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Abstract. This paper presents an approach which facilitates efficient
development of domain-specific simulation modelling languages and tools
for discrete-event systems. The work is motivated by a set of properties
which in combination are not well supported by established frameworks.
These include the provisioning of object-oriented description means,
means for specifying domain-specific concepts with a distinct notation
and semantics, the possibility of including general-purpose concepts into
domain-specific ones, low cost tool support including an editor, a de-
bugger, and a simulator, simulation primitives with fast execution, and
extensibility means for enabling access to externally implemented
simulation-specific functionality. We present a prototype that partly im-
plements these properties. It combines established techniques derived
from metamodel-based language development and extensible simulation
modelling. The value is demonstrated by applying the approach to an
example language from the domain of reactive systems and by comparing
it to related approaches.

1 Introduction

While simulation modelling is as old as computational machinery, we are still
learning how to best utilise it alongside modelling and experimentation. As the
availability of low-cost computational power increases and the complexity of
systems grows, the importance of simulation rises as well. The investigation of
efficient, robust, explorative and problem area-adapted simulation methodologies
is an important part of this activity.

Research in simulation methodology ranges from the development of efficient
and effective algorithms, tools and programming languages, to the creation of
new software engineering technologies, visualisation, data processing and storage
methods, and even the philosophy and epistemology of simulation modelling [1].

1.1 Objective

In this paper, we argue in favor of an approach that allows to efficiently de-
velop domain-specific simulation modelling languages and tools for discrete-time
event-driven systems which in addition allow for fast simulations. The approach
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complies with two general desirable properties of simulation systems:

1. A system model should be expressed with structural and behavioural equiv-
alence to the original system and

2. simulations should be executed efficiently.

In the next paragraph, we present accepted simulation systems which implement
these two general properties and what we can learn from them.

1.2 Lessons Learned and Challenges

The introduction of model abstraction concepts by Simula [2], which later be-
came known as object-oriented modelling concepts, is a major step towards
achieving structural and behavioural equivalence [3]. With its class concept,
Simula introduces the powerful principles of classification/exemplification and
generalisation/specialisation. In addition, class instances (objects) can be di-
vided into passive and active objects. Active objects are combinations of states
and actions, which cause state changes in dependence of a model time.

However, object-orientation combined with expression means provided by a
universal modelling language are not sufficient to concisely capture domain-
specific concepts. This is because a universal modelling language defines a strict
syntax in which domain-specific concepts have to expressed in. There are cases
in which this preset syntax hinders application and understanding of a concept.
An example is the implementation of state machines by an object-oriented pat-
tern [4]. Applying this pattern results in a behaviour description spread over
several classes which have to be created for each state of a state machine.

One possible solution to having a distinct syntax is to extend the syntax of
a language combined with semantic foundations in the host language. The Sim-
ulation Language with Extensibility (SLX) [5] is a modern simulation language
that has such possibilities, although they are limited.

Above all, we can see that a clear structure in the model alone is not caus-
ing a simulation language to be widely accepted. An assembly level language,
whose many versions enjoyed great popularity since decades, is Gordon’s GPSS
(General Purpose Simulation System) [6]. The reason for its widespread use
is (despite its structural weaknesses) the efficient realisation of the next-event-
scheduling paradigm, which also takes so-called state events into account.

When we look at simulation languages today, we observe that both of these
basic aspects can be incorporated in one language. This is achieved in languages
like SLX, Modelica [7], and ODEMx [8], regardless of whether the modelled
system is continuous or discrete in time.

Another aspect of simulation modelling is experiment design. Current research
suggests that purely declarative ways of describing experiments [9] can already be
sufficient to derive complete scientific experimentation workflows. These work-
flows are models of the experiment processes. They cannot only serve as spec-
ifications for repeated experimental procedures but also as inputs for workflow
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engines that trigger complex series of experiments, and that monitor and au-
tomatically evaluate their results. It is obvious that different descriptions are
necessary:

(i) description of a parameterised simulation model,
(ii) description of the experiments,
(iii) description of the computational platform for execution and evaluation [10].

Equally desirable are programmatic interfaces to existing programming
languages inside a special simulation language. They allow us to reuse
statistical methods, solvers, or optimization methods that have already been
implemented [11].

Self-standing solutions already exist for many of the above mentioned issues.
However, there is no combined approach due to major technological differences.
A recent development promising to facilitate the combination of such different
aspects is object-oriented metamodelling (OOMM) [12]. In OOMM, the central
part that connects all other aspects is an object-oriented metamodel. It defines
the concepts of a language in an abstract way.

