
Model-Driven Engineering for Trusted

Embedded Systems Based on Security
and Dependability Patterns

Brahim Hamid1, Jacob Geisel1, Adel Ziani1, Jean-Michel Bruel1,
and Jon Perez2

1 IRIT, University of Toulouse
118 Route de Narbonne, 31062 Toulouse Cedex 9, France

{hamid,geisel,ziani,bruel}@irit.fr
2 Ikerlan, Mandragon, Spain

jmperez@ikerlan.es

Abstract. Nowadays, many practitioners express their worries about
current software engineering practices. New recommendations should be
considered to ground software engineering on two pillars: solid theory and
proven principles. We took the second pillar towards software engineering
for embedded system applications, focusing on the problem of integrat-
ing Security and Dependability (S&D) by design to foster reuse. The
framework and the methodology we propose associate the model-driven
paradigm and a model-based repository of S&D patterns to support the
design of trusted Resource Constrained Embedded System (RCES) ap-
plications for multiple domains (e.g., railway, metrology, automotive).
The approach has been successfully evaluated by the TERESA project
external reviewers as well as internally by the Ikerlan Research Center
for the railway domain.

Keywords: Resource Constrained Embedded Systems, Security, De-
pendability, Repository, Pattern, Metamodel, Model Driven Engineering.

1 Introduction

The software of embedded systems [1] is not conventional software that can be
built using usual paradigms. In particular, the development of resource con-
strained embedded systems (RCES) addresses constraints regarding memory,
computational processing power and/or limited energy. Non-functional require-
ments such as Security and Dependability (S&D) [2] become more important as
well as more difficult to achieve. The integration of S&D features requires the
availability of both application domain specific knowledge and S&D expertise
at the same time. In fact, capturing and providing this expertise by the way of
S&D patterns can support embedded systems development.

In our previous work [3], we studied pattern modeling frameworks [4,5] and
we proposed methods to model security and dependability aspects in patterns

F. Khendek et al. (Eds.): SDL 2013, LNCS 7916, pp. 72–90, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

MDE for Trusted Systems Based on Security and Dependability Patterns 73

and to validate whether these still hold in RCES (Resource Constrained Em-
bedded Systems) after pattern application. The question remains at which stage
of the development process to integrate S&D patterns. In our work, we pro-
mote a new discipline for system engineering using a pattern as its first class
citizen: Pattern-based System Engineering (PBSE). PBSE addresses challenges
similar to those studied in software engineering. Closely related to our vision
is the Component Based Software Engineering (CBSE) [6]. Therefore, PBSE
focuses on patterns and from this viewpoint addresses two kind of processes:
the process of pattern development and system development with patterns. The
main concern of the first process is designing patterns for reuse and the sec-
ond one is finding the adequate patterns and evaluating them with regard the
system-under-development’s requirements.

In this paper, we propose a methodology based on Model-Driven Engineering
(MDE) and a model-based repository of S&D patterns for security and depend-
ability engineering. At the core of the methodology is a set of Domain Specific
Modeling Languages (DSML) [7] that allow modeling S&D patterns and reposi-
tory structure. Such an approach, relying on an MDE too -suite supporting the
methodology and thus in our context supporting automated model-based repos-
itory building and access in industry1. We discuss the benefits, such as reduced
modeling effort and improved readability, achieved when applying the method-
ology to an industrial case study where we have used the modeling language to
model the repository of S&D patterns for the domain of railway applications.

The rest of this paper is organized as follows. In Sect. 2, we present a review
of the most important related work. In Sect. 3, we present the proposed method-
ology. Section 4 details the specification languages proposed in the context of
the methodology. In Sect. 5, we introduce the tool-chain supporting the method-
ology. Then, in Sect. 6, we illustrate the methodology through the example of a
railway application. Section 7 describes a first feedback on the methodology we
propose. Finally, Sect. 8 concludes the paper with an outlook on future work.

2 Related Work

In developing software applications with security and dependability support, the
use of patterns should lead to well structured applications. In [8] a hybrid set of
patterns is used in the development of fault-tolerant software applications. These
patterns are based on classical fault tolerant strategies such as N -Version pro-
gramming and recovery block, consensus, voting. Extending this framework, [9]
proposed a framework for the development of dependable software systems based
on a pattern approach. They reused proven fault tolerance techniques in the form
of fault tolerance patterns. The pattern specification consists of a service-based
architectural design and deployment restrictions in form of UML deployment
diagrams for the different architectural services.

