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Abstract. In this paper, we describe our ongoing work on model trans-
formation chains. Model transformation chains refer to the sequences of
model transformations in Model Driven Engineering (MDE). The trans-
formations represent and formalise typical model/software engineering
activities, and their chaining is the natural composition of such activities.
Model transformation chains found in industrial practice vary widely, de-
pending on the specific domain they are used in. By explicitly modelling
development activities, these activities can be analysed and the MDE
process may be improved. As a step towards such analyses, we propose
an integrated framework to describe all the artifacts involved in model
transformation chains, as well as the means to execute “enact” those
chains. We describe the Formalism Transformation Graph + Process
Model (FTG+PM) which is at the heart of our framework in detail.

1 Introduction

Model Driven Engineering (MDE) is currently the mainstream top-down ap-
proach to software development. The philosophy behind MDE is that software
development should start by building domain specific structural and behavioral
models of the system under development. By domain specific we mean that ini-
tially models of the system should be described in a language close to the domain
being tackled. During the software development process those models are then
improved, augmented and refined by the application of model transformations –
possibly with the automatic or manual injection of additional information.

Model transformations have been called the heart and soul of MDE [1]. Chain-
ing model transformations is a natural step in MDE as such chains allow describ-
ing the composition of activities in software construction and provide explicit
means for MDE automation. However, to the best of our knowledge little work
is devoted to understanding the underlying structure of such chains when they
are used in domain specific software development. This work is crucial for the
following (non-exhaustive) list of reasons:

– Reuse: Model transformation chains are typically devoted to building soft-
ware within certain domains. In this paper, we provide an example of the
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usage of model transformation chains for building automotive software. As
in traditional software development, the modularity and possibility of reuse
of such chains is extremely relevant from an engineering viewpoint. It seems
natural that subsets of a transformation chain developed for a given software
engineering purpose can be reused without much changes for a similar engi-
neering purpose. Moreover, by identifying and classifying subsets of transfor-
mation chains responsible for high level activities in domain specific software
development (e.g. requirements development, domain-specific design, verifi-
cation, simulation, analysis, calibration, deployment, code generation, execu-
tion, etc), it is possible to achieve a finer level of understanding and control of
such activities – in a domain specific or in a more general context;

– Traceability: Traceability is increasingly required in software development
at the stakeholder level (e.g. to ensure a given requirement has been im-
plemented in the system), but also at the software development level (e.g.
to ensure traceability as high level models are refined along the develop-
ment process). Because transformation chains explicitly model the rela-
tions between the several steps of an MDE process, traceability is a natural
consequence of using such chains;

– Certification: Finally, and possibly most importantly, by having an explicit
representation of such transformation chains and the models (and metamod-
els) they work on, the certification of such processes becomes possible. In
certain domains such as embedded systems, automotive or aerospace, strict
norms exist to ensure each step in software production is performed cor-
rectly and is properly documented. A large effort has been devoted in the
last two decades to developing verification methods for software. The MDE
community is now missing studies on how and when those techniques should
be applied, but also how they can be composed in a meaningful way. Again,
model transformation chains are the ideal context to study the usage and
utility of such verification methods for software certification in MDE.

Several studies such as [2,3,4,5,6,7,8], among others, have addressed model trans-
formation chains. However, to perform an investigation on the nature and prag-
matic uses of transformation chains we require an environment where all the
artifacts involved in such chains are explicitly formalized, easily accessible and
easily manipulated. The majority of the approaches in the literature dealing with
transformation chains are concerned with automated execution. The explicit and
integrated representation of all artifacts involved in model transformation chains
in a way that makes them amenable to the formal study of those chains’ charac-
teristics is typically less of a concern. In order to address this issue and to have
a solid basis to study the issues mentioned above, we need a framework allow-
ing the modelling of model transformation chains that addresses the following
requirements:

1. An explicit representation of both the languages used in the model transfor-
mation chains and the relations between those languages should be provided;

2. An explicit representation of the individual model transformations should
be available and the means to execute those transformations should exist;
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3. Explicit process modelling of MDE activities should be possible such that
transformation chains can be built;

4. Automatic execution of transformation chains should be possible. In order to
study the execution of transformation chains and which parts of those chains
should be performed manually, we require that a model transformation chain
execution engine exists.