Other language aspects are defined with specialised language description lan-
guages, e.g. textual notation, static semantics, and execution semantics. For each
such language aspect, tools can be derived automatically. Thus, OOMM is a key
technology for creating domain-specific modelling languages (DSMLs or DSLs)
and tools at an acceptable cost. In addition, DSLs allow models of dynamic sys-
tems to be expressed in a more concise way and with increased structural and
behavioural equivalence than with object-oriented description means alone.

However, adding domain-specific concepts alone is not enough. One often
needs to include or mix concepts of general-purpose programming languages,
e.g. expressions and statements, with domain-specific ones. Therefore, we believe
that an approach is required that allows to combine general-purpose as well as
domain-specific concepts. These ideas are also described in [13], in which the
authors propose to develop a unified approach that can be applied to combine
different established concepts of modelling and programming. Our work also
explores this direction of a combined approach. However, we believe that the
efficient development of new language concepts and tools is a key requirement
here.

1.3 Properties of Our Approach

Our approach exhibits a number of positive properties regarding the efficient
development of domain-specific simulation modelling languages and tools.

It allows to create models with increased structural and behavioural equiva-
lence by providing means for defining domain-specific concepts with a distinct
notation and semantics. At the same time it allows to efficiently execute simu-
lations, which make use of such concepts. This includes the possibility to attach
already existing and efficiently implemented functionality, e.g. implementations
of random number generators.
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Adding domain-specific concepts to simulation modelling languages requires
a frame in which they can be correctly applied. This frame can be provided
by an object-oriented base simulation language. In addition, modelling concepts
often make use of programming concepts. Therefore, an approach that allows to
combine modelling and programming concepts is desirable.

However, for such an approach to be practical at all, a general requirement has
to be fulfilled. The development of a new domain-specific simulation modelling
language has to pay off, i.e. development effort including customised tools has
to be low. The approach we present fulfills this requirement. It is based on a
general simulation language, which can be dynamically extended by domain-
specific concepts and which provides immediate support by a customised editor
and simulator.

We summarise these positive properties, which our approach partly already
implements, for further reference as follows. The approach exhibits

– (P1) object-oriented description means,
– (P2) means for specifying domain-specific concepts with a distinct notation

and semantics,
– (P3) the possibility of including general-purpose concepts in domain-specific

ones,
– (P4) low cost tool support including an editor, a debugger, and a simulator,
– (P5) simulation primitives with fast execution,
– (P6) and a programming interface enabling access to and from simulation-

specific but externally implemented functionality with high efficiency.

1.4 Objective and Outline

We present a prototypical implementation of our approach by a framework
named DMX (Discrete-Event Simulation Modelling Framework with Extensi-
bility) [14] which implements properties (P1)-(P4) and partially (P5). DMX
combines established techniques of metamodel-based language development and
extensible languages. It consists of an extensible object-oriented base language
and mechanisms for automatically deriving tools at a low cost. Property (P6)
will be discussed as part of our future work. Furthermore, we confine our work
to textual languages.

The paper is structured as follows. Section 2 gives an overview of related work
that implements some of the properties. This motivates the presentation of our
combined approach in Sect. 3. We introduce the concepts of the extensible base
language and present the prototypical implementation of the framework. The
value of the approach is demonstrated by applying it to an example language
from the domain of reactive systems – a first use case on the path to more
complex languages. In Sect. 4, we briefly discuss the fulfillment of each property
and we compare our approach with two related ones in which we define the same
example language. The comparison also takes into account development effort,
which we identify as a general requirement of such approaches. We conclude the
paper in Sect. 5 and discuss future work in Sect 6.
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2 Related Work

In this section, we discuss related work which considers some of the proposed
properties. Most of them have a more general focus and are not specifically
designed for creating simulation languages. We give an overview of these works
and point out their important characteristics.

The related work can be divided into 4 branches: extensible programming
languages, extensible simulation languages, comprehensive DSL development
frameworks, and further approaches for describing the execution semantics of
metamodel-based languages.

Extensible Programming Languages became popular in the 1970s. The tech-
nique keeps being applied to state-of-the-art programming languages [15]. There
is some recent works for the Java and the C++ language. An example is the
Java Syntactic Extender (JSE) [16]. It is a pre-processor for Java allowing to add
extensions of a few syntactic shapes. In addition, extensions may include cer-
tain Java constructs. Despite limitations in the syntax of extensions, customised
modelling tools cannot be derived.

