
Chapter 6
Implementation, Deployment and Governance
of SOA Adaptive Systems

R. Brzoza-Woch, Ł. Czekierda, J. Długopolski, P. Nawrocki, M. Psiuk,
T. Szydło, W. Zaborowski, K. Zieliński and D. Żmuda

Abstract This chapter introduces a pragmatic methodology for adding and manag-
ing adaptability in multiple layers of the SOA application execution infrastructure.
Adaptability mechanisms and techniques are investigated by referring to the MAPE-
K pattern, which is viewed as the most representative solution for adaptive and
autonomous systems. The SOA solution stack developed by IBM is selected as the
basis for the application execution infrastructure model. This makes the proposed
concepts easier to understand, while not detracting from their general nature. The
adaptability aspect is considered in a broad context, with attempts to address, in
a uniform way, all SOA applications composed of software services (Virtual Ser-
vices) and hardware components (Real World Services). The proposed methology is
supported by the AS3 Studio package which is a complete suite of tools providing
extensions of SOA systems with adaptability features. This methodology is presented
as a crucial part of the governance process of SOA applications. Finally, a case study
which illustrates the proposed approach is described.

1 Introduction

Service-oriented applications operate in dynamic business environments. These
applications should therefore become highly flexible and adaptive, as they need
to adequately identify and react to various changes observed in the execution
environment [78]. Adaptation is the relation between a system and its environ-

R. Brzoza-Woch · Ł. Czekierda · J. Długopolski · P. Nawrocki · M. Psiuk · T. Szydło ·
W. Zaborowski · K. Zieliński(B) · D. Żmuda
Faculty of Computer Science, Electronics and Telecommunications,
Department of Computer Science, AGH University of Science and Technology,
al. A. Mickiewicza 30, 30-059 Krakow, Poland
e-mail: kz@agh.edu.pl

S. Ambroszkiewicz et al. (eds.), Advanced SOA Tools and Applications, 261
Studies in Computational Intelligence 499, DOI: 10.1007/978-3-642-38957-3_6,
© Springer-Verlag Berlin Heidelberg 2014

262 R. Brzoza-Woch et al.

ment where change is provoked to facilitate proper operation of the system in the
environment.

The adaptation process of SOA applications should be investigated in the context
of the widely accepted characteristics of service orientation proposed by Thomas Erl
[20] which refer to the following eight principles:

• Standardized Service Contract,
• Service Loose Coupling,
• Service Abstraction,
• Service Reusability,
• Service Autonomy,
• Service Statelessness,
• Service Discoverability,
• Service Composability.

It is evident that, taken together, these principles allow for easier adaptation of
SOA applications by system integrators during the (re-)development process and
at runtime. Standardized Service Contract principles mean that services within the
same service inventory remain in compliance with the same contract design stan-
dards which simplifies applications integration. Moreover, the service contract is
usually developed separately from the service logic and provides the sole means
of accessing service functionality and resources. This allows for independent cre-
ation of a contract and service implementation, reducing unintentional dependencies
between services. This feature is referred to as Service Loose Coupling and sup-
ports adaptability, since each service can be controlled separately. Service contracts
contain only essential information about services, thus enabling their categorization.
This principle, known as Service Abstraction, makes searching for suitable services
more efficient. The Service Autonomy principle means that services should exercise
a higher level of control over their underlying runtime execution environment, which
implies more predictive behavior. The ability of services to function autonomously is
achieved by reducing shared access to service resources and increasing their physi-
cal isolation. It simplifies adaptation performed on the resource allocation level. The
autonomy of individual services is also especially important for adaptation of SOA
applications performed at the service composition or integration level. This feature is
complemented by the Statelessness principle, which implies that services should min-
imize resource consumption by deferring the management of state information when
necessary. Additionally, services are supplemented with communication-oriented
metadata with which they can be effectively discovered and interpreted. This is an
important prerequisite of dynamic structural adaptation.

Service orientation principles allow for effective development of adaptive SOA
applications. Unfortunately, SOA is mainly focused on design techniques which sup-
port developers in constructing services. It does not encompass runtime aspects of
service operation, i.e. how to manage and maintain services. Without proper man-
agement business objectives cannot be met as it is impossible to specify goals and
determine whether they are, in fact, reached.

6 Implementation, Deployment and Governance of SOA Adaptive Systems 263

SOA applications and services should satisfy Service Level Agreements despite
changing execution conditions such as system load, number of users, etc. This is
why loose coupling and composition features inherent in SOA should be extended to
cover adaptive behavior [10], ensuring self-adaptation of the system at the runtime.
This aspect is often referred to as compositional adaptation [77], enabling software
to modify its structure and behavior dynamically in response to changes in its execu-
tion environment. Adaptive systems are a remedy for the complexity of computing
environments, expressed not only by the number of connected hardware and software
components but also by the growing space of configuration parameters and manage-
ment strategies offered by middleware technologies and virtualized computational
infrastructures. Better exploitation of modern IT infrastructures is a prerequisite of
achieving the required QoS (Quality of Service) and end-user satisfaction, charac-
terized by QoE (Quality of Experience).

Implementing an adaptive SOA system remains a challenging issue: the adaptation
process requires suitable mechanisms to be built into applications or the execution
environment itself. Satisfying service orientation principles means that self-adaption
of SOA systems can be considered a self-contained aspect, introduced during devel-
opment or at runtime. Adaptive applications can be developed in the process of
transforming a preexisting application and hardware components (which does not
involve changes in the application’s business services). This is consistent with the fact
that the investigated adaptive systems remain business-agnostic and instead focus on
ensuring the required nonfunctional parameters.

SOA application development and deployment should be considered in the con-
text of the SOA Solution Stack (S3) proposed by IBM [3], which provides a detailed
architectural definition of SOA. This allows for clear separation of different adapt-
ability mechanisms referencing particular layers of the S3 model and assigning the
requested adaptability extensions.

The goal of this chapter is to propose a pragmatic methodology for adding
and managing adaptability aspects in multiple layers of the S3 stack, as well
as to present the Adaptive S3 (AS3) Studio package which is a complete suite
of tools supporting extensions of SOA systems with adaptability features. This
methodology is considered part of the governance process of SOA applications.
The adaptability mechanisms and techniques are investigated by referring to the
MAPE-K pattern [1] as the most representative for adaptive and autonomous
systems.

The adaptability aspect is considered in a broad context, with attempts to address,
in a uniform way, all SOA applications composed of software services (also called
Virtual Services) and hardware components (Real World Services) [35]. Such an
approach is justified by the increasing importance of pervasive systems [67], bringing
interaction from enterprise systems back to the real world. In this context the adaptive
behavior of Real Word Services is considered a critical element, combining adaptive
interaction, adaptive composition and task automation by involving knowledge of
user profiles, intentions and previous usage patterns.

264 R. Brzoza-Woch et al.

2 Development of Adaptive Systems: Motivation

This section describes the fundamentals of adaptive system development, referring to
the state of the art in this domain. The presented analysis is performed in the context
of the SOA Governance process definition and requirements to precisely identify the
place and role of adaptive systems in SOA applications. Adaptability mechanisms
are evaluated by taking into account service orientation principles to better illustrate
the challenges involved in SOA adaptive system implementation.

According to [51] the goal of SOA Governance is to ensure reliable long-term
operation of a SOA. More specifically, it provides the ability to guarantee SOA adapt-
ability and integrity as well as check services for capability, security and strategic
business alignment. Its overall goal is SOA Compliance, i.e. compliance with legal,
normative and intra-company regulations respectively. SOA Governance includes
the identification of a decision-making authority for the definition and modification
of business processes that are supported by SOA and the requirements for service
levels and performance including access rights to the services. It also defines the way
how reusable services are defined, designed, accessed, executed, and maintained as
well as the determination of service ownership and cost-allocation in a shared-service
organization. This definition includes all crucial tasks and activities of SOA Gov-
ernance and structures them into organizations, processes, policies and metrics. In
addition, this definition covers all important aspects of IT Governance and specializes
them in the context of SOA. SOA Governance defines the organizational structure
of SOA and provides a way to implement it within an existing corporate structure.

Numerous models for SOA Governance have been proposed so far. Ten of them
are investigated and compared in [51]. Each emphasizes different aspects, including
service lifecycle management and organizational change [8]. The result of this study
is the TEXO Governance Framework [32], compiled on the basis of the existing
frameworks. The processes provided by this framework (depicted in Fig. 1) have been
grouped into five phases: design, deployment, delivery, monitoring, and change.

The design phase covers all strategic aspects related to the operation of a ser-
vice marketplace, enabling services to be purchased and traded. The development
and deployment of services as well as selection of third-party services belong to the
deployment phase. The delivery phase addresses all aspects of service and infrastruc-
ture operations. It is closely coupled with the monitoring phase as both phases occur
concurrently. The monitoring phase covers all aspects of service and infrastructure
monitoring. The change phase contains all processes and tasks required to adjust and
change the infrastructure and services traded in the marketplace.

The presented division of governance phases leads to the conclusion that adapta-
tion processes primarily concern the monitoring and change phases of the Governance
Framework. The activities most relevant to the adaption process are highlighted in
Fig. 1. Adaptation can be performed manually (by a system administrator) or auto-
matically. System administrators may specify high-level policies which determine
how the system should adjust its behavior at runtime in order to meet the specified
requirements. Administrators are consequently relieved from dealing with low-level

6 Implementation, Deployment and Governance of SOA Adaptive Systems 265

Fig. 1 SOA governance processes [32]

aspects of system operation. This goal is absolutely desirable, leading to adaptive
systems which operate without (or with limited) human intervention. One of the
emerging paradigms aimed at reducing effort involved in deploying and maintaining
complex computer systems is called Autonomous Computing (AC) [37]. This par-
adigm might be applied in a very natural way to the development of adaptive SOA
systems.

Autonomous Computing applications share some common properties [39] enabling
them to properly apply this paradigm. Such properties aim to clarify the relation
between adaptability and AC, and can be summarized as follows:

• Adaptability—the core concept behind adaptability is the general ability to change
a system’s observable behavior, structure or realization. This requirement is ampli-
fied by automatic adaptation that enables a system to decide about adaptation by
itself, in contrast to ordinary adaptation, which is decided upon and triggered by
the system’s environment (e.g. users or administrators).

• Awareness—closely related to the adaptation and the execution context. It is a
prerequisite of automatic adaptation. The term "context" is defined as sufficiently
exact characterization of the situations in which a system might find itself by means
of perceivable information relevant for the adaptation of the system. Awareness has
two aspects: self-awareness (enabling a system to observe its own system model,
state, etc.) and awareness of the environment.

• Monitoring—since monitoring is often regarded as a prerequisite of discovery
and response to emerging events, it constitutes a system awareness. Monitoring
indicates the system’s state and thus characterizes a situation in which adaptation
is necessary.

266 R. Brzoza-Woch et al.

• Dynamicity—encompasses the system’s ability to change during runtime. In con-
trast to adaptability this only constitutes the technical facility of change. While
adaptability refers to the conceptual change of certain system aspects, which does
not necessarily imply the change of components or services, dynamicity is about
the technical ability to remove, add or exchange services and components.

• Autonomy—as the term Autonomous Computing already suggests, autonomy
is one of the essential characteristics of such systems. AC aims at unburdening
human administrators from complex tasks, which typically require a lot of decision
making and problem solving without human intervention.

• Mobility—mobility enables dynamical discovery and usage of new resources,
recovery of crucial features etc.

• Traceability—traceability enables the unambiguous mapping of the logical archi-
tecture onto the physical system architecture which facilitates easy deployment of
necessary measures. Autonomous Computing may help reduce this effort by allow-
ing administrators to define abstract policies and then enable systems to configure,
optimize and maintain themselves according to the specified policies. The notion
of traceability is again closely related to that of adaptation: adaptation decisions
are also based on an abstract system model.

The relation between AC properties and the service orientation principles is pre-
sented in Table 1. The AC adaptability is supported by all principles, but most signifi-
cantly by P2 and P4. AC monitoring is strongly related to P7—Service Discoverabil-
ity, as it is a prerequisite of monitoring activity. AC dynamicity is very much related
to P8 and P2. Service composability represents more flexible relation than integra-
tion and allows for services to be interconnected at runtime. The next AC property,
mobility, is supported by P4 and partially by several other principles. This property is
very much in line with service orientation. The same concerns AC Traceability which
is supported to some extend by P3. Services have abstract descriptions which allows
for abstract model construction and mapping of the logical system architecture onto
the physical one. Unfortunately, support for specification of abstract policies which

Table 1 Autonomic Computing Properties vs. Service Orientation Principles

Autonomic Computing Service Orientation Principles
Properties P1 P2 P3 P4 P5 P6 P7 P8

Adaptability + ++ + ++ + + + +
Awareness
Monitoring + ++
Dynamicity + + + + ++
Autonomy
Mobility + + ++ + +
Traceability ++
P1-Standardized Service Contract, P2-Service Loose Coupling, P3-Service Abstraction,
P4-Service Reusability, P5-Service Autonomy, P6-Service Statelessness,
P7-Service Discoverability, P8-Service Composability

6 Implementation, Deployment and Governance of SOA Adaptive Systems 267

Fig. 2 IBM’s MAPE-K ref-
erence model for autonomous
control loops [1]

would enable systems to configure, optimize and maintain themselves according to
the specified policies, is not offered directly by service orientation principles.

Two AC properties—Awareness and Autonomy—have no direct service orien-
tation counterparts. Awareness is related to the ability of a system to observe its
own system model, state, etc. This feature is not required by any service orientation
principles. The AC Autonomy property has a different meaning than P5—Service
Autonomy. While the former concept concerns the ability to make decisions without
human intervention, P5 instead refers to isolation of the execution environment of a
service. This consideration leads to an important observation, namely that implemen-
tation of SOA self-adaptive systems requires both AC Awareness and AC Autonomy.
Support for AC Traceability should also be provided where possible.

To achieve autonomous computing IBM has suggested a reference model for
autonomous control loops [1], which is sometimes called the MAPE-K (Monitor,
Analyse, Plan, Execute, Knowledge) loop and is depicted in Fig. 2. This model is
used to express the architectural aspects of autonomous systems.

In the MAPE-K autonomous loop the managed element represents any software
or hardware resource that is given autonomous behaviour by coupling it with an
autonomous manager. This element is equipped with: (i) Sensors, often called probes
or gauges, which collect information about the managed element, and (ii) Effectors,
which carry out changes in the managed element.

The data collected by the sensors allows the autonomous manager to monitor the
managed element and execute changes through effectors. The autonomous manager
is a software component that can be configured by human administrators using high-
level goals and uses the monitored data from sensors and internal knowledge of the
system to plan and execute the low-level actions deemed necessary to achieve high-
level goals. The internal knowledge of the system is often an architectural model of
the managed element. The goals are usually expressed using event-condition-action
(ECA) policies, goal policies or utility function policies [78].

There are many diverse implementations of the MAPE-K loop:

268 R. Brzoza-Woch et al.

• Autonomous Toolkit [31]—developed by IBM. It provides a practical framework
and reference implementation for incorporating autonomous capabilities into soft-
ware systems.

• ABLE [9]—another toolkit proposed by IBM which provides autonomous man-
agement in the form of a multiagent architecture: each autonomous manager is
implemented as an agent or set of agents,

• Kinesthetics Extreme [33]—this work was driven by the problem of adding
autonomous properties to legacy systems, i.e. existing systems that were not
designed with autonomous operation in mind.

• 2K [40]—represents an autonomous middleware framework and offers self-
management features for applications built on top of this framework.

It is necessary to point out that none of these systems addresses or takes advantage
of the SOA paradigm. To better explain the technical aspects of the MAPE-K loop
activities, we will consider them in more detail.

Monitoring

Monitoring involves capturing the managed element state or properties of the envi-
ronment. Two types of monitoring can be distinguished: (i) Active Monitoring which
requires instrumentation of software or hardware at some level, for example by mod-
ifying and adding code to the implementation of the application or the operating
system in order to capture function or system calls; (ii) Passive Monitoring which
relies on already built-in system capabilities for presenting information about their
operation, e.g. system logs, load monitors, etc.

Analysis

Analysis is rather straightforward and depends on the planning activity specified
below. It may concern data filtering or recognition of the managed element state.

Planning

Planning takes into account the monitoring data from sensors to produce a series of
changes to be effected on the managed element. ECA rules, already mentioned in
this section, that directly produce adaptation plans from specific event combinations,
could be used in the simplest case. Rule-based planning determines the actions to take
when an event occurs and certain conditions are met. This type of planning (referred
to as Policy-Based Adaptation Planning) usually does not take into account system
history and is therefore stateless. More advanced planning known as Architectural
Models acknowledges a model of the system in the form of a connected compo-
nent network. This allows users to ascribe constraints and properties to individual

6 Implementation, Deployment and Governance of SOA Adaptive Systems 269

components and connectors. Violation of these constrains triggers adaptation actions.
The third type of planning involves the Process-Coordination Approach where adap-
tation tasks result from defining the coordination of processes executed in the man-
aged elements.

Execution

This activity does not merit special attention as it concerns technical issues related
to execution of adaptation tasks. The managed element effectors are used for this
purpose.

The presented analysis of self-adaptive systems design with special attention to
AC Systems led to the definition of an adaptive systems space. This space covers
three directions: (i) how the adaptation process is executed, (ii) where the adaptation
mechanisms are located, (iii) when the adaptability mechanisms are added to the
system. Definition of the adaptive systems space (depicted in Fig. 3) enables us to
show where the adaptive SOA system investigated in this chapter can be located. The
properties of such a space could be summarized as follows: the adaptation process
is executed automatically; adaptation mechanisms are located in the middleware
or infrastructure layer; adaptation mechanisms are added during deployment or at
runtime.

