
Integration of SDL Models into a SystemC

Project for Network Simulation

Pavel Morozkin, Irina Lavrovskaya,
Valentin Olenev, and Konstantin Nedovodeev

Institute of High-Performance Computer and Network Technologies,
Saint Petersburg State University of Aerospace Instrumentation,

Saint Petersburg, 190000, Russia
{pavel.morozkin,irina.lavrovskaya,

valentin.olenev,konstantin.nedovodeev}@guap.ru

Abstract. The paper proposes an approach for integration of a number
of SDL model instances into a SystemC project. It is done by conversion
of an SDL model into a C/C++ library. Implementation of the library is
performed by means of post-processing of previously auto-generated C
code by the CAdvanced code generator. The main benefit of the approach
is reducing of the project work effort and achieving a better quality of
the simulation results.

1 Introduction

Key interests of industrial telecommunication companies are increased quality
of products with reduced time-to-market. Modeling is a mechanism that meets
these requirements by its application at the early stages of product develop-
ment. This paper focuses the communication protocol development. The ITU
Specification and Description Language (SDL) [1,2] and SystemC [3–5] language
can both be used separately for the modeling of the communication protocols.
SystemC network models are used to explore the behavior, functional and non-
functional properties of protocols. Formal SDL models focus primarily on the
protocol behavior exploration at the specification development stage. In general,
the development of protocol stack models in SystemC and in SDL is performed
in parallel. However, resources are often limited, so this way of development
carries project delay or commercial risks. This paper proposes a new approach
for integrating the SDL model instances into the SystemC network model by
means of a special protocol stack library. This approach minimizes the poten-
tial risks and decreases the complexity of a project. The library implemented in
accordance with the proposed approach contains an SDL model of a protocol
stack.

2 The Problem Statement

Nowadays, modeling plays an important role in protocol stack development. It
is one of the most efficient methods of protocol mechanisms development, and

F. Khendek et al. (Eds.): SDL 2013, LNCS 7916, pp. 275–290, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

276 P. Morozkin et al.

is performed by implementation of high-level behavior models and testing them.
SDL and SystemC are widely used languages for these purposes.

SDL is a formal description technique (FDT) [6] based on a formal semantics
and is widely used for specification and investigation of event-driven communi-
cation systems. Moreover, the formal SDL specification can be taken as a part of
the official protocol specification as a reference. The SystemC language is a C++

library, which provides a capability of event-driven simulation and system design
using the Object Oriented Programming (OOP) paradigm and software design
patterns. These features make SystemC an appropriate tool for exploration of
functional and performance characteristics of protocols by simulation of network
models operation. However, implementation of large SystemC projects can lead
to difficulties during debugging. On the other hand, SDL has a graphical rep-
resentation that helps to design a protocol stack model rapidly. Therefore, the
problem that is faced is how to efficiently use the SDL and SystemC languages
together.

The common use of SDL and SystemC in one model could decrease time costs
for protocol development. To provide this common use, we use an SDL/SystemC
co-modeling method [7,8]. In this method the SystemC tester manages the simu-
lation of the SDL model, configures it, generates test sequences, etc. This method
partly solves the efficiency problem, but has a list of drawbacks. The most im-
portant issue is that it is impossible to create different numbers of SDL model
instances for the tester environments to use in network simulations. Another
complexity is that the SystemC developer should understand the principles of
SDL model operation.

The problem can be solved by means of a special library, which can be applied
during networks simulation in SystemC. This library should implement the orig-
inal SDL model and SDL simulation kernel as well as provide special services for
the user (term ‘user’ stands for the SystemC developer, who uses the library).

3 Overview of SDL/SystemC Co-modeling Approach

3.1 Tool Choice

The approach of SDL/SystemC co-modeling described in this paper assumes that
we have a SystemC project that corresponds to the whole model to be considered.
The whole model contains SDL and SystemC parts. Consequently, this approach
uses a C/C++ representation of the SDL system [9]. Before starting a description
of the discussed approach, we need to introduce general principles of co-modeling
with some requirements and important notions for modeling. Consider some
abstract SDL tool. This SDL tool should meet the following requirements:

1. Provide a possibility to generate C/C++ code for the implemented model
that is the equivalent of the SDL.

2. The generated C/C++ code operation should be controlled by some kind of
a manager engine (SDL kernel).

Integration of SDL Models into a SystemC Project for Network Simulation 277

3. The SDL kernel should provide a number of functions for initialization and
simulation of the SDL model. For the further discussion it is necessary to
introduce declarations for two main functions: SDL Init(), which is responsi-
ble for initialization, and SDL Simulate(), which is responsible for emulation
of the SDL system, so that one SDL transition is executed during each call
of this function. One SDL transition is a system state change from one to
another.

