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Preface

This volume contains the papers of the 11th International Conference on Typed
Lambda Calculi and Applications (TLCA 2013), which was held during June 26–
28, 2013, in Eindhoven, The Netherlands. TLCA 2013 was part of the 7th Inter-
national Conference on Rewriting, Deduction, and Programming (RDP 2013),
together with the 24th International Conference on Rewriting Techniques and
Applications (RTA 2013), the Workshop on Control Operators and their Seman-
tics (COS 2013), the Workshop on Haskell And Rewriting Techniques (HART
2013), the 11th International Workshop on Reduction Strategies in Rewriting
and Programming (WRS 2013), the 27th International Workshop on Unification
(UNIF 2013), the Second International Workshop on Confluence (IWC 2013),
the Workshop on Infinitary Rewriting (WIR 2013), and the annual meeting of
the IFIP Working Group 1.6 on Term Rewriting.

The TLCA series of conferences serves as a forum for presenting original re-
search results that are broadly relevant to the theory and applications of lambda
calculus. Previous TLCA conferences were held in Utrecht (1993), Edinburgh
(1995), Nancy (1997), L’Aquila (1999), Kraków (2001), Valencia (2003), Nara
(2005), Paris (2007), Braśılia (2009), and Novi Sad (2011).

A total of 15 papers were accepted out of 41 submissions for presentation at
TLCA 2013 and for inclusion in the proceedings. I would like to thank everyone
who submitted a paper and to express my regret that many interesting papers
could not be included. Each submitted paper was reviewed by at least three
members of the Program Committee, who were assisted in their work by 59
external reviewers. I thank the members of the Program Committee and the
external reviewers for their review work, as well as Andrei Voronkov for providing
the EasyChair system that proved invaluable throughout the review process and
the preparation of this volume.

In addition to the contributed papers, the TLCA 2013 program contained
invited talks by Simon Peyton-Jones (joint with RTA 2013), Hugo Herbelin, and
Damiano Mazza. This volume contains abstracts for the talks by Peyton-Jones
and Herbelin, and an extended abstract for the talk by Mazza. An extended
abstract for the talk by Peyton-Jones appears in the proceedings of RTA 2013.

Many people helped to make TLCA 2013 a success. I would like to thank the
Conference Chair Herman Geuvers, RDP 2013 Chair Hans Zantema, and the
Organizing Committee, the local organizing team, TLCA Publicity Chair Luca
Paolini, and the TLCA Steering Committee. The financial support from the
Netherlands Organisation for Scientific Research (NWO) is gratefully
acknowledged.

April 2013 Masahito Hasegawa
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Mariangiola Dezani-Ciancaglini University of Turin, Italy
Martin Hofmann LMU München, Germany
Luke Ong University of Oxford, UK
Simona Ronchi Della Rocca University of Turin, Italy
Pawe�l Urzyczyn University of Warsaw, Poland

TLCA Honorary Advisor

Roger Hindley Swansea University, UK

TLCA Publicity Chair

Luca Paoloni University of Turin, Italy

Additional Reviewers

Beniamino Accattoli
Kenichi Asai
Federico Aschieri
Emmanuel Beffara
Stefano Berardi
Alexis Bernadet
Aleš Bizjak
Valentin Blot
Pierre Bourreau
Christopher Broadbent
Chris Casinghino
Iliano Cervesato
Pierre Clairambault
Ugo dal Lago
Ugo de’Liguoro
Henry DeYoung
Harley Eades III
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Type-Directed Compilation in the Wild:

Haskell and Core

Simon Peyton-Jones

Microsoft Research, Cambridge, UK

Academic papers often describe typed calculi, but it is rare to find one in a
production compiler. Indeed, I think the Glasgow Haskell Compiler (GHC) may
be the only production compiler in the world that really has a remorselessly
strongly-typed intermediate language, informally called “Core”, or (when writing
academic papers) the more respectable-sounding “System FC”.

As real compilers go, GHC’s Core language is tiny: it is a slight extension of
System F, with letrec, data types, and case expressions. Yet all of Haskell (now a
bit of a monster) gets translated into it. In the last few years we have added one
new feature to Core, namely typed (but erasable) coercions that witness type
equalities. This single addition has opened the door to a range of source-language
extensions, such as GADTs and type families.

In this talk I’ll describe Core, and how it has affected GHC’s development
over the last two decades, concentrating particularly on recent developments.
I’ll also mention the role of user-written rewrite rules as a compiler extension
mechanism. Overall, I will try to give a sense of the ways in which the work of
the typed lambda-calculi and rewriting communities has influenced at least one
real compiler.

M. Hasegawa (Ed.): TLCA 2013, LNCS 7941, p. 1, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Proving with Side Effects

Hugo Herbelin

INRIA Paris-Rocquencourt, πr2 Team
PPS Lab, Univ. Paris Diderot, Paris, France

Control operators, such as callcc, are effectful constructions. But control opera-
tors relate to classical logic along the proofs-as-programs correspondence, so, in
this sense, classical reasoning is an effectful form of reasoning.

The effects of control operators can be interpreted in a purely functional
language by working in the continuation monad. Otherwise said, control oper-
ators provide “direct-style” programming for computational behaviours already
implicitly available in purely functional languages. In logic, this corresponds
to interpreting classical reasoning within minimal logic via the double-negation
translation.

In programming, there are various kinds of effectful constructions whose
effects can be captured in a purely functional way through appropriate monads.
In the talk, we focus on memory assignment and investigate its strength in the
context of proving. In particular, we look at memory assignment as a direct-style
presentation of reasoning through Kripke/Cohen forcing translations, getting
close to similar ideas from Krivine.

M. Hasegawa (Ed.): TLCA 2013, LNCS 7941, p. 2, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Non-linearity

as the Metric Completion of Linearity

Damiano Mazza

CNRS, UMR 7030, LIPN, Université Paris 13, Sorbonne Paris Cité
Damiano.Mazza@lipn.univ-paris13.fr

Abstract. We summarize some recent results showing how the lambda-
calculus may be obtained by considering the metric completion (with
respect to a suitable notion of distance) of a space of affine lambda-terms,
i.e., lambda-terms in which abstractions bind variables appearing at most
once. This formalizes the intuitive idea that multiplicative additive linear
logic is “dense” in full linear logic (in fact, a proof-theoretic version of the
above-mentioned construction is also possible). We argue that thinking of
non-linearity as the “limit” of linearity gives an interesting point of view
on well-known properties of the lambda-calculus and its relationship to
computational complexity (through lambda-calculi whose normalization
is time-bounded).

1 Linearity and Approximations

The concept of linearity in logic and computer science, introduced over two
decades ago [12], has now entered firmly into the “toolbox” of proof theorists
and functional programming language theorists. It is present, in one way or an-
other, in a broad range of contexts, such as: denotational semantics [11], games
semantics [22] and categorical semantics [8]; computational interpretations of
classical logic [18,9]; optimal implementation of functional programming lan-
guages [3,19]; the theory of explicit substitutions [2]; higher-order languages for
probabilistic [10] and quantum computation [24]; typing systems for polynomial-
time [4], non-size-increasing [14] and resource-aware computation [17]; and even
concurrency theory [6,15].

Technically, linearity imposes a severe restriction on the behavior of programs:
data must be accessed exactly once. Its cousin affinity, which is more relevant
for the purposes of this text, slightly relaxes the constraint: although data may
be discarded, it may nevertheless be accessed at most once. In any case, linearity
and affinity forbid re-use, forcing the programmer to explicitly keep track of how
many copies of a given piece of information are needed in order to perform a
computation.

How can general, non-linear computation be performed in an affine setting? In
other words, how can a persistent memory be simulated by a volatile memory?
The intuitive answer is clear: one persistent memory cell, accessible arbitrarily
many times, may be perfectly simulated by infinitely many volatile memory cells,
each accessible only once. Of course, if only a finite memory is available, then

M. Hasegawa (Ed.): TLCA 2013, LNCS 7941, pp. 3–14, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



4 D. Mazza

only an imperfect simulation will be possible in general. However, the important
point is that affine computation may approximate non-linear computation to an
arbitrary degree of precision.

2 A Polyadic Affine Lambda-Calculus

Let us see how the above intuition may be formalized. Consider the fragment

A,B ::= X | (A1 & 1)⊗ · · · ⊗ (An & 1) � B

of multiplicative additive linear logic (if n = 0, then the premise of the implica-
tion is the logical constant 1). The proofs of this simple logical system correspond
to (simply-typed) terms of the following language:

t, u ::= x | λx1 . . . xn.t | t〈u1, . . . , un〉,

with the requirement that variables appear at most once in terms. In other
words, we have a “multilinear”, or polyadic affine λ-calculus.

The reduction of a simply-typed non-linear λ-term such as M = (λx.Nxx)I
may be “linearized” as

�M� = (λx0x1.�N�〈x0〉〈x1〉)〈�I�, �I�〉,

in which we see how the duplication of the subterm I by the head redex of M
forces us to explicitly introduce two copies of �I� (the linearization of I). This is
of course very naive: if M duplicates I again (for instance, if N = λy.zyy), we
will be forced to include additional copies of �I� in �M� and it would be hard
in general to statically determine exactly how many are necessary (we would
essentially need to normalize M).

We are thus naturally led to consider an infinitary calculus. The rigorous
manipulation of infinity requires some form of topology, which will actually be
the key to a satisfactory formalization of the above intuition: we will be able
to say that affine terms approximate non-linear terms to an arbitrary degree of
precision in a clear technical sense, that of metric spaces.

Our first step is to switch to an untyped framework, so that our analy-
sis will be valid in the most general terms. To this extent, we introduce a
term ⊥ in the language, which is used to solve possible mismatches between
the arity of abstractions and applications: when reducing (λx0x1.t)〈u〉, the se-
quence in the outer application in not “long enough”, so the term ⊥ will be
substituted to x1.

We also switch from variables to explicit occurrences, which is to realize
that the affine (or linear) λ-calculus is, in a way, a calculus of occurrences.
This, although not technically necessary (and not done in [20]) will simplify the
exposition.

So, our definition of (untyped) polyadic affine λ-calculus is the following:

t, u ::= ⊥ | xi | λx.t | tu,
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where:
– in xi, i ∈ N is a unique identifier of the occurrence of x, i.e., we require that

if xi, xj appear in the same term, then i �= j;
– abstractions bind variables, i.e., λx.t binds every free occurrence of the form

xi in t (free and bound occurrences are defined as usual);
– u is a finite sequence of terms. Actually, since we have⊥, it is technically sim-

pler to say that u is a function from N to terms which is almost everywhere
equal to ⊥.

As usual, terms are always considered up to α-equivalence.
The most important point is how we define reduction:

(λx.t)u → t[u/x],

where the notation t[u/x] means that we substitute u(i) to the at most unique
free occurrence xi in t. We call the set of terms defined above Λaff

p . The super-
script reminds us that the calculus is affine, whereas the subscript stands for
“polyadic”.

The calculus Λaff
p is strongly confluent (i.e., reduction in at most one step,

denoted by →=, enjoys the diamond property) and strongly normalizing. Both
properties are immediate consequences of affinity: redexes cannot be duplicated,
the theory of residues is trivial and local confluence is achieved in at most one
step; moreover, the size of terms strictly decreases during reduction.

3 A Metric Space of Terms and Its Infinitary Completion

Let us now define a function Λaff
p × Λaff

p → [0, 1], by induction on the first
argument:

d(⊥, t′) =

{
0 if t′ = ⊥
1 otherwise

d(xi, t
′) =

{
0 if t′ = xi
1 otherwise

d(λx.t1, t
′) =

{
d(t1, t

′
1) if t′ = λx.t′1

1 otherwise

d(t1u, t
′) =

{
max

(
d(t1, t

′
1), supi∈N 2−i−1d(u(i),u′(i))

)
if t′ = t′1u

′

1 otherwise

Note that, in the abstraction case, we implicitly used α-equivalence to force
the variables abstracted in t1 and t′1 to coincide. This small nuisance could be
avoided by resorting to de Bruijn’s notation [5] but, except for the following two
paragraphs, we prefer to stick to the usual notation, for better readability.

One may check that d is a bounded ultrametric on Λaff
p , i.e., it is a bounded (by

1) metric which further satisfies d(t, t′′) ≤ max(d(t, t′), d(t′, t′′)) for all t, t′, t′′ ∈
Λaff
p (a stronger version of the triangle inequality). A more in-depth analysis of

d reveals the following. Consider the poset N
∗ of finite sequences of integers,
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ordered by the prefix relation. A tree is, as usual, a downward-closed subset of
N∗ (note that non-well-founded and infinitely branching trees are both allowed).
Let Σ = {⊥, λ,@} ∪ N2, and let f : N∗ → Σ. We define supp f = {a ∈ N∗ |
f(a) �= ⊥}. We may see the of terms of Λaff

p (in de Bruijn notation) as finite
labeled trees, i.e., as functions t from N∗ (arbitrary integers are needed because
applications have arbitrarily large width) to Σ (de Bruijn indices must be pairs of
integers: one for identifying the abstraction, one for identifying the occurrence),
such that supp t is a finite tree.

Now, if we endow Σ with the discrete uniformity, the ultrametric d may be
seen to yield the uniformity of uniform convergence on finitely branching (but
possibly infinite) trees. In this uniformity, a sequence of terms (tn)n∈N (which are
particular functions) converges to t if, for every finitely branching tree τ ⊆ N∗,
there exists k ∈ N such that, whenever n ≥ k, we have tn(a) = t(a) for all a ∈ τ .
In other words, tn eventually coincides with t on every finitely branching tree.

Let us look at an example, using the metric d. Let

Δn = λx.x0〈x1, . . . , xn〉

(when we write a sequence u as 〈u0, . . . , un−1〉 we mean that u(i) = ui for
0 ≤ i < n and u(i) = ⊥ for i ≥ n). We invite the reader to check that, for all
n ∈ N and p > 0, d(Δn, Δn+p) = 2−n−1, so the sequence is Cauchy.1 And yet,
no term of Λaff

p may be the limit of (Δn)n∈N, because the sequence is obviously
tending to the infinitary term

Δ = λx.x0〈x1, x2, . . .〉

(eventually, Δn coincides with Δ on every finitely branching tree).
The above example proves that the metric space (Λaff

p , d) is not complete. We

denote its completion by Λaff
∞ . Its terms may no longer be defined inductively,

because they may have infinite height. However, they are well-founded, i.e., as
trees, they contain no infinite branch from their root. In terms of the above
description of terms, t ∈ Λaff

∞ iff, as a function t : N∗ → Σ, supp t is a well-
founded tree. This means that the strict subterm relation t � t′ is well-founded,
so we may still reason by induction on Λaff

∞ , in stark contrast with usual infini-
tary λ-calculi [16]. This is a consequence of the notion of (uniform) convergence
induced by d: since a sequence (tn)n∈N tending to t must eventually coincide
with t on every finitely branching tree, it coincides in particular on infinite trees,
which, by König’s lemma, must be non-well-founded. But if (tn)n∈N is a sequence
of Λaff

p , every tn is finite and in particular well-founded, so it cannot coincide
with t on a non-well-founded tree unless t is also well-founded.

On the other hand, finitely high but infinitely wide terms such as Δ are the
typical inhabitants of Λaff

∞ \Λaff
p . In fact, in [20] we defined the metric so that only

terms of finite height are added to the completion (it is enough to consider the
ultrametric max(d, ρ), where ρ is the discrete pseudometric such that ρ(t, t′) = 0
as soon as t, t′ have the same height, and ρ(t, t′) = 1 otherwise), on the grounds

1 Since d is an ultrametric, it is actually enough to check this for p = 1 only.
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that these are the most interesting ones and are easier to manipulate (we may
apply induction on the height even in the infinitary case). However, in this
exposition we prefer to bring forth the more natural and topologically better
behaved metric d.

Reduction in Λaff
∞ is defined just as in Λaff

p :

(λx.t)u → t[u/x],

except that now it may be necessary to perform infinitely many (linear) sub-
stitutions, because we may have that xi is free in t for infinitely many i ∈ N.
We would like to observe that, from a topological point of view, this obvious
definition is actually the only possible one. Indeed, it is possible to show, in
a sense that we do not make precise here, that reduction as defined above is
continuous on Λaff

∞ .2 Since a continuous function is entirely determined by its
behavior on a dense subset like Λaff

p , there is really no other topologically sound
way of extending reduction to infinitary terms.

In spite of the presence of infinitary terms, reduction is strongly confluent,
because the calculus is still affine, i.e., it is a “calculus of occurrences”, in which
no subterm is duplicated during reduction. In spite of this, infinitary terms may
not normalize. This is easily seen by considering the term

Ω = Δ〈Δ,Δ, . . .〉,

which reduces to itself. Indeed, Δ takes a possibly infinite list, extracts the head
(which is ⊥ if the list is empty) and applies it to the rest of the list. If the list
we feed to Δ is made up of infinitely many copies of Δ itself, we obviously loop.

This example gives us the opportunity to see concretely, in a simple but
already meaningful case, how affine terms approximate non-linear terms. Of
course, technically speaking, the term Ω above is still affine. However, it behaves
exactly like its namesake term in the usual λ-calculus (indeed, we will see that
it corresponds to it in a precise sense), so we may consider it to be an example
of non-linear term. Consider now the finite terms

Ωn = Δn〈
n times︷ ︸︸ ︷

Δn, . . . , Δn〉.

We invite again the reader to check that d(Ωn, Ω) = 2−n−1, so that limΩn =
Ω. Hence, Ωn is supposed to approximate Ω better and better, as n grows.
In the case of Ω, there is not much to approximate except divergence; and in
fact, Ωn →∗ ⊥〈〉 in n + 1 steps, i.e., the reduction of Ωn is longer and longer,
approximating the diverging behavior of Ω.

2 We are alluding to Proposition 8 of [20]. Unfortunately, we made a mistake in that
paper and Proposition 8 is actually false for the metric used therein. The result
does hold for the metric d considered here, which is why we said above that it is
“topologically better behaved”. The mistake luckily does not affect the main results
of [20], in which Proposition 8 plays no role.
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4 Uniformity and the Isomorphism with the Usual
Lambda-Calculus

There are far too many terms (a continuum of them) in Λaff
∞ for it be directly

in correspondence with the usual λ-calculus. We might say that Λaff
∞ is a non-

uniform λ-calculus, in the same sense as non-uniform families of circuits: if
we accept Λaff

∞ as a computational model, every function on N becomes com-
putable, with respect to any standard encoding of natural numbers. To retrieve
the λ-calculus, we need to introduce some notion of uniformity.

Definition 1 (Uniformity). We define ≈ to be the smallest partial equivalence
relation on Λaff

∞ such that:
– xi ≈ xj for every variable x and i, j ∈ N;
– if t ≈ t′, then λx.t ≈ λx.t′ for every variable x;
– if t ≈ t′ and u,u′ are such that, for all i, i′ ∈ N, u(i) ≈ u′(i′), then tu ≈ t′u′.

A term t is uniform if t ≈ t. We denote by Λu
∞ the set of uniform terms.

Intuitively, ≈ equates terms that “look alike” under any possible permutation
of the terms appearing in its application sequences. In particular, it equates all
occurrences of the same variable: while it is important that we distinguish two
occurrences of x by naming one of them xi and the other xj (with i �= j), it does
not matter which is assigned i and which j.

A term u is uniform if u �= ⊥ and if u “looks like itself” even if we permute
some of its subterms in application sequences. For instance, any term containing
a finite application, such as z0〈x0〉, cannot be uniform, because 〈x0〉 = 〈x0,⊥〉
and z0〈x0,⊥〉 and z0〈⊥, x0〉 do not “look alike” (indeed, x0 �≈ ⊥). On the other
hand, terms like Δ and Ω are uniform (but not Δn or Ωn: by the above remark,
a finite approximation of a uniform term containing an application can never be
uniform). Note that, if tu is uniform, then every u(i) has the same height, that
of u(0). Hence, uniform terms all have finite height. This is why we said above
that the terms of finite height are “the most interesting ones”.

The set Λu
∞ is not closed under reduction: in t = x0〈u, u, . . .〉, with u closed,

uniform and such that u → u′, the reduct t → x0〈u′, u, . . .〉 is in general not
uniform, because u′ has no reason to “look like” u. The solution is obvious: we
must reduce all of the copies of u at the same time:

Definition 2 (Infinitary reduction). We define the relations ⇒k on Λu
∞,

with k ∈ N, as the smallest relations satisfying:
– (λx.t)u ⇒0 t[u/x];
– if t⇒k t′, then λx.t⇒k λx.t′;
– if t⇒k t′, then tu⇒k t′u;
– if tu ∈ Λu

∞ and u(0) ⇒k u′
0, by uniformity the “same” reduction may be

performed in all u(i), i ∈ N, obtaining the term u′
i. If we define u′(i) = u′

i

for all i ∈ N, then tu⇒k+1 tu
′.

We denote by ⇒ the union of all ⇒k, for k ∈ N.
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Note that ⇒k is infinitary iff k > 0. Indeed, ⇒0 is head reduction,3 which
corresponds to a single reduction step (which may of course perform infinitely
many substitutions, but this is not what we mean by “infinitary”. Rather, we
mean that infinitely many reductions steps are performed together).

Proposition 1. Let t ∈ Λu
∞. Then:

– t⇒ t′ implies t′ ∈ Λu
∞;

– furthermore, for all u ≈ t, u⇒ u′ ≈ t′.

Proposition 1 asserts that uniform terms are stable under ⇒ and that such a
rewriting relation is compatible with the equivalence classes of ≈. Therefore, the
set Λaff

∞ /≈ may be endowed with the (one-step) reduction relation ⇒. It turns
out that this is exactly the usual, non-linear λ-calculus. In the following, we
write Λ for the set of usual λ-terms and →β for usual β-reduction.

Theorem 1 (Isomorphism). We have

(Λaff
∞ /≈,⇒) ∼= (Λ,→β),

in the Curry-Howard sense, i.e., there exist two maps

�·� : Λu
∞ → Λ �·� : Λ→ Λu

∞

such that, for all M ∈ Λ and t ∈ Λu
∞:

1. ��M�� = M ;
2. ��t�� ≈ t;
3. M →β M ′ implies �M� ⇒ t′ ≈ �M ′�;
4. t⇒ t′ implies �t� →β �t′�.

The two maps of the isomorphism are both defined by induction. For what
concerns �·�, we have:

�xi� = x (for all i ∈ N),

�λx.t� = λx.�t�,

�tu� = �t��u(0)�.

For what concerns the other direction, we first fix a bijective function �·� : N∗ →
N to encode finite sequences of integers as integers. Then, we define a family of
parametric maps �·�a, with a ∈ N∗, as follows:

�x�a = x�a�
�λx.M�a = λx.�M�a

�MN�a = �M�a0〈�N�a1, �N�a2, �N�a3, . . .〉

One can prove that, for any a, a′ ∈ N∗ and any t ∈ Λu
∞, we actually have

�t�a ∈ Λu
∞ and �t�a ≈ �t�a′ . Of course, Theorem 1 holds for any choice of

a ∈ N
∗, that is why we simply write �·�. We let the reader check that the

uniform infinitary terms Δ and Ω introduced above are (modulo ≈) the images
through �·� of their well-known namesake λ-terms.

3 It is actually spinal reduction, but the distinction is inessential.
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5 The Proof-Theoretic Perspective

As already mentioned, our idea of obtaining the λ-calculus through a metric com-
pletion process has proof-theoretic roots, in particular in linear logic. In fact, the
above constructions may be reformulated using proofs instead of λ-terms. In [21],
we show how a fully-complete model of polarized multiplicative exponential lin-
ear logic may be built as a metric completion of a model of the sole multiplicative
fragment. Roughly speaking, we take objects which are very much related to the
designs of Girard’s ludics [13], introduce a metric completely analogous to the
one given here, and construct the model in the completed space. What we obtain
closely resembles Abramsky, Jagadeesan and Malacaria’s formulation of games
semantics [1].

Recently, Melliès and Tabareau [23] used a similar idea to provide an explicit
formula for constructing the free commutative comonoid in certain symmetric
monoidal categories. This offers a categorical viewpoint on our work, and yields
some potentially interesting remarks.

Melliès and Tabareau’s construction starts with a symmetric monoidal cat-
egory (C,⊗, 1) with finite products, which we denote by A & B. We define
†A = A & 1, the free co-pointed object on A, with its canonical projection
πA : †A −→ 1. We also inductively define A⊗0 = 1, A⊗n+1 = A⊗n ⊗A.

Using the symmetry of C, for every n ∈ N we may build n! parallel isomor-
phisms σA,n

i : (†A)⊗n −→ (†A)⊗n. We define A≤n to be the equalizer, if it exists,

of σA,n
1 , . . . , σA,n

n! .
Now, by the universal property of equalizers on the morphism πA, we know

that there is a canonical projection πA
n : A≤n+1 −→ A≤n, for all n ∈ N. Then,

we define !A to be the limit, if it exists, of the diagram

A≤0 πA
0←− A≤1 πA

1←− A≤2 πA
2←− · · ·

Melliès and Tabareau’s result is the following:

Proposition 2 ([23]). If the equalizers and the projective limit considered above
exist in C and if these limits commute with the tensor product of C, then, for
every object A of C, !A is the free commutative comonoid on A.

It is known that, in a ∗-autonomous category with finite products, the existence
of the free commutative comonoid on every object yields a denotational model
of full linear logic (a result due to Lafont, see Melliès’s survey in [8]). Therefore,
Proposition 2 provides a way of building, under certain conditions, models of
full linear logic starting from models of its multiplicative additive fragment.

The conditions required by Proposition 2 are however not anodyne. In fact,
Tasson showed [23] how the construction fails in a well known model of linear
logic, Ehrhard’s finiteness spaces [11]. In this model, although all the required
limits exist, the projective limit does not commute with the tensor product.

Our approach seems to offer an alternative construction to that of Melliès
and Tabareau’s, in which the two main steps for building the free comonoid are
reversed: first one computes a projective limit, then one equalizes. This follows



Non-linearity as the Metric Completion of Linearity 11

our procedure for recovering the λ-calculus: we first complete the space Λaff
p

to obtain Λaff
∞ , then we introduce uniformity and obtain the λ-calculus as the

quotient Λaff
∞ /≈.

More in detail, we start by defining pAn : (†A)⊗n+1 −→ (†A)⊗n as the mor-
phism obtained by composing id(†A)⊗n ⊗ πA with the iso (†A)⊗n ⊗ 1 ∼= (†A)⊗n.
Then, we define ∇A as the limit (if it exists) of the diagram

(†A)⊗0 pA
0←− (†A)⊗1 pA

1←− (†A)⊗2 pA
2←− · · ·

At this point, if we suppose that the above limit commutes with the tensor, i.e.,
that ∇A⊗∇A is the limit of the diagram

(†A)⊗0 ⊗ (†A)⊗0 pA
0 ⊗pA

0←− (†A)⊗1 ⊗ (†A)⊗1 pA
1 ⊗pA

1←− (†A)⊗2 ⊗ (†A)⊗2 pA
2 ⊗pA

2←− · · · ,
then it is not hard to see that ∇A is also a cone for the second diagram, and that
∇A ⊗ ∇A is a cone for the first. Therefore, we have two canonical morphisms
ϕ : ∇A −→ ∇A⊗∇A and ψ : ∇A⊗∇A −→ ∇A. Using these and the symmetry
of C, we build infinitely many endomorphisms of ∇A, of the form ∇A −→
(∇A)⊗n −→ (∇A)⊗n −→ ∇A. We define !A to be the equalizer (if it exists) of
all these endomorphisms.

If we apply this construction to the category of finiteness spaces, !A actually
turns out to be the free commutative comonoid on A. Whether this is this just a
coincidence or whether a suitable rephrasing of Proposition 2 holds is currently
unknown and is doubtlessly an interesting topic of further research.

6 Complexity-Bounded Calculi

We add purely linear terms to our syntax, i.e., we consider a denumerably infinite
set of linear variables, disjoint from the set of usual variables and ranged over
by a, b, c, . . ., and we modify the grammar defining Λaff

p as follows:

t, u ::= ⊥ | xi | λx.t | tu | a | �a.t | tu.
Furthermore, we require that:
– occurrences of variables (xi) and linear variables (a) both appear at most

once in terms;
– in �a.t, which is a linear abstraction, the variable a must appear free in t;
– in tu, no u(i) contains free linear variables, for i ∈ N.

We denote by �Λaff
p the set of terms thus obtained.

Proof-theoretically, this calculus corresponds to allowing simple linear impli-
cation in the fragment of multiplicative additive linear logic we consider:

A,B ::= X | A � B | (A1 & 1)⊗ · · · ⊗ (An & 1) � B.

Reduction in �Λaff
p is defined by adding a purely linear β-reduction rule besides

the one already present in Λaff
p :

(�a.t)u→ t[u/a],

(λx.t)u → t[u/x].
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Note that the absence of types produces “clashes”, i.e., terms of the form (�a.t)u
or (λx.t)u, which look like redexes (especially the latter. . . ) but are not reduced.
This is unproblematic for our purposes.

The ultrametric d on �Λaff
p is defined just as in Sect. 3 for the inductive cases

already present in Λaff
p , and is trivially extended to the other cases:

d(a, t′) =

{
0 if t′ = a
1 otherwise

d(�a.t1, t
′) =

{
d(t1, t

′
1) if t′ = �a.t′1

1 otherwise

d(t1u, t
′) =

{
max (d(t1, t

′
1), d(u, u′)) if t′ = t′1u

′

1 otherwise

We denote by �Λaff
∞ the completion of �Λaff

p with respect to d.

The partial equivalence relation ≈ is extended to �Λaff
∞ in the obvious way:

a ≈ a for every linear variable a; if t ≈ t′, then �a.t ≈ �a.t′; if t ≈ t′ and u ≈ u′,
then tu ≈ t′u′. Hence, a term t ∈ �Λaff

∞ is uniform if t ≈ t. Infinitary reduction is
also extended to the uniform terms of �Λaff

∞ in the obvious way (the index of ⇒k

does not increase when reducing inside the argument of a linear application).
Of course, �Λaff

∞ brings nothing really new with respect to Λaff
∞ . In particu-

lar, if we are only interested in the λ-calculus, purely linear terms are useless.
They become interesting when we restrict the space of finite terms, i.e., the
approximations we are allowed to use.

Definition 3 (Depth, stratified term). The depth of a free occurrence of
variable xi in a term t ∈ �Λaff

p , denoted by δxi(t), is defined by induction on t:
– δxi(xi) = 0;
– δxi(λy.t1) = δxi(�a.t1) = δxi(t1);
– if t = t1u, then xi is free in u(p) for some p ∈ N, and we set δxi(t) =

δxi(u(p)) + 1;
– similarly, if t = t1t2, then xi must be free in tp for p ∈ {1, 2}, and we set

δxi(t) = δxi(tp).
A term t ∈ �Λaff

p is stratified if:
– whenever xi is free in t, δxi(t) = 1;
– for every subterm of t of the form λx.u and for every i ∈ N such that xi is

free in u, δxi(u) = 1.
We denote by �Λs

p the set of all stratified terms.

The definition of stratified term clarifies why we need to consider purely linear
terms: in their absence, the only stratified applications would be of the form ⊥u,
i.e., head variables are excluded, because their depth is always 0.

As a subset of �Λaff
p , �Λs

p is also a metric space, with the same ultrametric d.

However, �Λs
p is not dense in �Λaff

∞ . In fact, its completion, which is equal to its

topological closure as a subset of �Λaff
∞ and which we denote by �Λs

∞, is strictly
smaller. We may see this by considering the term Δ introduced in Sect. 3. In
order for any t ∈ �Λaff

p to be such that d(t,Δ) < 1, we must have t = λx.x0u,
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which is not stratified. Hence, no sequence in �Λs
p ever tends to Δ, and this term

is not present in �Λs
∞. Similarly, Ω �∈ �Λs

∞.
The above example is interesting because it excludes the most obvious source

of divergence in �Λaff
∞ . In fact, �Λs

∞/≈ is actually an elementary λ-calculus, in the
same sense as that of [7]. When suitably typed in a system/logic containing a type
N corresponding to natural numbers, the terms of type N→ N represent exactly
the elementary functions, which are those computable by a Turing machine in
time bounded by a tower of exponentials of fixed height.

We believe that a polytime λ-calculus may be obtained by considering another
metric on �Λs

p. That is, the approximations are the same, but they do not have
the same meaning. To give an analogy (which is purely suggestive, not technical),
we may consider the standard sequence spaces used in analysis. The set c00
of infinite sequences of real numbers which are almost everywhere null (hence
virtually finite) may be endowed with many different metrics, according to which
the completion only contains sequences which tend to 0. However, the rate at
which they are allowed to vanish is different: any rate (c0), strictly more than

the linear inverse (�1), strictly more than the inverse square (�
1
2 ). . .

At the moment, we have a metric such that, when we complete �Λs
p with

respect to it and consider uniform terms, we seem to obtain a space of terms
roughly corresponding to a poly-time λ-calculus such as the one of [25]. Although
we have no precise results yet, this research direction looks promising and is def-
initely worth further investigation. In particular, thanks to non-uniform terms,
this might lead to a λ-calculus characterization of the class P/poly.
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Abstract. We introduce a foundational lambda calculus, System Fi, for
studying programming languages with term-indexed datatypes – higher-
kinded datatypes whose indices range over data such as natural num-
bers or lists. System Fi is an extension of System Fω that introduces
the minimal features needed to support term-indexing. We show that
System Fi provides a theory for analysing programs with term-indexed
types and also argue that it constitutes a basis for the design of logically-
sound light-weight dependent programming languages. We establish era-
sure properties of Fi-types that capture the idea that term-indices are
discardable in that they are irrelevant for computation. Index erasure
projects typing in System Fi to typing in System Fω. So, System Fi

inherits strong normalization and logical consistency from System Fω.

Keywords: term-indexed data types, generalized algebraic data types,
higher-order polymorphism, type-constructor polymorphism, higher-
kinded types, impredicative encoding, strong normalization, logical
consistency.

1 Introduction

We are interested in the use of indexed types to state and maintain program
properties. A type parameter (like Int in (List Int)) usually tells us something
about data stored in values of that type. A type-index (like 3 in (Vector Int

3)) states an inductive property of values with that type. For example, values
of type (Vector Int 3) have three elements.

Indexed types come in two flavors: type-indexed and term-indexed types.
An example of type-indexing is a definition of a representation type [8] using

GADTs in Haskell:

data TypeRep t where

RepInt :: TypeRep Int

RepBool :: TypeRep Bool

RepPair :: TypeRep a -> TypeRep b -> TypeRep (a,b)
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Here, a value of type (TypeRep t) is isomorphic in shape with the type-index t.
For example, (RepPair RepInt RepBool) :: TypeRep (Int,Bool).

An example of Term-indices are datatypes with indices ranging over data
structures, such as natural numbers (like Z, (S Z)) or lists (like Nil or (Cons Z

Nil)). A classic example of a term-index is the second parameter to the length-
indexed list type Vec (as in (Vec Int (S Z))).

In languages such as Haskell1 or OCaml [10], which support GADTs with
only type-indexing, term-indices are simulated (or faked) by reflecting data at
the type-level with uninhabited type constructors. For example,

data S n

data Z

data Vec t n where

Cons :: a -> Vec a n -> Vec a (S n)

Nil :: Vec a Z

This simulation comes with a number of problems. First, there is no way to say
that types such as (S Int) are ill-formed, and second the costs associated with
duplicating the constructors of data to be used as term-indices. Nevertheless,
GADTs with “faked” term-indices have become extremely popular as a light-
weight, type-based mechanism to raise the confidence of users that software
systems maintain important properties.

Our approach in this direction is to design a new foundational calculus,
System Fi, for functional programming languages with term-indexed datatypes.
In a nutshell, System Fi is obtained by minimally extending System Fω with
type-indexed kinds. Notably, this yields a logical calculus that is expressive
enough to embed non-dependent term-indexed datatypes and their eliminators.
Our contributions in this development are as follows.

– Identifying the features that are needed in a higher-order polymorphic λ-
calculus to embed term-indexed datatypes (Sect. 2), in isolation from other
features normally associated with such calculi (e.g., general recursion, large
elimination, dependent types).

– The design of the calculus, System Fi (Sect. 4), and its use to study proper-
ties of languages with term-indexed datatypes, including the embedding of
term-indexed datatypes into the calculus (Sect. 6) using Church or Mendler
style encodings, and proofs about these encodings. For instance, one can use
System Fi to prove that the Mendler-style eliminators for GADTs [3] are
normalizing.

– Showing that System Fi enjoys a simple erasure property (Sect. 5.2) and
inherits meta-theoretic results, strong normalization and logical consistency,
from Fω (Sect. 5.3).

2 Motivation: From System Fω to System Fi, and Back

It is well known that datatypes can be embedded into polymorphic lambda
calculi by means of functional encodings [5].

1 See Sect. 7 for a very recent GHC extension, which enable true term-indices.
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In System F, one can embed regular datatypes, like homogeneous lists:

Haskell: data List a = Cons a (List a) | Nil

System F: List A � ∀X.(A→ X → X) → X → X

Cons � λw.λx.λy.λz. y w (x y z), Nil � λy.λz.z

In such regular datatypes, constructors have algebraic structure that directly
translates into polymorphic operations on abstract types as encapsulated by
universal quantification over types (of kind ∗).

In the more expressive System Fω (where one can abstract over type con-
structors of any kind), one can encode more general type-indexed datatypes that
go beyond the regular datatypes. For example, one can embed powerlists with
heterogeneous elements in which an element of type a is followed by an element
of the product type (a,a):

Haskell: data Powl a = PCons a (Powl(a,a)) | PNil

-- PCons 1 (PCons (2,3) (PCons ((3,4),(1,2)) PNil)) :: Powl Int

System Fω: Powl � λA∗.∀X∗→∗.(A→ X(A×A) → XA) → XA→ XA

Note the non-regular occurrence (Powl(a,a)) in the definition of (Powl a), and
the use of universal quantification over higher-order kinds (∀X∗→∗). The term
encodings for PCons and PNil are exactly the same as the term encodings for
Cons and Nil, but have different types.

What about term-indexed datatypes? What extensions to System Fω are
needed to embed term-indices as well as type-indices? Our answer is System Fi.

In a functional language supporting term-indexed datatypes, we envisage that
the classic example of homogeneous length-indexed lists would be defined along
the following lines (in Nax2-like syntax):

data Nat = S Nat | Z

data Vec : * -> Nat -> * where

VCons : a -> Vec a {i} -> Vec a {S i}

VNil : Vec a {Z}

Here the type constructor Vec is defined to admit parameterisation by both type
and term-indices. For instance, the type (Vec (List Nat) {S (S Z)}) is that
of two-dimensional vectors of natural numbers. By design, our syntax directly
reflects the difference between type and term-indexing by enclosing the latter
in curly braces. We also make this distinction in System Fi, where it is useful
within the type system to guarantee the static nature of term-indexing.

The encoding of the vector datatype in System Fi is as follows:

Vec � λA∗.λiNat.∀XNat→∗.(∀jNat.A→ X{j} → X{S j}) → X{Z} → X{i}

where Nat, Z, and S respectively encode the natural number type and its two
constructors, zero and successor. Again, the term encodings for VCons and VNil

are exactly the same as the encodings for Cons and Nil, but have different
types.

2 We are developing a language called Nax whose theory is based on System Fi.
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Without going into the details of the formalism, which are given in the next
section, one sees that such a calculus incorporating term-indexing structure needs
four additional constructs (see Fig. 1 for the highlighted extended syntax).

1. Type-indexed kinding (A→ κ), as in (Nat→*) in the example above, where
the compile-time nature of term-indexing will be reflected in the typing rules,
enforcing that A be a closed type (rule (Ri) in Fig. 2).

2. Term-index abstraction λiA.F (as λiNat. · · · in the example above) for con-
structing (or introducing) term-indexed kinds (rule (λi) in Fig. 2).

3. Term-index application F{s} (as X{Z}, X{j}, and X{S j} in the exam-
ple above) for destructing (or eliminating) term-indexed kinds, where the
compile-time nature of indexing will be reflected in the typing rules, enfor-
ceing that the index be statically typed (rule (@i) in Fig. 2) .

4. Term-index polymorphism ∀iA.B (as ∀jNat. · · · in the example above) where
the compile-time nature of polymorphic term-indexing will be reflected in the
typing rules enforcing that the variable i be static of closed type A (rule (∀Ii)
in Fig. 2).

As described above, System Fi maintains a clear-cut separation between type-
indexing and term-indexing. This adds a level of abstraction to System Fω and
yields types that in addition to parametric polymorphism also keep track of in-
ductive invariants using term-indices. All term-index information can be erased,
since it is only used at compile-time. It is possible to project any well-typed
System Fi term into a well-typed System Fω term. For instance, the erasure of
the Fi-type Vec is the Fω-type List. This is established in Sect. 5 and used to
deduce the strong normalization of System Fi.

3 Why Term-Indexed Calculi? (Rather Than Dependent
Types)

We claim that a moderate extension to the polymorphic calculus (Fω) is a better
candidate than a dependently typed calculus for the basis of a practical program-
ming system. We hope to design a unified system for programming as well as
reasoning. Language designs based on indexed types can benefit from existing
compiler technology and type inference algorithms for functional programming
languages. In addition, theories for term-indexd datatypes are simpler than the-
ories for full-fledged dependent datatypes, because term-indexd datatypes can
be encoded as functions (using Church-like encodings).

The implementation technology for functional programming languages based
on polymorphic calculi is quite mature. The industrial strength Glasgow Haskell
Compiler (GHC), whose intermediate core language is an extension of Fω, is used
by thousands every day. Our term-indexed calculus Fi is closely related to Fω by
an index-erasure property. The hope is that a language implementation based on
Fi can benefit from these technologies. We have built a language implementation
of these ideas, which we call Nax.
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Type inference algorithms for functional programming languages are often
based on certain restrictions of the Curry-style polymorphic lambda calculi.
These restrictions are designed to avoid higher-order unification during type
inference. We have developed a conservative extension of Hindley–Milner type
inference for Nax. This was possible because Nax is based on a restricted Fi. De-
pendently typed languages, on the other hand, are often based on bidirectional
type checking, which requires annotations on top level definitions, rather than
Hindley–Milner-style type inference.

In dependent type theories, datatypes are usually introduced as primitive
constructs (with axioms), rather than as functional encodings (e.g., Church en-
codings). One can give functional encodings for datatypes in a dependent type
theory, but one soon realizes that the induction principles (or, dependent elimi-
nators) for those datatypes cannot be derived within the pure dependent calculi
[11]. So, dependently typed reasoning systems support datatypes as primitives.
For instance, Coq is based on Calculus of Inductive Constructions, which ex-
tends Calculus of Constructions [7] with dependent datatypes and their induction
principles.

In contrast, in polymorphic type theories, all imaginable datatypes within the
calculi have functional encodings (e.g., Church encodings). For instance, Fω need
not introduce datatypes as primitive constructs, since Fω can embed all these
datatypes, including non-regular recursive datatypes with type indices.

Another reason to use Fi is to extend the application of Mendler-style recursion
schemes, which are well-understood in the context of polymorphic lambda calculi
like Fω . Researchers have thought about (though not published)3 Mendler-style
primitive recursion over dependently-typed functions over positive datatypes (i.e.,
datatypes that have a map), but not for negative (or, mixed-variant) datatypes. In
System Fi, we can embed Mendler-style recursion schemes, (just as we embedded
them in Fω) that are also well-defined for negative datatypes.

4 System Fi

System Fi is a higher-order polymorphic lambda calculus designed to extend
System Fω by the inclusion of term-indices. The syntax and rules of System Fi

are described in Figs. 1, 2 and 3. The extensions new to System Fi, which are not
originally part of System Fω, are highlighted by grey boxes . Eliding all the grey
boxes from Figs. 1, 2 and 3, one obtains a version of System Fω with Curry-style
terms and the typing context separated into two parts (type-level context Δ and
term-level context Γ ).

We assume readers to be familiar with System Fω and focus on describing the
new constructs of Fi, which appear in grey boxes.

Kinds (Fig. 1). The key extension to Fω is the addition of term-indexed arrow

kinds of the form A→ κ . This allows type constructors to have terms as indices.
The rest of the development of Fi flows naturally from this single extension.

3 Tarmo Uustalu described this on a whiteboard when we met with him at the
University of Cambridge in 2011.
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Syntax: Term Variables x, y, z, . . . , i, j, k, . . .

Type Constructor Variables X,Y, Z, . . .

Sort �

Kinds κ ::= ∗ | κ → κ | A → κ

Type Constructors A,B, F,G ::= X | A → B | λXκ.F | F G | ∀Xκ.B

| λiA.F | F {s} | ∀iA.B
Terms r, s, t ::= x | λx.t | r s

Typing Contexts Δ ::= · | Δ,Xκ | Δ, iA

Γ ::= · | Γ, x : A

Reduction: t � t′

(λx.t) s � t[s/x]
t � t′

λx.t � λx.t′
r � r′

r s � r′ s
s � s′

r s � r s′

Fig. 1. Syntax and Reduction rules of Fi

Sorting (Fig. 2). The formation of indexed arrow kinds is governed by the sorting

rule (Ri) . The rule (Ri) specifies that an indexed arrow kind A → κ is well-

sorted when A has kind ∗ under the empty type-level context (·) and κ is well-
sorted. Requiring A to be well-kinded under the empty type-level context avoids
dependent kinds (i.e., kinds depending on type-level or value-level bindings).
That is, A should be a closed type of kind ∗, which does not contain any free
type variables or index variables. For example, (ListX → ∗) is not a well-sorted
kind since X appears free, while ((∀X∗.ListX) → ∗) is a well-sorted kind.

Typing contexts (Fig. 1). Typing contexts are split into two parts. Type level
contexts (Δ) for type-level (static) bindings, and term-level contexts (Γ ) for
term-level (dynamic) bindings. A new form of index variable binding (iA) can
appear in type-level contexts in addition to the traditional type variable bindings
(Xκ). There is only one form of term-level binding (x : A) that appears in term-
level contexts. Note, both x and i represent the same syntactic category of “Type
Variables”. The distinction between x and i is only a convention for the sake of
readability.

Well-formed typing contexts (Fig. 2). A type-level context Δ is well-formed if
(1) it is either empty, or (2) extended by a type variable binding Xκ whose kind
κ is well-sorted under Δ, or (3) extended by an index binding iA whose type A
is well-kinded under the empty type-level context at kind ∗. This restriction is
similar to the one that occurs in the sorting rule (Ri) for term-indexed arrow
kinds (see the paragraph Sorting). The consequence of this is that, in typing
contexts and in sorts, A must be a closed type (not a type constructor!) without
free variables.
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Well-formed typing contexts:

� Δ � ·
� Δ � κ : �

� Δ,Xκ

(
X /∈ dom(Δ)

) � Δ · � A : ∗
� Δ, iA

(
i /∈ dom(Δ)

)

Δ � Γ � Δ
Δ � ·

Δ � Γ Δ � A : ∗
Δ � Γ, x : A

(
x /∈ dom(Γ )

)

Sorting: � κ : �

(A) � ∗ : � (R) � κ : � � κ′ : �
� κ → κ′ : �

(Ri) · � A : ∗ � κ : �
� A → κ : �

Kinding: Δ � F : κ (V ar)
Xκ ∈ Δ � Δ

Δ � X : κ
(→) Δ � A : ∗ Δ � B : ∗

Δ � A → B : ∗

(λ)
� κ : � Δ,Xκ � F : κ′

Δ � λXκ.F : κ → κ′ (λi)
· � A : ∗ Δ, iA � F : κ

Δ � λiA.F : A → κ

(@) Δ � F : κ → κ′ Δ � G : κ

Δ � F G : κ′ (@i)
Δ � F : A → κ Δ; · � s : A

Δ � F {s} : κ

(∀) � κ : � Δ,Xκ � B : ∗
Δ � ∀Xκ.B : ∗ (∀i) · � A : ∗ Δ, iA � B : ∗

Δ � ∀iA.B : ∗

(Conv) Δ � A : κ Δ � κ = κ′ : �
Δ � A : κ′

Typing: Δ;Γ � t : A (:)
(x : A) ∈ Γ Δ � Γ

Δ;Γ � x : A
(: i)

iA ∈ Δ Δ � Γ
Δ;Γ � i : A

(→I)
Δ 
 A : ∗ Δ;Γ, x : A 
 t : B

Δ; Γ 
 λx.t : A → B
(→E)

Δ;Γ 
 r : A → B Δ; Γ 
 s : A

Δ; Γ 
 r s : B

(∀I) 
 κ : � Δ,Xκ;Γ 
 t : B

Δ;Γ 
 t : ∀Xκ.B
(X /∈ FV(Γ )) (∀E)

Δ; Γ 
 t : ∀Xκ.B Δ 
 G : κ

Δ;Γ 
 t : B[G/X]

(∀Ii) · 
 A : ∗ Δ, iA;Γ 
 t : B

Δ; Γ 
 t : ∀iA.B

(
i /∈ FV(t),
i /∈ FV(Γ )

)
(∀Ei)

Δ; Γ 
 t : ∀iA.B Δ; · 
 s : A

Δ;Γ 
 t : B[s/i]

(=)
Δ; Γ 
 t : A Δ 
 A = B : ∗

Δ;Γ 
 t : B

Fig. 2. Well-formedness, Sorting, Kinding, and Typing rules of Fi
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Kind equality: � κ = κ′ : � · � A = A′ : ∗ � κ = κ′ : �
� A → κ = A′ → κ′ : �

Type constructor equality: Δ � F = F ′ : κ

Δ,Xκ � F : κ′ Δ � G : κ

Δ � (λXκ.F )G = F [G/X] : κ′
Δ, iA � F : κ Δ; · � s : A

Δ � (λiA.F ) {s} = F [s/i] : κ

Δ � F = F ′ : A → κ Δ; · � s = s′ : A

Δ � F {s} = F ′ {s′} : κ

Term equality: Δ;Γ � t = t′ : A
Δ;Γ, x : A � t : B Δ;Γ � s : A

Δ;Γ � (λx.t) s = t[s/x] : B

Fig. 3. Equality rules of Fi (only the key rules are shown)

A term-level context Γ is well-formed under a type-level context Δ when it
is either empty or extended by a term variable binding x : A whose type A is
well-kinded under Δ.

Type constructors and their kinding rules (Figs. 1 and 2). We extend the type
constructor syntax by three constructs, and extend the kinding rules accordingly.

λiA.F is the type-level abstraction over an index (or, index abstraction).

Index abstractions introduce indexed arrow kinds by the kinding rule (λi) .

Note, the use of the new form of context extension, iA, in the kinding rule (λi).

F {s} is the type-level term-index application. In contrast to the ordinary

type-level type-application (F G) where the argument (G) is a type (of arbitrary
kind). The argument of an term-index application (F {s}) is a term (s). We use
the curly bracket notation around an index argument in a type to emphasize
the transition from ordinary type to term, and to emphasize that s is a term-
index, which is erasable. Index applications eliminate indexed arrow kinds by the

kinding rule (@i) . Note, we type check the term-index (s) under the current

type-level context paired with the empty term-level context (Δ; ·) since we do
not want the term-index (s) to depend on any term-level bindings. Otherwise,
we would admit value dependencies in types.

∀iA.B is an index polymorphic type. The formation of indexed polymorphic

types is governed by the kinding rule ∀i , which is very similar to the formation
rule (∀) for ordinary polymorphic types.

In addition to the rules (λi), (@i), and (∀i), we need a conversion rule (Conv)

at kind level. This is because the new extension to the kind syntax A→ κ involves
types. Since kind syntax involves types, we need more than simple structural
equality over kinds (see Fig. 3). For instance, A→ κ and A′ → κ equivalent kinds
when A′ and A are equivalent types. Only the key equality rules are shown in
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Fig. 3, and the other structural rules (one for each sorting/kinding/typing rule)
and the congruence rules (symmetry, transitivity) are omitted.

Terms and their typing rules (Figs. 1 and 2). The term syntax is exactly the
same as other Curry-style calclui. We write x for ordinary term variables intro-
duced by term-level abstractions (λx.t). We write i for index variables introduced
by index abstractions (λiA.F ) and by index polymorphic types (∀iA.B). As dis-
cussed earlier, the distinction between x and i is only for readability.

Since Fi has index polymorphic types (∀iA.B), we need typing rules for index

polymorphism: (∀Ii) for index generalization and (∀Ei) for index instantia-

tion. These rules are similar to the type generalization (∀I) and the type instan-
tiation (∀I) rules, but involve indices, rather than types, and have additional
side conditions compared to their type counterparts.

The additional side condition i /∈ FV(t) in the (∀Ii) rule prevents terms
from accessing the type-level index variables introduced by index polymorphism.
Without this side condition, ∀-binder would no longer behave polymorphically,
but instead would behave as a dependent function binder, which are usually de-
noted by Π in dependent type theories. Such side conditions on generalization
rules for polymorphism are fairly standard in dependent type theories that distin-
guish between polymorphism (or, erasable arguments) and dependent functions
(e.g., IPTS[17], ICC[16]).

The index instantiation rule (∀Ei) requires that the term-index s, which in-
stantiates i, be well-typed in the current type-level context paired with the empty
term-level context (Δ; ·) rather than the current term-level context, since we do
not want indices to depend on term-level bindings.

In addition to the rules (∀Ii) and (∀Ei) for index polymorphism, we need

an additional variable rule (: i) to access index variables already in scope. In

examples like (λiA.F{s}) and (∀iA.F{s}), the term (s) should be able to access
the index variable (i) already in scope.

5 Metatheory

The expectation is that System Fi has all the nice properties of System Fω, yet
is more expressive (i.e., can state finer grained program properties) because of
the addition of term-indexed types.

We show some basic well-formedness properties for the judgments of Fi in
Sect. 5.1. We prove erasure properties of Fi, which capture the idea that indices
are erasable since they are irrelevant for reduction in Sect. 5.2. We show strong
normalization, logical consistence, and subject reduction for Fi by reasoning
about well-known calculi related to Fi in Sect. 5.3.

5.1 Well-Formedness and Substitution Lemmas

We want to show that kinding and typing derivations give well-formed results
under well-formed contexts. That is, kinding derivations (Δ � F : κ) result in
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well-sorted kinds (� κ) under well-formed type-level contexts (� Δ) (Propo-
sition 1), and typing derivations (Δ;Γ � t : A) result in well-kinded types
(Δ;Γ � A : ∗) under well-formed type and term-level contexts (Proposition 2).

Proposition 1. � Δ Δ � F : κ
� κ : � Proposition 2.

Δ � Γ Δ;Γ � t : A

Δ � A : ∗
We can prove these well-formedness properties by induction over the judgment4

and using the substitution lemma below.

Lemma 1 (substitution)

1. (type substitution)
Δ,Xκ � F : κ′ Δ � G : κ

Δ � F [G/X ] : κ′

2. (index substitution)
Δ, iA � F : κ Δ; · � s : A

Δ � F [s/i] : κ

3. (term substitution)
Δ;Γ, x : A � t : B Δ;Γ � s : A

Δ;Γ � t[s/x] : B

These substitution lemmas are fairly standard, comparable to substitution lem-
mas in other well-known systems such as Fω or ICC.

5.2 Erasure Properties

We define a meta-operation of index erasure that projects Fi-types to Fω-types.

Definition 1 (index erasure)

κ◦ ∗◦ = ∗ (κ1 → κ2)◦ = κ1
◦ → κ2

◦ (A→ κ)◦ = κ◦

F ◦ X◦ = X (A→ B)◦ = A◦ → B◦

(λXκ.F )◦ = λXκ◦
.F ◦ (λiA.F )◦ = F ◦

(F G)◦ = F ◦ G◦ (F {s})◦ = F ◦

(∀Xκ.B)◦ = ∀Xκ◦
.B◦ (∀iA.B)◦ = B◦

Δ◦ ·◦ = · (Δ,Xκ)◦ = Δ◦, Xκ◦
(Δ, iA)◦ = Δ◦

Γ ◦ ·◦ = · (Γ, x : A)◦ = Γ ◦, x : A◦

In addition, we define another meta-operation, which selects out all the index
variable bindings from the type-level context. We use this in Theorem 6.

4 The proof for Propositions 1 and 2 are mutually inductive. So, we prove these two
propositions at the same time, using a combined judgment J , which is either a
kinding judgment or a typing judgment (i.e., J ::= Δ � F : κ | Δ;Γ � t : A).
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Definition 2 (index variable selection)

Δ• ·• = · (Δ,Xκ)• = Δ• (Δ, iA)• = Δ•, i : A

Theorem 1 (index erasure on well-sorted kinds). � κ : �
� κ◦ : �

Proof. By induction on the sort (κ). 	

Remark 1. For any well-sorted kind κ in Fi, κ
◦ is a well-sorted kind in Fω.

Theorem 2 (index erasure on well-formed type-level contexts). � Δ
� Δ◦

Proof. By induction on the type-level context (Δ) and using Theorem 1. 	

Remark 2. For any well-formed type-level context Δ in Fi, Δ
◦ is a well-formed

type-level context in Fω.

Theorem 3 (index erasure on kind equality). � κ = κ′ : �
� κ◦ = κ′◦ : �

Proof. By induction on the kind equality derivation (� κ = κ′ : �). 	

Remark 3. For any well-sorted kind equality � κ = κ′ : � in Fi, κ
◦ and κ′◦ are

the syntactically same Fω kinds. Note that no variables can appear in the erased
kinds by definition of the erasure operation on kinds.

Theorem 4 (index erasure on well-kinded type constructors)

� Δ Δ � F : κ
Δ◦ � F ◦ : κ◦

Proof. By induction on the kinding derivation (Δ � F : κ). We use Theorem 2
in the (V ar) case, Theorem 3 in the (Conv) case, and Theorem 1 in the (λ) and
(∀) cases. 	

Remark 4. In the theorem above, F ◦ is a well-kinded type constructor in Fω.

Lemma 2. (F [G/X ])◦ = F ◦[G◦/X ] Lemma 3. (F [s/i])◦ = F ◦

Theorem 5 (index erasure on type constructor equality)

Δ � F = F ′ : κ
Δ◦ � F ◦ = F ′◦ : κ◦

Proof. By induction on the derivation of the type constructor equality judgment
(Δ � F = F ′ : κ). We also use Proposition 1 and Lemmas 2 and 3. 	

Remark 5. When Δ � F = F ′ : κ is a valid type constructor equality in Fi,
Δ◦ � F ◦ = F ′◦ : κ◦ is a valid type constructor equality in Fω.
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Theorem 6 (index erasure on well-formed term-level contexts
prepended by index variable selection)

Δ � Γ
Δ◦ � (Δ•, Γ )◦

Proof. By induction on the term-level context (Γ ) and using Theorem 4. 	

Remark 6. We can also show that Δ � Γ
Δ◦ � Γ ◦ and prove Corollary 1 directly.

Theorem 7 (index erasure on well-typed terms).
Δ � Γ Δ;Γ � t : A

Δ◦; (Δ•, Γ )◦ � t : A◦

Proof. By induction on the typing derivation (Δ;Γ � t : A). We also make use
of Theorems 1, 4, 5, and 6. 	

Remark 7. In the theorem above, t is a well typed term in Fω as well as in Fi.

Corollary 1 (index erasure on index-free well-typed terms)

Δ � Γ Δ;Γ � t : A

Δ◦;Γ ◦ � t : A◦ (dom(Δ) ∩ FV(t) = ∅)

5.3 Strong Normalization and Logical Consistency

Strong normalization is a corollary of the erasure property since we know that
System Fω is strongly normalizing. Index erasure also implies logical consistency.
By index erasure, we know that any well-typed term in Fi is a well-typed term in
Fω with its erased type. That is, there are no extra well-typed terms in Fi that
are not well-typed in Fω. By the saturated sets model (as in [1]), we know that
the void type (∀X∗.X) in Fω is uninhabited. Therefore, the void type (∀X∗.X)
in Fi is uninhabited since it erases to the same void type in Fω . Alternatively,
logical consistency of Fi can be drawn from ICC. System Fi is a restriction of the
restricted implicit calculus [15] or ICC− [4], which are restrictions of ICC [16]
known to be logically consistent.

6 Encodings of Term-Indexed Datatypes

Recall that our motivation was a foundational calculus that can encode
term-indexed datatypes. In Sect. 2, we gave Church encodings of List (a regular
datatype), Powl (a type-indexed datatype), and Vec (a term-indexed datatype).
In this section, we discuss a more complex datatype [6] involving nested term-
indices, and several encoding schemes that we have seen used in practice –
first, encoding indexed datatypes using equality constraints [8, 18] and second,
encoding datatypes in the Mendler-style [2, 3].
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Nested term-indices : System Fi is able to express datatypes with nested term-
indices – term-indices which are themselves term-indexed datatypes. Consider
the resource-state tracking environment [6] in Nax-like syntax below:

data Env : ({st} -> *) -> {Vec st {n}} -> * where

Extend : res {x} -> Env res {xs} -> Env res {VCons x xs}

Empty : Env res {VNil}

Note that Env has a term-index of type Vec, which is again indexed by Nat. For
simplicity,5 assume that n is some fixed constant (e.g., S(S(S Z)), i.e., 3). Then,
an Env tracks 3 independent resources (res), each which could be in a different
state (st). For example, 3 files in different states – one open for reading, the
next open for writing, and the third closed. We can encode Env in Fi as follows:

Env � λY st→∗. λi(Vec st n). ∀X(Vec st {n})→∗.

(∀jst. ∀k(Vec st n). Y{j} → X{k} → X{VCons j k}) → X{VNil} → X{i}

The term encodings for Extend and Empty are exactly the same as the term
encodings for Cons and Nil of the List datatype in Sect. 2.

Encoding indexed datatypes using equality constraints : Systematic encodings of
GADTs [8, 18], which are used in practical implementations, typically involve
equality constraints and existential quantification. Here, we want to emphasize
that such encoding schemes are expressible within System Fi, since it is possible
to define equalities and existentials over both types and term-indices in Fi.

It is well known that Leibniz equality over type constructors can be defined
within System Fω as (

κ
=) � λXκ

1 . λX
κ
2 . ∀Xκ→∗. XX1 → XX2. Similarly, Leibniz

equality over term-indices is defined as (
A
=) � λiA. λjA. ∀XA→∗. X{i} → X{j}

in System Fi. Then, we can encode Vec as the sum of its two data constructor
types:

Vec � λA∗. λiNat. ∀XNat→∗. (∃jNat. (S j
Nat
= i)×A×X{j}) + (Z

Nat
= i)

where + and × are the usual impredicative encoding of sums and products. We
can encode the existential quantification over indices (∃ used in the encoding of
Vec above) as ∃iA.B � ∀X∗.(∀iA.B → X) → X , which is similar to the usual
encoding of the existential quantification over types in System F or Fω.

Compared to the simple Church encoded versions in Sect. 2, the encodings
using equality constraints work particularly well with encodings of functions
that constrain their domain types by restricting their indices. For instance, the
function safeTail : Vec a {S n} → Vec a {n}, which can only be applied to
non-empty length indexed lists due the index of the domain type (S n).

5 Nax supports rank-1 kind-level polymorphism. It would be virtually useless if nested
term-indices were only limited to constants rather than polymorphic variables.
We strongly believe rank-1 kind polymorphism does not introduce inconsistency,
since rank-1 polymorphic systems are essentially equivalent to simply-typed sys-
tems by inlining the polymorphic definition with the instantiated arguments in each
instantiation site.
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The Mendler-style encoding : Recursive type theories that extend higher-order
polymorphic lambda calculi typically come with a built-in recursive type oper-
ator μκ : (κ → κ) → κ for each kind κ, which yields recursive types (μκ F : κ)
when applied to type constructors of appropriate kind (F : κ → κ). For in-
stance, List � λY ∗. μ∗(λX∗.Y ×X + �) where � is the unit type. One benefit
of factoring out the recursion at type-level (e.g., μ∗) from the base structure
(e.g., λX∗.Y ×X + �) of recursive types is that such factorized (or, two-level)
representations are more amenable to express generic recursion schemes (e.g.,
catamorphism) that work over different recursive datatypes. Interestingly, there
exists an encoding scheme, namely the Mendler style, which can embed μκ within
Systems like Fω or Fi. The Mendler-style encoding can keep the theoretical basis
small, while enjoying the benefits of factoring out the recursion at type-level.

7 Related Work

System Fi is most closely related to Curry-style System Fω [2, 12] and the Implicit
Calculus of Constructions (ICC) [16]. All terms typable in a Curry-style System
Fω are typable (with the same type) in System Fi and all terms typable in Fi

are typable (with the same type6) in ICC.
As mentioned in Sect. 5.3, we can derive strong normalization of Fi from Sys-

tem Fω , and derive logical consistency of Fi from certain restrictions of ICC
[4, 15]. In fact, ICC is more than just an extension of System Fi with dependent
types and stratified universes, since ICC includes η-reduction and η-equivalence.
We do not foresee any problems adding η-reduction and η-equivalence to Sys-
tem Fi. Although System Fi accepts fewer terms than ICC, it enjoys simpler
erasure properties (Theorem 7 and Corollary 1) just by looking at the syntax
of kinds and types, which ICC cannot enjoy due to its support for full depen-
dent types. In System Fi, term-indices appearing in types (e.g., s in F{s}) are
always erasable. Mishra-Linger and Sheard [17] generalized the ICC framework
to one which describes erasure on arbitrary Church-style calculi (EPTS) and
Curry-style calculi (IPTS), but only consider β-equivalence for type conversion.

In the practical setting of programming language implementation, Yorgey
et al. [19], inspired by McBride [14], recently designed an extension to Haskell’s
GADTs by allowing datatypes to be used as kinds. For instance, Bool is pro-
moted to a kind (i.e., Bool : �) and its data constructors True and False are
promoted to types. They extended System FC (the Glasgow Haskell Compiler’s
intermediate core language) to support datatype promotion and named it Sys-

tem F ↑
C . The key difference between F ↑

C and Fi is in their kind syntax:

F ↑
C kinds κ ::= ∗ | κ→ κ | Fκ | X | ∀X .κ | · · ·
Fi kinds κ ::= ∗ | κ→ κ | A→ κ

In F ↑
C , all type constructors (F ) are promotable to the kind level and become

kinds when fully applied to other kinds (Fκ). On the other hand, in Fi, a type

6 The ∗ kind in Fω and Fi corresponds to Set in ICC.
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can only appear as the domain of an index arrow kind (A→ κ). The ramifications

of this difference is that F ↑
C can express type-level data structures but not nested

term-indices, while Fi supports the converse. Intuitively, a type constructor like
List : ∗ → ∗ is promoted to a kind constructor List : � → �, which enables
type-level data structures such as [Nat, Bool, Nat→ Bool] : List ∗. Type-level
data structures motivate type-level computations over promoted data. This is
made possible by type families7. The promotion of polymorphic types natu-
rally motivates kind polymorphism (∀X .κ). Kind polymorphism of arbitrary
rank is known to break strong normalization and cause logical inconsistency
[13]. In a programming language, inconsistency is not an issue. However, when
studying logically consistent systems, we need a more conservative approach,
as in Fi.

8 Summary and Ongoing Work

System Fi is a strongly-normalizing, logically-consistent, higher-order polymor-
phic lambda calculus that was designed to support the definition of datatypes
indexed by both terms and types. In terms of expressivity, System Fi sits between
System Fω and ICC. We designed System Fi as a tool to reason about program-
ming languages with term-indexed datatypes. System Fi can express a large class
of term-indexed datatypes, including datatypes with nested term-indices.

One limitation of System Fi is that it cannot express type-level data structures
such as lists that contain type elements. We hope to overcome this limitation
by extending Fi with first-class type representations [9], which reflect types as
term-level data (a sort of a fully reflective version of TypeRep from Sect. 1).

Our goal is to build a unified programming and reasoning system, which
supports (1) an expressive class of datatypes including nested term-indexed
datatypes and negative datatypes, (2) logically consistent reasoning about pro-
gram properties, and (3) Hindley–Milner-style type inference. Towards this goal,
we are developing the programming language Nax based on System Fi. Nax
is given semantics in terms of System Fi. That is, all the primitive language
constructs of Nax that are not present in Fi have translations into System Fi.
Such constructs include Mendler-style eliminators, recursive type operators, and
pattern matching.

Some language features we want to include in Nax go beyond Fi. One of them
is a recursion scheme that guarantee normalization due to paradigmatic use of
indices in datatypes. For instance, some recursive computations always reduce a
natural number term-index in every recursive call. Although such computations
obviously terminate, we cannot express them in System Fi, since term-indices
in them are erasable – Fi only accepts terms that are already type-correct in
Fω. We plan to explore extensions to System Fi that enable such computations
while maintaining logical consistency.

7 A GHC extension to define type-level functions in Haskell.
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Abstract. We consider a de’Liguoro-Piperno-style extension of the pure
lambda calculus with a non-deterministic choice operator as well as a
non-deterministic iterator construct, with the aim of studying its normal-
ization properties. We provide a simple characterization of non-strongly
normalizable terms by means of the so called “zoom-in” perpetual reduc-
tion strategy. We then show that this characterization implies the strong
normalization of the simply typed version of the calculus. As straightfor-
ward corollary of these results we obtain a new proof of strong normal-
ization of Gödel’s System T by a simple translation of this latter system
into the former.

1 Introduction

The idea of defining the concept of redundancy or detour in an arithmetical
proof [17] and the result that shows the possibility of eliminating all the detours
in any proof, are real cornerstones of modern logic. Such results, known under
the name of normalization or strong normalization, are interesting for a great
deal of reasons. For example:

– Via the Curry-Howard correspondence, they can be translated as proofs
of the termination of programs written in typed system like Gödel’s T [6],
Spector’s B [19] or Girard’s F [6]. Indeed, this is now the standard way of
presenting normalization results.

– They are tools for proving consistency of logical systems and thus give rise,
in the classical case, to Tarski models (see for example [12]).

– Many intuitionistic ([10]) and classical realizabilities ([12]), as well as func-
tional interpretations [19], are built on ideas coming from normalization
techniques.

Unfortunately, proving normalization properties of strong logical systems is dif-
ficult and when one succeeds, the resulting proof is often of little combinatorial
information. This is of course due to the famous Gödel incompleteness theorems,
which force normalization proofs to employ powerful mathematical methods.

In the case of the strong normalization of Gödel’s System T, the most flexible
and elegant proof is due to Tait (see [6]), which uses the abstract concept of
reducibility. In our opinion, there are at least two reasons why the proof is not
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very intuitive from the combinatorial point of view. First, the predicates of re-
ducibility are defined by formulas with arbitrarily many nested quantifiers. This
is a strength, because, to put it as Girard [6], “the deep reason why reducibility
works where combinatorial intuition fails, is its logical complexity” . However,
this complexity also hampers a concrete understanding of the normalization
process and, in fact, condemns combinatorial intuition to failure. Secondly, re-
ducibility is in reality an instance of much more general techniques that can be
used for proving a variety of results (for example, weak Church-Rosser property)
in an elegant way. We are of course referring to logical relations and realizabil-
ity. This is evident in Krivine’s work [11], where realizability is carried out as a
generalization of the Tait-Girard methods. Thus reducibility appears not to be
tailored specifically for normalization problems (this observation can also be ad-
dressed to Sanchis’ technique [18], which allows to reason in a well-founded way
about terms of System T, and can be exploited to prove strong normalization).

Among other known normalization techniques one finds the one using infinite
terms of Tait [22], more interesting combinatorially, but not suitable to prove
strong normalization, the one of Gandy [8], the one of Joachimiski-Matthes [14],
similar in spirit to that of Sanchis, and the one using ordinal analysis of Howard [7].

In this paper, we return to the problem of the strong normalization of Gödel’s T,
with the aim of better understanding its combinatorial structure. That is, we want
to provide a concrete normalization proof instead of an abstract one. In particular,
we show how strong normalization can be derived by just examining the terms pro-
duced by a simple reduction strategy. For this purpose, we start from some combi-
natorial ideas, due essentially to Van Daalen [20] and Levy [13] (but also present
in Nederpelt [16]) and extended later by David and Nour to various systems of
simple types [4]. These ideas inspired Melliès [15] to define a perpetual reduction
strategy, so called zoom-in (discovered independently by Plaisted, Sorensen and
Gramlich, see [9] for more details), which will be the heart of our method. In [1]
(see also [2]), the zoom-in strategy has been employed to characterize non-strongly
normalizable lambda terms, and derive as corollary the strong normalization of
the simply typed lambda calculus and the intersection types. These latter results
were obtained also by Melliès and David. The novelty in [1] consisted in the explicit
statement of a characterization theorem. If with t1 . . . t2 we denote any term of the
form (((u)u1) . . .)un, where u = t1 and un = t2, then it is proved that:

Theorem 1 (Characterization of non-strongly normalizable terms). Let
u be an non-strongly normalizable lambda term. Then there exists an infinite re-
duction u1, u2, . . . , un, . . . and an infinite sequence of terms t1, t2, . . . , tn, . . . such
that u1 = u and for every i, ui contains a subterm of the form ti . . . ti+1.

(for a more detailed formulation, see section §2). Notice how the strong nor-
malization easily follows from the Characterization Theorem: non-strongly nor-
malizable Church-typed lambda terms cannot exist, otherwise the type of each
ti would strictly contain the type of ti+1. Remark also how each one of these
terms ti dynamically passes from the status of argument to the status of function
applied to some other arguments: this is the crucial property of the reduction.
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One natural question was then whether the Characterization Theorem could
be extended to a pure lambda calculus with pairs and constants, containing at
least booleans, numerals, the if-then-else if and iterator It constructs. In such
a way, one would also obtain as corollary the strong normalization of its typed
version, i.e. System T. Unfortunately, the Characterization Theorem does not
extend so easily. The reason is that one passes from a pure, functional world –
the lambda calculus – to an impure world in which booleans and numerals are
treated as basic objects, but also retain a sort of functional behavior.

