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Abstract. Real-time tasks are a concept used in real-time systems to
structure and schedule execution, in order to handle load situations, and
to meet deadlines. In previous work, we have transferred this concept to
the Specification and Description Language (SDL), by incorporating the
notion of real-time task into SDL’s formal syntax and semantics. More
specifically, we have defined an SDL real-time task as a set of transition
executions, which may span different SDL processes and are ordered by
a strict partial order with a least element. In this paper, we extend this
concept by the notion of distributed real-time task, which may span SDL
processes of different SDL systems, thereby supporting tasks executed
on several nodes. In addition, we introduce the notion of task types,
which support task multiplexing in SDL processes. We then outline our
implementation of real-time tasks in our SDL tool chain, consisting of the
SDL transpiler ConTraST, the SDL Runtime Environment (SdlRE), and
the SDL Environment Framework (SEnF). To evaluate the gain in real-
time performance, we have devised an SDL specification of an Adaptive
Cruise Controller taken from the automotive domain, and have executed
it on an Imote2 hardware platform. The results clearly show that task-
based scheduling outperforms ordinary and priority-based scheduling in
terms of processing delays and reaction times to critical events.

1 Introduction

The Specification and Description Language (SDL) [1] has been devised as a for-
mal design language for distributed systems. Yet, due to its notion of time (now)
and its timer mechanism, it also provides expressiveness to specify certain aspects
of real-time systems. To broaden this expressiveness, we have proposed, defined,
implemented, and evaluated several language extensions, in particular SDL real-
time signals [2] and SDL process priorities [3]. These extensions have proven
valuable to enhance the predictability of networked control systems, which we
have developed in a model-driven way with SDL as design language [4].

To further enhance the real-time capabilities of SDL, we have considered the
concept of real-time task (or task for short), which is used in real-time sys-
tems to structure and schedule executions, in order to handle load situations
and to meet deadlines. Tasks are code unit executions, and may be initiated
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dynamically when a significant change of state occurs (event-triggered) or at
determined points in time (time-triggered). In the context of SDL, these code
unit executions may be structured into several ordered SDL transition execu-
tions associated with one or more SDL processes. After some consideration, we
came to the conclusion that our previous extensions, i.e., SDL real-time signals
and SDL process priorities, were not sufficient to express real-time tasks in SDL.
Therefore, we have devised further language extensions, which were necessary
to enable real-time tasks in SDL [5]. Thus, we have established the notion of
real-time task1 in SDL’s formal syntax and semantics.

In this paper, we continue our previous work conceptually and, in particular,
by presenting the implementation and evaluation of SDL real-time tasks. Con-
ceptually, we introduce the notion of distributed real-time task, which may span
several SDL processes of several SDL systems (Sect. 2). In practical situations,
this means that several nodes may be involved in the completion of a given real-
time task. In addition, we propose task types, which can be used to naturally
specify task multiplexing in SDL processes.

The focus of this paper, however, is on the implementation and evaluation of
SDL real-time tasks and task scheduling. In Sect. 3, we outline the implementa-
tion in our SDL tool chain [4], which consists of the SDL transpiler ConTRaST,
the SDL Runtime Environment SdlRE, and the SDL Environment Framework
SEnF. In Sect. 4, we present extensive experimental results showing the gain
of SDL real-time tasks and task scheduling w.r.t. the predictability of reaction
times compared to existing scheduling approaches. To run these experiments, we
have specified an Adaptive Cruise Controller (ACC) taken from the automative
domain with SDL, and have executed it on an embedded hardware platform.
From the experiments, it is obvious that real-time task scheduling outperforms
existing scheduling strategies, in particular with increasing system load, and sub-
stantially improves the predictability of reaction times. The paper is completed
by a survey of related work (Sect. 5) and conclusions (Sect. 6).

2 Distributed SDL Real-Time Task

In this section, we extend our previous work [5] by introducing the concept of
distributed real-time tasks in SDL (see Sect. 2.1). With the extension, SDL tasks
can not only be used to group functionality-related behavior of a single SDL sys-
tem, but also to identify and prioritize behavior spanning several network nodes.
To incorporate distributed real-time tasks in SDL, several language extensions
are presented in Sect. 2.2.

2.1 Concept of SDL Real-Time Task

The formal definition of real-time task is based on a set of transition executions
and a strict partial order with a least element, i.e., each real-time task starts
1 Not to be confused with the existing notion of task in SDL, which is a sequence of

statements.



SDL Real-Time Tasks – Concept, Implementation, and Evaluation 241

with a single transition execution. Real-time tasks are dynamic in the sense that
the set of transition executions is determined at run-time and may depend on
the internal state of the system, that is, for instance, the current time or states
of SDL processes. They terminate after all transition executions are finished. Let
N be the set of network nodes. Then, a real-time task is defined as follows.

