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Abstract. Non-functional requirements such as availability, reliability,
and security are often crucial in designing and implementing distributed
real-time systems. As a result, such non-functional requirements should
be addressed as early as possible in the system development life-cycle.
The widespread interest in dependability modeling and analysis tech-
niques at the requirements elicitation and analysis stage provides the
major motivation for this research. This paper presents a novel approach
to describe high-level availability requirements using the Aspect-oriented
Use Case Maps (AoUCM) language. AoUCM adds aspects-oriented con-
cepts to the Use Case Maps (UCM) language, part of the ITU-T User
Requirements Notation (URN) standard. The proposed approach relies
on a mapping of availability architectural tactics to reusable AoUCM
models, allowing availability tactics to be encapsulated early in the soft-
ware development life-cylce. Initial tool support for the resulting avail-
ability extensions, is provided by the jUCMNav tool. We demonstrate
the applicability of our approach using a case study of Lawful Intercept
(LI), an IP router feature.

1 Introduction

The Use Case Maps (UCM) language, part of the ITU-T User Requirements
Notation (URN) standard [1], is a high-level visual scenario-based modeling
language that has gained momentum in recent years within the software re-
quirements community. Use Case Maps can be used to capture and integrate
functional requirements in terms of causal scenarios representing behavioral as-
pects at a high level of abstraction, and to provide the stakeholders with guidance
and reasoning about the system-wide architecture and behavior.

The Use Case Maps language, extended with aspect-oriented modeling, re-
sulted in the Aspect-oriented Use Case Maps (AoUCM) language. AoUCM,
part of the Aspect-oriented User Requirements Notation (AoURN), supports the
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modeling of scenario-based, crosscutting concerns during requirements
activities, i.e., concerns that are difficult to encapsulate with UCM alone.

System non-functional aspects such as availability and fault tolerance are often
overlooked and underestimated during the initial system design. To address this
issue, the UCM language has been extended with availability features in [2]
and [3]. In this research, we use the AoUCM language to model the well-known
availability tactics, introduced by Bass et al. [4].

The widespread interest in dependability modeling, constitutes the major mo-
tivation of this paper. We, in particular, focus on the need to incorporate avail-
ability aspects at the very early stages of system development. This work builds
upon and extends the work of Hassine and Gherbi [3], and serves the following
purposes:

– It describes the availability tactics, introduced by Bass et al. [4], in a well-
encapsulated way using the Aspect-oriented Use Case Maps language.

– It introduces an improved Aspect-oriented Use Case Maps language, capable
of handling more concisely variations in an aspect such as availability.

– It provides a comparison between our approach and the availability modeling
approach introduced in [2] and [3].

– It extends our ongoing research towards the construction of an Aspect-
oriented User Requirements Notation (AoURN) framework for the descrip-
tion and analysis of dependability aspects in the very early stages of system
development life cycle.

The remainder of this paper is organized as follows. Section 2 introduces the con-
cept of availability and provides an overview of the existing availability descrip-
tion approaches. Section 3 describes the proposed AoUCM-based availability
models. A brief discussion of the advantages and shortcomings of the approach
is provided in Section 4. A case study of an IP-based router feature, named LI
(Lawful Intercept) is presented in Section 5 demonstrating the applicability of
our approach. Finally, Section 6 covers conclusions and future work.

2 Availability Requirements

Several definitions of availability have been proposed [5,6,7,8,9]. According to
ISO [5], the availability of a system may be defined as the degree to which a
system or a component is operational and accessible when required for use. The
ITU-T recommendation E.800 [8] defines availability, as the ability of an item
to be in a state to perform a required function at a given instant of time, or
at any instant of time within a given time interval, assuming that the external
resources, if required, are provided. Availability has been treated by the field
of dependability [6,7,9]. Bass et al. [4] have introduced the notion of tactics
as architectural building blocks of architectural patterns. The authors [4] have
provided a comprehensive categorization of availability tactics based on whether
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they address fault detection, recovery, or prevention. Figure 1 illustrates these
four categories:

1. Fault Detection tactics are divided into
(1) Ping/Echo (determines reachability and the round-trip delay through
the associated network path),
(2) Heartbeat (reports to system monitor when a fault is incurred), and
(3) Exception (detects faults such as divide by zero, bus, and address faults).

