
The Resource Lambda Calculus Is Short-Sighted

in Its Relational Model

Flavien Breuvart

PPS, UMR 7126, Univ Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
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Abstract. Relational semantics is one of the simplest and categorically
most natural semantics of Linear Logic. The co-Kleisli category MRel
associated with its multiset exponential comonad contains a fully ab-
stract model of the untyped λ-calculus. That particular object of MRel
is also a model of the resource λ-calculus, deriving from Ehrhard and
Regnier’s differential extension of Linear Logic and related to Boudol’s
λ-calculus with multiplicities. Bucciarelli et al. conjectured that model
to be fully-abstract also for the resource λ-calculus. We give a counter-
example to the conjecture. As a by-product we achieve a context lemma
for the resource λ-calculus.

Keywords: Full abstraction, resource λ-calculus, linear logic,
nondeterminism.

1 Introduction

Rel. The category Rel of set and relations is known to model Linear Logic,
and its construction is canonical from categorical point of view. Indeed, Rel can
be seen as the free infinite biproduct completion of the Boolean ring seen as a
category with one object and two morphisms (true and false), the conjunction
being the identity [13]. The exponential modality ! of linear logic is given by
the finite multisets comonad that precisely is the free commutative comonad in
Rel [13]. Moreover, despite the biproduct, proofs are morally preserved, i.e. the
interpretation of cut free proofs is injective up to isomorphism1 [7].

This multiset comonoid !A of a set A is the set of finite multisets of
elements in A. Intuitively a finite multiset in a ∈!A is a resource that behaves
as

˙
α∈a α, i.e. like a resource that must be used by a program exactly

once per element in a (with multiplicities). This behavior enabling an inter-
esting resource management, it was natural to develop a syntactical counterpart.

Resource λ-Calculus. A restricted version was previously introduced by
Boudol in 1993 [1]. Boudol’s resource λ-calculus extends the call-by-value
λ-calculus with a special resource sensitive application (able to manage finite
resources) that involves multisets of affine arguments each one used at most
once. Independently from our considerations on Rel, this was seen as a natural

1 Up to technical details, but the unrestricted injectivity is strongly conjectured.

M. Hasegawa (Ed.): TLCA 2013, LNCS 7941, pp. 93–108, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



94 F. Breuvart

way to export resource sensitiveness into the functional setting. However,
restricted by a fixed evaluation strategy, it was not fully explored. Later on,
Ehrhard and Regnier, working on the implementation of behaviors discovered
in Rel, came to a similar calculus, the differential λ-calculus [11], which enjoys
many syntactical and semantical properties (confluence, Taylor expansion).
In Ehrhard and Regnier’s differential λ-calculus the resource-sensitiveness
is obtained by adding to the λ-calculus a derivative operation ∂M

∂x (N) (will
be implemented in our notations as the term M〈N/x〉, see section 2). This
operator syntactically corresponds to a substitution of exactly one occurrence
of x by N in M (introducing non determinism on the choice of the substituted
occurrence); confluence of the calculus is recovered, then, by performing all the
possible choices at once. This linear substitution takes place when β-reducing
specific applications where an argument is marked as linear, in order to be used
exactly once. We will adopt the syntax of [16] that re-implements improvements
from differential λ-calculus into Boudol’s calculus, and we will call it resource
λ-calculus or ∂λ-calculus.

MRel. For Rel as for most categorical models of Linear Logic, the interpretation
of the exponential modality induces a comonad from which we can construct the
Kleisli category that contains a model of the λ-calculus. In the case of Rel, this
category, MRel, corresponds to the category whose objects are sets and whose
morphisms from A to B are the relations from N〈A〉 (the set of finite multisets
over A) to B. It is then a model of both λ and ∂λ-calculi. This construction
being very natural, the reflexive objects of MRel are the most-studied models
of the ∂λ-calculus.

MRel and ∂λ-Calculus. The depth of the connection between the reflexive
objects of MRel and the ∂λ-calculus is precisely the purpose of our work. More
precisely, we investigate the question of the full abstraction of M∞, a reflexive
object for the ∂λ-calculus [5]. We also endowed ∂λ-calculus with a particular
choice of reduction that is the may-outer-reduction; this is not the only choice, but
this corresponds to the intuition that conducts from Rel to Ehrhard-Regnier’s
differential calculus. Until now we knew that M∞ was adequate for the ∂λ-
calculus [3], i.e. that two terms carrying the same interpretations in M∞ behave
the same way in all contexts. But we did not know anything about the converse,
the completeness, and thus about the full abstraction.

Full Abstraction. The full abstraction of M∞ has been thoroughly studied.
For lack of direct results, the full abstraction has been proved for restrictions and
extensions of the ∂λ-calculus: for the untyped λ-calculus (which is the determin-
istic and linear-free fragment of the ∂λ-calculus); for the orthogonal bang-free
restriction where the application only accepts bags of linear arguments; and for
the extension with tests of [3], an extension with must non-determinism and with
operators inspired by 0-ary par and tensor product that could be added freely in
DiLL-proof nets (DiLL for Differential Linear Logic).