Definition 1. A real-time task τ is a tuple (idτ , Te(τ), fprio, fnode, <eo),
where idτ is a globally unique task id, Te(τ) is the set of transition executions,
fprio : Te(τ) → N is a function assigning a priority to each transition execution,
fnode : Te(τ) → N is a function to allocate each transition execution to a network
node, and <eo� Te(τ) × Te(τ) is an execution order on Te(τ) with following
properties:

– <eo is a strict partial order, i.e., <eo is irreflexive, transitive, and antisym-
metric

– ∃te ∈ Te(τ).∀t′e ∈ Te(τ).(t
′
e �= te ⇒ te <eo t′e), i.e., there is a least element

defining the starting point of the task, which is the first transition execution.

We note that the definition allows concurrent transition executions within a
real-time task, if they are not ordered by <eo. A real-time task may be non-
terminating, if its set of transition executions is infinite. Thereby, a real-time
tasks τ may consist of cyclic executions of transitions, since executing the same
transition multiple times results in different transition executions, i.e., different
entries in Te(τ). An example for such a task is the periodical calculation of
control values. A real-time task itself is non-recurring, i.e., it is executed only
once.

The definition of real-time tasks so far covers node-local and node-spanning
tasks. Based on the general definition, we define distributed tasks as follows.

Definition 2. A distributed SDL real-time task τdist is a real-time task,
for which the image of fnode contains at least two distinct elements:

∃t1, t2 ∈ Te(τdist) : fnode(t1) �= fnode(t2).

To fulfill this definition, there must be at least two SDL systems deployed on
different network nodes, each running at least one transition execution of the
task. Thereby, distributed behavior, such as an Request-to-Send/Clear-to-Send
(RTS/CTS) handshake or a distributed leader election, can be expressed as a
single task.

The definition of distributed SDL real-time task does not model communi-
cation explicitly. Instead, consecutive transition executions of different nodes
are ordered by the execution order only, and the required synchronization and
value passing is left to the environment of the SDL system. A distributed SDL
real-time task may run on several nodes in parallel, if there is suitable concur-
rency according to the execution order <eo. Otherwise, the transitions of the
distributed SDL real-time task are processed successively by the nodes.
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The distinction between SDL transitions as code units and transition execu-
tions as execution units results in a very generic definition of real-time task.
Some properties of this definition are:

– Loose temporal ordering: The definition does not make a statement on the
time between transition executions.

– Flexible activation paradigm: Every transition execution can be event- as
well as time-triggered. In particular, a real-time task can be temporarily
suspended or wait for the activation of the next transition execution trigger.

– Transition repetitions : The same transition can be executed by one task
several times, particularly with different priorities.

– Priority-independent transition definitions: A transition as code unit has no
(static) priority assigned. Instead, the priority is (dynamically) associated
with its execution, thereby allowing the same transition to be executed with
different priorities.

– Transition sharing: Several real-time tasks may execute the same transition.

Though a real-time task is nonrecurring, it usually describes actions to execute
a recurring system task like the response to a specific event that is observed
by the environment of the node. To enable the association of a real-time task
with the system task it fulfills, the notion of task type is introduced. During a
transition execution, the information on the task type is, for instance, helpful
for task multiplexing within the system or for changing the priorities of future
transition executions. The relation between SDL task and task type has an
analogy in object-oriented programming languages, because a real-time task τ
(object) states the execution (instantiation) of a task type (class), and multiple
executions of a task type result in multiple real-time tasks with distinct task
(object) identifiers idτ . Formally, the relation between real-time tasks and task
types is as follows: Assuming τ is a real-time task and Γ is the set of all task
types. Then, there is a function ftype with ftype(τ) ∈ Γ returning the task type
of the real-time task.

2.2 Language Extensions to SDL

In [5], real-time tasks have been incorporated in SDL’s syntax and semantics. By
dynamically associating transition executions with task attributes, consisting of
task id idτ and a priority, a transition runs in the context of the real-time task τ .
To accommodate task types, task attributes are now extended by ftype(τ). The
task attributes are transported by SDL signals (so-called task signals), which
are used to trigger task execution. Consuming a task signal transfers the task
attribute to the triggered transition execution. The priorities given by the task
attributes have implications on the transition selection order, such that task
signals are consumed according to their priority and have additionally preference
over plain SDL signals.2 Thereby, transition executions of time-critical real-time
tasks take precedence over all other transition executions.
2 There is an exception for this rule, if the signal with highest priority is saved in the

current process state.
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Fig. 1. Example showing the use of real-time tasks in SDL. Bold characters state new
keywords/operators

Due to the consideration of priorities, transitions may be executed in a differ-
ent order compared to standard SDL. Thus, existing tools – like tools perform-
ing reachability analysis to find deadlocks or implicit consumptions – must be
extended to consider priorities. Since transition priorities are included in each
signal’s task attributes, all required information is, however, available in the
SDL system and analysis of the system specification is still possible. This is even
an additional benefit compared to many implementation methods introducing
priorities in a separate implementation phase, because with such approaches,
priorities are not available for system analysis on design level.

