
Traceability Links in Model Transformations
between Software and Performance Models

Mohammad Alhaj and Dorina C. Petriu

Dept. of Systems and Computer Engineering, Carleton University,
1125 Colonel By Drive, Ottawa, Ontario, Canada, K1S 5B6

{malhaj,petriu}sce.carleton.ca

Abstract. In Model Driven Engineering, traceability is used to estab-
lish relationships between various software artifacts during the software
life cycle. Traceability can be also used to define dependencies between
related elements in different models, to propagate and verify properties
from one model to another and to analyze the impact of changes. In this
paper we describe how to define typed trace-links between different kinds
of models in our model transformation chain PUMA4SOA, which gener-
ates Layered Queuing performance models from UML software models of
service-oriented applications. The goal of PUMA4SOA is to help evalu-
ate the performance of SOA systems in the early development phases. In
our approach, the traceability links are stored externally in a new model,
which maintain traces separately from the source and target models they
refer to. We illustrate how traceability links can be used to propagate the
results of the performance model back to the original software model.

Keywords: Software Performance Engineering, SOA, Traceability,
Trace-Links, Aspect-oriented modeling, Model transformation, Perfor-
mance Analysis.

1 Introduction

Model-Driven Engineering (MDE) is a software development paradigm that
changes the focus from code to models. Many models of different types are
used to describe the software under development in different lifecycle phases
and at different levels of abstractions. Models in different modeling languages
are created, updated and transformed either manually or automatically. This
raises challenges related to the ability of managing and configuring the software
models. In order to improve the coherence, and consistency of models used in an
MDE process, it is useful to establish and maintain trace-links between models.
Traceability is a known software approach used to establish relationships between
various software artifacts (including all kinds of models) during the software life
cycle. This allows the developers to understand the relationships and dependen-
cies between artifacts, to maintain their consistency and to analyze the impact
of changes in different artifacts.

F. Khendek et al. (Eds.): SDL 2013, LNCS 7916, pp. 203–221, 2013.
© Springer-Verlag Berlin Heidelberg 2013

204 M. Alhaj and D.C. Petriu

A wide range of traceability approaches have been discussed in the literature.
The survey in [1] discusses the state of the art of traceability approaches in
MDE, classifying them into three categories: 1) requirement-driven, 2) modeling,
and 3) transformation approaches. In requirement-driven approaches, traceabil-
ity is defined in the requirement models as “the ability to describe and trace
the requirement specifications forward and backward in the life cycle during the
software development” [2]. The modeling approaches are focusing on using meta-
models and models to define trace-links. In the transformation approaches, the
traceability details are generated by using model transformations. This can be
done by creating trace-links between the source and target model elements dur-
ing the model transformation. In terms of storing and managing traceability, two
approaches are proposed in [3]: the intra-model and the extra-model approach.
In the intra-model approach, traceability links are embedded inside the models
they refer to as new model elements. In the extra-model approach, traceability
links are stored externally in a new model, to maintain traces separately from
the model they refer to. In terms of capturing the trace-links, [4] proposes two
categories: explicit trace-links captured directly in the models using a suitable
concrete syntax (such as UML dependencies), and implicit trace-links generated
by a model operation (such as transformation or comparison).

Performance from Unified Model Analysis for SOA (PUMA4SOA) is a mod-
eling framework introduced by the authors in [5,6] and [7], which generates a
Layered Queueing Network (LQN) model from the UML design model of a SOA
system; the LQN model is then used for analyzing the performance characteris-
tics of the SOA system in early phases of the software life cycle. PUMA4SOA
extends the PUMA framework developed previously in our research group [8],
as presented in the next section. PUMA4SOA in its present state does not pro-
vide trace-links between the elements of the source and target models, which
are needed for tracing, analyzing or propagating the impact of changes between
different models.

