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1 Ericsson Hungary
Irinyi J. u. 4-20, H-1117, Budapest, Hungary

{gusztav.adamis,antal.wu-hen-chang,gabor.arpad.nemeth}@ericsson.com
2 Department of Telecommunications and Media Informatics

Budapest University of Technology and Economics
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Abstract. In script based testing traditionally test data and test en-
vironment parameters are stored either in the test script document or
in a separate file. In some test execution systems, test data items are
loaded to a database during the initialization, however that set of data
remains static during the execution. In this paper, we propose a TTCN-3
based approach that stores all test case related data, even constants, local
variables and parameterized message templates of a test case in a rela-
tional database. Data types and data type instances are all mapped into
SQL schemas. When executing a test case, appropriate test templates
are fetched or even generated on-the-fly for the subsequent test step,
which results in a higher data flow coverage. The course of test events
are logged in the database that makes reproduction possible.
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1 Introduction

Web portal development frameworks such as Django [1], Ruby on Rails [2] and
many others have an incorporated script based test environment. As web portals
usually have a database back-end as data source in their production environment,
test data to be used in the scripts defined in plain text files must be loaded into
the test database before the test execution. Test data definition files contain
finite sets of records of the data types used within the portal, and it is possible
to execute the same test case with different test data records. Once loaded, these
records can be accessed, fetched and modified during the execution of a test case,
however the changes made to them cannot be traced back, as they are restored to
their initial values upon the initialization of the next test case. Other limitations
of these frameworks are that: the test data items must be given manually and
therefore have fixed initial values; and there is no obvious way to assign a random
value to a field of a record, which is transparent for the current test case.
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The UML and the UML Testing Profile are proposed in [3] for the data-driven
testing of object-oriented models. These together provide the means for defining
values in the test specification resulting in reusable and maintainable tests. Sev-
eral testing frameworks exist already with the ability to separate data. SoapUI
[4] is a general purpose testing framework that allows the user to use data sources
with many formats, such as XML, Excel configuration files or databases. Dur-
ing test execution, test data items are read from the data source independently
from the test steps defined in a separate document. MBUnit [5] is a .NET unit
testing framework that also supports the separation of the data flow. Beyond
being able to use hard-coded test data values, it is capable of getting test data
from external sources such as XML spreadsheets or CSV files. EasyTest [6] is
another new open source testing framework that allows for writing data-driven
tests in JUnit. The Fitnesse framework [7] is primarily for testing requirements,
and it already supports data-driven testing.

In TTCN-3, test data is not separated from the control flow of test cases as
much as in the case of web development frameworks. Test data items appear
within the TTCN-3 test cases themselves. Implementation and environment pa-
rameters are loaded from configuration files, record type and template definitions
are vital parts of the TTCN-3 module, and the values used by local variables
and constants are hardcoded into the test case part of the module.

In this paper, we introduce a framework for testing telecommunication pro-
tocols on the pattern of web development test environments, we put all the test
data into a relational database that we access from test case bodies during the
test execution. The rationale behind this approach is that many higher layer pro-
tocols are stateless or have only a very few control states, but at the same time
they use complex protocol data units. When conformance testing such protocols,
the very same message sequences are used over and over again, but with different
test data. This paper investigates how the test data can be stored in a database,
and if values for complex data structures can be generated on-the-fly based on
user defined records of that database. The record type definitions available for
the TTCN-3 test case are mapped to an SQL metamodel, and parameterized
templates are records in those tables. We consider that all interactions of the
test case take place by means of using parameterized templates, and fetch the
parameters before the send and receive operations with an external function. Pa-
rameterized templates allow a higher level of flexibility compared to templates
with hardcoded values, because parameters not yet accessed can be chosen at
random at each execution providing a better data flow coverage than the single
hardcoded value.

The cost of this flexibility with the parameterized templates is that we must
provide a way to trace back the template value used in a test step and loose the
portability of test cases. Therefore to enable persistent logging, we define the
formal graph model of a test case including alt statements, branches, loops and
local variables and constants that we map to an SQL metamodel as well. This
allows the on-the-fly tracking of changes of values of local variables, so that in
subsequent test steps the proper value can be used in templates.
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The paper is organized as follows. Section 2 defines the architecture of the
framework presented. In Sect. 3, we show the graph model of the test case we
use in the database to represent the control flow of test cases. Section 4 gives
the SQL metamodel for storing record types and parameterized templates, and
describes the SQL metamodel we store this test case representation in. How a
test case is transformed and executed within this framework is shown in Sect. 5,
where we show an example where our method can be useful: a flow control
counter overflow check. Finally, Sect. 6 summarizes the paper.