Extensible Simulation Languages are rare. The only such language that we know
about is the Simulation Language with Extensibility (SLX) [5]. SLX is an object-
oriented language that has a small but powerful C-like kernel language, in which
constructs of the C language which are prone to error or primarily intended for
systems programmers are excluded or restricted. On the contrary, discrete event
simulation primitives for expressing concurrency, scheduling, and synchroniza-
tion are added. In addition, the language can be extended by new statements
and expressions with a distinct notation and semantics. The class of languages
that is supported is a subset of regular languages. Semantics is defined as a
mapping to SLX itself, which is the foundation for runtime efficient simulation
execution. SLX has an efficient implementation of time-delays as well as state
events and unconditional blockages with explicit reactivation. This is achieved
by a specially developed compiler that, for simulation, has advantages regarding
execution speed compared to compilers of general-purpose languages.

Comprehensive DSL Development Frameworks with the possibility of includ-
ing general-purpose concepts into DSLs are a more recent trend. Outstanding
representatives are Xtext [17] and the Meta Programming System (MPS) [18].

In Xtext [17], development starts with a concrete syntax from which a meta-
model is derived. Semantics have to be described as a mapping to Java. This is
achieved by writing a transformation which programmatically works on a Java
program represented as an abstract syntax tree.

MPS [18] is more powerful than Xtext because extensions can be used jointly
with DSL concepts. However, the editor is a projectional one that is unusual to
operate. One does not enter the single characters that make up a construct, but
instead has to choose from a set of possible constructs insertable at the current
cursor position. Then the fixed textual parts of a construct are expanded and the
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cursor can be moved from one variable part to the next. For example, for a class
construct, one can move from the name to other variable parts like attributes
and operations and instantiate further constructs there.

Both frameworks automatically provide text editors. However, these are only
available after a manual software generation step. The generation has to be
initiated every time the language is changed. This manual step hinders rapid
development of DSLs. Furthermore, both frameworks do not provide simulation
primitives. These have to be made available manually by a simulation library.

There are Some Alternative Approaches for Describing the Execution Seman-
tics of Metamodel-Based Languages. Some of them are based on operational
semantics, e.g. MAS [12], M3Actions [19], and EProvide [20]. Runtime data and
runtime states are described as a part of the same metamodel that also defines
the abstract syntax of a language. Semantics is described by stepwise transfor-
mations of the runtime state. For such descriptions, programming languages like
Java, but also UML activity diagrams or languages like Prolog and Haskell can
be used. However, these approaches do not consider the necessity of runtime
efficient executions of simulations. Furthermore, simulation primitives are not
available and have to be added manually.

3 Approach

Our approach is based on a framework that combines an extensible object-
oriented language with the immediate provisioning of essential tools at a low
cost. In this section, we describe the basic concepts of the approach and its im-
plementation. In the following, we present a use case that applies the approach
to the definition of a state machine language. These explanations lay the foun-
dation for a discussion of the approach regarding the fulfillment of the proposed
properties in the next chapter.

3.1 Basic Concepts

Object-Oriented Concepts. At its core, the approach consists of a base lan-
guage (BL) that includes object-oriented description means and a small set of
essential simulation primitives. Its object-oriented features are confined to single
inheritance between classes and multiple inheritance between interfaces com-
bined with the well-established concept of type polymorphism. The base lan-
guage and its concepts are similar to those of SLX. However, in contrast to SLX,
the concepts of pointers to an object and an object as a value are not distin-
guished. Variables of type class are always handled as references to objects. This
is a simplification derived from Simula and Java.

Simulation Concepts. The set of provided simulation primitives is short but
sufficient. Concurrent processes are defined by the concept of an active class.
Each such class defines the behaviour of its objects as a sequence of statements in
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an actions part. The behaviour starts when objects of active classes are explicitly
activated. Further statements specify event-based process interactions: advance
of model time, indefinite waiting of a process and reactivation by another one,
interruption of a process and rescheduling it at a certain time, yielding control
to another process, and waiting for a certain condition (defined as an expression
accessing model structures) to become true (wait until). These are simulation
primitives known to be sufficient for modelling all kinds of discrete-event systems.
The provided simulation primitives are inspired by DEMOS [21] and SLX [5].

Domain-Specific Concepts. Domain-specific concepts are defined by speci-
fying extensions to the base language. An extension specification consists of two
parts. First, an extensions syntax is specified and then a mapping to concepts
of the base language is defined.