In order to address these requirements, we propose in this paper the FTG+PM
framework. The proposed framework is completely supported by our tool
AToMPM, A Tool for Multi-Paradigm Modelling [9], which allows explicit
modelling of and access to, all used artifacts.

This paper is organised as follows: Sect. 2 provides background information on
meta-modelling, model transformation, and our tooling environment. In Sect. 3
we introduce our running example, the power window case study. Section 4
introduces the FTG+PM framework. Section 5 presents the the explicit exe-
cution semantics of the FTG+PM. Section 6 describes in detail an automotive
power window case study and by doing so illustrates the artifacts involved in
a model transformation chain. Section 7 discusses related work. Finally, Sect. 8
draws some conclusions on how the FTG+PM addresses the aforementioned
requirements and proposes future studies on model transformation chains.

2 Background

Within the context of this paper we have chosen to follow the terminology as
presented in [10]. A model is completely described by its abstract syntax (its
structure), concrete syntax (its visualisation) and semantics (its unique and pre-
cise meaning). A language (also called formalism) is a possibly infinite set of
(abstract syntax) models. This set can be concisely described by means of a
grammar or a metamodel. No semantics or concrete syntax is given to these
models. Several such languages, called metamodels, are used to describe families
of models of computational artifacts that share the same abstraction concerns.
Each metamodel is a language that may have many model instantiations.

Domain Specific Modelling (DSM) captures the fact that certain languages or
classes of languages, called Domain Specific Languages (DSLs) are appropriate
for expressing models in certain domains.

Model transformations involve the mapping of source models in one or more
formalisms to target models in one or more formalisms using a set of transfor-
mation rules.

In this work, we use rule-based graph transformation as the means for model
transformation [11]. This requires (meta-)models to be stored as graphs, thus
allowing model manipulations to be defined as graph grammars.

In our work, we have used AToMPM [9], A Tool for Multi-Paradigm Modelling,
to build metamodels, transformations, and execution support for the FTG.
AToMPM (the successor of AToM3[12]) rigorously applies the “model and con-
forming meta-model” workflow to all facets of domain specific modelling. It allows
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modelling of language syntax (abstract and concrete) and semantics.
The tool supports rule-based graph transformations and pre- and post-condition
pattern languages to allow specification of model transformations. AToMPM runs
on a web browser and provides support for real-time, distributed collaboration.

3 The Power Window Case Study

In order to explain how our FTG+PM framework addresses the requirements
stated in Sect. 1 we will use a running example. In Fig. 1 we show a slice of the
FTG+PM we have built for developing the power window control software. The
power window FTG+PM was built based on our experiences with developing
automotive software. Further details on this case study can be found in [13,14].

A power window is basically an electrically powered window. The basic con-
trols of a power window include lifting and descending the window, but an in-
creasing set of functionalities is being added to improve the comfort and security
of the vehicle’s passengers. When given the task to build the control system for
a power window, a software engineer considers several variables, such as:

(1) the physical power window itself, which is composed of the glass window,
the mechanical lift, the electrical engine and some sensors for detecting for
example window position or window collision events;

(2) the environment with which the system (controller plus power window) in-
teracts, which will include both human actors as well as other subsystems of
the vehicle – e.g. the central locking system or the ignition system.

This idea is along the same lines as that presented by Mosterman and
Vangheluwe in [15]. According to control theory [16], the control software sys-
tem acts as the controller, the physical power window with all its mechanical
and electrical components as the process (also called the plant), and the human
actors and other vehicle subsystems as the environment.

