
Property Verification with MSC

Emmanuel Gaudin and Eric Brunel

PragmaDev, France
{emmanuel.gaudin,eric.brune}@pragmadev.com

Abstract. In the development process the very first phase focuses on the
requirements. Most of the requirements are dynamic and describe how
the system reacts to a set of stimuli. Not all the possible reactions are
listed in the requirements but some mandatory reactions are described
that can be seen as properties. Later in the development process is a real
system or a representative model of the future system. At that point it
is possible to gather execution traces of the real system. Based on the
work of the European PRESTO project this paper describes the work
that has been done to use the same kind of model in both cases and
match one against the other.

Keywords: MSC, PSC, Sequence Diagram, Property verification,
Trace, Artemis

1 PRESTO Presentation

The PRESTO project started on April the first 2011, and its duration is 36
months. It is co-funded by the European Commission under the ARTEMIS Joint
Undertaking Programme. The ARTEMIS JU aims to achieve effective coordi-
nation and synergy of resources and funding from the industry, the Framework
Programme, national R&D programmes and intergovernmental R&D schemes,
thus contributing to strengthening Europe’s future growth, competitiveness and
sustainable development.

The partners involved in this project are Teletel (Greece), Thales Commu-
nications (France), Rapita Systems (UK), VTT (Finland), Softeam (France),
Thales (Italy), MetaCase (Finland), INRIA (France), University of L’Aquila
(Italy), Miltech Hellas (Greece), PragmaDev (France), Prismtech (UK), Sarokal
Solutions (Finland).

PRESTO stands for imProvement of industrial Real time Embedded SysTems
development prOcess, from a technical point of view the project aims at improv-
ing test-based embedded systems development and validation, while considering
the constraints of industrial development processes. This project is based on the
integration of test traces exploitation along with platform models and design
space exploration techniques

The expected result of the project is to establish functional and performance
analysis and platform optimisation at early stage of the design development.

F. Khendek et al. (Eds.): SDL 2013, LNCS 7916, pp. 19–35, 2013.
© Springer-Verlag Berlin Heidelberg 2013



20 E. Gaudin and E. Brunel

The approach of PRESTO is to model the software/hardware allocation, by the
use of modelling frameworks, such as the UML profile for model-driven develop-
ment of Real Time and Embedded Systems (MARTE). The analysis tools, among
them timing analysis including Worst Case Execution Time (WCET) analy-
sis, scheduling analysis and possibly more abstract system-level timing analysis
techniques will receive as inputs on the one hand information from the perfor-
mance modelling of the HW/SW-platform, and on the other hand behavioural
information of the software design from tests results of the integration test
execution.

In order to verify the functional and non-functional properties, two approaches
have been taken into consideration:

1. Verification on the model
Model checking was proposed in the 1980s independently by Clarke and
Emerson [1] and by Quielle and Sifakis [2]. It aims at testing the cor-
respondence between a logical formula against a mathematical structure,
i.e., a model. Model checking is an important member of the family of for-
mal methods, together with testing and deductive verification, all aimed at
improving the reliability of systems.
In recent years model checking has gained popularity due to its increasing
use for software system verification even in industrial contexts [3,4]. However
the application of model checking techniques is still prevented by the state
explosion problem. As remarked by Gerald Holzmann in [5] no paper was
published on reachability analysis techniques without a serious discussion of
this problem. State explosion occurs either in systems composed of (not too)
many interacting components, or in systems where data structures assume
many different values. The number of global states easily becomes enormous
and intractable.

2. Verification on the traces
In that approach the system is considered as a black box and a set of typical
and representative execution traces are gathered. The functional proper-
ties and non-functional properties are then verified on theses traces. The
main interest with that approach is that the traces can come from a simu-
lated model or from a real target. This will help to make sure the model is
representative of the target.
Anca Muscholl and Doron Peled have investigated in [6] the automatic veri-
fication (model checking) of MSCs, as well as the expressiveness of MSCs, in
particular the ability to express communication protocols. Jindrich Babica
has discussed Message Sequence Charts properties and checking algorithms
in [7]. In [8] the Live Sequence Chart (LSC) language introduces the dis-
tinction between mandatory and possible on the level of the whole chart
and for the elements messages, locations, and conditions in an MSC. Its pri-
mary objective is the application of LSCs in the context of formal system
verification.



Property Verification with MSC 21

Of particular novelty in PRESTO is the exploitation of traces for the exclusion
of over-pessimistic assumptions during timing analysis: instead of taking all pos-
sible inputs and states into account for a worst-case analysis, a set of relevant
traces is analysed separately to reduce the set of possible inputs and states for
each trace.

As a result the work presented here aims at using the MSC as a basis for
expressing the properties, tracing, and verifying the properties on the traces.