2 A Framework for Storing TTCN-3 Test Data in a
Relational Database

The fundamental idea behind this framework is to completely separate test data
from the test cases, so that each test case rewritten according to the concepts
presented in this paper can be executed with arbitrary number of possibly ran-
dom test data items without a change. Therefore, we remove all occurrences of
values, variable and template accesses from original test case and replace them
with external TTCN-3 function calls that implement the fetching and storing of
these data items in a database.

When storing test data separately, a database has several benefits over using
a simple configuration file. Meta-information such as the type of a field or of a
variable can be encoded in the database schema. The complex data structures,
or even protocol data units (PDUs), are constructed based on the user defined
data, are used in an interaction. These structures or PDUs can be stored in the
database and reused when repeating the test. In a long sequence of interactions,
the user defined initial values may change, the database helps with tracking
these changes, thus the database can store snapshots of the variable vector and
associate that with a state of the interaction. Another advantage is that the
database manager understands the natural ordering of primitive types such as
integer, and for instance boundary values with regard to a table constraint can
be very easily fetched.

Our method consists of two phases. First, the input TTCN-3 documents are
parsed, and graph models are extracted from them: one that represents the data
types available for the test cases, and for each test case a graph that represent
the control flow. These pieces of information are then loaded into the database.
The second phase is the test execution itself, where the evaluation of expressions
and the parameterization of templates are performed within the database.

Figure 1 shows the process of the initialization phase. The input of the process
is a set of TTCN-3 documents. These documents are parsed with a customized
TTCN-3 parser, and a test data model and test case models are extracted, which
are later on loaded into the metadata tables of the database. If data constraints
have been defined on the datatypes and the database server supports constraint
specification, the schema is updated. We use a custom mapping for that, not a
nowadays standard way of object relational mapping (ORM). Transformations
are performed on the input TTCN-3 documents that preserve the test case be-
havior, for each data type definition a set of parameterized template definitions
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Fig. 1. The initialization of test execution

are generated that are used in send and receive operations. All variable ac-
cesses are replaced with calls to external functions. The outputs of this phase
are the transformed TTCN-3 documents and the information stored about the
test data and test cases in the database.
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Fig. 2. The layered architecture of the framework, and the main function groups used
in test execution

Figure 2 shows the architecture of our framework. When executing a test case,
the test execution environment [8] accesses the database by calling the functions
of the relational access layer implemented with external TTCN-3 functions. The
relational access layer has three main function groups. In the transformed test
case, a value can be accessed in three different ways. Data transformation that
implements the relational mapping transparently maps database records to na-
tive TTCN-3 values and vice versa. When a value is given as an expression with
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several variable identifiers, the expression evaluation module resolves the vari-
ables, transforms the operator in the expression to SQL syntax, and retrieves
the value by executing an SQL query built on the pattern of the expression. The
third method of value generation is the use of parameterized templates, which
are built on-the-fly with Gecse’s [9] method. If a field of a template has not yet
been defined in previous interactions of the test case, a value is generated possi-
bly at random and stored in the database for future re-use. The database layer
is responsible for storing the data type, template and test case models, and logs
the current and previous snapshots of test states of the execution. This latter
logging allows the identification of freely definable variables and template fields.
The database layer is completely hidden from the test engineers, who write the
TTCN-3 test cases. They have to follow a well-defined set of conventions, but
are not required to have specific database or SQL knowledge.

In the following, we introduce the data type and test case metamodels we cre-
ate and map to the database after the parsing of the original TTCN-3
documents.

3 TTCN-3 Data and Test Case Representation

In this section, we define two graphs we use to represent TTCN-3 type and
template definitions and TTCN-3 test case definitions. These models can au-
tomatically be generated from a TTCN-3 document with a parser and a code
generator.