It should be pointed out that this kind of the SDL tool already exists. For
example, all these features are provided by the IBM Rational SDL Suite [10].

3.2 Modeling with SDL and SystemC

Modeling with SDL and SystemC is an approach that focuses on modeling of
systems that include SDL and SystemC models. This model consists of an SDL
model of a protocol layer and a SystemC model of the same layer. The SDL/Sys-
temC co-model is represented by a SystemC project, which contains SDL and
SystemC parts. The SystemC model is a master and it provides all the mecha-
nisms for simulation. The SDL part is represented by C/C++ code, which was
generated from the original SDL system. Generation of code is performed by
means of the CAdvanced code generator, which is a part of the IBM Rational
SDL Suite.

The process for connection of SDL and SystemC parts can be subdivided into
the following stages:

1. Preparation of the SDL system to be the part of the whole model.
2. Generation of C/C++ code on basis of the SDL system.
3. Insertion of this C/C++ code code to the SDL kernel.
4. Preparation of the SystemC part of the model.
5. Integration of the SDL kernel with the generated C code into the whole

model.

According to this approach, the SystemC model is a master and the SDL model
is a slave. So SystemC provides the mechanisms for modeling. Co-modelling or-
ganization starts after implementation of the SDL and the SystemC parts of
the model. The SystemC project should contain a special thread, which is in-
tended for the SDL part (SDL thread). This thread calls the SDL kernel function
SDL Simulate(). Control of the SDL thread can be specified in any acceptable
way. The choice of this way depends on the requirements of the modeled system.
Initialization of the SDL part of the model requires a call to the SDL Init()
function.

One of the most interesting questions in the area of SDL/SystemC co-modeling
is how scheduling is organized, because of the difference in the notions of the
SDL and SystemC modeling times. According to the SDL/SystemC co-modeling
approach, SystemC provides all necessary mechanisms for scheduling of events.
Each point of the modeling time corresponds to a number of delta-cycles, which
trigger in zero time. According to the SDL/SystemC co-modeling approach one

278 P. Morozkin et al.

execution of the SDL transition is performed in one delta-cycle. Each transition
of an SDL process from one state to another can result in scheduling of the new
events. There are two ways for events scheduling – signals and timers. Using
of signals means that the event should be performed at the current moment of
modelling time. Such an event is processed during the next delta-cycles after a
delta-delay. The timer expiration is scheduled at another moment of modelling
time. So it causes a new event, which is processed when all current time events
will be performed [7].

Fig. 1 shows a simple example of the SDL/SystemC co-model structure. This
is an example, when two nodes interact with each other through the channel,
but one node is implemented in SDL while another node and channel – in Sys-
temC [11].

Fig. 1. SDL/SystemC co-modeling example

SDL/SystemC co-modeling approach can be successfully applied for valida-
tion of SDL models within the SystemC tester. In this case, the SDL model
contains two instances of either a protocol layer or a protocol stack which work
independently. Communication is performed through SystemC channels which
can operate in accordance with different algorithms for error generation, signal

Integration of SDL Models into a SystemC Project for Network Simulation 279

loss, etc. SystemC test environment is a master component that fully controls
the slave SDL system.

The implementation of the tester can be divided into the following general
stages taking into account the general SDL/SystemC co-modeling principles:

1. Implementation of an SDL model of a protocol.
2. Implementation of special wrappers for conversion of SDL data types to the

SystemC data types and vice versa.
3. Implementation of the SystemC test engine, channel for communication of

the nodes and control components.
4. Writing test cases. Test cases are implemented as SystemC components,

which work in accordance with different algorithms. By switching between
these components, developers can change test scenarios.

The architecture of a co-model is shown in Fig. 2. It includes three main parts
– SystemC test control components, an SDL part (SDL model and SDL simu-
lation kernel) and SystemC channels. In Fig. 2 the SDL model is essentially the
generated C code which implements the original graphic model.