To control the execution of real-time tasks in SDL specifications, [5] presents
several syntactical extensions, in particular, regarding task creation and forking
(continuation of an existing task). Additionally, a new data type to store task
ids (Tid) has been introduced together with a function returning the task id
of the current task. To support task types and relative changes of priorities,
the syntax has been extended with functions returning type and priority of the
current task.

The example in Fig. 1 presents the use of real-time tasks in SDL: In process
P0, a new task is created by the output of signal sig. This new real-time task is
scheduled with task priority 0 and is of type TaskType0. In P1, task execution
starts by consuming the task signal and by identifying the task type by means of
the taskType operator. Because the task type is TaskType0, the right branch is
taken, i.e., the transition stores the task id in the variable t_id and triggers the
next transition execution of this task by sending sig to process P2 (not shown).
Because no priority is provided, the task is continued with priority 0. The figure
only shows excerpts of SDL processes highlighting language elements that have
been extended to enable the control and processing of real-time tasks in SDL.
In a real scenario, there are usually further application-related actions in the
transitions’ bodies (see also Sect. 4.1).
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Fig. 2. Schematic outline of the task scheduler implementation

3 Implementation of Real-Time Tasks

The concept of real-time tasks has been implemented in our SDL tool chain,
which supports an embedded ARM platform, Linux/PC, and various simula-
tors. The tool chain consists of three main components: The code generator
ConTraST, the SDL Runtime Environment (SdlRE), and the SDL Environment
Framework (SEnF) providing interfaces and drivers of the SDL environment. To
support real-time tasks, changes to all components were necessary.

Though we would prefer the extension of SDL’s concrete syntax to control real-
time tasks (see Sect. 2), our implementation is based on annotations, thereby
allowing the re-utilization of the graphical editor and analyzer of IBM’s Rational
SDL suite [6]. When generating C++ code, ConTraST analyzes the real-time
task annotations in SDL/PR and generates relevant C++ instructions.

To support and schedule real-time tasks during system runtime, SdlRE has
been extended by task signals and a non-preemptive scheduler realizing the task
scheduling strategy (short: Prioritiestasks). Additionally, SdlRE provides an im-
plementation of the Tid datatype and an interface to access the task id, priority,
and task type of the transition that is currently executed.

Task signals are implemented by extending the existing SDL signal class with
task attributes, i.e., task id, priority of the triggered transition execution, and
task type. Further information of the real-time task, such as the node executing
the transition, is implicitly available and not stored explicitly.

Different to Sect. 2, where task priorities affect the transition execution order
of SDL processes3 only locally, Prioritiestasks enforces priorities system-wide. A
schematic overview of Prioritiestasks is presented in Fig. 2. In total, the scheduler
operates on three global queues: A queue holding signals with future arrival times
(e.g., timers), a queue with task signals sorted by task priorities, and a queue
with runnable processes. When searching for the next transition to be executed,

3 Due to their background of Abstract State Machines, the dynamic semantics of
SDL-2000 is based on different types of agents [7]. Thus, to be precise, we would
have to use the notion of agents when referring to the execution of an SDL system.
Nevertheless, we use the term SDL process in the rest of the paper, because all
schedulers of SdlRE affect the scheduling of agents that evolve from SDL processes.



SDL Real-Time Tasks – Concept, Implementation, and Evaluation 245

the process holding the first consumable signal in the queue of task signals runs
to fire the corresponding transition. If there is no such signal, the first process
of the process queue is dispatched to execute one transition that is either a
transition consuming a regular signal or a continuous signal.

Following our annotation-based approach, the runtime environment can be
configured to use the task scheduling strategy Prioritiestasks by annotations in
the head symbol of the system. Besides Prioritiestasks, our tool chain supports
the following non-preemptive strategies:

– Signal-based First-Come-First-Served strategy (short: FCFSsignals)
The transition execution order of FCFSsignals is determined by the arrival
times of the triggering signals. For this purpose, a global First-In-First-Out
(FIFO) queue of SDL signals is maintained. When searching for the next
transition to be executed, the first consumable signal in the queue is taken.