In [10], a group of seven patterns is presented as a security framework for
building applications. [11] introduced the concept of a security pattern system

1 The approach is evaluated in the context of the TERESA project
(http://www.teresa-project.org/).

http://www.teresa-project.org/

74 B. Hamid et al.

as a set of patterns with a linkage between them and described how security pat-
terns contribute to the security engineering process. [12] presented an extension
of UML, called UMLsec, that enables to express security relevant information
within diagrams in a system specification. UMLsec is defined in form of a UML
profile using UML extension mechanisms, allowing the specification of security
patterns and the integration of these patterns into system development.

Regarding the analysis aspects, [13] used the concept of security problem
frames as analysis patterns for security problems and associated solution ap-
proaches. These frames are also grouped in a pattern system with a list of their
dependencies. The analysis activities using these patterns are described with a
highlight on how the solution may be set with a focus on the privacy require-
ment anonymity. For the software architecture, [14] presented an evaluation of
security patterns in the context of secure software architectures. The evalua-
tion is based on the existing methods for secure software development, such as
guidelines, and on threat categories.

Another important issue is the identification of security patterns. [15] pro-
posed a new specification template inspired on secure system development needs.
The template is augmented with UML notations for the solution and with formal
artifacts for the requirements properties.

In addition to the above, S&D patterns are studied as precise specifications
of validated S&D mechanisms. [5] explains how this can be achieved by using
a library of precisely described and formally verified security and dependabil-
ity (S&D) solutions as mechanisms, while [16] reports an empirical experience,
about the adopting and eliciting of these S&D patterns in the Air Traffic Man-
agement (ATM) domain. The results are of interest, mainly the use of patterns
as a guidance to structure the analysis of operational aspects when they are used
at the design stage. Recently [17] presented an overview and new directions on
how security patterns are used in the whole aspects of software systems from
domain analysis to the infrastructures.

3 Pattern-Based Security Engineering Methodology

We now present an overview of our modeling building processes as activity di-
agrams. In this description, we will give the main keys to understand why our
process is based on a generic, incremental and a constructive approach. Addi-
tional and detailed information will be provided during the implementation of
the related design environment. Moreover, we provide a set of definitions and
concepts that might prove useful in understanding our approach. Then, we de-
tail the description of the integrated process used for the development of the
Safe4Rail application in Sect. 6.

3.1 Definitions

Adapting the definition of pattern language given by Christopher Alexander [18],
we define the following:

MDE for Trusted Systems Based on Security and Dependability Patterns 75

Definition 1 (Modeling Artifact Language.). A modeling artifact language
is a collection of modeling artifacts forming a vocabulary. Such a collection may
be skillfully woven together into a cohesive ”whole” that reveals the inherent
structures and relationships of its constituent parts toward fulfilling a shared
objective.

Definition 2 (Security Pattern.). A security pattern describes a particu-
lar recurring security problem that arises in specific contexts and presents a
well-proven generic scheme for its solution [11].

Definition 3 (Security Pattern Language.). We define a security pattern
language as a modeling artifact language where its constituent parts are security
patterns and their relationships.

Definition 4 (Instantiation.). An instantiation activity takes a pattern and
its related artifacts from the repository and adds it to the end-developer
environment. This task enables the pattern to be used while modeling.

The Instantiation activity is composed of the following steps:

1. Define needs in terms of properties and/or keywords,
2. Search for patterns in the repository,
3. Select the appropriate pattern from those proposed by the repository,
4. Import the selection into the development environment using model

transformation techniques.

Definition 5 (Integration.). An integration activity happens within the devel-
opment environment when a pattern and its related artifacts are introduced into
an application design. Some development environments may come with native
support for the integration.

3.2 Development of Reusable Artifacts

The pattern development process supports a number of features including pat-
tern design, validation, interaction with a verification framework, deposit to and
retrieval and from the repository.