The reference model which explains the role of Infrastructure and Middleware
Layers in Adaptive SOA is shown in Fig. 4. The Infrastructure Layer is interpreted
in a rather broad sense as it combines not only physical resources such as typical
servers connected to computer networks, but also small physical devices (Real-World
Devices) such as mobile phones, intelligent sensor networks, etc. with pre-installed

Fig. 3 Adaptive SOA vs Adaptive Systems Space

270 R. Brzoza-Woch et al.

Fig. 4 Concept map showing
Adaptive SOA

systems or embedded software/firmware. The Infrastructure Layer could be exposed
as a set of virtual resources for higher layers, e.g. Middleware.

The Middleware Layer provides all of the system services that are relevant to the
service orientation principles and their implementation. From an abstract point of
view the Middleware Layer serves as a container for Composite and Atomic Services.
These services require physical resources to perform their function.

3 Real-World Service

As shown in Fig. 5, a physical resource can be used by a computer or a Real-World
Device. In the first case, through a computer, Virtual Services can be provided. In the
second case, through appropriate instrumentation of Real-World Device it is possible
to create and provision a variety of Real-World Services. However in both cases these
are atomic services which are created composite service.

3.1 Concept

The Real-World Service [26] is a feature of the physical world object (Real-World
Device), which provides an embedded logic module and a communication module,
and is exposed to external systems according to service orientation principles. Such a
service allows other components to interact with it dynamically. In contrast to virtual
services (such as enterprise services) real-world services provide data about physical
things/devices (World of Things) in real time. The Real-World Device is equipped,
by means of hardware extensions, with logic and monitoring/management features.

The use of real-world services is associated with the concept of real-world aware-
ness which is defined as follows [29]:

6 Implementation, Deployment and Governance of SOA Adaptive Systems 271

Fig. 5 Concept map introducing Real-World and Virtual Services

Fig. 6 Process of transforming a Real-World Device into a Real-World Service

Real World Awareness is the ability to sense information in real-time from people, IT sources,
and physical objects—by using technologies like RFID and sensors—and then to respond
quickly and effectively.

The Real-World Service is created by adding logic to a physical object (Real-World
Device). Network communication and adaptability allow users to obtain information
about such an object in real time, and perform suitable management. It seems that
the idea of Real-World Services complements the concept of real-world awareness
in terms of the ability to sense information in real time, from a variety of physical
objects.

Before any Real-World Devices can be used by enterprise systems, they must be
modified into Real-World Services. This process adds aspects of service orientation
to the Real-World Device and exposes the functionality of the device in the form of a
service. In a general case the modification process can be divided into the following
stages (Fig. 6):

272 R. Brzoza-Woch et al.

1. Hardware modification—this calls for addition of the necessary mechanical parts
and actuators to the device, as well as low-level protocol extensions by adding
various electronic circuits so as to enable digital control.

2. Service logic implementation—the goal in this step is to build a dedicated server
embedded in the augmented device created in step 1. The added logic allows
exposure of Real-World Device features.

3. Network enablement—this step involves augmenting the device with a commu-
nication module, typically implementing the TCP/IP protocol stack.

4. Service oriented interface development—aimed at implementation of the service-
oriented protocol stack (for example, SOAP/REST-based Web Services) to
expose the functionality of the server to individual clients or enterprise applica-
tions.

Depending on the nature of the Real-World Device, some of the above steps might
be simplified or skipped.

3.2 Realization

The first stage of the modification process mostly depends on the nature and properties
of a Real-World Device. There are many devices in our environment that are intended
to be used and controlled manually. These devices usually require mechanical and
electronic modification to be connectable to external computer systems. First of
all, such modifications may require adding extra components and mechanical parts
(such as servomotors) to the device if automatic operation is required. Another typical
augmentation is a computing chip that may need to be added to enable automatic
changes of the device’s mechanical or logical state. This could be a processor-based
microcontroller or an FPGA programmable logic matrix. It should also be noted that
some devices may already possess inbuilt features which allow a local embedded
system to control the device in question. In such cases the device may only require
some electronic and electrical modifications. The goal of all these modifications is
to expose the full functionality of the Real-World Device on the level of digital logic
signals. In some situations there is no need for any modification. In such cases the
Real-World Device is already equipped with the proper (simple or advanced) digital
interface and is ready to be controlled by external systems. For this type of devices
the first stage can be completely skipped.

The second stage of the modification process depends strongly on the selected
techniques and hardware used for implementation of the Real-World Device process-
ing logic, such as:

• full hardware implementation (e.g. inside an ASIC or FPGA chip),
• IP core processor (with or without hardware accelerated parts) inside an FPGA

chip,
• general-purpose microcontroller (with or without abstraction layers),
• mobile device (e.g. smartphone).

6 Implementation, Deployment and Governance of SOA Adaptive Systems 273

The first approach assumes that service logic and high-level communications
required for service exposure will be implemented as "pure hardware". This implies
that the service operation algorithm must be converted into a set of properly connected
logic gates and flip switches, and then embedded in a programmable logic chip
(such as FPGA or ASIC). The use of this technique is very difficult and requires
substantial experience (especially in the area of digital circuit design), but in return
offers efficiency and performance which is unreachable via any other technique. A
description of a sample service implementation exploiting this approach can be found
in [59]. The authors present the design of a "system on chip" (SoC) which operates
as a Web service (WS). Their proposed system is entirely devoid of software and
conceived as a hardware pattern for trouble-free design of network services offered
as WS in a service oriented architecture (SOA).

The second approach is very similar to the first one as it also assumes the use of an
FPGA device in the implementation of service logic and high-level communication,
albeit in a completely different way. The FPGA device delivers a hardware platform
for a soft-core (virtual) processor with capabilities adjusted to the requirements of
the implemented service. The algorithm of operation is implemented as a program
that runs on that processor. In the course of service implementation it is also possible
to adjust the configuration of the soft-core processor for specific requirements of the
implemented service. One example of such an approach is the hardware-software
integrated development platform presented in [65]. The platform is based on the
ALTERA Stratix II EP2S60 FPGA chip and dedicated to create SOA-compatible
image processing services. The core features of such services are implemented as
sequential C++ programs executed on the Nios II soft-core processor, while the most
computationally expensive image processing operations are offloaded to a hardware
accelerator. An additional advantage of the first two approaches is the ability to use
the same flexible hardware equipment to implement completely different services.

The third approach assumes the use of a general-purpose microcontroller. In this
case, the hardware architecture is delivered by the microcontroller manufacturer.
Service logic and exposure are handled by software that runs on the microcontroller.
Many modern consumer electronics (called smart or intelligent devices) are now
equipped with capabilities used to share their functionality with PDAs, smartphones
or other mobile devices (e.g. an electronic scale equipped with a Bluetooth inter-
face for collecting and exchanging weight data). Unfortunately, the communication
protocols used in this scope are usually incompatible with the protocols used for
service exposure, and it is often impossible to introduce any modification inside
the device itself. Fortunately, modern mobile devices (PDAs, smartphones) usually
provide wireless Internet access (through Wi-Fi, GPRS, HSPA or LTE protocols)—
hence the fourth scenario for modification and conversion of Real-World Devices
into Real-World Services is to use the mobile device as a kind of proxy between the
smart device and enterprise systems. In this scenario the service logic and high-level
communication protocols are implemented as software running on a mobile device.

To enable the Real-World Device to be controlled over the Internet by enterprise
systems (the 3rd stage of the modification process), the device must be equipped with
a communication module. There are many such modules on the market—examples

274 R. Brzoza-Woch et al.

include the DigiConnect network module [19] and Tibbo programmable embedded
modules [74]. Both solutions come fitted with hardware- or software-based TCP/IP
stacks and Wi-Fi communications. While the DigiConnect module only offers one
socket connection session at the time, the Tibbo modules are much more robust in
that they allow up to 16 concurrent socket communication sessions. Having more
than one socket session allows us to add extra features to the Real-World Service,
such as service discovery.

An important concept for enabling service orientation on Real-World Devices is
contained in the Device Profiles for Web Service specification (DWPS) [52] which
is the successor of Universal Plug and Play (UPnP). This technology was developed
to enable secure Web Service capabilities on resource-constrained devices. DPWS
was mainly developed by Microsoft and some printer device manufacturers. DPWS
allows secure messages to be sent to and from Web Services. It also supports dynamic
discovery of Web Services, Web Service descriptions, as well as subscribing to and
receiving events from a Web Service.

Web Services for Devices (WS4D) is an initiative which brings Service-Oriented
Architecture (SOA) and Web Services technologies to the application domains of
industrial automation, home entertainment, automotive systems and telecommuni-
cation systems. WS4D advances results from the ITEA SIRENA project [84]. The
WS4D toolkits available on the project’s website complies with DPWS. The toolkit
is based on gSOAP and is targeted for small resource-constrained devices and can
be used to implement DPWS-compliant devices using the C programming language.
Another toolkit, based on J2ME, is available for small and resource-constrained
devices, enabling implementation of DPWS-compliant devices in Java. Yet another
toolkit, based on Apache Axis2, is targeted for resource-rich implementations to
connect DPWS-compliant devices with the Web Services world.

In the SOCRADES (Service-Oriented Cross-layer infRAstructure for Distributed
smart Embedded devices) project [34] physical legacy devices are grouped into three
categories: non-electronic devices that are not WS-capable, electronic devices which
do not support WS due to their limited resources, and WS-capable devices. To expose
the features of WS-capable devices DPWS profiles are used. For devices which are
not WS-capable, this can be done in two ways: by using the Gateway (dedicated for
non-WS-capable electronic devices) or the Service Mediator (originally designed for
collecting data from non-electronic devices).

Recently significant effort has been invested in enabling the convergence of sensor
networks with the IP world and providing Internet connectivity for "smart objects".
The IETF Working Group IPv6 over Low power Wireless Personal Area Networks
(6LoWPAN) proposed an RFC [47] to enable IPv6 packets to be carried over IEEE
802.15.4. In addition, the IETF Working Group Routing over Low power and Lossy
networks (ROLL) designed a routing protocol named IPv6 Routing Protocol for
Low power and Lossy Networks (RPL). RPL was proposed because none of the
existing known protocols such as Ad hoc On-Demand Distance Vector (AODV),
Optimized Link State Routing (OLSR) or Open Shortest Path First (OSPF) meet the
specific requirements of Low power and Lossy Networks (LLN), see [70]. The RPL

6 Implementation, Deployment and Governance of SOA Adaptive Systems 275

protocol targets large-scale wireless sensor networks (WSN) and supports a variety
of applications e.g. industrial, urban, home and building automation or smart grids.

The Constrained Application Protocol (CoAP) [68] is a specialized web transfer
protocol for use with constrained networks and nodes for machine-to-machine appli-
cations such as smart energy and building automation. These constrained nodes often
have 8-bit microcontrollers with small amounts of ROM and RAM, while networks
such as 6LoWPAN often have high packet error rates and a typical throughput of
several dozen kbit/s. CoAP provides a method/response interaction model between
application endpoints, supports built-in resource discovery, and includes key web
concepts such as URIs and content-types. CoAP easily translates to Hypertext Trans-
fer Protocol (HTTP) for integration with the web, while also meeting the specialized
requirements such as multicast support, very low overhead and simplicity for con-
strained environments.

Another approach to combining Real-World Services with Virtual Services is to
generalize the Open Services Gateway initiative (OSGi) model into a collection of
loosely coupled software modules interacting through service interfaces. While OSGi
is a Java based solution, in [63] authors discuss how to turn non-Java-capable devices
and platforms into OSGi-like services. They propose an extension to Remote Services
for OSGi (R-OSGi) which makes communications to and from services independent
of the transport protocol, and implement an OSGi-like interface that does not require
standard Java (or even any Java at all). As an example, implementations for Connected
Limited Device Configuration (CLDC), embedded Linux, and TinyOS are presented.

The idea behind modern network systems is to use the Internet as a connection
space for as many Real-World Devices as possible. Each device, modified to become
a Real-World Service, has its own reference address on the Internet and can be
contacted by others systems. However, the large number of Real-World Services
makes it difficult for users to locate any specific service. To make it easier, a Real-
World Service registration and discovery features are required. Each of the available
Real-World Services regularly sends information about its reference and description
to one or more discovery servers which maintain a database of active Real-World
Services on the network (registration process). The information needed to find and use
the various Real-World Services is available through the discovery server (discovery
process). Among the various technologies that provide service discovery we can
mention SLP (Service Location Protocol), Jini, Apple Bonjour and WS-Discovery
in DWPS [27].

4 Realization of the Adaptation Loop

This section describes the current realization status of the Adaptation Loop and
highlights solutions capable of converting Managed Resources into Virtual Services
(as well as Real World Services).

The MAPE-K model introduces five elements of an autonomous loop which,
taken together, support development of completely autonomous systems. In order to

276 R. Brzoza-Woch et al.

describe an adaptation loop it is enough to use only four elements: Monitor, Analyse,
Plan and Execute (later referred to as MAPE). Figure 7 presents techniques involved
in realization of the adaptation loop. They are divided into those related to Monitoring
and Execution, and those applicable to Analysis and Planning. The former techniques
are used for instrumentation of Managed Resources for the purpose of adding Sensors
and Effectors, while the latter are used for interpretation, analysis of data provided
by Sensors and planning actions executed by means of Effectors.

The first subsection will present a review of techniques used for Monitoring and
Execution, while the second subsection describes techniques of Adaptation and Plan-
ning. The final subsection contains a survey of existing work presented in the context
of identified techniques.

4.1 Monitoring and Execution

As presented in Fig. 7, the Managed Resource can be either Virtual (related to a Vir-
tual Service) or Real-World (related to a Real-World Service); however in both cases
it can be composed of both Software and Hardware elements. Instrumentation tech-
niques are therefore divided into two categories. Software instrumentation is mostly
related to the Middleware Layer while hardware instrumentation ties in with the
Infrastructure Layer. As presented in Fig. 5 a Real-World Service always involves a
Real-World Device, which makes hardware instrumentation especially important for
adding adaptability to resources related to the real world. Software instrumentation
is commonly used in the case of both Virtual and Real-World Resources.

Fig. 7 Adaptation loop realization techniques

6 Implementation, Deployment and Governance of SOA Adaptive Systems 277

4.1.1 Software Instrumentation

One of the key approaches applied to software instrumentation is the Interceptor
Design Pattern [4]: a design pattern used when software systems or frameworks need
to offer a way to change, or augment, their usual processing cycle. The Interceptor
Design Pattern may solve several problems related to software development. For
example, it is commonly used for monitoring the internal execution of an application.
Another area of usage is the ability to change or extend application behaviour. New
features are implemented as interceptors and invoked by the working application.
Such extensions do not need to be aware of other parts of the application, nor change
existing parts. They also do not affect the design of the system.

The Interceptor Design Pattern may be realized with the use of various approaches,
for instance with the Proxy Pattern where the original object is replaced with a proxy
with the same interface (or contract) as the original. Usage of this pattern provides
several possibilities, such as controlling access to the proxied object or lazily loading
such objects. The Proxy Pattern also provides the possibility to monitor original object
invocations or even alter them. It is also possible to create a proxy-based solution
which enables plugging in of sensors and effectors, facilitating transparent software
instrumentation.

Another approach for software instrumentation compliant with the Interceptor
Design Pattern is called container-based instrumentation. In contrast to previously
described solutions, in this case the subject of instrumentation is not an application
per se, but rather a container or execution environment in which the application is
being executed. The lowest level of such instrumentation is enrichment of the virtual
machine in which the process is executing. Examples of such systems are presented
in [24, 82] where Java Virtual Machine (JVM) is instrumented in order to access
runtime monitoring data. However, this approach is somewhat dated: nowadays sim-
ilar techniques are mapped into the domains of services and components. In this
case the subject of instrumentation is the container in which services are connected,
exposed and able to communicate—such as Service Component Architecture (SCA)
or Enterprise Service Bus (ESB). In the case of SCA, instrumentation may be applied
to enable exchanging composites from which the service is created. In this way it is
possible to manage the Quality of Service (QoS) of services which are executed in
the container. In the case of the ESB container, instrumentation may be used to relay
service calls to one of several instances of a particular service in order to provide the
desired QoS.

One of the main programmatic mechanisms used to realize software instrumenta-
tion is the concept of Aspect-Oriented Programming (AOP), first introduced in [38].
In this approach existing software can be interwoven with aspects which change or
extend its behaviour in a fully transparent way. This approach is especially useful
when the source code does not admit modifications. Initially, aspects were woven
into the software during compile or load time and any changes required the soft-
ware to be stopped. To solve this issue the concept of dynamic aspect weaving was
introduced. In [5, 56, 57] the authors presented several approaches to weaving and

278 R. Brzoza-Woch et al.

unveawing aspects at runtime, providing a basis for using aspects in order to realize
the adaptation control loop.

It is also possible for the software itself to be written in such a way as to enable
instrumentation. However, this solution is strongly limited to mechanisms exposed
directly by the software, i.e. retrieving monitoring data via dynamically added sen-
sors. As such, if some features or mechanisms are not enabled, it becomes necessary
to use one of the techniques described above.

4.1.2 Hardware Instrumentation

Instrumentation and introduction of new features, including sensors and effectors,
to hardware resources may require modifications in the physical design of elec-
tronic modules. Modifying and reconfiguring embedded systems in order to add new
features might be applied on different levels of design, starting from firmware recon-
figuration, through modification of external peripherals and microprocessor design,
all the way to selection of hardware modules that the system is composed of. In
general, these possibilities can be classified as:

1. Physical modifications—modifications that require additional elements to be
installed or modules to be exchanged.

2. Embedded software modifications—modifications performed by software recon-
figuration, e.g. changes to firmware or configuration elements.

