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Abstract

Methanocellaceae is a family within the order Methanocellales

Sakai et al. (Int J Syst Evol Microbiol 58:929–936, 2008). This

order and family contains a single genusMethanocella. Hitherto

three species within the genus Methanocella have been reported

Sakai et al. (Int J Syst Evol Microbiol 58:929–936, 2008; Int J Syst

Evol Microbiol 60:2918-2923, 2010), Lü and Lu (PLoS ONE 7:

e35279, 2012a); all the reported species were isolated from rice

field soil. Cells are nonmotile, irregular rods and anaerobic;

energy metabolism is by reduction of CO2 to CH4 with H2 as

an electron donor; some species can also use formate as an

electron donor.
Taxonomy, Historical and Current

Short Description of the Family

Methanocellaceae (Me.tha.no.cel.la0ce.ae N.L. fem. n.

Methanocella type genus of the family; -aceae the ending to

donate a family; N.L. fem. pl. n. Methanocellaceae the family of

the genus Methanocella).

Phylogenetically, the familyMethanocellaceae is placed in the

order Methanocellales within the phylum Euryarchaeota

(Sakai et al. 2008). The family contains a single genus

Methanocella, which consists of three species: Methanocella

paludicola, Methanocella arvoryzae, and Methanocella conradii

(Sakai et al. 2008, 2010; Lü and Lu 2012a). Cells occur singly and
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almost all of the cells are rod-shaped. In some species, coccoid

cells were observed in late-exponential culture. The cells are

nonmotile. Methane is produced from H2/CO2 or formate.

Acetate is required as a carbon source for growth.
Phylogenetic Structure of the Family
and Its Genus

The family Methanocellaceae is a single family within the order

Methanocellales. According to phylogenetic analysis based on the

16S rRNA gene, the order Methanocellales deeply branches

between other orders of methanogens, Methanosarcinales and

Methanomicrobiales (> Fig. 12.1). Phylogenetic analysis of the

mcrA gene (encoding the subunit of methyl-coenzyme

M reductase, a key enzyme in the methane production pathway)

also indicates that the orderMethanocellales is distinct from the

orders Methanosarcinales and Methanomicrobiales (Sakai

et al. 2008).
Molecular Analyses

Genome Comparison

Genome sequences are available for all three species of the family

Methanocellaceae (Erkel et al. 2006; Sakai et al. 2011; Lü and

Lu 2012b).

The genome of M. paludicola SANAET is a single circular

chromosome of 2,957,635 bp length with a GC content of

54.9 %. Two clusters of rRNA operons and two more distantly

located 5S rRNA genes are present in the genome. A total of 48

tRNA genes containing putative introns are scatted over the

genome. 3,004 predicted protein-coding sequences (CDSs)

were identified. 1,467 genes (48.8 % of the protein-coding

genes) were assigned with a putative function while the

remaining ones (1,537 genes; 51.2 % of the protein-coding

genes) were annotated as hypothetical proteins.

The genome of M. arvoryzae MRE50T is a circular

chromosome with 3,179,916 bp length and a GC content of

54.6 %. There are 3,085 coding genes, three rRNA operons, and

54 tRNAs in the chromosome. Originally, the genome sequence

was reported in 2006 as an environmental genotype by
Archaea, DOI 10.1007/978-3-642-38954-2_318,



. Fig. 12.1

Neighbor-joining phylogenetic tree showing the placement of the family Methanocellaceae based on 16S rRNA gene sequences. The

tree was constructed by using a subset of sequences representative of closely related genera to stabilize tree topology. In addition,

a 40 % conservational filter for the whole archaeal domain was used to remove hypervariable positions. The type species of the family is

indicated in bold. The bar represents the number of changes per sequence position
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metagenomic analysis of a methanogenic consortium (Erkel et al.

2006). Later, M. arvoryzae MRE50T was isolated from the

methanogenic consortium (Sakai et al. 2010), and the sequences

of the 16S rRNA and mcrA genes obtained from strain MRE50T

perfectly matched those of the complete genome sequence.

So, the genome sequence based on metagenomic analysis was

considered to be the true genome sequence of M. arvoryzae

MRE50T.

M. conradii HZ254T has so far the smallest circular

chromosome of 2,378,438 bp length among the members of

the family Methanocellales. The GC content of 52.7 % is the

lowest among the genomes of the family Methanocella. The

genome encodes two rRNA operons and a full complement of

tRNA genes. 2,512 candidate genes were identified, of which

71.9 % could be assigned a possible function.