The FTG+PM slice in Fig. 1 presents the design and verification part of de-
veloping the power window software. The case study begins with three domain-
specific languages built for the modelling of power windows (PlantDSL, EnvDSL
and ControlDSL in the FTG part of Fig. 1, allowing respectively modeling the
plant, environment and controller for a power window), plus a network language
(not shown in Fig. 1) that allows the connection of the components defined in
those DSLs. Those domain specific components are separately transformed into
modular Petri nets (EncapsulatedPetriNet in the FTG part of Fig. 1). When all
the modular Petri nets have been built, they are composed into a single Petri
net (PetriNet in the FTG part of Fig. 1). This Petri net can then be used to
verify that the system cannot enter a non-safe state. While the left side of Fig. 1
presents the FTG part of the model detailing the required formalisms and trans-
formations, the right side of Fig. 1 shows how executions of those transformations
are chained. Note also that in Fig. 1 dotted elements PlantToPN, EnvToPN and
ControlToPN denote automatic transformations, while other elements without
dots denote manual ones. The following section elaborates on the syntax of the
FTG+PM language.
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4 The FTG+PM Language

The FTG+PM language is defined using two sub-languages: the Formalism
Transformation Graph (FTG) language and a Process Model (PM) language.
We give a brief overview of FTG+PM in this section. The formalization of the
language along with further details on the framework can be found in [17]. A
unified metamodel of the FTG+PM language is shown in Fig 2.

Node

ControlObjectAction

Fork Join MergeFinal

ActivityFinal FlowFinal

DataFlowControlFlow

*

*

*

*

Transformation

Language

ActionTypedBy

ObjectTypedByinputsoutputs

FTG PM

*

*

1

1

*
**

1

Initial Decision

Fig. 2. Formalism Transformation Graph and Process Model (FTG+PM) Metamodel

The Formalism Transformation Graph (FTG) is a hypergraph with languages
as nodes and transformations as edges. It lays down the relationships among the
multitude of languages and transformations used for the development of a partic-
ular system or systems within a domain. The framework takes into account the
heterogeneous nature of the MDE process, and integrates the MDE paradigms:
multi-abstraction, multi-formalism, and metamodelling. The languages at each
level in the FTG are used to represent and model knowledge at different levels
of abstraction starting from requirements to code synthesis. Depending on the
activity involved, we build our FTG by choosing the most appropriate formalism
based on the nature of the problem and the intention: discrete-event formalisms,
continuous time formalisms, hybrid formalisms, or others. All the languages in
the FTG are metamodelled, and the transformations are specified using rule-
based graph grammars. Languages in the FTG are denoted by labelled rectan-
gles, and transformations are denoted by labelled circles on edges. The incoming
edges show the source languages of the transformation, and the outgoing edges
point to the target languages. Fig 1 (discussed in detail in Sect. 6) shows a slice
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of a FTG+PM model for the automotive domain (complete model presented in
[14]), and describes a part of the artifacts and the process necessary to build
software to control power windows of automobiles. The FTG model may in-
clude self loops to languages (for example, when a transformation is endogenous
in nature).

The Process Model (PM) (see sample PM in Fig 1 highlighted in gray) is used
in conjunction with the FTG to model the MDE process. Having a process model
integrated with the FTG allows us to precisely and in detail model the MDE
process we follow, and to provide execution support for it when needed. The
PM exhaustively describes the control flow and data flow in the MDE process.
Our process model is a subset of the UML 2.0 activity diagram metamodel. In
the PM language, the labelled roundtangles (actions) in the Activity Diagram
correspond to executions of the transformations declared within the FTG. This
typing relation is made explicit in the FTG+PM model by the thin horizontal
links connecting the action nodes in the PM to the transformation elements in
the FTG. Labelled rectangles (object nodes) in the PM correspond to models
that are consumed or produced by actions. A model is an instance of a lan-
guage declared in the FTG part of the model with the same label. This typing
relation is again made explicit by horizontal links connecting the object nodes
to the language elements in the FTG. Notice that in a PM model thin edges
denote data flow, while thick edges denote control flow. Notice also that for each
model input and output edge of a PM action a corresponding edge exists for the
transformation typing it on the FTG side. The input and output models of an
action are typed according to the input and output languages of the FTG trans-
formation that types that action. Finally, the join and fork Activity Diagram
flow constructs represented as horizontal bars, allow us to represent concurrent
activities.