– Process-based First-Come-First-Served strategy (short: FCFSprocess)
FCFSprocess is also based on a FIFO queue, but, different to FCFSsignals,
the queue is filled with processes. Thus, a process with several signals in its
inport, is scheduled only once. The process at the front of the FIFO queue is
executed as long as it has firable transitions, thereby reducing the overhead
of the scheduler compared to FCFSsignals.

– Process Priority Scheduling (short: Prioritiesprocess)
In [3], Prioritiesprocess has been introduced in order to privilege time-critical
SDL processes. Static priorities are assigned to processes in the SDL specifi-
cation, where lower values represent higher priorities. The scheduling strat-
egy works on a queue of executable processes, which is sorted by their pri-
orities.

Due to the non-preemptive character of all strategies, there is in general a non-
zero waiting delay for all schedulers, increasing in particular reaction times in
systems with long-running transitions. However, independent of the scheduling
strategy, such transitions should already be avoided by design rules, because
they always delay other transition executions of the same SDL process.

To support distributed SDL real-time tasks, the environment (implemented
by SEnF) has been extended, such that task attributes are attached to outgo-
ing data, e.g., to CAN messages, before leaving the node. By extracting task
attributes from received data and adding them to generated SDL signals, the
environment continues existing real-time tasks on the local node. Thereby, the
SDL runtime environment can treat incoming signals according to their priority
and task type, though the continuation of the real-time task is transparent to
the system.

A special element of a task attribute is the task id. To guarantee its uniqueness
also in case of distributed real-time tasks, further measures became necessary.
In our implementation, the uniqueness is ensured by composing task ids of the
node’s id and a locally unique identifier, which is incremented each time a new
task is generated.
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Fig. 3. Message schedule of the node hosting the PID controller in the ACC scenario

4 Evaluation of Real-Time Tasks in a Control System

In this section, we present experimental results of our SDL task implementation.
To assess its impact, we compare the task scheduling strategy with standard
schedulers of SDL implementations as well as an SDL process priority scheduler.
The scenario evaluates a network node that is connected to a Controller Area
Network (CAN) bus and hosts an Adaptive Cruise Control (ACC), a realistic
scenario from the automotive domain. An ACC is an enhanced cruise control
system focused on retaining a reference speed against disturbance variables such
as the current gradient or aerodynamic resistance. In contrast to a simple cruise
control, a radar sensor is used to detect the distance to obstacles in front of
the car. Depending on the speed of and distance to the obstacles, the reference
speed is adjusted to keep a minimal safety distance or an emergency braking
is initiated. Our realization of an ACC uses a Proportional-Integral-Derivative
(PID) controller to minimize the difference between desired and actual speed.

An abstract schedule of the ACC is shown in Fig. 3. The ACC periodically
(every 20 ms) calculates new control quantities, which are sent via CAN bus to
the engine control unit. The duration to calculate and transfer the control value
to the CAN controller is given with dcontroller in the figure. For correct operation
of the controller, control values must be calculated and transferred on schedule
with low delay, and sensor values of the reference and actual speed must arrive
at the PID controller on time, taking the processing delay of the system into
account. In Fig. 3, the sensor delay in the system, i.e., the duration between
reception of the last sensor value at the CAN controller and the updating of
the values at the PID controller process, is denoted by dsensors. Because this
delay may vary, a maximal sensor delay dsensorsMax has to be considered in the
schedule. The best quality of control is achieved, if the sensor values are as new
as possible, i.e., if the processing delay of the node generating the sensor value,
the communication delay, and dsensors is small and almost constant, allowing a
small dsensorsMax before the periodic control task. In addition to the periodic
speed values, the node also receives sporadic radar messages that are used to
keep an adequate distance to other objects by correcting the controlled speed
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and/or by enforcing to brake. To test the system under different workloads,
additional sporadic load messages are sent to the system.

Since the scenario is based on a networked system, a comprehensive analysis
must consider delays that are introduced by all nodes as well as the network
itself. Because the system designer must consider the worst case when planning
the global schedule, all delays must not only be low but also free of large jitter.
This, in particular, demands high requirements to scheduling decisions in cases
of secondary system load, which must be deferred on behalf of relevant system
tasks. In a first step, this requires the assessment of delays at each single network
node. This evaluation focuses on the impact of SDL schedulers on the behavior
of the node hosting the PID controller.