These studies were encouraging since they systematically showed MRel to be
fully abstract for these calculi ([14] for untyped λ-calculus , [4] for the bang-free
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restriction and [3] for resource λ-calculus with tests). Therefore Bucciarelli et.al.
[3] conjectured a full abstraction for the ∂λ-calculus.

The Counter-Example. The purpose of this article is to set out a highly
unexpected counter-example to this conjecture. We will see how an untyped
fixpoint and a may non-deterministic sum can combine to produce a term A
(Equation 7) behaving like an infinite sum Σi≥1Bi where every Bi begins with
(i+1) λ-abstractions, put its (i+1)th argument in head position but otherwise
behave as the identity in applicative contexts with exactly i arguments; that
how A can be thought to have an arbitrary number of λ-abstractions. Such a
term can thus look for an argument further than the length of any bounded
applicative context. There lies the immediate interest of achieving a context
lemma (which have not been done for this calculus, yet) in order to prove that the
observational equivalence is so short-sighted. This will refute the inequational full
abstraction since the relational semantics can sublimate this short-sightedness.
More concretely we will see that A is observationally above the identity but not
denotationally. It is not difficult, then, to refute the equational full abstraction.

We proceed in this order. Section 2 present the ∂λ-calculus and its properties.
Section 3 describes MRel and its reflexive objectM∞, and see how it is related to
∂λ-calculus. Section 4 gives our results with the context lemma followed by the
counter-example (Theorem 8). We will also discuss the generality of this counter-
example in the conclusion and explain how it is representative of an unhealthy
interaction between untyped fixpoints and may-non-determinism that can be re-
produced in other calculi like the may-non-deterministic extension of λ-calculus.

Notation: We denote N〈A〉 for the set of finite multisetes of elements in
the set A.

2 Syntax

2.1 ∂λ-Calculus

In this section we give some background on the ∂λ-calculus, a lambda calculus
with resources. The grammar of its syntax is the following:

(terms) Λ : L,M,N ::= x | λx.M | M P
(bags) Λb : P,Q ::= 1 | [M ] | [M !] | P ·Q
(sums) �,�b : �,� ∈ N〈Λ〉 �,� ∈ N〈Λb〉

Fig. 1. Grammar of the ∂λ-calculus

The ∂λ-calculus extends the standard λ-calculus in two directions. First, it is a
non deterministic λ-calculus. The argument of an application is a superposition
of inputs, called bag of resources and denoted by a multiset in multiplicative
notation (namely P ·Q is the disjoint union of P and Q). Symmetrically, the
result of a reduction step is a superposition of outputs denoted by a multiset in
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additive notation (namely �+� is the disjoint union of � and �). We also have
empty multisets, expressing an absence of available inputs (denoted by 1) or of
results (denoted by 0).

Second, the ∂λ-calculus distinguishes between linear and reusable resources.
The formers will never suffer any duplication or erasing regardless the reduction
strategy. A reusable resource will be denoted by a banged term M ! in a bag, e.g.
[N !, L, L] is a bag of two linear occurrences of the resource L and a reusable
occurrence of the resource N . We use the notation N (!) whenever we do not set
out whether M occurs linearly or not in a bag. A bag with no banged resources
will be said linear and one with only banged resources will be said exponential.

Finally, keeping all possible results of a reduction step (with multiplicities)
into a finite multiset ΣiMi of outcomes allows to have a confluent rewriting
system in such a non-deterministic setting [16].

Small Latin letters x, y, z, ... will range over an infinite set of λ-calculus vari-
ables. Capital Latin letters L,M,N (resp. P,Q,R) are meta-variables for terms
(resp bags). Initial capital Latin letters E,F will denote indifferently terms
and bags and will be called expressions. Finally, the meta-variables �,�,�
(resp �,�,�) vary over sums (i.e. multisets in additive notation) of terms (resp.
bags). Bags and sums are multisets, so we are assuming associativity and com-
mutativity of the disjoint union and neutrality of the empty multiset.

Notice that the sum operator is always at the top level of the syntax trees.
This is a design choice taken from [16] allowing for a lighter syntax. However, it
is sometimes convenient to write sums inside an expression as a short notation
for the expression obtained by distributing the sums following the conventions:

λx.(ΣiMi) := Σi(λx.Mi) (ΣiMi) (ΣjPj) := Σi,j(Mi Pj)

[(ΣiMi)
!]·P := [M !

1, . . . ,M
!
n]·P [ΣiMi]·P := Σi[Mi]·P

Notice that every construct is (multi)-linear but the bang (·)!, where we apply
the linear logic equivalence [(M+N)!] = [M !]·[N !] which is reminiscent of the
standard exponential rule ea+b = ea·eb. Notice moreover that the 0-ary version
of those rules also hold.