The process root, as shown in Fig. 1, indicates the start of the creation of a pat-
tern (A1). It contains some initialization actions to define the pattern attributes
(e.g, name, author, date,. . .). The next activity is the modeling of the pattern ar-
tifacts (A2) collecting data interacting with (1) Domain knowledge and expertise
providing an informal pattern description and (2) the model-based Repository
to refer to existing patterns. During this activity the pattern artifacts were built
conforming to the pattern modeling language. An activity is added at this point
to check the design conformity of the pattern (A3). The next activity (A4) deals
with the pattern validation. It supports the formal validation of a pattern using
an external process [3]. The result is a set of validation artifacts. At this point,
the pattern designer may generate documentation (A6). If the pattern has been

76 B. Hamid et al.

Fig. 1. Pattern development process

correctly defined (i.e. conforms to the pattern modeling language and is formally
validated) the pattern is ready for the publication to the model-based reposi-
tory (A7). Otherwise, we can find the issues and re-build the pattern (A5) by
correcting or completing its relevant constructs.

3.3 Repository Designer View Point

The goal of this process is to organize the repository content, in our case pat-
terns, to give them a structure of a set of pattern languages for application
domains [19]. As visualized in the top part of Fig. 2, each pattern from a cer-
tain application domain is studied in order to identify its relationships with the
other patterns belonging to the same application domain with respect to the
engineering process’ activity in which it is consumed (see the bottom part of
Fig. 2).

MDE for Trusted Systems Based on Security and Dependability Patterns 77

Fig. 2. Repository Process

3.4 Reuse of Existing Artifacts

Once the repository2 is available, it serves an underlying trust engineering pro-
cess. In the process model visualized in Fig. 3, the developer starts by system

2 The repository system populated with S&D Patterns.

78 B. Hamid et al.

F
ig
.
3
.
T
h
e
S
&
D

P
a
ttern

-b
a
sed

D
ev
elo

p
m
en

t
P
ro
cess

MDE for Trusted Systems Based on Security and Dependability Patterns 79

specification (A1) fulfilling the requirements. In a traditional approach (non
pattern-based approach) the developer would continue with the architecture de-
sign, module design, implementation and test. In our vision, instead of following
this phase and defining new modeling artifacts, that usually are time and effort
consuming, as well as error prone, the system developer merely needs to select
appropriate patterns from the repository and integrate them in the system under
development.

For each phase, the system developer executes the search/select from the
repository to instantiate patterns in its modeling environment (A4 and A9) and
integrates them in its models (A5 and A10) following an incremental process.
The model specified in a certain activity An− 1 is then used in activity An. In
the same way, for a certain development stage n, the patterns identified previ-
ously in stage (phase) n− 1 will help during the selection activity of a current
phase. Moreover, the system developer can use the pattern design process, in-
troduced previously, to develop their own solutions when the repository fails to
deliver appropriate patterns at this stage. It is important to remark that the
software designer does not necessarily need to use one of the artifacts stored
in the repository previously included. He can define custom software architec-
ture for some patterns (components), and avoid using the repository facilities
(A6 and A11).

4 Specification Languages (DSLs)

In this section we present the specification languages to support the PBSE
methodology: repository structure specification language (SARM) and pattern
modeling language (SEPM).

4.1 Repository Structure Specification Language

A repository is a data structure that stores artifacts and that allows the user
to publish and to select them for reuse and to share expertise. The specification
of the structure of the repository is based on the organization of its content
and the way it interacts with other engineering processes. The analysis of these
requirements allows us to identify two main parts: the first one is dedicated to
store and manage data in the form of Compartments, the second one is about
the Interfaces in order to publish and to retrieve patterns and models.

The principal classes of the System and software Artifact Repository Meta-
model (SARM) are described with Ecore notations in Fig. 4. The following part
depicts more detailed the meaning of the principal concepts used to structure
the repository:

– SarmRepository. Is the core element used to define a repository.
– SeArtifact. We define a modeling artifact as a formalized piece of knowl-

edge for understanding and communicating ideas produced and/or consumed
during certain activities of system engineering processes. The modeling ar-
tifact may be classified in accordance with engineering processes levels.

80 B. Hamid et al.

S
a
rm
In
terra

ctio
n
In
terfa

ce
S
a
rm
C
o
m
p
a
rtm

en
t

S
eLifecycleS

ta
g
ea
b
le

F
ig
.
4
.
R
ep

o
sito

ry
S
p
ecifi

ca
tio

n
L
a
n
g
u
a
g
e
-O

v
erv

iew

MDE for Trusted Systems Based on Security and Dependability Patterns 81

An SeLifecycleStage defines an enumeration to the development life-cycle
stage in which the artifact will be used. In our study, we focus on S&D
pattern models. In this context, we use the pattern classification of Riehle
and Buschmann [4,19].

