ Noun-Adj: the noun is described by the adjective, e.g., the comment “The inter-
face is flexible”.  

─ Verb-Noun: the noun is the objective of the verb, e.g., the comment “I like the 
interface” or “I dislike the documentation”. 

─ Verb-Adv: the adverb is used to describe the verb, e.g., “it works perfectly”. 

Dependency relations exist in the three pairs. The notion dependency is based on the 
idea that the syntactic structure of a sentence consists of binary asymmetrical relations 
between the words of the sentence [24]. We use Stanford parser [25] to analyze every 
sentence in each comment to get dependencies and phrase structure tree. The parser is 
a Java implementation of probabilistic natural language parsers which works very 
well at lexicalized dependency analysis. It could provide a textual description of 
grammatical relationships in a sentence. The dependencies are triplets: name of the 
dependency, governor and dependent [25]. For example, the dependencies of the sen-
tence “The documentation of Hibernate is excellent” are shown in Fig. 3.  

In Fig. 3, there are five dependencies —det (documentation-2, the-1), nsubj (excel-
lent-6, documentation-2), prep (documentation-2, of-3), pobj (of-3, Hibernate-4), cop 
(excellent-6, is-5)—in the sentence. The terms det, nsubj, prep, pobj and cop are 
names of the dependencies [26]. The current version of Stanford Parser contains 52 
types of dependency. Five types of dependencies—pobj, dobj, nsubj, nsubjpass and 
amod [26] —are considered in our approach, since these dependencies exists in the 
Specific Comment more frequently.  

In conclusion, the detailed quality information extraction processes from Specific 
Comment are: 1) Finding the dependency pairs in which contain the terms in EDD.  
2) The paris belong to the five types --- pobj, dobj, nsubj, nsubjpass and amod--are 
selected. 3) The words in the selected pairs which are not in the EDD are extracted. 
Pay attention to the words included in any ATS of the 7 aspects will be extracted  
 



 Assessing Software Quality through Web Comment Search and Analysis 215 

and their corresponding aspects will be counted. For example, in the comment “The 
configuration of Jboss is too complicated”, we get a dependency triplet: nsubjpass 
(complicated-7, configuration-2). The word “configuration” is in the ATS of Usabili-
ty, so “configuration” will be extracted and the aspect Usability will be accounted. 
While in the comment “Spring is a great J2EE framework”, although framework will 
be extracted, it will be ignored since it is not in any ATS of the 7 aspects. 

 

 

Fig. 3. Dependencies for sentence: The documentation of Hibernate is excellent 

3 Evaluation and Results 

In order to validate our approach, we search and collect comments for 25 popular 
open source projects with our approach. These open source software are chosen  
because we are familiar with them, such as Tomcat, Struts and so on. They vary in 
domains and only the latest versions are considered in comments collection.  

After Google search and comment extraction, 2664 comments are collected for 
these open source software. In average, there are 106.6 comments for each software 
resource. In table 2, we illustrate the number of positive comments and negative 
comments for each project. The “Posi-Num” indicates the number of positive com-
ments and the “Nega-Num” indicates the number of negative comments. For example, 
139 positive comments and 13 negative comments are collected for “Jboss”.  

There are some threats to validity of our approach and our evaluation. Firstly, the 
richness of software comments is significant to the effectiveness of our approach. In 
our work, we could also find that some software resources’ software comments are 
limited although they are excellent. On the other hand, it is difficult to validate the 
recall of software comments search on the Internet. However, we believe that soft-
ware comments will abound on the Internet in the future, which provide enough raw 
data for our approach. Secondly, we try to validate whether our approach could assess 
the quality of the candidate software automatically using exist comments. It means 
that our approach could do comment extraction and comment analysis effectively, 
then the right quality terms are found and right quality aspects are mined. Therefore, 
we carried the following experiments.  



216 Y. Zou et al. 

Table 2. Results of web comment search (examples) 

 G
lassfish 

R
esin 

Jboss 

X
stream

 

JD
om

 

D
om

4j 

H
tm

lP
arser 

N
ekoH

tm
l 

Struts 

JSF
 

Tapestry 

H
ibernate 

JPA
 

Ibatis 

Tom
cat 

Jetty 

Q
uartz 

C
ron4j 

Jcrontab 

H
tm

lunit 

H
ttpunit 

Junit 

E
asym

ock 

L
og4j 

H
ttpclient 

P
os -N

um
 

67 92 139 97 32 111 76 36 136 67 59 143 42 81 146 112 91 53 47 108 89 54 86 144 77 

N
ega - N

um
 

12 15 13 5 8 13 18 7 14 19 29 12 9 12 15 11 12 8 6 11 8 19 12 21 14 

T
otal - N

um
 

79 107 152 10240 124 94 43 150 86 88 155 51 93 161 123 10361 53 119 97 73 98 165 91 

3.1 Comments Extraction 

In our approach, a SVM based classifier is proposed to identify whether a piece of text 
is software comment or software description. At the same time, four features, such as 
Length of the text (LEN), Number of first person pronouns (NFPP), etc., are used to 
train software comment samples. Thus, we called our comment extraction approach as 
SVM4CE. Then in the above dataset, 150 software comments are artificially selected 
as study samples and 150 related software descriptions are added as noises. 

In our evaluation, we applied 3-fold cross-validation. We divide all the texts into 3 
parts, 2 parts are used as training data set while 1 part left is used as the validation 
data. The process is then repeated 3 times, with each of the 3 parts used exactly once 
as the validation data. The three results are averaged as a single result.  

Here precision, recall rate and F-Score are used to evaluate the effectiveness of our 
approach. The formulas are shown below. Given a specific class, A is the number of 
instance that correctly classified to this class, B is the number of instance that incor-
rectly classified to this class, C is the number of instance that belongs to this class but 
incorrectly classified to the other class.  

 Recall A/ A C 100% (5) 

 Precision A/ A B 100% (6) 

 F Score P RP R 100% (7) 

As shown in table 3, our approach (SVM4CE) achieved the precision of 90.71% and 
the recall of 90.50% in comment extraction. It indicates that the four features we cho-
sen are effective to identify whether a piece of information is description or comment. 



 Assessing Software Quality through Web Comment Search and Analysis 217 

Table 3. Results of Comments Extraction(β 1) 

Method precision recall F-score 

SVM4CE 90.71% 90.50% 90.43% 
Naïve Bayes 81.2% 83.4% 82.3% 
LingPipe 78.1% 79.3% 78.7% 

 
We also compare SVM4CE with Naïve Bayes and LingPipe [40]. Lingpipe is a 

famous tool kit for processing text using computational linguistics. Note that Ling-
Pipe uses positive and negative reviews of movie as the training data set; we replace it 
with software comments to compare them fairly. We can also learn that our approach 
is better than Naïve Bayes and LingPipe from Table 3. Note that Naïve Bayes is a 
probabilistic classifier which rests on the fact that the features are irrelevant. But in 
text classification, few features are irrelevant [36]. LingPipe is more suitable for long 
text classification but software comments are relatively short. 

3.2 Sentiment Analysis 

In our approach, we use another SVM based classifier with four different features 
(Number of positive words and phrases (PNUM), Function words (FW), etc.) to iden-
tify the polarity of comment. We called it SVM4SA. Then for 3-fold cross-validation, 
we select 300 positive comments and 150 negative comments randomly from the 
comments collected to evaluate the effectiveness of SVM4SA. This number difference 
is set because it shows that users are more likely to submit positive feedback. For 
example, there are 144 positive comments but 21 negative comments for “log4j”.  

Table 4 shows that the result of sentiment analysis. SVM4SA achieves 92% on both 
precision and recall, which is more efficient than the Naïve Bayes and LingPipe. As 
discussed above, the four features are interrelated with each other so Naïve Bayes is 
not as efficient as SVM4SA. While LingPipe is more suitable for long reviews but the 
comments of software comparatively short. 

Table 4. Results of Sentiment Analysis (β 1) 

Method precision recall F-score 
SVM4SA 92% 92% 92% 
Naïve Bayes 84.7% 85.1% 84.9% 
LingPipe 82.1% 83.3% 82.7% 

 
Table 5 gives some examples in sentiment classification and software quality 

summarization. For example, the comment text “Dom4j is a very, very good Java 
XML API, high-performance, powerful” is set to “positive”. At the same time, “po-
werful” and “high-performance” are extracted as aspect-related terms. While the 
comment text “Dom4j is briefly described as a more complex fork of JDOM. Because 
of this characterization, we dismissed dom4j without examining it closely.” is set to 
“negative”. And the term “complex fork” is extracted. It indicates that the process of 
sentiment classification and software quality summarization is interdependent. 



218 Y. Zou et al. 

Table 5. Some examples of sentiment analysis 

Feedback Text of Dom4j Sentiment analysis EED Terms 
Dom4j has saved me lots of time and effort over 
the last years. It is an easy, convenient and com-
fortable way to deal with DOM in Java. 

Positive Easy, convenient, 
comfortable 

it’s an easy to use, open source library for working 
with XML, XPath and XSLT on the Java platform 
using the Java Collections Framework 

Positive easy to use 

DOM4J is a very, very good Java XML API, high-
performance, powerful 

Positive  powerful,  
high-performance 

Dom4j is briefly described as a more complex fork 
of JDOM . Because of this characterization, we 
dismissed dom4j without examining it closely.  

Negative Complex fork 

3.3 Quality Assessment 

As described in section 3, a practical software quality model containing 7 aspects is 
constructed to measure the software in our approach. We apply our approach to the 
comments to find out what aspects these comments talk about and the results are shown 
in table 6. Here “N/M” indicates it mined from N positive comments and N negative 
comments indicates the corresponding quality aspect, blank indicates no comments talk 
about the aspect or the number of positive comments equals with negative ones.  

We conduct sampling inspection on these software quality assessment results. 
Firstly, 5 students read the related software comments and tell us whether the quality 
aspect our approach provided is right. It indicates that the result could accurately re-
flect the actual condition of these software projects. For example, GlassFish Server 
provides online searches within a document, online searches in a document set, and 
deep cross-document links. GlassFish Server is consistently rated highly by develop-
ers for its ease of use and administration features [27].  

Meanwhile, we still found some conflicting results such as 11 comments praised 
the efficiency of GlassFish but 3 negative comments also refer to this quality aspect. 
Though the main reason is there are conflict comments, we will improve the perfor-
mance of our approach further in the future. For example, the construction of Emotion 
Expression Dictionary (EED) and aspect-related terms set (ATS) are constructed 
based on the samples study. We expect improve the work through collect more com-
ment samples and integrate the technology of natural language process. 

An interesting finding in our work is that most developers concern about software 
aspects such as documentation, usability and so on. However, they seldom submit 
software comments about maintainability or portability of software resources. Our 
quality model is pre-defined in software resource repository. Compared with giving 
the original aspect term and phrases in the sentence, we think focusing on some quali-
ty aspect that users are interested will be more helpful.  

Our approach is applied to a sub-system of Trustier software resource repository 
(tsr.trustie.net), whose task is to enrich the software resources' quality information in 
the repository. With its help, users could retrieve the comments of candidate software, 
how many comments are positive or negative, which quality aspects the software have 
and what comments provide this quality assessment.  



 Assessing Software Quality through Web Comment Search and Analysis 219 

Table 6. Results of software quality assessment 

 Document Lightweight Interface Usability Flexibility Reliability Efficiency 

Glassfish 8/1   11/3   12/2 

Resin      13/2 7/3 

Jboss 5/2    17/0 15/1  

Xstream  11/0  13/0  9/0 7/0 

JDom  9/0  7/1    

Dom4j    5/1 12/1  14/0 

HtmlParser 0/4  13/0  7/1  4/0 

NekoHtml    9/2    

Struts  6/2 3/0 15/2   16/1 

JSF     0/5  8/2 

Tapestry 0/5   2/7   7/1 

Hibernate 11/0  12/1 3/7 15/1   

JPA  7/1  5/0   7/1 

Ibatis  8/3   9/1  5/0 

Tomcat 8/2   12/1  9/2 8/1 

Jetty  15/2     16/0 

Quartz 5/0 4/1 4/0 6/1 13/1   

Cron4j  6/0  5/0 3/1 4/0  

Jcrontab 1/3   4/0    

Htmlunit   9/0 5/2 7/2  4/1 

Httpunit   6/1 2/8    

Junit  6/0     7/1 

Easymock 0/2   5/1   5/0 

Log4j  0/9   4/1 5/0 7/2 

Httpclient    13/1   9/3 

4 Discussion and Related Work 

Our work aims to automatically analyze software comments from Internet to provide a 
comprehensive view of software resource. It is closely related to the following works: 

4.1 Internet-Based Software Resource Collection 

There are some existing methods trying to get related information of components 
from the Internet to help developers understand and reuse the components efficiently. 
For example, Wang et al. [12] collected information from the Internet to enrich de-
scriptions of Web services. Besides, the reputation of component is also been con-
cerned in component selection [13-15]. Li et al. [16] proposed a web services search 
engine named CoWS, which used the information captured from the Internet to pro-
vide quality-aware Web services search. However, these methods heavily relied on 
the structures and forms of specific types of components, such as QoS [16] and 
WSDL [12] of web services. For reusing the software resource on the Internet, Sea-
cord et al. [28] in CMU designed Agora to get different forms of software resources 
on the Internet; Hummel et al. [29] proposed a test-driven technique ExtremeHarvest 



220 Y. Zou et al. 

to obtain the software components on the Internet; Dong et al. [30] developed a search 
engine Woogle dedicated to web services search. Woogle collected the Web Service's 
WSDL file and its associated information from specific websites. However, these 
works did not provide quality guarantee for software resources, which could also be 
effort consuming for developers in acquiring needed resources.  

4.2 Sentiment Analysis 

In order to perform automated analysis of numerous comments from Internet to save 
users’ time and energy, it is worthwhile to apply natural language processing methods 
to comments and extract the most valuable information. Sentiment analysis seeks to 
identify the view point(s) underlying a text span [31]. Pang et al. [18] applied ma-
chine learning techniques to detect the polarity (positive and negative) of movie re-
views which out-perform human-produced baselines. Turney [32] presented a simple 
unsupervised learning algorithm for classifying reviews as recommended (thumbs up) 
or not recommended (thumbs down). The accuracy ranges from 84% for automobile 
reviews to 66% for movie reviews. Godbole et al.[33] presented a system that as-
signed scores indicating positive or negative opinion to each distinct entity over large 
corpus of news and blogs. A more fine-grained of sentimental analysis model is called 
aspect-based sentiment analysis. It aims to mine the features of entities in the com-
ment, e.g., usability of a component, GUI of a software resource or reliability of a 
web application server. Topic model is an approach to address this issue. It identifies 
the abstract topics that occur in a collection of documents. Thomas Hofmann [34] 
created an early topic model called probabilistic latent semantic indexing (PLSI). Blei 
et al. [21] presented Latent Dirichlet allocation (LDA) based on the generalization of 
PLSI. Topic model has advantages when applied to large size documentations. How-
ever，the comments we get from the Internet are short, terse and domain-relative, our 
approach is more fine-grained comparing with topic model. 

4.3 Web Page Information Extraction 

Structure of a web page varies site by site and there is lots of unrelated information in 
HTML document such as ads, navigation menus. It is necessary to find a universal 
information extraction method which could reach a high precision. In our paper, we 
use an easy yet efficient method based on VSM and similarity computing which could 
meet our demand well. Finn et al. [40] used the Body Text Extraction (BTE) method 
which extracted content by identifying the single, continuous region which contained 
the least amount of HTML tags and the most words. Pasternack et al. [38] use maxi-
mum subsequence segmentation which based on optimization over token-level local 
classifiers and apply it to news websites. Weninger et al. [39] present a method to 
extract content text from diverse Web pages by using the HTML document’s tag ra-
tios and then cluster the resulting histogram into content and non-content areas. Reis 
et al. [37] introduced how to learn template-dependent wrapper based on Tree Edit 
Distance and DOM tree similarity for news page extraction. These methods either 
need large size samples for different types of HTML documents or require expert 
knowledge [38].  



 Assessing Software Quality through Web Comment Search and Analysis 221 

5 Conclusion 

With the development of Web 2.0, increasing numbers of developers submit their 
software comment through Blogs, Forums and Open Source Communities. It provides 
useful reference for developers to assess the quality of these software resources.  
In this paper, we proposed a textual comment based software quality assessment  
approach, searching and analyzing user comments of software resources on the Inter-
net automatically. Compared with Previous works, our approach could support more 
types of software resource, users needn’t configure testing environment. With its help, 
developers can do candidate software selection easier and quicker in the software 
repository. 
 
Acknowledgment. This research is sponsored by the National Natural Science Foun-
dation of China under Grant No.61121063, 61103024, the High-Tech Research and 
Development Program of China (Grant No. 2012AA011202), the National Basic Re-
search Program of China (973) under Grant No. 2009CB320703. 

References 

1. Wang, L., Zou, Y., Fang, L., Xie, B., Yang, F.: An Exploratory Study of API Usage Ex-
amples on the Web. In: The 19th Asia-Pacific Software Engineering Conference (APSEC 
2012), Hong Kong, December 4-7, pp. 296–405 (2012) 

2. Li, M., Hua, Z., Zhao, J., Zou, Y., Xie, B.: Internet-Based Evaluation and Prediction of 
Web Services Trustworthiness. In: The IEEE Signature Conference on Computer Software 
& Applications (COMPSAC), pp. 571–576 (2012) 

3. Moser, R., Pedrycz, W., Succi, G.: A comparative analysis of the efficiency of change me-
trics and static code attributes for detect prediction. In: Proceedings of the 30th Interna-
tional Conference on Software Engineering, ICSE 2008, pp. 181–190 

4. Kessentini, M., Vaucher, S., Sahraoui, H.: Deviance from Perfection is a Better Criterion 
than Closeness to Evil when Identifying Risky Code. In: Proceedings of the IEEE/ACM 
International Conference on Automated Software Engineering, ASE 2010, pp. 113–122 
(2010) 

5. Briand, L.C., Wüst, J., Daly, J.W., Victor Porter, D.: Exploring the Relationships between 
Design Measures and Software Quality in Object-Oriented Systems. Journal of Systems 
and Software 51, 245–273 

6. Li, W., Henry, S.: Object-oriented metrics that predict maintainability. Journal of Systems 
and Software 23(1), 111–122 (1993) 

7. [7] Gokhale, S., Trivedi, K.S.: Reliability Prediction and Sensitivity Analysis Based on 
Software Architecture. In: Proceedings of the 13th International Symposium on Software 
Reliability Engineering, pp. 64–75 (2002) 

8. Goseva-Popstojanova, K., Trivedi, K.S.: Architecture-Based Approaches to Software Re-
liability Prediction. Int’l J.Computer & Mathematics with Applications 46(7), 1023–1036 
(2003) 

9. Roshandel, R., Medvidovic, N., Golubchik, L.: A Bayesian Model for Predicting Reliabili-
ty of Software Systems at the Architectural Level. In: Proceedings of 3rd QoSA, Boston, 
MA, pp. 108–126 (July 2007) 



222 Y. Zou et al. 

10. Monden, A., Nakae, D., Kamiya, T., Sato, S., Matsumoto, K.: Software Quality Analysis 
by Code Clones in Industrial Legacy Software. In: Eighth IEEE International Symposium 
on Software Metrics (METRICS 2002), pp. 87–94 (2002) 

11. Michael, S.G., Lyu, M.R.: Regression Tree Modeling for the Prediction of Software Quali-
ty. In: Proceedings of the 3rd ISSAT International Conference on Reliability and Quality 
in Design, pp. 31–36 (1997) 

12. Wang, L., Liu, F., Zhang, L., Li, G., Xie, B.: Enriching descriptions for public Web servic-
es using information captured from related web pages on the Internet. In: IEEE Interna-
tional Symposium on Service Oriented System Engineering, pp. 141–150 (2010) 

13. Yu, T., Zhang, Y., Lin, K.-J.: Efficient algorithms for Web services selection with end-to-
end QoS constraints. ACM Transactions on the Web (TWEB) 1(1), 6–31 (2007) 

14. Maximilien, E.M., Singh, M.P.: Conceptual model of Web service reputation. ACM 
SIGMOD Record 31(4), 36–41 (2002) 

15. Nguyen, H.T., Zhao, W., Yang, J.: A trust and reputation model based on bayesian net-
work for Web services. In: IEEE International Conference on Web Services, pp. 251–258 
(2010) 

16. Li, M., Zhao, J., Wang, L., Cai, S., Xie, B.: CoWS: An Internet-Enriched and Quality-
Aware Web Services Search Engine. In: The 9th IEEE International Conference on Web 
Services, pp.419–427 (2011) 

17. Guo, Q., Li, Y., Tang, Q.: Similarity computing of documents based on VSM. Application 
Research of Computers 25(11) (2008) 

18. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment Classification using Machine 
Learning Techniques. In: Proceedings of the Conference on Empirical Methods in Natural 
Language Processing (EMNLP), pp. 79–86 (2002) 

19. Tong, S., Koller, D.: Support vector machine active learning with applications to text  
classification. The Journal of Machine Learning Research 2, 45–66 (2002) 

20. Kitchenham, B.: Software quality: the elusive target. IEEE Software 13, 12–21 (1996) 
21. Jung, H., Kim, S., Chung, C.: Measuring software product quality: a survey of ISO/IEC 

9126. IEEE Software 21, 88–92 (2004) 
22. Mesleh, A., Kanaan, G.: Support vector machine text classification system: Using Ant Co-

lony Optimization based feature subset selection. Computer Engineering & Systems,  
143–148 (2008) 

23. Mesleh, A.: CHI Square Feature Extraction Based SVMs Arabic Language Text Categori-
zation System. Journal of Computer Science 3(6), 430–435 (2007) 

24. Nivre, J.: Dependency grammar and dependency parsing. Technical Report MSI report 
05133 (2005) 

25. de Marneffe, M., MacCartney, B., Manning, C.D.: Generating Typed Dependency Parses 
from Phrase Structure Parses. In: LREC 2006 (2006) 

26. de Marneffe, M., Manning, C.D.: Stanford Dependencies manual (2008) 
27. An Oracle White Paper, Comparing Oracle GlassFish Server and JBoss: Which Applica-

tion Server Is Right for You? (May 2010)  
28. Seacord, R.C., Hissam, S.A., Wallnau, K.C.: AGORA: a Search Engine for Software 

Components. IEEE Internet Computing 2(6), 62–70 (1998) 
29. Hummel, O., Atkinson, C.: Extreme Harvesting, “Test Driven Discovery and Reuse”.  

In: Proceedings of the International Conference on Information Reuse and Integration 
(IEEE-IRI), pp. 66–72 (2004) 

30. Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J.: Similarity Search for Web Ser-
vices. In: Proceedings of the 30th Very Large Data Base Conference, pp. 372–383 (2004) 



 Assessing Software Quality through Web Comment Search and Analysis 223 

31. Pang, B., Lee, L.: A Sentimental Education: Sentiment Analysis Using Subjectivity Sum-
marization Based on Minimun Cuts. In: Proceedings of the ACL, pp. 271–278 (2004) 

32. Turney, P.D.: Thumbs up or thumbs down?: semantic orientation applied to unsupervised 
classification of reviews. In: Proceedings of the 40th Annual Meeting on Association for 
Computational Linguistics, pp. 417–424 (2002) 

33. Godbole, N., Srinivasaiah, M., Skiena, S.: Large-scale sentiment analysis for news and 
blogs. In: Proceedings of the International Conference on Weblogs and Social Media 
(ICWSM) (2007) 

34. Hofmann, T.: Probabilistic Latent Semantic Indexing. In: Proceedings of the Twenty-
Second Annual International SIGIR Conference on Research and Development in Informa-
tion Retrieval (1999) 

35. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. The Journal of Machine 
Learning Research 3, 993–1022 (2003) 

36. Joachims, T.: Text categorization with support vector machines: Learning with many  
relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398,  
pp. 137–142. Springer, Heidelberg (1998) 

37. Reis, D.C., Golgher, P.B., Silva, A.S., Laender, A.F.: Automatic web news extraction us-
ing tree edit distance. In: Proceedings of the 13th International Conference on World Wide 
Web (WWW 2004), pp. 502–511 (2004) 

38. Pasternack, J., Roth, D.: Extracting article text from the web with maximum subsequence 
segmentation. In: Proceedings of the 18th International Conference on World Wide Web, 
pp. 971–980 (2009) 

39. Weninger, T., Hsu, W.H., Han, J.: CETR - Content Extraction via Tag Ratios. In: Proceed-
ings of the 19th International Conference on World Wide Web, pp. 971–980 (2010) 

40. Finn, A., Kushmerick, N., Smyth, B.: Fact or fiction: Content classification for digital  
libraries. In: DELOS Workshop: Personalization and Recommender Systems in Digital  
Libraries (2001) 

41. Pfleeger, S.L., Fenton, N., Page, S.: Evaluating Software Engineering Standards. Comput-
er 27(9), 71–79 (1994) 

42. Html Parser, http://htmlparser.sourceforge.net 
 
 
 



J. Favaro and M. Morisio (Eds.): ICSR 2013, LNCS 7925, pp. 224–238, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Consistency among Domain Analysts in Selecting Domain 
Documents and Creating Vocabularies  

Chaitanya Nemmallapudi, William B. Frakes, and Reghu Anguswamy* 

Software Reuse Laboratory, 
Department of Computer Science and Applications, Virginia Tech., 

7054 Haycock Road, Falls Church, VA - 22043 
{vinnu,reghu}@vt.edu, frakes@cs.vt.edu 

Abstract. A study is reported on the consistency of the domain vocabularies 
created and the source documents selected by domain analysts for domain 
analysis using DARE (Domain Analysis and Reuse Environment). Consistency 
was analyzed by measuring the pairwise overlap scores between the domain 
analysts. The overlap scores of the vocabularies and the source documents were 
both found to be significantly greater than zero. The effect sizes were large. A 
positive correlation was also observed between overlap scores of the 
vocabularies and overlap scores of the source documents. The variability of 
domain vocabularies created automatically was compared to the variability of 
domain vocabularies produced manually by domain engineers. The variability 
of automatic and manual vocabularies was found to be significantly different. 
The difference was of medium effect size. 

Keywords: Software reuse, domain engineering, domain analysis, text analysis, 
vocabulary extraction. 

1 Introduction 

Significant research and progress on software reuse has been reported over the past 
several decades [1]. However, despite the progress there are many open research 
questions. One such type of question concerns the consistency among domain analysts 
in selecting vocabulary and source documents for domain analysis. Also, the degree to 
which domain engineering can be automated needs to be addressed. To answer this 
question it is important to understand the relative variabilities of automatic and manual 
methods. This paper presents a quantitative study of these questions. 

Domain engineering is key to systematic software reuse. The process of domain 
engineering is divided into two phases: domain analysis and domain implementation 
[2]. In the domain analysis phase, the domain analyst analyzes various systems in a 
domain to find similarities and variabilities. In the domain implementation phase, the 
information gathered in the domain analysis phase is used to create reusable assets. 
There are several approaches to domain engineering [2-7].  

                                                           
* Corresponding author. 



 Domain Analysts in Selecting Domain Documents and Creating Vocabularies 225 

DARE: Domain Analysis and Reuse Environment [2, 8] is a method and tool that 
assists domain analysts with domain analysis. One of the major goals of DARE 
research was to achieve automation of domain analysis activities.  DARE helps 
domain analysts capture domain information from documents related to a domain. 
This domain information may be in the form of architectural diagrams, feature tables, 
facet tables and domain vocabulary. This information is recorded in a domain book, 
the final output of DARE.  

Vocabulary, then, is a required sub-section in the domain book. The raw 
vocabulary can be extracted from many sources like source code, subject matter 
experts, and domain documents. A sub-set of documents from the domain to be 
analyzed are chosen. These documents can be artifacts of the existing systems like 
design documents, requirement documents, user manuals etc. Vocabulary can be 
extracted either manually or automatically. In manual extraction, domain analysts 
read the domain documents and select the terms that best represent the domain. 
Automatic information retrieval techniques can help extract the terms for the domain. 
DARE does not try to replace the domain analysts, but it rather helps the domain 
analysts in the process.  

Researchers are now focusing on developing and applying information retrieval 
techniques to automatically extract syntactic and semantic knowledge from domain 
corpuses [9]. Manually extracting domain vocabulary is an expensive, time-consuming 
process. It requires domain analysts to analyze large amount of domain information and 
extract domain-specific keywords from it. The third experiment was conducted on the 
vocabularies created by both manual and automatic extraction methods as part of domain 
analyses using DARE. Automatically extracted vocabulary contains many redundant and 
meaningless terms. It can, however, be cheaper and faster[10]. There has been 
insufficient empirical study on how the automatic and manual methods relate.  

This paper presents 3 experiments. Experiment I was conducted on the 
vocabularies created by manual extraction and Experiment II was conducted on the 
source documents selected. Experiment III was conducted on the vocabularies created 
by both manual and automatic extraction methods as part of domain analyses using 
DARE. Section 2 presents the experiments and the hypotheses for the study. Section 3 
discusses the method used for conducting the experiments. Section 4 discusses the 
results. Section 5 presents the conclusions. 

2 Experiments 

Experiment I was conducted on the vocabularies created by 29 domain analysts  
to study the consistency among them. Experiment II evaluated the consistency among 
the source documents selected by 29 domain analysts. Our study was restricted to  
one domain, namely conflation algorithms [11, 12]. The main dependent variable in the 
two experiments was symmetrical overlap [13].  Symmetrical overlap is used as the 
measure for consistency. In this study, “symmetrical overlap” will be referred to as 
“overlap.” Overlap is defined as follows: Consider two sets A and B. Overlap is 
defined as the number of items common to the two sets A and B, divided by the 
number of all items in the two sets. Mathematically, overlap is represented as: 

||

||

BA

BA
O

∪
∩=                                                                     (1) 



226 C. Nemmallapudi, W.B. Frakes, and R. Anguswamy 

Overlap is scaled so that the highest possible score is 1, which indicates that all  
the items in the two sets match and the lowest possible score is 0 which indicates 
there are no common items between the two sets.  As an example, consider the 
cardinalities of A and B are 10 and 15 respectively. If 5 elements are common to both 
the sets, and the total number of items is 20 (10+15-5), then the overlap of the sets 
would be 5/20 or 0.25. 

For Experiment III, data from the Tilley’s study [14] was used. In Tilley’s study 14 
word frequency metrics were used as automatic extraction methods and tested to 
evaluate their effectiveness in identifying vocabulary in a domain. The word 
frequency metrics were run on the same source documents as identified by the domain 
analysts. The effectiveness was then measured by comparing the overlap between the 
vocabulary produced by each word frequency metric and the vocabulary produced by 
the domain analyst. The results in the study showed that most of the methods were 
about the same with a few methods significantly worse. This study had vocabularies 
created in various domains. Our study compared the vocabularies created manually by 
the domain analysts with those produced using the 14 automatic methods. Our study 
was restricted to one domain, namely conflation algorithms [12, 15] and there were 7 
such vocabularies. 

2.1 Hypotheses 

Experiment I: Null hypothesis (H0): The overlap scores between vocabularies of 
different domain analysts will be equal to 0. Alternate Hypothesis (HA): The overlap 
scores between vocabularies of different domain analysts will be significantly greater 
than 0. 

Experiment II: Null Hypothesis (H0): The overlap scores between the source 
documents selected by different domain analysts will be equal to 0. Alternate 
Hypothesis (HA): The overlap scores between the source documents selected by 
domain analysts will be significantly greater than 0. 

Experiment III: Null Hypothesis (H0): The overlap scores between different domain 
analysts will not be greater than the overlap scores between domain analysts and 
automatic extraction methods. (There will be no significant difference between the 
means of manual-manual and automatic-manual overlap scores). Alternate Hypothesis 
(HA):  The overlap scores between different domain analysts will be greater than that 
of overlap scores between domain analysts and automatic extraction metrics. (There 
will be a significantly greater difference between the means of manual-manual and 
automatic-manual overlap scores). 

3 Method 

3.1 Data Collection 

To test the above hypotheses, data from domain engineering course projects at Virginia 
Tech were used. The DARE methodology was used for domain analysis, and domain 



 Domain Analysts in Selecting Domain Documents and Creating Vocabularies 227 

books were created by each domain analyst as a result of these exercises. Each domain 
analyst collected documents related to the conflation domain. For this study, we have 
used the projects from the “Conflation” domain [12, 15]. As a rule of thumb, a 
minimum of three documents were selected by each analyst with no restriction on the 
maximum number of documents. Various source documents on the conflation domain 
consisted of source code (109), online references (98), journals (87), text files (23), 
course notes (13), books (9) and manuals (9). This is represented in Figure 1.  

 

 
Fig. 1. Information of source documents selected by domain analysts 

The tasks were to process domain documents and select the terms that best 
represented the domain. The analysts were allowed to use tools that automatically 
extracted index terms for the domain corpuses and then based on their domain 
knowledge, manually selected the terms that best represented the domain. The 
selected terms (vocabulary) were then used to create other artifacts of the domain 
book like the facet table, the feature table, and the domain architecture. The 
vocabularies created by the domain analysts and the source documents used for 
analysis were used as our test data. 

The histogram in figure 2 shows the frequency of the vocabulary sizes created by 
the 29 domain analysts. The mean vocabulary size was 39.2 terms, and the median 
was 38.0. In terms of variability, the highest vocabulary size was 95 and the lowest 
vocabulary size was 15 yielding a range of 80. The standard deviation was 20.25. The 
general shape of the distribution is multi-modal and positively skewed. The boxplot 
shows that half the values were between 22 and 52. 

Part of the data for Experiment III was obtained from the results of Tilley’s study 
[14] in which “various information retrieval and filtering metrics were tested and 
evaluated to determine their effectiveness in identifying domain vocabulary”. The 
vocabulary extracted using these metrics was compared with the manually selected 
vocabulary and the overlap scores were computed. There were 7 such vocabularies. In 
our study, these overlap scores are referred to as automated-manual overlap scores. 
We use them to compare with the overlap scores measured between various domain 
analysts (referred to as manual-manual overlap scores). 



228 C. Nemmallapudi, W.B. Frakes, and R. Anguswamy 

 

Fig. 2. Frequency of Vocabulary sizes (number of words) 

3.2 Data Preparation 

Experiment I: A java program was written that used vocabulary sets of various 
domain analysts to calculate the overlap scores. The vocabularies were obtained from 
the facet tables created by the domain analysts. We will call the facet names “facet 
groups” and the words that fall into the category of a facet group “facet terms”. We 
placed the facet group names and facet term names in two text files.  Since the 
vocabularies were manually created by the domain analysts, we had to take additional 
steps for data extraction. The vocabulary sets contained non-alphanumeric characters 
such as _, -, ( ). These characters had to be removed from the vocabularies since they 
might create noise. For e.g. the words “n gram” and “n-gram” might be considered as 
two different words although they represent the same term. This clean-up makes 
vocabulary sets more comparable. The vocabulary was then passed through a 
stemmer [16] to create a standardized vocabulary. We also found that some 
vocabulary sets contain phrases rather than single terms. For e.g. in some vocabulary 
sets, the phrase “domain engineer” was considered as a single term rather than two 
different words. For this reason, four variations of the vocabulary sets were identified 
for all the domain analysts. They are:  

• Facet terms without phrases 
• Facet terms with phrases.  
• Facet groups without phrases  
• Facet groups with phrases 

For example, consider the following facet table for the conflation domain.  

Table 1. Facet Table – an example 

Conflation Methods Performance Algorithm 

Automatic Frequency Table lookup 

Manual Precision Successor variety 

 Effectiveness  



 Domain Analysts in Selecting Domain Documents and Creating Vocabularies 229 

• Facet terms with phrases will be the set: [Automatic, Manual, Compression, 
Precision, Effectiveness, Frequency, Table lookup, Successor variety] with 8 
members. 

• Facet terms without phrases will be the set: [Automatic, Manual, 
Compression, Precision, Effectiveness, Frequency, Table, Lookup, 
Successor, Variety] with 10 members. 

• Facet groups with phrases will be the set: [Conflation Methods, 
Performance, Algorithm] with 3 members. 

• Facet groups without phrases will be the set: [Conflation, Methods, 
Performance, Algorithm] with 4 members. 

Counts of each variation are given in figures 3 and 4. Overlap scores were calculated 
for all of the four variations of the vocabulary sets of all domain analysts. The 
histogram in figure 3 shows the frequency of the facet groups created by the domain 
analysts. The mean number of facet groups was 6.2, and the median was 6.0. The 
general guideline for creating a facet classification is to have no more than 7 facet 
groups. However, 10 subjects, created more than 7 facet groups. In terms of 
variability, the highest number of facet groups created by a domain analyst was 10 
and the lowest was 3. The standard deviation was 1.81. The general shape of the 
distribution is unimodal and positively skewed. The box plots show that 50% of the 
facet groups were between 5 and 7. 

 

Fig. 3. Frequency of facet groups 

The histogram in figure 4 shows the frequency of facet terms created by the 
domain analysts. The mean number of facet terms was 34.4, and the median was 31.0. 
In terms of variability, the highest number of facet terms created by a domain analyst 
was 89 and the lowest number of facet terms was 11. The standard deviation was 
19.8. The general shape of the distribution is bimodal and positively skewed. The box 
plot shows that 50% of the cases fall between 18 and 45. The box plot also shows one 
outlier (90 terms). 

Experiment II: A java program was written to compare the titles of the source 
documents and compute overlap scores between the source documents selected by the 
domain analysts. The titles of all the source documents were manually processed in  
 



230 C. Nemmallapudi, W.B. Frakes, and R. Anguswamy 

 

Fig. 4. Frequency of facet terms 

order to maintain consistency. For references with no titles, a unique name was 
chosen and used consistently throughout the experiment. 

3.3 Experiment I – Consistency of Vocabularies 

The overlap scores of the vocabularies created by each domain analyst were 
compared on a pairwise basis with the other vocabularies. Facet groups and facet 
terms were compared separately. As mentioned before, the overlap score is the 
cardinality of the intersection of the pair wise vocabularies created by domain 
analysts over their union. It can be measured using the equation (2): 

||

||
),(

ji

ji

dede

dede

ji VV

VV
dedeO

∪

∩
=

                                           

      (2) 

ideV -  Vocabulary created by Domain analyst i 

jdeV  -  Vocabulary created by Domain analyst j 

3.4 Experiment II – Consistency of Source Documents 

The domain analysts selected source documents to create domain vocabularies. 
Different analysts select different documents. The overlap score is measured as the 
cardinality of the intersection of source documents selected by the analysts over their 
union of the same. It can be measured using the equation (3): 

||

||
),(

ji

ji

dede

dede

ji DocsDocs

DocsDocs
dedeD

∪

∩
=           (3) 

ideDocs -  Documents selected by Domain analyst i. 

jdeDocs  -  Documents selected by Domain analyst j. 



 Domain Analysts in Selecting Domain Documents and Creating Vocabularies 231 

3.5 Experiment III – Automatic vs. Manual Extraction 

Figure 5 shows how we compared the vocabularies of automatic and manual 
techniques. Figure 6 shows how we compared vocabularies of the manual techniques. 
The following notations were used: 

 
A1 ….. A14         Automatic extraction methods in Tilley’s study 

[14] 

                        de1…. de29 29 Domain analysts. 

                             O(dei, Aj)  Overlap between vocabularies produced by domain 
analyst i and automatic extraction method  j. 

  Grand mean of the overlap score between 
vocabularies of domain analysts and automatic 
generators. 

                      O(den, dem)  Overlap between vocabularies produced by domain 
analysts n and m. 

              Grand mean of the overlap score between 
vocabularies of domain analysts. 

 
 A1 A2.  .  .  . . . .  .      . . . . . . . . . . . . . . . . . . A14 

de1 . . . . . .  . . . . . . . . . .  

de2 . . . . . . . . . . . . . . . .  

. . . . 

. . . . 

de7 . . . . 

. . 

. . . . . . . . . . .  

  

Fig. 5. Comparison of overlap score means of Automatic-Manual 

 de1 de2.    .  .  .  .  . . . . .  . . . . . . . . . de29 

de1  . . . . . . . . . . . . . . . . .  

de2  . . . . . . . . .  . . . . . . . .  

. . . . 

. . . . 

de29  . . . . . . . . .        . . . . . . .  

  

Fig. 6. Comparison of overlap score means of Manual-Manual 



232 C. Nemmallapudi, W.B. Frakes, and R. Anguswamy 

4 Results 

In this section, we discuss the results of the experiments and how they support or 
contradict our hypotheses.   

4.1 Experiment I – Results 

Facet terms without Phrases: The facet terms (without phrases) of twenty nine 
different domain analysts’ vocabularies were compared. The sample size was 406 or 
(29*28)/2 data points. The mean overlap score was 0.14, and the median was 0.13. In 
terms of variability, the highest overlap score was 0.54 and the lowest overlap score 
was 0 with a standard deviation of 0.08. The number of overlap scores that were zero 
was 13.  

Figure 7 shows the boxplots of pairwise overlap scores of the domain analysts. For 
example the boxplot of domain analyst DE01shows the lowest overlaps score of 0 and 
highest of 0.32. Thirteen of the subjects have outliers or extreme outliers. Two pairs of 
extreme outliers observed in figure 7 are the pairs of domain analysts O (15, 22) = 0.54 and 
O (16, 23) =0.55. By observing the vocabulary facet terms of these two domain analysts, it 
was found that, both of them used the names of different conflation algorithms as the 
vocabulary terms and this could be the reason for their high overlap scores.  

The overlap scores of domain analyst DE08, are significantly different from others. 
It was observed that this domain analyst, unlike the others, worked on the conflation 
of storage systems, databases and directories that have similar data rather than the 
conflation of words and images. Hence the vocabulary or the facet terms selected by 
this domain analyst did not match with others’ facet terms.  Similarly, the overlap 
scores of the domain analyst DE14 are significantly different from others. This may 
be because most of the sources selected by this domain analyst are architectural 
diagrams in the form of flowcharts. Also, this domain analyst used an automatic 
indexing tool to extract the domain vocabulary. The most common words used in 
flow charts like ‘Yes’, ‘No’, etc., which do not represent the conflation domain, were 
selected as facet terms. Another pair of extreme outliers whose overlap scores are 
close to 0 is O(26, 29) = 0.03. It was observed that the facet terms selected by domain 
analyst 26 represents the conflation algorithms domain in general whereas the facet 
terms selected by the domain analyst 29 represents suffix stripping algorithms, a part 
of the conflation algorithm domain.  

 
T-test: A one-sample t-test using an alpha level of .05 tested if the mean was 
significantly different from zero. The sample mean of 0.07 (SD = 0.05) was found to 
be statistically different from this value, t (405) = 28.11, “p< .0005”, suggesting that 
the mean overlap score of various domain analysts is significantly greater than 0. The 
effect size, Cohen’s d value [12], was 2.79. This is a large effect size. 

Facet terms with Phrases: The facet terms with phrases of vocabularies created by 
29 different domain analysts were compared. The sample size is 406 data points. The 
mean score was 0.07, and the median was 0.07. In terms of variability, the highest 
overlap score was 0.29 and the lowest overlap score was 0 with a standard deviation 
of 0.05. Number of overlap scores that were zero was 41. 



 Domain Analysts in Selecting Domain Documents and Creating Vocabularies 233 

 

Fig. 7. Comparison of facet terms without phrases 

The median overlap score of facet terms without phrases for domain analyst 14 is 
greater than 0 (Figure 7), which fell down to 0 when facet terms with phrases were 
considered (Figure 8). The vocabularies of domain analyst 24 and 25, O (24, 25) = 0.22, 
have a good overlap. While observing the domain books of these domain analysts, a 
close match in the source documents of these domain analysts was found. The overlap 
scores that are outliers in the above box plot O (15, 22) = 0.51, O (16, 23) = 0.41 and O (13, 

18) = 0.44 are consistent with the outliers of facet terms without phrases, as discussed 
previously, but resulted in a lower overlap.  
 
T-test: A one-sample t-test using an alpha level of .05 tested if the mean was 
significantly different from zero. The sample mean of 0.07 (SD = 0.05) was found to 
be statistically different from this value, t (405) = 28.11, “p< .0005”, suggesting that 
the mean overlap score of various domain analysts is significantly greater than 0. The 
effect size, Cohen’s d value, was 2.79. This is a large effect size. 

Facet groups without Phrases: The facet groups without phrases of vocabularies 
created by twenty nine different domain analysts were compared. The sample size was 
406 data points. The mean score was 0.06, and the median was 0.05. In terms of 
variability, the highest overlap score was 0.67 and the lowest overlap score was 0 with 
a standard deviation of 0.08. The number of overlap scores that were zero was 141.  