Some embedded systems can be designed in a modular way, enabling new fea-
tures (e.g. measurement and debugging elements) to be added by plugging additional
modules into the existing platform. In other solutions it might be necessary to solder
additional elements manually. Such modifications cannot be performed automati-
cally as they require physical intervention. As programmable logic devices become
more and more robust, software modifications might be perceived, to some extent,
as physical modifications since they involve modifications in the embedded system’s
internal architecture. Upon installation effectors may use the same hardware recon-
figuration techniques to affect hardware resources during the adaptation process.

In the simplest case, embedded systems might be reconfigured by replacing the
firmware of the internal processor causing a change in its functionality and enabling
additional features to be used in the adaptation loop. This kind of reconfigurability
mirrors typical standalone systems. A more promising approach is to reconfigure the
hardware of the embedded system. The concept of reconfigurable computing that
combines some of the flexibility of software with the high performance of hardware
processing using high-speed reconfigurable computing fabrics, has existed since the
1960s. Gerald Estrin’s landmark paper proposed the concept of a computer composed
of a standard processor and an array of "reconfigurable" hardware components [21].
The main processor would control the behavior of the reconfigurable hardware which
would, in turn, be tailored to perform a specific task, such as image processing or
pattern matching, with performance similar to a dedicated hardware platform. Once
the given task was completed, the hardware could be adjusted to perform some other

6 Implementation, Deployment and Governance of SOA Adaptive Systems 279

task. This results in a hybrid computer architecture, combining the flexibility of
software with the speed of hardware. Unfortunately, Estrin’s idea was far ahead of its
time given the sophistication of electronic devices. In the 1980s and 1990s there was a
renaissance in this area of research, with many proposed reconfigurable architectures
developed in the industry and academia [11], such as COPACOBANA, Matrix, Garp,
Morphosys and PiCoGA [44]. Such designs became feasible due to the relentless
progress in silicon-based technologies which finally allowed complex designs to be
implemented on a single chip. The world’s first commercial reconfigurable computer,
Algotronix CHS2X4 [36], was completed in 1991. Algotronix was designed as a low-
cost add-on card for the PC. It contained 9 programmable CAL1024 logic chips. The
computer found application in a number of areas, including self-reconfiguration,
in which the board reconfigured itself from a design stored in RAM as a result of
computation. Ultimately the CHS2X4 would not achieve commercial success, but
proved promising enough that its core technologies were later bought by Xilinx—
inventor of the Field-Programmable Gate Arrays.

FPGAs contain programmable logic components called "logic blocks", and a hier-
archy of reconfigurable interconnects that allow the blocks to be "wired together"—
akin to changeable logic gates that can be inter-wired in (many) different config-
urations. Logic blocks can be configured to perform complex combinational func-
tions, or merely simple logic gates like AND and XOR. In most FPGAs, the logic
blocks also include memory elements, which may be simple flip-flops or more com-
plete blocks of memory. The main difference compared with custom hardware, i.e.
application-specific integrated circuits, is the ability to adapt the hardware at runtime
by loading a new circuit on the reconfigurable fabric. This can be achieved through
partial reconfiguration, by configuring a portion of a field programmable gate array
while another part is still running or operating. Much like software, hardware can be
designed modularly, by first creating subcomponents and then higher-level compo-
nents. In many cases it is useful to swap out one or several subcomponents while the
FPGA is operating.

Normally, reconfiguring a FPGA requires it to be held in reset mode. While
in that mode an external controller reloads the new design into the FPGA. Partial
reconfiguration allows for critical parts of the design to continue operating while a
controller (either inbuilt or external) loads a partial design into the reconfigurable
module. Partial reconfiguration also can be used to save space for multiple designs by
only storing the partial designs that change between sessions. A common situation in
which partial reconfiguration might be useful is the case of a communication device.
If the device controls multiple connections, some of which require encryption, it
would be beneficial to load different encryption cores without bringing the whole
controller down. In the scope of design functionality, partial reconfiguration can be
divided into two categories:

• dynamic partial reconfiguration, also known as active partial reconfiguration—
allows changing parts of the device while the rest of the FPGA is still running;

280 R. Brzoza-Woch et al.

• static partial reconfiguration—the device is not active during the reconfiguration
process. While partial data is sent to the FPGA, the rest of the device is stopped
(in shutdown mode) and brought up once the configuration is completed.

There are two styles of partial reconfiguration of an FPGA:

• Module-based partial reconfiguration, which enables reconfiguring distinct mod-
ular parts of the design. To ensure communication across reconfigurable module
boundaries, special bus macros ought to be prepared. A macro works as a fixed
routing bridge that connects the reconfigurable module with the remainder of the
platform. Module-based partial reconfiguration requires a set of specific guidelines
to be followed at the design stage.

• Difference-based partial reconfiguration, which can be used when a small change is
introduced in the design. It is especially useful when exchanging small routines or
dedicated memory blocks. The partial bit-stream contains only information about
differences between the current design structure (which resides in the FPGA) and
the new content of an FPGA.

Maturation of Field Programmable Gate Arrays has led to the concept of open-
source hardware, where physical artifacts are designed and offered in the same man-
ner as free and open-source software. Hardware design (i.e. mechanical blueprints,
schematics, materials, printed circuit layout data, hardware description language
source code and integrated circuit layout data), in addition to the software that drives
the hardware, are all released using the open source approach. Since the rise of
reconfigurable programmable logic devices, sharing of logic designs has adopted the
concept of open-source hardware. Instead of raw schematics, hardware description
language (HDL) code is shared. HDL descriptions are commonly used to set up
system-on-a-chip platforms using either field-programmable gate arrays (FPGAs) or
application-specific integrated circuit (ASIC) designs. HDL modules, when distrib-
uted, are called semiconductor intellectual property cores, or IP cores. This allows
developers to exploit general purpose electronic modules along with specific hard-
ware descriptions [53] to build custom hardware devices.

4.2 Analysing and Planning

Several approaches to constructing autonomous managers are currently under inves-
tigation. One of these is to apply control theory for performance control in complex
applications such as real-time scheduling, web servers, multimedia, and power con-
trol in CPUs [42]. This methodology is viewed as a promising foundation but its
main drawbacks include the need to identify and model managed systems. A dif-
ferent approach is to use policies to guide decisions based on the observed system
state and its behaviour. Several languages and specifications have been designed for
this purpose. The WS-Policy [75] specification represents a set of specifications that
describe the capabilities and constraints of security (and other business) policies on

6 Implementation, Deployment and Governance of SOA Adaptive Systems 281

intermediaries and endpoints (this includes e.g. the required security tokens, sup-
ported encryption algorithms, and privacy rules) and how to associate policies with
services and endpoints. The Ponder [18] language provides common means of spec-
ifying security policies that map onto various access control implementation mech-
anisms for firewalls, operating systems and databases. Understanding of the policies
varies between researchers, but usually the term "policy" is used to represent a set
of considerations which guide decisions. The policy is provided to the system as a
set of rules. A policy information model provides an abstract representation of the
information required to define a policy:

• Condition-Action Information Model policies consist of several policy rules that
have two elements: conditions and actions. Conditions define when the policy
should be applied while Actions define what needs to be done when a particular
policy rule is applied. Condition-action policy rules assume the following form:
if [list of conditions] then [list of actions]. Such policies are evaluated at regular
intervals. Even though this information model is very simple, it has some draw-
backs. The frequency of policy evaluation has to be defined, which may influence
system reaction time.

• Event-Condition-Action Information Model treat events as conditions. This type of
policy model is useful for asynchronous policy evaluation as a response to events
generated by the system (e.g. state changes or parameters exceeding threshold
values). An event-condition-action policy is denoted as when [list of events and
conditions] then [list of actions]. This type of policy becomes particularly useful
when determining policy evaluation frequency becomes unfeasible or when event-
driven policies are called for.

Policy rules are executed by a rule engine which uses algorithms for efficient
pattern matching. Usage of rule engines brings a number of advantages, including
separation of business logic from application implementation, the ability to change
policies without software recompilation and extending the set of policies at runtime.

Another promising approach for runtime adaptation is to apply mechanisms which
leverage software models and the applicability of model-driven engineering tech-
niques to the runtime environment. A runtime model is a causally-connected self-
representation of the associated system that emphasizes the structure, behaviour, or
goals from a problem space perspective [10]. Models may express several different
aspects of the running system. They might express the structure of the underlying sys-
tem or its behavioural aspects. Structural models show how the system is constructed
in terms of objects and invocations. In contrast, behavioral models emphasize how
the system executes in terms of flows or traces and events occurring in the working
system.

282 R. Brzoza-Woch et al.

4.3 Survey on Existing Solutions

This section presents a comparison of existing solutions in the context of adaptation
loop techniques described previously. Such comparison is performed in order to
show the current state of the art concerning instrumentation and adaptation methods
in different projects, and to evaluate the prospects of applying them to the SOA
domain. The results of this research are presented in Table 2.

As described in the previous sections, several software instrumentation techniques
exist. The following paragraphs present selected solutions and their usage in the
context of adaptation loops.

In [23] the authors present a framework called Rainbow which can be used for
adaptation of software systems. Such adaptation concerns the use of mechanisms
located outside of the analyzed system, which enable adaptation strategies to be
specified. The Rainbow framework enforces the implementation of its sensors and
actuators, thereby enabling adaptation. This solution can be used for systems built in
accordance with the SOA paradigm thanks to its modular and flexible architecture.
In order to realize an adaptation loop an architectural model of the system has to
be prepared. On the basis of this model Rainbow enables adaptation invariants and
strategies to be specified. Together, these determine the system’s adaptation style
and can be evaluated by the adaptation engine. Rainbow is aimed at virtual services,
however any set of adaptation strategies created for a hardware adaptation can be
used after reorganizing process for the purpose of real-world services.

In [48] the authors present results of their work in the DiVA project which focuses
on dynamic variability in complex adaptive systems. DiVA introduces a methodol-
ogy and tools for runtime QoS management of adaptive systems. It also proposes an
approach for specifying and executing dynamically adaptive software systems which
combines model-driven and aspect-oriented techniques in order to tame the complex-
ity of such systems. This approach depends on the model of the managed system. In
order to apply the proposed approach engineers need to design models independently
of the running system and leverage them at runtime to drive the dynamic adaptation
process. The DiVA solution does not directly address the SOA domain, but—owing
to its flexible architecture—could be easily incorporated into SOA systems. The pro-
posed techniques can be applied to Virtual as well as Real-World Services; however
no hardware adaptation metodologies have been published so far.

In [25] the authors describe the Adaptive Server Framework (ASF)—an architec-
tural concept which facilitates the development of adaptive behavior for legacy server
applications. ASF provides clear separation between the implementation of adaptive
behavior and the business logic of the server application. ASF incurs low CPU over-
head and memory usage. It is portable across different J2EE applications servers.
The goal of ASF is to provide infrastructure components and services to facilitate
the construction of behavioral adaptation. ASF components interact with the appli-
cation server, monitor the runtime environment, analyse collected data and change
the application’s behavior by adapting its responses or setting the server’s configura-
tion to fulfill business goals. The authors identify two monitoring techniques: adding

6 Implementation, Deployment and Governance of SOA Adaptive Systems 283

Ta
bl

e
2

In
st

ru
m

en
ta

tio
n

an
d

ad
ap

ta
tio

n
m

et
ho

ds
us

ed
by

ex
is

tin
g

so
lu

tio
ns

So
lu

tio
n

So
ft

w
ar

e
in

st
ru

m
en

ta
tio

n
H

ar
dw

ar
e

in
st

ru
m

en
ta

tio
n

A
na

ly
se

an
d

Pl
an

A
pp

.
M

an
ua

l
Pr

ox
y

A
O

P
C

on
t.

Ph
ys

ic
al

M
od

ul
es

Fi
rm

w
ar

e
A

rc
h.

M
od

el
R

ul
e

Po
lic

y
ba

se
d

ba
se

d
ba

se
d

ba
se

d
m

od
.

ex
ch

an
ge

m
od

.
re

co
nf

.
ba

se
d

ba
se

d
ba

se
d

[2
3]

X
X

X
[4

8]
X

X
[2

5]
X

X
X

X
[2

8]
X

X
[8

1]
X

X
X

[1
4]

X
X

X
[4

3]
X

X
[7

9]
X

X
X

[8
3]

X
X

[7
]

X
[6

]
X

X
X

[4
9]

X
X

[8
0]

X
[6

0]
X

X
[5

5]
X

[7
1]

X
[1

3]
X

[4
1]

X
[4

6]
X

[1
6]

X
[1

2]
X

X
[5

0]
X

X
X

[6
9]

X
X

[2
]

X

284 R. Brzoza-Woch et al.

interceptors by means specific for a given service container (which can be qualified
as container-based instrumentation) and wrapping components in JMX MBeans and
redirecting client invocations (a combination of proxy and manual instrumentation
techniques). In ASF adaptation analysis and planning involve a component model
of the system, which can be changed during adaptation, and rely on policies which
drive the adaptation process. The proposed approach focuses on components (i.e. the
components layer of S3) and can therefore be perceived as partly related to SOA.
ASF does not deal with Real-World Services or hardware instrumentation aspects.

In [28] the authors propose a middleware-centric approach to building appli-
cations capable of adapting to dynamically changing requirements, pursued in the
FAMOUS (Framework for Adaptive Mobile and Ubiquitous Service) project. The
authors focus on handheld devices where communication bandwidth or UI prefer-
ences change dynamically, depending on the ambient light and noise. The adaptation
loop is realized in the following way: when a context change occurs, it is detected
by the context monitor which then notifies the adaptation manager. The adaptation
manager searches for a configuration which best fits the current context and resource
utilization by the application. The search uses a planner component to iterate through
plans for all possible application variants. A plan is generated by selecting a specific
component for each component role of the application. As some of the selected com-
ponents can be composites, the planning continues recursively until all leaf nodes
are selected. The best configuration is selected by computing a utility value for each
plan with respect to the user preferences and properties of the execution environ-
ment. This value is returned by the utility function, defined by the developer. The
utility funciton is typically a weighted mean of the differences between the offered
and required properties. Individual weights in the utility function represent changing
user priorities and may be adjusted at runtime. The variant with the highest utility
value is chosen. In order to avoid constant changes, the adaptation manager also needs
to evaluate whether the perceived improvement is high enough to justify an adap-
tation. Such evaluation is based on a user-adjustable utility improvement threshold
and adaptation delay.

In [81] the authors describe three important steps towards adaptive online systems.
First is the assumption that online hardware reconfiguration due to workload changes
has the potential to improve performance. Second step assumes that by using unin-
strumented middleware and given only raw, low-level system statistics it is possible
to predict which of the two configurations will outperform the other at any given time.
The last one imposes extending the prediction capability to make precise numerical
estimations (i.e. quantitative changes in performance when the system is switched to
each of the possible configurations). By fulfilling all three criteria performance gains
can be traded off against inevitable reconfiguration costs. The authors start off with
a set of experiments using the TPC-W benchmark which shows that given configu-
rations might prove better in different circumstances Subsequently the authors claim
that they can infer the optimal configuration on the basis of low-level operating sys-
tem statistics (with no customized instrumentation). They create a model mapping
the current system state (represented by output from the vmstat tool) to the optimal

6 Implementation, Deployment and Governance of SOA Adaptive Systems 285

configuration. Using results from previous experiments as training data they apply
the WEKA package as an implementation of standard machine learning methods.

In [14] the concept of Adaptable ESB is introduced. It consists of an operations
support system that is compliant with NGOSS (Next Generation Operations System
and Software) and implements a service-oriented architecture (SOA) that relies on
an enhanced enterprise service bus (ESB). This enhanced ESB, referred to as an
adaptable service bus (ASB), enables runtime changes to business rules, thus avoiding
costly application shutdowns. An implementation of this system has been used by the
ChungHwa Telecom Company, Taiwan, since January 2008 and provides complete
support for its billing application. As a result the billing process cycle has been
reduced from 10–16 days to 3–4 days, paving the way for further business growth.

The paper [43] propose the usage of ESB to build a dependable SOA middleware.
Its authors exploit state-of-the-art solutions (i.e. Bayesian networks and fault detec-
tion algorithms) to propose a service-based architecture ensuring high dependability
of business processes and services. The architecture comprehensively addresses the
following challenges: discovering causal relationships, providing high scalability
and preventing excessive overhead. The deficiency of the designed middleware is its
reliance on the monitoring API of a particular ESB, which is not standardized among
different vendors.

Morin et al. have studied the role of runtime models in managing runtime or
dynamic variability [22]. Their research focuses on reducing the number of config-
urations and reconfigurations that need to be considered when planning adaptations
of the application. The authors illustrate their approach with a customer relationship
management application. Fleurey et al. present preliminary work on modeling and
validation of dynamic adaptation [48]. Their proposed approach envisions runtime
use of Aspect-Oriented Modelling (AOM). First, the application base and variant
architecture models are designed and the adaptation model is built. At runtime the
adaptation model is processed to produce the system configuration to be used during
execution. Although adaptation to context changes is precisely described, the meth-
ods of adapting to changing QoS requirements and capabilities are only mentioned.

There are many different ways to extract monitoring data. Some studies rely on the
data provided by the application layer [7, 83], while others focus on the mechanisms
of monitored containers [43, 80] or turn to instrumentation of monitored systems
[6, 49, 79]. Identifies two main kinds of monitoring data extraction: instrumentation
and interception. Interception assumes that the monitored system enables some pro-
prietary way of installing interceptors. Many of the frameworks relies on the AOP
instrumentation which has been the subject of numerous studies (cf. [13, 55, 60,
71]).