For example, one has a rule if Falseu v �→ v. But what would be the difference
with a hypothetical reduction Falseu v �→ v, in which False would behave as
the encoding of false in lambda calculus λxλy. y? Syntactically, if is treated just
as a placeholder, being the boolean False the one which comes makes the real
job. Similarly, one has a rule Itu v 2 �→ (v)(v)u. But what would be the difference
with a hypothetical reduction 2uv �→ (v)(v)u, in which 2 would behave as the
Church-numeral two λfλx. (f)(f)x?

As a consequence of the use of objects as “hidden” functionals, one loses the
Characterization Theorem: when one of the ti above is, say, False or 2, we can-
not expect it to pass from argument to head position in any meaningful way.
The solution to this issue is radical: remove reduction rules involving booleans
and numerals and simulate them with actual functionals. The idea is to use
non-determinism. As in de’ Liguoro and Piperno [5], we add to lambda-calculus
a non-deterministic choice operator if	, with rules if	 u v �→ u and if	 u v �→ v,
in order to simulate all possible if reductions. We also add a non-deterministic
iterator operator It	, with rules of the form It	 u v �→ (v) . . . (v)u (one for each
possible number of occurrences of v), in order to simulate all possible It reduc-
tions. We obtain as a result a non-deterministic lambda calculus Λ	 which enjoys
the Characterization Theorem; its typed version T	 will thus have the strong nor-
malization property. We shall then prove strong normalization of System T by
translating it into T	 – almost trivially. It will be enough to substitute the nor-
mal versions of if and It with their non-deterministic counterparts if	 and It	.

Plan of the Paper. In Section §2 we introduce the non-deterministic lambda
calculus Λ	 and prove the Characterization Theorem of its non-strongly normal-
izable terms. In Section §3, as a corollary, we prove the strong normalization of
the non-deterministic typed system T	. Section §4 is finally devoted to the proof
of the strong normalization of Gödel’s System T, by translation into T	.

2 The Non-deterministic Lambda Calculus Λ� with Pairs
and Constants

In this section we define and study the non-deterministic lambda calculus Λ	,
whose typed version will serve in section §4 to interpret Gödel’s System T. In
particular, we are going to give a syntactical characterization of the non-strongly
normalizable terms of Λ	.

The non-deterministic lambda calculus Λ	 is formally described in Figure 1.
Its deterministic part is a standard lambda calculus (for which we refer to [11])
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augmented with pairs, projections, and some arbitrary set of constants c0, c1, . . .
without any associated reduction rule. In this latter set, one will typically put 0, S,
True, False, but no assumption will be made in this section. The non-deterministic
part of Λ	 comprises as constants the non-deterministic choice operator if	, as in
de’ Liguoro-Piperno [5], Dal Lago-Zorzi [3], and the non-deterministic iterator It	.
For It	 u v one has denumerably many possible reductions:

It	 u v �→ u, It	 u v �→ (v)u, It	 u v �→ (v)(v)u, It	 u v �→ (v)(v)(v)u . . .

We point out that, as remarked in [5], It	 can already be defined by if	. But that
is no longer possible in a typed setting, and so we had to leave It	 in the syntax.

We now recall some very basic facts and definitions. We retain the Krivine
parenthesis convention for pure lambda calculus and extend it to Λ	. The term
(t)u will be written as tu and [u]πi as uπi, if there is no ambiguity. Thus every
lambda term t can be uniquely written in the form λx1 . . . λxm. vt1 . . . tn, where
m,n ≥ 0, for every i, ti is either a term or the symbol π0 or π1, and v is a variable
or a constant or pair 〈t, u〉 or one of the following redexes: (λx.u)t, if	 t u , It	 t u ,
[〈t, u〉]πi. If v is a redex, v is called the head redex of t. A term is said to be an
application if it is of the form tu, an abstraction if it is of the form λxu. If t′ is
a subterm of t we will write t 
 t′, reading t contains t′. Finally:

Definition 1 (Strongly Normalizable Terms). We write t �→ t′ iff t′ is
obtained from t by contracting a redex in t according to the reduction rules in
Figure 1. A sequence (finite or infinite) of terms t1, t2, . . . , tn, . . . is said to be
a reduction of t, if t = t1, and for all i, ti �→ ti+1. A term t of Λ	 is strongly
normalizable if there is no infinite reduction of t. We denote with SN the set of
strongly normalizable terms of Λ	.

The reduction tree of a strongly normalizable lambda term is well-founded. It
is well-known that it is possible to assign to each node of a well-founded tree
an ordinal number, that it decreases passing from a node to any of its sons. We
will call the ordinal size of a lambda term t ∈ SN the ordinal number assigned
to the root of its reduction tree and we denote it by h(t); thus, if t �→ u, then
h(t) > h(u). To fix ideas, one may define h(t) := sup{h(u) + 1 | t �→ u}.

2.1 The Zoom-in Reduction

In order to really understand the phenomenon of non-termination in lambda
calculus it is crucial to isolate the mechanisms that are really essential to produce
it. For example, in the term (λy. y)(λx. xx)λx. xx (beware Krivine’s notation!),
the part that generates an infinite reduction is (λx. xx)λx. xx; the term λy. y is
only a disturbing context and should be ignored. This is because the smallest
non-strongly normalizing subterm of our term is (λx. xx)λx. xx. We thus arrive
at the notion of elementary term: a non-strongly normalizable term that cannot
be decomposed into smaller non-strongly normalizable terms.

Definition 2 (Elementary Terms). A term tu is said to be elementary if
t ∈ SN, u ∈ SN and tu /∈ SN.
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Constants c ::= It� | if� | c0 | c1 . . .

Terms t, u ::= x | λx.t | (t)u | 〈t, u〉 | [t]π0 | [t]π1 | c

Reduction Rules
(λx.u)t �→ u[t/x] [〈u0, u1〉]πi �→ ui, for i=0,1

if�u v �→ u if�u v �→ v

It�uv �→
n times︷ ︸︸ ︷

(v) . . . (v) u, for each natural number n

Fig. 1. Non-Deterministic Lambda Calculus Λ�

We observe that an elementary term cannot be of the form xt1 . . . tn, since
t1, . . . , tn ∈ SN, and hence xt1 . . . tn ∈ SN. Similarly, it cannot be neither
of the form cit1 . . . tn nor (〈t, u〉)t1 . . . tn nor [λxt]πit1 . . . tn. Therefore, every
elementary lambda term is either of the form (λxu)tt1 . . . tn or if	t u t1 . . . tn or
It	t u t1 . . . tn or [〈t, u〉]πit1 . . . tn (and clearly u, t, t1, . . . tn ∈ SN).

Proposition 1. Suppose v /∈ SN. Then v has an elementary subterm.

Proof. By induction on v.

– If v = x or v = c, it is trivially true.
– If v = ut, and u ∈ SN and t ∈ SN, v is elementary; if instead u /∈ SN or

t /∈ SN, by induction hypothesis u or t contains an elementary subterm, and
hence v.

– If v = λxu or v = uπi, then u /∈ SN, and by induction hypothesis u contains
an elementary subterm, and thus also v.

– If v = 〈t, u〉, then t /∈ SN or u /∈ SN, and by induction hypothesis u contains
an elementary subterm, and thus also v.

The next proposition tells that it is always possible to contract the head redex of
an elementary term in such a way to preserve its property of being non-strongly
normalizable.

Proposition 2 (Saturation). Suppose that v is elementary. Then:

1. If v = (λxu)tt1 . . . tn /∈ SN, then u[t/x]t1 . . . tn /∈ SN.
2. If v = [〈u0, u1〉]πit1 . . . tn /∈ SN, then uit1 . . . tn /∈ SN.
3. If v = if	t u t1 . . . tn /∈ SN, then ut1 . . . tn /∈ SN or tt1 . . . tn /∈ SN

4. If v = It	t u t1 . . . tn /∈ SN, then for some m ∈ N, (

m times︷ ︸︸ ︷
(u) . . . (u) t)t1 . . . tn /∈ SN.

Proof.

1. By lexicographic induction on the (n+ 2)-tuple (h(u), h(t), h(t1), . . . , h(tn)).
Since by hypothesis (λxu)tt1 . . . tn /∈ SN, there exists a w /∈ SN such that
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(λxu)tt1 . . . tn �→ w. There are two cases. First case: w is either (λxu′)tt1 . . . tn
or (λxu)t′t1 . . . tn or (λxu)tt1 . . . t

′
i . . . tn with u �→ u′, t �→ t′ and ti �→ t′i

(i = 1, . . . n) respectively. We have h(u′) < h(u), h(t′) < h(t), h(t′i) <
h(ti). Then, by induction hypothesis, u[t/x]t1 . . . tn �→ u′[t/x]t1 . . . tn /∈ SN,
u[t/x]t1 . . . tn �→ u[t′/x]t1 . . . tn /∈ SN and
u[t/x]t1 . . . ti . . . tn �→ u[t/x]t1 . . . t

′
i . . . tn /∈ SN (i = 1 . . . n). Second case:

w = u[t/x]t1 . . . tn. We conclude u[t/x]t1 . . . tn /∈ SN by hypothesis on w.
2. The other cases are similar.

Let v /∈ SN and s be an elementary subterm of v. Then s = (λxu)tt1 . . . tn or
s = if	t u t1 . . . tn or s = It	t u t1 . . . tn or s = [〈t, u〉]πit1 . . . tn. By Proposition
2, there exists an s′ /∈ SN such that s′ is obtained from s by the contraction
of its head redex. In particular, either s′ = u[t/x]t1 . . . tn, s′ = ut1 . . . tn or
s′ = tt1 . . . tn or s′ = ((u) . . . (u)t)t1 . . . tn. This provides the justification for the
next definition and proposition.

Definition 3 (Zoom-in Reduction). Let t /∈ SN and s be an elementary

subterm of t. We write t
z�−→u if u has been obtained from t by replacing s with

an s′ /∈ SN such that s′ results from s by a contraction of the head redex of s.
A sequence (finite or infinite) of terms t1, t2, . . . , tn, . . . is said to be a zoom-in

reduction of t if t = t1, and for all i, ti
z�−→ ti+1; if i ≤ j, we write ti

z∗�−→tj.

Proposition 3. Suppose t /∈ SN. There is an infinite zoom-in reduction of t.

The zoom-in reduction strategy was studied in Melliès’s PhD Thesis [15]. It is a
perpetual reduction (see [21]), in the sense it preserves non-strong normalization.
The idea is to contract each time a redex which is essential in order to pro-
duce an infinite reduction. In this way, one concentrates on a minimal amount
of resources sufficient to generate non-termination. For example, the reduction
(λy. y)(λx. xx)λx. xx �→ (λx. xx)λx. xx is smartly avoided by the relation

z�−→ ,
because the reduction of the first redex is not strictly necessary. Instead, one
has (λy. y)(λx. xx)λx. xx

z�−→ (λy. y)(λx. xx)λx. xx by contraction of the second
redex.

We now study what happens when the zoom-in reduction strategy is applied
to elementary terms. The goal is to prove an Inversion Property (Proposition
6). That is, starting from an elementary term ut, we want to show that t will
necessarily be used in head position as an active function in the future of the
zoom-in reduction of ut. In this sense, there will be an inversion of the roles of
argument and function. We break the result in two steps.

The first observation is that the zoom-in reduction of ut will contract redexes
inside u as long as the term is “blocked”, i.e. u does not transform into a function.

Proposition 4. Let ut be elementary. Then one of the following cases occurs:

1. There exists a term (λxv)t such that ut
z∗�−→(λxv)t.

2. There exists a term It	v t such that ut
z∗�−→It	v t

Proof. By induction on h(u). There are two cases:
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– The head redex of ut is in u. Then ut
z�−→u′t, with u �→ u′ and h(u′) < h(u).

By induction hypothesis, u′t
z∗�−→(λxv)t or u′t

z∗�−→It	v t, and we are done.
– The head redex of ut is ut itself. If ut = (λxv)t or ut = It	v t, we have the

thesis. Moreover, those are the only possible cases, for neither ut = if	v t nor
ut = [〈v, v′〉]πi can hold; otherwise by Proposition 2, v /∈ SN or v′ /∈ SN or
t /∈ SN, but since ut is elementary, v, v′, t ∈ SN.

The second observation is that in a zoom-in reduction of a term u[t/x] /∈ SN,
with u, t ∈ SN, t will necessarily be used at some point in head position, because
at some point one will run out of redexes in u.

Proposition 5. Suppose u, t ∈ SN and u[t/x] /∈ SN. Then there exists v such

that u[t/x]
z∗�−→v and v has an elementary subterm of the form tt1 . . . tn (n > 0).

Proof. By induction on h(u). Assume u[t/x]
z�−→w; let s be the elementary sub-

term of u[t/x] whose head redex is contracted in order to obtain w. We have the
following possibilities:

– A redex inside u has been contracted, obtaining u′[t/x], with u �→ u′. Then,
h(u′) < h(u) and the proposition immediately follows by induction hypoth-
esis.

– A redex inside t has been contracted. Since t ∈ SN, s is not a subterm of t;
moreover, since the head redex of s must have been contracted, s = tt1 . . . tn.

– A redex which is neither in t nor in u has been contracted. Then, t is a lambda
abstraction or a pair or if	 or It	, u has a subterm of the form xu1 . . . un and
s = (xu1 . . . un)[t/x] = tt1 . . . tn. Of course, n > 0, since t ∈ SN and s /∈ SN.

We are now able to prove the Inversion Property, the most crucial result.

Proposition 6 (Inversion Property). Let ut be elementary. Then there exists

w such that ut
z∗�−→w and w has a subterm of the form tt1 . . . tn (n > 0).

Proof. By Propositions 4 and 5, one of the following cases occur:

1. ut
z∗�−→(λx.v)t �→ v[t/x]

z∗�−→w, with w containing an elementary subterm of
the form tt1 . . . tn (n > 0).

2. ut
z∗�−→It	v t �→ (t) . . . (t)v = (x) . . . (x)v[t/x]

z∗�−→w (for some x not free in v),
with w containing an elementary subterm of the form tt1 . . . tn (n > 0).

By iteration of the Inversion Property, we finally obtain our characterization of
non-strongly normalizable terms.

Theorem 2 (Characterization of non-strongly normalizable terms).
Let u /∈ SN. Then there exists an infinite sequence of terms u1, u2, . . . , un, . . .
such that u1 = u, for all i, ui

z∗�−→ui+1 and:

u1 
 t1 . . . t2, u2 
 t2 . . . t3, u3 
 t3 . . . t4, . . . , un 
 tn . . . tn+1 . . .

where for all i, ti . . . ti+1 is an elementary term.

Proof. We set u1 = u. Supposing un to have been defined, and that un 

tn . . . tn+1 elementary. By Proposition 6, we can set un+1 as the term obtained

from un by substituting tn . . . tn+1 with a v′ such that tn . . . tn+1
z∗�−→v′ and v′

contains an elementary subterm of the form tn+1 . . . tn+2.
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3 The System T� and Its Strong Normalization

As well as one can consider a simply typed version of the ordinary lambda calcu-
lus with pairs, we now introduce a simply typed version of the non-deterministic
lambda calculus Λ	. We call it System T	, since it will be interpreted as a non-
deterministic version of Gödel’s System T. T	 is formally described in Figure
2. The basic objects of T	 are numerals and booleans, its basic computational
constructs are primitive iterator at all types, if-then-else and pairs; n is the usual
encoding S . . . S0 of the natural number n. The strong normalization of T	 can
be readily proved from the Characterization Theorem 2.

Types
σ, τ ::= N | Bool | σ → τ | σ × τ

Constants
c ::= It�τ | if�τ | 0 | S | True | False

Terms
t, u ::= c | xτ | (t)u | λxτu | 〈t, u〉 | [t]π0 | [t]π1

Typing Rules for Variables and Constants

xτ : τ

0 : N, S : N → N

True : Bool, False : Bool

if�τ : τ → τ → τ

It�τ : τ → (τ → τ) → τ

Typing Rules for Composed Terms

t : σ → τ u : σ

tu : τ

u : τ

λxσu : σ → τ

u : σ t : τ

〈u, t〉 : σ × τ

u : τ0 × τ1
i ∈ {0, 1}πiu : τi

Reduction Rules The same reduction rules of Λ�, restricted to the terms of T�.

Fig. 2. The system T�

Theorem 3 (Strong Normalization Theorem for T	). Every term w of T	

is strongly normalizable.

Proof. Suppose for the sake of contradiction that w /∈ SN. By the Characteriza-
tion Theorem 2 (which can clearly be applied also to the terms of T	), we obtain
the existence of an infinite sequence of typed elementary terms t1 . . . t2, t2 . . . t3,
. . . , tn . . . tn+1 . . .. which yields a contradiction, since for every i, the type of ti
is strictly greater than the type of ti+1.

4 The System T and Its Strong Normalization

In this section we will prove the strong normalization theorem for System T.
Syntax and typing rules of T are formally described in Figure 3.
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Types
σ, τ ::= N | Bool | σ → τ | σ × τ

Constants
c ::= Itτ | ifτ | 0 | S | True | False

Terms
t, u ::= c | xτ | (t)u | λxτ

u | 〈t, u〉 | [u]π0 | [u]π1

Typing Rules for Variables and Constants

x
τ
: τ

0 : N, S : N → N

True : Bool, False : Bool

ifτ : Bool → τ → τ → τ

Itτ : τ → (τ → τ) → N → τ

Typing Rules for Composed Terms

t : σ → τ u : σ

(t)u : τ

u : τ

λxσu : σ → τ

u : σ t : τ

〈u, t〉 : σ × τ

u : τ0 × τ1
i ∈ {0, 1}

[u]πi : τi

Fig. 3. Syntax and Typing Rules for Gödel’s system T

Strong normalization follows as a corollary of Theorem 3. We define a simple
translation mapping terms of System T into terms of System T	:

Definition 4 (Translation of T into T	). We define a translation ∗ : T →
T	, leaving types unchanged. In the case of constants of the form ifτ , Itτ , we set:

(ifτ )
∗

:= λbBool. if	τ (Itτ )
∗

:= λxτλyτ→τλzN. It	τxy

For all other terms t of Gödel’s System T, we set t∗ as the term of T	 obtained from
t by replacing all its constants ifτ with (ifτ )

∗
and all its constants Itτ with (Itτ )

∗
.

In the following, we will proceed by endowing T with two distinct reduction strate-
gies, respectively dubbed as �→v and �→. Informally, �→v forces a call-by-value dis-
cipline on the datatype N. The second one, �→, is the usual strategy T is endowed
with. We will prove the strong normalization property in both cases. Whereas the
goal is straightforward for �→v, in the second case a bit of work is required.

4.1 Strong Normalization for System T with the strategy �→v

The reduction strategy �→v is formally defined in Figure 4. Strong normalization
theorem for T with �→v easily follows from Theorem 3. As a matter of fact, each
computational step in T (with �→v reductions’ set) can be plainly simulated in
T	 by a non-deterministic guess. In particular, each reduction step between T
terms corresponds to at least a step between their translations:

Proposition 7 (Preservation of the Reduction Relation). Let v be any
term of T. Then v �→v w =⇒ v∗ �→+ w∗
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Reduction strategy �→v

(λx
τ
u)t �→v u[t/x

τ
]

[〈u0, u1〉]πi �→v ui, for i=0,1

Itτuvn �→v

n times︷ ︸︸ ︷
(v) . . . (v) u

ifτ Trueuv �→v u ifτ Falseu v �→v v

Fig. 4. Reduction strategy �→v for T

Proof. It is sufficient to prove the proposition when v is a redex r. We have
several possibilities:

1. r = (λxτu)t �→v u[t/xτ ]. We verify indeed that

((λxτu)t)
∗

= (λxτu∗)t∗ �→ u∗[t∗/xτ ] = u[t/xτ ]
∗

2. r = 〈u0, u1〉πi �→v ui. We verify indeed that

(〈u0, u1〉πi)∗ = 〈u∗
0, u

∗
1〉πi �→ u∗

i

3. r = if True t u �→v t or r = if False t u �→v u. We verify indeed – by choosing
the appropriate reduction rule for if	 – that

(if True t u)∗ = (if)∗ True t∗ u∗ �→ if	t∗u∗ �→ t∗

(if False t u)
∗

= (if)
∗
False t∗ u∗ �→ if	t∗u∗ �→ u∗

4. r = Itu t n �→v

n times︷ ︸︸ ︷
(t) . . . (t)u. We verify indeed – by choosing the appropriate

reduction rule for It	 – that

(It u t n)
∗

= (It)
∗
u∗t∗n �→∗ It	u∗t∗ �→ (t∗) . . . (t∗)u∗

Theorem 4 (Strong Normalization for System T with �→v strategy).
Any term t of System T is strongly normalizable with respect to the relation �→v.

Proof. By Proposition 7, any infinite reduction t = t1, t2, . . . , tn, . . . in System
T gives rise to an infinite reduction t∗ = t∗1, t

∗
2, . . . , t

∗
n, . . . in System T	. By the

strong normalization Theorem 3 for T	, infinite reductions of the latter kind
cannot occur; thus neither of the former.

We have just proved the strong normalization theorem for T with the call-by-
value restriction on the datatype N. In any “practical” application (such as real-
izability, functional interpretation, program extraction from logical proofs), this
evaluation discipline is perfectly suitable. From the constructive point of view,
the call-by-value evaluation on natural numbers is even desirable. In fact, what
essentially distinguishes the constructive reading of the iteration from the clas-
sical one is that the first requires complete knowledge of the number of times a
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functional will be iterated before the actual execution of the iteration. Call-by-
value performs exactly this task: in a term Itu v t, it first completely evaluates
t to a numeral, so providing a precise account about the number of times the
function v will be called. Even if that is constructively satisfying, for the sake
of completeness we will prove strong normalization with respect to the most
general reduction strategy. This is the aim of the following section.

4.2 Strong Normalization of System T with the Strategy �→
The reduction strategy �→ is formally defined in Figure 5. Notice that the only
difference with respect to the call-by-value strategy �→v is that the term t in the
reduction rule for It is not necessarily a numeral. We define SNT to be the set
of strongly normalizable terms of T with respect to the strategy �→ and ET to
be the set of elementary terms of T with respect to the strategy �→. We observe
that it is still true that each term of T not in SNT contains a term in ET.

Reduction Strategy �→
(λx

τ
u)t �→ u[t/x

τ
]

[〈u0, u1〉]πi �→ ui, for i=0,1

Itτuv0 �→ u Itτuv(St) �→ v(Itτuvt)

ifτTrueu v �→ u ifτ Falseu v �→ v

Fig. 5. Reduction Strategy �→ for System T

One may be tempted to proceed as in the previous section, by directly sim-
ulating �→-reduction steps in T with reduction steps in T	. Unfortunately, this
is not possible. On the T	 side, in order to interpret Itu v t, one has to “guess”
the value of t by means of It	. But it can very well happen that t is open, for
example, so without value. To solve this issue, we are going to define an “almost”
reduction relation P which can instead be simulated in T	. In fact, P turns
out to be a version of

z�−→ adapted to System T, which can be proved perpetual
(Proposition 10). As a first step, we need to widen the class of numerals:

Definition 5 (Generalized Numerals). A generalized numeral is a term of
T of the form S . . . St, with t ∈ NF, t �= Su; GN is the set of generalized numerals.
If S . . . St is a generalized numeral and v occurs in the head of (v) . . . (v)u as
many times as S occurs in the prefix of SS . . .St, then (v) . . . (v)u is said to be
the expansion of Itu v (S . . .St).

We remark that one could have equivalently defined GN as the set of type-N
terms; this latter definition however does not generalized to untyped lambda
calculus, while our results probably do, with some adaptation.

As a second step, we need to define a relation P .

Definition 6 (Perpetual Relation P ). Let t /∈ SNT and s ∈ ET be a subterm
of t. We write tP u if u has been obtained from t by replacing s with an s′ such
that:
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– s = (λxτu)tt1 . . . tn =⇒ s′ = u[t/x]t1 . . . tn;
– s = [〈u0, u1〉]πit1 . . . tn =⇒ s′ = uit1 . . . tn;
– s = if True t u t1 . . . tn =⇒ s′ = tt1 . . . tn;
– s = if False t u t1 . . . tn =⇒ s′ = ut1 . . . tn;
– s = Itu v t t1 . . . tn and t �→∗ t′ ∈ GN =⇒ s′ = ((v)(v) . . . (v)u)t1 . . . tn,

where (v) . . . (v)u is the expansion of Itu v t′.

The idea behind P is to make it behave like a call-by-value strategy on N, even
when it should not be possible, by considering a term in GN as a “numeral”. In
order to show that P is perpetual, we need some technical but quite simple
results.

The following lemma states that the set of non-strongly normalizable terms
is closed w.r.t. the substitution of subterms in SNT with their normal forms.

Lemma 1. Assume t1, . . . , tn : N and t1, . . . , tn ∈ SNT. Let s1, . . . , sn : N be
such that, for all i = 1 . . . n, si is the normal form of ti. Then, given any term
u of T:

u[t1/x1, . . . , tn/xn] /∈ SNT =⇒ u[s1/x1, . . . , sn/xn] /∈ SNT

Proof. It suffices to prove that there exist terms u′, t′1, . . . , t
′
m ∈ SNT and

s′1, . . . , s
′
n such that for i = 1, . . . ,m, and

u′[t′1/x1, . . . , t
′
m/xm] /∈ SNT

and
u[s1/x1, . . . , sn/xn] �→+ u′[s′1/x1, . . . , s

′
m/xm]

where again each s′i is the normal form of t′i. Since the end terms of the two lines
above satisfy the hypothesis of the proposition, one may iterate this construction
infinitely many times and obtains an infinite reduction of u[s1/x1, . . . , sn/xn].

In order to show that, let us consider an infinite reduction of u[t1/x1, . . . ,
tn/xn]. Since t1, . . . , tn ∈ SNT, only finitely many reduction steps can be per-
formed inside them. So the infinite reduction has a first segment of the shape:

u[t1/x1, . . . , tn/xn] �→∗ u[t′1/x1, . . . , t
′
n/xn] �→ w /∈ SNT

with ti �→∗ t′i. We have now two possibilities, depending on the kind of redex
that has been contracted in order to obtain w:

1. w = u′[t′1/x1, . . . , t
′
n/xn], with u �→ u′. Then also u[s1/x1, . . . , sn/xn] �→

u′[s1/x1, . . . , sn/xn] and we are done.
2. w has been obtained from u[t′1/x1, . . . , t

′
n/xn] by reduction of a redex created

by the substitution t′i/xi. In this case, since t′1, . . . , t
′
n : N, the only possible

redex of that kind has the form (Ituvxi)[t
′
1/x1, . . . t

′
i/xi . . . t

′
n/xn], with Ituvxi

subterm of u and t′i = Stn+1. Then v is obtained by replacing

Ituvxi[t
′
1/x1, . . . t

′
i/xi . . . t

′
n/xn] = Itu′v′S(tn+1)
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with

(v′)Itu′v′tn+1 = (v)Ituvxn+1[t′1/x1, . . . t
′
i/xi . . . t

′
n/xn tn+1/xn+1]

where xn+1 is a fresh variable. If we define u′ := u[(Ituvxi) := (v)Ituvxn+1]
(i.e. u′ is obtained from u by replacing Ituvxi with (v)Ituvxn+1) we then have

v = u′[t′1/x1 . . . t
′
n/xn tn+1/xn+1]

Since si is the normal form of t′i = Stn+1, we have si = Ssn+1, where sn+1

is the normal form of tn+1. As before,

Ituvxi[s1/x1, . . . si/xi . . . sn/xn] �→ (v)Ituvxn+1[s1/x1, . . . si/xi . . . sn/xn sn+1/xn+1]

which implies u[s1/x1 . . . sn/xn] �→ u′[s1/x1, . . . si/xi . . . sn/xn sn+1/xn+1]
and we are done.

By means of Lemma 1 it is possible to prove:

Proposition 8. If (Ituvt)t1 . . . tn ∈ ET and t �→∗ t′ ∈ GN, then (Ituvt′)
t1 . . . tn ∈ ET.

Proof. By Lemma 1, applied to the terms Itu v x t1 . . . tn[t/x] and Itu v x t1 . . .
tn[t′/x] (x fresh).

Lemma 2 is similar to Lemma 1: the set of non-strongly normalizable terms can
be proved to be closed w.r.t. the substitution of subterms with their expansions.

Lemma 2. Let t1, . . . , tn, s1, . . . , sn be a sequence of terms such that for i =
1 . . . n, si is the expansion of ti and all the proper subterms of ti are in SNT.
Then given any term u of T,

u[t1/x1, . . . , tn/xn] /∈ SNT =⇒ u[s1/x1, . . . , sn/xn] /∈ SNT

Proof. It suffices to prove that there exist terms u′ and t′1, . . . , t
′
m, s′1, . . . , s

′
m

such that for i = 1, . . . ,m, s′i is the expansion of t′i, all the strict subterms of t′i
are in SNT and

u′[t′1/x1, . . . , t
′
m/xm] /∈ SNT and

u[s1/x1, . . . , sn/xn] �→+ u′[s′1/x1, . . . , s
′
m/xm]

Since the end terms of the two lines above satisfy the hypothesis of the propo-
sition, one may iterate this construction infinite times and obtains an infinite
reduction of u[s1/x1, . . . , sn/xn].

In order to show that, let us consider an infinite reduction of u[t1/x1, . . . ,
tn/xn]. By definition 5, ti = Itui vi ni, for some ui, vi and generalized numeral
ni. Since ui, vi ∈ SNT, only finitely many reduction steps can be performed inside
them. So the infinite reduction has a first segment of the shape:

u[t1/x1, . . . , tn/xn] �→∗ u[t′1/x1, . . . , t
′
n/xn] �→ v /∈ SNT

with t′i = Itu′
i v

′
i ni and ui �→∗ u′

i, vi �→∗ v′i. We have now two possibilities,
depending on the kind of redex that has been contracted in order to obtain v
(we notice that it must be already in u or in some t′i):
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1. v = u′[t′1/x1, . . . , t
′
n/xn], with u �→ u′. Let now, for i = 1, . . . , n, s′i be the

expansion of t′i. Then

si = (vi) . . . (vi)ui �→∗ (v′i) . . . (v
′
i)u

′
i = s′i

Therefore u[s1/x1, . . . , sn/xn] �→+ u′[s′1/x1, . . . , s
′
n/xn] and we are done.

2. v has been obtained from u[t′1/x1, . . . , t
′
n/xn] by replacing one of the occur-

rences of t′i = Itu′
i v

′
i ni with (v′i)Itu

′
i v

′
i mi (assuming that ni = Smi). Let

t′n+1 := Itu′
i v

′
i mi. Then there exists a term u′ (obtained from u by replacing

a suitable occurrence of xi with (v′i)xn+1, where xn+1 fresh) such that

v = u′[t′1/x1, . . . , t
′
n/xn t′n+1/xn+1]

Let now, for i = 1, . . . , n + 1, s′i be the expansion of t′i. We want to show
that

u[s1/x1, . . . , sn/xn] �→+ u′[s′1/x1, . . . , s
′
n/xn s′n+1/xn+1]

As before, u[s1/x1, . . . , sn/xn] �→∗ u[s′1/x1, . . . , s
′
n/xn]. Moreover, since s′i is

the expansion of Itu′
i v

′
i Smi and s′n+1 is the expansion of Itu′

i v
′
i mi, we have

s′i = (v′i)s
′
n+1. Therefore

xi[s
′
i/xi] = s′i = (v′i)s

′
n+1 = (v′i)xn+1[s′n+1/xn+1]

and thus

u[s′1/x1, . . . , s
′
n/xn] = u′[s′1/x1, . . . , s

′
n/xn s′n+1/xn+1]

which concludes the proof.

The set ET is closed w.r.t. the expansion of a head It redex of an elementary
term:

Proposition 9. Suppose that s′ is the expansion of s. Then

st1 . . . tn ∈ ET =⇒ s′t1 . . . tn ∈ ET

Proof. By Lemma 2, applied to xt1 . . . tn[s/x] and xt1 . . . tn[s′/x] (x fresh).

Finally, the perpetuality of P follows from Propositions 8 and 9.

Proposition 10 (Perpetuality of P ). If t /∈ SNT and tP u, then u /∈ SNT.

Proof. Assume u is obtained from t by replacing an elementary subterm s of u
with s′; we show that s′ /∈ SNT. The only case not covered by a straightforward
adaptation of Proposition 2 is the one in which s = Itu v t t1 . . . tn and t �→∗

t′ ∈ GN =⇒ s′ = ((v)(v) . . . (v)u)t1 . . . tn, where (v) . . . (v)u is the expansion of
Ituvt′. Now, by Proposition 8, we obtain that Ituvt′ is elementary; by Proposition
9, we obtain that ((v)(v) . . . (v)u)t1 . . . tn is elementary too.

The perpetual relation P is simulated in T	 by means of the translation ∗.

Proposition 11 (Simulation of the Perpetual relation in T	). Let v be
any term of T. Then vP w =⇒ v∗ �→+ w∗.
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Proof. The proof is the same as that of proposition 7.

We are now able to prove the Strong Normalization Theorem for T:

Theorem 5 (Strong Normalization for System T). Every term t of Gödel’s
System T is strongly normalizable with respect to the relation �→.

Proof. Suppose for the sake of contradiction that t /∈ SNT. By Proposition 10,
there is an infinite sequence of terms t = t1, t2, . . . , tn, . . . in System T such that
for all i, ti P ti+1. By Proposition 11 that gives rise to an infinite reduction
t∗ = t∗1, t

∗
2, . . . , t

∗
n, . . . in System T	. By the strong normalization Theorem 3 for

T	, infinite reductions of the latter kind cannot occur: contradiction.

5 Conclusions and Related Works

Most of the proofs in this paper are intuitionistic. We remark however that our
proof of the Characterization Theorem 2 is classical, since the excluded middle
is used in a crucial way to prove Proposition 1. But this is not an issue: it is
nowadays well-known how to interpret constructively classical proofs, especially
when so limited a use of classical reasoning is made. One may thus obtain, by
using classical realizabilities [12] or functional interpretations [19], non-trivial
programs providing arbitrarily long approximations of the sequence of terms
proved to exists in the Characterization Theorem. The same considerations apply
to the proofs of the strong normalization theorems: it is possible to extract
directly from them normalization algorithms (giving a nice case study in the
field of program-extraction from classical proofs).

Our proofs of strong normalizations bear similarities with others. In [22], the
iterator Itτ is translated as the infinite term

λxτλf τ→τλnN. 〈x, (f)x, (f)(f)x, (f)(f)(f)x, . . .〉n

and a weak normalization theorem is proven with respect to the new infinite
calculus. On our side, the use of the non-deterministic operator It	 clearly allows
to simulate that infinite term. On a first thought, the move may not seem a big
deal, but, surprisingly, the gain is considerable. First, one radically simplifies
Tait’s calculus by avoiding infinite terms. Secondly, the Characterization Theo-
rem for Λ	 and T	 does not hold for Tait’s infinite calculus, since this latter does
not enjoy its main corollary, strong normalization (an infinite term may contain
infinite redexes). Last, with our technique we obtain strong normalization for T.

Our work has also some aspects in common with the technique of Joachimski-
Matthes [14], which provides an adaptation of the technique in [18] that works
for the lambda formulation of System T. For example, our use of generalized
numerals is similar to the evaluation function of [14] used to inject Ω in SN.
Indeed, we consider our work to be a refinement and an extension to an untyped
setting of the methods of [18,14]. In fact, we claim to be also able to prove
the strong normalization theorem for System T	 directly, in a Van Daalen style
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(see also [4]). In other words, one can simplify both our proof for T (call-by-
value) and the one in [14] by avoiding to reason on a inductively defined set of
“SN” terms and instead use a triple induction. This is possible since the non-
deterministic reduction relation of T	 allows to express in a natural way a heavy
inductive load, which is performed in [18,14] by defining a set of “regular” terms
and the set “SN” by an omega-rule. Indeed, we believe that the idea of using
non-determinism to simplify the study of strong normalization can be applied
in other situations as well: we shall show that in future papers. Moreover, our
technique makes explicit as a perpetual reduction the “reduction” hidden in
the family of proofs in [18,20,14]. This enables not only to prove normalization,
but also to increase the qualitative understanding of non-termination in lambda
calculus with explicit recursion and to explain why it is avoided in the typed
version. As for [1], we consider our extension of the Characterization Theorem
from lambda calculus to T	 as a genuine advancement: for quite a while, such
a generalization seemed hopeless for a system which can simulate in a so direct
way System T.
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Abstract. Pitts and Stark’s ν-calculus is a paradigmatic total language for study-
ing the problem of contextual equivalence in higher-order languages with name
generation. Models for the ν-calculus that validate basic equivalences concern-
ing names may be constructed using functor categories or nominal sets, with a
dynamic allocation monad used to model computations that may allocate fresh
names. If recursion is added to the language and one attempts to adapt the
models from (nominal) sets to (nominal) domains, however, the direct-style con-
struction of the allocation monad no longer works. This issue has previously
been addressed by using a monad that combines dynamic allocation with
continuations, at some cost to abstraction.

This paper presents a direct-style model of a ν-calculus-like language with re-
cursion using the novel framework of proof-relevant logical relations, in which
logical relations also contain objects (or proofs) demonstrating the equivalence
of (the semantic counterparts of) programs. Apart from providing a fresh solu-
tion to an old problem, this work provides an accessible setting in which to intro-
duce the use of proof-relevant logical relations, free of the additional complexities
associated with their use for more sophisticated languages.

1 Introduction

Reasoning about contextual equivalence in higher-order languages that feature dynamic
allocation of names, references, objects or keys is challenging. Pitts and Stark’s ν-
calculus boils the problem down to its purest form, being a total, simply-typed lambda
calculus with just names and booleans as base types, an operation new that gener-
ates fresh names, and equality testing on names. The full equational theory of the
ν-calculus is surprisingly complex and has been studied both operationally and deno-
tationally, using logical relations [16,11], environmental bisimulations [6] and nominal
game semantics [1,17].

Even before one considers ‘exotic’ equivalences, there are two basic equivalences
that hold for essentially all forms of generativity:

(let x⇐new in e) = e, provided x is not free in e. (Drop)
(let x⇐new in let y⇐new in e) = (let y⇐new in let x⇐new in e) (Swap).

The (Drop) equivalence says that removing the generation of unused names preserves
behaviour; this is sometimes called the ‘garbage collection’ rule. The (Swap) equiva-
lence says that the order in which names are generated is immaterial. These two equa-
tions also appear as structural congruences for name restriction in the π-calculus.

M. Hasegawa (Ed.): TLCA 2013, LNCS 7941, pp. 48–60, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Denotational models for the ν-calculus validating (Drop) and (Swap) may be con-
structed using (pullback-preserving) functors in SetW, where W is the category of sets
and injections [16], or in FM-sets [10]. These models use a dynamic allocation monad
to interpret possibly-allocating computations. One might expect that moving to CpoW

or FM-cpos would allow such models to adapt straightforwardly to a language with
recursion, and indeed Shinwell, Pitts and Gabbay originally proposed [15] a dynamic
allocation monad over FM-cpos. However, it turned out that the underlying FM-cppo
of such monad does not have least upper bounds for all finitely-supported chains. A
counter-example is given in Shinwell’s thesis [13, page 86]. To avoid the problem, Shin-
well and Pitts subsequently [14] moved to an indirect-style model, using a continuation

monad [11]: (−)��
de f
= (− → 1⊥) → 1⊥ to interpret computations. In particular, one

shows that two programs are equivalent by proving that they co-terminate in any con-
text. The CPS approach was also adopted by Benton and Leperchey [7] for modelling
a language with references.

In the context of our on-going research on the semantics of effect-based program
transformations [5], we have been developing proof-relevant logical relations [3]. These
interpret types not merely as partial equivalence relations, as is commonly done, but
as a proof-relevant generalization thereof: setoids. A setoid is like a category all of
whose morphisms are isomorphisms (a groupoid) with the difference that no equations
between these morphisms are imposed. The objects of a setoid establish that values in-
habit semantic types, whilst its morphisms are understood as explicit proofs of semantic
equivalence. This paper shows how we can use proof-relevant logical relations to give a
direct-style model of a language with name generation and recursion, validating (Drop)
and (Swap). Apart from providing a fresh approach to an old problem, our aim in do-
ing this is to provide a comparatively accessible presentation of proof-relevant logical
relations in a simple setting, free of the extra complexities associated with specialising
them to abstract regions and effects [3].

Section 2 sketches the language with which we will be working, and a naive ‘raw’
domain-theoretic semantics for it. This semantics does not validate interesting equiva-
lences, but is adequate. By constructing a realizability relation between it and the more
abstract semantics we subsequently introduce, we will be able to show adequacy of the
more abstract semantics. In Section 3 we introduce our category of setoids; these are
predomains where there is a (possibly-empty) set of ‘proofs’ witnessing the equality
of each pair of elements. We then describe pullback-preserving functors from the cate-
gory of worlds W into the category of setoids. Such functors will interpret types of our
language in the more abstract semantics, with morphisms between them interpreting
terms. The interesting construction here is that of a dynamic allocation monad over the
category of pullback-preserving functors. Section 4 shows how the abstract semantics
is defined and related to the more concrete one. Section 5 then shows how the semantics
may be used to establish equivalences involving name generation.

2 Syntax and Semantics

We work with an entirely conventional CBV language, featuring recursive functions and
base types that include names, equipped with equality testing and fresh name generation
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(here + is just a representative operation on integers):

τ := int | bool | name | τ→ τ′
v := x | b | i | rec f x = e

e := v | v + v′ | v = v′ | new | let x⇐e in e′ | v v′

if v then e else e′

Γ := x1 : τ1, . . . , xn : τn

There are typing judgements for values, Γ � v : τ, and computations, Γ � e : τ,
defined as usual. In particular, Γ � new : name. We define a simple-minded concrete
denotational semantics �·� for this language using predomains and continuous maps.
For types we take

�int� = Z �bool� = B �name� = N
�τ→ τ′� = �τ�→ (N→ N × �τ′�)⊥
�x1 : τ1, . . . , xn : τn� = �τ1� × · · · × �τn�

and there are then conventional clauses defining

�Γ � v : τ� : �Γ�→ �τ� and
�Γ � e : τ� : �Γ�→ (N→ N × �τ�)⊥

Note that this semantics just uses naturals to interpret names, and a state monad over
names to interpret possibly-allocating computations. For allocation we take

�Γ � new : name�(η) = [λn.(n + 1, n)]

returning the next free name and incrementing the name supply. This semantics vali-
dates no interesting equivalences involving names, but is adequate for the obvious op-
erational semantics. Our more abstract semantics, �·�, will be related to �·� in order to
establish its adequacy.

3 Proof-Relevant Logical Relations

We define the category of setoids as the exact completion of the category of predomains,
see [9,8]. We give here an elementary description using the language of dependent
types. A setoid A consists of a predomain |A| and for any two x, y ∈ |A| a set A(x, y) of
“proofs” (that x and y are equal). The set of triples {(x, y, p) | p ∈ A(x, y)}must itself be a
predomain and the first and second projections must be continuous. Furthermore, there
are continuous functions rA : Πx ∈ |A|.A(x, x) and sA : Πx, y ∈ |A|.A(x, y)→ A(y, x) and
tA : Π x, y, z.A(x, y)×A(y, z)→ A(x, z), witnessing reflexivity, symmetry and transitivity;
note that no equations between these are imposed.

We should explain what continuity of a dependent function like t(−,−) is: if (xi)i and
(yi)i and (zi)i are ascending chains in A with suprema x, y, z and pi ∈ A(xi, yi) and qi ∈
A(yi, zi) are proofs such that (xi, yi, pi)i and (yi, zi, qi)i are ascending chains, too, with
suprema (x, y, p) and (y, z, q) then (xi, zi, t(pi, qi)) is an ascending chain of proofs (by
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monotonicity of t(−,−)) and its supremum is (x, z, t(p, q)). Formally, such dependent
functions can be reduced to non-dependent ones using pullbacks, that is t would be a
function defined on the pullback of the second and first projections from {(x, y, p) | p ∈
A(x, y)} to |A|, but we find the dependent notation to be much more readable. If p ∈
A(x, y) we may write p : x ∼ y or simply x ∼ y. We also omit | − | wherever appropriate.
We remark that “setoids” also appear in constructive mathematics and formal proof,
see e.g., [2], but the proof-relevant nature of equality proofs is not exploited there and
everything is based on sets (types) rather than predomains. A morphism from setoid A
to setoid B is an equivalence class of pairs f = ( f0, f1) of continuous functions where
f0 : |A| → |B| and f1 : Πx, y ∈ |A|.A(x, y)→ B( f0(x), f0(y)). Two such pairs f , g : A→ B
are identified if there exists a continuous function μ : Πa ∈ |A|.B( f (a), g(a)).

Proposition 1. The category of setoids is cartesian closed; moreover, if D is a setoid
such that |D| has a least element⊥ and there is also a least proof⊥ ∈ D(⊥,⊥) then there
is a morphism of setoids Y : [D→ D]→ D satisfying the usual fixpoint equations.

Definition 1. A setoid D is discrete if for all x, y ∈ D we have |D(x, y)| ≤ 1 and
|D(x, y)| = 1 ⇐⇒ x = y.

Thus, in a discrete setoid proof-relevant equality and actual equality coincide and more-
over any two equality proofs are actually equal (proof irrelevance).

3.1 Pullback Squares

Pullback squares are a central notion in our framework. As it will become clear later,
they are the “proof-relevant” component of logical relations. Recall that a morphism u
in a category is a monomorphism if ux = ux′ implies x = x′ for all morphisms x, x′. A
commuting square xu = x′u′ of morphisms is a pullback if whenever xv = x′v′ there is
unique t such that v = ut and v′ = u′t. This can be visualized as follows:

w

w

x ������
w′

x′�����

w u′
������u

������

We write �x x′
u u′ or w �x x′

u u′w
′ (when w(′) = dom(x(′))) for such a pullback square. We

call the common codomain of x and x′ the apex of the pullback, written w, while the
common domain of u, u′ is the low point of the square, written w. A pullback square
xu = x′u′ is minimal if whenever f x = gx and f x′ = gx′ then f = g, in other words,
x and x′ are jointly epic. A pair of morphisms u, u′ with common domain is a span, a
pair of morphisms x, x′ with common codomain is a co-span. A category has pullbacks
if every co-span can be completed to a pullback square.

In our more general treatment of proof-relevant logical relations for reasoning about
stateful computation [3], we treat worlds axiomatically, defining a category of worlds
to be a category with pullbacks in which every span can be completed to a minimal
pullback square, and all morphisms are monomorphisms. That report gives various use-
ful examples, including ones built from PERs on heaps. For the simpler setting of this
paper, however, we fix on one particular instance:
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Definition 2 (Category of worlds). The category of worlds W has finite sets of natural
numbers as objects and injective functions for morphisms.

An object w of W is a set of generated/allocated names, with injective maps correspond-
ing to renamings and extensions with newly generated names.

Given f : X → Z and g : Y → Z forming a co-span in W, we form their pullback as

X
f−1

←−− f X ∩ gY
g−1

−−→ Y. This is minimal when f X ∪ gY = Z. Conversely, given a span

Y
f←− X

g−→ Z, we can complete to a minimal pullback by

(Y \ f X) � f X
[in1,in3◦ f−1]−−−−−−−−−→ (Y \ f X) + (Z \ gX) + X

[in2,in3◦g−1]←−−−−−−−−− (Z \ gX) � gX

where [−,−] is case analysis on the disjoint union Y = (Y \ f X) � f X. Thus a minimal
pullback square in W is of the form:

X′1 ∪ X′2

X1 � X′1

x ������
X2 � X′2

x′������

X′1 ∩ X′2
u′
������u

������

Such a minimal pullback corresponds to a partial bijection between X1 and X2, as used
in other work on logical relations for generativity [12,4]. We write u : x ↪→ y to mean
that u is a subset inclusion and note that if we have a span u, u′ then we can choose x, x′
so that �x x′

u u′ is a minimal pullback and x′ is an inclusion, too. To do that, we simply
replace the apex of any minimal pullback completion with an isomorphic one. The
analogous property holds for completion of co-spans to pullbacks.

Definition 3. Two pullbacks w �x x′
u u′w

′ and w �y y′
v v′w

′ are isomorphic if there is an iso-
morphism f between the two low points of the squares so that v f = u and v′ f = u′, thus
also u f −1 = v and u′ f −1 = v′.

Lemma 1. If w,w′,w′′ ∈ W, if w �x x′
u u′w

′ and w′ �y y′
v v′w

′′ are pullback squares as indi-

cated then there exist z, z′, t, t′ such that w �zx z′y′
ut v′t′w

′′ is also a pullback.

Proof. Choose z, z′, t, t′ in such a way that �z z′
x′ y and �u′ v

t t′ are pullbacks. The verifica-
tions are then an easy diagram chase.

We write r(w) for w �1 1
1 1w and s( �x x′

u u′ ) = �x′ x
u′ u and t( �x x′

u u′ , �
y y′
v v′) = �zx ut

z′y′ v′t′ where
z, z′, t, t′ are given by Lemma 1 (which requires choice).

Lemma 2. A pullback square �x x′
u u′ in W is isomorphic to t( �x 1

1 x, �
1 x′

x′ 1 ).

3.2 Setoid-Valued Functors

A functor A (actually a pseudo functor) from the category of worlds W to the category of
setoids comprises as usual for each w ∈W a setoid Aw and for each u : w→ w′ a mor-
phism of setoids Au : Aw→ Aw′ preserving identities and composition; for an identity
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morphism id, a continuous function of type Πa.Aw(a, (Aid) a); and for two morphisms
u : w→ w1 and v : w1 → w2 a continuous function of type Πa.Aw2(Av(Au a), A(vu) a).

If u : w → w′ and a ∈ Aw we may write u.a or even ua for Au(a) and likewise for
proofs in Aw. Note that there is a proof of equality of (uv).a and u.(v.a).

In the sequel, we shall abbreviate these setoid-valued (pseudo-)functors as s.v.f.
Intuitively, s.v.f. will become the denotations of value types and computations. Thus,

an element of Aw represents values involving the names in w. If u : w → w1 then
Aw � a �→ u.a ∈ Aw1 represents renaming and possible weakening by names not “actu-
ally” occurring in a. Note that due to the restriction to injective functions identification
of names (“contraction”) is precluded. This is in line with Stark’s use of set-valued
functors on the category W to model fresh names.

Definition 4. We call a functor A pullback-preserving (s.v.f.) if for every pullback
square w �x x′

u u′w
′ with apex w and low point w the diagram Aw �Ax Ax′

Au Au′Aw′ is a pullback
in Std. This means that there is a continuous function of type

Πa ∈ Aw.Πa′ ∈ Aw′.Aw(x.a, x′.a′)→ Σa ∈ Aw.Aw(u.a, a) × Aw′(u′.a, a′)

Thus, if two values a ∈ Aw and a′ ∈ Aw′ are equal in a common world w then this can
only be the case because there is a value in the “intersection world” w from which both
a, a′ arise.

All the s.v.f. that we define in this paper will turn out to be pullback-preserving.
However, for the results described in this paper pullback preservation is not needed.
Thus, we will not use it any further, but note that there is always the option to require
that property should the need arise subsequently.

Lemma 3. If A is a s.v.f., u : w → w′ and a, a′ ∈ Aw, there is a continuous function
Aw′(u.a, u.a′) → Aw(a, a′). Moreover, the “common ancestor” a of a and a′ is unique
up to ∼.

Note that the ordering on worlds and world morphisms is discrete so that continuity
only refers to the Aw′(u.a, u.a′) argument.

Definition 5 (Morphism of functors). If A, B are s.v.f., a morphism from A to B is a
pair e = (e0, e1) of continuous functions where e0 : Πw.Aw→ Bw and e1 : Πw.Πw′.Π x:
w → w′.Πa ∈ Aw.Πa′ ∈ Aw′.Aw′(x.a, a′) → Bw′(x.e0(a), e0(a′)). A proof that mor-
phisms e, e′ are equal is given by a continuous function μ : Πw.Πa ∈ Aw.Bw(e(a), e′(a)).

These morphisms compose in the obvious way and so the s.v.f. and morphisms between
them form a category.

3.3 Instances of Setoid-Valued Functors

We now describe some concrete functors that will allow us to interpret types of the ν-
calculus as s.v.f. The simplest one endows any predomain with the structure of a s.v.f.
where the equality is proof-irrelevant and coincides with standard equality. The second
one generalises the function space of setoids and is used to interpret function types. The
third one is used to model dynamic allocation and is the only one that introduces proper
proof-relevance.



54 N. Benton, M. Hofmann, and V. Nigam

Constant Functor. Let D be a predomain. Then the s.v.f. over this domain, written also
as D, has D itself as underlying set (irrespective of w), i.e., Dw = D and Dw(d, d′) is
given by a singleton set, say, {�} if d = d′ and is empty otherwise.

Names. The s.v.f. N of names is given by Nw = w where w on the right hand side stands
for the discrete setoid over the discrete cpo of locations in w. Thus, e.g. N{1, 2, 3} =
{1, 2, 3}.

Product. Let A and B be s.v.f. The product A× B is the s.v.f. given as follows. We have
(A × B)w = Aw × Bw (product predomain) and (A × B)w((a, b), (a′, b′)) = Aw(a, a′) ×
Bw(b, b′). This defines a cartesian product on the category of s.v.f. More generally, we
can define indexed products

∏
i∈I Ai of a family (Ai)i of s.v.f.

Function Space. Let A and B be s.v.f. The function space A ⇒ B is the s.v.f. given as
follows. We have (f0, f1) ∈ (A⇒ B)w when f0 has type Πw1Πu : w→ w1.Aw1 → Bw1,
that is, it takes a morphism u : w → w1 and an object in Aw1 and returns an object in
Bw1. The second component, f1, which takes care of proofs is a bit more complicated,
having type:

Πw1.Πw2.Πu : w→ w1.Πv : w1 → w2.Πa ∈ Aw1.Πa′ ∈ Aw2.
Aw2(v.a, a′)→ Bw2(v.f0(u, a), f0(vu, a′))

Intuitively, the definition above encompasses two desired properties. The first one is
when v is instantiated as the identity yielding a function of mapping proofs in Aw1 to
proofs in Bw1:

Πw1.Πu : w→ w1.Πa ∈ Aw1.Πa′ ∈ Aw1.Aw1(a, a′)→ Bw1(f0(u, a), f0(u, a′))

We note that, since A is only a pseudo functor we must compose with a proof that
id. f0(u, a) equals f0(u, a).

The second desired property is that the proof in Bw2 can be achieve either by obtain-
ing an object, f0(vu, a′), the directly from Aw2, or by first obtaining an object f0(u, a) in
Bw1 and then taking it to Bw2 by using v.

Definition 6. A s.v.f. A is discrete if Aw is a discrete setoid for every world w.

The constructions presented so far only yield discrete s.v.f., i.e., proof relevance is
merely propagated but never actually created. This is not so for the next operator on
s.v.f. which is to model dynamic allocation.

Dynamic Allocation Monad. Finally, the third instantiation is the dynamic allocation
monad T . For natural number n let us write [n] for the set {1, . . . , n}.

Let A be a s.v.f., then the elements of (T A)w are again pairs (c0, c1) where c0 is of
type

Πn ∈ {n | [n] ⊇ w}.(Σw1.I(w,w1) × Aw1 × {n1 | [n1] ⊇ w1})⊥
where I(w,w1) is the set of inclusions u : w ↪→ w1 and such that either c0(n) = ⊥ for
all n such that [n] ⊇ w or else c0(n) � ⊥ for all such n. The naturals n and n1 represent
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concrete allocator states, whilst w and w1 are smaller sets of names on which values
actually depend.

The second component c1 assigns to any two n, n′ with [n] ⊇ w, [n′] ⊇ w where
c0(n) = (w1, u, v, n1) and c0(n′) = (w′1, u

′, v′, n′1) a co-span x, x′ such that xu = x′u′ and
a proof p ∈ Aw(x.v, x′.v′) with w the apex of the co-span.

The ordering on (T A)w is given by (c0, c1) � (c′0, c
′
1) just when c0 � c′0 in the natural

componentwise fashion (the second components are ignored).
A proof in T Aw((c0, c1), (c′0, c

′
1)) is defined analogously. For any n such that [n] ⊇ w

it must be that c0(n) = ⊥ ⇐⇒ c′0(n) = ⊥ (otherwise there is no proof) and if
c0(n) = (w1, u, v, n1) and c′0(n) = (w′1, u

′, v′, n′1) then the proof must assign a co-span
x, x′ such that xu = x′u′ and a proof p ∈ Aw(x.v, x′.v′) with w the apex of the co-span.
If c0(n) = c′0(n) = ⊥ then the proof is trivial (need not return anything).

To make T A a pseudo-functor, we also have to give its action on morphisms. Assume
that u : w→ q is a morphism in W. We want to construct a morphism (T A)u : (T A)w→
(T A)q in Std, so assume (c0, c1) ∈ (T A)w and [m] ⊇ q. We let n be the largest element of
w, an arbitrary choice ensuring [n] ⊇ w. If c0(n) = ⊥, then define d0(m) = ⊥ too. Oth-
erwise c0(n) = (w1, i : w ↪→ w1, v, n1), and we define d0(m) = (q1, i′, u1.v,m1) where
q1, i′ : q ↪→ q1 and u1 : w1 → q1 are chosen to make q �i

′ u1
u i w1 a minimal pullback,

and m1 is (again arbitrarily) the largest element of q1. We then take (T A)(u)(c0, c1) to
be (d0, d1), where d1 just has to return identity co-spans. This specifies how the functor
T A transports objects from w to q using the morphism u.

The following diagram illustrates how an equality proof in T A((c0, c1), (c′0, c
′
1)) is

transported to an equality proof in T A(u(c0, c1), u(c′0, c
′
1)).

w
u �� q

w′1

������
u′1 �� q′1

��				

w1

		








u1

�� q1

���



���

w
��

����������������

��

u
�� q

��

��

��

Here w1�w′1 and q1�q′1 are pullback squares. It is easy to check how the morphisms
u1, u′1 and u are constructed. Then we can take the values a and a′ in Aw1 and Aw′1 and
the proof p in Aw to the pullback square q1�q′1, by using u1, u′1 and u, i.e., u1.a ∈ Aq1,
u′1.a

′ ∈ Aq′1 and u.p ∈ Aq.
The following is direct from the definitions.

Proposition 2. T is a monad on the category of s.v.f.; the unit sends v ∈ Aw to (w, idw,
v, n) ∈ (T A)w and the multiplication sends (w1, u, (w2, v, v, n2), n1) ∈ (TT A)w to (w2,
vu, v, n2) ∈ T Aw. If μ : A → B then Tμ : T A → T B at world w sends (w1, u, v, n1) ∈
T Aw to (w1, u, μu(v), n1) ∈ T Bw.

Comparison with FM domains. It is well-known that Gabbay-Pitts FM-sets [10] are
equivalent to pullback-preserving functors from our category of worlds W to the cat-
egory of sets. Likewise, Pitts and Shinwell’s FM-domains are equivalent to pullback
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preserving functors from W to the category of domains, thus corresponding exactly to
the pullback-preserving discrete s.v.f.

As mentioned in the introduction, Mark Shinwell discusses a flawed attempt at defin-
ing a name allocation monad on the category of FM-domains which when transported
along the equivalence between FM-domains and discrete s.v.f. would look as follows:
Given a discrete s.v.f. A and world w define S Aw as the set of triples (w1, u, v) where
u : w ↪→ w1 and v ∈ Aw1 modulo the equivalence relation generated by the identifica-
tion of (w1, u, v) with (w′1, u

′, v′) if there exists a co-span v, v′ such that vu = v′u′ and
v.v = v′.v′.

As for the ordering, the only reasonable choice is to decree that on representatives
(w1, u, v) ≤ (w′1, u

′, v′) if v.v ≤ v′.v′ for some co-span v, v′ with vu = v′u′. However,
while this defines a partial order it is not clear why it should have suprema of ascending
chains and indeed, Shinwell’s thesis [13] contains a concrete counterexample.

We also remark that this construction does work if we work with sets rather than
predomains and thus do not need orderings or suprema. However, the exact completion
of the category sets being equivalent to the category of sets itself is not very surprising.

The previous solution to this conundrum was to move to a continuation-passing style
semantics or, equivalently, to use ��-closure. Intuitively, rather than quantifying exis-
tentially over sets of freshly allocated names, one quantifies universally over continua-
tions, which has better order-theoretic properties. Using continuations, however, makes
the derivation of concrete equivalences much more difficult and in some cases we still
do not know whether it is possible at all.

4 Observational Equivalence and Fundamental Lemma

We now construct the machinery that connects the concrete language with the deno-
tational machinery introduced in Section 2. In particular, we define the semantics of
types, written using �·�, as s.v.f. inductively as follows:

– For basic types �τ� is the corresponding discrete s.v.f..
– �τ→ τ′� is defined as the function space �τ� → T�τ�, where T is the dynamic

allocation monad.
– For typing contextΓ we define �Γ� as the indexed product of s.v.f.

∏
x∈dom(Γ)�Γ(x)�.

To each term in context Γ � e : τ we can associate a morphism �e� from �Γ� to T�τ�
by interpreting the syntax in the category of s.v.f. using cartesian closure and the fact
that T is a monad. We omit the straightforward but perhaps slightly tedious definition
and only give the clause for “new” here:

�new �w(n) = (w ∪ {n + 1}, u, n + 1, n + 1)

Here u : w ↪→ w ∪ {n + 1} is the inclusion. Note that since [n] ⊇ w we have n + 1 � w.
Our aim is now to relate these morphisms to the computational interpretation �e�.
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Definition 7. For each type τ and world w we define a relation �τw⊆ �τ� × �τ�w:

b �boolw b ⇐⇒ b = b
i �intw i ⇐⇒ i = i
l �namew k ⇐⇒ l = k
f �τ→τ′w g ⇐⇒ ∀w1.∀u : w ↪→ w1.∀v v.v �τw1

v⇒ f (v) �Tτ′
w1

g0(u, v)

c �Tτ
w c ⇐⇒ ∀n.w ⊆ [n]⇒ (c(n) = ⊥ ⇔ c(n) = ⊥) ∧

(c(n) = (w1, u : w ↪→ w1, v, n1) ∧ c(n) = (n′1, v)⇒ n1 = n′1 ∧ v �τw1
v)).

The realizability relation for the allocation monad thus specifies that the abstract com-
putation c is related to the concrete computation c at world w if they co-terminate, and
if they do terminate then the resulting values are also related.

The following is a direct induction on types.

Lemma 4. If u : w ↪→ w1 is an inclusion as indicated and v �τw v then v �τw1
u.v, too.

We extend � to typing contexts by putting

η �Γw γ ⇐⇒ ∀x ∈ dom(Γ).η(x) �Γ(x)
w γ(x)

for η ∈ �Γ� and γ ∈ �Γ�.
Theorem 1 (Fundamental lemma). If Γ � e : τ then whenever η �Γw γ then �e�η �Tτ

w
�e�(γ).

Proof. By induction on typing rules.
The most interesting case is for the let case: Assume that Γ � let x⇐e1in e2 : τ2,

where Γ � e1 : τ1 and Γ, x : τ1 � e2 : τ2. Moreover, assume that η �Γw γ, where w is an
initial world and that (H1) �e1�η �

Tτ1
w �e1�(γ) and (H2) �e2�(η, x) �Tτ2

w1
�e2�(γ, �x�) for

all x �τ1
w �x� and world extension w1, that is, a world for which there is an inclusion u :

w ↪→ w1. We define �let x⇐e1 in e2�(w)(γ)(n) for some n where w ⊆ [n] as follows:
If �e1�w(γ)(n) = (w1, u1 : w ↪→ w1, v1, n1) and that �e2�w1(γ, v1)(n1) = (w2, u2 : w1 ↪→
w2, v2, n2). Then

�let x⇐e1 in e2�(w)(γ)(n) = (w2, u2u1 : w ↪→ w2, v2, n2).

Otherwise �let x⇐e1 in e2�(w)(γ)(n) = ⊥ if �e1�w(γ)(n) = ⊥ or if �e1�w(γ)(n) =
(w1, u1 : w ↪→ w1, v1, n1), but �e2�w1(γ, v1)(n1) = ⊥.

We only show the case where �let x⇐e1 in e2�(w)(γ)(n) is different from ⊥. The
other cases are straighforward. Assume that �e1�η(n) = (v1, n′1). From (H1), we have
n′1 = n1 and that v1 �

τ1
w1

v1. Thus from Lemma 4, we have η, v1 �
τ1
w1
γ, v1. Now, assume

that �e2�(η, v1)(n1) = (v2, n′2). Thus from (H2), we have that n2 = n′2 and that v2 �
τ2
w2

v2. This finishes the proof, as it is enough to conclude that �let e1⇐e2 in �η �Tτ2
w

�let e1⇐e2 in �γ.

It is now possible to validate a number of equational rules on the level of the setoid
semantics �−� including transitivity, βη, fixpoint unrolling, and congruence rules. We
omit the definition of such an equational theory here and refer to [3] for details on how
this could be set up. As we now show equality on the level of the setoid semantics
entails observational equivalence on the level of the raw denotational semantics.
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4.1 Observational Equivalence

Definition 8. Let τ be a type. We define an observation of type τ as a closed term
� o : τ → bool. Two values v, v′ ∈ �τ� are observationally equivalent at type τ if for
all observations o of type τ one has that �o�(v)(0) is defined iff �o�(v′)(0) is defined
and when �o�(v)(0) = (n1, v1) and �o�(v′)(0) = (n′1, v

′
1) then v1 = v′1.

We now show how the proof-relevant semantics can be used to deduce observational
equivalences.

Theorem 2 (Observational equivalence). If τ is a type and v �τ∅ e and v′ �τ∅ e′ with
e ∼ e′ in �τ�∅ then v and v′ are observationally equivalent at type τ.

Proof. Let o be an observation at type τ. By the Fundamental Lemma (Theorem 1) we
have �o� �τ→bool∅ �o�.

Now, since e ∼ e′ we also have �o�(e) ∼ �o�(e′) and, of course, �o�(v) �Tbool
∅ �o�(e)

and �o�(v′) �Tbool
∅ �o�(e′).

From �o�(e) ∼ �o�(e′) we conclude that either �o�(e)(0) and �o�(e′)(0) both diverge
in which case the same is true for �o�(v)(0) and �o�(v′)(0) by definition of �Tτ. Sec-
ondly, if �o�(e)(0)) = ( , , b, ) and �o�(e′)(0)) = ( , , b′, ) for booleans b, b′ then, by
definition of ∼ at �Tτ� we get b = b′ and, again by definition of �Tτ this then implies
that �o�(v)(0) = ( , b) and �o�(v)(0) = ( , b′) with b = b′, hence the claim.

5 Direct-Style Proofs

We now have enough machinery to provide a direct-style proofs for equivalences in-
volving name generation.

Drop equation. We start with the following equation, which allows to eliminate a
dummy allocation:

c = (let x⇐new in e) = e, provided x is not free in e = c’.

Assume an initial world w and suppose that c′ �T A
w c′, where c′ is an abstract computa-

tion related to c′ at world w. We provide a semantic computation c, such that c �T A
w c,

that is, it is related to the computation that performs a dummy allocation, and we also
provide a proof c ∼ c′. From Theorem 2, this means that the two computations are
observationally equivalent. Let c = (w, id : w ↪→ w, c′, n), which does not advance the
world. We can show that it is related to the expression c, with the dummy allocation,
i.e., c �Γ�T A

w c by opening its definition, stated in Definition 7:

∀n.w ⊆ [n]⇒ (c = ⊥ ⇔ c(n) = ⊥) ∧
(c = (w, id : w ↪→ w, c′, n) ∧ c(n) = ([n1], c′)⇒ (w ⊆ [n1] ∧ c′ �A

w c′)).

where the value c′ resulting is exactly the function without the dummy allocation, thus
c ∼ c′ with the identity pullback square. The key observation is that heaps [n] are
allowed to contain more locations that those in w, containing the locations that one
actually needs.
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Notice as well that if we were to annotate monads with the corresponding effects
of the function, such as read, write or allocation effects, as done in [4], from the proof
above the first allocation in c with the dummy allocation would not need to flag an
allocation effect. That is, that step could be considered pure.

Swap equation. Let us now consider the following equivalence where the order in
which the names are generated is switched:

c = (let x⇐new in let y⇐new in e) = (let y⇐new in let x⇐new in e) = c′.

For showing that these programs are equivalent, we will need to consider world ad-
vancements. Assume that we start from an initial world w. Assume the abstract com-
putations c1 = (w ∪ {l1}, u1 : w ↪→ w ∪ {l1}, c2, n1) and c′1 = (w ∪ {l′}, u′1 : w ↪→
w∪{l′}, c′2, n′1), where l and l′ are the first proper concrete locations allocated. Moreover,
let c2 = (w∪{l1, l2}, u2 : w∪{l} ↪→ w∪{l1, l2}, c, n2) and c′2 = (w∪{l′1, l′2}, u′2 : w∪{l′} ↪→
w∪ {l′1, l′2}, c′, n2), where the second location is allocated. The proof is now the pullback
square w∪ {l1, l2} �id x′

u2u1 u′2u′1
w∪ {l′1, l′2}, with w = w∪ {l1, l2} and where x′ fixes everything

except that it maps l′2 to l1 and l′1 to l2, i.e., it permutes the allocation order. In this way
we get that id.c ∼ x′.c′.

6 Discussion

We have introduced proof-relevant logical relations and shown how they may be used
to model and reason about simple equivalences in a higher-order language with recur-
sion and name generation. A key innovation compared with previous functor category
models is the use of functors valued in setoids (which are here also built on predo-
mains), rather than plain sets. One payoff is that we can work with a direct style model
rather than one based on continuations (which, in the absence of control operators in
the language, is less abstract).

The technical machinery used here is not entirely trivial, and the reader might be
forgiven for thinking it slightly excessive for such a simple language and rudimentary
equations. However, our aim has not been to present impressive new equivalences, but
rather to present an accessible account of how the idea of proof relevant logical relations
works in a simple setting. The companion report [3] gives significantly more advanced
examples of applying the construction to reason about equivalences justified by abstract
semantic notions of effects and separation, but the way in which setoids are used is there
somewhat obscured by the details of, for example, much more sophisticated categories
of worlds and a generalization of s.v.f.s for modelling computation types. Our hope
is that this account will bring the idea to a wider audience, make the more advanced
applications more accessible, and inspire others to investigate the construction in their
own work.

Thanks to Andrew Kennedy for numerous discussions, and to an anonymous referee
for suggesting that we write up the details of how proof-relevance applies to pure name
generation.
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Abstract. This paper introduces a game semantics for Arithmetic with
various sub-classical logics that have implication as a primitive connec-
tive. This semantics clarifies the infinitary sequent calculus that the au-
thors proposed for intuitionistic arithmetic with Excluded Middle for
Sigma-0-1-formulas, a formal system motivated by proof mining and by
the study of monotonic learning, for which no game semantics is known.
This paper proposes games with Sequential Backtracking, and proves
that they provide a sound and complete semantics for the logical sys-
tem and other various subclassical logics. In order for that, this paper
also defines a one-sided version of the logical system, whose proofs have
a tree isomorphism with respect to the winning strategies of the game
semantics.

1 Introduction

We briefly describe motivations and state-of-the-art game semantics for various
sub-classical logics, and for the λ-calculus, possibly extended with exceptions
and continuations, and then we motivate games with sequential backtracking as
an extension of the existing game semantics.

There are game models of functional languages due to Hyland and Ong [16],
in which the main computational rule described by the semantics is the β-rule.
In Logic, a similar model for intuitionistic arithmetic with primitive implication
(but originally, without cut) was provided by Lorenzen [22]. There are game
models of classical arithmetic without primitive implication, and with cut, due
to Coquand [13], [14]. Herbelin [20] pointed out that these models are implicitly
models of continuation-based programming languages. These game semantics
have a wide range of applications. Hyland and Ong used them to prove the
correctness of program transformation. Curien defined an abstract machine for
a functional language simulating a debate between two players [12]. Coquand
showed how algorithms learning by trial-and-error their result may be extracted
from classical proofs using his game semantics, and Hayashi suggested to use
games for proof animation [19], a method for checking whether an algorithm
meets a given specification.
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What is missing is an attempt of merging the approaches of Hyland-Ong and
Coquand, representing as particular cases of the same game model: intuitionism,
classical arithmetic (with and without implication), and functional programming
languages with and without continuations. There is also a special case of continu-
ations we would like to model: exceptions, which we think as continuations λk.E
in which the variable k is not used (as continuation erasing their environment).

The following is not yet done either: a game model for classical logic with
primitive implication and two-sided sequent calculus is missing. Indeed, Coquand
models classical arithmetic using only generalized disjunctions and conjunctions:
implication is defined in a classical way, as a particular kind of disjunction, and
his sequent calculus has only one side. In particular, there is a subclassical logic
we would like to represent: EM1-logic, or Excluded Middle over Σ0

1-statements,
which is of interest both for proof mining [1], and for its relationship with mono-
tonic learning algorithms ([2], [3], [4], [5]).