 

 

Fig. 8. Comparison of facet terms with phrases 



234 C. Nemmallapudi, W.B. Frakes, and R. Anguswamy 

 

Fig. 9. Comparison of facet groups without phrases 

The outlier pairs, as shown in figure 9, O (15, 22) = 0.33 and O (16, 23) =0.22, are 
consistent with the outliers of facet terms. Domain Analyst 5 in the above box plot 
has an outlier whose value is 0. While observing the overlap scores, it was found that 
this domain analyst’s choice of facet groups did not match with the few other domain 
analyst’s facet groups. One possible reason could be that since the choice of facet 
groups should be made from a smaller set of words unlike the choice of facet terms 
which can be made from a wider set of terms, the probability of the domain analyst 
choosing a similar facet group name is low. Also, overlap score of domain analysts 24 
and 25, O (24, 25) = 0.22, was significant when comparing the facet terms, but in case of 
groups, none of them matched, even after the phrases were split into individual terms. 
This shows that the choice of grouping differs significantly among domain analysts. 
The source documents of domain analysts 24 and 25 had a significant overlap score of 
0.59 which means that the sources selected were similar. 
 
T-test: A one-sample t-test using an alpha level of .05 tested if the mean was 
significantly different from zero. The sample mean of 0.06 (SD = 0.08) was found to 
be statistically different from this value, t (405) = 14.61, “p < .0005”, suggesting that 
the mean overlap score of various domain analysts is significantly greater than 0. The 
effect size, Cohen’s d value, was 1.45. This is a large effect size. 

Facet groups with Phrases: The facet groups with phrases of vocabularies created 
by twenty nine different domain analysts were compared; the sample size was 406 
data points. The mean score was 0.02, and the median was 0. In terms of variability, 
the highest overlap score was 0.30 and the lowest overlap score was 0 with a standard 
deviation of 0.05. The number of overlap scores that were zero was 329. 

In figure 10, it was observed that, most of the domain analysts have zero overlap 
scores when compared with others. The selection of facet groups with phrases yield 
lower overlap scores when compared to facet groups without phrases. One possible 
reason could be the choice of words i.e. for example one domain analyst may choose 
the name “Conflation techniques” to represent various conflation algorithms like n-
gram, successor variety etc., but some other domain analyst may name it as 
“Conflation Methods.”  It might yield in higher overlap scores for facet terms but will 
result in low overlap scores for facet groups with phrases. Many outliers can be seen in 
figure 9. It was believed that since there is very low probability that the facet groups 
with phrases of two domain analysts will match, the median overlap score tends to zero 
and any partial match between the facet groups with phrases are considered as outliers. 
It was observed that median overlap for all the domain analysts is 0. 



 Domain Analysts in Selecting Domain Documents and Creating Vocabularies 235 

T-test: A one-sample t-test using an alpha level of .05 tested if the mean was 
significantly different from zero. The sample mean of 0.02, (SD = 0.05) was found to 
be statistically different from this value, t (405) = 8.40, “p< .0005”, suggesting that 
the mean overlap score of various domain analysts is greater than 0. The effect size, 
Cohen’s d value was 1.45. This is a large effect size. 
 

 
Fig. 10. Comparison of facet groups with phrases 

 

Fig. 11. Comparison of overlap scores of source documents 

4.2 Experiment II – Results 

357 source documents selected by the domain analysts were compared and studied for 
consistency by measuring the overlap. As a rule of thumb, a minimum of three 
documents were selected by each analyst with no restriction on the maximum number 
of documents. 

Various source documents in the conflation domain consisted of source code (109), 
online references (98), journals (87), text files (23), course notes (13), books (9) and 
manuals (9).  The overlap scores of the domain analysts’ source documents are 
compared in Figure 11. The most extreme outlier pair in the box plot is the overlap 
score between de24 and de25: D (24, 25). The source documents selected by these two 
domain experts are similar. One possible reason for the higher overlap could be the 
selection of source code. Both the domain experts have selected similar conflation 
algorithms (Lovins, Lancaster, Porter). They also chose these algorithms implemented 
in same the language (ANSI C).  

The source documents selected by the different domain experts were not 
significantly different from each other. A few sources were common among the 



236 C. Nemmallapudi, W.B. Frakes, and R. Anguswamy 

domain analysts. The source code, “Porter in C” was  used by 16 domain experts. The 
next most frequently used source was the chapter, “Stemming Algorithms in 
Information Retrieval” by W. Frakes [16]. It was referred by 11 domain experts. The 
articles “An algorithm for suffix stripping [17]” and “Another Stemmer [18]” were 
used by 10 domain experts. The online reference, “Lancaster stemming algorithm 
(http://www.comp.lancs.ac.uk/computing/research/stemming/ )” and the source codes, 
“Lovins in C (http://snowball.tartarus.org/algorithms/lovins/stemmer.html )” and 
“Implementation of the Paice algorithm in the programming language C 
(http://www.comp.lancs.ac.uk/computing/research/stemming/Links/implementations.
htm) ” were commonly used by 8 domain experts. It was also observed that there 
were 96 unique sources. The extreme outlier pair D (24, 25) has been discussed 
previously. The reason for most of the other outliers D (26, 28), D (7, 9) in the above box 
plot is due to the close match of source documents. 

Correlation coefficients were computed to assess the relationship between the 
overlap scores of the source documents selected for the domain analysis and the 
overlap scores of the vocabularies created. The matrix in Table 2 shows the 
correlation coefficients. There is a weak positive correlation between overlap scores 
of source documents selected for domain analysis and their corresponding domain 
vocabularies. Overlap scores of facet terms without phrases had the highest 
correlation (r = 0.34) with overlaps scores of source documents; while facet groups 
without phrases had the lowest correlation (r = 0.18).  A positive correlation between 
overlap scores of facet terms with phrases and facet terms without phrases, was 
observed with r = 0.82 and between facet groups with phrases and facet groups 
without phrases, with r = 0.24. Overall, a strong, positive correlation between overlap 
scores of facet group and facet term categories exists. 

Table 2. Correlation matrix of overlap scores 

  

Source 

Documents 

Terms 

without 

phrases 

Terms with 

phrases 

Groups 

without 

phrases 

Groups with 

phrases 

Source Documents 
1 0.34 0.19 0.18 0.18 

Terms without 

phrases 0.34 1 0.82 0.32 0.09 

Terms with phrases 0.19 0.82 1 0.39 0.12 

Groups without 

phrases 0.18 0.32 0.39 1 0.24 

Groups with phrases 0.18 0.09 0.12 0.24 1 

4.3 Experiment III – Results 

Two sample T-tests were performed to evaluate the hypothesis for Experiment III. An 
alpha-level of 0.05 was used for the T-tests. The variability of domain vocabularies 
created automatically was compared to the variability of domain vocabularies 



 Domain Analysts in Selecting Domain Documents and Creating Vocabularies 237 

produced manually by domain engineers. 841 manual-manual overlap scores were 
compared with 203 automatic-manual overlap scores. The T-tests compared the 
sample mean of “facet terms with phrases” created manually by domain analysts with 
“facet terms with phrases” created using automatic methods. The summary of results 
is as shown in Table 3. The results show that the mean overlap score of the 
vocabularies created manually by domain analysts are significantly higher than the 
vocabularies created using automatic extraction methods. The effect size (Cohen’s d) 
is in the medium region [19]. 

Table 3. Summary of results for the T-tests 

Std Err 
Mean 

Difference 
t-value 

(p<0.05) 
Effect Size 

(Cohen's d) [14] 

0.005 0.021 3.8 0.41 

5 Conclusions 

The overlap scores of vocabulary sets from domain analyses were computed and 
compared in terms of facet terms without phrases, facet terms with phrases, facet 
groups without phrases, and facet groups with phrases for different domain experts. It 
was observed that the facet terms and groups when selected without phrases yield 
higher overlap scores than facet terms and groups with phrases. The results also show 
that the mean value of the overlap scores of the vocabularies and the source 
documents was significantly greater than 0. However, in general the overlap scores of 
the vocabularies and the source documents were not significantly different between 
the domain experts.    

Correlation coefficients were computed to determine whether there is any 
relationship between the vocabulary terms selected and source documents used to 
create them. A weak positive correlation between the sources documents selected for 
domain analysis and their corresponding domain vocabularies was observed. 
However, there was a stronger positive correlation between overlap scores of facet 
terms with phrases and facet terms without phrases (r = 0.82). 

The variability of domain vocabularies created automatically was compared to the 
variability of domain vocabularies produced manually by domain engineers. 841 
manual-manual overlap scores were compared with 203 automatic-manual overlap 
scores. The domain was conflation algorithms. The results show that the mean 
overlap score of the vocabularies created manually by domain analysts are 
significantly higher than the vocabularies created using automatic extraction methods. 
The effect size of the difference was medium (Cohen’s d = 0.41). 

The results from experiments I and II show that though there is consistency 
between domain experts in creating vocabularies and selecting documents, the overlap 
scores are low. The process needs further improvement to increase consistency which 
would be reflected by higher overlap scores. Results from experiment III show that if 
we consider manual extraction of domain vocabularies as the standard, then the 
automatic extraction methods are not up to these standards. 



238 C. Nemmallapudi, W.B. Frakes, and R. Anguswamy 

References 

1. Frakes, W.B., Kang, K.C.: Software reuse research: status and future. IEEE Transactions 
on Software Engineering 31(7), 529–536 (2005) 

2. Frakes, W., Prieto-Diaz, R., Fox, C.: DARE: Domain analysis and reuse environment. 
Ann. Softw. Eng. 5, 125–141 (1998) 

3. Harsu, M.: FAST product-line architecture process. Tampere University of Technology 
(2002) 

4. Kang, K., et al.: Feature-oriented domain analysis (FODA) feasibility study. Software 
Engineering Institute, Carnegie Mellon University, Pittsburgh (1990) 

5. Simos, M.A.: Organization domain modeling (ODM): formalizing the core domain 
modeling life cycle. SIGSOFT Softw. Eng. Notes 20(SI), 196–205 (1995) 

6. Kang, K., et al.: FORM: A feature-;oriented reuse method with domain-;specific reference 
architectures. Annals of Software Engineering 5(1), 143–168 (1998) 

7. Tracz, W.: DSSA (Domain-Specific Software Architecture): pedagogical example. 
SIGSOFT Softw. Eng. Notes 20(3), 49–62 (1995) 

8. Dos Santos, R.F., Frakes, W.B.: DAREonline: A Web-Based Domain Engineering Tool. 
In: Edwards, S.H., Kulczycki, G. (eds.) ICSR 2009. LNCS, vol. 5791, pp. 246–257. 
Springer, Heidelberg (2009) 

9. Riloff, E.: From Manual Knowledge Engineering to Bootstrapping: Progress in 
Information Extraction and NLP. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. 
LNCS (LNAI), vol. 2689, p. 4. Springer, Heidelberg (2003) 

10. Seljan, S., Gašpar, A.: First Steps in Term and Collocation Extraction from English-
Croatian Corpus (2009) 

11. Frakes, W.B., Baeza-Yates, R.: Information retrieval: Data structures & algorithms, 
vol. 152. Prentice Hall, Englewood Cliffs (1992) 

12. Yilmaz, O., Frakes, W.B.: A Case Study of Using Domain Engineering for the Conflation 
Algorithms Domain. In: Edwards, S.H., Kulczycki, G. (eds.) ICSR 2009. LNCS, 
vol. 5791, pp. 86–94. Springer, Heidelberg (2009) 

13. Das-Gupta, P., Katzer, J.: A study of the overlap among document representations. ACM, 
Bethesda (1983) 

14. Tilley, J.: A Comparison of Statistical Filtering Methods for Automatic Term Extraction 
for Domain Analysis. In: Computer Science and Applications, p. 49. Virginia Polytechnic 
Institute and State University, Blacksburg (2008) 

15. Frakes, W., Baeza-Yates, R.: Information retrieval: Data structures & algorithms, vol. 152. 
Prentice Hall, Englewood Cliffs (1992) 

16. Frakes, W.B.: Stemming Algorithms. In: Frakes, W.B., Baeza-Yates, R. (eds.) Information 
Retrieval: Data Structures and Algorithms, pp. 131–160. Prentice-Hall, Englewood Cliffs 
(1998) 

17. Porter, M.F.: An algorithm for suffix stripping. In: Karen Sparck, J., Peter, W. (eds.) 
Readings in Information Retrieval, pp. 313–316. Morgan Kaufmann Publishers Inc. (1997) 

18. Paice, C.D.: Another stemmer. SIGIR Forum 24(3), 56–61 (1990) 
19. Cohen, J.: Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence 

Erlbaum Associates, Inc., Hillsdale (1988) 



Mining Cohesive Domain Topics

from Source Code

Bing Xie1,2, Meng Li1,2, Jing Jin1,2, Junfeng Zhao1,2,�, and Yanzhen Zou1,2

1 Software Institute, School of Electronics Engineering and Computer Science,
Peking University, Beijing 100871, China

2 Key Laboratory of High Confidence Software Technologies, Ministry of Education,
Beijing 100871, China

{xiebing,limeng09,jinjing10,zhaojf,zouyz}@sei.pku.edu.cn

Abstract. Using topic models to mine domain topics from source code
has been a promising way for developers to comprehend the functional
concerns implemented in the source code of a software system. However,
not all the topics mined from source code are domain topics that rep-
resent functional concerns of the software. Besides domain topics, other
topics may represent cross-cutting concerns or other concerns. These
topics are noises in the context of helping developers to comprehend the
functional concerns. In this paper, we propose an approach to filter out
noises and mine Cohesive Domain Topics (CDTs) from source code. A
topic is a CDT if its associated words represent certain functional con-
cern and its associated source code elements collaboratively implement
the functional concern. Firstly, we propose a series of Filtering Heuristics
to filter out programming related information in source code which may
bring in noises. Then, we mine raw topics from source code using Latent
Dirichlet Allocation. Finally, based on the structural relationships among
the source code elements associated to a topic, we propose a novel metric
called Topic Cohesion to identify CDTs from the raw topics. Experimen-
tal results on a set of open source software show that our approach can
effectively filter out noises and obtain CDTs from source code.

1 Introduction

Source code comprehension is an important activity during source code reuse [1–
3]. Developers need to comprehend the functional concerns of a software system
and the corresponding implementations in source code, before they perform any
reuse task such as adding a new feature or modifying an existing feature.

For a small software system, developers can comprehend its functional
concerns by manually browsing the source code or by using program analysis
techniques (e.g. call graph, control or data flow, slicing, etc.). However, these
techniques help little for developers to comprehend large software systems [4].
Because there is an overwhelmingly large amount of details at different lev-
els of granularity, and the domain related information reflecting the system’s
functional concerns is mixed with programming related information [5].

� Corresponding author.

J. Favaro and M. Morisio (Eds.): ICSR 2013, LNCS 7925, pp. 239–254, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



240 B. Xie et al.

Using topics models, such as Latent Dirichlet Allocation (LDA), to mine topics
from the source code of a software system has been a new and promising way
to help developers to comprehend the source code [2–7]. A topic is a collection
of semantically related words that represent certain concern in source code [4].
Besides the words, for each topic, it is associated with a collection of source
code elements. For example, a “user” topic, representing the user management
concern, and its associated words as well as source code elements are shown
in Fig. 1. The topics mined from source code can be classified into different
categories according to the concerns they represent. Some topics, called domain
topics, represent the functional concerns, while other topics may represent cross-
cutting concerns or other concerns [8]. The “user” topic above is a domain topic.
For more discussions of the semantics of the topics mined from source code,
refer to Section 5.1. Domain topics are helpful for developers to comprehend the
functional concerns implemented in source code, while other topics are noises
in this context. However, most previous approaches do not distinguish domain
topics from other noisy topics, which affects their effectiveness.

Fig. 1. Domain topic example: the “user” topic representing user management and its
associated words and source code elements (i.e. Java classes)

In this paper, we propose an approach to filter out noises and mine Cohesive
Domain Topics (CDTs) from source code. A topic is a CDT if its associated
words represent certain functional concern and its associated source code ele-
ments collaboratively implement the functional concern. CDTs can effectively
support the topic-based source code comprehension. Taking the “user” topic
(Fig. 1) above for example, developers can easily comprehend the functional
concern represented and the corresponding implementation in source code by
exploring its associated words and source code elements correspondingly.

In particular, firstly we propose a series of Filtering Heuristics (FHs) to filter
out programming related information in source code (e.g. programming language
syntax and dependencies on external libraries) which may bring in noises. Then,
we mine raw topics from source code using LDA. Finally, based on the structural
relationships among the source code elements associated to a topic, we propose a
novel metric called Topic Cohesion (TC) to identify CDTs from the raw topics.



Mining Cohesive Domain Topics from Source Code 241

We conduct several experiments on a set of open source software to evaluate
the effectiveness of our approach. The empirical results show that our approach
can effectively filter out noises and obtain CDTs from source code.

The contributions of this paper include:

– We propose a series of FHs to filter out programming related information in
source code which may bring in noises. The FHs can filter out more noises
than previous approach [4–6].

– We propose a novel metric called TC, which is based on the structural rela-
tionships among the source code elements associated to a topic, to identify
CDTs from the topics mined from source code.

– We evaluate the effectiveness of our approach on a set of open source soft-
ware. The empirical results are promising, and we open the data set on the
Internet for further research1.

The rest of this paper is organized as follows: In Section 2, we introduce some
background knowledge and related work. Section 3 presents the details of our
approach. Evaluation is covered in Section 4. Section 5 discusses several issues
related to our approach. Section 6 lists our future work and concludes the paper.

2 Related Work

2.1 Topic Models

In Information Retrieval (IR), a topic model is a generative model for docu-
ments2: it specifies a probabilistic procedure by which documents can be gener-
ated [9]. Topic models include Latent Semantic Indexing (LSI), LDA, etc. [10].

LDA is perhaps the most common topic model currently in use [9]. It is
adopted in this paper as well. For the sake of completeness, we briefly introduce
LDA. The terms used in LDA are as follows:

– A word is the basic unit of discrete data, defined to be an item from a
vocabulary V = w1, w2, . . . , wv.

– A document is a sequence of n words denoted by d = (w1, w2, . . . , wn), where
wn is the nth word in the sequence.

– A corpus is a collection of m documents denoted by D = {d1, d2, . . . , dm}.

The basic idea of LDA is that documents are represented as random mixtures
over latent topics, where each topic is characterized by a distribution over words.
Given a corpus of m documents containing k topics expressed over v unique
words, the distribution of ith topic ti over v words can be represented by ϕi and
the distribution of ith document di over k topics can be represented by θi. The

1 For more details about the data set, visit http://mike.sei.pku.edu.cn/
2 In this paper, the documents are the source code elements (e.g. Java classes). We use
the terms “documents”, “source code elements” and “Java classes” interchangeably.

http://mike.sei.pku.edu.cn/


242 B. Xie et al.

goal is to estimate ϕ and θ. LDA assumes the following generative process for
each document w in corpus D:

1. Choose N ∼ Poisson distribution(ξ).
2. Choose θ ∼ Dirichlet distribution(α).
3. For each of the m words wi:

(a) Choose a topic ti ∼ Multinomial(θ).
(b) Choose a word wi from p(wi|ti, β), a multinomial probability conditioned

on the topic ti.

Several algorithms have been proposed to estimate the distributions above, and
in this paper we use Gibbs sampling, which is widely adopted in approaches
mining topics from source code [3, 4, 7]. For more details about LDA, we refer
the readers to the original work of Blei et al. [10].

2.2 Applying Topic Models on Source Code

Applying topic models to examine source code has been an active research area
recently. Many approaches have been proposed. For example, Maskeri et al. [4]
tried to mine domain topics from source code for developers to comprehend the
functional concerns of the software. Baldi et al. [8] proposed a theory of taking
the topics mined from source code as aspects. Asuncion et al. [11] proposed an
approach to recover software traceability links with topic models. Tian et al. [12]
and Kawaguchi et al. [13] used LDA for automatic categorization of software in
software repositories. Several tools [2, 3] have been proposed to visualize the
topics mined from source code in IDE to assist source code comprehension.
Moreover, topic models have also been used in researches on software evolution
[14], bug localization [15], etc.

In this paper, we focus on mining domain topics from source code to help
developers to comprehend the functional concerns implemented in source code.
Our goal is similar to previous approaches [4] and [6]. However, not all the topics
mined from source code are domain topics, which has been noted in [4, 6] as well.
But they did not provide an effective mechanism to identify domain topics from
other noisy topics. In this paper, we propose a series of FHs and a novel metric
TC to filter out noises and mine domain topics from source code.

2.3 Classifying Topics Mined from Source Code

As mentioned above, the topics mined from source code can be classified into
different categories. A mechanism is needed to classify the topics according to
different application scenarios. Baldi et al. [8] propose an information entropy-
based approach to identify topics representing cross-cutting concerns. Adams et
al. [16] use historical code changes to identify cross-cutting concerns in source
code. Although these approaches can effectively identify cross-cutting concerns,



Mining Cohesive Domain Topics from Source Code 243

their effectiveness on identifying functional concerns has not been explored.
Our goal is different from these approaches and we try to solve the problem
from a different perspective. In particular, we try to use the concept of cohesion
to identify domain topics from the topics mined from source code.

Cohesion can be defined as a measure of the degree to which source code
elements of a module belong together [17]. Cohesion has been used to support
different tasks, such as assessment of design quality [18] and reuse efforts [19], and
identification of reusable components [20]. In this paper, we try to use cohesion
to measure the degree to which the source code elements associated to a topic
belong together, and use the results to identify domain topics.

There are different ways to calculate cohesion, which can be broadly classified
into structural approaches [17, 21, 22], semantic or conceptual approaches [22,
23], information entropy-based approaches [7], slice-based approaches [24], etc.
In this paper, we utilize the structural relationships among the source code
elements associated to a topic to calculate the cohesion. For more details, refer
to Section 3.3. To the best of our knowledge, we are the first to use the concept
of cohesion to examine the topics mined from source code.

3 Approach

The overview of our approach is shown in Fig. 2. Generally, our approach consists
of three steps organized in a pipeline form: source code preprocessing, mining
raw topics using LDA, and identifying CDTs. In this paper, we focus on soft-
ware written in Java and adopt the LDA topic model. The extensibility of our
approach is discussion in Section 4.4.

Fig. 2. Approach Overview

3.1 Source Code Preprocessing

In order to apply LDA to source code, we need to extract domain-related words
from source code. We use Java Development Tools3 (JDT) to parse the source
code and extract facts. The facts extracted include identifiers (e.g. class names,
property names, variable names) and their types, method signatures, etc.

3 http://www.eclipse.org/jdt/

http://www.eclipse.org/jdt/


244 B. Xie et al.

Unlike plain text files written in natural languages, there are both domain
related information and programming related information in the source code.
The programming related information (e.g. programming language syntax and
external libraries dependencies) is domain independent and conveys little func-
tional information. Therefore, it is reasonable to filter out the programming
related information in order to mine CDTs from source code.

In this step, we propose a series of Filtering Heuristics (FHs) to filter out pro-
gramming related information. FHs can be grouped into three groups:External
Dependencies Filtering Heuristics (EDFHs), Identifiers Processing Heuristics
(IPHs), and Stopwords Filtering Heuristics (SFHs).

EDFHs. Besides the classes defined by the software, it depends on external
libraries, e.g. JDK, JUnit, Log4j, etc. Most of the external libraries are pro-
gramming related and domain independent, and should be filtered out. The
EDFHs can filter out these external dependencies during source code parsing
process. In particular, a JDK Filtering Heuristic filters JDK APIs; a Common
External Libraries Filtering Heuristic filters APIs in common external libraries
like JUnit, Log4j, etc.; and a Local Dependencies Filtering Heuristic filters APIs
in the Java ARchive (JAR) packages imported in the local build path.

IPHs. Unlike words in plain text written in natural languages, words in source
code are often embedded inside identifiers, e.g. “userName”, “calculateBalance”,
etc. We propose three IPHs to process the identifiers to obtain words. The Identi-
fier Splitting Heuristic (ISPH) splits identifiers according different naming con-
ventions, e.g. CamelCase or under score convention. The Identifier Stemming
Heuristic (ISTH) (based on Snowball4) reduces the words extracted from iden-
tifiers to their stems. Moreover, we implement an Identifier Expanding Heuristic
(IEH) to expand abbreviated identifiers. First, the IEH uses WordNet5 API to
test whether the identifier is a meaningful word. If so, the IEH assumes the
word as a domain word and does not expand it. Otherwise, the IEH locates the
position where the identifier is declared, and expands it according to the rules
shown in Table 1. The expanded new identifiers are processed with the ISPH
and ISTH as well. Examples are shown in Table 1.

SFHs. SFHs filter out different categories of stopwords in the words extracted
from source code. The General Stopwords Filtering Heuristic filters general stop-
words in English, e.g. “the”, “and”, “of”, etc. The Java Keywords Filtering
Heuristic filters Java keywords such as “for”, “return”, and “class”. The Pro-
gramming Related Common Words Filtering Heuristic filters programming re-
lated common words, such as “main”, “arg”, “util”, etc. Usually, a complete list
of stopwords is needed. But there is no need to provide such a complete list in our
approach, because our approach can identify and filter out some topics composed

4 http://snowball.tartarus.org/
5 http://wordnet.princeton.edu/

http://snowball.tartarus.org/
http://wordnet.princeton.edu/


Mining Cohesive Domain Topics from Source Code 245

Table 1. Examples of IPHs

Declaration Raw Expanded IEH Rule After ISPH & ISTH

User manager manager manager not expanding manag

User t t user substitute user

BrowseHistory bh bh browseHistory acronym brows, histori

Environment env env enviroment prefix environ

Message msg msg message dropped letter messag

of stopwords (discussed in Section 4.3). Nevertheless, filtering out stopwords can
reduce noises and improve the understandability of the topics.

Finally, it is worth noticing that some of the heuristics are adopted in previous
approaches [3, 4] as well, but we propose several new heuristics (e.g. EDFHs,
IEH, etc.) which can filter out more noises than previous approaches.

3.2 Mining Raw Topics Using LDA

After the source code preprocessing step, we mine raw topics from source code
using LDA. All the source code files of a software system are taken as the corpus,
while each source code file (i.e. a Java class) is mapped to a document and the
words extracted from source code are mapped to words in LDA.

We employed JGibbLDA6 which is a Java implementation of LDA using Gibbs
sampling for parameter estimation and inference. Several parameters need to be
determined during the LDA process: The first two parameters α and β are hyper-
parameters of LDA [10]; k is the number of topics contained in the document
corpus (i.e. the source code files); n is the number of Gibbs sampling iterations.
In this paper, we use the maximum likelihood method in [25] to identify the
optimal number of topics k, while α, β, and n are set to JGibbLDA default
values 50/k, 0.1, and 2000 according to [25].

Given the input and the parameters, the LDA attempts to: 1) identify a set of
topics from the corpus; 2) identify the distribution of words for each topic (word-
topic distributions); and 3) identify the distribution of topics for each document
(topic-document distributions).

The outputs of LDA process include a set of topics, the word-topic distri-
butions, and the topic-document distributions. Based on the word-topic distri-
butions, the most likely words, commonly top 10, are associated to each topic.
Users can figure out the semantics of the topic by exploring these associated
words. In order to determine the documents associated to a topic, we can use
either a threshold or a cut-off point to select the most likely documents [7]. Be-
cause we are going to recover the structural relationships among the documents
associated to a topic and use the structural relationships to identify CDTs, a
fixed threshold or a fixed cut-off point would be too arbitrary and not appro-
priate for different topics. In Section 3.3, we propose an incremental process to
determine an appropriate number of documents for each topic.

6 http://jgibblda.sourceforge.net/

http://jgibblda.sourceforge.net/


246 B. Xie et al.

3.3 Identifying CDTs

Referring to the concept of cohesion, we propose a novel metric called Topic
Cohesion (TC) to identify CDTs from the raw topics mined in previous step.
TC is used to measure the degree to which source code elements associated to a
topic belong together. Our hypothesis is that if the source code elements collabo-
ratively implement a functional concern, from the perspective of static analysis,
they should be highly related to each other (i.e. high TC) through structural
relationships (e.g. dependencies, inheritance, etc.). For example, the source code
elements associated to the “user” topic (Fig. 1) are highly related to each other,
and they collaboratively implement the functional concern represented by the
topic, therefore, the topic is a CDT. On the contrary, if the source code elements
are grouped together just because they share similar words, there should be few
structural relationships among them (i.e. low TC). For example, source code
elements associated to a “main” topic are grouped together just because they
all have a main function, the relationships among these elements are occasional
and usually few.

Calculating Topic Cohesion. TC is calculated using the structural relation-
ships among the source code elements associated to a topic. All the relationships
between two classes in Object-Oriented systems, such as associations, aggrega-
tion, composition, dependencies, inheritance, and realizations, are taken into
consideration. The relationships can be classified into internal relationships and
external relationships. If the two classes are associated to the same topic, the re-
lationship is an internal relationship; otherwise, if the two classes are associated
to different topics, the relationship is an external relationship. TC is calculated
as the ratio of internal relationships and all relationships as follows:

tc =
Rint

Rall
=

Rint

Rint +Rext
(1)

where Rint is the number of internal relationships, Rext is the number of external
relationships, and Rall is the number of all relationships.

We use TC to identify CDTs from the raw topics mined from source code
using LDA. Based on the assumption above, if TC is higher than a threshold
(i.e. tc > λ, where λ is the threshold), which means the classes associated to
a topic are highly related to each other, the topic is more likely to be a CDT;
otherwise, the topic is more likely to be a noisy topic. The threshold λ may
be different for different software, in this paper λ is assigned to 0.35 based on
experience.

Identifying CDTs and Determining Documents. The collection of docu-
ments associated to a topic is a critical factor in calculating TC. As discussed
in Section 3.2, it is not appropriate to use a fixed threshold or a fixed cut-off
point to determine the number of documents associated to a topic. The reason
is not difficult to understand. From the static analysis perspective, the numbers



Mining Cohesive Domain Topics from Source Code 247

of source code elements implementing different functional concerns are not the
same. In this paper, we propose an iterative process to determine the docu-
ments associated to a topic and whether the topic is a CDT. The pseudocode
implementing the process is shown in Fig. 3.

Fig. 3. Pseudocode implementing the process of determining the documents associated
to a topic and whether the topic is a CDT

Firstly, we sort all the documents D associated to a topic according to their
possibilities p(ti|dj). Then, in the first loop, we try to add each document dj to
the selected document set Ds until the topic is identified as a CDT (i.e. tc > λ)
or the document’s possibility is little than the threshold (i.e. p(ti|dj) < δ. Finally,
if the topic is CDT, we further expand Ds until tc < λ in the second loop, the
maximum TC is taken as the final value. The threshold δ may be different for
different software as well, in this paper δ is assigned to 0.1 based on experience.
After the process, we can determine the documents associated to each topic and
whether the topic is a CDT.

4 Evaluation

We conducted a case study on a set of open source software systems to investigate
whether our approach can effectively filter out noises and identify CDTs from
the topics mined from source code.

4.1 Data Set and Metrics

Data Set. As there is no widely accepted data set in the research area of mining
domain topics from source code, we constructed a new data set and published
this data set for further research. The data set consisted of five open source
software systems written in Java. The first two open source software systems
(TSR7 and CoWS8) are developed by the Software Engineering Institute (SEI)

7 http://tsr.sei.pku.edu.cn/
8 http://www.cowebservices.com/

http://tsr.sei.pku.edu.cn/
http://www.cowebservices.com/


248 B. Xie et al.

of Peking University. TSR is an open source software repository and CoWS
is an open source Web services search engine. We choose these two systems
because we can invite their own developers to evaluate the results returned
by our approach. The other systems (Heritrix9, Lucene10, and Jena11) are all
famous open source software systems that are widely used. Some statistics of
these systems are summarized in Table 2, where NoC is the number of classes,
NoM is the number of methods, LoC is the lines of code, and NoW is the number
of words extracted from source code.

Table 2. Statistics of the results

Name Description NoC NoM LoC NoW

TSR Software repository 81 5,622 13,941 4,407

CoWS Web Services search engine 154 7,038 18,855 6,410

Heritrix Web crawler 615 32,658 56,413 31,236

Lucene Text search engine library 805 55,950 132,506 52,037

Jena Semantic Web framework 840 50,730 59,478 49,799

Metrics. The problem of identifying CDTs can be taken as a classification
problem, namely classifying the raw topics into CDTs and noisy topics. The
relationships between the classification results returned by our approach and
the oracle results are shown in Table 3.

Table 3. Relationships between the results

CDT Noise

CDT-TC True Positive (TP) False Positive (FP)

Noise-TC False Negative (FN) True Negative (TN)

We choose the typical metrics, namely precision, recall, and accuracy, to eval-
uate the effectiveness of the classification. Based on the relationships shown in
Table 3, the metrics are defined correspondingly as follows:

p =
|TP |

|TP |+ |FP | (2)

r =
|TP |

|TP |+ |FN | (3)

a =
|TP |+ |TN |

|TP |+ |FN |+ |FP |+ |TN | (4)

9 http://crawler.archive.org/
10 http://lucene.apache.org/
11 http://jena.apache.org/

http://crawler.archive.org/
http://lucene.apache.org/
http://jena.apache.org/


Mining Cohesive Domain Topics from Source Code 249

4.2 Case Study Process

For each software system, we run the approach proposed in this paper on its
source code twice. For the first run (R0), we did not apply the FHs; For the
second run (R1), we applied the FHs. We applied TC to automatically identify
CDTs for both runs. The results were stored in database.

Then we invited 20 graduate students to examine the results. 14 of the par-
ticipants are the developers of the TSR and CoWS. All of the participants have
at least 3 years of experience in programming with Java, and have reused the
above open source software systems previously.

We developed a website system for the participants to examine the topics.
After logging into the system, the participants chose a project to start with.
Then, the system randomly selected a topic from all the topics returned in both
runs (R0 and R1). The random selection process was adopted to make sure that
the participants did not know whether the topic was generated with or without
the filtering heuristics. For each topic, details of a topic, including its name, its
associated words and associated Java classes, were shown on the left side of the
user interface. The participants were asked to examine the details of each topic
and determine whether the topic is a CDT. The results were submitted to the
database as well. And we took the majority results provided by the participants
as the oracle to evaluate our approach. After exploring all the topics of a software
system, the participants could switch to another software system.

4.3 Results Analysis

In this subsection, we first qualitatively analyze the case study results with
examples, and then quantitatively analyze the results with statistics.

Qualitative Analysis with Examples. In this paper, we use TC to identify
CDTs from the topics mined from source code. Our assumption is that if the
TC value of a topic is higher that the threshold (tc > λ), the topic is more likely
to be a CDT; otherwise, the topic is more likely to be a noisy topic. Several
CDTs as well as noisy topics from the case study are shown in Table 4. From
the results we can see that the TC values of CDTs are relatively higher than the
values of noisy topis, which confirms our assumption and demonstrates that TC
is an effective mechanism to distinguish CDTs from other noisy topics.

Another benefit of TC is that it can identify some topics composed of stop-
words, e.g. “id uuid string” and “string log arg” topics in Table 4. This is because
the source code elements associated to these topics are grouped together just be-
cause they share the same stopwords). Therefore, as mentioned in Section 3.1,
there is no need to provide a complete list of stopwords in our approach.

Quantitative Analysis with Statistics. The statistics of the results for both
runs (R0 and R1) are shown in Table 5, where W is the number of words, T
is the number of all topics, C is the number of CDTs, P, R, A are the metrics
precision, recall, and accuracy correspondingly.



250 B. Xie et al.

Table 4. Examples of CDTs and noisy topics

Topic Concern Represented Cohesion Type Source

user email password user management 0.68 CDT TSR

feedback comment rate user feedbacks processing 0.44 CDT CoWS

robot agent polici robots.txt processing 0.45 CDT Heritrix

merg writer index merging Lucene indexes 0.58 CDT Lucene

ontolog spec maker ontology model processing 0.38 CDT Jena

id uuid string # noises # 0 Noisy topic TSR

integ map set # noises # 0.003 Noisy topic CoWS

string log arg # noises # 0.05 Noisy topic Heritrix

Table 5. Statistics of the results

Name W-R0 W-R1 T-R0 T-R1 C-R0 C-R1 P-R0 P-R1 R-R0 R-R1 A-R0 A-R1

TSR 4,507 2,700 59 37 12 9 0.8 0.78 0.67 0.77 0.9 0.89

CoWS 6,410 3,901 55 26 11 9 0.7 0.85 0.64 0.67 0.87 0.85

Heritrix 31,236 21,905 71 55 16 13 0.63 0.71 0.75 0.77 0.85 0.87

Lucene 52,037 35,671 131 73 19 15 0.7 0.69 0.74 0.7 0.92 0.88

Jena 49,799 32,752 141 96 23 18 0.76 0.75 0.69 0.71 0.91 0.89

Firstly, we analyze the overall performance of our approach with the results
of R1, in which both FHs and TC are applied. The average precision, recall, and
accuracy for all software systems are 0.76, 0.72, and 0.88 correspondingly. From
the results, we can see that our approach is very accurate, which means that
our approach can precisely determine whether a topic is a CDT or a noisy topic.
The precision and recall are acceptable considering the facts that our approach is
purely automatic and the thresholds (λ and δ) may not be their best estimations.

Then we analyze the performance of FHs and TC separately by comparing
the results of R0 and R1. Comparing the statistics in Table 5, we can see that
the FHs can filter out lots of words (35% on average), and significantly reduce
the number of topics mined from source code (37.8% on average). It is worth
noticing that the reduction of words and topics almost does not affect the number
of CDTs, which means most of the words and topics filtered out by FHs are
noises. Moreover, the average precision for R0 and R1 is 0.74 (with standard
deviation 0.02), the average recall is 0.71 (with standard deviation 0.01), and
the average accuracy is 0.89 (with standard deviation 0.01), which means that
the performance of TC is not only acceptable but also very stable (not affected
by FHs).

From the analysis above, we can see that FHs and TC are complementary
to each other in filtering out noises and identifying CDTs, which will save the
developers a lot of efforts and help them use CDTs to comprehend the functional
concerns implemented in source code.



Mining Cohesive Domain Topics from Source Code 251

4.4 Threats to Validity

Several issues may threat the validity of our approach.

Software Selection. In this paper, we only evaluated our approach on five open
source software systems that we developed or reused. But it is worth noting that
if we are not familiar with the source code of a software system, it is difficult
for us to provide the oracle results to evaluate the effectiveness of our approach.
From the preliminary results, we can see that our approach is promising, and
developers can depend on approach to comprehend other software systems. In our
future work, we will apply our approach to more open source software systems
and invite the contributors of these systems to evaluate the results to further
explore the effectiveness of our approach.

Human Factor. In the case study, we invited a group of graduate students
to manually classify the topics mined from source code, and took the results
as the oracle to evaluate the effectiveness of our approach. We designed several
mechanisms to avoid bias. For example, the system randomly selected topics from
both runs, and the majority opinions were taken as the final results. However, it is
still possible that there are bias and noises in the results. Especially for the open
source software systems that are not developed by the participants, although
the participants are familiar with the software systems and have reused them
in their own projects, they may not be familiar with every detail of the source
code. Consequently, there may be false positive or false negative results, which
may affect the internal validity of the case study.

Generalization. In this paper, we used several specific heuristics and methods,
which seems to limit the generalization of our approach. In fact, our approach
is very extensible. First, how to separate domain related information and pro-
gramming related information in source code is still an open question. New filter
heuristics can easily be added to the FHs proposed in our approach. For exam-
ple, new heuristics can be added to further improve the quality of identifiers.
Second, it is possible and easy to replace the LDA topic model used in our
approach with other topic models, while the FHs and TC are still applicable.
Third, the idea of our approach is also applicable for software systems written
in other programming languages. For example, by replacing JDT with C/C++
Development Tooling, our approach is able to identify domain topics from open
source software systems written in C/C++.

5 Discussion

5.1 Semantics of the Topics Mined from Source Code

In this subsection, we discuss the semantics of the topics mined from source
code. Although many approaches have been proposed to mine topics from source



252 B. Xie et al.

code (see Section 2), it is difficult to explain the semantics of the topics. Some
researches [4, 6] interpret the semantics as domain concepts similar to function-
alities or features, while other researches [2, 8] interpret the semantics as cross-
cutting concepts such as aspects or architectural concepts. In fact, the natures of
the topics mined from source code are linguistic clusters [6] from the perspec-
tive of IR. The topics are identified just because of the linguistic relationships
between the words and the documents.

The topics can be classified into different categories according to the concerns
they represent, and there is no one-to-one mapping between the topics and exter-
nal concepts (e.g. functionalities, features, aspects, etc.) used by human beings.
Therefore, it is reasonable to classify the topics mined from source code accord-
ing to different usage scenarios. In this paper, we focus on CDTs that reflect the
functional concerns of the software, and propose an approach to identify CDTs
from source code.

5.2 Limitations of IR Techniques on SE Data

IR techniques (e.g. search engines and topic models) have been widely adopted to
solve Software Engineering (SE) problems, such as feature location, traceability
recovery, etc. Although IR techniques can return or generate a lot of results when
applied on SE data, there are also lots of noises in the results, which threats the
effectiveness of these approaches [6, 26–28]. For example, from the results shown
in Table 5, we can see that only a small percentage (about 22%) of the topics
mined from source code are domain topics, while other topics are noises in this
context. This phenomena has been noticed in [6] as well.

Most previous IR-based approaches are based on the assumption that source
code is similar to plain text written in natural languages, but there is little
empirical evidence to support this assumption. In fact, there are differences be-
tween the two [4]. For example, the information in source code includes both
domain related information and programming related information. In addition,
unlike plain text, source code is structured document. There are structural re-
lationships (e.g. dependencies, inheritances, etc.) among the source code. When
taking source code as plain text, these differences are neglected, which may bring
in noises and affect the effectiveness of IR-based approaches.

In order to improve the effectiveness of IR-based approaches, it is reasonable
to make use of the characteristics of source code (e.g. structural information)
[27–29]. In this paper, we try to utilize the characteristics of source code to filter
out noises and mine CDTs from source code. The empirical results show that
our approach is promising.

6 Conclusion

Using topic models to mine domain topics from source code has been a new
and promising way for developers to comprehend the functional concerns im-
plemented in the source code of a software system. However, not all the topics



Mining Cohesive Domain Topics from Source Code 253

mined from source code are domain topics which represent functional concerns
of the software. In fact, there are a lot of noises. In this paper, we propose a
series of FHs and a novel metric called TC to filter out noises and mine effective
domain topics (called CDTs) from source code. Experimental results on a set of
open source software show that our approach is promising.

In our future work, we plan to further explore the effectiveness and extensibil-
ity of our approach using more open source software systems, and try to apply
our approach to software engineering tasks such as source code comprehension,
traceability recover, feature location, etc.

Acknowledgement. This work is supported by the High-Tech Research and
Development Program of China under Grant No. 2012AA011202; the National
Basic Research Program of China (973) under Grant No. 2009CB320703; the
National Natural Science Foundation of China under Grant No. 61121063, No.
61103024; and Quality Supervision & Inspection Quarantine Research Special
Funds for Public Welfare Projects under Grant No. 201210256.