In order to enforce adaptation in Real-World Services it is necessary to enable
hardware instrumentation. Several interesting solutions related to this concept are
currently available, as highlighted in the following paragraphs.

The concept of reconfigurable general-purpose hardware can be extended to cover
replaceable hardware modules that can be selected for particular usage scenarios.
One of the relevant open-source hardware startups is Bug Labs [41]. The company
develops a Lego-like hardware platform which tinkerers and engineers can use to

286 R. Brzoza-Woch et al.

create their own digital devices. Development starts with BUGBase, which is a
general-purpose Linux computer about the size of a PlayStation Portable, encased in
white plastic. It provides four connectors that plug right into the motherboard. The
company also manufactures a variety of modules that can plug into the computer—
including an LCD screen, a digital camera, a GPS unit, a motion sensor, a keyboard,
an EVDO modem, and a 3G GSM modem (There are also extensions for USB,
Ethernet, WiFi, and serial ports). Bug Labs intends to produce approximately 80
different modules and hopes that external companies and developers will create their
own modules.

A representative general-purpose hardware solution is marketed by the Milkymist
[46] project. It is a comprehensive open-source platform for live synthesis of interac-
tive visual effects. The project goes to great lengths to apply the open source principles
at every level possible, and is best known for the Milkymist system-on-chip (SoC)
platform, which is among the first commercialized system-on-chip designs with free
HDL source code. As a result, several Milkymist technologies have been reused
in applications unrelated to video synthesis. For example, NASA’s Communication
Navigation and Networking Reconfigurable Testbed (CoNNeCT) experiment uses
the memory controller that was originally developed for the Milkymist system-on-
chip in the development of an experimental software-defined radio prototype.

A polar opposite to full reconfiguration of the embedded system architecture is the
concept known as Programmable System on Chip (PSoC) [16]. A PSoC integrated
circuit is composed of a core, configurable analog and digital blocks and program-
mable routing and interconnect. Flexible mixed-signal arrays enable signals to be
routed to and from I/O pins. This architecture allows designers to create customized
peripheral configurations to match the requirements of each individual application,
making PSoC substantially different from other microcontroller designs [15].

Reconfigurable hardware platforms are often used as tools for acquisition and
processing of data from scientific experiments. Some general (basic) information
about the concept and classification of such platforms can be found in [76]. Two
specific examples are briefly described below.

The platform described in [12] was designed to acquire and process (in real-time)
data from nuclear spectrometry experiments. It uses Xilinx FPGA chips and Texas
Instruments Digital Signal Processors. Among the tasks handled by DSP processors
is real-time parametrization of the hardware processing algorithms stored in the
FPGA. The design also allows the available hardware to be used as a general-purpose
acquisition and processing platform.

Another example of a reconfigurable hardware platform for scientific experiments
aimed at cellular architectures is called CONFETTI and introduced in [50]. This is
a modular, hierarchical platform composed of a number of simple FPGA-based
computing units called ECells. ECells can communicate with each other at speeds
up to 500 Mbits/s and can be configured independely from many different sources
(local FLASH memory, Ethernet, Wi-Fi, etc.) Owing to its modular construction,
the user has the ability to replace any of ECell unit with another, compatible unit.
Communication between the ECells is also widely configurable.

6 Implementation, Deployment and Governance of SOA Adaptive Systems 287

Another interesting class of devices is represented by Sun SPOTs—Small Pro-
grammable Object Technology, developed by Sun Microsystems (now part of Oracle)
[69]. SPOTs are designed as an experimental platform for prototyping applications
which might be strongly integrated with the environment. Each device comes with a
general-purpose sensor board which can—at the developer’s discretion—be swapped
for a different hardware module such as a flash card reader, a more robust ana-
log input/output extension, or an FPGA board. Another adaptation option is to use
the built-in management feature which allows monitoring of working applications,
changing device properties and even installing new software remotely.

Address trace analysis is one of the available techniques used to evaluate cache
and memory efficiency of computer systems. Address traces are streams of addresses
generated during the execution of programs. They can be aggregated using various
methods. An interesting way to collect traces—named ATUM—was proposed by
Agarwai et al. [2]. Their concept is to modify the microcode of each processor
instruction that requires access to memory. In this way the address referenced by
that instruction is also stored in a special protected place in memory. This method of
collecting address traces can be used in any microprocessor which admits microcode
modifications and can be treated as an instrumentation of hardware through firmware
modifications (microcode can be treated as processor firmware).

As presented in Table 2 many existing solutions are—in one way or another—
related to adaptation loops. While some of them are clearly more mature than others,
there is no single technique which tackles all the issues connected with implementing
adaptation loops in both the software and the hardware domain. Another significant
conclusion is that the hardware domain lacks the requisite Analyze and Plan compo-
nents. Only a handful of projects address SOA systems, whether directly or indirectly.
In order to remedy this issue we have decided to introduce the concept of an Adaptive
SOA Solution Stack (AS3) Pattern. It can be applied to heterogeneous environments
comprised of both Real-World and Virtual Services in order to enforce the adaptation
loop in a seamless and standardized way across all layers of the system which is the
subject of adaptation.

5 Adaptive SOA Solution Stack

One of the main models of SOA application development and deployment is the
SOA Solution Stack (S3) proposed by IBM [3]. Its core concept is depicted in Fig. 8.
The S3 model provides a detailed architectural definition of SOA split into nine
layers. Each layer comes with its own logical aspects (including all the architectural
building blocks, design decisions, options, key performance indicators, etc.) and
physical aspects (which cover the applicability of each logical aspect in reference to
specific technologies and products). The S3 model is based on two assumptions:

• The existence of a set of service requirements (functional and nonfunctional) which
collectively establish the SOA objective;

288 R. Brzoza-Woch et al.

Fig. 8 SOA Solution Stack [3]

• The notion that specific service requirements can be fulfilled by a single layer or
some combination of layers. Each layer can satisfy service requirements by way
of a layer-specific mechanism.

The nine layers of the S3 stack are as follows: Operational Systems, Service
Components, Services, Business Process, Consumer, Integration, QoS, Information
Architecture, and Governance and Policy. A broad (non-technical) description of
each S3 layer (except the Consumer layer), is provided in the following paragraphs.

• Operational Systems—This layer includes all application and hardware assets
running in an IT operating environment that supports business activities (whether
custom, semicustom or off-the-shelf). As this layer consists of existing appli-
cation software systems, SOA solutions may leverage existing IT assets. Cur-
rently this layer typically includes a virtualized IT infrastructure that results in
improved resource manageability and utilization. This property could be effec-
tively exploited in the development of an adaptive virtualized infrastructure, guar-
anteeing the required level of accessibility of computational or communication
resources.

• Service Components—This layer contains software components, each of which
is an incarnation of a service or service operation. Service components reflect both
the functionality and QoS for each service they represent. Each service component:

– provides an enforcement point for ensuring QoS and service-level agreements;
– flexibly supports the composition and layering of IT services;
– conceals low-level implementation details from consumers.

In effect, the service component layer ensures proper alignment of IT implementa-
tions with service descriptions. Service QoS depends on the efficiency of internal
components used for service provisioning. It provides a space for adaptability
within the Service Component layer. The observed service QoS is not only the
result of Service Component activity but also depends on computational resources

6 Implementation, Deployment and Governance of SOA Adaptive Systems 289

used during execution. This behaviour illustrates the role of the Operational Sys-
tems layer and facilitates multilayer adaptability.

• Services—This layer consists of all services defined within SOA. In the broadest
sense, services are what providers offer and what consumers or service requestors
use. In S3, however, a service is defined as an abstract specification of one or more
business-aligned IT functions. This specification provides consumers with suffi-
cient information to invoke the business functions exposed by a service provider. It
is necessary to point out that services are implemented by assembling components
exposed by the Service Component layer and that this assembly process might be
performed dynamically with support from adaptability mechanisms.

• Business Process—In this layer the organization assembles the services exposed
in the Services layer into composite services that are analogous to key business
processes. In the non-SOA world business processes exist as custom applications.
In contrast, SOA supports application construction by introducing a composite
service which orchestrates information flow among a set of services and human
actors. Again, these composite services can be constructed dynamically according
to a specific adaptation policy.

• Integration—This layer integrates layers 2–4. Its integration capabilities, sup-
ported by ESB, enable mediation, routing and transporting service requests from
the client to the correct service provider. This layer is particularly well suited for
adaptability mechanisms.

• Quality of Service—Certain characteristics of SOA may exacerbate well-known
IT QoS concerns: increased virtualization, loose coupling, composition of fed-
erated services, heterogeneous computing infrastructures, decentralized service-
level agreements, the need to aggregate IT QoS metrics to produce business metrics
and so on. As a result, SOA clearly requires suitable QoS governance mechanisms.

• Information Architecture—This layer covers key data and information-related
issues involved in developing business intelligence with the use of data marts and
warehouses. It includes stored metadata, which is needed to correctly interpret
actual business information.

• Governance and Policy—This layer covers all aspects of managing the busi-
ness operations’ lifecycle. It includes all policies, from manual governance to
autonomous policy enforcement. It also provides guidance and policies for manag-
ing service-level agreements, including capacity, performance, security and mon-
itoring. As such, the Governance and Policy layer can be superimposed onto all
other S3 layers. From a QoS and performance standpoint it is tightly connected
to the QoS layer. The layer-specific governance framework includes service-level
agreements based on QoS and key process indicators, a set of capacity planning
and performance management policies to design and fine-tune SOA solutions as
well as specific security-enabling guidelines for composite applications.

The decomposition of SOA Systems proposed by S3 can be used for more pre-
cise partitioning of the Adaptive Systems Space introduced in Sect. 2. The "where"
axis (showing where adaptation mechanisms can be located) may now be split into
sections referring to the S3 layers, as presented in Fig. 9. The Operational Systems

290 R. Brzoza-Woch et al.

Fig. 9 Mapping of S3 onto the Adaptive Systems Space

layer is assigned to the Infrastructure layer while Service Components, Services, and
Business Processes are aggregated by the Middleware Layer. Since the Consumer
Layer often contains application-specific mechanisms, it is mapped to the Appli-
cation Layer. Vertical S3 layers crosscut the entire "where" axis, making them a
perfect place for deployment of mechanisms required by the adaptation loop. This
is consistent with the fact that the vertical layers (QoS, Information Architecture,
Governance and Policy) are directly related to non-functional parameters involved
in the adaptation process. The presented mapping clearly highlights the structure of
Adaptive SOA in the context of S3.

The S3 Model which coincides with the Adaptive SOA Space is named the Adap-
tive SOA Solution Stack (AS3) [85]. lt could be constructed via uniform introduction
of adaptability aspects to each layer of the S3 Model, yielding a multilayer adap-
tive system which takes advantage of modern software and hardware technologies
and offers full control over QoS and QoE parameters. The concept of AS3 has two
important constituents:

• AS3 Element Pattern—an architectural pattern used for modelling adaptability
aspects in each S3 layer. It contains several components used in the adaptation
process.

• AS3 Process—an abstract process defining the transformation of the non-adaptive
layer of the S3 stack into its adaptive equivalent.

Each constituent will be described in more detail in the following sections.

6 Implementation, Deployment and Governance of SOA Adaptive Systems 291

Fig. 10 AS3 Element Pattern

5.1 The AS3 Pattern

In general, the AS3 Pattern depicted in Fig. 10 follows the concept of the MAPE-K
control loop and refines it in the context of adaptability-related S3 layers. Throughout
the remainder of this chapter we will refer to the AS3 Element Pattern simply as the
AS3 Pattern, while the S3 layer to which adaptability is added in accordance with
the AS3 Pattern will be referred to as the AS3 Layer. The elements of this pattern
could be described as follows.

The Resource is an abstract entity (S3 Layer—e.g. Integration, Service Compo-
nents or Services). It is transformed into the Managed Resource through instrumen-
tation with sensors and effectors. Sensors expose the state and configuration of the
Resource and enable monitoring of its activity. Effectors provide mechanisms for
changing Resource parameters or configuration according to actions enforced by the
Management Component. Data gathered by sensors is passed to the Monitoring Com-
ponent which is responsible for calculating selected metrics and processing events.
The aggregated data—the output of the Monitoring Component—is forwarded to the
Exposition Component.

The Exposition Component cooperates with the Adaptive Manager which is used
to select control actions. It transforms monitored data into the format used by the
given Manager instance. The Exposition Component therefore acts as a harmoniza-
tion layer. It is also possible for the Exposition Component to expose some facts to
other AS3 Elements and receive high-level decisions which should be enforced in the
control loop. The Adaptive Manager Component is used to enact the adaptation loop.
Actions selected by the Adaptive Manager are converted by the Exposition Compo-
nent to a format acceptable by the Management Component. The responsibility of

292 R. Brzoza-Woch et al.

the Management Component is to enforce management actions using effectors of
the Instrumentation Component.

As the AS3 Pattern follows the MAPE-K concepts, its elements can be classified
in this context. The Resource referred to by the AS3 Pattern (which, following Instru-
mentation, is transformed into a Managed Resource) represents the same abstraction
as the MAPE-K Managed Element. Sensors and effectors perform similar roles in
both approaches. The Monitoring Component realizes the Monitor phase while the
Management Component handles aspects of the Execution phase of MAPE-K. The
Analysis and Planning phases are realized by the Adaptive Manager of the AS3
Pattern. To manage both phases the Adaptive Manager uses a declarative strategy
named the Adaptation Strategy. It is assumed that the Adaptation Strategy can be
represented with the use of rules which currently do not have any semantic context
for realization of the Knowledge concept of MAPE-K. One component of the AS3
Pattern which does not have a direct MAPE-K counterpart is Exposition. It acts as a
data harmonization layer and enables facts and high-level decisions to be obtained
and exposed by AS3 Patterns located in different S3 Layers.

The full potential of the AS3 Stack is manifested in the cooperation abilities
of different AS3 Layers. For instance, it is possible to monitor the whole system
by collecting information from Monitoring Components present in each AS3 Layer.
Such reasoning may also refer to other types of AS3 components. Thus, the following
aspects are inherent in a complete AS3 stack: observability (Monitoring component),
manageability (Management component) and policy (Adaptive Manager component)
[85]. A key challenge related to leveraging the AS3 Stack is to propose a means of
introducing adaptability to layers of the SOA system in accordance with the AS3
Pattern, as well as managing adaptability in an effective way.

The AS3 Pattern can be uniformly applied to systems consisting of both Real-
World and Virtual Services. Figure 11 depicts the concept map which reflects the
application of the AS3 Pattern in such heterogeneous systems. Blue elements have
already been introduced in Sect. 3—they are related to SOA systems. The remaining
(green) elements are directly related to the concept of AS3. The AS3 Pattern draws
upon Adaptive SOA as one of the possible approaches to modelling adaptation in
SOA systems. As presented in the concept map, the AS3 Pattern models enrichment
of Middleware and Infrastructure, placed on the "where" axis in Fig. 9, which presents
the Adaptive Systems Space. The purpose of enrichment is to enable adaptation of
Composite Services and reconfiguration of Physical Resources, with particular focus
on Real-World Devices. Enrichment of Middleware concerns all components of the
AS3 Pattern, while enrichment of Infrastructure involves only a restricted subset of
AS3 Pattern components, i.e. Instrumentation (sensors and effectors), Monitoring
and Management. Since hardware is less flexible than software, full implementation
of the adaptation loop is rather difficult, as highlighted in Sect. 4. Infrastructure
sensors and effectors are enabled by reconfiguration of Physical Resources which
could be either Computers or Real-World Devices. Middleware is enriched with all
AS3 Pattern and supports the complete adaptation loop. An important point is that
instrumented infrastructure enables multi-level adaptation of both Real-World and
Virtual Services, performed on the Middleware level.

6 Implementation, Deployment and Governance of SOA Adaptive Systems 293

Fig. 11 Application of the AS3 Pattern in heterogeneous systems

The following parts of this section explain some of the concepts introduced in
Fig. 11. The first part focuses on the Middleware and explains the enrichment and
adaptation enabled by the AS3 Pattern, while the second part is devoted to Infrastruc-
ture and its enrichment, highlighting the reconfiguration of Real-World Devices.

Enrichment Supporting the Adaptation Process in the Middleware Layer

Figure 12 presents Middleware enrichment with the use of the AS3 Pattern. First of
all, it is assumed that Middleware has a layered structure and that each layer can be
divided into a part which provides the Runtime Environment and a part containing
the layer’s Logic. Logic is delivered by some Artifacts which are specific to the
given layer. The Runtime Environment for Artifacts is assumed to be provided in
the form of a Container. Layer-specific Artifacts are simply deployed to the Con-
tainer, which provides them with the Communication feature. As mentioned before,
the Middleware enrichment involves all components introduced by the AS3 Pattern.
Realization of such enrichment assumes that Monitoring, Management, Exposition
and Adaptive Manager components are simply deployed to the Layer’s Container
in the form of Layer-specific Artifacts. The Instrumentation component is handled

294 R. Brzoza-Woch et al.

Fig. 12 Enrichment of Middleware using the AS3 Pattern

differently. Since the AS3 Pattern models the enrichment of some Abstract Resource,
Middleware Layer Containers are treated as Resources to which Instrumentation is
added. It is therefore assumed that Instrumentation is introduced in the Container
(by whatever means) and that it applies the interceptor design pattern. The use of this
pattern allows for interception of communication performed by Artifacts and lever-
ages this for implementation of Sensors and Effectors which provide monitoring and
management features for respective components of the AS3 Pattern. The presented
design of Middleware enrichment carries several important advantages:

• Communication between Layer-specific Artifacts can be monitored and managed
in an non-intrusive way, which is transparent for applications.