The FTG defines a set of transformations and the PM describes the chain-
ing of the transformations and the execution order for a particular intent. The
FTG+PM can thus be considered to be a model transformation chaining lan-
guage for describing the composition of transformations by defining their or-
der of execution, source and target model types, and the relationships and
dependencies among them.

Various business process modelling or workflow languages exist in the litera-
ture. Our intention is to model the MDE process as a chain of model transforma-
tions rather than a business process with models as first class artifacts and with
model transformations as the core of the approach, hence we have chosen to use
UML 2.0 activity diagrams for our purpose. In addition, UML 2.0 is a standard
in the MDE community, and our tool, AToMPM (A Tool for Multi Paradigm
Modelling) [9] also provides support for UML. Our framework is supported by
AToMPM for creating metamodels, describing graph transformations, and for
building execution support for the FTG.
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5 FTG+PM Semantics: Transformation and Tool
Support

TheproposedFTG+PMlanguage is implemented in ourAToMPMtool.AToMPM
contains its own transformation language. Transformations and transformation
rules, in AToMPM, are treated as normal models conforming to an appropriate
meta-model. Transformation rules, consisting of a left hand side (LHS), a right
hand side (RHS) and a set of negative application conditions (NAC), are tried
in an order given by a rule scheduling model, in this case described in a finite
state automaton-like formalism. Since transformation rules and their scheduling
are explicitly modelled within AToMPM using appropriate meta-models, defining
higher-order transformations is straightforward.

To execute a FTG+PM model, we transform the PM to the native transfor-
mation scheduling language of AToMPM. The result of the transformation of the
power window FTG+PM shown in Fig. 1 to the native AToMPM transformation
language is depicted in Fig. 3. A PM action which is mapped to a transforma-
tion can be either automatic (e.g. see dotted elements PlantToPN etc. in Fig. 1)
or manual (other elements in Fig. 1 without dots). Manual transformations are
not implemented using graph transformations, but involve actions in which the
output models need to be created by the user(s).

Fig. 3. The resulting transformation model of the example FTG+PM
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The transformation schedule is created as follows:

(1) a PM Action node tagged as automatic corresponds to the execution of a
transformation defined in the FTG Transformation node typing it;

(2) transformations are scheduled according to the control-flow defined in the
PM.

An example rule of this transformation from FTG+PM into AToMPM’s trans-
formation scheduling language is shown in Fig. 4. Note that the LHS of a rule
matches a pattern in the input model including a PM Action (round-tangle)
typed by a FTG Transformation (circle), while the RHS rewrites it by build-
ing the scheduling of the transformation execution as a double round-tangle (a
composite transformation application in AToMPM’s rule scheduling language).
The double round-tangle is then used to execute this transformation within
the AToMPM environment. For example, the PlantToPN action in Fig. 1 is
mapped to the transformation T PlantToPN (inside the double round-tangle
node) in Fig. 3.

The scheduling language additionally includes rectangular nodes correspond-
ing to the execution of a single transformation step to handle opening of input
models (shaded as /Models/PW/PWReq.model in Fig. 3) or writing (includes
editing and saving) of output models (shaded as /Models/PW/PWConfig.model
in Fig. 3), and control flow arrows to impose the ordering of the scheduling of
the transformations.

When executing a FTG+PM model, the input of a scheduled transformation
depends on whether there are incoming dataflow arrows:

(a) if there are incoming dataflow arrows into the action node, for each of these
dataflow arrows a transformation step is created that opens the specified
input model in the appropriate formalism in the current canvas. The trans-
formation rules that open the specified models are scheduled before the
execution of the transformation defined by the action node;

(b) If there is no incoming data flow arrow, the result of the previous transfor-
mation (present on AToMPM’s modelling canvas) is used as the input.