2. Fault Recovery-Preparation and Repair tactics are divided into
(1) Voting (A voter component decides which value to take in a redundant
environment),
(2) Active Redundancy (called also hot redundancy, refers to a configura-
tion where all redundant spares maintain synchronous state with the active
node(s)),
(3) Passive Redundancy (called also warm redundancy, refers to a config-
uration where redundant spares receive periodic state updates from active
node(s)), and
(4) Spare (called also cold redundancy, refers to a configuration where the re-
dundant spares remain out of service until a switch-over or fail-over occurs).
It is worth noting that the application of one tactic may assume that another
tactic has already been applied. For example, the application of voting may
assume that some form of redundancy exists in the system.

3. Fault Recovery-Reintroduction tactics are divided into
(1) Shadow (refers to operating a previously failed component in a shadow
mode for a predefined duration of time),
(2) Rollback (allows the system state to be reverted to the most recent
consistent state), and
(3) State Resynchronization (ensures that active and standby components
have synchronized states).

4. Fault Prevention tactics include
(1) Removal from Service (refers to placing a system component in an
out-of-service state for the purpose of mitigating potential system failures),
(2) Transactions (typically realized using atomic commit protocols), and
(3) Process Monitor (monitors the health of a system).

In a closely related work, Scott and Kazman [10] have proposed a refined version
of Bass et al. categorization [4]. However, their proposed classification considers
tactics that are specific to inter-networking devices like switches and packet
routers. Examples of such tactics include Non-Stop Forwarding (which maintains
the proper functionning of user data plane in case of a failure) and MPLS ping
(ensures timely ping responses in an MPLS-based network).

In this research, we adopt the more general availability tactics introduced
by Bass et al. [4], as a basis for extending the Aspect-oriented Use Case Maps
language [11] with availability annotations, allowing us to encapsulate the cross-
cutting availability concern in scenario models. These tactics have been proven
in practice for a broad applicability in different industrial domains.
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Fig. 1. Availability Tactics [4]

3 Aspect-Oriented Use Case Maps Availability Modeling

In this section, we introduce the AoUCM features and modeling elements that
are relevant to our proposed availability extensions. For a complete description
of the Aspect-oriented Use Case Maps language, interested readers are referred
to [11,12,13,14]. AoUCM builds on the UCM language.

3.1 Use Case Maps

UCMs expressed by a simple visual notation allow for an abstract description
of scenarios in terms of causal relationships between responsibilities ( , i.e., the
steps within a scenario) along paths allocated to a set of components. These rela-
tionships are said to be causal because they involve concurrency, partial ordering
of activities, and they link causes (e.g., preconditions and triggering events) to
effects (e.g., postconditions and resulting events). UCMs help in structuring and
integrating scenarios (in a map-like diagram) sequentially, as alternatives (with
OR-forks/joins; / ), or concurrently (with AND-forks/joins; / ).

When maps become too complex to be represented as one single UCM, a
mechanism for defining and structuring sub-maps becomes necessary. Path de-
tails can be hidden in sub-diagrams called plug-in maps, contained in stubs ( )
on a path. A plug-in map is bound (i.e., connected) to its parent map by binding
the in-paths of the stub with start points ( ) of the plug-in map and by binding
the out-paths of the stub to end points ( ) of the plug-in map.

The UCM language supports path elements for failure points ( ), which
describe exceptions raised explicitly at a specific point on a path causing the
cancellation of the rest of the path (it does not address other concurrent paths).
In this research, we annotate responsibilities with failure metadata attributes
instead of using failure points (see Section 3.3) to improve the readability of
UCM and AoUCM scenario models.
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One of the strengths of UCMs resides in their ability to bind responsibilities
to architectural components. Several kinds ot UCM components allow system
entities ( ) to be differentiated from entities of the environment ( ). UCM
component relationships depend on scenarios to provide the semantic informa-
tion about their dependencies. Components are considered to be dependent if
they share the same scenario execution path even though no actual/physical
connections are drawn between the components.