• Monitoring, Management, Exposition and Adaptive Manager components can be
easily deployed and managed owing to management features provided by the
Runtime Environment of a given Layer.

• Communication between AS3 Pattern components can be easily performed with
the use of the Communication feature provided by the Container.

The final purpose of Middleware enrichment is providing mechanisms required
by adaptation of Composite Services and used to implement the application’s logic.
In order to realize this goal, AS3 assumes a certain structure of Composite Services.
Specifically, it is assumed, that on a higher level of abstraction each Composite

6 Implementation, Deployment and Governance of SOA Adaptive Systems 295

Fig. 13 Enrichment and Reconfiguration of the Infrastructure using the AS3 Pattern

Service can be described as an abstract composition in which abstract services are,
in turn, described by their features without referring to a particular instance. For
each abstract service several different instances can be deployed and used during
execution of an application. Middleware enrichment allows the decision subsystem
to dynamically recompose the application by selecting a set of service instances
for each service that belongs to the Composite Service. When decisions are made
locally, i.e. without regard to how a particular service instance may influence the
overall application, the results often lead to unsatisfactory solutions. To improve the
outcome of adaptation, approaches such as usage of stochastic models may be used
to estimate global system behaviour.

Enrichment Supporting the Reconfiguration Process
of the Infrastructure Layer

Figure 13 presents the concept of the Infrastructure enrichment using the AS3 Pattern.
The figure focuses on the aspect of Real-World Services and Real-World Devices.
Mirroring the relations depicted in Fig. 11, the Infrastructure aggregates Physical
Resources, some of which may be Real World Devices. Figure 13 shows that the
Real-World Service always involves some Real World Device. Figure 13 makes this

296 R. Brzoza-Woch et al.

involvement more specific and shows that the Real-World Service is an aggregation of
a Real World Device and an implementation of SOA Principles. The following SOA
Principles are singled out as especially important: Standardized Service Contract,
Service Discoverability and Service Composability. Each Real-World Service needs
to publish its Contract to some entity in order to be discoverable by other services, and
as a result, allow its features to be integrated in Composite Services. Furthermore, it
is assumed that each Real-World Device comprises three main elements: a Device
(which implements some feature in the real world), Processing Logic (which deals
with controlling the Device) and some Communication Mechanisms (which enable
the Device to be controlled remotely). The aforementioned implementation of SOA
Principles is concerned mostly with Communication mechanisms and uses them to
expose Processing in a service-oriented way.

As stated before, Infrastructure enrichment involves three components of the AS3
Pattern: Instrumentation, Monitoring and Management. The resources to which the
AS3 Pattern refers are Real-World Devices. Instrumentation of Real-World Devices
can be performed with the use of the following approaches: Firmware Modification,
Architecture Reconfiguration, Hardware Module Exchange, Physical Modification
(all described in detail in Sect. 4.1). As presented in Fig. 13, each of these approaches
is a combination of the following actions: adding Embedded Hardware to the Device
and/or adding Embedded Logic to Processing. Regardless of the approach used, the
result of such actions is always the same: the Real-World Device is equipped with
Sensors and Effectors. Monitoring and Management components are handled in a
somewhat different manner than Instrumentation. While they can also involve some
additional Embedded Logic, they mostly focus on exposure of endpoints by means of
Communication mechanisms. The presented realization of Infrastructure enrichment
allows for Reconfiguration, which can be used to spawn new Real-World Services
and manage them in the context of a specific Real-World Device.

5.2 The AS3 Process

The purpose of the AS3 Process is transforming systems built in accordance with the
S3 Model into adaptive environments and managing the adaptation process across
different S3 Layers. The assumption of the AS3 Process is that the AS3 Pattern
may be applied only to selected layers. Leveraging the potential of specific layers in
the context of the adaptation loop may enhance the SOA environment with (among
others) the following features:

• Dynamic service sizing [64]: scaling the service to adapt to changing load con-
ditions, either by (i) scaling up (i.e. resizing a running service component, for
example by increasing or decreasing its memory allocation), or (ii) scaling out
(adding or removing instances of service components).

6 Implementation, Deployment and Governance of SOA Adaptive Systems 297

Fig. 14 Abstract view of the AS3 Process

• Policy-driven operation optimization [85]—flexibility can be controlled by rules,
following an “event-condition-action” approach in which certain conditions trigger
automatic actions to alter the service’s capacity.

• Cross-business process monitoring and management [61] e.g. to enforce a close
feedback loop control paradigm.

The AS3 Process involves the selection of layers that need to be enhanced with
adaptability. Such an approach alleviates the overhead incurred by any adaptation-
related activities that do not contribute to improving the performance of the applica-
tion. An abstract view of the AS3 Process in presented in Fig. 14. The Process relies
on the following two concepts related to adaptability deployment supported by the
AS3 Pattern:

• Adaptability Mechanisms (AM)—these affect all components of the AS3 Pattern,
i.e. Instrumentation, Monitoring, Management, Exposition and Adaptive Manager.
Deployment of those components into the S3 Layer transforms it into the AS3
Layer, capable of enforcing the Adaptation Strategy.

• Adaptation Strategy (AS)—configuration of Adaptability Mechanisms which
drives the adaptation loop. The strategy always refers to sensors and effectors
needed to monitor and manage a fragment of the application whose adaptation is
defined in the strategy. This strategy is enforced by the Adaptive Manager.

The central activity of the AS3 Process is Adaptation Planning which selects S3
Layers in which adaptation has to be introduced and prescribes an Adaptation Strat-
egy for each layer. A prerequisite for starting the AS3 Process is Initial Provisioning.
The purpose of Initial Provisioning is installation of agnostic monitoring and manage-
ment mechanisms which cut across all S3 Layers. These mechanisms enable discov-
ery of resources belonging to S3 Layers and monitoring of selected QoS parameters.
With their help it becomes possible to identify S3 Layers which require Adaptabil-
ity Mechanisms and design an initial Adaptation Strategy for selected application
fragments.

Parts of the AS3 Process related to selected S3 Layers can be divided into three
phases. In Phase I, Adaptability Mechanisms are deployed to the infrastructure in

298 R. Brzoza-Woch et al.

accordance with the AS3 Pattern. In Phase II the Adaptation Strategy related to a given
application fragment is deployed to the AS3 Layer. In Phase III the adaptation loop of
the AS3 Pattern is started and execution of the application fragment is monitored and
analyzed. Phase III leverages the AS3 observability aspects by gathering data from
the Monitoring Component, as well as its manageability aspect by introducing minor
corrections through the Management Component. The output of analysis performed
in Phase III is passed to Adaptation Planning, completing the AS3 Process loop.

During subsequent executions of Adaptation Planning, monitoring data obtained
from agnostic Initial Provisioning mechanisms is combined with data provided by
AS3 Layers. This results in a comprehensive view of the system state and shows
how the adaptation process influences the fulfillment of consumer requirements.
As a result of Adaptation Planning, some (or all) of the following actions may be
executed:

• deploying Adaptability Mechanisms to an S3 Layer which had not been instru-
mented before;

• modifying the previously-deployed Adaptation Strategy or Adaptability Mecha-
nisms (for instance by adding more mechanisms);

• removing the previously-deployed Adaptation Strategy or Adaptability Mecha-
nisms which are no longer needed.

In a given S3 Layer, execution of actions enforced by the Adaptation Planning
may involve Phase I, Phase II or both phases in such a way that Phase I occurs before
Phase II. If Adaptation Planning does not enforce any changes in the infrastructure
and on the application level then the Process progresses directly to Phase III where
the execution of the adaptation loop is monitored. Phases of the AS3 Process can be
performed at different stages of the system’s lifecycle. e.g. during provisioning and
execution. This distinction is important as some extensions can be introduced either
during deployment or at runtime. The AS3 process reflects this fact by introducing
three different models (Static, Hybrid and Dynamic) for each phase of the AS3
Process.

The Static Model assumes that a given phase cannot be performed at runtime. In
Phase I this means that the infrastructure (or part thereof) has to be shut down and
then, once appropriate changes are applied, the infrastructure is again provisioned
and returns to the execution phase. In Phase II the same applies to the application. The
application has to be stopped and redeployed to support adaptability required by the
Adaptation Strategy. The static model can be imposed e.g. by execution containers
and applications which do not support runtime modifications. The Dynamic Model
assumes that a given phase of the AS3 Process can be performed at runtime. In Phase I
the Adaptability Mechanisms are deployed to the infrastructure without the need for a
restart. In Phase II deployment of the Adaptation Stategy does not involve halting the
application. The Hybrid Model assumes that some modifications of the adaptation
process might be performed using the Dynamic Model while others may need to
follow the Static procedure. Both Phases (I and II) can be handled in Static, Dynamic
or Hybrid Models. Phase III is performed exclusively in the Dynamic Model since it
is closely related to execution of the system and oversight of the adaptation process.

6 Implementation, Deployment and Governance of SOA Adaptive Systems 299

Additionally, Phases II and III are executed depending on the implementation of a
given S3 Layer as well as the capabilities of Adaptability Mechanisms designed for
that layer.

Having presented an abstract view of the AS3 Process and discussed its related
aspects, we can summarize the exact steps of the Process in the following list:

1. Performing Initial Provisioning of the whole system;
2. Discovering resources present in all layers;
3. Performing adaption planning which influences steps 5 and 6;
4. Deploying/modifying/undeploying Adaptability Mechanisms in selected S3 Lay-

ers according to a suitable execution model;
5. Deploying/modifying/undeploying Adaptation Strategy Agents in selected S3

Layers according to a suitable execution model;
6. Deploying/modifying/undeploying Adaptation Strategy in selected AS3 Layers

according to a suitable execution model;
7. Executing the adaptation process and analysing monitoring data provided by AS3

Layers and Initial Provisioning.

The process then continues by jumping to step 2.
The complexity of real-life SOA systems calls for tools which support effective

realization of the AS3 Process. The most important core features required from such
tools are as follows:

• Selective non-intrusive monitoring installable on demand across different layers
of the S3 Model;

• Discovery of services and their interconnection topology during system operation;
• Flexible mechanisms for presenting and managing monitoring data in order to

support system response evaluation and adaptation strategy planning;
• Dynamically defined and pluggable adaptability policies for execution of opera-

tions;
• On-demand installation of effectors to enforce adaptation decisions.

A toolkit which supports the AS3 Process and meets all the listed requirements—
namely, the AS3 Studio—is presented in the next section.

6 AS3 Studio

The AS3 Process is a high-level concept which is platform-independent. However,
tools that automate it have to be platform-specific and support a selected set of tech-
nologies. Recently, many vendors of SOA-related solutions have begun to focus on
supporting dynamic and manageable software environments executed within OSGi
[54] containers. More importantly, some of those solutions available as open-source
software can be used for implementation of different layers of the S3 Model: exam-
ples include Fuse ESB (Services and Integration Layers), Apache Tuscany (Service

300 R. Brzoza-Woch et al.

Components Layer) and Business Process engines: Apache ODE, JBoss jBPM (Busi-
ness Process Layer). In light of this, OSGi emerges as the natural choice for the base
implementation technology of AS3 Studio.

6.1 OSGi Monitoring and Management Platform

At its core, OSGi [54] is a dynamic component-oriented Java platform for appli-
cations developed in accordance with service-oriented design principles [20]. The
OSGi framework provides an execution environment for applications, which are
called bundles. Bundles expose their features as services according to the "publish,
bind, and find" model [30]. Each bundle can be deployed and activated at runtime.
Bundles can dynamically select services to be used. Furthermore, the OSGi Frame-
work enforces strict modularization of bundles, which entails that there is no need
to shut down the entire JVM when a particular bundle is modified.

The AS3 Studio is a suite of several components deployed over the OSGi Moni-
toring and Management (OSGiMM) platform:

• AS3 Tools for the Middleware Layer,
• AS3 Tools for Real-World Services,
• AS3 Console.

OSGiMM [62] provides mechanisms for monitoring and managing OSGi con-
tainers federated by means of Message Oriented Middleware consisting of a network
of message brokers. It enables cooperation of services deployed in OSGi containers
distributed across a Federated OSGi system.

OSGiMM consists of core instrumentation and a set of bundles. The core instru-
mentation is required for dynamic management and monitoring. During installation,
the instrumentation has to be added to each OSGi container with the use of provided
scripts. Accordingly, OSGiMM bundles have to be deployed to each container of
federation. The fundamental feature of OSGiMM is discovering information about
all services, bundles and containers of the Federated OSGi as well as their structural
relations.1 Such information is later referred to as a topology. The implementation
also provides efficient invocations of service groups, which are used as a foundation
for typical management and monitoring patterns [86] in the OSGiMM.

In summary, OSGiMM provides generic features which affect the implementation
of the following adaptability aspects:

• Declarativity—the user specifies a monitoring scenario, indicating which parame-
ters need to be monitored and which topology elements are provided. A scenario
is specified declaratively and can be exported to a distributed repository for future
use.

1 For example, a container may comprise bundles while a bundle may consist of specific services.

6 Implementation, Deployment and Governance of SOA Adaptive Systems 301

Fig. 15 AS3 toolkit architecture

• Dynamism—monitoring scenarios can be activated at any time and activation
does not involve halting the application that is to be monitored. Activation triggers
realization of on-demand instrumentation.

• Selectivity—instrumentation is only triggered in locations which are important
for a given monitoring scenario; therefore the overhead incurred by monitoring is
restricted to a minimum.

• Self-configuration—the federation may change, e.g. when a new container is added
or when some services are undeployed. Regardless, the realization of the moni-
toring scenario is ensured.

• Flow aggregation—when there are multiple users who wish to perform the same
monitoring or management activities, the data flow related to the task is aggregated
in order to reduce the cost of transmission.

All those features make the OSGiMM a good solution for managing and mon-
itoring OSGi services in a unified manner, which is important in the context of
adaptability aspects.

Each of the AS3 tools for the Middleware Layer is a set of bundles that imple-
ment Adaptability Mechanisms for a particular S3 Layer, and a set of agents for con-
trolling these mechanisms. The specified architecture of an AS3 Tool is depicted in
Fig. 15. There are three different agents: Monitoring, Rule Engine, and Management,
all referred to as Adaptation Strategy Agents (ASA). Currently, three AS3 Tools are

302 R. Brzoza-Woch et al.

available. Adaptive SCA (Service Components S3 Layer) is a tool which can be used
for building and managing adaptive services compliant with the component-based
SCA technology. Adaptive VESB (Services and Integration S3 Layers) can be used
to ensure adaptation of services deployed in the Enterprise Service Bus. BPEL Mon-
itoring (Business Process Layer) provides mechanisms for selective BPEL process
monitoring and management.

AS3 tools for Real-World Services include three utilities for use with Real-World
Services (RWS) in the AS3 Process. The first tool, RWS Builder, handles initialization
within the infrastructure layer by creating Real-World Services on top of Real-World
Devices. Discovering the resources present in the infrastructure layer is possible
thanks to the RWS Discover tool. Performing adaption planning in the context of
the infrastructure layer means identifying places where reconfiguration mechanisms
should be added to allow creation of many Real-World Services. The final tool, RWS
Reconfiguration, can be used to manage the configuration of the Real-World Device
and therefore spawn new Real-World Services. All other steps of the AS3 Process
are covered by the AS3 tools for the Middleware Layer.

The AS3 Console is based on the Eclipse RCP technology [45] and, as such,
enables implementation of Console extensions via plugins. Each of the AS3 tools
contributes a different set of plugins to the Console. These plugins provide GUI
components which support layer-specific features, e.g. definition of SCA or ESB
adaptation rules, creation of facts, adaptive component implementation, complex
service modelling, BPEL engine instrumentation and discovery, etc. The AS3 Con-
sole is also extended with OSGiMM plugins, which allow it to discover, monitor
and manage whole Federated OSGi. In order to connect to the Federated OSGi it is
necessary to provide the address of the federation container which will function as
the entry point for the console. Many AS3 Consoles can be connected to federation
containers simultaneously and it is also possible to connect more than one Console
to a single container. In this way it is possible to use the AS3 Studio from many
points of the federation at the same time.

As listed in the previous section, the AS3 Process involves execution of several
steps. These steps are supported by the AS3 Studio according to the workflow pre-
sented in the previous section. Step 1 (Initial Provisioning) has to be performed
manually. During this step OSGiMM bundles, along with their core instrumentation,
are installed in each of the OSGi containers. Subsequently the configuration of mes-
sage brokers has to be provided. During this process a logical topology of connections
between federation nodes is created which combines the containers into a Federated
OSGi. Steps 2 (Discovery) and 3 (Adaptation Planning) are described later on in the
section, as they involve the continuous adaptation process. The AS3 Studio auto-
mates steps 4 and 5 (Deploying/modifying/undeploying Adaptability Mechanisms
and Adaptation Strategy Agents). The user may choose (using the AS3 Console)
which mechanisms or agents should be installed in each container. Since OSGiMM
discovers the topology of the federation it is possible to transparently transfer spe-
cially prepared bundles to remote containers and install them automatically. Once this
is done, the user may check whether all operations finished successfully and whether
AM/ASA are present in the discovered federation topology. Furthermore, AS3 Stu-

6 Implementation, Deployment and Governance of SOA Adaptive Systems 303

dio automates Step 6 (Deploying/modifying/undeploying Adaptation Strategy) by
employing the preinstalled Adaptation Strategy Agents. The Adaptation Strategy is
specific to a particular layer of the AS3 Model and will therefore be presented along
with overall description of the tools.