Since we have two kinds of resources, we need two different substitutions: the
usual one, denoted {.}, and the linear one, denoted 〈.〉. Supposing that x �= y,
and x �= z, and z �∈ FV(N) (FV denoting free variables):

x〈N/x〉 := N y〈N/x〉 := 0 (λz.M)〈N/x〉 := λz.(M〈N/x〉)
(M P )〈N/x〉 := (M〈N/x〉 P ) + (M P 〈N/x〉)

[M !]〈N/x〉 := [M〈N/x〉,M !] [M ]〈N/x〉 := [M〈N/x〉]
(P ·Q)〈N/x〉 := (P 〈N/x〉)·Q+ P ·(Q〈N/x〉) 1〈N/x〉 := 0

Notice that in the above definition we are heavily using the natural conven-
tion of the distributing sums. For example, the bag P = [x!, y]〈N/x〉 reduces
P = [x〈N/x〉, x!, y]+[x!, y〈N/x〉] = [N, x!, y]+[x!, 0] = [N, x!, y]+0 = [N, x!, y].
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Substitutions enjoy the following commutation properties:

Lemma 1 ([16]). For an expression E and terms M,N , if x �∈ FV(N) and
if y �∈ FV(M) (potentially x=y) then:

E〈M/x〉〈N/y〉 = E〈N/y〉〈M/x〉 E{(M+x)/x}〈N/y〉 = E〈N/y〉{(M+x)/x}
E{(M+x)/x}{(N+y)/y} = E{(N+y)/y}{(M+x)/x}}

Hence the notion of substitution of variables by bags, denoted 〈〈s〉〉 (where s is a
list of substitutions P/x), may be defined as follows (if x �∈ FV(N) ∪ FV(P )):

M〈〈1/x〉〉 := M{0/x} M〈〈[N !]·P/x〉〉 := M{(x+N)/x}〈〈P/x〉〉
M〈〈[N ]·P/x〉〉 := M〈N/x〉〈〈P/x〉〉 M〈〈s1; s2〉〉 := M〈〈s1〉〉〈〈s2〉〉

2.2 Beta and Outer Reduction

Reduction is defined essentially as the contextual closure of the β-rule.

β
(λx.M) P → M〈〈P/x〉〉 M → �

left
M P → � P

M → �
abs

λx.M → λx.�
N → �

lin
M [N ]·P → M [�]·P

N → �
!

M [N !]·P → M [�!]·P
M → �′ �→ �′

s1
M+�→ �′+�′

M → �′
s2

M+�→ �′+�

Fig. 2. Reduction rules

Rules s1 and s2 allow to reduce one or more terms of a sum in a single step
(this is used in Theorem 1).
In the following example and all along this article we denote:

ω := λx.x[x!] I := λx.x Δ := λgu.u [(g [g!] [u!])!] Θ := Δ[Δ!]

Example 1.

I [u!, v!] → u+v (λx.y [(x [y])!]) [u, v!] → y [u [y], (v [y])!] (1)

(λx.x [x, x!]) [u, v!] → (u [v, v!])+(v [u, v!])+(v [v, u, v!]) (2)

u [I 1] → 0 u [(I 1)!] → u 1 (3)

ω [ω!] → ω [ω!] ω [ω] → 0 (4)

Θ [v!] →2 (v [(Θ [v!])!]) (5)

Θ [u, v!] →2 (u [(Θ [v!])!]) + (v [(Θ[u, v!]), (Θ[v!])!]) (6)

As customary, a notion of convergence will be used for relating the operational
and denotational semantics of the ∂λ-calculus.
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In this paper, we consider the may-outer convergence of [16]. The attribute
may refers to an angelic notion of non-determinism, hence M+N will converge
whenever at least one of the two converges. Indeed, the demonic (must) conver-
gence is also of great interest, however it is harder to deal with (see [17]), in fact
the demonic non-determinism does not interact well with the Taylor expansion,
which is a crucial tool in our analysis (Section 2.3). Moreover, the attribute outer
refers to the fact that we reduce only redexes not under the scope of a bang.
This turns out to be the analogous of the head-reduction in the λ-calculus.

Definition 1 (onf and monf). A term is in outer-normal form, onf for short,
iff it has no redexes but under a !, that is a term of the form:

λx1, . . . , xm.y [N
(!)
1,1, . . . , N

(!)
1,k1

] · · · [N (!)
n,1, . . . , N

(!)
n,kn

]

Where every N
(!)
i,j are either banged or in outer-normal form.

A sum of terms is in may-outer-normal form, monf for short, iff at least one of
its addends is in outer-normal form (in particular 0 is not a monf).

This notion generalizes the one of head-normal form of the untyped lambda
calculus. Asking for linear terms of a bag to be in monf is a way of expressing
that x [ω [ω!]] diverges while x [(ω [ω!])!] is an onf . Monf’s correspond to may-
solvability [17] in the same way as head-normal-forms correspond to solvability
in untyped λ-calculus. From previous examples only contracta of (3.1), (4.1) and
(4.2) are not monf, and only (3.2)’s redex is.
The restricted reduction leading to the (principal)monf of a term is the following:

Definition 2. The outer reduction, denoted →o is defined by the rules of Figure
2 but the rule !, which is omitted. We denote by →∗ and →∗

o the reflexive and
transitive closures of → and →o, respectively.

In the Example 1, all reductions but the (3.2) are outer reductions.

Lemma 2 ([16]). If M →∗ � and � is in monf, then there exists a monf � such
that M →∗

o �→∗ �. Thus the convergence to a monf and the outer convergence
to a monf coincide.

