
Chapter 8
Data Mining and Knowledge Discovery Methods
with Case Examples

S. Bandyopadphyay and U. Maulik

8.1 Introduction

This chapter deals with the area of knowledge discovery and data mining that
has emerged as an important research direction for extracting useful information
from vast repositories of data of various types. The basic concepts, problems, and
challenges are first briefly discussed. Some of the major data mining tasks like
classification, clustering, and association rule mining are then described in some
detail. This is followed by a description of some tools that are frequently used
for data mining. Two case examples of supervised and unsupervised classification
for satellite image analysis are presented. Finally, an extensive bibliography is
provided.

Huge amount of data is generated routinely in banks, telephones, supermarkets,
credit card companies, insurance, and other business transactions as well as in
scientific domains. For example, AT&T handles billions of calls per day and Google
searches more than four billion pages in a day which results in several terabyte
orders of data. Similarly, astronomical data of the order of gigabytes per second, as
well as large amount of biological data, data from e-commerce transactions, etc.,
are generated regularly. These data sets are not only huge but also complex and
sometimes even unstructured.

Traditionally, manual methods were employed to turn data into knowledge. How-
ever, analyzing these data manually and making sense out of it is slow, expensive,
subjective, and prone to errors. Hence, the need to automate the process arose,
thereby leading to research in the fields of data mining and knowledge discovery.
Knowledge discovery from databases (KDD) evolved as a research direction that
appears at the intersection of research in databases, machine learning, pattern
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recognition, statistics, artificial intelligence, reasoning with uncertainty, expert
systems, information retrieval, signal processing, high-performance computing, and
networking [19, 30].

Data mining and knowledge discovery is the nontrivial process of extraction
of valid, previously unknown, potentially useful, and ultimately understandable
patterns from data. It is the science of extracting useful information from large data
sets or databases. Data mining techniques attempt to use raw data for:

• Increasing business, e.g., focused marketing, inventory logistics
• Improving productivity, e.g., analysis of weather data
• Reducing costs, e.g., fraud detection
• Scientific discovery, e.g., biological applications, drug discovery

The application areas of data mining are very large. Some of these are as
follows:

• Science and technology – astronomy, bioinformatics, medicine, drug discovery,
etc.

• Business – customer relationship management (CRM), fraud detection,
e-commerce, manufacturing, sports/entertainment, telecom, targeted marketing,
health care, retail sales, etc.

• Web – search engines, advertising, web and text mining, etc.
• Government – surveillance, crime detection, profiling tax cheaters, etc.
• Natural resource study and estimation – agriculture, forestry, geology, environ-

ment, etc.
• Astronomy – mining large astronomical databases
• Image mining – content-based image retrieval from large databases

The task of knowledge discovery can generally be classified into data prepa-
ration, data mining, and knowledge presentation. Data mining is the core step
where the algorithms for extracting the useful and interesting patterns are applied.
In this sense, data preparation and knowledge representation can be considered,
respectively, to be preprocessing and postprocessing steps of data mining. Figure 8.1
presents a schematic view of the steps involved in the process of knowledge
discovery.
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8.2 Different Tasks in Data Mining

Data mining tasks can be classified as descriptive and predictive [30]. While the
descriptive techniques provide a summary of the data, the predictive techniques
learn from the current data in order to make predictions about the behavior of new
data sets. The commonly used tasks in data mining are as follows:

• Classification: predicting an item class
• Clustering: finding groups in data
• Associations: finding associations between different items
• Visualization: proper depiction of the results so as to facilitate knowledge

discovery
• Summarization: describing a group of related items
• Deviation detection: finding unexpected changes in the data
• Estimation: predicting a continuous value of a variable
• Link analysis: finding relationships between items/events

The data mining tasks of classification, clustering, and association mining are
described in detail in the following subsections.

8.2.1 Classification

The problem of classification involves taking an input pattern that is characterized
by a set of features and making a decision about its belongingness to one (or more)
of the class (classes). In case the classifier is designed using a set of labelled patterns,
it is called a supervised classifier. The classification problem can be modelled in a
variety of ways, e.g., by generating a set of rules, learning decision trees, generating
class boundaries capable of distinguishing among the different classes. Some well-
known classification methods are described below.

8.2.1.1 Nearest Neighbor Rule

A simple and well-known approach of classification is the nearest neighbor rule.
Let us consider a set of n pattern (or points) of known classification

fx1; x2; : : : ; xng, where it is assumed that each pattern belongs to one of the classes
C1; C2; : : : ; Ck . The NN classification rule then assigns a pattern x of unknown
classification to the class of its nearest neighbor, where xi 2 fx1; x2; : : : ; xng is
defined to be the nearest neighbor of x if

D.xi ; x/ D min
l

fD.xl ; x/g; l D 1; 2; : : : ; n (8.1)

where D is any distance measure definable over the pattern space.
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Since the above algorithm uses the class information of only the nearest neighbor
to x, it is known as the 1-NN rule. If K neighbors are considered for classification,
then the scheme is termed as the K-NN rule. The K-NN rule assigns a pattern x
of unknown classification to class Ci if the majority of the K nearest neighbors
belongs to class Ci . The details of the K-NN rule along with the probability of error
are available in Duda and Hart [23], Fukunaga [29], and Tou and Gonzalez [56].

8.2.1.2 Bayes Maximum Likelihood Classifier

Bayes maximum likelihood classifier [3, 56] is another well-known and widely
used classifier. In most of the real-life problems, the features are usually noisy and
the classes in the feature space are overlapping. In order to model such systems,
the feature values x1; x2; : : : ; xj ; : : : ; xN are considered as random values in the
probabilistic approach. The most commonly used classifier in such probabilistic
systems is the Bayes maximum likelihood classifier, which is now described.

Let Pi denote the a priori probability and pi .x/ denote the class conditional
density corresponding to the class Ci (i D 1; 2; : : : ; k). If the classifier decides
x to be from the class Ci , when it actually comes from Cl , it incurs a loss equal to
Lli . The expected loss (also called the conditional average loss or risk) incurred in
assigning an observation x to the class Ci is given by

ri .x/ D
kX

lD1

Lli p

�
Cl

x

�
; (8.2)

where p.Cl=x/ represents the probability that x is from Cl . Using Bayes formula,
Eq. (8.2) can be written as

ri .x/ D 1

p.x/

kX

lD1

Lli pl .x/Pl ; (8.3)

where

p.x/ D
kX

lD1

pl .x/Pl :

The pattern x is assigned to the class with the smallest expected loss. The classifier
which minimizes the total expected loss is called the Bayes classifier.