Steps 2 (Discovery) and 3 (Adaptation Planning) are both performed in a con-
tinuous manner during runtime, with full support of the AS3 Studio. This support
exploits the concept of the Dynamic Monitoring Framework [86] proposed in our
earlier work. The Monitoring Agent in each AS3 Layer, as well as OSGiMM itself,
implement an interface which provides topology discovery of resources available in
this layer. Additionally it is possible to declaratively specify a Monitoring Scenario
which can contain two types of Monitoring Subscriptions:

• Topology Subscription—related to monitoring changes in a topology fragment
specified in the subscription,

• Metric Subscription—related to monitoring of topology element metrics (perfor-
mance, availability, reliability).

The Monitoring Scenario is created with the use of the AS3 Console. When a
Scenario is activated, OSGiMM sends subscriptions to appropriate containers where
they are passed to the Monitoring Agents. Each agents starts a monitoring process
on behalf of a given subscription. Results are communicated to the AS3 Console.
The Console provides configurable monitoring panels which can be tailored to a
given Scenario, enabling visualization of monitoring data collected from different
parts of the federation. The described mechanisms ensure continuous discovery and
monitoring, thus allowing the operator to identify elements of the system where
adaptation should be applied.2 When the system changes, the monitoring processes
adapt automatically and monitoring panels continue to relay information relevant to
Adaptation Planning.

Steps 6 and 7 of the AS3 Process are specific to each AS3 tool and will be described
separately for each of the AS3 tools in the following paragraphs. .

6.2 Adaptive VESB

Adaptive VESB is the AS3 tool which introduces adaptability mechanisms within
the Integration Layer of the S3 Model. The tool exploits model-driven adaptation
[72] for SOA. The system analyzes composite services deployed in the execution
environment and adapts to QoS and QoE changes. The user composes the application
in a selected technology and provides an adaptation policy along with a service
execution model. The architecture-specific service composition layer continuously
modifies the deployed service in order to enforce the adaptation policy. The abstract
plan, providing input for architecture-specific service composition, can be hidden
and used only by IT specialists during application development. System behaviour is
represented by the service execution model. The composite service execution model

2 Further details can be found on the AS3 Studio website and in our previous paper [86].

304 R. Brzoza-Woch et al.

is an abstraction of the execution environment. It covers low-level events and relations
between services, exposing them as facts in the model domain. Decisions taken in the
model domain are translated to the execution environment domain and then executed.
An adaptation strategy is specified, according to a user-provided service execution
model, taking into account the quality of execution metrics. It relies on configuring
ESB [73] elements that are responsible for dynamic selection of service instances
for particular use cases in order to provide the desired quality.

Adaptability Mechanisms for ESB are constructed around the AS3 Pattern and
consist of the following elements: instrumentation component, monitoring com-
ponent, management component and adaptive manager. The instrumentation layer
enriches ESB with additional elements providing the adaptability transformations
necessary to achieve adaptive ESB. These elements are responsible for managing
sensors and effectors installed in ESB. Sensors gather information about running
applications by intercepting messages, while effectors are used to influence message
flow in ESB by modifying the routing table of NMR (which is a core element of
ESB involved in message processing). The monitoring layer supplies notifications of
events occurring in the execution environment. As the volume of monitoring informa-
tion gathered from ESB might overwhelm the Exposition layer, events are correlated
with one another using Complex Event Processing and notifications pertain only
to such complex events. The Exposition Layer is responsible for maintaining and
updating the composite service execution model. Facts representing the state of the
system or events occurring within are supplied to the Adaptive Manager which analy-
ses them and infers decisions to be implemented in the execution environment by
the Management Layer.

Adaptation Strategy Agents for ESB provide interfaces for managing adaptability
mechanisms. The Monitoring Agent provides high-level features for management
and configuration of sensors deployed in ESB. The Management Agent can be used
to influence message routing in ESB, while the Rule Engine Agent manages the
composite service execution model and deploys adaptation strategies. The Adaptation
Strategy for Adaptive ESB consists of the following elements:

• Definition of a composite service execution model,
• Definition of new facts that represents events occurring in the integration layer,
• Definition of an adaptation policy that uses the previously defined and deployed

facts.

All these elements can be configured using the ASA provided by VESB tools.
To simplify strategy definition, VESB Tools also provide a GUI for the AS3 Studio
Console.

6.3 Adaptive SCA

Adaptive SCA is an AS3 tool designed to enhance the Service Components Layer
of the S3 Model with adaptability features. It enables service designers to assemble

6 Implementation, Deployment and Governance of SOA Adaptive Systems 305

services from components according to the SCA specification. SCA is a technology-
independent solution and therefore supports components created using many differ-
ent technologies as well as various communication protocols. A set of components
connected with one another within a service is also called a composition.

SCA uses the Dependency Injection Pattern [58] to model a composition:
adaptation mechanisms need to be introduced on the level of references between
components. Adaptive SCA instruments these references and uses OSGiMM to mon-
itor communication between components, providing suitable mechanisms to choose
which component should handle a particular reference.

The Adaptation Strategy for Adaptive SCA defines different sets of components
which are to be used in case of specific situations discovered by the monitoring
system. These sets are also referred to as composition instances. For instance, if a
service composed of particular components becomes too slow, it may temporarily
switch over to other components which provide better QoS (however at a higher
cost).

The Adaptation Strategy definition for Adaptive SCA consists of the following
elements:

• Service model definition, i.e. a composition and a set of its instances,
• Definition of adaptation policies that use predefined policy templates and metrics

gathered by OSGiMM.

If required, it is possible to create policy templates tailored to a particular service.
All these features are supported by the ASA Adaptive SCA tool. To simplify their
management, Adaptive SCA also provides a GUI for the AS3 Studio Console.

Deployment of a service with adaptability mechanisms requires additional actions
performed automatically by the AS3 Studio. Upon defining the composition and its
instances, the Adaptive SCA Tool modifies the SCA deployment descriptor by inject-
ing monitoring and management agents into components’ references. Afterwards,
service provisioning can be performed and the service executed in accordance with
the AS3 Process.

6.4 BPEL Monitoring

The Business Process Layer of the S3 Model supports composition of business
processes from the available services describing steps that need to be executed to
complete a given process. This allows non-technical users to declaratively describe
business process flows either in terms of a document in a dedicated language (such as
BPEL) or by using graphical tools. Formally defined business processes can be exe-
cuted by business process execution engines which interact with services according
to the specified flow. Modern business processes are often highly dynamic, which
means that proper aggregation and analysis of performance indicators representing
their execution is important from the managerial viewpoint.

306 R. Brzoza-Woch et al.

The AS3 Studio offers a highly configurable monitoring system called the Busi-
ness Process Monitoring Platform, which support efficient capture, propagation and
visualization of the data needed for the business process execution analysis. This tool
is implemented within an OSGiMM container and utilizes important system services
in order to satisfy the following functional requirements:

• discovery and presentation of the existing business process engines, deployed
processes and running process instances,

• on-demand monitoring of the selected discovered elements (mainly business
processes),

• presentation and up-to-date view of business process definitions and the execution
state of running process instances.

The Business Process Monitoring Platform was developed with the following
nonfunctional requirements in mind:

• only the necessary data is transmitted between system elements,
• the monitored business processes are not affected by the monitoring process,
• the architecture remains scalable and extensible for multi-vendor systems,
• a standard data model is in place for all the monitored components.

The system relies heavily on mechanisms provided by the OSGi standard which
naturally create a SOA environment in a single Java Virtual Machine. System ele-
ments are exposed as OSGi services capable of dynamic discovery and runtime
reconfiguration. The core layers in the presented architecture are:

• ESB with OSGiMM—a communications backbone that provides seamless inte-
gration of system components, their discovery as well as transport of monitoring
data.

• BPEL Monitoring Domain—consists mainly of business process engines along
with their respective sensors: BPM Engine Monitors, business processes, indepen-
dent event processing components and infrastructure nodes where such elements
are deployed.

• Monitoring Console—a GUI system element that supports configuration of the
monitoring system and exposes key system features to the user.

Each monitored business process engine is associated with a dedicated monitor
which generates standardized notifications of changes in the executing process.

The communications layer is responsible for propagation of events, as well as
filtering them when no subscriber is interested in a particular kind of event. The
presented monitoring platform uses OSGiMM and supports model-based declarative
definitions of the monitoring process by means of a monitoring scenario. In light of
the above, business process monitoring can be treated as an example of a well-defined
scenario.

There are two types of loosely coupled clients connected by the OSGiMM
backbone: event sources (mainly business process engine-specific monitors—BPM
Engine Monitors) and event consumers such as Monitoring Consoles. The architec-
ture also covers event interceptors, e.g. rule-based event processors that are hybrids

6 Implementation, Deployment and Governance of SOA Adaptive Systems 307

of these two client types: they intercept the flow of events from other event sources
to the Monitoring Console for the purpose of processing.

In the context of the presented work installing a monitoring scenario is equiva-
lent to creating a monitoring subscription for the events whose flows is enabled by
the activation of the monitoring scenario. As the main monitoring goals are twofold
(monitoring specific topology elements and the entire topology), topology subscrip-
tion is also supported.

In comparison with the layered architecture of OSGiMM, we can observe relo-
cation of the business process analysis logic. Whereas in standard OSGiMM metric
events are processed by building a CEP processor, in the presented platform analyti-
cal logic (rule-based event processors) is moved upstream in the layered architecture,
becoming an optional and reconfigurable topology element, to enable better man-
agement by business users.

6.5 Infrastructure Enrichment Tools

In this subsection two software tools for creating and managing Real-World Services
are presented. The first tool (RWS Builder) supports creating RWS by adding service
logic, transforming a Real-World Device into a Real-World Service. The second tool
(RWS Reconfiguration) enriches the infrastructure with a reconfiguration feature
which can be used in the service adaptation process or for incarnation of new Real-
World Services. Both tools operate in a specific hardware environment containing
FPGA (Field Programmable Gate Array) and CPLD (Complex Programmable Logic
Devices) chips from Altera Corp., microcontrollers with the ARM-Cortex core from
ST-Microelectronics, Tibbo Ethernet and Wi-Fi modules on custom circuit boards.

6.5.1 RWS Builder

The process of creating a Real-World Service on the basis of a Real-World Device
consists of several steps described in Chap. 3. One of those steps involves generating
the service logic. Here, the programmer’s effort can be greatly reduced by using the
tool described in the following section.

Real World Service logic is typically implemented as a hardware description
of an FPGA chip set up as a software module for a microcontroller-based device.
Developing this logic manually to produce a hardware description is a tedious job
which requires knowledge of the underlying hardware architecture and proficiency
in using hardware description languages (i.e. VHDL, Verilog).

RWS Builder is an example of a software tool for high-level code synthesis. Its
functionality is tailored to two specific types of RWS: motion detection and object
classifier services. The generated project files depend on the selected functionality
and can be filled with service-specific code by the developer. RWS Builder integrates
multiple heterogeneous design tools from different vendors into a single applica-

http://dx.doi.org/10.1007/978-3-319-00675-8_3

308 R. Brzoza-Woch et al.

Fig. 16 Service logic generation using RWS Builder

tion that manages all required design, implementation and installation steps. It is
responsible for creating an optimized code skeleton to be compiled by the ImpulseC
C-to-HDL compiler. It also generates an adequate standard hardware design for the
Altera Quartus-II environment and an optimized software template for embedded
FPGA microcontrollers and network communication modules. The service logic
generation procedure is visually depicted in Fig. 16.

6.5.2 RWS Reconfiguration

An important aspect of providing RWS is introducing solutions which enable dis-
covery of such services along with their reconfiguration. This is the key added value
of AS3. Discovery tools are necessary to locate RWS in a network and to recognize
their potential capabilities and what kind of logic they can handle.

In order to provide a list of all Real-World Services to users and adaptation tools
a live repository has been implemented. The selected approach follows the same
paradigm as in Service Location Protocol (SLP)-and Simple Service Discovery Pro-

6 Implementation, Deployment and Governance of SOA Adaptive Systems 309

Fig. 17 RWS Discovery method

tocol (SSDP)-based discovery schemes. The general architecture of the proposed
discovery solution is presented in Fig. 17.

Each of the services available in the network announces its presence using
User Datagram Protocol (UDP) advertisements sent out to a well-known multicast
address. Such an advertisement, called a notification beacon, carries service descrip-
tion, including metadata (endpoint information, Universal Unique Identifier (UUID),
timestamp, lifetime, human-readable description etc.) and a link to a service specifi-
cation document. Notification beacons are received by dedicated multicast listeners
which in turn update the Lightweight Directory Access Protocol (LDAP) service
repository. Data stored in different repositories can be synchronized using LDAP
servers tools. In this way one repository can collect service announcements from
more than one IP network. Service announcements may employ addresses accessible
from outside the local network if this type of client is expected. Access to the reposi-
tory is usually provided using a Transmission Control Protocol (TCP) connection. In
the absence of network configuration restrictions computers from all over the Internet
can browse the repository and utilize hardware services. From the repository point
of view, any external entity which needs to update the repository contents needs to
provide security credentials and also pass authorization checks. The repository itself
was implemented as an LDAP database, leveraging existing security mechanisms
to provide Authentication, Authorization, and Accounting (AAA) services. It can
be used by automatic tools as well as end users interested in browsing through the
repository contents and able to leverage LDAP query and search mechanisms.

Once the hardware device is detected, it might be necessary for the user to choose
and upload firmware and configuration files which provide service-specific logic. The

310 R. Brzoza-Woch et al.

Fig. 18 The RWS Reconfig-
uration subsystem

reconfiguration process covers two approaches: firmware and architecture modifica-
tion, both part of RWD instrumentation according to Fig. 13 in Sect. 5. The ability to
remotely change hardware configuration parameters is also a vital feature for imple-
menting adaptability in FPGA- or microcontroller-based RWS. The reconfiguration
process can be implemented using various hardware and software methods.

In FPGA-based RWS, configuration is stored on add-on Flash memory configu-
ration chips which upload their contents to the FPGA upon power-up or on request.
The reconfiguration process itself can proceed in several ways. The remote recon-
figuration feature used by the the presented tool (RWS Reconfiguration) relies on
a general-purpose microcontroller unit (MCU) locally connected to the FPGA chip
and responsible for uploading new configurations (Fig. 18).

In this case the microcontroller is equipped with a wired or wireless network
interface and locally accesses FPGA using the Joint Test Action Group (JTAG)
interface, the Flash chip using JTAG or dedicated serial interface, or both of these
interfaces.

The RWS reconfiguration subsystem can use multiple blocks of local configu-
ration memory in order to store temporary configuration data. As the local FPGA’s
Flash configuration memory reduces the service reconfiguration downtime, addi-
tional local memory in the MCU (Fig. 18) can decrease total reconfiguration time by
storing many configuration files. When a new configuration is required, the current
one does not need to be overwritten, but can instead be preserved for future reuse.
This enables implementation of simple configuration caching, eliminating the need
to transfer a new configuration file for each feature. In some implementations the
MCU’s local storage might be shared between the MCU and an FPGA, and therefore
used locally to store data required by the service running on the FPGA.

7 Case Study

The goal of this section is to illustrate the issues discussed earlier on in this chapter.
We will show how the AS3 Studio provides support for development of sophisticated

6 Implementation, Deployment and Governance of SOA Adaptive Systems 311

applications (see also [17]) and how its adaptability mechanisms can be exploited to
transparently maintain the specified quality level of the application’s operation.

As already mentioned, advanced service-oriented systems need to provide sup-
port for seamless integration of both virtual and real-world services into a single
application. Thus, the case study scenario will utilize both types of services and
address selected aspects of safety management in the real world (e.g. in an enter-
prise). Although reliant on specific components, the application presented here can
be perceived as a representative of a broader class of solutions related to safety
management. We will demonstrate how software services can enhance operation of
real-world services, taking over their tasks when necessary—to increase application
performance. We will also show that the adaptive infrastructure allows easily intro-
ducing various procedures to satisfy application’s QoS requirements.

The real-world devices used in this case study have been implemented and instru-
mented by the authors themselves—their short description is given below.

7.1 Characteristics of the Entrance Protection Application

The general idea behind the application called Entrance Protection is as follows:
the face of a person wishing to enter a protected area is captured by a camera. If
it is recognized as belonging to an authorized entrant, access is granted and the
door lock disengages for several seconds. To ensure sufficient light for the camera a
lighting system is installed and connected to a power switch. The switch is activated
if a light level detector—enabled just prior to powering up the camera—detects
unsatisfactory illumination. The whole process is triggered by a pyrometer which
detects rapid, significant temperature changes within the observed area. Figure 19
presents a logical view of this layout with particular elements accessible as services
connected to Enterprise Service Bus.

The most interesting part of the system is its pattern recognition feature—so this
aspect will be discussed in more detail. A common practice when constructing video
surveillance systems is to send the video stream to a central point for processing—
in our scenario this involves pattern recognition. In the presented case, however, a
much more reasonable approach is to process the data locally at its source avoiding
network congestion during data transfer. A digital camera with an embedded pattern
recognition module and a library of stored patterns may instead dispatch a simple
event, triggering the downstream parts of the business process. Figure 20 presents the
Entrance Protection business process in the BPMN notation. The process is triggered
by an event generated by the Pyrometer Service when the measured temperature is
approximately equal to the normal temperature of a human body. In the "Measure
Illuminance" task the Light Detector Service is called to measure illumination. If
necessary, the Power Switch service may be used to provide additional lighting.
In the next step, the Camera Service is invoked to begin recording and run the
recognition algorithm. The service returns its results within a predefined period of
time. Upon successful recognition the identifier of the matching pattern is returned

312 R. Brzoza-Woch et al.

and the process progresses to the next step; otherwise it is aborted. In the "Check
Access" task an external virtual service is called to check if permission can be granted.
If so, the Door Lock service is called to release the door lock and, after 3 more seconds,
called again to lock the door.

