
Refactorings in Language Development

with Asymmetric Bidirectional
Model Transformations

Martin Schmidt1, Arif Wider2, Markus Scheidgen2,
Joachim Fischer2, and Sebastian von Klinski1

1 Beuth Hochschule für Technik Berlin
- University of Applied Sciences -

Luxemburger Straße 10, D-13353 Berlin, Germany
{maschmidt,klinski}@beuth-hochschule.de

2 Humboldt-Universität zu Berlin
Department of Computer Science

Unter den Linden 6, D-10099 Berlin, Germany
{wider,scheidge,fische}@informatik.hu-berlin.de

Abstract. Software language descriptions comprise several heteroge-
neous interdependent artifacts that cover different aspects of languages
(abstract syntax, notation and semantics). The dependencies between
those artifacts demand the simultaneous adaptation of all artifacts when
the language is changed. Changes to a language that do not change
semantics are referred to as refactorings. This class of changes can be
handled automatically by applying predefined types of refactorings.
Refactorings are therefore considered a valuable tool for evolving a
language.

We present a model transformation based approach for the refactor-
ing of software language descriptions. We use asymmetric bidirectional
model transformations to synchronize the various artifacts of language
descriptions with a refactoring model that contains all elements that
are changed in a particular refactoring. This allows for automatic, type-
safe refactorings that also includes the language tooling. We apply this
approach to an Ecore, Xtext, Xtend based language description and de-
scribe the implementation of a non-trivial refactoring.

Keywords: DSL evolution, language description, refactoring, bidirec-
tional model transformations.

1 Introduction

Software languages evolve continuously [1] and software language engineering
does not only include the initial development but also the continuous adaptation
of software languages. Especially the engineering of domain-specific languages
(DSLs) requires an agile process to evolve a language along rapidly changing
user requirements.

F. Khendek et al. (Eds.): SDL 2013, LNCS 7916, pp. 222–238, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Refactorings in Language Development 223

During this process, two distinct problem sets arise. First, languages are al-
ready used while they evolve, and artifacts written in a language need to be
co-adapted to language adaptations. Secondly, the different artifacts that con-
stitute the description of a language (and eventually the tooling of that language)
need to be co-adapted when one of those artifacts changes. We call the former
vertical and the latter horizontal co-adaptation.

In this paper, we are only concerned with horizontal co-adaptation. A lan-
guage description (depending on the nature of that language) consists of several
artifacts: an abstract syntax (i.e., a metamodel, e.g., an Ecore model), con-
crete syntax (e.g., Xtext grammar, GMF model), and description of semantics
(e.g., model transformation rules or code generator). Fig. 1 depicts the different
artifacts in language development and their dependencies. When one of these
artifacts is changed to evolve the language (e.g., the multiplicity of a metamodel
feature is changed), the other artifacts need to be changed, too (e.g., the code
generator rules need to be adapted towards the changed metamodel).

Concrete Syntax Abstract Syntax

Software
Language

Metamodel

Model

Grammar or Graphical
cation

maps to

instance of

ned by

expressed
in terms of

ned by

1..*

Execution Semantics

0..*

Transformation or
Interpreter

works on
elements of

ned by

executed with

A
S

P
E

C
T

S
 O

F
 A

 L
A

N
G

U
A

G
E

C
O

N
C

R
E

T
E

 A
R

T
IF

A
C

T
S

Fig. 1. Aspects of a language and concrete artifacts in metamodel-based language
development

Refactorings play an integral role during the evolution of a language. Whereby
a refactoring is described as a semantically invariant change of the language de-
scription [2]. This includes for example changing metamodel identifiers, moving
features within the inheritance hierarchy (pull-up, push-down), changing the
organization of grammar and transformation rules, etc.

In this paper, we present an approach that allows the refactoring of language
description artifacts with automated co-refactoring of depending artifacts of the

224 M. Schmidt et al.

same language description. We model these co-refactorings as view-update re-
lations between a common view capturing the refactoring-specific information
and the dependent artifacts using asymmetric bidirectional model transforma-
tions [3]. This allows for a more declarative and modular description of refac-
torings which allows for more possibilities of verification and better reuse. We
demonstrate the practicability of our approach by implementing refactorings on
Ecore metamodels, Xtext grammars and Xtend-based code generators as arti-
facts.