– SarmCompartment. Is used for the categorization of the stored artifacts. We
have identified two main kinds of compartments: (1) SarmSpecLangCom-
partment to store the specification languages (SeSpecLang) of the modeling
artefacts (SEPM), and (2) SarmArtefactCompartment to store the modeling
artefacts (S&D pattern models).

– SeReference. This link will be used to specify the relation between patterns
with regard to domain and software life-cycle stage in the form of a pattern
language. For instance, a pattern at a certain software life-cycle stage uses
another pattern at the same/or at different software life-cycle stage. The
enumeration SeReferenceKind contains examples of these links.

– SarmStorable. Is used to define a set of characteristics of the modeling ar-
tifacts, mainly those related to its storage. We can define: RepositoryID,
StorageDate, SizeByte, etc. . . . In order to keep the structure of pattern lan-
guage as the set of patterns and their links for a certain domain, the concept
SarmStorable includes a list of references (SarmReference).

4.2 Pattern Specification Language (SEPM)

The System and software Pattern Metamodel (SEPM), as depicted in Fig. 5, is
a metamodel defining a new formalism for describing patterns. Note, however,
that our proposition is inspired from GoF [20] specification, which we deeply
refined in order to fit with the non-functional needs. The principal classes of the
metamodel are described with Ecore notations in Fig. 5. In the following, we
detail the meaning of principal concepts used to edit a pattern.

– SepmPattern. This block represents a modular part of a system representing
a solution of a recurrent problem. It specializes the conceptual SeArtifact.
An SepmPattern is defined by its behavior and by its provided and required
interfaces. An SepmPattern may be manifested by one or more artifacts,
and in turn, that artifact may be deployed to its execution environment.
The SepmPattern has attributes [20] to describe the related recurring design
problem that arises in specific design contexts.

– SepmInternalStructure. Constitutes the implementation of the solution pro-
posed by the pattern. Thus the InternalStructure can be considered as a
white box which exposes the details of the pattern.

– SepmInterface. A pattern interacts with its environment with Interfaces which
are composed of Operations. We consider two kinds of interface:
(1) SepmExternalInterface for specifying interactions with regard to the inte-
gration of a pattern into an application model or to compose patterns, and
(2) SepmTechnicalInterface for specifying interactions with the platform.

82 B. Hamid et al.

Fig. 5. Pattern Specification Language -Overview

– SepmProperty. is a particular characteristic of a pattern related to the con-
cern dealing with and dedicated to capture its intent in a certain way. Each
property of a pattern will be validated at the time of the pattern valida-
tion process and the assumptions used will be compiled as a set of con-
straints which will have to be satisfied by the domain application. Security
attributes [21] such as Confidentiality and Availability are categories of S&D
properties.

5 MDE Tool-Chain

Once these specification languages have been defined, it is possible to develop
a repository in which modeling artifacts specifications and instances are stored.
There are several Domain Specific Modeling Languages (DSML) [7] environments
available. In our context, we use the Eclipse Modeling Framework (EMF) [22]
open-source platform. Note, however, that our vision is not limited to the EMF
platform. Using the proposed metamodels, ongoing experimental work is done
under the hood of semcomdt3 (IRIT’s editors and platform as Eclipse plug-ins),
testing the features of:

(1) Gaya G for the repository structure and API conforming to SARM,
(2) Arabion(A) for specifying patterns and documentation generation conform-
ing to SEPM, and
(3) Deposit and Retrieval for repository access.

3 http://www.semcomdt.org

http://www.semcomdt.org

MDE for Trusted Systems Based on Security and Dependability Patterns 83

Fig. 6. Repository Implementation

5.1 Repository - Gaya

The implementation of Gaya is based on the SARM metamodel and the reposi-
tory of S&D pattern structure presented in Sect. 4 on one hand and on Eclipse
CDO4 on the other hand. Repository management is provided via the Gaya tool.
Gaya offers repository management with facilities such as pattern lookup, re-
moval, sorting, exporting and categorization. We offered these facilities through
a set of dialogs. The main dialog is shown in Fig. 6.