SDL/SystemC co-modeling approach has been successfully used for validation
and testing in such projects as UniPro [12] and SpaceWire-RT [13].

Fig. 2. Testing SDL under SystemC

280 P. Morozkin et al.

4 Different Approaches to a Solution

Our goal is to develop an approach that allows creating several instances of the
SDL model. Moreover, since we use the IBM Rational SDL Suite, our approach
is tool specific. Especially for the SDL/SystemC co-modeling we use the CAd-
vanced code generator and C source code of the SDL model, which has been
generated by it.

Since SystemC is based on C++ and since CAdvanced generates plain C code,
there appears a task of combining C and C++ parts of the model. The use of
available C++ code generators can probably solve some problems. But in the
case of using our codebase, embedding a new tool requires making global changes
to our projects.

We consider it is important to understand how the original SDL model is
implemented in the C source code and, moreover, what are the source code
equivalents for different elements of the SDL language. Another question is how
we can reuse the code to have an opportunity to instantiate more than one SDL
model. There are not many publications that describe the design of generation
of source code from SDL and the principles of communication with an SDL
simulation kernel. The paper [14] observes some details of this code generation
and the principles of its functionality. Another publication [15] (a thesis) that
proposes an integrated design flow for embedded systems, where the author also
uses the CAdvanced code generator, describes several mechanisms that are used
in SDL Simulator, and how the generated code interacts with the simulation
kernel.

Based on the IBM Rational SDL Suite documentation together with [14, 15]
we have conducted research in the design of model generated to find the ways
for acheving our specific goal.

4.1 Integration of C Code into C++ Environment

We need to localize the SDL model instances in a memory. The most obvious
approach is integration of the generated C code of the SDL model and the
SDL simulation kernel into a C++ environment for its further operation in the
user’s code. If integration is possible, then the target library can be developed
with the use of different OOP patterns. However, practical application of this
approach has shown that this way entails a number of technical problems. Since
the generated code of the SDL model is represented by C code that strictly
conforms the ANSI C standard, the most complex problem is integration of the
C code for operation in the C++ project. Consequently, the significant part of the
SDL simulation kernel and generated code of the SDL model should be changed.
Therefore, it can be concluded that the implementation of this approach takes
a considerable time.

4.2 Code Post-processing

Another way of solving the problem is post-processing of the SDL model gen-
erated C code in order to have an opportunity of creating different numbers of

Integration of SDL Models into a SystemC Project for Network Simulation 281

SDL model instances by the use of dynamic memory allocation. The main feature
of the CAdvanced code generator is that the implementation of an SDL model
represents the hierarchical structure that is called symbol table and organized
as a tree [15]. The symbol table contains objects that represent SDL entities
(system, blocks, processes, signals, etc). These objects are global variables, so
static memory allocation is used.

To have an opportunity to create different numbers of SDL model instances,
we need to change the memory allocation mechanism from static memory al-
location to dynamic memory allocation. This can be done by the code post-
processing. Ideally, we need to change the implementation of the CAdvanced
code generator, but this is almost impossible as we use an existing industrial
tool. On the other hand, it is a well known approach to develop an auxiliary
toolchain for existing products.

5 An Approach of SDL Model Instances Integration

5.1 The Library Development Flow

The solution is aimed to develop an environment that allows creating the target
library. This library provides an ability to use a different number of SDL model
instances in the SystemC user’s project and contains both the SDL model and
the SDL simulation kernel. The library development flow and library usage in a
project is shown in Fig. 3.

These are the steps of the proposed library development flow:

1. Analysis of requirements and implementation of an SDL model.
2. Obtaining a PR-model using the GR-to-PR converter.
3. Obtaining C code of the SDL model with use of CAdvanced. The code

consists of three parts: a symbol table, which corresponds to the SDL model
architecture, a set of initialization functions and a set of PAD (Process Ac-
tivity Description) functions [10] which implement the behavior of SDL pro-
cesses.

4. Code post-processing of the obtained C code. Generation of initialization
functions and patching of some parts of PAD functions.

5. Building a target library according to the proposed approach. Creation
of the symbol table selector. Development of a user’s code interface, which
is a set of C++ classes.

Then all the generated source code is compiled and linked, so the user gets
a target library ‘component.lib’. The implementation of the SDL kernel stays
unchanged during the library development flow, but the new functionality for
operating with a different number of SDL model instances is added. The user’s
project operates with the target library and the SystemC library simultaneously.
The user interface is intended for using services provided by the library.