The paper is organized as follows: In the first part we present different areas of
language evolution and give an overview of existing and related work in language
evolution. The following section describes a specific case study, which was de-
cisive for this paper. Section 4 describes our approach for handling refactorings
of interdependent heterogeneous artifacts in language development. Afterwards,
we give an outlook of an implementation using model transformations. Finally,
we conclude the paper including some discussion and show up possible directions
for future work.

2 Background and Related Work

When we discuss the evolution of languages, the need for co-adaptation arises.
We have multiple interdependent artifacts and if we change one the others have
to change as well.

2.1 Horizontal vs. Vertical Co-adaptation

We can distinguish two forms of co-adaptation.

– First, when we change the language description (especially the metamodel)
language instances have to be changed as well. We call this vertical co-
adaptation: Changes need to be propagated from the meta-layer (top) down
to the instance layer (bottom). Notable contributions to this kind of co-
adaptation comes from Wachsmuth [4] and Hermannsdörfer [5].

– The second form of co-adaptation happens within the same layer, hence
horizontal co-adaptation. Software engineers might use several languages to
create one piece of software on the instance-layer, and language engineers
might use different meta-languages to describe a single language (e.g., a DSL)
on the meta-layer. In both cases heterogeneous interdependent artifacts are
created. Since we mainly discuss horizontal co-adaptation (more specifically
co-refactoring) in this paper, we discuss the related work in this field more
detailed in the following subsections.

2.2 Horizontal Co-adaptation in Software Engineering

Software systems in general are often mixed-language systems. They are con-
structed with declarative descriptions for the user interface, imperative applica-
tion logic implemented with a general-purpose programming language (GPL),

Refactorings in Language Development 225

and other specific languages, e.g., configuration scripts, styling or plug-in man-
agement. Strein et al. investigated the evolution of a given inter-language soft-
ware system [6]. They described the interdependencies in an object-oriented web
application that is implemented with ASP.NET, HTML, C# and Visual Basic.
They identified that modern integrated development environments (IDEs) sup-
port the evolution of certain artifacts through offering refactorings or simple
adaptations like introducing getters and setters, but these IDEs are limited con-
cerning the co-adaptation of dependent artifacts written in different languages.
For transferring adaptations to other parts of a system Strein et al. developed an
IDE called X-Develop. They captured refactoring-relevant information, con-
cerning more than just one language, in a model and adapt this model, which is
a typical approach for implementing refactorings in software engineering.

2.3 Horizontal Co-adaptation in Language Engineering

As languages evolve too, the development process of a domain-specific language
has similarities to general software development [1]. Changes in a language
specification can have an impact on the corresponding language tools [7]. In
metamodel-based language development (i.e., where the metamodel that de-
scribes the abstract syntax is the central artifact) other meta-descriptions often
reference the types defined by the metamodel. Therefore, many of the needed
co-adaptations that are necessary when the metamodel changes can be detected
by checking these references. Although multiple (meta-) languages are involved
in DSL development, these languages are interconnected via the metamodel and
form the description of one language. Therefore, we call this intra-language evo-
lution. In this paper, we are concerned with intra-language evolution of DSLs
and other software languages (e.g., modeling languages).

Pizka and Jürgens already captured the difficulties of DSL evolution and
the need of co-adaptations for these systems [8]. For handling the evolution
of a language they implemented Lever (Language Evolver) [9]. Lever provides
different integrated DSLs for the description of grammars, the tooling, and the
coupled evolution of these parts. Lever focuses on textual DSLs and allows only
for adaptation of tooling after the grammar changes.

In this paper we present an approach for describing refactorings and show an
exemplary implementation that works with established technologies (e.g., EMF,
Xtext) and allows for co-adaptations resulting from changes to different kinds of
artifacts at the metalevel. We also believe that our approach is applicable to the
evolution of graphical DSLs.

3 Motivating Example: The NanoWorkbench

The motivation for the work that we present in this paper emerged from practical
experiences during the development of an Xtext-based DSL for developing opti-
cal nanostructures (NanoDSL) and a corresponding integrated tool-suite for that

226 M. Schmidt et al.

DSL (a domain-specific workbench called NanoWorkbench [10]). This project
is subject of a cooperation with the nano-optics research group at the physics
department.

The members of this group design geometrical structures that are smaller
than the wavelength of optical light in order to affect the motion of photons
in a similar way a semiconductor crystal affects the motion of electrons. The
properties of these photonic crystals are tested by simulating the propagation
of an electromagnetic pulse within the structure. There are different simulation
methods for that, e.g., the finite difference time domain method (FDTD) or the
finite element method (FEM). Fig. 2(a) shows a picture of a photonic crystal
and Fig. 2(b) shows a schematic overview of the workbench incorporating dif-
ferent DSLs and different simulation methods, as well as a model-driven data
management and model-driven communication channels for performing external
experiments or computations.