3.1 TTCN-3 Data Representation

In this paper, we use the concept of the type structure graph defined by Gecse’s
[9]. We model data types with a forest of directed graphs, however our focus is
limited to TTCN-3 primitive and record types and TTCN-3 record of, set of,
set and union types are left out of consideration. We denote the collection of
data types with D = (N,E,L) such that E : N × L ×N , where a node n ∈ N
represents a data type, and an outgoing edge e = (ni, l, nj), e ∈ E, ni, nj ∈ N,
l ∈ N denotes that the data type ni has field of the type represented by the target
node nj , and the l ∈ L label defines the field name and an ordering constraint
on the edges. Note that D is not necessarily a tree, the data type definitions
may include recursive associations that result in strongly connected cliques.

The set of walks returned by the function walk : N → W called subgraph tem-
plates in Gecse’s work is an unbounded set of finite trees generated by traversing
recursively all outgoing edges at each visited node starting from a node n ∈ N
until any node ni ∈ N, Nprimitive ⊆ N representing a primitive type is reached.
A walk w ∈ W, W = walk(n), n ∈ N corresponds to a TTCN-3 parameterized
template of type N . A data type instance or a template for walk w ∈ W is
generated by recursively applying the function val : W → D to all subtrees of
W , where D is the domain of W rooted in type N . The function type : W → N
returns the type of a template, and the function type : V → N gives the type of
a variable.
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1 type record M {
2 A a ,
3 C c ,
4 octetstring d
5 }
6
7 type record A{
8 octetstring a
9 }

10
11 type record C{
12 integer t ,
13 integer s ,
14 integer r
15 }
16
17 template C t c ( integer v t

, integer v s , integer
v r ) {

18 t := v t ,
19 s := v s ,
20 r := v r
21 }

s

string

A

a

M

a

d

c

C

integer

t r

octet

Fig. 3. Graph model of the data types. On the left a TTCN-3 code snippet with some
type definitions can be seen, on the right the relationship graph between those types
and a sub-template graph with bold lines are shown

Figure 3 shows a sample TTCN-3 type definition code snippet on the left and
its graph representation after parsing on the right. In this example, five data
types are used, three of them are defined here and two of them are primitive
types, soN = {M,A,C, integer, octetstring}. The edge e = (A, a, octetstring) ∈ E
for instance shows that type A has a field named a of type octetstring. Bold lines
represent a walk tc ∈ W , which is the only available walk from node C, this
corresponds to the parameterized template named tc. This tc has a subgraph
template rooted in node C. Note that the graph model is not necessarily acyclic.

3.2 TTCN-3 Test Case Representation

Mathematically, TTCN-3 test cases can be unfolded into a tree structure that
is not necessarily finite. A common model in the literature for representing
such trees is a rooted, edge labelled, directed graph, or more specifically a test
transition system as defined in [10].

We, in this paper, use a different approach to represent the control flow of
test cases. Our model of a test case TC = (S, P, V, I, O, T ) is a rooted edge and
node labelled directed graph with two types of nodes, which is closely related
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to the EFSM model used in [11]. The not necessarily finite set S represents the
set of end nodes (test states) of a test step. The other type of node set is the
set P that represents the set of branching nodes between test step nodes that
correspond to TTCN-3 if..else if..else and select..case constructs. The
set T represents the set of edges of the graph. The sets V , I and O represent the
sets of variable identifiers, input template names and output template names re-
spectively. Each v ∈ V is associated with a type n ∈ N and a value val(walk(n)).

Labeling functions assign labels to the nodes and edges of the graph. Each
sl ∈ S node with the out-degree degout(sl) = 0 is labelled with the function
Ls : S → {pass, fail, inconc}, which corresponds to the TTCN-3 setverdict

statement. Each p ∈ P is labelled with the function Lp : P → expr(V ), where
function expr is a variable expression on a subset of V ; this corresponds to an if