We will write M ⇓n if there exists a monf � and an outer reduction sequence
from M to � of length at most n. We will write M ⇓ if there exists n such
that M ⇓n and say that M outer converges. Finally we will write M ⇑ for the
outer-divergence on M .
The two rules s1 and s2 of Figure 2 allow the followings:

Theorem 1. If M → �1 and M → �2 for �1,�2 �= 0, then there is � such
that �1 → � and �2 → �.

Corollary 1. If M ⇓n+1 and M →o � then exists N ∈ � such that N ⇓n.

This is due to the trivial divergence of the case M = 0. Notice moreover that M
is not a sum.
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2.3 Taylor Expansion

A natural restriction of the ∂λ-calculus is the fragment ∂λ� which is obtained
by removing the bang construction [M !] in Figure 1. This restriction has a very
limited computational power, for instance it enjoys the following theorem.

Theorem 2 ([Folklore]). The reduction → in ∂λ� is strongly normalizing.

Proof. We set an order 
 on the finite multisets of terms generated by � 
 �

if � = �′+�, � = �′+� and there exists N ∈ �′ such that for all M ∈ �′, the
inequality |M | ≤ |N | (where |M | is the structural size of M) holds. Then, → is
strictly decreasing in this well founded order. �

The main interest of ∂λ� comes with the Taylor expansion. The Taylor expansion
of a λ-term M has been developed in [11,12] and it recalls the usual decompo-
sition of an analytic function:

f(x) =

∞∑

n=0

1

n!
Dn(f)(0)xn

In this paper, we are interested only in the support of the Taylor expansion of a
∂λ-term M defined in [11,12], i.e. in the set Mo of the ∂λ�-terms appearing in
the Taylor expansion of M with non-null coefficient. Such a set can be defined
as follows.

Definition 3. The Taylor expansion Eo of an expression E is a (possibly infi-
nite) set of linear expressions defined by structural induction:

(λx.M)o := {λx.M ′|M ′ ∈ Mo} (M P )o := {M ′P ′|M ′ ∈ Mo, P ′ ∈ P o}
[M ]o := {[M ′]|M ′ ∈ Mo} (P ·Q)o := {P ′·Q′|P ′ ∈ P o, Q′ ∈ Qo}

[M !]o := {[M1, . . . ,Mn]|n ≥ 0, M1, . . . ,Mn ∈ Mo} 1o := {1} xo := {x}

In the following we use set inclusion for comparing a finite multiset � with a set
�o. This mean that the support (i.e. the set of element appearing in � with a
nonzero multiplicity) of � is a subset of �o.

Lemma 3. For any sum � and for any � ⊆ �o, if � converges to a normal
form �′ then there exists �′ such that �→∗ �′ and �′ ⊆ �′o.

Proof. By induction on the length of the longest path of reduction for �→∗ �′

(indeed such a path exists by Theorem 2). The case � = �′ is trivial. We
thus asume that � → �′′ →∗ �′. Notice that � → �′′ does not use the rule
s1, otherwise there would be a longest reduction sequence from � to �′ which
contradicts the hypothesis that we have already choosen the largest path of
reduction. This means that � → �′′ reduces a single redex. This redex being
the image of a redex in � (not necessarily an outer redex), we can perform the
corresponding reduction � → �′′. And by reducing all corresponding redexes
on �′′ (the duplictions from the Taylor expension), we have �′′ →∗ �′′′ ⊆ �′′o.
Then we conclude by induction hypothesis. �
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3 Model

3.1 Categorical Construction of the Model

We recall the interpretation of the ∂λ-calculus into the reflexive object M∞
of MRel used in [3]. MRel is the Cartesian closed category resulting from the
co-Kleisli construction associated with the multiset exponential comonad of the
category Rel of sets and relations, which is a well-known model of Linear Logic
(and Differential Linear Logic). We refer to [9] for a detailed exposition, here we
briefly present MRel and the object M∞.

The objects of MRel are the sets. Its morphisms from A to B are the re-
lations from the set of the finite multi-sets of A, namely N〈A〉, to the set B;
i.e. MRel(A,B) := P(N〈A〉×B).

The composition of g ∈ MRel(B,C) and f ∈ MRel(A,B) is given by f ; g =
{(a, γ) ∈ N〈A〉×C | ∃(a1,β1),...,(an,βn)∈f, a=Σiai and ([β1, . . . , βn],γ)∈g}

The identities are idA := {([α], α)|α ∈ A}. Given a family (Ai)i∈I , its
Cartesian product is

˘
i∈I Ai := {(i, α)|i∈I, α∈Ai}; with the projections πi :=

{([(i, α)], α)|α ∈ Ai}. The terminal object is the empty set. And the exponential
object internalizing MRel(A,B) is A⇒B := N〈A〉 × B. Then the adjuction
MRel(A&B,C) � MRel(A,B⇒C) holds since N〈˘i≤n Ai〉 �

∏
i≤n N〈Ai〉.

