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1 Definition of the Topic

Transmission electron microscope is an essential tool for characterization of

nanoscale materials and devices because it can shed light on the microstructure of

nanomaterials. For core-shell nanostructured materials, transmission electron

microscopy (TEM) can provide much more important information: overall particle

size, core size, shell thickness, uniform or nonuniform shell coating, lattice fringe,

elemental distribution, etc. In this chapter we will describe the application of TEM

for characterization of core-shell nanomaterials.
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2 Overview

Nanomaterials have, by definition, at least one dimension in the range of 1–100 nm

and subsequently show novel properties different from their bulk materials. The

synthesis, characterization, and applications of nanomaterials are the most impor-

tant parts among the wide range of nanotechnology areas falling under the general

“nanotechnology” umbrella. In recent years, core-shell nanomaterials have

attracted much attention for their excellent physical properties and chemical

stability.

However, traditional characterization tools such as scanning electron micro-

scope (SEM) and atomic force microscope (AFM) can only reflect the surface

features of core-shell nanomaterials, lacking detailed information from the core.

This is due to the fact that the core is embedded in the shell which is made up of

complex materials such as metal, silica, and organics.

Here we describe how to employ TEM to investigate the interface between the

core and shell, shape of the core and shell, uniform or nonuniform shell coating,

formation of core-shell structure, etc.

3 Introduction

Nanostructured materials have drawn significant attention as potential building

blocks for nanocomposites, nanoscale electronic devices, ultrahigh-density mag-

netic recording systems, and optical devices. The most important characteristics,

among many others, on a nanoscale are as follows. First, the small size of

nanomaterials leads to an increased surface area to volume ratio and as a result

the quantum confinement effects dominate. Second, the increasing surface area to

volume ratio leads to an increase in the dominance of the surface atoms over those

in its interior.

Initially a lot of research work focused on single-phase nanoparticles because

such nanomaterials had much better properties than bulk materials. In the late

1980s, it was found that heterogeneous composite or sandwich colloidal semicon-

ductor nanoparticles had better efficiency than their corresponding single-phase

particles; in some cases they even demonstrated some new properties [1–3]. More

recently during the early 1990s, researchers synthesized concentric multilayered

semiconductor nanoparticles with an aim to improving their properties. Hence, the

terminology “core-shell” was subsequently adopted [4–6]. Furthermore, there has

been a gradual increase in research activities because of tremendous need for more

and more advanced materials fueled by modern technology. Simultaneously the

advancement of characterization techniques has greatly helped to establish the

structures of these different core-shell nanomaterials. A statistical data analysis is

presented in Fig. 6.1 to show the increasing trend of published research papers in

this area. These were collected in June 2012 from “SciFinder Scholar” using the

keyword “core-shell nanoparticles.”
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In recent years, the advances in new synthesis techniques have made it possible

to fabricate not only the symmetrical (spherical) nanoparticles but also a variety of

other shapes such as cube [7–14], prism [15, 16], hexagon [7, 8, 17–20], octahedron

[11, 12], disk [21], wire [22–29], rod [22, 30–37], tube [22, 38–41], etc. Moreover,

the structure and composition of core-shell nanomaterials also become more com-

plicated. It means that core-shell nanomaterials are no longer simple spherical

particles but are completely coated by a shell of different materials. The shell

may have a complex multilayer structure [42–45], and the core may move freely

instead of being fixed by the shell [46, 47]. Different classes of core-shell

nanoparticles are shown schematically in Fig. 6.2. These core-shell nanomaterials

have aroused immense interest because of their novel properties.

Current applications of different core-shell nanoparticles were summarized in

a review article by Karele et al. [48] The individual report from different

researchers also demonstrated the fact that core-shell nanoparticles are widely

used in different applications such as biomedical [49–52] and pharmaceutical

applications [53], catalysis [54, 55], electronics [4, 56, 57], enhancing photolumi-

nescence [58–60], creating photonic crystals [61], etc. In particular, in the biomed-

ical field, the majority of these particles were used for bioimaging [51, 62–68],

controlled drug release [68, 69], targeted drug delivery [51, 65, 68–70], cell

labeling [51, 71], and tissue engineering applications [69, 72].
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Fig. 6.1 Publications per year for core-shell nanoparticles during the period from 1994 to June

2012 (Data collected from SciFinder Scholar Database)

6 TEM for Characterization of Core-Shell Nanomaterials 245



Unfortunately, traditional characterization techniques are not good enough to

demonstrate the growing complexity of core-shell nanomaterials. However, TEM is

an effective method [73] to unlock the secret of the core due to its unique imaging

procedure and various techniques.

At present, lots of books have focused on TEM techniques or applications, but

few on TEM characterization of core-shell nanomaterials. This chapter is designed

to illustrate some TEM techniques for characterizing the core-shell nanostructures,

such as diffraction contrast imaging, high-resolution TEM (HRETM), high-angle

annular dark-field (HAADF), and elemental mapping. We will take the TEM

techniques as a clue to discuss the application of TEM for characterization of

core-shell nanomaterials. The characteristic of each TEM technique will be

explained and some up-to-date research work will be demonstrated.

4 Experimental and Instrumental Methodology

4.1 Synthesis of Core-Shell Nanomaterials

Approaches for the synthesis of nanomaterials can be broadly divided into two

categories: “top-down” and “bottom-up.” The “top-down” approach often adopts

traditional workshop or microfabrication methods where externally controlled tools

are used to cut, mill, and design materials into the desired shape and order. For

example, the most common techniques are lithography techniques [74, 75], laser-

beam processing [76], and mechanical techniques [77–79]. “Bottom-up” approach,

on the other hand, exploits the chemical properties of the molecules to let them self-

assemble into some useful conformations. The most common bottom-up

approaches are chemical synthesis, chemical vapor deposition, laser-induced

assembly, self-assembly, colloidal aggregation, film deposition and growth

[80–82], etc. Currently it is hard to say which approach is superior because each

has its advantages and disadvantages. However, the bottom-up approach can

produce much smaller particles and has the potential to be more cost-effective in

the future due to the advantages of absolute precision, complete control over the

process, and minimum energy loss compared with that of a top-down approach. As

far as the synthesis of core-shell nanomaterials is concerned, the bottom-up

Fig. 6.2 Different kinds of core-shell nanomaterials: (a) Spherical core-shell nanoparticles.

(b) Hexagonal core-shell nanoparticles. (c) Double shell core-shell nanoparticles. (d) Movable

core with hollow shell nanoparticles. (e) Core-shell nanowires
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approach has proven to be more suitable since the ultimate control is required for

achieving a uniform coating of the shell materials during the particle formation.

A combination of these two approaches can also be utilized. For example, core

particles can be synthesized by a top-down approach and then coated by a shell

fabricated by a bottom-up approach which could maintain uniform and precise shell

thickness. To control the overall size and shell thickness precisely, a microemulsion

instead of a bulk medium is preferable because water droplets can act as

a nanoreactor template.

4.2 Transmission Electron Microscopy Techniques

TEM is a characterization technique whereby a beam of electrons transmits through

an ultrathin specimen and interacts with the atoms or molecules in the specimen

[73]. TEM is capable of imaging at a significantly higher resolution than light

microscopes, owing to the small de Broglie wavelength of electrons. TEM has

various imaging techniques, such as diffraction contrast imaging, high-resolution

TEM, high-angle annular dark-field, and elemental mapping.

TEM bright field (BF) image is mainly caused by amplitude contrast. Amplitude

contrast results from variations in mass or thickness or a combination of the two: the

thickness variation can produce contrast because the electron interacts with more

material (hence, more mass). Alternatively, diffraction can vary locally because the

specimen is not a perfect, uniformly thin sheet. In order to translate the electron

scatter into interpretable amplitude contrast, we use objective aperture which is

placed in the back focal plane of the objective lens to select the direct beam in the

selected area electron diffraction (SAED) to form BF images. Regions of no

specimen show a bright background, and regions of the specimen that are thick or

dense will present dark in the image.