4.1 Evaluation Setup

Hardware. To obtain reliable and reproducible results, all experiments ran on
an Imote2 node, an embedded hardware platform that can be linked to various
peripherals and communication technologies. E.g., in [8], a FlexRay [9] com-
munication controller is connected to the Imote2 via Serial Peripheral Interface
(SPI). The Imote2 is equipped with 256 kB SRAM, 32 MB SDRAM, and 32 MB
flash ROM. Its processor is based on an ARM architecture providing up to
416 Mhz. Due to energy aspects, the processor frequency was fixed to 104 Mhz
in all experiments. Since our implementation on the Imote2 is a bare implemen-
tation (without further operating system), SEnF and SdlRE have full control
over the system’s execution and interrupts. Therefore, all measured times can
be attributed to the execution of the SDL system and its runtime environment.

Because the experiment’s objective is not the evaluation of the communication
technology, we did not use a real CAN bus. Instead, we simulated all CAN events
taking the minimal interarrival time of CAN messages into account. As a side
effect, this approach avoids distortion of results due to communication errors.
To additionally avoid faulty measurements, results of experimental runs were
stored in the local memory of the node and transferred to a PC via UART after
the end of the run. Thus, the measurement overhead is minimized and uniform
for all evaluated scheduling strategies.

System Under Test. The SDL system used in the evaluations is shown in Fig. 4
and consists of four blocks. The CAN block is the interface to the environment
and contains two processes. The CANMac process converts between CAN identi-
fiers and internal event expressions. ConcatCoder, on the other hand, encodes
and decodes the data of CAN messages into SDL types. On top of the CAN block
are two blocks (Speed and Distance) that are part of the cruise control. The
third block Load processes background load that is stimulated by messages from
the environment. I.e., load messages are forwarded by CANMac and ConcatCoder
before arriving at the Load block, in which they trigger further transition execu-
tions. Because the origin of load is in the system’s environment, the generation
of additional load is independent of the SDL system. By changing the average
frequency of load messages, different load situations are emulated.
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Fig. 4. SDL specification of the evaluated Adaptive Cruise Control system

In the evaluations, the system receives four different types of CAN messages,
which are sent as canRX signals by the environment to process CANMac. After
forwarding them through the CAN block, they are delivered to their responsi-
ble SDL processes. In the case of task scheduling, task types can be used in
ConcatCoder to determine the target process of a signal. The CAN messages
with the actual and reference speed are sent to the processes speedCtrl and
distanceCtrl, in which they are received as SDL signals actSpeed or refSpeed.
On the other hand, the radar and load messages are delivered as SDL signals
radar or loadStart to process distanceCtrl and lInit respectively. CAN
messages sent by the system are received by the SDL environment as canTX
signals. They are either engine and brake control values, or load information.
The engine control values are periodically calculated by speedCtrl and initially
sent as SDL signal engineCmd. Brake control values and load information are
generated reactively as responses to radar or loadStart signals and have their
origins in distanceCtrl and lInit. distanceCtrl also creates a correction
signal, which is considered by speedCtrl to calculate the engine control values.

The presented SDL system is executed with four different scheduling strate-
gies (see Sect. 3). The priorities used in experiments with Prioritiesprocess are
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Table 1. Process priorities used by
Prioritiesprocess
processes priority
CANMac, ConcatCoder 3
speedCtrl 2
distanceCtrl 1
lInit, l0, l1 4
environment 0

given in Tab. 1. They are assigned such
that the environment obtains highest pri-
ority and processes in the Load block
have lowest priority. For the task schedul-
ing strategy Prioritiestasks, Tab. 2 sum-
marizes the task types of the system,
their priorities, and the affected signals.
Tasks with sources or destinations in ital-
ics are distributed tasks and include com-
munication via CAN bus. By deriving
task types and task ids from received CAN messages, the environment continues
existing tasks in the evaluated system, considering their privileges as well. On
the other hand, before transmitting CAN messages, task attributes are appended
to the messages.

The control of real-time tasks in the ACC system is illustrated by means
of an exemplary excerpt of process speedCtrl in Fig. 5. The figure shows the
start transition and four transitions that are executed in the context of real-time
tasks. As discussed in Sect. 3, the control of real-time tasks is specified by anno-
tations to be compatible with the graphical tool and analyzer of IBM’s Rational
SDL suite [6]. In the process, a periodical real-time task computing new engine
control values is created with priority 3 in the start transition. This task is pro-
cessed by executing the transition consuming controlTimer. In this transition,
a further real-time task is created propagating the new engine control value. The
calculation of engine control values takes the reference speed, the current speed,
and a correction value given by the distance controller into account. Each of
these values is received in a separated transition. Though the executions of the
transitions receiving these values are part of a corresponding real-time task, no
task control actions are specified, because the real-time tasks end after receiving
the values.