The focus of this paper is on defining a traceability model for PUMA4SOA,
which establishes trace-links between the elements of its different models. The pa-
per is organized as follows: Section 2 gives a high-level view of the transformation
chain in PUMA4SOA. Section 3 presents the proposed traceability metamodel,
which defines trace-links between UML, CSM (Core Scenario Model) and LQN
model elements; the metamodel is also extended to handle cases where aspect
models are used. Section 4 illustrates the use of the traceability model with a
Purchase Order system example. Section 5 presents related work and Section 6
gives the conclusion and directions for future work.

2 PUMA4SOA Transformation Principles

The PUMA4SOA transformation chain is described in Fig. 1. It takes as input
three UML design models: 1) platform independent model (PIM), 2) deploy-
ment diagram, and 3) aspect platform models. The SOA systems are modeled

Traceability Links in Model Transformations 205

in UML [9] extended with two OMG standard profiles: MARTE [10] for adding
performance annotations and SoaML [11] for describing the service architecture.

After getting the UML input design and selecting the generic aspect models
for the platform operations required in the model, the next step is to transform
the UML PIM model and the aspect models into intermediate models called Core
Scenario Models (CSM [12]. The purpose of CSM is to bridge the semantic gap be-
tween the UML input design model and various performance models that could
be generated. At the CSM level, the aspect platform models are composed with
the platform independent model to generate the platform specific model (PSM).
Transforming the CSM PSM to LQN is the final step in the model transformation
chain [6,8]. The LQN model is an extension of queuing networks with the capabil-
ity of representing nested services [13]. An LQN model defines a set of tasks rep-
resenting software processes (threads) or hardware devices, which offer services
called entries. An entry of a task can make a request to an entry of another task.
Once the LQN model is generated, an existing LQN solver is used to produce the
performance results (such as response time, throughput, and utilizations). The
results are then fed back to the UML input design for further analysis.

The UML platform independent model (PIM) describes the structural and
behavioral views of SOA systems at three levels of abstractions: a) the work-
flow model representing the business process layer, b) the service architecture
model describing the invoked services, the participants, ports and service con-
tracts, and c) the service behavior model giving details about the behavior of
the invoked services. The deployment diagram represents the configuration of
the SOA system, showing the allocation of software to hardware resources. The
aspect platform models represent platform operations provided by the underly-
ing service middleware, such as service invocation, service publishing and service
discovery. Each aspect model can be seen as a template with generic parameters,
which will be bound eventually to concrete values just before the respective as-
pect will be composed with the PIM in all places (join points) where a platform
operation needs to be executed. For instance, a “service invocation” aspect will
be composed with the PIM for every service invocation contained in the PIM.
The aspect composition can take place at three levels, as discussed in [7]: UML,
CSM or LQN level. In Fig. 1, the aspect composition is performed at the CSM
level, which has certain advantages [7]. The final result of the composition is a
platform specific model (PSM) expressed in this case in CSM.

PUMA4SOA also defines a so-called performance completion (PC) feature
model that represents the variability (i.e., alternatives) in the service platform.
It provides the choice to select between multiple aspects based on the business
requirements for the given application. The “performance completion” concept
was introduced in [14], where “completions” close the gap between the abstract
design models and the functions provided by a platform external to the design
model. In [15], a PC feature model is used to define the variability in plat-
form choices, execution environments and other external factors that might im-
pact the system performance. A concrete example of PC-feature model can be
found in [7].

206 M. Alhaj and D.C. Petriu

Fig. 1. PUMA4SOA approach

A high-level view of the transformation chain from UML software models to
CSM and then to LQN is shown in Fig. 2. Please note that only the behavioural
view of the UML model is presented in Fig. 2; the service architecture, the
deployment and the platform aspect models are not shown, although they do
contribute to the CSM derivation. Figure 2 emphasizes the fact that workflow
and the service-providing components are represented separately in the UML
model, contributing to distinct parts of the CSM and LQN models. The basic
transformation principles are as follows:

a) A UML workflow model (normally an activity diagram) will generate a top-
level scenario in CSM, which in turn will generate a LQN reference task that
embeds an LQN activity graph corresponding to the workflow activities.

b) A service-providing run-time component in UML will generate a component
in CSM executing subscenarios that represent the behaviour of services; each
service subscenario is invoked by the workflow steps or other services. In turn,
this will generate an LQN task with entries modeling each provided service.

c) An activity or an execution occurrence corresponding to a message in UML
will generate a Step in CSM and an activity or phase in LQN.

