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Abstract. Modeling erroneous behavior of software components along
with normal behavior tends to be complex and hard to read or
modify. However, ignoring the erroneous behavior and error propagation
in models used for dependability analysis has a negative impact on the
dependability assessment accuracy. In this paper, we propose a frame-
work for automating dependability modeling and analysis that considers
component erroneous behavior. Particularly, the paper focuses on our
Component Erroneous Behavior Aspect Modeling approach (CeBAM),
which captures component erroneous behavior and error propagation.
We apply aspect-oriented modeling techniques to model erroneous be-
haviors separately from the normal behavior. The approach reduces the
model complexity and improves its readability and modifiability. In ad-
dition, we propose a profile to extend the UML protocol state machine
to capture both incoming and outgoing messages on components’ ports.
We automate the composition of normal and erroneous behavior by as-
pect weaving. This enables the next step: conformance verification be-
tween each component’s complete internal behavior and its protocol state
machines, as well as between component interfaces.

Keywords: erroneous behavior model, error propagation,
aspect-oriented modeling, conformance verification.

1 Introduction

Model Driven Development (MDD) is a promising approach for software devel-
opment that changes the focus from code to models. This change of focus facili-
tates also the analysis of different Non-Functional Properties (NFP) using formal
analysis models obtained by model transformations from the software models.
For instance, in this paper we are interested in the analysis of dependability
attributes (such as reliability and availability) using analysis models automati-
cally generated from software models extended with dependability annotations.
In [1] the authors survey the works on dependability modeling and analysis based
on UML and UML extensions for annotations. Another software development
paradigm of interest is Component Based Development (CBD), which applies
the “divide and conquer” principle to manage system complexity. Each com-
ponent is a unit of composition that interacts with other components through
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predefined interfaces. CBD is a reuse-based approach that has an impact on the
development time and system dependability attributes.

Combining MDD and CBD is an appealing approach for the development of
real-time embedded systems, as it reduces the complexity, time and cost. In ad-
dition, MDD and CBD help to integrate dependability modeling and analysis
during the design phase. The quantitative results of these analyses will sup-
port the developer in taking the right decisions for building dependable systems.
Different approaches were proposed in literature to address reliability and avail-
ability modeling [1,2]. However, many existing approaches do not adequately
consider error propagation in predicting system reliability [3].

The long-term goal of our research is to propose a framework based on stan-
dard modeling languages (such as UML and QVT), which would help developers
to evaluate dependability attributes during a CBD + MDD process, taking into
consideration component erroneous behavior and error propagation. We believe
that including component erroneous behavior in dependability analysis and pre-
diction will help developers to take the right design decisions. For instance,
selecting proper fault tolerance mechanisms, placing error detection and using
suitable recovery approaches are examples of critical decisions taken in the de-
sign phase based on quantitative values. The findings of [4,5] support this belief,
since they show that error propagation may have significant impact on reliability
prediction. Thus, in our approach the evaluation of dependability attributes is
based on component behavior (normal and erroneous).

A software component has two views: internal and external. An internal view
represents component’s private properties realizing the provided services. An
external view shows the public properties of the component in terms of provided
and required interfaces. Modeling erroneous behavior of these views along with
normal behavior in one model tends to be complex and hard to read or modify.
Moreover, it is not easy to capture error propagation between components using
existing behavior models such as UML2 state machines. As a result, developers
often focus on the normal behavior of both views and tend to ignore the erroneous
behavior.

To overcome these difficulties of modeling erroneous behavior and error prop-
agation in CBD, we introduce the Component Erroneous Behavior Aspect Mod-
eling approach (CeBAM). It captures the component erroneous behavior sepa-
rately from the normal behavior. CeBAM uses aspect-oriented modeling [6] to
simplify modeling the erroneous behavior and to automate its composition with
the normal behavior.