The reflexive object we choose is the simplest stratified object2 of [14]. It can
be recursively defined by (see [5]):

M0 := ∅ Mn+1 := N〈Mn〉(ω) M∞ :=
⋃

n

Mn

Where N〈M〉(ω) is the list of almost everywhere empty multisets over M . Its
elements can be generated by:

(elements) M∞ : α, β, γ ::= ∗ | a::α
(multisets) Mb

∞ : a, b, c ::= [α1, . . . , αn]

Where ∗, the unique element of M1, namely the infinite list of empty multisets,
enjoys the equation:

∗ = []::∗
The linear morphisms app ∈ MRel(M∞,M∞⇒M∞) and abs ∈
MRel(M∞⇒M∞,M∞) are defined by:

app := {([a::α], (a, α))|(a, α) ∈ M∞} abs := {([(a, α)], a::α)|(a, α) ∈ M∞}

One can easily check that abs;app = IdM∞⇒M∞ (and even app;abs = IdM∞).

We could have interpreted the terms of the ∂λ-calculus by using the cate-
gorical structure of MRel. However, we prefer to give a description of such an

2 Any other stratified object will also be subject to the counter-example since they
share the crucial element ∗.
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interpretation, using a non-idempotent intersection type system, following [10].
This type system has been introduced in [8].

The usual grammar of non-idempotent intersection types corresponds exactly
to the grammar of M∞. The cons operator (::) replaces the arrow and the mul-
tisets notation replaces the intersection notation. We will use the second one for
uniformity consideration. The multisets of Mb

∞ will be denoted multiplicatively.
A typing context is a finite partial function from variables into multisets in

Mb∞, we denote (xi : ai)i∈I the context associating xi to ai for i ∈ I. We have
two kinds of typing judgments, depending whether we type terms or bags: the
former are typed by elements in M∞ and the latter by multisets in Mb

∞.

Γ � M : α
x : 1, Γ � M : α

Γ � P : a
x : 1, Γ � P : a x : [α] � x : α

Γ � M : α
Γ � M+� : α

Γ, x : a � M : α

Γ � λx.M : a::α

(xi : ai)i∈I � M : b::α (xi : a
′
i)i∈I � P : b

(xi : ai·a′i)i∈I � M P : α

� 1 : 1
(xi : ai)i∈I � P : b (xi : a

′
i)i∈I � Q : c

(xi : ai·a′i)i∈I � P ·Q : b·c
(xi : ai)i∈I � L : β

(xi : ai)i∈I � [L] : [β]

(xi : a
j
i )i∈I � L : βj for j ≤ m

(xi : Πj≤maji )i∈I � [L!] : [β1, . . . , βm]

The usual presentation of the interpretation can be recovered with:

���x1,....,xn := {((a1,..., an), β)|(xi : ai)i � � : β} ∈ MRel(
n̄

i=1

M∞,M∞)

���x1,...,xn := {((a1,..., an), b)|(xi : ai)i � � : b} ∈ MRel(
n̄

i=1

M∞,Mb
∞)

Theorem 3. If �→ � then ���x1,...,xn = ���x1,...,xn.

An important characteristic of this model that seems to make it particularly
suitable for our original purpose is that it models the Taylor expansion:

Theorem 4 ([15]). For any term M , �M�x̄ =
⋃

N∈Mo�N�x̄.

3.2 Observational Order and Adequacy

A first important result relating syntax and semantic is the sensibility theorem,
a corollary of [3], but here reproved focussing on the role of the Taylor expansion.

Theorem 5. M∞ is sensible for may-outer-convergence of the ∂λ-calculus, i.e.

∀M, M ⇓ ⇔ �M� �= ∅.

Proof. The left-to-right side is trivial since any monf has a non-empty
interpretation.
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Conversely, assume (ā, α) ∈ �M�x̄, by Theorem 4 there exists N ∈ Mo such
that (ā, α) ∈ �N�x̄. Any single term of ∂λ�-calculus converges either to 0 or to
a normal form N0+� (by Theorem 2). Since �0� = ∅, N converges into a nor-
mal form. By applying Lemma 3, we thus have M →∗ M0+� with N0 ∈ Mo

0 .
Since the Taylor expansion conserves every redexes, M0 is outer-normal and M
is may-outer converging. �

Corollary 2. A term may-outer converges iff one of the elements of its Taylor
expansion may-outer converges: M⇓ ⇔ ∃N∈Mo, N⇓. Equivalently, a term may-
outer diverges iff any element of its Taylor expansion reduces to 0.

Proof. For any closed term M , using Theorems 4 and 5:
M⇓ ⇔th5 �M��=∅ ⇔th4 ∃N∈Mo, �N��=∅ ⇔th5 ∃N∈Mo, N⇓. �

In the following we use contexts, i.e. terms with holes that will be filled by terms.
Contexts can be described by the grammar:

(contexts) Λ�.� : C�.� ::= �.� | M | λx.C�.� | C�.� P �.�

(bag-contexts) Λb�.� : P �.� ::= [C1�.�
(!), . . . , Cn�.�(!)]

We define the notions of observational preorder and equivalence using as basic
observation the may-outer-convergence of terms. This is not the only possibility
(must or inner declensions); we discuss this issue in the conclusion.

Definition 4. We say that a term M is observationally below another term N
(denoted M ≤o N), if for all contexts C�.�:

C�M� ⇓ ⇒ C�N� ⇓
They are observationally equivalent (denoted M ≡o N) if M ≤o N and N ≤o M .