As we pursued an agile, iterative process to develop the DSL and its domain-
specific workbench (with continuous consultation of the domain-experts), we
identified problems similar to general software development: When implement-
ing changes requested by the domain experts we had to change the design of the
language specification several times. After solving change requests we manually
adapted the generator and artifacts concerning the tooling to preserve consis-
tency. Figure 3 gives an overview of corresponding generators that have to be
adapted after the language changes.

As a concrete example, the metamodel of the NanoDSL started with a de-
scription/class for only adding cylinders as geometrical objects to the photonic
crystal. This is the application the physicists mostly used. Later they wanted
to add other structures like truncated cones or cuboids. With these structures
they wanted to simulate manufacturing faults. For this change request we in-
troduced a superclass for geometrical objects in general. The existing structure
was renamed to Cone and became a subclass of the introduced class as shown
in Figure 4. We identified that some attributes are more general, e.g., height or
position in space, than others. To handle this redundancy we started to pull up
these attributes.

For solving this change request, we applied at least three well-known refac-
torings - rename, introduce superclass, pull up feature. Although we could easily
rewrite the core language description, we had to update the existing tooling and
in our special case had to adapt two complex model-to-text transformations de-
scribing different execution semantics and one model-to-model transformation
for a 2D-visualisation. Additionally, we implemented a transformation rule for
each added subclass. For calling the rules we need to check the object’s type via
the instanceof-operator first for providing the correct transformation. These
manual changes are time-consuming and error-prone. Thus, we identified the
practical need for automatic co-refactorings of interdependent artifacts in DSL
development.

Refactorings in Language Development 227

(a) A photonic crystal [11]
(b) Overview of the domain-specific

workbench

Fig. 2. A domain-specific workbench for the development of optical nanostructures

Fig. 3. Implemented parts of the domain-specific workbench

228 M. Schmidt et al.

Element

height
position
radiusTop
radiusBottom

Cone
height
width
length
position

Cuboid

Element

height
position

radiusTop
radiusBottom

Cone
width
length

Cuboid

LANGUAGE EVOLUTION

height
position
radius

Cylinder

Introduce superclass/
Rename class

Pull up
attributes

Fig. 4. Example for changes of NanoDSL

4 A Model Transformation-Based Approach for Evolution
of Interdependent Artifacts in Language Development

In the following subsections, we present our model transformation based ap-
proach to refactoring of software languages. First, we will sketch the traditional,
imperative approach that is used to realize refactoring for, e.g., general purpose
programming languages like Java (homogeneous artifacts). Secondly, we identify
differences between the refactoring of, e.g., Java programs and DSLs. Thirdly,
we describe refactoring of software languages as a model-view-synchronization
problem. Fourthly, we present lenses as one concrete method for model-view-
synchronization. Finally, we summarize our approach and identify the compo-
nents necessary to describe a refactoring within our approach.

4.1 Traditional Imperative Approach

Bäumer, Gamma & Kiezun [12] propose the following three steps to perform a
refactoring.

– First, create a program database (e.g., an AST) that stores information about
declarations and references (independent from a compiler). The database
needs to provide a search interface for queries like What program elements
reference a certain method?. This general step is independent from concrete
refactorings.

– Secondly, perform structural program analysis using the previously estab-
lished database. In this step the cone of influence is determined for concrete
refactorings: all affected compilation units and program elements are identi-
fied and refactoring-specific preconditions are checked.

– Thirdly, the actual changes are performed. Elements of the previously de-
termined cone of influence are changed according to the refactoring.

Refactorings in Language Development 229

4.2 Refactoring of Software Languages

It is hard to extend the traditional imperative approach to the refactoring of
software languages like DSLs. The existing refactoring capabilities for one type
of artifact (homogeneous artifacts, e.g., refactorings for Ecore models) need to
be extended to other types of artifacts (heterogeneous artifacts, e.g., Ecore refac-
torings that also affect related Xtend rules).

There are two specific problems. First, there is no common program database
that includes elements for all types of artifacts involved in DSL development.
Secondly, there are explicit relations between artifacts of different types and there
are also implicit or indirect relations. A code generation rule for example is not
only connected to meta-classes it directly references, but also from its super
classes and its features. Furthermore, in some cases there are whole artifacts
that are implicit. An example is the generated metamodel in Xtext-based DSL
development, where the abstract syntax is fully generated from the concrete
syntax. Code generator rules are explicitly linked to the generated metamodel,
but also indirectly connected to grammar rules.