CeBAM uses UML state machines to represent the component internal normal
behavior and extended protocol state machine for port and interface behavior.
Normally, UML protocol state machines capture only incoming messages, so we
defined a profile to capture both incoming and outgoing messages. Another UML
extension developed in this paper is an erroneous behavior profile to capture the
chain of dependability threats for the component internal behavior, as well as for
its ports and interfaces. In addition, this profile shows the error propagation from
the component internal behavior to its ports and further to other components.
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One of the CeBAM advantages is that it provides an easy and practical way to
model component erroneous behavior separately from the normal behavior, using
aspect-oriented modeling [6]. Indeed, this reduces the state machine complexity
and makes the model easy to read and maintain. In addition, the automated
composition of erroneous with normal behavior will be further used for: a) con-
formance verification between the internal behavior of each component and its
protocol state machines, and between components interfaces, and b) derivation
of dependability analysis model.

This paper is organized as follows. Section 2 presents our long-term objec-
tive to automate dependability modeling and analysis. In section 3 we explain
briefly the Emergency Monitoring System (EMS) case study used in this paper.
The CeBAM approach is introduced in section 4. Related work is discussed in
section 5. In the last section, we conclude and summarize our ongoing work.

2 Overview of Dependability Analysis Framework

The long-term objective of our research is to provide software developers with
automated techniques for architectural-based software dependability modeling
and prediction. This paper is the first step on the road toward such an objective.
Figure 1 illustrates the overall activities of our proposed framework in order to
provide context for the contribution of this paper and to put it into perspective.
We start with a component-based software architecture model that needs to be
evaluated in terms of reliability and availability. For the most important sce-
narios, we identify the involved components and the interaction between them.
Next, we build component behavioral models using CeBAM that considers er-
roneous behavior of the involved components. This model is also enriched with
dependability annotations using the DAM profile [7]. Note that we do not show
the dependability annotations in our case study because of the limited space.
Aspect oriented modeling (AOM) approach [6] is adopted to allow for more flex-
ibility in modeling erroneous behavior and to provide an automated composition
of the erroneous with the normal behavior.

Reasoning on behavioral compliance of a component-based software architec-
ture is required to validate the software architecture [8]. Thus, in our approach,
after composing the normal and erroneous behavioral models, we validate the
conformance in two stages. The first is conformance validation between com-
ponent internal behavior and its protocol state machines. A mismatch would
impact negatively the component reliability, since the internal behavior would
receive unexpected messages that cannot be handled. So, any detected mismatch
must be corrected. Second, we verify the compatibility between the components’
provided and required interfaces.

In the literature, different approaches are suggested to check for component
conformance by finding deadlocks in the formal model that is transformed from
the main software model [9,10]. Different formalisms may be used, either various
kinds of formal logic or of Petri nets. Since we are planning to use state-based
dependability analysis based on Petri Nets, similar to the approach in [11], we
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Fig. 1. Overview of the proposed framework (Shaded activities are the focus of this
paper)

will also use a class of Petri Nets, namely Stochastic Reward Net (SRN) [12]
for conformance validation instead of a model checker. We chose SRN because
its marking dependency property helps in obtaining more compact models for
complex systems, which helps in limiting the size of the state space during the
analysis. Currently, we are working to automate the transformation of compo-
nent behavioral model to SRN in order to validate conformance and predict
reliability and availability as well.

Adding a fault tolerance mechanism may improve the system reliability, but
the effects are non-trivial and depend on the context [13]. As shown in Fig. 1,
our approach aims to provide developers with automated tools to assess the
reliability (availability) of different fault tolerance mechanisms applied to the
system under evaluation. By comparing the predicted results, a developer can
select the best design alternative.

Automation is one of the key features in our approach. We utilize Query
View Transformation (QVT) [14] to automate the composition of component
erroneous behavior with the normal behavior (based on aspects) and to gener-
ate SRN models for conformance checking. Also, the process of refactoring the
main architectural model by adding a selected fault tolerance mechanism from a
predefined collection of fault tolerance styles (see Fig. 1) can be automated with
the help of QVT model transformations. Moreover, automated model transfor-
mation will generate the SRN model used for state-based dependability analysis
for the architecture without and with fault tolerance mechanisms. Comparing
the results, the developer will be able to evaluate the effects of the selected fault
tolerance style on the overall system reliability and availability.