Traceability Links in Model Transformations 207

Fig. 2. Transformations in PUMA4SOA

d) A processing node in UML will generate a processor in CSM and a hardware
device representing a processor in LQN.

e) An aspect model representing a platform operation will generate a subsce-
nario in CSM, which will be woven into the PIM model when such operations
are called.

3 Traceability Metamodel of PUMA4SOA

We used an approach similar to [16] for defining the PUMA4SOA traceability
metamodel. The trace-links are classified into three groups: UML2CSMTraceLink
between the UML and CSM elements, CSM2LQNTraceLink between CSM and
LQN elements and LQN2CSMTraceLink between LQN and UML elements. The
first two correspond to the model transformations shown in Fig. 2, while the
third can be derived from the first two and it is used for feeding back to the
UML model the LQN results. The three trace-links groups are aggregated into
TraceModel (see Fig. 3).

Fig. 3. PUMA4SOATraceabilityMetamodel top level

208 M. Alhaj and D.C. Petriu

3.1 UML to CSM Traceability

The first group of trace-links in PUMA4SOA is defined between the elements of
the UML input design models and the CSM model. The UML models are built
using several types of UML diagrams, i.e. activity diagram (AD), component
diagram, sequence diagram (SD) and deployment diagram. For simplicity, we
will show here the trace-links for a subset of UML model elements.

To define UML2CSMTraceLink, we use the UML metamodel and the CSM
metamodel, as the purpose is to capture trace-links between models elements
which conform to those two metamodels. Each trace-link between an element of
the source model and an element of the target model has its own type. It also
has two associated properties (modeled as association roles in UML): the source
refers to a metaclass in the UMLMetamodel and the target to a metaclass in the
CSMMetamodel. An example of trace-link type between an Action element in
the UML metamodel and a StepType element in the CSM metamodel is Action-
StepTypeTL. The trace-links are derived during model transformation from to
the mapping between corresponding UML and CSM elements. The relationships
between the source and target model elements can be one-to-one (such as Node
and ProcessingResource), one-to-many, many-to-one (such as ActivityPartition,
LifeLine and ComponentType), or many-to-many.

All trace-link metaclasses inherit from UML2CSMTraceLink, which is aggre-
gated into TraceModel. Figure 4 presents a subset of the traceability metamodel
between UML and CSM. A subset of UML and CSM metamodels are represented
at the top and the bottom of the figure, respectively.

Fig. 4. Trace-Links between the elements of UML and CSM

Traceability Links in Model Transformations 209

3.2 CSM to LQN Traceability

The next group of trace-links in PUMA4SOA is defined between the elements
of CSM and LQN model. We use the same procedure as in the previous section.
The purpose is to capture the traceability between models that conform to the
CSM metamodel and to the LQN metamodel. The metaclasses in PUMA4SOA
TraceabilityMetamodel have two associated properties: the source refers to a
metaclass in the CSMMetamodel and the target to a metaclass in the LQN-
Metamodel. When an element in the source or the target model is not mapped
during the model transformation, it means that it does not have equivalent ele-
ment(s) in the other model. In this case a trace-link will not be defined for this
element. As an example, the OutputResultType, which is defined in the LQN
metamodel to create elements that store the results, is not linked with a CSM
element; however it will have trace-links to an UML element to propagate the
LQN output results. Figure 5 presents a sample of trace-links between the CSM
and LQN.

Fig. 5. Trace-Links between the elements of CSM and LQN

3.3 LQN to UML Traceability

The third group of trace-links in PUMA4SOA is defined between the LQN and
UML model elements, and can be derived from the combined effect of the two

210 M. Alhaj and D.C. Petriu

Fig. 6. Trace-Links between the elements of LQN and UML

transformations from Fig. 2, as there is no direct transformation from UML to
LQN. The LQN2UML metaclasses define two associated attributes: the source
refers to a meta-class in the LQNMetamodel and the target to metaclass in
the UMLMetamodel. Figure 6 presents a sample of trace-links between LQN
and UML.