4.3 Modeling Language-Refactorings as a Model-View-
Synchronization Problem

To solve the previously stated problems, we apply the steps of the traditional
imperative approach with declarative methods. The information stored in a pro-
gram database is already contained in the original artifacts and can be extracted
through model transformation rules (step 1).

The cone of influence is a view (i.e., an abstraction) on the model that is
the sum of all artifacts (i.e., the language description). This refactoring view
can be described as model transformations between all types of artifacts and
the refactoring view (step 2). These transformations filter all elements in all
artifacts for those elements that are affected by the refactoring. In that sense,
the refactoring view aggregates all refactoring related information scattered in
all artifacts into a single view.

The actual manipulation of the model can be described by an in-place model
transformation that changes the refactoring view and as model transformations
from the refactoring view into all types of artifacts (step 3). Here, the aggregated
information about all refactoring related elements is used to change all those
elements accordingly.

Pairs of model transformations between artifacts and refactoring view and
between refactoring view and artifacts (i.e., forward and backward transforma-
tions) can be described as bidirectional model transformations and, thus, the
application of a refactoring can be described as a model-view-synchronization
problem. Conclusively, each type of refactoring (e.g., a pull down) is described
by (1) a metamodel of the refactoring view, (2) one model transformation for
altering that view, and (3) bidirectional model transformations between each
artifact type and the refactoring view.

230 M. Schmidt et al.

4.4 Asymmetric Bidirectional Transformations

We model the refactoring of DSLs as a model-view-update problem. There are
many approaches to bidirectionalmodel transformations for solving amodel-view-
synchronization problem. For refactorings we favor asymmetric bidirectional
model transformations (more specifically lenses). This specific kind of bidirec-
tional model transformation fits the needs of a model-view-synchronization [14].

Lenses, as introduced by Pierce et al. [15], are asymmetric bidirectional trans-
formations, i.e., one of the two structures that are synchronized has to be an
abstraction of the other. This asymmetric approach is inspired by the view-
update problem known in the database community, where a database view – the
abstraction – has to be updated when the database changes and vice versa.

Given a source set S of concrete structures and a view set V of abstract
structures, a lens comprises two functions:

get : S → V
put : V × S → S

The forward transformation get derives an abstract view structure from a given
concrete source structure (e.g., filtering for a cone of influence). The backward
transformation put takes an updated abstract view structure and the original
concrete source structure to yield an updated concrete structure (e.g., propagate
refactoring related changes into an artifact). Fig. 5 depicts a lens and its two
functions.

Lenses, as presented by Pierce et al., is a combinator-based approach to asym-
metric bidirectional transformations, i.e., lenses are composed from other lenses.
There are primitive and combinator lenses. Formal properties of lenses can be
proved for combinations if the used combinator preserves these properties. The

:=

source

updated
source

view

updated
view

get

put

Fig. 5. Asymmetric Bidirectional Model Transformation (based on [13])

Refactorings in Language Development 231

lenses framework therefore provides a flexible model transformation technique
with strong capabilities for reuse and formal verification. However, the more
general notion of a lens (an encapsulated tuple of the two functions) is already
useful when modeling a model-view-synchronization problem.

The lenses approach stands in contrast to directly manipulating the source
(which would be the naive object-oriented approach), as it describes the synchro-
nization as two side-effect-free functions. However, the lenses approach is only
possible when at a given time always only one artifact is changed and imme-
diately synchronized with its interdependent artifacts, i.e., with no concurrent
changes. This is always the case in our refactoring scenario.

4.5 Describing Refactorings with Model Transformations

A refactoring type R is described as an x-tuple of one refactoring view metamodel
MMrv, a number of asymmetric bidirectional transformations �sv between the
metamodels of all involved artifact types and the refactoring view metamodel,
and one unidirectional view-change-transformation →vv (view to view) on the
refactoring view model.

R = 〈MMRV , [�sv],→vv〉

In principle, this framework is independent of the concrete types of artifacts
(unless they are not applicable to the same model transformation method) and
independent of the concrete model transformation (unless it does not allow for
asymmetric bidirectional transformations). Fig. 6 shows a refactoring type (pull
up) based on Ecore and Xtend as artifact types.