Let us assume that the loss (Lli ) is zero for correct decision and greater than
zero but the same for all erroneous decisions. In such situations, the expected loss,
Eq. (8.3), becomes

ri .x/ D 1 � Pi pi .x/

p.x/
: (8.4)
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Since p.x/ is not dependent upon the class, the Bayes decision rule is nothing but
the implementation of the decision functions

Di .x/ D Pi pi .x/; i D 1; 2; : : : ; k; (8.5)

where a pattern x is assigned to class Ci if Di .x/ > Dl.x/, 8l 6D i . This decision
rule provides the minimum probability of error. The naive Bayes classifier assumes
that each feature xi is conditionally independent of every other feature xj for j 6D i .
Therefore, the decision function in Eq. 8.5 is written as

Di .x/ D Pi

NY

j D1

pi .xj /; i D 1; 2; : : : ; k: (8.6)

It is to be noted that if the a priori probabilities and the class conditional densities
are estimated from a given data set, and the Bayes decision rule is implemented
using these estimated values (which may be different from the actual values), then
the resulting classifier is called the Bayes maximum likelihood classifier.

8.2.1.3 Support Vector Machines

Support vector machine (SVM) is considered to be the state-of-the-art classifier.
The underlying principle of SVMs is to map the objects to a high dimensional
space where the classes become linearly separable. The task then is to estimate the
hyperplane that optimally separates the two classes in the high dimensional space.
An interesting feature of the SVM is that the mapping to the higher dimensional
space is not explicit. Rather, it is done implicitly when the inner product between
two vectors �.x1/ and �.x2/ in the higher dimensional space is computed as a
kernel function defined over the input feature space. Here �.:/ is the mapping that
transforms the vectors x1 and x2 in the input feature space to the higher dimensional
space. In other words,

�T .x1/�.x2/ D K.x1; x2/: (8.7)

When used for pattern classification, the SVM basically uses two mathematical
operations [32]:

1. Nonlinear mapping of an input vector into a high dimensional feature space.
This is in accordance with Cover’s theorem that states that a complex pattern-
classification problem cast in a high dimensional space nonlinearly is more likely
to be linearly separable than in a low dimensional space [20].

2. Construction of an optimal hyperplane for separating the transformed patterns
computed in the feature space. Construction of the hyperplane is performed in
accordance with the principle of structural risk minimization that has its root in
the Vapnik–Chervonenkis (VC) dimension theory.
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Note that here the input space refers to the original feature space while feature space
refers to the transformed higher dimensional space.

Let the training set be denoted by .xi ; di /
n
iD1, where xi is the i th input pattern

and di is its class. The SVM first learns n parameters, ˛1; ˛2; : : : ; ˛n, the Lagrange
multipliers, by maximizing the objective

nX

iD1

˛i � 1

2

nX

iD1

nX

j D1

˛i ˛j di dj K.xi ; xj / (8.8)

subject to the constraints

nX

iD1

˛i di D 0 (8.9)

and

0 � ˛i � C; for i D 1; 2; : : : ; n; (8.10)

where C is a user-specified positive parameter. Thereafter, given an unlabelled
vector x, the SVM classifies it based on the decision function

f .x/ D sgn.

nX

iD1

˛i di K.x; xi / C b/; (8.11)

where b is a bias term computed from the already-learned Lagrange multipliers and
the support vectors. Here, the support vectors are the vectors that are closest to the
optimal hyperplane, and hence the most difficult to classify.

8.2.2 Clustering

Clustering [2, 22, 31, 34, 56] is an important unsupervised classification technique
where a set of patterns, usually vectors in a multidimensional space, are grouped
into clusters in such a way that patterns in the same cluster are similar in some sense
and patterns in different clusters are dissimilar in the same sense. For this purpose, a
measure of similarity which will establish a rule for assigning patterns to a particular
cluster is defined. One such measure of similarity may be the Euclidean distance D
between two patterns x and z defined by D D kx � zk. The smaller the distance
between x and z, the greater is the similarity between the two and vice versa.

An alternative measure of similarity is the dot product between x and z, which,
physically, is a measure of the cosine of the angle between these two vectors.
Formally,

d.x; z/ D xT z: (8.12)
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Clearly, the smaller the Euclidean distance between these two vectors, the more
similar they are, and therefore, the larger will be the inner product between
them. It can be shown that minimization of the Euclidean distance corresponds to
maximization of the inner product.

Let us assume that the n points fx1; x2; : : : ; xng, represented by the set P , are
grouped into K clusters C1; C2; : : : ; CK . Then, in general, for crisp clustering,

Ci 6D ; for i D 1; : : : ; K;

Ci

T
Cj D ; for i D 1; : : : ; K; j D 1; : : : ; K and i 6D j; andSK

iD1 Ci D P:

Clustering techniques may be partitional or hierarchical [2]. Among the parti-
tional clustering techniques, where a partitioning of the data is obtained only on
termination of the algorithm, the K-means technique [56] has been one of the more
widely used ones. In hierarchical clustering, the clusters are generated in a hierarchy,
where every level of the hierarchy provides a particular clustering of the data,
ranging from a single cluster to n clusters. A clustering technique is said to be crisp
if it assigns a point to exactly one cluster. An alternate clustering strategy is fuzzy
clustering where a point can have nonzero membership to more than one cluster
simultaneously. Fuzzy c-means is a well-known partitional clustering technique that
belongs to this category. The basic steps of the K-means, fuzzy c-means, and single-
linkage hierarchical clustering algorithms are described below.