5.2 Pattern Designer - Arabion

The pattern designer called Arabion is an EMF tree-based editor for specifying
S&D patterns. The design environment is presented in Fig. 7. There is a design
palette on the right, a tree view of the project on the left and the main design
view in the middle. The design palette is updated regarding the development
stage to display suitable design entities for building patterns. These entities are
technical interfaces and resource properties.

In our example, the SecurityCommunicationLayer@DetailedDesign uses the
HMAC mechanism. The call of the method send() of the Sender calls internally
generateAH() to prepare an appropriate authentication header for the data.

4 http://www.eclipse.org/cdo/

http://www.eclipse.org/cdo/

84 B. Hamid et al.

Once this header is appended to the message, it is sent by the communication
channel. On the Receivers side, the call of the method receive() returns the
last received message from the sender. This message is checked by the method
checkAH(). If the message is correct, it is passed to the application, in any other
case it is discarded. The operations generateAH() and checkAH() are provided
through an internal interface called HMAC Computation.

Moreover, Arabion includes conformance validation tool used to guarantee
design validity conforming to the pattern metamodel. In our example, the Se-
cure Communication pattern model can be validated, where a violation of a
metamodel construct will yield an error message.

5.3 Pattern Deposit

Pattern publication is triggered by running the Publication tool. When executed,
the pattern will be stored in the repository following the pattern designer’s
profile (compartment). The tool uses the Gaya4Pattern API, for publishing to
the repository. Note, however that the deposit tool requires the execution of the
validation tool to guarantee design validity.

5.4 Pattern Retrieval

The tool allows the search/selection of patterns which are used during a system
development process. For instance, as shown in the right part of Fig. 8, the tool
provides a set of facilities to help the selection of appropriate patterns. The re-
sults are displayed in search results tree as System, Architecture, Design and
Implementation patterns. For example, the right part of Fig. 8 shows a pattern
at design level targeting the Confidentiality S&D property5, named communi-
cation and has a keyword secure. The tool includes features for exportation
and instantiation. In our case, we select the Secure Communication pattern for
instantiation (see the left part of Fig. 8).

6 Application of the PBSE Methodology to a Case Study

To illustrate our approach we have an industry control application from the
railway domain called Safe4Rail acting as a TERESA case study. Our goal is
also to assess whether the PBSE addresses the practical needs when modeling
the trusted embedded system application of a realistic system and whether it
can provide significant benefits in terms of reducing modeling effort and error-
proneness.

The application is in charge of the emergency brake of a railway system. Its
mission is to check whether the brake needs to be activated. Their implementa-
tion mainly depends on the safety level to meet, but also on the type and the

5 In our case, this means that the pattern has a property with a confidentiality
category type.

MDE for Trusted Systems Based on Security and Dependability Patterns 85

F
ig
.
7
.
S
ec
u
re

C
o
m
m
u
n
ic
a
ti
o
n
P
a
tt
er
n
a
t
D
es
ig
n
le
v
el

86 B. Hamid et al.

Fig. 8. Pattern Instantiation

number of sensors and actuators involved. These considerations greatly influence
how each product is to be implemented (e.g, the number of channel redundancy,
the diversity of the channels,. . .). In this case, SIL4 level is targeted. A number of
design techniques from S&D are used, namely redundancies, voting, diagnostics,
secure and safe communications. A very strict engineering process was followed,
where specific activities were performed in order to achieve certification using
the presented approach.

6.1 A Model-Based Repository of S&D Patterns Structure Model

The railway domain analysis led to identification of a set of patterns for the
Safe4Rail application. We used Arabion to design these patterns and then the
Deposit tool to store them in the repository. Figure 9 depicts an overview of
the railway S&D pattern language.

MDE for Trusted Systems Based on Security and Dependability Patterns 87

Fig. 9. Railway Pattern Language - Overview

6.2 System Developer View Point: Reuse of Existing Artifacts

Here, we examine the process flow for the example following the design process
of Sect. 3.4. Once the requirements are properly captured and imported into the
development environment 6, the process can be summarized with the following
steps:

Activity A2: Develop architecture model of a system. The analysis of
the requirements (A3) results in the needs of an architectural pattern for redun-
dancy. Thus, activity A4 is the instantiation of S&D patterns from the repository
using the repository access tools. The running of the Retrieval tool using key-
words Redundancy and SIL4, suggests to use a TMR pattern at architecture
level. In addition, some diagnosis techniques imposed by the railway standard
are suggested, thanks to the repository organization for the railway application
domain (see Fig. 9). Finally, at architecture level, we will integrate (A5) the
following patterns:

(1) TMR (searched by the System Architect),
(2) Diagnosis techniques (suggested by the tool) and
(3) Sensor Diversity (searched by the System Architect).