Using sensibility we thus assert our adequation.

Theorem 6. M∞ is inequationally adequate for ∂λ-calculus,

∀M,N, �M� ⊆ �N� ⇒ M ≤o N.

Proof. Assume that �M� ⊆ �N� and C�M� ⇓. Then since �.� is defined by
structural induction we have �C�N�� ⊇ �C�M�� �= ∅ and C�N� ⇓. �

4 Failure of the Full Abstraction

The main result of this paper is the refutation of the full abstraction conjecture:

Conjecture 1 ([3]). M∞ is fully abstract for ∂λ-calculus. i.e. the denotational
and the observational equivalences are identical:

∀M,N, �M� = �N� ⇔ M ≡o N



The Resource Lambda Calculus Is Short-Sighted in Its Relational Model 103

Its refutation (Theorem 8) proceeds as follows. First, we define a term A (Equa-
tion 7) and we prove that I ≤o A (Lemma 7, which uses a context lemma:
Theorem 7), but �I� �⊆ �A� (Lemma 9). This results in the refutation of the
stronger conjecture:

Conjecture 2 ([3]). M∞ is inequationally fully abstract for ∂λ-calculus. i.e. the
denotational and the observational preorders are identical:

∀M,N, �M� ⊆ �N� ⇔ M ≤o N

Only then will we consider the term A′ := I [A!, I !] and prove that A′ and A
yield a counter-example to Conjecture 1 (Theorem 8).

4.1 Context Lemma

Definition 5. Linear contexts are contexts with exactly one hole and with this
hole in linear position:

(linear contexts) Λ�.�l : D�.� ::= �.� | λx.D�.� | D�.� P | M [D�.�]·P
The applicative contexts are particular linear contexts of the form K�.� =
(λx1 . . . xn.�.�) P1 · · · Pk

Lemma 4. For any term M and any bags P,Q, there exists a decomposition
P = P l1 ·P l2 ·P e such that P l1 ·P l2 is linear, P e exponential, and if the conver-
gence (M Q)〈〈P/x〉〉 ⇓n holds then M〈〈P l1 ·P e/x〉〉 Q〈〈P l2 ·P e/x〉〉 ⇓n

Proof. By definition of the may convergence, since (M Q)〈〈P/x〉〉 =
ΣP=P l1·P l2·P eM〈〈P l1 ·P e/x〉〉 Q〈〈P l2 ·P e/x〉〉 �

Lemma 5 (Linear context lemma). For any terms M and N , if there is a
linear context D�.� such that D�M� ⇓ and D�N� ⇑ then there is an applicative
context that does the same.

Proof. We will prove the following stronger property:
For every terms M,N , every bags P1, . . . , Pp+q, and every variables
x1,...,xp �∈

⋃
1≤i≤p+q FV(Pi), if 〈〈s〉〉 := 〈〈P1/x1; ...;Pp/xp〉〉 and if a linear context

D�.� is such that (D�M�〈〈s〉〉 Pp+1 · · · Pp+q) ⇓n and (D�N�〈〈s〉〉 Pp+1 · · · Pp+q) ⇑
then there exists an applicative context K�.�such that K�M� ⇓ and K�N� ⇑.
By cases, making induction on the lexicographically ordered pair (n,D�.�):

– If D�.� = �.�:
K�.� = (λx1, ..., xp�.�) P1 · · · Pp+q

– If D�.� = λz.D′�.�:
• If q = 0:
The hypothesis gives D′�M�〈〈s〉〉 ⇓n and D′�N�〈〈s〉〉 ⇑, thus we can di-
rectly apply our induction hypothesis on D′�.�. That gives directly the
required K�.�.



104 F. Breuvart

• Otherwise:
By assuming that z does not appear in Pp+2, ..., Pp+q:
The hypothesis and Corollary 1 apply to D�M�〈〈s〉〉 Pp+1 · · ·Pp+q

gives (D′�M�〈〈Pp+1/z; s〉〉 Pp+2 · · ·Pp+q) ⇓n−1. Moreover
(D′�N�〈〈Pp+1/z; s〉〉 P2 · · ·Pq) ⇑.
Then the induction hypothesis directly gives the required K�.�.

– If D�.� = L [D′�.�]·Q:
By assuming that xi �∈ FV(Pj) for i ≤ j ≤ p and by Lemma 4, there

exists, for all i ≤ p, a decomposition Pi = P l1
i ·P l2

i ·P e
i such that if 〈〈sj〉〉 :=

〈〈P lj
1 ·P e

1 /x1; ...;P
lj
p ·P e

p /xp〉〉 (for all j ∈ {1, 2}), there is L′ ∈ L〈〈s1〉〉 with
(L′ ([D′�M�]·Q)〈〈s2〉〉 P1 · · · Pq) ⇓n and (L′ ([D′�N�]·Q)〈〈s2〉〉 P1 · · · Pq) ⇑.
Then there are two cases. Either L′ →o � and there is L′′ ∈ � such that
((L′′ [D′�M�]·Q)〈〈s2〉〉 P1 · · · Pq) ⇓n−1 (using Corollary 1) that allow us to
apply the induction hypothesis that result in the wanted K�.�. Or L′ is in
outer-normal form:
• if L′ = λz.L′′:
Let D′′�.� = L′′〈〈[D′�.�]·Q/z〉〉.
We have (D′′�M�〈〈s2〉〉 P1 · · · Pq) ⇓n−1 and (D′′�N�〈〈s2〉〉 P1 · · · Pq) ⇑.
Then we can apply our induction hypothesis on D′�.� that is still a linear
context since D′�.� was not under a “!”. This gives directly the required
applicative context.