8.2.2.1 K-Means Algorithm

The K-means clustering algorithm essentially consists of an alternating sequence
of cluster assignment followed by center update. The steps of the algorithm are as
follows:

1. Choose K initial cluster centers z1; z2; : : : ; zK randomly from the n points
fx1; x2; : : : ; xng.

2. Assign point xm; m D 1; 2; : : : ; n to cluster Cj , j 2 f1; 2; : : : ; Kg iff

kxm � zj k < kxm � zpk; p D 1; 2; : : : ; K; and j 6D p:

Ties are resolved arbitrarily.
3. Compute new cluster centers z�

1 ; z�
2 ; : : : ; z�

K as follows:

z�
i D 1

ni

†xj 2Ci xj i D 1; 2; : : : ; K;

where ni is the number of elements belonging to cluster Ci .
4. If z�

i D zi ; i D 1; 2; : : : ; K then terminate. Otherwise, continue from Step 2.
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Note that in case the K-means algorithm does not terminate normally, it is
executed for a predefined maximum number of iterations.

Sometimes, the K-means algorithm may converge to some local optima [54].
Moreover, global solutions of large problems cannot be found within a reasonable
amount of computation effort [55]. As a result, several approximate methods,
including genetic algorithms and simulated annealing [8, 14, 41], are developed to
solve the underlying optimization problem. These methods have also been extended
to the case where the number of clusters is variable [7, 42], and to fuzzy clustering
[43].

The K-means algorithm is known to be sensitive to outliers, since such points
can significantly affect the computation of the centroids, and hence the resultant
partitioning. K-medoid attempts to alleviate this problem by using the medoid, the
most centrally located object, as the representative of the cluster. Partitioning around
medoid (PAM) [36] was one of the earliest K-medoid algorithms introduced. PAM
finds K clusters by first finding a representative object for each cluster, the medoid.
The algorithm then repeatedly tries to make a better choice of medoids by analyzing
all possible pairs of objects such that one object is a medoid and the other is not.
PAM is computationally quite inefficient for large data sets and a large number of
clusters. The Clustering LARge Applications (CLARA) algorithm was proposed
in Kaufman and Rousseeuw [36] to tackle this problem. CLARA is based on data
sampling, where only a small portion of the real data is chosen as a representative
of the data, and medoids are chosen from this sample using PAM. CLARA draws
multiple samples and outputs the best clustering from these samples. As expected,
CLARA can deal with larger data sets than PAM. However, if the best set of
medoids is never chosen in any of the data samples, CLARA will never find the
best clustering. The CLARANS algorithm proposed in Ng and Han [44] tries to mix
both PAM and CLARA by searching only a subset of the data set. However, unlike
CLARA, CLARANS does not confine itself to any sample at any given time, but
draws it randomly at each step of the algorithm. Based upon CLARANS, two spatial
data mining algorithms, the spatial dominant approach, SD(CLARANS), and the
nonspatial dominant approach, NSD(CLARANS), were developed. In order to make
CLARANS applicable to large data sets, use of efficient spatial access methods,
such as R*-tree, was proposed [24]. CLARANS has a limitation that it can provide
good clustering only when the clusters are mostly equisized and convex. DBSCAN
[25], another popularly used density clustering technique that was proposed by Ester
et al., could handle nonconvex and nonuniformly sized clusters. Balanced Iterative
Reducing and Clustering using Hierarchies (BIRCH), proposed in Zhang et al. [61],
is another algorithm for clustering large data sets. It uses two concepts, the clustering
feature and the clustering feature tree, to summarize cluster representations which
help the method achieve good speed and scalability in large databases. Discussion
on several other clustering algorithms may be found in Han and Kamber [30].
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8.2.2.2 Fuzzy c-Means Clustering Algorithm

Fuzzy c-means (FCM) [17] is a widely used technique that uses the principles of
fuzzy sets to evolve a fuzzy partition matrix for a given data set. The set of all
c � n, where c is equal to the number of clusters, nondegenerate constrained fuzzy
partition matrices, denoted by Mfcn, is defined as

Mfcn D fU 2 Rc�n j Pc
iD1 uik D 1;

Pn
kD1 uik > 0; 8i and

uik 2 Œ0; 1�I 1 � i � cI 1 � k � ng: (8.13)

Here, uik is the membership of the kth point to the i th cluster. The minimizing
criterion used to define good clusters for fuzzy c-means partitions is the FCM
function defined as

J�.U; Z/ D
cX

iD1

nX

kD1

.uik/�D2
ik: (8.14)

Here, U 2 Mfcn is a fuzzy partition matrix; � 2 Œ1; 1� is the weighting exponent
on each fuzzy membership; Z D Œz1; : : : ; zc� represents c cluster centers; zi 2 IRN ;
and Dik is the distance of xk from the i th cluster center. The fuzzy c-means theorem
[17] states that if Dik > 0, for all i and k, then .U; Z/ may minimize J�, only if
when � > 1

uik D 1
Pc

j D1. Dik

Djk
/

2
��1

; for 1 � i � c; 1 � k � n; (8.15)

and

zi D
Pn

kD1.uik/�xkPn
kD1.uik/�

; 1 � i � c: (8.16)

A common strategy for generating the approximate solutions of the minimization
problem in Eq. (8.14) is by iterating through Eqs. (8.15) and (8.16) (also known as
the Picard iteration technique). A detailed description of the FCM algorithm may be
found in Bezdek [17].

Note that in fuzzy clustering, although the final output is generally a crisp
clustering, the users are free to still utilize the information contained in the partition
matrix. The FCM algorithm shares the problems of the K-means algorithm in that
it also gets stuck at local optima depending on the choice of the initial clusters, and
requires the number of clusters to be specified a priori.
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8.2.2.3 Single Linkage Hierarchical Clustering Technique

The single-linkage clustering scheme is a noniterative method based on a local
connectivity criterion [34]. Instead of an object data set X , single linkage processes
sets of n2 numerical relationships, say frjkg, between pairs of objects represented
by the data. The value rjk represents the extent to which object j and k are related
in the sense of some binary relation �. It starts by considering each point in a cluster
of its own. The single-linkage algorithm computes the distance between two clusters
Ci and Cj as

ıSL.Ci ; Cj / D min„ƒ‚…
x2Ci ;y2Cj

fd.x; y/g; (8.17)

where d.x; y/ is some distance measure defined between objects x and y. Based
on these distances, it merges the two closest clusters, replacing them by the merged
cluster. The distance of the remaining clusters from the merged one is recomputed
as above. The process continues until a single cluster, comprising all the points,
is formed. The advantages of this algorithm are that (1) it is independent of the
shape of the cluster, and (2) it works for any kind of attributes, both categorical and
numeric, as long as a similarity of the data objects can be defined. However, the
disadvantages of this method are its computational complexity and its inability to
handle overlapping classes.