Activity A7: Develop design model of a system. This activity involves
the development of the design model of the system. The analysis of the require-
ments (A8), the architecture model and the identified architectural patterns will
help during the instantiation activity (A9) of the design phase. Based on the se-
lected patterns, the repository may suggest related or complementary patterns.

6 Rhapsody is used by Ikerlan Center engineers.

88 B. Hamid et al.

For instance, if the TMR has been integrated, the following patterns may be
proposed for the design model iteration: (1) Data Agreement, (2) Voter, (3)
Black Channel and (4) Clock Synchronization.

7 Assessment

This section provides a preliminary evaluation of the approach along TAM (Tech-
nology Acceptance Model) and concerns the methodology as well as the tools
(Arabion and Gaya). We have identified a set of measures to evaluate the usage
of the models and the user-friendliness of the tools. Eleven TERESA members
participated. The study was divided into three tasks. Before they started, a gen-
eral description of the aim of the study was given (30’). Some running examples
were introduced to them. After these two tasks, achieved during the TERESA
MDE workshop in Toulouse (April 2012), a 6-months evaluation was conducted.
All the subjects were already familiarized with MDE, S&D patterns and Eclipse.
The procedure includes four tasks: SEMCO plug-in installation, pattern devel-
opment, patterns instantiation and patterns integration.

We asked participants to give scores from 1 to 5 (5 is the best). We first
evaluated the perceived usefulness of the solution itself (items 1-4). Next, we
focus on the ease of the solution (items 5-6). We want also to measure the
compatibility of the solution with existing environments. (items 7-9). Finally,
we wanted to measure the willingness to use the approach in the future in the
related activities (items 10-12). These scores indicate the degree of satisfaction
of the users and provides a feedback to us in order to enhance our specification
languages and the tool suite. The following table depicts an overview of the
results of our experiment.

Item Mean St. Deviation

1. Design quality 3.5 0.4
2. Model completeness 4 0.3
3. Documentation and artifact generation readability 4 0.89
4. Effort spent on development 4.5 0.16

5. Model understandability 3.5 0.475
6. Effectiveness 3.5 0.6

7. Integration with other solutions 4 0.86
8. Standards compliance 4 0.2
9. Cost of adoption 3.5 0.48

10. Use the approach in the future 4.10 0.68
11. Exchange the approach in the future 3.60 0.56
12. Customize some of the proposed plug-ins in the future 3.60 0.76

Fig. 10. Satisfaction Results

MDE for Trusted Systems Based on Security and Dependability Patterns 89

8 Conclusion

We proposed a methodology and an MDE tool-chain to support the specifications
and the packaging of a set of S&D patterns, in order to assist the developers of
trusted applications for resource constrained embedded systems.

First evidences indicate that users are satisfied with the notion of ‘model-
based repository of S&D patterns’. The approach paves the way to let users
define their own road-maps upon the PBSE methodology. First evaluations are
encouraging with 85% of the subjects being able to complete the tasks. However,
they also point out one of the main challenges: automatic search for the user to
derive those ‘S&D patterns’ from the requirements analysis. We plan to perform
additional case studies to evaluate both the expressiveness and usability of the
methodology, the DSLs and the tools. Our vision is for ‘S&D patterns’ to be
inferred from the browsing history of users built from a set of already developed
applications.