3.2 Aspect-Oriented Use Case Maps

Aspect-oriented UCM (AoUCM) [11,12,13,14] adds three core aspect-oriented
concepts concerns, composition rules, and pointcut expressions to UCM. A con-
cern is a new unit of encapsulation that captures everything related to a par-
ticular idea, e.g., availability. AoUCM treats concerns as first-class modeling
elements. If a concern is not crosscutting, it can be described with the standard
UCM notation. However, if it is crosscutting like availability, then it is best de-
scribed using the AoUCM notation. Figure 2 presents a simple example with a
base concern consisting of two responsibilities RespA and RespB.

Fig. 2. AoUCM Example

Pointcut expressions are patterns that are specified by an aspect and matched
in the base model. The pattern of the shown aspect matches against Resp*,
i.e., RespA and RespB in the base concern. If a match is found, the aspect is
applied at the matched location in the base model. The behavior of an aspect
is defined on a standard map. The only difference is that it contains a pointcut
stub ( PP ) that represents the locations matched by the aspect’s pattern. The
causal relationship between the pointcut stub and the rest of the aspect map
defines the composition rule. In the example in Fig. 2, R1 is added before the
matched locations, because R1 occurs before the pointcut stub, while R2 is
added after the matched locations. This results in the composed model shown

in Fig. 2. An AoUCM model may also use a replacement pointcut stub (  )
instead of a regular pointcut stub to remove any matched elements from the
composed model. Furthermore, an element in the pattern may be defined as a
variable ($) which allows the element to be reused in the definition of the aspect
behavior.
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In the following sections, we use AoUCM to describe high-level availability
requirements. We adopt the availability tactics introduced by Bass et al. [4] as a
basis for expressing availability requirements with AoUCM, making it possible to
model availability as a properly encapsulated crosscutting concern. Fault Recov-
ery Preparation and Repair as well as Fault Recovery Reintroduction categories
(see Fig. 1) are merged to obtain what we refer to as Fault Recovery.

3.3 AoUCM Fault Detection Modeling

The specification of fault detection mechanisms is a key factor in implement-
ing any availability strategy. Fault detection modeling involves the descrip-
tion of potential faults (i.e., Exception tactic) and the specification of liveness
requirements using ping/echo and heartbeat [4].

Exceptions. Exceptions are modeled and handled at the scenario path level.
Exceptions may be associated with any responsibility along the UCM execution
path. The availability requirements of a responsibility can be modeled using
three metadata attributes. The metadata approach allows for a more nuanced
description of availability which is not possible with only failure points.

1. AvCat: Specifies the availability category, if any, that the responsibility is
implementing. In the case of exceptions, it is specified as “FaultDetection”.

2. Tactic: Denotes the type of the deployed tactic. In the case of exceptions, it
is specified as “Exception”.

3. Severity denotes the severity of the potential fault that might occur as
a result of the execution of the responsibility. Three severity levels are
considered: “1” (causes the component to stop working), “2” (impacts the
component operations), and “3 or higher” (minor fault, not service
impacting).

The realization of the exception tactic is assured by the definition of metadata at-
tributes and by the existence of a related exception handling scenario. The actual
handling of the exception (through the modeling of a failure scenario) is realized
using the fault recovery tactic (Section 3.4). Figure 3(a) illustrates a simple UCM
map with a main scenario executing in sequence two responsibilities R1 and R2.
Figure 3(c) shows an updated model where both responsibilities implement fault
detection exception tactics specified using AvCat (i.e., AvCat = FaultDetection)
and Tactic (i.e., Tactic = Exception) attributes. The metadata specifications are
shown in Figure 3(d). Responsibility R1 describes an exception with severity 1
(i.e., Severity = 1) while responsibility R2 describes an exception with severity
2. Exceptions in responsibilities R1 and R2 are handled using two failure paths
describing the recovery behavior. A failure path starts with a failure start point
( F ) [1,11] and a guarding condition (e.g., conditions R1-FD-Cond and R2-FD-
Cond in Fig. 3(c)). In this example, the actual handling of the exceptions takes
place within two stubs namedR1-ExceptionHandling andR2-ExceptionHandling.
The corresponding plug-in maps handlingR1 and handlingR2 are not shown at
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this point because the details of the exception handling are irrelevant for this dis-
cussion on failure detection.The plug-inmaps describe fault recovery (Section 3.4).
After handling the R1 and R2 exceptions, the path continues explicitly with
responsibility R2 and the end point EP1, respectively.