For what concerns programming languages, we would like to model both the
β-rule and the continuations, because a part of programming may be more con-
veniently expressed by function definition, but exceptions and continuations are
a desirable feature too. The two game semantics we would like to merge have
complementary features. In Hyland-Ong, a move may be retracted and changed
only if it is a move over a type occurring negatively: from the viewpoint of a
programmer, only if the move is from a type representing an input of the first
player. In Coquand, instead, a move may be retracted and changed only if it is
a move from a disjunctive statement: from the viewpoint of a programmer, only
if the move is from a type representing an output of the first player. As in [10],
we merge the two approaches adding a “negative” and “positive” marker to all
position of a play, representing, respectively, “input” and “output”, or “left”
and “right” sides of a sequent, and similar to the “question” and “answer”
marks used by Hyland-Ong. Besides, we allow to retract moves at least from
disjunctive statements and output types, as in Coquand, and we allow to restart
any number of “conjunctive” sub-plays (sub-plays in which the opponent moves
first) as in Hyland-Ong. By combining these two features, we introduce games
with sequential backtracking, which are suitable to model intuitionistic arith-
metic, EM1-arithmetic, and classical arithmetic, as particular cases. This work
is preliminary. In the future, we hope to use games with sequential backtrack-
ing to model functional languages, functional languages plus exceptions, and
functional languages plus continuation as particular cases of the same notion of
games.

In this paper we study IPA− [23], a system for intuitionistic arithmetic with
implication and Excluded Middle for Σ0

1 -formulas, motivated by proof mining
and by the study of monotonic learning. We introduce a game semantics for
IPA− as a particular case of our game semantics for classical arithmetic with
primitive implication. We have two main results.

1. (Soundness and Completeness) Our game semantics is sound and complete
for IPA−, in particular it satisfies cut elimination.
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2. (A proof/strategy isomorphism for EM1-arithmetic) There is a one-sided ver-
sion ILW1 of IPA−, such that the cut-free proofs of ILW1 are tree-isomorphic
to the recursive winning strategy of our game semantics for EM1.

These results continue a long research line. Lorenzen’s game semantics is proved
sound and complete for Infinitary Intuitionistic Arithmetic [22], while Coquand’s
game semantics is proved sound and complete for Infinitary Classical Arith-
metic by Herbelin [20]. Herbelin proved a tree isomorphism result for classi-
cal arithmetic: there is a tree isomorphism between cut-free infinitary recursive
proof-trees of arithmetic and recursive winning strategies for the first player in
Coquand’s games. Like Curry-Howard isomorphism, this is an isomorphism be-
tween proofs of a formal system and some set of programs, and allows to “run”
proofs as programs. Herbelin’s result was adapted to arithmetic with EM1-logic
and without implication by Berardi and Yamagata [9]. In this paper we con-
sider the non-trivial problem of adding primitive implication, and obtain a game
semantics for IPA−, that is, arithmetic with EM1-logic and implication.

Together with Soundness and Completeness we can prove the admissibility
of cut rule for our game semantics of IPA−. In a forthcoming paper, we will
strengthen the cut-elimination result we prove in this paper to a more game
theoretical result: any debate between two well-founded strategies terminates,
extending the result of Coquand [13], [14].

The main contribution of our game semantics is a new notion of backtrack-
ing, sequential backtracking, in which a player may come back to any previous
position of the play. Backtracking may either be considered as an independent
move, where it is considered as a duplication of the position we backtrack to, or
it may be merged with the next move, according to the will of the player who
does the backtracking.

This is the plan of the paper. In §2 we define “sequential backtracking”,
which is the core of our game semantics. In §3 we briefly recall the definition of
arithmetical formulas and judgements and the axiom schema EM1. In §4 we define
a game semantics for arithmetic with intuitionistic logic, EM1-logic, classical logic,
as particular cases of games with sequential backtracking. In §5 we introduce
ILW1 and IPA−, two equivalent sequent calculi for arithmetic with primitive
implication, ω-rule and EM1-logic. In §6 we prove soundness, completeness, cut
elimination of our semantics w.r.t. ILW1 and IPA−. We define a proof/strategy
isomorphism between cut-free proofs of ILW1 and winning strategies of our game
semantics for EM1. In 7 we sketch some future work, including a definition of
dialogue which should provide interpretation of the cut-elimination procedure.

2 A Game Semantics with Sequential Backtracking

We define the notion of sequential backtracking, generalizing Coquand’s and
Hyland and Ong’s backtracking. We assume having two players: E (Eloise), A
(Abelard). The names are taken from the history of logic, but the symbol E
is intended to remember the connective ∃, and in general disjunctive formulas,
while the symbol A is intended to remember the connective ∀, and in general
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conjunctive formulas. E is often called the first player or the Player, and A is called
the second player or the Opponent. In Logic E defends the truth of a statement
and A attacks it. In the semantics of programming languages E represents a
computation strategy and A represents the environment. The initial definition of
games is folklore (see for instance [21] or [6]):

Definition 1 (Games). A game is any list G = 〈G, turnG,WE,G,WA,G〉, where:

1. G is a tree, which is a set of nodes with father/child relation denoted by
p <1,G q for a father p and a child q.

2. turnG : G→ {E, A} is a map

3. (WE,G,WA,G) is a partition of the set of infinite branches of G.

Let g ∈ G. We use the following game terminology:

1. The root of G is the initial position of G
2. any node of the tree is a position of G
3. any edge between two nodes of G is a move of G
4. any branch of G is a play of the game

5. turnG(g) ∈ {E, A} is the player with the move obligation from g.

6. G is a well-founded tree if and only if G has no infinite branches.

The initial position of a play is the root of the tree G. At each step the player
with the move obligation moves to some child of the current node, and this child
becomes the next current node. Eventually, either the player with the move
obligation drops out and loses (usually because no move is available from the
current position), or the play continues forever, defining some infinite branch α
of the tree G. In the second case, if α ∈ WE,G then E wins, and if α ∈WA,G then
A wins.

We usually skip the subscript “G” and we denote the game G just with the
tree G. To any game G we may add “backtracking” in the sense of Coquand,
defining some extension Coq(G) of the game G. Coq(G) is a game biased in favor
of the player E. At turn i − 1, E may either move from the current position
pi−1, or may “backtrack” to any previous position pj of the play, provided E

moved from pj . Then E retracts the move pj+1 that E did from it, and moves
again, selecting some child pi of pj . This idea is formalized as follows. A position
of Coq(G) is a pair 〈α, f〉 of a sequence α = 〈p0, . . . , pn〉 of nodes, and a map
f : [1, n] → [0, n− 1]. If j = f(i), then pj is the node to which the player who
moved at turn i−1 backtracks. In particular, we always require that f(i) ≤ i−1.
When j = f(i) = i − 1 we say that the move from pj is an ordinary move of
Coq(G), and when j < i − 1 we say that the move from pj is a backtracking
move of Coq(G). When A has the move obligation from pf(i), then A moves, and
we ask that the move is an ordinary move, that is: j = f(i) = i − 1. We always
ask that pf(i) <1 pi: pi is a move from pf(i) according to the original rules of G.

We do not formalize the game Coq(G), because in this paper we propose an
extension Seq(G) of G with backtracking which is even more liberal than Co-
quand’s. We call Seq(G) “G extended with sequential backtracking”, a new kind
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of backtracking in which the entire sequence of moves is available for backtrack-
ing to E, and E may backtrack even if A has the move obligation. In Seq(G), if E
moves at turn j, then j = f(i) may be any index less or equal than i−1: when E

has the move obligation from pj , if j = i− 1 we say we have an ordinary move,
and if j < i−1 we say we have a backtracking move. If A has the move obligation
from pj, then E may move pi = pj , duplicating pj . In this case, E asks A to move
from the copy pi of pj, that is, to repeat the move A did from pj . When A moves
from pj and pi is a child of pj we say this is an ordinary move of A, and we
ask that j = i − 1. We now formalize the definition of Seq(G). For the sake of
simplicity we consider only the case G a well-founded tree: we assume that G
has no infinite branches, that is, WE = WA = ∅. If α, α′ are any two lists, we will
write α <1 α

′ if α = 〈p0, . . . , pl−1〉 and α′ = 〈p0, . . . , pl〉 for some p0, . . . , pl. We
write ≤ and ≥ for the prefix and the extension order on lists respectively: ≤ is
the reflexive and transitive closure of the relation <1 on lists and ≥ is its dual.

Definition 2 (The game Seq(G) with Sequential Backtracking). Assume
G = 〈G, turn,WE,WA〉 is any game with WE = WA = ∅. We define the extension
〈Seq(G), turnSeq(G),WE,Seq(G),WA,Seq(G)〉 of G with sequential backtracking.

1. Seq(G) is the set of all 〈α, f〉, such that α = 〈p0, . . . , pn〉 is a list of nodes
of G with p0 = the root of G, and f : [1, n] → [0, n− 1] is such that, for all
i ∈ [1, n]:

(1) f(i) < i

(2) either pf(i) <1 pi or pf(i) = pi.

(3) if pf(i) <1 pi and turn(pf(i)) = A then f(i) = i− 1.

2. The father/child relation <1 in the tree Seq(G) is: 〈α, f〉 <1 〈α′, f ′〉 if and
only if α <1 α

′ and f ⊆ f ′.

3. If α = 〈p0, . . . , pn〉, then turnSeq(G)(〈α, f〉) = turn(pn).

4. WE = ∅, WA = { all infinite plays }.

By definition, if a play in Seq(G) is infinite, the winner is A. Why are infinite
plays lost by E? Without backtracking, a play in Seq(G) is a play in G and
therefore finite, because we assumed that G is well-founded. An infinite play in
Seq(G) is the effect of an infinite backtracking by E. E, to avoid losing the play,
may come back infinitely many times to the same position, or duplicate the same
position infinitely many times, just to waste time. In this case E is penalized.

Seq(G) is a game in a sense more general than the games considered by Def. 1.
We may have turn conflicts, because E may backtrack even if the move obligation
is for A. We define a map move which takes any position 〈α, f〉 ∈ Seq(G) different
from the initial position, and returns the player who moved to 〈α, f〉. Assume
α = 〈p0, . . . , pi〉. When pf(i) <1 pi and turn(pf(i)) = A we set move(〈α, f〉) = A,
otherwise move(〈α, f〉) = E. The definition of a play of Seq(G) is like a play of
G, except that even when A has the move obligation, E may backtrack. In this
case we have a conflict, which is always solved in favor of E: we execute the move
of E and the next position is updated accordingly.
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We adapt the definition of a winning strategy S for a game G (see for instance
[6]) to Seq(G). The only difference is in the case of conflicts: if both E and A may
move from a given position, then S has two options: either S suggests a move
to E or S provides a winning strategy for all possible moves of A.

Definition 3 (Winning strategies for games with sequential backtrack-
ing). Assume G is any game. A winning strategy of E on Seq(G) is any set
S ⊆ Seq(G) of plays such that:

1. S is a well-founded tree w.r.t. <1, with the root the unique play of length 1.

2. for all α ∈ S: Either

(1) {β ∈ S|β >1 α} = {β0} for some β0 such that move(β0) = E, or

(2) {β ∈ S|β >1 α} = {β ∈ Seq(G)|β >1 α ∧ move(β) = A} and A has the
move obligation from α.

If S is any winning strategy for E, then, no matter how A moves, E may move
in such a way to maintain the play in S. In this case E always wins. Indeed,
the play eventually terminates because S is well-founded, and when the play
terminates, the last turn is A who drops out, because E has always some move
to choose, suggested by S when E has the move obligation.

3 A Language for Arithmetic and Judgements

We will use sequential backtracking to define a game semantics for arithmetic
and various subclassical logics. We define the language for arithmetic first.

Assume we have infinitely many term variables. Arithmetical terms are de-
fined by the syntax: t ::= k|x|f(t1, . . . , tn), where k is any natural number, x
any term variable, f is any n-ary primitive recursive function and t1, . . . , tn are
arithmetical terms. A term is closed if there are no variables in it. Arithmeti-
cal formulas are defined by: A ::= p(t1, . . . , tn)|A ∨ A|A ∧ A|A→ A|∃x.A|∀x.A,
where p is any primitive recursive predicate and t1, . . . , tn are arithmetical terms.
We define an immediate subformula relation on closed formulas A <1 B by:
A,B <1 A ∨ B,A ∧ B,A→ B and: A[t/x] <1 ∀x.A, ∃x.A for all closed terms t.
We call A a negative immediate subformula in the case A <1 A→ B, and we
call it a positive immediate subformula in all other cases.

Definition 4 (Judgements). Let A be any closed arithmetical formula.

1. A judgement is any J ::= t.A|f.A.
2. A positive judgement is t.A, and a negative judgement is f.A.

3. A judgement has its truth value. If A is a true formula then t.A is a true
judgement and f.A is a false judgement. If A is a false formula then t.A is
a false judgement and f.A is a true judgement.

4. An atomic judgement is t.A or f.A where A = p(t1, . . . , tn).

5. A sequent is any ordered list Γ = s0.A0, . . . , sl−1.Al−1 of signed formulas.
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6. A disjunctive judgement is either some atomic false judgement
s.p(t1, . . . , tn), or:

t.A ∨B, t.∃xA, t.A→ B, f.A ∧B, f.∀xA.

7. A conjunctive judgement is either some atomic true judgement
s.p(t1, . . . , tn), or:

f.A ∨B, f.∃xA, f.A→ B, t.A ∧B, t.∀xA.

8. A sequent is positive (negative, disjunctive, conjunctive) if all its judgements
are.

9. s.A <1 t.B if A <1 B and: either A is a positive immediate subformula of
B and s = t, or A is a negative immediate subformula of B and s �= t.

10. s.A ≤ t.B is the reflexive and transitive closure of <1.

We denote judgements with s.A, t.B, . . ., a disjunctive judgement with D,D′, . . .,
and a conjunctive judgement with C,C′, . . .. Atomic formulas are constructed
from primitive recursive predicates, and therefore the truth value of atomic
judgements is computable. A disjunctive judgement is equivalent to the dis-
junction of its immediate sub-judgements, a conjunctive judgement is equivalent
to the conjunction of its immediate sub-judgements. In the case of atomic judge-
ment, this holds because the disjunction of the empty set is false and the con-
junction of the empty set is true. EM1-logic is obtained by adding to intuitionistic
logic the axiom schema EM1.

Definition 5 (The axiom schemata EM1 and EM2).

1. EM1 = {t.∀x.(∃y.p(x, y) ∨ ∀y.p⊥(x, y))|p primitive recursive}
2. EM2 = {t.∀x.(∃y.∀z.q(x, y, z) ∨ ∀y.∃z.q⊥(x, y, z))|q primitive recursive}

where p⊥, q⊥ denote the complement of p, q respectively.

Let s.A be any judgement. Our thesis is that if we choose Tarski(s.A) as the
set of judgement chains from s.A by <1, then Seq(Tarski(s.A)) defines a sound
and complete game semantics for classical arithmetic, and, if we add some re-
striction to backtracking, it defines that for various subclassical arithmetics. We
believe that these semantics have the potentiality of adapting to pure functional
languages possibly extended with exceptions, or with continuations.

4 A Game Semantics for EM1

For any judgement s.A we define the Tarski game Tarski(s.A). Then we will
show that there is some restriction EM1(Tarski(s.A)) of Seq(Tarski(s.A)) which
defines a sound and complete game semantics of intuitionistic arithmetic ex-
tended with EM1 and recursive ω-rule. In the next section we show that there is
an infinitary semi-formal logical system ILW1 whose proofs are tree-isomorphic
to the winning strategies for EM1(Tarski(s.A)): introducing this system is also
useful for proving soundness and completeness of our EM1-game semantics.
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Definition 6 (Tarski games). Let s.A be any judgement. The Tarski game
〈Tarski(s.A), turn,WE,WA〉 is defined as follows.

1. Tarski(s.A) is the tree {〈s0.A0, . . . , sn.An〉|s0.A0 = s.A ∧ ∀i ∈ [0, n −
1].si.Ai <1 si+1.Ai+1}, with root 〈s.A〉, and father/child relation the one-
step extension <1 on lists.

2. turn(〈s0.A0, . . . , sn.An〉) = turn(sn.An), that is, = E if sn.An is disjunctive,
and = A if sn.An is conjunctive.

3. WE = WA = ∅.

For instance, E has the move obligation whenever sn.An is atomic false, A has
the move obligation whenever sn.An is atomic true. The player with the move
obligation from an atomic judgement cannot move and loses: E loses whenever
sn.An is atomic false, A loses whenever sn.An is atomic true. For the sake of
simplicity, we will denote a position 〈s0.A0, . . . , sn.An〉 of Tarski(s.A) simply
with sn.An. We formally define two possible restrictions to Seq(Tarski(s.A)).
Each restriction is called with the kind of logic we want to model.

Definition 7 (Restrictions to backtracking). Assume 〈α, f〉 ∈
Seq(Tarski(s.A)) is a position in a game with sequential backtracking,
with α = 〈s0.A0, . . . , sn.An〉.

1. 〈α, f〉 satisfies the intuitionistic restriction if for all i ∈ [1, n] we have: either
sf(i) = f, or sf(i)+1 = . . . = si−1 = f.

2. 〈α, f〉 satisfies the EM1-restriction if for all i, j ∈ [1, n] such that f(i) <
f(j) < i < j we have: either sf(i) = f, or sf(i)+1 = . . . = sf(j) = f.

Int(s.A), and EM1(s.A) are the set of positions of Seq(Tarski(s.A)) which sat-
isfy: the intuitionistic restriction, and the EM1-restriction respectively.

We explain the restrictions, then we include some examples of plays and winning
strategies.

1. In the case of Intuitionistic Logic, if E backtracks from si−1.Ai−1 to
sf(i).Af(i), and sf(i) = t, then we ask that all judgements between
sf(i)+1.Af(i)+1 and si−1.Ai−1 included are negative. In other words: if E

backtracks to a positive judgement, then this is the last positive judgement.

2. In the case of EM1-logic, we allow E to backtrack from si−1.Ai−1 to any pos-
itive judgement sf(i).Af(i), but then we ask that for all judgements between
sf(i)+1.Af(i)+1 and si−1.Ai−1, those after the first positive judgement are
no more available to E for backtracking. We express this request in the dual
way: we ask that when E backtracks from some sj .Aj with j > i to some
sf(j).Af(j) with f(i) < f(j) < i, then all judgements from sf(i)+1.Af(i)+1 to
sf(j).Af(j) included are negative.

E has a winning strategy in Tarski(t.A) if and only if A is true, but the winning
strategy is often not recursive and does not correspond to a program. The more
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we add backtracking, the more there are recursive winning strategies for E. Con-
sider the judgements t.A = t.∀x.(∃y.p(x, y) ∨ (∃y.p(x, y) → ⊥)), for some Σ0

1 -
complete ∃y.p(x, y), and t.B = ∀x.(∃y.∀z.q(x, y, z)∨∀y.∃z.q⊥(x, y, z)), for some
Σ0

2 -complete ∃y.∀z.q(x, y, z). The formula A is equivalent to some instance of
EM1, while B is some instance of EM2. E has winning strategy on Tarski(t.A) and
on Tarski(t.B), but has no recursive winning strategy. E, thanks to a restricted
possibility of backtracking, has a recursive winning strategy on EM1(t.A), yet no
recursive winning strategy on EM1(t.B). E, thanks to an unrestricted possibility
of backtracking, has a recursive winning strategy both on Seq(Tarski(t.A)) and
on Seq(Tarski(t.B)): we informally explain why.

A non-recursive winning strategy for E on Tarski(t.A) is the following. A
moves to t.(∃y.p(a, y) ∨ (∃y.p(a, y) → ⊥)) for some a ∈ N . Then if ∃y.p(a, y) is
true E moves t.∃y.p(a, y), while if ∃y.p(a, y) is false, then E moves t.∃y.p(a, y) →
⊥. In the first case, E moves t.p(a, b) for some b ∈ N such that p(a, b) is true,
then wins, because A loses from t.p(a, b) with p(a, b) true. In the second case,
E moves to f.∃y.p(a, y). Then A moves f.p(a, b), for some b ∈ N : p(a, b) is false
because ∃y.p(a, y) is false. Also in this case A loses. This strategy is not recursive,
because we cannot decide whether ∃y.p(a, y) is true or false for a Σ0

1 -complete
predicate ∃y.p(a, y).

In the case of EM1(t.A), instead, E has a recursive winning strategy. A moves to
the disjunctive judgement t.(∃y.p(a, y)∨(∃y.p(a, y) → ⊥)) for some a ∈ N . Then
E moves to the disjunctive judgement t.∃y.p(a, y) → ⊥, then to the conjunctive
judgement f.∃y.p(a, y). A replies with f.p(a, b) for some b ∈ N . If p(a, b) is false
then A loses. If p(a, b) is true then in a Tarski game E would lose, but in the
game EM1(t.A) E may backtrack to the position t.A. Then E plays t.∃y.p(a, y)
this time. E plays t.p(a, b) from t.∃y.p(a, y), and since p(a, b) is true then E wins.

In order to have a recursive winning strategy in t.B, instead, E needs a more
liberal notion of backtracking. To see that, assume that A moves from t.B to
the disjunctive t.∃y.∀z.q(a, y, z) ∨ ∀y.∃z.q⊥(a, y, z) for some a ∈ N . We denote
it by C. E could move to the conjunctive t.∀y.∃z.q⊥(a, y, z). Assume that A

moves to the disjunctive t.∃z.q⊥(a, b, z). E does not know which value to choose
for z, therefore she backtracks to t.C. According to the EM1 restriction, all po-
sitions after the first positive judgement after t.C, that is: t.∀y.∃z.q⊥(a, y, z),
t.∃y.q⊥(a, b, z) are no more available for backtracking, and this is a problem!
Indeed, assume E moves to the disjunctive t.∃y.∀z.q(a, y, z), then to the con-
junctive t.∀z.q(a, b, z). A replies t.q(a, b, c) for some c ∈ N . If q(a, b, c) is true
then A loses, otherwise q(a, b, c) is false. In this case q⊥(a, b, c) is true, and E

should backtrack to t.∃z.q⊥(a, b, z), then move t.q⊥(a, b, c) and win, because
q⊥(a, b, c) is true. However, as we point out, this backtracking is not available to
E in EM1(t.B). This backtracking is correct for Seq(Tarski(t.B)), in which there
is no restriction to backtracking, and indeed E has a recursive winning strategy
in Seq(Tarski(t.B)). Instead, by the result of [6], there is no recursive winning
strategy for E on Tarski(t.A) and on EM1(t.B).

In §6 we prove that E has a recursive winning strategy on EM1(t.A) if and
only if A is provable in IPA−. We only quote another result not proved in this
paper: the game semantics Seq(Tarski(t.A)) is complete with respect to the
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classical arithmetic plus recursive ω-rule, and since this latter is complete w.r.t.
classical truth, we may conclude that E has a recursive winning strategy on
Seq(Tarski(t.A)) if and only if A is true.

5 ILW1, a One-Sided Infinitary Sequent Calculus

We may express the formation rules for winning strategies of EM1(s.A) through
the inference rules for an infinitary semi-formal system ILW1 with ω-rule: as a
consequence, EM1(s.A) is a sound and complete semantics for ILW1. Later we
will prove that ILW1 is equivalent to EM1-arithmetic IPA−: we will deduce that
EM1(s.A) is a sound and complete semantics for IPA−.

Assume S is any winning strategy for E on Seq(Tarski(s.A)) and Θ ∈ S: we
analyze the possible branching of Θ in S and we read them as logical rules for a
sequent calculus.

1. Assume S suggests to E to backtrack to some disjunctive judgement, say,
to t.A1 ∨ A2. Then the position Θ is 〈Γ, t.A1 ∨ A2, Δ, f〉 for some map f ,
and after backtracking to t.A1 ∨A2, S suggests to E the move t.Ai for some
i ∈ {1, 2}. The next position is 〈Γ, t.A1 ∨ A2, Δ, t.Ai, f ∪ {k �→ l}〉 where
k is the index of t.Ai and l is the index of t.A1 ∨ A2 in the sequent. If we
read the tree S upside down, and we forget the map f , this case corresponds
to the introduction rule for ∨: from Γ, t.A1 ∨A2, Δ, t.Ai for some i, deduce
Γ, t.A1 ∨ A2, Δ.

2. Assume S suggests to E to backtrack to some judgement J and to duplicate
it. Then Θ = 〈Γ, J,Δ, f〉, and after backtracking to J , S suggests the move
J again to E. The next position is 〈Γ, J,Δ, J, f ∪ {k �→ l}〉. If we read the
tree S upside down, this corresponds to the contraction rule: from Γ, J,Δ, J
deduce Γ, J,Δ.

3. Assume that S includes all moves of A from some conjunctive judgement,
say, t.A1 ∧ A2. Then Θ = 〈Γ, t.A1 ∧ A2, f〉 for some f , and S includes
all moves t.Ai of A for any i ∈ {1, 2}. The next positions are, for any i:
〈Γ, t.A1 ∧A2, t.Ai, f ∪{k �→ k− 1}〉, where k is the index of t.Ai. If we read
the tree S upside down, this corresponds to the introduction rule for ∧: from
Γ, t.A1 ∧ A2, t.Ai for all i ∈ {1, 2}, deduce Γ, t.A1 ∧ A2.

We sketched three logical rules, introduction for disjunctive judgements, con-
traction, introduction for conjunctive judgements, which may define all win-
ning strategies for E in Seq(Tarski(s.A)). In the case of restriction EM1(s.A)
of Seq(Tarski(s.A)) we have to add some “side condition” to the logical in-
terpretation of S, in order to have correct moves in EM1(s.A). Besides, with the
EM1-restriction to backtracking, there are formulas not available for backtracking
in the play, and we have to find some game formulation for this. As we did in
[9], we interpret the game rule which forbids backtracking by merging the logical
rules with a weakening rule. For instance, from Γ, t.A1 ∨A2, Δ, t.Ai for some i,
we deduce Γ, t.A1 ∨ A2, Δ,Δ′, for any Δ′. The formulas in Δ′ are the formulas
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in Θ = 〈Γ, t.A1∨A2, Δ,Δ′, f〉 not available for backtracking to E in the position
〈Γ, t.A1 ∨ A2, Δ, t.Ai, f

′〉.
We formally define a sequent calculus ILW1 for the language of judgements,

whose proof-trees with conclusion s.A are tree-isomorphic to the winning strate-
gies of EM1(s.A).

Definition 8 (ILW1). Assume {Ji|i ∈ I} is the set of immediate sub-
judgements of the disjunctive judgement D and of the conjunctive judgement
C. Let J be any judgement.

Γ,D,Δ, Ji
Γ,D,Δ,Δ′ (disj)

(D negative or Δ negative)

Γ,C, Ji (∀i)
Γ,C

(conj)

Γ, J,Δ, J

Γ, J,Δ,Δ′ (cont)
(J negative or Δ negative)

A simple derived rule is: Γ, J,Δ′ (axiom)
(for any J true atomic)

Indeed, an atomic true judgement J is some conjunctive judgement C having
an empty family {Ji|i ∈ I} of immediate sub-judgements. Therefore we may
infer Γ, J, J from (∀i), then Γ, J,Δ′ by (cont) with Δ = ∅.

The cut rule for ILW1 may be formulated as follows:

Γ, t.A Δ, f.A,Σ

Γ,Δ,Σ
(cut)

For any formula different from cut, we call the active formula of a rule the for-
mula in the conclusion of the rule which is inferred by the rule. A sequent is
an ordered list and there is no explicit Exchange rule. However, we hide Ex-
change rule through the fact that the active formula, if it is disjunctive, may
be in any position in the sequent. Identity rule is trivially derivable. Cut rule
is admissible as well, but this result, not at all trivial, will be proved at the
end of this paper. For every judgement s.A, every proof of s.A in ILW1 is tree-
isomorphic to some winning strategy for E on EM1(s.A), and conversely, every
winning strategy for E on EM1(s.A) is isomorphic to some proof of s.A. This rela-
tion is similar to the Curry-Howard isomorphism between simply typed λ-terms
and proofs of intuitionistic logic of implication, or to the proof/strategy isomor-
phism between infinitary classical proofs of arithmetic and winning strategy for
Coquand’s games defined by Herbelin [20].

Definition 9 (The surjection ϕ). Assume s.A is any judgement and Γ =
〈s0.A0, . . . , sl−1.Al−1〉 is any non-empty sequent. Let Π be any proof of s.A. Let
α = 〈Γ0, . . . , Γn〉 be any branch of Π of length n + 1. For all i ∈ [1, n], we set:

1. gα(i) = k if the active judgement of Γi has index k ≥ 0 in Γi.
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2. fα(i) = the last j ∈ [0, i− 1] such that length(Γj) = gα(i) + 1.

3. last(〈s0.A0, . . . , sl−1.Al−1〉) = sl−1.Al−1 and Last(α) =
〈last(Γ0), . . . , last(Γn)〉

4. ϕ(α) = 〈Last(α), fα〉 and ϕ(Π) = {ϕ(α)|α ∈ Π}.

Both a proof tree and a strategy can be seen as trees. We call a map tree-
isomorphic when it preserves the root and the order. The next theorem shows a
tree-isomorphic map between trees of proofs and trees of strategies.

Theorem 1 (Proof/strategy isomorphism). Let s.A be any judgement.
The map ϕ defined above is a surjection between (possibly non-recursive) proof-
trees Π of s.A in ILW1 and winning strategies for E in the game EM1(s.A), such
that Π and ϕ(Π) are tree-isomorphic, and if Π is recursive then ϕ(Π) is.

Proof. The proof is by induction over the length of a branch of Π , as in [9]. �

6 The Infinitary Arithmetic IPA− for the Subclassical
Logic EM1

In the rest of the paper we prove that EM1(s.A) gives a sound and complete
semantics for IPA−. Since Theorem 1 shows that EM1(s.A) gives a sound and
complete semantics for ILW1, it is enough to show the equivalence between
ILW1 and IPA−. This equivalence also gives us the cut elimination theorem for
ILW1, because the cut elimination theorem for IPA− has been already proved
in our previous paper [23].

The inference rules of IPA−, taken from [23], are those of two-sided infinitary
sequent calculus for classical arithmetic, with two important restrictions. First,
there is no explicit Exchange rule in IPA−. Secondly, if a rule of IPA− infers
some formula on the right-hand side of the sequent, then the rule (with the only
exception of the Weakening rule) infers the last formula of the sequent. The
part of the Excluded Middle we may prove in IPA− is exactly EM1. By this we
mean: IPA− derives � A if and only if HA + recursive ω-rule derives EM1 � A.
The sequents of IPA− have the form Γ0,−, Γ1,−, . . . ,−, Γn � A1, . . . , An, where
− is a separation symbol. The intended meaning of Γ0,−, Γ1,−, . . . ,−, Γn �
A1, . . . , An is “either Γ0, . . . , Γi � Ai for some i, or Γ0 � ∅”. The intended
meaning of − is the logical constant “true”.

Γ,A � Δ
(Axiom L)

(A a false atomic formula)

Γ � Δ,A
(Axiom R)

(A a true atomic formula)
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Γ,− � Δ,A ∧B,A Γ,− � Δ,A ∧B,B

Γ � Δ,A ∧B
(∧R)

Γ1, A ∧B,Γ2, A � Δ

Γ1, A ∧B,Γ2 � Δ
(∧L1)

Γ1, A ∧B,Γ2, B � Δ

Γ1, A ∧B,Γ2 � Δ
(∧L2)

Γ,− � Δ,A ∨B,A

Γ � Δ,A ∨B
(∨R1)

Γ,− � Δ,A ∨B,B

Γ � Δ,A ∨B
(∨R2)

Γ1, A ∨B,Γ2, A � Δ Γ1, A ∨B,Γ2, B � Δ

Γ1, A ∨B,Γ2 � Δ
(∨L)

Γ,A � Δ,A→ B

Γ � Δ,A→ B
(→R1)

Γ,− � Δ,A→B,B

Γ � Δ,A→B
(→R2)

Γ1, A→B,Γ2,− � Δ,A Γ1, A→ B,Γ2, B � Δ

Γ1, A→B,Γ2 � Δ
(→L)

Γ,− � Δ, ∀xA,A[m/x] (for all m)

Γ � Δ, ∀xA (∀R)
Γ1, ∀xA, Γ2, A[m/x] � Δ

Γ1, ∀xA, Γ2 � Δ
(∀L)

Γ,− � Δ, ∃xA,A[m/x]

Γ � Δ, ∃xA (∃R)
Γ1, ∃xA, Γ2, A[m/x] � Δ (for all m)

Γ1, ∃xA, Γ2 � Δ
(∃L)

Γ � Δ
Γ,− � Δ,A

(weak R) Γ � Δ
Γ,A � Δ

(weak L)

Let �−Γ denote the number of occurrences of the symbol − in Γ . We have shown
the cut elimination theorem for IPA− in [23] for the following cut rule, with the
side condition: �−Σ1 = |Σ2|:

Γ1,− � Γ2, A Δ1, A,Σ1 � Δ2, Σ2

Γ1, Δ1, Σ1 � Γ2, Δ2, Σ2
(cut)

Theorem 2 ([23]). The cut elimination theorem holds for IPA−.

Since the system IPA− is a two sided version of ILW1, we have the following
translation between them and the equivalence proposition.

Definition 10. The sequent Γ in ILW1 is translated into the sequent (Γ )2 in
IPA− as follows:

(1) the translation ()2 of the empty sequent is the empty sequent �.
(2) If (Σ)2 is Γ � Δ, then (Σ, t.A)2 is Γ,− � Δ,A and (Σ, f.A)2 is Γ,A � Δ.

Proposition 1. The statement that Γ is provable in ILW1 is equivalent to the
statement that (Γ )2 is provable in IPA−.
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This proposition is proved by induction on the definition of provability. By com-
bining the equivalence between the existence of a recursive winning strategy of
EM(s.A) and the provability of s.A in ILW1 (Theorem 1), and the equivalence
between the provability s.A in ILW1 and (s.A)2 in IPA− (Proposition 1), we
have our main theorem.

Theorem 3 (Main Theorem). The game EM(t.A) is a sound and complete
semantics of IPA−. That is, (1) the statement that − � A is provable in IPA−

is equivalent to the statement that EM(t.A) has a recursive winning strategy, (2)
the statement that A � is provable in IPA− is equivalent to the statement that
EM(f.A) has a recursive winning strategy.

Since the cut rule in ILW1 is the same as the translation of that in IPA−, we
have the following theorem. This is proved by (1) a proof in ILW1 with the cut
rule is given, (2) Proposition 1 translates it into a proof in IPA− with the cut
rule, (3) the cut elimination theorem (Theorem 2) transforms it into a proof in
IPA− without the cut rule, (4) Proposition 1 translates it into a proof in ILW1

without the cut rule.

Theorem 4. The cut rule is admissible in ILW1 and in game semantics
EM(s.A).

7 Conclusion and Future Work

We introduced an operator Seq(G), adding to a game G the possibility for the
first player to backtrack to a previous position, in a more general way. We applied
this operator to the Tarski game associated to a judgement s.A, and we showed
that the resulting game Seq(Tarski(s.A)) may be restricted in order to repre-
sent various subclassical logic, like intuitionism and EM1-logic. We believe that
the same method may be applied to produce models of functional languages
extended with exception (this feature corresponds through the proof/strategy
isomorphism to EM1-logic) or continuations (this feature corresponds through
the proof/strategy isomorphism to full classical logic).

In a forthcoming paper we hope to interpret cut-elimination through dialogue
in game semantics, as done by Coquand, Hyland and Ong. In a play with dia-
logue, both players may backtrack and there is a visibility relation for each player.
Visibility in a position 〈α, f〉 of a play with dialogue, with α = 〈p0, . . . , pn〉 and
f : [1, n] → [0, n − 1], is a binary relation on [0, n] defined by induction over
i ∈ [0, n]. No index is visible from 0. The player making the move of index
i + 1 has visible i, and all indexes he may see from i. The other player may
see fk(i), for the first k > 0 such that pfk(i) <1 pi, and all indexes he may

see from fk(i). A player may only answer to a visible position, and if both
player want to backtrack then the next player is randomly selected. The re-
sults which we hope to prove are the following: every strategy on Seq(s.A) has
a canonical extension to a strategy on plays with dialogue, and if we let play
two well-founded strategies we obtain a well-founded tree of possible plays. To
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say otherwise: the resulting play, with a random selection of the next player
when both strategies want to backtrack, is always finite if both strategies are
terminating.
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Abstract. We build a realizability model for Peano arithmetic based on
winning conditions for HON games. First we define a notion of winning
strategies on arenas equipped with winning conditions. We prove that the
interpretation of a classical proof of a formula is a winning strategy on
the arena with winning condition corresponding to the formula. Finally
we apply this to Peano arithmetic with relativized quantifications and
give the example of witness extraction for Π0

2 -formulas.

1 Introduction

Realizability is a technique to extract computational content from formal proofs.
It has been widely used to analyze intuitionistic systems (for e.g. higher-order
arithmetic or set theory), see [1] for a survey. Following Griffin’s computational
interpretation of Peirce’s law [2], Krivine developed in [3–5] a realizability for
second-order classical arithmetic and Zermelo-Fraenkel set theory.

On the other hand, Hyland-Ong game semantics provide precise models of
various programming languages such as PCF [6] (a similar model has simulta-
neously been obtained in [7]), also augmented with control operators [8] and
higher-order references [9]. In these games, plays are interactions traces between
a program (player P) and an environment (opponent O). A program is inter-
preted by a strategy for P which represents the interactions it can have with any
environment.

In this paper, we devise a notion of realizability for HON general games based
on winning conditions on plays. We show that our model is sound for classical
Peano arithmetic and allows to perform extraction for Π0

2 -formulas.
HON games with winning conditions on plays have been used in e.g. [10]

for intuitionistic propositional logic with fixpoints. Our winning conditions can
be seen as a generalization of the ones of [10] in order to handle full first-order
classical logic, while [10] only deals with totality. Our witness extraction is based
on a version of Friedman’s trick inspired from Krivine [4]. Classical logic is
handled similarly to the unbracketed game model of PCF of [8].
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We start from the cartesian closed category of single-threaded strategies which
contains the unbracketed and non-innocent strategies used to model control op-
erators and references. We use a category of continuations in the coproduct com-
pletion of [11], so that the usual flat arena of natural numbers in HON games is
indeed in the image of a negative translation. Our realizability is then obtained
by equipping arenas with winning conditions on plays.

The paper is organized as follows. Section 2 recalls the game semantics frame-
work and how to interpret λμ-calculus in it. Section 3 defines the notion of
winning strategies. Section 4 contains the definition of our realizability relation
and its adequacy for classical logic. Section 5 applies our realizability model to
Peano arithmetic and shows witness extraction for Π0

2 -formulas.

2 HON Games

Our realizability model is based on the Hyland-Ong-Nickau games [6] with no
bracketing or innocence constraint, so as to model control operators and refer-
ences [8, 9]. We consider single-threaded strategies in order to have a cartesian
closed category.

2.1 Arenas and Strategies

Definition 1 (Arena). An arena is a countable forest of moves. Each move
is given a polarity O (for Opponent) or P (for Player or Proponent):

– A root is of polarity O.
– A move which is not a root has the inverse polarity of that of his parent.

A root of an arena is also called an initial move. We will often identify an arena
with its set of moves.

Definition 2 (Justified sequence). Given an arena A, we define a justified
sequence on A to be a word s (finite or infinite) of A together with a partial
justifying function f : |s|⇀ |s| such that:

– If f(i) is undefined, then si is an initial move.
– If f(i) is defined, then f(i) < i and si is a child of sf(i).

We denote the empty justified sequence by ε. Remark here that by definition of
the polarity, if f(i) is undefined (si is initial), then si is of polarity O, and if
f(i) is defined, then si and sf(i) are of opposite polarities. Also, f(0) is never
defined, and so s0 is always an initial O-move. A justified sequence is represented
for example as:

a b c d e f g h i j

A subsequence of a justified sequence s is a subword of s together with a justifying
function defined accordingly. In particular if a move a points to a move b in the
original sequence and if a is in the subsequence but b is not, then the pointer



Realizability for Peano Arithmetic with Winning Conditions in HON Games 79

from a is left undefined. For example the following sequence is a subsequence of
the one above:

a b e f g i

If A is an arena, X is a subset of A and s is a justified sequence on A, then s|X
is the subsequence of s consisting of the moves of s which are in X .
In a sequence s, a move sj is hereditarily justified by a move si if si is initial
and for some n, fn(j) = i.

Definition 3 (Thread). If s is a justified sequence on A and if si is initial,
then the thread associated to si is the subsequence of s consisting of the moves
hereditarily justified by si. The set of threads of s, Threads(s), is the set of
threads associated to the initial moves of s.

For example we have:

Threads

(
a b c d e f g h i j

)
=

{
a b d g; c e f i;h j

}

Warning. Note that a thread is a justified sequence which may not be alternat-
ing, so our definition of thread differs from the usual one.

By extension a justified sequence s will be called a thread if it contains exactly
one thread (i.e. Threads(s) = {s}). Remark that Threads(ε) = ∅ and so ε is not
a thread.
A P -sequence (resp. O-sequence) is a sequence ending with a P -move (resp. a
O-move). Write t � s if t is a prefix of s, i.e. t is a prefix of s as a word and their
justifying functions coincide (this is a particular case of subsequence). Write
t �P s (resp. t �O s) if t is a P -prefix (resp. O-prefix) of s, i.e. t � s and t is a
P -sequence (resp. O-sequence).

Definition 4 (Play). A play s on A is an alternating justified sequence of A,
i.e., for any i, s2i is a O-move and s2i+1 is a P -move. We denote the set of
plays of A by PA.

A play on an arena is the trace of an interaction between a program and a
context, each one performing an action alternatively. A P -play (resp. O-play) is
a play which is a P -sequence (resp. O-sequence).

Definition 5 (Strategy). A strategy σ on A is a P -prefix-closed set of finite
P -plays on A such that:

– σ is deterministic: if sm and sm′ are in σ, then m = m′.

– σ is single-threaded: for any P -play s, s ∈ σ ⇔ Threads(s) ⊆ σ.

Our notion of single-threadedness matches the usual one of thread-independence
(see e.g. [9]). Remark also that a strategy always contains the empty play ε since
Threads(ε) = ∅.
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2.2 Cartesian Closed Structure

The constructions we use will sometimes contain multiple copies of the same
arena (for example A → A), so we distinguish the instances with superscripts
(for example A(1) → A(2)).

Let U be the empty arena and V be the arena with only one (opponent) move.
If A and B are arenas consisting of the trees A1 . . .Ap and B1 . . .Bq, then the
arenas A → B and A× B can be represented as follows:

A → B : A× B :

B1

A(1)
1

· · · A(1)
p

· · · Bq

A(q)
1

· · · A(q)
p

A1 · · · Ap B1 · · · Bq

The constructions described here define a cartesian closed category whose objects
are arenas and morphisms are strategies. Details of the construction can be found
in [12]. In the following this category will be denoted as C.

These definitions of arenas will be used to associate arenas to the following
simple types:

Definition 6 (Simple types). The simple types are defined by the following
grammar, where ι ranges over a set of base types:

T, U := ι | void | unit | T × U | T → U

We suppose given an object [[ι]] of C for each base type ι, and we associate to
each simple type T an object [[T ]] of C as follows:

[[void]] = V [[unit]] = U [[T × U ]] = [[T ]]× [[U ]] [[T → U ]] = [[U ]][[T ]]

Since C is cartesian closed, we use the syntax of λ-calculus to define strategies
from other strategies. In order to distinguish this notation from the λμ-terms of
Sect. 2.3 we use a bold lambda λ.

2.3 Interpretation of the Call-by-Name λμ-Calculus

We map classical proofs to strategies using the interpretation of call-by-name
λμ-calculus in categories of continuations described in [13]. In order to make
explicit the double negation translation of the base types, we base the model on
the category of continuations RFam(C), where the response category Fam(C) is a
variant of the coproduct completion described in [11] applied to the category C
defined in Sect. 2.2:

Definition 7 (Fam(C)). The objects of Fam(C) are families of objects of C in-
dexed by at most countable sets, and a morphism from {Ai | i ∈ I} to {Bj | j ∈
J} is a function f : I → J together with a family of morphisms of C from Ai to
Bf(i), for i ∈ I.

Remark here that we differ from [11] because C doesn’t have weak coproducts nor
all small products, and the families are countable. Thus Fam(C) is not bicartesian
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closed, but since C is cartesian closed and has countable products, Fam(C) is still
a distributive category with finite products and coproducts, and has exponentials
of all singleton families. The empty product and terminal object is the singleton
family {1}, the empty sum and initial object is the empty family {}, and:

{Ai | i ∈ I} × {Bj | j ∈ J} = {Ai ×Bj | (i, j) ∈ I × J}

{Ai | i ∈ I}+ {Bj | j ∈ J} = {Ck | k ∈ I � J} where Ck =

{
Ak if k ∈ I
Bk if k ∈ J

{B0}{Ai | i∈I} = {Πi∈IB
Ai
0 }

We fix once and for all:

R = {V} = {[[void]]}

which is an object of Fam(C) as a singleton family. R has all exponentials as

stated above. Note that the canonical morphism δA : A→ R(RA) is a mono.
The category of continuations RFam(C) is the full subcategory of Fam(C) con-

sisting of the objects of the form RA. The objects of RFam(C) are singleton fami-
lies, and RFam(C) is isomorphic to C. We will consider that objects and morphisms
of RFam(C) are arenas and strategies and we will use the vocabulary defined at
the end of Sect. 2.2 on RFam(C) also.

Interpreting the Call-by-Name λμ-Calculus. The types of λμ-calculus are
the simple types of Definition 6. Let kT range over a set of typed constants and
xT (resp. αT ) range over a countable set of variables (resp. names) for each type
T . The grammar of λμ-terms is the following:

M,N := kT | xT | ∗ | 〈M,N〉 | π1M | π2M | λxT .M | MN | μαT .M | [α]M

The typing rules can be found in [13], where our unit is their �, our × is their
∧ and our void is their ⊥. For instance, the Law of Peirce is the type of the
following term (we omit the type annotation of the variables).

λx.μα.[α]s(λy.μβ.[α]y) : ((T → U) → T ) → T (1)

This λμ-term will be denoted cc.
We follow [13] to interpret call-by-name λμ-calculus in RFam(C). In partic-

ular if M is a λμ-term of type T with free variables in {xT1
1 , . . . , xTn

n }, then
its interpretation is a morphism [[M ]] from [[T1]] × . . . × [[Tn]] to [[T ]]. This mor-
phism coincides with the interpretation of the call-by-name CPS translation of
M (defined in [13]) in the cartesian closed category RFam(C). See [13] for de-
tails. As stated in [13], if the call-by-name CPS translations of two terms are
βη-equivalent, then their interpretations are the same.

In the following we will drop the double brackets for the interpretation of
simple types.
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3 Winning Conditions on Arenas

We will now define our notion of realizability. We equip arenas with winning
conditions on threads. Realizers are then winning strategies, intuitively strategies
which threads are all winning.

It is well-known that preservation of totality by composition of strategies is
problematic in game semantics. Luckily we do not need to preserve totality, but
only winningness. We thus do not impose any totality condition on strategies,
but when it turns to the definition of winning threads, we have to take into
account all maximal threads, including both infinite and odd-length threads.
This leads to the notion of winning strategy proposed in Definition 12.

In order to define the notion of winning condition on an arena we introduce
the notion of P -subthread and O-subthread:

Definition 8 (P -subthread, O-subthread). If t is a thread and u is a sub-
sequence of t which is a thread, then u is a:

– P -subthread of t if when mO points to nP in t and nP ∈ u, then mO ∈ u,
– O-subthread of t if when mP points to nO in t and nO ∈ u, then mP ∈ u.

Now we can define the notion of winning condition on an arena:

Definition 9 (Winning condition). A winning condition on A is a set W of
threads on A such that:

– If t is a thread on A and if some P -subthread of t is in W, then t ∈ W.
– If t ∈ W then all the O-subthreads of t are in W.

A justified sequence s on the arena A equipped with the winning condition W is
said to be winning if Threads(s) ⊆ W.

Our notion of winning sequence can be seen as a generalization of the one defined
in [10]. In order to obtain a realizability model of first-order logic, the notion
of winning sequence is non-trivial and there can be odd-length sequences which
are winning and even-length sequences which are losing.
Remark that if t is a thread on A → B, then t|B is a thread on B, so t|B is
winning iff t|B ∈ WB, and if t is a thread on A× B, then t is either a thread on
A, either a thread on B.

Definition 10 (Arrow and product of winning conditions). If WA and
WB are sets of threads on the arenas A and B, then we define:

WA→B = {t thread on A → B | Threads(t|A) ⊆WA ⇒ t|B ∈WB}

WA×B =

{
t thread on A× B

∣∣∣∣ t thread on A ⇒ t ∈ WA
t thread on B ⇒ t ∈WB

}

Lemma 1. If WA and WB are winning conditions on A and B, then WA→B is
a winning condition on A → B and WA×B is a winning condition on A× B.
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Winning Strategies. In order to define what is a winning strategy, we use a
notion of augmented plays of a strategy inspired from [14]:

Definition 11 (Augmented play). If σ is a strategy on A, then s is an aug-
mented play of σ if one of the following holds:

– s ∈ σ, or
– s ∈ PA is such that ∀t �P s, t ∈ σ and ∀t ∈ σ, s �� t.

In particular, in the second case of the above definition, s is either a O-sequence,
either an infinite sequence (in which case s � t ⇔ s = t and so the second
condition, equivalent to s /∈ σ, is always true). Remark that unlike [14], we
consider not only odd-length extensions (with an O-move), but also infinite ones.

Definition 12 (Winning strategy). If σ is a strategy on the arena A equipped
with the winning condition W, then σ is said to be winning if all its augmented
plays are winning.

The following lemma will be useful to prove that a strategy σ is winning on
(A,W).

Lemma 2. If σ is a strategy on A and if s is an augmented play of σ, then
every t ∈ Threads(s) is an augmented play of σ.

Using this lemma it is sufficient to prove that every augmented play of σ which
is a thread (let us call it an augmented thread of σ) is in WA in order to prove
that σ is winning on (A,WA).

We now prove that the winning conditions on the arrow and product are
compatible with application and pairing of strategies.

Lemma 3. If σ is a winning strategy on (A → B,WA→B) and τ is a winning
strategy on (A,WA), then σ(τ) is a winning strategy on (B,WB).

Proof. Let t be an augmented thread of σ(τ). By definition of composition of
strategies, there is some augmented play u of σ such that u|A is an augmented
play of τ and u|B = t. Since t is a thread, u is also a thread, so since σ is winning
on A → B, u ∈ WA→B. u|A is an augmented play of τ which is winning on A,
so u|B is winning, and so t = u|B is a winning thread: t ∈ WB. Therefore σ(τ) is
winning. � 

Lemma 4. If σ is a winning strategy on (A,WA) and τ is a winning strategy
on (B,WB), then 〈σ, τ〉 is a winning strategy on (A× B,WA×B).

Proof. Let t be an augmented thread of σ(τ). By definition of product of strate-
gies, t|A is an augmented play of σ and t|B is an augmented play of τ , so since σ
and τ are winning, t|A and t|B are winning, and so t ∈ WA×B. Therefore 〈σ, τ〉
is winning. � 

The following technical lemma on the interpretation of cc will be useful.
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Lemma 5. If t is an augmented thread of [[cc]] on the arena ((T → U) → T ) →
T (written ((T (1) → U) → T (2)) → T (3)), then the threads of t|T (1) and t|T (2)

are P -subthreads of t|T (3) .

It follows easily from this lemma and Lemma 1 that for any winning conditions
WT and WU , [[cc]] is winning on the arena(

((T → U) → T ) → T,W((T→U)→T )→T )

)

Remark on the Arrow on Winning Conditions. Let A, B be arenas
equipped with winning conditions WA, WB. We define here a strategy σ on
A → B such that for any winning strategy τ on A, σ(τ) is winning on B, but σ
is not winning on A → B. Hence the arrow on winning conditions differs from
the usual Kleene realizability arrow (see [1]).
We choose A and B to be the same arena Q consisting of one root with three
children �, � and �, equipped with the winning condition

WQ = {qOaP1 aP2 . . . | ∃i, ai ∈ {�, �}}

where the threads may be finite or infinite. We define a strategy σ on Q → Q
such that for any τ winning on (Q,WQ), σ(τ) is winning on (Q,WQ), but σ
is not winning on (Q → Q,WQ→Q). σ is the innocent strategy defined by the
views:

Q qO �P

↑
Q qP aO qP aO

Q qO �P

↑
Q qP aO qP bO

where a and b are distinct moves. The interaction with any single threaded
strategy will produce the left view, and so the projection qO�P will be winning,
but the right view (which will never happen in an interaction with a single-
threaded strategy) with a = � and b = � is losing, so σ is losing.

4 First-Order Logic

We define a realizability model for first-order classical logic with possibilities of
witness extraction. For that the proposition ⊥ will be mapped to an arena ι in
general different from V . Its associated winning condition will be a parameter of
the model, in the spirit of [4].

Let x range over a countable set of variables, f range over a set of function
symbols with fixed finite arity and P range over a set of predicate symbols with
fixed finite arity. First-order terms and formulas are defined by the following
grammar:

a, b := x | f(a1, . . . , an)

A,B := P (a1, . . . , an) | � | A ∧B | A⇒ B | ∀xA | ⊥
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In the following we use syntactic sugar for the negation of formulas: ¬A ≡
A ⇒ ⊥ and for the existential: ∃xA ≡ ¬∀x¬A. We fix a countable first-order
structure interpreting the terms of our logic, that is a countable set E together
with an interpretation fE : En → E for each function symbol. The interpretation
is extended to every closed term: if a is a closed term of the logic, then aE denotes
its interpretation in the first-order structure, so aE is an element of E.

4.1 Realizability

We let ⊥⊥ be an arbitrary subset of E. We consider simple types with a type
constant P ∗ for each predicate P and a type constant ι to interpret ⊥. We can
map any first-order formula A to such a simple type A∗ as follows:

(P (a1, . . . , an))∗ = P ∗ �∗ = unit (A ∧B)∗ = A∗ ×B∗

(A⇒ B)∗ = A∗ → B∗ (∀xA)∗ = A∗ ⊥∗ = ι

Remark that the type ⊥∗ is not the type void because the associated arena would
be too small to hold informational content.

Recall that we omit the double bracket notation for the arenas, so a type T
also denotes the associated arena. We suppose that for each atomic predicate P ,
the type P ∗ comes with its associated arena. We fix the arena associated to ι to

be R(RE), where E = {Ue | e ∈ E} is the countable family of empty arenas (and
R = {V}). Hence ι is the usual flat arena for the set E.

Let us suppose we associate to each predicate P (a1, . . . , an) with a1, . . . , an
closed first-order terms a winning condition WP (a1,...,an) on the arena P ∗. We
can then define for each closed first-order formula A a winning condition WA on
the arena A∗. The winning conditions WA∧B and WA⇒B are as in Definition 10,
and we let:

W� = ∅ W∀xA =
⋂

a closed

WA[a/x] W⊥ = {qOmP
1 m

P
2 . . . | ∃i,mi ∈ ⊥⊥}

Note that these are indeed winning conditions. For W�, the empty set is a
winning condition on U which is the empty arena with no thread. For W∀xA, it
is easy to see that an intersection of winning conditions is a winning condition.
For W⊥, the thread qOmP

1 m
P
2 . . . (that may be finite or infinite) has only itself

as O-subthread and qOmP
i1
mP

i2
. . . for 1 ≤ i1 < i2 ≤ . . . as P -subthreads so W⊥

is a winning condition on ι.
We can now define our notion of realizability:

Definition 13 (Realizability relation). If A is a closed first-order formula
and if σ is a strategy on A∗, then σ realizes A (denoted σ � A) if σ is a winning
strategy on (A∗,WA).

The following lemma shows that the identity formulas are realized by the corre-
sponding identity strategies.
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Lemma 6. If A is a closed formula, then the identity strategy idA∗ on A∗ is a
realizer for the formula A⇒ A.

Proof. Let A(1) → A(2) denote the arena A∗ → A∗. If t is an augmented thread
of idA∗ , then t|A(1) = tA(2) , so if t|A(1) is winning, then t|A(2) = tA(1) is also
winning, and so t ∈ WA∗ . � 

The following result is a consequence of the remark following Lemma 5.

Lemma 7. If A and B are closed formulas, then cc � ((A⇒ B) ⇒ A) ⇒ A.

4.2 Adequacy for Minimal Classical Logic

We now show that realizability is compatible with deduction in minimal classical
logic. Full classical logic is discussed in Sect. 4.3.

Deduction System. Let Ax be a set of closed formulas. We use the following
deduction system based on natural deduction with a rule for the law of Peirce,
where Γ is a sequence of formulas A1, . . . , An.

A ∈ Φ
Γ � A Γ � ((A⇒ B) ⇒ A) ⇒ A

A ∈ Ax
Γ � A

Γ � �
Γ � A Γ � B

Γ � A ∧B
Γ � A ∧B
Γ � A

Γ � A ∧B
Γ � B

Γ,A � B

Γ � A⇒ B
Γ � A⇒ B Γ � A

Γ � B

Γ � A
x /∈ FV (Γ )

Γ � ∀xA
Γ � ∀xA
Γ � A[a/x]

Remark that ⊥ has no associated rule, since the ex-falso rule has a particular
status, given the interpretation of ⊥. This will be discussed in Sect. 4.3.

Translation of Proofs to Strategies. We use λμ-calculus and its interpre-
tation in RFam(C) to map a first-order proof to a typed λμ-term which is then
interpreted in RFam(C) as a strategy.

Assume given a constant kA of type A∗ for each A ∈ Ax. We map a derivation
ν of A1, . . . , An � A to a typed λμ-term ν∗ of type A with free variables among
xA

∗
1 , . . . , xA

∗
n as follows:

A1, . . . , An � Ai
� xA

∗
i Γ � ((A⇒ B) ⇒ A) ⇒ A � cc (see (1))

ν
Γ � A

ν′

Γ � B
Γ � A ∧B

� 〈ν∗, ν′∗〉 Γ � � � ∗ A ∈ Ax
Γ � A � kA

ν
Γ � A ∧B
Γ � A

� π1ν
∗

ν
Γ � A

x /∈ FV (Γ )
Γ � ∀xA

� ν∗
ν

Γ,A � B

Γ � A⇒ B
� λxA

∗
.ν∗
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ν
Γ � A ∧B
Γ � B

� π2ν
∗

ν
Γ � ∀xA
Γ � A[a/x]

� ν∗
ν

Γ � A⇒ B
ν′

Γ � A
Γ � B

� ν∗(ν′∗)

Adequacy. We now prove that the strategies interpreting the proofs are re-
alizers of the proved formula. If A is a formula and θ an assignment of terms
to variables, then θ(A) denotes A where all the free variables are replaced with
their image by θ.

Lemma 8. Let ⊥⊥ ⊆ E. Suppose that we have a realizer for each formula of
Ax. If ν is a derivation of the sequent Γ � A and if θ is an assignment of
closed first-order terms to variables, then [[ν∗]] is a winning strategy on Γ ∗ → A∗

equipped with Wθ(Γ⇒A).

Proof (sketch). The case of the variable follows from Lemma 6. That of cc comes
from Lemma 5. Product introduction is dealt with using Lemma 4, and arrow
elimination using Lemma 3. The other cases are straightforward. � 

4.3 Full Classical Logic

In order to get full classical logic we need to add an ex-falso rule. However since
the arena ⊥∗ is not empty (see Sect. 4.1), we restrict ex-falso to a certain class
of formulas. We have to ensure that (ι,W⊥) is included in (A∗,WA). This means
that ι is a subtree of A∗, so a play on ι is in particular a play on A∗, and that
W⊥ ⊆ WA. We will call these formulas explodable since they satisfy the principle
of explosion. We add to our deduction system the following rule:

Γ � ⊥
A explodable

Γ � A

In particular any formula ending with ⊥ is explodable, where a formula ending
with ⊥ is a formula generated by the grammar:

C,D := C ∧D | A⇒ C | ∀xC | ⊥

where A is any first-order formula (defined in Sect. 4). The corresponding ade-
quacy lemma is immediate from Lemma 8.

4.4 First-Order Logic with Equality

We now show how to handle equality. We suppose that our first-order language
contains an inequality predicate �= of arity 2 interpreted by the simple type ι
(see Sect. 4.1). The associated winning condition is:

Wa �=b =

{
W⊥ if aE = bE

the set of all threads on ι otherwise

(recall that E is the first-order structure chosen at the beginning of Sect. 4).
It is easy then to verify that any formula ending with the predicate a �= b is
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explodable. In the following we use the notation (a = b) ≡ ¬(a �= b). The axioms
for equality are:

(refl) ∀x(x = x) (Leib) ∀x∀y(¬A[x] ⇒ A[y] ⇒ x �= y)

Recall that ∀x(x = x) is only syntactic sugar for ∀x(x �= x ⇒ ⊥), and that
∀x∀y(¬A[x] ⇒ A[y] ⇒ x �= y) is also syntactic sugar for ∀x∀y((A[x] ⇒ ⊥) ⇒
A[y] ⇒ x �= y).

Lemma 9. Let ⊥⊥ ⊆ E.

1. The identity strategy on ι, is a realizer of (refl).
2. The identity strategy on A∗ → ι, is a realizer of (Leib).

Proof (sketch). For the first point, we always have aE = aE , so Wa �=a = W⊥.
Concerning the second point,if a and b are closed first-order terms, if aE �= bE

then any thread is winning on a �= b, otherwise if we win on A[b] then we win
on A[a], so if we win on ¬A[a] then we win on ⊥ and therefore on a �= b. � 

5 Peano Arithmetic

We now proceed to the realizability interpretation of full Peano arithmetic.

5.1 Definitions

Our first-order language is built from the function symbols 0 of arity 0, S of
arity 1 and + and × of arity 2. The predicate symbols are �= of arity 2 and nat
of arity 1. This choice of function symbols is only for simplicity, and we could
choose to have all the symbols of primitive recursive functions.

We also fix the structure interpreting the terms of the logic to be the set of
natural numbers N. The symbols 0, S, + and × are interpreted the standard
way. The typed λμ-calculus in which we interpret the proofs has ι as unique base
type. All the predicate symbols and ⊥ are interpreted as ι, and the associated

arena in RFam(C) is [[ι]] = R(RN) where N = {Un | n ∈ N} (see Sect. 4.1). Hence
the type of natural numbers is interpreted as the negative translation of N. Note
that this is the usual flat arena of natural numbers:

q
����

� ����
�

��������
�������

0 · · · n · · ·

This differs from Laird’s interpretation of PCF with control [15], where the base
type of natural numbers is interpreted by the arena (ι→ ι) → ι.

The winning conditions for ⊥ and a �= b are as in Sects. 4.1 and 4.4, and the
winning condition for nat(a) is:

Wnat(a) = {qOnP
1 n

P
2 . . . | ∃i, ni = aN}



Realizability for Peano Arithmetic with Winning Conditions in HON Games 89

which is a winning condition, using the same arguments as for W⊥. From this
we can check that every formula which contains no nat(a) predicate at rightmost
position is explodable. We use the following syntactic sugar:

∀nxA ≡ ∀x (nat(x) ⇒ A) ∃nxA ≡ ¬∀nx¬A ≡ ¬∀x (nat(x) ⇒ ¬A)

The relativization An of a formula is defined as the identity on all constructions
except for the quantification: (∀xA)n ≡ ∀nxAn. Note that if a formula does not
contain any nat(a) predicate, then its relativization has no nat(a) predicate at
rightmost position, so it is explodable.

The axioms are the ones for equality (defined in Sect. 4.4) and the universal
closures of:

(Snz) S(x) �= 0 (Sinj) x �= y ⇒ S(x) �= S(y)
(+0) x + 0 = x (nat0) nat(0)
(+S) x + S(y) = S(x + y) (natS) nat(x) ⇒ nat(S(x))
(×0) x× 0 = 0 (nat+) nat(x) ⇒ nat(y) ⇒ nat(x + y)
(×S) x× S(y) = x× y + x (nat×) nat(x) ⇒ nat(y) ⇒ nat(x× y)

(ind) A[0] ⇒ ∀nx(A[x] ⇒ A[S(x)]) ⇒ ∀nxA[x]

We will now define the realizers for these axioms. We first define the strategies
computing basic operations and recursion on natural numbers.

In Fam(C) a morphism from �∗ = {U} to N = {Un | n ∈ N} is given by a
function from the singleton set to N together with a strategy from U to U . Since
there is only one such strategy, such a morphism is given by a natural number.
We will call this morphism τn. Similarly a morphism from Nk to N is given by
a function from Nk to N. This leads to morphisms τS , τ+ and τ× respectively on
N → N, N → N → N and N → N → N. From these we define the following
morphisms of RFam(C):

σn = λk.kτn : ι
σS = λn.λk.n(λn′.k(τSn

′)) : ι→ ι
σ+ = λmλn.λk.m(λm′.n(λn′.k(τ+m

′n′))) : ι→ ι→ ι
σ× = λmλn.λk.m(λm′.n(λn′.k(τ×m

′n′))) : ι→ ι→ ι

The above morphisms correspond to the expected strategies:

Lemma 10. The strategies σn, σS, σ+ and σ× are the innocent strategies de-
fined by the views:

σn σS σ+ σ×
ι

qO

nP

ι → ι

qO

qP

nO

(n + 1)P

ι → ι → ι

qO

qP

mO

qP

nO

(m + n)P

ι → ι → ι

qO

qP

mO

qP

nO

(m× n)P



90 V. Blot

We now move to the definition of ρT , the recursor on type T , which is the usual
recursor of Gödel’s system T. For that we define for each n ∈ N and simple type
T a strategy ρTn by:

ρT0 = [[λx.λy.x]] : T → (ι→ T → T ) → T
ξT = [[λn.λr.λx.λy.y(n)(rxy)]]

: ι→ (T → (ι→ T → T ) → T ) → T → (ι→ T → T ) → T
ρTn+1 = ξT (σn)(ρTn ) : T → (ι→ T → T ) → T

and we finally define the strategy ρT as the innocent strategy which views are:

T→ (ι→T→T )→ ι →T

qO

qP

nO

s

where qO s is a view of ρTn on the subarena T → (ι→ T → T ) → T .
We use the following lemma in order to prove the validity of (ind):

Lemma 11. 1. ρT0 is a realizer of A[0] ⇒ ∀nx(A[x] ⇒ A[S(x)]) ⇒ A[0]

2. ξT is a realizer of:

∀ny
((

A[0] ⇒ ∀nx(A[x] ⇒ A[S(x)]) ⇒ A[y]
)

⇒ A[0] ⇒ ∀nx(A[x] ⇒ A[S(x)]) ⇒ A[S(y)]

)

Proof. This is an immediate consequence of Lemma 8, since the strategies ρT0
and ξT are the interpretations of proofs of the formulas.

5.2 Validity of Axioms

We prove that all the axioms are realized:

Lemma 12. Let ⊥⊥ ⊆ N.

1. The empty strategy on ι is a realizer of (Snz)

2. The identity strategy on ι is a realizer of (Sinj), (+0), (+S), (×0) and (×S)

3. σ0 is a realizer of (nat0)

4. σS is a realizer of (natS)

5. σ+ is a realizer of (nat+)

6. σ× is a realizer of (nat×)

7. ρA
∗
is a realizer of (ind)
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Proof (sketch). The cases 1 and 2 are straightforward. We prove cases 3, 4, 5
and 6 using Lemma 10. For 7 we prove by induction on n that:

ρA
∗

n � A[0] ⇒ ∀nx(A[x] ⇒ A[S(x)]) ⇒ A[n]

using Lemma 11. We finally prove that ρA
∗

is a realizer of the (ind) axiom for
formula A. Let t be an augmented thread of ρA

∗
on the arena

A(1) →
(
ι(1) → A(2) → A(3)

)
→ ι(2) → A(4)

Let suppose that t|A(1) is winning on A[0] and t|ι(1)→A(2)→A(3) is winning on
∀nx(A[x] ⇒ A[S(x)]). We want to prove that t|ι(2)→A(4) is winning on ∀xnA[x], so

let a be a closed first-order term, let n = aN and let suppose that t|ι(2) is winning

on nat(a). Then there must be some nO in t|ι(2) . Let u be the subsequence of t

consisting of the initial qO, the following qP , this nO and all the moves m of t
such that the view obtained immediately after m contains nO. Then u is a play
of ρA

∗
n . Since a P -move does not change the current view, the threads of u|A(1)

are O-subthreads of t|A(1) (the projection induces an inversion of polarities), so
they are winning on A[0], and the threads of u|ι(1)→A(2)→A(3) are O-subthreads
of t|ι(1)→A(2)→A(3) , so they are winning on ∀nx(A[x] ⇒ A[S(x)]). Then by the

property on ρA
∗

n , u|A(4) is winning on A[a]. But u|A(4) is a P -subthread of t|A(4)

(no inversion here), so t|A(4) is winning on A[a]. � 

Theorem 1. If A is provable in Peano arithmetic then there is a computable
strategy σ such that σ � An.

5.3 Extraction

We now show that from any provable Π0
2 -formula we can extract a computable

witnessing function.
Suppose that we have a proof of � ∀nx∃ny(a = b). We obtain by double-

negation elimination a proof of � ∀nx(¬∀ny(a �= b)), and we map it to a strategy
σ such that:

σ � ∀nx(¬∀ny(a �= b)) ≡ ∀x(nat(x) ⇒ (∀y(nat(y) ⇒ a �= b) ⇒ ⊥)

Then if n ∈ N, σn � nat(n), so σ(σn) � ∀y(nat(y) ⇒ a[n/x] �= b[n/x]) ⇒ ⊥.
Let now fix ⊥⊥ = {m ∈ N | (a[n/x,m/y])N = (b[n/x,m/y])N}. By a simple
disjunction of cases we get

idι � ∀y(nat(y) ⇒ a[n/x] �= b[n/x])

and therefore σ(σn)(idι) � ⊥. Then we can prove that σ(σn)(idι) is some σm
such that m ∈ ⊥⊥. Indeed, if σ(σn)(idι) is the empty strategy then its only
augmented play is qO, which is losing on ⊥.
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6 Conclusion and Future Work

We have built a realizability model for Peano arithmetic using winning conditions
on arenas, and have used it in the context of witness extraction for Π0

2 -formulas.
Future work will be the comparison of the present model with the game in-
terpretation of classical arithmetic of [16], and with the winning conditions on
sequential games of [17] and [18]. Our main goal is to compare two different ver-
sions of realizers for the axiom of dependent choices: the modified bar recursion
of [19] and the clock of [3].
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Abstract. Relational semantics is one of the simplest and categorically
most natural semantics of Linear Logic. The co-Kleisli category MRel
associated with its multiset exponential comonad contains a fully ab-
stract model of the untyped λ-calculus. That particular object of MRel
is also a model of the resource λ-calculus, deriving from Ehrhard and
Regnier’s differential extension of Linear Logic and related to Boudol’s
λ-calculus with multiplicities. Bucciarelli et al. conjectured that model
to be fully-abstract also for the resource λ-calculus. We give a counter-
example to the conjecture. As a by-product we achieve a context lemma
for the resource λ-calculus.

Keywords: Full abstraction, resource λ-calculus, linear logic,
nondeterminism.

1 Introduction

Rel. The category Rel of set and relations is known to model Linear Logic,
and its construction is canonical from categorical point of view. Indeed, Rel can
be seen as the free infinite biproduct completion of the Boolean ring seen as a
category with one object and two morphisms (true and false), the conjunction
being the identity [13]. The exponential modality ! of linear logic is given by
the finite multisets comonad that precisely is the free commutative comonad in
Rel [13]. Moreover, despite the biproduct, proofs are morally preserved, i.e. the
interpretation of cut free proofs is injective up to isomorphism1 [7].

This multiset comonoid !A of a set A is the set of finite multisets of
elements in A. Intuitively a finite multiset in a ∈!A is a resource that behaves
as

˙
α∈a α, i.e. like a resource that must be used by a program exactly

once per element in a (with multiplicities). This behavior enabling an inter-
esting resource management, it was natural to develop a syntactical counterpart.

Resource λ-Calculus. A restricted version was previously introduced by
Boudol in 1993 [1]. Boudol’s resource λ-calculus extends the call-by-value
λ-calculus with a special resource sensitive application (able to manage finite
resources) that involves multisets of affine arguments each one used at most
once. Independently from our considerations on Rel, this was seen as a natural

1 Up to technical details, but the unrestricted injectivity is strongly conjectured.

M. Hasegawa (Ed.): TLCA 2013, LNCS 7941, pp. 93–108, 2013.
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way to export resource sensitiveness into the functional setting. However,
restricted by a fixed evaluation strategy, it was not fully explored. Later on,
Ehrhard and Regnier, working on the implementation of behaviors discovered
in Rel, came to a similar calculus, the differential λ-calculus [11], which enjoys
many syntactical and semantical properties (confluence, Taylor expansion).
In Ehrhard and Regnier’s differential λ-calculus the resource-sensitiveness
is obtained by adding to the λ-calculus a derivative operation ∂M

∂x (N) (will
be implemented in our notations as the term M〈N/x〉, see section 2). This
operator syntactically corresponds to a substitution of exactly one occurrence
of x by N in M (introducing non determinism on the choice of the substituted
occurrence); confluence of the calculus is recovered, then, by performing all the
possible choices at once. This linear substitution takes place when β-reducing
specific applications where an argument is marked as linear, in order to be used
exactly once. We will adopt the syntax of [16] that re-implements improvements
from differential λ-calculus into Boudol’s calculus, and we will call it resource
λ-calculus or ∂λ-calculus.

MRel. For Rel as for most categorical models of Linear Logic, the interpretation
of the exponential modality induces a comonad from which we can construct the
Kleisli category that contains a model of the λ-calculus. In the case of Rel, this
category, MRel, corresponds to the category whose objects are sets and whose
morphisms from A to B are the relations from N〈A〉 (the set of finite multisets
over A) to B. It is then a model of both λ and ∂λ-calculi. This construction
being very natural, the reflexive objects of MRel are the most-studied models
of the ∂λ-calculus.