The HAADF image is also called Z-contrast image. The HAADF image contrast

is usually proportional to the Z2 (Z is atomic number). Because of Bragg scattering,

normal ADF detector is not suited for the study of crystalline specimens. But we

can decrease the camera length with the post-specimen lenses to ensure that the

Bragg electrons (including any HOLZ scattering) do not hit the detector. Thus, only

the electrons scattered through very high angles contribute to the image. Bragg

scattering effects are avoided if the HAADF detector only gathers electrons

scattered through an angle larger than 50 mrad (�3�).
HRTEM is an important imaging technique in TEM, from which we can obtain

the atomic structure information from a specimen. HRTEM image is mainly caused

by phase contrast, and it is produced by interference of the transmitted beam with at

least one diffracted beam. When performing HRTEM experiments, we should

select a larger objective aperture and let through more beams carrying with their

amplitudes and phases to produce a phase contrast image.

Elemental mapping is one important technique in energy-filtering transmission

electron microscopy. Elemental maps extracted from ionization edges can obvi-

ously show the spatial distribution of elements in samples. Usually two methods,
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two-window and three-window, are used to get this information. Two-window

method is acquiring two images from electrons in selected energy windows,

a pre-edge background image and a post-edge image, and then obtaining the ratio

images of pre- and post-edge windows, which can give a qualitative elemental

distribution. Three-window method is acquiring three images from electrons in

selected energy windows: two pre-edge windows used to calculate the background

fit and one post-edge window in which the extrapolated background is subtracted

from the total intensity to leave the edge intensity. This method can give quantita-

tive images of the distribution of specific elements.

Alternative operation modes of use allow for TEM to observe modulations in

chemical composition, crystal orientation, and electronic structure.

5 Key Research Findings

5.1 Application of Diffraction Contrast Imaging in Nanomaterials

TEM image contrast arises because of the scattering of the incident beam by the

specimen. For core-shell structure materials, the components of core and shell are

different. As a result, it will produce a strong contrast in the BF image. Through

the BF image, we can determine the formation of core-shell structure and measure

the thickness of core and shell. In this section, we will discuss the application of

TEM BF image for characterization of core-shell nanomaterials in detail.

5.1.1 Silica-Coated Core-Shell Nanomaterials
The silica coating has several advantages. The most basic advantages of the silica

coating compared with other inorganic (metal or metal oxide) or organic coatings

are as follows: It reduces the bulk conductivity and increases the suspension

stability of the core particles. In addition, silica is the most chemically inert material

available, and it can block the core surface without interfering the redox reaction at

the core surface. Silica coatings can also be used to modulate the position and

intensity of the surface plasmon absorbance band since silica is optically transpar-

ent. As a result, chemical reactions at the core surface can be studied spectroscop-

ically. Therefore, researchers are more interested in the silica coatings on different

inorganic core materials such as metals [83–94], binary inorganic composites

[95–97], metal oxides [98–101], and metal salts [88, 102–106] than any other

combination.

According to the literature, the shell thickness from 8 to 100 nm can be

controlled by adjusting the experimental parameters such as coating time, concen-

tration of reactants, catalyst, and other precursors [83, 84, 87]. Figure 6.3 shows

Au@SiO2 nanoparticles where the shells have different thicknesses [107]. These

nanoparticles were prepared in the following steps. Gold colloids were homoge-

neously coated with silica using the silane coupling agent (3-aminopropyl)-

trimethoxysilane as a primer to render the gold surface vitreophilic. After the

formation of a thin silica layer in aqueous solution, the particles were transferred
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into ethanol for further growth using the Stöber method [108]. From the BF image,

we can find that the core is darker compared with the shell, mainly because the gold

core has a stronger scattering ability than the silica shell. The image contrast is so

clear that we can easily measure the size of core and shell through the image. The

gold core is�15 nm in diameter and a silica shell thickness ranges from 8 to 28 nm.

CoFe2O4 receives much attention in the biomedical field for its high magnetic

anisotropy and saturation magnetization which give rise to suitable magnetic

behavior at room temperature, but the presence of cobalt makes it potentially

toxic [109, 110]. To protect magnetic nanoparticles, encapsulation both in poly-

meric and inorganic matrices has been proposed [111], while silica has been most

often used [112]. Spherical nanoparticles of surfactant-coated CoFe2O4 (core) were

prepared through thermal decomposition of metal acetylacetonates in the presence

of a mixture of oleic acid and oleylamine and uniformly coated with silica shell by

using tetraethyl orthosilicate and ammonia in a micellar solution (core/shell) [113].

TEM analysis of core-shell nanoparticles evidenced the high homogeneity of the

coating process in producing single core-shell nanoparticle with a narrow size

distribution. TEM images (Fig. 6.4a, b) in BF mode show the formation of spherical

core-shell structures with an average overall size of 30 nm and a polydispersity of

5 % (Fig. 6.4c) with a single magnetic core in the center of the sphere. TEM image

in dark-field mode (Fig. 6.4d) confirms the high degree of crystallinity of the core

and the amorphous nature of the shell. The assembling of the nanoparticles appears

to be in the form of hexagonal close packing. In some cases a deviation from

spherical shape can be observed (Fig. 6.4b); this can be caused by a slight defor-

mation of the particles along the close packing direction.

In some cases the density/concentration of one shell is different. Since the shells

with different density/concentration own different scattering ability which will

show different TEM image contrast, TEM BF imaging technique is also applied

to characterize such kind of materials. Ge et al. [42] prepared nanoparticles in

a facile and scalable way, and the procedure was outlined in Fig. 6.5. A monolayer

of the metal nanocatalyst was first immobilized on the surface of silica colloids by

using coupling agents. The core-satellite structures were then coated with another

Fig. 6.3 TEM images of Au@SiO2 nanoparticles. The core dimension is �15 nm and the silica

shells are around 8, 18, and 28 nm, respectively. Scale bars are 50 nm in all images [107]

(Reprinted with permission from ref 107. Copyright 2002 Wiley-VCH)
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layer of silica of the desired thickness to fix the position of metal nanoparticles.

Finally, a “surface-protected etching” technique was applied to make the outer shell

mesoporous, exposing the catalyst particles to outside chemical species [114]. To

improve the recyclability, they also incorporated a superparamagnetic Fe3O4 core at

the center of the initial silica colloids [115, 116]. The etching process can be well

controlled by monitoring the transmittance of the colloidal solution. With an
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Fig. 6.4 TEM data of CoFe2O4-SiO2 core-shell nanoparticles. (a) BF image at low magnification.

(b) BF image at high magnification. (c) Particle size distribution. (d) Dark-field image [113]

(Reprinted with permission from Ref. [113]. Copyright 2010 American Chemical Society)
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increase of etching time, more silica materials dissolved in the form of soluble

silicate oligomers, and accordingly the transmittance increased. Figure 6.6 shows

typical TEM BF images of five Fe3O4/SiO2/Au/por-SiO2 composite colloids col-

lected after 50, 65, 85, 95, and 105 min of etching [42]. It is clear that the thickness

of shell shows no apparent change as time goes on, but the contrast between core

and shell tends to be sharp. This is due to the fact that the shell is composed of

a porous structure which has a weak scattering ability. Consistently, the transmit-

tance of the solution increases from 29 % to 45 % with a near-linear dependence on

the reaction time (Fig. 6.6f).