condition. Input labels make it possible to assign values to elements of V : Li :
I → V , which is mapped from a receive statement. By means of output labels
it is possible to assign values represented by the vi ∈ V, 0 ≤ i ≤ |V | to an o ∈ O:
Lo : O → ×kVk on the analogy of a send statement. Action labels represent
a transformation of values of V : La : expr(V ) → V , these can be generated
based on the assignments in the TTCN-3 test case source. Four mutually disjoint
subsets of edges that correspond to TTCN-3 statement blocks are distinguished
based on the types of nodes they connect: T = Tss ∪ Tsp ∪ Tpp ∪ Tps. Each of
these edges is labelled with a set of labeling functions defined in this section.
The labeling function for an edge connecting two test states is defined as follows:
Lss : Tss → (S × V ) × Lo × P(Li ∪ La) × (S × V ), where P is the set of all
possible ordered subsets operator. The labeling function for an edge connecting
a test state node and a predicate node is Lsp : Tsp → (S × V ) × Lo × P(Li ∪
La) × (P × V ). The labeling function for and edge connecting two predicate
nodes is Lpp : Tpp → (P × V ) × expr(V ) × P(Li ∪ La) × (P × V ) The labeling
function for an edge that connect a predicate node and a test state node is
Lps : Tps → (P × V )× expr(V )× P(Li ∪ La)× (S × V ).

Figure 4 shows a TTCN-3 code snippet with a part of a test case definition on
the left, and its graph representation after parsing on the right. Timeout events
are represented with the name of the timer, which is T , and the parameterless
Q.receive is denoted with an * input label. The test purpose of this test case is
to check the overflow of a counter. It counts to the maximum value of a domain,
for instance the size of a sliding window in the flow control mechanism of a
protocol, then it checks if the overflow is handled correctly. The graph model
has five nodes in the set S represented with circles in the figure, and three of
them are labelled with the possible verdicts. There is one node p ∈ P represented
with a rectangle in the figure, and its label is the if condition: s < ws. Edges are
assigned with a set of labels. For instance the edge e3 ∈ Tss from the unlabeled
top node to the inconc ∈ S node is labelled with the name of the template sent
(t req ∈ O) together with its parameters (s ∈ V ), a timer action, and an input
event (T ∈ I). Edge e4 ∈ Tps from the p ∈ P node to the unlabeled node at the
top is labelled with a valid value for expr(p) that is in this example the boolean
value true.
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1 testcase t c t ( integer w s )
runs on C CT{

2 map(mtc :Q, system :Q) ;
3 /∗ . . . ∗/
4 Q. send ( t r e q ( s ) ) ;T. start ;
5 alt {
6 [ ]Q. receive ( t r e s p ( s , s+1) ) {
7 s := s+1;
8 i f ( s < w s ) {
9 Q. send ( t r e q ( s ) ) ;T. start ;

10 r epeat ;
11 }
12 }
13 [ ]Q. receive {
14 setverdict ( f a i l ) }
15 [ ] T. timeout {
16 setverdict ( inconc )}
17 }
18 Q. send ( t r e q ( w s ) ) ;T. start ;
19 alt {
20 [ ]Q. receive ( t r e s p (w s , 0 ) ) {
21 setverdict (pass ) }
22 [ ]Q. receive {
23 setverdict ( f a i l ) }
24 [ ] T. timeout {
25 setverdict ( inconc )}
26 }
27 }

true

INCONCFAIL

t_req(s),
T.start,
T

t_req(w_s),
T.start,
T

t_req(w_s),
T.start,
*

PASS

s:=s+1

t_req(s),
T.start,
t_resp(s,s+1),

t_req(s),
T.start,
*

T.start,
t_req(w_s),

t_resp(w_s,0)

s < w_s

false

Fig. 4. Graph model of the test case. On the left a TTCN-3 code snippet with a part
of a test case definition is shown, on the right its graph representation is shown

4 Mapping TTCN-3 Documents to a Relational Schema

Mapping data structures of different programming languages to database tables
has been studied for more than two decades. Several frameworks have been
proposed and developed, and some of these have made their way to the everyday
practice. A widely used framework that implements the persistence of Java and
.NET objects is for instance Hibernate [12][13], while Django [1] provides a
framework for Python, and Ruby on Rails [2] gives a programming interface
for Ruby.

The main idea of these solutions is that with a little piece of meta-information
it is possible to make a one-to-one correspondence between the data types
and database tables, data type attributes and database table attributes, and
data type instances and database records. Association and aggregation relations
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between data types and collection types are mapped by means of foreign keys
in tables.