Syntax Definition. The syntax is defined in an attributed BNF-like grammar
language. A syntax definition consists of a set of grammar rules that extend
the grammar of the BL. The first of these rules refers to the BL grammar rule
that is extended by a new rule. Subsequent rules, consisting of terminals and
non-terminals, define the concrete syntax of an extension. Each rule may refer
to already existing BL rules, e.g. Statement and Expression, and thus reuse
BL constructs. Non-terminals prefixed by a dollar sign designate references to
already existing language constructs.

The class of languages that can be defined is a subset of context-free languages
which can be defined by an LALR1 grammar. Furthermore, semantic additions
for specifying references between language constructs can be made by using the
dollar sign in front of non-terminals.

In the definition of an execution semantics, the syntax parts have to be ac-
cessed. Therefore, syntax parts are prefixed by symbolic names. These names
allow to access and evaluate the elementary or structured value of a part in
semantics definitions. In addition, prefixed syntax parts define an implicit map-
ping to an abstract syntax. This abstract syntax is internally represented as a
metamodel which extends the metamodel of the BL.

extension ForLoop {
Statement -> ForLoop ;

ForLoop -> "for" "(" it:$Variable "in" set:Expression "with"

condition:Expression ")" "{"

ManyStatements

"}";

ManyStatements -> ;

ManyStatements -> statements:list(Statement) ManyStatements;
}

Listing 1. Syntax definition of a for-loop statement as an extension

1 Look-Ahead Left to Right, Rightmost derivation.
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An example is given in Listing 1. The extension defines the syntax of a for-
loop as an additional kind of statement. In contrast, to the BL for-loop that
iterates over all elements of a given set, the for-loop extension can be equipped
with a condition expression which selects specific elements of the set. For the
non-terminal $Variable, an identifier referring to an already existing Variable
construct has to be supplied.

The example also shows syntax parts prefixed by symbolic names. An exam-
ple is the condition expression which is prefixed by the name condition. In the
semantics definition, the concrete condition can be accessed by this name.

In [22], we introduce the parts of the approach that deal with syntax exten-
sions. We also show a prototype that implements this aspect. It allows to syn-
tactically extend the concepts of a general-purpose language by domain-specific
ones.

Semantics Definition. Models created in the BL are used for simulation. There-
fore, domain-specific concepts have to define an execution semantics. The seman-
tics of a concept is defined by a mapping to concepts of the BL. Furthermore,
the semantics of the BL concepts are informally defined by a mapping to an
executable target simulation language, i.e. an existing language for which there
is already a compiler. This can be an exclusive simulation language like SLX but
also a general-purpose language like Java combined with a simulation library.
The sole requirement for the target language is that one can write a mapping
for each of the concepts of the BL.

The semantics of an extension is defined in a semantics part right below the
syntax part. The mapping is defined by a sequence of regular BL statements
combined with a special gen statement. For each concrete use of an extension,
these statements are executed. The target BL code is derived from executions
of the gen statements. In the next step, the resulting target BL code is included
at the exact place where an extension is used. In addition, there is a special
statement for changing the current substitution context to other parts of a BL
model. The concept is very generic in the way that arbitrary constructs of the
BL can be referred to by their abstract syntax definition. As an example, an
extension of type statement could add a class definition in a BL module that is
required in the substitution code of the statement extension itself.

extension ForLoop { } semantics {

gen "for (" it ":" set ") {";
gen "if (" condition ") {";
for (Statement stm: statements) {
gen "" stm ";";

}

gen "} }";
}

Listing 2. Semantics definition of a for-loop statement as an extension
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In Listing 2 we revisit the example of the for-loop statement again and present
the definition of its semantics. Executing this definition results in a regular BL
for-loop in which the conditional selection of elements is simply implemented
by encapsulating the statements of the for-loop body in an if statement. Syntax
parts like it and condition are implicitly replaced by their concrete syntax rep-
resentation when used inside semantics parts. An example use of the for-loop
extension and the corresponding target code is depicted in Listings 3 and 4.

list(int) is; int i; for (i in

is with i > 0) {
print i;

}

Listing 3. Example use of the for-loop
extension

list(int) is; int i; for (i:
is) {

if (i > 0) {
print i;

}

}

Listing 4. Resulting BL target code
for an example use of the for-loop
extension

3.2 Implementation

Editor. The BL editor is implemented by using the Textual Editing Framework
(TEF) [12] and the Eclipse Modeling Framework (EMF) [23]. TEF is used for
deriving a BL editor by defining the concrete syntax of the BL. EMF is used for
the definition of a metamodel for the BL, which is required by TEF, and also
for the extensions, which make additions to the BL metamodel.