As an alloying electrode material, Si has attracted much attention because of its

highest known theoretical charge capacity. One interesting behavior for an amor-

phous Si (a-Si) is that it reacts with lithium (Li) at slightly higher potential

(�220 mV) [117, 118] than crystalline Si (c-Si) does (�120 mV) [119, 120],

which leads to an idea of using c-a core-shell Si nanowires (NWs) as an anode

Fe3O4 SiO2

SiO2

Au sol

Au

TEOS NaOH

Fig. 6.5 Synthetic procedure of porous silica protected Fe3O4/SiO2/Au composite structures [42]

(Reprinted with permission from Ref. [42]. Copyright 2008 Wiley-VCH)

Fig. 6.6 (a–e) TEM BF images of Fe3O4/SiO2/Au/por-SiO2 composite colloids collected after

different etching times: (a) 50, (b) 65, (c) 85, (d) 95, and (e) 105 min. (f) Changes in transmission

intensity of the solution (l ¼ 1,000 nm) with etching time [42] (Reprinted with permission from

Ref. [42]. Copyright 2008 Wiley-VCH)
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material. When limiting the charging potential, it should be possible to utilize only

the amorphous shell material for Li storage while preserving the crystalline core as

mechanical support and efficient electron transport pathways, as indicated in

Fig. 6.7a. Figure 6.7 shows c-a core-shell Si NWs grown directly on stainless

steel (SS) current collectors by a simple one-step synthesis. Cui et al. [121] found

that large flow, high pressure, and high temperature promote the yield of c-a core-

shell Si NWs on SS substrates. As shown in Fig. 6.7b, the thickness of amorphous

shell increases linearly with growth time, while the core radius does not change.

This suggests that c-Si cores grew first and a-Si was subsequently coated onto the

cores from SiH4 decomposition. Figure 6.7c–h shows the TEM images, selected

SAED patterns, and HRTEM images of Si NWs grown at 485 �C for different

growth times. After 10 min of growth, the NWs were mostly single crystalline

(Fig. 6.7c, d) with little amorphous shell. After 20 min, a thick layer of

amorphous shell was observed (Fig. 6.7e, f), which became even thicker after

40 min (Fig. 6.7g, h). Consistently, the SAED pattern in Fig. 6.7g shows amorphous

diffraction ring which is not found in Fig. 6.7c.

5.1.2 Bimetallic Core-Shell Nanomaterials
Bimetallic core-shell and alloy nanoparticles have received intense attention, owing

to their novel optical, electronic, magnetic, and catalytic properties different from

those of individual metals [122–124]. Since these properties strongly depend on

composition, shape, and size of the nanoparticles, extensive studies have been

focused on the controlled synthesis of these nanoparticles with specific composi-

tions and morphologies [125–140]. For the bimetallic core-shell nanostructures,

a direct approach to determine their structure is TEM because a clear boundary

between core and shell can be distinguished by bright or dark contrast in the

TEM BF image. HAADF and HRTEM techniques can also be employed to

characterize bimetallic core-shell structure. We will introduce them in detail in

the following section.

Tsuji et al. [141, 142] synthesized shape-dependent Au@Ag core-shell

nanocrystals successfully by using a two-step method. In order to understand

growth mechanisms of these Au@Ag core-shell particles, they added Au seeds

with different shapes into AgNO3/DMF solution at [AgNO3]/[HAuCl4] molar ratios

of 1, 9, and 18, respectively. From the TEM BF images (Fig. 6.8), we can observe

a mixture of Au@Ag core-shell nanocrystals with various shapes. Obviously,

truncated-triangular and hexagonal plate-like Ag shells overgrew from triangular

and hexagonal Au cores, respectively, whereas decahedral and octahedral Ag shells

overgrew from the decahedral and octahedral Au cores, respectively. In addition, it

can be clearly seen that the thickness of shell increased over [AgNO3]/[HAuCl4]

molar ratio. At low [AgNO3]/[HAuCl4] molar ratio of 1, thin triangular and

hexagonal shells are epitaxially formed over the triangular and hexagonal

Au plate cores (Fig. 6.8a, b). With an increase of the [AgNO3]/[HAuCl4] molar

ratio, larger triangular, truncated-triangular, or hexagonal Ag shells are overgrown.

The edge length of Ag shells enlarges with an increase of the molar ratio for the

252 Y. Wang and C. Wang



Lithiation

T
hi

ck
ne

ss
 (

nm
)

60A B

40

20

0

10 20
Time (minute)

30 40

Fig. 6.7 (a) Schematic illustration of the lithiation of the c-a Si core-shell NWs grown on

a stainless steel substrate. (b) Statistics of the core radius (red) and shell thickness (green) versus
growth time. The growth temperature was 485 �C. (c) TEM and SAED images of NWs grown for

10 min. (d) HRTEM image of a nanowire grown for 10 min. (e) TEM and SAED images of NWs

grown for 20 min. (f) HRTEM images of a nanowire grown for 20 min. (g) TEM and SAED

images a nanowire grown for 40 min. (h) HRTEM images of a nanowire grown for 40 min [121]

(Reprinted with permission from Ref. [121]. Copyright 2009 American Chemical Society)
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[AgNO3]/[HAuCl4]. At the highest [AgNO3]/[HAuCl4] molar ratio of 18, Ag shell

edges can achieve about three times longer than those of plate-like Au cores, but

Au cores are still observed easily in a constant contrast. This indicates that the

Au@Ag core-shell particles have a plate-like shape. In order to further confirm

the crystal structure of triangular and hexagonal particles, TEM imaging has been

carried out from different view angles within�16� (Fig. 6.9). No significant change
can be found in the bright and dark contrast of these triangular and hexagonal

particles.

5.1.3 Hollow Core-Shell Nanomaterials
As a unique class of structured materials, hollow colloidal particles have attracted

growing research efforts owing to their technological importance in a wide range of

applications [53, 143–148]. Templating against colloidal particles is probably the

most effective and general method for preparation of hollow particles, especially

for studies in which a narrow size distribution is required, i.e., self-assembly of

photonic crystals. Monodisperse latex and silica spheres are commonly used as

Au core Au @ Ag

50 nm

50 nm

50 nm

50 nm

a

b

c

d

1 9 18
[Ag] / [Au] ratio

Fig. 6.8 TEM BF images of the Au cores synthesized by a microwave heating for 3 min and the

Au@Ag nanocrystals prepared at different [AgNO3]/[H2AuCl4] molar ratios by an oil-bath heating

[142] (Reprinted with permission from Ref. [142]. Copyright 2008 American Chemical Society)
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colloidal templates because they are readily available in a wide range of sizes

[149–156]. In this section we will introduce some kinds of hollow core-shell

nanomaterials which are characterized by TEM.

Figure 6.10 shows hollow core-shell nanoparticles which were designed for

a double-electrode nanomaterial composed of a V2O5 matrix containing a low

weight ratio of SnO2 nanocrystals (10 % or 15 %) [45]. In this nanostructured

composite electrode material, SnO2 nanocrystals are homogenously distributed in

a double-shelled V2O5 hollow nanocapsule. The V2O5-SnO2 double-shelled

nanocapsules were synthesized by a solvothermal treatment and final heat treatment

in air. The SEM image (Fig. 6.10a) of the V2O5-SnO2 nanocapsules indicates that

these nanocomposites can be produced in large scale with an average diameter of

550 nm without aggregation. The inset of Fig. 6.10a shows a schematic structure of

one individual double-shelled nanocomposite capsule. The red spheres represent

SnO2 nanocrystals, and the green double shells represent the V2O5 matrix. The

microstructure and components of these nanocapsules were further studied by

means of TEM and SAED. Figure 6.10b shows a TEM BF image of double-

shelled V2O5-SnO2 nanocapsules consisting of nanocrystals. A typical double-

shelled nanocapsule is shown in Fig. 6.10c, which clearly confirms that these

hollow nanocapsules have two thin shells. The diameter of the inner hollow

nanocapsules is about 430 nm, and the inner cavity is around 250 nm. The thickness

of the inner and outer walls can be determined to be �90 nm through TEM BF

image in Fig. 6.10d. To investigate the distribution of SnO2 in the shell, HRTEM

characterization was carried out. The micrographs in Fig. 6.10e and g are HRTEM

images taken from the wall edge of the nanocapsules shown in Fig. 6.10d at

different locations. Figure 6.10e shows a HRTEM image of a single nanocrystal

that reveals the (310) lattice planes of V2O5. Figure 6.9f and g reveals the (110) and

(101) lattice planes of SnO2, respectively. These HRTEM images confirm that

SnO2 nanocrystals are homogeneously distributed in the V2O5 matrix (double

shell). The polycrystalline nature of these nanocapsules was also confirmed

by the SAED measurements (Fig. 6.10h). The formation mechanism of the

Fig. 6.9 TEM BF images of hexagonal Au@Ag nanocrystal observed from different view angles

[142] (Reprinted with permission from Ref. [142]. Copyright 2009 American Chemical Society)
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double-shelled hollow nanocapsules is a combination of two types of Ostwald

ripening processes (both inward and outward ripening cases).