2 ITU-T Message Sequence Charts

2.1 Scope

The purpose of the MSC (Message Sequence Chart) [9,10] is to provide a lan-
guage for the specification and description of the communication behavior of
system components and their environment by means of message interchange.
Since in MSCs the communication behavior is presented in a very intuitive
and transparent manner, particularly in the graphical representation, the MSC
language is easy to learn, use and interpret. In connection with other lan-
guages it can be used to support methodologies for system specification, design,
simulation, testing, and documentation.

2.2 Basic Concepts

Figure 1 illustrates an MSC.

Agent Instance. An agent instance starts with an agent instance head followed
by an instance axis and ends with an instance tail or an instance stop as shown
in the diagrams below.

Message Exchange. A message symbol is a simple arrow with its name and
optional parameters attached to it. The arrow can be horizontal, or the arrow
can go down to show the message arrived after a certain amount of time or after
another event. A message cannot go up.

When the sender and the receiver are represented on the diagram, the arrow
is connected to their instances. If the sender is missing it is replaced by a white
circle (found message); if the receiver is missing it is replaced by a black circle
(lost message). The name of the sender or the receiver can optionally be written
next to the circle.

Timers. An agent instance can start a timer that will automatically send back
a message when it times out. While the timer hasn’t timed out, the instance
can cancel it. Specific symbols are available for timer start, cancel and time out,
always attached to the instance performing the action. Figure 2 shows timer
elements.



22 E. Gaudin and E. Brunel

Fig. 1. Message Exchanges in MSC

Fig. 2. Timers in MSC

Semaphore Extension. The SDL-RT MSC [9] also introduced the support for
semaphore representation. In practice this is rarely used for requirements.

2.3 Inline Expressions

Special semantics can be added to MSC diagrams by the means of inline
expressions. These can enclose one or several parts of the diagram and specify
that:

– they are optional (opt);
– one or the other part can happen (alt);
– the part can be repeated (loop);
– the parts happens in parallel (par);
– the ordering within the part is not significant (seq).

An example of an alternative inline expression is given on the diagram in
Fig. 3:



Property Verification with MSC 23

Fig. 3. Inline alternative expression in MSC

2.4 Time Constraints

It is possible to express a relative time constraint in the MSC diagram, specifying
a constraint on the time between two events in the diagram. That would define
a typical non-functional property of the system. See Fig. 4.



24 E. Gaudin and E. Brunel

Fig. 4. Time constraint in MSC

3 Property Sequence Chart

Property Sequence Chart (PSC) is a simple but expressive formalism that has
been proposed to facilitate the non trivial and error prone task of specifying
temporal properties in a correct way and without expertise in temporal logic.
PSC is a language that extends a subset of UML 2.0 Interaction Sequence Di-
agrams or the ITU-T Message Sequence Chart. Further details might be found
in [9].

Within the PSC language, a property is seen as a relation on a set of exchanged
system messages, with zero or more constraints. PSC may be used to describe
both positive scenarios (i.e., the “desired” ones) and negative scenarios (i.e., the
“unwanted” ones) for specifying interactions among the components of a system.
For positive scenarios, PSC allows to specify both mandatory and provisional
behaviours. In other words, it is possible to specify that the run of the system
must or may continue to complete the described interaction.

Figure 5 shows the available symbols in PSC diagrams.
Instances are represented as in MSC diagrams. The parallel, alternative and

loop operators are represented the same way as the par, alt and loop inline
expressions in MSC diagrams respectively. The relative time constraint has the
same representation and semantics as in MSCs.



Property Verification with MSC 25

F
ig

.5
.
P

SC
G

ra
ph

ic
al

no
ta

ti
on



26 E. Gaudin and E. Brunel

Messages in PSCs have two representations:

– An arrow going from the sender to the receiver, just as in MSC diagrams;
– A textual representation, with the format “<sender instance name>.<message

name>.<receiver instance name>”. This representation is used in constraints,
explained below.

Unlike messages in MSC diagrams, message arrows in PSC diagram can have
three kinds:

– A regular message, identified by the prefix “e:” for the message text, is a
precondition for what follows.

– A required message, identified by the prefix “r:” for the message text, is a
message that must occur if the preconditions are met. Required messages
must always appear after all regular messages.

– A fail message, identified by the prefix “f:” for the message text, is a message
that must not occur if the preconditions are met. Fail messages must also
always appear after all regular messages.

When describing a property, the default ordering is the loose ordering: anything
can happen between a message specified in the PSC and the one following it.
For cases where a strict ordering is necessary, i.e when a message in the PSC
must be directly followed by the one following, the strict operator can be used,
either on a message send or a receive. See Fig. 6.