The outstanding feature of the editor is its immediate awareness of the syntax
of domain-specific extensions. This feature automatically derives a DSL editor
at runtime. It offers well-established editor features like syntax highlighting and
content assistance. Its implementation is feasible because TEF is based on the
runtime parser generator RunCC [24], which can be supplied with changing
versions of a grammar at runtime. This makes the implementation of a TEF
variant feasible in which extension definitions are instantly recognised by the
BL editor. For each extension, the grammar rules defined by the extension are
added to the grammar of the BL. The extended BL editor and its parser continue
to work with the extended version of the grammar. When an extension definition
is modified, the corresponding rules in the BL grammar are updated as well.

Simulator. The BL simulator is implemented by a mapping to an executable
target simulation language. The simulator is derived by compiling and executing
the target language program.

BL concepts as well as simulation concepts have to be considered in the map-
ping description. In a first prototype, a mapping to Java in combination with
the simulation library DESMO-J is defined. The mapping is described in Ac-
celeo [26], which is a template language implementing the OMG MOF Model
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to Text Standard [27]. This concrete mapping is 513 LOC2 in size, composed of
template statements and target code.

DSL simulators are derived by substituting all the extensions with BL con-
cepts as defined in their semantics parts. At the end of this process, the resulting
model solely consists of BL concepts. In the final step, the model is mapped to
the target simulation language that is used for execution. An overview of the
whole compilation workflow is available online [14].

A major problem in the whole transformation process is the rather static
nature of the used metamodeling framework EMF, as explained in [22]. In sum-
mary, it is hard to have a changing metamodel be supported by EMF at runtime.
Because of this problem, the time for executing a transformation is rather long.
For the simple for-loop example, it takes around 8 seconds to transform, com-
pile, and execute a corresponding model on a high-end computer3. Initiating
the EMF generation process for creating all the Java classes, which have to be
present for metaclasses, takes most of the overall execution time.

3.3 An Example Language – State Machines

We successfully apply the approach to the definition of state machines as an
example language, which we refer to as SML. The simplified use case of this
language is designed as a preliminary study for the development of a language
for industrial workflows in the field of supply chain management.

SML is defined by a set of domain-specific extensions. The language is an
enhanced version of the one presented in [22]. It is a subset of state machines
as defined by the UML [28]. The subset includes simple states, initial and final
states, transitions with signal, completion, and time event triggers, and also
guards and effects. The semantics of event processing is implemented as run-
to-completion as defined by UML. SML state machines can be used to define
behaviour inside an active class of the BL. They can also refer to properties of
their enclosing class.

An example, which defines the structure and the behaviour of a simple counter,
is depicted in Listing 5. After each time step, a count variable is increased un-
til a certain limit is reached. In addition, the counter may be started, paused,
and resumed by external signals. Signals are send to objects by a special send
statement, which is also defined as an extension.

The syntax definition is similar to the one presented in [22]. The new semantics
definition has been added. It is defined by using the core simulation constructs
of the BL. An excerpt of the semantics definition is depicted in Listing 6. The
complete definition of SML is 158 LOC in size. It is available online [14].

The main idea in the semantics definition is to add a variable of type list of
object to the class containing the state machine. This variable serves as an event

2 Description effort is measured in lines of code (LOC), excluding comments and blank
lines.

3 Intel Core i7 2.6 GHz processor, 8 GB main memory, and a Solid State Hard Disk.
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pool into which signal and time events are placed. In the next step, the behaviour
is implemented by waiting for events to arrive in this set. Each event is processed
one after the other, including the evaluation of guards and the execution of
effects. For time events, a special active class Timer is created by using the special
statement setGenContext. It allows to change the current generation context
inside semantics parts. This concept allows to add constructs in other places
of the enclosing model in which an extension is used. In the example, the class
Timer is created in the same module in which the state machine is used. Objects
of class Timer represent time events. When a time event occurs, a Timer object
is placed into the corresponding event pool.

class Start {} class Pause {} class Resume {} class Reset {}

active class Counter {

int count;
int limit = 10;
int step = 1;

stateMachine CounterBehaviour {

initial -> StandBy;
state StandBy (
Start / { count=0; } -> Active,

Resume -> Active

);

state Active (

[count >= limit] / { trace("Finished."); } -> final,
after(step) [count < limit] / {
count=count+1; trace("Tick " + count); } -> Active,

Pause -> StandBy,

Reset / { count=0; } -> Active

);

}

}

void main() {
Counter c = new Counter;
activate c;
send new Start to c;

advance 20;
}

Listing 5. Counter state machine as an example extension use
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semantics {

gen "list(Object) eventPool; string currentState;";
...

gen "actions { ... while (currentState != null) { ";

...

gen " empty eventPool;

wait; ...

while (eventPool.size > 0 and currentState != null) {

Object ev = eventPool.first;

remove ev from eventPool; ";

for (State state: states) {
gen "if (currentState == \"" state.name "\") {";

for (Transition tr: state.outgoing) { ...
if (tr.effect != null) {
for (Statement stm: tr.effect.getStatements()) {

gen "" stm ";";
}

}

...