As can be clearly seen from Fig. 3(c), the exceptions add significant com-
plexity to the basic scenario in Fig. 3(a). Furthermore, great similarities can be
observed for exceptions of responsibilities R1 as well as R2, e.g., both require
a failure path. These similarities are captured in the aspect-oriented model for
the exception tactic presented in Fig. 3(b). Before explaining the details of the
aspect-oriented model, it must be noted that, despite the similarities, there are
also many small variations from the failure path of one responsibility to the one
of another responsibility (i.e., the guarding condition is different and the actual
exception handling is different; the metadata attributes of the responsibility may
also be different). Nevertheless, the overall structure is the same. With conven-
tional AoUCM, a separate AoUCM model would have to be created for each
combination of variations. However, this does not scale to what is needed for
availability tactics. Therefore, the Aspect-oriented Use Case Maps language has
been extended with the concept of a composition matrix that allows variations
to be specified in a concise manner. With this approach, the AoUCM model in
Fig. 3(b) describes the generic reusable properties of exception handling, while
the composition matrix factors out the adaptation of this generic model to its
application context.

The aspect-oriented model in Fig. 3(b) describes a replacement as indicated

by the replacement pointcut stub (  ), i.e., the model elements matched by the
pattern in Fig. 3(b) are replaced with the model elements that follow the re-
placement pointcut stub. In this case, the pattern describes a single variable,
the responsibility ($R). This single responsibility is replaced by itself ($R is
shown on the path following the replacement pointcut stub which means that
the matched responsibility is reused by the aspect) but with several metadata
attributes added. In addition, the failure path is added which merges with the
path of $R after the responsibility. The metadata attributes and several elements
of the failure path are also specified with variables (e.g., $AvCat and $condition).
However, these variables are not defined in the pattern, contrary to the $R re-
sponsibility. This is where the composition matrix comes into play. Any variable
that is not bound by the pattern must be defined in the composition matrix as
shown in Fig. 3(e).

In this example, the values of these unbound variables depend on the respon-
sibility that is matched by the pattern, i.e., the bound variable. The first column
in the composition matrix allows the composition condition to be specified. In
this case, $R can either be R1 or R2. The second set of columns specify assign-
ments. For example, if $R is matched against R1, then the metadata variable
$AvCat needs to be assigned the value FaultDetection and the condition vari-
able $condition needs to be assigned the value R1-FD-Cond. The last column in
the composition matrix allows for the specification of a specific plug-in map of
the stub defined in the second row of this column (i.e., $handling in our case).
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For example, when R1 is matched, then the plug-in map called handlingR1 must
be used as the plug-in map for the handling stub. Note that, in addition to the
name of the plug-in map, more detailed plug-in bindings can be specified for
more complex stubs with several in-paths and out-paths. This, however, is not
required for availability tactics. Similarly, regular expressions can be used in
the column for the composition conditions, but this is also not required for the
example in Fig. 3(b). In general, the composition matrix collects all metadata
specifications required for availability in one location that are otherwise spread
out over the model as shown in Fig. 3(d), hence allowing all specifications related
to availability to be encapsulated in one aspect.

When the availability aspect is applied to the scenario in Fig. 3(a), the com-
posed result is equivalent to the UCMmap in Fig. 3(c) including the annotations.

Ping/Echo and Heartbeat Tactics. Ping/Echo and Heartbeat tactics can be
used to determine how long it takes to detect a fault. This can be achieved using
the round-trip time and the number of missed pings/heartbeats. In [2] and [3],
we have reused the UCM comment constructor to describe ping and heartbeat
tactics. In this paper, we use metadata attributes instead. While both alterna-
tives allow for a global description of availability requirements (i.e., attached to
the entire UCM model rather than to one specific UCM construct), using meta-
data provides a structural and more intuitive way of representing attributes. In
AoUCM, these global descriptions are attached to the availability aspect instead
of the entire UCM model, but their specification otherwise remains the same.
For example, a ping initiated by component C1 that must result in an echo re-
sponse from C2 received within 2ms is specified as metadata Ping = “C1;C2;2”.
Similarly, a heartbeat, periodic message exchange such as “I’m alive”, that is
sent from component C1 towards component C2 with a polling interval of 2000
ms is defined as metadata Heartbeat = “C1;C2;2000”.