Former frameworks such as [14] intended just to hide the database back-end
from the application. Our approach follows this track, because of the metadata
necessary to enable the efficient tracking of changes of variable values and to
support logging.

4.1 Mapping TTCN-3 Type Definitions to a Relational Schema

Several approaches can be defined to map a TTCN-3 type definition to a re-
lational schema. Though TTCN-3 is not an object-oriented language, object-
relational mapping should be considered: mapping record types to tables, record
fields to table attributes, and values to the records of that table. In this case, the
mapping from TTCN-3 to the database is very easy, however the reverse direc-
tion is far less straightforward as type definitions are available at runtime, and
the meta information encoded in the schema may not be enough to reconstruct
the value.

We use a mapping that preserves all meta-information. It maps data flow
elements of a TTCN-3 document to a relational schema of six tables derived
from the test data graph model. Figure 5 shows the entity-relationship diagram
of the database schema we use for storing a TTCN-3 type definitions, and below
we list these tables and their attributes within parentheses, where the attributes
that define the primary key of the table are underlined.

– Datatype(name, type)
– Compositefield(parent, fieldname, typeof)
– Template(name, typeof)
– Templatevalue(template, field, value)
– Typeinstance(name, typeof)
– Typeinstancevalue(variable, field, simplevalue, parent)

The Datatype table stores each data type declared in the testcase. Its name
attribute is the name of the data type, and the type attribute can take the
following values: primitive, record. These values correspond to the primitive data
types and the record type, respectively.

Each node of the data type graph of Fig. 3 is stored as a record in the Datatype
table. The attributes of the record are the name of the data type, and primitive if
the given data type has no child nodes in the type graph, otherwise the attributes
are the type name and record.

The Compositefield table is responsible for storing the type hierarchy, more
precisely, the types and field names of record type fields. Each record of this table
corresponds to a field of a record type, that is, an edge in the graph of Fig. 3.
The parent attribute stores the name of the type of the given field is declared in.
The name attribute stores the name of the field, and the typeof attribute stores
the type of the field.

The Template table holds information about the parameterized templates de-
fined in the test source. Each of its records corresponds to a template, a bold
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Fig. 5. Entity-relationship diagram for the metamodel of test data and test case used
in the database

node in Fig. 3 with with no incoming bold edges. The name attribute stores the
name of the parameterized template, and the typeof attribute, which is a foreign
key to the Datatype table, stores the data type of the template.

The Templatevalue table stores parameterized templates as defined in the test
code. Each of its records corresponds to a template field, to a bold edge in Fig. 3.
The template attribute, which is a foreign key to the Template table, stores the
name of the template containing the given field. The field attribute stores the
name of the field, and the value attribute stores the value of that field.

The Typeinstance table is similar to the Template table. It stores the names
and types of data type instances including variables and generated data type
instances in its name and typeof fields, respectively.

The Typeinstancevalue table stores the field values of record type instances
or the value of primitive type instances. Its attribute named parent stores the
name of the parent data type instance of the given field. The field attribute
stores the name of the field. If the parent instance is of a primitive type, the
simplevalue attribute stores the value of the parent instance, and in that case the
field attribute is an empty string, and the variable attribute is null. On the other
hand, if the parent type is a record type, then the simplevalue attribute is null,
and the variable attribute stores a reference to the data type instance storing
the value of the field. The parent relationship is used in the next section when
assigning this value to a variable.

As an example of the mapping described in this section, type C and tem-
plate t_c are mapped to the following records of tables Datatype, Compositefield,
Template and Templatevalue. In the example below, the Datatype table has two
records that correspond to two of the types used, C and integer.

name type

C record

integer primitive
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The Compositefield table details the record type C, which has three fields, all
of the type integer, named t, s and r that appear as records of the table.

parent field typeof

C t integer

C s integer

C r integer

As a template represents a value of a type available in the Datatype table, the
Template table associates the template name and the type name, in this example
C and t_c.

name typeof

t_c C

Template t_c is an instance of type C, hence it has tree fields. The Templat-
evalue table assigns the value of the variable identified with v_t to field t of
template t_c, and similarly initializes the two other fields as well.

template field value

t_c t v_t

t_c s v_s

t_c r v_r

4.2 Random Template Generation with SQL

Gecse’s method assumes that the relational logic should make it possible to
generate random values of a type to be used when generating a template. We
use the data structure shown in Fig. 3, that is used as the basis for the template
generation. In the following, we show how these random values can be obtained
using SQL queries. The generator algorithm is implemented in the Template
Generator component of the relational access layer.