8.2.3 Discovering Associations

The root of the association rule mining (ARM) [30] problem lies in the market
basket or transaction data analysis. Association analysis is the discovery of rules
showing attribute–value associations that occur frequently.

Let us assume I D fi1; i2; : : : ; ing be a set of n items and X be an itemset where
X � I . A k-itemset is a set of k items. Let T D f.t1; X1/; .t2; X2/ : : : ; .tm; Xm/g
be a set of m transactions, where ti and Xi , i D 1; 2; : : : ; m, are the transaction
identifier and the associated itemset, respectively. The cover of an itemset X in T is
defined as follows:

cover.X; T / D fti j.ti ; Xi / 2 T; X � Xi g: (8.18)

The support of an itemset X in T is

support.X; T / D jcover.X; T /j; (8.19)

and the frequency of an itemset is

frequency.X; T / D support.X; T /

jT j : (8.20)
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In other words, support of an itemset X is the number of transactions where all the
items in X appear in each transaction. The frequency of an itemset represents the
probability of its occurrence in a transaction in T . An itemset is called frequent
if its support in T is greater than some threshold min sup. The collection of
frequent itemsets with respect to a minimum support min sup in T , denoted by
F.T; min sup/, is defined as

F.T; min sup/ D fX � I; support .X; T / > min supg: (8.21)

The objective in association rule mining is to find all rules of the form X )
Y , X

T
Y D ; with probability c %, indicating that if itemset X occurs in

a transaction, the itemset Y also occurs with probability c %. X is called the
antecedent of the rule and Y is called the consequent of the rule. Support of a rule
denotes the percentage of transactions in T that contains both X and Y . This is
taken to be the probability P.X

S
Y /. An association rule is called frequent if its

support exceeds a minimum value min sup.
The confidence of a rule X ) Y in T denotes the percentage of the transactions

in T containing X that also contains Y . It is taken to be the conditional probability
P.X jY /. In other words,

confidence.X ) Y; T / D support.X
S

Y; T /

support.X; T /
: (8.22)

A rule is called confident if its confidence value exceeds a threshold min conf .
The problem of association rule mining can therefore be formally stated as follows:
Find the set of all rules R of the form X ) Y such that

R D fX ) Y jX; Y � I; X
T

Y D ;; X
S

Y 2 F.T; min sup/;

confidence.X ) Y; T / > min conf g: (8.23)

The association rule mining process, in general, consists of the following two
steps:

1. Finding all frequent itemsets
2. Generating strong association rules from the frequent itemsets

It may be noted that the number of itemsets grows exponentially with the number
of items, jI j, and therefore, generating all the frequent itemsets is a challenging
problem. Apriori algorithm [1] is commonly used for this purpose. The Apriori
algorithm finds frequent itemsets of length k from frequent itemsets of length k �1.
The important concept, utilized for pruning many unnecessary searches, is that if an
itemset I of length k �1 is not frequent, then all itemsets I 0 such that I 2 I 0 cannot
be frequent, and hence, this branch of the tree can be effectively pruned from the
search space.
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I = {i1, i2, i3, i4}
Transaction Items

t1 i1, i3
t2 i1, i2, i3

i1, i2, i3, i4

t3 i1, i2
t4 i1, i4

i2, i4

t5
t6

Table 8.1 A set of six
transactions defined over
a set of four items
I D fi1; i2; i3; i4g

Consider the example shown in Table 8.1. Here, there are four items and six
transactions. Let the problem be to identify the associations, if any, that can be
extracted from this example. Let the min sup = 2, and minconf of a rule be 0.9.
From the example, it can be seen that

cover.i1; i3/ D ft1; t2; t5g and cover.i1; i2/ D ft2; t3; t5g:

Hence,

support.i1; i3/ D 3 and support.i1; i2/ D 3;

both of which exceed the min sup, and hence, they are frequent itemsets. In fact, it
can be verified that only these two are the largest frequent itemsets. Therefore, the
rules to be evaluated are

(1) R1 W i1 ) i3 (2) R2 W i3 ) i1 (3) R3 W i1 ) i2 (4) R4 W i2 ) i1

It can be easily shown that

(1) confidence.R1/ D 3
5

D 0:6 (2) confidence.R2/ D 3
3

D 1:0

(3) confidence.R3/ D 3
5

D 0:6 (4) confidence.R4/ D 3
4

D 0:75.

Hence, only rule R2, i.e., i3 ) i1, is above the confidence threshold. So ARM
will return R2 as the discovered association rule.

8.2.4 Issues and Challenges in Data Mining

The earlier mining algorithms were usually applied on data that had a fixed structure
and were relatively simple. With the advent of new technologies, the data being
collected nowadays is increasingly unstructured, complex, and high dimensional
data [15]. Typical domains from where such data are routinely collected are:

1. Biometrics data, e.g., fingerprints, iris, face
2. Biological data, e.g., DNA and RNA sequences, 3-D protein structure, gene

regulatory networks
3. Web data, e.g., hyperlink structure, user profiles, access profiles
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4. Business data, e.g., credit card information, mobile company data, stock market
data

5. Meteorological data, e.g., weather patterns, cloud cover

Because of the sheer quantity of data collected, it is often the case that some data
might not be collected and/or noise might be inadvertently introduced. For example,
the weather information of a particular day might not be collected simply because
of unavailability of a technician, or noise might be introduced while sequencing
a genome. Performing data mining under such circumstances necessitates the use
of sophisticated data cleaning, integration, and estimation methods. The mining
algorithms should also be extremely robust to noise and outliers, and scalable and
adaptive to new information.

The purpose of knowledge discovery is to identify interesting patterns. The
definition of “interestingness” is itself subjective and dependent on the application
domain. Thus, automatic identification of interesting patterns becomes extremely
difficult. Moreover, if the data and the environment are frequently changing, e.g.,
stock market time series data and weather data, then designing suitable algorithms
that can dynamically adapt their goals is an important issue.