MRel and ∂λ-Calculus. The depth of the connection between the reflexive
objects of MRel and the ∂λ-calculus is precisely the purpose of our work. More
precisely, we investigate the question of the full abstraction of M∞, a reflexive
object for the ∂λ-calculus [5]. We also endowed ∂λ-calculus with a particular
choice of reduction that is the may-outer-reduction; this is not the only choice, but
this corresponds to the intuition that conducts from Rel to Ehrhard-Regnier’s
differential calculus. Until now we knew that M∞ was adequate for the ∂λ-
calculus [3], i.e. that two terms carrying the same interpretations in M∞ behave
the same way in all contexts. But we did not know anything about the converse,
the completeness, and thus about the full abstraction.

Full Abstraction. The full abstraction of M∞ has been thoroughly studied.
For lack of direct results, the full abstraction has been proved for restrictions and
extensions of the ∂λ-calculus: for the untyped λ-calculus (which is the determin-
istic and linear-free fragment of the ∂λ-calculus); for the orthogonal bang-free
restriction where the application only accepts bags of linear arguments; and for
the extension with tests of [3], an extension with must non-determinism and with
operators inspired by 0-ary par and tensor product that could be added freely in
DiLL-proof nets (DiLL for Differential Linear Logic).

These studies were encouraging since they systematically showed MRel to be
fully abstract for these calculi ([14] for untyped λ-calculus , [4] for the bang-free
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restriction and [3] for resource λ-calculus with tests). Therefore Bucciarelli et.al.
[3] conjectured a full abstraction for the ∂λ-calculus.

The Counter-Example. The purpose of this article is to set out a highly
unexpected counter-example to this conjecture. We will see how an untyped
fixpoint and a may non-deterministic sum can combine to produce a term A
(Equation 7) behaving like an infinite sum Σi≥1Bi where every Bi begins with
(i+1) λ-abstractions, put its (i+1)th argument in head position but otherwise
behave as the identity in applicative contexts with exactly i arguments; that
how A can be thought to have an arbitrary number of λ-abstractions. Such a
term can thus look for an argument further than the length of any bounded
applicative context. There lies the immediate interest of achieving a context
lemma (which have not been done for this calculus, yet) in order to prove that the
observational equivalence is so short-sighted. This will refute the inequational full
abstraction since the relational semantics can sublimate this short-sightedness.
More concretely we will see that A is observationally above the identity but not
denotationally. It is not difficult, then, to refute the equational full abstraction.

We proceed in this order. Section 2 present the ∂λ-calculus and its properties.
Section 3 describes MRel and its reflexive object M∞, and see how it is related to
∂λ-calculus. Section 4 gives our results with the context lemma followed by the
counter-example (Theorem 8). We will also discuss the generality of this counter-
example in the conclusion and explain how it is representative of an unhealthy
interaction between untyped fixpoints and may-non-determinism that can be re-
produced in other calculi like the may-non-deterministic extension of λ-calculus.

Notation: We denote N〈A〉 for the set of finite multisetes of elements in
the set A.

2 Syntax

2.1 ∂λ-Calculus

In this section we give some background on the ∂λ-calculus, a lambda calculus
with resources. The grammar of its syntax is the following:

(terms) Λ : L,M,N ::= x | λx.M | M P
(bags) Λb : P,Q ::= 1 | [M ] | [M !] | P ·Q
(sums) �,�b : �,� ∈ N〈Λ〉 �,� ∈ N〈Λb〉

Fig. 1. Grammar of the ∂λ-calculus

The ∂λ-calculus extends the standard λ-calculus in two directions. First, it is a
non deterministic λ-calculus. The argument of an application is a superposition
of inputs, called bag of resources and denoted by a multiset in multiplicative
notation (namely P ·Q is the disjoint union of P and Q). Symmetrically, the
result of a reduction step is a superposition of outputs denoted by a multiset in
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additive notation (namely �+� is the disjoint union of � and �). We also have
empty multisets, expressing an absence of available inputs (denoted by 1) or of
results (denoted by 0).

Second, the ∂λ-calculus distinguishes between linear and reusable resources.
The formers will never suffer any duplication or erasing regardless the reduction
strategy. A reusable resource will be denoted by a banged term M ! in a bag, e.g.
[N !, L, L] is a bag of two linear occurrences of the resource L and a reusable
occurrence of the resource N . We use the notation N (!) whenever we do not set
out whether M occurs linearly or not in a bag. A bag with no banged resources
will be said linear and one with only banged resources will be said exponential.

Finally, keeping all possible results of a reduction step (with multiplicities)
into a finite multiset ΣiMi of outcomes allows to have a confluent rewriting
system in such a non-deterministic setting [16].

Small Latin letters x, y, z, ... will range over an infinite set of λ-calculus vari-
ables. Capital Latin letters L,M,N (resp. P,Q,R) are meta-variables for terms
(resp bags). Initial capital Latin letters E,F will denote indifferently terms
and bags and will be called expressions. Finally, the meta-variables �,�,�
(resp �,�,�) vary over sums (i.e. multisets in additive notation) of terms (resp.
bags). Bags and sums are multisets, so we are assuming associativity and com-
mutativity of the disjoint union and neutrality of the empty multiset.

Notice that the sum operator is always at the top level of the syntax trees.
This is a design choice taken from [16] allowing for a lighter syntax. However, it
is sometimes convenient to write sums inside an expression as a short notation
for the expression obtained by distributing the sums following the conventions:

λx.(ΣiMi) := Σi(λx.Mi) (ΣiMi) (ΣjPj) := Σi,j(Mi Pj)

[(ΣiMi)
!]·P := [M !

1, . . . ,M
!
n]·P [ΣiMi]·P := Σi[Mi]·P

Notice that every construct is (multi)-linear but the bang (·)!, where we apply
the linear logic equivalence [(M+N)!] = [M !]·[N !] which is reminiscent of the
standard exponential rule ea+b = ea·eb. Notice moreover that the 0-ary version
of those rules also hold.

Since we have two kinds of resources, we need two different substitutions: the
usual one, denoted {.}, and the linear one, denoted 〈.〉. Supposing that x �= y,
and x �= z, and z �∈ FV(N) (FV denoting free variables):

x〈N/x〉 := N y〈N/x〉 := 0 (λz.M)〈N/x〉 := λz.(M〈N/x〉)
(M P )〈N/x〉 := (M〈N/x〉 P ) + (M P 〈N/x〉)

[M !]〈N/x〉 := [M〈N/x〉,M !] [M ]〈N/x〉 := [M〈N/x〉]
(P ·Q)〈N/x〉 := (P 〈N/x〉)·Q + P ·(Q〈N/x〉) 1〈N/x〉 := 0

Notice that in the above definition we are heavily using the natural conven-
tion of the distributing sums. For example, the bag P = [x!, y]〈N/x〉 reduces
P = [x〈N/x〉, x!, y]+[x!, y〈N/x〉] = [N, x!, y]+[x!, 0] = [N, x!, y]+0 = [N, x!, y].
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Substitutions enjoy the following commutation properties:

Lemma 1 ([16]). For an expression E and terms M,N , if x �∈ FV(N) and
if y �∈ FV(M) (potentially x=y) then:

E〈M/x〉〈N/y〉 = E〈N/y〉〈M/x〉 E{(M+x)/x}〈N/y〉 = E〈N/y〉{(M+x)/x}
E{(M+x)/x}{(N+y)/y} = E{(N+y)/y}{(M+x)/x}}

Hence the notion of substitution of variables by bags, denoted 〈〈s〉〉 (where s is a
list of substitutions P/x), may be defined as follows (if x �∈ FV(N) ∪ FV(P )):

M〈〈1/x〉〉 := M{0/x} M〈〈[N !]·P/x〉〉 := M{(x+N)/x}〈〈P/x〉〉
M〈〈[N ]·P/x〉〉 := M〈N/x〉〈〈P/x〉〉 M〈〈s1; s2〉〉 := M〈〈s1〉〉〈〈s2〉〉

2.2 Beta and Outer Reduction

Reduction is defined essentially as the contextual closure of the β-rule.

β
(λx.M) P →M〈〈P/x〉〉

M → �
left

M P → � P
M → �

abs
λx.M → λx.�

N → �
lin

M [N ]·P →M [�]·P
N → �

!
M [N !]·P →M [�!]·P

M → �′ �→ �′
s1

M+�→ �′+�′
M → �′

s2
M+�→ �′+�

Fig. 2. Reduction rules

Rules s1 and s2 allow to reduce one or more terms of a sum in a single step
(this is used in Theorem 1).
In the following example and all along this article we denote:

ω := λx.x[x!] I := λx.x Δ := λgu.u [(g [g!] [u!])!] Θ := Δ[Δ!]

Example 1.

I [u!, v!] → u+v (λx.y [(x [y])!]) [u, v!] → y [u [y], (v [y])!] (1)

(λx.x [x, x!]) [u, v!] → (u [v, v!])+(v [u, v!])+(v [v, u, v!]) (2)

u [I 1] → 0 u [(I 1)!] → u 1 (3)

ω [ω!] → ω [ω!] ω [ω] → 0 (4)

Θ [v!] →2 (v [(Θ [v!])!]) (5)

Θ [u, v!] →2 (u [(Θ [v!])!]) + (v [(Θ[u, v!]), (Θ[v!])!]) (6)

As customary, a notion of convergence will be used for relating the operational
and denotational semantics of the ∂λ-calculus.
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In this paper, we consider the may-outer convergence of [16]. The attribute
may refers to an angelic notion of non-determinism, hence M+N will converge
whenever at least one of the two converges. Indeed, the demonic (must) conver-
gence is also of great interest, however it is harder to deal with (see [17]), in fact
the demonic non-determinism does not interact well with the Taylor expansion,
which is a crucial tool in our analysis (Section 2.3). Moreover, the attribute outer
refers to the fact that we reduce only redexes not under the scope of a bang.
This turns out to be the analogous of the head-reduction in the λ-calculus.

Definition 1 (onf and monf). A term is in outer-normal form, onf for short,
iff it has no redexes but under a !, that is a term of the form:

λx1, . . . , xm.y [N
(!)
1,1, . . . , N

(!)
1,k1

] · · · [N (!)
n,1, . . . , N

(!)
n,kn

]

Where every N
(!)
i,j are either banged or in outer-normal form.

A sum of terms is in may-outer-normal form, monf for short, iff at least one of
its addends is in outer-normal form (in particular 0 is not a monf).

This notion generalizes the one of head-normal form of the untyped lambda
calculus. Asking for linear terms of a bag to be in monf is a way of expressing
that x [ω [ω!]] diverges while x [(ω [ω!])!] is an onf . Monf’s correspond to may-
solvability [17] in the same way as head-normal-forms correspond to solvability
in untyped λ-calculus. From previous examples only contracta of (3.1), (4.1) and
(4.2) are not monf, and only (3.2)’s redex is.
The restricted reduction leading to the (principal) monf of a term is the following:

Definition 2. The outer reduction, denoted →o is defined by the rules of Figure
2 but the rule !, which is omitted. We denote by →∗ and →∗

o the reflexive and
transitive closures of → and →o, respectively.

In the Example 1, all reductions but the (3.2) are outer reductions.

Lemma 2 ([16]). If M →∗ � and � is in monf, then there exists a monf � such
that M →∗

o �→∗ �. Thus the convergence to a monf and the outer convergence
to a monf coincide.

We will write M ⇓n if there exists a monf � and an outer reduction sequence
from M to � of length at most n. We will write M ⇓ if there exists n such
that M ⇓n and say that M outer converges. Finally we will write M ⇑ for the
outer-divergence on M .
The two rules s1 and s2 of Figure 2 allow the followings:

Theorem 1. If M → �1 and M → �2 for �1,�2 �= 0, then there is � such
that �1 → � and �2 → �.

Corollary 1. If M ⇓n+1 and M →o � then exists N ∈ � such that N ⇓n.

This is due to the trivial divergence of the case M = 0. Notice moreover that M
is not a sum.
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2.3 Taylor Expansion

A natural restriction of the ∂λ-calculus is the fragment ∂λ� which is obtained
by removing the bang construction [M !] in Figure 1. This restriction has a very
limited computational power, for instance it enjoys the following theorem.

Theorem 2 ([Folklore]). The reduction → in ∂λ� is strongly normalizing.

Proof. We set an order � on the finite multisets of terms generated by � � �

if � = �′+�, � = �′+� and there exists N ∈ �′ such that for all M ∈ �′, the
inequality |M | ≤ |N | (where |M | is the structural size of M) holds. Then, → is
strictly decreasing in this well founded order. �

The main interest of ∂λ� comes with the Taylor expansion. The Taylor expansion
of a λ-term M has been developed in [11,12] and it recalls the usual decompo-
sition of an analytic function:

f(x) =

∞∑
n=0

1

n!
Dn(f)(0)xn

In this paper, we are interested only in the support of the Taylor expansion of a
∂λ-term M defined in [11,12], i.e. in the set Mo of the ∂λ�-terms appearing in
the Taylor expansion of M with non-null coefficient. Such a set can be defined
as follows.

Definition 3. The Taylor expansion Eo of an expression E is a (possibly infi-
nite) set of linear expressions defined by structural induction:

(λx.M)o := {λx.M ′|M ′ ∈Mo} (M P )o := {M ′P ′|M ′ ∈Mo, P ′ ∈ P o}
[M ]o := {[M ′]|M ′ ∈Mo} (P ·Q)o := {P ′·Q′|P ′ ∈ P o, Q′ ∈ Qo}

[M !]o := {[M1, . . . ,Mn]|n ≥ 0, M1, . . . ,Mn ∈Mo} 1o := {1} xo := {x}

In the following we use set inclusion for comparing a finite multiset � with a set
�o. This mean that the support (i.e. the set of element appearing in � with a
nonzero multiplicity) of � is a subset of �o.

Lemma 3. For any sum � and for any � ⊆ �o, if � converges to a normal
form �′ then there exists �′ such that �→∗ �′ and �′ ⊆ �′o.

Proof. By induction on the length of the longest path of reduction for �→∗ �′

(indeed such a path exists by Theorem 2). The case � = �′ is trivial. We
thus asume that � → �′′ →∗ �′. Notice that � → �′′ does not use the rule
s1, otherwise there would be a longest reduction sequence from � to �′ which
contradicts the hypothesis that we have already choosen the largest path of
reduction. This means that � → �′′ reduces a single redex. This redex being
the image of a redex in � (not necessarily an outer redex), we can perform the
corresponding reduction � → �′′. And by reducing all corresponding redexes
on �′′ (the duplictions from the Taylor expension), we have �′′ →∗ �′′′ ⊆ �′′o.
Then we conclude by induction hypothesis. �
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3 Model

3.1 Categorical Construction of the Model

We recall the interpretation of the ∂λ-calculus into the reflexive object M∞
of MRel used in [3]. MRel is the Cartesian closed category resulting from the
co-Kleisli construction associated with the multiset exponential comonad of the
category Rel of sets and relations, which is a well-known model of Linear Logic
(and Differential Linear Logic). We refer to [9] for a detailed exposition, here we
briefly present MRel and the object M∞.

The objects of MRel are the sets. Its morphisms from A to B are the re-
lations from the set of the finite multi-sets of A, namely N〈A〉, to the set B;
i.e. MRel(A,B) := P(N〈A〉×B).

The composition of g ∈ MRel(B,C) and f ∈ MRel(A,B) is given by f ; g =
{(a, γ) ∈ N〈A〉×C | ∃(a1,β1),...,(an,βn)∈f, a=Σiai and ([β1, . . . , βn],γ)∈g}

The identities are idA := {([α], α)|α ∈ A}. Given a family (Ai)i∈I , its
Cartesian product is

˘
i∈I Ai := {(i, α)|i∈I, α∈Ai}; with the projections πi :=

{([(i, α)], α)|α ∈ Ai}. The terminal object is the empty set. And the exponential
object internalizing MRel(A,B) is A⇒B := N〈A〉 × B. Then the adjuction
MRel(A & B,C) %MRel(A,B⇒C) holds since N〈

˘
i≤nAi〉 %

∏
i≤nN〈Ai〉.

The reflexive object we choose is the simplest stratified object2 of [14]. It can
be recursively defined by (see [5]):

M0 := ∅ Mn+1 := N〈Mn〉(ω) M∞ :=
⋃
n

Mn

Where N〈M〉(ω) is the list of almost everywhere empty multisets over M . Its
elements can be generated by:

(elements) M∞ : α, β, γ ::= ∗ | a::α
(multisets) Mb

∞ : a, b, c ::= [α1, . . . , αn]

Where ∗, the unique element of M1, namely the infinite list of empty multisets,
enjoys the equation:

∗ = []::∗

The linear morphisms app ∈ MRel(M∞,M∞⇒M∞) and abs ∈
MRel(M∞⇒M∞,M∞) are defined by:

app := {([a::α], (a, α))|(a, α) ∈M∞} abs := {([(a, α)], a::α)|(a, α) ∈ M∞}

One can easily check that abs;app = IdM∞⇒M∞ (and even app;abs = IdM∞).

We could have interpreted the terms of the ∂λ-calculus by using the cate-
gorical structure of MRel. However, we prefer to give a description of such an

2 Any other stratified object will also be subject to the counter-example since they
share the crucial element ∗.
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interpretation, using a non-idempotent intersection type system, following [10].
This type system has been introduced in [8].

The usual grammar of non-idempotent intersection types corresponds exactly
to the grammar of M∞. The cons operator (::) replaces the arrow and the mul-
tisets notation replaces the intersection notation. We will use the second one for
uniformity consideration. The multisets of Mb

∞ will be denoted multiplicatively.
A typing context is a finite partial function from variables into multisets in

Mb
∞, we denote (xi : ai)i∈I the context associating xi to ai for i ∈ I. We have

two kinds of typing judgments, depending whether we type terms or bags: the
former are typed by elements in M∞ and the latter by multisets in Mb

∞.

Γ �M : α
x : 1, Γ �M : α

Γ � P : a
x : 1, Γ � P : a x : [α] � x : α

Γ �M : α
Γ �M+� : α

Γ, x : a �M : α

Γ � λx.M : a::α

(xi : ai)i∈I �M : b::α (xi : a′i)i∈I � P : b

(xi : ai·a′i)i∈I �M P : α

� 1 : 1
(xi : ai)i∈I � P : b (xi : a′i)i∈I � Q : c

(xi : ai·a′i)i∈I � P ·Q : b·c

(xi : ai)i∈I � L : β

(xi : ai)i∈I � [L] : [β]

(xi : aji )i∈I � L : βj for j ≤ m

(xi : Πj≤maji )i∈I � [L!] : [β1, . . . , βm]

The usual presentation of the interpretation can be recovered with:

���x1,....,xn := {((a1,..., an), β)|(xi : ai)i � � : β} ∈MRel(
n̄

i=1

M∞,M∞)

���x1,...,xn := {((a1,..., an), b)|(xi : ai)i � � : b} ∈MRel(
n̄

i=1

M∞,Mb
∞)

Theorem 3. If �→ � then ���x1,...,xn = ���x1,...,xn.

An important characteristic of this model that seems to make it particularly
suitable for our original purpose is that it models the Taylor expansion:

Theorem 4 ([15]). For any term M , �M�x̄ =
⋃

N∈Mo�N�x̄.

3.2 Observational Order and Adequacy

A first important result relating syntax and semantic is the sensibility theorem,
a corollary of [3], but here reproved focussing on the role of the Taylor expansion.

Theorem 5. M∞ is sensible for may-outer-convergence of the ∂λ-calculus, i.e.

∀M, M ⇓ ⇔ �M� �= ∅.

Proof. The left-to-right side is trivial since any monf has a non-empty
interpretation.
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Conversely, assume (ā, α) ∈ �M�x̄, by Theorem 4 there exists N ∈ Mo such
that (ā, α) ∈ �N�x̄. Any single term of ∂λ�-calculus converges either to 0 or to
a normal form N0+� (by Theorem 2). Since �0� = ∅, N converges into a nor-
mal form. By applying Lemma 3, we thus have M →∗ M0+� with N0 ∈ Mo

0 .
Since the Taylor expansion conserves every redexes, M0 is outer-normal and M
is may-outer converging. �

Corollary 2. A term may-outer converges iff one of the elements of its Taylor
expansion may-outer converges: M⇓ ⇔ ∃N∈Mo, N⇓. Equivalently, a term may-
outer diverges iff any element of its Taylor expansion reduces to 0.

Proof. For any closed term M , using Theorems 4 and 5:
M⇓ ⇔th5 �M��=∅ ⇔th4 ∃N∈Mo, �N��=∅ ⇔th5 ∃N∈Mo, N⇓. �

In the following we use contexts, i.e. terms with holes that will be filled by terms.
Contexts can be described by the grammar:

(contexts) Λ�.� : C�.� ::= �.� | M | λx.C�.� | C�.� P �.�

(bag-contexts) Λb�.� : P �.� ::= [C1�.�
(!), . . . , Cn�.�(!)]

We define the notions of observational preorder and equivalence using as basic
observation the may-outer-convergence of terms. This is not the only possibility
(must or inner declensions); we discuss this issue in the conclusion.

Definition 4. We say that a term M is observationally below another term N
(denoted M ≤o N), if for all contexts C�.�:

C�M� ⇓ ⇒ C�N� ⇓

They are observationally equivalent (denoted M ≡o N) if M ≤o N and N ≤o M .

Using sensibility we thus assert our adequation.

Theorem 6. M∞ is inequationally adequate for ∂λ-calculus,

∀M,N, �M� ⊆ �N� ⇒ M ≤o N.

Proof. Assume that �M� ⊆ �N� and C�M� ⇓. Then since �.� is defined by
structural induction we have �C�N�� ⊇ �C�M�� �= ∅ and C�N� ⇓. �

4 Failure of the Full Abstraction

The main result of this paper is the refutation of the full abstraction conjecture:

Conjecture 1 ([3]). M∞ is fully abstract for ∂λ-calculus. i.e. the denotational
and the observational equivalences are identical:

∀M,N, �M� = �N� ⇔ M ≡o N
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Its refutation (Theorem 8) proceeds as follows. First, we define a term A (Equa-
tion 7) and we prove that I ≤o A (Lemma 7, which uses a context lemma:
Theorem 7), but �I� �⊆ �A� (Lemma 9). This results in the refutation of the
stronger conjecture:

Conjecture 2 ([3]). M∞ is inequationally fully abstract for ∂λ-calculus. i.e. the
denotational and the observational preorders are identical:

∀M,N, �M� ⊆ �N� ⇔ M ≤o N

Only then will we consider the term A′ := I [A!, I !] and prove that A′ and A
yield a counter-example to Conjecture 1 (Theorem 8).

4.1 Context Lemma

Definition 5. Linear contexts are contexts with exactly one hole and with this
hole in linear position:

(linear contexts) Λ�.�l : D�.� ::= �.� | λx.D�.� | D�.� P | M [D�.�]·P

The applicative contexts are particular linear contexts of the form K�.� =
(λx1 . . . xn.�.�) P1 · · · Pk

Lemma 4. For any term M and any bags P,Q, there exists a decomposition
P = P l1 ·P l2 ·P e such that P l1 ·P l2 is linear, P e exponential, and if the conver-
gence (M Q)〈〈P/x〉〉 ⇓n holds then M〈〈P l1 ·P e/x〉〉 Q〈〈P l2 ·P e/x〉〉 ⇓n

Proof. By definition of the may convergence, since (M Q)〈〈P/x〉〉 =
ΣP=P l1·P l2·P eM〈〈P l1 ·P e/x〉〉 Q〈〈P l2 ·P e/x〉〉 �

Lemma 5 (Linear context lemma). For any terms M and N , if there is a
linear context D�.� such that D�M� ⇓ and D�N� ⇑ then there is an applicative
context that does the same.

Proof. We will prove the following stronger property:
For every terms M,N , every bags P1, . . . , Pp+q, and every variables
x1,...,xp �∈

⋃
1≤i≤p+q FV(Pi), if 〈〈s〉〉 := 〈〈P1/x1; ...;Pp/xp〉〉 and if a linear context

D�.� is such that (D�M�〈〈s〉〉 Pp+1 · · · Pp+q) ⇓n and (D�N�〈〈s〉〉 Pp+1 · · · Pp+q) ⇑
then there exists an applicative context K�.�such that K�M� ⇓ and K�N� ⇑.
By cases, making induction on the lexicographically ordered pair (n,D�.�):

– If D�.� = �.�:
K�.� = (λx1, ..., xp�.�) P1 · · · Pp+q

– If D�.� = λz.D′�.�:
• If q = 0:

The hypothesis gives D′�M�〈〈s〉〉 ⇓n and D′�N�〈〈s〉〉 ⇑, thus we can di-
rectly apply our induction hypothesis on D′�.�. That gives directly the
required K�.�.
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• Otherwise:
By assuming that z does not appear in Pp+2, ..., Pp+q:
The hypothesis and Corollary 1 apply to D�M�〈〈s〉〉 Pp+1 · · ·Pp+q

gives (D′�M�〈〈Pp+1/z; s〉〉 Pp+2 · · ·Pp+q) ⇓n−1. Moreover
(D′�N�〈〈Pp+1/z; s〉〉 P2 · · ·Pq) ⇑.
Then the induction hypothesis directly gives the required K�.�.

– If D�.� = L [D′�.�]·Q:
By assuming that xi �∈ FV(Pj) for i ≤ j ≤ p and by Lemma 4, there

exists, for all i ≤ p, a decomposition Pi = P l1
i ·P

l2
i ·P e

i such that if 〈〈sj〉〉 :=

〈〈P lj
1 ·P e

1 /x1; ...;P
lj
p ·P e

p /xp〉〉 (for all j ∈ {1, 2}), there is L′ ∈ L〈〈s1〉〉 with
(L′ ([D′�M�]·Q)〈〈s2〉〉 P1 · · · Pq) ⇓n and (L′ ([D′�N�]·Q)〈〈s2〉〉 P1 · · · Pq) ⇑.
Then there are two cases. Either L′ →o � and there is L′′ ∈ � such that
((L′′ [D′�M�]·Q)〈〈s2〉〉 P1 · · · Pq) ⇓n−1 (using Corollary 1) that allow us to
apply the induction hypothesis that result in the wanted K�.�. Or L′ is in
outer-normal form:
• if L′ = λz.L′′:

Let D′′�.� = L′′〈〈[D′�.�]·Q/z〉〉.
We have (D′′�M�〈〈s2〉〉 P1 · · · Pq) ⇓n−1 and (D′′�N�〈〈s2〉〉 P1 · · · Pq) ⇑.
Then we can apply our induction hypothesis on D′�.� that is still a linear
context since D′�.� was not under a “!”. This gives directly the required
applicative context.

• if L′ = y Q1 · · ·Qr with y �= xi for all i:
There exists, for all i ≤ p, a multiset P l3

i ⊆ P l2
i

such that D′�M�〈〈P l3
1 ·P e

1 /x1; ...;P l3
p ·P e

p /xp〉〉 ⇓n and

D′�N�〈〈P l3
1 ·P e

1 /x1; ...;P l3
p ·P e

p /xp〉〉 ⇑. Then we can apply the induc-
tion hypothesis on D′�.� and obtain the wanted K�.�.

– If D�.� = D′�.� Q:

By Lemma 4, there exists P �1
i ·P

�1
i ·P e

i = Pi such that, if we denote 〈〈sj〉〉 :=

〈〈P �i
1 ·P e

1 /x1; ...;P �i
p ·P e

p /xp〉〉:

(D′�M�〈〈s1〉〉 Q〈〈s2〉〉 Pp+1 · · · Pp+q) ⇓n (D′�N�〈〈s1〉〉 Q〈〈s2〉〉 Pp+1 · · · Pp+q) ⇑

The induction hypothesis on D′�.� (with Q〈〈s2〉〉 seen as one of the Pi’s)
results in the required applicative context. �

Theorem 7 (Context lemma). For any terms M and N , if there is a context
C�.� such that C�M� ⇓ and C�N� ⇑ then there is an applicative context that
does the same.

Proof. Let C�.� be such a context.
Let {x1, ..., xn} = FV(M) ∪ FV(N) be the free variables of M and N .
Let L = λu.C�u [x!1] · · · [x!n]�, D�.� = λx1...xn�.� and C′�.� = L [D�.�!].
Notice that C′�M� →∗ C�M� and C′�N� →∗ C�N�. Hence, the hypothesis
and Lemma 9 gives C′�M� ⇓ and C′�N� ⇑. Moreover, we have that C′�M� =⋃

n≥0(L [D�M�n)o; thus, by applying twice Corollary 2 we have an n ∈ N such
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that L [D�M�n] ⇓. Also, since (L [D�N�n])o ⊆ C′�N�o, the same corollary and
the hypothesis C′�N� ⇑ gives L [D�N�n] ⇑
Since L [D〈|N�k, D〈|M�n−k] converges for k = 0 and diverges for k = n there
exists k0<n such that it converges for k = k0 and diverges for k = K0+1. Thus by
applying Lemma 5 on the linear context C′′�.� = L [D�N�k0 , D�M�n−k0−1, D�.�]
we can conclude. �

4.2 Counter Example

We first exhibit a term A that is observationally above the identity I, but whose
interpretation will not contain [∗]::∗ in order to break Conjecture 2. We would
like to have A somehow respecting:

A % Σn≥1Bn with for n ≥ 1 : Bn = λv1 . . . vnw.w [I [v!1] [v!2] · · · [v!n]]

This term will converge on any applicative context that converges on the identity
(take Bn with n greater than the number of applications), and thus is observa-
tionally above the identity. On the other side, its semantic will be independent
to the semantics of the identity since none of the �Bi� contains [∗]::∗ ∈ �I�.
Such an infinite sum Σn≥1Bn does not exists in our syntax so we have to rep-
resent it by using a fix point combinator and a bag of linear and non-linear
resources. We define:

A := Θ [G,F !] (7)

where G and F are defined by:

G := λuvw.w [I [v!]] F := λuv1v2.u [I [v!1] [v!2]]

A seems quite complex, but, it can be seen as a non deterministic while that
recursively apply F until it chooses (non-deterministically) to apply G, giving
one of the Bi:

Lemma 6.

1. G[x!] →∗
o B1

2. For all i, F [B!
i] →∗

o Bi+1

3. A ≡β B1 + F [A]

In particular, for every i ≥ 1, we have A ≡β F i[A] + Σi−1
j=1Bj,

where F 1[A] := F [A] and F i+1 := F i[F [A]]

Proof. Item 1 is trivial. Item 2 is just a one-step unfolding of Θ. Item 3 is ob-
tained via the reduction A→∗ (G[(Θ[F !])!]) + (F [A, (Θ[F !])!]) ≡β B1+(F [A])
the last step using the linearity of F on its first variable (thus in a context of
the kind [U, V !] only U matters). �

Lemma 7. For all contexts C�.� of the ∂λ-calculus, if C�I� converges then C�A�
converges, i.e. I ≤o A

Proof. Let C�.� be a context that converges on I.
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With the context lemma (Theorem 7), and since neither I nor A has free vari-
ables, we can assume that C�.� = �.� P1 · · · Pk (where P1, ..., Pk are bags). Thus
by Lemma 6, we have A →∗ Ck + Bk with Ck := F k[A!]+Σk−1

j=1Bj and the
following converges:

C�A� →∗ C�Ck� + λw.w [I P1 · · · Pk] = C�Ck� + λw.w [C�I�] �

We will now compare A and I at the denotational level.

Lemma 8. We have
�A� =

⋃
i

�Bi�

Proof. �A� ⊇
⋃

i�Bi� is a corollary of the Lemma 6 (the interpretation is stable
by reduction), so we have to prove that �A� ⊆

⋃
i�Bi�:

Let α ∈ �A�. By Theorem 4, there exists M ∈ Ao such that α ∈ �M�. By
Theorem 2: M →∗ �, with every element of � outer-normal. And trivially there
is N ∈ � such that α ∈ �N�. By application of Lemma 3, there exists L such that
A →∗ L+� and N ∈ Lo (thus α ∈ �L�). Since the Taylor expansion conserves
all outer-redexes, necessary L is outer-normal. We conclude by Lemma 6 that
one of the Bi is reducing to L. �

Lemma 9. [∗]::∗ �∈ �A�, while [∗]::∗ ∈ �I�

Proof. Because of Lemma 8, we just have to prove that [∗]::∗ is not in
any Bi, which is trivial since the elements of �Bi� must be of the form
a1:: · · · ::ai::[a1:: · · · ::ai::α]::α, for i ≥ 1. �

Hence, we have refuted the Conjecture 2 concerning the equality between the
observational and denotational orders. We will now refute the Conjecture 1:

Theorem 8. M∞ is not fully abstract for the λ-calculus with resources.
In particular A′ := I [A!, I !] ≡o A but [∗]::∗ ∈ �A′� and [∗]::∗ �∈ �A�

Proof. Since A′ → A+I, we have A′ ≥o A and A′ ≤o A+A = A. But in the
same time �A′� = �A� ∪ �I� ' [∗]::∗ �

5 Conclusion

Literature (on resource sensitive natural constructions from Linear Logic) are
especially focussing on two objects, one in the semantical world, M∞, and the
other in the syntactical one, ∂λ-calculus. But they appeared not to respect full
abstraction.

This unexpected result leads to questions on its generalization. For exam-
ple, the idea can be applied to refute the full abstraction of M∞ for the may-
non-deterministic λ-calculus (an extension with a non deterministic operator
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endowed with a may-convergence operational semantic). Indeed, we can set
A0 = λx.Θ (λxy.x + λxy.y) playing the role of A. Such an A0 behaves as
the infinite sum Σ∞

i=1λx1...xny.y, that is a top in its observational order but
whose interpretation is not above the identity.

It can even be extended to other models since we can refute the full abstraction
of Scott’s D∞ for the same may-non-deterministic λ-calculus (restriction of ∂λ-
calculus to terms with only banged bags) or the may-must-non-deterministic
λ-calculus (λ-calculus with both a may and a must non determinism), using A′

in the same way. One can notice that the last case refutes a conjecture of [6].
More generally this counter-example describe the ill-behaved interaction be-

tween fixpoints and may-non-determinism that can tests any non-adequacy be-
tween the sights of the observation and of the model. We can thus conclude by
giving the four key-points that leads to this kind of counter-examples:

– short-sightedness of the contexts: Calculi that offer control operators
behaving as infinite applicative contexts like the resource λ-calculus with
tests [3] are free of these considerations. This traduce the importance of the
context lemma in our proof.

– good sight of the model: It is our better hope to find a fully abstract
model for ∂λ-calculus but no known interesting algebraic models seems to
break this property. Models tend indeed to approximate the condition “for
any contexts of any size” into “for any infinite contexts”.

– Untyped fixpoints: It is the first constructor that is necessary to construct
a term that have a non bounded range. Thus, calculi with no fixpoints like
the bang-free fragment of ∂λ-calculus will not suffer such troubles. But those
calculi have limited expressive power.

– may-non-determinism: The second constructor, that is the most impor-
tant part and the most interesting one since it can change our view of these
calculi. To get rid of this problem without loosing the non determinism one
can imagine a finer observation that discriminate the non idempotence of
the sum, like the one provided by a probabilistic calculus.

Finally one may be disappointed by the “magic” resolution of Lemma 9. It was
unclear, seeing A, that this result would arise, and it needed quite a number of
nontrivial lemmas. In this point lies a relation with tests mechanisms of [3], in
this system τ(�.� τ̄ (ε)) outer-converges on I but not on A, the calculus being
inequationally fully abstract this gives Lemma 9 for free. That remark was the
base of the previous (unpublished but cited) version of this article [2]. From our
point of view the relation with tests is even deeper and essential. Indeed the
counter-example was discovered naturally from a trial to prove full abstraction
from reducing the one from the calculus with tests into the calculus without.
This will be subject to an incoming paper.
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Abstract. Bounding skeletons were recently introduced as a tool to
study the length of interactions in Hyland/Ong game semantics. In this
paper, we investigate the precise connection between them and execu-
tion of typed λ-terms. Our analysis sheds light on a new condition on
λ-terms, called local scope. We show that the reduction of locally scoped
terms matches closely that of bounding skeletons. Exploiting this con-
nection, we give upper bound to the length of linear head reduction for
simply-typed locally scoped terms. General terms lose this connection
to bounding skeletons. To compensate for that, we show that λ-lifting
allows us to transform any λ-term into a locally scoped one. We deduce
from that an upper bound to the length of linear head reduction for ar-
bitrary simply-typed λ-terms. In both cases, we prove the asymptotical
optimality of the upper bounds by providing matching lower bounds.

1 Introduction

In the last two decades there has been a growing interest in the study of quanti-
tative or intensional aspects of higher-order programs; in particular, the study
of their complexity has generated a lot of effort. In the context of the λ-calculus,
the first result that comes to mind is the work by Schwichtenberg [14], later im-
proved by Beckmann [2], establishing upper bound to the length of β-reduction
sequences for simply-typed λ-calculus. In the somewhat related line of work of
implicit complexity, type systems have been developed to characterize extension-
ally certain classes of functions, such as polynomial [10] or elementary [8] time.
Such systems rely on a soundness theorem establishing that well-typed terms
normalize in a certain restricted time, which is itself established using syntactic
methods that are specific to the system being studied. This calls for the de-
velopment of syntax-independent tools to study precisely the execution time of
higher-order programs. The present paper is a step towards that goal.

In [4], in the context of Hyland-Ong game semantics, we showed that provided
some size information on strategies we could give a bound to the length of their
interactions. This was done by annotating each step of an interaction sequence
with a finite tree of natural numbers – hereby called a bounding skeleton1 – and
showing that progress in the interaction amounts to a simple reduction on the

1 They were called agents in [4].
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bounding skeleton. We gave bounds to the length of this reduction, hence bound-
ing with it the length of the interaction sequence. The strength of this approach
is that the games model is syntax-independent: in the variant considered in [4], it
accommodates the simply-typed λ-calculus possibly with computational effects
such as non-determinism, control, or ground type references. Its key weakness
however, is that the direct connection between game-theoretic interaction and
execution has only been made explicit [6] for pure simply-typed λ-terms of the
form M N1 . . . Np, where M and the Nis are η-long Böhm trees – we will call
such terms game situations. Although terms can be transformed into game situa-
tions (as briefly described in [4]), the transformation is very inefficient and yields
bounds that are sub-optimal and not very informative. For bounding skeletons
to be a useful tool in complexity analysis, it is crucial to relate them directly
to the execution of programs, without the detour by game semantics. Such a
connection is non-trivial, as the dynamics of reduction in all generality is much
more complicated than for game situations.

In this paper, we develop such a connection. This is done by introducing a
new structural condition on terms, local scope, that ensures that information
only flows locally through redexes, and not remotely through variables shared
by distant subterms. We show that the reduction of η-long, locally scoped terms
can be directly simulated within bounding skeletons. Using this property and (a
small optimization of) our results in [4] on bounding skeletons, we deduce exact
bounds to the execution time of locally scoped terms. We also show that the
operation of λ-lifting [12] transforms arbitrary terms into locally scoped ones,
and exploit this transformation to give exact bounds for the execution time of
arbitrary simply-typed λ-terms.

Related works. There are multiple approaches to the complexity analysis of
higher-order programs, but they seem to separate into two major families. On
the one hand, Beckmann [2], extending earlier work by Schwichtenberg [14],
gave exact bounds to the maximal length of β-reduction on simply-typed λ-
terms. His analysis uses very basic information on the terms (their length, or
height, and order), but gives bounds that are in general very rough. On the
other hand other groups, including Dal Lago and Laurent [13], De Carvalho
[9], or Bernardet and Lengrand [3], use semantic structures (respectively, game
semantics, relational semantics, or non-idempotent intersection types) to capture
abstractly the precise complexity of particular terms. Their bounds are much
more precise on particular terms, but require information on the terms whose
extraction is in general as long to obtain as actual execution. The present work
belongs to the first family. However, unlike Beckmann and Schwichtenberg the
reduction we consider is linear head reduction, which is the notion of execution
implemented by abstract machines [7] and is therefore much closer to the actual
execution of functional programming languages.

Outline. In Section 2, we start by introducing linear head reduction along with
bounding skeletons, and recall the main result of [4]. In Section 3, we introduce
local scope, show our simulation result and deduce exact bounds on the length
of linear head reduction on locally scoped terms. Finally in Section 4, we show
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how to use λ-lifting to transform arbitrary terms into locally scoped ones, and
deduce exact bounds for linear head reduction on general terms.

2 Preliminaries

In this section, we start by recalling some of the background of this research.
The natural starting point is linear head reduction [7], which can be seen as
a direct implementation on λ-terms of the notion of execution performed by
abstract machines. We will then turn to the presentation of bounding skeletons :
we will recall the results of [4] on the length of their reductions, along with a
small improvement.

2.1 Linear Head Reduction

We work here with the simply-typed λ-calculus à la Church, i.e. the variables
are explicitly annotated with types (although we often omit the annotations for
the sake of readability). Types are built from a unique atom o and the arrow
constructor →. We suppose that for every type A, there is a constant ∗A : A
of type A. We will often omit the index and write ∗. As usual, we write fv(M)
for the set of free variables of a term M . The typing relation Γ � M : A is
defined by the usual deduction rules for simply-typed λ-calculus. All the terms
considered in this paper are supposed well-typed. Note that our choices – only
one atom, each type is inhabited – merely make the presentation simpler and
are not strictly required for our results to hold.

This work focuses strongly on linear substitution, for which only one variable
occurrence is substituted at a time. In this situation, it is convenient to have a
distinguished notation for particular occurrences of variables. We will use the
notations x0, x1, . . . to denote particular occurrences of the same variable x in a
term M . When in need of additional variable identifiers, we will use x1, x2, . . ..
Sometimes, we will still denote occurrences of x by just x when their index is not
relevant. Although it is not the focus of this development, we will occasionally
also refer to β-reduction: it is the standard rewriting rule on λ-terms, defined
by (λx.M) N →β M [N/x], where M [N/x] is the substitution of all occurrences
of the variable x by N , applied in any position within M . We write ≡β for the
corresponding equivalence relation. If x0 is a specific occurrence of x, we will
use M [N/x0] for the substitution of x0 by N , leaving all other occurrences of
x unchanged. We assume Barendregt’s convention and consider all terms up to
α-equivalence (so, substitution involves renaming of bound variables).

Intuitively, linear head reduction proceeds as follows. We first locate the head
variable occurrence, i.e. the leftmost variable occurrence in the term M . Then
we locate the abstraction, if any, that binds this variable. Then we locate (again
if it exists) the subterm N of M in argument position for that abstraction,
and we substitute the head occurrence by N . We touch neither the other oc-
currences of x nor the redex. It is worth noting that locating the argument
subterm can be delicate, as it is not necessarily part of a β-redex. For instance
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in (λyA.(λxB .x0M))N1N2, we want to replace x0 by N2, even though N2 is not
directly applied to λxB .x0M . Therefore, the notion of redex will be generalized.

Note that a term is necessarily of the form ∗M1 . . . Mn, x0 M1 . . . Mn, λx.M
or (λx.M) M1 . . . Mn. That will be used quite extensively to define and reason
on linear head reduction. The length of a term M is the number of charac-
ters in M , i.e. l(∗) = 1, l(x0) = 1, l(λx.M) = l(M) + 1, l(M1 M2) = l(M1) +
l(M2). Its height is h(∗) = 0, h(x0) = 1, h(λx.M) = h(M), h(M1 M2) =
max(h(M1), h(M2) + 1).

Definition 1. Given a term M , we define its set of prime redexes. They are
written as pairs (λx,N) where N is a subterm of M , and λx is used to denote
the (if it exists, necessarily unique by Barendregt’s convention) subterm of M of
the form λx.N ′. We define the prime redexes of M by induction on its length,
distinguishing several cases depending on the form of M .

– If M = ∗ M1 . . . Mn, then M has no prime redex.
– If M = x0 M1 . . . Mn, then M has no prime redex.
– If M = λx.M ′, then M has the prime redexes of M ′.
– If M = (λx.M ′) M1 . . . Mn, then the prime redexes of M are (λx,M1) plus

those of M ′ M2 . . . Mn.

The head occurrence of a term M is the leftmost occurrence of a variable or
constant in M . If (λx,N) is a prime redex of M where the head occurrence of
M is an occurrence x0 of the variable x, then the linear head reduct of M is
M ′ = M [N/x0]. We write M→lhrM

′.

Example 1. As an example, we give the linear head reduction sequence of the
term (λf.λx.f (f x)) (λy.y).

(λf.λx.f (f x)) (λy.y) →lhr (λf.λx.(λz.z) (f x)) (λy.y)

→lhr (λf.λx.(λz.f x) (f x)) (λy.y)

→lhr (λf.λx.(λz.(λu.u) x) (f x)) (λy.y)

→lhr (λf.λx.(λz.(λu.x) x) (f x)) (λy.y)

At this point the reduction stops since the head occurrence is an occurrence of
x, and the corresponding abstraction subterm is not part of a prime redex.

We will abbreviate linear head reduction by lhr. It is straightforward to see that
lhr is compatible with β-reduction, in the sense that if M →lhr M ′ we have
M ≡β M ′. Just as for β-reduction, lhr always terminates on well-typed terms,
let us denote by N (M) the length of the reduction sequence of M . Since redexes
for lhr are not necessarily β-redexes, it will be necessary to consider the following
generalization of redexes:

Definition 2 (Generalized redex). The generalized redexes of a term M
are the prime redexes of all subterms of M . In particular, all prime redexes are
generalized redexes.
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Example 2. Consider the following λ-term:

M = (λx.x) ((λy.(λz.u)) v w)

The only prime redex of M is (λx, (λy.(λz.u)) v w), and it is therefore also a
generalized redex. The two other generalized redexes are (λy, v), which is also a
β-redex, and (λz, w), which is not.

2.2 Bounding Skeletons

This section focuses on a pivotal notion of this paper, that of a bounding skele-
ton. Intuitively, it is what is left of a term when all precise dynamic information
is forgotten, and only the structural size information necessary to study termi-
nation is retained. Formally, a bounding skeleton is a finite tree whose nodes
and edges are labeled by natural numbers. We write:

n[{d1}a1, . . . , {dp}ap] =

n
d1

��
��
��
�� dp

		
		

		
		

a1 . . . ap

This notion was introduced in [4] where it was extracted from game semantics,
and more precisely from the notion of pointing sequence central to Hyland-Ong
games [11], but also appearing crucially in the earlier work of Coquand [5].
Bounding skeletons arise as measures of positions in pointing sequences, progress
in the sequence corresponding to reduction of the skeleton. By the operational
content of game semantics [6], bounding skeletons can also be seen as measures
of terms obtained by lhr from a term of a particular form called a game situation.
A game situation is a term of the form M N1 . . . Nn, where M : A1 → . . .→
An → o and Ni : Ai are closed η-long Böhm trees – the terminology is motivated
by the strong geometric correspondence between η-long Böhm trees and the
innocent strategies of [11]. We know by the result of Danos, Herbelin and Regnier
[6] that the lhr sequence of M N1 . . . Nn is in step-by-step correspondence with
the game-theoretic interaction between the corresponding strategies �M� and
�Ni�. To illustrate how bounding skeletons arise from lhr of game situations,
let us suppose for simplicity that M : (A → o) → o and that M has the form
λx.x M ′ with M ′ η-long Böhm tree of type A, possibly including x as a free
variable. Then we have the lhr step:

(λx.x M ′) N →lhr (λx.N M ′) N

Therefore, a situation with a closed Böhm tree M applied to a closed Böhm tree
N is reduced to a closed Böhm tree N applied to an open Böhm tree M ′, along
with an environment associating x to the closed Böhm tree N . In other words:

M "N → N "M ′{x �→N}
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where the notation used will remain informal, but should be clear nonetheless.
This can be represented by the following operation on trees of terms:

M

N
→

N

M ′

N

Replacing the terms by some measure of size (which will be made precise later
in the paper) and annotating the edges with a measure of their types, these trees
give rise to bounding skeletons, and this reduction appears as an instance of the
following non-deterministic rule, illustrated in Figure 1.

n[{d1}a1, . . . , {dp}ap] →bs ai ·di−1 (n− 1)[{d1}a1, . . . , {dp}ap]

where n, di ≥ 1 and a ·d b denotes the skeleton n[{d1}a1, . . . , {dp}aq, {d}b], for
two skeletons a = n[{d1}a1, . . . , {dp}aq] and b.

This observation still applies with further reductions of M N , as we estab-
lished in [4] through game semantics. Along with bounds to the length of reduc-
tion of bounding skeletons, this allowed us to bound the maximum length of lhr
sequences starting from game situations. We also gave a bound for regular terms,
relying on a very rough translation of arbitrary terms into game situations – as a
result, this bound was far from optimal and not very informative. We aim in this
paper to study the direct connection of bounding skeletons and syntax outside
of game situations and independently on game semantics.

n

dp

��
��

��
��

�

d1

��
��
��
��
�

ai

���
���

���
���

� di−1

�����
�����

����

bs �� n− 1
dp

���
���d1

���
���

a1 aq a1 aq

Fig. 1. Rewriting rule on skeletons

Remark 1. Note that reduction is set to only happen in root position, i.e. at the
root of the tree. Generalizing it to apply deeper leads to pathological behavior.
For instance deep reduction does not terminate on the variant without edge
labels, whereas the standard (root) reduction does. It is not known whether
deep reduction terminates in the presence of edge labels, or to which extent
the relationship with syntactic reduction is preserved – the correspondence with
game semantics is lost.

The main result of [4] is a bound on the length of reduction for bounding skele-
tons. The bound we state here is in fact a minor improvement of the result in [4],
however the tools and methods to get it are the same. Therefore to save space,
we omit the details of the optimization. As for terms, we write N (a) for the
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norm of a bounding skeleton a, i.e. the length of its longest reduction sequence.
We also write max(a) for the highest node label in a, ord(a) for the order of a,
i.e. the highest edge label in a and depth(a) for the depth of a, i.e. the maximal
depth of a node in a, the root being at depth 1. Here, log denotes the logarithm
to base 2 and the tower of exponentials 2pn is defined by 2p0 = p and 2pn+1 = 22

p
n .

Theorem 1 (Upper bound). If ord(a), depth(a),max(a) ≥ 1, then

N (a) ≤ 2
depth(a) log(max(a)+1)
ord(a)−1

Constructions. In defining the interpretation of terms as bounding skeletons,
we will make use of the following constructions. If (ai)1≤i≤n is a finite family of
bounding skeletons, then writing ai = ni[{di,1}bi,1, . . . , {di,pi}bi,pi ], we define:

n⊔
i=1

ai = ( max
1≤i≤n

ni) · [{di,j}bi,j | 1 ≤ i ≤ n & 1 ≤ j ≤ pi]

n∑
i=1

ai = (

n∑
i=1

ni) · [{di,j}bi,j | 1 ≤ i ≤ n & 1 ≤ j ≤ pi]

so, they either take the maximum or the sum of the roots, and simply append
all the subtrees of the ais. In the binary case, we write as usual + for the sum.
Finally, each natural number n can be seen as an atomic bounding skeleton n[]
without subtrees, still denoted by n. That should never cause any confusion.

Embedding. The norm of a bounding skeleton is unchanged by permutation of
subtrees, or merging of identical subtrees, and is only increased by an increase
of labels. If a = n[{d1}a1, . . . , {dp}ap] and a′ = n′[{d′1}a′1, . . . , {d′p′}a′p′ ], we say
that a embeds in a′, written a ↪→ a′, if n ≤ n′ and for any i ∈ {1, . . . , p} there
exists j ∈ {1, . . . , p′} such that di ≤ d′j and ai ↪→ a′j . Then we have:

Lemma 1 (Embedding lemma). If a ↪→ b, then N (a) ≤ N (b).

We illustrate the reduction in Figure 2, where at each step we emphasize the
subtree selected non-deterministically for the next reduction step. For concise-
ness, we also do not represent the subtrees under a node labeled 0, as they can
play no further part in the reduction.

3 Locally Scoped Terms and Bounding Skeletons

This section explains the direct connection between linear head reduction and
the reduction of bounding skeletons. We will first introduce locally scoped terms,
for which this connection holds, then prove their simulation within bounding
skeletons, and finally deduce bounds for the length of their reduction.
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Fig. 2. Example reduction sequence on bounding skeletons

3.1 Locally Scoped Terms

Define inductively a closure as an open term M along with an environment
σ, mapping free variables of M to closures of the same type. We say that a
closure Mσ is hereditarily normal when M is β-normal and η-long, and when
for any x ∈ fv(M), the closure σ(x) is hereditarily normal. Hereditarily normal
closures are very close to bounding skeletons: from a hereditarily normal closure
Mσ one can obtain a bounding skeleton having the height of M as root, and the
bounding skeletons corresponding to σ(x) for x ∈ fv(x) as subtrees.

Although we will not make this formal in this paper, our simulation of lhr in
bounding skeletons exploits that some terms can be represented as hereditarily
normal closures. For instance, take the term:

K1 = (λxo→o.(λyo→o.y) x) (λzo.z)

The term K1 is faithfully represented by the hereditarily normal closure:

yy �→xx �→λz.z

From that, we see that K1 corresponds (ignoring edge labels) to the bounding
skeleton 1[1[1]]. Note in passing that K1 reduces to (λx.(λy.x) x) (λz.z), which
by the same idea as above corresponds to the hereditarily normal form xx �→λz.z ,
and to the bounding skeleton 1[1] – which embeds in the bs-reduct 1[1, 0[1[1]]]
of 1[1[1]], so the lhr reduction of K1 is accounted for in bounding skeletons.

Unfortunately, this connection does not always work. For instance, take:

K2 = (λx.x ∗) (λz.(λy.y) z)

When trying to represent K2 as a hereditarily normal closure, we run into the
issue that since z is not a closed subterm, there is not way to replace the redex
(λy.y) z by an environment. Of course, in K1, we also had a generalized redex
(λy, x) where x is not closed. But in K1, x was active, in the sense that we had a
redex (λx, λz.z), so we knew how to define the environment on x. On the other
hand, z is passive in K2: there is no generalized redex (λz,N). In summary, the
issue with K2 is that there is a generalized redex (λy, z) where z (obviously)
contains a passive free variable z, and because of that K2 cannot be directly
represented as a hereditarily normal closure.
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Definition 3. A variable x in M is active iff it is a free variable or if there
is a generalized redex (λx,N) in M . It is passive otherwise. A term M is
locally scoped (abbreviated l.s.) if for any generalized redex (λx,N) in M all
the free variables in N are active in M . Likewise, M is strongly locally scoped
(abbreviated s.l.s.) if for any generalized redex (λx,N) in M , N is closed.

So, the term K1 above is locally scoped, but K2 is not since there is a general-
ized redex (λy, z) with z passive. Neither of those are strongly locally scoped.
Any β-normal term is strongly locally scoped, and so is any term obtained by
applications of β-normal forms (such as λ-terms corresponding to terms of com-
binatory logic). Local scope will be sufficient to ensure that the interpretation to
bounding skeletons is a simulation, but the correspondence between terms and
bounding skeletons will be tighter for strongly locally scoped terms: for those,
the tree structure of the bounding skeleton will match the tree structure of im-
bricated generalized redexes. Strongly locally scoped terms are not stable under
lhr, so we need to develop the full connection on locally scoped terms instead.

Lemma 2. If M is a locally scoped term of ground type and M →lhr M
′, then

M ′ is locally scoped.

3.2 Interpretation in Bounding Skeletons

Interpretation. The level of a type is defined by lv(o) = 0 and lv(A → B) =
max(lv(A) + 1, lv(B)). Likewise, the level lv(M) of a term M is the level of
its type. Finally, the order ord(M) of a term M is the maximal lv(N), for all
subterms N of M . Within a term Γ � M : A such that (x : B) ∈ Γ , we write
lvM (x) = lv(B). The term M will generally be obvious from the context, so we
will just write lv(x).

Definition 4. Let Γ � M : A be a term, with a bs-environment ρ, being
defined as a partial function associating to each variable x of Γ on which it is
defined a bounding skeleton ρ(x). Then the bounding skeleton �M�ρ is defined by
induction on the length of M , as follows:

�∗ M1 . . . Mn�ρ = 0
�x0 M1 . . . Mn�ρ = 1 +

⊔n
i=1�Mi�ρ if ρ(x) undefined

�x0 M1 . . . Mn�ρ = (1 +
⊔n

i=1�Mi�ρ) ·lv(x)+1 ρ(x) if ρ(x) defined
�λx.M�ρ = �M�ρ

�(λx.M) M1 . . . Mn�ρ = �M M2 . . . Mn�ρ∪{x �→�M1�ρ}

We write �M� for �M�∅.

Measures on terms and their preservation. To estimate lhr on s.l.s. terms, we
need to define measures on terms that reflect the geometry of the corresponding
bounding skeletons. So instead of the height, we have two alternative quantities.
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The depth depth(M) of a term M is defined by induction on the length of M :

depth(∗ M1 . . . Mn) = 1

depth(x0 M1 . . . Mn) = max
1≤i≤n

depth(Mi)

depth(λx.M) = depth(M)

depth((λx.M) M1 . . . Mn) = max(depth(M M2 . . . Mn), depth(M1) + 1)

Likewise, the local height lh(M) of a term M is defined by:

lh(∗ M1 . . . Mn) = 0

lh(x0 M1 . . . Mn) = 1 + max
1≤i≤n

lh(Mi)

lh(λx.M) = lh(M)

lh((λx.M) M1 . . . Mn) = max(lh(M M2 . . . Mn), lh(M1))

Then, we have the following lemma:

Lemma 3. If M is a strongly locally scoped term, then we have:

depth(�M�) ≤ depth(M) max(�M�) ≤ lh(M) ord(�M�) ≤ ord(M)

Simulation. In order to have our simulation result of linear head reduction into
bounding skeletons, we need the additional requirement that the terms being
interpreted are η-long – it is natural since our tools originate from game seman-
tics, in which strategies are representations of η-long normal forms. As usual,
η-expansion is the rule M →η λxA.M x, that applies when M has type A→ B
and x �∈ fv(M). Non β-normal η-long terms are often defined as the terms on
which any further η-expansion creates a new β-redex. Since we have general-
ized the notion of redex, we instead define them as the terms for which any
η-expansion creates a new generalized redex. Then, η-long terms are stable un-
der lhr. Moreover, we have:

Proposition 1 (Simulation). Let Γ � M,M ′ : o be η-long locally scoped
terms, and suppose M →lhr M

′. Then, there is a such that �M� →bs a←↩ �M ′�.

3.3 Bounds for Strongly Locally Scoped Terms

As a first application, we give exact bounds for the maximal length of lhr on
strongly locally scoped terms. Formally, we will estimate the following quantity.

Llsn(h, d) = max{N (M) | ord(M)≤n & lh(M)≤ h & depth(M)≤ d & M s.l.s.}

To express our results, we will use some standard notations for comparing growth
rates of functions. For functions f, g : N → N, we write f(n) = Θ(g(n)) when
there exists reals c1, c2 > 0 and N ∈ N such that for all n ≥ N , c1g(n) ≤ f(n) ≤
c2g(n). This is generalized to functions of multiple variables f, g : Np → N
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by setting that f(n1, . . . , np) = Θ(g(n1, . . . , np)) iff there are c1, c2 > 0 and
Ni ∈ N for all i ∈ {1, . . . , p} such that for all ni ≥ Ni we have c1g(n1, . . . , np) ≤
f(n1, . . . , np) ≤ c2g(n1, . . . , np). If h : N → N is another function, we write
f(n1, . . . , np) = h(Θ(g(n1, . . . , np))) iff there is a function φ : Np → N such that
f(n1, . . . , np) = h(φ(n1, . . . , np)) and φ(n1, . . . , np) = Θ(g(n1, . . . , np)).

η-long form. Our simulation result only applies to η-long terms. Therefore, in
order to obtain the upper bound we first need the following result:

Proposition 2. If M is a term, then there is an η-long term M ′ such that:

lh(M ′) ≤ lh(M) + ord(M) depth(M ′) = depth(M)
ord(M ′) = ord(M) N (M ′) ≥ N (M)

Moreover if M was s.l.s., M ′ is still s.l.s..

The proof is mostly direct, but rather long and technical. We show first that
η-expansion can only increase the norm and that it preserves strong local scope
and the order of terms. Moreover, if η-expansion is restricted so that it does not
create new generalized redexes, then it terminates on an η-long form. Besides,
restricted η-expansion preserves depth and a variant lh′(M) of lh(M) such that
lh(M) ≤ lh′(M) ≤ lh(M) + ord(M), taking into account the potential size of
the variables that are not yet expanded. Details are omitted.

Upper bound. If Γ �M : A1 → . . .→ An → o is a s.l.s. term, we first make it of
ground type by forming Γ � M ∗A1 . . . ∗An : o – its norm can only increase,
the other quantities stay unchanged and the term is still s.l.s.. By Proposition 2,
there is M ′ η-long, of ground type, and s.l.s. such that lh(M ′) ≤ lh(M)+ord(M),
depth(M ′) = depth(M), ord(M ′) = ord(M) and N (M ′) ≥ N (M). Along with
Lemma 3, Proposition 1 and Theorem 1 this gives the following proposition.

Proposition 3. Suppose M is a strongly locally scoped term of order at least

one. Then, N (M) ≤ 2
depth(M) log(lh(M)+ord(M)+1)
ord(M)−1 .

Lower bound. We now set to prove the optimality of this upper bound by ex-
hibiting a family of terms whose reduction length asymptotically reaches it. The
family we describe is a variant of one used by Beckmann in [2], constructed by
iterated exponentiation of Church numerals. We define higher types for Church
integers by setting A−2 = o and An+1 = An → An. Then, writing np for the
Church integer for n of type Ap, we define, for n, k, p ≥ 0 and M : Ap:

[n]0p(M) = M [n]k+1
p (M) = np+1 [n]kp(M)

One can immediately check that [n]kp(M) : Ap and that for all q ∈ N, [n]kp(q
p
) →∗

β

qn
k

p
. Exploiting this construction we set, for n, k, p ≥ 0:

Sn,k,p = [n]kp(2p) 2p−1 . . . 20
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For which it is immediate to check that for all n, k, p ≥ 0 we have Sn,k,p →∗
β

22
nk

p
0
. Moreover, by construction of Sn,k,p, for n ≥ 2 and p, k ≥ 1 we have

lh(Sn,k,p) = n + 1, depth(Sn,k,p) = k + 1 and ord(Sn,k,p) = p + 3, and Sn,k,p is
s.l.s.. To deduce a lower bound from this, we need to relate it to lhr using:

Lemma 4. If M →∗
β n0, then N (M ido) ≥ n, where ido = λxo.x.

Proof. By induction on n, exploiting that lhr preserves β-equivalence.

Theorem 2. For fixed n ≥ 2 we have Llsn(h, d) = 2
Θ(d log(h))
n−1 .

Proof. Let us first consider the case where n ≥ 3, as n = 2 requires a separate
construction for the lower bound. Let us fix h ≥ 3 and d ≥ 2. By Propo-

sition 3, we already know that Llsn(d, h) ≤ 2
d log(h+n+1)
n−1 . Moreover, we have

lh(Sh−1,d−1,n−3 ido) = h and depth(Th−1,d−1,n−3 ido) = d, and by Lemma 4 we

have N (Th−1,d−1,n−3 ido) ≥ 2
(d−1) log(h−1)
n−1 . To summarize:

2
(d−1) log(h−1)
n−1 ≤ Llsn(d, h) ≤ 2

d log(h+n+1)
n−1

Therefore, with n ≥ 3 fixed and d, h parameters we have Llsn(h, d) = 2
Θ(d log(h))
n−1 .

For n = 2, the upper bound still holds. For d, p ≥ 2, define:

Un,d = n1 (n1 . . . (n1 ido) . . .)

where there are d copies of n1 in total. Then, the term Un,d is s.l.s. and we have
lh(Un,d) = n + 1, depth(Un,d ido) = d + 1, ord(Un,d ido) = 2 and N (Un,d) ≥
nd = 2d log(n). It follows that Lls2(d, h) = 2Θ(d log(h)).

In particular, reduction length for s.l.s. second-order terms of fixed depth is
bounded by a polynomial of degree less than the depth.

4 Exact Bounds for General Terms

4.1 Lambda-Lifting to Strongly Locally Scoped Terms

In order to deduce bounds for general terms, we now describe a transformation
taking any λ-term M to a corresponding s.l.s. term M ′; this transformation is a
variant of the familiar notion of λ-lifting [12], adapted to lift variables through
generalized redexes as well as β-redexes.

Take a term M = λxA.(λyA.y) x. Obviously, M is not s.l.s.: indeed there
is a prime redex (λy, x) and the subterm x has x free. In order to make the
variable x “local”, we modify the abstraction subterm λy.y to forward explicitly
the variable x. We get the term M ′ = λxA.(λyA→A.y x)(λx′

A
.x′). The type of

y has changed, but not the type of the overall term. Note that the terms M
and M ′ are still β-equivalent, although we are not going to use that explicitly.
More importantly, the norm has increased, the order has increased by one, and
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y ∈ fv(M1)

(λx.M) M1 . . . Mn →λl (λx.M [x y/x]) (λy′.M1[y
′/y]) . . . Mn

Mi →λl M
′
i

x0 M1 . . . Mn →λl x0 M1 . . . M ′
i . . . Mn

M →λl M
′

λx.M →λl λx.M
′

M1 →λl M
′
1

(λx.M) M1 . . . Mn →λl (λx.M) M ′
1 . . . Mn

M M2 . . . Mn →λl M
′ M ′

2 . . . M ′
n

(λx.M) M1 . . . Mn →λl (λx.M
′) M1 M ′

2 . . . M ′
n

Fig. 3. Definition of the λ-lifting expansion →λl

the other quantities are essentially unchanged. We formalize this construction
by the λ-lifting expansion →λl, defined in Figure 3.

In general →λl leaves the type unchanged, although it can change the type
of bound variables. Moreover →λl terminates, and its normal form is necessarily
s.l.s.. Altogether, we have the following result:

Lemma 5. For any term M , there is a strongly locally scoped M ′ such that:

lh(M ′) ≤ lh(M) + 1 depth(M ′) = depth(M)
ord(M ′) ≤ ord(M) + 1 N (M ′) ≥ N (M)

This is established by a rather lengthy technical proof, studying commutations
between →λl and →lhr. Preservation of depth is easy since we do not add general-
ized redexes, and (relative) preservation of order and local height is established
as for →η, by building variants lh′ and ord′ which take into account the po-
tential expansion of variables, that satisfy lh(M) ≤ lh′(M) ≤ lh(M) + 1 and
ord(M) ≤ ord′(M) ≤ ord(M) + 1 and are preserved by →λl.

4.2 Expanding Variables

For non locally scoped terms, the local height and the depth are rather unnatural
quantities, and the bounds are not naturally expressed in terms of them. We
convert one to the other using another norm-increasing term transformation.

Lemma 6. For any term M , there exists a term M ′ such that M →η∗ M ′,

lh(M ′) ≤ 2 depth(M ′) ≤ h(M)
ord(M ′) = ord(M) N (M ′) ≥ N (M)
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The term M ′ is obtained by replacing each occurrence x0 in M of a variable

x : A1 → . . .→ An → o by its η-expanded form λy1
A1 . . . . .λynAn .x0 y1 . . . yn.

Since we have M →η∗ M ′, we already know that N (M ′) ≥ N (M), the other
inequalities are easily established by induction.

4.3 Exact Bounds for General Terms

In this section, we are interested in estimating the quantity:

Lgenn(h) = max{N (M) | ord(M) ≤ n & h(M) ≤ h}

We do that by applying the tools developed earlier to get an upper bound on
the length of reduction, and then prove a matching lower bound by providing
terms whose length of reduction asymptotically reaches the upper bound.

Upper bound. Starting from a term M , we first expand variables using Lemma
6, then make it s.l.s. using Lemma 5. This gives M ′ such that:

lh(M ′) ≤ 3 depth(M ′) = h(M)
ord(M ′) ≤ ord(M) + 1 N (M ′) ≥ N (M)

By applying Proposition 3, we get:

Proposition 4. Suppose M is a term. Then, N (M) ≤ 2
h(M) log(ord(M)+5)
ord(M) .

Lower bound. We provide a lower bound matching asymptotically the upper
bound offered by Proposition 4. The construction is essentially the same as the
one used in [2] for the lower bound in terms of height.

For p ≥ 1 and k ≥ 0, we define bp0 = 2p and bpk+1 = λxAp−1 .bpk (bpk x). Then,
we set:

Bp
k = bpk 2p−1 . . . 20

Note that this term is not s.l.s.. By standard arithmetic of Church numerals,
we have that for any p ≥ 1, k ≥ 0, Bp

k →∗
β 2kp+2

0
. By Lemma 4 it follows that

N (Bp
k ido) ≥ 2kp+2. It is direct to check that ord(Bp

k) = p+ 2 and h(Bp
k) = k + 3

(for k ≥ 1). Therefore, we have:

Theorem 3. For fixed n ≥ 3 we have Lgenn(h) = 2
Θ(h)
n .

For a term M of height h and order n, Beckmann’s results [2] predict that any β-

reduction chain of M terminates in less than 2
Θ(h)
n+1 steps. It might seem counter-

intuitive that our bound (with linear head reduction) is smaller than Beckmann’s
(with β-reduction) since we substitute only one occurrence at a time, which is
obviously longer. However, Beckmann considers arbitrary β-reduction, not head
β-reduction. The possibility of reducing in arbitrary locations of the term unlocks
much longer reductions, since higher-order free variables or constants can isolate
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sections of the term that will never arrive in head position but can still be affected
by arbitrary β-reduction. The fact that the length of linear head reduction has
the same order of magnitude as head β-reduction is not surprising in the light
of Accattoli and Dal Lago’s recent result [1] that a similar notion of linear head
reduction is quadratically related to head reduction.

5 Conclusion

We have worked out the precise connection between bounding skeletons and syn-
tactic reduction, deducing bounds for linear head reduction in the simply-typed
λ-calculus. The analysis uncovers locally scoped terms, whose reduction relates
closely to game-theoretic interaction. Through this work, we obtain syntax-
independent tools to reason on the complexity of programs, hopefully useful in
implicit complexity. Although we have only described this connection here for
the pure λ-calculus, the connection with games suggest that similar constructions
should yield the same results for languages with effects such as control, non-
determinism or ground state. In future work we plan plan to generalize these tools
to more expressive languages, in particular in the presence of recursion.

Acknowledgment. We gratefully acknowledge the support of the ERC
Advanced Grant ECSYM.
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Abstract. Type matching problems occur in a number of contexts, in-
cluding library search, component composition, and inhabitation. We
consider the intersection type matching problem under the standard no-
tion of subtyping for intersection types: Given intersection types τ and σ,
where σ is a constant type, does there exist a type substitution S such
that S(τ ) is a subtype of σ? We show that the matching problem is
NP-complete. NP-hardness holds already for the restriction to atomic
substitutions. The main contribution is an NP-algorithm which is en-
gineered for efficiency by minimizing nondeterminism and running in
Ptime on deterministic input problems. Our algorithm is based on a
nondeterministic polynomial time normalization procedure for subtype
constraint systems with intersection types. We have applied intersection
type matching in optimizations of an inhabitation algorithm.

1 Introduction

By intersection type matching we understand the following decision problem:

Given intersection types τ and σ, where σ does not contain any type variables,
is there a type substitution S with S(τ) ≤A σ?

Here the relation ≤A is the standard theory of subtyping for intersection types
as defined in [1].

Generally, type matching may refer to a range of decision problems spanning
from various forms of type equivalence [2] to problems involving substitution
and subtyping [3]. The subtype matching problem considered in this paper is a
special case of the subtype satisfiability problem, to decide for given τ and σ
whether there exists a substitution S such that S(τ) ≤ S(σ), where ≤ is a
subtyping relation (a partial order on types). Equational matching problems of
the form ∃S. S(τ) ∼ σ, where ∼ is some equivalence relation, is a special case
of unification modulo an equational theory (see, e.g., [4]). Typical applications
of type matching include component retrieval and composition [3,2], where τ
might for example be the parametric type of a component F and σ the expected
type in a usage context C, and where the matching condition S(τ) ≤ σ ensures
that C[F ] is well typed.

Our study of intersection type matching with subtyping is motivated from
two perspectives. First, from a systematic standpoint, there is a general need to
develop the algorithmic theory of intersection type subtyping. Such a theory is

M. Hasegawa (Ed.): TLCA 2013, LNCS 7941, pp. 125–139, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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sorely missing in the literature (see Sect. 2), and an algorithmic study of match-
ing is one necessary step towards such a theory. Second, from the standpoint of
applications, we have applied the results reported in this paper to the problem
of inhabitation in systems of combinatory logic with intersection types [5,6] in
the context of combinatory logic synthesis (see [7] for an introduction to this re-
search programme). With polymorphic combinators [6] a central step in solving
the inhabitation problem Γ � ? : σ (is there a term with type σ in type environ-
ment Γ ?) is to decide the condition S(τ) ≤ σ, where σ is an inhabitation goal
and τ is the type of a combinator from Γ . A solution to the matching problem
leads to a very substantial optimization of the inhabitation algorithm, since it
allows us to filter out uninteresting choices of τ early in the process based on
the matching condition. We refer the reader to [8] for details of this application.

We show that the problem of intersection type matching is NP-complete,
even when substitutions are restricted to be atomic (mapping type variables to
either variables or constants). We present an NP-algorithm which is engineered
for efficiency by localizing nondeterminism as much as possible. The core of
the algorithm consists in a nondeterministic constraint set normalization pro-
cedure. Matching substitutions can be efficiently constructed from normalized
constraint systems provided they are consistent. The constraint normalization
procedure performs a fine-grained analysis of subtyping constraints generated
from the input problem. In the absence of nondeterminism in the input prob-
lem, the algorithm operates in Ptime (note that this is obviously far superior
to approaches where solutions are simply guessed).