References

1. Abran, A., Moore, J., Bourque, P., Dupuis, R., Tripp, L.: Guide to the software
engineering body of knowledge, 2004 version. IEEE Computer Society 1 (2004)

2. Gethers, M., Savage, T., Di Penta, M., Oliveto, R., Poshyvanyk, D., De Lucia, A.:
Codetopics: Which topic am i coding now? In: 33rd International Conference on
Software Engineering (ICSE), pp. 1034–1036. IEEE (2011)

3. Savage, T., Dit, B., Gethers, M., Poshyvanyk, D.: Topicxp: Exploring topics in
source code using latent dirichlet allocation. In: IEEE International Conference on
Software Maintenance (ICSM), pp. 1–6. IEEE (2010)

4. Maskeri, G., Sarkar, S., Heafield, K.: Mining business topics in source code using
latent dirichlet allocation. In: Proceedings of the 1st India Software Engineering
Conference, pp. 113–120. ACM (2008)

5. Abebe, S., Tonella, P.: Towards the extraction of domain concepts from the iden-
tifiers. In: 18th Working Conference on Reverse Engineering (WCRE), pp. 77–86.
IEEE (2011)

6. Kuhn, A., Ducasse, S., Ǵırba, T.: Semantic clustering: Identifying topics in source
code. Information and Software Technology 49(3), 230–243 (2007)

7. Liu, Y., Poshyvanyk, D., Ferenc, R., Gyimóthy, T., Chrisochoides, N.: Modeling
class cohesion as mixtures of latent topics. In: IEEE International Conference on
Software Maintenance (ICSM), pp. 233–242. IEEE (2009)

8. Baldi, P., Lopes, C., Linstead, E., Bajracharya, S.: A theory of aspects as latent
topics. In: ACM Sigplan Notices, vol. 43, pp. 543–562. ACM (2008)

9. Steyvers, M., Griffiths, T.: Probabilistic topic models. Handbook of Latent Seman-
tic Analysis 427(7), 424–440 (2007)

10. Blei, D., Ng, A., Jordan, M.: Latent dirichlet allocation. The Journal of Machine
Learning Research 3, 993–1022 (2003)

11. Asuncion, H., Asuncion, A., Taylor, R.: Software traceability with topic modeling.
In: 32nd ACM/IEEE International Conference on Software Engineering (ICSE),
pp. 95–104. ACM (2010)



254 B. Xie et al.

12. Tian, K., Revelle, M., Poshyvanyk, D.: Using latent dirichlet allocation for auto-
matic categorization of software. In: 6th IEEE International Working Conference
on Mining Software Repositories (MSR), pp. 163–166. IEEE (2009)

13. Kawaguchi, S., Garg, P., Matsushita, M., Inoue, K.: Mudablue: An automatic
categorization system for open source repositories. Journal of Systems and Soft-
ware 79(7), 939–953 (2006)

14. Thomas, S., Adams, B., Hassan, A., Blostein, D.: Modeling the evolution of topics
in source code histories. In: 8th Working Conference on Mining Software Reposi-
tories, MSR (2011)

15. Lukins, S., Kraft, N., Etzkorn, L.: Bug localization using latent dirichlet allocation.
Information and Software Technology 52(9), 972–990 (2010)

16. Adams, B., Jiang, Z., Hassan, A.: Identifying crosscutting concerns using historical
code changes. In: 32nd ACM/IEEE International Conference on Software Engineer-
ing (ICSE), pp. 305–314. ACM (2010)

17. Bieman, J., Kang, B.: Cohesion and reuse in an object-oriented system. In: ACM
SIGSOFT Software Engineering Notes, vol. 20, pp. 259–262. ACM (1995)

18. Briand, L., Wüst, J., Daly, J., Victor Porter, D.: Exploring the relationships be-
tween design measures and software quality in object-oriented systems. Journal of
Systems and Software 51(3), 245–273 (2000)

19. Chidamber, S., Darcy, D., Kemerer, C.: Managerial use of metrics for object-
oriented software: An exploratory analysis. IEEE Transactions on Software En-
gineering 24(8), 629–639 (1998)

20. Etzkorn, L., Davis, C.: Automatically identifying reusable oo legacy code. Com-
puter 30(10), 66–71 (1997)

21. Briand, L., Daly, J., Wüst, J.: A unified framework for cohesion measurement in
object-oriented systems. Empirical Software Engineering 3(1), 65–117 (1998)

22. De Lucia, A., Oliveto, R., Vorraro, L.: Using structural and semantic metrics to im-
prove class cohesion. In: IEEE International Conference on Software Maintenance
(ICSM), pp. 27–36. IEEE (2008)

23. Marcus, A., Poshyvanyk, D., Ferenc, R.: Using the conceptual cohesion of classes
for fault prediction in object-oriented systems. IEEE Transactions on Software
Engineering 34(2), 287–300 (2008)

24. Meyers, T., Binkley, D.: An empirical study of slice-based cohesion and cou-
pling metrics. ACM Transactions on Software Engineering and Methodology
(TOSEM) 17(1), 2 (2007)

25. Griffiths, T., Steyvers, M.: Finding scientific topics. Proceedings of the National
Academy of Sciences of the United States of America 101, 5228–5235 (2004)

26. Oliveto, R., Gethers, M., Poshyvanyk, D., De Lucia, A.: On the equivalence of
information retrieval methods for automated traceability link recovery. In: 18th
International Conference on Program Comprehension (ICPC), pp. 68–71. IEEE
(2010)

27. Dit, B., Revelle, M., Gethers, M., Poshyvanyk, D.: Feature location in source code:
A taxonomy and survey. Journal of Software Maintenance and Evolution: Research
and Practice (2011)

28. Ali, N., Guéhéneuc, Y., Antoniol, G.: Factors impacting the inputs of traceability
recovery approaches. Software and Systems Traceability, 99–127 (2012)

29. McMillan, C., Poshyvanyk, D., Revelle, M.: Combining textual and structural anal-
ysis of software artifacts for traceability link recovery. In: ICSEWorkshop on Trace-
ability in Emerging Forms of Software Engineering, pp. 41–48. IEEE (2009)



 

J. Favaro and M. Morisio (Eds.): ICSR 2013, LNCS 7925, pp. 255–266, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Mining Instances of Structural Design  
Patterns from Class Diagrams Based on Sub-patterns 

Dongjin Yu, Zhiqing Liu, and Jianlin Ge 

School of Computer, Hangzhou Dianzi University, Hangzhou, China 
yudj@hdu.edu.cn 

Abstract. In order to improve the quality of a software system and reuse expert 
experience in software system design, design patterns have been extensively 
applied in the software industry. Mining design pattern instances from source 
codes can assist the understanding of the systems. In this paper, we propose 
eight sub-patterns based on common structural features of structural design pat-
terns and their variants. We introduce two kinds of graph, of which one 
represents the system design and the other describes the sub-patterns. Our  
approach first selects the candidate classes in UML class diagrams to form  
the sub-graphs of the system graph, which are then checked isomorphic to the 
sub-pattern graph or not. These isomorphic sub-graphs are regarded as corres-
ponding to instances of the sub-patterns. After that, we combine some relevant 
sub-patterns and compare the collectives with structural feature models. For 
these matched ones, we then apply behavioral analysis to obtain the final  
pattern instances. The results of the experiments demonstrate that our approach 
obtains better precision than the existing approaches. 

Keywords: structural design patterns, pattern mining, sub-pattern, graph iso-
morphism, structural feature models, class diagrams, behavioral analysis. 

1 Introduction 

Along with expanding the scale of object-oriented software systems, the relationship 
between classes is becoming more and more complicated. Design patterns define a set 
of classes, and the relationship among them and their purpose in object-oriented soft-
ware systems [1]. During the past decade, design patterns have been widely used by 
the software industry [2]. Meanwhile, with the increasing complexity and size of 
software systems, understanding and changing these systems is becoming a difficult 
task, particularly when the architecture and design documentation are incomplete or 
inconsistent with source codes. As the source codes of object-oriented software can be 
represented by a series of UML class diagrams, recovering the instances of design 
patterns from class diagrams helps developers to complete design documents, under-
stand large systems and make changes more easily. 

Each design pattern, whether it is creational, structural or behavioral, has its own 
unique structural features, or in other words a structural feature model. From a lower 
perspective, however, most design patterns have similar sub-components which make 
up of their feature models. Since structural design patterns describe how to combine 



256 D. Yu, Z. Liu, and J. Ge 

 

the classes into a larger structure, they have more similar sub-components than beha-
vioral and creational design patterns. 

The existing approaches to mining structural patterns generally identify patterns 
sequentially and few take advantage of the sub-components of design patterns to re-
duce the complexity of the patterns mining. If a certain feature is found not to be 
matched with that of the target design pattern, the intermediate results are usually 
abandoned before the mining process is restarted. But features identified beforehand 
could help find some other design patterns which have similar sub-components. In 
other words, mining these design patterns could start from the results obtained so far 
and does not need to re-scan class diagrams from scratch. 

In order to further improve the precision, this paper proposes a novel approach to 
mine structural design pattern instances from class diagrams. It presents eight kinds of 
sub-patterns, which include a set of classes and the relations between them. It then 
introduces the structural feature model based on sub-patterns for each structural  
design pattern. The instances of structural design patterns are finally identified by 
comparing the code model with the structural feature model and by analyzing the 
behaviors of the classes. 

The rest of the paper is organized as follows. After introducing the whole process of 
mining instances of GoF structural design patterns [3] from class diagrams in Section 2, 
we define eight kinds of sub-pattern and present corresponding structural feature models 
in Section 3. Section 4 then describes the process of mining sub-patterns and Section 5 
shows how to combine sub-patterns and compare them with structural feature models to 
obtain the final pattern instances. Section 6 describes the behavioral analysis of different 
design patterns. The experimental results are given in Section 7, followed by the related 
works in Section 8. Finally, the last section concludes the paper. 

2 Overview of the Approach 

Structural design patterns are design patterns that ease the design by identifying a 
simple way to realize relationships between entities. The essence of mining structural 
design patterns is a process of matching patterns which can be further divided into the 
following four phases. As the source codes of object-oriented software can be 
represented by a series of UML class diagrams, our approach begins with the pre-
pared class diagrams. 

1) Generate the Class-Relationship Graph from class diagrams 
In this phase, a series of prepared class diagrams are transformed into a Class-

Relationship Graph, in which the vertices represent classes and the edges represent 
relationships between classes. 

2) Extract sub-graphs from the Class-Relationship Graph that are isomorphic to the 
Class-Relationship Graph of the predefined sub-patterns  

The candidate vertices in the Class-Relationship Graph for that of the predefined 
sub-patterns are identified first. These candidate vertices are then combined to form 
the sub-graphs, which are considered as instances of predefined sub-patterns if they 
are isomorphic to the Class-Relationship Graph of the predefined sub-patterns. 

3) Combine extracted sub-graphs and match them with predefined structural fea-
ture models to obtain candidate patterns. 



 Mining Instances of Structural Design Patterns from Class Diagrams 257 

 

An effort is made to combine relevant sub-patterns and match them with standard 
structural feature models. These matched ones are taken as the candidate patterns. 

4) Analyze behavioral features to obtain final patterns instances 
The behavioral features of candidate patterns are identified and matched with those 

of standard patterns. Pattern instances are finally obtained by filtering out false candi-
dates with mismatched behavioral features.  

3 Sub-patterns 

Although structural design patterns have their own structural and behavioral features, 
most of them have similar sub-components which make them up at a lower level. We use 
the sub-patterns to represent common structural features of structural design patterns. 

Definition 1. A sub-pattern represents a set of classes and the relationship between 
them, which is denoted as a 2-tuple: , … , , , where 

1,..., kC C  represent a set of classes, R  represents a set of relationships among them, 

such as inheritance, association and aggregation.  

{ ( , ) { | | }}i jR r C C inherit agg ass= = , where 

( , ) { }i jr C C inherit=  represents that class jC  inherits class iC . 

( , ) { }i jr C C agg=  represents that classes iC  and jC  have an aggregation rela-

tionship, where class iC  is the whole class, class jC  is the partial class. 

( , ) { }i jr C C ass= represents that classes iC  and jC  have an association relation-

ship，where class iC  has an attribute that is a type of class jC . 

Compared with design patterns, sub-patterns have fewer but clearer features. They 
can therefore be detected easily. Moreover, using sub-patterns to mine structural de-
sign patterns can significantly reduce the mining complexity, since some common 
sub-patterns can be extracted synchronously to avoid the detection of different design 
patterns from scratch. Last but not least, sub-patterns take the transformation between 
interfaces, abstract and concrete classes, and between inheritance and association 
relationships, into consideration. They can therefore be used to mine some design 
pattern variants. 

Sub-pattern can be further divided into ordinary sub-patterns and variant sub-patterns. 

3.1 Ordinary Sub-patterns 

Unlike variant sub-patterns, ordinary sub-patterns describe a necessary feature of 
standard design patterns. 

Definition 2. ICA (Inheritance Child Association) describes the inheritance and asso-
ciation relationship among three classes, where two classes have an inheritance rela-
tionship and the child class has an association relationship with another child class. 

1 2 3( , , , )ICA C C C R= < >  where 1 2 2 3{( ( , ) { }, ( , ) { })}R r C C inherit r C C ass= = = . 



258 D. Yu, Z. Liu, and J. Ge 

 

Definition 3. CI (Common Inheritance) describes two classes that inherit the same 
single parent class. 

1 2 3( , , , )CI C C C R= < >  where  

1 2 1 3{( ( , ) { }, ( , ) { })}R r C C inherit r C C inherit= = = . 

Definition 4. IAGG (Inheritance AGGregation) describes two classes that have not 
only an inheritance relationship but also an aggregation relationship. 

1 2( , , )IAGG C C R= < >  where 1 2 2 1{( ( , ) { }, ( , ) { })}R r C C inherit r C C agg= = = . 

Definition 5. IPA (Inheritance Parent Aggregation) describes the inheritance and 
aggregation relationship between three classes, where two classes have an inheritance 
relationship and the parent class has an aggregation relationship with the third class. 

1 2 3( , , , )IPA C C C R= < >  where 1 3 1 2{( ( , ) { }, ( , ) { })}R r C C inherit r C C agg= = = . 

Definition 6. MLI (Multi-Level Inheritance) describes the inheritance relationship 
between three classes, where the first class is inherited from the second, which is 
further inherited from the third one. 

1 2 3( , , , )MLI C C C R= < >  where  

1 2 2 3{( ( , ) { }, ( , ) { })}R r C C inherit r C C inherit= = = . 

3.2 Variant Sub-patterns 

The association relationship plays an important part when forming structural design 
patterns. Without an association relationship between the classes, a group of classes 
may not be considered as a given pattern. However, polymorphism often makes par-
ticular classes have an implied association relationship.  

Similarly, the transformation between interfaces, abstract classes and concrete 
classes, the transitivity of the inheritance relationship, the association relationship, 
and roles merged are important factors for forming variants of standard design pat-
terns. In order to identify more design pattern instances, three kinds of variant sub-
pattern which consider these factors are defined as follows. 

Definition 7. IASS (Inheritance ASSociation) describes two classes that have not 
only an inheritance relationship, but also an association relationship. 

1 2( , , )IASS C C R= < >  where 1 2 2 1{( ( , ) { }, ( , ) { })}R r C C inherit r C C ass= = = . 

Definition 8. SAGG (Self-Aggregation) describes one class that has an aggregation 
relationship with itself. 

1( , )SAGG C R= < >  where 1 1{( ( , ) { })}R r C C agg= = . 

Definition 9. IIAGG (Indirect Inheritance AGGregation) describes the inheritance 
relationship and aggregation relationship between three classes, where the first class 
is aggregated by the third one and inherited from the second one, which is further 
inherited from the third one.  

1 2 3( , , , )IIAGG C C C R= < >  where 

1 2 2 3 3 1{( ( , ) { }, ( , ) { }, ( , ) { })}R r C C inherit r C C inherit r C C agg= = = = . 



 Mining Instances of Structural Design Patterns from Class Diagrams 259 

 

4 Mining Sub-patterns 

This section first shows how to represent the system and sub-patterns using graphs, 
and then introduces the process of mining sub-patterns from class diagrams in detail. 

4.1 Class-Relationship Graph 

Definition 10. Class-Relationship Graph, or GCR, is a directed and weighted graph 
that represents a set of classes and the relationship between them, denoted as a 3-tuple , , , where V  is the set of vertices which  represent classes,
E V V⊂ × is the set of edges which represent the relationship between classes, v :

EE W→  is a function assigning weights to the edges, and {2,3,5,6,10,15,30}EW = , 

as Table 1 describes. 

Table 1. Weights of relationship 

v (Items of WE) Relationship 
2 Association 
3 Inheritance 
5 Aggregation 

6=2*3 Association and inheritance 
10=2*5 Association and aggregation 
15=3*5 Inheritance and aggregation 

30=2*3*5 Association, inheritance and aggregation 

 
Definition 11. Let GCR , , , GCR , , , GCR  is called 
the k-Class-Relationship-SubGraph of  GCR, or k-subGraph of GCR, if 2 1V V⊆ ,

2| |V k= , 2 1 2 2( )E E V V= × , and 2 1 2( ) ( )v e v e for all e E= ∈ . 

Definition 12. Let ( , , )GCR V E v= , | |V n= , ,  is called the Class-

Relationship Matrix  of  GCR, or MCR, where 

,                              ! ,,               ,
 

For simplicity, the Class-Relationship Graph corresponding to the Class-Relationship 
Matrix m is denoted as . 

Definition 13. Let ( , , )GCR V E v= , | |V n= , iV V∈ , for the Class-Relationship Ma-

trix of , , the Composite Weight of  is denoted as F , where 

1

( )
n

i ij
j

F V m
=

= ∏ . 

Definition 14. Let GCR , , , GCR , , , if there exists a bijective 
function 1 2:f V V→ such that each

1
,a b V∈ , 1( , )a b E∈ , if and only if 

2
( ), ( )f a f b V∈ ,

2
( ( ), ( ))f a f b E∈ , 1 2(( , )) (( ( ), ( )))v a b v f a f b= , then GCR  and GCR  are Isomorphic Class-Relationship-Graphs, donated as  GCR GCR . 



260 D. Yu, Z. Liu, and J. Ge 

 

Definition 15. A n n×  matrix ( )ijP p=  is called a Permutation Matrix where

{0,1}ijp ∈ , 
1

1
n

ij
i

p
=

=  and 
1

1
n

ij
j

p
=

=  for 1,...,i n= , 1,...,j n= . 

Let , , , , , , | | | | ,  ,  
and ,  are Class-Relationship Matrixes  of   and  
respectively. It can be proved that if there exists a Permutation Matrix  such that M , then . 

4.2 Mining Sub-patterns Based on Graph Isomorphism 

Since both the system and predefined sub-patterns can be represented by Class-
Relationship Graphs, the problem of mining sub-patterns is converted into searching 
for sub-graphs in Class-Relationship Graphs of the system which are isomorphic to 
those of the sub-patterns. 

The algorithm for mining sub-patterns is illustrated in Table 2, and can be divided 
into the following 2 steps. 

1) Search the candidate classes in GCR  of the system (from line 2 to line 3) 
For each class  in GCR , select the classes in GCR  whose composite weights  

in GCR  can be divided with no remainder by that of  in GCR . These selected 
classes for  constitute the Candidate Class Set of . 

2) Combine the candidate classes to generate k-subGraphs and determine if they 
are isomorphic to GCR  of the sub-patterns (from line 4 to line 12) 

The k-subGraph of GCR , or GCR , is generated by choosing each vertex in 
every Candidate Class Set, and then compared with GCR  of sub-patterns. If GCR  is isomorphic to GCR , then GCR  is regarded as corresponding to 
the specific sub-pattern. 

Table 2. Algorithm of Mining Sub-patterns 

Input: GCR V , E , v  //Class-Relationship Graph of sub-pattern GCR V , E , v  // Class-Relationship Graph of system 
Output:  MSet //Set of Class-Relationship Graphs of Identified sub-patterns 
1   MSet  ; 
2   for each    
3       CCS |  |  //generate Candidate Class Sets 
4   for each  in CCS ,  in CCS , …,  in CCS  { 
5       generate GCR V , E , v , where 
6           , , … , },  //pick one class from each Candidate 
Class Set 
7           ,  
8           ,  
9       //check if  GCR  and  GCR  are isomorphic or not 



 Mining Instances of Structural Design Patterns from Class Diagrams 261 

 

Table 2. (Continued.) 

10    if IsIsomorphic(GCR , GCR ) 
11        MSet MSet  GCR  
12  } 
13  return Mset 

5 Combine Sub-patterns to Obtain Candidate Pattern Instances 
by Structural Feature Models 

A Structural Feature Model is a set of several relevant sub-patterns to represent the 
structural feature of certain structural design patterns. Table 3 describes five structur-
al feature models, corresponding to five GoF structural design patterns. These models 
are made up of several relevant sub-patterns. For example, the structural feature mod-
el for the Adapter pattern consists of sub-pattern of ICA, but not CI, which means that 
class Adapter inherits class Target, and is associated with class Adaptee, but no inhe-
ritance relationship exists between class Adaptee and class Target. For simplicity, 
Table 3 only shows the class diagrams for the standard design patterns, but not their 
variants. 

According to the method given in the previous section, all the sub-patterns are 
identified. We then combine the relevant ones and compare the collectives with the 
Structural Feature Model of specific patterns. Those that match are picked up as can-
didate patterns for further behavioral analysis, as described in the next section. 

6 Behavioral Analysis 

The candidates obtained by the structure analysis may contain false positive cases 
because structural analysis concentrates only on the structural aspect of design pat-
terns. Most design patterns have their own unique behavioral features in addition to 
the structural ones. Analyzing the behavior of these candidates can filter out some 
false ones. For behavioral analysis, we employ the method given in [4]. This section 
takes the Adapter pattern as the example of behavioral analysis. 

The Adapter pattern is a design pattern that translates one interface for a class into 
a compatible interface. An Adapter allows classes to work together that normally 
could not because of incompatible interfaces, by providing its interface to clients 
while using the original interface. 

In the Adapter pattern, there shall be a common method, called Request, defined in 
the Target and Adapter classes. The Request method in the Adapter class shall call a 
method, called SpecificRequest, defined in the class Adaptee. The behavior characte-
ristic model of the Adapter pattern is formally defined as follows, using the denota-
tions given in Table 4: 

i j kmethod method method∃ ∃ ∃  



262 D. Yu, Z. Liu, and J. Ge 

 

Table 3. Structural Feature Models of structural design patterns 

Structural 
Design 
Patterns 

Role of Class 
Structural 

Feature Model
Class Diagram 

Adapter 

Target C1 

ICA&&(!CI) 

 

Adapter C2 

Adaptee C3 

Proxy 

Subject C1 

(CI&&ICA)||(C
I&&IASS) 

 

Proxy C2 

RealSubject C3 

Decorator 

Component C1 

(CI&&IAGG)||
(CI&&IAGG&
&MLI) 

 

Decorator C2 

ConcreteComponent C3 

Composite 

Component C1 

(CI&&IAGG)||
(CI&&SAGG)||
(CI&&IIAGG) 

 

Composite C2 

Leaf C3 

Bridge 

Abstraction C1 

CI&&IPA 

 

RefinedAbstraction C2 

Implementor C3 

( ( arg )imethod methodList T et∈ ∧  

( )jmethod methodList Adapter∈ ∧  

( )kmethod methodList Adaptee∈ ∧
 

( ) ( )i jname method name method= ∧  

( ) ( )i jparameter method parameter method= ∧
 

( ) ( )i jreturnType method returnType method= ∧
 

( , ))j kcall method method
. 



 Mining Instances of Structural Design Patterns from Class Diagrams 263 

 

Table 4. Denotations of Behavioral Features 

Denotations Meaning 

( )methodList C  The set of methods in class C 

( )iname method  The name of method imethod  

( )iparameter method  

The list of parameter types of method 

imethod  

( )ireturnType method  The return type of method imethod  

( , )i jcall method method  
 imethod  invokes jmethod  

 
The behavior characteristic model of other patterns can be described in a similar way. 

7 Experiments 

We implemented a tool called DPDT based on the aforementioned approach, which 
produces the instances of design patterns discovered in the target system. We tested 
our approach with JHotDraw[5]，JavaAWT[6]，JUnit[7]. The results are evaluated 
by indexes of TP and FP. Here, TP, or True Positive, denotes the number of pattern 
instances that are identified and really exist in the system, while FP, or False Posi-
tive, denotes the number of pattern instances that are found, but not implemented 
in the system.  

Tables 5, 6 and 7 present the results of the experiments. 

Table 5. Number of Sub-patterns Detected 

System IASS IAGG ICA IPA IIAGG CI MLI SAGG 

JHotDraw6.0 6 1 271 329 1 5984 230 2 
JUnit3.8 1 1 20 15 0 22 10 0 

JavaAWT 12 4 216 270 0 1108 143 0 

Table 6. Structural Feature Models and Final Instances Detected 

Structural 
Design Pattern 

Number of Candidates based on Structural 
Feature Models Mapping 

Number of Final Instances based on 
Structural Feature Models Mapping and 

Behavioral Analysis 
JHotDraw JUnit JavaAWT JHotDraw JUnit JavaAWT 

Adapter 271 20 216 7 0 17 
Composite 4 1 4 2 1 3 
Decorator 8 6 20 4 3 2 

Bridge 146 13 120 67 8 62 
Proxy 7 7 20 5 5 8 

 



264 D. Yu, Z. Liu, and J. Ge 

 

Table 7. Recovery Precisions 

Structural Design Patterns 
JHotDraw JUnit JavaAWT 

TP FP TP FP TP FP 
Adapter 7(4) 0(0) 0 0 17 0 

Composite 2(0) 0(0) 1 0 3 0 
Decorator 4 0 3 0 2 0 

Bridge 62(53) 5(5) 7 1 52 10 
Proxy 5 0 5 0 8 0 

Note: the numbers in brackets are the counts of recovered instances obtained in [8]. 

 
As can be observed from Table 7, we obtain good results except for the Bridge pat-

tern. Comparing the results of our approach with that of paper [8], our approach ob-
tains better precision. This is mainly because our approach employs the rigorous 
graph isomorphism technique and considers some variant factors, such as transforma-
tion between interfaces, abstract classes and concrete classes, and the transitivity of 
the inheritance and association relationships. 

8 Related Works 

Since the idea of design patterns was adapted for software engineering, many ap-
proaches have been applied to mine instances of design patterns from source codes. 
Although there are numerous kinds of design patterns, structural ones especially are 
receiving more attention. The approaches to mining structural design patterns can be 
divided into two categories: checking only structural aspects and checking both struc-
tural and behavioral aspects. 

Most of the approaches which only focus on the structural aspects of patterns con-
sider attributes, methods and the relationships between classes, such as generalization, 
association, aggregation, as the main properties that need to be checked. Antoniol et 
al. consider the number of public, private and protected attributes, and the number of 
operations when detecting design patterns [9], while Gueheneuc et al. consider inhe-
rited and overridden methods, the total number of methods, and the count of methods 
weighted with their number of method invocations as valuable metrics that character-
ize patterns [10]. Other approaches detect instances of design patterns based on sub-
graph isomorphism. For instance, Akshara Pande et al. decompose the system design 
graph and design pattern graph into a Generalization relationship graph and an Asso-
ciation relationship graph, from which a set of system relationship graphs that are 
isomorphic to the design pattern relationship graph are obtained as instances of the 
design patterns [11]. 

The behavioral aspect, typically described by method invocations, contains impor-
tant knowledge to further judge those design patterns which have similar or the same 
structural features. Dong et al. check the number of attributes, operations and depen-
dency links between classes for design pattern detection [4, 8]. Ming Qiu et al., how-
ever, focus on object creation and method invocations for design pattern detection  
 



 Mining Instances of Structural Design Patterns from Class Diagrams 265 

 

[12]. Francesca et al. decompose design patterns into traits which describe the struc-
tural features or behavioral features of the patterns [13]. Since each design pattern has 
its own features, mining instances of design patterns from source can be transformed 
into looking for a set of relevant traits. In order to reduce the complexity of the design 
pattern mining, Daryl Posnett et al. define three kinds of meta-patterns [14]. Accord-
ing to their definitions, a meta-pattern is part of a design pattern which contains struc-
tural and behavioral features of that design pattern. 

The above approaches generally identify only one pre-specified pattern after star-
tup. In other words, the intermediate results obtained during the process of mining one 
specified pattern cannot be reused for mining other patterns. Our approach, however, 
can mine multiple patterns synchronously which have similar sub-patterns, thus re-
ducing running time. In other words, the recovered sub-patterns, or the intermediate 
results, can be assembled and compared with structural feature models of all kinds of 
structural patterns. Moreover, the sub-patterns defined in this paper are different from 
the micro-structures defined in [15] and [16], which contain both structural and beha-
vioral features. Because behavioral features change frequently and are hard to detect, 
the sub-patterns presented in this paper contain only classes and the relationship 
among them, without any behavioral information. In addition, we also consider the 
structural variants when defining sub-patterns. Therefore, our approach can achieve 
greater precision. Finally, compared with approaches based on graph isomorphism 
like [11], our approach does not need to decompose the system graph and design pat-
tern graph. Its complexity is thus reduced. 

9 Conclusions 

This paper proposes a novel approach to mining structural design pattern instances 
from class diagrams. It extracts structural information and identifies different sub-
patterns based on graph isomorphism. It then combines relevant sub-patterns and 
compares them with structural feature models. For those that match, it does a beha-
vioral analysis to obtain the final pattern instances. The results of our experiments 
demonstrate that this approach attains better precision than other existing approaches.  

However, our approach cannot distinguish structural design patterns which are 
very similar to each other in their structural and behavioral aspects, such as Bridge 
and Strategy patterns. In the future, we will consider further the intents and motiva-
tions of design patterns in order to distinguish them. In addition, we will upgrade our 
approach to mine creational and behavioral design pattern instances as well. 

 
Acknowledgments. The work is supported by the Natural Science Foundation of 
Zhejiang (No.LY12F02003), the Key Science and Technology Project of Zhejiang 
(No. 2012C11026-3, No. 2008C11099-1) and the open project foundation of Zhejiang 
Provincial Key Laboratory of Network Technology and Information Security. The 
authors would also like to thank anonymous reviewers who made valuable sugges-
tions to improve the quality of the paper. 
 



266 D. Yu, Z. Liu, and J. Ge 

 

References 

1. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable 
Object-Oriented Software. Addison-Wesley, Reading (1995) 

2. Dong, J., Zhao, Y.J., Peng, T.: A Review of Design Pattern Mining Techniques. The Inter-
national Journal of Software Engineering and Knowledge Engineering (IJSEKE) 19, 823–
855 (2009) 

3. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns, software engineering, 
object-oriented programming. Addison-Wesley (1994) 

4. Dong, J., Zhao, Y.J., Sun, Y.T.: A Matrix-Based Approach to Recovering Design Patterns. 
IEEE Transactions on Systems, Man and Cybernetics – Part A: Systems and Hu-
mans 39(6), 1271–1282 (2009) 

5. http://www.jhotdraw.org/ 
6. http://java.sun.com/j2se/1.5.0/docs/guide/awt/index.html 
7. http://www.junit.org/ 
8. Dong, J., Lad, D.S., Zhao, Y.: DP-Miner: Design Pattern Discovery Using Matrix. In: Pro-

ceedings of the 14th Annual IEEE International Conference on Engineering of Computer 
Based Systems (ECBS), pp. 371–380. IEEE Press, Tucson (2007) 

9. Antoniol, G., Fiutem, R., Cristoforetti, L.: Design pattern recovery in object-oriented soft-
ware. In: Proceedings of the 6th IEEE International Workshop on Program Understanding, 
pp. 153–160. IEEE Press, Ischia (1998) 

10. Gueheneuc, Y., Sahraoui, H., Zaidi, F.: Fingerprinting design patterns. In: Proceedings of 
the 11th Working Conference on Reverse Engineering (WCRE), pp. 172–180. IEEE Press 
(2004) 

11. Pande, A., Gupta, M., Tripathi, A.K.: A New Approach for Detecting Design Patterns by 
Graph Decomposition and Graph Isomorphism. In: Ranka, S., Banerjee, A., Biswas, K.K., 
Dua, S., Mishra, P., Moona, R., Poon, S.-H., Wang, C.-L. (eds.) IC3 2010. CCIS, vol. 95, 
pp. 108–119. Springer, Heidelberg (2010) 

12. Qiu, M., Jiang, Q., Gao, A., Chen, E., Qiu, D., Chai, S.: Detecting Design Pattern Using 
Sub-graph Discovery. In: Nguyen, N.T., Le, M.T., Świątek, J. (eds.) ACIIDS 2010. LNCS, 
vol. 5990, pp. 350–359. Springer, Heidelberg (2010) 

13. Arcelli, F., Masiero, S., Raibulet, C.: Elemental design patterns recognition in Java. In: 
Proceedings of 13th Annual International Workshop on Software Technology and Engi-
neering Practice, pp. 196–205. IEEE Press, Budapest (2006) 

14. Posnett, D., Bird, C., Devanbu, P.T.: THEX: Mining meta-patterns from java. In: 7th IEEE 
Working Conference on Mining Software Repositories, pp. 122–125. IEEE Press, Cape 
Town (2010) 

15. Fontana, F.A., Maggioni, S., Raibulet, C.: Understanding the relevance of micro-structures 
for design patterns detection. Journal of Systems and Software 84, 2334–2347 (2011) 

16. Fontana, F.A., Maggioni, S., Raibulet, C.: Design patterns: a survey on their micro-
structures. Journal of Software Maintenance and Evolution 33(8), 1–25 (2011) 



 

J. Favaro and M. Morisio (Eds.): ICSR 2013, LNCS 7925, pp. 267–282, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Patterns for Use Case Context and Content 

Marinos Georgiades and Andreas Andreou 

Cyprus University of Technology, Limassol, Cyprus 
{marinos.georgiades,andreas.andreou}@cut.ac.cy 

Abstract. Patterns are well-proven solutions to common problems. They can 
increase the quality of a model, reduce the time to identify and specify require-
ments, and diminish redundancies, inconsistencies and omissions. Use case 
modeling is a very popular way of describing requirements. However, very li-
mited work is done on uniting the concepts of patterns and use cases. This paper 
presents an attempt to provide a thorough set of use case patterns for both the 
context and the content of a use case. Furthermore, to ensure well-formedness 
and accuracy, the patterns are written in EBNF and tested in ANTLR. 

1 Introduction 

Use case modeling is a friendly and attractive way of describing the requirements of a 
software system. One reason for their popularity is that a well-written use case is rela-
tively easy to read, since it is written in natural language following a scenario style. 
However, easy-to-read does not also mean easy-to-write. “It can be terribly hard to 
write easy-to-read use cases, because use cases are stories, prose essays, and so bring 
along all the associated difficulties of story writing in general” (p.2) [1].  

Experience from long-time work on use case modeling shows that several kinds of 
use cases occur repeatedly [1-3]. The reoccurring good solutions can represent use 
case patterns, while reoccurring mistakes can help in building use case patterns by 
avoiding such mistakes. Patterns increase the quality of a model, reduce the time to 
identify and specify a system’s requirements, and diminish redundancies, inconsisten-
cies and omissions.  Furthermore, because each pattern uses a specific and limited 
vocabulary, it is expected that redundancies, omissions and inconsistencies will be 
eliminated from the resulting use case model. 

Use cases and patterns are two extensively used and influential concepts in system 
development during the last 15 years [4, 5]. Although people would expect much 
work done on uniting these concepts and providing several collections of use case 
patterns popular and extensively used, the fact is that work on use case patterns is 
limited to what is presented in two books [1,2] and a very few research articles. Some 
of these endeavors focus on general good practice use case patterns, some others fo-
cus only on the content (actions) of a use case, and the rest of them point to some 
issues related to the context (organization) of use cases. What is missing is a thorough 
set of use case patterns both for the context and the content of a use case.  



268 M. Georgiades and A. Andreou 

 

We do not claim that our work is complete and unmistakable, but our endeavor 
aims to provide use case patterns with more meticulousness regarding the organiza-
tion of use cases as well as the content of each use case. Our approach provides a 
comprehensive set of use case patterns which include specific types of use cases and 
their interconnections at the context level, and specific types and sequence of actions 
for each use case type, at the content level. The use case patterns focus on the func-
tionality of a software or information system. Additionally, we examine the types of 
primary and secondary actors involved in these patterns. Furthermore, to ensure well-
formedness and accuracy, the patterns are written in EBNF and tested in ANTLR. 
Section 2 summarizes related work, while section 3 describes the proposed approach. 
Section 4 gives a comparative evaluation example, and section 5 presents our conclu-
sions and ideas for future work.  

2 Related Work 

Adolph et al. provide patterns with general good practices for writing good use cases, 
such as how to define a clear boundary of the system, to identify actors based on the 
services they are involved in, etc. [1]. Therefore, their work is not about actual use-
cases themselves. Contrarily, Overgaard & Palmkvist, in [2], talk about the actual use 
cases, but do not provide thorough interrelations between different use case patterns; 
they also undervalue CRUD by considering it as a unified use case pattern with each 
of the CRUD functions to be one or two internal actions. And they also stop at the 
“outside of the oval”, by not providing specific types and sequence of actions for each 
use case pattern. Both books [1, 2] present examples of content – use-case actions – 
but these are not content patterns per se, something which is also noted in [4].   

Langlands [4] provides well-organized patterns focusing on the internal structure 
of a use case, however his work does not stand on the organizational level of use cas-
es, which in turn influences the specification (internal part) of each use case.  Biddle 
and Noble, in [3], provide four use case patterns, with a general description. They also 
present a general description of only two use case content patterns which are general-
ly applied on use cases. Additionally, they provide patterns of inclusion, extension 
and generalization, but in the form of general good practices; they do not show how 
their four use case patterns could be interrelated. In [5], Issa and Alali provide a list of 
patterns without showing any interconnections between them, and without presenting 
their content patterns. Additionally, there are missing patterns related to creating do-
main objects or modifying the state of a domain object. Diaz et al, in [6], focus on the 
linguistic analysis of the use case content, by studying the structure and composition 
of sentences. They provide a good guide for writing good use case content at a more 
general level - not patterns of system functionality. 

3 The Proposed Patterns 

We propose nine use case patterns, namely (a) Create information object (IO), (b) 
Correct IO, (c) Modify IO state, which leads to the more specialized patterns Cancel 



 Patterns for Use Case Context and Content 269 

 

IO, Archive IO, and Complete IO, (d) Erase IO, which can also be considered as a 
specialized type of state modification, (e) Read IO, (f) Read IO intra-report | inter-
report, (g) Read supporting information, (h) Notify, and (i) Authorize | login.  

The following sections will explain each use case pattern with respect to the in-
volved use case types and their interconnections, at the external level (context), as 
well as the actions and sequence of actions, at the internal level (content). Due to 
space limitations, the main emphasis will be given to the primary use case patterns 
Create, Correct, Modify State, and Read, and within the paragraphs discussing these 
primary patterns, we will also discuss the rest of the patterns. 

3.1 Form 

The patterns are written based on similar forms or templates provided by [1] and [2]. 
Each begins with a statement describing a problem, followed by a picture of the solu-
tion, a discussion of how the solution addresses the problems, and an example of its 
use. 

3.2 Information Object 

Before discussing the patterns, we need to explain the notion of the information object 
which plays a central role to the development and application of the proposed use 
case patterns. An information object (IO) is a digital representation of a tangible or 
intangible entity—described by a set of attributes—which the users need to manage 
through creating, modifying, reading, and erasing its instances, and be notified by the 
messages each instance (IOi) can trigger1. We distinguish information objects into the 
following categories: business role (as animate entity, e.g., doctor), inanimate entity 
(e.g., car), procedure (e.g., translation), document (e.g., book), event (e.g., appoint-
ment), site (e.g., country, hospital), and state (e.g., disease). By making this distinc-
tion, we will be able to better organize the elements of an information system (IS) 
(e.g., people-actors, functions-use cases), their relationships, and the identification of 
the attributes of an IO, which have to be processed by the use cases of each use case 
pattern.    

3.3 Use Case Pattern Create Information Object 

Problem. A new domain entity needs to be created (for the first time) in the informa-
tion system2. 
 

 

                                                           
1  An IO is conceived and processed at an abstraction level, while an IOi is conceived and 

processed at a factual level; instances of the same IO differ only in the values of their 
attributes. 

2  The Problem definition should be understandable to everyone, and that is why we use the 
term “domain entity” (instead of “Information object”), which is a widely-used term. 



270 M. Georgiades and A. Andreou 

 

Picture - Solution.  

 

Fig. 1. UC pattern Create IO3 - context level 

Discussion. The use case pattern Create IO denotes that an information object in-
stance’s attributes are initiated for the first time, i.e. a new information object instance 
(IOi) is created. This occurs when the primary actor of the use case makes a request 
that initiates the creation of such an IOi. For example, the initiation of the use case 
Create a vote is triggered by the voter’s request to vote; the initiation of the use case 
Create a ticket is triggered by the client’s request to buy a ticket; the initiation of the 
use case Create a client is triggered by the client’s request to register to the system; 
the initiation of the use case Create prescription is triggered by the patient’s request 
to be examined. In each of these ‘create’ use cases, new instances of the information 
objects vote, ticket, customer, and prescription will be created and stored in the sys-
tem. Subsequently, the other use case patterns (correct prescription, cancel prescrip-
tion, etc.) will be applicable to the same IOi.  

A common mistake of use case authors is the representation as a primary actor of 
the person/actor who inputs the data to create the new information, e.g. by consider-
ing as primary actor the actor that uses his/her keyboard to fill and submit a form, on 
his/her computer screen. Use case modeling main focus is on the requirement analysis 
level, that is, to help in gathering, organizing and specifying the requirements, without 
taking into account the implementation.  For example, for the use case Withdraw 
money, if the primary actor will use the ATM or the cashier to take the money, the 
ATM or the cashier are merely the means to achieve the goal, not the primary actor. 
The primary actor, by definition, is the one who initiates the use case, and this role is 
most often called “requestor”; that is, the actor who requests the initiation of the use 
case so as to achieve the related goal. So, in both cases of the ATM example, the 
client is the requestor, viz. the person who initiates the withdrawal transaction. The 
ATM or the cashier are just the means for the client to achieve his/her goal. Hence, 
placing the cashier as the primary actor is flawed modeling because on the one hand 

                                                           
3  Use cases in yellow color are optional.  



 Patterns for Use Case Context and Content 271 

 

we enforce the implementation to include a cashier, and on the other hand we leave 
the customer outside the implementation (especially in the case that we will not con-
sider it as secondary actor, either). In such a case of flawed use case modeling, if we 
wanted to have a cashier-free system, then we wouldn’t be able to have it. We expand 
on Cockburn’s concept on the role of requestor [7] and depict it as in figure 2, show-
ing that different types of users act as “requestor”. The position/specialty of the user 
that requests something may cause variation to the common functionality provided by 
the base use case. In the example below, a patient may initiate the use case Cancel 
appointment by requesting the cancellation of their appointment; however, cancella-
tion could be requested by the doctor too – but not by the secretary who could just 
confirm or input into a form the information for the cancellation, being in this way a 
means to achieve the primary actor’s goal. In the case where the cancellation by pa-
tient differs from the cancellation by doctor, then we can have use case inheritance as 
in figure 2b. Having said all these, the requestor for the primary actor is generally the 
role used for all the use case patterns. There could be other primary actor roles, such 
as the role of the specialist, however it is outside the scope of the present paper to 
expand on this matter.  

 

Fig. 2. (a) Different users can act as requestor; (b) Different requestors may cause variation in 
common functionality (use case inheritance) 

Figure 1 shows the organization part of the Create IO pattern; to create an IOi, espe-
cially for systems with a higher level of security, a system needs to check if the user (s) 
involved is/are logged in the system and also authorized (have access rights) to perform 
the function provided by the particular use case. Therefore, the UC Check login session 
and the UC Check authorization should be included; they could also be defined as ac-
tions within the base use case, because they have small size. There are cases where users 
do not need to login, or the creation of information is performed by any user (authorized 
or not), therefore we denote this optionality with colour-filled, yellow use cases. Check 
login session and Check authorization could be also similarly applied for the other use 
case patterns. It’s out of the scope of this paper to expand on this issue. We just note that 
a common mistake of use case authors is the use of “Login” as an included use case in 
another, basic use case; doing so means that every time a user needs to do something 
through the base use case, the user needs to re-login, which is a mistake in the majority 
of the cases. Such a behavior could stand for high security systems only. Also optionally 
included in Create IO are the use cases Read report or Read document/message about 
reading reports, documents or messages. This representation of optional inclusion 
means that the user will either always have to read a report or a document, in general, 
while creating an IO, or s/he will not at all. We repeat here that with optional use cases, 



272 M. Georgiades and A. Andreou 

 

we provide two mutually exclusive implementations – this is not like the case of an 
‘extending’ use case which sometimes is executed and sometimes is not. More about the 
reading patterns is mentioned in the relevant subsequent section.  Finally, a Create  
use case of another IO could extend the base use case. The full example of the Create 
pattern stresses this issue (figure 3). 

Hitherto, we have shown the context of a Create use case pattern. Now, we will de-
scribe its content. The core of a Create use case is its main flow (i.e. the success scena-
rio), followed by the alternative flow, both representing sequences of actions. Within 
the main flow, we also need to define the application of any “include”, “extend” or 
“inherit” use cases, thus illustrating in a formal grammar the external relations of a 
Create use case. Specifically, the use case pattern descriptions are written in EBNF. 
Expressing the use case descriptions in EBNF allows us to formally prove key proper-
ties, such as well-formedness and closure, and hence, help validate the semantics. The 
proposed grammar has been developed with the Another Tool for Language Recogni-
tion (ANTLR) parser generator. ANTLR is a parser and translator generator tool that 
lets one define language grammars in EBNF like syntax. Due to space limitations we 
will show the most essential parts of the main flow only for the pattern UC Create IO. 