A similar solution is used for the output of an action:
(a) when a dataflow arrow emanates from an action node, a transformation step

is created to save the target model (specified in the location by the object
node) and clears the modelling canvas. The transformation step is scheduled
after the transformation defined by the action node;

(b) If no dataflow arrow exits the node, the canvas is not cleared.

Manual transformations (such as ModelPlant highlighted in dark gray in Fig 1)
are not mapped to a transformation, i.e. a double round-tangle node, in the
resulting schedule. They are mapped to transformation steps that first open
the input models and then to transformation steps that write/save the output
models. One transformation step corresponds to one open/save model and one
or more associated formalisms. For instance, the ModelPlant action is mapped
to a pair of transformation steps in Fig. 3:
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(1) a step that opens the input requirements model, /Models/PW/PWReq.model,
which is a model instance of TextualReq;

(2) a step that writes /Models/PW/PWConfig.model, the output plant
configuration model, which is an instance of PlantDSL.

In case of multiple input and output models, a transformation step is created in
the schedule corresponding to each open and write step. When output model(s)
are produced by manual transformations, a new AToMPM window is spawned
for each output model, which loads the model if it already exists (to allow for
further editing) or opens an empty canvas with the formalism toolbars loaded
otherwise. Once the user is done creating or modifying the model, a button needs
to be pressed to save the model and to return to the parent AToMPM window
where automatic transformation resumes.

In the current implementation, there is no support for the (semi-)parallel
execution of fork and join nodes since the current transformation language in
AToMPM does not allow this. Instead, the transformation towards the AToMPM
transformation language makes sequential the different branches between the
joins and the forks. This is done in the same way as described in [18] where a
marker is made at the top of the fork. Another marker is used to follow the chain
until the join node is found. Afterwards the full branch is scheduled before the
join node. This is done until all branches are made sequential.

When nesting occurs, the inner fork/join pairs are made sequential first.
Since the canvas can be used as the input for the next action node, the state

of the canvas has to be saved before the fork node. This is done by inserting
an object node, connected to the action node before the fork node. The output
goes to the first actions of each of the branches after the fork. At the last action
of each branch, a similar object node is inserted that is connected to the first
action after join node.

Because all models are saved and closed after the action node has executed
and reloaded before starting a new action, the sequential process model preserves
the original semantics.

6 Languages and Transformations in the Power Window
Case Study

In this section, we present some of the languages and transformations that
allow building and executing the transformation chains in the power window
FTG+PM. Note that all the metamodels, models and transformations we present
in Sections 6.1 and 6.2 have been built and are readable and/or executable using
the AToMPM modelling environment. Note also that in the sections that follow
the metamodels, models and transformations are not explained in complete de-
tail, as the goal of their presentation in this paper is to illustrate the usage of
the FTG+PM, rather than the case study itself. Again, for further details on
the models presented in the sections that follow we refer the reader to [13].
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6.1 Building the Domain Specific Languages

The design and verification part of the power window FTG+PM in Fig. 1 makes
use of several domain specific languages (DSLs) for defining controller, the plant
and the environment models.

Due to space reasons, we only present in this text the plant DSL which
allows the specification of the hardware necessary for a given power window
configuration.

Fig. 5. Plant DSL Metamodel

In Fig. 5, the metamodel of the plant DSL can be observed. The main class
of the language is the PowerWindow class, which is abstract and can be instan-
tiated as a Side window or a Roof window. A physical power window includes a
set of switches of two kinds: Lockout switches allow removing control from other
power windows in the car (as specified by the controls association); Rocker or
PushPull switches allow controlling window movement. Finally, a power window
may also have sensors of types Infrared or ForceDetecting for detecting if an
object is blocking the window from going up.