Information

Ecore Artifact

Xtend Artifact

«metamodel»
Ecore.Xtend

{Refactoring}
Information

«metamodel»

Ecore

«metamodel»

Xtend

Ecore.Xtend
PullUp

Information

:=

Fig. 6. The Pull-up refactoring involving an Ecore and an Xtext artifact

232 M. Schmidt et al.

4.6 Advantages and Disadvantages

The proposed approach provides the following advantages compared to tradi-
tional imperative approaches. Firstly, the approach allows for more comprehen-
sible and reusable descriptions of refactorings as a clear set of models and trans-
formations. Refactoring related logic is not scattered across multiple parts of
the language description anymore. Secondly, the declarative model transforma-
tion based approach clearly separates meta-language tooling (e.g., Xtext, Ecore,
Xtend tools) from refactorings. The refactoring description only depends on
models and not on tools. Thirdly, the approach provides a history of changes
and refactorings as a set of model transformation traces. Finally, the declarative
and side-effect-free lenses based approach provides good verification capabilities,
especially when implemented in a functional manner.

As a disadvantage, a potentially large number of transformations has to be
created for each refactoring – up to two times the number of involved artifacts.
Firstly, this number can be halved by using special languages for bidirectional
transformations that provide special notations for defining both the forward
and the backward transformation at the same time. Secondly, we argue that
the refactoring logic is the same as in the traditional imperative approach, it is
just structured differently. This different structure can result in code duplication
when implemented naively, e.g., when transformations for multiple involved arti-
facts are very similar. However, by defining reusable building blocks for transfor-
mations and by composing transformations from them, it is possible to not only
keep code duplication within a refactoring minimal, but also code duplication
across refactorings, which is one of the advantages of our approach.

5 Implementation with Model Transformations

The general approach presented so far is independent from concrete modeling
technologies or model transformation languages. It can be implemented using
special languages for the description of bidirectional transformations or pairs of
unidirectional transformations which again can be described with special model
transformation languages or GPLs.

In this section we demonstrate how to implement our approach using Java as
a GPL and how to integrate it with Eclipse-based modeling technologies. As an
example, we use the ’Pull Up Item’ refactoring in the Ecore, Xtext, and Xtend
based scenario that we motivated in Sect. 3.

5.1 Abstract Refactoring Structure

Listing 1.1 shows the abstract structure of refactorings where three artifacts are
affected: A grammar describing a textual concrete syntax, a metamodel describ-
ing the abstract syntax, and a generator describing one execution semantics.
Thus, a refactoring consists of three asymmetric bidirectional model transfor-
mations (i.e., lenses, see List. 1.2) that synchronize the grammar, the model,

Refactorings in Language Development 233

and a generator, respectively, with a refactoring-specific refactoring view. In
addition to that, an abstract method for implementing the (typically trivial)
change on that refactoring view is provided. It takes a second parameter of type
ChangeInfo, if there are different possibilities how to perform the change.

1 public abstract class
Refactoring<RefactoringView,ChangeInfo,Grammar,Model,Generator>
{

2

3 public Lens<Grammar, RefactoringView> grammarLens;
4 public Lens<Model, RefactoringView> modelLens;
5 public Lens<Generator, RefactoringView> generatorLens;
6

7 public abstract RefactoringView changeView(RefactoringView
oldView, ChangeInfo info);

8 }

Listing 1.1. Java implementation of the Refactoring structure

1 public interface Lens<Source, View> {
2 public View get(Source src, ISelection sel);
3 public Source put(Source src, View view, ISelection sel);
4 }

Listing 1.2. A lens interface with parameterizable lens functions

5.2 Implementation of ’Pull Up Item’ for Xtext, Xtend and Ecore

Based on this general structure of a refactoring description, the following listings
show parts of an exemplary implementation of the ’Pull Up Item’ refactoring [2].
First, a refactoring-specific view type is defined which, in this case, holds the
attribute that is to be pulled up, the class it originally belongs to (the subclass),
and a list of this class’ superclasses (List. 1.3). From the list of superclasses one
is to be chosen for the attribute to be pulled up to.

1 public class PullUpRefactoringView {
2 public EAttribute selectedAttribute;
3 public EClass subClass;
4 public List<EClass> superClasses;
5 }

Listing 1.3. RefactoringView for ’Pull up Item’

Next (refer to List. 1.4), the concrete refactoring type is defined by extending
the abstract refactoring type and by providing appropriate type parameters:
Obviously, the view type is the previously defined PullUpRefatoringView. The
ChangeInfo contains the target superclass. As multi-inheritance in principle is
allowed in model-driven engineering, we provide a wizard for selecting the target
superclass if there is more than one option. Before an instance of this view can

234 M. Schmidt et al.

be created, refactoring-specific pre-conditions have to be checked like Exists at
least one superclass? or Are there already attributes with the same signature in
the selected superclass?.