ClassContentExtension ext = self;

Clazz clazz = ext.eContainer() as Clazz;
Module mod = clazz.eContainer() as Module;

setGenContext after mod.getClassifiers().first;
gen "active class Timer {
" clazz.getName() " sm; ...

actions {

advance delay; ...

place self into sm.eventPool; ...

}

} ";

}

Listing 6. Excerpt of the semantics definition for the state machine extension

4 Discussion

In this section, we discuss to what extent the proposed properties are present in
our approach. We also compare the approach to two related ones, namely SLX [5]
and Xtext [17]. We investigate to what extent each property is present in each
approach. We relate this investigation to the general requirement of having low
development effort for domain-specific concepts including customised tools. We
measure description effort in LOC and point out characteristics of each approach.
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4.1 Object-Orientation (P1)

The base language (BL), which is included in DMX, is object-oriented. Thus,
property (P1) is present. Object-orientation is restricted to single class inheri-
tance. This kind of object-orientation is used in various established modelling
languages like Simula, SLX, and the System Description Language (SDL) [29].
Although single inheritance seems to be sufficient, other languages like Modelica
and UML [28] provide multiple inheritance instead.

However, UML [28] does not define a precise semantics and leaves this part
unresolved as a semantic variation point. Problems arise when multiple imple-
mentations of the same kinds of elements are inherited. Modelica solves this
problem by merging the contents of the base class and the derived class. Thus,
similar elements become one. This is a feasible solution in Modelica because
operations, which can be a source of ambiguities, cannot be defined as parts
of classes but only as functions on a global level. Therefore, ambiguities as a
result of inheriting the same operation multiple times with different implemen-
tations cannot occur. Multiple inheritance can be a helpful feature. However,
further investigation is required of how it should be supported to be a helpful
instrument.

Xtext includes a base language named Xbase, which defines a large set of
expressions and statements. The semantics of Xbase is defined as a mapping to
Java. Therefore, Xbase also takes over Java’s type system, i.e. single class and
multiple interface inheritance. However, object-oriented descriptions means for
defining structures like classes and relations are not present in Xbase directly.
These have to be defined in Java and then referenced from languages defined
with Xtext and Xbase.

Another aspect of the BL is its simplification of the type concept for class
typed variables to object references only. This simplification exempts the mod-
eller of considering runtime efficiency aspects, i.e. whether an object should be
placed on the stack or on the heap. This kind of decision is intentionally left to
an optimizing compiler. In SLX, there is no such simplification. In Xtext, as a
result of its Java-based semantics, the same simplification is present.

4.2 Domain-Specific Additions (P2 and P3)

Modelling with increased structural and behavioural equivalence is achieved by
the extension concept. It allows to define domain-specific concepts with their own
notation and execution semantics (P2). The advantage of an extensions-based
approach is that concepts of the base language can be included into domain-
specific ones (P3). In addition, BL concepts and extensions can be used jointly
within the same model.

In SLX, domain-specific concepts of two kinds can be defined with their own
notation and semantics: statements and expressions. The syntax definition of
such concepts is bound to a subset of regular languages, which is not suitable
for complex DSLs. Therefore, property (P2) is only present in parts.
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In addition, DSL concepts can only include SLX expressions, but they cannot
include other kinds of contructs like SLX statements. This is a major obstacle in
defining effects in the example language SML. In SLX, one has to code them as
strings. Therefore, property (P3) is only present in parts as well. The execution
semantics of an extension is defined by a sequence of SLX statements in com-
bination with a special expand statement. They define a mapping to the SLX
core language. The target code is derived by executing this mapping for each
extension instance and replacing it by its target code. The availability of sim-
ulation primitives make the description of an execution semantics surprisingly
short. The complete definition of SML is 103 LOC in SLX.