3 Case Study

Emergency Monitoring System (EMS) is the case study that will be used
throughout this paper. This case study was developed in [15] and our goal is
to improve the design by modeling the normal and erroneous behavior of each
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component. The erroneous behavior will capture any locally activated fault and
show how it propagates to the connected components through its ports.

The EMS is a distributed system. It consists of a central monitoring service,
operator presentation service and several distributed monitoring sensors. In ad-
dition, in some remote areas, a remote monitoring system is installed with its
sensors. All the remote systems and distributed sensors are reporting regularly
the current status of the external environment to the central monitoring service.
The monitoring service stores and updates the recent status and presents it to
the operator. As a result, the operator will have the updated status of each site
and, accordingly, he can take action if the emergency alarm is detected.

COMET methodology [15] was used in this case study. Figure 2(a) shows the
use case model and Fig. 2(b) the distributed component-based software archi-
tecture of EMS. Due to limited space, we select only one scenario called generate
alarm to illustrate our approach for modeling the component behavior. In this
scenario, three components are involved. Figure 2(c) shows the interaction be-
tween these components in case of generating an alarm. In general, component
interaction takes place either via method calls (synchronous) of provided and
required interfaces or via notification signals (asynchronous). According to [16],
if an internal fault is activated but not properly handled inside the component,
then this fault will end up in a failure, which will propagate to other components
that depend on it. For instance, in the selected scenario, if the AlarmService com-
ponent has failed due to an internal exception or hardware failure, the manifested
failure will be propagated to the monitoring sensor (see Fig. 2(d)). Moreover,
the detected emergency alarms cannot be reported to the operator since the core
component AlarmService is down.

4 Component Erroneous Behavioral Aspect Modeling
(CeBAM) Approach

A software component has two views: internal and external. The internal view
represents component’s private properties realizing the provided services. The
normal behavior of this view can be described using UML behavioral state ma-
chine (BSM) [17]. An external view shows the public properties of the component
in terms of provided and required interfaces. Interactions between components
are actually methods calls (synchronous) or exchanging notification messages
(asynchronous). Protocol state machine (PSM) can be attached to each inter-
face to describe the legal sequence of operations calls [17].

A fault may be activated inside a component and then propagated to the in-
terfaces and then to all dependent components if it is not handled internally or at
the component port. Moreover, each fault type may have a different propagation
path. In fact, modeling both the internal and external view of the component
erroneous behavior will help to improve the software design. Unfortunately, BSM
and PSM do not allow for an easy and practical way of modeling normal and
erroneous behavior, due to model complexity and a lack of ability to capture
error propagation.
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Fig. 3. Profiles and artifacts in CeBAM

In CeBAM, component behavior consists of normal and erroneous behavior
that describe both component interfaces, ports and internal behavior. In [1,2]
different approaches are presented for dependability modeling and analysis, and
we noticed that most of these approaches focus only on the normal behavior,
ignoring the erroneous behavior due to its complexity.

Our objective in this paper is to provide a practical solution to model complete
component behavior for the internal and external views, by considering erroneous
behavior and error propagation. The CeBAM approach is developed to realize
this objective. Figure 3 shows the new profiles and artifacts used in CeBAM.
For all defined profiles we followed the approach from [18], which suggests to
start with defining the domain model as a starting point and then mapping the
domain model concepts to the UML2.x meta-model, in order to identify the new
stereotypes and attributes.

In CeBAM the internal component behavior is modeled using BSM according
to the provided and required services. For instance, Fig. 4 shows the internal
normal behavior for a single service of AlarmService component in the case study.
Normal behavior of component ports or interfaces is modeled using extended
PSM (as described in section 4.1).

The ErroneousBehavior profile and AspectBSM are used together to model
the erroneous behavior (both internal and external views) separately from the
normal behavior as aspect models. Then we automate the composition of the
erroneous behavior with the normal behavior of both views (sections 4.2, 4.3
and 4.4). Since we consider also protocol state machines, we validate the confor-
mance between component behavior and its PSMs, as well as between compo-
nents’ interfaces (section 4.6).