The remaining type parameters are specific to the involved technologies: An
Xtext resource for the grammar description, EObject for the root object of
the (meta-) model describing the abstract syntax, and again an Xtext resource
for the Xtend-based generator because Xtend is based on Xtext. Apart from
providing these type parameters (and, thus, typing the three lenses accordingly)
the declaration of the refactoring type only provides a concrete implementation
of the changeView-method, which here, only changes the attribute in the view
so that it belongs to the selected superclass of its originally containing class.
Listing 1.4 shows the complete definition of the PullUpRefactoring type (except
the trivial, field initializing constructor).

1 public class PullUpRefactoring extends
Refactoring<PullUpRefactoringView, PullUpChangeInfo,
XtextResource, EObject, XtendResource>{

2

3 public Lens<XtextResource, PullUpRefactoringView> grammarLens;
4 public Lens<EObject, PullUpRefactoringView> modelLens;
5 public Lens<XtendResource, PullUpRefactoringView> generatorLens;
6

7 @Override
8 public PullUpRefactoringView changeView(PullUpRefactoringView

oldView, PullUpChangeInfo info) {
9 // ..

10 // checking parameter and relevant preconditions
11

12 PullUpRefactoringView newView = oldView;
13 EAttribute changedEAttribute = clone(oldView.getAttribute());
14

15 for (EClass superClass : newView.getSuperClasses()) {
16 if (superClass.getName() ==

info.selectedSuperClass.getName()) {
17 // Change the container for the attribute
18 superClass.getEStructuralFeatures().add(changedEAttribute);
19 }}
20

21 newView.setAttribute(changedEAttribute);
22 return newView;
23 }}

Listing 1.4. The PullUpRefactoring class

Now, the vital parts of the refactoring are the bidirectional model transforma-
tions, which are defined separately and are then passed as constructor arguments
to the refactoring during instantiation. As we show an implementation without
the use of special languages for bidirectional transformations, a total of six trans-
formations have to be provided in this case (three forward and three backward
transformations.) For brevity, we only show two selected transformations.

Refactorings in Language Development 235

Listing 1.5 shows the forward transformation get of the lens synchronizing
between the Xtend-based generator and the refactoring view. First, we are ex-
tracting the element, which is the target of the refactoring from the text selection
sel. Afterwards we collect the relevant information – the containing class and
its superclasses – and build the refactoring view. To gain this information, we
navigate through the containment hierarchy of the resolved element. Finally, the
refactoring view is returned.

1 public PullUpRefactoringView get(XtextResource src, ISelection sel) {
2 PullUpRefactoringView pullUpRefView = new PullUpRefactoringView();
3

4 EObject elementUnderChange = getElement(sel);
5

6 // Attribute which will be pulled up
7 pullUpRefView.attribute = (EAttribute)elementUnderChange;
8 // Containing class of attribute
9 pullUpRefView.subClass = getContainerOfType(elementUnderChange);

10 // List of possible superclasses
11 pullUpRefView.superClasses = getSuperClasses(elementUnderChange);
12

13 return pullUpRefView;
14 }

Listing 1.5. Forward transformation of the generator lens of ’Pull Up Item’

The backward transformation of the lens synchronizing between the Ecore-
based (meta-) model and the refactoring view is shown in Listing 1.6. Addition-
ally to the (potentially altered) refactoring view, this transformation takes the
original artifact as the src argument – here, the original model. A copy of this
model is created and the selected attribute is replaced by the one contained in
the refactoring view (including the attribute’s updated reference to its containing
class).

1 @Override
2 public EObject put(final EObject src, final PullUpRefactoringView

view, ISelection sel) {
3 EObject newModel = copy(src); // returns a copy of src
4

5 EAttribute selectedEAttribute = getSelectedAttribute(sel);
6

7 // replace the selected attribute with containment hierarchy
8 newModel.eSet(selectedEAttribute, view.getAttribute());
9

10 return newModel;
11 }

Listing 1.6. Backward transformation of the model lens of ’Pull Up Item’

236 M. Schmidt et al.

5.3 Alternative Implementation Approaches

In the previous subsections, we demonstrated a pragmatic implementation of our
model transformation based approach using Java as a GPL, because it is well-
known and eases integration with existing EMF-based technologies. However,
the advantages are more apparent, when using special model transformation
languages for the implementation. For a Java-like integration of such languages
with EMF-based technologies, we showed how to implement a unidirectional
rule-based model transformation language as an internal DSL in the Scala pro-
gramming language [16]. Using this language or another unidirectional model
transformation language like ATL [17], the forward and backward transforma-
tions of refactorings could be described more concisely.