In the following queries, there are references to vector elements. These
elements are not included in the queries in their presented forms, but are
substituted with the values stored in the referenced vector element.

1. The first step of the random template or value generation is the collection of
available data types, which can be obtained using the following SQL query:

SELECT name, type FROM datatype

The result of the query is stored in vector types in the memory.
2. Next, we iterate through types, and generate a number of random names for

each type later to be used as identifiers. The names generated for the ith

element of types are stored in the vector at the ith position of the vector
names. Each type-name pair, in this case the ith type and its jth name, is
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stored in the database using the following pseudo-SQL statement:

INSERT INTO typeinstance (name, typeof)

VALUES (names[i][j],types[i])

3. Then, all these newly generated type instances are queried:

SELECT d.name typename, t.name instance, d.type

FROM datatype d, typeinstance t

WHERE d.name=t.typeof AND

t.name NOT IN (SELECT parent FROM typeinstancevalue)

The result of the above query is the set of all newly generated instance names.
Since the Typeinstancevalue table can store some variable values before start-
ing the generation, in order to get the list of newly generated instances, the
records belonging to values have to be filtered from the list of all type in-
stances. This is done by not including those instance names in the list, which
are already included in the Typeinstancevalue table (the newly generated in-
stances are not yet included in the Typeinstancevalue table so this selection
condition is appropriate). The result of this query as a list of type name,
instance name, type triplets is stored in vector typesnames in the memory.

4. The next step is to generate the values of each newly generated template
name. This is done by iterating through typesnames and generating random
values for each instance.
If the current element of vector typesnames is of a primitive type, then a
random value rand is generated according to the type of the instance, and
inserted into the database by the following statement:

INSERT INTO typeinstancevalue

(parent, field, simplevalue, variable)

VALUES (typesnames[i].instance,’’,rand,null)

If the current element of this vector is of a record type, then its fields are
queried by the following pseudo-SQL query in the ith cycle:

SELECT field, typeof FROM compositefield

WHERE parent=typesnames[i].typename

The result of this query is a list of all the fields that the current type instance
has according to its type, and it is stored in vector in the ith position of the
vector fields.

5. In the next step, we iterate through this vector, that is, the elements of ith

element of fields, and one randomly chosen, previously generated instance
name is assigned to each field of the current instance. This is done by the
pseudo-SQL query below, and the jth random value is stored at the jth

position of the value candidate vector of the ith field, which is an element at
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the ith position in the vector value:

SELECT name FROM typeinstance

WHERE typeof=fields[i][j].typeof ORDER BY RANDOM() LIMIT 1

The above query selects the list of all instances generated for the type of the
current field, which are then ordered randomly (ORDER BY RANDOM()), and
only the first element of the so-created result is selected (LIMIT 1).

6. Finally, the result of this query is stored in the Typeinstancevalue table using
the following pseudo-SQL statement:

INSERT INTO typeinstancevalue

(parent, field, simplevalue, variable) VALUES

(typesnames[i].instance,fields[i][j].field,null,value[i][j])

Thus, according to the semantics of the Typeinstancevalue table, the parent
attribute gets the name of the instance the field value whose has just been
selected. The field attribute gets the name of the current field. The simple-
value attribute is null, since the parent instance is a record. Finally, the name
attribute gets the newly selected value.
According to the earlier described semantics of the Typeinstancevalue table,
in the case of a type instance of a primitive type, the parent attribute gets
the name of the parent type instance, the field attribute is an empty string,
the simplevalue attribute is the value generated randomly according to the
type of the instance and the variable attribute is null.

4.3 Mapping a TTCN-3 Test Case to a Relational Schema

The model of each test case is stored in a relational schema as well to enable
the tracking and logging of test case execution, to be able to track the changes
of variable values made by assignment, receipt of messages, and tackle the effect
of predicates to the control flow.

Figure 6 shows the entity-relationship diagram of the database schema we use
for storing a TTCN-3 test cases. The listing below shows the entities and their
attributes within parentheses, and the primary key attributes are underlined,
multiple underlined attributes denote a composite primary key.