Use case actions are of two types: (i) user actions which are performed by the us-
ers, and these are: choose, add, request, and confirm; (ii) system actions which are 
performed by the system, and these are: validate, save, prompt, notify, and calculate. 
Table 1 below shows the abstract syntax of the Create pattern.  

Table 1. Abstract syntax of the Create pattern 

mainFlow 
 : 'Main Flow:' initialUA 
  validateAuthorization? 
  (presentCreateSA extended_by? Includes?) 
  (enterChooseUA extended_by?)+ 
  submitUA 
  checkSA 
  saveSA 
  (notifySA includes?)? ; 

 
The parser rule mainFlow starts with an initial user action, that is, a request to 

create a new information object (table 2). Table 3 depicts a concrete syntax validated 
in ANTLR. Due to space limitations, not every parser rule will be explained (e.g. it’s 
apparent that the usecaseName rule refers to the name of the use case, and in the case 
of the Create pattern, it starts with the verb Create). 

Table 2. Abstract syntax of the initial parser rule of the UC Create main flow 

initialUA :   ‘UA’ INTEGER ‘.’ primaryActor ‘requests to’ usecaseName ‘.’; 

Table 3. A concrete syntax of the initial parser rule of the UC Create main flow 

UA 1. A doctor requests to create a prescription.  



 Patterns for Use Case Context and Content 273 

 

The parser rule validateAuthorization (in table 1) refers to a system action that will 
check if the actor is logged in and authorized to create this information object. In 
EBNF, the question mark symbol denotes optional behavior that may happen only 
once. Subsequently, the parser rule presentCreateSA involves another system action, 
that is, the system will prompt the user, with a form, to complete it and thus create an 
instance of the IO. The abstract syntax of this rule is depicted in table 4, while a con-
crete syntax is presented in table 5. 

Table 4. Abstract syntax of the parser rule for prompting a user to fill a form and create an Ioi 

presentCreateSA : 'SA' INTEGER '.' 'The system prompts' primaryActor 'to 
           enter or choose the required and optional fields of the' io '.' ; 

Table 5. Concrete syntax of the parser rule for presenting a form to create an Ioi 

SA 2. The system prompts a doctor to enter or choose the required and optional 
  fields of the prescription. 

 
The parser rule extended_by (in tables 1 & 6) denotes that the Create IO use case 

can be extended by another use case. In such a case, the phrase “Extension point:” 
must be written on the right of the action that triggers the extension, followed by the 
ID and name of the extending use case. If an “include” use case needs to be invoked, 
then the relevant syntax in table 6 should be followed.  

Table 6. Abstract syntax of the parser rules for invoking an extending or an included use case 

extended_by : '[' 'Extension point.' useCase ']';  
includes  : '[' 'via' useCase ']' ; 

 
Following, the parser rule enterChooseUA (in table 7) refers to the user’s action of 

inputting data to the form for the creation of the IOi. Data should be entered or chosen 
(table 8). enterChooseUA is followed by the rule extended? in table 1, which denotes 
that entering or choosing data could be extended by another use case providing  
supporting information (reports, documents, etc.); such a supporting use case could 
trigger the involvement of a secondary actor. For example, for the UC Create  
Prescription, for the action Choose medicine, the doctor might need guidance by a 
medical guide or a medical counselor (see the example in figure 3). 

Table 7. Abstract syntax of the parser rule for entering or choosing form data 

enterChooseUA 
 :  'UA' INTEGER '.' primaryActor userAction    
  ioAttribute '.' (secondaryActor ('provides' | 'verifies') 'this  
   information' '.')?   
 | 'iterate' 
  enterChooseUA+ 
  'end iterate' ; 



274 M. Georgiades and A. Andreou 

 

Table 8. Abstract syntax of the two methods of inputting data 

userAction :  ENTER_DATA | CHOOSE_DATA ; 
//where 
ENTER_DATA : 'enter' | 'enters'; 
CHOOSE_DATA : 'choose' | 'chooses'; 

 
ioAttribute determines the value added into the form for an attribute of the IOi. If 

there are more than one attribute values to be added, then an iteration of this addition 
will take place as depicted in table 7 and in the example of table 11. The submitUA 
user action parser rule, which follows, denotes that the user submits the form, while 
the next rule validateSA defines a system action denoting that the system checks the 
values of the attributes, and if everything is correct, it saves the new information ob-
ject through the parser rule SaveSA (tables 1, 9 and 11).  

Table 9. Abstract syntax of the parser rules for submitting, validating and saving the form data 

submitUA : 'UA' INTEGER '.' primaryActor 'submits the form of the' io '.' ; 
validateSA : 'SA' INTEGER '.' 'The' 'System validates the attributes of the  
  submitted form. ; 
saveSA : 'SA' INTEGER '.' 'The System saves the form' '.' ; 

 
Finally, the system, through the parser rule notifySA (table 10 and 1) notifies the 

primary actor and any interested secondary actors about the creation of the informa-
tion object (between validates and saveSA, a confirmation action could take place).  

Table 10. Abstract syntax of the par. rule for notifying other actors about the creation of the IO  

notifySA : 'SA' INTEGER '.' 'The System' notify io 'to the following' actors '.'; 

Example. Figure 3 shows an example of the UC Create Prescription. As mentioned 
earlier in this section the UC Create prescription includes two use cases for checking 
if the user is logged-in and also authorized, and two “include” Read inter-report use 
cases, viz. one use case to read the examination details of the patient and one use case 
to read his/her treatment details. These need to be always executed in order for the 
Create prescription to be completed. There are also three “extend” relationships, im-
plemented with one use case for printing the prescription, once it is created, one use 
case to read a councellor’s message (opinion), which is invoked when the doctor 
needs some supporting information about a medicine, and the UC Create examina-
tion. Someone may assume that the latter is an “include” use case taking into account 
that for a prescription to be created an examination needs to be created first. However, 
there are cases where the doctor does not need to examine the patient in order to pre-
scribe a new medicine. 



 Patterns for Use Case Context and Content 275 

 

 

Fig. 3. UC Create Prescription: An example of the Create pattern at the external level  

Table 11 shows a portion of the concrete syntax of the UC Create Prescription, va-
lidated in ANTLR. 

Table 11. Concrete syntax of the UC Create prescription 

UA 1. A doctor requests to create a prescription. 
SA 2. The system prompts a doctor to enter or choose the required and option

 al fields of a prescription. [Extension point. UC 12 read Examination report] 
UA 3. A doctor enters patientID of a prescription. A patient verifies this infor

 mation. 
UA 4. A doctor chooses patientName of a prescription. 
     iterate 
UA 5. A doctor chooses medicine of a prescription. [Extension point. UC 22 read 

 a counselor /*message/*] 
UA 6. A doctor chooses pharmacy of a prescription. [Extension point. UC 23 

 read pharmacy /*document/list*/] 
     end iterate 
UA 7. A doctor submits the form of a prescription. 
SA 8. The System checks the attributes of the submitted form. 
SA 9. The System saves the form. 
SA 10. The System sends Notification about the creation of a prescription to the 

 following Actors: a doctor, a patient, a pharmacy. [via UC 15 send Notifi
 cation of a prescription] 

3.4 Use Case Patterns Correct IO and Modify IO State 

Problem 
(i) Some information of a domain entity needs to be corrected. 
(ii) The change of some information of a domain entity causes change in the 

functionality of the system. 



276 M. Georgiades and A. Andreou 

 

Picture - Solution 

 

Fig. 4. UC pattern Modify IO decomposed to two patterns: Correct IO, Modify IO state 

Discussion 
The everyday activity of an information system causes information to change. This 
change may refer to simple correction of the attribute values of an IOi or it may be 
more complicated referring to modification of its state. In particular, correction of an 
IOi means that the IOi will retain the same state (postcondition) as the one before the 
correction. For example, for the UC Correct Prescription, changing the attribute val-
ue of Medicine.dosage from 2mg per day to 3mg per day will keep an IOi Prescrip-
tion in Pending state and will not lead to the creation of new pre- or post- conditions 
(Pending is the state assigned to the IOi Prescription during its creation by the UC 
Create Prescription).  

On the contrary, changing the attribute value of Medicine.Provided from No to Yes 
will put an IOi Prescription in the Complete state which corresponds to a new post-
condition, that is, “Prescription is complete”. Completing a prescription derives the 
precondition “Drug is handed to patient” compared to the UC Correct Prescription 
which has the precondition “Prescription is created”. Additionally, this modification 
process is executed by another actor, that is, the pharmacy (or pharmacist), at a differ-
ent place (pharmacy) contrary to the creation or correction of a prescription, which 
are executed by the doctor, at the clinic or hospital. Some frequent patterns of state 
modification use cases are the Cancel IO, Archive IO, and Complete IO. Cancel IO 
and Archive IO are usually initiated by a human actor (could be done automatically 
too, though) while Archive IO is usually initiated by a computerized actor (the system 
automatically archives an IOi based on a predetermined schedule). We may also con-
ceive Erase IO, as a state modification use case, where its new postcondition might be 
“IOi is removed completely from the system’s database”. It is interesting to mention 
the importance of examining what the presuppositions or results are from the modifi-
cation of a state; usually these presuppositions or results lead to the use of a new  



 Patterns for Use Case Context and Content 277 

 

information object and a series of new use cases. Figure 7, of our detailed example, 
depicts this point followed by a relevant explanation.  

Example. Figure 7 illustrates the decomposition of Modify booking, while the corres-
ponding section explains how modification state use cases lead to the generation of 
new use cases.  

3.5 Pattern Read: IO; IO Report; Supporting info (Document, Message, etc.) 

Problem.  
(i) GUI forms need to be read when a user creates a new entity or changes 

the state of an existing one, in the IS. 
(ii) Reports need to be read about one or a combination of entities. 
(iii) Documents or messages need to be read to support a function. 

 
Picture - Solution 

 

Fig. 5. UC pattern Read decomposed to 3 UC patterns: Read IO, Read IO report (intra|inter), 
Read supporting info (the latter is not presented due to space limitations) 

Discussion 
GUI forms usually need to be read when a user creates a new IOi or changes the state 
of an existing IOi. The reading process should be represented as the included use case 
Read IO for the UC Modify IO (for both correction and state modification patterns), 
because it is composed of several actions, such as retrieving data from the database, 
checking, and presenting the existing attributes and values of an IOi. This behavior is 
depicted in figure 5a where the UC Read IO is included in the use case Modify IO. On 
the contrary, the reading procedure for the UC Create IO only concerns building a 
form of required and optional (empty) fields, and is thus represented as one or more 
simple action(s) in the Create IO use case specification. That’s why it is not 
represented in figure 5b. 



278 M. Georgiades and A. Andreou 

 

Apart from reading forms, reading reports is another type of the reading process, 
which leads to the establishment of relevant use cases. A read pattern use case rece-
ives search criteria usually from an actor, and uses the criteria to identify the correct 
information in the system. We distinguish two types of reports, those are, the intra-
reports which are related directly to the IO under study, and the inter-reports which 
contain information about other IOs, and which are useful for the creation or modifi-
cation of the IO under study. Examples of an intra-report are a report about appoint-
ments completed over a specific period (UC Read January appointments – figure 6a) 
or a report about the information of the current booked flight (UC Read booking – 
figure 7). An example of a use case with an inter-report is the use case Read patient 
(record) that may be implemented as an included or an extending use case of the use 
case Create prescription (figure 6b – latter implementation option). Figure 6b also 
illustrates through examples the two other Read patterns, i.e. Read document and 
Read message. The former is related to the reading of a document such as a guide, an 
essay, and generally any document that would be helpful for the implementation of 
the base use case. Similarly, the pattern Read a message refers to any supporting mes-
sage to the implementation of the base use case; such a message could be textual, 
vocal or optical. Supporting use cases could usually involve supporting (secondary) 
actors, such as in the example of figure 6b. 

For clarity, the figures do not include any authorization/login use cases or any use 
cases about printing information (e.g. the UC Print IO could extend the UC Read IO 
intra-report). We also need to note that the double relationships between use cases on 
reading reports and use cases on modifying or creating instances of IOs are optional, 
and also either an extend or an include relationship can take place, from each pair.  

Example 
 
 
 
 

  
(a) (b) 

Fig. 6. Figure 6a and 6b depict use cases with an intra-report and inter-reports, respectively 

4 Comparative Evaluation with a Best and a Real Case Example 

In [1], the authors state that “it is usually easier to describe the individual routine 
transactions that a system may provide than it is to discover what the user really wants  
 
 



 Patterns for Use Case Context and Content 279 

 

to do with the system. Doing it the easy way often leads to ‘CRUD’ (Create, Read, 
Update, and Delete) style use cases. It is not unusual to see use cases with names like 
Create Employee Record, Read Employee Record, or Delete Employee Record. 
While such use cases may be technically correct, they do not capture what is valuable 
to the user. Is creating an employee record important, or does the user really want to 
Hire Employee?” (p. 12). Firstly, we admit that using CRUD-style use cases may not 
always give the “perfect” verb to the name of the use case. For example, it’s more 
valuable to the user to see Register Customer than Create Customer. We consider this 
an issue that can be easily tackled with the use of synonymous phrases to transform 
the CRUDdy verbs into more convenient ones. However, we believe that the ex-
panded and in-depth CRUD-style set of use case patterns provided by our approach 
could promote completeness and correctness in terms of identifying, organizing and 
specifying use cases, since they correspond to a comprehensive list of functions that 
apply on electronic information, and additionally the use of a specific terminology 
could avoid problems of redundant or incorrect information. 

We provide below two comparative examples, one at the external level and another 
one at the internal level, showing how the proposed approach could perform.  

4.1 External Level Comparative Example 

For airline reservations, the authors in [1] give the following indicative list of use 
cases: Book Trip, Change Booking, Cancel Booking,  Search for Flights, Promote 
Vacations.  

Based on our approach, we firstly identify the information objects and then apply 
the proposed use case patterns. The information objects are booking, flight, trip, pro-
motion and vacation (because we need to store and process all these entities through 
time). For booking, we could have the use cases Create booking, Correct booking, 
Cancel booking, Archive booking, Complete booking, Read booking, Register client 
(from its synonymous use case Create client) Read flights, and Check login session. It 
is interesting to mention the importance of examining what the presuppositions or 
results are from the modification of a state; usually these presuppositions or results 
lead to the use of a new information object and a series of new use cases. For exam-
ple, cancelling of a booking, which denotes a modification of the state of booking, 
from pending to cancelled, presupposes a refund of money; therefore, we introduce 
the use case Create Refund included in the use case Cancel booking. Similarly, com-
pleting a booking presupposes issuing of a boarding pass (common policy of many 
airline companies). Figure 7 below shows the relevant use case diagram. Accordingly, 
we could have the use cases for each of the other identified information objects 
(flight, trip, etc.). It is apparent that based on the information objects and the proposed 
use case patterns, we can create a solid and reliable use case model of an information 
system.  



280 M. Georgiades and A. Andreou 

 

 

Fig. 7. The use case model derived from the IO booking and the proposed UC patterns4,5 

4.2 Internal Level Comparative Example 

The following is the main flow of the use case Generate Prescription, and it is taken 
from a real case [8]. We will compare it to the main flow of the UC Create Prescription 
defined by our approach, as depicted earlier in table 11 and also copied here below. 
 

Actor action System action 
1. The nurse practitioner clicks "New prescription" 
button. 

2. The system displays a form to fill out 
e-prescription information. 

3. The nurse practitioner enters the e-prescription 
information (medication name, patient name, and a 
pharmacy location for patient). 

4. The system displays the list of partici-
pating pharmacies. 

5. The nurse practitioner selects one pharmacy from 
the list based on the patient's will. 

6. The system displays message "The 
prescription was sent successfully". 

Fig. 8. The basic flow of the use case Generate prescription taken from [8] 

                                                           
4  For clarity reasons, the figure does not depict the extending use cases Print booking (extends 

Create booking), Print flights (extends Read flights), Print boarding pass (extends Create 
boarding pass). 

5  For some information objects, according to the context of the problem, the modification 
pattern may not be applicable. For example, in a voting system, due to specific policies, no-
body can modify a vote after its creation. 



 Patterns for Use Case Context and Content 281 

 

Table 12. Concrete syntax of UC Create prescription validated in ANTLR 

UA 1. A doctor requests to create a prescription. 
SA 2. The system prompts a doctor to enter or choose the required and optional fields 

 of a prescription. [Extension point. UC 12 read Examination report] 
UA 3. A doctor enters patientID of a prescription. A patient verifies this information. 
UA 4. A doctor chooses patientName of a prescription. 
     iterate 
UA 5. A doctor chooses medicine of a prescription. [Extension point: UC 22 read a  coun

 sellor /*message*/] 
UA 6. A doctor chooses pharmacy of a prescription. [Extension point: UC 23 read phar

 macy /*document/list*/] 
     end iterate 
UA 7. A doctor submits the form of a prescription. 
SA 8. The System checks the attributes of the submitted form. 
SA 9. The System saves the form. 
SA 10. The System sends Notification about the creation of a prescription to the fol low

 ing Actors: a doctor, a patient, a pharmacy. [via UC 15 send Notification of a  pre
 scription] 

 
The first comment concerns action 1 where we avoid to define the means (interface 

objects) with which the actions will be performed, because this is usually done during 
design (e.g., the user may want to add information vocally, not by pressing a button). 

Action 2 is similar in both descriptions in terms of the display of a form for the ac-
tor to complete it. However, our approach defines the actor (doctor) who is responsi-
ble (has the access rights) to complete the form, as well as the extending use case 
Read Examination report. 

Action 3 is similar in both cases to some degree, with the difference that in our ap-
proach the secondary actor (patient) is asked from the primary actor (doctor) to verify 
the information added to the form. 

The rest of the actions cover almost the same functionality, however it is apparent 
that our approach is much more precise and comprehensive. For example, through the 
‘iterate’ tag, we know that the user is able to choose more than one medicines or 
pharmacies. Additionally, the concept of supporting use cases derives relevant use 
cases and supporting actors, as defined with the extending use cases in steps 5 and 6 
of the use case specification example of table 12. 

5 Conclusion 

This paper presented a set of use case patterns for both the context and the content of 
a use case. The proposed patterns focus on the functionality of a software or an in-
formation system, and are related with creating information objects, correcting them, 
modifying their state by cancelling, archiving or completing them, reading intra- and 
inter- reports or supporting documents and messages related to information objects, 
just to mention the most significant of the proposed use case patterns.  In each of 
these patterns, a number of use case types are involved and interrelated through in-
clude, extend and inheritance relationships. Furthermore, each pattern consists of a 



282 M. Georgiades and A. Andreou 

 

specific set and sequence of actions, such as request, prompt, add, delete, choose, 
calculate, submit, validate, save, confirm, and notify. The patterns were written in 
EBNF and tested in ANTLR. Expressing the use case descriptions in EBNF allowed 
us to formally prove key properties, such as well-formedness and closure, and hence, 
helped validate the semantics. 

We will continue our work on the improvement of the patterns discussed in this 
paper, and also investigate other possible use case patterns. Their correctness and 
completion will be enhanced by a comprehensive testing of our proposition, which is 
currently being undertaken against real-world projects.   

References 

1. Adolph, S., Bramble, P., Cockburn, A., Pols, A.: Patterns for Effective Use Cases. Addison-
Wesley (2003) ISBN: 0-201-72184-8 

2. Overgaard, G., Palmkvist, K.: Use Cases: Patterns and Blueprints. Addison-Wesley (2004) 
ISBN 0-131-45134-0 

3. Biddle, R., Noble, J., Tempero, E.: Patterns for essential use cases. In: Proceedings of Aus-
tralasian Pattern Languages of Programming, KoalaPLoP (2001) 

4. Langlands, M.: Inside the oval: use case content patterns (2010) 
5. Issa, A., AlAli, A.: Automated Requirements Engineering: Use Case Patterns Driven Ap-

proach. IET-Software, IET 5(3), 287–303 (2011) 
6. Diaz, I., Losavio, F., Matteo, A.L., Pastor, O.: Specification pattern for use cases. Informa-

tion & Management 41(8), 961–975 (2008) 
7. Cockburn, A.: Writing Effective Use Cases. Addison Wesley (2001) ISBN 0-201-70225-8 
8. Nalluru, S., Shetty, A., Wei, F.: SRS for Health record system at Drexel convenient care 

center (2010), http://www.pages.drexel.edu/fw48/eport/ 
documents/INFO627Project.pdf 



J. Favaro and M. Morisio (Eds.): ICSR 2013, LNCS 7925, pp. 283–288, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

A Common Representation for Reuse Assistants 

Fábio P. Basso, Cláudia Maria Lima Werner, Raquel Mainardi Pillat,  
and Toacy Cavalcante Oliveira 

COPPE – PESC - Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil 
{fabiopbasso,werner,rmpillat,toacy}@cos.ufrj.br 

Abstract. Software reuse practices and tools have been proposed over the last 
decades. From the reuser’s perspective, it is necessary to provide facilitators in 
order to execute reuse tasks among tools. Accordingly, we propose the use of a 
common representation for Reuse Assistants (RA), which are computer 
executable reuse tasks specified in a model. This model is extensible since it 
extends Reusable Asset Specification metamodel, an OMG standard to define 
software assets such as artifacts and documents with structured information for 
reuse such as activities and guidelines. Besides, the metamodel is specified in 
Eclipse Modeling Framework (EMF), a widely used environment for 
metamodeling. The proposed extensions allow one to provide information to 
guide reusers through the execution of reuse tasks among tools, with structured 
information that can be used to generate deployment descriptors and scripts 
mapped for task execution languages. Thus, this paper presents this proposal by 
exemplifying developer’s tasks that can be assisted by RAs. 

Keywords: Reusable Asset Specification – RAS, Software reuse, Reuse 
assistant, Reuse facilitator. 

1 Introduction 

This work proposes a common representation for reuse tasks, called Reuse Assistants 
(RAs). RAs correspond to any kind of computer executable task that promotes reuse 
of some set of assets, such as programming APIs or software domain designs. Since a 
reuse process orchestrates the execution of reuse tasks inside a reuse tool [10], our 
challenge is to provide a common representation for tasks to allow tools chain [6], 
when users must use more than one tool in sequence to execute a complete reuse task.  

Integrated Development Environments (IDEs) such as Eclipse1 allow the 
specification of some sort of reuse assistants (i.e., wizards) as compiled plug-ins. 
Wizards are codified in Java and guide a reuser through a predefined sequence of tasks. 
Despite providing a framework that facilitates the development of plug-ins, once 
compiled, such wizards cannot be modified. Accordingly, we tested wizards as ANT2 
tasks [1], a task execution language, allowing chaining tools outside IDEs. However, 
these languages have limitations in regards to user interaction and are used to execute 
automated tasks related to application builder. Other proposals to support reuse 

                                                           
1 Eclipse IDE. Av. at <http://www.eclipse.org>. At 15/12/2012. 
2 Project Apache ANT. Av. at <http:// ant.apache.org/>. At 15/12/2012. 



284 F.P. Basso et al. 

processes allow more interactivity features with users, with alternate flows, questions 
and loop also allowing processes execution [10]. On the other hand, they lack to 
provide detailed information about the artifacts that are changed by tasks, as well as 
guidance information about reuse activities that are common in wizards. In contrast, 
the Reusable Asset Specification (RAS) [9] allows detailing reuse assets with 
documentation, guidelines and context, but lacks to support execution. Therefore, these 
works lack to support a package to thoroughly assist reuse that is composed by: a) 
documentation; b) execution; c) specification; and d) modification and customization.  

In this sense, this paper presents a proposal to specify RAs with an EMF3 based 
metamodel. We have extended RAS to represent reuse assistants because it supports 
software reuse activities with descriptions and guidelines, helping reusers in 
performing tasks independently from a tool support. Accordingly, by combining our 
RAS extension with reuse processes in a common EMF representation, one can chain 
executions with a task execution tool such as ReuseTool [10], by previously 
validating and binding IO parameters used among tools. Thus, to illustrate the 
applicability of our proposal, we exemplify a RAs model that helps developers in 
programming activities related to Java libraries API reuse. 

Next sections are organized as follows. Section 2 provides an illustrative example 
of RAs using our proposal. Section 3 presents an extension of the RAS metamodel to 
support reuse assistants. Section 4 discusses the related works and Section 5 presents 
our conclusion remarks. 

2 Illustrative Example 

A reuse assistant organizes a set of tasks that can be executed by reusers with the help 
of some provided documentation. Assistants are enacted by programs specifically 
developed to support the reuse of some particular set of artifacts and require strong 
formalization to hold on the bindings and validations between task’s IO parameters, 
as shown in Figure 1 (A). This example of RA tasks highlights the following reuse 
scenario: assume that a software developer, using Java language, aims to reuse an 
artifact “A1”, where A1 is the JExcel Java Library (a jxsl.jar library file). This library 
provides functionalities that enable developers to import Excel spreadsheets data by 
mapping them to domain classes’ properties. To assist the developer´s activities, 
many tools can be used. We exemplified two tools in Figure 1 (A): 1) A tool to apply 
reverse engineering from domain classes’ source-code to a UML model [3]. Thus, 
using the domain classes, one generates a table structure analogous to Excel 
spreadsheets. 2) A tool to generate source-code that contains logic to import Excel 
spreadsheets into classes’ properties [2]. 

The first challenge to help developers is to provide documentation about how to 
use JExcel library (Artifact A1). Accordingly, RAS is used to define activities that 
developers must execute and it is also helpful to define dependencies from other Java 
libraries. Since the metamodel is designed in EMF to support RAS metaclasses, we 
have generated an Eclipse plug-in to support the design of reusable assets as shown in 
Figure 1 (B). The configured Asset 1 supports guidelines to reuse a specific API 
named jxsl.jar. Note that many artifacts compose assets: the selected one is named 

                                                           
3 Eclipse EMF. Av. at  < http://www.eclipse.org/modeling/emf/>.  

At 15/12/2012 



 A Common Representation for Reuse Assistants 285 

JExcel – jxsl.jar. This example shows all information required by programmers to 
know how to develop JExcel source-code provided by the information bellow the 
“Usage” element. Besides, it is possible to classify and contextualize artifact A1 as 
well as specify dependencies between artifacts. Moreover, the activities below the 
“Artifact Activity” element provide guidelines for those tasks shown in Figure 1 (A). 
However, despite providing a rich set of metaclasses used to detail reuse activities, the 
standard RAS profile lacks structures to specify computer executable tasks related to 
the guidelines. Thus, we have extended RAS with new structures for execution.  

Reuse Assistant RA1 
Input 1: an excel sheet in format XSL 

 

Task 1(Manual) = Identify the Excel Sheet Structure (ESS). This structure is used to map columns to classes’ properties. 
Task 2 (Assisted by tool 1) = Define a Class Structure (CS). Use reverse engineering to load java entities from the build path and map it to CS.  
Task 3 (Assisted by tool 1) = Map ESS and CS. Apply the mapping between ESS and the properties of CS. This requires establishing a link from 
sheet’ columns to classes’ properties using a specific tool which allows the user to apply this binding. 
Task 4 (Assisted by tool 2) = Generate “import” source-code for JExcel API. Based on source-code for the mapping between excel sheets and 
java domain classes a new class with an operation named “import” for a selected entity is generated. 

 

 

A 

Asset defined with the standard 
RAS profile (SRASP) 

Guidance as activities to support 
each Artifact with 

documentation 

Assets information defined with the core 
RAS and default profile (SRASP). 

No support for deploy and execution. 
So, everything is manually configured. 

Is that what we expect to promote reuse? 

B 

Artifact dependencies to support 
reuse assistants (note all they 

assist the usage of the Asset 1) 

Execution/deployment support 

Reuse assistant’s execution task 
is chained in a reuse process 
specified in RDL (see [1]). 

Task’s IO parameters 

Assets information defined with the proposed 
extension with support to deploy & execution. 

Dependency from the first asset 

C 

Asset defined with our proposal: 
reuse assistant profile (RAP) 

A reuse process specified in 
RDL (see [10]) is linked here. 

This input (IN) must match with 
OUT named ‘structureMapping’ 

SRASP activities do not allow 
binding between IO parameters 

nor execution support!

Artifact 
A1 

Tool 1 

Tool 2 

Tool 1 dependency 

Tool 2 dependency 

Guideline information towards 
task execution among tools 

Guidelines 

OUT 

IN 
 

Fig. 1. Example of a Reuse Process Specified with Reuse Assistant Profile 

In order to facilitate the reuse of A1, one could develop one assistant by 
implementing a model transformer that takes as input a UML model (a class), uses 
“Tool 1” and  “Tool 2” and generates source-code mapped to Java JExcel, as shown 
in Figure 1 (C). It allows detailing those RAs exemplified in Figure 1 (A). 
Accordingly, we have used the proposed RAS extension to specify Asset 2 shown in 



286 F.P. Basso et al. 

Figure 1 (C). Asset 2 provides reuse support for Asset 1 - JExcel API, using Asset 
Dependency information in each Reuse Assistant element. The Reuse Process element 
groups the two assistants exemplified in Figure 1 (A) and it is actually linked to a 
program named ReuseTool, specified with Reuse Description Language (RDL) [10]. 
Accordingly, Reuse Assistant 1 element contains two executable tasks: 1) task maps 
spreadsheets to classes’ properties is intended to assist the execution of activities 1, 2 
and 3, depicted in Figure 1 (A); 2) the second executable task is mapped to “Generate 
import source-code for JExcel API”. The remainder of this example supporting 
deployment and execution of these tasks is available in [1]. 

3 The Proposed RAS Extension 

Reusable asset deployment requires information about execution. Thus, the following 
information should be provided: a) the programming language used to develop the 
executable task; b) class loader information such as the name of the class/program 
that owns the main operation (the program method used to start the task execution). 
Since existing RAS solutions shown in Figure 1 (A) have no support to this level of 
detail, we provide the ExecutionSupport metaclass (Figure 2). 

 

Fig. 2. RAS Profile Extension to Support Reuse Assistant Execution 

With ReuseProcess, ReuseAssistant and ExecutableTask metaclasses, it is possible 
to specify how the tasks shown in Figure 1 (C) can be deployed and executed. These 
metaclasses aim to orchestrate tools chaining that actually executes reuse assistant’s 
tasks. The RAS core metaclass named Context can be used to express keywords to 
link to specific tasks execution languages, such as ANT. However, we believe that a 
specific metaclass provides more adequate information as ExecutableTask and 
ExecutionSupport. With this information, a RAS client deployer for an Eclipse 
ecosystem can chain appropriate tools. 

The input and output parameters must be formalized to validate if the chaining 
among tasks is possible [8]. The RAS “ActivityParameter” and “Parameter” 
metaclasses can be used to handle such information. However, such classes do not 
provide properties that allow a validation between parameters (parameter matching). 
To allow this, parameters must express a classification for their possible values (e.g., 
a native object, a file url, a prompted value) using the RAS component’s Parameter 
metaclass. Thus, this kind of matching is based on parameter data types. 



 A Common Representation for Reuse Assistants 287 

However, parameters matching must consider also the context of each task to 
validate a composition. In this sense, each metaclass we have modeled in EMF 
extends the Element class from a UML metamodel4. By enhancing UML, it is 
possible to specify annotations (Stereotypes and Tags) in each RA model element, 
e.g., to constraint IO parameters, as shown in Figure 1(C) through OUT and IN 
comments. Accordingly, constraints can be expressed as: OUT) XMIVersion={1.2}; 
IN) ReqXMIVersion{1.1,1.3,2.1}. In this example, these parameters do not match 
because the IN parameter does not support XMI version 1.2. Besides, by enhancing 
RAS, it is possible to constraint each task with a context (e.g., model-based tasks). 

The activity type is also important, as shown in Figure 3. The task can be manually 
executed or supported by a tool. In this case, it is important to generate deployment 
descriptors, such as those of POM.xml used by Maven tool5, as we did in [1] by 
configuring an Eclipse ecosystem to support the execution of automated and assisted 
tasks. Thus, with a common representation for deployment, we designed the 
metaclasses shown in Figure 3 as DownloadInfo, DeployInfo, Repository and Path. 

 

Fig. 3. RAS Profile Extension to Support Reuse Assistant Deployment 

4 Related Work 

RAS related works exemplify scenarios where assets are only documented. It is the 
case for Elgedawy et al. [5] who propose a RAS extension to describe Service 
Oriented Architecture (SOA) components. These components are interoperable by 
definition and do not relate to our proposal since different information is required 
other than those for chain reuse tools [4], which mostly are not interoperable and are 
manually adapted [7]. In this direction, this paper presented some RAS extensions 
allowing the representation of a chain among two reuse tools with guidelines in 
assistance. These specifications are EMF based and are transformed to specific tasks 
execution languages, such as ANT. Finally, they are managed by existing systems as 
Mylyn and MAVEN inside an Eclipse IDE ecosystem (see [1] for a complete study). 

Biehl et al. proposed TIL, a domain specific language to specify integration among 
tools [4], and Polgár et al. proposed a framework to chain executions by 
interoperating tools as process activities [8]. Despite being interesting proposals, they 
lack in detailing software assets interchanged among chained tools, not allowing to 
                                                           
4 Reduced UML Metamodel –  
http://prisma.cos.ufrj.br/wct/projects/index.html 

5 Apache Maven - Av. at  <http://maven.apache.org/> At 15/03/2013. 



288 F.P. Basso et al. 

validate the binding between IO parameters such as different XMI versions [6]. 
Besides, the deployment of chained tools into execution environments is manually 
specified. On the other hand, RAS supports rich details, as context, classification, 
reuse activities, and artifact kinds, but it does not support details to chain tools. Thus, 
as a complementary contribution, we have extended RAS to solve some 
shortcomings: a) the traceability among IO parameters, allowing context validation; 
b) the source-code generation for ANT and RDL tasks (reuse processes); c) the 
generation of deployment descriptors in MAVEN; d) the automatic configuration of 
an Eclipse ecosystem.  

5 Conclusion Remarks  

Our work presented an overview of a RAS-based approach and an extension to 
support a common representation for Reuse Assistants. It includes a set of metaclass 
extensions allowing one to deploy reuse assistants as executable tasks to promote 
artifact reuse from the developer’s point of view. We agree that reusable assets, e.g., 
reuse practices documentation, reuse assistants and software artifacts, exist in many 
reuse techniques. Accordingly, our proposal is to aggregate these techniques as reuse 
assistants in a chained execution. Thus, we presented an EMF based tool support for 
Reusable Asset Specification (RAS) to detail reuse assistants.  
 
Acknowledgments. This work was partially supported by the Brazilian agencies 
CAPES and CNPq. 

References 

[1] Basso, F.P., et al.: A Common Representation for Reuse Assistants - Applicability and 
Examples (February 06, 2013),  
http://www.adapit.com.br/files/irawp01.pdf 

[2] Basso, F.P., et al.: Using the FOMDA Approach to Support Object-Oriented Real-Time 
Systems Development. In: ISORC, pp. 374–381 (2006) 

[3] Basso, F.P., et al.: Towards a Web Modeling Environment for a Model Driven 
Engineering Approach. In: III BW-MDD, Natal – RN, Brazil (2012) 

[4] Biehl, M., et al.: Domain Specific Language for Generating Tool Integration Solutions. 
In: 4th Workshop on Model-Driven Tool & Process Integration, MDTPI (2011) 

[5] Elgedawy, I., et al.: Reusable SOA Assets Identication Using E-Business Patterns. In: 
World Conference on Services - II, pp. 33–40 (2009) 

[6] Kern, H., et al.: Integration of Microsoft Visio and Eclipse Modeling Framework Using 
M3-Level-Based Bridges. In: 2nd MDTPI, pp. 13–24 (2009) 

[7] Könemann, P., et al.: Difference-based Model Synchronization in an Industrial MDD 
Process. In: 2nd MDTPI, pp. 1–12 (2009) 

[8] Polgár, B., et al.: Model-based Integration, Execution and Certification of Development 
Tool-chains. In: 2nd MDTPI, pp. 35–46 (2009) 

[9] Reusable Asset Specification (September 2012),  
http://www.omg.org/spec/RAS/ 

[10] Oliveira, T.C., et al.: ReuseTool - An extensible tool support for object-oriented 
framework reuse. Journal of Systems and Software 84(12), 2234–2252 (2011) 



A Knowware Based Infrastructure

for Rule Based Control Systems in Smart Spaces

Yangyang Lu1,2, Ge Li1,2,�, Zhi Jin1,2, Xueyuan Xing1,2, and Yiyang Hao1,2

1 Software Institute, School of Electronic Engineering and Computer Science,
Peking University, Beijing 100871, P.R. China

2 Key Laboratory of High Confidence Software Technologies, Ministry of Education,
Beijing 100871, China

{luyy11,lige,zhijin,xingxy11,haoyy12}@sei.pku.edu.cn

Abstract. Many software systems are designed for realising some busi-
ness logics which can be captured and represented as a set of logic rules,
such as the logic rules for controlling devices in smart spaces. These logic
rules in traditional software systems are usually coded in procedural style
and interweaved with other elements of software such as the interface im-
plementation etc. As we know, the logic rules are usually needed to be
changed or updated frequently according to changing environment con-
ditions and software requirements. However, mix of the logic rules and
other elements makes it difficult to change and update the logic rules.
Therefore, we propose a new infrastructure to separate the logic rules
from the interweaved elements. In our infrastructure, the logic rules can
be encapsulated as a knowware. The knowware is deployed in a reasoner
as an independent component, which can interact with other parts of the
system. By this way, the logic rules can be easily changed or updated as
an independent component of the software system according to changing
environment conditions and software requirements.

1 Introduction

Many software systems are designed for realising some business logics which can
be captured and represented as a set of logic rules, such as the logic rules for
controlling devices in smart spaces (e.g. smart house, smart building, and smart
cities1). Nowadays, implementation of these logic rules are always interweaved
with other elements in the final software systems. For example, according to
traditional object-oriented methodologies, the logic rules would be implemented
as logic program codes interspersed among different methods in different classes.
Thus, the logic rules are interweaved with other elements, such as elements
of processing on interaction, database, networking connecting, multi-threads,
services, and so on.

As we know, logic rules are usually needed to be changed and updated ac-
cording to changing environment conditions and software requirements. However,

� Corresponding author.
1 http://www.icta.ufl.edu/gt.htm

J. Favaro and M. Morisio (Eds.): ICSR 2013, LNCS 7925, pp. 289–294, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.icta.ufl.edu/gt.htm


290 Y. Lu et al.

according to the traditional software implementing method, the logic rules are
usually coded in procedural style and interweaved with other elements of soft-
ware. Mix of the logic rules and other elements makes it difficult to locate these
logic rules in the software system, and makes it difficult to change and update
some logic rules when necessary. Also, these logic rules cannot be reused easily
as an independent part by different applications. If the logic rules could be rep-
resented as an independent set of rules in some rule languages (e.g. SWRL [9]),
they would be easier changed or updated by system maintainers. Furthermore,
as an independent component, it would be easier to reuse the logic rules in the
software system.

At present, some researchers explore multi-paradigm programming to separate
the logic rules from other elements in software systems [5]. For example, they
propose to integrate Prolog and Java [2,12,3,1]. They express the logic rules in
logic programming language (Prolog), and program other elements of the system
in object programming language (Java). However, in their final programs, the
codes of the logic rules still interweave with the programs of other elements. The
problem of locating and reusing the logic rules has not been resolved.

Also, some researchers in aspect-oriented software development propose to
explicit rules in software applications [7,4,6]. They take rules (especially busi-
ness rules) as cross-cutting concerns, which represent the common behaviors of
multiple classes [8]. The cross-cutting concerns are encapsulated as an aspect.
However, the logic rules that we focus on cannot be treated as cross-cutting
concerns, as they do not represent the common behaviors of multiple classes.
Actually, they represents what requirements the software needs to satisfy and
what constraints the software needs to follow.

In this paper, we propose a new infrastructure, by which the logic rules can
be implemented as an independent knowware [11]. This knowware is deployed
in a reasoner (e.g. Pellet [13]), which can be accessed through some interfaces
by other elements in the software system. By this infrastructure, the logic rules
are separated from other elements in the software system, and encapsulated
in a knowware as an independent component of the software system. As the
logic rules are represented explicitly in some rule languages (e.g. SWRL) as an
independent knowware, they can be easily changed or updated. Furthermore, as
an independent component, the knowware can be easily reused by other systems
in similar domains.

2 Knowware Based Infrastructure for Smart Spaces

Knowware is proposed by Ruqian Lu in 2005 to separate the development of soft-
ware and the development of knowledge [10]. The knowware refers to a knowl-
edge module that is independent, commercialized, and embeddable in software
or hardware for use [11]. Based on this idea of knowware, we propose a knowware
based infrastructure for rule based control systems in smart spaces. By this in-
frastructure, the logic rules are separated from other elements in the system, and
packaged in a knowware as an independent component of the software system.



A Knowware Based Infrastructure for Rule Based Control Systems 291

The infrastructure consists of three part: a Knowledge Reasoning Part, an
Interaction Processing Part and External Elements (as shown in Fig. 1).

– The Knowledge Reasoning Part contains a knowware and a reasoner to held
the knowware. The knowware is composed of an ontology and some logic
rules (detailed later in this section). When a knowware is deployed on the
reasoner, the reasoner can run the inference according to the logic rules in
the knowware.

– The External Elements in our infrastructure always include sensors and de-
vices. According to our hypothesis, the sensors can provide the status of the
environment, and the status of devices can be get by services or API.

– The Interaction Processing Part can be seen as interfaces between the Knowl-
edge Reasoning Part and the External Elements. It gets the status of the
environment and devices to the Knowledge Reasoning Part, and sets back
the right status of the devices.

Fig. 1. Knowware based Infrastructure for Rule based Control Systems in Smart Spaces

To illustrate the usability of our infrastructure, we take a smart meeting room
as an example of the smart space. In this smart meeting room, besides the
meeting room furniture, there are some kinds of devices in the meeting room,
including air conditions, lights, a projector, a screen and so on. Furthermore,
sensors are deployed in this smart meeting room, including light intensity sensors,
air humidity sensors, room temperature sensors and so on. These sensors can
response the status of the environment.

As mentioned above, the knowware is composed of an ontology and some
logic rules. The ontology contains many concepts about the smart space. In this
smart meeting room, each kind of devices can be represented as an ontology
concepts, such as Light and Air Condition. Some concepts are shown in Fig.
2. Some instances of the concepts are also shown in Fig. 2. Furthermore, each
concept has some properties. The properties have two categories. One is the
data type properties that represent numeric attributes of the concepts, such
as isOn that represents whether the device is turned on or off. The other is



292 Y. Lu et al.

the object properties to express relations between the concepts, such as isIn to
represent that the device is located in the room. Some properties of the concepts
is presented in Table 1. Here we use the concept Room to represent the room
itself. The concept Room has some properties, of which the values are gotten
from the sensors.

Fig. 2. Ontology of the Smart Meeting Room

Table 1. Some Properties of the Concepts in the Smart Meeting Room

Property Name Type Domain Range

isOccupied DatatypeProperty Room boolean
isIn ObjectProperty Device Room
isOn DatatypeProperty Device boolean
Air Condition Temperature DatatypeProperty Air Condition int

With the concepts and properties in the ontology, the logic rules can be ex-
pressed in the form of the predicate logic rules. The antecedent of the logic rules
represents the constraints that should be satisfied. The consequent of the logic
rules indicates the results that should be inferred if the antecedent is satisfied.
For example, there are three logic rules in the smart meeting room as follows:

1. If the room is occupied, and the air temperature is higher than 30 degrees
centigrade, turn on the air conditioner to 26 degrees centigrade.

2. If the room is occupied, and the projector is turned off, then roll up the
screen, and turn on all the lights.

3. If the room is occupied, and the projector is turned on,then put down the
screen, turn off the front lights near to the screen and turn on the rear lights.



A Knowware Based Infrastructure for Rule Based Control Systems 293

The concepts in the ontology can be used as monadic predicates. The properties
of the concepts are used as binary predicates. So, based on the concepts in
Fig. 2 and the properties in Table 1, the three logic rules can be expressed in
the form of predicate logic rules in Table 2.