As shown in Fig. 1, the LQN model is derived by a model transformation from
the platform dependent CSM model, which in turn was generated by composing
the platform aspect models into the PIM at the CSM level. Since the UML
model does not contain a PSM, the mapping from LQN to UML encounters
some difficulties, as discussed in the next section.

3.4 Trace-Links Related to Aspect Models

The trace-links between the LQN and UML models have not been properly
defined yet in Section 3.3, because the LQN model is a Platform Specific Model
(PSM), while the UML input design models do not contains a PSM, only the
PIM and Generic Aspect Models (see Fig. 7). For instance, in this example we
modeled the service invocation operation as a generic aspect, which involves

Traceability Links in Model Transformations 211

Fig. 7. Traceability for aspect models

XML parsing and marshaling/unmarshaling of the SOAP messages exchanged
between the service client and the service provider. These actions are usually
performed by a service middleware process, which may be instantiated multiple
times on different processors, depending on the deployment of the components
providing and requesting services.

Some of the concrete LQN elements obtained from the instantiation of a
generic aspect model (such as the concrete instance of a service middleware
used for a certain service invocation) cannot be traced back to a UML element,
since only the generic middleware counterpart exists in the UML model. In this
section, we extend the traceability metamodel defined in the previous sections to
address this issue. The extension is used to define additional trace-links between
some of the already defined trace-links. These extended trace-links allow for the
mapping of the generic elements from the CSM level to LQN level. If LQN carries
information about the generic model element corresponding to each concrete
model element, trace-links between the concrete LQN elements can use that
information to point to the generic UML counterpart.

Figure 8 shows an example of how the PUMA4SOA TracibilityMetamodel
was extended. Two extra trace-links are created that make it possible to link
a concrete LQN element (such as a concrete middleware task) with informa-
tion about its generic counterpart (the generic role representing the middleware
process in the aspect model). The first trace-link ProcessorProcessorTL defines
the trace-links between NodeProcessingResourceTL (UML2CSM) and Process-
ingResourceProcessorTL (CSM2LQN), and it owns two associated attributes:
the concreteSource to define the concrete LQN Processor, and the genericTar-
get to define the generic CSM ProcessingResource. The function SetProcessor is

212 M. Alhaj and D.C. Petriu

Fig. 8. Extension of PUMA4SOATraceabilityMetamodel

used to set an instance of the defined attribute genericProcessor to its equivalent
generic CSM ProcessingResource. The second TaskTaskTL defines the trace-links
between LifeLineComponentTypeTL (UML2CSM) and ComponentTypeTaskTL
(CSM2LQN), and it also owns two associated attributes: the concreteSource to
define the concrete LQN Task, and the genericTarget to define the generic CSM
ComponentType. The function SetTask is used to set an instance of the defined
attribute genericTask to its equivalent generic CSM ComponentType. By using
such trace-links, a concrete middleware task running on a concrete processor in
the LQN model can be traced to the generic UML counterparts and can also
indicate the context in which they were instantiated.

4 Example: Traceability Model of Purchase Order System

In previous work [7], we used PUMA4SOA to build the UML design model of a
Purchase Order (PO) system and to generate a LQN model in order to study its
performance properties. In this section, we use the same example to create the
traceability model which defines the trace-links between the model elements at
UML, CSM and LQN levels.

A brief description of the PO case study is given first. The platform inde-
pendent model (PIM) contains two parts: a) the workflow (Fig. 9) represented
as a UML activity diagram, which describes the actions of receiving, invoicing,
scheduling and shipping an order; and b) the service behavior models, which
describe the details of each activity in the workflow.

ProcessSchedule (Fig. 10) is an example of service behavior model; the detailed
models for the rest of the activities from Fig. 9 are similar, but not shown.