The ping/echo and heartbeat requirements can also be described using meta-
data attached to responsibilities (i.e.,AvCat =“FaultDetection”;Tactic =“Heart-
beat). Violations of ping/echo and heartbeat tactics are handled in scenario paths
similar to the exception tactic. If this is the case, then an aspect similar to the
AoUCM exception handling aspect is used to define the metadata and failure path
for such responsibilities.

3.4 UCM Fault Recovery Modeling

Fault recovery tactics focus mainly on redundancy modeling in order to keep the
system available in case of the occurrence of a failure. To model redundancy, we
annotate UCM components with the following attributes:

– GroupID : A system may have many spatially redundant components of
different types. The GroupID is used to identify the group to which a
component belongs in a specific redundancy model.

– Role: Denotes whether a component is in active or standby role.
– RedundancyType: Specifies the redundancy type as hot, warm, or cold.



Describing Early Availability Requirements Using AoUCM 63

– ProtectionType: The minimal redundancy configuration is to have one active
and one redundant node (commonly referred to as 1+1 redundancy). Other
redundancy configurations are: 1:N (refers to a configuration where one spare
is used to protect multiple active nodes) and M:N (refers to a configuration
where multiple spares are used to protect multiple active nodes).

– Voting: A boolean variable describing whether a component plays a voting
role in a redundancy configuration.

 

(a) AoUCM Redundancy Aspect

Composition
Condition Assignments

$C1 = ;  
$C2 = $GroupID $ProtecType $RedType $Role $Voting 

RP1;
RP2

G1 1+1 Hot Active false 
G1 1+1 Hot Stdby false 

(b) AoUCM Composition Matrix

Fig. 4. AoUCM Redundancy Aspect with Composition Matrix

Since component redundancy has to be described visually and the involved re-
dundant components share the same scenario path, an elegant way to illustrate
such a configuration is to use overlapping components. Note that the current
URN standard [1] does not allow overlapping components (while the jUCMNav
tool [15] does support such a feature).

Figure 4 illustrates an example of a system with two components RP1 and
RP2 participating in a 1+1 hot redundancy configuration. RP1 is in active role
while RP2 is in standby role. None of these two components is taking part in a
voting activity (i.e., Voting: false).

The presented redundancy annotations deal with the static description of
component availability requirements. The operational implications of such avail-
ability requirements, in case of failure for instance, can be described using the
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(a) Feature Configuration Example

Composition
Condition Assignments

$C1 = ;  
$C2 = $GroupID $ProtecType $RedType $Role $Voting 

RP1;
RP2

G1 1+1 Hot Active false 
G1 1+1 Hot Stdby false 

(b) Redundancy AoUCM Composition Matrix

Composition
Condition Assignments Selection of 

Plug-in Map for 
$R = $AvCat $Severity $Tactic $cName $condition $handling $handling 

CommitChanges Fault-
Detection 2 Exception SP OutOf

Synch 
CC-Ex-

Handling 
Synchronize 

State 

(c) Exception Handling AoUCM Composition Matrix

 

StateSynchronization Metadata

 

(d) Synchronize State Plug-in Map and Metadata Attributes

Fig. 5. Implementation of the State Resynchronization Tactic with AoUCM

UCM scenario path. Hence, reintroduction tactics such as Shadow, State Resyn-
chronization, and Rollback can be described using the metadata attributes as-
sociated to responsibilities. Typically, these tactics are used in the exception
handling scenario in response to fault detection, i.e., they are used in the stub
in the exception handling aspect as discussed in Section 3.3.