Table 2. Some Logic Rules in the Smart Meeting Room

1. Room(?r) ∧ isOccupied(?r, true) ∧Room Temperature(?r,?t)
∧swrlb : grearterThan(?t,30) ∧Air Condition(?x) ∧ isIn(?x, ?r)
→ isOn(?x, true) ∧Air Condition Temperature(?x,26)

2. Room(?r) ∧ isOccupied(?r, true) ∧ Projector(?p) ∧ isIn(?p, ?r)
∧isOn(?p, false) ∧ Screen(?s) ∧ isIn(?s, ?r) ∧ Light(?l) ∧ isIn(?l, ?r)
→ isOn(?s, false) ∧ isOn(?l, true)

3. Room(?r) ∧ isOccupied(?r, true) ∧ Projector(?p) ∧ isIn(?p, ?r) ∧ isOn(?p, true)
∧Screen(?s) ∧ isIn(?s, ?r) ∧ Front Light(?fl) ∧ Rear Light(?rl) ∧ isIn(?fl, ?r)
∧isIn(?rl, ?r) → isOn(?s, true) ∧ isOn(?fl, false) ∧ isOn(?rl, true)

With the logic rules packaged in the knowware, a control system in the smart
meeting room can be constructed based on the infrastructure shown in Fig. 1.
When the constructed control system runs, the life cycle of the control system
contains the following six steps (as marked in Fig. 1):

1. The Interaction Processing Part requests actively and periodically to the
External Elements to get the status of the environment and the devices.

2. The External Elements responses the status of the environment and the
devices to the Interaction Processing Part.

3. The Interaction Processing Part sends the received status to the ontology in
the knowware.

4. The reasoner in the Knowledge Reasoning Part takes the status as the initial
values of properties of the ontology instances. Then the reasoner can run to
infer the right status of the devices according to the logic rules.

5. Once the reasoning process is completed, the Knowledge Reasoning Part gets
the inferred values of properties in the ontology, and then returns the right
status of devices to the Interaction Processing Part.

6. According to the inference result, the Interaction Processing Part resets the
right status to the devices.

By our infrastructure, the logic rules are separated and represented explicitly
as an independent knowware. So, they can be easily changed or updated. For
example, if the room is used for a party tonight, some logic rules may need to be
changed to create the atmosphere of the party. The second and third logic rules
in the smart meeting room can be updated to eliminate the projector’s effects
on front lights, while a new logic rule that leaves the lights on can be added.
Furthermore, as an independent component, the knowware can be easily reused
by other systems in similar domains. For example, the logic rules for the smart
meeting room can be reused on a newly built room or an old room that need to
be transformed to a new meeting room.



294 Y. Lu et al.

3 Conclusions

In this paper, we propose a knowware based infrastructure for control systems
in smart spaces, which contains an independent knowware. The logic rules can
be separated and encapsulated into this knowware. It is easy to change or up-
date logic rules by our infrastructure. Also, as an independent component, the
knowware can be reused by other systems in similar domains. In the future, we
may try to consider more control situations and apply our infrastructure to more
control systems in smart spaces.

Acknowledgment. This research is sponsored by the National Basic Research
Program of China (973) No. 2011CB302704, the National Natural Science
Foundation of China No. 61232015, the National 863 Program of China No.
2013AA01A605, and the Science Fund for Creative Research Groups of China
No. 61121063.

References

1. Calejo, M.: InterProlog: Towards a declarative embedding of logic programming in
Java. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp.
714–717. Springer, Heidelberg (2004)

2. Castro, S., Mens, K., Moura, P.: Logicobjects: a linguistic symbiosis approach to
bring the declarative power of prolog to java. In: Proceedings of the 9th ECOOP
Workshop on Reflection, AOP, and Meta-Data for Software Evolution, pp. 11–16.
ACM (2012)

3. Denti, E., Omicini, A., Ricci, A.: Multi-paradigm Java–Prolog integration in tuPro-
log. Science of Computer Programming 57(2), 217–250 (2005)

4. D’Hondt, M.: Explicit domain knowledge in software engineering (2002)
5. D’Hondt, M.: A survey of systems that integrate logic reasoning and object-oriented

programming. Technical Report (2003)
6. D’Hondt, M.: Hybrid aspects for integrating rule-based knowledge and object-

oriented functionality. Ph.D. thesis, Citeseer (2004)
7. D’Hondt, M., D’Hondt, T., et al.: Is domain knowledge an aspect? Lecture notes

in Computer science pp. 293–293 (1999)
8. Elrad, T., Filman, R.E., Bader, A.: Aspect-oriented programming: Introduction.

Communications of the ACM 44(10), 29–32 (2001)
9. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M., et

al.: Swrl: A semantic web rule language combining owl and ruleml. W3C Member
submission 21, 79 (2004)

10. Lu, R.: From hardware to software to knowware: It’s third liberation? IEEE Intel-
ligent Systems 20(2), 82–85 (2005)

11. Lu, R., Jin, Z.: From knowledge based software engineering to knowware based
software engineering. Science in China Series F: Information Sciences 51(6), 638–
660 (2008)

12. Majchrzak, T.A., Kuchen, H.: Logic java: combining object-oriented and logic
programming. In: Kuchen, H. (ed.) WFLP 2011. LNCS, vol. 6816, pp. 122–137.
Springer, Heidelberg (2011)

13. Parsia, B., Sirin, E.: Pellet: An owl dl reasoner. In: Third International Semantic
Web Conference-Poster, p. 18 (2004)



 

J. Favaro and M. Morisio (Eds.): ICSR 2013, LNCS 7925, pp. 295–301, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

An Action-Stack Based Selective-Undo Method  
in Feature Model Customization 

Li Long, Zhao Haiyan, Zhang Wei, and Wang Weichao 

1 Key Laboratory of High Confidence Software Technology (Peking University), 
Ministry of Education, China 

2 Institute of Software, School of EECS, Peking University, Beijing, 100871, China 
{lilong11,zhhy,wangwc11}@sei.pku.edu.cn, zhangwei@pku.edu.cn 

Abstract. Feature models are widely adopted in domain-oriented software 
reuse. The feature model customization is a process to determine which features 
are selected into or removed from an application. Auto-propagation is a 
practical strategy to assist customization but has a side-effect that may select or 
remove unintended features. To handle such a side-effect, a mechanism called 
selective-undo is needed that eliminates unintended selections and removals 
while preserving other selections and removals. This paper presents a selective-
undo method based on action-stack by using the intrinsic relationships in a 
feature model, and investigates the implementation of the corresponding 
algorithms. 

Keywords: Feature Model, Customization, Selective-Undo, Action-Stack. 

1 Introduction 

Feature model is widely adopted in domain-oriented software reuse [1]. The feature 
model customization is a process to determine which features in the domain feature 
model are selected into (called bound in this paper) or removed from an application 
[2]. Since there is constraints relationship between features, it is necessary to ensure 
that customizing results do not violate the constraints, and this is often supported by 
automated analysis of feature models. Auto-propagation is one of the automated 
analyses that automatically binds or removes certain features after a customizing 
action is performed to satisfy constraints [3]. However, the auto-propagation strategy 
has side-effect that may bind or remove unintended features [4].  

This paper presents a mechanism called selective-undo algorithm based on action-
stack to handle the side-effect of auto-propagation, and investigating the details of the 
algorithm. During the process of selective-undo, unintended binding-states (indicating 
a feature is bound/removed/undecided) can be switched from current value to another 
so that constraints are satisfied. Such switching of binding-states is called a solution 
to selective-undo. The method utilizes a data structure called action-stack and 
introduces an idea of mutating action-stacks to find solutions. Furthermore, since 
there may exist several solutions, this method will identify one solution at first, and 
present alternative solutions if the current solution is not accepted by the users. 



296 L. Li et al. 

 

2 Preliminaries 

Feature models have been widely adopted to model and organize reusable 
requirements in a software domain [5]. 

Fig. 1 presents a part of the feature model in instant messaging software domain.  

 

Fig. 1. An Example of Feature Model of Instant Messaging Software 

Feature model is built as a tree structure by several features and its refinements. 
There are constraints between features. For example, Voice mails -> Voice 
communications is a constraint which means if feature ‘Voice mails’ is bound, feature 
‘Voice communications’ must be bound. 

A customization action in feature model either selects a feature or removes a 
feature by changing its binding-state to bound or removed. The process of feature 
model customization is labor-intensive and prone to err, and the result of 
customization may violate constraints imposed in the feature model. To address the 
potential conflicts introduced by the manually customization action, auto-propagation 
provides a mechanism to assist customization by automatically changing the binding-
states of related features to satisfy constraints.  

For example, there is a simple constraint Video communications -> Voice 
communications in Fig.1. If the feature Video communications is bound, the binding-
state of feature Voice communications must be bound to satisfy the constraint. 

However, there is one side-effect in auto-propagation in the sense that it may cause 
some features changed to the undesired binding-states. Hence, it is necessary to 
provide a mechanism to reset the binding-state of these features to undecided. 

This paper proposes a method, called selective-undo, to automatically change the 
binding-states of related features to satisfy constraints whenever a feature’s binding-
state is changed from bound/removed to undecided. 

If a feature is bound or removed, auto-propagation will be invoked to change the 
binding-states of other related features. If a feature is reset from bound or removed to 
undecided, then selective-undo will be enforced to ensure it will not violate the 
constraints in feature model. 

Instant messaging software

Text communication Operation platformVoice communicationVideo communication

Emotions Text message

Emotion codes Emotion icons

Desktop platform Mobile platform

Online message Offline message

File Transport

Offline FileVoice mails Voice chant



 An Action-Stack Based Selective-Undo Method in Feature Model Customization 297 

 

3 An Action-Stack Based Selective-Undo Method 

In this section, we introduce an action-stack based selective-undo method. We first 
give an overview of the method, and introduce the concept of action-stack and its 
support to one-step withdraw. Based on one-step withdraw, we present a mechanism 
to find an initial solution to selective-undo, and derive new solutions from known 
solutions. Fig.2 gives an overview of selective-undo method. 

 

Fig. 2. Overview of the action-stack based method to selective-undo 

3.1 Action-Stack and One-Step Withdraw Operation 

The selective-undo method is based on a data structure called action-stack.  
The elements of action-stack are customization actions, including the operation and 
feature that be bound or removed by customizer (named key feature). After each 
customization action and its auto-propagation result, the action-stack records the 
action (which feature is bound or removed) and the set of related features (which 
feature is propagated). The customization action and related features is pushed into 
the stack as a pair. For example, if the feature Video Communication is bound, the 
feature Voice Communication is propagated bound. So (Bind Video Communication, 
{Voice Communication}) is pushed into action-stack. If feature A is removed, no 
features are propagated, then (Remove A, { }) is pushed into action-stack.  

One-step withdraw operation can be done by action-stack. The purpose of one-step 
withdraw operation is cancelling the recent customization action. The method of one-
step withdraw operation has two steps: first pop the top element of action-stack, then 
change the binding-states of key feature and related features to undecided. 

3.2 Finding One Solution to Selective-Undo 

The idea of finding one solution to selective-undo is based on the sequential of 
actions. Using action-stack and one-step withdraw operations can realize finding one 
solution. Since action-stack is a stack structure, each operation visits the top elements. 
For selective-undo, it needs to cancel the inside action. Just cancelling the inside 
action simply cannot realize selective-undo, because it may impact the auto-
propagation of other customization action, and it may violate constraints. 

A possible method is as follows when feature F is desired to reset to undecided. 
Firstly find which action related to F or the action is binding/removing F. Set the 
action is Action m. The m-1 actions before it can be reserved, and Action m must be 
cancelled. Whether the actions after Action m are reserved or not should be discussed 

1. Find one 
solution

Accepted?
2.1: Find actions 

that must be 
cancelled

2.2: Mutate the 
action-stack

2.3: Find actions 
to be reserved

Accepted?
N

N

Y

Y

2: Find another solution



298 L. Li et al. 

 

by a tentative propagation. If the action is propagated and does not change F’s 
binding-state, the action can be reserved. Otherwise, the action must be cancelled by 
doing one-step withdraw operation once. 

Fig.3 is an example of a fragment in feature model for the method. The features in 
this fragment are expressed by letters. A expresses Single OS. B expresses Apple iOS. 
C expresses MS Windows. D expresses NTFS Support. E expresses CD Recorder. 
After customization actions: remove B, bind A, bind D and remove E, the feature 
model and action-stack is as Fig.3. 

 

Fig. 3. Feature Model and Action-Stack (After Auto-Propagation) 

Feature C is propagated bound after the customization action ‘Bind A’. Now this 
method is used to find one-solution to selective-undo for feature C. First the action 
related to feature C is found (‘Bind A’). One-step withdrawing three times makes C 
be undecided. Then discuss whether the actions after ‘Bind A’ can be reserved or not 
(Two actions: ‘Bind D’ and ‘Remove E’). It can be found that C’s binding-state will 
be changed if D is bound. So the action ‘Bind D’ must be cancelled. C’s binding-state 
is not changed if E is removed. So the action ‘Remove E’ can be reserved. 

3.3 Finding Another Solution from a Known Solution 

The solution may be not accepted by user. For example, cancelling actions ‘Bind B’ 
and ‘Bind D’ is also a solution to the problem given in Fig.8. It inspires us that a new 
solution can be derived from a known one if that the known one is not accepted.  

Before elaborating the method, we first introduce a theorem for customization. 

Theorem.1 (Exchangeability). Exchanging the order of customization actions does 
not affect the results of auto-propagation. 

Proof. Set customization actions are binding F1, F2, …, Fn, and removing G1, 
G2, …, Gn. They make binding-state of F be bound, G be removed: 
(RDCEACF1F2…Fn┐G1…  ┐Gn)->F, (RDCEACF1F2…Fn┐G1…  
┐Gn)->┐G. Such as: binding A firstly and removing B secondly makes C be bind, 
(RDCEACA┐B)->C identically equals to true. According to commutative 
property, According to commutative property, (RDCEAC┐BA)->C identically 
equals to true. So, firstly removing B then binding A also makes C be bound. 

The solution to selective-undo operation is expressed by two sets containing 
customization actions named Reserve-Set and Cancel-Set. All customization actions 

√

A

×

B

√

C

√

D

×

E

Remove E {}

Bind D {}

Bind A {C}

Remove B {}



 An Action-Stack Based Selective-Undo Method in Feature Model Customization 299 

 

must be in either of the two sets. Reserve-Set is the set containing actions that be 
reserved. Cancel-Set is the set containing actions that be cancelled. 

For preconditioning, the method finds actions that must be cancelled (named 
AMC). These actions can be ignored in later algorithm. Firstly, the method saves the 
action-stack. Then we reset all features’ binding-states to undecided. AMC is found 
by doing auto-propagation for each action in action-stack separately. If the binding-
state of the key feature is changed, the action is an AMC. For example, the feature 
model has now been customized as Fig.3. ‘Bind D’ is the only AMC in action-stack. 

According to Theorem.1, changing the order of actions does not affect the result of 
customization. To find another solution from a known solution, changing the order of 
actions is a workable method. For finding another solution, we mutate the action-
stack. The mutated action-stack is not a strict stack, which has character as follows: 
(1) the bottom item can be read and popped. (In strict stack, only top item can be 
read). (2) the order of items in the stack can be exchanged. 

 

Fig. 4. Mutating the Action-Stack and Changing the Order (Because the action ‘Bind A’ is 
cancelled in last solution, the method put it first.) 

After action-stack is mutated, judging which actions are reserved is the final step to 
find another solution to selective-undo. To selective-undo for feature F, firstly, all 
features’ binding-states are reset to undecided. Then the method does auto-
propagation for action-stack from button to top in order, and judges F’s binding-state 
after each propagation operation. If binding-state of F is still undecided, reserve the 
action. Otherwise, the method cancels the action by doing one-step withdraw 
operation once to reset F to undecided. 

Fig.4 shows the mutating procedure. After mutating, the method finds ‘Bind A’ 
and ‘Remove E’ can be reserved and ‘Remove B’ is cancelled. It gives another 
solution to selective-undo. 

The method can satisfy two characters: Minimal Cancel-Set and Completeness. 

Minimal. A solution found by the method: reserving action {ai1, ai2…ain}, and 
cancelling action {aj1,aj2,…ajm}. Not any action cancelled can be reserved. 

Proof. Suppose there exists a solution {ai1, ai2, …ain, aj}, then set the order of the 
actions: ai1,ai2,….aik,aj,aik+1,…ain. => When propagate aj, the feature is changed to 
bound/removed. => Actions {ai1, ai2, …aik}, aj cannot make the feature undecided. => 
Actions {ai1, ai2, …ain, aj} cannot make the feature undecided. => {ai1, ai2, …ain, aj} is 
not a solution. So no action cancelled can be reserved. 

Completeness. Each feasible solution to selective-undo can be generated by changing 
order of actions. 

Remove E

Bind A

Remove B

Remove E { }

Bind D { }

Bind A {C}

Remove B { }

Remove E

Bind A

Remove B

Mutate 
action-stack

Change 
action order

1.Ignoring related 
features

2.Ignoring AMC

Swapping the order 
of ‘Remove B’ and 

‘Bind A’



300 L. Li et al. 

 

Proof. Set action-stack: {a1,a2,a3…an}, for a feasible solution: Reserve: 
{ar1,ar2,…arm}, Cancel: {ac1,ac2,..acl} and m+l=n. Then change the order of action-
stack to:{ar1,ar2….arm,ac1,ac2,…acl} => This solution. 

The method can give all solutions to selective-undo. However, it is an N-P Hard 
question to find all solutions once. To settle for second best, the method gives the 
solution one-by-one to let the customizer judge accepting it or not. 

4 Related Work and Conclusion 

The concept of feature model was first introduced by Kang[1] in domain analysis. For 
the problem of feature model customization, Mannion method [2] is a tree–based 
feature model customization method. This customization can guarantee satisfying the 
constraints between the child-feature of a change point, however, may not guarantee 
satisfying global constraints. Batory [3] also used the method based on propositional 
logic, referred to the idea of propagation of feature model customization. However, 
the above method does not provide selective-undo mechanism. The methods cannot 
freely switch the binding-states of features in feature model. 

Wang et al. [6, 7] adopt priority to detect and mange the inconsistencies in feature 
models. In [6], Wang et al. generate fixes for the inconsistencies automatically. Each 
fix contains a set of low priority constraints. Executing the fix will delete these 
constrains and satisfy the high priority constraints in the feature model. In [7], the 
inconsistencies are tolerated through notifying the stakeholders the low priority 
constraints. These approaches focus on the feature model. However, our approach 
provides support for the inconsistencies in the feature model configurations. 

In this paper, we introduce an action-stack based selective-undo method in feature 
model customization. On the basis of auto-propagation mechanism our selective-undo 
method solves the side effect of auto-propagation by resetting binding-states of 
feature to undecided without violating constraints in feature model. We not only 
present the method to find one solution for selective-undo, but also the way to derive 
other solutions from the first one when it is not accepted. 

Our future work will focus on the efficiency of the method. In the experiment, the 
method gives good performance when the number of features is not large enough. 
However, when the number of feature increases, the cost of time is not satisfactory. 
How to find all solutions more quickly is also an important future work. A more 
accurate mutating algorithm may be a key point for it. 

References 

1. Kyo, C., Kang, S., Cohen, J., Hess, W.: Novak, and A. Peterson, Feature-Oriented Domain 
Analysis Feasibility Study, Technical Report CMU/SEI-90-TR-21, Software Engineering 
Institute, Carnegie Mellon University (November 1990) 

2. Mannion, M.: Using First-Order Logic for Product Line Model Validation. In: Chastek, G.J. 
(ed.) SPLC 2002. LNCS, vol. 2379, pp. 176–187. Springer, Heidelberg (2002) 

3. Batory, D.: Feature Models, Grammars, and Propositional Formulas. In: Obbink, H., Pohl, 
K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005) 



 An Action-Stack Based Selective-Undo Method in Feature Model Customization 301 

 

4. Long, L., Haiyan, Z., Wei, Z.: MbFM: A matrix-based tool for modeling and configuring 
feature models. In: 2012 20th IEEE International Requirements Engineering Conference 
(RE), Chicago, IL, pp. 325–326 (2012) 

5. Zhang, W., Zhao, H., Mei, H.: A Feature-Oriented Approach to Modeling Requirements 
Dependencies. In: The 13th IEEE International Requirements Conference (RE 2005), 
Minnesota, USA, pp. 273–284 (2005) 

6. Wang, B., Xiong, Y., Hu, Z., Zhao, H., Zhang, W., Mei, H.: A Dynamic-Priority based 
Approach to Fixing Inconsistent Feature Models. In: Petriu, D.C., Rouquette, N., Haugen, 
Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp. 181–195. Springer, Heidelberg 
(2010) 

7. Wang, B., Hu, Z., Xiong, Y., Zhao, H., Zhang, W., Mei, H.: Tolerating Inconsistency in 
Feature Models. In: 3rd Workshop on Living With Inconsistency in Software Development, 
held with 25th IEEE/ACM International Conference on Automated Software Engineering 
(2010) 



Feature Location in a Collection of Software

Product Variants Using Formal Concept
Analysis

Ra’Fat AL-Msie’deen1,�, Abdelhak Seriai1, Marianne Huchard1,
Christelle Urtado2, Sylvain Vauttier2, and Hamzeh Eyal Salman1

1 LIRMM / CNRS & Montpellier 2 University, France
{Al-msiedee,Seriai,huchard,eyalsalman}@lirmm.fr

2 LGI2P / Ecole des Mines d’Alès, Nı̂mes, France
{Christelle.Urtado,Sylvain.Vauttier}@mines-ales.fr

Abstract. Formal Concept Analysis (FCA) is a theoretical framework
which structures a set of objects described by properties. In order to
migrate software product variants which are considered similar into a
product line, it is essential to identify the common and the optional fea-
tures between the software product variants. In this paper, we present an
approach for feature location in a collection of software product variants
based on FCA. In order to validate our approach we applied it on a case
study based on ArgoUML. The results of this evaluation showed that all
of the features were identified.

Keywords: Software Product Variants, Feature Location, FCA.

1 Introduction

Software product variants often evolve from an initial product developed for and
successfully used by the first customer. These product variants usually share
some common features but they are also different from one another due to sub-
sequent customization to meet specific requirements of different customers [1].
As the number of features and the number of product variants grows, it is worth
reengineering product variants into a Software Product Line (SPL) for system-
atic reuse. To switch to Software Product Line Engineering (SPLE) starting
from a collection of existing variants, the first step is to mine a feature model
that describes the SPL. This further implies to identify the software family’s
common and variable features. Manual reverse engineering of the feature model
for the existing software variants is time-consuming, error-prone, and requires
substantial effort [2]. Thus, we propose in this paper a new approach for feature
location in a collection of software product variants. Our approach is based on
the identification of the implementation of these features among object-oriented
(OO) elements of the source code. These OO elements constitute the initial
search space. We rely on Formal Concept Analysis (FCA) to reduce this search

� This work has been funded by grant ANR 2010 BLAN 021902.

J. Favaro and M. Morisio (Eds.): ICSR 2013, LNCS 7925, pp. 302–307, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Feature Location in a Collection of Software Product Variants 303

space by identifying maximal subsets of features shared by maximal subsets of
product variants and organizing these subsets by inclusion.

Our approach is detailed in the remainder of this paper as follows. Section
2 presents FCA, and Section 3 outlines our approach. Section 4 discusses our
implementation and evaluation. Section 5 presents the related work. We conclude
and draw perspectives for this work in Section 6.

2 Formal Concept Analysis (FCA)

Galois lattices and concept lattices [3] are core structures of a data analysis
framework (FCA) for extracting an ordered set of concepts from a dataset, called
a formal context, composed of objects described by attributes. A formal context
is a triple K = (O,A,R) where O and A are sets (objects and attributes,
respectively) and R is a binary relation, i.e., R ⊆ O×A. An example of formal
context is provided in Figure 1 (left). A formal concept is a pair (E, I) composed
of an object set E ⊆ O and its shared attribute set I ⊆ A. E = {o ∈ O|∀a ∈
I, (o, a) ∈ R} is the extent of the concept, while I = {a ∈ A|∀o ∈ E, (o, a) ∈ R} is
the intent of the concept. Given a formal context K = (O,A,R), and two formal
concepts C1 = (E1, I1) and C2 = (E2, I2) of K, the concept specialization order
≤s is defined by C1 ≤s C2 if and only if E1 ⊆ E2 (and equivalently I2 ⊆ I1).
C1 is called a sub-concept of C2. C2 is called a super-concept of C1. Let CK
be the set of all concepts of a formal context K. This set of concepts provided
with the specialization order (CK , ≤s) has a lattice structure, and is called the
concept lattice associated with K. In our approach, we will consider the AOC-
poset (for Attribute-Object-Concept poset), which is the sub-order of (CK , ≤s)
restricted to object-concepts and attribute-concepts. An object-concept (resp.
attribute-concept) is the lowest concept (resp. a greatest concept) where an
object (resp. an attribute) appears. In AOC-poset representations, objects are
represented only in their introducer concept (and inherited by superconcepts),
while attributes are represented only in their introducer concept (and inherited
by their subconcepts), meaning that no concept should have empty object part
and empty attribute part.

3 Our Approach to Feature Location

This section provides main concepts and hypotheses used in our approach.

3.1 Goal and Core Assumptions

The general objective of our work is to identify a feature model for a collec-
tion of software product variants based on the static analysis of their source
code. We consider that ”a feature is a prominent or distinctive and user visi-
ble aspect, quality, or characteristic of a software system or systems” [4]. We
adhere to the classification given by [4] which distinguishes three categories of



304 R. AL-Msie’deen et al.

features: functional, operational and presentation features. Our work focuses on
the identifying of functional features. In our approach we deal with software
systems where the functional features are implemented at the programming lan-
guage level (i.e., source code). The functional features are implemented by object
oriented building elements (OBEs) such as packages, classes, attributes, methods
or method body elements (local variable, attribute access, method invocation). We
consider that a feature corresponds to exactly one set of OBEs. This means that
a feature always has the same implementation in all products where it is present.
We also consider that feature implementations may overlap: a given OBE can be
shared between several features’ implementations. In this paper, we name such
shared OBE as a junction.

3.2 Features versus Object-Oriented Building Elements

Feature location in a collection of software variants consists in identifying a
group of OBEs that constitutes its implementation. This group of OBEs must
either be present in all variants (case of a common feature) or in some but
not all variants (case of an optional feature). Thus, the initial search space for
the feature location process is composed of all the subsets of OBEs of existing
product variants. As the number of OBEs is big, a strategy must be designed to
reduce the search space.

Our proposal consists in dividing the OBE set in specific subsets: the common
feature set – also called common block (CB) – and several optional feature sets
(Block of Variations, denoted as BVs). Optional (resp. common) features appear
in some but not all (resp. all) variants, they are implemented by OBEs that
appear in some but not in all (resp. all) variants.

This is realized by building a formal context, which is composed of software
variants (objects of the formal context) described by their OBEs (attributes of
the formal context). The relation associates a software variant with the OBEs
that appear in its source code. The corresponding AOC-poset is then calculated.
A concept intent (containing the concept attributes) represents OBEs common
to two or more variants (the objects included in the concept extent). As the
concepts of the AOC-posets are ordered, the intent of the most general (i.e., top)
concept gathers the OBEs that are common to all products. They constitute the
CB. The intents of the remaining concepts are BVs. A concept intent corresponds
to the implementation of one or more features. As an illustrative example, we
consider four text editor software variants. Editor 1 supports core text editing
features: open, close, and print a file. Editor 2 has the core text editing features
and a new select all feature. Editor 3 supports copy and paste features, together
with the core ones. Editor 4 supports select all, copy and paste features, together
with the core ones. Figure 1 shows the formal context for the text editor variants
and the AOC-poset for this formal context which shows the CB and BVs.



Feature Location in a Collection of Software Product Variants 305

P
a
c
k
a
g
e
(
E
d
it

o
r
.M

a
n
a
g
m

e
n
t
)

C
la

s
s

(
C

lo
s
e

E
d
it

o
r
.M

a
n
a
g
m

e
n
t
)

C
la

s
s

(
O

p
e
n

E
d
it

o
r
.M

a
n
a
g
m

e
n
t
)

C
la

s
s

(
P

r
in

t
E
d
it

o
r
.M

a
n
a
g
m

e
n
t
)

P
a
c
k
a
g
e
(
E
d
it

o
r
.C

o
p
y
P
a
s
t
e
)

C
la

s
s

(
C

o
p
y
T
e
x
t

E
d
it

o
r
.C

o
p
y
P
a
s
t
e
)

C
la

s
s

(
P
a
s
t
e
T
e
x
t

E
d
it

o
r
.C

o
p
y
P
a
s
t
e
)

P
a
c
k
a
g
e
(
E
d
it

o
r
.S

e
le

c
t
A

ll
)

C
la

s
s

(
S
e
le

c
t
A

ll
S
e
t
t
in

g
s

S
e
le

c
t
A

ll
)

Editor 1 × × × ×
Editor 2 × × × × × ×
Editor 3 × × × × × × ×
Editor 4 × × × × × × × × ×

Fig. 1. The Formal Context and AOC-poset for Text Editor Variants

4 Experimentation

To validate our approach, we ran experiments on the Java open-source softwareAr-
goUML [5]. We used 10 variants for ArgoUML. The advantage of ArgoUML vari-
ants is that they are well documented and their feature model is available for com-
parisonwith our results and validation of our proposal.ArgoUMLvariants are pre-
sented in Table 1: LOC (Lines of Code), NOP (Number of Packages), NOC (Num-
ber of Classes) and NOOBE (Number Of Object-oriented Building Elements).

Table 1. ArgoUML software product variants

Product # Product Description LOC NOP NOC NOOBE

P1 All features disabled 82,924 55 1,243 74,444

P2 All features enabled 120,348 81 1,666 100,420

P3 Only Logging disabled 118,189 81 1,666 98,988

P4 Only Cognitive disabled 104,029 73 1,451 89,273

P5 Only Sequence diagram disabled 114,969 77 1,608 96,492

P6 Only Use case diagram disabled 117,636 78 1,625 98,468

P7 Only Deployment diagram disabled 117,201 79 1,633 98,323

P8 Only Collaboration diagram disabled 118,769 79 1,647 99,358

P9 Only State diagram disabled 116,431 81 1,631 97,760

P10 Only Activity diagram disabled 118,066 79 1,648 98,777

Table 2 summarizes the obtained results. For readability’s sake, we manually
associated feature names to CB and BVs, based on the study of the content of
each block and on our knowledge of the software. Of course, this does not impact
the quality of our results. In Table 2, CB represents a single common feature.
For the given set of BVs [2 -10], each BV represents a single optional feature.
For given set of BVs [11 - 22], each BV represents a junction between two or
more features. The column (# OBEs) in Table 2 represents the number of OBEs
that implement this feature.



306 R. AL-Msie’deen et al.

Table 2. Feature Location in ArgoUML Software Variants

# Feature Name # OBEs # Feature Name # OBEs

1 Class Diagram 74431 12 Junction cognitive/deployment 745

2 Diagram 1309 13 Junction cognitive/sequence 55

3 Use case Diagram 1928 14 Junction sequence/collaboration 111

4 Collaboration Diagram 935 15 Junction state/logging 6

5 Cognitive Diagram 10193 16 Junction deployment/logging 18

6 Activity Diagram 1583 17 Junction collaboration/logging 13

7 Deployment Diagram 1334 18 Junction use case/logging 22

8 Sequence Diagram 3708 19 Junction sequence/logging 51

9 State Diagram 2597 20 Junction activity/logging 3

10 Logging 1149 21 Junction cognitive/logging 169

11 Junction activity/state 57 22 Junction between features 14/17/19 18

In fact 22 features have been identified from ArgoUML software product vari-
ants. The 12 extra features (features 11-22) represent junctions between the other
features [5]. The top concept (feature 1 called ”Class Diagram” in Table 2) con-
tains 74431 OBEs that are shared by all software product variants (i.e., CB).
In particular, it contains the class diagram feature, which is indeed a common
feature, and is therefore present in every product. We compared the obtained
CB with the common features of the original feature model [5]. CB corresponds
exactly to one common feature (i.e., class diagram). Concerning the obtained
BVs, each BV from 2-10 corresponds exactly to one original optional feature.
For BVs from 11-22, each block represents a junction.

5 Related Work

Loesch et al. [6] applied FCA to analyze the variability in a software product line
based on product configurations (described by features), and construct a lattice
that provides a classification of the usage of variable features in real products
derived from the product line. An inclusive survey about approaches linking fea-
tures and source code in a single software is proposed in [7]. Rubin et al. [8]
present an approach to locate optional features from two product variants’ source
code. They do not consider common features and limit their proposal to two vari-
ants. Xue et al. [1] propose an automatic approach to identify the traceability
links between a given collection of features and a given collection of source code
variants. They thus consider feature descriptions as an input. Acher et al. [2]
present automated techniques to extract variability descriptions in a software
architecture and consider the architect’s knowledge for reverse engineering ar-
chitectural feature models. She et al. [9] propose an approach to define a feature
model based on a set of already identified features. The main problem tack-
led is to identify the structure of the feature model. In particular, they present
procedures to identify alternatives from an existing set of features. Their work
is complementary to our work as it can take as input a feature set deduced
from our approach and synthesize the feature model. Acher et al. [10] present
an approach to synthesize a feature model based on the product descriptions.
Their approach takes as input product description for a collection of product
variants to build the FM. Products are described by characteristics (language,
license, etc.) with different patterns on values (many-valued, one-valued, etc.).



Feature Location in a Collection of Software Product Variants 307

Ryssel et al. [11] applied FCA to extract feature diagrams from an incidence
matrix that contains matching relations as input. The matrix shows the parts
of a set of function-block oriented models that describe different controllers of
a DC motor. The approach proposed by Ziadi et al. [12] is the closest one. Au-
thors propose a solution for feature identification from the source code of a set
of product variants. They identify all common features as a single mandatory
feature. However, they do not distinguish between optional features that appear
together in a set of variants. Their approach doesn’t consider the method body
and do not use any classification technique to classify object oriented elements.

6 Conclusion and Perspectives

We present in this paper an approach for feature location in a collection of
software product variants based on FCA. It has been applied on a collection of
ArgoUML software products. The results of this evaluation showed that all of the
features were identified. As future work, we will apply a clustering algorithm on
the CB and BVs to determine more precisely each feature implementation based
on both lexical similarity (i.e., textual similarity between OBEs) and semantic
similarity/dependency structure (i.e., inheritance, attribute access, method in-
vocation). We also plan to use the identified common and optional features to
automate the building of the studied software family’s feature model.

References

1. Xue, Y., Xing, Z., Jarzabek, S.: Feature location in a collection of product variants.
In: IEEE 19th RE Conference, pp. 145–154 (2012)

2. Acher, M., Cleve, A., Collet, P., Merle, P., Duchien, L., Lahire, P.: Reverse engi-
neering architectural feature models. In: Crnkovic, I., Gruhn, V., Book, M. (eds.)
ECSA 2011. LNCS, vol. 6903, pp. 220–235. Springer, Heidelberg (2011)

3. Ganter, B., Wille, R.: Formal Concept Analysis, Mathematical Foundations.
Springer (1999)

4. Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-Oriented Domain
Analysis (FODA) Feasibility Study (1990)

5. Couto, M., Valente, M., Figueiredo, E.: Extracting software product lines: A case
study using conditional compilation. In: 15th CSMRConference, pp. 191–200 (2011)

6. Loesch, F., Ploedereder, E.: Optimization of variability in software product lines.
In: IEEE 11th ISPL Conference, pp. 151–162 (2007)

7. Dit, B., Revelle, M., Gethers, M., Poshyvanyk, D.: Feature location in source code:
a taxonomy and survey. Journal of Software: Evolution and Process, 53–95 (2012)

8. Rubin, J., Chechik, M.: Locating distinguishing features using diff sets. In: 27th
ASE Conference, ASE 2012, pp. 242–245. ACM (2012)

9. She, S., Lotufo, R., Berger, T., Wasowski, A., Czarnecki, K.: Reverse engineering
feature models. In: ICSE, pp. 461–470 (2011)

10. Acher, M., Cleve, A., Perrouin, G., Heymans, P., Vanbeneden, C.: On extracting
feature models from product descriptions. In: VaMoS, pp. 45–54. ACM (2012)

11. Ryssel, U., Ploennigs, J., Kabitzsch, K.: Extraction of feature models from formal
contexts. In: 15th ISPL Conference, pp. 4:1–4:8. ACM (2011)

12. Ziadi, T., Frias, L., da Silva, M.A.A., Ziane, M.: Feature identification from the
source code of product variants. In: CSMR 2012, pp. 417–422 (2012)



J. Favaro and M. Morisio (Eds.): ICSR 2013, LNCS 7925, pp. 308–314, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

A Language for Building Verified Software Components 

Gregory Kulczycki1, Murali Sitaraman2, Joan Krone3, Joseph E. Hollingsworth4, 
William F. Ogden5, Bruce W. Weide5 , Paolo Bucci5, Charles T. Cook2,  

Svetlana V. Drachova-Strang2, Blair Durkee2, Heather Harton6, Wayne Heym5,  
Dustin Hoffman5, Hampton Smith2, Yu-Shan Sun2, Aditi Tagore5,  

Nighat Yasmin7, and Diego Zaccai5 

1 Battelle Memorial Institute, Arlington, VA, USA 
kulczyckig@battelle.org 

2 School of Computing, Clemson University, Clemson, SC 29634, USA 
{murali,ctcook,sdracho,bdurkee,hamptos,yushans}@clemson.edu 
3 Mathematics and Computer Science, Denison University, Granville, OH 43023, USA 

krone@denison.edu 
4 Computer Science, Indiana University Southeast, New Albany, IN 47150, USA 

jholly@ius.edu 
5 Computer Science and Engineering, Ohio State University, Columbus, OH 43210, USA 

{ogden,weide,bucci,heym,hoffmand, 
tagore,zaccai}@cse.ohio-state.edu 

6 Integrated Support Systems, Seneca, SC 29672, USA 
hkeown@g.clemson.edu 

7 Computer Science, University of Mississippi, Oxford, MS 38677, USA 
yasmin@clemson.edu 

Abstract. Safe and secure reuse is only achievable by deploying formally 
verified software components. This paper presents essential design objectives 
for languages for building such components and highlights key features in 
RESOLVE—a prototype for such languages.  It explains why the language 
must include specifications as an integral constituent and must have clean and 
rich semantics, which preclude unconstrained aliasing and other unwanted side-
effects. In order that arbitrarily complex components can be given concise and 
verification amenable specifications, an adequate language must also include an 
open-ended mechanism for incorporating additional mathematical theories. 
Given these essential characteristics, safe and secure reuse cannot be attained 
within popular languages, such as C++ or Java, either by constraining them or 
by extending them.  Better languages are necessary.   

Keywords: assertions, clean semantics, components, reuse, specification. 

1 Introduction 

In order to achieve maturity as a field and to build safe and secure high assurance 
systems, software engineering must move from its current “cut-and-try” approach to a 
rigorous mathematically based system for engineering software. This engineering 
requires a language carefully designed to facilitate construction of verifiable and 



 A Language for Building Verified Software Components 309 

reusable software components and a verifying compiler—a compiler that checks that 
code is correct and generates executable code.  This is unarguably a grand challenge 
for the computing community [1]. This paper motivates and delineates the essential 
features of a language or framework for building verified components. Understanding 
the features will help not just language designers, but also component developers in 
existing languages, informing them of potential pitfalls when features of their 
language are in conflict with the goal of verification.  

While it is difficult to retrofit currently popular languages with features amenable 
for verification, the features themselves are not unrealizable.  Automated verification 
efforts summarized in [2], for example, include one or more of these features. 
RESOLVE is a more comprehensive effort [3, 4, 5, 6]; its web IDE (available at 
www.cs.clemson.edu/group/resolve) allows reuse of existing components (ranging 
from ones for Arrays to Maps, Prioritizers, and Pointers) and construction of new 
ones [7]. A key question for every verification effort is one of scale.  In answering 
this question, the important observation is that specifications for capturing human-
understandable component behavior are necessarily simple in a language with clean 
semantics [8], given an extensible mathematical language [9] and that reasoning of 
correctness for any code that is straightforward for humans, is also straightforward for 
automated verifiers, given suitable annotations [10]; no deep thinking is necessary. 
The challenge is in investing the effort in devising suitable specifications and 
annotated implementations.     

2 Essential Features of a Language for Verified Components 

The essential features of a system for building verified software components must 
clearly include a language in which sophisticated, clean software can be written, and a 
specification system in which concise, precise intentions for the behavior of software 
components can be expressed. To insure the soundness of the verifying compiler, the 
specification and the programming mechanism must be fully coordinated in every 
detail, and about the only way to guarantee this is to integrate them into a single 
assertive language. The correctness objectives for the verification system and for the 
compiler can then be unified via a shared semantics for the language, and the all-too-
common problem of incorrect behavior by seemingly verified software can be 
avoided. The need that specifications be an integral feature is the first of numerous 
indications that current languages are not adequate for meeting the grand challenge.  

Another common problem occurs when verification is attempted in programming 
languages that lack clean semantics [8]. By clean semantics, we mean that all 
operations constructible in the language can only affect the objects to which they 
appear to have access. Without such semantics, seemingly “verified” constituents may 
not behave correctly when employed in a larger system. For a language to have clean 
semantics, its built-in data structures and composition mechanisms must be clean, and 
unconstrained aliasing must be avoided. Unfortunately, merely constraining an 
existing language to a clean subset will lead to an impractically weak language.  

A major source of problems confronting verification is scale. From the 
specificational perspective, one such problem is that descriptions of the intended 
effects of programs might have to grow roughly in proportion to the size of the code. 
Given the limitation of human cognitive capacity, this is a serious concern.  



310 G. Kulczycki et al. 

The solution to the coding side of this scaling problem is to provide modularization 
mechanisms that support a divide and conquer approach via componentization of 
software, with large system construction taking place using progressively more 
powerful components. An analogous approach is required on the specificational side, 
with descriptions of more powerful components being formulated in terms of more 
sophisticated theories. The net effect is that the collection of mathematical theories 
used in specifying software must remain open ended in order to support the growth of 
software driven by the rapidly increasing power of hardware. So an immediate 
corollary is that machinery for developing mathematical theories must be a third 
constituent of the language for specifying software that we want to program.  

Even with well-conceived program verification machinery, the cost of evolving 
poorly structured software into correct software is bound to remain prohibitively high. 
One of the primary strategies used by more mature engineering disciplines for 
achieving sound products at reasonable cost is to rely upon a comparatively small 
collection of highly reusable components, and this must surely be an approach that is 
strongly supported by a language for software verification.  

There are several key features that the machinery provided for generating reusable 
components must have. Certainly it must exhibit the clean semantics mentioned 
above, since modular understanding is always essential to reuse. Second, it must 
provide the potential for a high degree of genericity, since keeping catalogues of 
reusable components to an intellectually manageable size is important. Third, it must 
provide an interfacing mechanism for presenting the object types and operations 
together with their abstract specifications, since information hiding is critical to 
keeping the specifications of higher-level code as simple as possible. Fourth, it must 
support the development of alternative implementations of an abstract interface, since 
different implementations of the same functionality are necessary to meet different 
performance goals, and if a component interface does achieve the desired degree of 
reusability, then it must be possible in a large system to deploy it in numerous places 
where varying performance requirements hold. 

Reusable components are the setting in which the specificational simplification 
derived from changing to more sophisticated mathematical theories frequently occurs. 
So part of the machinery in a component implementation must provide the 
specification of a correspondence relation that properly matches the behavior of the 
entities at the implementation level with functionality prescribed for the more abstract 
entities presented by the component’s external interface. Performance specification 
and verification capability is also essential, and so, component implementation 
machinery must provide for translating this information up to the external interface. 

3 Clean Semantics 

Correct reasoning about software, both formal and informal, is critically dependent on 
“separation of concerns.” If a piece of code appears to be working on only a small 
portion of the overall state space, then any efficient verification system must be safe 
in restricting its attention exclusively to the code’s effect on that subspace. Languages 
that restrict the effects of each programming construct to just the objects that are 
syntactically targeted by the construct are said to have clean semantics [8], so a 
language with clean semantics is a basic requirement if verification is to succeed.  



 A Language for Building Verified Software Components 311 

The biggest impediment to clean semantics in a language is unconstrained and 
avoidable aliasing. As reference copying is the main cause of such aliasing, to support 
clean semantics without sacrificing efficiency, the language must support mechanisms 
to avoid reference copying (e.g., swapping or transfer) and parameter aliasing [8, 11]. 
However, this does not mean all pointers and aliasing can or should be avoided [12].   

4 Language Support for Specifications 

If languages or systems that do not share a common design are combined to specify, 
write, and verify software, the slightest of inconsistencies in their semantics could 
easily vitiate apparent correctness results. Consequently, we need one language that 
treats the development of software systems as an integrated whole. In particular, 
software’s specifications should be viewed as an essential part of the software, and 
not as an add-on sideshow that might or might not describe the actual code.  