The deployment diagram (Fig. 11) shows the allocation of software compo-
nents to the hardware nodes. The aspect platform models describe the structure
and behavior of the platform operations (in this case the service middleware used

Traceability Links in Model Transformations 213

Fig. 9. Workflow model of Purchase Order system

Fig. 10. Service behavior model of ProcessSchedule

for service invocation, discovery, publishing) in a generic format. Each middle-
ware operation is represented by a different aspect model that has a structural
and behavioural view. In this example we use only the Service Invocation op-
eration, which describes the message construction (including XML parsing and
marshaling/unmarshaling) and sending/receiving of the SOAP messages for ser-
vice request and service reply, respectively (for more details, please refer to [7]).

At the CSM level, two separate CSM models are generated: one from the
UML PIM (Fig. 12) and the other from the UML generic platform aspect model
(service invocation in our case). Figure 12 contains two CSM scenario graphs

214 M. Alhaj and D.C. Petriu

Fig. 11. Deployment diagram of Purchase Order system

composed of steps: the left one represents the workflow CSM corresponding
to Fig. 9, and the right one the details of the composite step ProcessSchedule
obtained from Fig. 10. The Aspect Oriented Modeling (AOM) technique is then
used to generate a platform specific model (PSM) in CSM by composing the
instantiated aspect models into the primary model (Fig. 13). The gray steps
from Fig. 13 represent the woven aspects for the service request and reply.

The LQN model (Fig. 14) is generated next from the CSM Platform Specific
Model. After generating the LQN model, the LQN solver produces complete
performance results for the PO system, such as utilization of all resources, re-
sponse times and throughput for scenarios, etc. By identifying the performance
hotspots in the system, the results are fed back to the UML level to improve
the software design models. Trace-links are used to propagate the performance
results and to feed back the suggested improvements from the LQN to UML.

The workflow model has two MARTE stereotypes in Fig. 9. The first stereo-
type <<GaAnalysisContext>> defines the contextParams attribute which de-
clares two variables: $Nusers for number of users and $R for response time.
The second stereotype <<GaScenario>> captures system-level behavior and at-
taches allocations and resource usage to it. It defines many attributes, such as
respTime, utilization and throughput. In our case, the respTime has two val-
ues: a required value (no more than 3 seconds) and a calculated value that will
be assigned to $R, (the variable defined in the contextParams). The $Nusers

Traceability Links in Model Transformations 215

Fig. 12. The CSM model of PIM for Purchase Order system

variable is initialized by the modeler, and the $R variable will be assigned
output results from the LQN model using trace-links.

PUMA4SOA allows for different types of performance analysis, such as sensi-
tivity analysis, pass/fail and finding optimal values, which may require multiple
iterations of the model transformation chain. In our case, the performance re-
quirement specifies that the response time should be maximum 3s in average,
which may require multiple model changes to achieve it. Hence, to manage the
propagation of the model changes, we define a traceability model as in Fig. 15.
For simplicity, trace-links for only three UML elements are defined: POSys-
tem:Activity, Sales:LifeLine and InvoicingHost:Node. Some of the model ele-
ments have more trace-link relationships. For example, there are two trace-links
defined between some LQN elements and the UML element POSystem:Activity.
The trace-link between POSystem:TaskActivityGraph and POSystem:Activity
corresponds to the relationship caused by the model transformation that gen-
erated LQN from UML. The other trace-link between results:OutputResultType
and POSystem:Activity is used to propagate the generated output result of the
LQN, such as response time and throughput. The OutputResultType is defined

216 M. Alhaj and D.C. Petriu

Fig. 13. Result of composition for ProcessSchedule

Traceability Links in Model Transformations 217

Fig. 14. LQN model of Purchase Order system (PSM)

in the LQN metamodel to create elements that store the results. To meet the
performance requirement defined for the PO workflow (required mean response
time <= 3s), three iterations of the model transformation chain have been exe-
cuted as described in Table 1 for $Nusers = 100.

The first iteration represents the base case, where the multiplicity of all
tasks and hosts equals one. The response time and throughput are calculated
and passed to the POSystem:Activity through the trace-link perfResultsTL:
OutputResultTypeActivityTL. Based on the LQN solver results, the Sales:Task
is found to be the bottleneck server.