282 P. Morozkin et al.

F
ig
.
3
.
L
ib
ra
ry

d
ev
elo

p
m
en

t
a
n
d
u
sa
g
e

Integration of SDL Models into a SystemC Project for Network Simulation 283

Fig. 4. SystemC model structure

5.2 Application Structure

Let us consider a simple example. Fig. 4 shows the architectural diagram of the
SystemC model of SpaceWire MCK-01 switch [16].

The model contains a Switch module and four ports connected to four inde-
pendent SDL model instances. The Switch and Port modules are implemented in
SystemC. According to the proposed approach it is possible to design a switch
model, where each port includes the implementation of full protocol stack in
SDL. In this case the network layer is implemented in SystemC while the bot-
tom ones – in SDL. The structure of the application implemented in accordance
with the proposed approach is shown in Fig. 5.

It consists of the following parts:

1. The SystemC library, which includes SystemC kernel.
2. The SystemC model implemented by a user.
3. The target library, which provides an ability to create a number of differ-

ent SDL model instances. The library is divided into three parts: the user’s
model interface, which describes the services for communication between the
users SystemC model and the SDL kernel; the SDL kernel, which performs
scheduling of the generated SDL model and the SDL model itself. For com-
munication with C++ classes a basic xInEnv/xOutEnv [10] mechanism is
used. Implementation of the SDL model has four parts:
(a) A set of PAD functions. These functions implement behavior of SDL

model processes.
(b) A selector of a symbol table (ST).
(c) A set of SDL model instances. Each of them has its own symbol table,

but all instances have a set of common PAD functions.
(d) A set of initialization functions. These functions are used for instanti-

ation of each new symbol table with the use of the dynamic memory
allocation.

284 P. Morozkin et al.

Fig. 5. Application structure

User’s SystemC model is a single threaded application, which is controlled by the
SystemC kernel. The Switch module with its ports communicates with the SDL
kernel via user’s interface. The SDL kernel is responsible for scheduling of SDL
model processes. The kernel calls different PAD functions and each PAD func-
tion chooses an SDL model instance by means of ST selector. ST selector uses a
symbol table identifier, which is generated by a user’s C++ object which repre-
sents the SDL model (for example Port #0). The ST selector clearly indicates
the required SDL model instance.

Integration of SDL Models into a SystemC Project for Network Simulation 285

6 Main Principles of Model Memory Organization and
Management

As an example we take the simple SDL model to clearly explain the proposed
approach. The SDL model, which is taken as the basis for the example, consists
of one block communicating with the environment by means of signals ‘sig.req’
and ‘sig.rsp’. This block contains only one process, which operates with the same
signals.

First we should generate the C code from the SDL model. It is done by means
of CAdvanced code generator. This C code contains a set of interacting data
structures and each of them could be a huge hierarchical tree. These structures
represent the SDL model symbol table. Thereafter, it is possible to convert the
generated C code to the XML. The XML representation contains 226 nodes (a
node comprises a C data structure and its fields) with 251 connections between
them for such a simple example.

According to the proposed approach the C code should be divided into a num-
ber of post-processing steps. Initialization functions were generated and PAD
functions were patched. Initialization functions are called each time a new SDL
model instance is initialized. In the case when the original SDL model was de-
signed with use of packages, the CAdvanced generates an implementation of
each package and places them into separated source file. Each package has its
own initialization function. Therefore, we need to post- process all source files to
have opportunity of build the symbol table in memory using dynamic memory
allocation. After the initialization each SDL model instance is separately stored
in the heap. Since initialization is performed with the use of the same function,
which does not returns any value, it is not possible to get access to all symbol
tables (as each new instance is initialised by a consecutive calling of initializa-
tion functions). To solve this problem some special nodes of the SDL model
symbol table are added to special arrays. These arrays are used to determine
the necessary nodes of symbol table of SDL model instance while sending signals
from environment [1] to SDL model or sending signals from SDL model to an
environment. Communication mechanisms are shown in Fig. 6.

The heap stores two symbol tables of the SDL model. A set of arrays, which
are global variables, is stored in a data segment and contains pointers to signals,
channels and environment processes, since every SDL model instance has its own
environment. The SDL kernel extracts the first process from the ready queue [10]
and calls associated PAD function.