Due to space limitations some proofs have been shortened or left out. They
can be found in [8].

2 Related Work

Surprisingly, the algorithmic properties of the standard intersection subtyping
relation ≤A, clearly of systematic importance in type theory, do not appear to
have been very much investigated in the literature. To the best of our knowledge,
there are no tight results for any of the problems, unification, satisfiability, or,
indeed, matching, for intersection types under the standard subtyping relation
of [1]. This situation is not satisfactory, and with the present paper we take a
step towards remedying it. Only recently, a Ptime-procedure for deciding the
relation ≤A itself was given in [5] and is used as a subroutine here (decidability
of ≤A follows from the results of [9], but with an exponential time algorithm).

Subtype satisfiability has been studied in various subtyping theories without
intersection. It is particularly useful to compare with results in simple types (an
overview can be found in [10]). Satisfiability there is Pspace-complete when ar-
bitrary partial orders of base types are allowed [11,12], but it is in Ptime over
lattices of base types [11]. The Ptime result uses the property that consistent
constraint systems are satisfiable, because a satisfying substitution can be con-
structed from such systems using either one of the lattice operations. A similar
property is used here (Lem. 3) to solve the intersection type matching problem,
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but it is based on a much more intricate constraint normalization procedure. As
can indeed be concluded from our NP-completeness result, the presence of in-
tersection changes the problem fundamentally. Let us remark that our technique
for solving the matching problem does not transfer to the satisfiability problem
with intersection (the reason will become clear in our technical development),
and satisfiability could very well lie higher in the complexity hierarchy.

There are various results concerning the complexity of matching and unifi-
cation in different classes of equational theories (cf. [4] for a general survey),
which exhibit similar properties as the type operators ∩ and → (associativity
(A), commutativity (C), and idempotence (I), respectively distributivity (D))
and which are NP-complete. For example, AC- and ACI-matching as well as
AC- and ACI-unification are NP-complete [13,14,15]. The techniques used to
prove membership in NP are completely different from the approach we follow,
though. For example, it is easy to show that the size of a substitution solving an
AC-matching problem is bounded by the size of the terms involved [13]. There-
fore, simply guessing the right substitution yields an NP-algorithm. As discussed
in the beginning of Sect. 5 this is not so simple in the case of intersection type
matching. Moreover, this approach foregoes any detailed analysis of the sources
of nondeterminism and leads to pragmatically suboptimal algorithms. The al-
gorithms deciding AC- and ACI-unification are relatively intricate [15]. They
reduce unification to unification in certain commutative semigroups which is
known to be NP-complete. This reduction does not appear to be possible in our
setting, however.1 There are semi-decidability results concerning an altogether
different notion of unification for intersection types [16,17] where unification is
considered along with other operations that can be used to characterize principal
typings with intersection types.

3 Preliminaries

Type expressions, ranged over by τ , σ, etc., are defined by τ ::= a | τ → τ | τ ∩ τ
where a, b, p, q . . . range over atoms comprising of type constants, drawn from a
finite set A including the constant ω, and type variables, drawn from a disjoint
denumerable set V ranged over by α, β, etc. We let T denote the set of all types.

As usual, types are taken modulo commutativity (τ ∩σ = σ∩τ), associativity
((τ∩σ)∩ρ = τ∩(σ∩ρ)), and idempotency (τ ∩ τ = τ ). As a matter of notational
convention, function types associate to the right, and ∩ binds stronger than →.

A type τ ∩ σ is said to have τ and σ as components. For an intersection of
several components we sometimes write

⋂n
i=1 τi or

⋂
i∈I τi or

⋂
{τi | i ∈ I},

where the empty intersection is identified with ω.
The standard [1] intersection type subtyping relation ≤A is the least pre-

order (reflexive and transitive relation) on T generated by the following set A

1 We also note that the results on unification mentioned above do not directly encom-
pass the complexity of intersection type unification modulo the ACID equational
theory induced by ≤A.
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of axioms:

σ ≤A ω, ω ≤A ω → ω, σ ∩ τ ≤A σ, σ ∩ τ ≤A τ, σ ≤A σ ∩ σ;

(σ → τ) ∩ (σ → ρ) ≤A σ → τ ∩ ρ;

If σ ≤A σ′ and τ ≤A τ ′ then σ ∩ τ ≤A σ′ ∩ τ ′ and σ′ → τ ≤A σ → τ ′.

We identify σ and τ when σ ≤A τ and τ ≤A σ. The distributivity properties
(σ → τ) ∩ (σ → ρ) = σ → τ ∩ ρ and (σ → τ) ∩ (σ′ → τ ′) ≤A σ ∩ σ′ → τ ∩ τ ′

follow from the axioms of subtyping. Note also that τ1 → · · · → τm → ω = ω.
We say that a type τ is reduced with respect to ω if it has no subterm of the
form ρ ∩ ω or τ1 → · · · → τm → ω with m ≥ 1. It is easy to reduce a type with
respect to ω, by applying the equations ρ ∩ ω = ρ and τ1 → · · · → τm → ω = ω
left to right.

A type of the form τ1 → · · · → τm → a, where a �= ω is an atom, is called
a path of length m. A type τ is organized if it is a (possibly empty) intersection
of paths (those are called paths in τ). Every type τ is equal to an organized
type τ , computable in polynomial time, with a = a, τ ∩ σ = τ ∩σ, and τ → σ =⋂

i∈I(τ → σi) where σ =
⋂

i∈I σi. Note that premises in an organized type do
not have to be organized, i.e., organized types are not necessarily normalized as
defined in [9] (in contrast to organized types, the normalized form of a type may
be exponentially large in the size of the type).

A substitution is a function S : V→ T, such that S is the identity everywhere
but on a finite subset of V. Whenever we consider a substitution S and a type
variable α such that S(α) is not explicitly defined we assume S(α) = α. A sub-
stitution S is tacitly lifted to a function on types, S : T → T, by homomorphic
extension.

The following property, probably first stated in [1], is often called beta-
soundness . Note that the converse is trivially true.

Lemma 1. Let a and aj, for j ∈ J , be atoms.

1. If
⋂

i∈I(σi → τi) ∩
⋂

j∈J aj ≤A a then a = aj, for some j ∈ J .
2. If

⋂
i∈I(σi → τi) ∩

⋂
j∈J aj ≤A σ → τ , where σ → τ �= ω, then the set

H = {i ∈ I | σ ≤A σi} is nonempty and
⋂
{τi | i ∈ H} ≤A τ .

We will need three specializations of this lemma to organized types:

Lemma 2.

1. Let τ =
⋂

i∈I τi,1 → . . .→ τi,mi → pi be an organized type and let σ = σ1 →
. . . → σm → p be a path. We have τ ≤A σ if and only if there is an i ∈ I
with mi = m, σj ≤A τi,j for all j ≤ m, and pi = p.

2. Let τ =
⋂

i∈I τi,1 → . . .→ τi,mi → pi be an organized type and let σ = σ1 →
. . .→ σm → ρ be a type with ρ �= ω. We have τ ≤A σ if and only if there is
a nonempty subset I ′ ⊆ I such that for all i ∈ I ′ and all 1 ≤ j ≤ m we have
σj ≤A τi,j and such that

⋂
i∈I′ τi,m+1 → . . .→ τi,mi → pi ≤A ρ.

3. Let τ = τ1 → . . . → τm → ρ be a type and let σ = σ1 → . . . → σn → p be a
path with m ≤ n. We have τ ≤A σ if and only if for all 1 ≤ j ≤ m we have
σj ≤A τj and ρ ≤A σm+1 → . . .→ σn → p.
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Using Lem. 1, the lemmas are proved by induction over m. We conclude by
formally defining intersection type matching:

Definition 1. Let τ, σ ∈ T be types and let τ ≤ σ be a formal type constraint.
Let C = {τ1 ≤ σ1, . . . , τn ≤ σn} be a set of type constraints such that for

every i it is the case that σi or τi does not contain any type variables. We say
that C is matchable if there is a substitution S : V → T such that for all i we
have S(τi) ≤A S(σi). We say that S matches C.

CMATCH denotes the decision problem whether a given set of constraints C
is matchable. cMATCH denotes the decision problem whether a given constraint
τ ≤ σ where σ does not contain any type variables is matchable.

We sometimes denote CMATCH and cMATCH as matching problems. Note
that in S(τ) ≤A S(σ) at least one of the two types does not contain variables,
i.e., we have S(σ) = σ or S(τ) = τ . If it is known that σ does not contain any
variables we write S(τ) ≤A σ (and analogously for τ). Note that we use ≤ to
denote a formal constraint whose matchability is supposed to be checked whereas
τ ≤A σ states that τ is a subtype of σ.

4 NP-Hardness of Intersection Type Matching

We show that intersection type matching is NP-hard by defining a reduction R
from 3SAT to CMATCH such that any formula F in 3CNF is satisfiable if
and only if R(F ) is matchable. Let F = c1 ∧ . . . ∧ cm where for each i we have
ci = L1

i ∨L2
i ∨L3

i and each Lj
i is either a propositional variable x or a negation ¬x

of such a variable. For all propositional variables x occurring in F we define two
fresh type variables called αx and α¬x. Furthermore, we assume the two type
constants 1 and 0. For a given formula F , let R(F ) denote the set containing
the following constraints:

1. For all x in F :
(
(1 → 1) → 1

)
∩
(
(0 → 0) → 0

)
≤ (αx → αx) → αx

2. For all x in F : (0 → 1) ∩ (1 → 1) ≤ αx → 1
3. For all x in F :

(
(1 → 1) → 1

)
∩
(
(0 → 0) → 0

)
≤ (α¬x → α¬x) → α¬x

4. For all x in F : (0 → 1) ∩ (1 → 1) ≤ α¬x → 1
5. For all x in F : (1 → 0) ∩ (0 → 1) ≤ αx → α¬x

6. For all ci: αL1
i
∩ αL2

i
∩ αL3

i
≤ 1

It is clear that R(F ) can be constructed in polynomial time.

Theorem 1. A formula F in 3CNF is satisfiable if and only if R(F ) is
matchable.

Proof. For the “only if”-direction let v be a valuation that satisfies F . We define
a substitution Sv as follows:

– Sv(αx) = v(x)
– Sv(α¬x) = ¬v(x)
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By way of slight notational abuse the right hand sides of these defining equa-
tions represent the truth values v(x) and ¬v(x) as types. We claim that Sv

matches R(F ). For the first five constraints this is obvious. Consider a clause ci
in F and the corresponding constraint in the sixth group of constraints: because
v(F ) = 1 there is a literal Lj

i with v(Lj
i ) = 1. Thus, Sv(αLj

i
) = 1 and the

constraint corresponding to ci is matched.
For the “if”-direction, from a substitution S matching R(F ) we construct a

satisfying valuation vS for F . We define vS(x) = S(αx), and show that vS is
well-defined and satisfies F . Consider a type variable αx. Using Lem. 1 it is not
difficult to show that S can only match the first constraint if S(αx) ∈ {0, 1, ω}.
The second constraint, however, will not be matched if S(αx) = ω. It is matched
by the instantiations S(αx) = 0 and S(αx) = 1, though. Thus, the first two
constraints make sure that S(αx) ∈ {0, 1}. The same argument, using the third
and fourth constraint, shows S(α¬x) ∈ {0, 1}. These two observations can be
used together with the fact that the fifth constraint is matched for x to show
that S(αx) = 1 if and only if S(α¬x) = 0 and vice versa. We conclude that vS is
well-defined. In order to show that it satisfies F we need to show that for every
clause ci there is a literal Lj

i with vS(Lj
i ) = 1. Because S matches R(F ) we have

S(αL1
i
)∩S(αL2

i
)∩ S(αL3

i
) ≤A 1. Lemma 1 states that the type on the left-hand

side must have a component which is equal to 1. We already know that each of
the three variables is instantiated either to 0 or 1. Thus, at least one of them
must be instantiated to 1. Therefore, vS(ci) = 1 and vS satisfies F .

We immediately get the following corollary:

Corollary 1. CMATCH is NP-hard.

Exploiting co- and contravariance, a set C of constraints can be transformed into
a single constraint c such that C is matchable if and only if c is matchable. This
yields a reduction from CMATCH to cMATCH, hence the following corollary:

Corollary 2. cMATCH is NP-hard.

Remark 1. Notice that the lower bound holds even when restricting the matching
problem to atomic substitutions (mapping variables to atoms), since Sv as con-
structed above only uses such substitutions. Furthermore, note that the source
of nondeterminism in the matching problem stems from the fact that in the first
case of Lem. 1 one has to choose j ∈ J whereas in the second case a nonempty
subset of I has to be chosen. Both cases are reflected in the constraints defined
for the reduction R. A nondeterministic choice as in the first case of the lemma
has to be made in the constraints of the sixth kind whereas the second case arises
in the other constraints resulting in the choice whether a type variable should
be substituted by 0 or 1.

5 NP-Membership of Intersection Type Matching

We show that CMATCH and cMATCH are in NP. Interestingly, the NP upper
bound is quite challenging. In a first approach, one could try to polynomially
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bound the size of substitutions and then guess one nondeterministically. How-
ever, proving such a bound turns out to be complicated. Moreover, the nonde-
terminism exhibited by such an algorithm would completely ignore the sources
of nondeterminism that were identified in Rem. 1 and would be pragmatically
very suboptimal. Instead, we exploit the special structure of paths and organized
types and attempt to minimize nondeterminism. Recall that every type can be
organized in polynomial time. Thus, we may assume that all types occurring in
a set of constraints are organized. Using the cases of Lem. 2, we successively
decompose the set of constraints until we arrive at a set of constraints, that are
basic in a certain sense. This process exhibits nondeterministic choices only in
exactly the same manner as in the lemma with one exception: the case where
τ ≤ σ is matched by a substitution S with S(σ) = ω is not treated by the lemma
and must be dealt with by a separate nondeterministic choice. For a set of basic
constraints it is then possible to define a notion of consistency which is similar to
the notion of ground consistency defined in [11]. Then, we can use intersections
to construct a matching substitution for a consistent set of basic constraints.
Since it can be shown that a set of basic constraints resulting from a successful
run of the algorithm is matchable if and only if the original set of constraints was
matchable, we arrive at an efficient nondeterministic polynomial-time algorithm
deciding intersection type matching.

5.1 Algorithm

Our algorithm is shown in the figure Alg. 1 below. It will be seen that Alg. 1
heavily exploits the rather regular structure of organized types. We take a short
digression to discuss an alternative strategy, that normalizes [9] types in a set
of constraints to be matched and uses directed acyclic graphs (DAGs) to repre-
sent these types. Even though normalization may lead to an exponentially large
syntax tree this is not per se a problem with regard to the polynomial bound,
because a sharing representation of the syntax trees by DAGs only needs poly-
nomial space. We do not, however, follow this approach for two reasons. First, it
can be seen that such an approach would need exactly the same decomposition
strategy for the sets of constraints that arise in Alg. 1. Furthermore, a DAG-
approach requires a normalization of the types in advance. In general, this will
cause applications of the distributivity law to types that are eliminated from
the set of constraints according to some nondeterministic choices. On the other
hand, our algorithm only organizes types in an argument position if necessary,
i.e., if a constraint containing such a type is added to the set of constraints. In
this case the distributivity law is only applied to the target position of paths
that are components of the top-level intersection of the type in question. This
reflects the structure of Lem. 1 which reduces the test whether a type is a
subtype of an arrow-type to a subtype-test for certain types which are argu-
ments, respectively targets, of top-level arrow-types. Thus, there is no reason
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to apply the distributivity law to types which are on some lower levels of the
syntax tree.2

Definition 2. We call τ ≤ σ a basic constraint if either τ is a type variable
and σ does not contain any type variables or σ is a type variable and τ does not
contain any type variables.

Definition 3. Let C be a set of basic constraints.
Let α be a variable occurring in C. Let τi ≤ α for 1 ≤ i ≤ n be the constraints

in C where α occurs on the right hand side of ≤ and let α ≤ σj for 1 ≤ j ≤ m
be the constraints in C where α occurs on the left hand side of ≤. We say that C
is consistent with respect to α if for all i and j we have τi ≤A σj .

We say that C is consistent if it is consistent with respect to all variables
occurring in C.

Lemma 3. Let C be a set of basic constraints. The set C can be matched if and
only if it is consistent.

Proof. The implication from left to right is easy and left out. For the direction
from right to left, let C be a set of basic constraints and let α ≤ σj for 1 ≤ j ≤ m
be the constraints in C where α occurs on the left hand side of ≤. We define the
substitution SC by SC(α) =

⋂m
j=1 σj , for every variable α occurring in C. Recall

that empty intersections equal ω (thus, SC is well-defined even if m = 0). It can
easily be verified that SC matches C, if C is consistent.

The definition SC(α) =
⋂m

j=1 σj corresponds to the technique used by Tiuryn [11]
for satisfiability in simple types over lattices of type constants, but generalized
to arbitrary constant types σj (and not just type constants). It is important here
that we can treat variables independently since the basic constraints in C do not
contain any variables on one side of ≤ (hence the types

⋂m
j=1 σj contain no vari-

ables). The proof technique would not work for the satisfiability problem with
intersection types, where the types on both sides of ≤ may contain variables.

Alg. 1 below is the nondeterministic procedure mentioned above that decom-
poses the constraints in the set C until we arrive at a set of basic constraints.
According to the lemma above, it suffices to check whether this set of constraints
is consistent. A few issues that are not made explicit in the algorithm should be
addressed:

2 Even with respect to a decision procedure for ≤A the compact representation of
normalized types by DAGs does not help: In [9] subtyping for normalized types
τ =

⋂
i∈I τi and σ =

⋂
j∈J σj is characterized by τ ≤A σ ⇔ ∀j∃i τi ≤A σj . Even

if the normalized types were represented using DAGs the characterization requires
for all j the identification of an index i with τi ≤A σj . Checking this subtype
relation, however, again requires a similar choice of certain components in the types.
Repeating this argument, it can be seen that in order to check the characterization
above one has to choose certain paths in the DAGs. The number of paths in a DAG
however is still exponential if the original normalized type is of exponential size.
Since a PTIME-procedure deciding ≤A is known [5], clearly this approach using
DAGs does not lead to an improvement.
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1. Memoization is used to make sure that no constraint is added to C more
than once.

2. Failing choices always return false.
3. The reduction with respect to ω in line 6 means, in particular, that, unless

they are syntactically identical to ω, neither τ nor σ contain any types of
the form ρ1 → . . .→ ρm → ω as top-level components.

4. Line 14 subsumes the case σ = ω if I = ∅. Then c is simply removed from C,
and no new constraints are added.

5. We assume that the cases in the switch-block are mutually exclusive and
checked in the given order. Thus, we know, for example, that for the two
cases in lines 19 and 30 σ is not an intersection and therefore a path. Thus,
we may fix the notation in line 17. Note, though, that the index set I for τ
may be empty.

6. In line 21 the choice between the two cases is made nondeterministically.
The first option covers the case where I2 ∪ I3 = ∅, i.e., all paths in τ are
shorter than σ.3 The only possibility to match such a constraint is to make
sure that S(σ) = ω, which is only possible if S(a) = ω. Thus, a must be
a variable. Clearly, a cannot be a constant different from ω, and it cannot
be ω either, because then σ would have been reduced to ω in line 6 and the
case in line 8 would have been applicable.

7. The following example shows that even if I2 ∪ I3 �= ∅ it must be possible to
choose the first option in line 21: the constraint set {a′ ≤ β, b→ a ≤ β → α}
is matchable according to the substitution {α �→ ω, β �→ a′}. If the algorithm
were not allowed to choose the option in line 22 it would have to choose
the option in the following line which would result in the constraint set
{a′ ≤ β, a ≤ α, β ≤ b}. This set is clearly not matchable and the algorithm
would incorrectly return false.

8. We assume that the nondeterministic choice in line 21 is made determinis-
tically, choosing the first option whenever I2 ∪ I3 = ∅. In this case choosing
the second option would always result in false.

Nondeterminism results only from line 21 and lines 23, 27, and 31. We emphasize
that the nondeterminstic choice in line 21 differs from the other cases in that it is
the only occurrence of nondeterminism which is not structural in the sense that it
can be traced to Lem. 2. Indeed, the first option of this choice covers the case that
the type on the right hand side of ≤A is of the form σ1 → . . .→ σm → ω which is
excluded in the lemma. This situation can arise if a substitution maps a variable in
the target of σ to ω. The other three occurrences of nondeterminism can directly
be traced to Lem. 2: the choice of I ′ ⊆ I in line 23 corresponds to Lem. 2.2 whereas
the choice of one index in the other two lines can be traced back to Lem. 2.1.

The following example illustrates why it is indeed necessary to choose an index
set in line 23 as opposed to a single index as in the other two cases: the constraint
setC = {(a→ b)∩(a→ p) ≤ a→ α, α ≤ b∩p} is matchable with the substitution
{α �→ b∩p}. If, in line 23, the algorithm were only allowed to choose a single index
from I ′ this would result in the addition of the new constraints a ≤ a and either

3 In particular, τ = ω is allowed if furthermore I1 = ∅, as well.
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Algorithm 1. Match(C)

1: Input: C = {τ1 ≤ σ1, . . . , τn ≤ σn} such that for all i at most one of σi and τi
contains variables. Furthermore, all types have to be organized.

2: Output: true if C can be matched otherwise false
3:
4: while ∃ nonbasic constraint in C do
5: choose a nonbasic constraint c = (τ ≤ σ) ∈ C
6: reduce τ and σ with respect to ω
7: switch
8: case: c does not contain any variables
9: if τ ≤A σ then
10: C := C\{c}
11: else
12: return false
13: end if
14: case: σ =

⋂
i∈I σi

15: C := C\{c} ∪ {τ ≤ σi|i ∈ I}
16:
17: write τ =

⋂
i∈I τi,1 → . . . → τi,mi → pi, σ = σ1 → . . . → σm → a

18: write I1 = {i ∈ I |mi < m}, I2 = {i ∈ I |mi = m}, I3 = {i ∈ I |mi > m}
19: case: σ contains variables, τ does not contain any variables
20: if a ∈ V then
21: choose case 1 or 2:
22: 1. C := C\{c} ∪ {ω ≤ a}
23: 2. choose ∅ �= I ′ ⊆ I2 ∪ I3
24: C := C\{c} ∪ {σj ≤ τi,j |i ∈ I ′, 1 ≤ j ≤ m}∪
25: {⋂i∈I′ τi,m+1 → . . . → τi,mi → pi ≤ a}
26: else
27: choose i0 ∈ I2
28: C := C\{c} ∪ {σj ≤ τi0,j |1 ≤ j ≤ m} ∪ {pi0 ≤ a}
29: endif
30: case: τ contains variables, σ does not contain any variables
31: choose i0 ∈ I1 ∪ I2
32: C := C\{c}∪{σj ≤ τi0,j |1 ≤ j ≤ mi0}∪{pi0 ≤ σmi0

+1 → . . . → σm → a}
33: end switch
34: end while
35: if C is consistent then
36: return true
37: else
38: return false
39: end if
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b ≤ α or p ≤ α. Thus, the resulting set of constraints would be {a ≤ a, b ≤
α, α ≤ b∩ p}, for example. This set of constraints is not matchable, and it is easy
to see that the algorithm would incorrectly return false even though the initial
set of constraints was matchable. The reason is that, if σ is a path whose target is
a variable, a substitution may cause σ to not be a path any more.

As mentioned above, nondeterminism is localized in the algorithm, leading to
efficiency. Thus, if for some input C none of the cases above ever arises or, in
fact, the choices are deterministic because I2∪I3 = ∅, respectively, the index sets
to choose from in the other cases are always singleton sets, then the algorithm
becomes a Ptime-procedure.

In general, a most general matching substitution is not unique: the constraint
set C = {α ∩ β ≤ a} is matched by the two substitutions S1 = {α �→ a, β �→ β}
and S2 = {α �→ α, β �→ a}, for example. It is clear that neither of the two sub-
stitutions can be obtained from instantiating the other. Furthermore, there is no
substitution more general than S1 and S2 that still matches C (this substitution
would be the identity which clearly does not match C). Note that S1 and S2

can directly be traced to the nondeterminstic choice of either α or β in line 31.
Thus, only α ≤ a or β ≤ a replaces the original constraint in C. The least upper
bound construction from the proof of Lem. 3 then results in S1 respectively S2.

Lemma 4. Algorithm 1 operates in nondeterministic polynomial time.

Proof. (Sketch) It is clear that the algorithm terminates because in every itera-
tion of the while-loop the height of the types involved in a constraint is reduced.
Thus, if the algorithm does not return false, C only consists of basic constraints
after a finite number of iterations.

The algorithm terminates in nondeterministic polynomial time, because (as
can be shown by a detailed case analysis) every type occurring in a nonbasic
constraint considered during one execution of the while-loop is a subterm of
a type occurring in an initial constraint (we call such types initial types) or
a subterm of an organized argument of an initial type. The number of subterms
of an initial type is linear. The number of arguments of an initial type is also
linear. Organizing each of these linearly many arguments causes only a polyno-
mial blowup. Therefore, it is clear that the number of subterms of an organized
argument of an initial type is polynomial. Let k denote the number of subterms
of the initial types plus the number of subterms of organized arguments of the
initial types. The total number of nonbasic constraints that the algorithm con-
siders is therefore bounded by k2 which, in turn, is polynomial in the size of C.
Furthermore, it can also be seen that every constraint that is considered is of
polynomial size. The consistency check and the check in line 9 require checking
the truth of constraints τi ≤ σj not containing any type variables, which means
deciding the relation ≤A. As is shown in [5] this can be done in Ptime.

The statement of the previous lemma might come as a surprise since the execu-
tion of the while-loop requires a repeated organization of the arguments of the
occurring types. It can be asked why this repeated organization does not result in
a normalization [9] of the types involved. As mentioned before, this could cause
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an exponential blowup in the size of the type. The reason why this problem does
not occur is the fact that this organization is interleaved with decomposition
steps. We illustrate this by the following small example. We inductively define
two families of types:

τ0 = a0 ∩ b0 σ0 = α0

τl = τl−1 → (al ∩ bl) σl = σl−1 → αl

The size of τn in normalized form is exponential in n. However, if the algorithm
processes the constraint τn ≤ σn only a polynomial number of new constraints
(of polynomial size) are constructed: First, the types have to be organized. We
obtain (τn−1 → an) ∩ (τn−1 → bn) ≤ σn. In the first iteration of the while-loop
the case in line 20 applies and the nondeterministic choice in line 21 may be
resolved in such a way that a subset of components of the toplevel intersection
of (τn−1 → an) ∩ (τn−1 → bn) has to be chosen. In order to maximize the size
of C we choose both components which forces the construction of the constraints
an ∩ bn ≤ αn, σn−1 ≤ τn−1, and σn−1 ≤ τn−1. The last two constraints are the
same, however, and therefore the memoization of the algorithm makes sure that
this constraint is only treated once. In the next step the case in line 14 applies
(note that τn−1 is a top-level intersection). This leads to the construction of the
constraints σn−1 ≤ τn−2 → an−1 and σn−1 ≤ τn−2 → bn−1. For both constraints
the same rule applies and causes a change of C according to line 32. This leads
to the construction of the basic constraints αn−1 ≤ an−1 and αn−1 ≤ bn−1 as
well as to the construction of σn−2 ≤ τn−2 and σn−2 ≤ τn−2. Then, the same
argument as above can be repeated.

We conclude that the doubling of the arguments of the τl that occurs in the
normalization (and which eventually causes the exponential blowup if repeated)
does not occur in the algorithm, because the types involved are decomposed
such that the arguments and targets are treated separately. This implies that
the arguments cannot be distinguished any more such that the new constraints
coincide and are only added once.

The proof of Lem. 4 relies on the fact that every new nonbasic constraint
added to C only contains types that are essentially subterms of an initial type.
A new intersection which possibly does not occur as a subterm in any of the
initial types has to be constructed in line 25, though. Since, in principle, this new
intersection represents a subset of an index set, it is not clear that there cannot
be an exponential number of such basic constraints. However, this construction of
new intersections only happens as a consequence to the nonbasic constraint that
is treated there. As noted above there can be at most a polynomial number of
nonbasic constraints and therefore new intersections can also only be introduced
a polynomial number of times.

5.2 Correctness

We consider correctness of the algorithm, i.e., we have to show that it can return
true if and only if the original set of constraints can be matched. For soundness
we first state the following lemma:
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Lemma 5. Let C be a set of constraints and let C′ be a set of constraints that
results from C by application of one of the cases of Alg. 1.

Every substitution that matches C′ also matches C.

The proof consists of a case analysis. To give the reader an idea we give a proof
sketch which discusses one of the cases in more detail.

Proof. For all cases C′ results from C by removing the constraint c and possibly
by further adding some new constraints. Assuming we have a substitution S that
matches C′, it suffices to show that S satisfies c in order to show that it also
satisfies C.

The argument is not difficult for the cases occurring because of lines 10, 15,
and 22. The interesting cases occur because of lines 24, 28, and 32. We will discuss
the case in line 24 in detail. The other cases are argued similarly. We then have
σ = σ1 → . . . → σm → a, with a = α a type variable, and τ =

⋂
i∈I τi with

τi = τi,1 → . . . → τi,mi → pi. In this case C′ is constructed by adding σj ≤ τi,j
for all i ∈ I ′ and all 1 ≤ j ≤ m and

⋂
i∈I′ τi,m+1 → . . . → τi,mi → pi ≤ α.

Since S matches C′ we know S(σj) ≤A τi,j and
⋂

i∈I′ τi,m+1 → . . . → τi,mi →
pi ≤A S(α). We want to show τ ≤A S(σ). We write S(σ) = σ′

1 → . . .→ σ′
m → ρ

where S(σj) = σ′
j and S(α) = ρ. Using S(σj) ≤A τi,j , it can be shown4 that

σ′
j ≤A τi,j . We may apply the “if”-part of Lem. 2.2 to conclude τ ≤A S(σ).

Corollary 3. Algorithm 1 is sound.

Proof. Assume that the algorithm returns true. This is only possible in line 36 if
the algorithm leaves the while-loop with a consistent set C of basic constraints.
By the “if”-direction of Lem. 3, C is matchable. Using Lem. 5, an inductive
argument shows that all sets of constraints considered in the algorithm during
execution of the while-loop are matchable. This is in particular true for the
initial set of constraints.

For completeness we need the following lemma:

Lemma 6. Let C be matchable and c ∈ C.
There exists a set of constraints C′ such that C′ results from C by application

of one of the cases of Alg. 1 to c and C′ is matchable.

Again we give a sketch of the case analysis necessary for the proof:

Proof. We show that no matter which case applies to c, a choice can be made
that results in a matchable set C′. In particular, it must be argued that there is
a choice that does not result in false.

As above, note that for all cases C′ results from C by removing c and by
possibly adding some new constraints. Let S be a substitution that matches C.
In order to show that a choice is possible such that S also matches C′ it suffices
to show that S matches the newly introduced constraints. The argument is not

4 At this point a technical lemma showing that for a type σ we have S(σ) = S(σ) has
to be proven.
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difficult for the cases in lines 8 and 14 (and besides there is no nondeterministic
choice involved, here). For the cases in lines 19 and 30 subcase-analyses are
necessary. The subcases different from the one in line 22 (explained below) are
similar to the following:

We consider the case in line 30. We have τ =
⋂

i∈I τi where τi = τi,1 → . . .→
τi,mi → pi and σ = σ1 → . . .→ σm → a, and we know S(τ) ≤A σ. We organize

S(τ) and we write S(τ) =
⋂

h∈H ρh,1 → . . . → ρh,nh
→ bh. Using Lem. 2.1, we

conclude that there exists h0 ∈ H with bh0 = a, nh0 = m, and σl ≤A ρh0,l for
all 1 ≤ l ≤ m. Note that with πh0 = ρh0,1 → . . . → ρh0,m → a this implies
πh0 ≤A σ. For πh0 there must be an index j0 ∈ I such that πh0 occurs as a
component in S(τj0). It is clear that mj0 ≤ m. Otherwise all paths in this type
would be of length greater than m (neither a substitution nor an organization
may reduce the length of a path). Thus, j0 as above is contained in I1∪I2 (cf. line
18), and we may choose i0 = j0 in line 31.

We have to show that S matches σl ≤ τj0,l for all 1 ≤ l ≤ mj0 and pj0 ≤
σmj0+1 → . . . → σm → a. Because πh0 is a component in S(τj0), it is clear

that πh0 ≤A σ implies S(τj0 ) ≤A σ and, thus, also S(τj0) ≤A σ. Applying the
“only if”-part of Lem. 2.3 to S(τj0,1) → . . .→ S(τj0,mj0

) → S(pj0) = S(τj0) ≤A

σ = σ1 → . . . → σm → a, we obtain σl ≤A S(τj0,l) for all 1 ≤ l ≤ mj0 and
S(pj0) ≤A σmj0+1 → . . .→ σm → a. It can be shown5 that from σl ≤A S(τj0,l)
we get σl ≤A S(τj0,l). Altogether this shows that S matches the newly introduced
constraints.

Concerning line 22, if τ ≤A S(σ) because a is a variable with S(a) = ω the
nondeterminstic choice (line 21) is resolved such that the first option is chosen.
Then, it is clear that the newly added constraint ω ≤ a is matched by S.

Corollary 4. Algorithm 1 is complete.

Proof. We assume that the initial set C of constraints is matchable. We have
to show that there is an execution sequence of the algorithm that results in
true. Using Lem. 6 in an inductive argument it can be shown that for every
iteration of the while-loop it is possible to make the nondeterministic choice in
such a way that the iteration results in a matchable set of constraints. Thus,
there is an execution sequence of the while-loop that results in a matchable set
of basic constraints. Lemma 3 shows that this set is consistent and therefore the
algorithm returns true.

Corollaries 2, 3, and 4 and Lem. 4 immediately prove the following theorem:

Theorem 2. cMATCH and CMATCH are NP-complete.

6 Conclusion and Future Work

We have proven the intersection type matching problem to be NP-complete
and have provided an algorithm which is engineered for efficiency by reducing

5 Again using the lemma, showing that S(σ) = S(σ).
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nondeterminism as much as possible. Future work includes further experiments
to study optimizations of the inhabitation algorithm in [6] based on matching,
and studying the satisfiability and unification problems with intersection types.
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Abstract. We present a core Martin-Löf type theory with subtyping;
it has a cumulative hierarchy of universes and the contravariant rule for
subtyping between dependent product types. We extend to this calcu-
lus the normalisation by evaluation technique defined for a variant of
MLTT without subtyping. This normalisation function makes the sub-
typing relation and type-checking decidable. To our knowledge, this is
the first time that the normalisation by evaluation technique has been
considered in the context of subtypes, which introduce some subtleties in
the proof of correctness of NbE; an important result to prove correctness
and completeness of type-checking.

1 Introduction

The usefulness of proof assistants based on type theory depends on how much
effort is required to transform a traditional proof in one accepted by the formal
system. For example, as mentioned in [6], when one has a proof of some property
for monoids, one immediately realises that the property is also valid for groups.
It is desirable that our proof assistants permit us to use the same reasoning in
their formalisms. In this paper we extend previous works [2] on NbE to MLTT
extended with subtyping, which is one way to allow such forms of reasoning in
type-theory.

The calculus we consider is a core fragment of MLTT with a cumulative hier-
archy of universes and the usual rule for subtyping between dependent product
types. Like in previous works, the formal system features explicit substitution
and de Bruijn indices; there are however some other differences besides subtyp-
ing: it lacks (η) rule, which makes some semantical constructions simpler, and
there is another form of judgement for subtyping between valid contexts.

The semantic domain and the normalisation function are essentially like the
ones in [2]; as in that work, the main results follow from completeness and
correctness of NbE. Correctness is proved using logical relations. To deal with
the subtleties of the subsumption rule it is useful to model subtyping by an order
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between semantical types, which is finer than set-theoretical inclusion. This leads
to a proof that logical relations are preserved by subtyping, while keeping the
definition of the logical relations unchanged.

Finally we define a decision procedure for subtyping among well-formed types
in normal form; thanks to the NbE algorithm it gives rise to a bidirectional
type-checking algorithm. Correctness and completeness of algorithmic subtyping
and type-checking follow from injectivity of Fun and the analogous property for
subtyping: we say that Fun reflects subtyping, if the converse of the contravariant
rule for subtyping between dependent product types holds. In the light of [4] and
[15] injectivity of Fun is an interesting property in itself.

2 The Calculus

The calculus is presented in Figs. 1, 2 and 3. Contexts are finite sequences of
dependent types. There is a cumulative hierarchy of universes Ul for l ∈ N. Types
are built up from universes and their objects, and are closed by the dependent
product type Fun, and by substitution. Terms include function application, de
Bruijn-like notation for abstraction and variable (q), and substitution. In the
case of type Ul terms include also smaller universes and dependent products.

Substitutions are built up from the empty, identity and weakening (p) sub-
stitutions by the operation of extension, and closed under composition. The
substitution [r] stands for (id, r), so Γ � [r] : Γ.A if Γ � r : A.

Pre-Terms and pre-substitutions are defined by the following grammar:

Terms ' t, r, A,B ::= q | Ul | App t r | λ t | FunAB | t σ
Subs ' σ, δ ::= p | id | 〈〉 | (δ, t) | δ σ

The subtyping relation is generated by the cumulative hierarchy of universes and
the contravariant rule for subtyping between dependent product types (fun-sty).
This relation, in turn, induces the definition of the subcontext relation.

Notice the presence of the β-rule (beta-et) and the ξ-rule (xi-et), and the ab-
sence of (η). Equality rules (fun-subs-ety), (fun-subs-et) and (abs-subs-et) in-
volve the substitution (δ p, q): if Γ � δ : Δ and Δ � A, then Γ.A δ � (δ p, q) : Δ.A.

We will make free use of symmetry and transitivity, since they can be derived
from rules (refl-et) and (sym-tran-et), or the analogous rules for equal substi-
tutions or equal types, in Fig. 2. If Γ � δ : Δ then Γ � Ul δ = Ul is derivable using
rules (u-subs-et) and (cong-el-ety); we call (u-subs-ety) this derived rule.

Notation. We denote with | | the length of contexts, and with pi, the i-fold self-
composition of p. We define p0 = id but t p0 = t rather than t p0 = t id. We say
that Δ �i Γ if Δ � pi : Γ . Neutral terms and normal forms are characterised by
the following grammar.

Definition 1 (Neutral terms and normal forms).

Ne ' k ::= q pi | App k v Nf ' v, V,W ::= Ul | FunV W | λv | k
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Contexts.

� � (empty-ctx)

Γ � Γ � A

Γ.A � (ext-ctx)

Substitutions.
Γ �

Γ � id : Γ
(id-subs)

Σ � δ : Δ Γ � σ : Σ

Γ � δ σ : Δ
(comp-subs)

Γ � A

Γ.A � p : Γ
(fst-subs)

Γ � δ : Δ Δ � A Γ � t : Aδ

Γ � (δ, t) : Δ.A
(ext-subs)

Γ �
Γ � 〈〉 : � (emp-subs)

Γ � δ : Δ Δ ≤ Θ

Γ � δ : Θ
(subs)

Types.
Γ �

Γ � Ul

(u-f)

Γ � A : Ul

Γ � A
(u-el)

Γ � A Γ.A � B

Γ � FunAB
(fun-f)

Δ � A Γ � δ : Δ

Γ � Aδ
(subs-type)

Terms.
Γ �

Γ � Ul : Ul+1

(u-u-f)

Γ � A : Ul Γ.A � B : Ul

Γ � FunAB : Ul

(fun-u-f)

Γ � A

Γ.A � q : A p
(hyp)

Γ � A Γ.A � B Γ.A � t : B

Γ � λt : FunAB
(fun-i)

Γ � A Γ.A � B Γ � t : FunAB Γ � r : A

Γ � App t r : B [r]
(fun-el)

Δ � A Δ � t : A Γ � δ : Δ

Γ � t δ : Aδ
(subs-term)

Γ � t : A Γ � A ≤ B

Γ � t : B
(sub)

Subtypes.
Γ � A = B

Γ � A ≤ B
(refl-sty)

Γ �
Γ � Ul ≤ Ul+1

(u-sty)

Γ � A′ ≤ A Γ.A � B Γ.A′ � B ≤ B′

Γ � FunAB ≤ FunA′ B′ (fun-sty)

Γ � A ≤ A′ Γ � A′ ≤ A′′

Γ � A ≤ A′′ (tran-sty)

Subcontexts.

� ≤ � (empty-sctx)

Γ ≤ Δ Δ � B Γ � A ≤ B

Γ.A ≤ Δ.B
(ext-sctx)

Fig. 1. Typing Rules
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Equal Substitutions.
Γ � δ : Δ

Γ � δ = δ : Δ
(refl-es)

Γ � δ = δ′ : Δ Γ � δ = δ′′ : Δ

Γ � δ′ = δ′′ : Δ
(sym-tran-es)

Γ � δ : Δ

Γ � δ id = δ : Δ
(neut-r-es)

Γ � A

Γ.A � id = (p, q) : Γ.A
(pq-es)

Γ � δ : Δ

Γ � id δ = δ : Δ
(neut-l-es)

Θ � δ : Δ Σ � θ : Θ Γ � σ : Σ

Γ � (δ θ)σ = δ (θ σ) : Δ
(assoc-es)

� � id = 〈〉 : � (id-emp-es)

Γ � δ : Δ Δ � A Γ � t : Aδ

Γ � p (δ, t) = δ : Δ
(fst-es)

Γ � δ : Δ

Γ � 〈〉 δ = 〈〉 : � (absorb-es)

Σ � δ : Δ Δ � A Σ � t : Aδ Γ � σ : Σ

Γ � (δ, t)σ = (δ σ, t σ) : Δ.A
(ext-es)

Γ � σ = σ′ : Σ Σ � δ = δ′ : Δ

Γ � δ σ = δ′ σ′ : Δ
(cong-comp-es)

Γ � δ = δ′ : Δ Δ � A Γ � t = t′ : Aδ

Γ � (δ, t) = (δ′, t′) : Δ.A
(cong-ext-es)

Γ � δ = δ′ : Δ Δ ≤ Θ

Γ � δ = δ′ : Θ
(subs-es)

Equal Types.
Γ � A

Γ � A = A
(refl-ety)

Γ � A = A′ Γ � A = A′′

Γ � A′ = A′′ (sym-tran-ety)

Γ � A

Γ � A id = A
(neut-ety)

Δ � A Σ � δ : Δ Γ � σ : Σ

Γ � (Aδ)σ = A (δ σ)
(assoc-ety)

Γ � A = A′ Γ.A′ � B′ Γ.A � B = B′

Γ � FunAB = FunA′ B′ (cong-fun-ety)

Γ � A = B : Ul

Γ � A = B
(cong-el-ety)

Δ � A = A′ Γ � δ = δ′ : Δ

Γ � Aδ = A′ δ′
(cong-subs-ety)

Δ � A Δ.A � B Γ � δ : Δ

Γ � (FunAB) δ = Fun (Aδ) (B (δ p, q))
(fun-subs-ety)

Fig. 2. Equality Rules for Types and Substitutions

The following three lemmata are easily proved by induction on derivations.

Lemma 1 (Validity of typing judgements). Every component of a valid
judgement is well-formed. For instance, if Γ � t = t′ : A, then Γ �, Γ � A,
Γ � t : A and Γ � t′ : A; if Γ � δ : Δ or Γ ≤ Δ, then Γ � and Δ �; etc.

Lemma 2. If Δ � A ≤ B and Γ � δ : Δ then Γ � Aδ ≤ B δ. The subcontext
relation ≤ is reflexive and transitive. If Γ ′ ≤ Γ and Γ � J is a valid judgement,
then so is Γ ′ � J .

Lemma 3 (Inversion lemma)

1. If Γ � FunAB : C, then ∃l : Γ � Ul ≤ C, Γ � A : Ul and Γ.A � B : Ul .
2. If Γ � FunAB, then Γ � A and Γ.A � B.
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Equal Terms.
Γ � t : A

Γ � t = t : A
(refl-et)

Γ � t = t′ : A Γ � t = t′′ : A

Γ � t′ = t′′ : A
(sym-tran-et)

Γ � t : A

Γ � t id = t : A
(neut-et)

Γ � δ : Δ

Γ � Ul δ = Ul : Ul+1

(u-subs-et)

Γ � δ : Δ Δ � A Γ � t : Aδ

Γ � q (δ, t) = t : Aδ
(snd-et)

Γ � A = A′ : Ul Γ.A′ � B′ : Ul Γ.A � B = B′ : Ul

Γ � FunAB = FunA′ B′ : Ul

(cong-fun-et)

Δ � A : Ul Δ.A � B : Ul Γ � δ : Δ

Γ � (FunAB) δ = Fun (Aδ) (B (δ p, q)) : Ul

(fun-subs-et)

Γ � A Γ.A � B Γ.A � t = t′ : B

Γ � λt = λt′ : FunAB
(xi-et)

Δ � A Δ.A � B Δ.A � t : B Γ � δ : Δ

Γ � (λt) δ = λ(t (δ p, q)) : (FunAB) δ
(abs-subs-et)

Γ � A Γ.A � B Γ � t = t′ : FunAB Γ � r = r′ : A

Γ � App t r = App t′ r′ : B [r]
(cong-app-et)

Δ � A
Δ.A � B Δ � t : FunAB Δ � r : A Γ � δ : Δ

Γ � (App t r) δ = App (t δ) (r δ) : (B [r]) δ
(app-subs-et)

Δ � t = t′ : A Γ � δ = δ′ : Δ

Γ � t δ = t′ δ′ : Aδ
(cong-subs-et)

Δ � A Δ � t : A Σ � δ : Δ Γ � σ : Σ

Γ � (t δ)σ = t (δ σ) : (Aδ)σ
(assoc-et)

Γ � A Γ.A � B Γ.A � t : B Γ � r : A

Γ � App (λt) r = t [r] : B [r]
(beta-et)

Γ � t = t′ : A Γ � A ≤ B

Γ � t = t′ : B
(sub-et)

Fig. 3. Equality Rules for Terms

3. If Γ � λt : C, then ∃A,B : Γ � FunAB ≤ C and Γ.A � t : B.
4. If Γ � App t r : C, then ∃A,B : Γ � B [r] ≤ C, Γ � t : FunAB, Γ � r : A.
5. If Γ � Ul : C, then Γ � Ul+1 ≤ C.
6. If Γ � pi : Δ, then Γ = Γ ′.Ai . . . .A1 and Γ ′ ≤ Δ for some A1, . . . , Ai, Γ

′.
7. If Γ � q pi : C, then Γ = Γ ′.Ai . . . .A0 and Γ � Ai p

i+1 ≤ C for some
A0, . . . , Ai, Γ

′.

Remark 1. If Γ � A, then there exists l ∈ N such that Γ � A : Ul . Therefore
rules (fun-f) and (subs-type) are redundant; but they would not be anymore
even with slight changes in the system, so we keep them.

Trickier inversion results. Other inversion results can be formulated. Despite
their similar nature, their proofs are more difficult, they will follow from the
normalisation by evaluation construction and results:
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Lemma 4 (Injectivity and subtyping reflection)

1. If Γ � Ul ≤ Ul′ , then l � l′. If Γ � Ul = Ul′ then l = l′.

2. If Γ � FunAB ≤ FunA′B′, then Γ � A′ ≤ A and Γ.A′ � B ≤ B′.
3. If Γ � FunAB = FunA′B′, then Γ � A′ = A and Γ.A � B = B′.

An attempt to prove them directly by induction on derivations would fail when
considering transitivity. For the proof to succeed, it becomes necessary to show
that a universe and a product type are not comparable. This is related to the
consistency of the calculus which will only follow once we have a model that
distinguishes terms headed with different constructors.

3 Semantics and Normalisation by Evaluation

In this section we set up the mathematical structures to define a model which
can be used to normalise well-formed types and well-typed terms. Due to the lack
of (η), we simplify the machinery of NbE introduced in [2], where η-expansion
is performed at the semantic level. Here it is enough to have a function R : D →
Terms to reify values from the semantic domain D to the syntax.

This reification function helps mimicking syntactic concepts semantically: a
semantic normal form will be an element of the domain that is reified to a term
in normal form, and similarly for semantic neutral values. Thus, we think of
semantic normal forms as canonical representations of terms (and types).

The set Types of semantic types is defined using induction-recursion: at the
same time that we introduce an element X in Types , we also specify the set
of semantic terms [X ] for that (semantic) type. A key property is that every
member of Types or of [X ], for any X ∈ Types , is a semantic normal form; thus
we know that elements in those sets will be reified as normal forms. This result,
as several others, is proved by induction on Types .

Domain. Our model is built on top of a domain of values. Let D be the least
solution of the following domain equation in the category DOM⊥ of pointed
ω-cpo and continuous functions [3]:

D ∼= {�}⊥ ⊕ D ×D ⊕ N⊥ ⊕ [D → D] ⊕ D × [D → D] ⊕ D ×D ⊕ N⊥ .

where ⊕ stands for the coalesced sum.
Elements in D are either ⊥ or a non bottom element of one of the summands,

properly tagged and mapped to D. Instead of usual tags and isomorphisms, we
employ a more friendly notation for elements in D:

� (d, d′) App d d′ for d, d′ ∈ D
xi Ul for i, l ∈ N

Lam f Fun d f for d ∈ D, and f ∈ [D → D]
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Reification. When reifying an element from the semantic domain D to the syn-
tax, one has to keep track of the free and bound variables. We keep this infor-
mation in a parameter of the partial function R.1

Definition 2 (Reification function)

Rj Ul = Ul

Rj (App d d′) = App (Rj d) (Rj d
′)

Rj (Lam f) = λ(Rj+1 (f xj))

Rj (Fun X F ) = Fun (Rj X) (Rj+1 (F xj))

Rj (xi) =

{
q if j � i + 1

q pj−(i+1) if j > i + 1

Definition 3 (Semantic neutral values and normal forms)

Ne = {d | Ri d is defined and is a neutral term for all i ∈ N}
Nf = {d | Ri d is defined and is a normal form for all i ∈ N}

Remark 2. Note that Ne ⊆ Nf and ⊥ �∈ Nf . For all j, l, xj ∈ Ne and Ul ∈ Nf .
If d ∈ Ne and d′ ∈ Nf then App d d′ ∈ Ne. Since the only elements of Terms
that are neutral are applications or variables, i.e. q pi for some i ∈ N, it is clear
that d ∈ Ne implies d = App d′ e or d = xi.

Applicative structure. We define the binary operation of application · in the
domain D and the projections, which are denoted with p = π1 and q = π2.
Notice that the application of a semantic neutral value to a semantic normal
form produces a semantic neutral value.

d · d′ =

⎧⎪⎨
⎪⎩
f d′ if d = Lam f

App d d′ if d ∈ Ne

⊥ otherwise .

πi d =

{
ei if d = (e1, e2)

⊥ otherwise .

Predomain model. Now we define the subsets of D which will be used to inter-
pret the typing relation: we first introduce the subset of D for each universe.
Semantically the set of all types is the universe with level ∞. These subsets are
introduced using the schema of inductive-recursive definition of [9].

Definition 4. For each l ∈ N∪{∞}, we give the following simultaneous induc-
tive definition of Ul ⊆ D and [d]l ⊆ D for each d ∈ Ul. Assume Ul′ and [ ]l′

defined for all l ′ < l .

1. Neutrals: Ne ⊆ Ul, and [d]l = Ne for all d ∈ Ne.
2. Lower universes, let l′ < l: Ul′ ∈ Ul and [Ul′ ]l = Ul′ .
3. Function spaces, let X ∈ Ul and F e ∈ Ul for all e ∈ [X ]l:

– FunX F ∈ Ul, and [Fun X F ]l = {d | d · e ∈ [F e]l, for all e ∈ [X ]l}.

Remark 3. As noticed in [13], there is a well-founded order on Ul: the minimal
elements are Ul′ with l′ < l, and elements in Ne; X � Fun X F , and for all
e ∈ [X ], F e � Fun X F . This order is used to justify most of the following
proofs by induction on Ul.

1 To be precise, the reification function R is the least fixed point of a suitable functional
F : (N×D → Terms⊥) → (N×D → Terms⊥).
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Lemma 5. If l′ < l ∈ N ∪ {∞}, then Ul′ ⊂ Ul and [d]l′ = [d]l for each d ∈ Ul′ .

We define Types = U∞ and [d] = [d]∞; due to this lemma we can always write
[d] instead of [d]l.

The following lemma states that every semantic type X and every element of
[X ] is a semantic normal form; an immediate consequence of this is that neither
Types nor any [X ] are subdomains of D.

Lemma 6 (Closure of semantic sub-sets)

1. Ne ⊆ Types and for all X ∈ Types, Ne ⊆ [X ].
2. Types ⊆ Nf and for all X ∈ Types, [X ] ⊆ Nf .

Modelling subtyping. We define a binary relation  ⊆ Types ×Types among the
denotation of types and interpret subtyping with that relation.

Definition 5. We define inductively the relation  ⊆ Types × Types with the
following clauses:

1. Neutrals: if d ∈ Ne then d  d.
2. Universes: if l � l′ then Ul  Ul′ .
3. Function spaces: if X ′  X and for all e ∈ [X ′], F e ∈ Types and F e  F ′ e

then Fun X F  Fun X ′ F ′.

Notice the condition F e ∈ Types in the third clause, which can be dropped once
we have shown that [ ] is monotone (Lem. 7), since one would then have e ∈ [X ]
and the condition would follow from the assumption Fun X F ∈ Types .

Remark 4. In the proof of the following lemma we use d  d′ holds only if
d, d′ ∈ Ne, d = Ul and d′ = Ul′ , or d = Fun X F and d′ = Fun X ′ F ′. By
the lemma we can see that  is finer than set-theoretical inclusion: for instance
[d] ⊆ [Ul] but d � Ul for any neutral value d.

Lemma 7. If X  X ′, then [X ] ⊆ [X ′]. The relation  is a preorder.

Semantics and Validity. The semantic equations using the applicative structure
just defined are given by the pair of functions � �s ∈ Subs → [D → D] and
� �t ∈ Terms → [D → D]. In the following we omit the superscript from the
semantic brackets. Notice that both semantic functions are defined by induction
on the set of preterms and when partially applied to a term (or substitution)
are continuous endofunctions over D.

Substitutions

�〈〉�sd = � �id�sd = d �p�sd = p d

�(γ, t)�sd = (�γ�sd, �t�td) �γ δ�sd = �γ�s(�δ�sd)
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Terms (and types)

�Ul �
td = Ul �FunAB�td = Fun (�A�td) (e �→ �B�t(d, e))

�λt�td = Lam (e �→ �t�t(d, e)) �App t r�td = �t�td · �r�td
�t γ�td = �t�t(�γ�sd) �q�td = q d

In the following definition we define simultaneously the notion of validity of
judgements and the interpretation of well-formed contexts. Subtyping between
types is modeled by , while subtyping of contexts by set-theoretical inclusion.

Definition 6 (Validity)

1. Contexts:
– Validity: + � always, and Γ.A � if and only if Γ � A.
– Interpretation: �+� = {�}; and when Γ.A �, then �Γ.A� = {(d, e) | d ∈

�Γ � and e ∈ [�A�d]}.
2. Types: Γ � A if and only if Γ � and for all d ∈ �Γ �, �A�d ∈ Types.
3. Subtyping: Γ � A ≤ B if and only if Γ � A, Γ � B, and for all d ∈ �Γ �,

�A�d  �B�d.
4. Subtyping of contexts: Γ ≤ Δ � if and only if �Γ � ⊆ �Δ�.
5. Terms: Γ � t : A if and only if Γ � A and for all d ∈ �Γ �, �t�d ∈ [�A�d].
6. Substitutions: Γ � σ : Δ if and only if Γ �, Δ �, and for all d ∈ �Γ �,

�σ�d ∈ �Δ�.

We extend the definition of validity to equality judgements, for example Γ �
t = t′ : A if and only if Γ � t : A, Γ � t′ : A, and �t�d = �t′�d, for all d ∈ �Γ �.

The following theorem states that this construction over the applicative structure
models the calculus. We omit the proof of soundness which can be done by a
tedious, but straightforward, induction on derivations.

Theorem 1 (Soundness). If Γ � J , then Γ � J . � 

By Lem. 6 we know xn ∈ [X ], for X ∈ Types and n ∈ N; by Thm. 1 we also
have Γ � A implies that �A�d ∈ Types . These facts permit us to introduce a
canonical environment, that can be used to normalise terms and types. Notice
that it takes a (well-formed) context as a parameter, but, since we do not have
(η), it would suffice to keep into account the length of the context.

Definition 7. By induction on Γ � we define the environment ρΓ ∈ �Γ �:

ρ� = � and ρΓ.A = (ρΓ , xn) where n = |Γ |

The normalisation function is the composition of evaluation under the canonical
environment and readback:

nbeΓ ( ) ∈ {t | Γ � t or Γ � t : A, for some A} → Nf
nbeΓ (t) = R|Γ | (�t�ρΓ )
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Two corollaries can be drawn from Thm. 1; first the normalisation function maps
well-typed terms (and well-formed types) to syntactic normal forms, remember
Lem. 6; moreover if two terms are probably equal, then they are normalised to
the same syntactical normal form.

Corollary 1 (Completeness of NbE). If Γ � t = t′ : A, then nbeΓ (t) ≡
nbeΓ (t′); also, if Γ � A = A′, then nbeΓ (A) ≡ nbeΓ (A′).

An interesting result is that the normalisation function on well-typed normal
forms is the identity function.2 It is proved by induction on normal forms and
by virtue of Rem. 1 it extends to types.

Lemma 8. If v ∈ Nf and Γ � v : A, then nbeΓ (v) ≡ v.

Remark 5. As we commented before Def. 7, only the length of the context is
relevant: so ρΓ = ρΔ, when |Γ | = |Δ|; thus nbeΓ ( ) = nbeΔ( ), in particular
when Γ ≤ Δ.

4 Correctness of NbE via Logical Relations

In this section we prove correctness of NbE, that is, if Γ � t : A, then Γ � t =
nbeΓ (t) : A. In order to do this, we introduce three families of logical relations:
one for types, one for terms and another one for substitutions.

The proof of correctness follows the same path as in [2]: first one shows that
if Γ � t : A ∼ d ∈ [X ], then one can derive Γ � t = R|Γ | d : A; then it is
proved that every term is logically related with its denotation under the canonical
environment. This proof proceeds by induction on derivation; it is here where
one can see the benefit of modelling subtyping with the order . In fact, the
definition of the logical relations is not affected by the presence of subtyping;
there is, however, a new lemma proving that logical relations are stable under
subtyping.

Definition 8 (Logical relations). There are two families of logical relations;

1. Γ � ∼ ∈ Types ⊆ {A | Γ � A} × Types.
2. Γ � : A ∼ ∈ [X ] ⊆ {t | Γ � t : A} × [X ], for Γ � A and X ∈ Types.

– Neutral types: X ∈ Ne.
• Γ � A ∼ X ∈ Types if and only if for all Θ�i Γ , Θ � A pi = R|Θ|X.
• Γ � t : A ∼ d ∈ [X ] if and only if Γ � A ∼ X ∈ Types, and for all
Θ�i Γ , Θ � t pi = R|Θ| d : A pi.

– Universes.
• Γ � A ∼ Ul ∈ Types if and only if Γ � A = Ul .
• Γ � t : A ∼ d ∈ [Ul ] if and only if Γ � A = Ul , Γ � t ∼ d ∈ Types, and
for all Θ�i Γ , Θ � t pi = R|Θ| d : Ul .

– Function spaces.

2 This result is mentioned and proved in [10]; we note that it was not proved in [2].
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• Γ � A ∼ Fun X F ∈ Types if and only if there are B,C such that
Γ � A = FunBC, Γ � B ∼ X ∈ Types, and for all Θ�i Γ and all
Θ � s : B pi ∼ e ∈ [X ], Θ � C (pi, s) ∼ F e ∈ Types.

• Γ � t : A ∼ d ∈ [Fun X F ] if and only if there are B,C such that
Γ � A = FunBC, Γ � B ∼ X ∈ Types, and for all Θ�i Γ and all
Θ � s : B pi ∼ e ∈ [X ], Θ � App (t pi) s : C (pi, s) ∼ d · e ∈ [F e].
In addition: if d = Lam f , then there is t′ such that Γ.B � t′ : C and
Γ � t = λt′ : A; and if d ∈ Ne, then Θ � t pi = R|Θ| d : A pi.

We call the attention to the last point of the logical relation for terms, in the
case of Fun X F : it is needed because there are neutral elements in [Fun X F ],
with (η) every member of that semantic type is of the form Lam f and for
every term with type Γ � t : FunBC, there exists t′ such that Γ.B � t′ : C and
Γ � t = λ t′ : FunBC.

Remark 6. A consequence of the definition is that logical relations for terms
implies that for types: if Γ � t : A ∼ d ∈ [X ], then Γ � A ∼ X ∈ Types . This
can be proved by induction on X ∈ Types .

The following two lemmata prove that logical relations are stable under subtyp-
ing of contexts, cf. second point of Lem. 2, and by judgemental equality; both
make easier the proofs of other results.

Lemma 9. Let Γ ′ ≤ Γ . If Γ � A ∼ X ∈ Types, then Γ ′ � A ∼ X ∈ Types.
Moreover, if Γ � t : A ∼ d ∈ [X ], then Γ ′ � t : A ∼ d ∈ [X ].

Lemma 10. If Γ � A = A′ and Γ � A ∼ X ∈ Types, Γ � A′ ∼ X ∈ Types. If
in addition Γ � t = t′ : A and Γ � t : A ∼ d ∈ [X ], then Γ � t′ : A′ ∼ d ∈ [X ].

Lemma 11. Let Γ � A ∼ X ∈ Types and n = |Γ |.

1. Γ � A = RnX.
2. If Γ � t : A ∼ d ∈ [X ], then Γ � t = Rn d : A.
3. If for all Θ�i Γ , Θ � t pi = Rn+i k : A pi, then Γ � t : A ∼ k ∈ [X ].

Remark 7. An immediate corollary from lemmata 10 and 11 is that two types
are judgementally equal if they are related to the same semantic type: if Γ �
A ∼ X ∈ Types and Γ � A′ ∼ X ∈ Types , then Γ � A = A′.

The following lemma shows that semantic subtyping implies judgemental sub-
typing. It is an important stepping stone in our way for two reasons: it allows
us to prove stability of judgements under subtyping and it also permits to prove
that Fun reflects subtyping.

Lemma 12. If Γ � A ∼ X ∈ Types, Γ � B ∼ Y ∈ Types, and X  Y , then
Γ � A ≤ B.

The next lemma, which could be called subsumption for logical relations, was
self-evident to us as soon as we realised that subtyping should be modelled by a
finer relation than set inclusion.
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Lemma 13. Let Γ � A ∼ X ∈ Types, Γ � B ∼ Y ∈ Types, and X  Y . If
Γ � t : A ∼ d ∈ [X ], then Γ � t : B ∼ d ∈ [Y ].

To prove that each term is related to its denotation, we need the more general
result that logical relations are preserved under substitutions.

Definition 9 (Logical relations for substitutions). Given two well-formed
contexts Γ � and Δ �, then Γ � : Δ ∼ ∈ �Δ� ⊆ {σ | Γ � σ : Δ} × �Δ�. By
induction on Δ we define:

– Γ � σ : + ∼ d ∈ �+�.
– Γ � σ : Δ.A ∼ (d, e) ∈ �Δ.A� if and only if Γ � σ = (δ, t) : Δ.A, Γ � δ : Δ ∼

d ∈ �Δ�, Γ � Aδ ∼ �A�d ∈ Types, and Γ � t : Aδ ∼ e ∈ [�A�d].

Notice that we cannot state, let alone prove, at this point a corresponding lemma
to Lem. 13 for substitutions; instead, we will prove subsumption for substitutions
in Thm. 2, when we will have all the inductive hypotheses needed. On the other
hand the analogous of Lem. 10 can be proved now.

Lemma 14. If Γ � σ : Δ ∼ d ∈ �Δ� and Γ � σ = γ : Δ, Γ � γ : Δ ∼ d ∈ �Δ�.

Lemma 15 (Monotonicity of logical relations). Let Θ�i Γ .

1. If Γ � A ∼ X ∈ Types, then Θ � A pi ∼ X ∈ Types.
2. If Γ � t : A ∼ d ∈ [X ], then Θ � t pi : A pi ∼ d ∈ [X ].
3. If Γ � σ : Δ ∼ d ∈ �Δ� and then Θ � σ pi : Δ ∼ d ∈ �Δ�.

The significance of the following theorem is that types and terms are logically
related with their denotation, first and third points, respectively; the proof goes
by induction on derivations and, obviously, needs an analogous case for substi-
tutions, fourth point. The second point arises because we need its conclusion to
apply the Lem. 13 on the cases (sub) and (subs).

Theorem 2 (Fundamental theorem of logical relations)

1. if Δ � A and Γ � δ : Δ ∼ d ∈ �Δ�, then Γ � Aδ ∼ �A�d ∈ Types;
2. if Δ � A ≤ B and Γ � δ : Δ ∼ d ∈ �Δ�, then Γ � Aδ ∼ �A�d ∈ Types and

Γ � B δ ∼ �B�d ∈ Types.
3. if Δ � t : A and Γ � δ : Δ ∼ d ∈ �Δ�, then Γ � t δ : Aδ ∼ �t�d ∈ [�A�d]; and
4. if Θ � γ : Γ and Γ � δ : Δ ∼ d ∈ �Δ�, then Θ � γ δ : Δ ∼ �γ�d ∈ �Δ�.

Theorem 3 (Correctness of NbE). If Γ � A, then Γ � A = nbeΓ (A) and
if Γ � t : A, then Γ � t = nbeΓ (t) : A.

Proof. By induction on well-formed contexts one proves Γ � id : Γ ∼ ρΓ ∈ �Γ �;
thus by Thm. 2, Γ � t id : A id ∼ �t�ρΓ ∈ [�A�ρΓ ]; by Lem. 11, Γ � t id =
R|Γ | (�t�ρΓ ) : A id, by (sym-trans) and (sub-et), we have Γ � t = R|Γ | (�t�ρΓ ) : A.

An immediate consequence of correctness of NbE is that to decide subtyping it
is enough to decide subtyping between normal forms.
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Lemma 16. Let Γ � A and Γ � B, then Γ � A ≤ B iff Γ � nbe(A) ≤ nbe(B).

Injectivity can be proved by rather direct means — in fact, the second part of
the first of point of Lem. 4 can be deduced from Thm. 1 and Lem. 8. On the
other hand, reflection of subtyping requires some more work. The first point of
Lem. 4 can be shown in a similar way.

Corollary 2 (Injectivity of Fun)

1. If Γ � FunAB = FunA′B′, then Γ � A′ = A and Γ.A′ � B = B′.
2. If Γ � FunAB ≤ FunA′B′, then Γ � A′ ≤ A and Γ.A′ � B ≤ B′.

Proof. In both cases we can invert the equality and subtyping judgements, re-
spectively, to obtain Γ � A, Γ � A′, and Γ.A � B, and Γ.A′ � B′. Let V =
nbeΓ (A), V ′ = nbeΓ (A′), W = nbeΓ.A(B), and W = nbeΓ.A′(B′). By Thm. 1
�FunAB�ρΓ  �FunA′B′�ρΓ , thus �A′�ρΓ  �A�ρΓ and �B�ρΓ.A  �B′�ρΓ.A′ .
Moreover, by Thm. 2, Γ � A ∼ �A�ρΓ ∈ Types , Γ � A′ ∼ �A′�ρΓ ∈ Types .
Thus by Lem. 12 we get Γ � A′ ≤ A. Again by Thm. 2, we have Γ.A � B ∼
�B�ρΓ.A ∈ Types and Γ.A′ � B′ ∼ �B′�ρΓ.A′ ∈ Types . As in the proof of the
Lem. 12 we can prove, by Lem. 9, Γ.A′ � B ∼ �B�ρΓ.A ∈ Types , so by Lem. 12,
we get Γ.A′ � B ≤ B′.

Just as we deduced from Lem. 16 that it is enough to decide subtyping among
normal forms, reflection of subtyping tells us that it is sufficient to check sub-
typing of arguments to decide subtyping between Fun.

5 Type-Checking

In this section we define a bi-directional type-checking algorithm [7,16,1]. Since
we can only infer types for neutrals, because abstractions are domain-free, the
type-checking algorithm works only for normal forms.

In the following definition we give a rule system which conforms a procedure
for checking subtyping between well-formed types in normal form. It is informa-
tive to think of the order � as the syntactical version of .

Definition 10 (Algorithmic subtyping). Let Γ � V and Γ � V ′, then V �
V ′ if and only if

1. V ≡ V ′ and V ∈ Ne, or
2. V ≡ Ul and V ′ ≡ Ul′ and l � l′, or
3. V ≡ FunV0 W0 and V ′ ≡ FunV1W1, V1 � V0 and W0 � W1.

Reflexivity and transitivity of algorithmic subtyping are easy to prove. This
lemma is needed to prove completeness of algorithmic subtyping.

Lemma 17 (Algorithmic subtyping is a preorder). Let Γ � V , then V �
V . Moreover let Γ � V ′ and Γ � V ′′. If V � V ′ and V ′ � V ′′, then V � V ′′.
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Correctness of algorithmic subtyping follows from a weaker version, v.g. if
nbeΓ (A) � nbeΓ (B), then Γ � nbeΓ (A) ≤ nbeΓ (B).

Theorem 4 (Correctness and completeness of algorithmic subtyping).
Let Γ � A and Γ � B, then Γ � A ≤ B if and only if nbeΓ (A) � nbeΓ (B).

The type-checking algorithm consists of two mutually recursive components: the
first one checks if a normal form v can be typed under a (well-formed) context
Γ and a type A, well-formed under Γ ; this component is directed by the form
of v; if it succeeds, we write Γ � v ⇐ A. The second procedure tries to compute
a type B given a (well-formed) context Γ and a neutral term k; its success is
denoted by Γ � k ⇒ B.

Definition 11 (Type-checking algorithm). Let Γ �, Γ � A, V,W, v ∈ Nf,
and k ∈ Ne.

(u-tc)

l′ < l

Γ � Ul′ ⇐ Ul

Γ � V ⇐ Ul Γ.V �W ⇐ Ul

Γ � FunV W ⇐ Ul
(fun-tc)

(abs-tc)

Γ.A � v ⇐ B

Γ � λ v ⇐ FunAB

Γ � k ⇒ B nbeΓ (B) � nbeΓ (A)

Γ � k ⇐ A
(neut-tc)

(var-ti)

Γ.A � q⇒ A p

0 < i � n

An.An−1. . . . A0 � q pi ⇒ Ai p
i+1 (weak-ti)

Γ � k ⇒ B nbeΓ (B) = FunV W Γ � v ⇐ V

Γ � App k v ⇒W [v]
(app-ti)

Notice that both in (neut-tc) and (app-ti) we use the normalisation function;
its use is justified because, by correctness of type-checking, we know that the
inferred type is well-formed under the given context.

Theorem 5 (Correctness). Let Γ � A, Γ ′ �, v ∈ Nf and k ∈ Ne. If Γ � v ⇐
A, then Γ � v : A; if Γ ′ � k ⇒ B, then Γ ′ � B and Γ ′ � k : B.

The following lemma is fundamental in the proof of completeness; it shows that
algorithmic type-checking judgements are preserved under subtyping of contexts
and super-typing of types.

Lemma 18. Let Γ ≤ Δ. If Δ � v ⇐ A and Δ � A ≤ B, then Γ � v ⇐
nbeΔ(B). If Δ � k ⇒ D, then exists C, such that Γ � k ⇒ C and Γ � C ≤ D.

Completeness of type-checking proceeds by induction on the normal form being
checked and for each case use Lem. 3 to analyse the possible shape of the type.

Theorem 6 (Completeness). If Γ � v : A, then Γ � v ⇐ nbeΓ (A).

6 Conclusion

The main contributions of this paper are the decidability results for MLTT
with subtyping and the proof of completeness and correctness of algorithmic
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subtyping and type-checking algorithms. To prove them we have developed the
meta-theory for MLTT with subtyping. In particular, injectivity and subtyping
reflection of constructors are important meta-theoretical results. We have not
found previous uses of a relation finer than set-theoretical inclusion for semantic
subtyping.

Related work. We briefly comment on the most relevant papers on subtyping
related to our work. We refer to [12] for a discussion between coercive subtyping
and subsumptive subtyping, the one considered in the present paper; and to [17]
for subtyping for PTSs. Subtyping for MLTT was first presented in [6], that work
introduces a subtyping relation between dependent record types; it includes a
typechecker, but it lacks any meta-theoretical analysis. In [8] the meta-theory of
a MLTT with dependent records, subtyping, and singletons is developed. Both [5]
and [16] study logical frameworks with subtyping and their meta-theory, conclud-
ing with type-checking algorithms. Unlike our calculus, those logical frameworks
lack computation at the level of types.

A cumulative hierarchy of universes together with subtyping for dependent
products is considered in ECC [11], but subtyping is allowed only on the covariant
argument and equality in the contravariant argument of Fun; with this restriction
a minimal type property can be proved and set-theoretic inclusion is enough to
model subtyping.

Upon submission of this article we learned about [14], where a similar calculus
is considered: a cumulative hierarchy of universes, a contravariant rule for sub-
typing and typed equality. But they have typed abstraction which leads them
to a principal type property. They obtain similar decidability results employing
different techniques.