All three genomes contain sufficient genes to encode a full

methanogenesis pathway using H2/CO2. Similarly to other

obligate hydrogenotrophic methanogens, formate dehydroge-

nase complexes and a formate transporter, the key enzyme

for the growth on formate as an alternative methanogenic sub-

strate, were also found. No homologous genes for alcohol dehy-

drogenase, which is involved in methanogenesis from primary

or secondary alcohols, were found. Although an incomplete

pathway of potential methanogenesis from methanol was

found in the genome of M. arvoryzae MRE50T, none of the

corresponding genes for utilizing methanol and other C1

compound were found in the M. paludicola SANAET and M.

conradiiHZ254T genome. The ANI (average nucleotide identity)

values among the three strains were between 69.4 % and 74.8 %

(Lü and Lu 2012b).
Phenotypic Analyses

The main features of members of the family Methanocellaceae

are listed in >Table 12.1.
Methanocella (Sakai et al. 2008)

Me.tha.no.cel0la. N.Gr. n. methane (from N.Gr. n. meth(yl) and

chemical suffix -ane) methane; L. fem. n. cella a room, and in

biology a cell; N. L. fem. n. Methanocella a methane-

producing cell.

Cells are nonmotile rods and occur singly. The cells autofluoresce

under epifluorescence microscopy when excited with light

near 420 nm in wavelength, which indicates the presence

of the methanogen-specific coenzyme F420. Methane is

produced from H2/CO2 or formate. Acetate is required for

growth. Some species also require yeast extract for its

growth. The type species is Methanocella paludicola.
List of Species of the Genus Methanocella

Methanocella paludicola (Sakai et al. 2008)

(pa.lu.di0co.la. L. n. palus -udis swamp, muddy environment;

L. suff. -cola derived from L. n. incola inhabitant, dweller;

N.L. masc. n. paludicola an inhabitant of muddy

environments).

Type strain is SANAET (=JCM 13418 = NBRC 101707 = DSM

17711), which was isolated from a Japanese rice field soil.

Cells occur singly and almost all of the cells are rod-shaped

(1.8–2.4 mm long by 0.3–0.6 mm wide); however, coccoid

cells were occasionally observed in late-exponential culture.

Cells are nonmotile; flagella-like structures were not

observed. Cells stain Gram-negative and are resistant to

lysis by 2 % (w/v) SDS. Freeze-etched preparations indicated

that cells of strain SANAETare surrounded by an S-layer with

hexagonal symmetry. Colonies in a deep agar medium are

white to creamy, reaching a diameter of 1–1.5 mm after

6 months incubation with H2/CO2 as a substrate. Methane

is produced from H2/CO2 and formate. Acetate and yeast

extract are required for growth. L-glutamate can be used in



. Table 12.1

Morphological and physiological characteristics of the species within the family Methanocellaceae

Characteristics

Methanocella paludicola Methanocella arvoryzae Methanocella conradii

SANAET MRE50T HZ254T

Cell morphology Rod, coccoida Rod, coccoida Rod

Cell width (mm) 0.3–0.6 0.4–0.7 0.2–0.3

Cell length (mm) 1.8–2.4 1.3–2.8 1.4–2.8

G+C content (%)b 54.9 54.6 52.7

Flagellum-like structure � + +

Motility � � �
Temperature range (optimum) (�C) 25–40 (35–37) 37–55 (45) 37–60 (55)

pH range (optimum) 6.5–7.8 (7) 6.0–7.8 (7) 6.4–7.2 (6.8)

NaCl range (optimum) (g L�1) 0–1 (0) 0–20 (0–2) 0–5 (0–1)

Substrate utilization

H2/CO2 + + +

Formate + + �
Acetate � � �
Methanol or methylamines � � �
Secondary alcohols � � �
Growth requirements

Acetate + + +

Yeast extract + � �
Abbreviations: � negative, + positive, ND not determined
aCoccoid cells are observed in the late-logarithmic culture
bThe data were taken from genome information
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substitution for yeast extract. Growth occurs between 25 and

40 �C with optimum at 35–37 �C. The pH range is 6.5–7.8;

optimum growth occurs at pH 7.0. Growth is observed in

media containing less than 1 g NaCl L�1. The strain tolerates

100 mg mL�1 of ampicillin, penicillin G, vancomycin, kana-

mycin, bacitracin, and streptomycin, but not rifampicin,

tetracycline, and chloramphenicol.

Methanocella arvoryzae (Sakai et al. 2010)

(ar.vo.ry 0 za.e. L. n. arvum an arable field, cultivated land; L. n.

oryza rice; N.L. gen. n. arvoryzae of a rice paddy field).