References

1. Zurawski, R.: Embedded Systems. CRC Press Inc. (2005)
2. Ravi, S., et al.: Security in embedded systems: Design challenges. Transactions on

Embedded Computing Systems (TECS) 3(3), 461–491 (2004)
3. Hamid, B., Gürgens, S., Jouvray, C., Desnos, N.: Enforcing S&D Pattern Design in

RCES with Modeling and Formal Approaches. In: Whittle, J., Clark, T., Kühne, T.
(eds.) MODELS 2011. LNCS, vol. 6981, pp. 319–333. Springer, Heidelberg (2011)

4. Riehle, D., Züllighoven, H.: Understanding and Using Patterns in Software Devel-
opment. Theory and Practice of Object Systems 2(1), 3–13 (1996)

5. Serrano, D., Mana, A., Sotirious, A.-D.: Towards Precise Security Pat-
terns. In: 19th International Conference on Database and Expert Systems
Application, DEXA 2008, pp. 287–291. IEEE Computer Society (2008),
http://doi.ieeecomputersociety.org/10.1109/DEXA.2008.36

6. Crnkovic, I., et al.: Component-Based Development Process and Component Life-
cycle. In: Proceedings of the International Conference on Software Engineering
Advances, ICSEA 2006, p. 44. IEEE Computer Society (2006)

7. Gray, J., et al.: Domain-Specific Modeling. Chapman & Hall/CRC (2007)
8. Daniels, F., Kim, K., Vouk, M.A.: The reliable hybrid pattern – a generalized

software fault tolerant design pattern. In: Pattern Language of Programs, PLoP
1997 (1997), http://hillside.net/plop/plop97/Proceedings/daniels.pdf

9. Tichy, M., Schilling, D., Giese, H.: Design of self-managing dependable systems
with UML and fault tolerance patterns. In: Proceedings of the 1st ACM SIGSOFT
Workshop on Self-Managed Systems, WOSS 2004, pp. 105–109. ACM (2004)

10. Yoder, J., Barcalow, J.: Architectural patterns for enabling applica-
tion security. In: Pattern Languages of Programs, PLoP 1998 (1998),
http://hillside.net/plop/plop97/Proceedings/yoder.pdf

11. Schumacher, M.: Security Engineering with Patterns. LNCS, vol. 2754. Springer,
Heidelberg (2003)

12. Jürjens, J.: UMLsec: Extending UML for secure systems development. In: Jézéquel,
J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 412–425.
Springer, Heidelberg (2002)

http://doi.ieeecomputersociety.org/10.1109/DEXA.2008.36
http://hillside.net/plop/plop97/Proceedings/daniels.pdf
http://hillside.net/plop/plop97/Proceedings/yoder.pdf

90 B. Hamid et al.

13. Hatebur, D., Heisel, M., Schmidt, H.: A security engineering process based on
patterns. In: Proceedings of the 18th International Workshop on Database and
Expert Systems Applications, DEXA 2007, pp. 734–738. IEEE Computer Society
(2007)

14. Halkidis, S.T., Chatzigeorgiou, A., Stephanides, G.: A qualitative analysis of soft-
ware security patterns. Computers & Security 25(5), 379–392 (2006)

15. Konrad, S., et al.: Using security patterns to model and analyze security require-
ments. In: Requirements Engineering for High Assurance Systems, RHAS 2003,
pp. 13–22. Software Engineering Institute (2003)

16. Di Giacomo, V., et al.: Using security and dependability patterns for reaction
processes. In: 19th International Workshop on Database and Expert Systems Ap-
plication, DEXA 2008, pp. 315–319. IEEE Computer Society (2008)

17. Fernandez, E.B., et al.: Using security patterns to develop secure systems. In:
Software Engineering for Secure Systems, pp. 16–31. Information Science Reference
(2011)

18. Alexander, C., Ishikawa, S., Silverstein, M.: A pattern language – towns, buildings,
construction, vol. 2. Oxford University Press (1977)

19. Buschmann, F., Henney, K., Schmidt, D.C.: Pattern-oriented Software Architec-
ture, vol. 4. John Wiley & Sons (2007)

20. Gamma, E., et al.: Design patterns – Elements of reusable object-oriented software.
Addison-Wesley (1995)

21. Avizienis, A., et al.: Basic concepts and taxonomy of dependable and secure com-
puting. IEEE Transactions on Dependable and Secure Computing 1(1), 11–33
(2004)

22. Steinberg, D., et al.: EMF: Eclipse Modeling Framework 2.0. Addison-Wesley
(2008)

	Model-Driven Engineering for Trusted Embedded Systems Based on Security and Dependability Patterns
	1 Introduction
	2 Related Work
	3 Pattern-Based Security Engineering Methodology
	4 Specification Languages (DSLs)
	5 MDETool-Chain
	6 Application of the PBSE Methodology to a Case Study
	7 Assessment
	8 Conclusion
	References