Further work. An interesting open problem is the equivalence of ECC, with its
untyped (in)equality, and a presentation where conversion and subtyping are
typed, as in our system. It is not clear if the technique of Siles and Herbelin
[15] can be extended to handle subtyping. As remarked by Adams [4] having
injectivity of Fun of the system with typed equality is enough to prove the
equivalence; it would be interesting to try to use NbE to prove injectivity of Fun
for ECC with typed (in)equality and check if the equivalence holds.

We want to study in the near future some extensions of the core calculus
presented in this paper: for example, to add inductive types, singleton types, or
dependent records. A first issue to address is for which of these features one needs
explicit coercions and when they can be inferred. Another interesting question
is if we can handle (η) combining semantic subtyping of this paper with the
PER model of [2]. Another direction to advance is to prove the correctness of
the normalisation function as implemented in Haskell; since it is not affected by
the presence of subtyping, we aim to prove it for the minimal MLTT with one
universe, dependent products and without (η).

Acknowledgements. We are thankful to Thierry Coquand for pointing out
that the absence of (η) would make semantic constructions simpler. We are also
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Abstract. There are several different approaches to the theory of data
types. At the simplest level, polynomials and containers give a theory
of data types as free standing entities. At a second level of complex-
ity, dependent polynomials and indexed containers handle more sophis-
ticated data types in which the data have an associated indices which
can be used to store important computational information. The crucial
and salient feature of dependent polynomials and indexed containers is
that the index types are defined in advance of the data. At the most so-
phisticated level, induction-recursion allows us to define data and indices
simultaneously.

This work investigates the relationship between the theory of small
inductive recursive definitions and the theory of dependent polynomials
and indexed containers. Our central result is that the expressiveness
of small inductive recursive definitions is exactly the same as that of
dependent polynomials and indexed containers. A second contribution
of this paper is the definition of morphisms of small inductive recursive
definitions. This allows us to extend our main result to an equivalence
between the category of small inductive recursive definitions and the
category of dependent polynomials/indexed containers. We comment on
both the theoretical and practical ramifications of this result.

1 Introduction

One of the most important concepts in computer science is the notion of an induc-
tive definition. It is difficult to trace back its origin since this concept permeates
the history of proof theory and a large part of theoretical computer science. In
recent years, the desire to explore, understand, and extend the concept of an
inductive definition has led different researchers to different but (extensionally)
equivalent notions. The theory of containers [1], and polynomial functors [18,12]
are some of the outcomes of this research These theories give a comprehensive
account of those data types such as Nat (the natural numbers), List a (lists
containing data of a given type a), and Tree a (trees containing, once more,
data of a given type a) which are free-standing in that their definition does not
require the definition of other inter-related data types.
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These theories are too simple to capture more sophisticated data types pos-
sessing features such as: (i) variable binding as in the untyped and typed lambda
calculus; (ii) constraints as in red black trees; and (iii) extra information about
data having such types - e.g. vectors which record the lengths of lists. There-
fore containers and polynomials have been generalised to indexed containers [2]
and dependent polynomials [12,13] to capture not only free standing data types
such as those mentioned above, but also data types where the data are indexed
by an index storing computationally relevant information. Containers and (non-
dependent) polynomials arise as specific instances of these generalised notions
where the type of indices is chosen to be a singleton type.

However, even dependent polynomials and indexed containers fail to cover all
data types of interest as they require the indices to be defined before the data.
Induction-recursion (IR), developed in the seminal works of Peter Dybjer and
Anton Setzer [9,10,11], remedies this deficiency. The key feature of an inductive-
recursive definition is the simultaneous inductive definition of a small type X
of indices together with the recursive definition of a function T : X → D from
X into a type D which may be large or small. Since X and T can be defined
at the same time, the indices need not be defined in advance of the data. Uni-
verses (introduced by Martin-Löf in the early 70’s [17]) are paradigm examples
of inductive recursive definitions.

It is natural to ask what is the relationship between dependent polynomi-
als and induction recursion. Can we characterise those inductive-recursive def-
initions which correspond to dependent polynomials? This paper makes the
following concrete contributions: i) we show that dependent polynomial and
indexed containers correspond exactly to small inductive-recursive definitions,
where “smallness” refers to the size of the target-type D; ii) we define mor-
phisms of small inductive recursive definitions and use this notion to show that
the resulting category of small inductive-recursive definitions is equivalent to the
category of dependent polynomials and indexed containers; and iii) we extend
these results to cover small indexed induction recursion.

These results have theoretical and practical importance. At the theoretical
level, while it has been conjectured that the power of induction recursion lies in
the case where D is large, no formal proof exists before this paper. Further, we
contribute to the theory of induction recursion by giving a notion of morphism
between inductive recursive definitions in the same way that containers, indexed
containers and dependent polynomials have morphisms. Finally, dependent poly-
nomials and indexed containers have a rich algebraic structure so our work shows
that structure can be transported to Small IR - see the conclusion for details.
Note that this structure is defined by universal properties and hence its trans-
portation would not be possible without the work in Section 5 on morphisms. At
a practical level, while systems such as Agda accept induction recursion, some
systems, eg Coq, do not. This work gives a simple way to add small induction
recursion to Coq by showing how to translate such definitions into indexed con-
tainers. It also allows programmers to convert definitions between the two forms,
according to which works better for their own applications. To achieve this, and
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to make the paper more accessible and non-hermetic, and to type check our
translations, we have implemented our translations in Agda and provide lots of
Agda examples.

The paper is organised as follows: in Section 2 we set our notation, while
Section 3 recalls indexed containers, dependent polynomials and induction re-
cursion. In Section 4, we show an equivalence between data types definable by
small IR and those data types definable using dependent polynomials and/or
indexed containers. In Section 5 we introduce the category of small inductive-
recursive definitions and show it equivalent to the category of dependent poly-
nomials/indexed containers. In Section 6 we briefly recall the theory of indexed
inductive-recursive definitions, and extend the previous equivalence to the case
of indexed small induction recursion. We conclude in Section 7.

The sources, proofs and additional materials for this paper are available from
http://personal.cis.strath.ac.uk/~conor/pub/SmallIR.

2 Preliminaries and Internal Languages

We follow the standard approach of using extensional Martin-Löf type theory
as the internal language to formalise reasoning with the locally cartesian closed
structure of the category of sets — see [19,14] for details 1. Our notation follows
Agda — indeed, this paper is a literate Agda development. We write identity
types as x ≡ y and assume uniqueness of identity proofs. We write ΣT or
(s : S ) × T s and ΠT or (s : S ) → T s for the dependent sum and dependent
product in Martin-Löf type theory of T : S → Set. The elements of (s :S )×T s
are pairs (s , t) where s : S and t : T s may be projected by π0 and π1. The
elements of (s :S ) → T s are functions λ x → t x mapping each element s : S
to an element t s of T s .

Categorically, we think of an I -indexed type as a morphism f : X → I
with codomain I . These are objects of the slice category Set/I . Morphisms in
Set/I from object f : X → I to object f ′ : X ′ → I are given by functions
h : X → X ′ such that f = f ′ ◦ h. Type theoretically, we can represent
matters in more or less the same way – that is, an object in a slice Set/I is a
pair (X , f ) of a set X (the domain), and a function f : X → I . However,
another possibility is to model an I -indexed type by a function F : I → Set
where F i represents the fibre of f above i , i.e. as (X , f )−1 i , defined as follows.

·−1 : Set/I → (I → Set)
(X , f )−1 i = (x :X )× f x ≡ i

∃. : (I → Set) → Set/I
∃.F = (ΣF , π0)

We write ∃.F for the inverse of this operator: that these are inverse (given unique-
ness of identity proofs) is at the heart of the well known equivalence between
the categories Set/I and I → Set which, in a sense, underlies the equivalences
we describe in this paper.

1 The correspondence between lcccs and Martin Löf type theories is affected by coher-
ence problems related to the interpretation of substitution. We refer to [7], [14] and
more recently [5] for different solutions to these problems.

http://personal.cis.strath.ac.uk/~conor/pub/SmallIR
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Given a function k : I → J , we can form three very important functors.
The pullback along k of an object f : X → J of Set/J defines a reindexing
functor Δk : Set/J → Set/I . Δk has both a left adjoint and a right adjoint,
respectively Σk,Πk : Set/I → Set/J . In the internal language, we define these
for ·→ Set, as follows:

Δk : (J → Set) → (I → Set)
Δk F i = F (k i)

Σk : (I → Set) → (J → Set)
Σk F j = (i :I )× k i ≡ j × F i
Πk : (I → Set) → (J → Set)
Πk F j = (i :I ) → k i ≡ j → F i

3 Three Theories of Data Types

The foundation of our understanding of data types is initial algebra semantics.
Thus, formally our theories of data types are in fact theories of functors which
have initial algebras. In this section we recall the notions of dependent polyno-
mials, indexed containers and induction recursion, each of which define certain
classes of functors and hence data types.

Definition 1. The collection of dependent polynomials with input indices I and
output indices O is written Poly I O and consists of triples (r, t, q) where I ←r

P →t S →q O. A dependent polynomial functor is any functor isomorphic to
some �(r , t , q)�Poly = Σq ◦Πt ◦Δr : Set/I → Set/O, illustrated as follows:

Set/I Set/P Set/S Set/O .
Δr Πt Σq

While the definition above is concise, some readers may prefer a more concrete
presentation. So we turn to the representation of dependent polynomials in the
internal language. This leads us to the notion of an indexed container.

Definition 2. Indexed containerswith input indices I andoutput indicesO is writ-
ten IC I O and consists of triples (S, P, n) where S : O → Set, P : (o :O) →
S o → Set and n : (o :O) → (s :S o) → P o s → I . Its extension is the functor

�·�IC : IC I O → (I → Set) → (O → Set)
�(S ,P , n)�IC X o = (s :S o) × (p :P o s) → X (n o s p)

Every dependent polynomial functor (r , t , q) gives rise to an indexed container
(Ŝ, P̂ , n).

Ŝ o = (S , q)−1 o

P̂ o (s , ) = (P , t)−1 s
n o (s , ) (p, ) = r p

We may readily check that

�(Ŝ, P̂ , n)�IC F o = (sq : ((S , q)−1 o))× (pq : ((P , t)−1 (π0 sq))) → F (r (π0 pq))
∼= (s :S )× (q s ≡ o) × (p :P) → (t s ≡ p) → F (r p)

= (Σq ◦ Πt ◦ Δr ) F o
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confirming the equivalence between indexed containers and dependent
polynomials.

Polynomials (resp. containers) arise as a special case of dependent polynomials
(indexed containers) by choosing I = O = 1. Notice the salient feature of both
dependent polynomials and indexed containers — that the input and output
indices I and O are fixed and must be defined in advance. This restriction means
that neither dependent polynomials nor indexed containers suffice to define all
the data types in which we are interested. Paradigmatic undefinable data types
are universes of types. These are pairs (U, T ) consisting of a set U , thought as
a set of names or codes, and of a function T : U → Set, thought as a “decoding
function” which assigns a set T u to every element u of U . For example, consider
a universe containing the type of natural numbers N and closed under Σ-types.
Such a universe will be the least solution of the

U = 1 + (u :U )× T u → U
T (inl ") = N

T (inr (u, f )) = (x :T u)× T (f x )

Note how, in this example, the set of codes U must be defined simultaneously
with the decoding function T - something not possible with dependent polynomi-
als or indexed containers which require that U be defined before T . Dybjer and
Setzer developed the theory of induction recursion to cover exactly such induc-
tive definitions where the indices and the data must be defined simultaneously.
The first presentation of induction-recursion [8] was as an external schema. In
later presentations [9,10], inductive recursive definitions are given via a type of
codes IR I O . 2

Definition 3. Let I, O be types. The type of IR I O-codes has the following
constructors

data IR (I O : Set) : Set1 where
ι : (o : O) → IR I O
σ : (S : Set) (K : S → IR I O) → IR I O
δ : (P : Set) (K : (P → I ) → IR I O) → IR I O

In general I and O may be large types such as Set or Set → Set etc. Above, we
encode small induction recursion (small IR) we mean the cases where I and O
are sets.

Dybjer and Setzer [9,10] prove that every IR code defines a functor. In the case of
small IR, this functorial semantics can be given in terms of slice categories. Before
giving this semantics, we note that slice categories have set-indexed coproducts.
That is, given a set A, and an A-indexed collection of objects fa : Xa → I of
Set/I , the cotuple [fa]a:A :

∐
a:AXa → I is the coproduct of the objects fa

in Set/I . We use ina : Xa →
∐

a:AXa for the a-th injection. In the internal

2 Dybjer and Setzer treated only the case where I and O are the same. Our mild
generalization allows the construction of partial fixed points.
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language, the coproduct of an A-indexed family Xa : I → Set is the function
mapping i to (a :A)×Xa i . We use these coproducts to give a definition of the
functor denoted by an IR code more compact than - but of course equivalent to -
that originally provided by Dybjer and Setzer.

Definition 4. Let I, O be sets, γ : IR I O. The action of the functor �γ� :
Set/I → Set/O on an object f : X → I of Set/I is defined by recursion
on γ as follows

– if γ = ι o for some o : O

�ι o� (f : X → I) = (λ .o) : 1 → O

– if γ = σ S K for some S : Set, K : S → IR I O

�σ S K � (f : X → I) =
∐

s:S �K s� f

– if γ = δ P K for some P : Set, K : (P → I ) → IR I O

�δ P K � (f : X → I) =
∐

x:P→X �K(f ◦ x)� f

An IR functor is any functor isomorphic to one of the form �γ� for some γ : IRIO.

We can give the above construction in type theory, using the direct translation
of slices, closed under dependent sum, yielding an interpretation in the style of
Dybjer and Setzer:

�·�DS : IR I O → Set/I → Set/O
�ι o�DS (X , f ) = (1, λ → o)
�σ S K �DS (X , f ) = (s :S )× �K s�DS (X , f )
�δ P K �DS (X , f ) = (x :P → X )× �K (f ◦ x )�DS (X , f )

For any γ : IR I I , we can construct of an inductive datatype simultaneously
with its recursive decoder as the initial algebra, ((μ γ, decode γ), in), of �γ�DS.

data μ (γ : IR I I ) : Set where
in : dom (�γ�DS (μ γ, decode γ)) → μ γ

decode : (γ : IR I I ) → μ γ → I
decode γ (in t) = fun (�γ�DS (μ γ, decode γ)) t

Here dom computes the domain of a universe and fun the decoder of a universe.
As an example, we show that all containers [1] can be defined by induction
recursion:

Example 1 (containers and W-types). Given a simple container (S, P ), where
S : Set and P : S → Set, we can represent it by an IR 1 1 code as follows:

cont : (S : Set) → (P : S → Set) → IR 1 1
cont S P = (σ S λ s → δ (P s) λ p → ι ")

We note that dom �cont S P�DS (X , ) = (s : S ) × (P s → X ) × 1 and
that μ (cont S P) thus amounts to Martin-Löf’s well-ordering type W S P . As
a corollary of our main result we shall see that IR 1 1 codes describe exactly the
category of containers and their morphisms.
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Example 2 (A Language of Sums and Products). If Fin : N → Set maps n to
a set with n elements, we can implement finitary summation and product with
types:

sum prod : (n :N) → (Fin n → N) → N

Next we can encode a datatype of numerical expressions closed under constants,
sums and products, where each expression decodes to its numerical value — we
need to know these values to compute the correct domains for the sums and the
products.

data Tag : Set where fin′ sum′ prod′ : Tag

lang : IR N N

lang = σ Tag λ {fin′ → σ N λ n → ι n
; sum′ → δ 1 λ n → δ (Fin (n ")) λ f → ι (sum (n ") f )
; prod′ → δ 1 λ n → δ (Fin (n ")) λ f → ι (prod (n ") f )}

example : μ lang
example = in (sum′, (λ → in (fin′, 5 , ")), (λ n → in (fin′,n, ")), ")

The example expression denotes
∑

n<5 n, and indeed, decode lang example = 10 .

Having introduced dependent polynomials, indexed containers and small induc-
tion recursion, we can now turn to the main focus of the paper, namely showing
that they define the same class of functors and hence define the same class of
data types. The key to the construction is observing that we may just as well
interpret IR I O with our I → Set presentation of slices.

�·�IR : IR I O → (I → Set) → (O → Set)
�ι o′�IR F o = o′ ≡ o
�σ S K �IR F o = (s :S )× (�K s�IR F o)
�δ P K �IR F o = (if :P → ΣF )× (�K (π0 ◦ if )�IR F o)

The correspondence up to trivial isomorphism between �·�IR and �·�DS is readily
observed by considering F here to be an arbitrary (X , f )−1.

4 From Poly to Small IR and Back

We divide this section into two: (i) we first show how to translate dependent poly-
nomials, and hence indexed containers, into IR codes; and (ii) we then show how
every small IR code can be translated into a dependent polynomial. Crucially,
we show that these translations preserve the functorial semantics of dependent
polynomials and IR codes.

From Poly to Small IR. We have already seen (example 1) that the extension
of a container is an IR functor. We now extend this result to indexed containers
and dependent polynomials.
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Lemma 1. Every dependent polynomial functor is an IR functor.

It is enough to show that, for every dependent polynomial (r, t, q) : Poly I O ,
there is an IR I O -code, whose interpretation is isomorphic to the dependent
polynomial functor �(r, t, q)�Poly. Our candidate for this IR-code is given and
interpreted as follows

�σ S λ s → δ ((P , t)−1 s) λ i → σ (i ≡ r ◦ π0) λ → ι (q s)�IR F o =
(s :S )× (if : ((P , t)−1 s → ΣF ))× (π0 ◦ if ≡ r ◦ π0) × (q s ≡ o)

which is readily seen to be isomorphic to Σq (Πt (Δr F )) o

(s :S )× (q s ≡ o) × (p :P) → (t p ≡ s) → F (r p)

as the former effectively constrains the function if to choose r p as the index of
its F , for each position (p, ) : (P , t)−1 s .

From Small IR to Poly. The essence of our embedding of IR I O into Poly I O
consists of showing how three constructors for IR I O -codes can be interpreted
in Poly I O .

Definition 5. To each code γ : IR I O we use structural recursion on γ to
define a dependent polynomial I ←tγ Pγ →rγ Sγ →qγ O:

– if γ is ι o, then we define S γ = 1, P γ = 0, r γ =!I , t γ =!1, and q γ " = o.
As a diagram, this is as follows. I ←! 0 →! 1 →o O:

– if γ is σ S K then the diagram is as follows.

I
∐

s:S P (K s)
∐

s:S S (K s) O

∐
s:S t (K s)[r (K s)]s:S [q (K s)]s:S

Here (and in the next clause) we use
∐

s:S m s to abbreviate the cotuple
[ins ◦m s ]s:S.

– if γ is δ P K, the diagram is as follows.

∐
i:P→I (P × S (K i)) + P (K i)

∐
i:P→I S (K i)

I O

∐
i:P→I [π0, t (K i)]

[[i ◦ π0, r (K i)]]i:P→I [q (K i)]i:P→I

Note that in the last clause, it is crucial that we are dealing with small IR
so that I is a set, hence P → I is a set and hence the coproducts used are
also small.

We can now state the result concerning the second half of our isomorphism.

Lemma 2. Every small IR functor is a dependent polynomial functor.

To prove the lemma we define a function φ : IR I O → Poly I O by recursion
on the structure of IR codes and then we prove by induction that the functorial
semantics is preserved. Details of the proof can be found in the online in the
expanded version of the paper at the url given in the introduction.
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5 Equivalence between Small IR and Poly

We now extend our previous results to cover not just functors but also natural
transformations. We will do this by (i) recalling the notion of morphism between
dependent polynomials/indexed containers; (ii) introducing morphisms of IR
codes, showing that the interpretation function, � �IR : IR I O → [Set/I , Set/O ]
can be extended to a functor which is full and faithful; and (iii) finally we prove
the equivalence between the two resulting categories IR I O and Poly I O . Note
that our definition of morphisms for IR codes also covers the cases where I and
O are large.

The Categories Poly I O and IC I O . Dependent polynomials/indexed con-
tainers with fixed input and output index sets, I and O , form a category. In this
section we recall the definition of the morphisms between dependent polynomials
and their interpretation as natural transformations. We conclude by stating some
properties of the categories of dependent polynomials/indexed containers which
allows us to recast in elementary terms the dependent polynomials introduced
in definition 5.

Definition 6. A morphism between dependent polynomials (r, t, q) and (r′, t′, q′)
is given by a diagram of the form (where the bottom square is a pullback of u
and t′).

P S

I P ′ ×S′ S S O

P ′ S′

t

r q

t′

r′ q′

w

v

idS

u

h

From now on, Poly I O will indicate the category of dependent polynomials with
fixed input and output index sets I , O and their morphisms. In a similar manner
we can define morphism between indexed containers.

Definition 7. A morphism between (S ,P , n) and (S ′,P ′, n ′) consists of

– a function u : (o : O) → S o → S ′ o;
– a function f : (o : O) → S o → P ′ o (u o s) → P o s;

such that for every o : O, s : S o and p′ : P o (u o s) we have n o s (f o s p′) =
n ′ o (u o s) p′.

We will indicate with IC I O the category of indexed containers and their mor-
phisms. The main result concerning these morphisms is the following (Theorem
2.12 in [13]). We state the result for dependent polynomials but clearly an ana-
logue result holds also for indexed containers.
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Theorem 1 ([13] Theorem 2.12). Given dependent polynomials (r, t, q) and
(r′, t′, q′), every natural transformation �(r, t, q)� → �(r′, t′, q′)� is represented in
an essentially unique way by a commuting diagram as in definition 6.

This theorem ensures that the assignment to each dependent polynomial of its
extension is a functor, and moreover this functor is full and faithful. In the follow-
ing we indicate with PolyFun I O the full subcategory of [Set/I , Set/O ] whose
objects are dependent polynomial functors and whose morphisms are natural
transformation between them3.

Corollary 1 (Representation). For any pair of sets I, O the functor

� � : Poly I O → PolyFun(I ,O)

is an equivalence of categories.

Dependent polynomials and indexed containers have several interesting closure
properties. Here we only need closure under set-indexed coproducts and binary
product. Note that we had to define morphisms before introducing these closure
properties to ensure that they have the required categorical universal properties.
The sum of a K-indexed family of dependent polynomials {Qk = (rk, tk, qk) | k :
K}, for an arbitrary set K, is the dependent polynomial

∐
k:K Qk given by the

following diagram

I
∐

k:K Pk

∐
k:K Sk O

[rk]k:K

∐
k:K tk [qk]k:K

where
∐

k:K tk = [ink ◦ tk]k:K . Note that the dependent polynomial associated to
σ S K : IR I O is of exactly this form. The product of two dependent polynomials
(r, t, q) and (r′, t′, q′) is the evident dependent polynomial

I (P ′ ×O S) + (P ×O S′) S ×O S′ O.

We can now describe the dependent polynomial associated to a code δ P K :
IR I O as the sum of products of a family of dependent polynomials. We start
with a family of dependent polynomials {(r (K i), t (K i), q (K i) | i : P → I }.
For each element of this family we take the product of it with the dependent
polynomial

I P ×O O O
i ◦ π0 π1 idO

and then we take the sum of these products over the set P → I .

3 The original result for polynomial functors (Theorem 2.12 in [13]) is stated in terms
of strong natural transformations. We can avoid mention of strength since natural
transformations between functors on slices of Set are automatically strong.
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The Category of Small IR Codes. We know how to define small IR codes
and interpret them as functors between slices of Set. In this section we introduce
morphisms between small IR I O -codes. Our definition will ensure that every
such morphism gives rise to a natural transformation between the corresponding
IR functors – and vice versa. We start this section developing the appropriate
categorical description of the semantics of IR constructors. The constructor ι
simply represents constant functors while the constructor σ takes coproducts of
functors. The following lemma tells us more about the semantics of δ.

Lemma 3. Given an object k : X → I , there is a natural isomorphism

�δ P K � k ∼=
∐

i:P→I HomSet/I (i, k)⊗ �K i�IR k

Here ⊗ indicates the tensor product. Given a set X and i : Y → I , the object
X ⊗ i is nothing but the copower

∐
x:X i, i.e the X-fold coproduct of the object

i.

Proof. We have a natural isomorphism

�δ P K � k =
∐

x:P→X�K(k ◦ x)�IR k
∼=
∐

i:P→I

∐
x:P→X(i ≡ k ◦ x)⊗ �K i�IR k.

Then observe that
∐

x:P→X(i ≡ k ◦ x) ∼= HomSet/I (i, k).

Thanks to this lemma, we are able to characterise the semantics of δ-codes
through a well-known universal construction in category theory: the left Kan
extension.

If i : X → I is an object in Set/I we use (+ i), in the following lemma, to
indicate the functor

(+i) : Set/I −→ Set/I
k �−→ [i, k].

Theorem 2. There is a natural isomorphism

�δ P F � ∼=
∐

i:P→I Lan(+i)�F i�

Our definition of IR I O -morphisms is based on this isomorphism. First, we recall
the universal property characterising the left Kan extension LanGF : B→ C of
a functor F : A → C along G : A → B; for every functor H : B → C there is a
bijection

Nat(LanGF,H) ∼= Nat(F,H ◦G)

natural in H . We also need to check that IR I O -functors are closed by precom-
position with functors of the form (+i). Fortunately, this can be easily checked
by structural induction on codes. We just state the result.

Lemma 4. Given γ : IR I O, and a function i : P → I there exists γi : IR I O-
code such that

�γ�IR ◦ (+i) = �γi�IR
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We can now define IR morphisms by structural induction on codes as follows.

Definition 8. Let γ, γ′ : IR I O we define the homset IR(γ, γ′) as follows.
Morphisms from ι-codes:

1A. IR(ι o, ι o′) = o ≡ o′

1B. IR(ι o,σ S K ) =
∐

s:S IR(ι o,K s)
1C. IR(ι o, δ P K ) =

∐
e:P→∅ IR(ι o,K (! ◦ e))

Morphisms from σ-codes:

2. IR(σ S K , γ) =
∏

s:S IR(K s , γ)

Morphisms from δ-codes:

3. IR(δ P K , γ) =
∏

i:P→I IR(K i , γi)

The following theorem shows we have the right notion of morphism for IR codes.

Theorem 3. The interpretation � �IR of IR I O-codes can be extended to mor-
phisms: we can associate to each IR I O-morphism f : γ → γ′ a natural trans-
formation �f�IR : �γ�IR → �γ′�IR. Moreover the following assignment is full and
faithful.

� �IR : IR I O → [Set/I , Set/O ]

The theorem is proved by induction on the structure of IR morphisms. Full and
faithfulness allows us to reflect functor composition to the composition of small
IR codes and hence we have the following important result.

Corollary 2. IR I O-codes and their morphisms define a category.

An Equivalence. In the previous sections we have seen how to represent IR I O -
codes as dependent polynomials in Poly I O and vice versa. To sum up:

– We saw how to define a function ψ : Poly I O → IR I O such that � �IC ∼=
� �IR ◦ ψ

– We saw how to define a function φ : IR I O → Poly I O such that � �IR ∼=
� �IC ◦ φ.

We sum up these results in the following corollary.

Corollary 3. For every γ : IR I O and, for every (r, t, q) : Poly I O

1) �ψ ◦ φ (γ)�IR ∼= �γ�IR,
2) �φ ◦ ψ (r, t, q)�Poly ∼= �(r, t, q)�Poly

These isomorphisms deal just with objects of the two categories IR I O and
Poly I O . But what can we say about morphisms? As we show in the next
theorem the equivalence of these two categories is an immediate consequence
of the previous results combined with full and faithfulness of the respective
interpretation functions:

Theorem 4. The two categories IR I O and Poly I O are equivalent.
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It is immediate to show full and faithfulness of φ (or, equivalently of ψ):

IR I O(γ, γ′) ∼= Nat(�γ�IR, �γ
′�IR) (Corollary 2)

∼= Nat(�φ(γ)�Poly, �φ(γ′)�Poly) (Lemma 2)
∼= Poly I O(φ(γ), φ(γ′)) (Corollary 1)

Now, since we have already showed that each dependent polynomial, (r, t, q) is
isomorphic to φ(γ) for some γ : IR I O (namely γ = ψ(r, t, q)), this is enough to
conclude the stated equivalence (see theorem 1, par. 4, ch. IV in [16]). Here is a
commutative diagram which represents the statement of theorem 4:

IR I O Poly I O

[Set/I , Set/O ]

φ

ψ
� �IR � �Poly

6 Small Indexed Induction Recursion

The theory of induction recursion has been extended by Dybjer and Setzer in
[11] in order to capture more sophisticated inductive-recursive definitions. As
indexed container and dependent polynomials generalise polynomials and con-
tainers respectively, the theory of indexed induction-recursion (IIR) generalises
the theory inductive-recursive definitions in order to capture not only ordinary
inductive-recursive definition, but also families of inductive-recursive definitions
which admit extra indexing. IR then appears as the fragment of IIR given by
those definitions indexed over a singleton.

We will briefly recall the axiomatic presentation of IIR which closely follows
that of IR. We then show how the theory of small indexed inductive-recursive
definitions (small IIR) can be reduced to small IR. This simple fact will auto-
matically transfer the results of the previous sections to small IIR, allowing to
conclude a generalisation of the equivalence stated in theorem 4. We now give
the coding for small IIR.

data IIR (D : I → Set) (E : J → Set) : Set1 where
ι : (je : ΣE) → IIR D E
σ : (S : Set) (K : S → IIR D E) → IIR D E
δ : (P : Set) (i : P → I ) (K : ((p : P) → D (i p)) → IIR D E) → IIR D E

Note that δ carries an extra argument i , selecting the index for each position in
P . One way to interpret these codes is by translation to the codes for IR ΣD ΣE ,
as follows:
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.·/ : IIR D E → IR ΣD ΣE

.ι je/ = ι je

.σ S K / = σ S λ s → .K s/

.δ P i K / = δ P λ iD → σ (i ≡ (π0 ◦ iD)) λ q → .K (π1 ◦ iD)/

In the δ case, the generated IR code yields a ΣD for each position in P , so we
constrain its first component to coincide with the index required by the i in the
IIR code. Given this embedding, we can endow small IIR with the categorical
machinery developed for small IR. We therefore can straightforwardly define
a category of IIR D E -codes and their morphisms. Theorem 4 in Section 5
immediately give us the following corollary.

Corollary 4. The category IIR D E and the category Poly ΣD ΣE are
equivalent.

We can also follow Dybjer and Setzer by giving a direct interpretation of an IIR
code as a functor between families of slice categories.

�·�IIR : IIR D E → ((i : I ) → Set/(D i)) → ((j : J) → Set/(E j))

�ι (j ′, e)�IIR G j = ((j ′ ≡ j), λ q → · q e)

�σ S K�IIR G j = (s :S)× (�K s�IIR G j)

�δ P i K�IIR G j = (ig : (p : P)→ dom (G (i p))) × (�K (λ p → fun (G (i p)) (ig p))�IIR G j)

We note that keeping I and D small ensures the following:

(i : I ) → Set/(D i) ∼= (i : I ) → D i → Set ∼= ΣD → Set ∼= Set/ΣD

Consider G i = (∃.(F ◦ (i , ))) for some F : ΣD → Set to see that �γ�IIR G
corresponds to �.γ/�IR F , up to bureaucratic isomorphism.

Once again, we construct simultaneously an indexed family of data types μ γ i
and their decoders decode i as the initial algebra for �γ�IIR.

μd : (γ : IIR D D) → (i : I ) → Set/(D i)
μd γ i = (μ γ i , decode γ i)
data μ (γ : IIR D D) (i : I ) : Set where
in : dom (�γ�IIR (μd γ) i) → μ γ i

decode : (γ : IIR D D) → (i : I ) → μ γ i → D i
decode γ i (in t) = fun (�γ�IIR (μd γ) i) t

The corresponding fixpoint of �.γ/�IR gives the inductive family indexed by pairs
in ΣD .

Example 3. The Bove-Capretta method, applied to call-by-value com-
putation. Bove and Capretta [4] make use of indexed induction-recursion to
model the domains of partial functions. A partial function d : (i : I ) ⇀ D i
has a domain given by a code γ : IIR D D . If h : μ γ i gives evidence that
the domain is inhabited at argument i , then decode γ i h is sure to compute the
result.
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Let us take a concrete example. One might define a type of λ-terms and seek
to give a call-by-value evaluator for them, as follows.

data Tm : Set where
var : N → Tm
app : Tm → Tm → Tm
lam : Tm → Tm

cbv : Tm ⇀ Tm
cbv (var x) = var x
cbv (lam t) = lam t
cbv (app f s) with cbv f
... | lam t = cbv (subst0 (cbv s) t)

... | f ′ = app f (cbv s)

where, say, we adopt a de Bruijn indexing convention and define subst0 s t to
substitute s for variable 0 in t . Of course, cbv is not everywhere defined. When
it is defined? It is hard to define the domain inductively, because the app f s
case will require that subst0 (cbv s) t is in the domain whenever f is in the
domain and evaluates to lam t . We need to define the domain simultaneously
with evaluation — a job for IR.

It will prove convenient to define the special case of δ when P = 1.

δ1 : (i : I ) → (K : D i → IIR D E ) → IIR D E
δ1 i K = δ 1 (λ → i) λ d → K (d ")

In the code for a domain predicate, a recursive call at i gives rise to a δ1 i K code,
where K explains how to carry on if the call returns. Let us give the domain
of cbv.

cbvD : IIR {Tm} {Tm} (λ → Tm) (λ → Tm)
cbvD = σ Tm λ

{(var x) → ι (var x , var x)
; (lam t) → ι (lam t, lam t)

; (app f s) → δ1 f λ {(lam t) → δ1 s λ s′ → δ1 (subst0 s′ t) λ t′ → ι (app f s, t′)
; f ′ → δ1 s λ s′ → ι (app f s, app f ′ s′)

} }

Note the way the application case makes key use of the delivered values in subse-
quent recursive calls, and in every case, the final ι delivers an input-output pair.
The type μ cbvD t thus contains the evidence that cbv t terminates without
presupposing a particular value — decoding that evidence will yield t ’s value.
The equivalence we have demonstrated in this paper ensures that the correspond-
ing inductive family indexed over Tm × Tm is exactly the big-step evaluation
relation for cbv.

7 Conclusion and Further Work

Despite its evident potential, the theory of induction recursion has not become
as widely understood and used as it should be. In this paper we seek to broaden
appreciation of Dybjer and Setzer’s work by comparing it with better-known
theories of data types based on dependent polynomials, and more practically
with indexed containers. In the case of small IR, these three analyses coincide.
We can now pick up the fruits of our central result (theorem 4).
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Initial Algebras. When interpreting codes in IR I I we get endofunctors on
Set/I . Theorem 4 ensures that initial algebras for these functors always exist, since
they are initial algebras for dependent polynomial endofunctors. Altenkirch and
Morris have [2] given parametrized initial algebras of indexed containers of type
IC (I + O) O : as a result of this work, the same construction carries over into
IR (I + O) O functors. We also now know that functors definable by Small IR
also have final coalgebras - these are just the final coalgebras for dependent poly-
nomial functors/indexed containers. They have recently investigated by Capretta
in unpublished work under the name of Wander types.

Closure Properties. The axiomatization of small IR and its semantics pro-
vides a new (but equivalent) grammar to work with the categories Poly and IC.
It is known that these categories have very rich closure properties such as sums,
products, composition, as well as linear and differential structure. Clearly we
can transport these properties along the equivalence of theorem 4.

Compositions. A difficult open question in the theory of induction-recursion is
whether the Dybjer-Setzer functors are closed under composition: given codes
γ : IR I J and γ′ : IR J O is it always possible to find a code ξ in IR I O such
that �γ′� ◦ �γ� ∼= �ξ�? Theorem 4 ensures that we can transport composition in
Poly or IC to obtain closure under composition of small IR functors.

Further Work. We have proved that Poly I O , IC I O and IR I O are equiv-
alent categories which define the same class of functors. It is easy to generalize
this result to a biequivalence of bicategories. Since it is possible to define rein-
dexing of IR codes and IR functors, in future work we would like to explore this
extra-structure of small IR and compare it with the double category of Poly. Ab-
stracting from the category of sets we also aim to investigate to which extent
this result applies to arbitrary LCCCs.
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Abstract. As the groupoid interpretation by Hofmann and Streicher
shows, uniqueness of identity proofs (UIP) is not provable. Generalizing a
theorem by Hedberg, we give new characterizations of types that satisfy
UIP. It turns out to be natural in this context to consider constant
endofunctions. For such a function, we can look at the type of its fixed
points. We show that this type has at most one element, which is a
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1 Introduction

Although the identity types in Martin-Löf type theory (MLTT) are defined by
one constructor refl and by one eliminator J that matches the constructor, the
statement that every identity type has at most one inhabitant is not provable [9].
Thus, uniqueness of identity proofs (UIP), or, equivalently, Streicher’s axiom K
are principles that have to be assumed, and have often been assumed, as addi-
tional rules of MLTT. In recent years, there is a growing interest in type theory
without these assumptions, in particular with the development of Homotopy
Type Theory (HoTT) and Univalent Foundations (UF) - see [4] for a brief and
[13] for a detailed introduction. While we do not use any axioms of HoTT or
UF (other than those of standard MLTT), we make use of their notation and
intuition. For a better understanding of our arguments, is useful to think of a
type as a space, and a propositional equality proof as a path. Notation and some
basic definitions are listed in Section 2.
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As said above, we do not assume the principle of unique identity proofs.
However, certain types do satisfy it naturally, and such types are often called
h-sets. A sufficient condition for a type to be an h-set, given by Hedberg [8], is
that it has decidable propositional equality. In Section 3, we analyze Hedberg’s
original argument, which consists of two steps:

1. A type X is an h-set iff for all x, y : X there is a constant map x = y → x = y.
2. If X has decidable equality then such constant endomaps exist.

Here, we write x = y for the identity type IdX(x, y) of an implicitly given type X .
Decidable equality means that, for all x and y, we have (x = y) + (x �= y).

Thus, a natural weakening is ¬¬-separated equality,

¬¬(x = y) → x = y,

which occurs often in constructive mathematics. In this case we say that the type
X is separated. For example, going beyond MLTT, the reals and the Cantor
space in Bishop mathematics and topos theory are separated. In MLTT, the
Cantor type of functions from natural numbers to booleans is separated under
the assumption of functional extensionality,

∀ f g : X → Y, (∀x : X, f x = g x) → f = g.

We observe that under functional extensionality, a separated type X is an h-set,
because there is always a constant map x = y → x = y.

In order to obtain a further characterization of the notion of h-set, we consider
truncations (also known as bracket or squash types), written ‖X‖ in accordance
with recent HoTT notation. The idea is to collapse all inhabitants of X so that
‖X‖ has at most one inhabitant. We refer the reader to the technical development
for a precise definition. We observe that

1′. A type X is an h-set iff ‖x = y‖ → x = y for all x, y : X ,

and we mention a couple of other simple, but noteworthy, connections.
While Section 3 gives properties and arguments involving path spaces (i. e.

equality types), we go beyond that in Section 4. Dealing with a path space
opens up many possibilities that are not available for a general type. For that
reason, we find it somewhat surprising that the equivalence of two of the above
mentioned properties can be translated to general spaces, though that requires
a nontrivial argument. This is done in Section 4:

A type X satisfies ‖X‖ → X iff it has a constant endomap.

We find this interesting, as it says that from the anonymous existence of a point
of X , that is, from the inhabitedness of ‖X‖, one can get an inhabitant of X ,
provided a constant endomap is available. It is important here (and above) that
our definition of constant function does not require X to be inhabited: we say
that a function is constant if any two of its values are equal, and this may happen
vacuously. The main technical lemma to prove this, which is noteworthy on its
own right, is our Fixed Point Lemma:

For any type X and any constant map f : X → X , the type of fixed
points of f is an h-proposition.



Generalizations of Hedberg’s Theorem 175

Here, an h-proposition is defined to be a type with at most one element. The proof
of this lemma would be trivial if UIP was assumed, but in its absence, it is not.

Section 5 can, together with the just described results, be seen as the highlight
of this paper. The assumption that every type has a constant endomap has an
interesting status. It is not a constructive principle, but at the same time, it is
seemingly weaker that typical classical statements. But this is only partially true:
While we cannot make a strong conclusion for arbitrary types, such as excluded
middle, we prove that the assumption implies that all equalities are decidable.

The just discussed section depends crucially on the Fixed Point Lemma, and
so does Section 6: We describe how the lemma gives rise to another notion of
anonymous existence, which we call populatedness. We say that X is populated,
written 〈〈X〉〉, if every constant endofunction on X has a fixed point. Unlike ‖X‖,
this new notion is thus defined internally, instead of using a postulate.

In our final Section 7, we discuss the relationship between the different notions
of existence, starting with a chain of implications:

X −→ ‖X‖ −→ 〈〈X〉〉 −→ ¬¬X.

We have formalized and proved all our statements in the dependently typed
programming language Agda [3] and presented parts on the HoTT blog [1].

2 Preliminaries

We work in a standard version of Martin-Löf Type Theory with dependent sums,
dependent function types and identity types. For the latter, we assume the elim-
inator J and, as it is standard, its computational β-rule, but not the definitional
η-law. We further do not assume the eliminator K, or the principle of unique
identity proofs. Summarized, our setting is very minimalistic. Sometimes, ad-
ditional principles (function extensionality and truncation, as introduced later)
are assumed, but this will be stated clearly.

We use standard notation whenever it is available. Regarding the identity types,
we write, for two elements a, b : A, the expression a = b for the type of equality
proofs, or paths from a to b, keeping A implicit. Other common notations for the
same thing are a =A b, as well as Id(a, b) and IdA(a, b). If a = b is inhabited, it is
standard to say thataand barepropositionally equal. In contrast,definitional equal-
ity is a meta-level concept, referring to two terms, rather than two (hypothetical)
elements, with the same β (and, sometimes, η in a restricted sense) normal form.
Recently, it has become standard to use the symbol≡ for definitional equality.

Propositional equality satisfies the Groupoid Laws : If we have p : a = b and
q : b = c, there is a canonical path p • q : a = c (the composition of p and q).
Further, we have p−1 : b = a. There always is refla : a = a, which behaves as a
neutral element when composed with another path. Pairs of inverses cancel each
other out when composed, and the obvious associativity law holds. In general,
these statements are valid only up to propositional equality.

An important special case of the J eliminator is substitution, for which the
name transport has been established in HoTT: If P is a family of types over A,
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and there are two elements (or points) a, a′ : A, together with some p : a = a′,
then a point x : P (a) can be “transported along the path p” to get an element
of P (a′):

transport p x : P (a′).

Another useful function, easily derived from the J eliminator, is the follwing: If
we have a function f : A→ B and a path p : a = a′ in A, we get a path of type
f(a) = f(a′) in B:

apf p : f(a) = f(a′)

Our hope is that all of the notions in the following definition are as intuitive
as possible, if not already known. The only notions that are not standard are
collapsible, meaning that a type has a constant endomap, and path-collapsible,
saying that every path space over the type is collapsible.

Definition 1. We say that a type X is an h-proposition if all its inhabitants
are equal:

hpropX ≡ ∀x y : X, x = y.

Further, X satisfies UIP (uniqueness of identity proofs), or is an h-set, if its
path spaces are all h-propositional:

h-setX ≡ ∀x y : X, hprop(x = y).

The property of being h-propositional or an h-set are all h-propositional them-
selves, which the following properties are not.

X is decidable if it is either inhabited or empty:

decidableX ≡ X + ¬X.

We therefore say that X has decidable equality, if the equality type of any two
inhabitants of X is decidable:

discreteX ≡ ∀x y : X, decidable(x = y).

Based on the terminology in [11], we also call a type with decidable equality
discrete.

A function (synonymously, map) f : X → Z is constant if it maps any two
elements to the same inhabitant of Y :

const f ≡ ∀x y : X, f(x) = f(y).

We call a type X collapsible if it has a constant endomap:

collX ≡ Σf :X→X const f.

Finally, X is called path-collapsible if any two points x, y of X have a collapsible
path space:

path-collX ≡ ∀x y : X, coll (x = y).

For some statements, but only if clearly indicated, we use functional extension-
ality. This principle says that two functions f, g of the same type are equal as
soon as they are pointwise equal:

(∀x , f x = g x) → f = g.
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An important equivalent formulation (see Voevodsky [14]) is that the set of
h-propositions is closed under ∀. More precisely,

(∀ a : A, hpropB) → hprop (∀ a : A, B) .

In the case of non-dependent function types, this can be read as follows: If B is
h-propositional, then so is A→ B.

3 Hedberg’s Theorem

Before discussing possible generalizations, we discuss Hedberg’s Theorem.

Theorem 1 (Hedberg). Every discrete type has unique identity proofs,

discreteX → h-setX.

We shortly state Hedberg’s original proof [8], consisting of two steps.

Lemma 1. If a type has decidable equality, it is path-collapsible:

discreteX → path-collX.

Proof. Given inhabitants x and y of X , the assumptions provide an inhabitant
of decidable(x = y) ≡ (x = y) + ¬(x = y). If it is an inhabitant of x = y, we
construct the required constant map (x = y) → (x = y) by mapping everything
to this path. If it is an inhabitant of ¬(x = y), there is only a unique such map
which is constant automatically. � 

Lemma 2. If a type is path-collapsible, it has unique identity proofs:

path-collX → h-setX.

Proof. Assume f is a parametrized constant endofunction on the path spaces. Let
p be a path from x to y. We claim that p = (f p) • (f reflx)

−1
. Using the equality

eliminator on (x, y, p), we only have to give a proof for the triple (x, x, reflx),
which is one of the groupoid laws that equality satisfies. Using the fact f is
constant on every path space, the right-hand side expression is independent of
p, and in particular, equal to any other path of the same type. � 

Hedberg’s proof [8] is just the concatenation of the two lemmas. A slightly more
direct proof can be found in a post on the HoTT blog [10], and in the HoTT Coq
repository [12]. The first of the two lemmas uses the rather strong assumption of
decidable equality. In contrast, the assumption of the second lemma is equivalent
its conclusion, which means that we cannot do much there. We include a proof
of this simple claim in Theorem 2 below and concentrate on weakening the
assumption of the first lemma. Let us first introduce the notions of stability and
separatedness.

Definition 2. For any type X, define

stableX ≡ ¬¬X → X,

separatedX ≡ ∀x y : X, stable(x = y).
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We can see stableX as a classical condition, similar to decidableX ≡ X + ¬X ,
but strictly weaker. Indeed, we get a first strengthening of Hedberg’s Theorem
as follows:

Lemma 3. If functional extensionality holds, any separated type has unique
identity proofs,

separatedX → h-setX.

Proof. There is, for any x, y : X , a canonical map (x = y) → ¬¬(x = y). Com-
posing this map with the proof that X is separated yields an endofunction on the
path spaces. With functional extensionality, the first map has an h-propositional
codomain, which implies that the endofunction is constant, fulfilling the
requirements of lemma 2. � 

We remark that full functional extensionality is actually not needed here. In-
stead, a weaker version that only works with the empty type is sufficient. Similar
statements hold true for all further applications of extensionality in this paper.
Details can be found in the Agda file [3].

In a constructive setting, the question how to express that “there exists some-
thing” in a type X is very subtle. One possibility is to ask for an inhabitant of
X , but in many cases, this is stronger than one can hope. A second possibility,
which corresponds to our above definition of separated, is to ask for a proof of
¬¬X . Then again, this is very weak, and often too weak, as one can in general
only prove negative statements from double-negated assumptions.

This fact has inspired the introduction of squash types (the Nuprl book [6]),
and similar, bracket types (Awodey and Bauer [5]). These lie in between of
the two extremes mentioned above. In our intensional setting, we talk of h-
propositional truncations : For any type X , we postulate that there is a type
‖X‖ that is an h-proposition, representing the statement that X is inhabited.
The rules are that if we have a proof of X , we can, of course, get a proof of ‖X‖,
and from ‖X‖, we can conclude the same statements as we can conclude from
X , but only if the actual representative of X does not matter:

Definition 3. For a given type X : Type, we postulate the existence of a type
‖X‖ : Type, satisfying the following properties:

1. η : X → ‖X‖
2. hprop(‖X‖)
3. ∀P : Type, hpropP → (X → P ) → ‖X‖ → P.

We say that X is h-inhabited if ‖X‖ is inhabited.

Note that this amounts to saying that the operator ‖ · ‖ is left adjoint to the
inclusion of the subcategory of h-propositions into the category of all types.
Therefore, it can be seen as the h-propositional reflection.

There is a type expression that is equivalent to h-inhabtedness:

Proposition 1. For any given X : Type, we have

‖X‖ ←→ ∀P : Type, hpropP → (X → P ) → P.
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The trouble with the expression on the right-hand side is that it is not living in
universe Type. This size issue is really the only thing that is disturbing here, as
the expression satisfies all the properties of the above definition, at least under
the assumption of functional extensionality. Voevodsky [14] uses resizing rules
to get rid of the problem.

Proof. The direction “→” of the statement is not more than a rearrangement of
the assumptions of property (3). For the other direction, we only need to instan-
tiate P with ‖X‖ and observe that the properties (1) and (2) in the definition
of ‖X‖ are exactly what is needed. � 
With this definition at hand, we can provide an even stronger variant of
Hedberg’s Theorem. Completely analogous to the notions of stability and
separatedness, we define h-stable and h-separated :

Definition 4. For any type X, define

h-stableX ≡ ‖X‖ → X,

h-separatedX ≡ ∀x y : X, ‖x = y‖ → (x = y).

In fact, h-separatedX is a strictly weaker condition than separatedX . Not only
can we conclude h-setX from h-separatedX , but even the converse. We also
include the simple, but until here unmentioned fact that path-collapsibility is
also equivalent to these statements:

Theorem 2. For a type X in MLTT with h-propositional truncation, the
following are equivalent:

(i) X is an h-set.
(ii) X is path-collapsible.
(iii) X is h-separated.

Proof. (ii)⇒ (i) is just Lemma 2.
(i) ⇒ (iii) uses simply the the definition of the h-propositional truncation:

Given x, y : X , the fact that X is an h-set tells us exactly that x = y is h-
propositional, implying that we have a map ‖x = y‖ → (x = y).

Concerning (iii) ⇒ (ii), it is enough to observe that the composition of η :
(x = y) → ‖x = y‖ and the map ‖x = y‖ → (x = y), provided by the fact that
X is h-separated, is a parametrized constant endofunction. � 
As a conclusion of this part of the paper, we observe that h-propositional trun-
cation has some kind of extensionality built-in: In Lemma 3, we have given a
proof for the simple statement that separated types are h-sets in the context
of functional extensionality. This is not true in pure MLTT. Let us now drop
functional extensionality and assume instead that h-propositional truncation is
available. Every separated type is h-separated - more generally, we have

(¬¬A→ A) → ‖A‖ → A

for any type A -, and every h-separated space is an h-set. Notice that the mere
availability of h-propositional truncation suffices to solve a gap that functional
extensionality would usually fill.
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4 Collapsibility Implies H-Stability

If we unfold the definitions in the statements of Theorem 2, they all involve the
path spaces over some type X :

(i) ∀x y : X, hprop(x = y)
(ii) ∀x y : X, coll (x = y)
(iii) ∀x y : X, h-stable(x = y).

We have proved that these statements are logically equivalent. It is a natural
question to ask whether the properties of path spaces are required. The possi-
bilities that path spaces offer are very powerful and we have used them heavily.
Indeed, if we formulate the above properties for an arbitrary type A instead of
path types

(i’) hprop(A)
(ii’) coll (A)

(iii’) h-stableA,

we notice immediately that (i’) is significantly and strictly stronger than the
other two properties. (i’) says that A has at most one inhabitant, (ii’) says
that there is a constant endofunction on A, and (iii’) gives us a possibility to
get an explicit inhabitant of A from the proposition that A has an anonymous
inhabitant. An h-propositional type has the other two properties trivially, while
the converse is not true. In fact, as soon as we know an inhabitant a : A, we
can very easily construct proofs of (ii’) and (iii’), while it does not help at all
with (i’).

The implication (iii′) ⇒ (ii′) is also simple: If we have h : ‖A‖ → A, the
composition h ◦ η : A → A is constant, as for any a, b : A, we have η(a) = η(b)
and therefore h(η(a)) = h(η(b)).

In summary, we have (i′) ⇒ (iii′) ⇒ (ii′) and we know that the first implica-
tion cannot be reversed. What is less clear is the reversibility of the second im-
plication: If we have a constant endofunction on A, can we get a map ‖A‖ → A?
Put differently, what does it take to get out of ‖A‖? Of course, a proof that A is
h-stable is fine for that, but does a constant endomap on A also suffice? Surpris-
ingly, the answer is positive, and there are interesting applications (Section 6).
The main ingredient of our proof, and of much of the rest of the paper, is the
following crucial lemma about fixed points:

Lemma 4 (Fixed Point Lemma). Given a constant endomap f on a type X,
the type of fixed points is h-propositional, where this type is defined by

fix f ≡ Σx:X x = f(x).

Before we can give the proof, we first need to formulate two observations. Both
of them are simple on their own, but important insights for the Fixed Point
Lemma. Let X and Y be two types.
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Proposition 2. Assume h, k : X → Y are two functions and t : x = y as well
as p : h(x) = k(x) are paths. Then, substituting along t into p can be expressed
as a composition of paths:

(transport t p) =
(

(aph t)−1 • p • (apk t)
)
.

Proof. This is immediate if t is the trivial reflexivity path, i.e. if (x, y, t) is
just (x, x, reflx), and for all other cases, it follows as a direct application of the
equality eliminator J . � 

Even if the latter proof is trivial, the statement is essential. In the proof of
Lemma 4, we need a special case, were x and y are the same. However, this
special version cannot be proved directly. We consider the second observation
the key insight for the Fixed Point Lemma:

Proposition 3. If f : X → Y is constant and x : X some point, then apf maps
every path between x and x to reflf(x), up to propositional equality.

Proof. It is not possible to prove this directly. Instead, we state a slight gen-
eralization: If c is the proof of const f , then apf maps a path p : x = y

to (c x x)
−1 • c x y. This is easily seen to be correct for (x, x, reflx), which is

enough to apply the eliminator. As the expression is independent of p, but
only depends on its endpoints, it is for p : x = x equal to reflf(x), as claimed.
Note that the proposition can also be stated as: For all x and y, the function
apf x y : (x = y) → (f x = f y) is constant. � 

With these lemmas at hand, the rest is fairly simple:

Proof (of the Fixed Point Lemma). Assume f : X → X is a function and c :
const f is a proof that it is constant. For any two pairs (x, p) and (x′, p′) : fix f ,
we need to construct a path connection them.

First, we simplify the situation by showing that we can assume that x and
x′ are the same: By composing p : x = f x with c x x′ : f x = f x′ and (p′)

−1
:

f x′ = x′, we get a path p′′ : x = x′. A path between two pairs corresponds
to two paths: One path between the first components, and one between the
second, where a substitution along the first path is needed. We therefore now
get that (x, transport (p′′)

−1
p′) and (x′, p′) are propositionally equal: p′′ is a

path between the first components, which makes the second component trivial.
Write q for the term transport (p′′)

−1
p′.

We are now in the (nicer) situation that we have to construct a path between
(x, p) and (x, q) : fix f . Again, such a path has to consist of two paths, for the
two components. Let us assume that we use some path t : x = x for the first
component. We then have to show that transport t p equals q. In the situation
with (x, p) and (x′, p′), it might have been tempting to use p′′ as a path between
the first components, and that would correspond to choosing reflx for t. However,
one quickly convinces oneself that this cannot work in the general case.

By Proposition 2, with the identity for h and f for k, the first of the two
terms, i. e. transport t p, corresponds to t−1 • p • apf t. With Proposition 3,
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that term can be further simplified to t−1 • p. What we have to prove is now
just

(
t−1 • p

)
= q, so let us just choose q • p−1 for t, thereby making it into a

straight-forward application of the standard lemmas. � 

We are now finally in the position to prove the statement that is announced in
Section 4:

Theorem 3. A type A is collapsible, i.e. has a constant endomap, iff it is h-
stable in the sense that ‖A‖ → A.

Proof. As already mentioned in Section earlier, the “if-part” is simple: If there is
a map ‖A‖ → A, we just need to compose it with η : A→ ‖A‖ to get a constant
endomap on A.

For the other direction, let c be the proof that f is constant, just as before.
Observe that we have A→ fix f by mapping a on (f a, c a (f a)). As fix f is an h-
proposition by the previous lemma, we get a map ‖A‖ → fix f by the elimination
rule for h-propositional truncation. That map can be composed with the first
projection of type fix f → A, yielding a function ‖A‖ → A as required. � 

Looking at the just proved theorem, it makes sense to ask the following question:
Given a constant function f : A → B, is it possible to construct a function
f : ‖A‖ → B? We can do that if B is an h-set. For the general case, we have
evidence that the answer is likely to be negative.

5 Global Collapsibility Implies Decidable Equality

If X is some type, having a proof of ‖X‖ is, intuitively, much weaker than a
proof of X . While the latter consists of a concrete element of X , the first is
given by an anonymous inhabitant of X . This is actually nothing more than the
intention of the truncation: ‖X‖ allows us to make the statement that “there
exists something in X”, without giving away a concrete element. It is therefore
unreasonable to suppose that

∀X : Type, ‖X‖ → X,

can be proved, but it is interesting to consider what it would imply. Using The-
orem 3, the above type is logically equivalent to the statement

Every type has a constant endomap.

From a constructive type of view, this is an interesting statement. It clearly
follows from the Principle of Excluded Middle, ∀X : Type, X + ¬X : If we
know an inhabitant of a type, we can immediately construct a constant endomap,
and for the empty type, considering the identity function is sufficient. Thus, we
understand “Every type has a constant endomap” as a weak form of the excluded
middle: It seems to use that every type is either empty or inhabited, but there is
no way of knowing in which case we are. We are unable to show that it implies
excluded middle.
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However, what we can conclude is excluded middle for all path spaces. We
can prove the following statement in basic MLTT, without h-propositional trun-
cation, without extensionality, and even without a universe:

Lemma 5. Let A be a type and a0, a1 : A two points. If for all x : A the type
(a0 = x) + (a1 = x) is collapsible, then a0 = a1 is decidable.

Before giving the proof, we state an immediate corollary:

Theorem 4. If every type has a constant endomap (equivalently, is h-stable),
then every type has decidable equality.

Proof (of Lemma 5). Let us define Ex ≡ (x = a0) + (x = a1). The assumption
says that we have a family of endomaps fx : Ex → Ex, together with proofs
of their constancy cx : const fx. We show that the identity map on Σx:A fix fx
factorizes pointwise through Bool. Note that an element of Σx:A fix fx is a pair
of an x : A and a point in fix fx; and such a point consists itself of a pair (c, p),
where c : Ex and p : c = fx(c). There is a canonical inhabitant of fix fa0 , given by
fa0(inl refla0) for the first component, and ca0 (inl(refla0)) (fa0(inl(refla0)) for the
second. We call it k0, and analogously, we write k1 for the canonical inhabitant
of fix fa1 .

r : Σx:A fix fx → Bool
(x, (inl q, p)) �→ true,
(x, (inr q, p)) �→ false,

s : Bool→ Σx:A fix fx
true �→ (a0, k0),
false �→ (a1, k1).

We claim that any pair (x, k) is equal to s ◦ r(x, k). An equality of pairs corre-
sponds to a pair of equalities. As the second component is, by the Fixed Point
Lemma, an equality over an h-propositional type, it is enough to show that x
equals the first component of s ◦ r(x, k). Let k be (c, p). We can now perform
case analysis on c: If c is of the form inl q, we need to prove x = a0; but this is
shown by q. If c is inr q, we proceed analogously. Therefore, equality of any two
such pairs is decidable, as we just have to check whether r maps them to the
same value in Bool.

Again because fix fx is an h-proposition, the pairs (a0, k0) and (a1, k1) are
equal iff a0 = a1, and, therefore, a0 = a1 is decidable. � 

6 Populatedness

In this section we discuss a notion of anonymous existence, similar, but weaker
(see Section 7.2) than h-propositional truncation. It crucially depends on the
Fixed Point Lemma 4. Let us start by discussing another perspective of what
we have explained in the previous section.

Trivially, for any type X , we can prove the statement

‖X‖ → (‖X‖ → X) → X. (1)

By Lemma 3, this is equivalent to

‖X‖ → collX → X, (2)
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which can be read as: If we have a constant endomap on X and we wish to get
an inhabitant of X (or, equivalently, a fixed point of the endomap), then ‖X‖ is
sufficient to do so. Now, we can ask whether it is also necessary: Can we replace
the first assumption ‖X‖ by something weaker? Looking at formula 1, it would
be natural to conjecture that this is not the case, but it is. In this section, we
discuss by what it can be replaced, and in Section 7.2, we give a proof that it is
indeed weaker.

For answering the question what is needed to get from h-stableA to A, let us
define the following notion:

Definition 5 (populatedness). For a given type X, we say that X is popu-
lated, written 〈〈X〉〉, if every constant endomap on X has a fixed point:

〈〈X〉〉 ≡ ∀ f : X → X, const f → fix f,

where fix f is the type of fixed points, defined as in Lemma 4.

This definition allows us to comment on the question risen above. If 〈〈X〉〉 is
inhabited and X is collapsible, then X has an inhabitant, as such an inhabitant
can be extracted from the type of fixed points by projection. Hence, 〈〈X〉〉 instead
of ‖X‖ in 2 would be sufficient as well (we discuss in Section 7 whether it is
weaker). Therefore,

〈〈X〉〉 → (‖X‖ → X) → X.

Next we draw a parallel between populatedness and h-inhabitedness.

Theorem 5. For any given X : Type, the following holds:

〈〈X〉〉 ←→ ∀P : Type, hpropP → (P → X) → (X → P ) → P.

This statement can be read as “X is populated iff every h-proposition logically
equivalent to X is inhabited.” Note that the only difference to the type expression
in Proposition 1 is that we only quantify over sub-propositions of X , i. e. over
those that satisfy P → X , while we quantify over all propositions in the case
of ‖X‖. Therefore, ‖X‖ is clearly at least as strong as 〈〈X〉〉.

Proof. Let us first prove the direction “→”. Assume an h-propositional P is
given, together with functions X → P and P → X . Composition of these gives
us a constant endomap on X , exactly as in the proof of Theorem 2. But then
〈〈X〉〉 makes sure that this constant endomap has a fixed point, which is (or
allows us to extract) an inhabitant of X . Using X → P again, we get P .

For the direction “←”, assume we have a constant endomap f . We need to
construct an inhabitant of fix f . In the expression on the right-hand side, choose
P to be fix f . By the Fixed Point Lemma, this is an h-proposition. Further, P
and X are logically equivalent (i.e. there are maps in both directions), where the
non-trivial direction makes use of Theorem 3. Then, the right-handed expression
shows P , which is just the required fix f . � 

This proof uses the Fixed Point Lemma twice: Once, as we needed P to be an
h-proposition, and once hidden, as we used Theorem 3.
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The similarities between ‖X‖ and 〈〈X〉〉 do not stop here. The following state-
ment, together with the direction “→” of the theorem that we have just proved,
is worth to be compared to the definition of ‖X‖ (that is, Definition 3):

Proposition 4. For any type X, the type 〈〈X〉〉 has the following properties:

(1) X → 〈〈X〉〉
(2) hprop(〈〈X〉〉) (if functional extensionality holds).

The proof is fairly simple, and, of course, again an application of the Fixed Point
Lemma.

Proof. Regarding (1), given x : X and a constant endomap f , we need to prove
that f has a fixed point. We just take f x and use the fact that f x is proposi-
tionally equal to f(f x), by constancy of f .

For (2), we need to use that fix f is an h-proposition, by Lemma 4. By
functional extensionality, a (dependent) function type is h-propositional if the
codomain is (see Section 2) and we are done. � 

7 Taboos and Counter-Models

In this final section we look at the differences between the various notions of
(anonymous) inhabitedness we have encountered. We have, for any type X , the
following chain of implications:

X −→ ‖X‖ −→ 〈〈X〉〉 −→ ¬¬X.

The first implication is trivial and the second has already been mentioned after
Theorem 5. Maybe somewhat surprisingly, the last implication does not require
functional extensionality, as we do not need to prove that ¬¬X is h-propositional:
To show

〈〈X〉〉 → ¬¬X ,

let us assume f : ¬X . But then, f can be composed with the unique function
from the empty type into X , yielding a constant endomap on X , and obviously,
this function does not have a fixed point. Therefore, the assumption of 〈〈X〉〉
would lead to a contradiction, as required.

Intuitively, none of the implications should be reversible. To make that precise,
we use two techniques: Taboos, showing that the provability of a statement would
imply the provability of another, better understood statement, that is known to
be not provable. As the second technique, we use HoTT models.

1. Theorem 4 shows that, if the first implication can be reversed, then all types
have decidable equality. Using Hedberg’s Theorem, this immediately implies
that every type is an h-set, and thus, it is inconsistent with the Univalence
Axiom of HoTT. But the conclusion that every type is an h-set can be derived
much more directly: If we assume ‖X‖ → X for all types X , we have this in
particular for all path spaces. Then, by Theorem 2, every type is an h-set.
As an alternative argument, if every type is h-stable, a form of choice that
does not belong to type theory is implied.
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2. It would be wonderful if the second implication could be reversed, as this
would imply that h-propositional truncation is definable in MLTT. However,
this is equivalent to a certain h-propositional axiom of choice discussed below,
which is not provable but holds under excluded middle.

3. If the last implication can be reversed, excluded middle for h-propositions
holds (a constructive taboo, which is not valid in recursive models).

7.1 Inhabited and H-Inhabited

The question whether the first implication in the chain above can be reversed
has already been analyzed in Section 5. This cannot be possible as long as
equality is not globally decidable. Here, we want to state another noteworthy
consequence of

∀X : Type, ‖X‖ → X.

In [2], we show that this assumption allows us to show that any relation has
a functional subrelation with the same domain. This is a form of the axiom of
choice that does not pertain to intuitionistic type theory. Here, we only sketch
the proof. Given a binary relation A on the type X . Define

Ax ≡ Σy:X A(x, y), F (x, y) ≡ Σa:A(x,y) (y, a) = kx(y, a),

where kx : Ax → Ax is the constant map induced by the hypothesis ‖Ax‖ → Ax.
By the Fixed Point Lemma, F (x, y) is an h-proposition. If (a, p) : F (x, y) and
(a′, p′) : F (x, y′), then

(y, a) = kx(y, a) = kx(y′, a′) = (y′, a′)

because kx is constant and hence y = y′, and so F is single-valued. But in fact,
with a subtler argument, it is single-valued in the stronger sense that Fx is an
h-proposition. Moreover, F has the same domain as A in the sense that Fx is
inhabited iff Ax is inhabited.

7.2 H-Inhabited and Populated

Assume that the second implication can be reversed, meaning that we have

∀X : Type, 〈〈X〉〉 → ‖X‖.

Repeated use of the Fixed Point Lemma leads to a couple of interesting equiv-
alent statements. We discuss one that is particularly interesting: Every popu-
lated type is h-inhabited iff for every type, the statement that it is h-stable is
h-inhabited.

In the previous subsection, we have discussed that we cannot prove the state-
ment that every type is h-stable. However, we can always populate it:

Lemma 6. ∀X : Type, 〈〈‖X‖ → X〉〉.
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Proof. Assume we are given a constant endomap f on h-stableX . We need to
construct a fixed point of that endomap, which amounts to construction an
inhabitant of h-stableX . By the Fixed Point Lemma, a constant endomap g :
X → X is enough for this. From f , we can construct g easily: Given x : X , we
get a canonical inhabitant of h-stableX . We apply f on this inhabitant, and we
apply the result on η(x), yielding an inhabitant of X . We define g x to be this
inhabitant. It is easy to see that g is constant. � 

An alternative proof is available in the Agda file.

Theorem 6. The implication ‖X‖ → 〈〈X〉〉 can always be reversed iff the state-
ment that that a type is h-stable can always be h-inhabited:

(∀X : Type, 〈〈X〉〉 → ‖X‖) ←→ (∀X : Type, ‖‖X‖ → X‖) .

Proof. The direction “→” is an immediate application of Lemma 6 above. The
other direction is slightly trickier: If we knew h-stableX , we would have a con-
stant endomap on X , and with the assumption 〈〈X〉〉, this constant endomap
would have a fixed point. Hence, we would have an inhabitant of X , and there-
fore and inhabitant of ‖X‖. We observe that ‖X‖ is h-propositional, so, by
definition, we do not necessarily need h-stableX , but ‖ h-stableX‖ is enough,
and that completes the proof. � 

It is also easy to see (cf. our Agda file [3]) that

〈〈X〉〉 ←→ ‖‖X‖ → X‖ → ‖X‖,

which gives an alternative route to the above theorem. Moreover, the statement
∀X : Type, ‖‖X‖ → X‖ is equivalent to the h-propositional axiom of choice:
For every h-proposition P and any family Y : P → Type,

(∀ p : P, ‖Y p‖) → ‖∀ p : P, Y p‖,

which clearly holds under h-propositional excluded middle. When Y p is a set
with exactly two elements for every p : P , this amounts to the world’s simplest
axiom of choice [7], which fails in some toposes. Thus, by the above theorem,
∀X : Type, 〈〈X〉〉 → ‖X‖ is not provable.

7.3 Populated and Non-empty

If we can reverse the last implication of the chain, we have

∀X : Type, ¬¬X → 〈〈X〉〉.

To show that this is not provable, we prove that it is a taboo from the point of
view of constructive mathematics, in the sense that it implies Excluded Middle
for h-propositions,

hprop-EM ≡ ∀P , hpropP → P + ¬P.
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Lemma 7. With functional extensionality, the following implication holds:

(∀X : Type, ¬¬X → 〈〈X〉〉) → hprop-EM .

Proof. Assume P is an h-proposition. Then so is the type P + ¬P (where we
require functional extensionality to show that ¬P is an h-proposition). Hence,
the identity function on P + ¬P is constant.

On the other hand, it is straightforward to construct a proof of ¬¬ (P + ¬P ).
By the assumption, this means that P + ¬P is populated, i.e. every constant
endomap on it has a fixed point. Therefore, we can construct a fixed point of
the identity function, which is equivalent to proving P + ¬P . � 
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Abstract. We propose a model-based approach to the model checking
problem for recursive schemes. Since simply typed lambda calculus with
the fixpoint operator, λY -calculus, is equivalent to schemes, we propose
the use a model of λY to discriminate the terms that satisfy a given prop-
erty. If a model is finite in every type, this gives a decision procedure.
We provide a construction of such a model for every property expressed
by automata with trivial acceptance conditions and divergence testing.
Such properties pose already interesting challenges for model construc-
tion. Moreover, we argue that having models capturing some class of
properties has several other virtues in addition to providing decidability
of the model-checking problem. As an illustration, we show a very sim-
ple construction transforming a scheme to a scheme reflecting a property
captured by a given model.

1 Introduction

In this paper we are interested in the relation between the effective denotational
semantics of the simply typed λY -calculus and the logical properties of Böhm
trees. By effective denotational semantics we mean semantic spaces in which the
denotation of a term can be computed; in this paper, these effective denotational
semantics will simply be finite models of the λY -calculus, but Y will often be
interpreted neither as the least nor as the greatest fixpoint.

Understanding properties of Böhm trees from a logical point of view is a prob-
lem that arises naturally in the model checking of higher-order programs. Often
this problem is presented in the context of higher-order recursive schemes that
generate a possibly infinite tree. Nevertheless, higher-order recursive schemes
can be represented faithfully by λY -terms, in the sense that the infinite trees
they generate are precisely Böhm trees of the λY -terms.

The technical question we address is whether the Böhm tree of a given term
is accepted by a given tree automaton. We consider only automata with trivial
acceptance conditions which we call TAC automata. The principal technical chal-
lenge we address here is that we allow automata to detect if a term has a head
normal form. We call such automata insightful as opposed to Ω-blind automata
that are insensitive to divergence. For example, the models studied by Aehlig
or Kobayashi [1,10] are Ω-blind. Considering safety properties and divergence
at the same time poses serious challenges to representing with denotational se-
mantics what it means for an automaton to accept a Böhm tree. Indeed, this
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requires one to give to non-convergence a non-standard interpretation that can
influence the meaning of a term in a stronger way than the usual semantics does.
As we show here, Y combinator cannot be interpreted as an extremal fixpoint in
this case, so known algorithms for verification of safety properties cannot take
non-convergence into account in a non-trivial way.

Let us explain the difference between insightful and Ω-blind conditions. The
definition of a Böhm tree says that if the head reduction of a term does not
terminate then in the resulting tree we get a special symbol Ω. Yet this is not
how this issue is treated in all known solutions to the model-checking problem.
There, instead of reading Ω the automaton is let to run on the infinite sequence
of unproductive reductions. In the case of automata with trivial conditions, this
has as an immediate consequence that such an infinite computation is accepted
by the automaton. From a denotational semantics perspective, this amounts
to interpreting the fixpoint combinator Y as a greatest fixpoint on some finite
monotonous model. So, for example, with this approach to semantics, the lan-
guage of schemes that produce at least one head symbol is not definable by
automata with trivial conditions. Let us note that this problem disappears once
we consider Büchi conditions as they permit one to detect an infinite unproduc-
tive execution. So here we look at a particular class of properties expressible
by Büchi conditions. Thus, the problem we address is a non-trivial extension of
what is usually understood as the safety property for recursive schemes.

Our starting point is the proof that the usual methods for treating the safety
properties of higher-order schemes cannot capture the properties described with
insightful automata. The first result of the paper shows that extremal fixpoint
models can only capture boolean combinations of Ω-blind TAC automata. Our
main result is the construction of a model capturing insightful automata. This
construction is based on an interpretation of the fixpoint operator which is nei-
ther the greatest nor the least one. The main difficulty is to obtain a definition
that guaranties the existence and uniqueness of the fixpoint at every type.