Type strain is MRE50T (= NBRC 105507 = DSM 22066), was

isolated from a thermophilic methanogenic consortium,

which was originally obtained from an Italian rice field soil.

Cells occur singly and most of the cells are rods (1.3–2.8 mm

long and 0.4–0.7 mm wide). Coccoid cells are also observed,

especially in late-exponential phase cultures. Negative

staining indicated that cells of strain MRE50Tmight possess

flagella; in good agreement with this finding, genes puta-

tively encoding archaeal flagella were detected in the

genome (Erkel et al. 2006). However, motility has not been

observed. Freeze-etched preparations indicated that cells

of strain MRE50T were surrounded by an S-layer with hex-

agonal symmetry. Colonies in a deep agar medium are white
to creamy, reaching a diameter of 0.1–1 mm after 2–3 weeks

incubation with H2/CO2 as substrate. Methane is produced

from H2/CO2 and formate. Acetate is required for growth

and yeast extract enhances growth. Growth occurs at

37–55 �C with optimum at 45 �C. The pH range is from

6 to 7.8, optimum at pH 7.0. Growth is observed in media

containing less than 20 g NaCl L�1. The strain is resistant to

100 mg mL�1 of ampicillin, vancomycin, kanamycin,

rifampicin, tetracycline, and streptomycin, but not to

chloramphenicol.

Methanocella conradii (Lü and Lu 2012a)

(con.rad 0i.i. N.L. gen. masc. n. conradii, named after Ralf Con-

rad, who has pioneered the ecological studies on

Methanocella methanogens in environmental samples).

The type strain is HZ254T (= CGMCC 1.5162 = JCM 17849 =

DSM 24694), isolated from a Chinese rice field soil. Cells are

rods (1.4–2.8 mm long and 0.2–0.3 mm wide) and occur

singly. A flagellum was observed by negative staining of the

cells being consistent with the detection of a fla gene cluster

in the genome (Lü and Lu 2012b). However, motility has not

been observed. Cells lyse in 0.5 % but not in <0.1 % SDS.

Colonies are nearly lens-shaped in roll-tube medium.

Methane is produced from H2/CO2, but not from formate.
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Acetate is required for growth and yeast extract can stimulate

growth. Growth occurs at 37–60 �C (optimum 55 �C), at
pH 6.4–7.2 (optimum 6.8) and with less than 5 g L�1 of NaCl

(optimum 0–1 g L�1). The strain tolerates 200 mg mL�1 of

ampicillin, penicillin G, and kanamycin, but not apramycin,

neomycin, rifampicin, and chloramphenicol.
Isolation, Enrichment, and Maintenance
Procedures

Enrichments and isolation must be carried out under anaerobic

conditions. A selective enrichment culture procedure has not

yet been developed. However, cultivation under low

hydrogen concentration, called co-culture method (Sakai et al.

2007, 2009), which is achieved by using an anaerobic,

syntrophic, heterotrophic, and hydrogen-producing bacterium

as partner organism, might be effective for enrichment of

Methanocella methanogens. Indeed, M. paludicola SANAETwas

isolated from such a culture using propionate as heterotrophic

substrate (Sakai et al. 2007). Likewise cultivation of

Methanocella members was reported in other syntrophic

cultures (Sakai et al. 2009). In addition, incubation under

moderately high temperature (e.g., 45–50 �C) with high

concentration of hydrogen may also result in enrichment

cultures with a high population density of Methanocella species

(Fey et al. 2001; Lü and Lu 2012a). Therefore, high cultivation

temperatures may also benefit cultivation of Methanocella

members. Taken together, syntrophic culture conditions and

moderately high incubation temperatures might be a good

strategy to cultivate thermophilic species. For example,

Methanocella species were predominant in syntrophic acetate-

degrading enrichment cultures at 50 �C (Liu and Conrad 2010;

Rui et al. 2011).

Once enrichment cultures are obtained, purification can

be accomplished by repeated serial dilution with both

liquid and solid media supplemented with H2/CO2

(ca. 150 kPa) or formate (40 mM). Since Methanocella species

have limited growth factor requirement (> Table 12.1), isolation

media should better be supplemented with acetate and/or yeast

extract. The addition of antibiotics may be beneficial to inhibit

growth of contaminating bacteria, and allow purification of the

methanogen from the enrichment culture.

M. paludicola SANAETwas isolated from a rice paddy soil at

Nagaoka, Niigata, Japan. Enrichment of M. paludicola SANAET

was achieved by application of the co-culture approach with

Syntrophobacter fumaroxidans (Harmsen et al. 1998) as the

hydrogen-producing syntrophic partner (Sakai et al. 2009).