A clean specification of List abstraction (devoid of complications due to pointers) 
is given in [3] and an updated, verification-friendly version of that specification, can 
be found in the RESOLVE Web IDE [7]. In the specification, a list is conceptualized 
as an ordered pair: a mathematical string of entries that precede the insertion point 
(denoted by Prec) and a string of entries that remain past the insertion point (denoted 
by Rem). A part of this specification is shown in the screen insert to the right in 
Figure 1.  The screen insert at the bottom shows a formal specification of a list 
reversal operation, named Flip_Rem; this operation is an enhancement (or extension) 
to the list component. In this specification, Reverse is a mathematical function that 
reverses a string; its formal definition is given in the next section.  It is specified to 
take a list, such as (<>, <1,2,3,4>) and produce (<4,3,2,1>,<>). 

The meaning of correctness of an implementation of Flip_Rem (in Figure 1) 
depends on its specification and the specifications of operations it uses; i.e., the same 
code may be correct or wrong, underscoring that specifications should be an integral 
part. Stated more formally, pre and post conditions can produce effects involving two 
special semantic states: a vacuously correct state, VC, and a manifestly wrong state, 
MW. If, for example, some code attempts to invoke an operation in a state that does 
not meet the operation’s precondition, then the resulting state is MW. Similarly if the 
code for an operation does not meet its post condition, then the outcome is also MW. 
The VC state is introduced when the code for an operation is started in a state that 
does not meet its pre condition. A program is semantically correct only if under no 
circumstances can it produce the MW state. In such an integrated approach, the 
potential for a verification system to be unsound is vastly reduced. 

A compiler is only going to be capable of verifying the correctness of assertive 
code if that code includes sufficient hints in the form of justificational specifications, 
provided by the software engineer, to make intermediate deductions “obvious.” 
Besides operation specifications, the language must support invariants and 
termination progress metrics for its looping constructs, representation invariants and 
abstraction relations for data abstraction implementations, among others [2].  



312 G. Kulczycki et al. 

5 Reusable Mathematical Theory Constituent 

It is unlikely that the most appropriate theories for specifying the full compass of 
software applications will inevitably lie within the well-worked parts of mathematics, 
so the reliability of the general software verification process becomes quite suspect 
[13], unless it rests on a firmer foundation than citations into the mathematical 
literature. In short, the mathematics used in software specification and verification 
must be industrial strength rather than craftsman formulated. A system for 
developing, checking, and cataloguing mathematical theories then becomes an 
essential component of a software verification system [9]. For example, while a 
theory of mathematical strings could be codified in a specification language and 
employed for effective verification [5], in general, the language should make it 
possible to define and use new theories without modifying the verifier. 

Several ideas from reusable component engineering are also appropriate for 
structuring mathematical theories. The first is separation of concerns. A client using a 
theory to formulate specifications only needs a summary or précis of the definitions 
and results (theorems) for that theory, but not anything about proofs for the results, so 
the précis should be in a separate syntactic unit from the proofs. This is analogous to 
separating interfaces and implementations of components. A second such idea is reuse 
itself. Well-considered and well-developed mathematical theories are appropriate for 
a variety of specifications, and the cost of their formulation and proof can be 
amortized over all these uses. 

Making the verification of production software routine depends on a taxonomic 
thesis about how software engineers create software that they “know” is correct. The 
thesis is that most of such code is straightforward and it is plain to see that it is correct 
[10]. The remaining not-so-obvious parts are separable from the rest, and certainty of 
the correctness of each such part is developed through a serious individual process of 
abstract reasoning. If this thesis is correct, then a software verification system can 
achieve its objectives using two qualitatively different subsystems. The first addresses 
the not-so-obvious and is the general mathematics subsystem that handles theory and 
proof modules. The second is a code justification checker that examines the 
specifications embedded in code to determine whether they are “obviously” correct, 
given the specifications and annotations in the code and the definitions and theorems 
developed in the supporting theories. 

6 Verified Reusable Components 

When reusable components are fully specified and verified, the cost can be amortized 
over a large base of usage.  This is possible if verification supportive component 
interfacing machinery cleanly decouples the implementations of components from 
their deployments. This decoupling is the motivation for the abstract specification of 
List component. Using that specification, it becomes possible to cleanly verify the 
realization (code) in Figure 1 is correct with respect to the specification of the 
enhancement operation Flip_Rem, also shown in the figure.  



 A Language for Building Verified Software Components 313 

 

Fig. 1. Example Reusable Component Verification 

The code in Figure 1 is the same as the one presented in [1], except that this one 
has now been mechanically verified. The syntactic slot for the decreasing clause in 
this recursive procedure enables a software engineer to annotate the code and 
facilitate automatic proof of termination.  Here, in the blue ovals down the left hand 
side, the term VC stands for verification condition.  The RESOLVE verifier has 
analyzed “Flip_Rem” code using its specification and specifications of operations it 
reuses, generated the VCs for total correctness (detailed in [3]), and proved them. 
Though not all components at the RESOLVE web IDE are verified or even 
verification amenable because this is still ongoing research, it is a useful prototype.  

7 Conclusions 

To meet the challenge of building verified software components, a verification-driven 
language design is necessary.  Characteristics of such a language do not match those 
of currently popular languages. Recognizing this means that neither constraining an 
existing language nor adding on is a viable strategy.  In particular, the overarching 
soundness requirement means that mechanisms for both specification and 
mathematical development of the theories used in these specifications must be an 
integral part of the language.  

Succeeding in the goal of building verified software components still will not mean 
that all the software the compiler processes is absolutely correct because that software 
may not have been properly specified to meet the objectives of the real world system 
in which it is to be embedded. Regardless, developing a verifying compiler and 
building verified components would certainly represent a major advance for our field, 
but the challenge will only be met when the realities of what is involved are squarely 
faced.  Among these realities is the need to educate the next generation of software 
engineering workforce on the principles of verified software construction [14].   
 
Acknowledgments. We wish to thank our research groups for their contributions to 
the ideas discussed here. We also acknowledge United States National Science 
Foundation grants CCF-0811748, CCF-1161916, DUE-1022191, and DUE-1022941. 



314 G. Kulczycki et al. 

References 

1. Hoare, C.A.R.: The Verifying Compiler. A Grand Challenge for Computing Research. 
JACM 50(1), 63–69 (2003) 

2. Klebanov, V., et al.: The 1st Verified Software Competition: Experience Report. In: 
Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 154–168. Springer, 
Heidelberg (2011) 

3. Sitaraman, M., et al.: Reasoning About Software-Component Behavior. In: Frakes, W.B. 
(ed.) ICSR 2000. LNCS, vol. 1844, pp. 266–283. Springer, Heidelberg (2000) 

4. Sitaraman, M., Adcock, B., Avigad, J., Bronish, D., Bucci, B., Frazier, D., Friedman, 
H.M., Harton, H.K., Heym, W., Kirschenbaum, J., Krone, J., Smith, H., Weide, B.W.: 
Building a Push-Button RESOLVE Verifier: Progress and Challenges. Formal Aspects of 
Computing 23(5), 607–626 (2011) 

5. Adcock, B.: Working Towards the Verified Software Process. Ph. D. thesis, Computer 
Science and Engineering, The Ohio State University (2010) 

6. Harton, H.K.: Mechanical and Modular Verification Condition Generation for Object-
Based Software. Ph. D. Dissertation, Clemson University, 305 pages (2011) 

7. Cook, C.T., Harton, H.K., Smith, H., Sitaraman, M.: Specification engineering and 
modular verification using a web-integrated verifying compiler. In: Proceedings of the 
International Conference on Software Engineering (ICSE), pp. 1379–1382 (2012) 

8. Kulczycki, G.: Direct Reasoning. Ph. D. Dissertation, Clemson University, 183 pages 
(2004) 

9. Smith, H.: Engineering Specifications and Mathematics for Verified Software. Ph. D. 
Dissertation, Clemson University, (to appear, 2013) 

10. Kirschenbaum, J., Adcock, B., Bronish, D., Smith, H., Harton, H., Sitaraman, M., Weide, 
B.W.: Verifying Component-Based Software: Deep Mathematics or Simple Bookkeeping? 
In: Edwards, S.H., Kulczycki, G. (eds.) ICSR 2009. LNCS, vol. 5791, pp. 31–40. Springer, 
Heidelberg (2009) 

11. Harms, D.E., Weide, B.W.: Copying and Swapping: Influences on the Design of Reusable 
Software Components. IEEE Transactions on Software Engineering 17(5), 424–435 (1991) 

12. Kulczycki, G., Smith, H., Harton, H., Sitaraman, M., Ogden, W.F., Hollingsworth, J.E.: 
The Location Linking Concept: A Basis for Verification of Code Using Pointers. In: Joshi, 
R., Müller, P., Podelski, A. (eds.) VSTTE 2012. LNCS, vol. 7152, pp. 34–49. Springer, 
Heidelberg (2012) 

13. DeMillo, R.A., Lipton, R.J., Perlis, A.J.: Social Processes and Proofs of Theorems and 
Programs. Comm. ACM 22(5), 271–280 (1979) 

14. Cook, C.T., Drachova, S., Sun, Y.-S., Sitaraman, M., Carver, J., Hollingsworth, J.E.: 
Specification and reasoning in SE Projects Using a Web IDE. In: Proceedings Conference 
on Software Engineering Education & Technology, CSEE&T (2013) 

 
 



Estimating the Economic Value of Reusable

Green ICT Practices

Qing Gu and Patricia Lago

Department of Computer Science
VU University Amsterdam

The Netherlands

Abstract. Despite environmental concerns becoming increasingly ur-
gent as a global issue, cost reduction is still the most important economic
goal for many companies. Explicitly showing economic gains would be
one of the most effective ways to motivate companies to optimize their
use of ICT resources by means of sustainable software systems or green
ICT practices. In this paper we propose using the e3value technique
(originally meant to model enterprises and end-users exchanging things
of economic value) to estimate and quantify the business value of sus-
tainable software and green ICT practices. We report the experiment we
carried out to challenge the e3value technique. In this experiment, we
modeled a green ICT practice (investing a desktop virtualization soft-
ware to improve energy efficiency) in a simplified yet realistic context.
The results show that the applied practice would lead to an overall 47%
reduction of expenses and 20% reduction of electricity consumption. Such
quantification facilitates the comparison among alternative green prac-
tices and ICT-based decision making. In addition, we show that the use
of e3value technique not only supports communication of green practices
among different types of stakeholders, but also facilitates reuse of the
same green practice in different organizations having different ways of
implementing them.

1 Introduction

Information and Communication Technology (ICT) and software systems are
essential to maintain our modern way of life. The rapidly growing computation
needs contribute significantly to environmental concerns due to ever increasing
energy demands and greenhouse gas emissions [1, 2]. Decreasing ICT operation
expenses become more and more crucial. How to make ICT greener (i.e. envi-
ronmentally sustainable) and how to develop greener software has been gaining
significant attention [3–5].

ICT can contribute to addressing environmental concerns in two ways, (1)
by optimizing the implementation of ICT or migrating to sustainable software
and thus minimizing its own environmental impact, and (2) by optimizing the
business processes via more environmental sustainable software and thus min-
imizing the use of ICT resources [6, 7]. Currently, many green ICT practices

J. Favaro and M. Morisio (Eds.): ICSR 2013, LNCS 7925, pp. 315–325, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



316 Q. Gu and P. Lago

already exist to improve the energy efficiency of both IT and its supported pro-
cesses. Examples include reducing the energy consumption of PCs by enabling
power management features [8], enforcing double-sided printing to save both pa-
per and energy [9], applying cloud computing technology to significantly reduce
hardware and software resources needed for individuals [10], and using a fleet
management system and dynamic routing of vehicles to avoid traffic congestion
and thus minimize energy consumption and transportation costs [11].

From the examples above we can see that greening ICT may save energy
consumption (hence reducing cost) but it often requires additional investments,
business process changes, and extra efforts from both companies and individuals.
According to the analysis by Corbett [12], the most commonly cited driver for
reusing green IT practices is cost saving. Especially in times of economic crisis,
cost reduction becomes the most important economic objective [13] of many
companies. If green practices do not lead to an explicit (and significant) reduction
of costs, environmental goals are often regarded as a nice optional bonus rather
than a must-have target.

There is no one-size-fits-all green solution due to the diversity of requirements
and characteristics of companies. Executives need to assess the effectiveness of
green ICT practices not only from a technical perspective but more importantly
from an economic point of view, and not only look into short-term return on
investments (ROIs) but also have a vision on long-term ones.

In addition, when green ICT practices involve software, calculating costs and
ROIs is more difficult. The impact of software cannot be estimated in isolation,
as it depends on many indirect factors including operation costs, hardware us-
age, human involvement, and system configuration. Often there is an intuition
of some advantage gained when investing in such practices. This intuition is suf-
ficient only if the company and decision makes are already fully committed to
re-greening their software and ICT portfolio. In most cases evidence and quan-
tification is the only way to handle the complexity of the practices mentioned
above, and hence to create such commitment.

In our previous work [14] we proposed a green practice model which enforces
linking together the economic impact and environmental effects of green prac-
tices. This model, however, does not support the quantification of economic value
of green practices. Rather, the model encourages the description of financial con-
sequences associated to each environmental effect of green practices.

The Going Green Impact Tool1 is a software tool that compares the economic
value among multiple green practices specifically for data centers. This tool pro-
vides a very comprehensive analysis on the key environmental and economic
consequences of the application of certain green practices, which aids executives
to determine the most effective practice. The major limitation of this tool lies
in the fact that it works only for pre-defined practices, including: server opti-
mization, power management, virtualization, free cooling and the re-use of waste
heat. End-users are not able to add other solutions for analysis and comparison.

1 http://ercim-news.ercim.eu/en79/special/the-going-green-impact-tool

http://ercim-news.ercim.eu/en79/special/the-going-green-impact-tool


Estimating the Economic Value of Reusable Green ICT Practices 317

Currently, to our knowledge there is no single tool that is able to aid decision
makers to run a holistic assessment and make informed decisions. In this paper,
we propose to use the e3value, which is a management software tool to model
business networks and has been successfully applied in several real life business
case studies [15], to estimate and quantify the economic consequences of the
application of green practices. To this end, we carried out an experiment of
modeling a green ICT practice called “desktop virtualization”. The results show
that by applying this practice a company would reduce overall expenses with 47%
and reduce electricity consumption with 20%. This research combines formalized
descriptions of green ICT practices with economic models estimating the business
values of ICT solutions. By modeling the application of a green practice, we can
customize the value exchanges to real scenarios and estimate the expected ROIs.

The estimations above showed that while intuition was promising, the actual
figures were delivering amazingly higher ROIs. We argue that such quantifica-
tions would convince organizations more easily to adopt green ICT practices, and
motivate them to reuse green ICT solutions even if requiring significant invest-
ments. The remainder of the paper is structured as follows. Section 2 reports the
experiment we carried out and Section 3 discusses the lessons we learned from
the experiment. Section 4 concludes the paper.

2 An Experiment on Quantifying Economic Value of
Green ICT Practices

2.1 Background on e3value

The e3value technique models enterprises and end-users exchanging things of
economic value, such as goods, services, and money, in return for other things of
economic value. In the following, we introduce the main concepts or constructs
supported by the e3value modeling tool and their associated notations [16, 17].

– Actor. An economically, and often legally, independent entity. Examples of
an actor include a customer, an organization and a company. In the notation,
an actor is represented by a plain rectangle.

– Value object. Something that actors exchange which is of economic value
for at least one actor. A value object is a service, a good, money, or an
experience. Examples of value objects are products, delivery service and
tuition fee. In the notation, a value object is represented as a label on a
value exchanging.

– Market segment. A set of actors that share a set of properties. Actors
in a market segment assign economic value to value object equally. In the
notation, a market segment is represented by a set of stacked rectangles.

– Value interface. Something that group value ports together and show eco-
nomic reciprocity. Economic reciprocity means that actors/market segment
will only offer value objects if they will receive value objects in return. In
the notation, the value interfaces are drawn at the sides of actor/market
segments as a thin rectangle with rounded corners, with value interfaces
within.



318 Q. Gu and P. Lago

– Value port. Something that is used by an actor/market segment to provide
or request a value object. In the notation, a value port is shown as a small
arrow inside a value interface.

– Value exchange. Connect two value interfaces and represent a potential
trade of value objects. In the notation, value exchanges are drawn as lines
connecting the port of actors/market segment to each other.

– Dependency path. The path where value exchanges, which is used to
count the number of exchanges. In the notation, dependency path starts
with a start stimulus and ends with a stop stimulus.

Many e3value constructs can be associated with numbers or parameters, such
money transfers as well the number of consumer needs (here the need for con-
current computing). If done correctly, the e3value modeling tool generates net
value flow sheets, which show for each actor in the model the amount flowing
into and out from an actor.

2.2 Our Experiment

Aiming at assessing the feasibility of quantifying economic values of green ICT
practices, we carried out an experiment by modeling the application of a practice
called desktop virtualization, which has been selected from the list of green solu-
tions provided by MJA (Meerjarenafspraken meaning long-term agreements)2.
This practice is described as:

A desktop virtualization software facilitates the use of thin clients (i.e. work-
stations with minimal hardware configurations). These thin clients are far more
energy efficient than regular fat client computers. There is however an increase
in server side computing due to the extra load of providing the desktops, which
leads to an increase in energy consumption of servers.

From this description, we elicited the following expected effects and associated
economic impact:.

– Decrease energy consumption of client workstations, which decreases energy
consumption costs of client workstations.

– Increase energy consumption of servers, which increase energy consumption
costs of servers.

– Acquisition of thin clients, which may rise IT equipment acquisition costs.
– Need to implement or purchase virtualization software, which requires short

term investment.

Using the e3value modeling tool, we modeled an AS-IS situation (i.e. usage of
fat-client without virtualization) and TO-BE situation (i.e. usage of thin clients
with virtualization) with the period of three years. Figure 1 shows the AS-IS
situation, where company X purchases a number of fat-clients and servers from

2 The MJA is a voluntary agreement between the Dutch government and the largest
energy consumers in the Netherlands, these being both large industries (e.g. banks
and telecom providers) and higher education institutes (e.g. universities).



Estimating the Economic Value of Reusable Green ICT Practices 319

hardware suppliers in order to meet its computation needs, pays money to elec-
tricity suppliers for the electricity consumed by these fat clients and servers, and
hosts an IT department (within the company or outsourced) to maintain the
hardware devices ensuring they perform as expected. Figure 2 illustrates the
TO-BE situation, where company X purchase thin clients rather than fat clients
and the IT department has an additional task of providing and maintaining a
virtualization software to deliver desktop virtualization service.

Fig. 1. Usage of fat clients, without virtualization

Value exchanges can be calculated along multiple dependence paths presented
in the models. The paths start with the start stimulus ’Concurrent computing
need’ of Company X. Such need can be fulfilled by a combination of three com-
ponents: thin clients, a server, and maintenance service (see the AND fork in
Figure 2 labeled with (1)). To give an example of the dependent paths, consider
the value exchanges related to the thin clients (2), which consists of acquisi-
tion of thin clients (3) and energy consumption of these thin clients (4). The
acquisition of thin clients requires value exchange with the hardware suppliers
(5) and the use of these thin clients requires electricity, which requires another
value exchange with the electricity suppliers (7). Since the electricity is charged
per month whereas the computing need is charged for three years, the fork (6)
automatically normalizes costs in 1-month fractions.

After modeling the actors and value exchanges between them, we assigned
parameters (with assumptions) to each value exchange in order to estimate the
costs. The parameters we assigned for the two situations are listed in Table 1.



320 Q. Gu and P. Lago

Fig. 2. Usage of thin clients, with virtualization

Table 1. The parameters assigned to As-Is and To-Be situations

Attribute As-Is situation To-Be situation

Number and type of clients 50 fat clients 50 thin clients

Price for each clients 600 euro 400 euro

Number of servers 1 1

Energy consumption of a
client per month

180W*10h*22d= 39.6kW 20W*10h*22d = 4.4 KW

Energy consumption of a
server per month

250W*24h*30d=180kW 400W*24h*30d = 288KW

Price of energy per kWh 0.5 euro 0.5 euro

Maintenance cost per client
per year

50 euro 25 euro

Maintenance cost per server
per year

400 euro 400 euro

Desktop virtualization soft-
ware license per year

NA 400 euro

With the provided parameters, the e3value modeling tool generated a spread-
sheet that calculates the costs spent and revenue gained by each actor after three
years. From the report, we could quantify the economic benefits that we should
expect by reusing the green ICT practice:

– Energy consumption costs of client workstations is decreased: from 35,640
euro to 3,960 euro.



Estimating the Economic Value of Reusable Green ICT Practices 321

– Energy consumption costs of servers is increased: from 3,240 euro to 5,184
euro.

– Acquisition of thin clients requires an investment of 20,000 euro.
– Desktop virtualization software license requires an investment of 1,200 euro.

In this example estimation results show that the applied practice would lead to an
overall 47% reduction of expenses and 20% reduction of electricity consumption.

3 Discussion

3.1 Assumptions Made in the Experiment

For the sake of space and readability, the green practice in our experiment has
been modeled in a simplified yet realistic context.

First of all, we limited the number of actors, including only the ones that
are essential and highly relevant to the green practice. In real life, thin clients
and fat clients can be purchased from multiple vendors in multiple times and
with potentially different prices. To simplify the models, we assumed that all the
equipment is purchased from a set of vendors concurrently with a fixed price.

Second, we simplified the calculation of electricity tariff. Electricity prices may
vary depending on regions, countries, distribution network of the same country,
type of customers, and type of contracts. In this experiment, we assumed that
electricity is provided by a set of providers of the same type and with a fixed
rate. However, rates are all taken from real providers.

Third, we constructed the relation between IT maintenance and the company
in a simplified manner. In reality, the way in which IT services are arranged can
be quite complex and the cost for IT maintenance can be charged differently. In
this experiment, we assumed an average maintenance cost per hardware per year.
In addition, often a company already has a number of computers in use; when
deciding to apply desktop virtualization, the disposal cost of legacy hardware
equipment should also be considered. Customization is needed when modeling
the value exchanges and estimating the expected ROIs in real scenarios.

3.2 Advantages of Visualizing Value Exchanges

The results show that the models in our experiment well simulate the value
exchanges under the simplified context and make the economic value of the
green practice explicit. The e3value technique provides a graphical overview of
a resource exchanging network of a company. The visualization of participants
and their relations in terms of value exchanges aids the analysis of the economic
viability of the network. During our experiment, we noticed that the model helps
us think thoroughly about the business model where the desktop virtualization
practice would be applied. We need to decide, for instance, which actor(s) is
(are) responsible for paying the electricity bills. In many companies, electricity
bills are paid by their financial departments. However, some companies break
down the energy consumption of the ICT services to each internal department



322 Q. Gu and P. Lago

and consequently each department has to pay its energy bill from its own budget.
In that case, we need to model all the departments where desktop virtualization
would be used as well as the resource exchanges occurred at the departments
(e.g. with the electricity suppliers and the company). From this example we
can see that when applying the same green practice under different business
models, it may lead to different economic value for different participants. Since
the e3value technique helps to consider a green practice in the context of the
business model of a company, it encourages the alignment between business
strategies and environmental ICT solutions.

Explicitly modeling the resource exchanges related to green practices within
the business model of a company also urges ICT technicians to be aware of eco-
nomic value of certain ICT solutions. Technicians often consider only quality
attributes (e.g. performance, security) when proposing ICT solutions to meet
business needs of a company. The short- and long- term economic impact of
the ICT solutions, however, often get little attention, as long as the solutions
meet the budget planned. Using the e3value technique, ICT technicians are able
to compare alternative ICT solutions, especially from the economic perspective,
and decide the one that suits best the company’s needs. For instance, desktop
virtualization can be implemented in many different ways: by using thin clients
and storing the “virtualized desktop images” on a central server (as we modeled
in our experiment); or by running multiple virtual machines on local hardware
such as laptops without a server. While the former requires a central image man-
agement software, the latter requires the realization of desktop virtual machines.
These two solutions may require different actors and different value exchanges.
With the help of the e3value technique, technicians are able to compare the
economic influence of different solutions and thus make informed decisions.

3.3 The e3value Technique vs Spreadsheet Applications

One could argue that without using the e3value technique, a spreadsheet ap-
plication, such as excel sheet, recoding and calculating the cost would also be
sufficient. We agree that using excel (or similar software tools) would be compu-
tationally equivalent to the e3value modeling tool in terms of the calculation of
costs. In fact, the report generated by the e3value modeling tool is in the form of
excel spreadsheets. However, e3value models are different from spreadsheet ap-
plications, which focus only on numbers and calculations. The e3value modeling
tool, instead, provides a graphical interface both for illustrating the inter-related
financial dependencies between actors for filling parameters by end-users. The
e3value model cannot be replaced by any spreadsheet applications specifically
because it helps to achieve the following two goals.

A first goal is to support communication of green practices among differ-
ent types of stakeholders. While technical stakeholders would be comfortable in
working directly with formulas and textual calculation (like in Excel), there is
the need to communicate about a practice with business people and strate-
gic decision makers. For instance, communication is needed when justifying
among alternative practices, or comparing the pros and cons of different ways of



Estimating the Economic Value of Reusable Green ICT Practices 323

implementing the same practice within a company. Such communication must
be supported by a visual (i.e. more readable) notation.

A second goal we want to achieve is to facilitate reuse of the same green prac-
tice in different organizations having different ways of implementing them (e.g.
because of different departments involved, or different factors that are variable
in one company and constant in another). Whenever a practice should be reused,
its contextualization changes. While applying the changes in a visual model is
straightforward (assuming one knows the modeling notation), applying the same
changes in a textual calculation (like in Excel) is error prone and hinders reuse.

3.4 Reuse Green ICT Practices

Reusing green ICT practices in different organizations requires customizing the
e3value model to estimate their organization-specific business impact in terms of
the economic value. The level of customization depends on how green practices
are reused.

If a green practice is implemented in the same way but in different organi-
zations, the e3value model associated to the practice can be reused as-is but
the value of the factors need to be customized. More specifically, supposing the
green practice in our experiment will be reused by another organization, the
value filled in Table 1 needs to be customized to adapt to the organizational
settings, e.g. the number of clients will be changed according to the number
of employees of the specific organization, the Price of energy per kWh will be
changed according to the offer of the specific energy supplier. It is clear that
in this scenario customizations are limited to ”standard variables” whose values
change per organization.

If a green practice is implemented in a different way, the complete e3value
model associated to the practice (and not just the variable values) changes too.
For example, supposing the green practice in our experiment will be reused
by another organization that decides to outsource IT maintenance to another
company, the changes to the e3value model will be limited. In this case, IT de-
partment in Figure 2 will be replaced by an IT company and the maintenance
fee in Table 1 might be changed according to the agreement between the IT
company and the organization. However, supposing the green practice will be
reused by another organization that decides to move desktop virtualization to
the cloud, the changes to the e3value model will be significant. In that case, a
cloud provider will be added as an additional actor in Figure 2, value exchanges
between the organization and the cloud provider will be added, servers will be
(most likely) removed, and value exchanges between IT department and the
organization should also be customized. It is clear that in these scenarios cus-
tomizations regard the overall context where the practice should be applied, and
the context changes can be more or less extensible.

In summary, when reusing green ICT practices there are different types of
context changes that are likely to be encountered, and the possible business
impacts also differ in their level and significance. Reusing and customizing the
e3value model help highlighting issues relevant to reusing practices in different



324 Q. Gu and P. Lago

contexts. Being green IT an area still in progress, green practices are likely to
belong to the second type of customization (for the near future at least). The
first type of customization (limited to standard variables) will be possible when
more standard and well experimented practices will become available.

3.5 Future Improvements

For demonstration purposes, we show in Section 2 that it is feasible to use the
e3value technique to estimate the economic impact of green practices. The mod-
els, however, can be improved in the future in multiple ways. First of all, the
models can be further customized to a real case scenario with actual actors and
pricing, and most importantly, a real life business model. Second, the energy con-
sumption of hardware devices can be measured instead of estimated to improve
the accuracy of the cost estimation. Third, the short-term investments (e.g. ac-
quisition of hardware devices) and long-term costs (e.g. energy consumption)
can be distinguished and analyzed in order to provide a thorough estimation of
economic impact of green practices.

4 Conclusions

In this paper we applied the e3value technique to estimate the economic value of
green ICT practices. Such economic value can be influenced by various aspects
including investment cost, size of companies, pricing and duration. The appli-
cation of e3value technique allows to perform trade-off analysis to select among
different green practices, particularly from an economic perspective. When cost
of green is quantified and ROI is estimated, informed decisions can be made
before actual investments.

Most green ICT practices do not yet particularly address software-specific
aspects. Our approach allows to clearly separate the role of software (e.g. vir-
tualization software in the experiment here presented) from the role of other
factors, and calculate its direct and indirect economic impact. This is the first
step towards calculating how much green software costs, and motivating organi-
zations to reuse green ICT solutions based on informed decisions.

We are launching a nationwide project among the companies that are active
in re-greening their IT portfolio. We plan to carry out industrial studies that will
both demonstrate the value of the method for decision making, and allow them
(and us) to uncover and reuse best practices, or new opportunities, by directly
addressing investments in software applications.

Acknowledgment. The authors would like to thank Jaap Gordijn for his assis-
tance in constructing the e3value models here presented. We would also like to
thank Frank Hartkamp (program advisor Agentschap NL) for providing us ac-
cess to the MJA green ICT practices, and Jaak Vlasveld (program me manager
Consortium Green IT Amsterdam Region) for interesting discussions on the role
of business value estimations of green ICT practices.



Estimating the Economic Value of Reusable Green ICT Practices 325

References

1. Omer, A.M.: Energy, environment and sustainable development. Renewable and
Sustainable Energy Reviews 12(9), 2265–2300 (2008)

2. Asif, M., Muneer, T.: Energy supply, its demand and security issues for devel-
oped and emerging economies. Renewable and Sustainable Energy Reviews 11(7),
1388–1413 (2007)

3. Mingay, S.: Green ICT: A new industry shockwave (2007)
4. Mattern, F., Staake, T., Weiss, M.: ICT for green: how computers can help us to

conserve energy. In: Proceedings of the 1st International Conference on Energy-
Efficient Computing and Networking. e-Energy 2010, pp. 1–10. ACM, New York
(2010)

5. Vereecken, W., Van Heddeghem, W., Colle, D., Pickavet, M., Demeester, P.: Over-
all ICT footprint and green communication technologies. In: Proceedings of the
4th International Symposium on Communications, Control and Signal (ISCCSP),
pp. 1–6. IEEE (2010)

6. Park, J.K., Cho, J.Y., Shim, Y.H., Kim, S.J., Lee, B.G.: A proposed framework
for improving IT utilization in the energy industry. World Academy of Science,
Engineering and Technology 58 (2009)

7. Davidson, E., Vaast, E., Wang, P.: The greening of IT: How discourse informs IT
sustainability innovation. In: Proceedings of Conference on Commerce and Enter-
prise Computing, pp. 421–427. IEEE (2011)

8. Murugesan, S.: Harnessing green IT: Principles and practices. IT Professional 10,
24–33 (2008)

9. Mitchell, R.L.: Get up to speed on green IT. Technical report, Computerworld
(2008)

10. Liu, L., Wang, H., Liu, X., Jin, X., He, W., Wang, Q., Chen, Y.: GreenCloud: a new
architecture for green data center. In: Proceedings of the 6th International Con-
ference Industry Session on Autonomic Computing and Communications Industry
Session, pp. 29–38. ACM (2009)

11. Boudreau, M., Chen, A., Huber, M.: Green IS: Building sustainable business prac-
tices. Information Systems: A Global Text (2008)

12. Corbett, J.: Unearthing the value of green IT. In: ICIS, p. 198. Association for
Information Systems (2010)

13. Sarkar, P., Young, L.: Managerial attitudes towards green IT: An explorative study
of policy drivers. In: Proceedings of PACIS, pp. 1–14 (2009)

14. Gu, Q., Lago, P., Potenza, S.: Aligning economic impact with environmental ben-
efits: A green strategy model. In: Proceedings of First International Workshop on
Green and Sustainable Software (GREENS), pp. 62–68 (June 2012)

15. Gordijn, J., Yu, E., van der Raadt, B.: E-service design using i* and e3 value
modeling. IEEE Software 23(3), 26–33 (2006)

16. Henkel, M., Perjons, E.: Ways to create better value models. In: Proceedings of
the 3rd Workshop on Value Modeling and Business Ontologies (VMBO 2009),
Stockholm, Sweden (2009)

17. Gordijn, J., Akkermans, H.: E3-value: Design and evaluation of e-business models.
IEEE Intelligent Systems 16(4), 11–17 (2001)



J. Favaro and M. Morisio (Eds.): ICSR 2013, LNCS 7925, pp. 326–342, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Composition and Self-Adaptation  
of Service-Based Systems with Feature Models 

Javier Cubo, Nadia Gamez, Lidia Fuentes, and Ernesto Pimentel 

Dpto de Lenguajes y Ciencias de la Computación, Universidad de Málaga 
{cubo,nadia,lff,ernesto}@lcc.uma.es  

Abstract. The adoption of mechanisms for reusing software in pervasive 
systems has not yet become standard practice. This is because the use of pre-
existing software requires the selection, composition and adaptation of 
prefabricated software parts, as well as the management of some complex 
problems such as guaranteeing high levels of efficiency and safety in critical 
domains. In addition to the wide variety of services, pervasive systems are 
composed of many networked heterogeneous devices with embedded software. 
In this work, we promote the safe reuse of services in service-based systems 
using two complementary technologies, Service-Oriented Architecture and 
Software Product Lines. In order to do this, we extend both the service 
discovery and composition processes defined in the DAMASCo framework, 
which currently does not deal with the service variability that constitutes 
pervasive systems. We use feature models to represent the variability and to 
self-adapt the services during the composition in a safe way taking context 
changes into consideration. We illustrate our proposal with a case study related 
to the driving domain of an Intelligent Transportation System, handling the 
context information of the environment. 

Keywords: Service Composition, Self-Adaptation, Feature Models. 

1 Introduction 

Current pervasive systems are composed by a wide variety of services and devices. 
To reduce effort and costs, these systems may be developed using existing 
Commercial-Off-The-Shelf (COTS) components or (Web) services implemented by 
different vendors. Technologies such as Service-Oriented Architecture (SOA) [1] 
enable the building of fully working systems, as efficient as possible to improve the 
software reusability. The adoption of mechanisms for reusing software in pervasive 
systems has not yet become standard practice. This is because the use of pre-existing 
software requires the selection, composition and adaptation of prefabricated software 
parts. The discovery process aims to discover the most suitable services for a client 
request. The adaptation process solves, as automatically as possible, mismatch cases 
which may be given at the different interoperability levels among interfaces, while 
services are composed. Moreover, reusing software in critical domains (medical, 
automotive, aeronautics or security) is a difficult task, due to real complex problems 
such as guaranteeing high levels of efficiency and safety. For instance, in particular, 



 Composition and Self-Adaptation of Service-Based Systems with Feature Models 327 

the driving domain within the Intelligent Transportation Systems1 (ITS) is a complex 
and safety critical environment. ITS are comprised of autonomous vehicles that can 
operate with minimum input from the driver. One of the critical aspects in this domain 
is the driver’s interaction with the traffic environment. Therefore, these systems need 
to be developed taking into account the variability of the complex driving domain, 
which involves a dynamic adaptation to changing situations in the traffic 
environment, in order to fit the driver’s safety and needs.  

In addition to the wide variety of services (with different behaviours, components, 
elements, etc.), pervasive systems are composed of many networked heterogeneous 
devices (sensor nodes, smartphones, tablets, vehicles’ on-board computers, or devices 
with RFIDs or cameras) with embedded software. Therefore, the heterogeneity can be 
present at any level. This can be addressed by using Software Product Line (SPL) 
engineering [2], which specifically focuses on variability management. SPLs aim to 
provide techniques for creating infrastructures that allow the rapid and systematic 
production of similar software systems, promoting the reuse of common core assets. 

SOA and SPL approaches to software development share a common goal. They 
both encourage an organization to reuse existing assets and capabilities, rather than 
repeatedly redevelop them for new systems [3]. Then, we use these two 
complementary technologies to promote the safe composition in service-based 
systems. These systems have to be capable of handling changing situations during the 
composition, called context changes. Context information plays an important role in 
pervasive systems, to control their reaction depending on certain situations or to fit 
the user’s needs. So, it is essential to manage contexts while composing services. 

For this reason, as an initial attempt to solve these issues, we have developed and 
validated with several examples, the DAMASCo framework [4] based on SOA, which 
focuses on reusing services in pervasive systems accessed via their public interfaces, 
by means of context-aware service discovery, composition and adaptation. 

However, DAMASCo still has some limitations as regards the service composition, 
since it does not take into account the variability of the services during the 
composition, which may also be changing depending on the contexts. We therefore 
need to address this new challenge of managing the variability of both services and 
contexts during the service composition process at runtime.  

Feature Models (FM) [5] have been widely adopted by the SPL community to 
specify which elements, or features, of a family of products are common and which 
are variable. Then, a feature model permits the specification of where the variability 
is, independently of the core asset, and enables reasoning about all the different 
possible configurations of a family (corresponding to a service family in our case). 

Therefore, in order to overcome the current restrictions of DAMASCo, in this 
work, as the main contribution, we propose to extend the DAMASCo framework with 
feature models to handle the runtime composition by means of service family 
discovery and self-adaptation when required. Thus, we use feature models to 
represent the variability of the services and to enable the service composition to 
dynamically reconfigure them when needed taking the context changes into account. 
To this end, we make use of Dynamic Software Product Lines (DSPLs) [6, 7], an 
emerging field that produces families of software products capable of adapting to 

                                                           
1 http://www.ewh.ieee.org/tc/its/ Accessed on 4 February 2013. 



328 J. Cubo et al. 

requirements that change at runtime. Following this paradigm, the service 
composition will be performed by selecting, at runtime, a specific configuration of the 
service family adapted to the context requirements. To illustrate our proposal, we use 
a case study related to the driving domain of an ITS, in which we compose pre-
existing services and adapt them to satisfy a client request. 

The remainder of the paper is organized as follows. In Section 2, we show the 
motivation behind our proposal, comparing it with related work. Section 3 presents 
the DAMASCo framework as the background to our approach and explains how it is 
extended with feature models. In Section 4, we define a mapping between the 
intermediate interface model used by DAMASCo and the feature models, and we 
apply our approach to a case study in the ITS domain. Section 5 presents a discussion 
of how our proposal overcomes some limitations of DAMASCo related to the 
variability of service-based systems. Finally, in Section 6 we outline some 
conclusions and plans for future work. 

2 Related Work 

In the last times there have been several approaches [8,11,12,13,14,15,16,17,18] that 
take advantage of using Dynamic Software Product Lines applied to Service Oriented 
Architectures. The rationale behind this is twofold: (i) the loosing coupling in SOAs 
can provide DSPLs with the technical underpinnings of flexible feature management; 
(ii) DSPLs can provide the modeling framework to undersign a self-adaptative SOA-
based system by highlighting the relationships among its parts [8]. 

Following this convergence, in [8], with the purpose of reconfiguring service-
oriented systems at runtime, the authors use the Common Variability Language2 
(CVL) to augment processes defined in the Business Process Execution Language 
(BPEL) [9] with variability, which makes it possible to easily generate a DSPL and 
they use a dynamic version of BPEL to manage and run it. Although this approach is 
very focused on two particular languages (CVL and DyBPEL), the feasibility of 
combining these two technologies is demonstrated. In our case, we exploit this 
combination for managing not only the dynamic reconfiguration, but also the safe 
composition and self-adaptation of services described using different business process 
languages without the need for any knowledge of variability languages. This is an 
important advantage because we define a mapping to automatically create the feature 
model representing a family of services from a business process specification. Our 
framework uses an intermediate interface model that can be generated from different 
platforms such as BPEL or Windows Workflow Foundation, WF [10].  

With a similar motivation as our approach with regard to the necessity of SOA-
based systems manage their inherent variability, in [11], SPL concepts to model SOA 
systems as service families are used. As we propose, the modeling of the SOA 
variability is performed by means of feature modeling and commonality/variability 
analysis technique. Particularly, SoaML3 is extended with variability modeling 
notation. The main benefit of this approach is that different service variants can be 

                                                           
2 http://www.omgwiki.org/variability/doku.php Accessed on 4 February 2013. 
3 http://www.omg.org/spec/SoaML/ Accessed on 4 February 2013. 



 Composition and Self-Adaptation of Service-Based Systems with Feature Models 329 

explicitly modeled, thus maximizing their reusability. However, this is not used to 
help the adaptation of the SOA systems at runtime. The authors study this task in [12], 
in which a member of the architecture can be dynamically adapted to a different 
member of the family at runtime. However, unlike our proposal, they do not deal with 
the service composition nor provide an automatic mapping to avoid SPL non-
specialists have to handle with variability languages. 

Montero et al. [13, 14] define a mapping between Feature Models and Business 
Process Model Notation4 (BPMN) They provide a new semantic for feature models 
[13] in order to automate the family engineering process, obtaining the structure of a 
business process by means of model driven transformations. In [14], they propose the 
product evolution model for modeling runtime variability in business-driven systems 
to represent in which trigger events a business process evolves and how this evolution 
is managed. We also define a mapping, but with a different goal. Thus, we focus on 
representing the services, variability with feature models and using the DSPL 
paradigm to reconfigure them in order to make the service composition possible, by 
supporting the context changes.  

Another approach that captures the variability in Business Process Modes is 
Provop [15], a framework for modeling and managing large collections of business 
process variants. In comparison to our proposal, they only mention allowing the 
dynamic reconfiguration of process variants at runtime as a future challenge, while we 
directly tackle this issue in this work. 

In [16], the problem context-aware Dynamic Service-Oriented SPLs is tackled. The 
goal of this work is to simultaneously define at the same time a service-oriented and 
context-aware product derivation that monitors the context evolution in order to 
dynamically integrate the appropriate assets inside a running system where, as we 
propose, their target platforms follow the service-oriented approach. The authors 
address the self-adaptation problem, but they do not consider the service composition. 
In addition, as we have previously argued, our approach avoids forcing the definition 
of the services using feature models, since we propose an automatic mapping for this. 

Finally, there are several approaches that use feature models to deal with the 
service composition [17, 18]. In [17] the matching between services during the 
composition is performed with feature models. The authors use feature modeling 
techniques to specify the variability of provided and required services, thus increasing 
the flexibility of the matching process. They define a mapping, but unlike us they do 
not provide any explanation of how the service self-adaptation process is performed. 
White et al. [18] use feature models to derive a new and correct service composition 
when a failure occurs. They demonstrate that leveraging feature models to 
automatically derive new service compositions, when a dependent service fails, the 
complexity of needing to model each individual error is eliminated. We also take 
advantage of this benefit, not only for composing the services when an error occurs 
but also for composing and self-adapting services that must work together correctly. 

In summary, we take the demonstrated advantages of combining SOA and DSPL 
technologies by extending the DAMASCo framework with feature models, in order to 
manage the service variability during the discovery and composition of a service and 
to self-adapt the services when the context changing situations require it. 

                                                           
4 http://www.omg.org/spec/BPMN/ Accessed on 4 February 2013. 



330 J. Cubo et al. 

3 Our Approach 

In this section, we first present the DAMASCo framework as the foundation of our 
approach which will then be described. It consists of extending this framework with 
feature models to support service composition whilst managing the variability safely. 

3.1 Background: Service Reuse with DAMASCo 

DAMASCo focuses on discovery, composition, adaptation and monitoring related to 
context-aware pervasive systems, where devices and applications dynamically find 
and use components and services from their environment. 

It is based on SOA, the foal of which is to achieve loose coupling among 
interacting services, which is necessary and beneficial to the industry. However, SOA 
needs to be more agile and easier to model and reuse service applications. Modeling 
techniques, designing architectures, and implementing tools to support adaptation of 
the dynamic aspects in these systems represent new challenges in this research field. 
To address this, DAMASCo uses a model-based service-oriented architecture 
approach that makes the design, development and deployment of processes more 
agile. We focus on pervasive systems, such as ITS domain systems, composed of a 
service repository, users (clients requesting services), and a shared domain ontology. 