In our opinion providing models capturing certain classes of properties is an
important problem both from foundational and practical points of view. On the
theoretical side, models need to handle all the constructions of the λ-calculus
while, for example, the type systems proposed so far by Kobayashi [10], and by
Kobayashi and Ong [13] do not cater for λ-abstraction. In consequence the model-
based approach gives more insight into the solution. On the practical side, models
capturing classes of properties set the stage to define algorithms to decide these
properties in terms of evaluating λ-terms in them. One can remark that models
offer most of the algorithmic advantages as other approaches, as illustrated by [16]
which shows that the typing discipline of [10] can be completely rephrased in terms
of simple models. This practical interest of models has been made into a slogan by
Terui [20]: better semantics, faster computation. To substantiate further the inter-
est of models we also present a straightforward transformation of a scheme to a
scheme reflecting a given property [4]. From a larger perspective, the model based
approach opens a new bridge between λ-calculus and model-checking communi-
ties. In particular the model we construct for insightful automata brings into the
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front stage particular non-extremal fixpoints. To our knowledge these were not
much studied in the λ-calculus literature.

Related Work. The model checking problem has been solved by Ong [14] and
subsequently revisited in a number of ways [8,13,17]. A much simpler proof for
the same problem in the case of Ω-blind TAC automata has been given by
Aehlig [1]. In his influential work, Kobayashi [10,9,11] has shown that many
interesting properties of higher-order recursive programs can be analyzed with
recursive schemes and Ω-blind TAC automata. He has also proposed an in-
tersection type system for the model-checking problem. The method has been
applied to the verification of higher-order programs [12,5]. Let us note that at
present all algorithmic effort concentrates on Ω-blind TAC automata. In a recent
work Ong and Tsukada [15] provide a game semantics model corresponding to
Kobayashi’s style type system. Their model can handle only Ω-blind automata,
but then it is fully complete. We cannot hope to have full completeness in our
approach using simple models. In turn, as we mention in [21] and show here,
handling Ω-blind automata with simple models is straightforward. The reflec-
tion property for schemes has been proved by Broadbent et. al. [4]. Haddad gives
a direct transformation of a scheme to an equivalent scheme without divergent
computations [7].

Organization of the Paper. The next section introduces the objects of our
study: λY -calculus and automata with trivial acceptance conditions (TAC au-
tomata). In the following section we briefly present the correspondence between
models of λY with greatest fixpoints and boolean combinations of Ω-blind TAC
automata. In Section 4 we give the construction of the model for insightful TAC
automata. The last section presents a transformation of a term into a term re-
flecting a given property. All the missing proofs can be found in the long version
of the paper [19].

2 Preliminaries

We introduce two basic objects of our study: λY -calculus and TAC automata. We
will look at λY -terms as mechanisms for generating infinite trees that then are
accepted or rejected by a TAC automaton. The definitions we adopt are standard
ones in the λ-calculus and automata theory. The only exceptions are the notions
of a tree signature used to simplify the presentation, and of Ω-blind/insightful
automata that are specific to this paper.

2.1 λY -Calculus and Models

The set of types T is constructed from a unique basic type 0 using a binary oper-
ation →. Thus 0 is a type and if α, β are types, so is (α→ β). The order of a type
is defined by: order(0) = 1, and order (α→ β) = max(1 + order (α), order (β)).

A signature, denoted Σ, is a set of typed constants, that is symbols with
associated types from T . We will assume that for every type α ∈ T there are
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constants ωα, Ωα and Y (α→α)→α. A constant Y (α→α)→α will stand for a fixpoint
operator. Both ωα and Ωα will stand for undefined, but we will need two such
constants in Section 4. Of special interest to us will be tree signatures where all
constants other than Y , ω and Ω have order at most 2. Observe that types of
order 2 have the form 0 → 0 → · · · → 0 → 0.

Proviso. To simplify the notation we will suppose that all the constants in a
tree signature are either of type 0 or of type 0 → 0 → 0. So they are either a
constant of the base type or a function of two arguments over the base type.
This assumption does not influence the results of the paper.

The set of simply typed λ-terms is defined inductively as follows. A constant of
type α is a term of type α. For each type α there is a countable set of variables
xα, yα, . . . that are also terms of type α. If M is a term of type β and xα a
variable of type α then λxα.M is a term of type α→ β. Finally, if M is of type
α→ β and N is a term of type α then (MN) is a term of type β. We shall use
the usual convention about dropping parentheses in writing λ-terms and we shall
write sequences of λ-abstractions λx1. . . . λxn.M with only one λ: λx1 . . . xn.M ;
moreover when the sequence of abstracted variables is irrelevant we shall write
λx.M for a sequence of variables x.

The usual operational semantics of the λ-calculus is given by β-contraction.
To give the meaning to fixpoint constants we use δ-contraction (→δ).

(λx.M)N →β M [N/x] YM →δ M(YM).

We write →∗
βδ for the βδ-reduction, the reflexive and transitive closure of the

sum of the two relations. Given a term M = λx1 . . . xn.N0N1 . . . Np where N0

is of the form (λx.P )Q or Y P , then N0 is called the head redex of M . We
write M →βδh M ′ when M ′ is obtained by βδ-contracting the head redex of M
(when it has one). We write →∗

βδh and →+
βδh respectively for the reflexive and

transitive closure and the transitive closure of →βδh. The relation →∗
βδh is called

head reduction. A term with no head redex is said to be in head normal form.
It is well known that every term has at most one normal form, but due to

δ-reduction there are terms without a normal form. A term is unsolvable if it
does not have a head normal form; otherwise the term is solvable. Observe that
even if all the subterms of a term are solvable the reduction may generate an
infinitely growing term. It is thus classical in the λ-calculus to consider a kind
of infinite normal form that by itself is an infinite tree, and in consequence it is
not a term of λY [3,2].

A Böhm tree is an unranked, ordered, and potentially infinite tree with nodes
labelled by terms of the form λx1. . . . xn.N ; where N is a variable or a constant,
and the sequence of λ-abstractions is optional. So for example x0, Ω0, λx0.ω0

are labels, but λy0. x0→0y0 is not.

Definition 1. A Böhm tree of a term M is obtained in the following way.
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– If M →∗
βδ λx.N0N1 . . . Nk with N0 a variable or a constant then BT (M) is

a tree having the root labelled λx.N0 and having BT (N1), . . . , BT (Nk) as
its subtrees.

– Otherwise BT (M) = Ωα, where α is the type of M .

Observe that a term M without the constants Ω and ω has a βδ-normal form if
and only if BT (M) is a finite tree without the constants Ω and ω. In this case
the Böhm tree is just another representation of the normal form.

Recall that in a tree signature all constants except of Y , Ω, and ω are of type 0
or 0 → 0 → 0. A closed term without λ-abstraction and Y over such a signature
is just a finite binary tree: constants of type 0 occur at leaves and those of type
0 → 0 → 0 occur at internal nodes. The same holds for Böhm trees:

Lemma 1. If M is a closed term of type 0 over a tree signature then BT (M)
is a potentially infinite binary tree.

We will consider finitary models of λY -calculus. In the first part of the paper we
will concentrate on those where Y is interpreted as the greatest fixpoint.

Definition 2. A GFP-model of a signature Σ is a tuple S = 〈{Sα}α∈T , ρ〉
where S0 is a finite lattice, and for every type α → β ∈ T , Sα→β is the lattice
mon[Sα → Sβ ] of monotone functions from Sα to Sβ ordered coordinatewise.
The valuation function ρ is required to satisfy certain conditions:

– If c ∈ Σ is a constant of type α then ρ(c) is an element of Sα.
– For every α ∈ T , both ρ(ωα) and ρ(Ωα) are the greatest elements of Sα.
– Moreover, ρ(Y (α→α)→α) is the function assigning to every function f ∈
Sα→α its greatest fixpoint.

Observe that every Sα is finite, hence all the greatest fixpoints exist without any
additional assumptions on the lattice.

A variable assignment is a function υ associating to a variable of type α an
element of Sα. If s is an element of Sα and xα is a variable of type α then υ[s/xα]
denotes the valuation that assigns s to xα and that is identical to υ otherwise.

The interpretation of a term M of type α in the model S under the valuation
υ is an element of Sα denoted [[M ]]υS . The meaning is defined in the standard way:
for constants it is given by ρ; for variables by υ; the application is interpreted as
function application, and finally for abstraction [[λxα.M ]]

υ
S is a function mapping

an element s ∈ Sα to [[M ]]
υ[s/xα]
S . As usual, we will omit subscripts or superscripts

in the notation of the semantic function if they are clear from the context.
It is known that Böhm trees are a kind of initial semantics for λ-terms. In

particular if two terms have the same Böhm trees then they have the same
semantics in every GFP model. To look at it more closely we need to formally
define the semantics of a Böhm tree.

The semantics of a Böhm tree is defined in terms of its truncations. For every
n ∈ N, we denote by BT (M)↓n the finite term that is the result of replacing in
the tree BT (M) every subtree at depth n by the constant ωα of the appropriate
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type. Observe that if M is closed and of type 0 then α will always be the base
type 0. This is because we work with a tree signature. We define:

[[BT (M)]]
υ
S =

∧
{[[BT (M)↓n]]

υ
S | n ∈ N}.

The above definitions are standard for λY -calculus, or more generally for PCF [2].
In particular the following proposition, in a more general form, can be found as
Exercise 6.1.8 in op. cit.1

Proposition 1. If S is a finite GFP-model and M is a closed term then:
[[M ]]S = [[BT (M)]]S .

2.2 TAC Automata

Let us fix a tree signature Σ. This means that apart from ω, Ω and Y all
constants have order at most 2. Let Σ0 be the set of constants of type 0, and Σ2

the set of constants of type 0 → 0 → 0. By Lemma 1, in this case Böhm trees
are potentially infinite binary trees.

Definition 3. A finite tree automaton with trivial acceptance condition (TAC
automaton) over the signature Σ = Σ0 ∪Σ2 is

A = 〈Q,Σ, q0 ∈ Q, δ0 : Q× (Σ0 ∪ {Ω}) → {ff , tt}, δ2 : Q×Σ2 → P(Q2)〉

where Q is a finite set of states and q0 ∈ Q is the initial state. The transition
function of TAC automaton may be the subject to the additional restriction:

Ω-blind: δ0(q,Ω) = tt for all q ∈ Q.

Automata satisfying this restriction are called Ω-blind. For clarity, we use the
term insightful to refer to automata without this restriction.

Automata will run on Σ-labelled binary trees that are partial functions t :
{1, 2}∗ → Σ ∪{Ω} such that their domain is a binary tree, and t(u) ∈ Σ0 ∪{Ω}
if u is a leaf, and t(u) ∈ Σ2 otherwise.

A run of A on t is a labelling r : {1, 2}∗ → Q of t such that the root is
labeled by q0 and the labelling of the successors of a node respects the transition
function δ. A run is accepting if δ0(r(u), t(u)) = tt for every leaf u of t . A tree
is accepted by A if there is an accepting run on the tree. The language of A,
denoted L(A), is the set of trees accepted by A.

Observe that TAC automata have acceptance conditions on leaves, expressed
with δ0, but do not have acceptance conditions on infinite paths.

As underlined in the introduction all the work on automata with trivial con-
ditions relies on the Ω-blind restriction. Let us give some examples of properties
that can be expressed with insightful automata but not with Ω-blind automata.

1 In this paper we work with finite monotone models which are a particular case of
the directed complete partial orders used in [2].
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– The set of terms not having Ω in their Böhm tree. To recognize this set we
take the automaton with a unique state q. This state has transitions on all
the letters from Σ2. It also can end a run in every constant of type 0 except
for Ω: this means δ0(q,Ω) = ff and δ0(q, c) = tt for all other c.

– The set of terms having a head normal form. We take an automaton with
two states q and q�. From q� automaton accepts every tree. From q it has
transitions to q� on all the letters from Σ2, on letters from Σ0 it behaves as
the automaton above.

– Building on these two examples one can easily construct an automaton for
a property like “every occurrence of Ω is preceded by a constant err”.

It is immediate to see that none of these languages can be recognized by a Ω-
blind automaton since if such an automaton accepts a tree t then it accepts also
every tree obtained by replacing a subtree of t by Ω.

3 GFP Models and Ω-Blind TAC Automata

In this short section we summarize the relation between GFP models and Ω-
blind TAC automata. We start with the expected formal definition of the set of
λY -terms recognized by a model.

Definition 4. For a GFP model S over the base set S0. The language recog-
nized by a subset F ⊆ S0 is the set of closed λY -terms {M | [[M ]]S ∈ F}.

Proposition 2. For every Ω-blind TAC automaton A, the language of A is
recognized by a GFP model.

Let A be an automaton as in Definition 3. For the model S in question we take
a GFP model with S0 = P(Q). This defines Sα for every type α. It remains to
define the interpretation of constants other than ω, Ω, or Y . The meaning of a
constant c of type 0 is {q | δ0(q, c) = tt}; and the meaning of a of type 0 → 0 → 0
is a function whose value on (S0, S1) ∈ P(Q)2 is {q | δ2(q, a) ∩ S0 × S1 �= ∅}.
Finally, for the set FA used to recognize L(A) we will take {S | q0 ∈ S}; recall
that q0 is the initial state of A. With these definitions it is possible to show that
for every closed term M of type 0: BT (M) ∈ L(A) iff [[M ]] ∈ FA.

Next theorem shows that the recognizing power of GFP models is actually
characterized by Ω-blind TAC automata. The right-to-left implication of this
theorem has been stated in [21].

Theorem 1. A language L of λ-terms is recognized by a GFP-model iff it is a
boolean combination of languages of Ω-blind TAC automata.

Using the results in [16], it can be shown that typings in Kobayashi’s type
systems [10] give precisely values in GFP models.
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4 A Model for Insightful TAC Automata

The goal of this section is to present a model capable of recognizing languages of
insightful TAC automata. Theorem 1 implies that the fixpoint operator in such
a model can be neither the greatest nor the least fixpoint. In the first subsection
we will construct a model containing at the same time a model with the least
fixpoint and a model with the greatest fixpoint. We cannot just take the model
generated by the product of the base sets of the two models as we will need that
the value of a term in the least fixpoint component influences the value in the
greatest fixpoint component. In the second part of this section we will show how
to interpret insightful TAC automata in such a model.

4.1 Model Construction and Basic Properties

We are going to construct a model K intended to recognize the language of a
given insightful TAC automaton. This model is built on top of the standard
model D for detecting if a term has a head-normal form.

Consider a family of sets {Dα}α∈T ; where D0 = {⊥,�} is the two element
lattice, and Dα→β is mon[Dα → Dβ ]. So for every α, Dα is a finite lattice. We
shall refer to the minimal and maximal element of Dα respectively with the
notations ⊥α and �α.

Consider the model D = 〈{Dα}α∈T , ρ〉 where ω and Ω are interpreted as the
least elements, and Y is interpreted as the least fixpoint operator. So D is a
dual of a GFP model as presented in Definition 2. The reason for not taking
a GFP model here is that we would prefer to use the greatest fixpoint later in
the construction. To all constants other than Y , ω, and Ω the interpretation ρ
assigns the greatest element of the appropriate type. The following theorem is
well-known (cf [2] page 130).

Theorem 2. For every closed term M of type 0 without ω we have:

BT (M) = Ω iff [[M ]]D = ⊥.

We fix a finite set Q and QΩ ⊆ Q. Later these will be the set of states of a
TAC automaton, and the set of states from which the automaton accepts Ω,
respectively. To capture the power of such an automaton, we are going to define
a model K(Q,QΩ, ρ) of the λY -calculus with a non-standard interpretation of
the fixpoint. Roughly, this model will live inside the product of D and the GFP
model S for an Ω-blind automaton. The idea is that every set Kα will have a
projection on D but not necessarily on S. This allows to observe whether a term
converges or not, and at the same time to use this information in computing in
the second component.

Definition 5. For a given finite set Q and QΩ ⊆ Q we define a family of
sets KQ,QΩ = (Kα)α∈T by mutual recursion together with a family of relations
L = (Lα)α∈T such that Lα ⊆ Kα ×Dα:
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1. We let K0 = {(�, P ) | P ⊆ Q}∪{(⊥, QΩ)} with the order: (d1, P1) ≤ (d2, P2)
iff d1 ≤ d2 in D0 and P1 ⊆ P2. (cf. Figure 1)

2. L0 = {((d, P ), d) | (d, P ) ∈ K0},
3. Kα→β = {f ∈ mon[Kα → Kβ ] | ∃d ∈ Dα→β .∀(g, e) ∈ Lα.(f(g), d(e)) ∈ Lβ},
4. Lα→β = {(f, d) ∈ Kα→β ×Dα→β | ∀(g, e) ∈ Lα.(f(g), d(e)) ∈ Lβ}.

(�, {1; 2})

(�, {1}) (�, {2})

(�, ∅)(⊥, {1})

Fig. 1. The order K0 for Q = {1, 2} and QΩ = {1}

Note that every Kα is finite since it lives inside the standard model constructed
from D0×P(Q) as the base set. Moreover for every α, Kα is a join semilattice and
thus has a greatest element. Recall that a TAC automaton is supposed to accept
unsolvable terms from states QΩ. So the unsolvable terms of type 0 should have
QΩ as a part of their meaning. This is why ⊥ of D0 is associated to (⊥, QΩ)
in K0 via the relation L0. This also explains why we needed to take the least
fixpoint in D. If we had taken the greatest fixpoint then the unsolvable terms
would have evaluated to � and the solvable ones to ⊥. In consequence we would
have needed to relate � with (�, QΩ), and we would have been forced to relate
⊥ with (⊥, Q). But since (�, QΩ) and (⊥, Q) are incomparable in K0 we would
not have been able to obtain the order preserving injection (·)↑ from D0 to K0

that is defined below at every type:

Definition 6. For every h ∈ Dα we define the element h↑ of Kα:

h↑ =
∨
{f | (f, h) ∈ Lα} .

It can be shown that this element always exists, and that (·)↑ is a monotone
embedding of D into K. Moreover (d↑, d) is in Lα for very d ∈ Dα. One can also
verify that the relation Lα is functional, so we get the projection operation.

Definition 7. For every type α and f ∈ Kα we let f to be the unique element
of Dα such that (f, f) ∈ Lα.

We are now going to give the definition of the interpretation of the fixpoint
combinator in K. This definition is based on the fixpoint operator in D. As a
shorthand, we write fixα for the operation in D(α→α)→α mapping a function of
Dα→α to its least fixpoint. It can be shown that for every f ∈ Kα→α the sequence
fn(fixα(f)↑) is decreasing in Kα.

Definition 8. For every type α and f ∈ Kα define

Fixα(f) =
∧
n∈N

(fn(fixα(f)↑))
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We are ready to define the model we were looking for.

Definition 9. For a finite set Q and QΩ ⊆ Q consider a tuple K(Q,QΩ, ρ) =
(KQ,QΩ , ρ) where KQ,QΩ is as in Definition 5 and ρ is a valuation such that
for every type α: ωα is interpreted as the greatest element of Kα, Y

(α→α)→α is
interpreted as Fixα, and Ω0 is interpreted as (⊥, QΩ).

Theorem 3. The model K(Q,QΩ, ρ) is a model of the λY -calculus.

Let us mention the following useful fact showing a correspondence between the
meanings of a term in K and in D. The proof is immediate since, by definition,
{Lα}α∈T is a logical relation (cf [2]).

Lemma 2. For every type α and closed term M of type α:

([[M ]]K, [[M ]]D) ∈ Lα .

4.2 Correctness and Completeness of the Model

It remains to show that the model we have constructed can recognize languages
of TAC automata. We fix a tree signature Σ and a TAC automaton A as in
Definition 3. So Q is the set of states of A and QΩ is the set of states q such
that δ(q,Ω) = tt . Consider a model K based on K(Q,QΩ, ρ) as in Definition 9.
We need to specify the meaning of constants like c : 0 or a : 02 → 0 in Σ:

ρ(c) =(�, {q : δ(q, c) = tt})
ρ(a)(d1, R1)(d2, R2) =(�, R) where d1, d2 ∈ {⊥,�} and

R = {q ∈ Q | δ(q, a) ∩R1 ×R2 �= ∅}

It is easy to verify that the meanings of constants are indeed in the model.

Proposition 3. Given a closed term M of type 0: BT (M) = Ω0 iff [[M ]]K =
(⊥, QΩ).

As in the case of GFP-models the semantics of a Böhm tree is defined in terms of
its truncations: [[BT (M)]]K =

∧
{[[BT (M)↓n]]K : n ∈ N}. The subtle, but crucial,

difference is that now Ω0 and ω0 do not have the same meaning. Nevertheless
the analog of Proposition 1 still holds in K.

Theorem 4. For very closed term M of type 0: [[M ]]K = [[BT (M)]]K.

Proof (Sketch). First we show that [[M ]]K ≤ [[BT (M)]]K. For this we define a
finite approximation of the Böhm tree. The Abstract Böhm tree up to depth l
of a term M , denoted ABTl(M), will be a term obtained by reducing M till it
resembles BT (M) up to depth l as much as possible. We define ABT0(M) = M ,
and also ABTl+1(M) = M if M is unsolvable, or otherwise ABTl+1(M) =
λx.N0ABTl(N1) . . . ABTl(Nk), where λx.N0N1 . . . Nk is the head normal
form of M .
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Since ABTl(M) is obtained from M by a sequence of βδ-reductions, [[M ]]K =
[[ABTl(M)]]K for every l. It remains to show that for every term M and every l:

[[M ]]K = [[ABTl(M)]]K ≤ [[BT (M)↓l]]K.

Up to depth l, the two terms have the same tree structure. We check that
the meaning of every leaf in ABTl(M) is not bigger than the meaning of the
corresponding leaf of BT (M)↓l. For leaves of depth l this is trivial since on the
one hand we have a term and on the other the constant ω. For other leaves,
the terms are either identical or on one side we have an unsolvable term, and on
the other Ω0. By Proposition 3 the two have the same meaning in S.

For the inequality in the other direction observe that if a term M does not
have Y combinators, then it is strongly normalizing and the theorem is trivial. So
we need be able to deal with Y combinators in M . We introduce new constants
cN for every subterm Y N of M . The type of cN is α → β if β is the type of
Y N and α = α1 . . . αk is the sequence of types of the sequence of free variables
x = x1 . . . xk occurring in Y N . We let the semantics of a constant cN be

[[cN ]]K = λp.
(

fixβ([[N ]]
[p/x]
D )

)↑
.

In the full version of the paper we show that [[cN ]] is in K. Moreover for every
p1, . . . , pk,q1, . . . , ql:

[[cN ]]K(p1, . . . , pk)(q1, . . . , ql) =

{
(⊥, QΩ) if [[cN ]]D(p1, . . . , pk)(q1, . . . , ql) = ⊥
(�, Q) if [[cN ]]D(p1, . . . , pk)(q1, . . . , ql) = �

(1)
We now define term iteraten(N) for very n ∈ N.

iterate0(N) = cN iteraten+1(N) = λx.N(iteraten(N)x) .

From the definition of the fixpoint operator in K and the fact that Kβ is finite it
follows that [[iteraten(N)]] = [[λx.Y N ]] for some n. Now we can apply this identity
to all fixpoint subterms in M starting from the innermost subterms. So the term
expand i(M) is obtained by repeatedly replacing occurrences of subterms of the
form Y N in M by iteratei(N)x starting from the innermost occurrences. We get
that for n chosen as above [[M ]]K = [[expandn(M)]]K.

We come back to the proof. The missing inequality will be obtained from

[[M ]]K = [[expandn(M)]]K = [[BT (expandn(M))]]K ≥ [[BT (M)]]K .

The first equality we have discussed above. The second is trivial since
expandn(M) does not have fixpoints. It remains to show [[BT (expandn(M))]]K ≥
[[BT (M)]]K.

Let us denote BT (expandn(M)) by P . So P is a term of type 0 in a normal
form without occurrences of Y . For a term K let K̃ be a term obtained from K
by simultaneously replacing cN by λx.Y N . By definition of the fixpoint we have
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[[cN ]]K ≥ [[λx.Y N ]]K which also implies that [[K]]K ≥ [[K̃]]K. Moreover, as P̃ =βδ

M , we have that BT (P̃ ) = BT (M). We need to show that [[P ]]K ≥ [[BT (P̃ )]]K.

Let us compare the trees BT (P ) and BT (P̃ ) by looking on every path
starting from the root. The first difference appears when a node v of BT (P )
is labelled with cN for some N . Say that the subterm of P rooted in v is
cNK1 . . .Ki. Then at the same position in BT (P ′) we have the Böhm tree of
the term (λx.Y N)K̃1 . . . K̃i. We will be done if we show that [[cNK1 . . .Ki]]K ≥
[[BT ((λx.Y N)K̃1 . . . K̃i)]]K.

We reason by cases. If [[cNK1 . . .Ki]]D = � then equation (1) gives us
[[cNK1 . . .Ki]]K = (�, Q). So the desired inequality holds since (�, Q) is the
greatest element of K0.

If [[cNK1 . . .Ki]]D = ⊥ then [[cNK̃1 . . . K̃i]]D = ⊥ since [[Ki]]K ≥ [[K̃i]]K. By

equation (1) we get [[cNK̃1 . . . K̃i]]D = (⊥, QΩ). Since, by the definition of the

fixpoint operator, [[cN ]]K ≥ [[λx. Y N ]]K we get [[Y NK̃1 . . . K̃i]]K = (⊥, QΩ).
But then Proposition 3 implies that Y NK1 . . .Ki is unsolvable. Thus we get
[[BT ((λx.Y N)K̃1 . . . K̃i)]]K = [[Ω]]K = (⊥, QΩ). � 

Once we know that the semantics of the Böhm tree of a term in the model is
the same as the semantics of a term, the proof of the correctness of the model
is quite straightforward and very similar to the case of GFP models.

Theorem 5. Let A be an insightful TAC automaton and K a model as at the
beginning of the subsection. For every closed term M of type 0:

BT (M) ∈ L(A) iff q0 is in the second component of [[M ]]K.

5 Reflection

The idea behind the notion of a reflecting term is that at every moment of
its evaluation every subterm should know its meaning. Knowing the meaning
amounts to extra labelling of constants. Formally, we express this by the notion
of a reflective Böhm tree defined below. The definition can be made more general
but we will be interested only in the case of terms of type 0. In this section we
will show that reflective Böhm trees can be generated by λY -terms.

As usual we suppose that we are working with a tree signature Σ. We will
also need a signature where constants are annotated with elements of the model.
If S = 〈{Sα}α∈T , ρ〉 is a finitary model then the extended signature ΣS contains
constants as where a is a constant in S and s ∈ S0; so superscripts are possible
interpretations of terms of type 0 in S.

Definition 10. Let S be a finitary model and M a closed term of type 0. A
reflective Böhm tree with respect to S is obtained in the following way:

– If M →∗
βδ bN1N2 for some constant b : 0 → 0 → 0 then rBTS(M) is a tree

having the root labelled by b[[bN1N2]]S and having rBTS(N1) and rBTS(N2)
as subtrees.
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– If M →∗
βδ c for some constant c : 0 then rBTS(M) = c[[c]]S .

– Otherwise, M is unsolvable and BT (M) = Ω0.

Observe that when S satisfies [[N ]]S = [[BT (N)]]S for every term N then the
superscripts in rBT (M) are the meanings of respective subtrees in the Böhm
tree. When, moreover, S recognizes a given property then these superscripts
determine if the tree satisfies the property. These two conditions are fulfilled by
the models we have considered in this paper.

We will use terms to construct reflective Böhm trees.

Definition 11. Let Σ be a tree signature, and S a finitary model. Let M be a
closed term of type 0 over the signature Σ. We say that a term M ′ over the
signature ΣS is a reflection of M in S if BT (M ′) = rBT (M).

The objective of this section is to construct reflections of terms. Since λY -terms
can be translated to schemes and vice versa, the construction would work for
schemes too. (Translations between schemes and λY -terms that do not increase
the type order are presented in [18]).

Let us fix a tree signature Σ and a finitary model S. For the construction
of reflective terms we enrich λY -calculus with some syntactic sugar. Consider
a type α. The set Sα is finite for every type α; say Sα = {d1, . . . , dk}. We will
introduce a new atomic type [α] and constants d1 . . . , dk of this type; there will
be no harm in using the same names for constants and elements of the model. We
do this for every type α and consider terms over this extended type discipline.
Notice that in the result there are no other closed normal terms than d1, . . . , dk
of type [α].

Given a term M of type [α] and M1, . . .Mn that are all terms of type β, we
introduce the construct

case M{di →Mi}di∈Sα

which is a term of type β and which reduces to Mi when M = di. This construct
is a simple syntactic sugar. We could as well represent [α] as the type βk → β,
and a constant di by the ith projection λx1 . . . xn.xi. We would then get that the
term MM1 . . .Mk reduces to Mi and thus behaves exactly as the case construct.

We define a transformation on types α• by induction on their structure:

(α→ β)• = α• → [α] → β• and α• = α when α is atomic.

The translation we are looking for will be an instance of a more general transla-
tion [M,υ] of a term M of type α into a term of type α• where υ is a valuation
over S.

[λxα.M, υ] =λxα
•
λy[α]. case y[α]{d→ [M,υ[d/xα]]}d∈Sα

[MN, υ] = [M,υ] [N, υ] [[N ]]
υ
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[a, υ] =λx01λy
[0]
1 λx02λy

[0]
2 .

case y
[0]
1 {d1 → case y

[0]
2 {d2 → aρ(a)d1 d2x1x2}d2∈S0}d1∈S0

[xα, υ] =xα
•

[
Y (α→α)→αM,υ

]
=Y (α•→α•)→α•

(λxα
•
. [M,υ]xα

•
[[YM ]]υ)

To prove correctness of this translation, we show that a head reduction of the
original term can be simulated by a sequence of head reductions.

Lemma 3. If M →βδh M ′, then [M,υ] →+
βδh [M ′, υ].

Theorem 6. For every finitary model S and a closed term M of type 0:

BT ([M, ∅]) = rBTS(M) .

Remark. If in a model S the divergence can be observed (as it is the case for GFP
models and for the model K, cf. Proposition 3) then in the translation above we
could add the rule [M,υ] = Ω whenever [[M ]]

υ
S denotes a diverging term. We

would obtain a term which would always converge. A different construction for
achieving the same goal is proposed in [7].

Remark. Even though the presented translation preserves the structure of a
term, it makes the term much bigger due to case construction in the clause for
λ-abstraction. The blow-up is unavoidable due to complexity lower-bounds on
the model-checking problem. Nevertheless, one can try to limit the use of case
construct. We present a slightly more efficient translation that takes the value of
the known arguments into account. For this, the translation also depends on a
stack of values from S in order to recall the values taken by the arguments. For
the sake of simplicity, we also assume that the constants always have all their
arguments (this can be achieved by using terms in η-long form).

[λxα.M, υ, d :: S] = λxα
•
y[α]. [M,υ[d/xα], S]

[λxα.M, υ, ε] = λxα
•
y[α].case y[α]{d→ [M,υ[d/xα], ε]}d∈Sα

[MN, υ, S] = [M,υ, [[N ]]
υ

:: S] [N, υ, ε] [[N ]]
υ

[a, υ, d1 :: d2 :: ε] = λx01λy
[0]
1 λx02λy

[0]
2 . a[[a]]d1d2x1x2

[xα, υ, S] = xα
•

[YM, υ, S] = Y [M,υ, [[YM ]]υ :: S]

6 Conclusions

We have extended the scope of the model-based approach to a larger class of
properties. While a priori it is more difficult to construct a finitary model than
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to come up with a decision procedure, in our opinion this additional effort is
justified. It allows, as we show here, to use the techniques of the theory of the λ-
calculus. It opens new ways of looking at the algorithmics of the model-checking
problem. Since typing in intersection type systems [10] and step functions in
models are in direct correspondence [16], model-based approach can also benefit
from all the developments in algorithms based on typing. Finally, this approach
allows to get new constructions as demonstrated by our transformation of a
scheme to a scheme reflecting a given property. Observe that this transformation
is general and does not depend on our particular model.

Let us note that the model-based approach is particularly straightforward for
Ω-blind TAC automata. It uses standard observations on models of the λY -
calculus and Proposition 2 with a simple inductive proof. The model we propose
for insightful automata may seem involved; nevertheless, the construction is
based on simple and standard techniques. Moreover, this model implements an
interesting interaction between components. It succeeds in mixing a GFP model
for Ω-blind automaton with the model D for detecting solvability.

The approach using models opens several new perspectives. One can try to
characterize what kinds of fixpoints correspond to what class of automata condi-
tions. More generally, models hint a possibility to have an Eilenberg like variety
theory for lambda-terms [6]. This theory would cover infinite regular words and
trees too as they can be represented by λY -terms. Finally, considering model-
checking algorithms, the model-based approach puts a focus on computing fix-
points in finite partial orders. This means that a number of techniques, ranging
from under/over-approximations, to program optimization can be applied.
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Abstract. In game semantics and related approaches to programming language
semantics, programs are modelled by interaction dialogues. Such models have
recently been used in the design of new compilation methods, e.g. in Ghica’s
approach to hardware synthesis, or in joint work with Dal Lago on program-
ming with sublinear space. This paper relates such semantically motivated non-
standard compilation methods to more standard techniques in the compilation of
functional programming languages, such as continuation passing and defunction-
alization. We first show for the linear λ -calculus that interpretation in a model of
computation by interaction can be described as a call-by-name CPS transforma-
tion followed by a defunctionalization procedure that takes into account control-
flow information. We then use the interactive model to guide the extension of the
compositional translation to source languages with full contraction and recursion.

1 Introduction

A successful approach in the semantics of programming languages is to model pro-
grams by interaction dialogues [12,1]. Although dialogues are usually considered as
abstract mathematical objects, it has also been argued that they are useful for imple-
menting actual computation. Dialogues have been found useful especially for resource
bounded computation, where they have given rise to nonstandard compilation methods
for functional programming languages. For example Ghica et al. have developed meth-
ods for hardware synthesis based on game semantics [8]. A related semantic approach
based on the Int construction [13] has been the used to design a functional programming
language for sublinear space computation [4].

The aim of this paper is to relate such compilation methods based on interactive se-
mantics to standard techniques in the compilation of functional programming
languages. We consider the compilation of higher-order languages, such as PCF. A
compiler would transform such a language to machine code by way of a number of in-
termediate languages. Typically, the higher-order source code would first be translated
to first-order intermediate code, e.g. [3], from which the machine code is then gener-
ated. This paper is concerned with the first step, the translation from higher-order to
first-order code. We consider two particular instances of well-known transformations
that find application in compilers, CPS translation [18] and defunctionalization [19],
and show that their composition is closely related to an interpretation of the source
language in an interactive model of computation.
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This represents one step towards a general goal of capturing program transforma-
tions that find use in compilers by means of universal mathematical constructions. The
interactive model that corresponds to CPS translation and defunctionalization is con-
structed using the Int construction [13], which captures a canonical way of constructing
a model of higher-order computation from a first-order one. As this model validates
call-by-name, it is natural to consider a call-by-name CPS translation; we use a variant
of the one of Hofmann and Streicher [11].

To give an outline of how CPS translation, defunctionalization and the interpretation
in an interactive model are related, we consider the very simple example of a function
that increments a natural number: λ x : N.1 + x. We next outline how this function is
translated by the two approaches and how the results compare.

1.1 CPS Translation and Defunctionalization

A compiler for PCF might first transform λ x : N.1 + x into continuation passing style,
perhaps apply some optimisations, and then use defunctionalization to obtain a first-
order intermediate program, ready for compilation to machine language.

Hofmann and Streicher’s call-by-name CPS transform [11] translates the source term
λ x : N.1+x to the term λ 〈x,k〉.(λ k.k 1) (λ u.x (λ n.k (u+n))) : ¬(¬¬N×¬N), where
we write ¬A for A →⊥, as usual. The argument in this term is a pair 〈x,k〉 of a con-
tinuation k : ¬N that accepts the result and a variable x : ¬¬N that supplies the function
argument. To obtain the actual function argument, one applies x to a continuation (here
λ n.k (u+n)) to ask for the actual argument to be thrown into the supplied continuation.

Defunctionalization [19] translates this higher-order term into a first-order one. The
basic idea is to give each function a name and to pass around not the function itself, but
only its name and the values of its free variables. To this end, each lambda abstraction is
named with a label: λ l1〈x,k〉.(λ l2 k.k 1) (λ l3 u.x (λ l4 n.k (u + n))). The whole term can
be represented simply by the label l1. The function l3 has free variables x and k and is
represented by the label together with the values of x and k, which we write as l3(x,k).

Each application s t is replaced by a procedure call apply(s, t), as s is now only a
function name and not the function itself. The procedure apply is defined by case dis-
tinction on the function name and behaves like the body of the respective λ -abstraction
in the original term. In the example we have the following definition of apply:

apply(l1,〈x,k〉) = apply(l2, l3(x,k)) apply(l2,k) = apply(k,1)

apply(l3(x,k),u) = apply(x, l4(k,u)) apply(l4(k,u),n) = apply(k,u + n)

To understand concretely how these equations represent the original term, it is perhaps
useful see what happens when a concrete argument and a continuation are supplied:
(λ l1〈x,k〉.(λ l2 k.k 1) (λ l3u.x (λ l4 n.k (u+n)))) 〈λ l5k.k 42, λ l6n.print int(n)〉. Then
we get the following cases for l5 and l6 in addition to the cases above

apply(l5,k) = apply(k,42), apply(l6,n) = print int(n),

and the fully applied term defunctionalizes to apply(l1,〈l5, l6〉). Executing it results
in 43 being printed, as expected.
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This outlines a naive defunctionalization method for translating a higher-order lan-
guage into a first-order language with (tail) recursion. This method can be improved in
various ways. The above apply-procedure performs a case distinction on the function
name each time it is invoked. In this example, the label of the invoked function can
be determined statically, however, so that the case distinction is not in fact necessary.
Instead, we may define one function applyl for each label l and choose the appropriate
label statically. The label l then does not need to be passed as an argument anymore.
A defunctionalization procedure that takes into account control flow information in this
way was introduced by Banerjee et al. [2]. If we apply it to this example and moreover
simplify the result by removing unneeded function arguments, then we get:

applyl1() = applyl2 () applyl2 () = applyl3(1)

applyl3(u) = applyl5
(u) applyl4(u,n) = applyl6

(u + n)
(1)

The term itself simplifies to applyl1(). The interface where these equations interact with
the environment consists of the labels l1, l4, l5 and l6. Applying the term to concrete ar-
guments as above amounts to extending the environment with the following equations:

applyl5 (u) = applyl4 (u,42) applyl6(n) = print int(n)

The point of this paper is that the program (1) is the same as what we get from inter-
preting the source term in a model of computation by interaction.

1.2 Interpretation in an Interactive Computation Model

In computation by interaction the general idea is to study models of computation that
interpret programs by interaction dialogues in the style of game semantics and to con-
sider actual implementations of such dialogue interaction. For example, a function of
type N→ N may be implemented in interactive style by a program that, for a suitable
type S, takes as input a value of type unit+ S× nat and gives as output a value of
type nat+S×unit. The input inl(〈〉) to this program is interpreted as a request for the
return value of the function. An output of the form inl(n) means that n is the requested
value. If the output is of the form inr(s,〈〉), however, then this means that the program
would like to know the argument of the function. It also requests that the value s is
returned along with the answer, as programs here do not have state and s can thus not
be stored until the request is answered. To answer the program’s request, we can pass a
value of the form inr(s,m), where m is our answer.

The particular function λ x : N.1 + x is implemented by the program specified in the
following diagram, where S is nat. This diagram is to be understood so that one may
pass a message along any of its input wires. The message must be a value of the type
labelling the wire. When a message arrives at an input of box, the box will react by
sending a message on one of its outputs. Thus, at any time there is one message in the
network. Computation ends when a message is passed along an output wire.

add
one nat

nat

nat× unitnat× nat

unit

unit
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In this diagram, add takes as input messages of type unit+ (nat+ (nat× nat));
the three input arrows in the figure represent the summands of this type. It outputs a
message of type nat+ (unit+ (nat×unit)). Its behaviour is given by the mappings
inl(〈〉) �→ inr(inl(〈〉)), inr(inl(n)) �→ inr(inr(n,〈〉)) and inr(inr(n,m)) �→ inl(n + m). The
box labelled one maps the request 〈〉 to the number 1.

This interactive implementation of λ x : N.1 + x may be described as the interpreta-
tion of the term in a semantic model Int(T) built by applying the general categorical Int
construction to a category T that is constructed from the target language, see Sec. 6.

Compare the above interaction diagram to the definitions in (1) obtained by defunc-
tionalization. The labels l1, l3 and l4 there correspond to the three inputs of the add-box
(from top to bottom), l2 is the input of box one, and l5 and l6 are the destination labels
of the two outgoing wires. One may consider the apply-definitions in (1) a particular
implementation of the diagram, where a call to applyl(m) means that message m is sent
to point l in the diagram. A naive implementation would introduce a label for the end
of each arrow in the diagram and implement the message passing accordingly.

This outlines the relation between the translations, which we now describe in detail.

2 Target Language

Programs in the target language consist of mutually (tail-)recursive definitions of first-
order functions, such as the examples for apply-equations above. The target language is
at the same abstraction level as SSA-form compiler intermediate languages, e.g. [3].

The set of target types is defined by the grammar below. Sum types and recursive
types will be needed at the end of Sec. 8 only. Target expressions and values are standard
terms for these types, see e.g. [17]:

Types: A,B ::= α | unit | nat | A×B | A + B | μα.A
Expressions: e,e1,e2 ::= x | 〈〉 | n | e1 + e2 | iszero?(e) | 〈e1,e2〉 | let 〈x,y〉= e1 in e2

| inl(e) | inr(e) | case e of inl(x)⇒ e1; inr(y)⇒ e2

| fold(e) | unfold(e)

Values: v,v1,v2 ::= 〈〉 | n | 〈v1,v2〉 | inl(v) | inr(v) | fold(v)

Here, n ranges over natural numbers as constants and iszero?(e) is intended to have type
unit+ unit with inl(〈〉) representing true. We assume a standard (non-linear) typing
and equality judgement, so that each well-typed closed expression e equals a unique
value v of the same type, written as e = v.

Target programs consist of a set of first-order function definitions.

Definition 1. Let L be an infinite set of program labels. A definition of a label f ∈L
is given by an equation of the form f (x) = g(e) or the form f (x) = case e of inl(y) ⇒
g(e1); inr(z)⇒ h(e2), wherein g,h ∈L and e, e1 and e2 range over target expressions.

Definition 2. A target program P = (α,E,β ) consists of a set E of function definitions
together with a list α of entry labels and a list β of exit labels. Both α and β must
be lists of pairwise distinct labels. The set E of definitions must contain at most one
definition for any label and must not contain any definition for the labels in β .



On Interaction, Continuations and Defunctionalization 209

The list α assigns an order to the function labels that may be used as entry points for
the program and β identifies external labels as return points.

We allow ourselves to use syntactic sugar, such as writing f (x,y) = g(e) for f (z) =
g(let 〈x,y〉= z in e) or writing just f () for f (〈〉).

We use an informal graphical notation for target programs, depicting for example the
program ( f1 f2 f3,{ f3(x) = f4(x), f4(x) = g1(x + 1)},g1 f1g3) as shown below.

f1
f2
f3

g1

f1
g3+1

f4
id

Target programs can be typed in the evident way, so that in each function definition
f (x) = . . . the variable x is assigned a type and function calls must preserve types. If P
is the program ( f1 . . . fn,E,g1 . . .gm), then we write P : (A1 . . .An) → (B1 . . .Bm) if the
functions f1, . . . , fn,g1, . . . ,gm in it can be typed such that they accept values of type
A1, . . . ,An,B1, . . . ,Bm respectively.

We define a simple reduction semantics for programs. A function call is an expres-
sion of the form f (v), where f is a function label and v is a value. A relation →P

formalises the function calls as they happen during the execution of a program P. It
is the smallest relation satisfying the following conditions: if P contains a definition
f (x) = g(e) then f (v)→P g(w) for all values v and w with e[v/x] = w; and if P contains
a definition f (x) = case e of inl(y) ⇒ g(e1); inr(z) ⇒ h(e2) then f (v) →P g(w) for all
values v and w with ∃u.e[v/x] = inl(u)∧ e1[u/y] = w, and f (v) →P h(w) for all values
v and w with ∃u.e[v/x] = inr(u)∧ e2[u/z] = w.

A call-trace of program P is a sequence f1(v1) f2(v2) . . . fn(vn), such that fi(vi) →P

fi+1(vi+1) holds for all i ∈ {1, . . . ,n− 1}.
Two programs P,Q : (A1 . . .An) → (B1 . . .Bm) are equal if, for any input, they give

the same output, that is, if the entry labels of P and Q are f1, . . . , fn and g1, . . . ,gn

respectively and the exit labels are h1, . . . ,hm and k1, . . . ,km respectively, then, for any
v, w, i and j, P has a call-trace of the form fi(v) . . .g j(w) if and only if Q has a call-trace
of the form hi(v) . . .k j(w).

The following notation is used in Sec. 7. For any list of target types X = B1 . . .Bn

and any target type A, we write A ·X for the list (A×B1) . . . (A×Bn). Given a program
P : X →Y , we write A ·P : A ·X →A ·Y for the program that passes on the value of type A
unchanged and otherwise behaves like P. It may be defined by replacing each definition
f (x) = g(e) with f (z,x) = g(z,e) for fresh z, and likewise for branching definitions.

Lemma 1. Target programs can be organised into a categoryT whose objects are finite
lists of target types and whose morphisms from X to Y are given by an equivalence
classes of programs P : X → Y with respect to program equality.

Lemma 2. The category T has finite coproducts, such that the initial object 0 is given
by the empty list and the object X +Y is given by the concatenation of the lists X and Y .
Moreover, T has a uniform trace [10] with respect to these coproducts.

These lemmas show that T has enough structure so that we can apply the Int construc-
tion [13,10] (with respect to coproducts) to it and obtain a category Int(T) that models
interactive computation. We shall describe the interpretation of terms in Int(T) con-
cretely and refer to loc. cit. for the categorical structure.
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3 Source Language

Our source language is λ→,N, the simply-typed λ -calculus with a basic type N of nat-
ural numbers and associated terms for numeral constants n : N, addition s + t and case
distinction if0 s then t1 else t2. The typing rules are straightforward and can be found in
the CPS translation below. There they are formulated with an explicit contraction rule
in order to make it easy to consider linear fragments of the source language.

We shall first consider a linear fragment of the source language in Sec. 6, then add
the base type N in Sec. 7 and finally discuss the extension to the full language in Sec. 8.

If one adds a fixed point combinator, this language becomes as expressive as PCF.

4 CPS Translation

We use a variant of the call-by-name CPS translation [11], which translates the source
language into λ→,×,N,⊥, the calculus that extends λ→,N with with product types and an
empty type ⊥.

For each type X , the type X of its continuations is defined by N = ¬N and X → Y =
¬X ×Y . We write X for ¬X . A continuation for type X → Y is thus a pair consisting of
a continuation Y , where the result can be returned, and a function ¬X to access the ar-
gument. A function can request its argument by applying this function to a continuation
of type X . The argument will then be provided to this continuation.

The CPS translation takes any sequent x1 : X1, . . . ,xn : Xn � t : Y derivable in λ→,N to
a sequent x1 : X1, . . . ,xn : Xn � t : Y derivable in λ→,×,N,⊥. It is given by the following
translation of typing rules of λ→,N on the left to derived rules of λ→,×,N,⊥ on the right.

Γ , x : X � x : X =⇒ Γ , x : X � η(x,X) : X

Γ , x : X � t : Y

Γ � λx : X . t : X →Y
=⇒ Γ , x : X � t : Y

Γ � λ 〈x,k〉. t k : X →Y

Γ � s : X → Y Δ � t : X
Γ , Δ � s t : Y

=⇒ Γ � s : X →Y Δ � t : X

Γ , Δ � λk.s 〈t,k〉 : Y

Γ � n : N
=⇒

Γ � λk.k n : N

Γ � s : N Δ � t : N
Γ , Δ � s + t : N

=⇒ Γ � s : N Δ � t : N

Γ , Δ � λk.s (λx. t (λy.k (x + y))) : N

Γ � s : N Δ1 � t1 : N Δ2 � t2 : N
Γ , Δ1, Δ2 � if0 s then t1 else t2 : N

=⇒
Γ � s : N Δ1 � t1 : N Δ2 � t2 : N

Γ , Δ1, Δ2 � λk.s (λx. if x then t1 (λy.k y) : N
else t2 (λy.k y))

Γ , x : X , y : X � t : Y

Γ , x : X � t[x/y] : Y
=⇒ Γ , x : X , y : X � t : Y

Γ , x : X � t[x/y] : Y

This CPS translation differs from the standard call-by-name CPS translation [11] in the
translation of variables. Instead of letting x be just x, we take it to be an η-expansion
η(t,X) of x. The term η(t,X), is defined by induction on X as follows: η(t,N) := t and
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η(t,X → Y ) := λ x.η(t η(x,X),Y ), where x is a fresh variable. For example, we have
η( f ,(N→N)→N) = λ x1. f (λ x2.x1 x2) and η( f ,N→ (N→N)) = λ x1.λ x2. f x1 x2.

The use of η-expansion allows us to use compositional reasoning in Sec. 7. In the
example in the Introduction, we have not applied this η-expansion for better readability.

5 Defunctionalization

After the CPS transform, the term is annotated with control flow information and then
translated into the target language by a defunctionalization procedure that takes the
control flow information into account. In this section we define a particularly simple
variant of such a procedure, which suffices to show the relation to the Int construction.
It is a special case of the flow-based defunctionalization described by Banerjee et al. [2].

The input of the defunctionalization procedure is a term of the labelled λ -calculus
λ→,×,N,⊥
� . Its syntax differs from that of λ→,×,N,⊥ only in that abstractions, applications

and function types are each annotated with a label from L . Thus, the terms λ x : X . t

and s t are replaced by λ lx:X . t and s@lt. The type X → Y becomes X
l−→ Y .

We require that each abstraction is uniquely identified by its label, i.e. we allow
only terms in which no two abstractions have the same label. In the application s@lt
the label l expresses that the function s applied here will be defined by an abstraction
with label l. Note that each application can be annotated with a single label l only,
which means that for each application the label of the function that is being applied
is statically known. In general, one needs to allow a set of labels for more than one
possible definition site, as in e.g. [2]. We discuss this in Sec. 8, but until then the variant
with a single label suffices and much simplifies the exposition.

The typing rules of λ→,×,N,⊥
� enforce that terms are annotated with correct control

flow information. An abstraction λ lx:X . t has type X
l−→ Y . If s has type X

l−→ Y and t
has type X then s@lt has type Y .

In the rest of this section we explain how the terms of λ→,×,N,⊥
� are defunctionalized

into target terms. We defer the question of how to annotate terms with labels to Sec. 6.
The defunctionalization of a term t in λ→,×,N,⊥

� is defined by the following judge-
ment, which has the form t ⇓ t∗ ; Dt , where t∗ is the defunctionalized term in the target
language and Dt is a set of equations. In general, the set Dt need not be function defi-
nitions in the sense of Def. 1. We shall however use defunctionalizion only for terms t
for which Dt consists only of function definitions.

x ⇓ x ; /0 n ⇓ n ; /0

s ⇓ s∗ ; Ds t ⇓ t∗ ; Dt

s + t ⇓ s∗ + t∗ ; Ds∪Dt

s ⇓ s∗ ; Ds t ⇓ t∗ ; Dt u ⇓ u∗ ; Du

if0 s then t else u ⇓ case iszero?(s∗) of inl(〈〉)⇒ t∗; inr(〈〉)⇒ u∗ ; Ds∪Dt ∪Du

s ⇓ s∗ ; Ds t ⇓ t∗ ; Dt

〈s, t〉 ⇓ 〈s∗, t∗〉 ; Ds∪Dt

s ⇓ s∗ ; Ds t ⇓ t∗ ; Dt

let 〈x,y〉= t in s ⇓ let 〈x,y〉= t∗ in s∗ ; Ds∪Dt

s ⇓ s∗ ; Ds t ⇓ t∗ ; Dt

s@lt ⇓ applyl(s∗, t∗) ; Ds∪Dt

t ⇓ t∗ ; Dt f v(t) = {x1, . . . ,xn}
λ lx:A. t ⇓ 〈x1, . . . ,xn〉 ; Dt ∪{applyl(〈x1, . . . ,xn〉,x) = t∗}
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In the rule for abstraction we assume a global ordering on all variables, so that the order
of the tuple is well-defined.

Note that for closed terms of function type, such as the closed terms the form t
obtained by CPS translation, t∗ is just 〈〉. We therefore concentrate on the set Dt .

With annotations the example from the Introduction becomes the term t given by
λ l1z. let 〈x,k〉 = z in (λ l2k′.k′@l3 1)@l2 (λ l3u.x@l5(λ l4 n.k@l6(u + n))), whose type is
� t : ¬l1(¬l5¬l4N×¬l6N). The set Dt of definitions consists of

applyl1(〈〉,〈x,k〉) = applyl2(〈〉,〈x,k〉), applyl2(〈〉,k′) = applyl3 (k′,1),

applyl3(〈x,k〉,u) = applyl5(x,〈k〉), applyl4(〈k〉,n) = applyl6 (k,u + n).

Compared with the Introduction, it appears that more data is being passed around in
these apply-equations. However, consider once again the application of t to the concrete
arguments from the Introduction. Then one gets the additional equations

applyl5
(〈〉,k) = applyl4(k,42), applyl6

(〈〉,n) = print int(n),

and the fully applied term defunctionalizes to applyl1(〈〉,〈〈〉,〈〉〉). Thus, all the variables
in the apply-equations only ever store the value 〈〉 or tuples thereof, and these arguments
may just as well be omitted.

Note that the defunctionalization procedure yields a set of equations, but it does not
specify an interface of entry and exit labels. When one applies defunctionalization to
closed source programs of base type, as is usually done in compilation, choosing an
interface is not important. For the entry labels one would typically just choose a single
entry point main, for example. For open terms or terms of higher type, however, one
needs to fix the interface that matches the type. In the above example of t, a suitable
choice of entry and exit labels would be l1l4 and l5l4 respectively. We shall explain how
to define an interface for terms in the image of the CPS translation in the next section.

Of course, the defunctionalization procedure described above is quite simple. In ac-
tual applications one would certainly want to apply optimisations, not least to remove
unnecessary functions arguments. An example of such an optimisation is lightweight
defunctionalization of Banerjee et al. [2]. We shall see that the Int construction captures
one such optimisation of the defunctionalization procedure.

6 The Linear Fragment

To explain the basic idea of how the interpretation in a model of interactive computation
(namely Int(T)) relates to CPS translation and defunctionalization, we first consider
the simplest non-trivial case. Consider the linear fragment of the source language and
instead of the natural number type N just a type o without any term constructors:

X ,Y ::= o | X � Y s, t ::= x | s t | λ x:X . t

The standard typing rules AX, �I and �E for this calculus are shown below.
First we describe directly what the interpretation of this source language in Int(T)

amounts to. A type X is modelled by an interface (X−,X+), which consists of two finite
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lists X− and X+ of target types. Closed terms of type X will be modelled by programs
of type P : X− → X+. The interfaces are defined by induction on the type: both o− and
o+ are the singleton list unit, (X �Y )− is Y−X+, i.e. the concatenation of Y− and X+,
and (X �Y )+ is Y +X−. For a context Γ = x1 : X1, . . . ,xn : Xn, we write Γ− and Γ + for
the concatenations X−

n . . .X−
1 and X+

n . . .X+
1 .

The interpretation of a term Γ � t : X in Int(T) is a morphism �Γ � t : X� : X−Γ + →
X+Γ− in T, i.e. an equivalence class of programs. This interpretation is defined by
induction on the derivation; as depicted below.

AX
Γ , x : X � x : X =⇒

X− X+

X+

Γ+
X−

Γ−

Γ , x : X � t : Y�I
Γ � λx:X . t : X � Y

=⇒
Y− Y +

X+

Γ+
X−

Γ−
t

Γ � s : X � Y Δ � t : X�E
Γ ,Δ � s t : Y

=⇒
Y− Y +

Γ+ Γ−
sΔ+ Δ−t

The aim is now to show that this interpretation in Int(T) is closely related to CPS
translation followed by defunctionalization.

Our flow-based defunctionalization depends on suitable labellings of terms and types.
We introduce notation for labellings of types of the form X . For any type X and any
x−,x+ ∈L ∗ with length(x−) = length(X−) and length(x+) = length(X+), we define a
type X [x−,x+] in the labelled λ -calculus as follows: o[q,a] is ¬q¬aunit and (X � Y )
[y−x+,y+x−] is ¬q(¬rX ′ ×Y ′) if X [x−,x+] is ¬rX ′ and Y [y−,y+] is ¬qY ′.

For example, (o � o)[qa′,aq′] denotes ¬q(¬q′¬a′unit×¬aunit).
If Γ is x1 : X1, . . . ,xn : Xn, then we write short Γ [x−n . . .x−1 ,x

+
n . . .x+

1 ] for the context
x1 : X1[x−1 ,x

+
1 ], . . . ,xn : Xn[x−n ,x

+
n ]. We say that a sequent Γ [γ−,γ+] � t : X [x−,x+] is

well-labelled if the labels in γ−,γ+,x−,x+ are pairwise distinct.
Although defined as an abbreviation for a labelled type, one may alternatively think

of X [x−,x+] as the type X together with a labelling of the ports of the interface (X−,X+).

Lemma 3. If Γ � t : X is derivable in the linear type system, then the sequent Γ �
t : X obtained by CPS transform can be annotated with labels such that the sequent
Γ [γ−,γ+] � t : X [x−,x+] is well-labelled and derivable, for some γ−,γ+,x−,x+ ∈L ∗.

The proof is a straightforward induction on derivations. We note that the case for vari-
ables depends on the η-expanded form of the CPS translation. With the expansion a
well-labelled x : N[q,a] � x : N[q′,a′] is derivable; without it this would only be possi-
ble if q = q′ and a = a′. The defunctionalization of x consists of definitions of applyq′

and applya, which just forward their arguments to applyq and applya′ respectively. We
believe that it is simpler to consider the case with these indirections first and study their
removal (which is non-compositional, due to renaming) in a second step.

We now define a function CpsDefun that combines CPS transformation and defunc-
tionalization. Given any judgement Γ � t : X derivable in the linear fragment of the



214 U. Schöpp

source language, let Γ [γ−,γ+] � t : X [x−,x+] be the judgement from the above lemma
for a suitable choice of labels. Let Dt be the set of equations determined by the defunc-
tionalization judgement t ⇓ t∗ ; Dt . The function CpsDefun maps the source judgement
Γ � t : X to the target program (x−γ+,Dt ,x+γ−). It is not hard to see the set Dt is such
that this indeed a target program.

We use a single function CpsDefun rather than a composition of two functions gen-
eral Cps and Defun, as we do not have a canonical choice of entry and exit labels for
defunctionalization in general. Thus, the composition Defun ◦Cps would only return
a set of equations and not yet target program. With a combined function, it suffices to
choose entry and exit labels for terms that are in the image of the CPS translation.

Define a further function Erase on target programs, which erases all function argu-
ments (and removes all equations defined by case distinction, which cannot appear in
Dt for this source language): Erase(α,E,β ) := (α,{ f () = g() | f (x) = g(e) ∈ E},β ).

The composed function Erase ◦CpsDefun takes a source program, first applies the
CPS translation and defunctionalization and then ‘optimises’ the result by erasing all
function arguments. The resulting program is in fact correct and it is what one obtains
from the interpretation in Int(T):

Proposition 1. Suppose Γ � t : X is derivable in the linear type system. Then the target
program Erase(CpsDefun(Γ � t : X)) has type X−Γ + → X+Γ− and is an element of
the equivalence class of programs obtained by Int interpretation of Γ � t : X.

7 Base Types

We now work towards extending the result to a more expressive source language, start-
ing with non-trivial base types. We replace the type o by the type of natural numbers N
and add terms for constant numbers, addition and case distinction.

X ,Y ::= N | X � Y s, t ::= n | s + t | if0 s then t1 else t2 | x | s t | λ x:X . t

The example from the Introduction illustrates that for this fragment of the source lan-
guage it is not possible to remove all arguments from the apply-functions, as we have
done above. At least certain natural numbers must be passed as arguments.

Again, we first consider the interpretation of the fragment in Int(T). To this end
we define N− = unit (a request to compute the number) and N+ = nat (the ac-
tual number as an answer). It is however not completely straightforward to extend the
Int interpretation described in the previous section. Consider for example the case of
an addition s + t for two closed terms � s : N and � t : N. Suppose we already have
programs (qs,Es,as) and (qt ,Et ,at) for s and t. For s + t it would be natural to use
the program (q,E,a) with equations applyq() = applyqs

(), applyas
(x) = applyqt

(x,〈〉),
applyat

(x,y) = applya(x + y), the equations from Es, and the equations from nat ·Et

(recall the notation nat ·− from Sec. 2). We use nat ·Et instead of Et in order to keep
the value x available until the end when we want to compute the sum. The difficulty is
to decide which values must, like x, must be preserved in which equations.

One solution to this issue was proposed by Dal Lago and the author in the form of
IntML [4]. We consider here a simple special case of this system. The basic idea is to
annotate the each function type X �Y with a subexponential A, which is a target type:



On Interaction, Continuations and Defunctionalization 215

X ,Y ::= N | A ·X � Y

The subexponential annotation may be explained such that a term s of type A ·X �Y is
a function that uses its argument within an environment that contains an additional value
of type A. The function s may be applied to any argument t of type X . In the interactive
interpretation of the application s t, whenever s sends a query to t it needs to preserve a
value of type A. It does so by sending the value along with the query, expecting it to be
returned unmodified along with a reply. For example, addition naturally gets the type
unit ·N� nat ·N� N, as it needs to remember the already queried value of the first
argument (having type nat) when it queries the second one.

In the type system, subexponential annotations are integrated by letting contexts con-
sist of variable declarations of the form x : A ·X . The typing rules are shown below.

AX
Γ , x : unit ·X � x : X

CONST
Γ � n : N

Γ , x : A ·X � t : Y�I
Γ � λx : X . t : A ·X �Y

Γ � t : A ·X � Y Δ � s : X�E
Γ , A ·Δ � t s : Y

Γ � s : N Δ � t : N
ADD

Γ , nat ·Δ � s + t : N
Γ � s : N Δ1 � t1 : X Δ2 � t2 : X

IF
Γ , Δ1, Δ2 � if0 s then t1 else t2 : X

In these rules, we write A ·Γ for the context obtained by replacing each x : B ·X with
x : (A×B) ·X . We note that rule IF enforces more linearity than usual. We have chosen
to treat this linear version here, as for the defunctionalization of the non-linear version
with Δ1 = Δ2, we would need to extend the labelled type system, and this case is already
covered when we allow contraction in the next section.

With subexponential annotations, it is straightforward to define the Int interpretation.
Define (A ·X � Y )− = Y−(A ·X+) and (A ·X � Y )+ = Y +(A ·X−). We write Γ− and
Γ + for An ·X−

n . . .A1 ·X−
1 and An ·X+

n . . .A1 ·X+
1 if Γ = x1 : A1 ·X1, . . . ,xn : An ·Xn.

The interpretation of rule AX changes from the linear case only by insertion of iso-
morphisms of the form A% unit×A. The interpretation of rule CONST is given by the
program (applyqγ+,{applyq() = applya(n)},applyaγ−). The interpretation of the other
rules is shown graphically in Fig. 7. In the cases for �E and ADD, the boxes labelled
with A and N+ respectively denote the program obtained by applying the operations
A · (−) and N+ · (−) respectively to the contents of the box. For ADD, CONST and IF

we do not show the contexts for brevity. In the case for IF, we write 0? for the program
given by applyas

(x) = case iszero?(x) of inl(y)⇒ applyq1
(y); inr(z)⇒ applyq2

(z).
Let us now consider how the above interpretation relates to the one obtained by CPS

translation and defunctionalization, where the subexponential annotations are ignored.
A CPS translation of n is given by λ qk.k@an : N[q,a], where N[q,a] = ¬q¬anat,

which defunctionalizes to applyq(〈〉,k) = applya(k,n). The Int interpretation yields the
definition applyq() = applya(n), which differs only in the removal of arguments.

For addition s + t a CPS translation is λ qk.s@qs(λ asx. t@qt (λ at y.k@a(x + y))). De-
functionalization leads to the following set of equations: Ds ∪Dt ∪ {applyq( f ,k) =
applyqs

(s∗,〈k〉),applyas
(〈k〉,x) = applyqt

(t∗,〈k,x〉),applyat
(〈k,x〉,y) = applya(k,

x + y)}. Comparing this to the Int interpretation, we can see that this set of equations
has the same shape, albeit with different arguments.
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Fig. 1. Int Interpretation of Rules with Subexponentials

Similarly, the source term if0 s then t1 else t2 is CPS translated to the labelled term
λ qk.s@qs(λ as x. if0 x then t1@q1 (λ a1y.k@ay) else t2@q2(λ a2y.k@ay)). The equations
obtained by defunctionalization have the same shape as those of the Int interpretation.

The observation that the programs obtained by Int interpretation and CPS trans-
lation followed by defunctionalization have the same shape can be made precise as
follows. We say that two programs have the same skeleton whenever they have the
same interface and the following holds: if one of the programs contains the definition
f (x) = g(e), then the other contains f (x) = g(e′) for some e′; and if one of the pro-
grams contains f (x) = case e of inl(x)⇒ g(e1); inr(y)⇒ h(e2), then the other contains
f (x) = case e′ of inl(x)⇒ g(e′1); inr(y)⇒ h(e′2) for some e′, e′1 and e′2.

We note that Lemma 3 continues to hold and that CpsDefun can be defined as above.

Proposition 2. For any Γ � t : X there exists a program It that is a representative of
the Int interpretation of the derivation of the sequent and that has the same skeleton as
CpsDefun(Γ � t : X).

The proposition establishes a simple connection between the general shape of the pro-
grams. Let us now compare the values that are being passed around in them. We show
that the values appearing in call traces of the program obtained by Int interpretation can
be seen as simplifications of the values appearing at the same time in the traces of the
program obtained by defunctionalization.

For any value v, we define a multiset of V (v) of the numbers it contains as fol-
lows: V (v) = {n} if v = n, V (v) = V (v1)∪V (v2) if v = 〈v1,v2〉 and V (v) = /0 oth-
erwise (values of recursive types or sum types cannot appear). We say that a value
v simplifies a value w if V (v) ⊆ V (w). For example, the value 〈2,〈3,3〉〉 simplifies
〈1,〈〈2,〈〉〉,〈3,〈2,3〉〉〉〉, but not 〈2,3〉. We say that a call trace f1(v1) . . . fn(vn) simpli-
fies the call trace g(w1) . . .gn(wn) if, for any i ∈ {1, . . . ,n}, fi = gi and vi simplifies wi.

With this terminology, we can express that the Int interpretation of any term simpli-
fies its CPS translation and defunctionalization in the sense that it differs only in that
unused function arguments are removed and function arguments are rearranged.
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Proposition 3. Let � t : N, let (q,Dt ,a) := CpsDefun(Γ � t : X) and let It be the pro-
gram from Prop. 2. Then, any call-trace of It beginning with applyq() simplifies the
call-trace of CpsDefun(Γ � t : X) of the same length that begins with applyq(〈〉,〈〉).

This proposition allows us to consider the Int interpretation as a simplification of the
program obtained by defunctionalization. This simplification seems quite similar to
other optimisations of defunctionalization, in particular lightweight defunctionaliza-
tion [2]. However, we do not know any variant of defunctionalization in the literature
that gives exactly the same result. One may consider the Int interpretation as a new ap-
proach to optimising the defunctionalization of programs in continuation passing style.

8 Simple Types and Recursion

In this section, we strengthen the source language, explain how the Int interpretation
can be extended to translate this language to the target language and relate this transla-
tion to CPS transform and defunctionalization. Since with increasing expressiveness of
the source language it becomes harder to keep track of the syntactic details of defunc-
tionalization, we investigate the relation less formally than in the previous section. We
argue that a type system with subexponential annotations, adapted from IntML, offers
a simple and conceptually clear way of managing the details.

First, we consider contraction in the source language. The CPS translation will re-
main unchanged, of course. The defunctionalization procedure described in Sec. 5,
however, is too simple to handle this case. The control-flow annotations used therein do
not suffice for the simply-typed case; they would need to be extended so that functions
and applications are annotated with sets of labels. For instance, s@{l1,...,ln}t would mean
that the label of s may not be uniquely determined, but that it is known to be among
l1, . . . , ln. Such an application is transformed by the defunctionalization into a case dis-
tinction on the function that actually appears for s during evaluation: (s@{l1,...,ln}t)

∗ =
case s∗ of l1((x)⇒ applyl1 (l1((x), t∗); . . . ; ln((y)⇒ applyln (ln((y), t∗). Details appear in [2].
Note that such a case distinction is only possible if labels are actually passed as values;
they cannot be omitted as in Sec. 5. To encode labels, one typically uses algebraic
data types whose constructors correspond to the function labels. To handle the full λ -
calculus, one must allow for recursive algebraic data types.

Let us now consider how the Int translation can be extended to the simply-typed λ -
calculus and how it relates to defunctionalization. To this end, we can extend the type
system from the previous section with a rule COPY for explicit copying. We also add a
rule STRUCT for weakening of subexponential annotations, which is needed for Prop. 4.

Γ � s : X Δ , x : A ·X , y : B ·X � t : Z
COPY

Δ , (A + B) ·Γ � copy s as x,y in t : Z

Γ , x : A ·X � t : Y
STRUCT A)BΓ , x : B ·X � t : Y

The side condition A�B means that any value of type A can be encoded into one of
type B. Formally, A � B if and only if there are target expressions x : A � s : B and
y : B � r : A, such that r[s[v/x]/y] = v holds for any value v of type A.

Recall the explanation of subexponentials as making explicit the value environment
in which a variable is being used. The sequent in the premise of COPY tells us that x1

and x2 are used in environments with an additional value of type A and B respectively.
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The subexponential A+B in the conclusion tell us that x may be used in two ways: first
in an environment that contains an additional variable of type A and second in one with
an additional variable of type B. The coproduct identifies the two copies of x.

In the Int translation, copy is implemented by case distinction. Depending on whether
the subexponential value is inl(a) or inr(b), the message is sent to x1 or x2 respectively.
This case distinction mirrors the case distinction used in defunctionalization.

Let us outline the relation concretely by modifying the example from the Introduc-
tion. Consider the term λ x : N.x + x. Its CPS transform is (with slight simplification)
the term λ l1〈x,k〉.x@l4 (λ l2 m.x@l4 (λ l3n.k@l5 (m + n))). Applying this term to the ar-
gument 〈λ l4k.k@{l2,l3}42,λ l5n.print int(n)〉 gives us an example of an application
that needs to be annotated with a set of labels.

If we apply the defunctionalization procedure of Banerjee et al. [2] and then man-
ually remove unneeded arguments, then we get the following equations, in which we
consider labels as constructors of an algebraic data type.

applyl1() = applyl4(l2()) applyl4 (k) = case k of l2()⇒ applyl2(42)

applyl2(m) = applyl4(l3(m)) | l3(m)⇒ applyl3 (m,42)

applyl3(m,n) = applyl5(m + n) applyl5(n) = print int(n)

We compare these equations to what we obtain by applying the Int interpretation to the
term λ x.copy x as x1,x2 in x1 + x2 of type (unit+nat) ·N� N:

add

N

nat×N
−nat×N

+

N
−

N
−

(unit+nat)×N
−

N
+

l1 l5

l4
l2
l3

(unit+nat)×N
+

%%

The interpretation of COPY inserts the boxes labelled %, which denote the canonical
isomorphism of their type.

To apply the program given by the diagram to the actual argument 42, one connects
the output of type (unit+nat)×N− to the input of type (unit+nat)×N+ such that
when the value 〈k′,〈〉〉 arrives at the output port, then the value 〈k′,42〉 is fed back to the
input port. This is what the equation for applyl4 in the defunctionalized program does.
The two possible cases of k, namely inl(〈〉) or inr(m), correspond to l2() and l3(m) in the
equation. Thus, in the interactive implementation of λ x : N.x + x, duplication is treated
just as in defunctionalization above. The points corresponding to the applyli-equations
are indicated in the diagram.

We note that with rules COPY and STRUCT the type system is as expressive as the
simply-typed λ -calculus, if the target language has recursive types. This mirrors the use
of recursive types in defunctionalization. Write |t| for the term obtained by replacing
in it any subterm of the form copy s1 as x,y in s2 with s2[s1/x,s1/y]. Write |X | and
|Γ | for the type and context of the simply-typed λ -calculus obtained by replacing any
A ·Y � Z with Y → Z and removing subexponentials in the context.

Proposition 4. If Γ � t : X is derivable in λ→,N, then there exist Δ , s and Y with
Γ = |Δ |, t = |s| and X = |Y |, such that Δ � s : Y is derivable.
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The proof goes by using the simple type inference procedure from [5] and noting that
the constraints generated therein can be solved easily in the presence of recursive types.
Thus, there exists a simple type inference algorithm that finds the derivation of Δ � s : Y .

Finally, we mention that recursion can be accounted for by a fixed point combinator
of type fixA,X : (A list) · (A ·X � X) � X , where A list abbreviates μα.unit+ A×α .