Figure 5 illustrates a feature configuration scenario on a dual route processor
(RP) system. The configuration of a new feature may result in having the active
and the standby route processors (respectively RP1 and RP2 ) in Out-of-Sync
state (e.g., configuration is not applied to the standby RP). The detection of such
a situation would trigger an exception path (i.e., precondition OutOfSych is sat-
isfied) and causes both RPs to synchronize again (using responsibility StateSyn-
chronization). The basic scenario is defined in Fig. 5(a). Figures 5(b) and 5(c)
show the composition matrices for the redundancy aspect and the exception han-
dling aspect, respectively. The former insures that two redundant components,
RP1 and RP2, are defined using the redundancy aspect from Fig. 4. The latter
composition matrix is for the exception handling aspect in Fig. 3(b). As stated
earlier, the composition matrix defines which plug-in map to use. In this case,
it is the Sychronize State plug-in map shown in Fig. 5(d) which may even be
provided as a predefined specification of the state synchronization tactic as part
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of the AoUCM availability aspect. Since this plug-in map and its responsibility
StateSynchronization are part of the availability aspect, the required metadata
attributes for the responsibility are specified directly for the responsibility.

3.5 UCM Fault Prevention Modeling

Annotations presented in Sections 3.3 can be used to accommodate this category.
Indeed, responsibilities can be annotated with availability metadata attributes
specifying a removal from service property, transactions properties, and process
monitoring properties. For example, Fig. 6(a) illustrates a UCM scenario de-
scribing the placement of a component in an out-of-service state by shutting it
down (i.e., responsibility Shutdown) to prevent potential system failures in case
the component is running low on memory, and Fig. 6(b) provides a scenario of
updating a database record using a two-phase-commit type of transaction (a.k.a.
2PC ). Failing to ensure the two phase commit requirement, would trigger an im-
plicit rollback to undo the record update (not shown in the figure). The aspect
in Fig. 6(c) uses the same pattern as specified in Fig. 3(b), but the aspect behav-
ior is simpler as it only replaces the matched responsibility with the same but
annotated responsibility. The composition matrix of the fault prevention aspect
in Fig. 6(c) ensures that the responsibilities are annotated accordingly.

 

(a) Removal From Service Tactic

 

(b) Transactions Tactic

end

P

a
s
p
e
c
t

b
e
h
a
v
i
o
r

<<$AvCat, $Severity,
$Tactic>> $R Composition 

Condition Assignments

$R = $AvCat $Severity $Tactic
Shutdown FaultPrevention None RemovalFromService

Update Record FaultPrevention None Transactions

(c) AoUCM Fault Prevention Aspect with Composition Matrix

Fig. 6. AoUCM Fault Prevention Modeling

4 Discussion

Our proposed approach relies on a mapping of availability architectural tactics
proposed by Bass et al. [4] to generic, reusable AoUCM models, which allows the
tactics to be encapsulated at the early phases of the software development life-
cycle. In previous work [2], the use of comments is suggested to add information
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about the same availability tactics to a UCMmodel [3]. This paper uses metadata
to describe availability tactics with an aspect-oriented approach but the same
metadata could also be added directly to a conventional UCMmodel. These three
options (comments, UCM metadata, AoUCM metadata) share the same goal of
modeling the availability tactics at the early phases of development, which allows
earlier detection of design errors and helps modelers to select between different
design alternatives. We briefly compare the advantages and shortcomings of these
three approaches.

1. Comment-based option: This option is sufficient for visualizing availabil-
ity tactics in a model but does not lend itself to further analysis, because the
availability information is captured in a non-formalized way. Another disad-
vantage of this approach is that comments cannot be attached to individual
UCM model elements but only to UCM maps. The availability tactics, how-
ever, require information to be attached to individual UCM model elements.
This option is hence not further considered.

2. UCM metadata-based option: This option formalizes availability infor-
mation in metadata, making it easier to use this information in automated
model analysis. However, availability information is not encapsulated well in
one location in the model but rather distributed over the whole model, mak-
ing maintenance, reuse, and evolution of the availability information more
difficult.