This is a case of software bottleneck, usually solved by increasing the concur-
rency level by having more threads in the pool. Thus we change the multiplicity
of Sales to 15. The new value is propagated through the trace-links to their
corresponding element in UML and CSM. The same procedures happen in the
second iteration, except that the bottleneck is the processor InvoicingHost:Node.
We increase its multiplicity value to 5 (which means using 5 cores instead of one).
In the third iteration, the calculated response time is less than 3s, so it meets
the performance requirement. More iterations could be done to find out if the
requirement can be met with fewer resources.

218 M. Alhaj and D.C. Petriu

Fig. 15. Sample of traceability model of PO system

Table 1. Performance analysis of PUMA4SOA

$Nuser= 100, respTime = ((3,s, mean), req)
UML CSM LQN

1 POSystem:Activity
{respTime = $R}
After feedback $R=7014ms

POSystem:
ScenarioType

POSystem: TaskActivityGraph
results: OutputResultType
{serviceTime = 7014ms}

Sales: LifeLine
{poolSize = 1}

Sales: ComponentType
{multiplicity = 1}

Sales: Task {multiplicity = 1}
Solve software bottleneck ->
multiplicity=15

InvoicingHost: Node
{ resMult = 1}

InvoicingHost:
ProcessingResource
{multiplicity= 1}

InvoicingHost: Processor
{multiplicity = 1}

2 POSystem: Activity
{respTime = 7014ms}
After feedback $R=3442ms

POSystem: ScenarioType POSystem: TaskActivityGraph
results: OutputResultType
{serviceTime = 3442ms}

Sales:LifeLine
{ poolSize = 15}

Sales: ComponentType
{multiplicity = 15}

Sales:Task
{ multiplicity = 15}

InvoicingHost: Node
{ resMult = 1}

InvoicingHost:
ProcessingResource
{multiplicity = 1}

InvoicingHost: Processor
{ multiplicity = 1 }
Solve hardware bottleneck ->
multiplicity=5

3 POSystem: Activity
{respTime=3442,ms}
After feedback $R=1607ms

POSystem: ScenarioType POSystem: TaskActivityGraph
results: OutputResultType
{serviceTime = 1607, ms}

Sales: LifeLine
{poolSize = 15}

Sales:ComponentType
{multiplicity = 15}

Sales: Task
{multiplicity = 15}

InvoicingHost:Node
{ resMult = 5}

InvoicingHost:
ProcessingResource
{multiplicity = 5}

InvoicingHost: Processor
{ multiplicity = 5}

Traceability Links in Model Transformations 219

5 Related Work

Traceability information is used to manage the artifacts of a software system dur-
ing its development life cycle. The survey in [1] has classified three traceability
approaches: a) the requirement-driven approach which describe the traceability
of requirement specification to its subsequent deployment and use; b) the mod-
eling approach, which is mainly focused on defining tracing mechanisms for a
modeling language at the metamodel level (such as special tracing relationships);
and c) the transformation approach, where the tracing process is performed be-
tween a source and a target model during the model transformation, by creating
trace-links between the source and the target model elements. PUMA4SOA uses
the transformation approach to define trace-links between the elements of its
three modeling languages, i.e. UML, CSM and LQN.

There are several papers in the literatures using the transformation approach;
in [17] the author presented a method of attaching traceability generation code
to pre-existing ATL programs [18]. The method produces a loosely coupled trace-
ability, which can be used for any kind of traceability range and format. In [19]
the authors presented a method of generating annotated models which contain
traceability information, by merging the primary models with their defined trace
models. The generated trace-links can be stored internally, where the trace-links
are embedded as new elements inside the target models they refer to, or ex-
ternally where the trace-links are stored separately in a new model. In [20] the
authors proposed a traceability framework, implemented in the model-oriented
language Kermeta, to facilitate modeling transformations. Using a trace meta-
model, the framework allows for tracing the transformation chain within Ker-
meta. Model transformation trace-links are defined in the metamodel as a set of
source nodes and target nodes.