While huge amount of information presents a challenge to data mining in many
domains, lack of it throws an equally important challenge to algorithm designers
in several application areas. For example, in gene expression data analysis, an
important task is to predict the cancer type of an individual from the expression
level of thousands of genes. The training data in many such situations might be the
expression values of thousands of genes for a few hundreds of patients, or even less.
Such applications demand highly sophisticated feature selection methods that can
identify only those features that are relevant for the task in hand. Another important
issue in data mining arises due to the fact that some events are much rarer than
some others making the different classes in the data highly unbalanced. Intrusion
detection is one such area where intrusions are relatively rare, and hence, learning
their characteristics and identifying them accurately are difficult tasks. Moreover,
in many domains, the cost of error is not the same irrespective of the class. For
example, in particular cases, the cost of a false-positive prediction might be less
than a false-negative prediction. Designing algorithms that can suitably weight the
errors is therefore an important issue.

Distributed data mining [35], where the data is distributed over several sites,
has become extremely important in recent times. The data might be distributed
horizontally in such a way that the schema viewed in every site is the same.
Alternatively, the data might be distributed vertically where each site has a different
schema and a different view of the data. Though collecting all the data at a
central site and then executing the algorithms is a possible way of dealing with
such situations, it is evidently highly inefficient. Moreover, privacy and security
are nowadays top priority in many organizations, e.g., credit card companies
and pharmaceutical organizations, and hence, sharing local data is not a feasible
proposition for them. Thus, designing algorithms that can carry out the computation
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in a distributed, secure, and privacy-preserving manner is of serious concern and a
major research thrust worldwide. Other issues of importance are designing mining
algorithms over peer-to-peer networks [16], grids, and cluster computers.

8.3 Some Common Tools and Techniques

In this section, some commonly used optimization, learning, and representation
tools are discussed in brief.

8.3.1 Artificial Neural Networks

Artificial neural networks (ANN) [21, 32, 49] are a parallel and layered intercon-
nected structure of a large number of artificial neurons, each of which constitutes
an elementary computational primitive. According to Kohonen [37], ANNs are
massively parallel adaptive networks of simple nonlinear computing elements called
neurons which are intended to abstract and model some of the functionality of the
human nervous system in an attempt to partially capture some of its computational
strengths. The distributed representation of the interconnections through massive
parallelism achieved out of the inherent network structure bestows upon such
networks properties of graceful degradation and fault tolerance.

In the most general form, an ANN is a layered structure of neurons. The neurons
can be of three types, namely, input, hidden, and output. The input neurons are
designated to accept stimuli from the external world. The output neurons generate
the network outputs. The hidden neurons, which are shielded from the external
world, are entrusted with the computation of intermediate functions necessary for
the operation of the network. A signal function operates within the neurons that
generates its output signal based on its activation. In general, these activation
functions take an input as an infinite range of activations .�1; C1/ and transform
them in the finite range Œ0; 1� or [�1, +1].

The neurons are connected based on an interconnection topology which basically
house the memory of the network. These connections may be excitatory (+),
inhibitory (�) or absent (0). Based on the signals received on its input connection
and the signal function applicable for the neuron, its output is computed. Neural
networks posses the ability to learn from examples. The learning rule provides the
basis for modifying the network dynamics with an aim to improve its performance.
Learning rules/algorithms define an architecture-dependent procedure to encode
pattern information into interneuron interconnections. Learning in a neural network
is data driven and proceeds by modifying these connection weights. Some well-
known models of ANNs, distinguished by the interconnection topology, activation
function, and learning rules, are the multilayer perceptron (MLP), self-organizing
map (SOM), and Hopfield network [32].
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Fig. 8.2 A typical MLP [10]

A multilayer perceptron (MLP) consists of several layers of simple neurons with
full connectivity existing between neurons of adjacent layers. Figure 8.2 shows an
example of a three-layer MLP which consists of an input layer (layer 1), one hidden
layer (layers 2), and an output layer (layer 3).

The neurons in the input layer serve the purpose of fanning out the input values
to the neurons of layer 2. Let

w.l/
j i ; l D 2; 3 (8.24)

represent the connection weight on the link from the i th neuron in layer l � 1 to the
j th neuron in layer l . Let �

.l/
j represent the threshold or the bias of the j th neuron

in layer l . The total input, x
.l/
j , received by the j th neuron in layer l is given by

x
.l/
j D

X

i

y
.l�1/
i w.l/

j i C �
.l/
j ; l D 2; 3; (8.25)

where y
.l�1/
i is the output of the i th neuron in layer l � 1. For the input layer,

y
.1/
i D xi ; (8.26)

where xi is the i th component of the input vector. For the other layers,

y
.l/
i D f .x

.l/
i / l D 2; 3: (8.27)

Several functional forms like threshold logic, hard limiter, and sigmoid can be used
for f .:/ .

There are several algorithms for training the network in order to learn the connec-
tion weights and the thresholds from a given training data set. Backpropagation (BP)
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is one such learning algorithm, where the least mean square error of the network
output is computed, and this is propagated in a top-down manner (i.e., from the
output side) in order to update the weights. The error is computed as the difference
between the actual and the desired output when a known input pattern is presented
to the network. A gradient descent method along the error surface is used in BP.
More information on MLP and other neural methods are available in Dayhoff [21],
Haykin [32], Lippmann [39], and Pao [49].

8.3.2 Fuzzy Sets and Fuzzy Logic

Much of the information available in the real world are not numeric in nature
and hence cannot be precisely measured. The means of human communication is
inherently vague, imprecise, and uncertain. Fuzzy logic was developed in order
to mathematically model this vagueness and imprecision. The fuzzy set theory,
introduced by Zadeh [60], explains the varied nature of ambiguity and uncertainty
that exist in the real world. This is in sheer contradiction to the concept of crisp sets,
where information is more often expressed in quantifying propositions. Fuzzy logic
is a superset of conventional (Boolean) logic that has been extended to handle the
concept of partial truth, i.e., truth values between completely true and completely
false.