3. AoUCM metadata-based option: This option also uses metadata but
localizes the availability information in one availability aspect (which may
be sub-divided into smaller availability aspects dealing specifically with ex-
ception handling, fault prevention, etc.). Previous comparisons of UCM and
AoUCM models [13] indicate that AoUCM models exhibits better modular-
ity, reusability, and maintainability than UCM models. Essentially, a larger
vocabulary size (because aspects are introduced) is trade-off against better
separation of concerns, less coupling, and stronger cohesion. These results
also apply to the availability aspect. The effects are less pronounced for sim-
ple metadata assignments which could be maintained through additional tool
management features without the need for aspect-oriented techniques. How-
ever, the availability tactics of exception detection and handling can greatly
benefit from an aspect-oriented approach because of the high number of
model elements affected by these tactics. Hence, the model can be simpli-
fied significantly. The addition of composition matrices further improves the
handling of small variations in an aspect such as availability. The common,
generic, reusable part of an availability tactic can be captured concisely in
a rather simple AoUCM aspect, while the variations are factored out into
the composition matrices. A disadvantage of the AoUCM metadata-based
option is that the AoUCMmodel is more fragmented and an automated com-
position is required to merge the availability aspect into the system model.
However, these disadvantages can be alleviated by available tool support
with the jUCMNav editor [15] which helps modelers with the navigation
through AoUCM models and the composition of AoUCM models.
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5 Case Study: Lawful Intercept (LI) Feature

In this section, we illustrate our proposed approach using a case study of a Law-
ful Intercept (LI) feature, running on a Cisco CRS-1 router1. LI allows service
providers to meet the requirements of law enforcement agencies (e.g., state and
federal police, intelligence agencies, and independent commissions against cor-
ruption) to provide authorized interception of VoIP and data traffic at content
IAP (intercept access point) routers.

A minimal CRS-1 router architecture consists of one or many route processors
(RP) cards (that provide route processing, alarm, fan, and power supply con-
troller function), one or many ingress line cards (that process incoming traffic),
one or many egress line cards (that process outgoing traffic), and a switch fabric
(receives user data from ingress cards and performs the switching necessary to
route the data to the appropriate egress cards). Since LI is an ingress feature
(i.e., applied on ingress line cards), its description is abstracted from the switch
fabric and the egress line cards. LI is described using an AoUCM scenario model
(Figure 7) bound to an architecture composed of two Route Processors (RP) in
a hot redundancy mode (RP1 is active role while RP2 is the standby) and one
ingress line card (LC). The specification of the redundancy is exactly the same
as in Fig. 5, and is hence not repeated here.

In a typical operation, a lawfully authorized intercept request is provisioned by
the MD (Mediation Device) on the content IAP (Intercept Access Point), which
is the device within the network used to intercept the targeted information. The
IAP is responsible for identifying the IP traffic of interest and forwarding it to
the MD, while remaining undetectable by the intercept subject. In a typical
operation, the router (e.g., Cisco CRS-1) is the content IAP.

Figure 7(a) provides a high level description of basic LI scenarios. The Me-
diation Device (MD) crafts an interception request based on the content to be
collected and sends it to the router. Upon reception (start point MDRequest),
the MD request may be rejected (MDReqRejected) in case LI is disabled on the
router, otherwise a check whether TCAM (Ternary content-addressable mem-
ory) resources are available (checkTCAMRes) is performed. Requested MD/Tap
entries are programmed (RPInstallMD-Taps) when TCM resources are available,
and they are rejected (RejectMDRequest) otherwise. Enabling and disabling LI
may cause unexpected configuration inconsistencies. This exception is handled
with the exception handling aspect introduced earlier. The composition ma-
trix entries for enableLI and disableLI state that the Rollback-LIConfiguration
plug-in map handles the exception by reverting back to the last consistent con-
figuration, i.e., a rollback occurs as described by responsibility rollbackLIConfig
and its composition matrix entry in Fig. 8.