Two ways to manage the complexity of traceability information in MDE where
introduced in [16]. One is by identifying the trace-links through a process called
Traceability Elicitation and Analysis Process (TEAP), which is mainly used to
extract and analyze traceability relationships within an MDE process, to deter-
mine how these relationships would fit into a trace-link classification. The second
way is by describing a strict metamodeling approach, which defines semantically
rich trace-links between the elements of different models. Three characteristics
are defined for the semantically rich trace-links: a) to be typed, b) to conform
to a case-specific traceability metamodel, and c) to define a set of constrains
within the case specific meatmodel to validate the requirements that cannot be
captured by the metamodel itself. In this paper, we used a metamodeling ap-
proach similar to [16] to create a traceability metamodel for our PUMA4SOA,
which defines trace-links between the elements of the UML, the CSM and the
LQN elements. Also, in order to handle the problem of traceability loss when
applying aspect-oriented techniques we extended the metamodel by defining new
trace-links between the previously defined trace-links.

Similar to our work, in [21,22], the authors use trace-links between a software
model (Smodel) and the corresponding Performance model (Pmodel) of a service-
oriented system to study the change propagation when applying design patterns

220 M. Alhaj and D.C. Petriu

to a Smodel. The purpose is to develop methods for incremental propagation of
changes from Smodel to Pmodel, in order to study the performance effects of
design patterns.

6 Conclusions

The paper focuses on defining a traceability metamodel for PUMA4SOA, which
is used to define trace-links between different types of models, namely UML,
CSM and LQN. We also addressed the problem of trace-links when applying
aspect-oriented modeling techniques. Trace-links are used in PUMA4SOA to
analyze the impact of changes at different model levels, i.e. UML, CSM and
LQN, and to feed back the performance results from the LQN model to the
UML model. We illustrate the proposed approach with a simple PO system.

In the future, we are planning to define formally the constraints within
PUMA4SOA traceability meatmodel to express well-formedness rules that can-
not be captured by the metamodel itself. We are also working on implement-
ing the traceability metamodel proposed in this paper, integrating it with the
existing PUMA4SOA model transformations.

Acknowledgements. This research was partially supported by the Natural Sci-
ences and Engineering Research Council (NSERC) and industrial and
government partners, through the hSITE Strategic Research Network.

References

1. Galvao, I., Goknil, A.: Survey of Traceability Approaches in Model-Driven En-
gineering. In: Proceedings of the 11th IEEE International Enterprise Distributed
Object Computing Conference, pp. 313–326. IEEE Computer Society (2007)

2. Gotel, O.C.Z., Finkelstein, A.C.W.: An Analysis of the Requirements Traceability
Problem. In: Proceedings of the International Conference on Requirements Engi-
neering, pp. 94–101. IEEE Computer Science Press (1994)

3. Kolovos, D., Paige, R.F., Polack, F.A.C.: On-Demand Merging of Traceability
Links with Models. In: From: 3rd ECMDA Traceability Workshop (2006)

4. Paech, B., von Knethen, A.: A Survey on Tracing Approaches in Practice and
Research. Technical Report IESE Report Nr. 095.01/E, Fraunhofer - Institute of
Experimental Software Engineering (2002)

5. Alhaj, M.: Automatic generation of performance models for SOA systems. In: Pro-
ceedings of the 16th International Workshop on Component-Oriented Program-
ming (WCOP 2011), pp. 33–40. ACM (2011)

6. Alhaj, M., Petriu, D.C.: Approach for generating performance models from UML
models of SOA systems. In: Proceedings of the 2010 Conference of the Center for
Advanced Studies on Collaborative Research (CASCON 2010), pp. 268–282. IBM
(2010)

7. Alhaj, M., Petriu, D.C.: Using Aspects for Platform-Independent to Platform-
Dependent Model Transformations. International Journal of Electrical and Com-
puter System (IJECS) 1(1), 35–48 (2012)