Table 2. Task types of the system. Sources and destinations in italics state processes
on other nodes.

task type source destination priority task signals
reference speed refSpeedInput speedCtrl 4 canRX, receive, refSpeed
actual speed actSpeedSensor ConcatCoder 4 canRX, receive

ConcatCoder speedCtrl 4 actSpeed
ConcatCoder distanceCtrl 5 actSpeed

speed control value speedCtrl speedCtrl 3 controlTimer
engine regulation speedCtrl engineCtrl 3 engineCmd, send, canTX
radar radarSensor distanceCtrl 2 canRX, receive, radar
collision avoidance distanceCtrl brake 1 brake, send, canTX

distanceCtrl speedCtrl 4 correction
load loadSimulator loadSimulator 8 canRX, receive, loadStart

loadEnd, send, canTX
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Fig. 5. Excerpt of speedCtrl showing the usage of real-time tasks exemplarily

4.2 Evaluation Results

In two series of experiments, the evaluations focus on three delays: Sensor de-
lay dsensors, control delay dcontroller, and reaction delay dreaction to radar mes-
sages. The sensor and control delays are evaluated in the first series consisting
of 125 runs for each scheduling strategy. In each run of this series, in which
no radar messages are used, 200 sensor values (reference and actual speed) are
received by the system and 100 new control values are calculated and sent. The
second series comprises 200 runs and includes additionally 50 radar messages per
run that are sent to the system sporadically with a minimal interarrival time of
35 ms.

The runs of each series are divided into 25 different load situations, ranging
from no additional load up to approximately 80% additional load. Since the
regular system load is about 15%, the heaviest load situation takes the system
almost to its limits. The load is processed by the processes within the Load block
after the reception of special sporadic CAN messages and regulated by changing
the average frequency of these messages.
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Fig. 6. Ratio of sensor value consumptions at speedCtrl as a function of the sensor
delay dsensors in three different load situations

Accuracy of Sensor Values. To enable correct operation of the PID con-
troller, delays between taking the sensor values and running the control algo-
rithm must be as low and as constant as possible. In particular, this implies high
requirements on the processing delay dsensors at the controller node.

In Fig. 6, the percentage of consumed actSpeed and refSpeed signals is
plotted against dsensors for three different amounts of load. The lines in each
plot show how many sensor values have been received by the speedCtrl process
after a given delay dsensors. On each line, there is a point marking the maximal
delay, i.e., the time after which the latest sensor value was updated in speedCtrl.

In case of no additional load (Fig. 6(b)), only sensor values are sent to the
system and all schedulers perform almost similar. In detail, the best scheduler
(Prioritiestasks) delivers the latest sensor signal after 1.67 ms and the worst
scheduler (Prioritiesprocess) requires 1.76 ms. These small differences are basi-
cally due to two reasons: First, ConcatCoder forwards actSpeed, one of the
sensor signals, to distanceCtrl and to speedCtrl, thereby introducing a seri-
alization delay. The second reason is due to different overhead of the scheduling
algorithms.

However, in situations with load, the sensor delays increase and the differ-
ences between the scheduling strategies become observable. In Fig. 6(c), about
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40% additional load is added to the system, resulting in a maximal sensor de-
lay of 1.83 ms for the best scheduler Prioritiestasks and 2.59 ms for the worst
scheduler FCFSsignals. Here, the increased delay with Prioritiestasks is due to
its lack of preemption, i.e., before the SDL environment is executed to transfer
an SDL signal with sensor values into the system, the running transition must
finish. A second reason is attributed to software and hardware caches perform-
ing more replacements in case of load. But all other strategies additionally suffer
from an inadequate transition execution order. Though the second best strat-
egy Prioritiesprocess benefits from the rejection of processes in the Load block
(maximal delay 2.13 ms), sensor delays are increased due to the execution of
transitions in ConcatCoder and CANMac that are triggered by signals belonging
to the background load.

In the high load situation (Fig. 6(d)), the differences become even larger
and only Prioritiestasks is almost insusceptible against the load. As result, the
maximal sensor delay with task scheduling is 41% lower than with the next best
scheduling strategy Prioritiesprocess. Another big advantage is the low sensor
delay jitter with Prioritiestasks that is only 370μs. In contrast, the second best
scheduling strategies suffers from a jitter of 1560μs.

These results clearly show that a schedule as shown in Fig. 3 can be realized
very accurately with task scheduling. All other scheduling strategies require a
more pessimistic value for dsensorsMax, thereby decreasing the quality of control.

Control Delay. This section assesses the four scheduling strategies w.r.t. con-
trol delay, because the best quality of control is achieved if the periodical com-
putation of new control values is on time and if the new control values are
transferred to the actuators rapidly.