– State(id, verdict)
– Transition(id, from, next, output, parameterlist, expression)
– Action(transition, serial, type, expression, input, value)

The State table stores information about states of the test case. For each state
of the test case, one record is inserted into this table. The id attribute is the
artificially generated identifier of the state as test states are unlabeled. The
verdict is the verdict value that labels leaf states. For non-leaf states, the verdict
attribute is null.
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Fig. 6. Entity-relationship diagram for the metamodel of test data and test case used
in the database

For each transition one record is inserted into the Transition table. The id
attribute of a transition is its artificially generated identifier. The from and next
attributes store the current and next test states of the corresponding transi-
tion, respectively, and these two attributes are foreign keys to the State table.
The output attribute stores a reference to the template sent as output, and the
parameterlist attribute stores the list of those variables, which are the parameters
of that template. These two attributes are null in case of a predicate transition,
i.e., a transition starting from a predicate denoted with a rectangular node in
Fig. 4. For such transitions, the expression attribute stores the triggering expres-
sion, which is null for output triggered transitions originating in test states.

The Action table stores the input events and value assignments performed
during state transitions, whose ordering is determined by the serial attribute. Its
transition attribute refers to the transition, during which the action is performed,
thus, it is a foreign key to the Transition table. The type attribute of the action
can take two values: assignment and input. The former represents a value
assignment, where an internal variable of the test case gets the value of an
evaluated expression, while the latter represents a message input action. The
expression attribute stores the expression that updates a variable in case of an
assignment, while the value attribute, a foreign key to the Typeinstance table,
stores the variable, to which the input value or the expression value is assigned
in case of an input or assignment action, respectively. The input attribute that is
a foreign key to the templatevalue table stores a reference to the input template.
The following two functions define the mappings of action and input labels of
the test case model to this relational schema.

Logging and making snapshots of test states are vital parts of our framework.
For logging the test execution, two additional tables are defined that together
can be used for tracing any test execution (see top of Fig. 6).
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– Variablevaluelog(execution, time, variablename, instancename)
– Parametervaluelog(execution, time, transition, parametername, instancename)

The Variablevaluelog table stores the data type instances used as values of vari-
ables during test execution. Each record of this table belongs to one variable
value assignment, where variable value assignment means selecting a value from
the database and assigning it to a variable. The execution attribute of the
Variablevaluelog table stores the identifier of the test execution, while the time
attribute stores the timestamp of the assignment. The variablename attribute
stores the name of the variable and the instancename stores the identifier of that
randomly generated data type instance the value whose is assigned to the vari-
able. The instancename and variablename attributes are both foreign keys to the
Typeinstance table.

The Parametervaluelog table stores the values assigned to template parame-
ters during test execution, each record of this table belongs to a parameter value
assignment. The execution attribute of the table is the identifier of the test ex-
ecution, during which the value assignment is performed. The time attribute is
the timestamp of the assignment. The transition attribute stores that transition,
during which the message with the value assigned parameter is sent. The param-
etername attribute stores the name of the parameter, while instancename stores
the identifier of the data type instance assigned to the parameter.

5 TTCN-3 Test Case Transformation and Execution

The role of test case transformation is to remove all data from the test case
definitions, and to access all those pieces of data from the database through
external functions:

– For each data type, a parameterized template definition is generated unless
it already exists such that it has a parameter for each field of the type of the
template. For type M in Fig. 3 the following template is constructed:

1 template M t m (A v a , C v c , octetstring v d ) {
2 a := v a ,
3 c := v c ,
4 d := v d
5 }

– Original template references are replaced with these parameterized template
definitions. In the example we use in this paper, there is one parameterized
template for each data type. Any template with a different parameter list is
replaced with this most general template. For instance, if before the trans-
formation a template definition for type M existed with a single parameter,
it is replaced with the definition above.

– All variables, templates and formal parameters are redeclared as TTCN-3
anytype, however in the database these are still represented with their real
type. The anytype is the only type in TTCN-3 that is able to represent all
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possible types, therefore it can be used in the native layer to dynamically
generate a value of the proper type. Note that this is removed from the
examples for the sake of better readability. In the example of Fig. 4, the
formal parameter variable integer w_s is transformed into anytype w_s,
and its value is referred with w_s.integer.