In CeBAM we adopt the aspect oriented modeling approach [6] to model
component erroneous aspect. Actually, we consider erroneous behavior as a cross-
cutting concern that can be modeled separately and then we automate the com-
position with the base model (i.e., the normal behavior for both views). Using
this approach, a developer will not have to learn new concepts in order to model
the erroneous behavior with the dependability annotations. Additionally, there is
full flexibility to update or change any behavior separately, since the composition
of the complete behavior is automated.
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Fig. 4. Partial BSM of internal behavior of AlarmeSerivce Component

4.1 Extending Protocol State Machine

According to [17] a PSM is a specialized behavioral state machine defined in
the context of a classifier, that can be used to specify which operations of the
classifier can be called in which state and under which conditions. PSM is used
to describe only the legal usage of any classifier. PSM does not show any specific
behavioral implementation since actions are not allowed on transitions or in the
states. Actually, states in PSM do not have entry, exit, do activities. On the other
hand, composite state and concurrent regions are allowed, but history pseudo-
sates are not. (We are not using composite states or concurrent regions in this
paper).

A protocol transition captures the legal transition of the context classifier. It
has a pre-condition, a trigger, and a post-condition. Protocol transition shows
that the associated operation can be called under a specific condition (pre-
condition) and then after the complete execution the destination state can
be reached if the post condition is satisfied. Moreover, PSM inherits run-to-
completion semantics from BSM, i.e. the action on a transition is uninterrupt-
ible. This implies that no other event can be accepted during the transition. For
instance, if a fault is activated during the execution of the called operation, the
transition will not be completed. Additionally, nested calls cannot be captured.

Due to the restrictions applied to PSM, only unidirectional communications
can be captured [8,17]. For instance, in Fig. 2(d) we can use PSM to model the
communication of the provided interface connected to the AlarmService com-
ponent. In this case PSM can only capture incoming calls to that interface.
Moreover, for each interface we have to create a separate PSM since it can only
capture the communication on a single classifier.

In UML, a port is a property of a classifier [17]. A port can be associated with
a component (i.e., the UML classifier) to specify an interaction point between
the components and its environment and between component and its internal
parts. A combination of required and provided interfaces can be associated with
a port; thus, a port may specify provided services to other components as well
as required services. In the case study, we assume that each component has only
one port for interaction with the environment; thus, the external view of the
component is actually the port behavior.
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We can describe the external view of the component behavior by describing
its protocol state machine. As mentioned before, PSM can be used to precisely
capture that behavior, but it captures only a single direction (incoming) and
it does not allow recursive calls due to the run-to-completion semantics. To
overcome these limitations, we extend the PSM by introducing a new profile as
shown in Fig. 5. This profile will be used to model “extended” protocol state
machines. PortTransition stereotype is extending the ProtocolTransition meta-
class with different attributes.

Fig. 5. ExtendedPSM profile

In PortTransition we can capture the direction of each passed message, either
sent to an associated component or received from the environment. Sometimes
the PSM state changes because of an internal event.

In this profile we respect the run-to-completion semantics and we can show
atomic events. For each event in PortTransition we specify the direction (incom-
ing, outgoing and delegation) and the type of that event (operation call, notify
signals, receive return value from the called operation locally or externally and
complete execution signals). Moreover, we show the source and target component
associated with that event.

The AlarmService component of the EMS case study has two provided inter-
faces and one required interface. These interfaces are associated to a single port
(see Fig. 2(d). To describe the external view of the component, we use UML
and the ExtendedPSM profile to model the protocol state machine (see Fig. 6).
Initially, it receives incoming message from the monitoring sensor to execute one
of its provided services post(alarm). The post method is implemented by the
AlarmService component and therefore, different actions will be done internally,
for instance, storing the reported alarm and then notifying the operator. These
actions will change the state of the PSM, as precisely captured using the Ex-
tendedPSM profile. In Fig. 6, each transition of the alarm service PSM is atomic
and it has run-to-completion semantics. In addition, the direction and the source
of the messages are also captured.
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Fig. 6. Fragment of AlarmService normal behavior protocol state machine

4.2 Aspect Composition

We adopt AOM mechanism [6] to model separately component erroneous behav-
ior and then to compose it with the normal behavior. Figure 7 shows the domain
model for the proposed AspectBSM profile and Fig. 8 shows the actual profile
according to the domain model.