However, in order to use our approach to its full capacity, special languages
for describing bidirectional model transformations like QVT Relations could be
used instead of describing pairs of unidirectional transformations. Unfortunately,
QVT Relations suffers from weak tool support and from semantic issues regard-
ing non-bijective relations [18]. This especially affects the presented scenario of
constructing and synchronizing an abstracted view. The combinator-based ap-
proach of lenses that was presented by Pierce et al. is especially strong in such a
scenario. Therefore, we are working on an implementation of such combinator-
based lenses that integrate well with EMF-based technologies [14] and work on
an implementation of our refactoring approach using these lenses.

Furthermore, an issue that arises with our current implementation approach,
is that some logic, e.g., for finding all occurrences of an element, is needed in
both the forward and the backward transformation (because it takes the original
source as an argument) but is currently not shared, resulting in code duplication.
Therefore, we are investigating into splitting the process of building a view into
two steps: First, the abstraction step that only collects relevant information and,
second, the aggregation step that merges redundant information so that it can
be used as a shared view on different artifacts. This way, the abstraction step
could be shared by forward and backward transformation.

6 Conclusions and Future Work

We presented a declarative approach to horizontal co-refactorings in language
development. Our approach employs asymmetric bidirectional model transfor-
mations to extract all information important for a refactoring into a refactoring
view first, and then to synchronize all artifacts of a language description with
the changes made to that refactoring view.

This approach allows for describing types of refactorings independent from
tooling and concrete notation of meta-languages. All that comprises a refactoring
is put into its description – which is a clear set of models and transformations
– and refactoring related logic is not spread over and mixed with meta-tools.
This allows for extending refactorings towards new meta-languages. Sequences
of changes can be recorded through traces of model transformations. Different
model transformation languages can be used to implement our abstract approach

Refactorings in Language Development 237

as long as they allow for asymmetric bidirectional transformations. However,
the advantages of our declarative approach can be leveraged in conjunction with
special (often more declarative) transformation languages for bidirectional model
transformations. Therefore, our approach should benefit from ongoing research
in that area [3,14,19].

We showed the principle feasibility of our approach based on the ’Pull up
item’ refactoring, which we applied to an Ecore, Xtext, Xtend based DSL. We
are working on a full catalog of refactorings in order to better show advantages of
our approach in terms of comprehensibility and reuse of transformations across
multiple refactorings. Furthermore, we want to provide an implementation that
makes use of special languages and frameworks for bidirectional model transfor-
mations. Therefore, we are evaluating which of such languages and frameworks
work best for our scenario. Finally, we are investigating how our approach can
be generalized towards co-adaptations that are not refactorings.

References

1. Favre, J.-M.: Languages evolve too! changing the software time scale. In: Proceed-
ings of the Eighth International Workshop on Principles of Software Evolution
(IWPSE 2005), pp. 33–44. IEEE Computer Society (2005)

2. Fowler, M., Beck, K.: Refactoring – improving the design of existing code. Addison-
Wesley Professional (1999)

3. Diskin, Z., Xiong, Y., Czarnecki, K.: From State- to Delta-Based Bidirectional
Model Transformations – the Asymmetric Case. Journal of Object Technology 10,
6:1–6:25 (2011), http://www.jot.fm/issues/issue_2011_01/article6.pdf

4. Wachsmuth, G.: Metamodel adaptation and model co-adaptation. In: Ernst, E.
(ed.) ECOOP 2007. LNCS, vol. 4609, pp. 600–624. Springer, Heidelberg (2007)

5. Herrmannsdoerfer, M., Ratiu, D., Wachsmuth, G.: Language evolution in practice
–The history of GMF. In: van den Brand, M., Gašević, D., Gray, J. (eds.) SLE
2009. LNCS, vol. 5969, pp. 3–22. Springer, Heidelberg (2010)

6. Strein, D., Kratz, H., Lowe, W.: Cross-language program analysis and refactoring.
In: Sixth IEEE International Workshop on Source Code Analysis and Manipulation
(SCAM 2006), pp. 207–216. IEEE Computer Society (2006)