The PSC diagrams also allows to set constraints on the messages. These con-
straints are shown as symbols at the beginning or end of message arrows with
an associated text. These constraints can have three types:

1. An unwanted message constraint denotes a set of messages where none should
happen before or after the message it is attached too, depending on whether
it appears at the beginning or the end of the arrow.

2. An unwanted chain constraint denotes a sequence of messages that should
not appear as a whole before or after the message it is attached to.

3. A wanted message constraint denotes a sequence of messages that must
appear as a whole before or after the message it is attached to.

A simple example of a PSC diagram is shown in Fig. 7: According to the
semantics described above, the property can be read as follows:

– If a message “login” is sent from UserInterface to ATM (normal message
“e:login”),

– If a message “wReq” is sent from UserInterface to ATM after the login, without
a “logout” message sent from UserInterface to ATM in between (normal mes-
sage “e:wReq” with the unwanted message constraint “UserInterface.
logout.ATM”);

– Then a message “uDB” must be sent from ATM to BankDB, unless a message
“logout” has been sent from UserInterface to ATM before (required message
“r:uDB” with unwanted message constraint “UserInterface.logout.ATM”).



Property Verification with MSC 27

Fig. 6. PSC strict operator example where m’ must immediately follow m

Fig. 7. Example of a property expressed in PSC

The textual notation of PSC together with denotational and operational
semantics of the language can be found in [11,12].

4 Using the Same Representation

PSC representation is very close to the MSC representation. In the frame of the
PRESTO project the idea is to use the same tool to express both the properties
and view the execution traces.

The following sections describe the PRESTO enhancements to the new MSC
tracer by PragmaDev. MSC tracer can be used by designers and testers of em-
bedded systems to visualise the flow of control of a system. The benefit of the
enhancements is to be able to express a property at the same level as the trace
that will be generated by the execution or the simulation of a system. The new
research enables the user of the software to write non-functional properties and
functional properties at a high level using the well known MSC standard.



28 E. Gaudin and E. Brunel

5 Functional Property Verification

5.1 Verification for Consistency between Properties, and Collected
Traces

The goal of these techniques is to verify that the execution traces conforms to
the identified properties. This verification activity checks the consistency be-
tween the running system (represented as the observed traces) and the system
requirements. In this context, three levels of diagrams will be considered:

1. Requirements
2. Properties
3. Traces

Traces are real execution traces or simulated traces on which a set of require-
ments or a set of functional properties must be verified. A requirement is basically
an expected behavior of a system. It may contain alternatives or loops.

In the example in Fig. 8 the expected scenario is either Stimulus1, Reac-
tion1, EndOfScenario sequence, or the Stimulus1, Reaction2, EndOfScenario
sequence.

The traces shown in Fig. 9 will therefore both verify the requirements.
This was a basic approach but the PRESTO project context showed that when

it comes to a property, things are slightly different. A property will basically say
that if a specific set of events occur, then the following event must or must

Fig. 8. A simple requirement



Property Verification with MSC 29

Fig. 9. Two simple traces

not occur. This is very close to what is already available in an MSC. It is just a
question of marking the events as a condition, a required event, or a failed event.
For that matter the PSC (Property Sequence Chart) complementary notation
to the MSC has been adopted.

Therefore the events in the scenario will look like the ones in Fig. 10.

Fig. 10. A property using the PSC notation



30 E. Gaudin and E. Brunel

That scenario means that if the sequence Stimulus1, Reaction1, or Stim-
ulus1, Reaction2 occurs then the EndOfScenario must occur to verify the
property.

This will have very little impact on the look and feel of an MSC but that
changes the semantics of the diagram. Therefore three levels of checking have
been considered:

– “Basic MSC diff” that makes a simple difference between two diagrams. At
this level any logical or graphical difference is considered. A diagram contain-
ing an alternative with m1 at the top and m2 at the bottom, and a diagram
with m2 at the top and m1 at the bottom are considered different.

– “Spec vs trace” that will handle alternatives and loops in the spec. The
two diagrams in the example above would match in that configuration. It is
typically intended to deal with a specification diagram without any property
against a real execution trace.

– “Property match” that will verify a certain set of events will lead to a required
set of events as described in a PSC.

 

Fig. 11. The PragmaDev Tracer diff options

This has been implemented in the free PragmaDev Tracer prototype; the com-
pare window allows to choose among the different options and appears as in
Fig. 11.

Once the property and the trace have been selected, the tool checks the prop-
erties on the trace. As a result both diagrams are opened and a third window
displays the result of the verification as shown in the example in Fig. 12.



Property Verification with MSC 31

F
ig

.1
2.