Figure 7 depicts the measured control delays in terms of a bar diagram. The
plot shows average, minimum, and maximum delays for each scheduling strategy
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in four different load situations. The four bars in the left part of Fig. 7 present the
results in case of no load. Similar to the sensor delays, control delays differ only
slightly in this case. However, when load is added to the system, task scheduling
again outperforms the other scheduling strategies.

If the additional system load is about 10%, the average delay remains almost
unchanged, but the maximal delay increases for all scheduling strategies. How-
ever, the increase with Prioritiestasks is much lower than with the other schedul-
ing strategies. In detail, the maximal control delay with Prioritiestasks is about
240μs less than with the second best scheduling strategy Prioritiesprocess. This
difference is basically due the shared transitions in ConcatCoder and CANMac for
which Prioritiesprocess can not distinguish between load and control signals. If
the number of signals or shared processes would be higher, reaction times with
Prioritiesprocess would even get worse.

With increasing system load, both FCFS strategies suffer more and more from
an inadequate transition execution order, whereas the priority-based strategies
are less prone to the load. Thus, comparing situations with 10% and 80% addi-
tional load, there are only small differences of control delay with Prioritiestasks as
well as Prioritiesprocess. Maximum and average control delays with FCFSsignals

and FCFSprocess, however, are more than 2.5 times higher than with Prioritiestasks
in case of 80% additional load, thereby demonstrating that fair strategies are not
adequate if predictability is required.

Similar to the sensor delays, task scheduling does not only achieve a lower con-
trol delay but is also attended by a lower jitter, thereby increasing predictability
significantly and resulting in a better quality of cruise control.

Reaction Times to Time-Critical Events. Though the fair scheduling strate-
gies are prone to load, reading sensors and calculating control values are periodic
events, thereby allowing to determine an off-line event schedule as shown in Fig. 3
by taking the maximal delays for each scheduling strategy into account. How-
ever, with sporadic events, such a schedule is often not possible or requires very
pessimistic assumptions on the events’ interval. In the following scenario, we add
sporadic time-critical radar messages to the system that require fast reactions
and measure the reaction times between the reception of the radar messages and
the sending of brake commands for each scheduling strategy.

The average and maximal reaction times are presented in Fig. 8, each with
25 different load situations. In case of no load, the average reaction times are
almost equal. However, increasing load results in increased average reaction
times with FCFSsignals, FCFSprocess, and Prioritiesprocess, whereas the reaction
times with Prioritiestasks stay constant. For instance, the average delay with
Prioritiestasks is only 60% of the average delay with the next best scheduler
Prioritiesprocess at 80% additional load.

The maximal delay already differs without load (see Fig. 8(b)), because only
task scheduling can entirely prefer radar and brake events, which are more time-
critical than the actual and reference speed or engine control values. Thus,
the maximal reaction time with Prioritiestasks is about 38% less than with
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Fig. 8. Reaction delays: Time between radar messages and brake messages

Prioritiesprocess, though there is no additional system load. The differences be-
come even larger if the system is stressed with load, and with 80% additional
load, task scheduling is actually 2.4 times faster than process priority scheduling.

Discussion. The results of all experiments demonstrate the benefits of task
scheduling regarding both shorter and less variable reaction times of time-critical
system tasks. They also point out that existing language elements of SDL are
not sufficient to develop applications with real-time requirements if the hard-
ware platform is predetermined and severely limited. These shortcomings can,
in particular, be ascribed to the gap between the concurrent execution of all
processes according to the SDL semantics and the required serialization of tran-
sition executions on embedded hardware. Though there is language support in
SDL to prefer transition executions within single SDL processes (e.g., priority
inputs)4, the scheduling non-determinism of transition executions in different
SDL processes is not addressed by SDL. Thus, the preference of specific system
tasks distributed across several SDL processes can not be expressed in SDL.

To serialize transition executions, several scheduling strategies have been pro-
posed. In our evaluation, we compare task scheduling with three common SDL
scheduling strategies. In summary, the results demonstrate that existing ap-
proaches have drawbacks: FCFS strategies are in general inadequate, because
they can not prefer time-critical system tasks at all. Strategies with static pri-
orities are more adequate but suffer from their dependence on the static system
specification. With task scheduling, these limitations are removed by dynami-
cally adding information about the context of a transition execution, i.e., the
system task it contributes to. Though these extensions improve delays signifi-
cantly, the amount of additional information and overhead is only very low.