Traceability Links in Model Transformations 221

8. Woodside, C.M., Petriu, D.C., Petriu, D.B., Shen, H., Israr, T., Merseguer, J.:
Performance by Unified Model Analysis (PUMA). In: Proceedings of the 5th In-
ternational Workshop on Software and Performance (WOSP 2005), pp.1–12. ACM
(2005)

9. Object Management Group: Unified Modeling Language Superstructure Version
2.2 formal/2009-02-02, http://www.omg.org/spec/UML/2.2/Superstructure/PDF

10. Object Management Group: UML Profile for Modeling and Analysis of
Real-Time and Embedded Systems (MARTE) Version 1.1 formal/2011-06-02,
http://www.omg.org/spec/MARTE/1.1/PDF

11. Object Management Group: Service oriented architecture Modeling Language
(SoaML) formal/2012-03-01, http://www.omg.org/spec/SoaML/1.0/PDF

12. Petriu, D.B., Woodside, C.M.: An intermediate metamodel with scenarios and
re-sources for generating performance models from UML designs. Software and
Systems Modeling 6(2), 163–184 (2007)

13. Woodside, C.M., Neilson, J.E., Petriu, D.C., Majumdar, S.: The Stochastic Ren-
dezvous Network Model for Performance of Synchronous Client-Server-like Dis-
tributed Software. IEEE Transactions on Computers 44(1), 20–34 (1995)

14. Woodside, C.M., Petriu, D.B., Siddiqui, K.H.: Performance-related Completions
for Software Specifications. In: Proceedings of the 24th International Conference
on Software Engineering (ICSE 2002), pp. 22–32. ACM (2002)

15. Tawhid, R., Petriu, D.C.: Automatic Derivation of a Product Performance Model
from a Software Product Line Model. In: Proceedings of the 2011 15th International
Software Product Line Conference (SPLC 2011). IEEE Computer Society (2011)

16. Paige, R.F., Drivalos, N., Kolovos, D.S., Fernandes, K.J., Power, C., Olsen, G.K.,
Zschaler, S.: Rigorous identification and encoding of trace-links in model-driven
engineering. Software and Systems Modeling (SoSyM) 10(4), 469–487 (2011)

17. Jouault, F.: Loosely Coupled Traceability for ATL. In: Traceability Workshop at
European Conference on Model Driven Architecture (ECMDA-TW), pp. 29–37
(2005)

18. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

19. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Merging Models with the Epsilon Merg-
ing Language (EML). In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.) MoD-
ELS 2006. LNCS, vol. 4199, pp. 215–229. Springer, Heidelberg (2006)

20. Falleri, J., Huchard, M., Nebut, C.: Towards a Traceability Framework for Model
Transformations in Kermeta. In: Traceability Workshop at European Conference
on Model Driven Architecture (ECMDA-TW), pp. 31–40 (2006)

21. Mani, N., Petriu, D.C., Woodside, C.M.: Propagation of Incremental Changes to
Performance Models due to SOA Design Pattern Application. In: Proceedings of
the International Conference on Software Engineering (ICPE 2013) (2013)

22. Mani, N., Petriu, D.C., Woodside, C.M.: Studying the Impact of Design Patterns
on the Performance Analysis of Service Oriented Architecture. In: Proceedings of
the 2011 37th EUROMICRO Conference on Software Engineering and Advanced
Applications (SEAA 2011), pp. 12–19. IEEE Computer Society (2011)

http://www.omg.org/spec/UML/2.2/Superstructure/PDF
http://www.omg.org/spec/MARTE/1.1/PDF
http://www.omg.org/spec/SoaML/1.0/PDF

	Traceability Links in Model Transformations between Software and Performance Models
	1 Introduction
	2 PUMA4SOA Transformation Principles
	3 Traceability Metamodel of PUMA4SOA
	3.1 UML to CSM Traceability
	3.2 CSM to LQN Traceability
	3.3 LQN to UML Traceability
	3.4 Trace-Links Related to Aspect Models

	4 Example: Traceability Model of Purchase Order System
	5 Related Work
	6 Conclusions
	References