In Fig. 6, we present a model instance of the Plant DSL, where a configuration
of two power windows of an automobile is described. The model includes a driver
and a passenger power window, where the driver’s window has three buttons:
a pushpull button for controlling the driver’s window, a pushpull button for
controlling the passenger’s window, and a lockout switch for disabling/enabling
the control of the passenger’s window. The passenger’s window includes a rocker
button and a infrared sensor meaning the window automatically stops rolling up
when an object obstructs its path.
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Fig. 6. Plant DSL: Example Model

6.2 Transformations

From Domain Specific Models to Modular Petri Nets. Two types of
modular Petri nets are generated from the Plant DSL model by the PlantToPN
transformation in Fig. 1, depending on the power window configuration. In Fig. 7,
the Petri net modelling the discrete behavior of a power window with an obsta-
cle detecting sensor can be observed. During operation the window can either
be at the bottom of the frame (bot place, meaning the window is completely
open), somewhere in the middle of the frame (mid place, meaning the window
is partially open), or at the top of the frame (top place, meaning the window
is closed). Additional places in Fig. 7 (midDetObj, topDetFrame and danger)
are used to model object detection during window operation. The modular Petri
net in Fig. 7 also includes ports (having as concrete syntax black squares) for
synchronisation with other modular Petri nets. An example rule of the Plant-
ToPN transformation in Fig. 1 is shown in Fig. 8. This particular rule builds the
behavior of a power window without obstacle detection. Notice that the negative
application condition of the rule (inside the dashed square) prevents the power
window that is matched by the LHS of the rule from having a sensor.

Due to space constraints, we are unable to present here the similar transfor-
mations into modular Petri nets defined for both the control and environment
models (called EnvToPN and ControlToPN in Fig. 1).
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Composition of the Modular Petri Nets. Once the environment, plant,
and control models are transformed to the modular Petri nets, it is necessary to
compose those models. This last transformation, called CombinePN in Fig. 1,
allows to manually1 build the complete Petri net of the power window example
using the produced modular Petri nets and an additional network model (not
shown here). This composed Petri net is an instance of the PetriNet formalism
in the FTG part of Fig. 1. An example of such a model (produced from our
example models in Fig. 6 and Fig. 7) can be (partially) observed in Fig. 9. This
composed Petri net is used for the validation of the safety requirements of the
power window. In particular we have used it to automatically check that a state
where an object obstructing the window has been detected and the window is
still going up is never reached. In this state a token exists in the “danger” place
in the EncapsulatedPetriNet model in Fig. 7. This place can be found in the
rightmost subnet of the composed model in Fig. 9, highlighted by a red ellipse.
Note additionally that in the transformation chain found in the complete power
window FTG+PM defined in [14], the Petri net verification step is itself built as
a transformation.

7 Related Work

We consider different approaches for the composition of model transformation
chains. We have looked at work which have applied mega-modelling concepts
and/or process modelling concepts in their approach. A megamodel is a concep-
tual framework used to reason about MDE and represents the global view of the
considered artifacts (models, metamodels, and other global entities) in a system
and the relationships between them [19,20]. Key in their approach is that not
only models, but also tools and the services and operations they provide are also
represented as models, with all sorts of relations in between.

The approaches are compared on a number of properties. The first criteria
is whether the approach uses mega-modelling and therefore has an explicit rep-
resentation of the modelling languages and relations between the languages by
means of transformation definitions. The second is whether the approach allows
the composition of chains by means of an explicit representation of the process.
Finally, we consider both automatic transformations where the execution of the
transformation is completely automated and manual transformations where a
modelling environment is setup in the defined language(s). Table 1 shows the
comparison of the different approaches.

Most approaches allow for the data-flow composition of model transforma-
tions where input and output relations of the transformations are used to chain
different transformations. The control-flow of these approaches is inferred from
this data-flow composition. Oldevik proposes a framework for the data-flow com-
position of transformations in [2]. It uses UML activities like our FTG+PM to
model these relations, though control flow is not taken into account. A definition

1 We are currently building the transformation to automatically execute this
composition.
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Table 1. Comparison of the approaches (supports (�), does not support (x) , un-
known/unclear (∼))