DAMASCo adopts an expressive and user-friendly graphical notation based on 
transition systems, which reduces the complexity of modeling services. In addition, to 
discovering services, in DAMASCo, operation profiles of a signature refer to OWL-S 
concepts with their arguments and associated semantics. Once services have been 
discovered, in the case there are mismatch problems, an adaptor to solve problems is 
automatically generated using software adaptation. An adaptor is a third-party service 
in charge of coordinating services involved in the system. The whole process consists 
of a set of processes constituting the DAMASCo architecture, as shown in Fig. 1. The 
elements of DAMASCo have been implemented in Python as a set of tools which 
generate a framework integrated in the toolbox ITACA5. 
 
Service Interfaces. Each interface in DAMASCo is made up of a context profile, a 
signature, and a protocol specified as a transition system. At the user level, client and 
service interfaces can be specified by using: (i) context information in XML files for 
context profiles; we assume context information is inferred by means of the client’s 
requests, in such a way that as a change occurs the new value of the context attribute 
is automatically sent to the corresponding service; (ii) WSDL6 descriptions are used 
for describing the signatures in service-oriented platforms; and (iii) business 
processes defined in industrial platforms, as BPEL processes or WF workflows, for 
protocols that define service behavior. We consider clients and services implemented 
as business processes which provide the WSDL and protocol descriptions. 

                                                           
5 Accessible at http://itaca.gisum.uma.es 
6 http://www.w3.org/TR/wsdl Accessed on 4 February 2013. 



 Composition and Self-Adaptation of Service-Based Systems with Feature Models 331 

Model Transformation. First, interface specifications, which have not been 
previously transformed by the framework, are abstracted (Fig. 1, tag A). Context-
Aware Symbolic Transition Systems (CA-STSs) are extracted from the BPEL 
services or WF workflows, which implement the client(s) and services, through our 
model transformation process [19]. We have defined CA-STS as an extension of 
Labelled Transition Systems (LTS) [20]. These intermediate models are graphical 
user-friendly, and CA-STS permits capturing contexts and their changes at runtime. 
 
Semantic-Based Service Discovery. Then, a service discovery process (Fig. 1, tag B) 
finds out services satisfying the client’s request, i.e., with compatible capabilities to 
the client requirements based on similar contexts, semantic matching of signature, and 
behavioural compatibility. Our process identifies mismatch situations using 
ontologies and synchronous product [20] to determine if adaptation is required or not. 
 
Composition and Adaptation. If adaptation is not required, then the services of the 
systems are already deployed without having to adapt them, only performing the 
composition of them. Otherwise, a full service composition and adaptation process is 
executed (Fig. 1, tag C). Thus, an adaptation contract to solve mismatch problems is 
automatically obtained, and a CA-STS adaptor specification is generated [19]. Next, 
the corresponding BPEL or WF adaptor service is obtained from the CA-STS adaptor 
specification using our model transformation process (Fig. 1, tag D). Finally, the 
whole system is deployed, allowing the client and services to interact via the adaptor. 

However, DAMASCo does not take into account the possible variability of the 
services when the matching is performed, nor the variability in the context changes. 
Therefore, to make our approach more useful, we propose extending DAMASCo by 
managing the service variability with feature models to safely handle the variability in 
the composition and self-adaptation of the services at runtime. 

 

Fig. 1. DAMASCo framework architecture 



332 J. Cubo et al. 

3.2 Adding Feature Models to Support Safe Composition  

Here, we explain how we integrate the feature models into DAMASCo, as shown in 
Fig. 2, in order to deal with the variability of the services during the composition. 
First though we briefly describe some necessary concepts of feature models. 

Formally, a Feature Model [5] is a hierarchical decomposition of features to 
specify which elements of a family of products are common, which are variable and 
the reasons why they are variable, i.e., whether they are alternative or optional 
elements. Furthermore, apart from the relationship between the features in the 
diagram (called tree constraints), a feature dependency analysis can identify 
dependencies between features (called cross-tree constraints). Examples of such 
dependencies are the mutual dependency and mutual exclusion relationships. A 
feature model configuration is the selection of a set of features belonging to             
the feature model. A configuration is valid if all the features are contained in the 
configuration, and the non-selection of all other specific features is allowed by the 
feature model [21]. Thus, a valid configuration must satisfy the tree and cross-tree 
constraints. In our case, every valid configuration represents a potential service, but 
only a subset of all these possibilities are already deployed in the service repository. 

 
Fig. 2. FM-DAMASCo framework architecture 

Firstly, in addition to the BPEL/WF service descriptions, we have a feature model 
for each service that describes its variability, i.e., the service family. Then, each 
business process corresponds with a valid configuration of the feature model that 
represents it, i.e., a specific product of the service family. These feature models can be 
designed by a user developer. Nevertheless, if we do not want to force them to have 
all the services represented by feature models, we can automatically generate the 
feature model that contains the variability corresponding to a specific service instance 
using the mapping that we will describe in Section 4. We focus on the representation 
of the service variability with respect to the context, for instance, a navigation service 



 Composition and Self-Adaptation of Service-Based Systems with Feature Models 333 

family may have traffic management as an optional feature, and so, this feature can be 
selected in a configuration where road traffic information at real time has to be 
considered as part of the context.  

After a client executes a request, both the DAMASCo model transformation and 
the semantic-based service discovery process (Fig. 2, tags A and B) are activated. The 
semantic discovery, as previously described, tries to find the proper services for the 
client’s request. However, due to the high variability of the services, it is possible that 
although a service instance of the repository matches the request, a small variation of 
a service could be enough to match exactly. For example, let us imagine there is no 
deployed navigation service with a traffic monitoring component, but there is a traffic 
feature in the navigation service family. In this case we need to incorporate a new 
process to the DAMASCo framework, that we call service family discovery (Fig. 2, 
tag E). We use the feature models to find a new matching, regarding the features that 
may suit a certain context. If the family discovery process finds the service family 
with the adequate feature for the context, a new valid configuration of that family 
containing this feature is automatically created by our feature modeling tool, Hydra7. 
We want to highlight the new configuration is valid, so, both tree and cross-tree 
constraints specifying restrictions between the components and context are satisfied. 
Hydra cannot create a configuration that does not satisfy the restrictions, so the 
reconfiguration is done safely, as invalid configurations are not possible.  

Once the configuration representing the particular services is automatically 
generated by Hydra, the new service self-adaptation process added to DAMASCo 
(Fig. 2, tag F) is executed. Then, the CA-STS (intermediate interface model) 
corresponding with this feature model configuration is automatically created using the 
mapping defined in Section 4. Finally, this new CA-STS interface is transformed into 
a WF/BPEL process, following the procedure explained in Section 3.1, which is 
composed with the other services to satisfy the request.  

4 Self-Adaptation Using Feature Models 

To illustrate our proposal, we firstly present a driving domain scenario of an ITS. We 
assume some services have been implemented, and we manage the service 
composition handling the changing situations of the environment. Secondly, we 
define a mapping to generate the correspondences between the CA-STS model 
representing a service interface and the feature model of a service family. Lastly, we 
apply the mapping and the self-adaptation process to our case study.  

4.1 Case Study: A Driving Domain 

Our example consists of a driver and a service repository, whose services may be 
composed to get a specific purpose. The driver can perform a navigation request, and 
depending on context and service variations, the system must be adapted to work 
correctly in any situation. Services such as message console, on-board entertainment, 
navigation, maps, traffic management, weather information, or POI notifications, are 

                                                           
7 Accessible at http://caosd.lcc.uma.es/spl/hydra   



334 J. Cubo et al. 

some of the applications in vehicles [22]. In our driving scenario, we have 
implemented (in BPEL and WF) the following services: message console, navigation, 
maps and traffic services. Figure 3 shows the transition systems (represented with our 
CA-STS interface model) corresponding to the implemented services, obtained 
through the model transformation process (see Figure 1), in which we have abstracted 
parameters to simplify the interfaces. 

The driver uses the message console to request the navigation to a specific 
destination, which in turn interacts with the navigation service that is in charge, using 
the maps service, of calculating the route to the destination. The context information 
detailed in the context profile of each service means the service requires such 
contexts, and they have to be considered during the composition of the system at 
runtime. For example, the message console service automatically obtains both the 
location and the language of the driver (loc and lang contexts) from the GPS and on-
board computer settings, respectively. On the other side, the driver will indicate the 
context info related to the route type (route context), as well as whether he/she wants 
to avoid the toll road or not (toll context) and with traffic monitoring or not (traffic 
context). These driver preferences may change at runtime. Default values for these 
contexts are used if the driver does not specify them. DAMASCo performs the 
composition process of this scenario, in which CA-STS service interfaces are 
synchronised through an adaptation process that solve any mismatch problems during 
the composition. As explained in Section 3, we use a semantic-based discovery that 
uses an ontology to search services that match with the client’s request. We have 
generated a driving domain ontology for our example using Protégé 4.0.2. 

 

Fig. 3. Interface models of the driver request and the services for the driving domain scenario 

Once DAMASCo performs the composition, it can control dynamic context 
changes, by capturing and handling such changes, and it simulates the dynamic 
update of the environment according to the context changes at runtime. Now, let us 
imagine the driver decides that the route be calculated avoiding any possible traffic 
problems at runtime. Therefore, in this case the traffic context needs to be considered 
in the services participating in the composition. In addition, the semantic discovery 
process cannot find a navigation service which checks the traffic management. 
Therefore, the FM-DAMASCo uses the discovery family process, which finds a 



 Composition and Self-Adaptation of Service-Based Systems with Feature Models 335 

feature traffic, among the navigation service family, and the self-adaptation of the 
navigation service for adding this feature to it. This will be explained in Section 4.3, 
but first, we present the mapping between CA-STS models and feature models. 

4.2 Mapping between Interface Models and Feature Models 

In order to avoid new feature models having to be defined for services already 
deployed in a specific pervasive system, we define a mapping between the CA-STS 
interface model and the feature model (Table 1). This mapping allows the automatic 
generation of the feature model that corresponds with a service defined in BPEL or 
WF. Then, we also use the model transformation between WF/BPEL and CA-STS. As 
shown in Table 1, for each service we create a new feature model with the service 
name as the root feature. This root feature has two mandatory children: protocol and 
context. The context feature has all the context items defined in the context profile as 
optional children. They will be the contexts that may be considered during the service 
execution. The protocol will contain as children, the features with the ordered 
message names according to the message sequence defined in the corresponding CA-
STS. Then, for every message, which implies a transition in the CA-STS model, a 
new mandatory feature message must be added as a child of the protocol feature.  

Table 1. Mapping between CA-STS Model and the Feature Model of the service family 

CA-STS Interface Model Feature Model 

 

 

 

 
 

Finally, we map the alternative sequences (such as ifelse or pick activities in BPEL 
or WF) represented in the CA-STS interface as different branches or transitions. Since 
these alternatives will send or receive several messages depending on different values 
of data, we add a mandatory child of the protocol feature that will contain alternative 
XOR features for every message. Furthermore, we must add a cross-tree constraint 
with a mutual dependency of the value that implies a message (e.g., Value1 implies 
Message1). In addition, if this data coincides with a context item, then we add the 
values as alternative XOR features of the data context. 

Apart from the purpose of using the mapping to represent the services without  
a previous correspondence with a feature model, this mapping is also used to help  
the self-adaptation of services when required during the composition. Following the 
DSPL paradigm, the runtime self-adaptation can be defined in terms of replacing the 



336 J. Cubo et al. 

current feature model configuration for a new configuration adapted to the current 
requirements. As described in Section 3.2, in the case that the semantic discovery 
process does not find the service instance that matches with the client request, the 
service family discovery will try to find, from among the family, a variation of the 
existent services that better fits the request. Then, in our approach, applying the DSPL 
paradigm for self-adaptation during composition also means having to replace a 
feature model configuration with another one. In this case, we replace the 
configuration representing the service which better matches with the request with 
another configuration with a small variation to exactly match the request. 

Therefore, our process uses both configurations (the previous and the new one  
[23, 24]), the feature model, the CA-STS interface of the service that fits better, and 
the mapping to automatically create the new CA-STS which represents the adapted 
service. In the next section, we detail this process and the mapping over our example.  

4.3 Applying our Approach in ITS 

Figure 4 shows the feature model of the navigation service. As defined in the mapping 
it is composed of the protocol and context features. The protocol contains the 
mandatory features that have to be in all the navigation services (the ones that appear 
in the navigation service of Figure 3) and several optional features, such as the traffic 
management or the point of interest (POI) alerts. Furthermore, some features have 
several XOR alternative children, like the type of route to be calculated (fast, short or 
optimized route). The context contains all the possible (optional features) context 
items that the navigation system may consider, such as location, traffic, weather, and 
so on. For the sake of simplicity, we have only represented (in Figure 4) the possible 
context values for the type of route context to calculate the route according to the 
driver preferences, and for the traffic context to indicate whether the driver requires 
traffic monitoring (traffic true) or not (traffic false). 

As explained in the mapping definition, there are also dependencies between the 
context values and the alternative features in the protocol. For instance, Fast implies 
FastRoute means that if the context feature Fast is selected in a valid feature model 
configuration, then the protocol message feature FastRoute must also be selected. In 
this way, we avoid creating invalid configurations where the context variations are not 
satisfied by the protocol. This is verified every time we create a new configuration 
during the self-adaptation process in order to carry out a safe reconfiguration.  

 

Fig. 4. Feature Model for the navigation service 



 Composition and Self-Adaptation of Service-Based Systems with Feature Models 337 

The self-adaptation of the navigation service to include the traffic management is 
depicted in Figure 5. Firstly, the navigation feature model configuration represents the 
corresponding navigation service shown in Figure 3. This configuration does not 
consider the traffic monitoring in its context, so the protocol calculates the route 
without taking traffic incidences into account. Furthermore, other contexts (such as 
the notification of nearing points of interest and the calculation of the route taking 
into account weather warnings) are not considered in this configuration, so their 
correspondent optional features are removed. In the case that the driver wants to 
incorporate the traffic context into the navigation service, this service can be adapted 
as that context and feature are contemplated in the navigation family (Figure 4). At 
feature model level, this adaptation consists of adding the optional features (and its 
children) related to the traffic not selected in the previous configuration, in a new 
configuration, as observed in the navigation feature model adapted configuration 
(shown in green in Figure 5). Then, our self-adaptation process uses the CA-STS 
interface of the previous navigation service, the navigation FM configuration, the 
navigation FM adapted configuration, and the mapping to automatically generate the 
CA-STS interface model of the navigation service adapted, which already consider 
the traffic management (corresponding to the part of the CA-STS interface in green, 
surrounded by a dashed blue circle in Figure 5). The adapted navigation service will 
be composed with the rest of the services of our driving scenario, including the traffic 
service in the composition, in the same way as explained in Section 4.1. With this 
application, we illustrate how by using our approach we obtain a safe reuse based on a 
self-adaptation of the navigation service, with the purpose of fulfilling a request that a 
priori would have not been satisfied by any other existing service of the repository. 

 

 

Fig. 5. Self-Adaptation of the navigation service 



338 J. Cubo et al. 

5 Discussion 

In this section, we discuss (i) the benefits and drawbacks, (ii) the main contributions 
for the ITS domain, and (iii) other possible applications of our approach. 

Benefits and Drawbacks. The main benefit of our proposal is that, using the SPL 
approach, we can significantly increase the number of client requests satisfied in a 
repository with a relatively small number of services deployed. For instance, in our 
navigation service family we have three optional features (Figure 3) in the protocol. 
This means that these features can be present or not in a service valid configuration. 
Selecting or unselecting these three optional features we have a total of 23=8 valid 
configurations, i.e., 8 different services for this family. So, although there will be 
deployed, e.g., 2-3 different navigation service instances in the repository, with our 
approach we can carry out 8 different kinds of requests for this service. These 
numbers are only considering the optional features of a family. But if we consider the 
variable (OR and XOR) features, the number of configurations increases greatly. 
Table 2 shows the number of possible valid configurations with respect to the number 
of family services for a specific domain and considering the average of the variable 
parts per service. Thus, 10 services working together could satisfy (210-1)=1023 
different potential client requests. Nevertheless, if as we propose in this work, instead 
of 10 single services we have 10 service families with an average of 23=8 possible 
configurations per service, then we can satisfy 8*1023=8184 requests. Then, using 
our approach, in this small service repository with a few members per family, we will 
increase the number of possible requests satisfied by more than 7000. Furthermore, a 
real repository for a specific domain (e.g., the driving domain) can have 20 services 
with an average of 6 variations (optional and alternative features) per service. In this 
case, we have a total number of 1280 possible valid configurations and the number of 
possible client requests satisfied by these configurations increases exponentially. 

Table 2. Number of possible valid services configuration  

Service Families  Variations per Service Valid Configurations 

10 3 80 

10 6 640 

20 6 1280 

30 10 30270 

Obviously, this entails an aggregate cost, as to set up a SPL infrastructure may 
require great effort and the designing of 20 service families is a non-trivial task. 
Although the defined mapping can be used to automatically create a feature model 
from an interface model, this will represent a single service and not a whole family. 
Then, the variability must be added to the feature model by hand. However, though 
the definition of the service families may have an initial cost, as soon as individual 
services start to be automatically adapted in order to satisfy different client requests, 
which would otherwise require the implementation of new services, this initial effort 



 Composition and Self-Adaptation of Service-Based Systems with Feature Models 339 

becomes cost-effective. Therefore, the adoption of the SPL approach is justified in 
repositories where the number of services and possible variants per service is not very 
small. For instance, for 10 services with 3 variations per service, we can satisfy more 
than 7000 requests more than in the case of 10 single services. However, if we have a 
repository with 3 services and 2 variations per service, we only satisfy 5 requests 
more using our approach. In this case, the effort to build the family is not rewarded. 
Another example which involves a greater cost that provided benefits is in static 
environments where not many client requests are made during the system execution. 
In this case, it is pointless to have big service families with configurations that will 
never be used. We must therefore look for a compromise between the repository size 
and the necessity of defining the service families considering the benefits obtained.  

Finally, we wish to stress that the service family discovery process is performed at 
family level not at configuration level. Therefore, in order to search for matches, the 
process does not have to look for the thousands of .xml files representing all the 
configurations (30270 in the case of 30 services), but only in the 30 .xml files 
representing the families, which is a fast task for current computers.  
 

Contributions in the ITS Domain. Traditionally, when a vehicle is designed and 
manufactured, it is given a specific set of hardware and software components. This is 
a disadvantage in case new applications have to be incorporated to the vehicle, 
reducing the cost-effectiveness of the implementation and maintenance of vehicular 
software. For this reason, AUTOSAR8 (AUTomotive Open System ARchitecture) is a 
worldwide development cooperation of car manufacturers, suppliers and other 
companies such as software industry. The main purpose is to provide a basic 
infrastructure to help develop vehicular software. Nevertheless, AUTOSAR currently 
only delivers the standard specifications not an implementation of the basic software.  

Aspects such as electronic tolling, road safety, the user interface, and the provision 
of information to the driver, are crucial in the vehicular environment. In order to 
achieve these objectives, it is essential to develop a correct architecture for the 
definition of services. Some work [25] has already been worked on the creation of a 
service-oriented architecture for an on-board computer, by using the composition as 
OSGi technology and the development of system management information through 
web and distributed environments. In addition, techniques to address the variability of 
the complex driving domain have to be considered, allowing the adaptation to 
changing situations in traffic environments and to meet the drivers’ safety and needs. 

The generation of an architecture and the implementation of the services is beyond 
of scope of this work. Our proposal is complementary to these two different efforts 
(work in [25] and the AUTOSAR initiative), since we tackle the reuse and 
maintenance of previously implemented services with the main goal of facilitating the 
handling the variability, in this case, of the driving domain. And we do this by means 
of self-adaptation mechanisms based on SOA and SPL paradigms. 

 
Other Applications. In this work, we have focused on applying the DSPL approach 
to self-adapt the services when is required during the context-aware composition. But, 
as we have mentioned, other applications can be also tackled with our approach, such 
                                                           
8 http://www.autosar.org/ Accessed on 4 February 2013. 



340 J. Cubo et al. 

as service dynamic reconfiguration or evolution. On the one hand, ITS domain is an 
example of systems that should be able to adapt their devices to some context changes 
with minimum human intervention, and so a given kind of dynamic self-adaptation is 
necessary to adapt them to context changes, such as network degradation or sudden 
events. In this sense, DAMASCo uses the DSPL approach by replacing the current 
FM configuration for a new one adapted to the context change, as explained in [26]. 
On the other hand, ITS is also  an outstanding example of a modern system that is in 
permanent evolution, as new devices, technologies or facilities continuously appear. 
This means it is desirable to have a mechanism that helps with the propagation of 
evolution changes in deployed systems. For this task, DAMASCo will use the results 
of our previous work for managing the evolution of product families [23, 24] and 
together with the mapping it will be able to evolve with new components of services 
already deployed. With these two applications, apart from the context-aware 
composition, we demonstrate the wide range of applicability of our approach based on 
SOA and SPL technologies working together.  

6 Conclusions 

In this paper, we have illustrated the need to handle the variability during the service 
composition in pervasive systems. Our proposal to address this challenge is based on 
both SOA and DSPL paradigms. Thus, we extend our DAMASCo framework with 
feature models to represent the variability and to dynamically reconfigure services in 
a safe way according to context change situations. Specifically, we have developed 
two new processes in DAMASCo: a service family discovery and a self-adaptation 
mechanism, which have been described throughout the paper. We have implemented 
our approach in a scenario of the ITS domain, and we have discussed the benefits, 
drawbacks, contributions, and other possible applications it could have. 

As regards future work, we are currently working on the other two applications we 
discussed in the previous section. We plan to define a model-driven process to switch 
from one running service configuration to another by executing a plan in DAMASCo 
in order to self-adapt the services to context changes at runtime. In addition, to 
perform evolution we need to define how modifying or aggregating new behaviour 
(not previously contemplated for the family) into already existing services. 
 
Acknowledgements. Work partially supported by the projects TIN2008-05932, 
TIN2008-01942, TIN2012-35669, TIN2012-34840 and CSD2007-0004 funded by 
Spanish Ministry of Economy and Competitiveness and FEDER; P09-TIC-05231 and 
P11-TIC-7659 funded by Andalusian Government; and FP7-317731 funded by EU. 

References 

1. Erl, T.: Service-Oriented Architecture (SOA): Concepts, Technology, and Design. 
Prentice-Hall, Englewood Cliffs (2005) 

2. Pohl, K., Böckle, G., Linden, F.: Software Product Line Engineering – Foundations, 
Principles, and Technique. Springer, Heidelberg (2005) 



 Composition and Self-Adaptation of Service-Based Systems with Feature Models 341 

3. Krut, R., Cohen, S.: Service-Oriented Architectures and Software Product Lines - Putting 
Both Together. In: Proc. of SPLC 2008, p. 383. IEEE Computer Soc., Los Alamitos (2008) 

4. Cubo, J., Pimentel, E.: DAMASCo: A Framework for the Automatic Composition of 
Component-Based and Service-Oriented Architectures. In: Crnkovic, I., Gruhn, V., Book, 
M. (eds.) ECSA 2011. LNCS, vol. 6903, pp. 388–404. Springer, Heidelberg (2011) 

5. Lee, K., Kang, K.C., Lee, J.: Concepts and Guidelines of Feature Modeling for Product 
Line Software Engineering. In: Gacek, C. (ed.) ICSR 2002. LNCS, vol. 2319, pp. 62–77. 
Springer, Heidelberg (2002) 

6. Hallsteinsen, et al.: Dynamic Software Product Lines. Computer 41(4), 93–95 (2008) 
7. Shen, L., Peng, X., Liu, J., Zhao, W.: Towards Feature-Oriented Variability 

Reconfiguration in Dynamic Software Product Lines. In: Schmid, K. (ed.) ICSR 2011. 
LNCS, vol. 6727, pp. 52–68. Springer, Heidelberg (2011) 

8. Baresi, L., Guinea, S., Pasquale, L.: Service-Oriented Dynamic Software Product Lines. 
Computer 45(10), 42–48 (2012) 

9. Andrews, T., et al.: Business Process Execution Language for Web Services (WSBPEL). 
Systems, IBM, Microsoft, SAP AG, and Siebel Systems (2005) 

10. Scribner, K.: Microsoft Windows Workflow Foundation: Step by Step. Microsoft (2007) 
11. Abu-Matar, M., Gomaa, H.: Variability Modeling for Service Oriented Product Line 

Architectures. In: Proc. of SPLC 2011, pp. 110–119. IEEE Computer Soc., Los Alamitos 
(2008) 

12. Gomaa, H., Hashimoto, K.: Dynamic Software Adaptation for Service-Oriented Product 
Lines. In: Proc. of SPLC Workshops 2011. ACM (2011) 

13. Montero, I., Pena, J., Ruiz-Cortes, A.: From Feature Models to Business Processes. In: 
Proc. of SCC 2008, pp. 605–608. IEEE Computer Soc., Los Alamitos (2008) 

14. Montero, I., Peña, J., Ruiz-Cortes, A.: Representing Runtime Variability in Business-
Driven Development Systems. In: Proc. of ICCBSS 2008, February 25-29, p. 241. IEEE 
Computer Soc., Los Alamitos (2008) 

15. Hallerbach, A., Bauer, T., Reichert, M.: Capturing Variability in Business Process Models: 
The Provop Approach. Journal of Software Maintenance and Evolution: Research and 
Practice 22(6-7), 519–546 (2010) 

16. Parra, C., Blanc, X., Duchien, L.: Context Awareness for Dynamic Service-Oriented 
Product Lines. In: Proc. of SPLC 2009, pp. 131–140 (2009) 

17. Naeem, M., Heckel, R.: Towards Matching of Service Feature Models based on Linear 
Logic. In: Proc. of the 1st Workshop on Services, Clouds, and Alternative Design 
Strategies for Variant-Rich Software Systems (SCArVeS) Co-Located with SPLC 2011 
(2011) 

18. White, J., Strowd, H.D., Schmidt, D.C.: Creating Self-Healing Service Compositions with 
Feature Models and Microrebooting. Int. Journal of Business Process Integration and 
Management 4(1), 35–46 (2008) 

19. Cubo, J., Canal, C., Pimentel, E.: Context-Aware Composition and Adaptation Based on 
Model Transformation. Journal of Universal Computer Science 17(15), 777–806 (2011) 

20. Arnold, A.: Finite Transition Systems. International Series in Computer Science. Prentice-
Hall, Englewood Cliffs (1994) 

21. Batory, D.: Feature Models, Grammars, and Propositional Formulas. In: Obbink, H., Pohl, 
K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005) 

22. Lee, J., Kotonya, G., Robinson, D.: A Negotiation Framework for Service-Oriented 
Product Line Development. In: Edwards, S.H., Kulczycki, G. (eds.) ICSR 2009. LNCS, 
vol. 5791, pp. 269–277. Springer, Heidelberg (2009) 



342 J. Cubo et al. 

23. Gamez, N., Fuentes, L.: Software Product Line Evolution with Cardinality-Based Feature 
Models. In: Schmid, K. (ed.) ICSR 2011. LNCS, vol. 6727, pp. 102–118. Springer, 
Heidelberg (2011) 

24. Gamez, N., Fuente, L.: Architectural Evolution of FamiWare using Cardinality-Based 
Feature Models. Journal of Information and Software Technology 55(3), 563–580 (2013) 

25. Santa, J., Úbeda, B., Gómez-Skarmeta, A.F.: A Multiplatform OSGi Based Architecture 
for Developing Road Vehicle Services. In: Proc. of CCNC 2007, pp. 706–710. IEEE 
Computer Soc., Los Alamitos (2007) 

26. Gamez, N., Fuentes, L., Aragüez, M.A.: Autonomic Computing Driven by Feature Models 
and Architecture in FamiWare. In: Crnkovic, I., Gruhn, V., Book, M. (eds.) ECSA 2011. 
LNCS, vol. 6903, pp. 164–179. Springer, Heidelberg (2011) 



J. Favaro and M. Morisio (Eds.): ICSR 2013, LNCS 7925, pp. 343–355, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Leveraging Reuse-Related Maturity Issues for Achieving 
Higher Maturity and Capability Levels 

Luigi Buglione1,2, Giuseppe Lami3, Christiane Gresse von Wangenheim4,  
Fergal Mc Caffery5, and Jean Carlo Rossa Hauck4 

1 Engineering.IT SpA - Via R. Morandi 32, 00148 Rome, Italy 
2 Ecole de Technologie Superieure (ETS) – Montréal, Canada 
3 ISTI-CNR (Italian National Research Council) – Pisa, Italy 

4 Federal University of Santa Catarina (UFSC), Brazil 
5 Regulated Software Research Group & Lero - Dundalk Institute of Technology, Ireland 

luigi.buglione@eng.it, giuseppe.lami@isti.cnr.it, 
{gresse,jeanhauck}@gmail.com, fergal.mccaffery@dkit.ie 

Abstract. During the past 20 years Maturity & Capability Models (MCMs) 
become a buzzword in the ICT world. Since the initial Crosby’s idea in 1979, 
plenty of models have been created in the Software & Systems Engineering 
domains, addressing various perspectives. By analyzing the content of the 
Process Reference Models  (PRM) in many of them, it can be noticed that 
reuse-related issues have unfortunately often little importance in the appraisals 
of the capabilities of software organizations while in practice they are 
considered as significant contributors in traditional process and organizational 
performance appraisals. While MCMs represent a good mean for assessing the 
status of a set of processes, integrating two or more models with a common area 
of focus can offer more information and value for an organization. The aim of 
this paper is to present some information about Reuse best practices and 
models, keep the best components from each model and – using the LEGO 
(Living EnGineering prOcess) approach to process improvement - merge those 
best practices from several types of maturity models into an organizational 
Business Process Model (BPM) in order to achieve in an easier and faster way 
higher organizational maturity and capability levels. 

Keywords: Maturity & Capability Models (MCM), CMMI, SPICE (ISO/IEC 
15504), Reuse-related issues, Improvement, LEGO approach. 

1 Introduction 

Recently somebody said that the ‘copy & paste’ computer function was one of the 
greatest inventions of last forty years1. It seems just something for kidding, but for 
instance from a human-computer interaction (HCI) viewpoint it was a very common-
sense metaphor from every day reuses practice: copy-paste-edit, moving what yet 

                                                           
1 http://goo.gl/d3hEo 



344 L. Buglione et al. 

exists. In terms of estimation practices, it’d lead to analogous estimation. But 
differently from other practices, reuse was not elevated in the Software Engineering 
studies and guides to the ‘management’ level, as it was something ‘minor’, while it’s 
a fundamental practice and way to manage and plan e.g. product lines. Moreover, 
from a software measurement perspective, for measurers applying a functional size 
measurement (FSM) method such as IFPUG Function Point Analysis (FPA), 
originally reuse was included into one of the so-called GSC (General System 
Characteristics) in the VAF (Value Adjustment Factor), classified within Non-
Functional Requirements (NFRs) and rated with a lower value than the so-called 
FURs (Functional User Requirement), simply contributing to ‘adjusting’ the 
unadjusted FP value (UFP). And being something within the NFR side, it was (and 
still is) more difficult to evaluate and rate it, also from the process side.  

Observing the plenty of ‘maturity models’ appearing on the ICT arena during last 
30 years, there were several ones in well-defined domains such as Project 
Management (e.g. PM3O or PMMM) or Test Management (such as TMMI or TPI), 
but few ones about Reuse2. This just because ‘reuse’ is a keyword for a very wide 
area of action, including – just to name a few – product lines, the organization of 
software factories for thinking and creating ‘objects’ to be shared and continuously 
improved and much more.  

Thus, there is a huge need for any organization to first reinforce the knowledge and 
subsequent application of proper reuse practices and processes (in a broader sense, not 
strictly in the development terms), starting from a ‘functional’ reuse (reusing 
complete chunks of logical data and functionalities for creating new functionalities) 
towards a ‘technical reuse’ (reusing physical parts of existing logical data and 
functionalities for creating new functionalities) within ICT organizations [32]. 
Unfortunately, little efforts have been made to face such a need. 

Right now few studies [21][24][25][28][31] analyzed the way for an evolutionary 
path to reuse, proposing or discussing the idea for ‘reuse maturity models’, often 
compliant with the well-known horizontal models such as SPICE (ISO/IEC 15504) 
[6][7] or CMMI [3][16][17]. But there was no ‘breakouts’ as well as done in other 
specific domains such as Project or Test Management, as previously stated. The aim 
of this paper is to propose a LEGO (Living EnGineering prOcess)3 application for the 
Reuse management area, matching together different reuse-specific processes using a 
four-step process, in order to obtain a comprehensive process to be applied in an 
organization, which could further enable to have on the technical side better estimates 
(the more and better reused, the lowest the effort to produce a new software solution) 
and for the economic side higher ROIs. 

The paper is organized as follows: Section 2 discusses a possible taxonomy of 
MCMs by orthogonality, in order to better understand the possible intersections 
among them. Section 3 proposes a series of specific reuse maturity models and 
frameworks, for extracting any possible element of interest (EoI) for reinforcing a 
typical reuse engineering (horizontal) process. Section 4 summarizes the LEGO 
                                                           
2  To be meant as ISO says as the “use of an asset in the solution of different problems” 

(ISO/IEC 24765:2010 – Systems and Software Engineering Vocabulary). 
3  LEGO is a new approach proposed for helping organizations in building and reinforcing their 

own process models moving from the combination of single items from multiple maturity & 
capability models (MCM). More details on Section 4.1. 



 Leveraging Reuse-Related Maturity Issues 345 

approach, with its main elements and four-step process and shows the deployment of 
LEGO to the Reuse Management process, joining the ISO/IEC 15504 REU process 
area with the EoI from the previously examined reuse models/frameworks. Finally, 
Section 5 provides some conclusions and the next steps for this work. 

2 Maturity and Capability Models (MCMs): Representations 
and Dimensions 

Maturity & Capability Models (MCMs) represent a simple, common-sense 
mechanism for benchmarking entities of interest (EoI) according to established 
criteria. Typically most of those models are structured using five maturity levels, as 
well as in a Likert scale (or by the fingers of a hand). The more mature (or capable) a 
certain organization (or process), the higher the level. The quality of a MCM can be 
perceived from users if the practices for a model are properly distributed in a way to 
do not create any step of the ‘maturity stairway’ too much challenging, but having a 
regular progression and evolution towards higher levels. The further evolution in 
MCM was distinguishing ‘maturity’ and ‘capability’. Maturity is referred to an 
organization, capability to single processes to be run within an organization4. A 
consolidated capability evaluation can be converted to a maturity evaluation (e.g. in 
CMMI there is the so-called ‘equivalent staging’ mechanism [1]. 

2.1 Why Do We Need Choosing a MCM? 

This is why from the release of the Sw-CMM in the early ‘90s, moving from the 
Crosby’s experience [2], plenty of MCM with the same architecture has been 
proposed over the years, with more than 40 models yet in 2003 when the term “MM-
mania” was coined [8]. Since then, new MCM continue to be proposed joining several 
issues (e.g. Agile Methodologies, Architecture, Reuse, Testing, etc.)5. When more 
MCM are available within a certain application domain of interest, some suggested 
criteria for choosing the proper MCM to use for process assessment and improvement 
activities could be to choose the one that has: 

• higher number of missing/improvable elements that we would want to include 
in our Business Process Model (BPM)6; 

• deeper granularity in the definition of processes.   

2.2 Coverage and Classification of MCMs 

In order to make comparisons and mapping among different MCM, a series of 
classifications and taxonomies are needed. For instance, MCM are typically classified by 
their application domains: Software-System Engineering, Security Engineering, 
                                                           
4  Definitions of organizational maturity and process capability can be found in the ISO/IEC 

15504-7 and ISO/IEC 15504-1 respectively. 
5  An updated list of such models is available at:  http://www.semq.eu. 
6  For BPM it must be intended the whole process management system of an organization, 

wider than the solely summation of several PRM from distinct maturity models as CMMI. 



346 L. Buglione et al. 

Usability, etc. Few years ago, we proposed another possible criterion, looking at them in 
terms of orthogonality of the content of their PRM along the project lifecycle [19][20]:  

• Horizontal - some of the MCM have processes that go through the whole supply 
chain, from requirements till their delivery: they could be classified as ‘horizontal’ 
models. Examples of horizontal models in the ICT world are CMMI, ISO 
12207/15504 or the FAA i-CMM [11].  

• Vertical - other MCM focus on a single perspective or process category: they 
could be classified as ‘vertical’ models [9], because going into a deeper detail on a 
specific viewpoint. Examples for the second group includes e.g. TMM [12] or TPI 
[13] in the Test Management domain, and P3M3 [14] and OPM3 [15] in the 
Project Management domain.  

• Diagonal - the third categorization refers to those models whose content is in a 
middle way between Organizational and Supporting processes, and this is referred 
here as diagonal models. People CMM (P-CMM) [4] is an example for such category.  

 
Fig. 1. A classification of Maturity Models  

But the final purpose of an organization is to globally improve its BPM, results and 
performances by higher maturity & capability levels in its practices. And the usage of 
a single MCM, no matter if quite comprehensive, cannot be the final solution by a 
mean to achieve the desired outcomes: more MCM should be selected and joined, 
according to the organization’s needs, maturity and capability levels at a certain 
moment in time. Nonetheless it would be shared thought7, no practical ways to put it 
into practice have been suggested right now.  

3 Reuse-Related Issues in Typical Horizontal MCMs 

A question to pose is: are reuse-related issues adequately considered and evaluated in 
the overall context of a process improvement initiative with the current MCMs for 
                                                           
7  E.g. SEI’s PRIME (http://www.sei.cmu.edu/prime/) initiative or this 2008 SEI’s 

study. 



 Leveraging Reuse-Related Maturity Issues 347 

Software & Systems Engineering? Now it’s time to take into account two of the most 
popular MCMs for Software & System Engineering in order to discuss the extent they 
address reuse-related issues: CMMI-DEV and ISO/IEC 15504 standard. We are 
moving from the two more known horizontal MCMs (H-MCM) because in such way 
it’s possible to have a value-chain view, using ‘reuse’ as part of the whole picture and 
not as a detail to be analyzed separately. While CMMI includes a specific Process 
Reference Model (PRM), the ISO/IEC 15504 standard does not. In fact, ISO/IEC 
15504 gives (in its Part 2) just a set of requirements to define a compliant PRM (i.e. a 
PRM having the needed characteristics to be applied in the assessment and 
improvement mechanism the standard itself provides). However, the ISO/IEC 12207 
standard [10] provides a PRM for software that has been defined in a compliant way 
as respect the requirements defined in ISO/IEC 15504. Thus, it is not surprising that 
in the practice the ISO/IEC 12207 PRM is widely used in the application of the 
ISO/IEC 15504 standard. For these reasons, in the following of this paper we will use 
the term ISO15504-12207 to refer to the ISO/IEC 15504 standard for Process 
Capability Determination and Improvement + the compliant PRM defined in the 
ISO/IEC 12207 standard. Table 1 presents a summary of some of the reuse-related 
issues included in those two maturity models. The first evidence is that reuse is not 
addressed by these two PRM in the same way. In fact, the CMMI does not include 
any Process Areas directly addressing reuse issues but only a couple of practices in 
Technical Solution (TS) process area; on the contrary the ISO/IEC12207/15504 
provides a process group on reuse composed of three processes (REU processes). 
Moreover it is possible to observe that reuse-related issues are mostly present as 
appraisal criteria rather than in terms of single processes capability/maturity 
indicators in the respective PRM.  

Table 1. Reuse-related issues in CMMI-DEV and ISO models 

Model CMMI-DEV ISO 15504/12207 

Domain Sw-SE Sw-SE 

PRM (source) CMMI-DEV v1.3 ISO/IEC 12207  

PRM (no. processes) 22 47 

Process Categories 4 (Engineering, Process, 
Project, Support) 

9 (Primary: Acquisition, 
Supply, Operation, Engineering; 
Organizational: Management, 
Reuse, Resource & Infrastructure, 
Process Improvement 
Management; Support: Supporting)  

PRM reuse-related 

processes 

None (Reuse practices are 

partly dealt with ) 

3 (REU.1 Domain 
Engineering; REU.2 Reuse 
Assets Management; REU.3 
Reuse Program Management) 

PAM ext. appraisals SCAMPI v1.3 [5] ISO/IEC 15504-2  [6] 
ISO/IEC 15504-5  [7] 

PAM reuse-related 

issues 

TS-SP-2.1 (Develop 
Alternative Solutions and 
Selection Criteria) 

TS-SP-2.4 (Perform Make, 
Buy or Reuse Analyses) 

26 REU.1, REU.2, REU.3 
related BPs 



348 L. Buglione et al. 

Starting from the information provided in Table 1, we can discuss in more detail 
the way CMMI and ISO15504-12207 address reuse-related issues both form the 
process definition and the appraisal/evaluation side.  

While the CMMI, on the process side, does not include any direct reference to 
reuse-related issues, the ISO15504-12207, because it includes three processes directly 
addressing reuse, covers the principal aspects reuse implies both from a technical and 
managerial viewpoint. In particular, the processes included into the Software Reuse 
Group are: Domain Engineering process (aimed at developing and maintaining 
domain models, domain architectures and assets for the domain), Reuse Assets 
Management process (aiming at managing the life of reusable assets from their 
conception to retirement), and Reuse Program Management (aiming at planning, 
establishing, managing, controlling, and monitoring the organization’s reuse program 
and systematically exploiting reuse opportunities).  

On the appraisal side, CMMI presents the Specific Practice 2.4-3 “Perform Make, 
Buy, or Reuse Analyses” associated to the Specific Goal SG3 “Implement the Product 
Design” of the Technical Solutions (TS) Process Area. Also the Specific Practice 2.1-
1 “Design the Product or Product Component” associated to the Specific Goal SG1 
“Select Product-component Solutions”” of the same Process Area, addresses, but only 
in an indirect way, reuse. 

The 26 Base Practices (i.e. process performance indicators) associated to the three 
reuse-specific processes represent the way reuse is referred by ISO15504-12207 from 
the appraisal viewpoint. Nevertheless, because according to the ISO/IEC 15504 
scheme the Base Practices cannot be used as Capability Indicators, from a 
Capability/Maturity perspective such a standards doesn’t take into account reuse as an 
indicator of Process Maturity for the overall software process (to be intended as 
composed of a sub-set of the processes provided by the PRM). 

On the basis of the previous considerations, reuse-related issues aren’t adequately 
considered and evaluated in the overall context of a process improvement initiative 
according to the two principal MCMs for Software & Systems Engineering 
considered. Therefore two main possibilities arise for improving the reuse-side of the 
organization: 

• Setting up and managing distinct appraisal initiatives for the different domains of 
interests (with their related PRM) and after coordinating results for a common, 
improvement plan within the organizational BPM scope; 

• Managing a single appraisal initiative, merging before the process elements into a 
single PRM.  

Thus, we started to explore what was produced during last past 20 years in terms of 
MCMs on Reuse, summarizing the most relevant information in Table 2. 

 
 
 
 
 
 



 Leveraging Reuse-Related Maturity Issues 349 

Table 2. Some Reuse Models/Frameworks 

Model/ Framework Repr. Type ML (#) 
Architect-

Type 
Comments/Notes 

[21] RCMM (Reuse CMM) Staged 5 [1-5] Level-based 
--- 

[22] Management tool Staged 6 [0-5] Level-based Series of typical agile reqs 
verified + 14 BTOPP 

elements for reusing factors 
[23] REBOOT approach (and 
Reuse Maturity Model) 

Continuous --- --- 23 Key process areas in 5 
process categories 

[26]  RMM (Reuse Maturity 
Model) 

Staged 
5 [1-5] 

Matrix-based 5 MLs, 10 key reuse drivers 

[27] 3RMM Staged 
5 [1-5] 

Level-based Several scalability factors 
and reuse variables 

[29] RCM (Reuse Capability 
Model) 

Staged 
4 [1-4] 

Level-based 4 Critical Success Factor 
Classes for reuse capability 

improvement provided 
[30] RMM (Reuse Maturity 
Model) 

Staged 
6 [1-6] 

Level-based Suggestions for integrating 
reuse practices within the 

(old) Sw-CMM 
[35]  Lim’s model Staged 

5 [1-5] 
Matrix -

based 
10 factors of influence 

(drivers) 

[18] RiSE Maturity Model  
Staged 

5 [1-5] 
Matrix-based Macro-goals for each level; 

10 Factors of influence 
(organizational; business, 
technological; process) 

4 Experiencing LEGO to Reuse Management 

4.1 The LEGO Approach 

Recently a common-sense approach, called LEGO (Living EnGineering prOcess) 
[33] was proposed for stimulating organizations to improve their own processes, taking 
pieces (such as the real LEGO bricks) from multiple, potential information sources to 
be integrated to  form a unique, reinforced picture for a particular process or set of 
processes. The starting point – for this paper – is that any model/framework can 
represent only a part of the observed reality, not all of its possible views, simply 
because it needs to represent one single viewpoint at a time. Thus, through handling 
similar elements from different sources, we can hopefully find more ‘fresh blood’ for 
improving the organizational processes. LEGO has four main elements, as shown in 
Figure 2:  

 

Fig. 2. The four elements of the LEGO approach 



350 L. Buglione et al. 

1. a ‘Maturity & Capability Models’ (MCM) repository (www.gqs.ufsc.br/mcm), 
from relevant processes or MCMs (meaning also the other dimensions – not yet 
the process dimension) can be identified;   

2. knowledge about the process architecture of each model, for understanding how to 
transform desired elements  from a certain model into the target format, especially 
when considering that the source models may have different architectures that 
need to be integrated into a single model; 

3. mapping(s) & comparisons between relevant models, in order to understand the real 
differences or the deeper level of detail from ‘model A’ to import into  ‘model B’;  

4. a process appraisal method (PAM) to be applied on the target BPM (Business 
Process Model). 