– For each literal, a local constant is introduced in the test case body, that
constant is initialized with that literal, and the value is saved by an exter-
nal function to the database. In the example shown in Fig. 4, there is one
literal: 1. The local constant is introduced in const integer c_ONE=1, and
it is stored with var(’c_ONE’,’integer’,’1’).

– For each constant within the test case body, the value is loaded to the
database, and the constant is initialized with an external function.

– For each expression, the expression is passed to the relational access layer as a
charstring that returns with the evaluated value. For instance, expr(’i+1’)
resolves the expression, replaces the + operator with its SQL correspondent,
which is in this case +, and executes an SQL query that reads the value of
the resolved variables and evaluates the expression. The expression in this
case is translated to the following query:

SELECT simplevalue+1 FROM typeinstancevalue WHERE parent=’i’

– An assignment is replaced with an external function call that pairs the name
of the variable with the value of the right hand side expression. For instance,
the i := i + 1 of Fig. 4 is replaced with set(’i’,expr(’i+c_ONE’)).

– A variable access such as in template parameters is replaced with a function
call that returns with the proper value. For instance, template t_c(c_ONE,

r, s) is substituted with t_c(val(’c_ONE’),val(’r’), val(’s’)).

– After every receive operation, the template and its fields are stored in the
database with a set external function call.

During test case execution, when a test case is initialized, the database, the
log and snapshot are reset, variables are set to their initial values. Whenever a
send or receive or timeout statement is activated or a database access layer
function is called, some of the variables are accessed and database statements
are executed. When a variable is accessed for the first time, its value is set for
the rest of the test case. If it has not yet been defined, then we call that variable
free, so it is possible to generate a value for that with Gecse’s method described
in section 4.2 possibly at random. If the variable has already been set, its value
is changed based on the parameters of a set function call and its previous value.

The example in Fig. 4 is a TTCN-3 snippet from simplified version of an
HDLC flow control. The test case checks if the incrementation of the received
sequence number is correct after an overflow. As the value of variable w_s is
removed from the test case, the same test case can be reused even for different
protocol versions of this family.

The parameterization of a frame represented by template t_m to be sent still
works identically to the original test case. However, as the value of the data field
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d of type M is free in the whole test case, our framework makes it possible to gen-
erate its value on-the-fly, instead of using a hardcoded ’O’ value. The same state-
ment holds for the template v_a at any point in the example, but the cycle variable
s that represents the sent sequence number is bound after its first access.

At runtime, the data transformation module saves and fetches the anytype

values from the memory to the database and vice versa. The easier direction,
just like in the case of the object-relational mapping, is the saving of a memory
object to the database. This requires only the parameterization and the execution
of a few well-defined SQL statements. However, the reverse direction is more
challenging. The value fetched from the database must be decoded into a variable
of an arbitrary type known only at runtime, while decoders are available only
for primitive TTCN-3 types at compile time. The name of that type is known
at runtime, so the field of the anytype union to be set is known as well. If that
type is a TTCN-3 record type, its fields are – recursively – initialized one-by-one
in the native module. If that type is a primitive type, the value produced by the
decoder is assigned to that field.

6 Conclusion

The framework presented in this paper increases the reusability of test case def-
initions at the cost of reducing the portability. With test data removed from the
TTCN-3 documents, test parameterization takes place in a relational database
back-end, and it is possible to test the behavior with different set of parame-
ters. Our method makes the identification of template fields transparent for the
executing test case possible, and can generate appropriate values for those fields.

This framework has been implemented as a prototype extension plugin for
the TITAN TTCN-3 Test Executor [8]. The test case and test data models
are extracted from the TTCN-3 code with a specialized parser. The execution
framework that provides the on-the-fly database access consists of a large set
of external functions implemented in C++. To make variable identification by
variable name possible, we use metadata and C++ reflection mechanisms, and
in the TTCN-3 documents all variables and templates are declared as anytype.
This framework has been tested with SQLite 3 as database back-end.

Our experiments we made on Diameter Base Protocol [15] and two sample
protocols show that the overhead of using a database is a little over 1 ms for
each access on average. Though this value is small, this framework should not
be used for performance testing.
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