Tool Explicit Megamodel Explicit Process Model Transformations

Control Flow Data Flow Automatic Manual

Oldevik et al. [2] � x � � ∼
Vanhooff et al. [3] � x � � x

UniTI [4] � x � � x

TraCo [5] � x � � x

Wagelaar [6] x x � � x

MoTCoF [7] ∼ x � � x

Wires* [21] x x � � x

transML [22] � ∼ � � x

Epsilon [23] ∼ x � � ∼
MCC [8] x x x � x

Aldazabal et al. [24] x � � � ∼
Diaw et al. [25] � x � � ∼

FTG+PM � � � � �

for manual transformations is present, though it is not described how the frame-
work copes with these transformation types. In [3], a data-flow composition of
transformation framework is presented similar to the UniTI framework [4]. The
concepts of these frameworks are extended by the TraCo framework [5] where
additional validation checks are performed on the composition of the transfor-
mations. Wagelaar [6] presents a DSL for the composition of transformations.
The models are transformed to ANT scripts for execution. Seibel et al. present
the MoTCoF framework [7] for the data-flow and context composition of model
transformations. The meta-model of the approach is not shown, but most likely
an explicit megamodel is present. Wires* [21] provides a graphical language
for the orchestration of ATL model transformations. It has modelling elements
for complex data-flow for example decision nodes, parallel execution and sup-
port for loops. It does not however take manual activities into account. The
transML framework [22] is created for transformations in the ‘large’. It provides
meta-models for requirements, analysis, architecture and testing of transforma-
tions. The tool supports data-flow chaining of transformations by transforming
to ANT-tasks. The Epsilon Framework, presented in [23], provides a model man-
agement framework where ANT-tasks can be used to build chains of transfor-
mations. It is not clear if the Generic Model Manipulation Task can be used for
the loading of a modelling environment though models can be loaded and stored
using ANT tasks. Finally, Kleppe proposes a scripting language MDA Control
Center (MCC) [8] for combining multiple transformations in sequence and in
parallel.

In the process modelling community, frameworks for MDE are proposed as
well, though these usually do not focus on transformation chaining, for example
[26,27]. Two examples however do take transformation chaining into account.
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In [24], Aldazabal et al. present a framework for tool integration where transfor-
mations can be chained. The process is modelled in SPEM or BPMN (Business
Process Modelling Notation) and is transformed to BPEL (Business Process Exe-
cution Language) for execution support. They do not however have a megamodel
to validate input-output relations. In [25], Diaw et al. present an adaptation of
SPEM [28] for the use in an MDE context. The composition is a data-flow com-
position like most transformation chaining approaches discussed above. Both
frameworks allow the modelling of manual activities, though it is not clear how
the frameworks handle these manual activities.

Our approach, combines the explicit modelling of the languages and trans-
formations (megamodel) together with a process model that supports complex
control-flow constructs. This allows the modelling of non-linear transformation
chains for building complex applications. Transformations can either be executed
automatically or require manual intervention. In the manual case the framework
opens a modelling environment for the activity and continues the process when
the activity is finished. The explicit modelling of all the components allows to
reason about these complex chains of transformations.

8 Conclusion and Future Work

In this paper, we have presented a framework for explicitly describing model
transformation chains within MDE. We have introduced the FTG+PM language,
composed of the Formalism Transformation Graph (FTG) and its complement,
the Process Model (PM). The building blocks of the FTG are formalisms (nodes
in the graph) and transformations (edges in the graph). The FTG describes the
different languages that can be used at each stage of model development. The
transformations model development activities, and the control flow and data
flow between each transformation action are explicitly modelled in the PM.

In its current form, the FTG+PM framework satisfies the requirements stated
in Sect. 1. We have explicitly described the abstract and concrete syntax of the
FTG+PM language by metamodelling them in our tool, AToMPM. In addition,
the syntax of each of the languages appearing as a node in the FTG is also
explicitly modelled. The transformations defined as activities in the PM are all
modelled as rule-based graph transformations using AToMPM’s transformation
language (which was itself modelled explicitly). The FTG+PM language allows
transformations to be defined as automatic or manual. Our framework allows
user interventions in the MDE process, and provides means for creating artifacts
using manual activities. The process model connects the transformations using
control flow and data flow links. UML 2.0 activity diagrams were chosen as the
language to describe the PM. This allows us to model the chaining of transfor-
mations as a process model and to build execution support for it. For execution,
we map the process model to the native transformation scheduling language
of AToMPM. The mapping takes into consideration whether a transformation
is automatic or manual. In case of manual activities, the users can complete
the task at hand and resume the execution of the process model which con-
tinues with the execution of the next scheduled transformation. The FTG+PM
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approach was applied to a concrete problem in the automotive domain: the power
window case study.