In order to understand the growth mechanism of double-shelled V2O5-SnO2

hollow nanocapsules, Liu et al. [45] investigated the morphology evolution of the

intermediates involved in the formation process. Two intermediates obtained at

5 and 10 h are shown in Fig. 6.11. With a short reaction time (5 h, Fig. 6.11a), the

Fig. 6.10 (a) SEM image of V2O5-SnO2 double-shelled nanocapsules. The inset shows a

schematic structure of a double-shelled nanocapsule. The red spheres represent SnO2 nanocrystals,

and the green double shells represent the V2O5 matrix. (b) Low-magnification TEM image.

(c, d) High-magnification TEM images showing that the porous shells consist of a great deal of

nanocrystals and have thicknesses of R1 � R2 90 nm. (e, g) HRTEM images revealing lattice

planes of the V2O5 matrix and SnO2 nanocrystals. (h) SAED pattern taken from individual

nanocapsules, which shows that these nanocapsules are polycrystalline [45] (Reprinted with

permission from Ref. [45]. Copyright 2009 American Chemical Society)
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crystallite aggregates gave a spherical morphology. When the reaction time was

extended to 10 h, these solid spheres were converted into solid core-shell particles

(Fig. 6.11b, c), and finally this solid core became hollow to form double-shelled

hollow nanocapsules (Fig. 6.11d). They concluded that the formation mechanism of

the double-shelled hollow nanocapsules is a combination of two types of Ostwald

ripening processes (both inward and outward ripening cases). Ostwald ripening

firstly took place at the surface of solid spheres, which differed from the previous

simpler outward ripening process. Following this inward ripening process, the solid

core of core-shell spheres ripened outward furthermore, and finally the double-

shelled nanocapsules were achieved.

Fig. 6.11 TEM images show the formation process of V2O3-SnO2 composite as double-shelled

hollow nanocapsules. (a) 5 h, solid V2O3-SnO2 composite nanospheres. (b, c) 10 h, core-shell

intermediates. (d) 24 h, double-shelled V2O3-SnO2 hollow nanocapsules [45] (Reprinted with

permission from Ref. [45]. Copyright 2009 American Chemical Society)
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The rattle-type nanoarchitectures, a special class of core-shell particles, have

been extensively studied because of their unique structural properties and potential

applications. These architectures possess spherical shells and solid cores having

a variable space between them. Some rattle-type particles such as Au-polymer,

SiO2-Fe2O3 nanoball, and Cu-silica have been synthesized [157, 158]. Zhou et al.

[159] fabricated rattle-type carbon-alumina core-shell spheres with large cavities

and proposed a formation mechanism for them.

The time-dependent evolution of morphology was elucidated by TEM and it is

shown in Fig. 6.12. The alumina-carbon composite microspheres were obtained via

hydrothermal treatment before calcination. After calcination at 450 �C, the carbon
transforms into carbon dioxide, meanwhile the loosely adsorbed Al3+ ions turn into

dense Al2O3 network forming the shells of the rattle-type spheres [160]. A closer

observation of the TEM images reveals that small cavities exist between the carbon

cores and alumina shells resulting from the shrinkage during the calcination

process. The formation mechanism of the rattle-type carbon-alumina particles

was described as a two-step process. First, the carbohydrate used as a carbon

precursor is subjected to dehydration, condensation, polymerization, and aromati-

zation [161] and finally carbon spheres are formed. The surface of these carbon

spheres is hydrophilic because it contains a considerable amount of reactive

Carbon CarbonCarbon

Al2O3Al2O3

Fig. 6.12 Schematic illustration of the formation of rattle-type carbon-alumina particles; TEM

images represent the samples obtained by calcination at 450 �C for 0, 0.5, and 2 h, respectively

[159] (Reprinted with permission from Ref. [159]. Copyright 2012 American Chemical Society)
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oxygen-containing group. Therefore, Al3+ ions are easily attached to the surface of

the carbon spheres. Second, 2 h calcinations result in the partial removal of carbon

cores, and simultaneous densification and cross-linking of the incorporated alumi-

num ions in the shells, which leads to the formation of rattle-type structures.

Most work in this area was focused on spherical shape, and the resulting hollow

spheres are generally single shelled. However, Lou et al. [46] reported a simple

synthesis of double-walled SnO2 ellipsoidal hollow nanoparticles with movable

a-Fe2O3 cores. This method is based on hydrothermal shell-by-shell deposition of

polycrystalline SnO2 on ellipsoidal a-Fe2O3/SiO2 nanotemplates. Firstly, a-Fe2O3

spindles were coated with a SiO2 layer to produce ellipsoidal a-Fe2O3/SiO2 core-

shell particles (Fig. 6.13a). Then, two polycrystalline SnO2 layers were deposited

on the surface of the a-Fe2O3/SiO2 core-shell particles through hydrothermal

method. From Fig. 6.13c, a black core and double shell can be clearly distinguished.

After annealing at 550 �C, the sandwiched silica layer is dissolved in sodium

Fig. 6.13 TEM BF images of (a) a-Fe2O3/SiO2 nanotemplates, (b) a-Fe2O3/SiO2/SnO2,

(c) a-Fe2O3/SiO2/(SnO2)2, (d) double-walled SnO2 nano-cocoons with movable a-Fe2O3 spindles

[46] (Reprinted with permission from Ref. [46]. Copyright 2007 Wiley-VCH)
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hydroxide solution to produce double-walled SnO2 nano-cocoons (Fig. 6.13d). As

can be seen from the image, most nano-cocoons encapsulate only one a-Fe2O3

spindle which is usually not located in the center of the cocoon. It is therefore

believed that the encapsulated a-Fe2O3 spindle is free to move within each cocoon

at least when filled with liquid.

5.2 Application of High-Angle Annular Dark-Field Imaging
in Nanoparticles

The HAADF approach can detect the variation in chemical composition of the

multicomponent sample with an atom-level resolution due to the enhanced contrast

difference of various elements (Z-contrast imaging). The contrast of HAADF

images is strongly dependent on the average atomic number of the scatterer

encountered by the incident probe, not strongly affected by dynamical diffraction

effects and defocus. Spatial resolution is limited by the size of the focused incident

probe. So HAADF is suitable for characterization of core-shell nanomaterials. In

the following we will discuss the application of HAADF images for characteriza-

tion of core-shell nanomaterials, especially core-shell structured bimetallic

nanoparticles [43, 162–170].

5.2.1 Au@Cu2O Nanoparticles
Figure 6.14a and b shows typical HAADF images of the Au/Cu2O nanocube

heterostructures formed after heating copper grid in ambient environment. TEM

observations show that nearly all the gold nanoparticles (>95 %) near the bars of

copper grid have transformed into core-shell heterostructures. It can be clearly seen

from Fig. 6.14a, b that the core is much brighter than the shell, which indicates that

the core has a higher atomic number than that of the shell. Combined with energy-

dispersive X-ray spectroscopy (EDS), the chemical compositions of the core and

shell are determined to be Au and Cu2O, respectively. In addition, there are two

kinds of morphologies: one being a nearly perfect core-shell nanocube

heterostructure and the other being formed through coalescence of two or more

small particles (examples of the latter are indicated by white arrows in Fig. 6.14a).