A primary enrichment culture was made from the rice paddy

soil with propionate (20 mM) as the sole energy source and the

addition of pregrown cells of a S. fumaroxidans culture. The

cultivation was carried out at 37 �C under an atmosphere of

N2/CO2 (80/20, v/v) without shaking. Once cells multiplied

and propionate degradation and methane production were

observed, the culture was successively transferred to fresh

medium every 50–80 days. The co-culture enrichment with
S. fumaroxidans and Methanocella members was established

after five transfers. M. paludicola SANAET was isolated from

the co-culture enrichment into pure culture by applying the

serial dilution method with liquid media under H2/CO2

(ca. 150 kPa) atmosphere.

M. arvoryzae MRE50T was isolated from a methanogenic

consortium named MRE50, which was originally established in

the year 2000, using Italian rice field soil as inoculum

(Lueders et al. 2001). Isolation of M. arvoryzae MRE50T was

performed at 45 �C using serial dilution method with

liquid media under H2/CO2 and addition of streptomycin and

vancomycin (each 100 mg mL�1) to prevent growth of bacteria.

Once contaminated bacteria were eliminated, the culture

was transferred to fresh liquid medium supplemented with

H2/CO2 and 1 mM acetate. Thereafter, the deep agar

method under H2/CO2 growth condition was applied. Colony

formation was observed only after 2–3 weeks of incubation.

Colonies of strain MRE50T were white to creamy in color and

had a diameter of 0.1–1 mm. The deep agar isolation procedure

was repeated twice.

M. conradiiHZ254Twas isolated from a rice field soil located

in Hangzhou, China. Enrichment of strain HZ254T was

performed at 50 �C under ca. 150 kPa H2/CO2 (80/20, v/v)

except that the preincubation was performed under an

atmosphere of N2. After at most 13 successive transfers over

338 days, the archaeal populations consisted exclusively

of Methanocella species. Isolation was carried out using the

roll-tube technique with a medium containing 1.5 % agar

supplemented with 0.05 % yeast extract and tryptone and 1 mM

acetate under a H2/CO2 atmosphere. Nearly lens-shaped

colonies were formed after 5 months of incubation. The colonies

were picked with Pasteur pipettes and further purified by serial

dilution in liquid medium supplemented with 200 mg mL�1

kanamycin.

Cultures can be stored at room temperature for short-term

preservation, at 4 �C for longer storage. It was shown that

a culture was able to recover after 502 days storage at 4 �C (Lü

and Lu 2012a). Cultures can also be preserved at �80 �C in

liquid medium plus 15 % (v/v) glycerol.
Ecology

The main habitat of Methanocella members appears to be soil,

especially rice field soil, since all species of the genus

Methanocella have so far been isolated from rice field soil. In

addition, 16S rRNA gene-based analyses indicate that

Methanocella-related sequences are the major archaeal

component in rice fields regardless of geographical location

and season (Ramakrishnan et al. 2001; Krüger et al. 2005).

In rice fields, Methanocella species colonize especially rice

roots (Großkopf et al. 1998) and play a key role in CH4

production from plant-derived carbon (Lu and Conrad 2005).

Methanocella members are probably one of the most

important methanogenic groups responsible for CH4 emission

from rice fields.
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The question arises, why Methanocella members are domi-

nant particularly in rice fields, in spite of the presence of other

hydrogenotrophic methanogens, which seem to perform the

same ecosystem function? The ecological specialty of

Methanocella members was demonstrated by using the stable-

isotope-probing technique. In situ pulse labeling of rice plants

with 13CO2 demonstrated that mainlyMethanocellaceae living in

the rhizosphere were assimilating the plant-derived carbonwhile

producing methane (Lu and Conrad 2005). Labeling the

archaeal communities on excised rice roots with 13CO2 showed

that 13C was preferentially incorporated into Methanocella

members when the incubation was done under a N2 atmosphere

in which low concentrations of H2 were generated by fermenta-

tive bacteria living from rice root materials (Lu et al. 2005).