Fig. 7. Aspect domain model in erroneous behavior context

This profile is based on the main concepts of aspect-oriented modeling and
is similar to the approach from [19]. Aspect describes a crosscutting concern; in
our context, the aspect will be the erroneous behavior of both component views.
For each crosscutting behavior we have a pointCut, which is a condition of a
query that identifies the place(s) where the new behavior should be added in the
base model or which model element needs to be refactored. A candidate element
in the base model that corresponds to a pointCut is called joinPoint. In other
word, the pointCut will select one or more joinPoint where the new behavior
can be applied. In our approach, the pointCut will be an OCL query that selects
states or transitions. Note that we will not add any new stereotype in the base
model to identify the joinPoint. Advice is a new behavior introduced to the base
model at the joinPoint and it could be add or refactor advice.

As mentioned before, transitions in behavioral state machines have run-to-
completion semantics according to [17]. In some cases, the action associated
with a transition is an operation call. The operation must be executed success-
fully before entering the new state. However, during its execution, faults maybe
activated that will interrupt the transition. Our objective is to model any fault
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Fig. 8. AspectBSM profile

that may be activated during the transition, but at same time we want to re-
spect the run-to-completion semantics. To achieve that, we introduce a refactor
advice applied to the respective BSM transition. Before adding the erroneous
aspect of that operation we should introduce a new state called intermediate
state and a new transition called done. Figure 9 illustrates an example of the
refactor aspects applied to the internal behavior of Alarm Service component.

Fig. 9. Refactor aspect of processAlarm activity

For instance, processAlarm(alarm) is an operation executed as an effect of
the transition from the state Idle to PreparingAlarm in the base model (see
Fig. 4). First we identify the source and target states of that transition and
then we add a new state (called IntermediateState) reached from the source
state with the original transition, but without the call to the effect operation.
We move the processAlarm(alarm) operation to the newly introduced state as
a do activity. Finally, we add a new transition done from the IntermediateState
to the target state. This new transition represents the successful execution of
the transition action from the base model. In this way, we preserve the run-
to-completion semantics and we can add later an erroneous transition from the
IntermediateState.
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We use the refactor aspect only in BSM describing the internal behavior of
a component, but we do not need refactoring in the protocol state machines
developed with ExtendedPSM because all transitions are already atomic.

4.3 Modeling Component Erroneous Behavior

Different error states and failure modes can be identified for a single component.
Each failure may have a different propagation path. Our objective is to model the
error propagation between components separately as crosscutting concerns in or-
der to study how this propagation impacts the overall reliability and availability
of the system. We develop a new profile to model the component internal and ex-
ternal erroneous behavior, as well as the error propagation between components.
Figure 10 shows the profile stereotype and attributes. This profile captures the
two kinds of states and transitions: error, failure mode states and erroneous,
recovery transitions. For each transition type it depicts the direction, event, and
source operation and target operation. Using this profile we can model different
kinds of failure caused by software exceptions or hardware failures. In CeBAM
we use this profile and AspectBSM profile together to model erroneous internal
component behavior and PSM erroneous behavior as aspects, separately from
the normal behavior. This approach will allow for flexibility in the modeling of
erroneous behavior, creating models easy to read and modify.

Fig. 10. Erroneous Behavior profile

For instance, Fig. 11 (a) shows different errors and failure modes activated
internally in the AlarmService component. A local failure is activated because of
an internal exception occurring in processAlarm(alarm) method and an external
failure is propagated from OperatorPresentation component. The internal failure
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(a)

(b)

Fig. 11. Fragments of AlarmService erroneous behavior: (a) internal (a) external
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will be propagated to the component port and then to the connected component
causing another error and failure types according to [16]. In Fig. 11 (b) we notice
that the external failure is captured as well in the component port behavior and
propagated to the internal component behavior. The profiles in CeBAM were
designed to capture all required details described in [3,11,16] to model component
internal and external erroneous behavior.

4.4 Behavior Composition

We follow AOM [6] approach to compose both behaviors. Composition directives
are describing the sequence and the order in which aspects need to be composed
with the base model. For instance, in behavioral state machine of component
internal behavior refactor aspects will be processed and applied first before any
add aspects. Figure 12 shows fragments from the BSM and PSM for AlarmSer-
vice after composition. The states shaded in gray are erroneous states.