A generic fuzzy system comprises the following modules. A fuzzification
interface fuzzifies the numeric crisp inputs by assigning grades of membership
using fuzzy sets defined for the input variable. A fuzzy rule base/knowledge base
comprises a data-derived or heuristic rule base. The data-derived rule base is usually
generated by clustering techniques or neural networks using sensor databases. The
heuristic rule base, on the other hand, is generated by human experts through
some intuitive mechanisms. A fuzzy inference engine infers fuzzy outputs by
employing the fuzzy implications and the rules of inference of fuzzy logic. Finally, a
defuzzification interface is present that yields a non-fuzzy crisp control action from
an inferred fuzzy control action.

Fuzzy set theory has found a lot of applications in data mining [4, 50, 59].
Examples of such applications may be found in clustering [38], association rules
[57], time series [18], and image retrieval [28].

8.3.3 Genetic Algorithms

Genetic algorithms (GAs) [33] are randomized search and optimization technique
guided by the principles of natural genetic systems. These algorithms are charac-
terized by a population of encoded trial solutions and a collection of operators
to act on the population. The basic philosophy behind these algorithms is to
encode the parameters of the problems and then parallely search the space of
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the encoded solutions by the application of the embedded operators so as to
arrive at an optimal solution. Generally, two types of operators are used, namely,
reproduction and evolution. The reproduction operator is guided by a selection
mechanism. The evolution operator includes the crossover and mutation operators.
The search technique is implemented through a series of iterations, whereby the
different operators are applied in a loop on the initial population. Each iteration is
referred to as a generation. Each generation produces a new solution space, which
are selectively chosen for participating in the next generation of the optimization
procedure. The selection of the participating solutions for the next generation is
decided by a figure of merit, often referred to as the fitness function. The essential
components of GAs are the following:

• A representation strategy that determines the way in which potential solutions
will be coded to form string-like structures called chromosomes

• A population of chromosomes
• Mechanism for evaluating each chromosome
• Selection/reproduction procedure
• Genetic operators
• Probabilities of performing genetic operations

It operates through a simple cycle of

1. evaluation of each chromosome in the population to get the fitness value,
2. selection of chromosomes, and
3. genetic manipulation to create a new population of chromosomes,

over a number of iterations (or generations) till one or more of the following
termination criteria is satisfied:

• The average fitness value of a population becomes more or less constant over a
specified number of generations.

• A desired objective function value is attained by at least one string in the
population.

• The number of iterations is greater than some predefined threshold.

A schematic diagram of the basic structure of a genetic algorithm is shown in
Fig. 8.3.

Applications of genetic algorithms and related techniques in data mining include
extraction of association rules [40], predictive rules [26,27], clustering [7,8,14,41–
43], program evolution [53], and web mining [45, 46, 51, 52].

8.4 Case Examples

In this section, we provide two case examples of the application of the above-
mentioned tools and techniques for solving two real-world problems. They deal with
the applications of genetic algorithms for supervised classification and clustering,
respectively, both dealing with analysis of remote sensing imagery.
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Fig. 8.3 Basic steps of a genetic algorithm [10]

8.4.1 Pixel Classification

The problem of classification can be viewed as one of generating decision bound-
aries that can successfully distinguish the various classes in the feature space. In
real-life problems, the boundaries between the different classes are usually nonlin-
ear. In this section, a classifier, called GA-classifier, that utilizes the characteristics
of GAs in searching for a number of linear segments which can approximate the
nonlinear boundaries while providing minimum misclassification of training sample
points is described [11, 48].

The GA-classifier attempts to place H hyperplanes in the feature space appro-
priately such that the number of misclassified training points is minimized. From
elementary geometry, it can be derived that a hyperplane in N -dimensional space
can be represented by N � 1 angle variables and a perpendicular distance variable.
These are encoded in a chromosome in the GA. Thus, each chromosome encoding
H hyperplanes is of length l D H..N � 1/ � b1 C b2/, where b1 and b2 are
the numbers of bits used for encoding an angle and the perpendicular distance,
respectively.

The computation of the fitness is done for each string in the population. The
fitness of a string is characterized by the number of points it misclassifies. A string
with the lowest misclassification is therefore considered to be the fittest among the
population of strings. If the number of misclassified points for a string is denoted by
miss, then the fitness of the string is computed as (n� miss), where n is the number
of training data points. The best string of each generation or iteration is the one
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which has the fewest misclassifications. This string is stored after each iteration. If
the best string of the previous generation is found to be better than the best string of
the current generation, then the previous best string replaces the worst string of the
current generation. This implements the elitist strategy, where the best string seen
up to the current generation is propagated to the next generation.

Since it is difficult to estimate the proper number of hyperplanes a priori,
in Bandyopadhyay et al. [13], the concept of variable H and hence variable
chromosome length was introduced. This resulted in a classifier called VGA-
classifier. The chromosomes in the VGA-classifier are represented by strings of 1,
0, and # (don’t care), encoding the parameters of variable number of hyperplanes.
The fitness of string i , encoding Hi hyerplanes, is defined as

fiti D .n � missi / � ˛Hi ; 1 � Hi � Hmax; (8.28)

D 0; otherwise; (8.29)

where n = size of the training data set and ˛ D 1
Hmax

. Here, Hmax is the maximum
number of hyperplanes that are considered for approximating the decision boundary.
Note that the maximization of the fitness function leads to minimization of the
number of misclassified points and also minimization of the number of hyperplanes.
The genetic operators of crossover and mutation are redefined appropriately so as to
tackle the variable length chromosomes [13].

The VGA-classifier was further enhanced in Bandyopadhyay and Pal [9] by
the incorporation of the concept of chromosome differentiation proposed in
Bandyopadhyay et al. [12]. This resulted in a classifier called VGACD-classifier.
Here, two classes of chromosomes exist in the population. Crossover (mating) is
allowed only between individuals belonging to these categories. A schema analysis
of GAs with chromosome differentiation (GACD), vis á vis that of conventional
GA (CGA), was conducted in Bandyopadhyay et al. [12] which showed that in
certain situations, the lower bound of the number of instances of a schema sampled
by GACD is greater than or equal to that of CGA.