However,Methanobacteriales orMethanosarcinales incorporated

the 13C when the rice roots were incubated under high hydrogen

concentrations (Lu et al. 2005). Stable-isotope-probing analysis

with 13C-labeled propionate of anoxic rice field soil (Lueders

et al. 2004) showed that 13C was incorporated not only into

rRNA of syntrophic propionate-oxidizing bacteria but also into

methanogenic archaea, including Methanocella members. In

methanogenic environments, the oxidation of propionate

requires the syntrophic cooperation of propionate-oxidizing

bacteria with hydrogenotrophic methanogens due to thermody-

namic constraints. Therefore, propionate degradation can only

proceed if hydrogen concentrations are kept low. Collectively,

these results indicate that Methanocella members may have an

ecological niche characterized by low H2 concentrations,

whereas other methanogens are active when H2 concentrations

are high. This interpretation is consistent with the successful

cultivation and isolation of Methanocella members using the

co-culture method (Sakai et al. 2007, 2009). Although affinity

data for hydrogen of Methanocella members have not yet been

reported, we postulate that they must have a comparatively high

affinity for hydrogen. This may explain why Methanocella

members are dominant species in rice fields, where hydrogen

concentration is low (Conrad et al. 1986, 1989).

An additional characteristic of the Methanocella

methanogens may be their moderately thermophilic mode of

activity. Although rice field soils have a relatively low tempera-

ture regime (about 15–30 �C, Schütz et al. 1990), the presence of
thermophilic methanogens was demonstrated in several studies.

In fact, the methanogenic community in rice field soil produces

CH4 over a wide temperature range up to about 50 �C (Yao and

Conrad 2000; Fey et al. 2001) and moderately thermophilic

methanogens, mostlyMethanocellaceae are ubiquitously present

(Wu et al. 2006). Temperature increase was found to affect not

only the rate of CH4 production but also the composition of the

methanogenic community and its function. Conrad et al. (2009)

reported that when rice filed soil was incubated at moderate

temperatures (<40 �C), CH4 is always produced by a combina-

tion of aceticlastic and hydrogenotrophic methanogenesis

involving Methanosarcinales, Methanomicrobiales, Methanobac-

teriales, and Methanocellales, while at moderately high

temperatures (>40 �C), CH4 is formed exclusively by hydro-

genotrophic methanogenesis with Methanocellales prevailing.
Stable-isotope-probing analysis with 13C-labeled acetate at

50 �C demonstrated that the bacterial community consisted

mainly of members of the Thermacetogenium genus, i.e., ther-

mophilic syntrophic acetate oxidizers, while the archaeal com-

munity consisted mainly of Methanocella members (Liu and

Conrad 2010). Hence, Methanocella members are probably

involved in syntrophic acetate oxidation at thermal conditions.

The moderately thermophilic characteristics of Methanocella

members helped to isolate two of the existing pure cultures of

Methanocella species (Sakai et al. 2010; Lü and Lu 2012a).

However, all these results were obtained from artificially incu-

bated rice field soils. The selective advantage of moderate

thermophily in real environments is presently unknown.

Finally, Methanocellaceae seem to have a rather high

resistance to aeration. Initially, this was hypothesized because

of the occurrence in the genome of many different genes

involved in detoxification of oxygen species, including

catalase and hyperoxide dismutase (Erkel et al. 2006; Lü and

Lu 2012b). Such resistance is beneficial for methanogens

inhabiting rice fields because of regular drainage and fallow

under non-flooded and oxic conditions. Indeed, it was found

that drainage and aeration does not impede methanogenic

activity in rice field soil and that populations of methanogens

are maintained at the same titer as under flooded and anoxic

conditions (Krüger et al. 2005; Watanabe et al. 2009; Yuan et al.

2011; Ma et al. 2012). An intriguing observation was the detec-

tion of Methanocellaceae in dry upland soils, even in biological

soil crusts of desert, which are most of the time under oxic

conditions. In such soils, hydrogenotrophic Methanocellaceae

together with presumably aceticlastic Methanosarcinaceae are

the only methanogenic archaea. They can rapidly be activated

to produce CH4 and proliferate when the soil is wetted (Angel

et al. 2011, 2012a, b). These observations indicate that

Methanocellaceae are characterized by being able to tolerate

oxic conditions and desiccation.

While all existing Methanocella species were isolated from

rice fields and many of the studies involving Methanocellaceae

were done in rice fields, Methanocellaceae have also been

detected in a variety of other anaerobic environments by using

16S rRNA gene clone sequencing. These environments include

acidic peatlands, acidic bog, rich minerotrophic fen, oil-

contaminated groundwater, tropical rainforest, gold mine, lake

sediment, river bank soil, and bromeliad tanks (Dojka et al.

1998; Zepp Falz et al. 1999; Jurgens et al. 2000; Donovan et al.

2004; Kaku et al. 2005; Cadillo-Quiroz et al. 2006, 2008, 2010;

Martinson et al. 2010; Goffredi et al. 2011).Methanocella species

apparently contribute to methane production not only in rice

fields but also other anaerobic environments.
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