These two morphologies have nearly equal volume fractions. The edge dimensions

of these heterostructures range from 15 to 45 nm, and the sizes of the cores range

from 3.2 to 7.5 nm. TEM examinations of more than 200 core-shell heterostructures

show that the edge length of a nanocube is proportional to the diameter of the

particles at the core. The linear relationship between the core size and the edge

length of the nanocubes is plotted in Fig. 6.14c. The linear relationship indicates

that the gold core controls the growth of Cu2O shell, acting as a template and

catalyst. Figure 6.14d shows the SAED patterns taken from the pure Cu2O

nanocubes (the left half) and the Au-Cu2O core-shell nanocube heterostructures

(the right half). Due to the lattice parameter difference between Cu2O (a¼ 4.269 Å)

and gold (a ¼ 4.09 Å), it can be seen that some rings (i.e., 111) in the right half are

a little broadened.
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5.2.2 Metal@Metal Nanoparticles
Wu et al. [169] used HAADF techniques to observe the morphology of Au@Ag

core-shell nanoparticles. As the atomic number difference between Ag(47) and Au

(79) is sufficient, the Z-contrast imaging should be capable of distinguishing Au and

Ag within the Au@Ag nanoparticles [171, 172]. The enlarged HAADF image in

Fig. 6.15 shows that the Au core is brighter than Ag shell, and the Au@Ag core-

shell nanoparticles could have various shapes such as cube, triangle, decahedron,

and nanorod. Through careful analysis of Fig. 6.15, they found that the cubic Ag

shells can form on Au cores with different shapes such as octahedral (Fig. 6.15a),

truncated octahedral (Fig. 6.15b), and cubic (Fig. 6.15c). Single-twinned

bi-triangular or bi-hexagonal Au cores predominated by {111}-type facets can

epitaxially evolve into the single-twinned inverted bi-triangular Ag shells

predominated by {100}-type facets (Fig. 6.15d, e). Decahedral Ag shells

(Fig. 6.15f) are epitaxially overgrown from the decahedral Au cores and Ag shell

Fig. 6.14 (a, b) Typical HAADF images of core-shell nanocube heterostructures, showing two

types of morphologies. (c) The relationship between the core sizes and the edge lengths of the

nanocubes. (d) SAED patterns taken from the pure Cu2O nanocubes and the Au-Cu2O nanocube

heterostructures [162] (Reprinted with permission from Ref. [162]. Copyright 2008 Elsevier Ltd.)
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nanorods (Fig. 6.15g) with a five-twinned cross section from the Au nanorod cores

with the five-twinned cross section.

Serpell et al. [170] presented a new proof-of-concept method to synthesize core-

shell nanoparticles in which ligand-based supramolecular forces are used to ensure

Fig. 6.15 The HAADF-STEM images of the individual Au@Ag nanoparticles with various

shapes and their evolution models from different shaped Au core [169] (Reprinted with permission

from Ref. [169]. Copyright 2009 IOP Publishing Ltd.)
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surface segregation of the shell metal onto the preformed core before its reduction.

They demonstrated the principle through the synthesis of Au@Pd, Pd@Au, Pt@Pd,

and Pd@Pt nanoparticles using an anion coordination protocol. Conventional TEM

instruments provide insufficient atomic number sensitivity for the determination of

core-shell structure within the nanoparticles. Figure 6.16a, c is HRTEM images of

Au@Pd and Pd@Au nanoparticles in which the lattice fringe images and the

boundary between core and shell are not very clear. Therefore, aberration-corrected

STEM with a HAADF detector was used to image the precise architectures of

individual nanoparticles [173, 174]. The examination of Fig. 6.16b and d using

a JEOL-2100F TEM/STEM with a probe correction and �0.1 nm point resolution

clearly reveals core-shell morphology. The intensity is directly related to the

square of the atomic number of the elements, making Au atoms appear brighter

Fig. 6.16 HRTEM and aberration-corrected HAADF-STEM images of Au@Pd nanoparticles

(a, b) and Pd@Au nanoparticles (c, d) [170] (Reprinted with permission from Ref. [170].

Copyright 2011 Nature Publishing Group)
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relative to Pd. The image of Fig. 6.16b strikingly shows the Au core surrounded by

a Pd coating at atomic resolution, with a regular crystalline structure. The Pd@Au

nanoparticles appear to have a less regular crystalline structure than the Au@Pd

nanoparticles, suggesting a modestly defined core-shell structure for this sample

(Fig. 6.16d). This clearly illustrates that the structure within the nanoparticles can

be modified by varying the reaction conditions.

Using aberration-corrected scanning transmission electron microscopy (STEM)

and electron energy-loss spectroscopy (EELS) line profiles with Ångstrom resolu-

tion, Lin et al. [175] studied the structural changes of individual nanoparticles.

After electrochemical dealloying, all of the dealloyed Pt-Ni nanoparticles revealed

Pt-rich shells surrounding Pt-Ni alloy cores, as shown in Fig. 6.17. The EELS data

evidence a distinct difference in the Ni distribution across the alloy cores.

Figure 6.17a–d shows a typical high-resolution HAADF-STEM image and line

scan EELS spectra across several nanoparticles of the D-PtNi catalyst. The Ni

composition shows a monotonic decrease from the particle center to the particle

surface. Contrary to that, the D-PtNi3 catalyst (Fig. 6.17e–h) revealed an unusual Ni

composition profile across the core, showing a previously undiscovered spherical

enrichment of Ni at the near surface. Figure 6.17f, g presents two perpendicular

EELS line scan profiles across the nanoparticle shown in Fig. 6.17e. Two off-center

maxima of Ni intensity are clearly discernible in both directions, which coincide

with the inflection points in the Pt intensity profiles. In other words, a Ni-enriched

inner shell is formed near the surface and sandwiched between a Ni-poorer core and

a Pt outer shell. This Ni-enriched inner shell is found to be universal in the D-PtNi3
catalyst (Fig. 6.17h). In D-PtNi5 catalyst (Fig. 6.17i–l), it is interesting to note that

the Ni-enriched inner shell is located closer to the surface compared with D-PtNi3.

Figure 6.17j, k again shows two perpendicular EELS line scans from the nanopar-

ticle shown in Fig. 6.17i, which display the Ni compositional maxima located closer

to the surface compared with D-PtNi3 catalyst.

Kim et al. [176] also used HAADF-STEM and EELS line profiles to study the

structural changes of individual core-shell nanoparticles. Figure 6.18 shows the

HAADF-STEM images and the cross-sectional compositional line profiles mea-

sured at the central (left panels) and edge parts (right panels) of Pt0.97Ag0.03,

Pt0.95Ag0.05, Pt0.90Ag0.10, Pt0.70Ag0.30, and Pt0.0Ag1.0 nanoparticles. It can be seen

that all the Pt@Ag particles were composed of Pt and Ag atoms. A closer exam-

ination reveals that the line profiles for Pt0.97Ag0.03, Pt0.95Ag0.05, Pt0.90Ag0.10, and

Pt0.70Ag0.30 particles (Fig. 6.18a–d) are of the Pt core-Pt/Ag alloy shell types, while

that of Pt0.00Ag1.00 particles are of a Pt core-Ag shell type (Fig. 6.18e). It is obvious

that not all, but a substantial amount of seed Pt, has taken part in the formation of

Pt/Ag alloys, except in the case of Pt0.00Ag1.00 nanoparticles.

5.3 Application of High-Resolution Transmission Electron
Microscopy Imaging in Nanoparticles

HRTEM could provide a lot of useful information about the sample, such as

crystallographic orientation, defects, and interfaces at an atomic scale.