• if L′ = y Q1 · · ·Qr with y �= xi for all i:
There exists, for all i ≤ p, a multiset P l3

i ⊆ P l2
i

such that D′�M�〈〈P l3
1 ·P e

1 /x1; ...;P
l3
p ·P e

p /xp〉〉 ⇓n and

D′�N�〈〈P l3
1 ·P e

1 /x1; ...;P
l3
p ·P e

p /xp〉〉 ⇑. Then we can apply the induc-
tion hypothesis on D′�.� and obtain the wanted K�.�.

– If D�.� = D′�.� Q:

By Lemma 4, there exists P �1
i ·P �1

i ·P e
i = Pi such that, if we denote 〈〈sj〉〉 :=

〈〈P �i
1 ·P e

1 /x1; ...;P
�i
p ·P e

p /xp〉〉:
(D′�M�〈〈s1〉〉 Q〈〈s2〉〉 Pp+1 · · · Pp+q) ⇓n (D′�N�〈〈s1〉〉 Q〈〈s2〉〉 Pp+1 · · · Pp+q) ⇑

The induction hypothesis on D′�.� (with Q〈〈s2〉〉 seen as one of the Pi’s)
results in the required applicative context. �

Theorem 7 (Context lemma). For any terms M and N , if there is a context
C�.� such that C�M� ⇓ and C�N� ⇑ then there is an applicative context that
does the same.

Proof. Let C�.� be such a context.
Let {x1, ..., xn} = FV(M) ∪ FV(N) be the free variables of M and N .
Let L = λu.C�u [x!

1] · · · [x!
n]�, D�.� = λx1...xn�.� and C′�.� = L [D�.�!].

Notice that C′�M� →∗ C�M� and C′�N� →∗ C�N�. Hence, the hypothesis
and Lemma 9 gives C′�M� ⇓ and C′�N� ⇑. Moreover, we have that C′�M� =⋃

n≥0(L [D�M�n)o; thus, by applying twice Corollary 2 we have an n ∈ N such
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that L [D�M�n] ⇓. Also, since (L [D�N�n])o ⊆ C′�N�o, the same corollary and
the hypothesis C′�N� ⇑ gives L [D�N�n] ⇑
Since L [D〈|N�k, D〈|M�n−k] converges for k = 0 and diverges for k = n there
exists k0<n such that it converges for k = k0 and diverges for k = K0+1. Thus by
applying Lemma 5 on the linear context C′′�.� = L [D�N�k0 , D�M�n−k0−1, D�.�]
we can conclude. �

4.2 Counter Example

We first exhibit a term A that is observationally above the identity I, but whose
interpretation will not contain [∗]::∗ in order to break Conjecture 2. We would
like to have A somehow respecting:

A � Σn≥1Bn with for n ≥ 1 : Bn = λv1 . . . vnw.w [I [v!1] [v
!
2] · · · [v!n]]

This term will converge on any applicative context that converges on the identity
(take Bn with n greater than the number of applications), and thus is observa-
tionally above the identity. On the other side, its semantic will be independent
to the semantics of the identity since none of the �Bi� contains [∗]::∗ ∈ �I�.
Such an infinite sum Σn≥1Bn does not exists in our syntax so we have to rep-
resent it by using a fix point combinator and a bag of linear and non-linear
resources. We define:

A := Θ [G,F !] (7)

where G and F are defined by:

G := λuvw.w [I [v!]] F := λuv1v2.u [I [v!1] [v
!
2]]

A seems quite complex, but, it can be seen as a non deterministic while that
recursively apply F until it chooses (non-deterministically) to apply G, giving
one of the Bi:

Lemma 6.

1. G[x!] →∗
o B1

2. For all i, F [B!
i] →∗

o Bi+1

3. A ≡β B1 + F [A]

In particular, for every i ≥ 1, we have A ≡β F i[A] +Σi−1
j=1Bj,

where F 1[A] := F [A] and F i+1 := F i[F [A]]

Proof. Item 1 is trivial. Item 2 is just a one-step unfolding of Θ. Item 3 is ob-
tained via the reduction A →∗ (G[(Θ[F !])!])+ (F [A, (Θ[F !])!]) ≡β B1+(F [A])
the last step using the linearity of F on its first variable (thus in a context of
the kind [U, V !] only U matters). �

Lemma 7. For all contexts C�.� of the ∂λ-calculus, if C�I� converges then C�A�
converges, i.e. I ≤o A

Proof. Let C�.� be a context that converges on I.
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With the context lemma (Theorem 7), and since neither I nor A has free vari-
ables, we can assume that C�.� = �.� P1 · · · Pk (where P1, ..., Pk are bags). Thus
by Lemma 6, we have A →∗ Ck + Bk with Ck := F k[A!]+Σk−1

j=1Bj and the
following converges:

C�A� →∗ C�Ck� + λw.w [I P1 · · · Pk] = C�Ck� + λw.w [C�I�] �

We will now compare A and I at the denotational level.