The VGACD-classifier was used in Bandyopadhyay and Pal [9] to classify a
512 � 512 SPOT image of a part of the city of Calcutta that is available in three
bands. The image in the near-infrared band is shown in Fig. 8.4. The design set
comprises 932 points belonging to 7 classes that are extracted from the above image.
A two-dimensional scatter plot of the training data is shown in Fig. 8.5. The seven
classes are turbid water (TW), pond water (PW), concrete (Concr.), vegetation
(Veg), habitation (Hab), open space (OS), and roads (including bridges) (B/R). The
classifier trained using the design set is then utilized for classifying the pixels in the
512 � 512 image.

Figure 8.6 shows the full Calcutta image classified using the VGACD-classifier
[9]. As can be seen, most of the landmarks in Calcutta have been properly classified.
The optimum number of hyperplanes was found automatically to be equal to 13. The
performance of the VGACD-classifier was studied in comparison with those of the
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Fig. 8.4 SPOT image of Calcutta in the near-infrared band

VGA-classifier, K-NN rule, and Bayes maximum likelihood classifier. It showed that
the VGACD-classifier provided the best performance, and its rate of convergence
was also enhanced over the VGA-classifier [9].

8.4.2 Clustering of Satellite Images

The purpose of any clustering technique is to evolve a K � n partition matrix U.X/

of a data set X (X D fx1; x2; : : : ; xng) in IRN , representing its partitioning into
a number, say K, of clusters (C1; C2; : : : ; CK). The partition matrix U.X/ may
be represented as U D Œukj �, k D 1; : : : ; K and j D 1; : : : ; n, where ukj is
the membership of pattern xj to cluster Ck . Clustering methods are also often
categorized as crisp and fuzzy. In crisp clustering, a point belongs to exactly one
cluster, while in fuzzy clustering, a point can belong to more than one cluster with
varying degrees of membership.

The different clustering methods, in general, try to optimize some measure of
goodness of a clustering solution either explicitly or implicitly. The clustering
problem can therefore be mapped to one of searching for an appropriate number
of suitable partitions such that some goodness measure is optimized. It may be



8 Data Mining and Knowledge Discovery Methods 263

10 20 30 40 50 60 70
15

20

25

30

35

40

45

50

55

2

1

2

3

1

1

1

4

6

2

3

3 4

3

3

1

3
3

1

3

1

4

1

6

4

2

2

1
1

2

4
4

2

3

1

33
3

4

3

6

1

6

6

3

6

4

6

1

4

6

1

3

6

3

3

1

3

1

7

1

6

4

6

4

1

6

1

3

6

4
4

3

1
4

3

6

1

6

4

4

1

1

4
4

4

3

3

4

6

3

6
2

1

3
4

1

4
3

4

1

4

1

4

1

4

33 3

3

3

1

3

1

3
4

11

4

4

3

3

6

3

3

1

4

3

1

6

4

6

3

1

3

1

3

4

1

3

1

3

6

6

4

3
3

1

43

3

4

1

3

4

1
1

6

6

3

1

2

6

4

6

6

4

6

6

4

1

3

1

6

1

3

1

3
4

6

2

6

3
3

1

3

6

6

1

4

3

1

6

33

6

4

1

4

6

3

4

1

6

3

4

1

2

4

4

6

4

3

4

3

1

2

6

1
1

4

6

3

6

4
4
4

4

2

3
5

3

6

1

6

4
3

1

3

6

3

3

6
6

1
1

3

44
4

3 4

2

1

7
4

333

4

4

3

3

4

4

3
3

3
3

1

4

4

1

4

3

3

3

4

1
1

2

3

1

6

4

1

2

4

3
4

6

1
1

3
3

1

1

3

1

3

4

1

44

1

6

6

4

6

3
4

4

4

1

33

6

2

3

1

3

6

3

1

6

4

1

3

2

6

4

6

11

6

1

4 4

1

2

6

3

6

7

3

4

6

2

1

6

4

4

3
3

4

6

2

1

3

1

4

1

3
3

4

4
4

1

4

43

1

4
4

3

6

33

1

3
3

3
3

3

4

6

3

1

6

6

4
4

4

4

6

3

1

1

3

6

3

1

3
4

6
6

7
4

4
3

4

3
3

3

1
1 1

111

1 1

1

3

1
1111

3

111
1

3

6

4

1

3

4

6

1

3

2

3

2

3

33
4

6

6

4

1

6

3

3

33

4

1

6

6

3
3

6

6

2

3

4

2

4

1

3

3

6

3

1

3

4

2

6

6

1

4

4

1

6

1

4

6

3

45
2

4

4

42

7

5
2

4

4

6

5

3

5

2

5

7
4

2

2

7
7 4

2

2

2

2

4

5 4

2

3

2

4

4 6

4

2
2

7
4

2

4

5

5

57

2

4

2

3

2

4

2

4

2

4
7

5 4

7

7

2

5
5

2

43

5

5

6
2

4

5
5

3 2
4

7

4
7

4

2

2
4

5

5

4

2

2
3

4

2

2

5

5

5

4

3

42

2

2

4
4

3

2
5

4

5
2

7
2

2

4

2

5
2

2

4

7

4

7

2

7

4

4

4

2

2

2
2

52
2

4

4 5

2 4

2

5

7
27 4

2
2

4
4

4

2

5
3

7
4

2

2
4

2

7
2

3

2

2
44

4

4

2

4

1 2
5

4

3

4
4

2
4 4
42

5

4
5

2

2

5
4

7

3

7

2
4

3
2

2

7
4

4
4

4
4

5

5
7

5

5
47

2

5
2 5

2

4

2
5

2
42

2

5
5

4

5

4

5

4

47

4

2

3

6

4
5

2

5
42

5

7

4

4

2

4

4

2

5

4

7

2

4

5

2 2

4

2
7

2

7
2
2

4

42

2 4
2

2

5
4

3

4

4

6

4
5

5

4
3

4

2

45

2

2

5

4
7

2

2

45
4

7

2 2

4
4

7
47

2

3

2
2

5

3
4

5
2
2 2

5
2 5

4

2

2

7

77

4

2

4

4
2

7

4
4

4

5

4
2

4

2 4

7

4

4

4

4

2

5

2

4

2
2

1 2 2

4

5

7

5

6

2

5

3

5

1 7

1 2

2
4

7

5

5
2 2

3

7

2

3

4

5
2

5
4

4

7

2 7

4

2 2

2

2

7

4

4

2

2

7 5

4

2

2

4
7

3

2

5

5

2

5

55 45

2

42 4

2
4

22
22

4

4

2

7 4
2

4

2

4

4

21

6

Near infra red band

R
eb

 b
an

d

Fig. 8.5 Scatter plot for a training set of SPOT image of Calcutta containing seven classes (1,: : :,7)

noted that searching the exhaustive set of all possible partitions of the data is
prohibitively exhaustive since the search space is huge and complex, with numerous
local optima. Consequently, heuristic search methods are often employed in this
domain, and these often get stuck at local optima. Several attempts have also been
made to investigate the effectiveness of GAs and related methods for clustering
[5–7, 14, 41, 43, 47].