4.5 Guidelines for Using CeBAM

Modeling component behavior using CeBAM can be done in two phases. In
the first phase we just model the normal behavior of both component views
(internal and external). BSM will be used for the component internal normal
behavior (see Fig. 4) and extended PSM for the external view (see Fig. 6). The
second phase is focusing on modeling component erroneous behavior separately
using two profiles: AspectBSM and ErroneousBehavior profile. The outcome of
this phase is represented by two aspect models: one for the erroneous behavior
of the internal view and another for the external view. We may need a few
iterations to build these two models. First we capture the local failures and then
in the next iteration(s) we may have to add propagated failures that originated
in other components. The iterations will end when all errors/failures have been
“propagated”. In some cases we may need to create refactor aspects to preserve
the run-to-completion semantics of BSM transitions.

4.6 Components Behavior Conformance

A system is built from different component interacting with each other to ac-
complish specific scenarios. In UML 2 [17] conformance is considered, but the
definition of the conformance semantics is limited [8]. Several approaches in the
literature propose different solutions for checking conformance. For instance,
in [10] labeled Petri net are used to check the compatibility between component
interfaces. In [9] a model checker is used to automate conformance validation
between components PSM and its internal behavior in the context of UML-RT.



138 N.A. Mokhayesh Alzahrani and D.C. Petriu

(a)

(b)

Fig. 12. Fragments of AlarmService complete component behavior after composition:
(a) internal behavior, (b) external behavior

In our case we are working to address the conformance validation in two levels:
between required and provided interfaces and between protocol state machines
and internal component behavior. This conformance validation will be done for
the composed state machines, which capture both the normal and erroneous
behavior. In the first stage, we will automate the conformance validation between
internal component behavior and its ports to fix any incompatible behavior. In
the next stage we will check the conformance between components interfaces.

5 Related Work and Discussion

Different approaches can be found in literature for predicting the reliability and
availability of component based systems. The proposed approaches are classified
in [20] into states-based, path-based and additive models. We are following the
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state-based approach in our work. Our approach considers that erroneous be-
havior is an important part of the dependability assessment. It was inspired by
different works, such as [4,5,11,19,21]. In [19] a methodology for modeling system
robustness behavior using aspect-oriented modeling is proposed. The authors de-
fined an aspect profile for robustness behavior which inspired our definition of the
AspectBSM profile. However, we customized our profile for modeling component
erroneous behavior.

Some limitation of the UML behavioral and protocol state machines for cap-
turing component port behavior are identified in [8]. The author proposes a
Port State Machine (PoSM) to capture the interleaving operation calls on a
port, which is defined by modifying the UML meta-model, specializing some of
the meta-classes. PoSM focuses only on the operation calls between components
and does not capture other type of triggers, i.e. failure propagation and signals.
PoSM is not supported by current UML2 tools since the UML meta-model was
changed, and this is a major limitation for its applicability. Our approach is
addressing the same basic limitations of PSM, but we utilize the UML2 pro-
file mechanism for the required extensions, to make our approach supported by
existing UML tools.

A new development framework for dependability analysis was introduced
in [11] based on a new intermediate dependability-specific modeling language
CHESS ML. A component error model view, represented with a special kind of
state machine in CHESS ML, shows faults that can be activated internally or
propagated from other components. CHESS ML models are transformed into
Petri nets for state-based reliability analysis. Many differences can be identified
between our approach and the CHESS approach. First, in our case we do not
use an intermediate model and we plan to transform to Petri net directly from
the base model. Second, our approach considers the origin of the fault in the
normal behavior and uses composed state machines for conformance verification
and for generating the Petri nets models. Last but not least, we are following
the UML standard for our software models.