In DMX, the set of languages that can be defined is more comprehensive. It
already allows to define such complex languages as state machines. Important
features making this definition feasible is the support of context-free languages in
extensions. In addition, DMX includes a special statement setGenContext which
allows to change the current generation context inside semantics parts. This
concept allows to add constructs in other places of the enclosing model in which
an extension is used. Such constructs can be helpful when defining semantics. As
an example, in the semantics definition of SML, a class Timer is created in the
same module in which a state machine is used. In the semantics definition the
class Timer is used in order to define the semantics of time events. In contrast,
SLX only allows to create constructs at the same place in which an extension is
used, which limits the possibilities of defining certain semantics. The size of the
SML definition is with 158 LOC in DMX compared to 103 LOC in SLX slightly
larger. Yet, language definition as well as editor support are more comprehensive
as well.

In Xtext, DSLs in the set of context free languages can be defined, thus prop-
erty (P2) is present. In addition, general-purpose constructs like expressions and
statements can be added to a language, which is property (P3). However, there
is a major problem with Xtext: domain-specific additions cannot be embedded
into regular Java programs and thus cannot extend the Java language. In the
semantics description, expressions have to be positioned in a suitable place in
the resulting Java code, where they can be correctly evaluated. As Java does
not contain simulation primitives, this part of the mapping has to be defined by
using a Java-based simulation library. In this comparison, DESMO-J [25] is used.
The definition of SML in Xtext consists of 373 LOC (15 LOC for the syntax and
358 LOC for the semantics definition).

In DMX, domain-specific concepts can be directly embedded into a BL model.
In addition, they can be used jointly with the BL. The size of the syntax defi-
nition of SML is with 25 LOC in DMX compared to 15 LOC in Xtext slightly
larger. However, this can be explained by Xtext providing EBNF and our own
approach providing BNF for syntax definition. With the semantics definition it
is different. In Xtext the size is 358 LOC, which is more than double the size of
the definition in DMX (158 LOC). There are multiple reasons for this increase
in description size in Xtext: i) the programmatic construction of target code as
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a Java abstract syntax tree, ii) the missing integral part of simulation primi-
tives, and iii) the need to embed BL elements like statements and expressions
into a suitable evaluation context. In addition, semantics is defined in Xtend,
which in comparison to Java includes many simplifications to Java as well as ad-
ditions of high-level concepts like lambda expressions. This makes descriptions
considerably more concise than comparable Java code.

The use of BNF notation in DMX syntax parts could be reduced by adding
Extended BNF (EBNF) description means. Because EBNF is already defined as
an extension of BNF, it could be made available by the very same principles of
our approach. However, such an extension is of a different kind. In order for the
editor to recognise EBNF-based syntax definitions, it is required to carry out
extension substitution for the semantics part at runtime as well. Currently this
is only implemented for the syntax part.

4.3 Low Cost Tool Support (P4)

In our approach, there is immediate tool support with an editor and a simulator.
This makes the definition and the application of a domain-specific concept with
a distinct notation as simple as writing an ordinary method. Editor features like
syntax highlighting and content assistance, available for methods, are equally
present for domain-specific extensions. All of these tools are provided at a low
cost because the description effort required for defining syntax and semantics is
low in comparison to SLX and Xtext. Thus, property (P4) is present.

In SLX, there is an integrated programming environment including an edi-
tor, a compiler, a launcher, and a debugger. These tools also support defined
extensions. However, the syntax of extensions is not immediately recognised.
Instead, the syntax is highlighted after a complete program has been compiled
successfully. Expressions and statements used in extensions have to be supplied
as unchecked strings.

In Xtext, a textual DSL editor can be generated from a DSL description. It
features syntax highlighting and content assistance. In contrast to SLX, there
is even support for expressions and statements used in extensions. There is a
generic builder, which executes the mapping description and automatically com-
piles the resulting Java code. The Java representations of DSL constructs are
available in regular Java programs. However, the development process is rather
slow because tools have to be generated first before they can be applied. Es-
pecially in an iterative process, this kind of development is time-consuming. In
addition, description effort is rather high.

In comparison to SLX, tool support by an editor is more comprehensive
in DMX. Editor features likes syntax highlighting and content assistances are
equally available as in Xtext. However, in DMX, an editor is immediately avail-
able for domain-specific concepts. In addition, the description effort required is
lower than in Xtext.
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In each approach, a compiler for domain-specific extensions is automatically
derived from semantics descriptions. The compilers differ in compilation time. In
DMX, compiling a BL program which includes extensions is rather slow at the
current stage of implementation. Compiling the example counter state machine
(Listing 5) takes around 10 seconds.