LEGO has also a related four-step process: 

1. Identify your informative/business goals: clearly identify your needs, moving 
from the current BPM version and content. 

2. Query the MCM repository: browse the MCM repository, setting up the proper 
filters in order to obtain the desired elements (processes; practices; etc.) to be 
inserted in the target BPM. 

3. Include the selected element(s) into the target BPM: include the new 
element(s) in the proper position in the target BPM (e.g. process group, maturity 
level, etc.).  

4. Adapt & Adopt the selected element(s): according to the process architecture of 
both process models (the target and the source one), the selected elements may 
need to be adapted, tailoring such elements as needed.   

4.2 Applying LEGO to Reuse 

One of the main requirements for improving estimates saving time by building more 
consistent systems is to reinforce the management of reuse practices from an overall 
viewpoint, from their elicitation through to the day-to-day management, as shown 
from a long time e.g. by QIP [34]. 

The focus of this work is exclusively on external models as opposed to actual 
(living and active) organizational practices, so that any reader can easily access to the 
original sources and fully understand the LEGO process, that could (eventually, if 
interested) be replicated in his/her own organization through forward moving from 
their existing organizational Business Process Model (BPM). Our aim is to show how 
to hybridize ideas for obtaining a better and more comprehensive final result. Thus, 
we list the preconditions, process and main results from the application of the LEGO 
process to the Software Reuse domain, in order to propose a better process that may 
be applied in an organization:  

1. Identify your informative/business goals: Improve the estimation capability and 
results by a refinement in the overall management of requirements (business, 
technical): 

2. Query the MCM repository: In this paper we consider a sub-set of the ISO/IEC 
12207 reuse-related processes (i.e. belonging to the REU process Group) as the 
baseline for working upon, adding eventual practices from the other Reuse-related 



 Leveraging Reuse-Related Maturity Issues 351 

models/frameworks listed in Table 1. After a detailed analysis, we discarded some 
of the above presenting models, in particular [21], proposing only a high-level 
staged path with no detailed elements, focusing on the remaining ones. Table 3 
proposes the list of potential elements of interest (EoI) to consider for improving 
ISO/IEC 12207 reuse-related processes. 

Table 3. Reuse Maturity & Capability Models (MCM): Elements of Interest 

Model/ 
Framework 

Elements of Interest (EoI) 
 

Management 
Tool 

• The study considers a series of characteristics typical to the Agile Developmernt/Management 
domain 

• It considers also from a continuous perspective a Level 0 for ‘no reuse’ 
• It considers 15 reuse factors linked to the maturity levels by categories (business; domain; 

organizational; process; people; technology) 
• Appendix G presents a mapping between the 15 factors and CMMI-DEV process areas 

(w/strength) 
• Appendix H presents a summary of the 15 factors scaled by maturity level (suggestion) 

REBOOT Reuse 
Maturity Model 

• Deal with organizational and technical aspects of reuse 
• 23 Key process areas in 5 categories (organization; Project Management; Dev. Process; Library; 

Metrics) 
RMM   • 10 key drivers considered, using a matrix-based representation/approach 

• Particularly stressed the people/organization drivers, as well as the legal/contractual issues 
• To be inserted into a level-based structure  

3RMM • Information on Environments (Repository, Software, Information) + Administrative 
Management 

RCM • 21 Critical Success Factors corresponding to issues most critical to improving reuse capability 
• Intended for self-assessment and planning purposes 

Lim’s model • Particular attention to the following factors 
o Motivation/culture; planning for reuse; metrics; legal issues; reuse inventory (assets)  

RiSE Maturity 
Model 

• Representation of the influence factors using a matrix-based view, retrieving also from past 
experiences and models 

• Particular interest for the following factors:  
o Organization (Software reuse education, Rewards and Incentives; Independent team) 
o Business (Product family approach) 
o Technology (Repository system usage) 
o Processes (Quality Models, Measurement, Origin of the reused asset) 

 
3. Include the selected element(s) into the target BPM: Looking at the analysis of 

potential EoI in Table 3. The main improvements/suggestions seem to be mainly 
associated with the REU processes. Table 4 shows how our suggestions were 
introduced in the current REU processes, describing a new possible improved 
process that may be mapped against your own QMS internal process(es) covering 
that subject. The solely REU.1 process was not taken into account because its 
purpose, having very few details to be improved observing the reuse models listed 
above in previous table. 

4. Adapt & Adopt the selected element(s): After adapting the original REU 
processes, as shown in the previous table, it should be mapped against the related 
QMS internal process covering that subject. Since many organizations adopt an 
ISO management system (e.g. ISO 9001:2008), a cross-check for validating 
potential improvements from the design phase could be achieved through re-
applying the related mapping document to their own internal process (e.g. using the 
N/P/L/F – Not/Partially/Largely/Fully achieved ordinal scale from CMMI or  
 



352 L. Buglione et al. 

Table 4. Two ISO/IEC 15504 reuse-related processes: suggestions for improvements 

ISO/IEC 15504 REU 
processes 

Suggested Improvements 

REU.2 Reuse Asset Management 

 BP 01 - Define and document an 
asset management strategy 

• People-related aspects, as necessary skills and experience, are to be addressed 
in the asset management strategy [Management Tool – Factor 2] 

• The asset management strategy should consider and differentiate the aspects 
related to the asset development for reuse respect to those related to asset 
development with reuse [REBOOT] 

 BP02 - Establish a classification 
scheme for assets 

• The integration between the asset classification scheme and the Configuration 
Management rules is to be addressed [Management Tool – Factor 10] 

 BP 03 - Define criteria for assets • Possible measurements, to be used as a basis for the definition of criteria for 
assessment, are to be identified and documented  [RiSE MM – Process Factors; 
RCM] 

• The determination of asset value should be the basis for the criteria definition 
[RCM] 

 BP04 - Establish the asset storage 
and retrieval mechanisms 

• The technology support for storage and retrieval is to be defined [RiSE MM - 
Technological Factors] 

 BP 05 - Identify reusable assets. • The integration between the asset identification and the Configuration 
Management rules is to be defined [Management Tool – Factor 10] 

  BP06  - Accept reusable assets • The technological support for classification and record of assets as well as for 
their provision to the intended users is to be addressed [Management Tool – 
Factor 13; RiSE MM -Technological Factors] 

• Assets integrability is an issues to be addressed [RCM] 
 BP 07 - Operate asset storage • The technological support for storage of assets is to be addressed [Management 

Tool – Factor 13; RiSE MM -Technological Factors] 
  BP08  - Record use of assets • - 

 BP 09 - Notify re-users of asset 
status 

• The notification should rely on established communication channels and an 
adequate organizational support [Management Tool – Factor 4 and 15] 

  BP10  - Retire assets • The technical aspects of the withdrawal from the repository are to be addressed 
[Management Tool – Factor 13] 

REU.3 Reuse Program Management

BP 01 - Define organizational 
reuse strategy 

• The top management support is to be explicitly given at organizational reuse 
strategy definition time [Management Tool – Factor 2] 

• People-related aspects, as necessary skills and experience, are to be addressed 
in the reuse strategy [Management Tool – Factor 2] 

• The organizational reuse strategy should consider and differentiate the aspects 
related to the asset development for reuse as respect to those related to asset 
development with reuse [REBOOT] 

• The reuse organizational reuse strategy should indicate whether and at what extent 
the product Families approach is adopted [RiSE MM – Business Factors] 

• The training and education initiatives and activities should be included within 
the reuse program items [RiSE MM – Business Factors] 

BP 02 - Identify domains for 
potential reuse 

• - 

BP 03 - Assess reuse capability • The assessment of the reuse capability of the organization should include cost 
benefits analysis [Management Tool – Factor 6] 

BP 04 - Assess domains for 
potential reuse 

• A measurement scheme should be provided to support of the evaluation of the 
level of similarities among products in a certain domain [Management Tool 
MM – Factor 1] 

BP 05 - Evaluate reuse proposals • A measurement scheme should be provided to support of the evaluation of 
suitability of reusable items [RiSE MM – Process Factors; RCM] 

BP 06 - Implement the reuse 
program 

• --- 

BP 07 - Collect and manage 
learning 

• Details on the way learning is stored in the repository are to be provided 
[Management Tool – Factor 13] 

• The integration between the learning storage and the communication channels for 
spreading such a knowledge is to be addressed [Management Tool – Factor 4] 

BP 08 - Get feedback from reuse • Communication tool support is to be addressed [Management Tool – Factor 15] 

BP 09 - Monitor reuse • Monitoring is to be included in the reuse planning [Management Tool – Factor 
5; RiSE MM – Organizational Factors] 



 Leveraging Reuse-Related Maturity Issues 353 

SPICE). In our case, moving from CMMI-DEV, it could be used the Mutafeljia & 
Stromberg’s mapping [36] as a basis. In this paper, our focus was limited to only 
the design phase. However, a case study with the application of the hybrid-REU 
processes will be included in a future paper.  
 

The EoI presented in Table 3 as well as the included elements respect the BPs of the 
REU.2 and REU.3 processes provided in Table 4 are not to be considered exhaustive. 
These two tables are on the contrary to be considered as a starting point for the 
application of the LEGO approach in practice. 

5 Conclusions and Prospects 

Software reuse is the process aimed at defining a set of systematic operating 
procedures to specify, produce, classify, retrieve, and adapt software artifacts for the 
purpose of creating software systems from them. Even if there are many existing 
reuse management models and frameworks, each one represents only one possible 
view of the inner reality that would be captured and reused: the ‘one size doesn’t fit 
all’ motto could be rephrased as ‘one model doesn’t fit all’. Thus, at least 2 (or more) 
models/frameworks should be considered for improving your own processes 
(whatever they are), in the areas/issues needed. 

In order to cope with this need, we recently proposed LEGO (Living EnGineering 
prOcess) as an open approach for improving the processes of a business process 
model (BPM), based upon the comparative analysis of the process architecture and 
elements of several concurrent models within a certain domain. Since estimation is 
one of the key processes for determining the success of an organization, we applied 
LEGO to Reuse, practices with the aim to improving the current ISO/IEC 15504 REU 
processes by integrating it with other reuse-related maturity models. The final result 
was the design of a more encompassing hybrid-REU processes that could help 
organizations to improve their estimates from the beginning of the value chain as well 
as their construction practices, in order respectively to save time and create more 
consistent systems.    

In the future, we will  apply this hybrid-REU processes to real case studies, 
proposing it as the meta-model to be used for the performing the initial gap analysis 
against the organizations’ BPM related processes as part of  an improvement 
initiative. Another action will be to refine the search of further reuse MMs, trying to 
catch information also related to ISO 15504 Process Attributes (PAs) and not only 
Base Practices (BPs), as initially done in this paper (e.g. some technological element 
supporting better performances). 

 

‘Creativity is allowing yourself to make mistakes.   
Art is knowing which ones to keep, 

Scott Adams (1957-) 
 
Acknowledgements. This work has been also supported by the CNPq (Conselho 
Nacional de Desenvolvimento Científico e Tecnológico – www.cnpq.br), an entity of 
the Brazilian government focused on scientific and technological development. 



354 L. Buglione et al. 

This research is supported in part by the Science Foundation Ireland (SFI) Stokes 
Lectureship Programme, grant number 07/SK/I1299, the SFI Principal Investigator 
Programme, grant number 08/IN.1/I2030 (the funding of this project was awarded by 
Science Foundation Ireland under a co-funding initiative by the Irish Government and 
European Regional Development Fund), and supported in part by Lero 
(http://www.lero.ie) grant 10/CE/I1855.  

References 

[1] Constant, D.: Re: CMMI Representations, which one is the better? Yahoo SPI Mailing 
List (February 10, 2004), http://goo.gl/5uhAP 

[2] Crosby, P.B.: Quality is free. McGraw-Hill (1979) ISBN 0-451-62585-411 
[3] CMMI Product Team, CMMI for Development, Version 1.3, CMMI-DEV v1.3, 

Continuous Representation, CMU/SEI-2010-TR-033. Technical Report, Software 
Engineering Institute (November 2010) 

[4] Curtis, B., Hefley, W., Miller, S.: People Capability Maturity Model (P-CMM) Version 
2.0. 2/ed, CMU/SEI-2009-TR-003, Maturity Model, Software Engineering Institute (July 
2009), http://goo.gl/2p0M8 

[5] SEI, Standard CMMI Appraisal Method for Process Improvement (SCAMPI), version 
1.3: Method Definition Document, Software Engineering Institute, Handbook, CMU/SEI-
2011-HB-001 (March 2011), http://goo.gl/18IAX 

[6] ISO/IEC, IS 15504-2: Information technology – Process assessment – Part 2: Performing 
an assessment (October 2003) 

[7] ISO/IEC, IS 15504-5: Information technology – Process Assessment – Part 5: An 
exemplar Process Assessment Model (March 2006) 

[8] Copeland, L.: The Maturity Maturity Model (M3). Guidelines for Improving the Maturity 
Process, StickyMinds (September 2003), http://goo.gl/MgUS2 

[9] Abran, A., Moore, J.W., Bourque, P., Dupuis, R., Tripp, L.T.: Guide to the Software 
Engineering Body of Knowledge (SWEBOK) 2004 Version. IEEE (2004), 
http://goo.gl/OhLDp 

[10] ISO/IEC, IS 12207: Information technology – Software Life Cycle processes (2008)  
[11] Ibrahim, L., Bradford, B., Cole, D., LaBruyere, L., Leinneweber, H., Piszczech, D., Reed, 

N., Rymond, M., Smith, D., Virga, M., Wells, C.: The Federal Aviation Administration 
Integrated Capability Maturity Model, (FAA-iCMM), Version 2.0. An Integrated 
Capability Maturity Model for Enterprise-wide Improvement, FAA (September 2001) 

[12] Burnstein, I., Homyen, A., Grom, R., Carlson, C.R.: A Model to Assess Testing Process 
Maturity, Crosstalk. The Journal of Defense Software Engineering, 26–30 (November 
1998), http://goo.gl/xg8zF 

[13] Koomen, T., Pol, M.: Test Process Improvement: a Practical Step-by-Step Guide to 
Structured Testing. Addison-Wesley (1999) ISBN 0-201-59624-5 

[14] OGC, P3M3: Portfolio, Programme & Project Management Maturity Model, Version 1.0, 
Office of Government Commerce (February 2006), http://goo.gl/tTbq9 

[15] PMI, Organizational Project Management Maturity Model (OPM3), Knowledge 
Foundation, Project Management Institute, 2nd edn. (2008) 

[16] CMMI Product Team, CMMI for Service, Version 1.3, CMMI-SVC v1.3, CMU/SEI-
2010-TR-034. Technical Report, Software Engineering Institute (November 2010) 

[17] CMMI Product Team, CMMI for Acquisition, Version 1.3, CMMI-ACQ v1.3, CMU/SEI-
2010-TR-032, Technical Report, Software Engineering Institute (November 2010) 



 Leveraging Reuse-Related Maturity Issues 355 

[18] Cardoso Garcia, V., Lucredio, D., Alvaro, A., Santana de Almeida, E.: Towards a 
Maturity Model for a Reuse Incremental Adoption. In: SBCARS 2007, Brazilian 
Symposium on Software Components, Architectures and Reuse,  
http://goo.gl/DVHP9 

[19] Buglione, L.: Leveraging people-related maturity issues for achieving Higher Maturity & 
Capability Levels. In: Proceedings of IWSM/MENSURA 2009, Amsterdam, Netherlands, 
November 4-6, pp. 35–47 (2009) 

[20] Buglione, L.: Maturity Models: modelli esclusivi o integrabili?, Qualità On-Line, Rivista 
dell’AICQ (Novembre 2007), http://goo.gl/5xvKQ 

[21] Jasmine, K.S., Vasanth, R.: A New Capability Maturity Model For Reuse Based Software 
Development process. IACSIT International Journal of Engineering and Technology 2(1) 
(February 2010), http://goo.gl/1KE18 

[22] Spoelstra, W.: Reusing software assets in agile development organizations - a 
management tool: a case at a medium sized software development organization. 
University of Twente, Netherlands. Thesis (2010),  
http://essay.utwente.nl/59917/ 

[23] Sindre, G., Conradi, R., Karlsson, E.A.: The REBOOT Approach to Software Reuse, 
Journal of Systems & Software (JSS). Special Issue on Software Reuse 30(3), 201–212 
(1995), http://goo.gl/Sa2Eo 

[24] Frakes, W., Terry, C.: Software Reuse: Metrics and Models. ACM Computing 
Surveys 28(2) (June 1996), http://goo.gl/6mBR4 

[25] Reuse Research Center, Software Reuse Fundamentals, Presentation,  
http://goo.gl/OYWHt 

[26] Koltun, P., Hudson, A.: A Reuse Maturity Model. In: WISR4 4th Workshop on 
Institutionalizing Software Reuse, Center for Innovative Technology, Reston, Virginia, 
USA (November 1991) 

[27] Lloréns, J., Fuentes, J.M., Prieto-Diaz, R., Astudillo, H.: Incremental Software Reuse. In: 
Morisio, M. (ed.) ICSR 2006. LNCS, vol. 4039, pp. 386–389. Springer, Heidelberg (2006) 

[28] Basset, P.G.: The Theory and Practice of Adaptive Reuse. In: Symposium on Software 
Reusability (SSR 1997). ACM, Boston (1997) 

[29] Davis, T.: The reuse capability model: a basis for improving an organization’s reuse 
capability. In: Proceedings of the Second International Workshop on Software 
Reusability, Herndon, VA (1993) 

[30] Griss, M.L.: CMM as a Framework for Adopting Systematic Reuse. Object Magazine, 
60–62, 69 (1998), http://goo.gl/k0iXI 

[31] Mandava Kranthi, K., Konda, B.M., Thammi Reddy, K., Ravi Kiran, B., Vindhya, A.: A 
Systematic Mapping Study on Value of Reuse. International Journal of Computer 
Applications (0975 – 8887) 34(4), 37–44 (2011), http://goo.gl/3oEpm 

[32] GUFPI-ISMA, Linee Guida per l’uso Contrattuale dei Function Point, Documento 
Tecnico 2006-01, Gruppo Utenti Function Point Italia – Italian Software Metrics 
Association (June 2006) 

[33] Buglione, L., Gresse von Wangenheim, C., Hauck, J.C.R., McCaffery, F.: The LEGO 
Maturity & Capability Model Approach. In: Proceedings of the 5th World Congress on 
Software Quality, Shanghai, China (October 2011) 

[34] Basili, V.R., Caldiera, G., Rombach, H.D.: The Experience Factory. In: Marciniak, J.J. 
(ed.) Encyclopedia of Software Engineering, vol. 1, pp. 469–476. John Wiley & Sons, 
Inc. (1994), http://goo.gl/DZIlU 

[35] Lim, W.C.: Managing Software Reuse, 1st edn. Prentice-Hall, ISBN 9780135523735 
[36] Mutafeljia, B., Stromberg, H.: Process Improvement with CMMI v1.2 and ISO Standards. 

Auerback Publications (2008), http://goo.gl/BFUqq 



J. Favaro and M. Morisio (Eds.): ICSR 2013, LNCS 7925, pp. 356–359, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Appendix: ICSR 2013 Workshop Summaries 

Davide Falessi* 

Fraunhofer Center for Experimental Software Engineering, USA 
dfalessi@fc-md.umd.edu 

Abstract. ICSR 2013 hosted three co-located workshops, whose subject matter 
ranged from fundamental issues such as the measurement of component reusa-
bility to more specific issues within the scope of the conference theme of safe 
and secure reuse. This appendix summarizes the purpose and organization of 
the workshops and provides the interested reader with indications for further in-
teraction with the organizers and participants. 

International Workshop on Designing Reusable 
Components and Measuring Reusability 

Chairs: Reghu Anguswamy and William B. Frakes 

Software Reuse Laboratory, Department of Computer Science, Virginia Tech.   
reghu@vt.edu, frakes@cs.vt.edu 

http://www.nvc.cs.vt.edu/ICSRworkshop-DReMeR-13/index.html 

Component-based software engineering (CBSE) has been a direct result of advances 
in software reuse over the past three decades. Designing software components for 
future reuse has been an important area in software engineering. The success of CBSE 
depends on how successfully a user integrates reusable components into a system. 
Practitioners and researchers need to address the problem of how to build reusable 
components. Non-reusability of found components is a major obstacle to the success 
of software reuse. Hence, design principles for building reusable components are 
necessary. There is no generally accepted list of reuse design principles that are inde-
pendent of language and domain. In a previous workshop two decades ago [1], design 
principles for designing reusable components were identified. An objective of this 
workshop is to update the list with current design principles. 

Reusability of a software component is the degree to it can be reused. It has been iden-
tified in the past that measuring reusability is a challenge [2]. According to Frakes and 
Kang [3], research is needed to identify and validate measures of reusability, including 
good ways to estimate the number of potential reuses. The reuse working group of 
NASA: NASA Earth Science Data Systems (ESDS) Software Reuse Working Group, 
has introduced and implemented the reuse readiness levels (RRLs) which looked into the 
                                                           
* ICSR 2013 Workshop Chair. 



 Appendix: ICSR 2013 Workshop Summaries 357 

potential readiness of reusing software artifacts [4, 5]. However, they have also identified 
the need for further research in measuring and validating metrics for software reusability. 
Another objective of the workshop is to assess the current status and deliberate on the 
future roadmap for developing metrics to measure software reusability. 
 

1. Frakes, W.B., Lea, D.: Design for Reuse and Object Oriented reuse Methods. In: Sixth 
Annual Workshop on Institutionalizing Software Reuse (WISR 1993), Owego, NY (1993) 

2. Frakes, W., Terry, C.: Software reuse: metrics and models. ACM Computing  
Surveys 28(2), 415–435 (1996) 

3. Frakes, W.B., Kang, K.C.: Software reuse research: status and future. IEEE Transactions 
on Software Engineering 31(7), 529–536 (2005) 

4. Marshall, J.J., Downs, R.R.: Reuse Readiness Levels as a Measure of Software Reusability. In: 
IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2008 (2008) 

5. Mattmann, C.A., et al.: Reuse of software assets for the NASA Earth science decadal sur-
vey missions. In: 2010 IEEE International Geoscience and Remote Sensing Symposium, 
IGARSS (2010) 

_______________________________________________________ 

 

3rd International Workshop on Security  
and Dependability for Resource Constrained  

Embedded Systems 

Chairs: Brahim Hamid  and Carsten Rudolph 

IRIT- University of Toulouse , Fraunhofer Institute for Secure Information Technology SIT   
brahim.hamid@irit.fr, carsten.rudolph@sit.fraunhofer.de 

www.irit.fr/SD4RCES/SD4RCES13/ 

Resource constrained embedded systems (RCES) refers to systems which have mem-
ory and/or computational processing power constraints. They can be found literally 
everywhere, in many application sectors such as automotive, aerospace, and home 
control.  In addition, they have different form factors, e.g. standalone systems, peri-
pheral subsystems, and main computing systems. Computing resources of RCES, e.g. 
memory, tasks, and buffers, are generally statically determined. The generation of 
RCES therefore involves specific software building processes. These processes are 
often error-prone because they are not fully automated, even if some level of automat-
ic code generation or even model-driven engineering support is applied. Furthermore, 
many RCES also have assurance requirements, ranging from very strong levels in-
volving certification (e.g. DO178 and IEC-61508 for safety-relevant embedded sys-
tems development) to lighter levels based on industry practices.  

RCES are becoming increasingly complex and have various communication  
interfaces. Therefore, they have to be seen in the context of bigger systems or com-
plete infrastructures. Consequently, their non functional requirements such as security 
and dependability (S&D) become more important as well as more difficult to achieve. 
The integration of S&D requires the availability of both application expertise and 



358 D. Falessi 

S&D expertise at the same time. In fact, S&D could also require both specific security 
expertise and specific dependability expertise. Most organizations developing RCES 
have limited S&D expertise.  

The objective of this workshop is to foster the exchange of ideas among practition-
ers, researchers and industry involved in the deployment of secure and dependable 
resource-constrained embedded systems. Special emphasis will be devoted to promote 
discussion and interaction between researchers and practitioners focused on the  
particularly challenging task of efficiently integrating security and dependability solu-
tions within the restricted available design space for RCES. Furthermore, one impor-
tant focus is on the potential benefits of the combination of model-driven engineering 
with pattern-based representation of security and dependability solutions. Of particu-
lar interest is the exchange of concepts, prototypes, research ideas, and other results 
which contribute to the academic area and also benefit business and industrial com-
munities. Some of the topics that we seek to include in the workshop are related to the 
development of models and tools to support the inclusion of S&D issues into the 
RCES engineering process.  

_______________________________________________________ 

 

Critical Software Component Reusability and 
Certification across Domains 

Chairs: Silvia Mazzini1 and Tullio Vardanega2 

1Intecs S.p.A. and 2University of Padova 
silvia.mazzini@intecs.it, tullio.vardanega@math.unipd.it 

http://www.intecs.it/CSC2013/ 

1 Introduction and Workshop Goal 

This workshop addressed the interaction between component-based software reuse 
and safety, together with its implications on certification. Safety concerns the preven-
tion of accidents, and can be characterized as an "emergent property that arises at the 
system level when components are operating together". Systematic reuse of software 
components in critical environments would benefit from a solid and rich certification 
framework. Compositional certification is a challenging approach currently under 
study to standardize and promote software components reuse. When safety is at stake, 
cross domain reuse and certification become particularly complex and challenging 
issues: paving the way for a suitable certification framework requires a thorough dis-
cussion among all stakeholders. 

The goal of the workshop was to determine which aspects of component reuse affect 
safety, and to what extent cross domain reuse can have an impact on safety issues and 
composition. Component certification and safety parameters must be considered from a 
cross-domain point of view in order to gain the maximum benefit from the definition of a 



 Appendix: ICSR 2013 Workshop Summaries 359 

suitable certification paradigm. The workshop aimed to bring together practitioners from 
software reuse and certification domains to exchange experience, discuss current and 
emerging problems, and construct an agenda for future work in this area. 

2 Topics of Interest 

• How can safety-related aspects of components be specified? 

• How is reuse currently addressed in the safety international standards? 

• What are the legal aspects of reuse and safety? 
• To what extent can software reuse be based on already established (certi-

fied) properties? 

• How can we enable composable qualification and certification of software 
across domains? 

• What new processes could be defined to ensure components that are certi-
fiable across domains? 

• Reuse of proven software components may increase reliability, but has lit-
tle or no effect on safety 

• Specific hazards of new implementation may not have been considered. 

3 Related Projects 

These topics are important key-points for a number of projects that contributed to the 
definition of the workshop’s subject and objectives and actively participated in the 
debate sharing their valuable know-how and posing challenging questions. To men-
tion some of the main involved projects: 

 
• OpenCoss (http://www.opencoss-project.eu) 

• SafeCer (http://www.safecer.eu) 

• Concerto (ARTEMIS Call 2012: Guaranteed Component Assembly with 
Round Trip Analysis for Energy Efficient High-integrity Multi-core Systems) 

• TCrest (http://www.t-crest.org)  

• SESAMO (http://www.sesamo-project.eu) 

Acknowledgements. The workshop chairs thank the Program Committee members 
for their valuable input and participation: Sasikumar Punnekkat, MDH, Sweden; Mi-
chel Chaudron, Chalmers & Gothenborg University, Sweden; Ivica Crnkovic, MDH, 
Sweden; Tim Kelly, University of York, United Kingdom; Thomas Vergnaud, Thales 
Communications & Security, France; Huascar Espinoza, TECNALIA, Spain; Marc 
Born, ikv++ technologies ag, Germany; Alain Rossignol, ASTRIUM Satellites SAS, 
France; Jean-Loup Terraillon, ESA/ESTEC, The Netherlands; Paul Arberet, Centre 
National d'Etudes Spatiales, France. 



Author Index

Alencar, Paulo 176
AL-Msie’deen, Ra’Fat 302
Andreou, Andreas 267
Anguswamy, Reghu 224
Asaithambi, Suriya Priya R. 49
Ayala, Claudia P. 97

Basso, Fábio P. 283
Benavides, David 160
Bucci, Paolo 308
Buglione, Luigi 343

Caffery, Fergal Mc 343
Cirilo, Elder 176
Cook, Charles T. 308
Cowan, Don 176
Cubo, Javier 326

Drachova, Svetlana 308
Durkee, Blair 308

Ebner, Wolfgang 17
Eichelberger, Holger 32
Engelen, Luc 192

Falessi, Davide 356
Favaro, John 113, 192
Felfernig, Alexander 160
Frakes, William B. 224
Franch, Xavier 97
Fuentes, Lidia 127, 326

Galindo, José A. 160
Gamez, Nadia 326
Garcia, Alessandro 176
Ge, Jianlin 255
Georgiades, Marinos 267
Gu, Qing 315

Haiyan, Zhao 295
Hao, Yiyang 289
Harton, Heather 308
Hauck, Jean Carlo Rossa 343
Heym, Wayne 308
Hoffman, Dustin 308

Hollingsworth, Joseph E. 308
Huchard, Marianne 302
Hummel, Oliver 81

Jarzabek, Stan 49
Jin, Jing 239
Jin, Yong 208
Jin, Zhi 289

Kang, Kyo Chul 1
Keun, Lee 1
Klabbers, Martijn 192
Kreiner, Christian 17
Kröher, Christian 32
Krone, Joan 308
Kulczycki, Gregory 308
Kulesza, Uirá 176

Lago, Patricia 315
Lami, Giuseppe 343
Le, Duc Minh 1
Lee, Hyesun 1
Leitner, Andrea 17
Li, Ge 289
Li, Meng 239
Liu, Changsheng 208
Liu, Zhiqing 255
Long, Li 295
Lu, Yangyang 289
Lucena, Carlos 176
Luo, Yaping 192

Marques, Helena Martins 97
Mart́ınez-Fernández, Silverio 97
Maurer, Frank 65
Mazzini, Silvia 113

Nemmallapudi, Chaitanya 224
Nurolahzade, Mehrdad 65

Ogden, William F. 308
Oliveira, Toacy Cavalcante 283



362 Author Index

Panunzio, Marco 144
Pascual, Gustavo G. 127
Pillat, Raquel Mainardi 283
Pimentel, Ernesto 326
Pinto, Mónica 127

Reinfrank, Florian 160

Salman, Hamzeh Eyal 302
Sartori, Giovanni 192
Schmid, Klaus 32
Seiffert, Dominic 81
Seriai, Abdelhak 302
Sitaraman, Murali 308
Smith, Hampton 308
Sun, Yu-Shan 308

Tagore, Aditi 308

Urtado, Christelle 302

van den Brand, Mark 192
Vardanega, Tullio 113, 144
Vauttier, Sylvain 302
von Wangenheim, Christiane Gresse

343

Walker, Robert J. 65
Wei, Zhang 295
Weichao, Wang 295
Weide, Bruce W. 308
Werner, Cláudia Maria Lima 283

Xie, Bing 208, 239
Xing, Xueyuan 289

Yasmin, Nighat 308
Yu, Dongjin 255

Zaccai, Diego 308
Zhao, Junfeng 239
Zou, Yanzhen 208, 239


	Preface
	Organization
	Table of Contents
	Feature Modeling and Variability Analysis
	Validating Consistency between a Feature Model and Its Implementation
	1 Introduction
	2 Background
	2.1 Features and Feature Models
	2.2 Embedding Features into Implementation

	3 The Proposed Method
	3.1 Reverse Engineering Phase
	3.2 Validation Phase

	4 Discussion
	4.1 Related Work
	4.2 Limitations and Future Research
	4.3 Conclusion

	References

	Mechanisms to Handle Structural Variability in MATLAB/Simulink Models
	1 Introduction and Motivation
	2 Related Work
	3 Background Information and Context
	3.1 Variability Description
	3.2 Variability Mechanisms
	3.3 Beyond Existing Technology

	4 Variability Mechanism Templates
	4.1 The 3-Layered Structure in Detail

	5 Binding at Model Configuration Time
	5.1 Binding Alternative Variability Templates
	5.2 Binding Optional Variability Templates

	6 Working with Variability Mechanism Templates
	6.1 Using Alternatives Variability Templates
	6.2 Using Optionals Variability Templates

	7 Sample Application Scenarios
	8 Conclusions, Limitations, and Future Work
	References

	An Analysis of Variability Modeling Concepts: Expressiveness vs. Analyzability
	1 Introduction
	2 Related Work
	3 Categorization Approach
	3.1 Scope
	3.2 Terminology
	3.3 Classification Schema

	4 Running Example
	5 Classification of Variability Modeling Concepts
	5.1 Basic Variability Modeling
	5.2 Cardinality-Based Variability Modeling
	5.3 Non-boolean Variability Modeling
	5.4 Configuration References
	5.5 Summary

	6 Conclusion
	References


	Reuse and Testing
	Towards Test Case Reuse: A Study of Redundancies in Android Platform Test Libraries
	1 Introduction
	1.1 Background and Motivation

	2 Study Overview
	3 Test Clone Analysis and Discussion
	3.1 Data Collection
	3.2 Test Case Characteristics
	3.3 Types of Test Clones
	3.4 Similarity Analysis

	4 Quantitative Analysis
	4.1 Similarity Discussion

	5 Towards Generic Test Cases
	5.1 Discussion

	6 Related Work
	7 Threats to Validity
	8 Conclusion
	8.1 Future Work

	References

	An Assessment of Test-Driven Reuse: Promises and Pitfalls
	1 Introduction
	2 Related Work
	3 Experiment
	3.1 Task Selection
	3.2 Experimental Method
	3.3 Suitability Assessment

	4 Results and Discussion
	4.1 Lexical and SyntacticMatching
	4.2 Issues with the Approaches
	4.3 Threats to Validity
	4.4 Precision versus Accuracy

	5 Conclusion
	References

	Improving the Runtime-Processing of Test Cases
	1 Introduction
	1.1 Reuse
	1.2 Test-Driven Reuse
	1.3 Adaptation

	2 Previous Work
	3 Automating Adaptation
	3.1 Naive Approach
	3.2 Optimized Approach

	4 Evaluation
	4.1 Results
	4.2 Discussion

	5 Outlook and Future Work
	6 Conclusion
	References


	Architecture and Reuse
	REARM: A Reuse-Based Economic Model for Software Reference Architectures
	1 Introduction and Motivation
	2 Background and Related Work
	3 Industrial Context
	4 An Economic Model for Reference Architectures
	4.1 Method for Formulating the Economic Model
	4.2 Execution of the Method for Formulating the Economic Model

	5 Preliminary Validation
	6 Discussion
	7 Conclusions and Next Steps
	References

	Cross-Domain Reuse: Lessons Learned in a Multi-project Trajectory
	1 Introduction
	2 Phase 1: Single-Domain Basis in COrDeT-1
	3 Phase 2: Cross-Domain Realization in the CHESS Project
	4 Phase 3: Consolidation in the COrDeT-2 Project
	5 Discussion and Conclusions
	References

	Automatic Analysis of Software Architectures with Variability
	1 Introduction
	2 Related Work
	3 Our Approach - Challenges
	4 Modelling the Software Architecture with Variability
	5 Mapping the Software Architecture to the AFM
	5.1 Mapping the Components of the Architecture
	5.2 Mapping the Connectors of the Architecture
	5.3 Mapping the Constraints among Architectural Elements

	6 Reasoning about the Architectural Model Variability
	6.1 Checking Consistency
	6.2 Derivation of Minimal Architectural Configuration
	6.3 Reasoning about the Variability Degree

	7 Evaluation
	7.1 Mapping Algorithm Correctness
	7.2 Scalability
	7.3 Variability Degree

	8 Conclusion and Future Work
	References

	On Software Reference Architectures and Their Application to the Space Domain
	1 Introduction
	2 The Role of the Software Architecture
	3 The Concept of Reference Architecture
	4 An Application Case
	4.1 Domain Analysis
	4.2 Industrial Needs

	5 A Software Reference Architecture for Space Applications
	5.1 Realization and Validation
	5.2 Apportionment of Industrial Needs

	6 Conclusions
	References


	Analysis for Reuse
	Automated Analysis in Feature Modelling and Product Configuration
	1 Introduction
	2 Research Questions
	3 Preliminary Results
	3.1 RQ1: How Are the Different Modelling Approaches Related?
	3.2 RQ2: Which Are the Automated Mechanisms Proposed?
	3.3 RQ3: Are There Similar Analysis Operations?
	3.4 RQ4: Which Are the Functional an Performance Mechanisms
	3.5 Summary of Findings

	4 Conclusions and Future Work
	References

	Configurable Software Product Lines – Supporting Heterogeneous ConfigurationKnowledge
	1 Introduction
	2 Motivating Example: Product Line Implementation with Diverse Frameworks
	3 Heterogeneous Configuration Knowledge Issues
	3.1 Feature-Based Product Derivation Tools
	3.2 Mismatch of Domain Knowledge Specification
	3.3 Diffusion and Replication of Presence Conditions

	4 Modeling Heterogeneous Configuration Knowledge
	4.1 DKML: Definition and Properties
	Taming Configuration Knowledge Mismatch.
	Reducing and Modularizing Presence Conditions.
	4.2 Example: OLIS Product Line Implementation with DKMLs

	5 GenArch+: Product-Line Implementation with DKMLs
	5.1 Domain Knowledge Schema
	5.2 The GenArch+ Tool

	6 Evaluation
	6.1 Analyzing the Configuration Knowledge
	6.2 Building Domain Knowledge Modeling Languages

	7 Related Work and Discussion
	8 Conclusion
	References

	Extracting Models from ISO 26262 for Reusable Safety Assurance
	1 Introduction
	2 Background
	2.1 ISO26262
	2.2 OPENCOSS

	3 Extracting the Conceptual Model from ISO 26262
	3.1 The Snowball Approach

	4 Extracting Process Model from ISO 26262
	4.1 ISO 26262 Process Model and SPEM
	4.2 Process Model of ISO26262 Part 3

	5 Model Validation
	6 Related Work
	7 Conclusions and Future Work
	References

	Assessing Software Quality through Web Comment Search and Analysis
	1 Introduction
	2 Our Approach
	2.1 Comments Collection
	2.2 Comments Analysis

	3 Evaluation and Results
	3.1 Comments Extraction
	3.2 Sentiment Analysis
	3.3 Quality Assessment

	4 Discussion and Related Work
	4.1 Internet-Based Software Resource Collection
	4.2 Sentiment Analysis
	4.3 Web Page Information Extraction

	5 Conclusion
	References

	Consistency among Domain Analysts in Selecting Domain Documents and Creating Vocabularies
	1 Introduction
	2 Experiments
	2.1 Hypotheses

	3 Method
	3.1 Data Collection
	3.2 Data Preparation
	3.3 Experiment I – Consistency of Vocabularies
	3.4 Experiment II – Consistency of Source Documents
	3.5 Experiment III – Automatic vs. Manual Extraction

	4 Results
	4.1 Experiment I – Results
	4.2 Experiment II – Results
	4.3 Experiment III – Results

	5 Conclusions
	References

	Mining Cohesive Domain Topics from Source Code
	1 Introduction
	2 Related Work
	2.1 Topic Models
	2.2 Applying Topic Models on Source Code
	2.3 Classifying Topics Mined from Source Code

	3 Approach
	3.1 Source Code Preprocessing
	3.2 Mining Raw Topics Using LDA
	3.3 Identifying CDTs

	4 Evaluation
	4.1 Data Set and Metrics
	4.2 Case Study Process
	4.3 Results Analysis
	4.4 Threats to Validity

	5 Discussion
	5.1 Semantics of the Topics Mined from Source Code
	5.2 Limitations of IR Techniques on SE Data

	6 Conclusion
	References


	Reuse and Patterns
	Mining Instances of Structural Design Patterns from Class Diagrams Based on Sub-patterns
	1 Introduction
	2 Overview of the Approach
	3 Sub-patterns
	3.1 Ordinary Sub-patterns
	3.2 Variant Sub-patterns

	4 Mining Sub-patterns
	4.1 Class-Relationship Graph
	4.2 Mining Sub-patterns Based on Graph Isomorphism

	5 Combine Sub-patterns to Obtain Candidate Pattern Instances by Structural Feature Models
	6 Behavioral Analysis
	7 Experiments
	8 Related Works
	9 Conclusions
	References

	Patterns for Use Case Context and Content
	1 Introduction
	2 Related Work
	3 The Proposed Patterns
	3.1 Form
	3.2 Information Object
	3.3 Use Case Pattern Create Information Object
	3.4 Use Case Patterns Correct IO and Modify IO State
	3.5 Pattern Read: IO; IO Report; Supporting info (Document, Message, etc.)

	4 Comparative Evaluation with a Best and a Real Case Example
	4.1 External Level Comparative Example
	4.2 Internal Level Comparative Example

	5 Conclusion
	References


	Short Papers
	A Common Representation for Reuse Assistants
	1 Introduction
	2 Illustrative Example
	3 The Proposed RAS Extension
	4 Related Work
	5 Conclusion Remarks
	References

	A Knowware Based Infrastructure for Rule Based Control Systems in Smart Spaces
	1 Introduction
	2 Knowware Based Infrastructure for Smart Spaces
	3 Conclusions
	References

	An Action-Stack Based Selective-Undo Method in Feature Model Customization
	1 Introduction
	2 Preliminaries
	3 An Action-Stack Based Selective-Undo Method
	3.1 Action-Stack and One-Step Withdraw Operation
	3.2 Finding One Solution to Selective-Undo
	3.3 Finding Another Solution from a Known Solution

	4 Related Work and Conclusion
	References

	Feature Location in a Collection of Software Product Variants Using Formal ConceptAnalysis
	1 Introduction
	2 Formal Concept Analysis (FCA)
	3 Our Approach to Feature Location
	3.1 Goal and Core Assumptions
	3.2 Features versus Object-Oriented Building Elements

	4 Experimentation
	5 Related Work
	6 Conclusion and Perspectives
	References

	A Language for Building Verified Software Components
	1 Introduction
	2 Essential Features of a Language for Verified Components
	3 Clean Semantics
	4 Language Support for Specifications
	5 Reusable Mathematical Theory Constituent
	6 Verified Reusable Components
	7 Conclusions
	References


	Emerging Ideas and Trends
	Estimating the Economic Value of Reusable Green ICT Practices
	1 Introduction
	2 An Experiment on Quantifying Economic Value of Green ICT Practices
	2.1 Background on e3value
	2.2 Our Experiment

	3 Discussion
	3.1 Assumptions Made in the Experiment
	3.2 Advantages of Visualizing Value Exchanges
	3.3 The e3value Technique vs Spreadsheet Applications
	3.4 Reuse Green ICT Practices
	3.5 Future Improvements

	4 Conclusions
	References

	Composition and Self-Adaptation of Service-Based Systems with Feature Models
	1 Introduction
	2 Related Work
	3 Our Approach
	3.1 Background: Service Reuse with DAMASCo
	3.2 Adding Feature Models to Support Safe Composition

	4 Self-Adaptation Using Feature Models
	4.1 Case Study: A Driving Domain
	4.2 Mapping between Interface Models and Feature Models
	4.3 Applying our Approach in ITS

	5 Discussion
	6 Conclusions
	References

	Leveraging Reuse-Related Maturity Issues for Achieving Higher Maturity and Capability Levels
	1 Introduction
	2 Maturity and Capability Models (MCMs): Representations and Dimensions
	2.1 Why Do We Need Choosing a MCM?
	2.2 Coverage and Classification of MCMs

	3 Reuse-Related Issues in Typical Horizontal MCMs
	4 Experiencing LEGO to Reuse Management
	4.1 The LEGO Approach
	4.2 Applying LEGO to Reuse

	5 Conclusions and Prospects
	References

	Appendix: ICSR 2013 Workshop Summaries

	Author Index