7.2 Properties of the Real World Devices and Services Used

This section briefly characterizes the Real World Services utilized in our case study.
They have been instrumented and are controlled using our universal RWS module
providing them with IP communication feature. Consequently, they expose their
functionality as SOAP endpoints, which is a common solution applied by third-party
devices. Such an approach is fully satisfactory for controlling each device separately;
however to be able to easily build sophisticated applications more advanced mecha-
nisms are necessary. Using RWS Builder tool described in the previous section, all
Real World Services used in the discussed scenario have been equipped with a dedi-
cated proxy exposing their functionality in the OSGi environment and thus enabling
their utilization in the OSGi Monitoring and Management layer of the AS3 Studio.
In the presented case study several real-world services are used such as camera, door
lock, light detector, power switch and temperature detector.

Camera

The smart camera can be used to implement video surveillance and environment
monitoring services. In the presented scenario the smart camera is equipped with an

Fig. 19 A single instance of the entrance protection application (left-hand figure) and integration
of its multiple instances (right-hand figure)

6 Implementation, Deployment and Governance of SOA Adaptive Systems 313

Fig. 20 Entrance Protection business process in the BPMN notation

object classifier functionality and the internal classification algorithm is trained for
facial recognition.

The object classifier service is designed to perform classification of similar objects,
e.g. faces, car models or road signs. The service applies an algorithm based on
Kernel Regression Trees, introduced in [66] and implemented in a fast and massively
parallel manner in the FPGA. The classifier’s interface consist of methods to begin
recognition of an object in the captured scene and retrieve the results of recent
recognition runs.

Door Lock

The Door Lock Service is the main actuator unit in the security system described in
this section. It is able to remotely lock or unlock the door leading to a restricted area
in response to client requests. It assumes the form of an anti-burglary lock service,
designed as an add-on module for ordinary door locks available on the market. The
system consists of an anti-burglary door lock connected to a servomotor with the
help of a custom aluminum hitch. It should be noted that this design does not prevent

314 R. Brzoza-Woch et al.

regular usage of the door lock’s mechanism. In the event of a power failure or any
other emergency the lock can still can be opened or closed with a key.

Light Detector

Another service used in this scenario is the light level detector. It provides information
about light intensity at the monitored area. The result is expressed in lux (lx units). In
order to avoid noise and deal with flickering light sources (such as fluorescent bulbs)
the average value from several readings is taken. The light detector is designed as an
add-on extension for a sensor network node.

Power Switch

The Power Switch Service was designed to allow to remotely control the power supply
of four separate mains-powered devices. In the presented case study the service is
utilized to turn on or cut off power to additional light sources. The universal RWS
module inside the Power Switch uses opto-triacs to supply power.

Temperature Detector

In the presented case study a contactless temperature measurement service is used to
measure the temperature of an object in the monitored area. Results reported by this
service are used to trigger the whole system’s logic. The pyrometric detector used to
build the service can measure temperatures between -50 and 350 ◦ C. The detector
is connected to a Sun SPOT device which is one of the nodes of a sensor network.

7.3 Application Quality Considerations

A system implementing the presented concept may appear quite simple, but to oper-
ate correctly in a large enterprise with many entry points and thousands of employers
it must properly take into account such aspects as scalability, extendibility and ease of
integration with other systems running in the enterprise. Business processes are char-
acterized, among others, by their QoS parameters which are specified in the Service
Level Agreement. In the adaptive systems introducing such parameters may trigger
automatic adaptation mechanisms whose goal is to meet quality criteria regardless
of the complexity of the task or any other external factors. In the discussed case the
most critical element of the business process is pattern recognition and thus possibil-
ity to introduce adaptation in its operation will be here discussed in more detail. An
obvious limitation of the presented approach is camera memory capacity—in large
systems storing all relevant patterns in its memory may prove prohibitively expen-

6 Implementation, Deployment and Governance of SOA Adaptive Systems 315

sive, or even impossible. To increase the solution’s cost-effectiveness without giving
up the advantage of local processing some patterns (for example those with the lowest
frequency of matches) may be stored outside of the hardware and processed in soft-
ware. (In light of this concession, transmission of visual data appears unavoidable,
although in order to limit data volume only selected images should be sent—rather
than the entire video stream.) Fortunately, the pattern recognition task can easily be
distributed among many processing (worker) nodes and performed concurrently. The
camera pattern recognition module can either return an identifier associated with the
matching pattern or fail to do so if it is unable to find an association. The latter case
may occur in one of three situations:

• the person whose face was scanned is not known to the pattern recognition module,
• the quality of the captured image was too low (it was too noisy, etc.),
• the recognition process was not able to complete within the required time limit -

what is dependent not only on the number of patterns to be analyzed but also on
complexity of the transformations applied to each image.

It is evident that it is possible to influence the percentage of recognition failures
mainly in the last case. For a set amount of processing power the relation between
processing time and recognition failures is inversely proportional. Two QoS para-
meters can be introduced to describe this behavior:

• maximum processing time (MPT),
• maximum level of recognition failures (MRF).

To be able to control both parameters’ values independently it is necessary to
influence accessible processing power. In our case additional virtual services can
take some processing from the camera. Our goal is to show how to effectively use
adaptability mechanisms provided by AS3 Studio to control the amount of addi-
tional processing power automatically and dynamically—satisfying imposed QoS
parameters.

7.4 Business Process and Infrastructure Enhancements to Satisfy
the Application’s Quality Requirements

Taking into consideration the discussed QoS requirements the business process
should be enhanced to utilize virtual services which implement pattern recogni-
tion algorithms similar to the one provided by the Camera Service - the result of
its enhancement is depicted in Fig. 21. If the recognition process performed by the
Camera Service fails due to a timeout (see the previous subsection), the Entrance
Protection business process may download the image currently being analyzed and
distribute it to a number of virtual services along with subsets of pattern identifiers
to be examined. Successful recognition by any of the nodes triggers an event which
immediately aborts the entire processing task on other nodes. The remainder of the
business process is realized without any changes. Operation of this business process

316 R. Brzoza-Woch et al.

Fig. 21 Enhanced Entrance Protection business process in the BPMN notation

is partially controlled by Adaptation Manager being the part of the Virtual ESB
(VESB).

The adaptability mechanisms introduced by VESB enable the business process
to be described in an abstract way, without referring to particular service instances.
When an abstract composition is instantiated both the number of instances of virtual
services and their locations are specified at deployment time. The number of virtual
services that perform image recognition may change according to the number of
images being processed at the same time [72]. Accordingly, the number of service
instances is controlled by the AM deployed in VESB. The Camera Service may con-
tain a database of photos of registered employees, while the photos of trainees might
be stored in a database that is accessed by virtual services. When the Camera Ser-
vice fails to recognize an entrant, that person’s picture can instead be processed by a
dynamically changing pool of virtual service instances (Recognition Service) imple-
menting the image recognition algorithm. During morning hours, when employees
typically arrive at the workplace, the volume of images to be processed is higher
than during the rest of the day and the number of virtual service instances should
dynamically adapt in order to achieve the desired quality of service. An important
issue is how to estimate the number of instances engaged in a particular business
process. In this case, a fully sufficient approach is to perform historical analysis
of previous executions of the application in the specified timeframe. This data can
be gathered transparently by monitoring business process execution and conduct-
ing analysis of communication patterns in the Virtual ESB instance dedicated to

6 Implementation, Deployment and Governance of SOA Adaptive Systems 317

this application. The presented adaptation strategy may be used to decrease the cost
of service maintenance [73]. Additional virtual service instances might be brought
online when necessary and then turned off, reducing resource and power consump-
tion while other working instances are capable of providing satisfactory Quality of
Experience (QoE).

Monitoring the activity of a VESB instance can lead to enhancements of the
recognition process. Many different heuristics can be applied (e.g. noting that people
usually enter the building in groups, etc.) The gathered statistics can trigger recon-
figuration of the camera service, providing it with a different set of patterns.

7.5 Another Adaptation Procedures

The presented adaptation procedure in not the only one possible; the Entrance Pro-
tection application can be extended in many other ways. Table 3 presents some of
them, the first one (1) has already been discussed in the previous section and the
following ones will be shortly characterized below.

An unusually high number of unsuccessful entry attempts may trigger an alarm or
activate additional, more in-depth surveillance mechanisms. Such functionality can
be achieved by further enhancing the business process (2a); however a more interest-
ing option is to exploit the monitoring and management features of AS3 Studio (2b).
Communication between federated ESB services can be intercepted and analyzed
(by a dedicated business interceptor) and sent to the Complex Event Processor which
then performs continuous statistical analysis and triggers appropriate actions.

The same approach can be used to determine whether the lighting system works
correctly (3a, 3b). If, despite its use, there is still an excessive number of recognition
failures, further corrections can be introduced, whether manually or automatically
(e.g. turning on additional lamps).

The adaptation process may also affect lower levels of the infrastructure. If soft-
ware processing is frequently able to cope with cases not correctly handled by hard-
ware, this could be interpreted as an incentive to replace the FPGA-based pattern
recognition algorithm or set of stored patterns (4).

8 Conclusions

Adaptive SOA Systems construction is fully justified by complexity of the enterprise
class applications deployed nowadays and their changing business and execution
requirements. This approach is very much in line with one of an emerging paradigm
aiming at simplifying and reducing efforts required to deploy and maintain of com-
plex computer systems such as Autonomic Computing (AC). The detailed analysis
shown that exists direct relation between AC properties and the service orientation
principles. It is also evident that the MAPE-K pattern could be used as a foundation

318 R. Brzoza-Woch et al.

Ta
bl

e
3

V
ar

io
us

ad
ap

ta
tio

n
pr

oc
ed

ur
es

ap
pl

ie
d

to
th

e
E

nt
ra

nc
e

Pr
ot

ec
tio

n
bu

si
ne

ss
pr

oc
es

s

O
bs

er
ve

d
be

ha
vi

or
Se

ns
or

E
ff

ec
to

r
A

da
pt

at
io

n
st

ra
te

gy
B

eh
av

io
r

im
pl

em
en

te
d

by

1
M

R
T

/M
R

F
ex

ce
ed

ed
M

on
ito

ri
ng

ac
tiv

ity
in

V
E

SB
in

st
an

ce
E

SB
ro

ut
in

g
m

ec
ha

ni
sm

To
ke

ep
op

tim
al

nu
m

be
r

of
re

co
gn

iti
on

se
rv

ic
e

in
st

an
ce

s
V

E
SB

2a
E

xc
es

si
ve

nu
m

be
r

of
un

su
cc

es
sf

ul
en

tr
y

at
te

m
pt

s

Se
cu

ri
ty

se
rv

ic
e

(b
ei

ng
th

e
pa

rt
of

th
e

bu
si

ne
ss

pr
oc

es
s)

A
la

rm
se

rv
ic

e
To

en
su

re
de

si
re

d
se

cu
ri

ty
le

ve
l

Se
cu

ri
ty

se
rv

ic
e

2b
B

us
in

es
s

in
te

rc
ep

to
r

co
nn

ec
te

d
to

E
SB

,O
SG

iM
M

C
E

P

3a
E

xc
es

si
ve

nu
m

be
r

of
re

co
gn

iti
on

fa
ilu

re
s

du
e

to
no

is
e

E
nv

ir
on

m
en

ts
er

vi
ce

(b
ei

ng
th

e
pa

rt
of

th
e

bu
si

ne
ss

pr
oc

es
s)

L
ig

ht
se

rv
ic

e/
m

an
ua

ls
et

tin
g

of
lig

ht
To

en
su

re
de

si
re

d
le

ve
lo

f
M

R
F

E
nv

ir
on

m
en

t
se

rv
ic

e

3b
B

us
in

es
s

in
te

rc
ep

to
r

co
nn

ec
te

d
to

E
SB

,O
SG

iM
M

C
E

P

4
C

on
si

de
ra

bl
e

nu
m

be
r

of
ca

se
s

no
th

an
dl

ed
by

ha
rd

w
ar

e

M
on

ito
ri

ng
of

th
e

bu
si

ne
ss

pr
oc

es
s,

O
SG

iM
M

T
ri

gg
er

re
pl

ac
em

en
to

f
FP

G
A

-b
as

ed
pa

tte
rn

re
co

gn
iti

on
m

em
or

y

To
en

su
re

de
fin

ed
pe

rc
en

ta
ge

of
ca

se
s

ha
nd

le
d

in
ha

rd
w

ar
e

R
W

S
B

ui
ld

er

6 Implementation, Deployment and Governance of SOA Adaptive Systems 319

of the adaptive SOA system construction. These considerations lead to the adaptive
systems space definition and location of Adaptive SOA in this space. This approach
is further refinement in the context of S3 layer model of SOA systems.

Pragmatic usage of the MAPE-K Pattern across S3 layer results in AS3 Element
definition. This element exposes implementation aspects of the MAPE-K pattern
deployment in context of SOA systems. It is used by the AS3 Process which trans-
forms systems built in accordance with the S3 Model into their adaptive versions and
managing the adaptation process across different S3 Layers.

The AS3 Pattern may be applied only to selected layers. Leveraging the potential
of particular layers adaptation loop execution can enhance the SOA environment with
such features as: dynamic service flexibility, policy-driven operation optimization,
and cross-business process monitoring and management.

The proposed solution considers adaptability aspects of SOA systems in uniform
way referring to SOA applications composed with software services, named also
Virtual Services, and hardware components being specified as Real World Services.
Such approach is justified by increasing importance of pervasive systems bringing
interaction from enterprise systems back to the real world. In this context, adaptive
behavior of Real Word Services plays a critical role combining adaptive interaction,
adaptive composition and task automation, by involving knowledge regarding user’s
profile, intentions, and previous use of the system. To clarify the proposed approach
the reference model of the Adaptive SOA referring to Real-World and Virtual Services
has been proposed and presented in the form of the concept maps.

Taking into account rather complex process of enrichment of the SOA System with
adaptability functionality, dedicated software tools which support this transforma-
tion are important. The presented approach fully exploits the separation of concerns
paradigm which isolates adaptability aspects from application business logic in the
development and deployment phases and at the run-time. Such approach is strongly
supported by the dynamic and flexible software execution environment offered by
OSGi which allows the software modification at the run-time. The similar role plays
the FPGA as far as Real-World Services are considered. The properly designed FPGA
boards enable possibility for remote firmware modification on demand. Combining
these two technologies lead to successful deployment of SOA adaptive systems in
practice.

Acknowledgments This work has been performed by many contributors of IT-SOA Projects. The
authors wants to thanks especially to: Paweł Bachara, Marcin Jarza̧b, Robert Szymacha, Dominik
Radziszowski, Jacek Kosiński, Kornel Skałkowski, Przemysław Wyszkowski, Sławomir Zieliński.
The research presented in this paper was partially supported by the European Union in the scope of
the European Regional Development Fund program no. POIG.01.03.01-00-008/08.

320 R. Brzoza-Woch et al.

References

1. An architectural blueprint for autonomic computing (IBM Corp.), IBM Corp., (2006)
2. Agarwal, A., Sites, R.L., Horowitz, M.: ATUM: a new technique for capturing address traces

using microcode. In: ISCA, pp. 119–127 (1986)
3. Arsanjani, A., Zhang, L.J., Ellis, M., Allam, A., Channabasavaiah, K.: S3: A service-oriented

reference architecture. IT Prof. 9, 10–17 (2007)
4. Avgeriou, P., Zdun, U.: Architectural patterns revisited a pattern language. In: 10th European

Conference on Pattern Languages of Programs (EuroPlop 2005), Irsee, pp. 1–39 (2005)
5. Baker, J., Hsieh, W.: Runtime aspect weaving through metaprogramming. In: Proceedings of

the 1st International Conference on Aspect-riented Software Development, AOSD ’02, pp.
86–95. ACM, New York (2002)

6. Barbon, F., Traverso, P., Pistore, M., Trainotti, M.: Run-time monitoring of instances and classes
of web service compositions. In: Proceedings of the IEEE International Conference on Web
Services, ICWS ’06, pp. 63–71. IEEE Computer Society, Washington (2006)

7. Baresi, L., Guinea, S.: Towards dynamic monitoring of ws-bpel processes. In: Proceedings of
the Third International Conference on Service-Oriented Computing, ICSOC’05, pp. 269–282.
Springer, Berlin (2005)

8. Bieberstein, N., Bose, S., Fiammante, M., Jones, K., Shah, R.: Service-Oriented Architecture
(SOA) Compass: Business Value, Planning, and Enterprise Roadmap. IBM Press, Upper Saddle
River (2005)

9. Bigus, J.P., Schlosnagle, D.A., Pilgrim, J.R., Mills, Diao, Y.: Able: a toolkit for building mul-
tiagent autonomic systems. IBM Sys. J. 41(3) (2002). doi:10.1147/sj.413.0350

10. Blair, G.S., Bencomo, N., France, R.B.: Models@run.time. IEEE Comput. 42(10), 22–27
(2009)

11. Bobda, C.: Introduction to Reconfigurable Computing: Architectures, Algorithms, and Appli-
cations, 1st edn. Springer Publishing Company, New York (2007)

12. Cardoso, J.M., Simoes, J.B., Correia, C.M.B.A., Combo, A., Pereira, R., Sousa, J., Cruz, N.,
Carvalho, P,. Varandas, C.A.F.: A high performance reconfigurable hardware platform for
digital pulse processing (2004)

13. Chen, C., Li, L., Wei, J.: Aop based trustable sla compliance monitoring for web services.
In: Proceedings of the Seventh International Conference on Quality Software, QSIC ’07, pp.
225–230. IEEE Computer Society, Washington (2007)

14. Chen, I.Y., Ni, G.K., Lin, C.Y.: A runtime-adaptable service bus design for telecom operations
support systems. IBM Syst. J. 47(3), 445–456 (2008)

15. Jayapandian, J.: Embedded control and virtual instrument simplifies laboratory automation.
Curr. Sci. 90(6), 765–770 (2006)

16. Corporation, C.S.: PSoC—Technical Reference Manual (TRM) (2006)
17. Czekierda, L., Masternak, T., Zielinski, K.: Evolutionary approach to development of collabo-

rative teleconsultation system for imaging medicine. IEEE Trans. Inf. Technol. Biomed. 16(4),
550–560 (2012). doi:10.1109/TITB.2012.2194506

18. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The ponder policy specification language. In:
M. Sloman, J. Lobo, E. Lupu (eds.) POLICY Lecture Notes in Computer Science, vol. 1995,
pp. 18–38. Springer, Berlin (2001)

19. DIGI: http://www.digi.com/ (2012)
20. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall PTR,

Upper Saddle River (2005)
21. Estrin, G.: Reconfigurable computer origins: the ucla fixed-plus-variable (f+v) structure com-

puter. IEEE Ann. Hist. Comput. 24(4), 3–9 (2002). doi:10.1109/MAHC.2002.1114865
22. Fleurey, F., Dehlen, V., Bencomo, N., Morin, B., Jzquel, J.M.: Modeling and validating dynamic

adaptation. In: M.R.V. Chaudron (ed.) MoDELS Workshops Lecture Notes in Computer Sci-
ence, vol. 5421, pp. 97–108. Springer, Berlin (2008)

23. Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rainbow: architecture-based
self-adaptation with reusable infrastructure. Computer 37, 46–54 (2004)

http://dx.doi.org/10.1147/sj.413.0350
http://dx.doi.org/10.1109/TITB.2012.2194506
http://www.digi.com/
http://dx.doi.org/10.1109/MAHC.2002.1114865

6 Implementation, Deployment and Governance of SOA Adaptive Systems 321

24. Goldberg, A., Havelund, K.: Instrumentation of java bytecode for runtime analysis. In: Proc.
Formal Techniques for Java-like Programs. Technical Reports from ETH vol. 408(2003).