7. Favre, J.: Meta-model and model co-evolution within the 3D software space. In:
Proceedings of the Interantaional Workshop on Evolution of Large-scale Industrial
Software Applications (ELISA), pp. 98–109 (2003),
http://plg.math.uwaterloo.ca/~migod/papers/2003/ELISAproceedings.pdf

8. Pizka, M., Jürgens, E.: Tool-supported multi-level language evolution. In:
Software and Services Variability Management Workshop, vol. 3, pp. 48–
67. Helsinki University of Technology (2007), http://citeseerx.ist.psu.edu/

viewdoc/doi=10.1.1.190.9220&rep=rep1&type=pdf

9. Jürgens, E., Pizka, M.: The Language Evolver Lever-Tool Demonstration. Elec-
tronic Notes in Theoretical Computer Science 164(2), 55–60 (2006),
http://dx.doi.org/10.1016/j.entcs.2006.10.004

10. Wider, A., Schmidt, M., Kühnlenz, F., Fischer, J.: A Model-Driven Workbench
for Simulation-Based Development of Optical Nanostructures. In: Proceedings of
the 2nd International Conference on Computer Modelling and Simulation (CSSim
2011) (2011) IEEE CD with ISBN 978-80-214-4320-4

http://www.jot.fm/issues/issue_2011_01/article6.pdf
http://plg.math.uwaterloo.ca/~migod/papers/2003/ELISAproceedings.pdf
http://citeseerx.ist.psu.edu/viewdoc/doi=10.1.1.190.9220&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/doi=10.1.1.190.9220&rep=rep1&type=pdf
http://dx.doi.org/10.1016/j.entcs.2006.10.004

238 M. Schmidt et al.

11. Barth, M., Kouba, J., Stingl, J., Löchel, B., Benson, O.: Modification of visible
spontaneous emission with silicon nitride photonic crystal nanocavities. Optics
Express 15(25), 17231–17240 (2007), http://dx.doi.org/10.1364/OE.15.017231

12. Bäumer, D., Gamma, E., Kiezun, A.: Integrating Refactoring Support into
a Java Development Tool. In: OOPSLA 2001 Companion. ACM (2001),
http://people.csail.mit.edu/akiezun/companion.pdf

13. Foster, J.: Bidirectional Programming Languages. PhD thesis, University of Penn-
sylvania (2009), http://repository.upenn.edu/cgi/viewcontent.cgi?article=
1967&context=cis reports

14. Wider, A.: Towards Combinators for Bidirectional Model Transformations in Scala.
In: Sloane, A., Aßmann, U. (eds.) SLE 2011. LNCS, vol. 6940, pp. 367–377.
Springer, Heidelberg (2012)

15. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combina-
tors for Bi-Directional Tree Transformations: A Linguistic Approach to the View
Update Problem. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL 2005), pp. 233–246. ACM
(2005)

16. George, L., Wider, A., Scheidgen, M.: Type-Safe Model Transformation Languages
as Internal DSLs in Scala. In: Hu, Z., de Lara, J. (eds.) ICMT 2012. LNCS,
vol. 7307, pp. 160–175. Springer, Heidelberg (2012)

17. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL – A model transformation
tool. Science of Computer Programming 72(1-2), 31–39 (2008)

18. Stevens, P.: Bidirectional model transformations in QVT – Semantic issues and
open questions. Software and Systems Modeling 9(1), 7–20 (2010)

19. Sasano, I., Hu, Z., Hidaka, S., Inaba, K., Kato, H., Nakano, K.: Toward Bidirec-
tionalization of ATL with GRoundTram. In: Cabot, J., Visser, E. (eds.) ICMT
2011. LNCS, vol. 6707, pp. 138–151. Springer, Heidelberg (2011)

http://dx.doi.org/10.1364/OE.15.017231
http://people.csail.mit.edu/akiezun/companion.pdf
http://repository.upenn.edu/cgi/viewcontent.cgi?article=1967&context=cis_reports
http://repository.upenn.edu/cgi/viewcontent.cgi?article=1967&context=cis_reports

	Refactorings in Language Development with Asymmetric Bidirectional Model Transformations
	1 Introduction
	2 Background and Related Work
	3 Motivating Example: The NanoWorkbench
	4 A Model Transformation-Based Approach for Evolution of Interdependent Artifacts in Language Development
	5 Implementation with Model Transformations
	6 Conclusions and Future Work
	References