4 We note that these language elements are limited, because they are based on static
elements in the system’s specification. In contrast, real-time tasks are created at
run-time and assign priorities to transition executions dynamically.
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5 Related Work

SDL real-time tasks enrich SDL in two respects: First, they improve the lan-
guage expressiveness by enabling the specification and identification of SDL
process- and node-spanning functionalities. Thus, there is a similarity to Message
Sequence Charts (MSCs) [10], which is a common technique to describe the com-
munication within and between nodes. The second impact of real-time tasks is
on the scheduling of SDL systems, in which task priorities determine transition
execution orders, thereby improving the predictability of reaction times. Hence,
this section also outlines related work regarding SDL schedulers.

Because MSCs are a high-level way to specify distributed behavior, there are
several proposals to transform MSCs to SDL [11,12]. In [11], Dulz et al. present
the transformation of MSCs to synthetic SDL specifications used for early per-
formance predictions. The intention of the MSC to SDL transformation proposed
by Khendek et al. [12] is to achieve consistency between both specifications. For
this purpose, the authors present a tool called MSC2SDL using an MSC and
a target SDL architecture as input. Since MSCs are not suitable for describing
complete systems, the influence of such approaches on the run-time behavior is
limited. Yet, MSCs are a useful method to visualize and identify SDL task types.

Due to the scheduling non-determinism of the SDL semantics, there are many
proposals dealing with the implementation of SDL schedulers. These proposals
can be divided into two categories: The activity thread model, mapping SDL
signal transfer to procedure calls [13,14], and the scheduling of the SDL system by
means of priorities [6,15,16]. An overview of alternatives of SDL implementations
can be found in [17,18].

The activity thread model differs from the SDL semantics, because it is syn-
chronous and dissolves the distinction between communication and transition
execution [17]. Yet, it is an efficient and often standard-compliant way of im-
plementing SDL. However, different from SDL tasks, the activity thread model
is not able to prefer specific transitions. Additionally, due to its synchronous
execution model, deadlocks may occur in systems with cyclic signal flows [19].
To overcome these limitations, several measures, e.g., the reordering of signal
outputs, have been proposed [13,14]. Similar to SDL tasks, the system execution
with activity threads is driven by SDL signals and not by SDL processes.

Priority-based scheduling solutions operate either on process [6,15] or signal
priorities [6,16]. E.g., C-micro [6], which is part of IBM’s Rational SDL suite,
supports static signal priorities as well as static process priorities. An extension
of SDL’s execution model with dynamic process priorities is introduced in [15],
where priorities are derived from fixed transition priorities, forming the basis of
a preemptive scheduler and schedulability analysis. Other than task priorities,
prioritization based on processes or static signal priorities is not well-suited if
transitions of a process are used to fulfill both time-critical and non-time-critical
functionalitites. In [16], a scheduling approach with dynamic signal priorities,
called Message Earliest Deadline First (MEDF), is proposed, sorting transition
executions by means of message deadlines. For this purpose, several language
extensions, e.g., annotations to specify timing constraints, are presented. Similar
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to SDL tasks, the proposed execution model can pass priorities on to signal
outputs during transition executions. A drawback of MEDF compared to SDL
real-time tasks is the limitation of SDL’s language constructs. Additionally, EDF
scheduling is in general more costly.

6 Conclusions

In this paper, we have continued our previous work on SDL real-time time tasks
both conceptually, and, in particular, with a strong focus on implementation and
evaluation. Conceptually, we have introduced distributed SDL real-time tasks,
which may now span transition executions of SDL processes of several SDL
systems. This enables distribution of real-time functionality across nodes while
preserving tight control of global scheduling decisions and transition execution
priorities. Furthermore, we have added SDL real-time task types, which can be
used to naturally specify task multiplexing in SDL processes.

We have then presented an overview of the implementation of SDL real-time
tasks in our tool chain, with emphasis on transition scheduling strategies. Based
on this implementation, we have conducted extensive experiments to provide ev-
idence of the benefit of SDL real-time tasks. In particular, we have measured the
gains of SDL real-time task scheduling w.r.t. standard SDL scheduling strate-
gies and SDL process priority scheduling. In summary, the delays of time-critical
transition executions grouped into SDL real-time tasks was considerably lower
when using task scheduling, in particular, in situations with increasing CPU
load. In the evaluated ACC system, it has, for instance, been shown that the
worst case reaction delay with task scheduling is 2.4 times less than with SDL
process priority scheduling, which suffers from processes executing time-critical
and none-time-critical transitions. In addition, we have observed a dramatic
drop of jitter with task scheduling, which accounts for far better predictability
of reaction times. Our experiments also show that these real-time performance
gains have been achieved without creating additional overhead during transition
selection.

As future work, we are considering applications of SDL real-time tasks in real
control systems to assess its benefit to the quality of control. Additionally, we
plan to extend our simulation framework by Imote2 nodes as hardware-in-the-
loop in order to evaluate distributed real-time tasks in large networked systems.
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