25. Gorton, I., Liu, Y., Trivedi, N.: An extensible and lightweight architecture for adaptive server
applications. Softw. Pract. Exper. 38(8), 853–883 (2008)

26. Guinard, D., Trifa, V., Karnouskos, S., Spiess, P., Savio, D.: Interacting with the soa-based
internet of things: Discovery, query, selection, and on-demand provisioning of web services.
IEEE Trans. Serv. Comput. 3(3), 223–235 (2010)

27. Guinard, D., Trifa, V., Spiess, P., Dober, B., Karnouskos, S.: Discovery and on-demand provi-
sioning of real-world web services. In: IEEE International Conference on Web Services, ICWS
2009, Los Angeles, CA (2009)

28. Hallsteinsen, S., Floch, J., Stav, E.: A middleware centric approach to building self-adapting
systems. In: Proceedings of the 4th International Conference on Software Engineering and
Middleware, SEM’04, pp. 107–122. Springer, Berlin (2005)

29. Heinrich, C.: RFID and beyond—growing your business through real world awareness. Wiley,
Heinrich (2005)

30. Hayman, C.: The benefits of an open service oriented architecture in the enterprise, (IBM
Corp.), IBM Corp., (2005)

31. Jacob, B., Lanyon-Hogg, R., Nadgir, D.K., Yassin, A.F.: A Pratical Guide to IBM Autonomic
Computing Toolkit. IBM Corp. (2004).

32. Janiesch, C., Niemann, M., Steinmetz, R. (eds.): The TEXO Governance Framework, SAP
Research Brisbane, White Paper, Version 1.1, Working Draft (2011)

33. Kaiser, G.E., Parekh, J.J., Gross, P., Valetto, G.: Kinesthetics extreme: An external infrastructure
for monitoring distributed legacy systems. In: Active Middleware Services, pp. 22–31. IEEE
Computer Society, USA (2003)

34. Karnouskos, S., Bangemann, T., Diedrich, C.: Integration of legacy devices in the future soa-
based factory. In: 13th IFAC Symposium on Information Control Problems in Manufacturing
(INCOM), Moscow, Russia (2009)

35. Karnouskos, S., Savio, D., Spiess, P., Guinard, D., Trifa, V., Baecker, O.: Real world service
interaction with enterprise systems in dynamic manufacturing environments. In: L. Benyoucef,
B. Grabot (eds.) Artificial Intelligence Techniques for Networked Manufacturing Enterprises
Management. Springer (2010) ISBN: 978-1-84996-118-9

36. Kean, T., Buchanan, I.: The use of fpga’s in a novel computing subsystem. In: First International
ACM Workshop on Field Programmable Gate Arrays (1992)

37. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50
(2003). doi:10.1109/MC.2003.1160055

38. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., Irwin, J.:
Aspect-oriented programming. In: ECOOP. Springer, Berlin (1997)

39. Klein, C., Schmid, R., Leuxner, C., Sitou, W., Spanfelner, B.: A survey of context adaptation
in autonomic computing. In: Proceedings of the Fourth International Conference on Auto-
nomic and Autonomous Systems, ICAS ’08, pp. 106–111. IEEE Computer Society, Washington
(2008) doi:10.1109/ICAS.2008.23

40. Kon, F., Campbell, R.H., Mickunas, M.D., Nahrstedt, K., Dennis, M., Nahrstedt, M.K., Balles-
teros, F.J.: 2k: A distributed operating system for dynamic heterogeneous environments. In: 9th
IEEE International Symposium on High Performance, Distributed Computing, pp. 201–210
(1999)

41. Bug Labs: Bug Labs: modular, open source hardware (2009)
42. Lee, K., Sakellariou, R., Paton, N.W., Fernandes, A.A.A.: Workflow adaptation as an autonomic

computing problem. In: Proceedings of the 2nd workshop on Workflows in Support of Large-
Scale Science, WORKS ’07, pp. 29–34. ACM, New York (2007)

43. Lin, K.J., Panahi, M., Zhang, Y., Zhang, J., Chang, S.H.: Building accountability middleware
to support dependable soa. IEEE Internet Comput. 13(2), 16–25 (2009)

44. Lodi, A., Toma, M., Campi, F., Cappelli, A., Canegallo, R., Guerrieri, R.: A vliw processor with
reconfigurable instruction set for embedded applications. IEEE J. Solid-State Circuits 38(11),
1876–1886 (2003)

http://dx.doi.org/10.1109/MC.2003.1160055
http://dx.doi.org/10.1109/ICAS.2008.23

322 R. Brzoza-Woch et al.

45. McAffer, J., Lemieux, J.M.: Eclipse Rich Client Platform: Designing, Coding, and Packaging
Java Applications. Addison-Wesley, Upper Saddle River (2005)

46. milkymist.org: milkymist.org (2009)
47. Montenegro, G., Kushalnagar, N., Hui, J., Culler, D.: Transmission of IPv6 Packets over IEEE

802.15.4 Networks. RFC 4944 (Proposed Standard) (2007)
48. Morin, B., Barais, O., Jzquel, J.M., Fleurey, F., Solberg, A.: Models@run.time to support

dynamic adaptation. IEEE Comput. 42(10), 44–51 (2009)
49. Moser, O., Rosenberg, F., Dustdar, S.: Non-intrusive monitoring and service adaptation for

ws-bpel. In: Proceedings of the 17th International Conference on World Wide Web, WWW
’08, pp. 815–824. ACM, New York (2008).

50. Mudry, P.A., Vannel, F., Tempesti, G., Mange, D.: Confetti : a reconfigurable hardware platform
for prototyping cellular architectures. In: IPDPS, pp. 1–8. IEEE (2007)

51. Niemann, M., Eckert, J., Repp, N., Steinmetz, R.: Towards a generic governance model for
service oriented architectures. In: AMCIS’08, pp. 361–361 (2008)

52. OASIS Web Services Discovery and Web Services Devices Profile (2005)
53. Opencores.org. http://opencores.org/
54. OSGi Alliance: OSGi Service Platform Release 4. [Online]. http://www.osgi.org/Main/

HomePage. (2007)
55. Patel, S.V., Pandey, K.: Soa using aop for sensor web architecture. In: Proceedings of the 2009

International Conference on Computer Engineering and Technology—Volume 02, ICCET ’09,
pp. 503–507. IEEE Computer Society, Washington (2009)

56. Popovici, A., Alonso, G., Gross, T.: Just-in-time aspects: efficient dynamic weaving for Java. In:
Proceedings of the 2nd International Conference on Aspect-Oriented Software Development,
AOSD ’03, pp. 100–109. ACM, New York (2003). doi:10.1145/643603.643614

57. Popovici, A., Gross, T., Alonso, G.: Dynamic weaving for aspect-oriented programming. In:
Proceedings of the 1st International Conference on Aspect-Oriented Software Development,
AOSD ’02, pp. 141–147. ACM, New York (2002)

58. Prasanna, D.R.: Dependency Injection, 1st edn. Manning Publications Co., Greenwich (2009)
59. Prez, F.M., Abarca, J.A.G.M., Morillo, H.R., Gimeno, F.J.M., Jorquera, D.M., Iglesias, V.G.:

Wake on lan over internet as webservice system on chip. IEEE Trans. Industr. Electron. 16(1),
45–69 (2012)

60. Psiuk, M.: AOP-based monitoring instrumentation of JBI-compliant ESB. In: Proceedings of
the 2009 Congress on Services—I, SERVICES ’09, pp. 570–577. IEEE Computer Society,
Washington (2009)

61. Psiuk, M., Bujok, T., Zielinski, K.: Enterprise service bus monitoring framework for soa sys-
tems. IEEE Trans. Serv. Comput. 5(3), 450–466 (2012). doi:10.1109/TSC.2011.32.

62. Psiuk, M., Zmuda, D., Zieliski, K.: Distributed OSGI built over message-oriented middleware
(2011). doi:10.1002/spe.1148. http://dx.doi.org/10.1002/spe.1148

63. Rellermeyer, J.S., Duller, M., Gilmer, K., Maragkos, D., Papageorgiou, D., Alonso, G.: The
software fabric for the internet of things. In: C. Floerkemeier, M. Langheinrich, E. Fleisch, F.
Mattern, S.E. Sarma (eds.) IOT. Lecture Notes in Computer Science, vol. 4952, pp. 87–104.
Springer, Berlin (2008)

64. Rochwerger, B., Breitgand, D., Epstein, A., Hadas, D., Loy, I., Nagin, K., Tordsson, J., Ragusa,
C., Villari, M., Clayman, S., Levy, E., Maraschini, A., Massonet, P., Mun andoz, H., Tofetti,
G.: Reservoir—when one cloud is not enough. Computer 44(3), 44–51 (2011). doi:10.1109/
MC.2011.64

65. Ruta, A., Brzoza-Woch, R., Zielinski, K.: On fast development of fpga-based soa services—
machine vision case study. Design Autom. Emb. Syst. 16(1), 45–69 (2012)

66. Ruta, A., Li, Y., Liu, X.: Robust class similarity measure for traffic sign recognition. IEEE
Trans. Intell. Transp. Syst. 846–855 (2010)

67. Satyanarayanan, M.: Pervasive computing: vision and challenges. IEEE Pers. Commun. 8,
10–17 (2001)

68. Shelby, Z., Bormann, C., Frank, B.: Constrained application protocol (coap). IETF Internet
draft, 1–81 (2011)

http://opencores.org/
http://www.osgi.org/Main/HomePage.
http://www.osgi.org/Main/HomePage.
http://dx.doi.org/10.1145/643603.643614
http://dx.doi.org/10.1109/TSC.2011.32
http://dx.doi.org/10.1002/spe.1148
http://dx.doi.org/10.1002/spe.1148
http://dx.doi.org/10.1109/MC.2011.64
http://dx.doi.org/10.1109/MC.2011.64

6 Implementation, Deployment and Governance of SOA Adaptive Systems 323

69. Smith, R.B.: Spotworld and the sun spot. In: Proceedings of the 6th International Conference on
Information Processing in Sensor Networks, IPSN ’07, pp. 565–566. ACM, New York (2007).
doi:10.1145/1236360.1236442.

70. Song, H., Lee, S.H., Lee, S., Lee, H.S.: 6lowpan-based tactical wireless sensor network archi-
tecture for remote large-scale random deployment scenarios. In: Proceedings of the 28th IEEE
Conference on Military Communications, MILCOM’09, pp. 1044–1050. IEEE Press, Piscat-
away (2009)

71. Sun, M., Li, B., Zhang, P.: Monitoring BPEL-based web service composition using AOP.
In: Proceedings of the 2009 Eigth IEEE/ACIS International Conference on Computer and
Information Science, ICIS ’09, pp. 1172–1177. IEEE Computer Society, Washington (2009)

72. Szydlo, T., Zielinski, K.: Method of adaptive quality control in service oriented architectures.
In: Proceedings of the 8th International Conference on Computational Science, Part I, ICCS
’08, pp. 307–316. Springer, Berlin (2008)

73. Szydlo, T., Zielinski, K.: Adaptive enterprise service bus. New Generation Comput. 30(2–3),
189–214 (2012)

74. Tibbo: http://www.tibbo.com/(2012)
75. Vedamuthu, A.S., Orchard, D., Hirsch, F., Hondo, M., Yendluri, P., Boubez, T., Yalinalp, M.:

Web services policy framework (wspolicy) http://www.w3.org/TR/ws-policy (2007)
76. Voros, N.S., Masselos, K. (eds.): System Level Design of Reconfigurable Systems-on-Chip.

Springer-Verlag New York, Inc., Secaucus, NJ, USA (2005)
77. Vuković, M.: Context aware service composition, PhD dissertation, Univ. of Cambridge (2007)
78. Walsh, W.E., Tesauro, G., Kephart, J.O., Das, R.: Utility functions in autonomic systems. pp.

70–77 (2004). doi:10.1109/ICAC.2004.1301349.
79. Wang, Q., Shao, J., Deng, F., Liu, Y., Li, M., Han, J., Mei, H.: An online monitoring approach

for web service requirements. IEEE Trans. Serv. Comput. 2(4), 338–351 (2009)
80. Wetzstein, B., Strauch, S., Leymann, F.: Measuring performance metrics of ws-bpel service

compositions. In: J.L. Mauri, V.C. Giner, R. Tomas, T. Serra, O. Dini (eds.) Proceedings of the
Fifth International Conference on Networking and Services, ICNS 2009, 20–25 April 2009,
Valencia, Spain, pp. 49–56. IEEE Computer Society, Washington (2009)

81. Wildstrom, J., Witchel, E.J., Mooney, R.: Towards self-configuring hardware for distributed
computer systems. In: Proceedings of the Second International Conference on Automatic Com-
puting, ICAC ’05, pp. 241–249. IEEE Computer Society, Washington (2005)

82. Yeung, K., Kelly, P.H.J., Bennett, S.: Performance Analysis and Grid computing. Dynamic
Instrumentation for Java Using a Virtual JVM, pp. 175–187. Kluwer Academic Publishers,
Norwell (2004)

83. Yuan, H., Choi, S.W., Kim, S.D.: A practical monitoring framework for esb-based services.
In: Proceedings of the 2008 IEEE Congress on Services Part II, SERVICES-2 ’08, pp. 49–56.
IEEE Computer Society, Washington (2008)

84. Zeeb, E., Bobek, A., Bohn, H., Prter, S., Pohl, A., Krumm, H., Lck, I., Golatowski, F., Tim-
mermann, D.: Ws4d: Soa-toolkits making embedded systems ready for web services, In: Pro-
ceedings of the Open Source Software and Product Lines Workshop (OSSPL07) (2007)

85. Zielinski, K., Szydlo, T., Szymacha, R., Kosinski, J., Kosinska, J., Jarzab, M.: Adaptive SOA
solution stack. IEEE Trans. Serv. Comput. 5, 149–163 (2012). http://doi.ieeecomputersociety.
org/10.1109/TSC.2011.8

86. Zmuda, D., Psiuk, M., Zielinski, K.: Dynamic monitoring framework for the SOA execution
environment. Procedia CS 1(1), 125–133 (2010)

http://dx.doi.org/10.1145/1236360.1236442
http://www.tibbo.com/
http://www.w3.org/TR/ws-policy
http://dx.doi.org/10.1109/ICAC.2004.1301349
http://doi.ieeecomputersociety.org/10.1109/TSC.2011.8
http://doi.ieeecomputersociety.org/10.1109/TSC.2011.8

	6 Implementation, Deployment and Governance of SOA Adaptive Systems
	1 Introduction
	2 Development of Adaptive Systems: Motivation
	3 Real-World Service
	3.1 Concept
	3.2 Realization

	4 Realization of the Adaptation Loop
	4.1 Monitoring and Execution
	4.2 Analysing and Planning
	4.3 Survey on Existing Solutions

	5 Adaptive SOA Solution Stack
	5.1 The AS3 Pattern
	5.2 The AS3 Process

	6 AS3 Studio
	6.1 OSGi Monitoring and Management Platform
	6.2 Adaptive VESB
	6.3 Adaptive SCA
	6.4 BPEL Monitoring
	6.5 Infrastructure Enrichment Tools

	7 Case Study
	7.1 Characteristics of the Entrance Protection Application
	7.2 Properties of the Real World Devices and Services Used
	7.3 Application Quality Considerations
	7.4 Business Process and Infrastructure Enhancements to Satisfy the Application's Quality Requirements
	7.5 Another Adaptation Procedures

	8 Conclusions
	References