T
he

pr
op

er
ty

is
vi

ol
at

ed



32 E. Gaudin and E. Brunel

6 Non-functional Properties

The basic idea is to write non-functional properties at a high level using inter-
national standard MSC. One of the main non-functional properties that can be
expressed in an MSC is a time constraint in which a set of events must take place
in a given amount of time. In the example in Fig. 13 the non-functional property
states the exchange of messages between InstanceA and InstanceB must take
place within 5 units of time.

Fig. 13. MSC Message deadline

6.1 Traces

In the trace coming from a real target or from a simulated target, events come
with timing information. In the example in Fig. 14 the IncomingMsg is sent
at 100 and received at 102. The answer OutgoingMsg is sent at 104 and re-
ceived at 106. The overall sequence is therefore done in 6 units of time. The
new PragmaDev Tracer developed in the context of the PRESTO project can
now compare the time constraint in the requirements with a real execution
trace.

6.2 Property Verification

In our example in Fig. 15 the time constraint is not fulfilled in the execution
trace. PragmaDev Tracer will show clearly the time constraint in the property
diagram and the corresponding events in the trace for analysis.



Property Verification with MSC 33

Fig. 14. Screenshot of a real execution trace



34 E. Gaudin and E. Brunel

F
ig.15.

T
he

tim
ing

property
is

not
fulfilled



Property Verification with MSC 35

7 Conclusion

The ITU-T MSC and the PSC are two very close notations that can be used to
trace a system behavior and to express properties. The possibility to use both
notations in the same tool that will eventually match the properties on real or
simulated traces will definitely simplify the verification process.

Thales Italy, one of the partners of the PRESTO project is currently experi-
menting the new tracer on a real industrial use case. Based on this experiment
the tracer that is free to download [13] is constantly evolving.

References

1. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching-time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)

2. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in
CESAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982.
LNCS, vol. 137, pp. 337–351. Springer, Heidelberg (1982)

3. Compare, D., Inverardi, P., Pelliccione, P., Sebastiani, A.: Integrating model-
checking architectural analysis and validation in a real software life-cycle. In: Araki,
K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 114–132.
Springer, Heidelberg (2003)

4. Holzmann, G.J.: The SPIN Model Checker – Primer and Reference Manual. Addi-
son Wesley (2003)

5. Holzmann, G.J.: The logic of bugs. In: Proceedings of the 10th ACM SIGSOFT
Symposium on Foundations of Software Engineering, SIGSOFT 2002/FSE 2002,
pp. 81–87. ACM (2002)

6. Muscholl, A., Peled, D.: Deciding Properties of Message Sequence Charts. In: Leue,
S., Systä, T.J. (eds.) Scenarios. LNCS, vol. 3466, pp. 43–65. Springer, Heidelberg
(2005)

7. Babica, J.: Message Sequence Charts properties and checking algorithms.
Master Thesis at Masarykova Univerzita Fakulta Informatiky Brno (2009),
http://scstudio.sourceforge.net/files/thesis_babica09.pdf

8. Brill, M., Damm, W., Klose, J., Westphal, B., Wittke, H.: Live Sequence Charts. In:
Ehrig, H., Damm, W., Desel, J., Große-Rhode, M., Reif, W., Schnieder, E., West-
kämper, E. (eds.) INT 2004. LNCS, vol. 3147, pp. 374–399. Springer, Heidelberg
(2004)

9. Specification & Description Language - Real-Time (2006), http://www.sdl-rt.org/
10. Internation Telecommuication Union: Recommendation Z.120 (02/11) Message Se-

quence Chart (MSC), http://www.itu.int/rec/T-REC-Z.120
11. Autili, M., Inveradi, P., Pelliccione, P.: Graphical scenarios for specifying tempo-

ral properties: an automated approach. Automated Software Engineering 14(3),
293–340 (2007)

12. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in Property Specifications for
Finite-State Verification. In: Proceedings of the 21st International Conference on
Software Engineering, ICE 1999, pp. 411–420. IEEE Computer Society (1999)

13. PragmaDev Tracer, http://www.pragmadev.com/product/tracing.html

http://scstudio.sourceforge.net/files/thesis_babica09.pdf
http://www.sdl-rt.org/
http://www.itu.int/rec/T-REC-Z.120
http://www.pragmadev.com/product/tracing.html

	Property Verification with MSC
	1 PRESTOPresentation
	2 ITU-T Message Sequence Charts
	2.1 Scope
	2.2 Basic Concepts
	2.3 Inline Expressions
	2.4 Time Constraints

	3 Property Sequence Chart
	4 Using the Same Representation
	5 Functional Property Verification
	5.1 Verification for Consistency between Properties, and Collected Traces

	6 Non-functional Properties
	6.1 Traces
	6.2 Property Verification

	7 Conclusion
	References