Lemma 8. We have
�A� =

⋃

i

�Bi�

Proof. �A� ⊇ ⋃
i�Bi� is a corollary of the Lemma 6 (the interpretation is stable

by reduction), so we have to prove that �A� ⊆ ⋃
i�Bi�:

Let α ∈ �A�. By Theorem 4, there exists M ∈ Ao such that α ∈ �M�. By
Theorem 2: M →∗ �, with every element of � outer-normal. And trivially there
is N ∈ � such that α ∈ �N�. By application of Lemma 3, there exists L such that
A →∗ L+� and N ∈ Lo (thus α ∈ �L�). Since the Taylor expansion conserves
all outer-redexes, necessary L is outer-normal. We conclude by Lemma 6 that
one of the Bi is reducing to L. �

Lemma 9. [∗]::∗ �∈ �A�, while [∗]::∗ ∈ �I�

Proof. Because of Lemma 8, we just have to prove that [∗]::∗ is not in
any Bi, which is trivial since the elements of �Bi� must be of the form
a1:: · · · ::ai::[a1:: · · · ::ai::α]::α, for i ≥ 1. �

Hence, we have refuted the Conjecture 2 concerning the equality between the
observational and denotational orders. We will now refute the Conjecture 1:

Theorem 8. M∞ is not fully abstract for the λ-calculus with resources.
In particular A′ := I [A!, I !] ≡o A but [∗]::∗ ∈ �A′� and [∗]::∗ �∈ �A�

Proof. Since A′ → A+I, we have A′ ≥o A and A′ ≤o A+A = A. But in the
same time �A′� = �A� ∪ �I� � [∗]::∗ �

5 Conclusion

Literature (on resource sensitive natural constructions from Linear Logic) are
especially focussing on two objects, one in the semantical world, M∞, and the
other in the syntactical one, ∂λ-calculus. But they appeared not to respect full
abstraction.

This unexpected result leads to questions on its generalization. For exam-
ple, the idea can be applied to refute the full abstraction of M∞ for the may-
non-deterministic λ-calculus (an extension with a non deterministic operator
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endowed with a may-convergence operational semantic). Indeed, we can set
A0 = λx.Θ (λxy.x + λxy.y) playing the role of A. Such an A0 behaves as
the infinite sum Σ∞

i=1λx1...xny.y, that is a top in its observational order but
whose interpretation is not above the identity.

It can even be extended to other models since we can refute the full abstraction
of Scott’s D∞ for the same may-non-deterministic λ-calculus (restriction of ∂λ-
calculus to terms with only banged bags) or the may-must-non-deterministic
λ-calculus (λ-calculus with both a may and a must non determinism), using A′

in the same way. One can notice that the last case refutes a conjecture of [6].
More generally this counter-example describe the ill-behaved interaction be-

tween fixpoints and may-non-determinism that can tests any non-adequacy be-
tween the sights of the observation and of the model. We can thus conclude by
giving the four key-points that leads to this kind of counter-examples:

– short-sightedness of the contexts: Calculi that offer control operators
behaving as infinite applicative contexts like the resource λ-calculus with
tests [3] are free of these considerations. This traduce the importance of the
context lemma in our proof.

– good sight of the model: It is our better hope to find a fully abstract
model for ∂λ-calculus but no known interesting algebraic models seems to
break this property. Models tend indeed to approximate the condition “for
any contexts of any size” into “for any infinite contexts”.

– Untyped fixpoints: It is the first constructor that is necessary to construct
a term that have a non bounded range. Thus, calculi with no fixpoints like
the bang-free fragment of ∂λ-calculus will not suffer such troubles. But those
calculi have limited expressive power.

– may-non-determinism: The second constructor, that is the most impor-
tant part and the most interesting one since it can change our view of these
calculi. To get rid of this problem without loosing the non determinism one
can imagine a finer observation that discriminate the non idempotence of
the sum, like the one provided by a probabilistic calculus.

Finally one may be disappointed by the “magic” resolution of Lemma 9. It was
unclear, seeing A, that this result would arise, and it needed quite a number of
nontrivial lemmas. In this point lies a relation with tests mechanisms of [3], in
this system τ(�.� τ̄ (ε)) outer-converges on I but not on A, the calculus being
inequationally fully abstract this gives Lemma 9 for free. That remark was the
base of the previous (unpublished but cited) version of this article [2]. From our
point of view the relation with tests is even deeper and essential. Indeed the
counter-example was discovered naturally from a trial to prove full abstraction
from reducing the one from the calculus with tests into the calculus without.
This will be subject to an incoming paper.
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2006. LNCS, vol. 3988, pp. 186–197. Springer, Heidelberg (2006)

13. Laird, J., Manzonetto, G., McCusker, G., Pagani, M.: Weighted relational models
of typed lambda-calculi (submitted, 2013)

14. Manzonetto, G.: A general class of models of H∗. In: Královič, R., Niwiński, D.
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