The importance of including error propagation in the reliability assessment
was identified in [4,5]. The work in [4] considers an error propagation probability
and proves the significant impact of error propagation in reliability predictions.
The approach in [5] takes into account the error propagation and error propaga-
tion path, but does not consider fault tolerance. In [3] a framework for compo-
sitional reasoning on the error model is proposed; a new error classification and
failure modes are introduced. The execution environment and component usage
profile are considered in [22]. The work in [13] studies the effects of software fault
tolerance mechanisms in varying architectural configurations in models built in
the Palladio Component Model (a non-standard software modeling language for
component-based systems). A framework for predicting component reliability
by studying component internal behavior is developed in [23], but it focuses on
internal components and ignores the error propagation.

The approach in [24] employs application blocks to represent application
functionalities and the internal behavior is described using activity diagrams.
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An application block may include an activity and be a part of another one.
External State Machine (ESM) and its extended version (EESM) are used to
model the UML pins behavior, which model the interaction between activities.
In our CeBAM approach we follow a component-based approach, using standard
UML components with ports and connectors to represent the system architec-
ture. The component internal behavior is modeled using state machines and we
extend the UML protocol state machine to describe the component port be-
havior according to the required and provided interfaces for both incoming and
outgoing messages. Moreover, in [24] External Reliability Contract (ERC) are
introduced to describe the failures during the communication between activities.
The ERCs are modeled separately and they are composed with EESMs using an
aspect-oriented modeling approach to reduce the modeling complexity. In Ce-
BAM we also use AOM for the same reasons. However, in CeBAM the erroneous
behavior will capture the source of failure inside a component and it shows how
it propagates and affects other connected components. In [24] a model checker is
used for formal verification, while in our case we are working on transforming the
UML model to Stochastic Reward Networks (SRN) [12] for both dependability
analysis and conformance checking.

The separation of concerns principle is applied in component-based architec-
tures to reduce the complexity and to improve the quality. This principle is
realized by separate protocol behaviors that describe the provided and required
component functionality. However, the challenge consists in the composition of
these separate protocol behaviors that may be interdependent. Moreover, in the
embedded real-time systems where safety is considered, the composition can be
even more complicated. This problem is addressed in [25], which provides an au-
tomated approach for synthesizing component behavior based on real-time coor-
dination pattern that describe the behavior of connected component interaction.
Each component participating in a coordination pattern has a role described by a
protocol statechart. In order to synthesize the component external behavior the
user needs to define a set of composition rules that explicitly describe the depen-
dencies of components roles. This approach was implemented in the FUJABA
Tool Suite [26]. The focus of this approach is on the external behavior of the
components. However, in our case we will consider the conformance between the
component internal behavior and all its ports, and will also check the compati-
bility between provided and required interfaces of the connected components.

WEAVER [27] is an Aspect-Oriented modeling tool developed by Motorola,
which uses Specification and Description Language (SDL) to model the behavior
due to its unambiguous semantics. WEAVER supports model execution, code
generation and dependencies between aspects.

The CHARMY framework [28] uses model-checking techniques for validat-
ing software architecture conformance. An UML-like notation is used and the
tool automates the validation. Static views show the component and connector
relationships, while dynamic views describe the internal component behavior.
The tool transforms these models into Promela code. To test a specific sce-
nario described by a sequence diagram showing the exchanged messages between
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components, the tool transforms the sequence diagram to Buchi Automata.
Both the Promela code and Buchi Automata will be passed to SPIN to identify
potential deadlocks.

6 Conclusions and Future Work

The paper introduces Component Erroneous Behavior Modeling (CeBAM), an
aspect-oriented approach which provides a practical solution for modeling com-
ponent erroneous behavior and error propagation. We illustrate, with the help
of a case study, how to apply aspect-oriented techniques to model the erroneous
behavior separately and then to compose automatically erroneous and normal
behavior for each component. CeBAM is a part of a larger framework aiming to
provide developers with automated tools for assessing the reliability (availability)
of different fault tolerance mechanisms applied to a system under development.
The composed state machines that are an outcome of CeBAM are used for con-
formance validation and for generating SRN models for dependability analysis.

We are working now on conformance validation of port behavior with internal
behavior. Moreover, we are in the process of developing QVT transformations
to generate automatically SRN analysis models from the software model. This
transformation will be used for conformance validation and dependability at-
tribute assessment. We are also investigating how to limit the state explosion
in the analysis model without affecting too much the reliability and availability
prediction results.
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