4.4 Simulation Primitives with Fast Execution (P5)

In DMX, runtime efficient executions are preserved by efficient implementations
of the BL simulation primitives. This part is delegated to the selected simula-
tion target language. For some of these languages efficient implementations of
compilers already exist. An impressive example is SLX. By writing a mapping of
the BL to SLX, one can benefit from fast executions combined with an increased
expressive power in defining domain-specific extensions. Also, extensions benefit
from fast executions because their semantics are defined using the very same
concepts of the BL.

The same argument holds for simulation libraries written in Java, although
they may not be as runtime efficient. An example with poor execution speed
is DESMO-J. That is because its coroutine implementation is based on Java
threads. However, there are more efficient libraries. A library which is prominent
in the network simulation community is JiST [30]. It implements coroutines by
Java Byte Code rewriting which makes it faster than DESMO-J. A mapping to
JiST, which would be similar to the one already implemented for DESMO-J,
can result in a viable simulator as well.

Execution time of SLX and Xtext/DESMO-J is measured in an experiment4

with an example model which includes two counters (as presented in Sect. 3.3),
limited to 106 counts. In SLX, the simulation is finished after 0.06 seconds. In
Xtext/DESMO-J, it takes 186 seconds to complete. The corresponding DMX
model executes in 144 seconds when using DESMO-J. There is a slight increase
in execution time in the Xtext-based SML. This might be because the state
machine semantics for processing events are implemented in an object-oriented
way by following a state machine pattern [4]. In contrast, the semantics of the
DMX-based SML is defined by determining the current state with a number of
simple if statements.

Furthermore, the execution time of DMX could easily be increased to the same
time as pure SLX by defining a BL-to-SLX transformation. Thus, DMX could
benefit from the very efficiently implemented SLX simulation core. In addition,
DMX models already created can be used without any changes.

This is only a first measurement with a simple example which focusses on
process switching times. Depending on the concrete model, other aspects might
be more important. Nevertheless, the example can serve as a first indicator of
execution times.

4 Intel Core i7 2.6 GHz processor, 8 GB main memory, and a Solid State Hard Disk.
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4.5 Externally Implemented Functionality (P6)

The possibility of connecting different target simulation languages (mentioned in
Sect. 4.4) is important for several reasons. It is important i) for creating models
which are independent of some current state-of-the-art simulator platform, ii)
for running simulations with the most efficient simulator platform available, and
iii) for integrating external functionality provided by libraries or tools without
too much effort. The last remark can be an implementation of property (P6).

Although we have not yet investigated this aspect in depth, we believe that
the BL to target language mapping already offers a good solution. It should
be feasible to access external functionality implemented by tools written in the
target language with not much effort. One can declare a BL function as native in
which calls to this function are forwarded to their implementation in the target
language. A prerequisite is that an external tool has to offer an interface to its
functions accessible in the chosen target language.

In SLX, external functions implemented in C/C++ can be invoked. This is
achieved in a number of steps. A model has to 1) declare a function as natively
available via a Dynamic Link Library (DLL), 2) generate a C/C++ header and
implementation file, 3) implement the function in C/C++, and 4) compile it as
a DLL so that it can be accessed from a SLX model.

In Xtext, external functions implemented in Java are instantly accessible
because its semantics are already defined as a mapping to Java.

5 Conclusions

We present an approach exhibiting a number of properties which are important in
order to develop domain-specific languages used in simulation in a more efficient
way. This includes the development of the language as well as its tools. We
measure description effort of our approach for defining a state machine language
and present the derivation of tools like an editor at a low cost. In comparison
to related approaches, description effort and the cost for having tools is reduced
while maintaining the expressive power and execution efficiency required for
domain-specific simulation languages. Further research has to show if languages
that are even more complex can be developed analogously.

6 Future Work

The provisioning of debuggers is an area of special interest to us. Currently,
debuggers still have to be implemented by hand, e.g. for simulation languages
like SLX. Furthermore, dedicated debuggers do not even exist for simulation li-
braries written in programming languages. We believe that our approach can be
extended to an immediate provisioning of DSL debuggers (part of P4). In [31],
we already describe the debugging aspect of a DSL, so that a debugger can be
derived automatically. The work is based on EProvide, which is a framework
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for defining the execution semantics in an operational way. However, other ap-
proaches [32] show that such tools could also be derived for execution semantics
described as transformations.

The second area of interest is investigating the integration of externally
available functionality as described in Sect. 4.5.
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