264 Y. Wang and C. Wang



N
or

m
al

iz
ed

 In
te

ns
ity

N
or

m
al

iz
ed

 In
te

ns
ity

N
or

m
al

iz
ed

 In
te

ns
ity

N
or

m
al

iz
ed

 In
te

ns
ity

N
or

m
al

iz
ed

 In
te

ns
ity

N
or

m
al

iz
ed

 In
te

ns
ity

N
or

m
al

iz
ed

 In
te

ns
ity

N
or

m
al

iz
ed

 In
te

ns
ity

N
or

m
al

iz
ed

 In
te

ns
ity

Distance / nm Distance / nm Distance / nm

Distance / nm Distance / nm Distance / nm

Distance / nm Distance / nm Distance / nm

0

Ni
ba

e

i

c d

f g h

j k l

Pt

0 105 0 105 0 105

0 105 0 105 0 105

0 05 5 5

Fig. 6.17 High-resolution HAADF-STEM images and EELS compositional line profiles of individual D-PtNi (a–d), D-PtNi3 (e–h), and D-PtNi5 (i–l)
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Fig. 6.18 HAADF-STEM images and cross-sectional compositional line profiles measured at

the central (left panels) and edge parts (right panels) of (a) Pt0.97Ag0.03, (b) Pt0.95Ag0.05,

(c) Pt0.90Ag0.10, (d) Pt0.70Ag0.30, and (e) Pt0.0Ag1.0 nanoparticles, each of which was grown on

Pt seed particles [176] (Reprinted with permission from Ref. [176]. Copyright 2011 American

Chemical Society)
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For core-shell structured nanomaterials, HRTEM images can illustrate the interface

between core and shell. In the following, we will discuss the application of HRTEM

image for characterization of core-shell nanomaterials [162, 177–184].

5.3.1 Au@Cu2O Nanoparticles
In order to investigate the microstructure of Au@Cu2O core-shell nanocubes,

especially the interfaces between the gold nanoparticles and Cu2O, Wang et al.

[162] carried out systematic characterization of these nanoparticles by HRTEM.

Most of the core-shell nanocube heterostructures demonstrate specific orientations

of Au particle in Cu2O cube. Figure 6.19 shows two major orientation relationships

normally observed in these heterostructures: (a) [001]Au//[001]Cu2O, {100}Au//

{100}Cu2O and (b) [011]Au//[011]Cu2O, {111}Au//{111}Cu2O. Contrary to the

Fig. 6.19 (a) [001] zone-axis HRTEM image of a nearly perfect Au-Cu2O nanocube

heterostructure. (b) [011] zone-axis HRTEM image of a nearly perfect Au-Cu2O nanocube

heterostructure. (c) and (d) HRTEM images of coalesced Au-Cu2O nanocube heterostructures

[162] (Reprinted with permission from Ref. [162]. Copyright 2008 Elsevier Ltd.)
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HAADF images (Fig. 6. 14 in Sect. 5.2.1), the gold nanoparticle core has a dark

contrast, while the Cu2O shell has a light contrast. Figure 6.19a shows an example of

a heterostructure in which gold nanoparticle and Cu2O have an orientation relation-

ship of [001]Au//[001]Cu2O, {100}Au//{100}Cu2O. However, the lattice is a little

distorted around the interface due to the lattice misfit of about 4 % between Au and

Cu2O. Figure 6.19b shows an example of a heterostructure in which gold nanoparticle

and Cu2O have an orientation relationship of [011]Au//[011]Cu2O, {111}Au//{111}

Cu2O. The {111} lattice misfit between Au and Cu2O is about 2.3 %, which resulted

in the lattice distortion around the interface. As mentioned earlier, some

heterostructures are formed through coalescence of two or more small particles.

Two examples are shown in Fig. 6.19c and d. Figure 6.19c shows an HRTEM

image of a nanocube heterostructure formed through coalescence of two Cu2O

particles with a triangular shape. The boundary between two small particles is still

evident. The final shape of this heterostructure is close to cubic. Figure 6.19d shows an

HRTEM image of two coalesced particles with a trapezoid shape. The two particles

coalesce through twinning, and the twinning configuration is indicated in Fig. 6.19d.

Due to irregular shapes of the small particles, the final shape of the heterostructures is

no longer cubic. The twinning configuration is thought to reduce the boundary energy

and make the final structure more stable. It is believed that the presence of oxygen in

the environment is crucial for the formation of Au-Cu2O core-shell nanocube

heterostructures since it can oxidize the copper into cuprous oxide at 300 �C.

5.3.2 PbTe/CdTe Core-Shell Nanoparticles
Core-shell quantum dots (QDs) are heterogeneous nanoparticles composed of

an inorganic core enveloped by at least one inorganic shell of a second material.

PbS/CdSe core-shell QDs can be prepared by cation exchange method [185].

Lambert et al. [183] demonstrated that the combination of the PbTe rock salt

structure and the CdTe zinc blende structure allows for the direct observation of

the core and the shell with HRTEM. This enables a direct visualization of the

crystallographic properties of the PbTe/CdTe QDs and an evaluation of the cation

exchange reaction. They observed a seamless match between the PbTe and CdTe

crystal lattices and found that the formation of {111} terminated PbTe cores was

favored. This intrinsic anisotropy of the exchange process leads to a strong increase

in the heterogeneity of the cores formed, not only in terms of core size and shell

thickness but also at the level of shape and position of the core.

Both PbTe and CdTe have a cubic structure [186] with almost no lattice

mismatch (Fig. 6.20a, b). Since the appearance of the crystal lattice in HRTEM

not only depends on the crystal orientation but also on the defocus, the same crystal

plane may yield a different lattice image for both materials. Therefore, it is

necessary to carry out a systematic HRTEM simulation. The simulated HRTEM

images are shown in Fig. 6.20. When viewed along the <100> direction, PbTe and

CdTe may yield two types of lattice images with a square symmetry (Fig. 6.20). The

first has a lattice constant of 3.23 Å for PbTe (Fig. 6.20c) or 3.24 Å for CdTe

(Fig. 6.20d); the second is tilted by 45� and has a lattice constant of 2.29 Å for both

PbTe (Fig. 6.20e) and CdTe (Fig. 6.20f).
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Figure 6.21 shows that resolved core-shell lattice images can be obtained in

HRTEM for specific orientations of the particles. Viewed along the <100> direc-

tion, Fig. 6.21a represents an image where a core exhibits a 3.21 Å square pattern

and a shell demonstrates a 2.34 Å square pattern. Both patterns are tilted by 45� and
match seamlessly. By comparison with the simulated images, the core is deter-

mined to be PbTe and the shell is CdTe.

Along the <211> direction, PbTe and CdTe yield a rectangular lattice image

with 2.29/1.94 Å and 3.89/2.29 Å unit cells, respectively. Figure 6.21b shows an

image where both lattice images can be seen.

Along the <111> direction, the lattice images of both PbTe and CdTe show

a hexagonal pattern with an almost identical lattice constant of 2.80 and 2.81 Å,

respectively. Figure 6.21c gives an example of a PbTe/CdTe core-shell QD that

exhibits this pattern. It appears as a simple, uniform particle with a continuously

resolved lattice and no indication of any core-shell structure. This result is typical

for all particles viewed along the <111> direction. It shows that the <111> axes

of both core and shell point in the same direction, with a coherent alignment of

{111} planes.

5.3.3 Zn/ZnO Core-Shell Nanobelts
ZnO nanomaterials can be used for fabricating nanolasers [187], field-effect tran-

sistors [188], gas sensors [189], nanocantilevers [190], and nanoresonators [191].

Wang et al. [184] synthesized heterostructured metal-semiconductor Zn-ZnO core-

shell nanobelts successfully by a solid-vapor decomposition process [192]. The

microstructure of epitaxial Zn-ZnO nanobelt has been studied by TEM.
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Fig. 6.20 Viewed along the <100> direction (a, b) structural models of PbTe and CdTe.