A PAD function must obtain information about SDL model instance before
it can send a signal to any process. It is done by using of a multiplexer, which
is able to choose an instance depending on the information from arrays. The
signal array, the channel array and the environment processes array are used for
a required SDL model instance choice. Multiplexer does it by using traverse of
hierarchical part of symbol table. The system identifier is stored on a system
level of the hierarchy of SDL entities [1]. Such an identifier is associated with
each new SDL model during the initialization stage.

286 P. Morozkin et al.

F
ig
.
6
.
C
o
m
m
u
n
ica

tio
n
m
ech

a
n
ism

s

Integration of SDL Models into a SystemC Project for Network Simulation 287

So during the execution of a PAD function and sending a signal to environment
by xOutEnv function or to other process by SDL Output function, it uses the
multiplexer to determine a symbol table of the SDL model instance. When signal
is sent from environment (from user’s SystemC model) to SDL model instance
by xInEnv function, it uses the multiplexer which performs search for a channel
and a signal in arrays for identification of the SDL model instance.

7 An Example of the Approach Application

This example gives more details of the proposed approach and shows how the
SystemC developer can use it in his project. Let us assume that we need to
create a network model in SystemC and also we need to use it for an exploration
of non-functional properties of a protocol while the SDL model of a protocol has
already been implemented. To simplify the SDL model we use the same SDL
model as we used in section 6. The example is shown in Fig. 7.

Fig. 7. Example of the approach application

The SystemC model includes the Source node, three switches and the Desti-
nation node. The Source node is responsible for data generation while the Des-
tination node is responsible for its reception. Each switch contains the SystemC
module, which includes a number of SystemC threads, each of which corresponds
to an independent instance of the SDL model. All these instances are created by
the user in C++. The library controls all of them.

A fragment of source code of the SystemC module of a Switch is shown in
Listing 1.1. This fragment shows the part of source code of the switch module

class and sdl model class. Constructor of the switch module class is responsible
for initialization of a module and creation of a corresponding new instance of
the SDL model. The sdl model class contains functions which form the user’s
interface and which are used in the switch module class. The sdl model thread

firstly waits for a request event. After the event has been generated the thread

288 P. Morozkin et al.

1 /**** part of user ’s interface ****/

2 class sdl_model {

3 public:

4 // initialization of the new instance

5 sdl_model ();

6
7 // function for sending sig.req to the instance

8 void send_sig_reg ();

9 ...

10 };

11
12 /**** part of user ’s code ****/

13 class switch_module : ... {

14 public:

15 ...

16 void sdl_model_thread ();

17 private:

18 sc_event sig_req_event ;

19 };

20
21 // switch module ctor

22 switch_module :: switch_module (sc_module_name name) :

sc_module (name){

23 // thread creation and event setting

24 SC_THREAD (sdl_model_thread);

25 sensitive << sig_req_event ;

26
27 // creation of a new instance of the SDL model

28 sdl_model_instance = new sdl_model ;

29 ...

30
31 }

32
33 // switch module thread

34 void switch_module :: sdl_model_thread (){

35 while(1){

36 wait(sig_req_event); // waiting for input event

37
38 // sending sig.req signal to the instance

39 sdl_model_instance ->send_sig_reg ();

40 }

41 }

Listing 1.1. Part of SystemC module source code

Integration of SDL Models into a SystemC Project for Network Simulation 289

handles it and the signal is sent to SDL model instance using function call. The
function is provided by the library and it is one of a set of functions of the
user’s interface. Therefore, the instance can be used in such a manner as if it is
a SystemC component. Thus, SystemC developer can work with any instance of
the SDL model of a protocol not knowing anything about its implementation.

The proposed approach gives an opportunity to focus on implementation of
the SystemC model of a network comprising hundreds of nodes rather than on
implementation of the SDL model of a protocol.

8 Conclusion

This paper gives an overview of the problem of integration of different numbers of
SDL model instances into the SystemC project. The paper proposes and explains
the elaborated approach. The SDL model is encapsulated inside a self-contained
C++ class and could be easily instantiated. During instantiation of every new
copy of the SDL model, it is placed on heap. For this opportunity, the generated
source code of the SDL model has to be post-processed and the memory alloca-
tion mechanism should be changed from the original static memory allocation
to a dynamic memory allocation. In addition, we provide an example of the suc-
cessful application of the approach. The proposed approach is expected to reduce
the project work effort and help in achieving a better quality of the simulation
results. However, there is still a number of open questions and tasks for future
work: definition of rules for code post-processing, memory management, proving
of a model implementation and behavior correctness.