As earlier, variable length GAs (VGAs) are used for automatically evolving
the near-optimal nondegenerate fuzzy partition matrix U � [43]. The centers of a
variable number of clusters are encoded in the chromosomes. Given a set of centers
encoded in the chromosome, the fuzzy partition matrix is computed using Eq. (8.15).
Thereafter, the centers are updated using Eq. (8.16). For the purpose of optimization,
the Xie–Beni [58] cluster validity index is used. The Xie–Beni (XB) index is defined
as a function of the ratio of the total variation � to the minimum separation sep of
the clusters. Here, � and sep can be written as

�.U; ZI X/ D
cX

iD1

nX

kD1

u2
ikD2.zi ; xk/; (8.30)

and

sep.Z/ D min
i 6Dj

fjjzi � zj jj2g; (8.31)



264 S. Bandyopadphyay and U. Maulik

Fig. 8.6 Classified SPOT image of Calcutta using the VGACD-classifier (Hmax =15, final value
of H=13)

where jj:jj is the Euclidean norm, and D.zi ; xk/ is the distance between the pattern
xk and the cluster center zi . The XB index is then written as

XB.U; ZI X/ D �.U; ZI X/

n sep.Z/
D

Pc
iD1.

Pn
kD1 u2

ikD2.zi ; xk//

n.mini 6Dj fjjzi � zj jj2g/ : (8.32)

Note that when the partitioning is compact and good, value of � should be low while
sep should be high, thereby yielding lower values of the XB index. The objective is
therefore to minimize the XB index for achieving proper clustering. In other words,
the best partition matrix U � is the one such that

U � 2 U and XB.U �; Z�; X/ D min
Ui 2U

XB.Ui ; Zi ; X/; (8.33)

where Z� represents the set of cluster centers corresponding to U �. Here, both the
number of clusters as well as the appropriate fuzzy clustering of the data are evolved
simultaneously using the search capability of genetic algorithms. The chromosome
representation and other genetic operators used are described in detail in Maulik and
Bandyopadhyay [43].
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Fig. 8.7 IRS image of Mumbai in the near-infrared band with histogram equalization

The effectiveness of the genetic fuzzy clustering technique in partitioning the
pixels into different landcover types is demonstrated on an Indian remote sensing
(IRS) satellite image of a part of the city of Mumbai [43] (Fig. 8.7 shows the
image in the near-infrared band). Detailed description is available in Maulik and
Bandyopadhyay [43]. The segmented Mumbai image is shown in Fig. 8.8. The
method automatically yielded seven clusters, which are labelled concrete (Concr.),
open spaces (OS1 and OS2), vegetation (Veg), habitation (Hab), and turbid water
(TW1 and TW2), based on the ground information available from earlier studies.
The classes Hab, referring to the regions which have concrete structures and
buildings, but with relatively lower density than the class concrete, and Concr.
share common properties. Figure 8.8 shows that the large water body of the Arabian
Sea has been distinguished into two classes which are named TW1 and TW2. The
islands, dockyard, and several road structures have mostly been correctly identified
in the image. Within the islands, as expected, there is a predominance of open space
and vegetation. The southern part of the city, which is heavily industrialized, has
been classified as primarily belonging to habitation and concrete. Some confusion
within these two classes, namely, Hab and Concr, is observed (as reflected in the
corresponding label); this is expected since these two classes are somewhat similar.

Figure 8.9 demonstrates the Mumbai image partitioned into seven clusters using
the FCM technique. As can be seen, the water of the Arabian Sea has been
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Fig. 8.9 Clustered image of Mumbai using FCM clustering
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partitioned into three regions rather than two as obtained earlier. The other regions
appear to be classified more or less correctly for this data. It was observed that the
FCM algorithm gets trapped at local optima often enough, and the best value of the
XB index was worse than that obtained using the genetic fuzzy clustering scheme.

8.5 Discussion and Conclusions

The basic concepts and issues in data mining and knowledge discovery have been
discussed in this chapter. The challenges being faced by data miners, namely, very
high dimensional and extremely large data sets, unstructured and semi-structured
data, temporal and spatial patterns, and heterogeneous data, are mentioned. Some
major data mining tasks are discussed with emphasis on algorithms developed
for solving them. These include description of classifiers based on Bayes rule;
nearest neighbor rule and support vector machines; clustering algorithms like K-
means, fuzzy c-means, and single linkage; and association rule mining methods.
The utility of some tools like neural networks, genetic algorithms, and fuzzy sets
that are frequently used in data mining is discussed. Finally, two case examples are
presented.

Traditional data mining generally involved well-organized database systems such
as relational databases. With the advent of sophisticated technology, it is now
possible to store and manipulate very large and complex data. The data complexity
arises due to several reasons, e.g., high dimensionality, semi- and/or unstructured
nature, and heterogeneity. Data related to the World Wide Web, the geoscientific
domain, VLSI chip layout and routing, multimedia, financial markets, sensor
networks, and genes and proteins constitute some typical examples of complex
data. In order to extract knowledge from such complex data, it is necessary to
develop advanced methods that can exploit the nature and representation of the data
more efficiently. In Bandyopadhyay et al. [15], several such interesting attempts for
knowledge discovery from complex data have been described.
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45. Oliver A, Monmarché N, Venturini G (2002) Interactive design of web sites with a genetic
algorithm. In: Proceedings of the IADIS international conference www/internet, Lisbon
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