(c, e) HRTEM simulation images of PbTe under different defocus. (d, f) HRTEM simulation

images of CdTe under different defocus [183] (Reprinted with permission from Ref. [183].

Copyright 2009 American Chemical Society)
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Figure 6.22a is a low-magnification TEM image of the nanobelt, displaying

a Zn-ZnO core-shell structure. The SAED pattern (Fig. 6.22c) indicates two sets of

single-crystal diffraction spots, which are indexed to be [0001] Zn and [0001] ZnO

with an epitaxial orientation. The weak reflection spots were produced by double

diffractions from the core and the shell. Structurally, both Zn and ZnO have

hexagonal crystal structure [193] with lattice constants of a ¼ 2.665 Å, c ¼
4.947 Å and a ¼ 3.249 Å, c ¼ 5.206 Å, respectively, and the mismatch between

the two in 1010
� �

is about 21.9 %. Therefore, the interference between the Bragg

reflections from the two crystals produces Moiré fringes in the image, which are

apparent in the HRTEM image in Fig. 6.22b at the region where the Zn core and the

ZnO shell overlaps. However, in the region where there is only a ZnO shell,

the HRTEM image shows clear lattice structure. The boundary between the Zn

core and the ZnO shell is fairly sharp.

5.3.4 Pt@Pd Core-Shell Nanoparticles
Nguyen et al. [194] synthesized Pt@Pd core-shell nanoparticles and studied the

structure of individual core-shell nanoparticles by HRTEM. Figure 6.23 shows the

HRTEM images of Pt@Pd core-shell nanoparticles with the most characteristic

polyhedral morphology and shape. The thin Pd shells grown over the Pt cores have

led to form the core-shell configuration with the well-controlled size in the range of

about 15–25 nm. The thickness of the coated shell was well controlled in the range

of 1–3 nm. The Pt@Pd core-shell nanoparticles also show characteristic polyhedral

morphology and shape, typically such as tetrahedral, octahedral, and cubes. Most of

the Pt@Pd core-shell nanoparticles exhibit the low-index facets of {111}, {110},

and {100} planes.

5.4 Application of Elemental Mapping in Nanowires

Elemental mapping is based on inner-shell ionization of elements present in the

sample giving rise to characteristic signals in well-defined energy-loss regions [195].

Fig. 6.21 HRTEM images of PbTe/CdTe core-shell particles in the (a) <100>, (b) <211>, and

(c) <111> direction. A core-shell structure is observed only in the <100> and <211> direction

[183] (Reprinted with permission from Ref. [183]. Copyright 2009 American Chemical Society)
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It is a valuable tool for core-shell materials characterization. The applications of

elemental mapping have spanned the range of research from biology to polymer

materials [44, 196–199]. Elemental mapping, formed by imaging with electrons

that have lost energies corresponding to inner-shell ionization edges for particular

elements, can give the elemental distribution images in a relatively large area with

high spatial resolution. In the following, we will discuss the application of elemen-

tal mapping for characterization of core-shell nanomaterials.

Fig. 6.22 (a) Low-magnification TEM image of a Zn-ZnO core-shell heteronanobelt. (b) [0001]
HRTEM image recorded near the right-hand edge of a nanobelt, showing the Zn-ZnO overlapping

region and the ZnO wall. (c) The corresponding SAED pattern [184] (Reprinted with permission

from Ref. [184]. Copyright 2009 American Chemical Society)
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5.4.1 Boron@Boron Oxides Nanowires
It has been found that crystalline silicon [200] and germanium NWs [201] were

sheathed with an amorphous oxide coating. Cao et al. [202] reported the successful

synthesis of well-aligned straight amorphous boron NWs. From the HRTEM

observation, it is difficult to detect whether there is an oxide coating layer of BOx

because the phase contrast of amorphous boron and amorphous BOx coating cannot

be easily distinguished. Therefore, it would be helpful to use the EFTEM. Wang

et al. [197, 198] carried out a comprehensive characterization of boron NWs

through EFTEM.

The aligned boron NWs were prepared by a radio-frequency magnetron

sputtering method. A Philips CM200-FEG TEM equipped with a Gatan Imaging

Filter (model 678) was used for elemental mapping and EELS examinations.

A three-window method was used to study elemental distribution of boron and

oxygen in order to clarify the existence of a boron oxide outer layer coating.

The ionization edges selected for elemental mapping are listed as follows: B-K

edge (188.5 eV) and O-K edge (532 eV). The exposure time for the elemental

mapping of B and O was 10 and 20 s, and the width of the energy windows DE was

set to be 10 and 20 eV, respectively. The EELS spectrum was acquired in the image

mode with a half collection angle of �13 mrad.

The EELS spectrum of single boron NW is shown in Fig. 6.24, revealing the

characteristic boron K-shell ionization edges (�188 eV). Careful examination of

Fig. 6.23 (a–e) HRTEM images of Pt@Pd core-shell nanoparticles with the polyhedral mor-

phology [194] (Reprinted with permission from Ref. [194]. Copyright 2009 American Chemical

Society)
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the EELS spectrum shows that a small peak is located at 532 eV, which corresponds

to the K-shell excitation of oxygen. The magnified oxygen peak is shown in the

inset of Fig. 6.24. This demonstrates that a small amount of oxygen exists in the

boron NWs.

In order to further investigate the spatial distribution of boron and oxygen in the

boron NWs, elemental mappings of boron and oxygen were achieved for the

straight boron NWs (Fig. 6.25). It can be clearly seen that the boron is mainly

distributed in the core (Fig. 6.25b), while oxygen is mainly located in the outer layer

(Fig. 6.25c) of the boron NWs. The thickness of the outer oxidized layer is about

1–2 nm. The importance of oxide or oxygen for the both nucleation and growth of

the boron NWs has been confirmed in an experiment (under the same conditions)

using two targets (one is a mixture of B and B2O3, the other B only). The

experiment showed that the quantity of NW stopped increasing after they switched

the magnetron sputtering from the mixed target to the pure B target. Moreover, the

diameter of the straight boron NWs (about 100 nm) using a pure B target is larger

than that of the straight NWs (40–50 nm) using the mixed target.

In order to preclude the possibility of the oxidization layer after growth, some

precautions were adopted. Before the boron NWs were put into TEM, they were

Fig. 6.24 EELS spectrum acquired from single boron nanowire (NW) showing strong boron

K-shell peaks and a small peak at 532 eV corresponding to the oxygen K-edge [198] (Reprinted

with permission from Ref. [198]. Copyright 2008 Elsevier Ltd.)
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kept in an argon atmosphere, not exposed to the air. The boron NWs were only

exposed to air for several minutes during the TEM sample preparation. In addition,

they carried out the oxygen mapping of the straight boron NWs (about 100 nm in

diameter) produced by using a pure B target (without the oxygen source). The

experimental results showed that there is no outer oxidized layer. So it is assured

that the observed outer oxidized layer is not produced after growth. The oxide

(B2O3) or oxygen is crucial for the nucleation and growth of the boron NWs.

5.4.2 Core-Multishell Semiconductor Nanowires
n-GaN/InxGa1-xN/GaN/p-AlGaN/p-GaN core-multishell NWs were synthesized by

metal-organic chemical vapor deposition (MOCVD) [203], using a strategy involv-

ing axial elongation by nanocluster-catalyzed growth followed by controlled shell

deposition onto the NW core [203]. To characterize the chemical composition and

thickness of individual shells in the core-multishell heterostructures, Qian et al.

[189] exploited cross-sectional imaging with the electron beam parallel (vs. per-

pendicular) to the NW axis since this allows for direct visualization of the spatial

distribution of elements.