9 Conclusion

We have observed that the non-standard compilation methods based on computation
by interaction are closely related to CPS translation and defunctionalization. The in-
terpretation in an interactive model may be regarded as a simple direct description of
the combination of CPS translation, defunctionalization and a final optimisation of ar-
guments. Subexponential types, in this form originally introduced in IntML, provide a
logical account for the issues of managing value environments inherent to defunctional-
ization. The use of recursive algebraic data types in defunctionalization is explained by
type theoretic means in rule COPY, Prop. 4 and the type of the fixed point combinator.

Subexponentials refine the exponentials in AJM games [1], where !X is implemented
using N ·X . If we had used full exponentials in the Int interpretation above, then we
would have obtained a compilation that encodes function values as numbers in N, which
is akin to storing closures on the heap. Subexponentials give us more control to avoid
such encodings where unnecessary.

The subexponential type system bears resemblance to the linear logic with subexpo-
nentials of [16], which is where the terminology of subexponentials was first used. The
type system is also quite similar to the type system for Syntactic Control of Concurrency
(SCC) in [9]. A main difference appears to be that while SCC controls the number of
program threads, subexponentials account for both the threads and their local data.

The observation that there is a connection between game models and continuations is
not new. It appears for example in Levy’s work on a jump-with-argument calculus [14].
Connections of game models to compilation have been made in [15], for example. It is
also well-known that continuation passing is related to message passing, see e.g. [22].
However, we are not aware of work that makes explicit a connection to defunctional-
ization. We believe that the connection between game models and machine languages
deserves to be better known and studied further. The call traces in this paper, for exam-
ple, should have the same status as plays in a game semantic model.

In further work, we should like to understand if there are connections to Danvy’s
work on defunctionalized interpreters [7], or more generally to work on abstract ma-
chines, e.g. [21,6]. A relation is not obvious: Danvy considers the defunctionalization
of particular implementations of interpreters, while here we show that the whole com-
pilation itself may be described extensionally by the Int construction.

In another direction, an interactive view of CPS transform and defunctionalization
may also give insight into issues that are often seen as problematic in the context of
defunctionalization, such as compositional compilation and polymorphism: the inter-
pretation in Int(T) is compositional and polymorphism can also be accounted for [20].
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Abstract. In 1970 Friedman proved completeness of beta eta conversion
in the simply-typed lambda calculus for the set-theoretical model. Re-
cently Krishnaswami and Benton have captured the essence of Hudak’s
reactive programs in an extension of simply typed lambda calculus with
causal streams and a temporal modality and provided this typed lambda
calculus for reactive programs with a sound ultrametric semantics.

We show that beta eta conversion in the typed lambda calculus of
reactive programs is complete for the ultrametric model.

1 Introduction

Krishnaswami and Benton have recently introduced a typed lambda calculus for
reactive programs [1, 2]. Their basic idea was to have “a lambda calculus with
types not only for data, but also indexed with time.” This led them to extend
simply typed lambda calculus with causal streams and a temporal modality
and secondly, to define an ultrametric semantics for reactive programs. In the
ultrametric model, types are interpreted as ultrametric spaces and terms as non-
expansive maps [1, 3, 4]. They demonstrated the soundness of this extension for
the ultrametric semantics.

This raises the natural question of completeness. In this paper we show that
two terms typable in the calculus of reactive programs are βη-convertible if and
only if they have the same interpretation in the model of ultrametric spaces.

Completeness has been well studied for simply typed lambda calculus. It has
been proved for the set-theoretical model [5], the model of CPOs and the model
of modest sets [6, 7]. Towards completeness for the ultrametric semantics, we
introduce the notions of step-indexed applicative structure and Henkin model for
reactive programs. We show that the term model (consisting of reactive programs
modulo conversion) and the ultrametric model can be seen as step-indexed ap-
plicative structures and also as Henkin models for reactive programs. Since for
the ultrametric model, a stream is a function on natural numbers, we need a
strong notion of extensionality that requires that two streams are equal if all
their components are equal. Strong extensionality of the term model is not so
easy to prove. It does not follow immediately from the η-rule but from the fact
that our calculus is confluent and strongly normalising.

Actually, we show two completeness results. The first one, called completeness
(of βη-conversion) for Henkin models, says that there exists a Henkin model for
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reactive programs satisfying exactly the theory of βη-conversion. The second one,
mentioned before, is about completeness (of βη-conversion) for the ultrametric
model. The latter is proved by constructing a partial surjective step-indexed
logical relation between the ultrametric model and the term model.

One interesting aspect of our paper is that we consider (ultra) metric spaces in
a proof of completeness. We show that on the term model of the typed lambda
calculus for reactive programs an ultrametric d can be defined for which the
equivalence classes of terms of type σ → τ are non-expansive, i.e. for M of type
σ → τ we have that d([MP ], [MQ]) ≤ d([P ], [Q]).

This paper is organised as follows. Section 2 defines the typed lambda cal-
culus for reactive programs. Section 3 introduces the notions of (step-indexed)
applicative structure, Henkin model and (step-indexed) logical relation for reac-
tive programs. Section 4 proves strong normalisation and confluence. Section 5
defines the term model and proves completeness for Henkin models. Section 6
shows that the model of ultrametric spaces is a Henkin model. Section 7 defines
an ultrametric on the term model and shows that this metric is well-behaved.
Section 8 shows completeness for the ultrametric model.

2 Typed Lambda Calculus for Reactive Programs

We recall the typed lambda calculus λRP for reactive programs as defined in [1].
It comes with a syntax, rewriting rules and typing rules.

Definition 1 (Syntax for reactive programs). We define the set P of reac-
tive programs (or terms) and the set T of types as follows.

P 'M ::= x | hd(M) | tl(M) | cons(M,M) | await(M) | ◦(M) | λx:σ.M |MM
T ' σ ::= b | (σ → σ) | •σ | S(σ)

where the parameter x ranges over a set V of variables, b over a set B of basic
types. A type declaration is a statement of the form x :i τ . A context is a finite
set of type declarations with only distinct variables as subjects.

Definition 2 (Reduction for reactive programs). The β-rule is defined by:

(λx:σ.N )M → N [x := M ] (β) await(◦(M)) →M (β)
hd(cons(M,N)) →M (β) tl(cons(M,N)) → N (β)

The η-rule is defined by:

λx:σ.Mx →M, if x �∈ fv(M) (η) ◦(await(M)) →M (η)
cons(hd(M), tl(M)) →M (η)

Let ρ ∈ {β, η, βη}. The relation →ρ is defined as the smallest relation on P that
is closed under under contexts and the ρ-rule(s). The reflexive and transitive
closure of →ρ is denoted by →→ρ. The reflexive, symmetric and transitive closure
of →ρ is denoted by =ρ, called ρ-conversion. The ρ-normal form of a term M is
N , if M →→ρ N and N is in ρ-normal form. If the ρ-normal form of M exists,
we denote it by nfρ(M).
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Definition 3 (Typing rules for reactive programs). A type declaration is
a statement of the form x :i τ . A context is a finite set of type declarations with
only distinct variables as subjects. A type declaration M :i τ is derivable from the
context Γ , if the typing judgement Γ �M :i σ can be derived from the following
typing rules:

x:iσ ∈ Γ j ≥ i
(

Γ � x :j σ
var)

Γ �M :i S(σ)
(

Γ � hd(M) :i σ
head)

Γ �M :i S(σ)
(

Γ � tl(M) :i+1 S(σ)
tail)

Γ �M :i σ Γ � N :i+1 S(σ)
(

Γ � cons(M,N) :i S(σ)
cons)

Γ, x:iσ � N :i τ
(→ I)

Γ � λx:σ.N :i (σ → τ)

Γ �M :i+1 σ
(•I)

Γ � ◦(M) :i • σ

Γ � N :i (σ → τ) Γ �M :i σ
(→ E)

Γ � NM :i τ

Γ �M :i • σ
(•E)

Γ � await(M) :i+1 σ

If a judgement Γ �M :i σ is derivable from these rules, we call M a typable term.

The intuition is that M :i σ expresses that at time stamp i we know about the
existence of a term M with type σ. If time stamp 0 represents ‘now’, then time
stamp i represents ‘i steps from now into the future.’ To observe the tail N of
a stream cons(M,N) of which we can see the head M now, we must wait one
time step. We cannot force the future into the present.

Lemma 1 (Time adjustment [1]). If Γ,Δ �M :i σ then Γ,Δ+n �M :i+n σ,
where Δ+n is obtained from Δ by raising the indexing time by n in all type decla-
rations in Δ. Moreover, the derivations of Γ,Δ �M :i σ and Γ,Δ+n �M :i+n σ
have the same size.

The following lemma is proved by induction on the derivation.

Lemma 2 (Subject reduction for reactive programs). If Γ �M :i σ and
M →→βη N then Γ � N :i σ.

3 Applicative Structures, Henkin Models and Logical
Relations for Reactive Programs

In this section, we extend the notions of applicative structure, Henkin model
and logical relations as defined for the simply typed lambda calculus, e.g., [7],
to reactive programs. The time indices i ∈ N will play a similarly crucial role as
they did in the typing rules for reactive programs.

Definition 4 (Applicative structures for reactive programs). A (step-
indexed) applicative structure for reactive programs is a tuple

A = 〈{Aσ
i }, {δσij}, {hd σ

i , tl σi , awaitσi , appστi }〉
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of families of sets and functions indexed by types from T such that for all σ, τ ∈ T
and all i, j ∈ N with i ≤ j we have:

1. Aσ
i is a set,

2. δσij ∈ Aσ
i → Aσ

j (expressing “delay”),
3. δσii = id : Aσ

i → Aσ
i and δσjk ◦ δσij = δσik,

4. hd σ
i ∈ A

S(σ)
i → Aσ

i , tl σi ∈ A
S(σ)
i → AS(σ)

i+1 ,
awaitσi ∈ A•σ

i → Aσ
i+1, appστi ∈ Aσ→τ

i → Aσ
i → Aτ

i .

5. δσij(hd σ
i (a)) = hd σ

j (δσij(a)) for all a ∈ AS(σ)
i ,

δσ(i+1)j(tl σi (a)) = tl σj (δσij(a)) for all a ∈ AS(σ)
i and i + 1 ≤ j,

δσ(i+1)j(awaitσi (a)) = awaitσj (δσij(a)) for all a ∈ A•σ
i and i + 1 ≤ j,

δτij(appστi (f, b)) = appστj ((δσ→τ
ij f), (δσijb)) for all f ∈ Aσ→τ

i , b ∈ Aσ
i .

To define extensional applicative structures, we have to define when the element

of all three kind of types Aσ→τ
i , A•σ

i and AS(σ)
i are extensional. For the first

two this is straightforward. However for the latter we consider a strong version
of extensionality that views streams as functions from natural numbers: two
streams are equal if all their components are equal.

Definition 5 (Extensional applicative structure for reactive programs).
We say that an applicative structure for reactive programs is extensional if it sat-
isfies the following conditions:

1. Extensionality on σ → τ . For all j ≥ i and all a, b ∈ Aσ→τ
j ,

if appστj (δσ→τ
ij (a), d) = appστj (δσ→τ

ij (b), d) for all d ∈ Aσ
j , then a = b.

2. Extensionality on •σ. For all a, b ∈ A•σ
i , if awaitσi (a) = awaitσi (b) then

a = b.
3. Extensionality on S(σ). For all a, b ∈ AS(σ)

i , if for all n ∈ N we have that
hd σ

i+n(tl σi+n(. . . (tl σi (a)))) = hd σ
i+n(tl σi+n(. . . (tl σi (b)))) then a = b.

Extensionality for the arrow type requires that the applications are equal for all
j ≥ i. This is clearly stronger than having the same condition for just i. However,
for the other two cases, the formulations with j ≥ i and just i are equivalent.

It is easy to show that extensionality implies the next weaker notion.

Definition 6 (Weak extensional applicative structure for reactive pro-
grams). We say that an applicative structure for reactive programs is weakly
extensional if extensionality on S(σ) is replaced by the weaker condition:

3’. For all MN ∈ AS(σ)
i , if hd σ

i (M) = hd σ
i (N) and tl σi (M) = tl σi (N) then

M = N .

Let A be an applicative structure for reactive programs and Γ be a context. An
environment ρ is a function from the set of variables V to the union of all Aσ

i .
For a ∈ Aσ

i , the update environment ρ[x ← a] is the environment mapping x
to a and all other variables y �= x to ρ(y). We write ρ |= Γ if ρ(x) ∈ Aσ

i holds
for all x :i σ ∈ Γ . A meaning function for an applicative structure A is a (total)
function that maps any derivation Γ � M :i σ and any environment ρ, to an
element [[Γ �M :i σ]]Aρ in Aσ

i .
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Definition 7 (Henkin models for reactive programs). Let ρ |= Γ . An
extensional applicative structureA for reactive programs is called a Henkin model
if there exists a meaning function satisfying the following conditions (all together
called the environment model condition):

– δσij([[Γ �M :i σ]]Aρ ) = [[Γ �M :j σ]]Aρ
– [[Γ � x :j σ]]Aρ = δσij(ρ(x)) for all x :i σ ∈ Γ

– [[Γ �MN :i τ ]]Aρ = appστi ([[Γ �M :i σ → τ ]]Aρ , [[Γ � N :i σ]]Aρ )

– [[Γ � λx:σ.M :i σ → τ ]]Aρ =

⎧⎪⎨
⎪⎩

the unique f ∈ Aσ→τ
i such that

for all j ≥ i, d ∈ Aσ
j

appστj (δσ→τ
ij (f), d) = [[Γ, x :j σ �M :j τ ]]ρ[x:=d]

– [[Γ � await(M) :i+1 σ]]Aρ = awaitσi ([[Γ �M :i σ]]Aρ )

– [[Γ � ◦(M) :i • σ]]Aρ =

{
the unique a ∈ A•σ

i such that

awaitσi (a) = [[Γ �M :i+1 σ]]Aρ
– [[Γ � hd(M) :i σ]]Aρ = hd σ

i ([[Γ �M :i S(σ)]]Aρ )

– [[Γ � tl(M) :i+1 S(σ)]]Aρ = tl σi ([[Γ �M :i S(σ)]]Aρ )

– [[Γ � cons(M,N) :i S(σ)]]Aρ =

⎧⎪⎨
⎪⎩

the unique s ∈ AS(σ)
i such that

hd σ
i (s) = [[Γ �M :i σ]]Aρ and

tl σi (s) = [[Γ � N :i+1 S(σ)]]Aρ

We will use the notation
A |= Γ �M =N :iσ

if Γ �M :iσ, Γ � N :iσ and [[Γ �M : iσ]]Aρ = [[Γ � N :iσ]]Aρ for all ρ with ρ |= Γ .

Lemma 3 (Soundness of Henkin models for reactive programs)

1. If Γ �M :i σ, then [[Γ �M :i σ]]Aρ ∈ Aσ
i for all ρ |= Γ .

2. If Γ �M :i σ and Γ � N :i σ then M =βη N implies A |= Γ �M =N :iσ.

Both items of the lemma can be proved by induction on the size of the derivation.
It is enough to consider one step →βη in the proof of the second item.

Definition 8 (Logical relations for reactive programs). A (step-indexed)
logical relation for reactive programs R between two applicative structures for
reactive programs A and B is a family {Rσ

i } of indexed relations such that

– Rσ
i ⊆ Aσ

i × Bσ
i for each σ and i,

– if Rσ
i (a, b) then Rσ

j (δσij(a), δσij(b)) for all j ≥ i,
– R•σ

i (a, b) iff Rσ
i+1(awaitσi (a), awaitσi (b)),

– RS(σ)
i (a, b) iff Rσ

i+n(hd σ
i+n(tl σi+n . . . tl σi (a)), hd σ

i+n(tl σi+n . . . tl σi (b))) for all n,
– Rσ→τ

i (f, g) iff ∀j ≥ i.∀a ∈ Aσ
j.∀b ∈ Bσ

j.Rσ
j (a, b) ⇒

Rτ
j (appστj (δσ→τ

ij f) a, appστj (δσ→τ
ij g) b).

A logical relation R between A and B is called a logical partial (surjective)
function from A to B if each Rσ

i is a partial (surjective) function.
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The definition of binary logical relations generalises easily to any arity. In this
paper we will define a logical relation of arity one (a logical predicate) and one
of arity two.

Lemma 4 (Basic lemma on logical relations for reactive programs). Let
R be a logical relation for reactive programs between two Henkin models A and
B. Let ρA and ρB be environments for A and B respectively, such that ρA |= Γ ,
ρB |= Γ and Rτ

j (ρA(x), ρB(x)) for all x :j τ in Γ .

If Γ �M :i σ then Rσ
i ([[Γ �M :i σ]]AρA , [[Γ �M :i σ]]BρB ).

The above lemma is proved by induction on the size of the derivation.
The theory induced by a Henkin model A, denoted by Th(A) is the set

{(M,N) | A |= Γ�M = N :iσ}.

Lemma 5 (Theory inclusion). Let A,B be Henkin models for reactive pro-
grams. If there is a logical partial function from A to B, then Th(A) ⊆ Th(B).

This lemma is proved similarly as [7, Lemma 8.2.17].

4 Confluence and Strong Normalisation

In this section, we prove confluence and strong normalisation of βη for the typed
lambda calculus of reactive programs.

Failure of confluence of βη on untypable terms has several causes. One cause is
the presence of explicit types in the abstractions. Nederpelt’s term λx:σ.(λy:τ.y)x
provides a counterexample [8]. Another cause is the non-left linear η-rule for
streams. This is shown through a variation of Klop’s counterexample on surjec-
tive pairs [9, 10]. Define

D = λx:σ.λy:τ.(cons(hd(λz.zx), tl(λz.zy))λz.u).

Then, we have that DMM →→βη u for any M . Note that the η-step creates a
β-redex that cannot be performed earlier (this shows that η cannot be postponed
over β on untypable terms). Next, we define E = Y (λf :σ′.λx:τ ′.D x (f x)) and
F = Y (λf :σ′′.E f). We have that E →→β λx:τ ′.D x (E x) and F →→β E F. So,
F→→βη u and F→→βη E u. But u and E u do not have a common reduct.

We will show that the typable terms are βη-strongly normalising using a
logical predicate similar to the ones used in strong normalisation proofs of the
simply typed lambda calculus (e.g., see Section 8.3.2 of [7]). For this proof, we
use an applicative structure T constructed from typable terms.

Notation 1. From now on, we assume the existence of a family {Vσ
i } of pair-

wise disjoint, infinite sets of pairwise distinct variables. We define Γ∞ to be the
infinite context consisting of all type declarations of the form x :i σ with x ∈ Vσ

i

for some type σ and index i.
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Definition 9 (Term applicative structure). For each type σ and index i, let
T σ
i be the set {M | Γ �M :i σ, for some σ and finite Γ ⊂ Γ∞} of all terms that

can be typed with σ at “stage” i with some finite subcontext of Γ∞. We define
the term applicative structure as the applicative structure

T = 〈{T σ
i }, {δσij}, {hd σ

i , tl σi , awaitσi , appστi }〉

where appστi (M,N) = MN , hd σ
i (M) = hd(M), awaitσi (M) = await(M) and

tl σi (M) = tl(M). We take set inclusion for δσij when i ≤ j. This is well-defined by

the Time Adjustment Lemma. As meaning function, we take [[Γ � M :i σ]]Tρ =
ρ(M) where ρ(M) is the result of performing the substitution ρ to M .

Note that [[Γ � M :i σ]]Tρ ∈ T σ
i . This meaning function does not satisfy the

environment model condition.

Definition 10 (Logical predicate of strongly normalizing terms). Let
SN be the set of βη-strongly normalising terms. We define the family of
predicates Pσ

i ⊆ T σ
i by induction on σ:

Pb
i = {M ∈ T b

i |M ∈ SN}
Pσ→τ
i = {M ∈ T σ→τ

i | ∀j ≥ i, N ∈ Pσ
j ,MN ∈ Pτ

j }
P•σ
i = {M ∈ T •σ

i | await(M) ∈ Pσ
i+1}

PS(σ)
i = {M ∈ T S(σ)

i | ∀n ∈ N, hd(tln(M)) ∈ Pσ
i+n}

where tln(M) is the term tl(tl(. . . (tl(M))) consisting of n applications of tl.

It is easy to see that P is a step-indexed logical relation for reactive programs
of arity one. Note that Pσ

i ⊆ Pσ
j if i ≤ j. We define the elimination contexts E [ ]

with one hole with the grammar E [ ] := [ ] | E [ ]M | hd(tln(E [ ])) | await(E [ ]).
We write E [ ] ∈ SN if all terms used in the construction of E [ ] are βη-strongly
normalising.

Lemma 6. 1. Pσ
i ⊆ SN . 2. If E [ ] ∈ SN and E [x] ∈ T σ

i then E [x] ∈ Pσ
i .

The two statements are proved simultaneously by induction on the type σ. For
the base case σ = b, it is easy to see that E [x] ∈ SN because E [ ] ∈ SN . The
cases in the next lemma all follow by induction on σ.

Lemma 7 (Closure under β-expansion inside context E)

– If E [(λx.M)N ] ∈ T σ
i and E [M [x := N ]] ∈ Pσ

i then E [(λx.M)N ] ∈ Pσ
i .

– If E [await(M)] ∈ T •σ
i and E [M ] ∈ Pσ

i then E [await(M)] ∈ P•σ
i .

– If E [hd(cons(M,N))] ∈ T σ
i and E [M ] ∈ Pσ

i then E [hd(cons(M,N))] ∈ Pσ
i .

– If E [tl(cons(M,N))] ∈ T σ
i and E [N ] ∈ Pσ

i then E [tl(cons(M,N))] ∈ Pσ
i .

Lemma 8 (Soundness for logical predicate P ). Let Γ �M :i σ and ρ(x) ∈
Pσ
i for all x :i σ ∈ Γ . Then, [[Γ �M :i σ]]Tρ ∈ Pσ

i .

Proof. By induction on the derivation using Lemma 7. � 
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Remark 1 (Alternative proof of Lemma 8). It is possible to give a general ver-
sion of the basic lemma for logical relations instead of Lemma 8. For that we
would have to introduce more notational machinery like the notions of acceptable
meaning function and admissible relation, as on pages 540-541 in [7].

Theorem 1 (Strong βη-Normalisation on typable terms). If Γ �M :i σ
then M is βη-strongly normalising.

Proof. Suppose Γ � M :i σ. As environment ρ, we take identity. Now ρ |= Γ ,
since ρ(x) = x ∈ Pτ

i for all x :i τ ∈ Γ by the second item of Lemma 6. From
Lemma 8 we obtain [[Γ �M :i σ]]Tρ = M ∈ Pσ

i . Using the first item of Lemma 6
we find Pσ

i ⊆ SN . Hence M is βη-strongly normalising. � 

Theorem 2 (Confluence of βη on typable terms). The βη-reduction is
confluent on typable terms.

Proof. We apply Newman’s Lemma [11, Theorem 1.2.1]. Since, by Theorem 1,
βη is strongly normalising, it is sufficient to verify that βη-reduction is locally
confluent. This is straightforward. � 

5 Term Model

In this section, we construct the term model T /=βη from the term applicative
structure T by quotienting over βη conversion. We prove that T /=βη is ex-
tensional. This gives us our first completeness result, i.e. there exists a Henkin
model for reactive programs satisfying exactly the theory of βη-conversion.

We write [M ] to denote the set of terms that are βη convertible to M .

Definition 11 (Term model). For each type σ and index i, let (T /=βη)σi =
{[M ] |M ∈ T σ

i }. We define the applicative structure T /=βη as

〈{(T /=βη)σi }, {δσij}, {hd σ
i , tl σi , awaitσi , appστi }〉

with appστi ([M ], [N ]) = [MN ], hd σ
i ([M ]) = [hd(M)], awaitσi ([M ]) = [await(M)]

and tl σi ([M ]) = [tl(M)]. We take set inclusion for δσij when i ≤ j, and define as
meaning function [[Γ �M :i σ]]ρ = [M [x1:=N1, . . . , xn:=Nn]] where ρ(xi) = [Ni]
for all 1 ≤ i ≤ n and all xi occur in Γ .

We write size(M), size(σ) and size(Γ ) for the number of symbols of M , σ and
all types in Γ , respectively.

Lemma 9 (Shape of β-normal forms). Let M be a typable β-normal form.
Then, M is of the form λx1:σ1 . . . xn:σn.N where N satisfies one of the clauses:

1. N is of the form cons(P,Q) where P and Q are in β-normal form.

2. N is of the form ◦P where P is in β-normal form.
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3. N belongs to the grammar:

X ' X := x | XP | hd(X) | tl(X) | await(X)

where P is in β-normal form and x ∈ V. Instead of a variable X ranging over
X we may occasionally write X [P1, . . . , Pn] to list explicitly all arguments P
used in the construction of X. For such X we have that if Γ � X :j τ then
size(τ) ≤ size(Γ ) and size(Pi) < size(Γ ) for all 1 ≤ i ≤ n.

The previous lemma can be proved by induction on the derivation.
Note that weak extensionality of the term model is a direct consequence of the

η-rule. To prove extensionality we need more, namely that λRP is confluent and
strongly normalising. The assumption made for Γ∞ in Notation 1 is important
in the proof of extensionality on σ → τ , as it allows us to pick an x ∈ T σ

i .

Lemma 10 (Extensionality of term model). The applicative structure for
the term model is extensional.

Proof. We only prove extensionality on S(σ) and leave the other cases to the

reader. Let M,N ∈ T S(σ)
i be in βη-normal form. We now analyse the shape of

these βη-normal forms. Suppose that hd(tln(M)) =βη hd(tln(N)) for all n ∈ N.
We prove that M =η N by induction on the number of cons that appear in M
and N . We distinguish cases depending on the shape of M and N by Lemma 9.

1. Case M,N ∈ X. Then hd(M) and hd(N) are in βη-normal form. By Conflu-
ence of βη (Theorem 2) we find hd(M) = hd(N). Hence M = N .

2. Case M = cons(P,Q) and N = cons(P ′, Q′). We have P =βη hd(M) =βη

hd(N) =βη P ′. Since P and P ′ are in βη-normal form, we have P = P ′ by
confluence of βη. We also have hd(tln(Q)) =βη hd(tln(Q′)) for all n ∈ N.
Since Q and Q′ have fewer number of cons than M and N , Q =η Q′ by
induction hypothesis.

3. Case M = cons(P,Q) and N ∈ X. Then P , hd(N) and tl(N) are all in
βη-normal form. We get P =βη hd(M) =βη hd(N). By confluence of βη
we conclude P = hd(N). We also have hd(tln(Q)) =βη hd(tln(tl(N))) for
all n ∈ N. Applying the induction hypothesis to Q and tl(N) we get
Q =η tl(N). � 

Theorem 3 (Completeness for Henkin models of reactive programs).
There exists a Henkin model for reactive programs satisfying exactly the theory
of βη-conversion.

Proof. It is routine to show that the meaning function of T /=βη satisfies the
environment condition. The term model trivially satisfies the theory of βη-
conversion, i.e., M =βη N iff T /=βη|= Γ � M = N ;iσ whenever Γ � M,N :iσ.

� 
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6 Ultrametric Model for Reactive Programs

In this section, we present the ultrametric model of [1] as a Henkin Model for
reactive programs.

A complete 1-bounded ultrametric space is a tuple (U, dU ), where U is a set
and the distance function dU : U × U → [0, 1] satisfies: 1. dU (u, v) = 0 iff u = v,
2. dU (u, v) = dU (v, u), 3. dU (u, z) ≤ max(dU (u, v), dU (v, z)), 4. every Cauchy
sequence in U has a limit in X . A function f : U → V between ultrametric
spaces is non-expansive if dV (f(u1), f(u2)) ≤ dU (u1, u2). It is well-known that
the complete 1-bounded ultrametric spaces and nonexpansive functions form a
cartesian-closed category. The shrink functor 1

2 maps (U, dU ) to (U, 12dU ) and a
non-expansive function f ∈ U → V to the non-expansive function 1

2 (f) ∈ 1
2U →

1
2V where 1

2 (f)(u) = f(u).

Definition 12 (Ultrametric applicative structure). An ultrametric ap-
plicative structure is an applicative structure

U = 〈{Uσ
i }, {δσij}, {hd σ

i , tl σi , awaitσi , appστi }〉

1. Uσ
i = 1

2

iUσ
0 where Uσ

0 is defined by induction on σ:
(a) Ub

0 is some ultrametric space (U, dU ).
(b) Uσ→τ

0 is the set of nonexpansive maps from Uσ
0 to Uτ

0 , equipped with the
supremum metric: dUσ

0 →Uτ
0

(f, g) = sup{dUτ
0

(f(x), g(x)) | x ∈ Uσ
0 }.

(c) U•σ
0 = 1

2Uσ
0 .

(d) US(σ)
0 is the set of total functions from N to Uσ

0 , equipped with the stream
metric: dUS(σ)

0
(f, g) = sup{ 1

2

n
dUσ

0
(f(n), g(n)) | n ∈ N}.

2. δσij ∈ Uσ
i → 1

2

j−iUσ
j is defined by δσij(u) = u.

3. appστi (f, a) = f(a), awaitσi (a) = a, hd σ
i (f) = f(0) and tl σi (f)(n) = f(n + 1)

for all n ≥ 0.

It is easy to see that an ultrametric applicative structure is extensional. We
define consσi (a, f) = g where g(0) = a and g(n + 1) = f(n) for n ≥ 0.

Lemma 11 (Ultrametric model). Let ρ |= Γ . The ultrametric applicative
structure together with the meaning function defined as

– [[Γ � x :j σ]]ρ = δσij(ρ(x)) if x:iσ ∈ Γ ,
– [[Γ �MN :i τ ]]ρ = appστi ([[Γ �M :i σ → τ ]]ρ, [[Γ � N :i τ ]]ρ),
– [[Γ � λx:σ.M :i σ → τ ]]ρ = {(a, [[Γ, x :i σ �M :i τ ]]ρ[x:=a]) | a ∈ Uσ

i },
– [[Γ � await(M) :i+1 σ]]ρ = [[Γ �M :i • σ]]ρ,
– [[Γ � ◦(M) :i • σ]]ρ = [[Γ �M :i+1 σ]]ρ,
– [[Γ � hd(M) :i S(σ)]]ρ = hd σ

i ([[Γ �M :i S(σ)]]ρ),
– [[Γ � tl(M) :i+1 S(σ)]]ρ = tl σi ([[Γ �M :i S(σ)]]ρ),
– [[Γ � cons(M,N) :i S(σ)]]ρ = consσi ([[Γ �M :i σ]]ρ, [[Γ � N :i+1 σ]]ρ),

is a Henkin model for reactive programs called the ultrametric model.
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7 Metric on the Term Model

In this section, we define an ultrametric d on the term model for which the
equivalence classes of terms of type σ → τ are non-expansive, i.e. for M of type
σ → τ we have that d([MP ], [MQ]) ≤ d([P ], [Q]).

We recall the notions of depth, truncation and metric on terms of [12]. The
depth of N in argument positions in cons(M,N) and ◦(N) is counted one deeper
than the depth of the terms cons(M,N) and ◦(N) themselves. To define trun-
cation, we extend the syntax with a constant ⊥.

Definition 13 (Truncation). The truncation of M at depth n, denoted by Mn,
is defined by induction as follows.

M0 = ⊥ xn+1 = x
(λx.M)n+1 = λx.Mn+1 (M N)n+1 = (Mn+1 Nn+1)
(◦(M))n+1 = ◦(Mn) (await(M))n+1 = await(Mn+1)

(hd(M))n+1 = hd(Mn+1) (tl(M))n+1 = tl(Mn+1)
(cons(M,N))n+1 = cons(Mn+1, Nn)

Definition 14 (Metric on terms). Define d : P×P→ [0, 1] as d(M,N) = 0,
if M = N and d(M,N) = 2−m otherwise, where m = max{n ∈ N |Mn = Nn}.

Note that d is not invariant under βη-conversion. The metric on equivalence
classes defined by d([M ], [N ]) = d(nfβη(M), nfβη(N)) is not the right one since
there may be elements in (T /=βη)σ→τ

i that are not non-expansive. For example,
d([MP ], [MQ]) = 1 and d([P ], [Q]) = 1/2 if M = λx:S(σ).cons(hd(y), tl(x)), P =
y and Q = z. The distance between [MP ] = [y] and [MQ] = [cons(hd(y), tl(z))]
should be 1

2 and not 1 for [M ] to be non-expansive.
To define the right metric, we introduce the notions of infinite term and

extensional long normal form. The notion of extensional long normal form does
not coincide with the notion of eta long normal form. In order to define the
notion of extensional long normal, we express a function f on natural numbers
as an infinite term cons(M1, cons(M2, . . .)) where M1 corresponds to f(1), M2

to f(2), etc. For example, the extensional long normal form of a variable x of
type S(σ) is the infinite term cons(hd(x), cons(hd(tl(x)), . . .)).

Definition 15 (Infinitary terms). We define the set P∞ of infinitary terms
as the metric completion of (P, d).

Definition 16 (Extensional long normal form). Let Γ � M :i σ. The (ex-
tensional) long normal form of M is a term in P∞ denoted by L(M) and defined
as follows. If M is not in β-normal form, we define L(M) = L(nfβ(M)). If
M is in β-normal form then we define it by induction on the pair (size(Γ ) +
size(σ), size(M)) with the lexicographic order as follows.

1. Case σ is a base type. Then M = X [M1, . . . ,Mn] ∈ X. We define L(M) =
X [L(M1), . . . , L(Mn)].
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2. Case σ is σ1 → σ2. If M = λx.N then we define L(M) = λx.L(N).
Otherwise, M ∈ X and we define L(M) = λy.L(M y).

3. Case σ is •τ . If M = ◦(P ), we define L(M) = ◦(L(P )).
Otherwise, M ∈ X and we define L(M) = ◦(L(await(M))).

4. Case σ = S(τ). Either M = cons(P,Q) and we put L(M) = cons(L(P ), L(Q)),
or M ∈ X and we define L(M) = cons(L(hd(M)), cons(L(hd(tl(M))), . . .)).

Lemma 12. 1. Let M be in β-normal form such that Γ �M :i σ. If M →η N ,
then L(M) = L(N).

2. If Γ �M :i σ and M =βη N , then L(M) = L(N).

The first statement is proved by induction on (size(Γ ) + size(σ), size(M)). The
second is proved using confluence, strong normalisation and the first one.

Definition 17 (Metric on equivalence classes of typable terms). We de-
fine a metric d : (T /=βη)σi ×(T /=βη)σi → [0, 1] as d([M ], [N ]) = d(L(M), L(N)).

We define Γ �n M :i σ by adding to the typing rules of Definition 3 the rule
Γ �n ⊥ :i σ if n ≥ i for all i ∈ N and all types σ. It is easy to show that this
typing rules satisfy subject reduction, confluence and strong normalisation. The
notion of extensional long normal form is extended to terms with ⊥ and typable
in �n. The follow lemma is proved by induction on the derivation.

Lemma 13. If Γ �n+i M :i σ then the ⊥’s in M all occur at depth greater or
equal than n.

The following three lemmas are proved by induction on (size(Γ ) + size(σ), n).

Lemma 14. If Γ �M :i σ then Γ �n+i (L(M))n :i σ.

Lemma 15. Let M be in β-normal form such that Γ � M :i σ. Then, there
exists N in β-normal form such that N →→η M and (L(M))n = Nn.

Lemma 16. Let M,N be in β-normal form such that Γ � M,N :i σ. If M
n =

Nn then (L(M))n = (L(N))n.

We write M≺N if M is the result of replacing some subterms of N by ⊥.

Lemma 17. If M≺N and M→βM
′ then M ′≺N ′ and N→βN

′ for some N ′.

Theorem 4 (Non-expansiveness). Let M ∈ T σ→τ
i and P,Q ∈ T σ

i . Then:

1. (L(MP ))n = (L(M(L(P ))n))n. 2. d([MP ], [MQ]) ≤ d([P ], [Q]).

Proof. (1) Assume M,P are in β-normal form. By Lemma 15, there exists P ′

in β-normal form such that P ′ →→η P and (L(P ))n = (P ′)n. Then, M(L(P ))n ≺
MP ′. By Lemma 14, Γ �n+i (L(P ))n :i σ and hence, Γ �n+i M(L(P ))n :i σ. By
Subject reduction, Γ �n+i N :i σ where N = nfβ(M(L(P ))n). By Lemma 17,
there exists N ′ such that N ≺ N ′ and MP ′ →→β N ′. By Lemma 13, the ⊥’s in
N occur at depth greater than n. Hence, Nn = (N ′)n = (nfβ(MP ′))n since N
is in β-normal form. By Lemma 16, (L(N))n = (L(nfβ(MP ′)))n. By Lemma 12,
(L(MP ))n = (L(M(L(P ))n))n.
(2) Suppose (L(P ))n = (L(Q))n. By the first part, (L(MP ))n = (L(M(L
(P ))n))n = (L(M(L(Q))n))n = (L(MQ))n. � 
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Theorem 5 (Well-behaviour of metric)

1. d([M ], [N ]) = sup{d([MP ], [NP ]) | P ∈ T σ
i }.

2. d([M ], [N ]) = 1
2d([await(M)], [await(N)]).

3. d([M ], [N ]) = sup{ 1
2

n
d([hd(tln(M))], [hd(tln(N))]) | n ∈ N}.

The proof of this theorem is similar to the one for Theorem 4.

8 Completeness for the Ultrametric Model

In this section we show that βη-conversion captures semantic equality between
reactive programs, i.e. two terms typable in the calculus of reactive programs are
βη-convertible if and only if they have the same interpretation in the ultrametric
model. Our proof follows closely the proof of completeness of the simply typed
lambda calculus given in [7, Section 8].

An ultrametric frame is an ultrametric applicative structure where Uσ→τ
i is a

subset of the set of non-expansive maps from Uσ
i to Uτ

i .

Theorem 6. There exists an ultrametric frame isomorphic to the term model.

Proof. We define Uσ
i = {φσ

i ([M ]) | M ∈ T σ
i } where φσ

i is a function from
(T /=βη)σi to Uσ

i defined by induction on σ.

φb
i ([M ]) = [M ] φσ→τ

i ([M ]) = {(a, φτ
i ([M(φσ

i )−1(a)]) | a ∈ Uσ
i }

φ•σ
i ([M ]) = φσ

i+1([await(M)]) φ
S(σ)
i ([M ]) = {(n, φσ

i ([hd(tln(a))]))) | n ∈ N}

Surjectivity of φσ
i is trivial. Injectivity follows by induction on σ using Lemma 10.

That φσ
i and its inverse are non-expansive follows by induction on σ using The-

orem 5. It remains to prove that φσ→τ
i ([M ]) is non-expansive. This follows from

Theorem 4 and the fact that φτ
i and the inverse of φσ

i are non-expansive. � 

Definition 18 (Embedding). Let (U, dU ), (V, dV ) be ultrametric spaces. An
embedding from V to U is a pair (φ, ψ) of non-expansive maps φ : V → U and
ψ : U → V such that ψ ◦ φ = idV .

Lemma 18 (Partial Surjections for ultrametric spaces). Let U be an ul-
trametric applicative structure and V be an ultrametric frame. If there exists
an embedding from Vb

i to Ub
i for each constant type b and i ∈ N, then there

exists a partial logical surjective function R from U to V and two families of
non-expansive maps φσ

i , ψ
σ
i such that

1. Rσ
i (φσ

i (v), v) for all v ∈ Vσ
i . 2. Rσ

i (u, ψσ
i (u)) for all u ∈ dom(Rσ

i ).

Proof. By induction on σ. We do only the case S(σ) for streams. Then we define:

φ
S(σ)
i (v) = {(n, φσ

i+n(v(n))) | n ∈ N} ∀v ∈ VS(σ)
i

ψ
S(σ)
i (u) = {(n, ψσ

i+n(u(n))) | n ∈ N} ∀u ∈ dom(RS(σ)
i )

RS(σ)
i = {(f, g) | (f(n), g(n)) ∈ Rσ

i+n}
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Statements (1) and (2) follow from induction hypothesis. Surjectivity follows

from (1). That RS(σ)
i is a function follows by extensionality. Surjectivity plays a

role only in the arrow type case, for proving that Rσ→τ
i is a function. � 

Theorem 7 (Completeness for the ultrametric model). Suppose there
exists an embedding from (T /=βη)bi to Ub

i for each constant type b and i ∈ N.
Let Γ �M,N :i σ. Then, M =βη N if and only if U |= Γ �M = N :iσ.

Proof. (⇒) [1, Theorem 4]. Alternatively, it also follows from Soundness for
Henkin Models (Lemma 3) and the fact that the ultrametric model is a Henkin
one (Lemma 11). (⇐). Let V be the ultrametric frame isomorphic to T /=βη

of Theorem 6. By Lemma 18, there exists a logical partial function from U to
V ∼ T /=βη. By Lemma 11 and Theorem 3, the ultrametric model and the term
model are Henkin models. Hence, Th(U) ⊆ Th(T /=βη) by Lemma 5. � 

9 Conclusions and Future Work

As a natural sequel, we are currently studying the theory induced by the ultra-
metric model for the typed lambda calculus of reactive programs extended with
the fixpoint operator of [1].

Statman’s 1-Section Theorem [13, 14, 15] generalises Friedman’s result by
giving necessary and sufficient conditions for a model to satisfy completeness
of βη-conversion on terms typable in the simply typed lambda calculus. It will
be interesting to prove a similar result to Statman’s 1-Section Theorem for the
typed lambda calculus of reactive programs.

Our step-indexed applicative structures are in fact Kripke lambda models
over the partial order (N,≤) in the terminology of Mitchell and Moggi [16]. By
using natural numbers, the additional operators for streams such as tl σi can move
from time i to i+ 1. However, the notion of Henkin model for reactive programs
is not a particular case of Kripke model as defined in [16]. Our environment
and meaning function do not have the natural number i as argument since that
information is provided by the judgement Γ �M :i σ.

The notion of step indexed logical relation for recursive types in [17, 18, 19]
use the index in a different way from ours. In our definition of logical relation on
the type σ → τ we quantify over j ≥ i for some given i. While in the definition of
logical relation for recursive types, the quantification is over j ≤ i for some given
i. The choice to quantify over j ≥ i is essential for our proofs to go through. The
logical predicate of strongly normalising terms should satisfy Pσ→τ

i ⊆ Pσ→τ
j for

i ≤ j and similarly, the logical surjective function defined in Lemma 18 should
satisfy Rσ→τ

i ⊆ Rσ→τ
j for i ≤ j. This holds trivially when we quantify over j ≥ i

but it does not hold if the quantification is done reversing the order.
Our step-indexed notion of applicative structure can be described as families

of covariant functors from (N,≤) to the category Set of sets and functions. The
topos of trees [20] that Birkedal and coworkers use for step-indexing models
of various programming languages consists of the contravariant functors from
(N,≤) to Set. These are functors from (N,≤)op , that is (N,≥), to Set.
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A Constructive Model of Uniform Continuity

Chuangjie Xu and Mart́ın Escardó
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Abstract. We construct a continuous model of Gödel’s system T and its
logic HAω in which all functions from the Cantor space 2N to the natural
numbers are uniformly continuous. Our development is constructive, and
has been carried out in intensional type theory in Agda notation, so that,
in particular, we can compute moduli of uniform continuity of T-definable
functions 2N → N. Moreover, the model has a continuous Fan functional
of type (2N → N) → N that calculates moduli of uniform continuity. We
work with sheaves, and with a full subcategory of concrete sheaves that
can be presented as sets with structure, which can be regarded as spaces,
and whose natural transformations can be regarded as continuous maps.

Keywords. Constructive mathematics, topological models, uniform con-
tinuity, Fan functional, intuitionistic type theory, topos theory, sheaves,
HAω, Gödel’s system T.

1 Introduction

Gödel’s system T has a well-known topological models in which all integer-valued
functions on the Cantor space are uniformly continuous:

∀f : 2N → N. ∃n ∈ N. ∀α, β ∈ 2N. α =n β =⇒ f(α) = f(β),

where α =n β means ∀i < n. αi = βi. These models include Kleene–Kreisel
functionals [19], compactly generated spaces [19], limit spaces [20], equilogical
spaces [3], sequential spaces [12], and QCB spaces [12]. However, even though
these models are introduced for the purposes of computability theory, they are
developed within a classical meta-theory.

The purpose of this paper is to develop such a topological model in a weak
constructive meta-theory, without explicit reference to computability, but with
computability in mind. In fact, we conjecture that our model is classically equiv-
alent to the model of Kleene–Kreisel spaces. Our continuous model of system T
consists of certain C-spaces, which can be seen as sheaves (see below), and is
developed in Section 2. Like the above models, this model has a Fan functional
of type (2N → N) → N that continuously calculates moduli of uniform conti-
nuity (Section 3). Importantly, we do not rely on the Fan Theorem [5] or any
such principle to construct the Fan functional. In particular, we recover the well-
known fact that the T-definable functions 2N → N are uniformly continuous [5]
by defining a logical relation between the set-theoretical and continuous models
(Section 4). To model the logic HAω extended with the above uniform continuity

M. Hasegawa (Ed.): TLCA 2013, LNCS 7941, pp. 236–249, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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axiom, we realize the logical operations by continuous functions in our model
(Section 5). We also discuss how our results can be extended to give a continuous
model of dependent types (Section 7).

As mentioned above, we develop this in a weak constructive meta-language,
which does not incorporate constructively contentious axioms such as continuity
principles, Fan Theorem, Bar Induction, or Church’s Thesis [5]. In this presenta-
tion we deliberately leave the details of the meta-language unexplained, relying
on the readers’ ability to recognize constructive arguments. One possible formal
constructive meta-language for our development is intensional Martin-Löf type
theory (MLTT), and, in fact, we have developed the main results of this paper
in Agda [6] (Section 6). Because MLTT has a computational interpretation, our
model can be used to compute moduli of uniform continuity of system T de-
finable functions 2N → N. More importantly, our model can be used to extract
computational content from proofs in HAω extended with the above uniform
continuity axiom.

Our model is a sheaf topos, with a full subcategory of concrete sheaves [2]
that can be presented as sets with structure, which can be regarded as spaces,
and whose natural transformations can be regarded as continuous maps. The
underlying category of our site is the monoid of uniformly continuous endomaps
of the Cantor space, with a natural coverage consisting of families of concatena-
tion maps. The coverage axiom amounts precisely to the uniform continuity of
the elements of our monoid. Our development of this topos is fairly standard,
but we have taken care of making sure the arguments are presented in a form
suitable for a formalization in a predicative type theory, and this is one of the
main contributions of this work.

Our work builds upon Johnstone’s paper On a topological topos (1979), Four-
man’s papers Continuous truth and Notions of choice sequence (1982), van der
Hoeven and Moerdijk’s paper Sheaf models for choice sequences (1984), Bauer
and Simpson’s unpublished work Continuity begets continuity (2006), and Co-
quand and Jaber’s paper A note on forcing and type theory (2010) and A com-
putational interpretation of forcing in type theory (2012).

Johnstone, Fourman, van der Hoeven and Moerdijk’s work with sheaf toposes
over different sites. Johnstone’s site is the monoid of continuous endo-functions
of the one-point compactification of the discrete natural numbers with the canon-
ical Grothendieck topology. A full subcategory of Johnstone’s topological topos
is that of sequential topological spaces, which is cartesian closed. A bigger full
subcategory, which is locally cartesian closed, is that of Kuratowski limit spaces.
The concrete sheaves, or spaces, in our model correspond to the Kuratowski
limit spaces in Johnstone’s construction, and are also related to Spanier’s quasi-
topological spaces [22], as we discuss in the body of the paper. Bauer and Simp-
son’s work can be seen as taking place in the topological topos.

Fourman works with a site whose underlying category is the semilattice of
finite sequences of natural numbers under the prefix order, and van der Hoeven
and Moerdijk work with a site whose underlying category is the monoid of con-
tinuous endomaps of the Baire space, and they relate their work to Fourman’s.
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Coquand and Jaber’s forcing model instead uses the semilattice of finite binary
sequences under the prefix order as the underlying category of the site, modelling
the idea of a generic infinite binary sequence. They iterate their construction in
order to be able to model the Fan functional, and our model can be regarded as
accomplishing this iteration directly (personal communication with Coquand).

2 Sheaves and Spaces

2.1 Sheaves and Natural Transformations

Recall that a presheaf on a small category C is a functor Cop → Set. When C is
a one-object category, i.e. a monoid, this can be formulated in terms of monoid
actions [18, §I.1]. A presheaf on a monoid (C, ◦, id) amounts to a set P with an
action

((p, t) �→ p · t) : P ×C→ P

such that for all p ∈ P and t, u ∈ C

p · id = p, p · (t ◦ u) = (p · t) · u.

A natural transformation of presheaves (P, ·) and (Q, ·) amounts to a function
φ : P → Q that preserves the action, i.e.

φ(p · t) = (φ p) · t.

We work with the monoid C of uniformly continuous endo-maps on the Cantor
space 2N, that is, the functions t : 2N → 2N such that

∀m ∈ N. ∃n ∈ N. ∀α, β ∈ 2N. α =n β =⇒ t(α) =m t(β).

Notice that any continuous function 2N → 2N is uniformly continuous, assuming
classical logic or the Fan Theorem. Because we do not assume such principles, we
need to explicitly require uniform continuity in the definition of the monoid C.

Our site is the monoid C equipped with the countable coverage J consisting
of the finite covering families

〈conss〉s∈2n

for all natural numbers n, where 2n is the set of binary sequences of length n
and conss : 2N → 2N is the concatenation map:

conss(α) = sα.

It is easy to verify that, for any n ∈ N and for any s ∈ 2n, the concatenation
map conss is uniformly continuous and so conss ∈ C.

The coverage axiom specialized to our situation amounts to saying that for
all t ∈ C,

∀m ∈ N. ∃n ∈ N. ∀s ∈ 2n. ∃t′ ∈ C. ∃s′ ∈ 2m. t ◦ conss = conss′ ◦ t′. (†)

It is routine to show that:
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Lemma 1. A map t : 2N → 2N satisfies (†) iff it is uniformly continuous.

Thus, not only does the coverage axiom hold, but also it amounts to the fact
that the elements of the monoid C are the uniformly continuous functions. Notice
that every covering family is jointly surjective. Because the maps in each cov-
ering family have disjoint images, we do not need to consider the compatibility
condition in the definition of sheaf:

Lemma 2. A presheaf (P, ·) is a sheaf iff for every n ∈ N and every family
〈ps ∈ P 〉s∈2n , there is a unique amalgamation p ∈ P such that, for all s ∈ 2n,

p · conss = ps.

Notice also that, by induction, it is enough to consider the case n = 1:

Lemma 3. A presheaf (P, ·) is a sheaf iff for any two p0, p1 ∈ P , there is a
unique p ∈ P such that

p · cons0 = p0 and p · cons1 = p1.

This construction gives a full subcategory Shv(C,J ) of the category of
presheaves, consisting of the sheaves over the site (C,J ).

2.2 Spaces and Continuous Maps

An important example of a sheaf is the monoid C itself with function composition
as the action. Given t0, t1 ∈ C, the amalgamation t : 2N → 2N is simply

t(α) = tα0(λn.αn+1).

We say a presheaf is concrete if its action is function composition. Then all the
elements in a concrete presheaf (P, ◦) must be maps from the Cantor space
to some set X . Concrete sheaves admit a more concrete description as the
set X with the additional structure given by the maps in P . We denote the full
subcategory of concrete sheaves by CShv(C,J ).

Concrete sheaves can be regarded as spaces, and their natural transforma-
tions as continuous maps. More precisely, they are analogous to Spanier’s quasi-
topological spaces [22], which have the category of topological spaces and
continuous maps as a full subcategory. One advantage of quasi-topological spaces
over topological spaces, which is the main reason for Spanier’s introduction of
the notion of quasi-space, is that continuous maps of quasi-spaces form a carte-
sian closed category. This category serves as a model of system T and HAω that
validates the uniform continuity principle, assuming classical logic in the meta-
language. Our concrete sheaves can be seen as analogues of quasi-topological
spaces, admitting a constructive treatment.

A quasi-topology on a set X assigns to each compact Hausdorff space K a set
P (K,X) of functions K → X such that:

(1) All constant maps are in P (K,X).
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(2) If t : K ′ → K is continuous and p ∈ P (K,X), then p ◦ t ∈ P (K ′, X).
(3) If 〈ti : Ki → K〉i∈I is a finite, jointly surjective family and p : K → X is a

map with p ◦ ti ∈ P (Ki, X) for every i ∈ I, then p ∈ P (K,X).

A quasi-topological space is a set endowed with a quasi-topology, and a contin-
uous map of quasi-spaces (X,P ) and (Y,Q) is a function f : X → Y such that
f ◦ p ∈ Q(K,Y ) whenever p ∈ P (K,X). For example, every topological space X
is a quasi-topological space with the quasi-topology P such that P (K,X) is the
set of continuous maps K → X , and this construction gives the full embedding
of topological spaces into quasi-topological spaces.

This definition can be modified by considering just one compact Hausdorff
space, the Cantor space, rather than all compact Hausdorff spaces, and by re-
stricting the jointly surjective finite families of continuous maps to the covering
families 〈conss〉s∈2n considered in the previous section. We call the resulting
objects C-spaces.

Definition 1. A C-space is a set X equipped with a C-topology P , i.e. a col-
lection of maps 2N → X, called probes, satisfying the following conditions:

(1) All constant maps are in P .
(2) (Presheaf condition) If p ∈ P and t ∈ C, then p ◦ t ∈ P .
(3) (Sheaf condition) For any n ∈ N and any family 〈ps ∈ P 〉s∈2n , the unique

map p : 2N → X defined by p(sα) = ps(α) is in P .

A continuous map of C-spaces (X,P ) and (Y,Q) is a map f : X → Y with
f ◦ p ∈ Q whenever p ∈ P . We write C-Space for the category of C-spaces and
continuous maps. The above three conditions are called the probe axioms.

Notice that the sheaf condition is equivalent to

(3′) If p : 2N → X is a map such that there exists n ∈ N with p ◦ conss ∈ P for
all s ∈ 2n, then p ∈ P .

The idea is that we “topologize” the set X by choosing a designated set P of
maps 2N → X that we want, and hence declare, to be continuous. For example,
if X already has some form of topology, e.g. a metric, we can take P to be
the set of continuous functions 2N → X with respect to this topology and the
natural topology of the Cantor space. Of course we have to make sure the sheaf
condition is satisfied.

As mentioned earlier, C-spaces provide a more concrete description of concrete
sheaves in the following sense. Given a C-space (X,P ), the C-topology P together
with function composition is a concrete sheaf. Conversely, if (P, ◦) is a concrete
sheaf, then all maps in P should have the same codomain.

Proposition 1. The two categories C-Space and CShv(C,J ) are naturally
equivalent.

By virtue of this equivalence, C-Space can also be viewed as a full subcate-
gory of Shv(C,J ). Moreover, C-spaces are closed under products and form an
exponential ideal.
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To improve the readability, we abbreviate X for the space (|X |,Probe(X))
where |X | stands for the underlying set and Probe(X) for the collection of probes,
i.e. the C-topology on |X |, and we often write X to mean |X | by an abuse of
notation.

2.3 The Cartesian Closed Structure of C-Space

C-spaces have several convenient categorical properties, the first of which is
cartesian closedness.

Theorem 1. The category C-Space is cartesian closed.

Proof. Any singleton set 1 = {"} with the unique map 2N → 1 as the only probe
is a C-space as well as a terminal object in C-Space.

Given C-spaces (X,P ) and (Y,Q), their product is the cartesian product
X × Y equipped with the collection R of probes defined by the condition that
r : 2N → X × Y is in R iff π0 ◦ r ∈ P and π1 ◦ r ∈ Q, where π0 and π1 are the
projections. We have to verify that R satisfies the probe axioms and that this
has the universal property of a categorical product in C-Space, i.e. continuity
of projection functions and its universal property, but this is routine.

Given C-spaces (X,P ) and (Y,Q), their exponential is the set Y X of con-
tinuous maps X → Y equipped with the collection R of probes defined by the
condition that r : 2N → Y X is in R iff for any t ∈ C and p ∈ P the map
λα.r(tα)(pα) is in Q. Again, we have to verify that the probe axioms are sat-
isfied and that this has the universal property of an exponential in C-Space,
which involves some subtleties regarding the coverage axiom. � 

Theorem 2. The category C-Space has finite coproducts.

Proof. The empty set equipped with the empty collection of probes is a C-space
and an initial object in C-Space.

Binary coproducts can be constructed as follows: given C-spaces (X,P ) and
(Y,Q), their coproduct is the disjoint union X + Y equipped with the collection
R of probes defined by the condition that r : 2N → X + Y is in R iff there exists
n ∈ N such that for all s ∈ 2n either there exists p ∈ P with r(conssα) = in0(pα)
for all α ∈ 2N or there exists q ∈ Q with r(conssα) = in1(qα) for all α ∈ 2N. We
have to verify that the probe axioms are satisfied and that this has the required
universal property. � 

2.4 Discrete C-Spaces and Natural Numbers Object

We say that a C-space X is discrete if for every C-space Y , all functions X → Y
are continuous. A map p : 2N → X into a set X is called locally constant iff

∃n ∈ N. ∀α, β ∈ 2N. α =n β =⇒ p(α) = p(β).
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Lemma 4. Let X be any set.

(1) The locally constant functions 2N → X form a C-topology on X.
(2) For any C-topology P on X, every locally constant function 2N → X is in P .

In other words, the locally constant maps 2N → X form the smallest C-topology
on the set X . Moreover:

Lemma 5. A C-space is discrete iff the probes on it are precisely the locally
constant functions.

We thus refer to the collection of locally constant maps 2N → X as the discrete
C-topology on X . In particular, when the set X is 2 or N, the locally constant
functions amount to the uniformly continuous functions. Hence we have a dis-
crete two-point space 2 and a discrete space N of natural numbers, which play
an important role in our model:

Theorem 3. In the category C-Space:

1. The coproduct of two copies of the terminal space 1 is the discrete two-point
space 2.

2. The discrete space of natural numbers is the natural numbers object.

Proof. The universal properties of 2 and N can be constructed in the same way
as in the category Set, because the unique maps g and h in the diagrams below
are continuous by the discreteness of N and 2:

N
suc ��

h
���
�
� N

h
���
�
� 1

g0 ���
��

��
��
in0 �� 2

g

���
�
� 1

g1����
��
��
�

in1��

1

0

��������
x

�� X
f

�� X X.

3 The Fan Functional

The monoid C can be regarded as a one-object category C with the object 2N and
the morphisms all uniformly continuous maps 2N → 2N. The Yoneda embedding
y : C→ C-Space satisfies

y
(
2N
)

= (2N,C),

where (2N,C) is the C-space corresponding to the concrete sheaf (C, ◦) given as
an example in the previous section.

In a cartesian closed category with a natural numbers object N and a finite
coproduct 2 = 1 + 1, call their exponential 2N the Cantor space. With this
terminology, we have that y(2N) is precisely the Cantor space in C-Space, i.e.

y
(
2N
)

= 2N,

where in the left-hand side 2N is the only object of the monoid C and in the
right-hand side 2N is the exponential of the two discrete spaces N and 2. Since
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all maps N → 2 are continuous by the discreteness of N, the underlying set of
the exponential 2N is precisely the Cantor space 2N (space of all maps N→ 2).
Of course one has to verify that

r ∈ C ⇐⇒ ∀t ∈ C. ∀p ∈ Probe(N). λα.r(tα)(pα) ∈ Probe(2),

i.e. the two C-topologies are the same, which is routine.
As the category C has only one object 2N, the Yoneda Lemma amounts to

the following.

Lemma 6 (Yoneda). For any C-space X, a map 2N → X is a probe on X iff
it is continuous.

By the Yoneda Lemma, we get that the continuous maps from the Cantor space
in C-Space to the natural numbers object are in natural bijection with the
uniformly continuous maps 2N → N of the meta-language used to define the
model:

Corollary 1. Writing [2N,N]C-Space for the set of continuous maps 2N → N,
and cts(2N,N) for the set of uniformly continuous maps 2N → N, we have

[2N,N]C-Space
∼= cts(2N,N).

Moreover, the topology on [2N,N]C-Space is discrete:

Lemma 7. The exponential N2N

is a discrete C-space.

Proof. Given a probe p : 2N → N
2N

, we want to show that it is locally constant.
By the construction of exponentials in Section 2, we know that for all t, r ∈ C,

λα.p(tα)(rα) ∈ Probe(N),

i.e. λα.p(tα)(rα) it is uniformly continuous. In particular, we can take

t(α)(i) = α2i and r(α)(i) = α2i+1,

which are both uniformly continuous, and define q(α) = p(tα)(rα). From the
proof of uniform continuity of q, we get its modulus n. (NB. Here we are implicitly
using choice, but this is not a problem in intensional type theory. In a setting
without choice, we would need to define uniform continuity by explicitly requiring
a modulus.) Now define a map join: 2N × 2N → 2N by

join(α, β)(2i) = αi

join(α, β)(2i + 1) = βi.

Given α, α′, β ∈ 2N with α =n α′, we have

p(α)(β) = p(t(join(α, β)))(r(join(α, β))) (by the definitions of t, r, join)
= q(join(α, β)) (by the definition of q)
= q(join(α′, β)) (join(α, β) =2n join(α′, β), 2n ≥ n)
= p(α′)(β).

Hence p is locally constant and therefore N
2N

is discrete. � 
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Theorem 4. There is a Fan functional

fan: N2N → N

in C-Space that continuously calculates moduli of uniform continuity.

Proof. Given a continuous map f : 2N → N, i.e. an element of N2N

, we know
f is uniformly continuous as f = f ◦ id2N ∈ Probe(N) by the continuity of f .
Then we can get a modulus n from the proof of its uniform continuity. From
this n we can compute the smallest modulus of f as follows. We define a function
lmod: (2N→N)→N→N by induction on its second argument:

lmod f 0 = 0
lmod f (n + 1) = if (∀s ∈ 2n. f(s0ω) ≡ f(s1ω)) then (lmod f n) else (n + 1).

With a proof by induction, we can show that lmod f n is the smallest modulus
if n is a modulus of f . Hence, we define

fan(f) = lmod f n.

According to the previous lemma, the space N2N

is discrete and hence this func-
tional is continuous. � 

4 Uniform Continuity of T-Definable Functions

Now we recover a well known result, using a logical relation between the set-
theoretical and the C-Space models of Gödel’s system T.

Recall that system T is a simply typed lambda calculus with a ground type N
for natural numbers and a primitive recursor rec : σ→σ→N→σ for every type σ.
For our purpose of formulating the uniform continuity principle, we add the
binary type 2 as another ground type and a case function if : σ→σ→2→σ
for every T type σ. Such a system can be interpreted in a cartesian closed
category with a natural numbers object N and a coproduct 2 (or 1 + 1) of two
copies of the terminal object. Specifically, types are interpreted as objects: N is
interpreted as N, the type 2 as 2, product types as products, and function types
as exponentials. Contexts are interpreted inductively as products. And a term in
context is interpreted as a morphism from the interpretation of its context to the
one of its type. Finally, rec and if are interpreted using the universal properties
of N and 2.

Both the categories Set and C-Space are cartesian closed and have a natural
numbers objects and a coproduct 1 + 1; thus, they give models of system T.
Throughout this paper, we use the semantic braces [[− ]] for the interpretation,
and add Set and C-Space as subscripts to distinguish which model we are
working with. Now we apply the logical relations technique to understand the
relationship between these two models.
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Definition 2. The logical relation R over the set-theoretical and C-Space mod-
els is defined by

1. If σ is a T type, then Rσ ⊂ [[σ ]]Set × [[σ ]]C-Space is defined by induction on
type σ as follows:
(a) Rι(a, a

′) iff a = a′, where ι is the ground type 2 or N;
(b) Rσ→τ (f, f ′) iff, for any a ∈ [[σ ]]Set and any a′ ∈ [[σ ]]C-Space, if Rσ(a, a′)

then Rτ (f(a), f ′(a′)).
2. If Γ ≡ x1 :σ1, . . . , xn :σn is a context, then RΓ ⊂ [[Γ ]]Set × [[Γ ]]C-Space is

defined by RΓ (a,a′) iff Rσi(ai, a
′
i) for all i ≤ n.

3. Given f ≡ [[Γ � t : τ ]]Set and f ′ ≡ [[Γ � t : τ ]]C-Space, R(f, f ′) iff, for any
a ∈ [[Γ ]]Set and any a′ ∈ [[Γ ]]C-Space, if RΓ (a,a′) then Rτ (f(a), f ′(a′)).

With a proof by induction on types as usual, we can easily show that the inter-
pretations of any T term in these two models are related.

Lemma 8. If Γ � t : τ , then R([[Γ � t : τ ]]Set, [[Γ � t : τ ]]C-Space).

We say that an element x ∈ [[σ ]]Set in the set-theoretical model is T-definable
if it is the interpretation of some closed T term, i.e. there exists a closed term
t : σ such that x = [[t ]]Set.

Theorem 5. Any T-definable function 2N → N is uniformly continuous.

Proof. If f : 2N → N interprets the term f : (N→2)→N, then f is related to
the (uniformly) continuous map [[f ]]C-Space : 2N → N according to the above
lemma. By the definition of the logical relation, f is uniformly continuous. � 

5 A Continuous Realizability Semantics of HAω

Recall that HAω has equations between system T terms of the same type as
atomic propositions, quantifiers that range over elements of (the interpretation
of) system T types, and logical connectives ∧, ⇒ (the connectives ∨ and ¬
are definable from the other connectives). For technical convenience, we add a
singleton type 1 and binary product types to the inductive definition of system T
types. Throughout this section, we use σ, τ to range over T types, bold lower case
letters f ,x,n, t,u to range over T terms, and ϕ, ψ to range over HAω formulas.

With the above definition, the uniform continuity principle can be formulated
in HAω by the following

∀f :(N→2)→N. ∃n :N. ∀α,β :N→2. α =n β ⇒ f (α) = f(β) (UC)

where α =n β is short for ∀i :N. i < n ⇒ α(i) = β(i). Here we can define
the relation i < n by ∃m :N. suc(i + m) = n where addition + is inductively
defined in T.

To any HAω formula ϕ we associate a type |ϕ | of potential realizers. Then a
continuous realizer of a formula Γ � ϕ is a pair

(e, q) ∈ [[ |ϕ | ]]C-Space × [[Γ ]]C-Space.

We call this a continuous realizability semantics. In the following, semantic brack-
ets without explicit decorations refer to the C-space interpretation.
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Definition 3 (Continuous realizability). The types of potential realizers of
HAω formulas are given inductively as follows:

1. |t = u | = 1,
2. |ϕ ∧ ψ | = |ϕ | × |ψ | ,
3. |ϕ⇒ ψ | = |ϕ | → |ψ | ,
4. |∀x :σ. ϕ | = σ → |ϕ | ,
5. |∃x :σ. ϕ | = σ × |ϕ | .

Let Γ be a context and q ∈ [[Γ ]]. The relation

(e, q) realizes Γ � ϕ

is defined by induction on formulas as follows:

1. (", q) realizes Γ � t = u iff [[Γ � t : σ ]](q) ≡ [[Γ � u : σ ]](q), where σ is the
type of the terms t and u,

2. (e, q) realizes Γ � ϕ0 ∧ ϕ1 iff (πi(e), q) realizes Γ � ϕi for all i ∈ {0, 1},
where e ∈ [[ |ϕ0 | ]]× [[ |ϕ1 | ]],

3. (e, q) realizes Γ � ϕ ⇒ ψ iff for all a ∈ [[ |ϕ | ]] with (a, q) realizing Γ � ϕ,

the pair (e(a), q) realizes Γ � ψ, where e ∈ [[ |ψ | ]][[ |ϕ | ]],
4. (e, q) realizes Γ � ∀x :σ. ϕ iff for all a ∈ [[σ ]], the pair (e(a), (q, a)) realizes

Γ, x :σ � ϕ, where e ∈ [[ |ϕ | ]][[σ ]] and (q, a) ∈ [[Γ, x :σ ]],
5. (e, q) realizes Γ � ∃x :σ. ϕ iff (π1(e), (q, π0(e))) realizes Γ, x :σ � ϕ, where

e ∈ [[σ ]] × [[ |ϕ | ]].

We say a closed HAω formula ϕ is realizable if there exists e ∈ [[ |ϕ | ]] such that
(e, ") realizes � ϕ.

The main result of this paper is that our model validates the uniform continuity
principle in the following sense.

Theorem 6. The uniform continuity principle (UC) can be realized by the Fan
functional.

Proof. If (e, ") realizes UC, then e is a continuous map

N
2N

→ N× (2N → 2N → (N→ (N× 1) → 1) → 1).

By Definition 3, given any continuous f : 2N → N, the pair (e(f), (", f)) realizes

f :(N→2)→N � ∃n :N. ∀α,β :N→2. (α =n β ⇒ f(α) = f(β)).

We define the first component of e(f) to be fan(f), i.e. the modulus of uniform
continuity of f . Given n = fan(f), we want that (π1(e(f)), (", f, n)) realizes

f :(N→2)→N,n :N � ∀α,β :N→2. (α =n β ⇒ f(α) = f(β)).

Given α, β ∈ 2N with α =n β, it is easy to verify that there exists a continuous
map e′ : N→ (N× 1) → 1 such that (e′, (", f, n, α, β)) realizes

f : (N→2)→N,n :N,α :N→2,β :N→2 � α =n β.
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According to the definition of [[− ]], we have

[[Γ � f(α) : N ]](", f, n, α, β) = f(α)

and
[[Γ � f(β) : N ]](", f, n, α, β) = f(β)

where Γ ≡ f :(N→2)→N,n :N,α :N→2,β :N→2. As n is the modulus of f , we
have f(α) = f(β) and hence

[[Γ � f(α) : N ]](", f, n, α, β) = [[Γ � f (β) : N ]](", f, n, α, β).

Thus, (", (", f, n, α, β)) realizes Γ � f(α) = f(β). � 

6 Construction of the Model in Intensional Type Theory

The above results have been deliberately developed in such a way to be routinely
formalizable in intensional type theory. However, certain details require a closer
look. We work with an intensional type theory with a universe,

∑
-types,

∏
-

types, identity types and standard base types such as natural numbers, booleans,
unit type and empty type.

We considered three approaches, which we developed in Agda notation [6],
and are available at [24]. In the first approach, which is probably the simplest
and most readable, we assumed the axiom of function extensionality,

∏
X,Y : Type

∏
f,g : X→Y

(∏
x : X

fx ≡ gx

)
→ f ≡ g,

where ≡ is the identity type. This approach has two drawbacks. One of them
is that, because this axiom does not come with a computational interpretation,
it is in principle useless for extracting computational content. In ealier stages
of this work, we conjectured that the axiom of extensionality occurs only in
computationally irrelevant contexts.

In order to attempt to verify that this is indeed the case, in our second ap-
proach, we made use of Agda’s irrelevant fields [7], and postulated extension-
ality within such an irrelevant context. With this second approach, the Agda
type checker proved our conjecture false. However, by refining the notion of
C-topology, we were able to make it true, and our constructions and proofs
type-checked. We needed to add the following condition:

(4) Any map extensionally equivalent to a probe is also a probe.

And we also needed to add more steps in each case the construction of a space
was performed.

However, a second drawback remains in the two approaches considered above:
they do not seem to allow a construction of the Fan functional. To define a
continuous Fan functional in the model (Section 3), we derive its continuity by
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showing that its domain, the space N2N

, is discrete, i.e. by showing that any

probe p : 2N → N2N

is locally constant. We can find an n ∈ N and show that
for any α, α′ ∈ 2N with α =n α′, the two maps p(α), p(α′) : 2N → N are equal
using functional extensionality. However, this does not allow us to conclude that
their proofs of continuity are also equal, in order to conclude p(α) ≡ p(α′), and
the proofs of continuity cannot be put in an irrelevant field because they are
computationally relevant, at least not without further thought.

In our third and last, fully successful, approach, instead of assuming any
form of extensionality or irrelevant fields, we slightly adjusted the definition of
C-space. Now a C-topology is defined on a set equipped with an equivalence
relation, that is, on a setoid. With this, we can define a notion of equality of
continuous functions that ignores continuity proofs, and the Fan functional can
be implemented as discussed in the previous sections. We remark that the probe
axiom (4) mentioned above is still needed.

This third approach works well, and does not need to assume any non-standard
axiom for intensional type theory. However, the drawback is that the proofs
are much less readable than in the first two approaches. It would be desirable
to find an approach that avoids setoids and addresses the equality problem for
continuous functions by hiding information in the definition of continuity without
losing computational information to obtain a more concise formalization.

At the moment we formalized everything discussed above, including the
Fan functional, the set and continuous interpretations of system T, their
logical relation, and the proof that the set-theoretical definable functions
2N → N are uniformly continuous, but excluding the definition of HAω and
its interpretation, which is under development.

7 Future Work

Both the category of sheaves and its full subcategory of C-spaces are locally
cartesian closed. For the second category, an exponential in a slice category
C-Space/X is constructed in the same way as the one in the slice category
Set/X , with a suitable construction of the topology on its domain (see [2, Propo-
sition 43]). Thus, rather than giving a realizability interpretation of UC, we can
understand its quantifiers as

∏
and

∑
, and interpret them using the locally

cartesian closed structure [21,10,15,11]. With a cursory calculation to be fully
verified in future work, we can show that the Fan functional (modulo some type
isomorphisms) is an element of the interpretation of UC. Hence our development
seems to generalize from system T to dependent types. We have not considered
the interpretation of universes with our continuous model so far.

As mentioned in the introduction, we conjecture that the system T model
consisting of C-spaces is classically equivalent to the model of Kleene–Kreisel
functionals, and hence can be seen as a constructive development of that model.
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