The future work would be mostly focused on the creation of a special tool.
This tool is planned to be applied during the SpaceWire-RT standard model
implementation and validation.

References

1. International Telecommunication Union: Recommendation Z.100 (12/11) Specifi-
cation and Description Language - Overview of SDL-2010,
http://www.itu.int/rec/T-REC-Z.100/en

2. Mitschele-Thiel, A.: Systems Engineering with SDL: Developing Performance-
Critical Communication Systems. John Wiley & Sons (2001)

3. Institute of Electrical and Electronics Engineers: IEEE Standard for Standard Sys-
temC Language Reference Manual,
http://standards.ieee.org/findstds/standard/1666-2011.html

4. Black, D.C., et al.: SystemC: From the Ground Up. Springer (2010)
5. Grötker, T., Liao, S., Martin, G., Swan, S.: System Design with SystemC. Kluwer

Academic (2002)
6. Turner, K.J.: Using Formal Description Techniques – An Introduction to Estelle,

LOTOS and SDL. John Wiley & Sons I (1993)
7. Balandin, S., et al.: Co-Modeling of Embedded Networks Using SystemC

and SDL. International Journal of Embedded and Real-Time Communication
Systems 2(1), 24–49 (2011), http://www.igi-global.com/article/modeling-

embedded-networks-using-systemc/51648

http://www.itu.int/rec/T-REC-Z.100/en
http://standards.ieee.org/findstds/standard/1666-2011.html
http://www.igi-global.com/article/modeling-embedded-networks-using-systemc/51648
http://www.igi-global.com/article/modeling-embedded-networks-using-systemc/51648

290 P. Morozkin et al.

8. Gillet, M.: Hardware/software co-simulation for conformance testing of embedded
networks. In: Finnish-Russian University Cooperation Program in Telecommuni-
cations seminar

9. Olenev, V., et al.: SystemC and SDL Co-Modelling Methods. In: Proceedings of
6th Seminar of Finnish-Russian University Cooperation in Telecommunications
Program, pp. 136–140. State University of Aerospace Instrumentation (2009)

10. IBM Rational. IBM Rational SDL Suite User’s Manual. IBM Rational (2009)
11. Stepanov, A., et al.: SystemC and SDL Co-Modelling Implementation. In: Pro-

ceedings of 7th Conference of Finnish-Russian University Cooperation in Telecom-
munications Program, pp. 130–137. State University of Aerospace Instrumentatio
(2010), http://www.fruct.org/publications/fruct7/files/Ste.pdf

12. UniPro protocol stack by Mobile Industry Processor Interface Alliance,
http://mipi.org/specifications/unipro-specifications

13. SpaceWire-RT project, http://spacewire-rt.org
14. Haroud, M., Biere, A.: SDL Versus C Equivalence Checking. In: Prinz, A., Reed,

R., Reed, J. (eds.) SDL 2005. LNCS, vol. 3530, pp. 323–338. Springer, Heidelberg
(2005)

15. Dietterle, D.: Efficient Protocol Design Flow for Embedded Systems. Branden-
burg University of Technology (2009), http://systems.ihp-microelectronics.
com/uploads/downloads/diss dietterle.pdf

16. SpaceWire switch MCK-01, http://multicore.ru/index.php?id=850

http://www.fruct.org/publications/fruct7/files/Ste.pdf
http://mipi.org/specifications/unipro-specifications
http://spacewire-rt.org
http://systems.ihp-microelectronics.com/uploads/downloads/diss_dietterle.pdf
http://systems.ihp-microelectronics.com/uploads/downloads/diss_dietterle.pdf
http://multicore.ru/index.php?id=850

	Integration of SDL Models into a SystemC Project for Network Simulation

	1 Introduction
	2 The Problem Statement
	3 Overview of SDL/SystemC Co-modeling Approach
	4 Different Approaches to a Solution
	5 An Approach of SDL Model Instances Integration
	6 Main Principles of Model Memory Organization and Management
	7 An Example of the Approach Application
	8 Conclusion
	References