As mentioned in Sect. 1, the goal of having a framework that allows us to
thoroughly describe and automate model transformation chains is to give use the
means to study and optimize such chains. As such we are currently developing
the following:

– We currently use the power window case FTG+PM to study the notion
of intent in model transformations. In our work in [29], the intent of a
model transformation is defined as “a description of the goal behind the
model transformation and the reason for using it”. The FTG+PM model
of the power window model transformation chain helped us to construct a
transformation intent language. We are currently building a catalogue of
model transformation intents (akin to design patterns in the OO world) and
are formalising the properties of such intents. As mentioned in [30], the study
of the formal properties of model transformations is in its infancy;

– As a result of our transformation intent work, we are now attaching intent -
related annotations to the transformations described in the PM part of an
FTG+PM model. Such annotations may serve to identify formal proper-
ties that should be proved for a model transformation. As transformation
chaining is a form of relational composition, the formal composition of the
properties of individual transformations in the chain is of great importance;

– Using the concrete power window case, we are also investigating the multi-
paradigm modelling aspects of the FTG+PM [14]. We expect the study to
help in identifying methodological and reusability concerns when developing
model transformation chains for the automotive domain, that can hopefully
be extrapolated to other domains.
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the NECSIS project, funded by the Automotive Partnership Canada.
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17. Lúcio, L., et al.: The formalism transformation graph as a guide to model driven
engineering. McGill University, Technical Report SOCS-TR-2012.1 (2012),
http://msdl.cs.mcgill.ca/people/levi/30 publications/

files/tech report mcgill SOCS-TR-2012.1.pdf

18. Bottoni, P., Saporito, A.: Resource-based enactment and adaptation of work-
flows from activity diagrams. Electronic Communications of the EASST 18 (2009),
http://journal.ub.tu-berlin.de/eceasst/article/view/233

19. Favre, J.-M.: Foundations of Model (Driven) (Reverse) Engineering: Models -
Episode I: Stories of The Fidus Papyrus and of The Solarus. In: Language En-
gineering for Model-Driven Software Development, Internationales Begegnungs-
und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany (2004),
http://drops.dagstuhl.de/opus/volltexte/2005/13

20. Favre, J.-M.: Foundations of Model (Driven) (Reverse) Foundations of Meta-
Pyramids: Languages vs. Metamodels - Episode II: Story of Thotus the Baboon.
In: Language Engineering for Model-Driven Software Development, Internationales
Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Ger-
many (2005), http://drops.dagstuhl.de/opus/volltexte/2005/21

http://doc.utwente.nl/66171/1/00000179.pdf
http://msdl.cs.mcgill.ca/people/raphael/files/thesis.pdf
http://msdl.cs.mcgill.ca/people/levi/30_publications/files/tech_report_mcgill_SOCS-TR-2012.2.pdf
http://msdl.cs.mcgill.ca/people/levi/30_publications/files/tech_report_mcgill_SOCS-TR-2012.2.pdf
http://avalon.aut.bme.hu/mpm12/papers/paper17.pdf
http://msdl.cs.mcgill.ca/people/levi/30_publications/files/tech_report_mcgill_SOCS-TR-2012.1.pdf
http://msdl.cs.mcgill.ca/people/levi/30_publications/files/tech_report_mcgill_SOCS-TR-2012.1.pdf
http://journal.ub.tu-berlin.de/eceasst/article/view/233
http://drops.dagstuhl.de/opus/volltexte/2005/13
http://drops.dagstuhl.de/opus/volltexte/2005/21
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