The composition matrix also shows that there is a risk of an RP failover
(RPFO), when installing new MD/taps in the TCAM (RPInstallMD-Taps) and
the exception handling is defined on the Resynchronize-Process-RPLI plug-in

1 www.cisco.com/en/US/prod/collateral/routers/ps5763/

prod brochure0900aecd800f8118.eps

www.cisco.com/en/US/prod/collateral/routers/ps5763/prod_brochure0900aecd800f8118.eps
www.cisco.com/en/US/prod/collateral/routers/ps5763/prod_brochure0900aecd800f8118.eps
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(a) Lawful Intercept High Level Description

  

(b) Rollback-LIConfiguration, Restart-Process-LI, and Resynchronize-Process-RPLI
Plug-in Maps

Fig. 7. Lawful Intercept AoUCM Modeling
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Composition
Condition Assignments Selection of 

Plug-in Map for 
$R = $AvCat $Severity $Tactic $cName $condition $handling $handling 

enableLI Fault-
Detection 1 Exception 

Handle-
Incon-

sistencies 

Config-
Inconsistencies-

eLI 

CI-Ex-
Handling 

Rollback-
LIConfiguration 

disableLI Fault-
Detection 1 Exception 

Handle-
Incon-

sistencies 

Config-
Inconsistencies-

dLI

CI-Ex-
Handling 

Rollback-
LIConfiguration 

RPInstallMD-
Taps 

Fault-
Detection 1 Exception LIHandle-

RPFO RPFO 
RPFO-

Ex-
Handling 

Resynchronize-
Process-RPLI 

LCInstallMD-
Taps 

Fault-
Detection 1 Exception HandleLI-

ProcCrash LIProcessCrash LIPC-Ex-
Handling 

Restart- 
Process-LI 

Composition Condition Assignments
$R = $AvCat $Severity $Tactic 

rollbackLIConfig or ResyncRPLIProcesses or RestartLIProcess FaultRecovery None Rollback 

Fig. 8. Lawful Intercept Exception Handling and Fault Recovery AoUCM Composition
Matrices

map. At any point in time, the MD has the responsibility to detect the loss of
the taps. LI uses a replay timer, an internal timeout that provides enough time
for MD to re-provision tap entries while maintaining existing tap flows. It resets
and starts on the active RP when an RPFO takes place. After replay timeout
(the zigzag path leaving the timer in Fig. 7(b)), interception stops on taps that
are not re-provisioned.

In the ingress LC, we distinguish two scenarios. The first one deals with down-
loading MD and Tap entries from the RP and installing them (LCInstallMD-
Taps) on the LC if resources are available, otherwise the download request is
rejected (LCRejReq). The second scenario deals with the interception of traf-
fic. Packets received while LI is disabled are forwarded to their destination
(stub NoMatchFwdOrigPacket). Packets matching Tap entries are intercepted
(InterceptPacket), then forwarded to their original destinations (stub MatchFw-
dOrigPacket), and replicated (PacketReplication). If there is a valid route to MD
(LookupMD), packets will be encapsulated (AddEncap) and sent to the MD (stub
FwdRepPacket), otherwise the replicated packets are dropped (dropReplicated).

The LI process may crash while installing new MDs/Taps. This is again de-
scribed with the exception handling aspect (Figure 7(b)). The compositionmatrix
entry for LCInstallMD-Taps states that the exception handling is defined on the
Restart-Process-LI plug-in map which restarts the process (RestartLIProcess).

6 Conclusions and Future Work

In this work, we have incorporated availability information at the very early
stages of system development with the help of an aspect-oriented approach.
To this end, we have extended the Aspect-oriented Use Case Maps (AoUCM)
language (which is based on the ITU-T User Requirements Notation (URN)
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standard) with availability metadata covering the well known availability tac-
tics proposed by Bass et al. [4]. AoUCM adds aspect-oriented concepts to UCM
which allow the availability architectural tactics to be encapsulated at the early
phases of system development. Availability tactics typically need to be applied
to numerous locations in a system. A characteristic of availability tactics is that
each time a slightly different availability tactic needs to be applied. Therefore,
we have extended the AoUCM language with the notion of composition matri-
ces which enables these small variations of the availability tactics to be speci-
fied concisely. We envision that the proposed composition matrix is useful for
other concerns in addition to availability. For future work, we plan to investigate
which concerns could benefit from composition matrices. We also aim to study
how to map AoUCM availability concepts into the Service Availability Forum’s
Availability Management Framework configurations. Our goal is to allow for the
early reasoning about availability aspects and promote the portability and the
reusability of the developed systems across different platforms.
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