A cross-sectional BF TEM image (Fig. 6.26a) of a GaN/InxGa1-xN/GaN/AlGaN

core-multishell NW taken along the 1120
� �

zone axis shows that the core-multishell

wire has a triangular cross section with smooth facets. No dislocations or bound-

aries were observed in the NW, indicating an epitaxial deposition of the shells on

the cores. Electron diffraction data (inset, Fig. 6.26a) further demonstrates that the

core-multishell NW is single crystalline and that the three lateral facets can be

indexed as (0001) and two 1101
� �

crystallographic planes. This result is consistent

with the previous report on core/shell/shell NWs [203].

Additional analysis using STEM (Fig. 6.26b) revealed contrast indicative of

variations in the radial chemical composition as expected for the core-multishell

structure. STEM EDSmapping of the same NW region (Fig. 6.26c and e) confirmed

the STEM results and defined clearly the spatial distributions of Ga, In, and

Al in an individual shell that are consistent with targeted core-multishell

structure. Interestingly, the thickness of InGaN shell was larger on the 1101
� �

Fig. 6.25 (a) TEM image of single straight boron NW. (b) Elemental mapping of boron in the

straight boron NW. (c) Elemental mapping of oxygen in the straight boron NW [198] (Reprinted

with permission from Ref. [198]. Copyright 2008 Elsevier Ltd.)
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versus (0001) facet, indicating that shell deposition rate depends on the specific

crystal planes. This can be understood in terms of different surface energies and

polarities on nonequivalent facets [204] and suggests that these NWs could also

serve as a model system to study growth kinetics. In addition, localized indium

(In)-rich clusters on a scale of 10–50 nm were observed in the thicker InGaN layer

grown on the 1101
� �

facet. However, In segregation was not observed in the thinner

layer grown on the (0001) facet. Similar In inhomogeneity has been reported in

InGaN-based planar structures and is dependent on several factors, including

InGaN layer thickness [205].

6 Conclusions and Future Perspective

This chapter concentrates on the introduction of various TEM techniques for

characterization of core-shell nanomaterials. The objective was to review the

versatility of TEM and the complimentary applications of the techniques. We

take the TEM techniques as the clue to discuss the application of TEM for

characterization of core-shell nanomaterials.

For TEM BF images, mass-thickness and diffraction contrast contribute to

image formation: thick and crystalline areas appear with dark contrast. Since

core-shell nanomaterials usually consist of different components, TEM BF image

is applicable to most of them. We focus on three kinds of core-shell nanomaterials:

silica coating core-shell nanomaterials, bimetallic core-shell nanomaterials, and

hollow core-shell nanostructure. HAADF image is strongly dependent on the

atomic number of the scatterer encountered by the incident probe, not strongly

Fig. 6.26 TEM BF cross-section image of a GaN/InxGa1-x/GaN/AlGaN core-multishell NW.

Scale bar is 100 nm. Inset: 1120
� �

zone-axis SAED pattern. (b) STEM image recorded at a NW

corner with (0001) and 1101
� �

facets. Scale bar is 100 nm. (c–e) Elemental mapping of the same

NW region, indicating spatial distribution of Ga (blue), In (red), and Al (green), respectively [44]

(Reprinted with permission from Ref. [44]. Copyright 2008 American Chemical Society)
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affected by dynamical diffraction effects or defocus conditions. So it has advan-

tages in characterizing core-shell nanomaterials.

HRETM imaging process is very complicated and sensitive to the sample

thickness and defocus conditions. HRTEM requires very thin TEM specimens

free of preparation artifacts. Additionally, correct interpretation of HRTEM images

requires systematic image simulations. Because of these limitations, only a small

part of the core-shell nanomaterials can be characterized by HRTEM. But we can

get lots of important information of core-shell nanomaterials through HRTEM

image, such as orientation relationship and interface between the core and shell.

So HRTEM is an effective characterization method, which cannot be ignored.

Elemental mapping combined with EELS can investigate the spatial distribution

of elements in the nanomaterials. Especially when the core and shell has a same

structure and similar atomic numbers, the three methods mentioned above cannot

distinguish.

BF image, HADDF image, HRTEM image, and elemental mapping are the most

popular and effective methods for the characterization of core-shell nanomaterials.

In fact, other TEM techniques can also be used to investigate core-shell

nanomaterials, such as TEM dark-field image and SAED. With the development

of TEM techniques, the microstructure of core-shell nanomaterials can be studied in

more detail.
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88. Alejandro-Arellano M, Ung T, Blanco Á, Mulvaney P (2000) Silica-coated metals and

semiconductors. Stabilization and nanostructuring. Pure Appl Chem 72(1–2):257–268

89. Li T, Moon J, Morrone AA, Mecholsky JJ et al (1999) Preparation of Ag/SiO2 nanosize

composites by a reverse micelle and sol-gel technique. Langmuir 15(13):4328–4334

90. Fu WY, Yang HB, Chang LX, Li MH et al (2005) Preparation and characteristics of core-

shell structure nickel/silica nanoparticles. Colloids Surf A: Physicochem Eng Aspects

262(1–3):71–75

91. Lu XG, Liang GY, Sun ZB, Zhang W (2005) Ferromagnetic Co/SiO2 core/shell structured

nanoparticles prepared by a novel aqueous solution method. Mater Sci Eng

B 117(2):147–152

92. Cha HJ, Kim YH, Cha HG, Kang YS (2007) Preparation and characterization of Ag (core)/

SiO2 (shell) nanoparticles. Surf Rev Lett 14(4):693–696

93. Kanehara M, Watanabe Y, Teranishi T (2009) Thermally stable silica-coated hydrophobic

gold nanoparticles. J Nanosci Nanotechnol 9(1):673–675

94. Ma ZY, Dosev D, Nichkova M, Dumas RK et al (2009) Synthesis and characterization of

multifunctional silica core-shell nanocomposites with magnetic and fluorescent functional-

ities. J Magn Magn Mater 321(10):1368–1371

95. Mazaleyrat F, Ammar M, LoBue M, Bonnet JP et al (2009) Silica coated nanoparticles:

synthesis, magnetic properties and spin structure. J Alloys Compd 483(1–2):473–478

280 Y. Wang and C. Wang



96. Dong BH, Cao LX, Su G, Liu W et al (2009) Synthesis and characterization of the water-

soluble silica-coated ZnS:Mn nanoparticles as fluorescent sensor for Cu2+ ions. J Colloid

Interface Sci 339(1):78–82

97. Ammar M, Mazaleyrat F, Bonnet JP, Audebert P et al (2007) Synthesis and characterization

of core-shell structure silica-coated Fe29.5Ni70.5 nanoparticles. Nanotechnology

18(28):285606

98. Lee J, Lee YJ, Youn JK, Na HB et al (2008) Simple synthesis of functionalized superpar-

amagnetic magnetite/silica core/shell nanoparticles and their application as magnetically

separable high-performance biocatalysts. Small 4(1):143–152

99. Aliev FG, Correa-Duarte MA, Mamedov A, Ostrander JW et al (1999) Layer-by-layer

assembly of core-shell magnetite nanoparticles: effect of silica coating on interparticle

interactions and magnetic properties. Adv Mater 11(12):1006–1010

100. Lien YH,Wu TM (2008) Preparation and characterization of thermosensitive polymers grafted

onto silica-coated iron oxide nanoparticles. J Colloid Interf Sci 326(2):517–521

101. He R, You XG, Shao J, Gao F et al (2007) Core/shell fluorescent magnetic silica-coated

composite nanoparticles for bioconjugation. Nanotechnology 18(31):315601

102. Correa-Duarte MA, Giersig M, Liz-Marzán LM (1998) Stabilization of CdS semiconductor

nanoparticles against photodegradation by a silica coating procedure. Chem Phys Lett

286(5–6):497–501

103. Kobayashi Y, Shimizu N, Misawa K, Takeda M et al (2008) Preparation of amine free silica-

coated AgI nanoparticles with modified Stöber method. Surf Eng 24(4):248–252
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